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Preface

The present volume contains selected papers issuing from the sixth edition of the
International Conference Numerical Methods for hyperbolic problems that took
place in Málaga, Spain, from 17 to 21 June 2019. Málaga was a sub-venue of the
2019 International Congress on Industrial and Applied Mathematics held in
Valencia (Spain) from 15 to 19 July 2019, and NumHyp2019 was considered as
one of the satellite events of ICIAM2019. Moreover, NumHyp2019 was a key
activity of the European innovative training network entitled Modelling and
Computation of Shocks and Interfaces (ModCompShock). The conference took
place in the building of the Instituto de Estudios Portuarios located in the port of
Málaga, close to the heart of the city.

NumHyp is a series of biannual conferences that began with a meeting in Castro
Urdiales, Spain, in 2009. Further editions of this conference were held in Roscoff,
France, in 2011, Aachen, Germany, in 2013, Cortona, Italy, in 2015, and Monte
Verità, Switzerland, in 2017. These conferences focus on recent developments and
new directions in the area of numerical methods for hyperbolic and
convection-dominated partial differential equations (PDEs). These PDEs arise in a
large number of models in physics and engineering. Prominent examples include
compressible and incompressible Euler and Navier–Stokes equations, shallow
water equations, magnetohydrodynamics, multiphase fluid models, etc. Examples
of application areas are aerodynamics, oceanography, plasma physics, solid
mechanics, geophysics, environmental sciences, etc.

These PDEs have been subject of extensive analytical and numerical investi-
gation over the last decades. It is widely known that their solutions can exhibit very
complex behaviour including formation and propagation of singularities such as
shock waves, sensitive dependence to initial conditions, presence of multiple
spatio-temporal scales, and appearance of turbulent regimes. The design and the
analysis of numerical methods with good properties to solve them are still a
challenge.

v



More than 70 participants coming from 12 different countries attended the event,
and 10 invited talks, 30 oral contributions, and 14 posters were presented. More
details can be found at the conference website: http://eventos.uma.es/go/
NumHyp19.

This special issue contains 11 chapters selected from among the invited lectures
and contributed talks covering several state-of-the-art numerical techniques and/or
applications of hyperbolic systems. They have been organized in three parts:

1. Numerical methods for general problems. The chapters in this part put the
emphasis on the design of new schemes useful for general families of hyperbolic
problems. More precisely, the following aspects are discussed:

– Incomplete Riemann solvers for conservative and nonconservative hyper-
bolic systems and Jacobian-free methods (Chapter 1).

– Entropy-based methods for uncertainty quantification (Chapter 2).
– High-order well-balanced methods for systems of balance laws (Chapter 3).
– IMEX methods for multi-scale scalar conservation laws (Chapter 4).

The application of the methods discussed in the different chapters is illustrated
in a number of flow models, such as Euler equations, ideal magnetohydrody-
namics, and one-layer and multi-layer shallow water models.

2. Numerical methods for specifc problems: The chapters in this part focus on the
design of numerical methods with good properties for specific flow models.
More precisely,

– A staggered pressure correction numerical method for solving a model of
turbulent deflagrations in industrial applications (Chapter 5).

– Invariant domain preserving finite volume methods for the compressible
Euler and Navier–Stokes equations (Chapter 6).

– A level-set ghost-fluid high-order DG method for compressible multiphase
flow models (Chapter 7).

– All Mach number entropy stable methods for the compressible Euler equa-
tions (Chapter 8).

– Residual-based methods for sediment-transport models (Chapter 9).

3. New flow models: Chapters 10 and 11 put the emphasis on the derivation of new
nonlinear dispersive shallow water models.

Chapters 1, 2, 5, 6, 7, and 10 present the contents of the invited talks given by
J.M. Gallardo, M. Frank, R. Herbin, H. Mizerová, C.D. Munz, and J. Sainte-Marie,
respectively.

We would like to address our warmest thanks and gratitude to all who have
made this book possible: first of all, to all the speakers of NumHyp2019 for their
valuable contributions and, very specially, to those who accepted our invitation to
contribute to this volume and next to the anonymous referees that helped the
authors to improve the quality of their manuscripts. We would also like to thank the
members of the scientific committee for their support and help in the speakers
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selection and to those of the organizing committee for taking care of the organi-
zation of the event. We would like to thank the sponsors without whom
NumHyp2019 would not have been possible: in addition to the already mentioned
ITN ModCompShock, we are really grateful to the University of Málaga and the
Sociedad Española de Matemática Aplicada (SEMA). Many thanks to the orga-
nizing committee of ICIAM 2019 for having considered this conference as a
satellite event. We also thank the Springer staff for their help and support during the
edition process and very specially to Francesca Bonadei, executive editor in charge.
Finally, we thank the editorial board of the SEMA/SIMAI Springer series for
having accepted this volume and the editor in charge, Paolo Zunino, for his helpful
comments.

M. L. Muñoz-Ruiz
C. Parés
G. Russo
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Incomplete Riemann Solvers Based on
Functional Approximations to the
Absolute Value Function

José M. Gallardo, Manuel J. Castro, and Antonio Marquina

Abstract We give an overview on the work developed in recent years about cer-
tain classes of incomplete Riemann solvers for hyperbolic systems. These solvers
are based on polynomial or rational approximations to |x |, and they do not require
the knowledge of the complete eigenstructure of the system, but only a bound on
the maximum wave speed. Our solvers can be readily applied to nonconservative
hyperbolic systems, by following the theory of path-conservative schemes. In par-
ticular, this allows for an automatic treatment of source or coupling terms in systems
of balance laws. The properties of our schemes have been tested with some chal-
lenging numerical experiments involving systems such as the Euler equations, ideal
magnetohydrodynamics equations and multilayer shallow water equations.

1 Introduction

Since the early work of Godunov [19], Riemann solvers constitute a fundamental
ingredient in the design of robust and accurate numerical methods for hyperbolic
conservation laws. Usually, Riemann solvers can be classified as complete or incom-
plete, depending if all the characteristic waves in the solution of the exact Riemann
problem are considered or not. Among the class of complete Riemann solvers, Roe’s
method [29] is one of the most widely used, as it usually provides the best resolution
of the Riemann wave fan. However, when analytic expressions for the eigenstructure
of the system are not available or they are difficult to compute, Roe’s method may
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be computationally expensive. Therefore, in certain situations it is preferable to con-
sider incomplete Riemann solvers, for which only part of the spectral information
is needed. In these cases, an important drawback may be the lack of resolution of
internal waves in complex scenarios.

The numerical diffusion of a given numerical flux is determined by its viscosity
matrix. In the case of Roe’s method the viscosity matrix is |A|, the absolute value of
the Roe matrix of the system, which may be difficult to compute as it requires the
knowledge of the complete eigenstructure of A. A number of incomplete Riemann
solvers based on appropriate approximations to |A| have been proposed in the litera-
ture. One of the earliest examples is given by the local Lax-Friedrichs (or Rusanov)
method, inwhich |A| is approximated using only the largest eigenvalue of the system.
Another very popular approach is the HLL method [20], where |A| is approximated
be means of a linear polynomial evaluation P(A), where P(x) interpolates |x | at the
smallest and largest eigenvalues of A. On the other hand, the paper [14] contains the
first construction of a simple approximation to |A| by means of a polynomial that
approximates |x | without interpolating it exactly on the eigenvalues.

The latter approach is the basis of the general framework proposed in [8], where
PVM (Polynomial Viscosity Matrix) methods were introduced. The viscosity matrix
of a PVM method is built as a polynomial evaluation P(A) of the Roe matrix or
the Jacobian of the flux at some other average value. It is worth noticing that a
number of well-known methods in the literature can be viewed as particular cases
of PVM schemes: Lax-Friedrichs, Rusanov, HLL, FORCE, Roe, etc. (see also [13,
23, 31]). An additional feature of PVM methods is that they can be defined in the
general framework of nonconservative hyperbolic systems, which allows to construct
natural extensions of the standard schemes cited before for solving problems in
nonconservative form.

To ensure the stability of a PVMmethod, the graph of the basis polynomial P(x)
must be over the graph of the absolute value function. On the other hand, as P(x) is
closer to |x | in the uniform norm, the behavior of the associated PVM method will
be closer to that of Roe’s method. It follows then that it is possible to use accurate
approximations to |x | for building PVM schemes resembling Roe’s method, but with
a much smaller computational cost. Following this idea, a PVM scheme based on
Chebyshev polynomials, which provide optimal uniform approximations to |x |, was
proposed in [10]. This idea was further extended in the same paper to the case of
rational functions, which greatly improve the order of approximation to |x |. The
resulting schemes were denoted as RVM (Rational Viscosity Matrix). In fact, RVM
schemes based on Newman [24] approximations provided similar performances as
Roe’s method, but with a much smaller computational cost. As the only difference
between PVM and RVM methods rely on the kind of basis function chosen, in
this work we will use the term AVM (Approximate Viscosity Matrix) to refer to
both of them. We remark that AVM methods constitute a class of general-purpose
Riemann solvers, which are constructed using only an estimate of the spectral radius
of the Roe matrix or the Jacobian of the system evaluated at an average state. As an
additional advantage, unlike Roe’s method, no entropy-fix is needed in the presence
of sonic points, as long as the basis function does not cross the origin. Recently, a
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fully two-dimensional version of AVM schemes has been proposed in [18], where
multidimensional effects are taken into account through the approximate solution of
two-dimensional Riemann problems.

TheOsher-Solomon (OS) scheme [26] is a nonlinear and completeRiemann solver
which enjoys a number of interesting features: it is robust, smooth, entropy-satisfying,
and good behaved when computing slowly-moving shocks. As a drawback, its prac-
tical implementation is complex and computationally expensive, as it requires the
computation of a path-dependent integral in phase space (see [30]). For this reason,
its practical application has been restricted to certain systems, e.g., the compress-
ible Euler equations. In [15, 16], the authors proposed a variant of the OS method
combining linear paths and a Gauss-Legendre quadrature formula. This led to a sim-
plified version of the OS scheme, denoted as DOT (Dumbser-Osher-Toro), which
conserves its good properties and it is applicable to general hyperbolic systems. In
particular, the viscosity matrix of a DOT solver is defined as a linear combination
of the absolute value matrix of the Jacobian of the physical flux evaluated at certain
quadrature points. As the practical computation of these matrices can be expensive,
they could be approximated in an efficient way following the same technique behind
AVM methods. This idea was explored in [11], leading to the class of AVM-DOT
solvers. In particular, it was shown that Chebyshev-based AVM-DOT solvers admit
a Jacobian-free implementation, in which only evaluations of the physical flux are
needed. This kind of methods is particularly interesting when solving systems in
which the Jacobian involves complex expressions: see [12].

Both classes of AVM and AVM-DOT solvers can be extended to the case of non-
conservative hyperbolic systems, following the theory of path-conservative schemes
[28]. In particular, this includes the important case of hyperbolic systems of con-
servation laws with source terms and nonconservative products. In the conservative
case, the proposed schemes have been applied to a number of challenging problems in
ideal gas dynamics, magnetohydrodynamics (MHD) and relativisticMHD (RMHD).
Multilayer shallow water systems have been considered as a representative example
in the nonconservative framework, as they include both source and nonconservative
coupling terms [10–12]. In all the cases, the numerical tests indicate that the pro-
posed schemes are robust, running stable and accurate with a satisfactory time step
restriction.

2 Approximate Viscosity Matrix (AVM) Methods

In this section we give an overview of PVM [8] and related methods developed in
recent years [10, 12]. For the sake of clarity, we first focus on the case of a system
of conservation laws. Extensions to the nonconservative case will be treated later in
Sect. 4.

Let us consider a system of conservation laws

∂tw + ∂x F(w) = 0, (1)
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where w(x, t) takes values on an open convex set O ⊂ R
N and F : O → R

N is
a smooth flux function. The numerical solution of the Cauchy problem for (1) is
computed by means of a finite volume method of the form

wn+1
i = wn

i − �t

�x
(Fi+1/2 − Fi−1/2), (2)

where wn
i is an approximation to the average of the exact solution at the cell Ii =

[xi−1/2, xi+1/2] at time tn = n�t (the dependence on time will be dropped unless
necessary). The numerical flux is assumed to be written as

Fi+1/2 = F(wi ) + F(wi+1)

2
− 1

2
Qi+1/2(wi+1 − wi ), (3)

where the viscosity matrix Qi+1/2 controls the numerical diffusion of the scheme.
We will assume that system (1) is hyperbolic, i.e., the Jacobian matrix of the flux

at each state w ∈ O,

A(w) = ∂F

∂w
(w),

can be diagonalized as
A = PDP−1,

where D = diag(λ1, . . . , λN ), λi are the eigenvalues of A, and the columns of the
matrix P are the associated right eigenvalues of A. As it is usual, we denote the
positive and negative parts of A, respectively, as

A+ = PD+P−1, A− = PD−P−1,

where D± = diag(λ±
1 , . . . , λ±

N ), with λ+
i = max(λi , 0) and λ−

i = min(λi , 0). It is
clear that A = A+ + A−. The absolute value of A is then defined as

|A| = A+ − A−.

One of the most widely used Riemann solvers for (1) was proposed by Roe
in [29]. It usually provides the best resolution of the Riemann wave fan, although
for complex systems the method can be computationally expensive. This is due to
the fact that Roe’s method is a complete Riemann solver, in the sense that it uses
all the eigenstructure of the system. Therefore, for complex systems, or systems
for which the eigenstructure is not known, incomplete Riemann solvers may be
preferred: they use few characteristic information and are thus easier to implement
and computationally efficient.

It is important to note that Roe’s method can be written in the form (3) with
viscosity matrix Qi+1/2 = |Ai+1/2|, where Ai+1/2 is a Roe matrix for the system.
Several numerical methods have been developed by using approximations to |Ai+1/2|
as viscosity matrices; see, e.g., [13, 14, 20, 30, 31] and the references therein.
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PVM Methods
The original idea of PVM (Polynomial Viscosity Matrix) Riemann solvers [8] was
based in approximating |Ai+1/2| using an appropriate polynomial evaluation of
Ai+1/2.Assume that P(x) is a polynomial approximation of |x | in the interval [−1, 1],
and let λi+1/2,max be the eigenvalue of Ai+1/2 with maximum modulus (or an upper
bound of it). The numerical flux of the PVM method associated to P(x) is given by
(3) with viscosity matrix

Qi+1/2 = |λi+1/2,max|P(|λi+1/2,max|−1Ai+1/2),

which provides an approximation to |Ai+1/2|, the viscosity matrix of Roe’s method.
Moreover, note that the best P(x) approaches |x |, the closer the behavior of the
associated PVM scheme will be to that of Roe’s method. It is worth noticing that no
spectral decomposition of the matrix Ai+1/2 is needed to build a PVM method, but
only a bound on its spectral radius. This fact makes PVM methods greatly efficient
and applicable to systems in which the eigenstructure is not known or difficult to
obtain. In those cases in which a Roematrix is not available or is difficult to compute,
Ai+1/2 can be defined as the Jacobian evaluated at some average state.

Several well-known schemes in the literature can be interpreted as PVMmethods,
for example:

• Lax-Friedrichs: P(x) = �x
�t .• HLL: P(x) = α0 + α1x , where P(SL) = |SL | and P(SR) = |SR|, being SL and

SR approximations to the minimal and maximal speeds of propagation.
• Roe: In this case, P(x) is the Lagrange polinomial which interpolates the set of
points (λ

( j)
i+1/2, |λ( j)

i+1/2|), where λ
( j)
i+1/2 are the eigenvalues of the Roematrix Ai+1/2.

Other examples include Rusanov, FORCE or Lax-Wendroff methods (see [8]).
Another example of PVM method is the one proposed in [14], which constitutes
one of the first attempts to construct a simple approximation of |A| by means of a
polynomial that approximates |x |without interpolating it exactly on the eigenvalues.

The stability of a PVM scheme relies on the properties of the basis polynomial
P(x). In particular, the following stability condition should be verified:

|x | ≤ P(x) ≤ 1, ∀ x ∈ [−1, 1]. (4)

It was proven in [8] that condition (4) implies that the associated PVM scheme is
linearly L∞-stable under a standard CFL restriction.

A well-known drawback of Roe’s method is the need of an entropy fix to han-
dle sonic flow properly, in order to avoid entropy-violating solutions. In PVM-type
schemes there is no need of entropy fix as long as P(0) �= 0.

In [10] we proposed a new class of PVM schemes based on Chebyshev polynomi-
als, which provide optimal uniform approximations to the absolute value function.
The Chebyshev polynomials of even degree T2k(x) are recursively defined as

T0(x) = 1, T2(x) = 2x2 − 1, T2k(x) = 2T2(x)T2k−2(x) − T2k−4(x).
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Fig. 1 Left: Chebyshev approximations τ2p(x) for p = 2, 3, 4. Right: Internal polynomial approx-
imations (6)

Then, for p ≥ 1 we consider the polynomial of degree 2p given by (see Fig. 1, left)

τ2p(x) = 2

π
+

p∑

k=1

4

π

(−1)k+1

(2k − 1)(2k + 1)
T2k(x), x ∈ [−1, 1], (5)

which follows after truncation of the series expansion of |x | in terms of Chebyshev
polynomials. It is a classical result [2] that the order of approximation of τ2p(x)
to |x | is optimal in the L∞(−1, 1) norm. Moreover, the recursive definition of the
polynomials T2k(x) provides an explicit and efficient way to compute τ2p(x) (see the
Appendix in [10]).

Notice that τ2p(x) does not verify the stability condition (4) strictly: see Fig. 1
(left), where τ2p(x) has been drawn for p = 2, 3, 4. This drawback was partially
fixed in [10] in a rough manner, by substiting τ2p(x) by τ ε

2p = τ2p(x) + ε, where ε

is chosen as the minimum value such that τ ε
2p(x) fulfills condition (4). However, this

could cause incorrect approximations of the external waves.
In [12] we proposed another family of polynomials which approximate |x | in a

more elegant way, satisfying the stability condition (4) by construction. This class
of internal polynomials are iteratively defined as follows (see Fig. 1 (right)):

p0(x) ≡ 1, pn+1(x) = 1

2

(
2pn(x) − pn(x)

2 + x2
)
, n = 0, 1, 2, . . . (6)

RVM Methods
As it is well-known [24], rational functions provide much better approximations to
|x | than polynomials. This fact was used in [10] to create new families of very precise
incompleteRiemann solvers, denoted asRVM(RationalViscosityMatrix), following
the same idea of PVM methods but using a rational function as basis instead of a
polynomial.

In particular, two families of RVM methods will be considered here. The first
one corresponds toNewman approximations, which are constructed as follows. For a
given r ≥ 4, consider a set of distinct points in (0, 1], X = {0 < x1 < · · · < xr ≤ 1},
and build the polynomial
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Fig. 2 Left: Comparison between R8(x) and Rε
8(x) for x ∈ [−0.1, 0.1], with ε ≈ 7.37e − 3. Right:

Halley rational approximations Hr (x) in the interval [−0.1, 0.1], for r = 3, 4, 5

p(x) =
r∏

k=1

(x + xk).

The Newman rational function associated to the set X is then defined by

Rr (x) = x
p(x) − p(−x)

p(x) + p(−x)
.

It is easy to see that Rr (x) interpolates |x | at the points {−xr , . . . ,−x1, 0, x1, . . . , xr }.
Also notice that for even r both the numerator and denominator of Rr (x) are of degree
r . The uniform rate of approximation of Rr (x) to |x | depends on the choice of the
set of nodes X . Several choices are possible (see [10]); here, we have considered
Newman’s original definition, which is given by xk = ξ k , with ξ = exp(−r−1/2).

Notice that the stability condition (4) is not fulfilled in any case, so a modified
approximation of the form Rε

r (x) = Rr (x) + ε should be considered, as in the case
of Chebyshev polynomials. A comparison between Rr (x) and Rε

r (x) can be seen in
Fig. 2 (left). The differences between using Rr (x) or Rε

r (x) are particularly noticeable
in the presence of sonic points: in this case, Rε

r (x) must be used to avoid entropy-
violating solutions.

The second family of rational functions is based on iterative approximations. Note
that the absolute value |x̄ | of a given point x̄ ∈ [−1, 1] can be viewed as the positive
root of f (x) = x2 − x̄2. It is then possible to approximate |x̄ | using a root-finding
algorithm, such as Newton’s method, or the more precise choice given by the cubic
Halley’s method:

xk+1 = xk
x2k + 3x̄2

3x2k + x̄2
.

Taking x0 = 1 as initial guess, Halley’s method is well-defined and converges to x̄
(see [5]). The Halley rational approximations to |x | are thus recursively defined as

H0(x) ≡ 1, Hr+1(x) = Hr (x)
Hr (x)2 + 3x2

3Hr (x)2 + x2
. (7)
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Notice that the degrees of the numerator and denominator of Hr (x) are both equal to
3r − 1. It can be easily verified that Hr (x) satisfies the stability condition (4) without
further modifications. Figure 2 (right) shows the functions Hr (x) for r = 3, 4, 5.

As itwas commented before, another possibility is to useNewton’smethod instead
of Halley’s method. However, numerical experiments show that RVM-Halley meth-
ods provide much better resolution of internal waves than RVM-Newton schemes
with a comparable computational cost.
AVM Methods
As it can be seen in the preceding paragraphs, the idea behind PVM and RVM
methods is esentially the same, the difference depending only on using polynomials
or rational functions to approximate the absolute value function. For this reason, we
will encompass both kind of methods under the global name of AVM (Approximate
Viscosity Matrix) methods.

Therefore, an AVM method is a finite volume method of the form (2), where the
numerical flux is given by (3) with viscosity matrix

Qi+1/2 = f (Ai+1/2),

where f : R → R is a given function and Ai+1/2 is a Roe matrix or the Jacobian of
the flux evaluated at some average state. The function f must verify some conditions:

• f (x) is nonnegative and smooth.
• f (Ai+1/2) should be easy to evaluate; in particular, no spectral decomposition of

Ai+1/2 should be needed, but only a bound on its spectral radius.
• L∞-linear stability, which is accomplished under the condition

|x | ≤ f (x) ≤ CFL
�x

�t
, ∀ x ∈ [λ(1)

i+1/2, λ
(N )
i+1/2],

where λ
(1)
i+1/2 ≤ · · · ≤ λ

(N )
i+1/2 are the eigenvalues of Ai+1/2.

• The graph of f (x) should be as close as possible to the graph of |x |.
We end this section with some remarks regarding computational efficiency. The

implementation of rational-based methods involves the computation of matrix pow-
ers and matrix inversions, while Chebyshev-based or internal-based methods can
be expressed in such a way that only vector operations are involved. This makes
these polynomial methods computationally cheaper than rational ones but, on the
other hand, rational methods are far more precise. Thus, a compromise has to be
accomplished between accuracy and computational cost. In general, it seems that for
problems with solutions containing very complex patterns, rational-based methods
perform better than polynomial ones in terms of the ratio between CPU times and
computed errors. Otherwise, for mildly complex problems polynomial methods may
be the preferred option.

An additional advantage of Chebyshev-based and internal-based methods is that
they admit a Jacobian-free implementation (see Sect. 3), which is not possible for
rational-based methods. This means that the numerical flux can be constructed using
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only evaluations of the physical flux F at different states, thus avoiding the compu-
tation of Jacobian matrices. This point is particularly interesting for systems with
complex physical fluxes (as, for example, the equations of RMHD), for which the
calculation of the corresponding Jacobian may be a difficult or costly task.

3 Approximate DOT Solvers

The so-called approximate DOT (Dumbser-Osher-Toro) solvers, introduced in [11],
combine the AVM technique with the universal Osher-type solvers proposed in [15].
These methods, that will be denoted in what follows as AVM-DOT, constitute simple
and efficient approximations to the classical Osher-Solomon method [26], enjoying
most of its interesting features and being applicable to general hyperbolic systems.

The numerical flux of the original Osher-Solomon method is given by

Fi+1/2 = F(wi ) + F(wi+1)

2
− 1

2

∫ 1

0

∣∣A(
(s))
∣∣
′(s)ds, (8)

where A(w) represents the Jacobian of the physical flux F evaluated at the state w,
and 
 is a path in phase-space linking the states wi and wi+1. The path 
 for a DOT
solver [15] is taken as the segment linking wi and wi+1, and the resulting integral is
approximated using a Gauss-Legendre quadrature formula. Thus, the resulting DOT
flux adopts the form (3) with viscosity matrix

Qi+1/2 =
q∑

k=1

ωk

∣∣A(wi + sk(wi+1 − wi ))
∣∣,

where ωk and sk are the weights and nodes of the quadrature formula. Now, the
absolute value of the intermediate matrices could be approximated by using the
technique of AVMmethods. The resulting AVM-DOT solver associated to a function
f (x) has then the following form:

Qi+1/2 =
q∑

k=1

ωk P̃
(k)
i+1/2,

where
P̃ (k)
i+1/2 = ∣∣λ(k)

i+1/2,max

∣∣ f
(∣∣λ(k)

i+1/2,max

∣∣−1
A(k)
i+1/2, (9)

for k = 1, . . . , q. In the above expression, λ(k)
i+1/2,max denotes the eigenvalue of

A(k)
i+1/2 = A(wi + sk(wi+1 − wi ))

)
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with maximum modulus.
Clearly, a kind of AVM methods can be obtained as a particular case of approxi-

mate AVM-DOT solvers, simply by taken q = 1 and ω1 = 1.
Jacobian-Free Implementation
We end this section with some notes on the Jacobian-free implementation of AVM-
DOT solvers. As it was already mentioned at the end of Sect. 3, this is only possible
for polynomial-based methods. To clarify the process, we will focus on the case of
an AVM-DOT solver based on internal polynomial approximations.

As it was indicated in [12], the explicit form of pn(x) combined with Horner’s
methodwill be considered instead of the recursive form (6). On the other hand, notice
that it will not be necessary to compute the viscosity matrix Qi+1/2 explicitely, but
only the vector Qi+1/2(wi+1 − wi ) appearing in the numerical flux (3).

To ilustrate the procedure, consider the polynomial

p2(x) = α0x
4 + α1x

2 + α2 = x2(α0x
2 + α1) + α2,

where the coefficients are given by α0 = −1/8, α1 = 3/4 and α2 = 3/8. Let A ≡
A(w) be the Jacobian matrix of F evaluated at an intermediate state w, and let
v be an arbitrary state; for simplicity, assume that λmax = 1. Then the following
approximation holds:

|A|v ≈ p2(A)v = (A2(α0A
2 + α1 I ) + α2 I )v.

The above expression can be computed using Horner’s algorithm:

• Define v0 = v and compute ṽ0 = A2v0.
• Calculate v1 = α0ṽ0 + α1v0 and ṽ1 = A2v1.
• Compute v2 = ṽ1 + α2v0. Then, |A(w)|v ≈ p2(A)v = v2.

The product A(w)v can be approximated using finite differences:

A(w)v ≈ F(w + εv) − F(w)

ε
,

which leads to

A(w)2v ≈ F
(
w + F(w + εv) − F(w)

) − F(w)

ε
≡ 
ε(w; v),

where, in practice, the value ε should be chosen small relative to the norm of w.
Finally, the vector |A(w)|v can be approximated using the following steps, in which
only vector operations and evaluations of the physical flux F are needed:

• Define v0 = v and compute ṽ0 = 
ε(w; v0).
• Calculate v1 = α0ṽ0 + α1v0 and ṽ1 = 
ε(w; v1).
• Compute v2 = ṽ1 + α2v0. Then, |A(w)|v ≈ v2.
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The detailed procedure to build a Jacobian-free AVM-DOT solver with pn(x) as
basis function is given next. The key point is to approximate the vectors

P̃ (k)
i+1/2�w = ∣∣λ(k)

i+1/2,max

∣∣pn(A(k))�w, k = 1, . . . , q,

where�w = wi+1 − wi and A(k) = ∣∣λ(k)
i+1/2,max

∣∣−1
A(w

(k)
i ), withw

(k)
i = wi + sk�w.

Assuming that the coefficients αi of the polynomial pn(x) have already been com-
puted, the polynomial pn(x) can be written as

pn(x) = α0x
2(n+1) + α1x

2n + α2x
2(n−1) + · · · + αnx

2 + αn+1.

Then each term P̃ (k)
i+1/2�w can be approximated using the following algorithm:

• Define v0 = �w and compute ṽ0 = ∣∣λ(k)
i+1/2,max

∣∣−2

ε(w

(k)
i ; v0).

• Calculate v1 = α0ṽ0 + α1v0.
• For j = 1, . . . , n, define ṽ j = ∣∣λ(k)

i+1/2,max

∣∣−2

ε(w

(k)
i ; v j ) and compute v j+1 =

ṽ j + α j+1v0.
• Finally, P̃ (k)

i+1/2�w ≈ ∣∣λ(k)
i+1/2,max

∣∣vn+1.

4 The Nonconservative Case

TheAVMandAVM-DOT solvers introduced in the previous sections can be extended
in a natural way to the case of nonconservative hyperbolic systems. We will focus in
this section in AVM-DOT solvers, as they are more general. However, all the results
can be readily adapted to AVM solvers.

Consider a hyperbolic system in nonconservative form

∂tW + A(W )∂xW = 0, (10)

where the matrixA(W ) is strictly hyperbolic for each state W belonging to an open
convex subset � ⊂ R

M . The definition of the nonconservative product A(W )∂xW
depends on the choice of a family of paths
(s;WL ,WR) joining arbitrary statesWL

and WR in the phase space �: see [22, 28] for details.
The solutions of (10) can be numerically approximated by means of path-

conservative finite volume schemes of the form [28]:

Wn+1
i = Wn

i − �t

�x
(D+

i−1/2 + D−
i+1/2), (11)

where D±
i+1/2 = D±(Wn

i ,Wn
i+1). Here D− and D+ are two continuous functions

from � × � to � satisfying

D±(W,W ) = W, ∀W ∈ �,
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and

D−(W0,W1) + D+(W0,W1) =
∫ 1

0
A(
(s;W0,W1))

∂


∂s
(s;W0,W1) ds (12)

for every W0,W1 ∈ �, with 
(0;W0,W1) = W0 and 
(1;W0,W1) = W1. In par-
ticular, the generalized Roe’s scheme [27] is defined by choosing

D±
i+1/2 = 1

2

(A
(Wn
i ,Wn

i+1) ± |A
(Wn
i ,Wn

i+1)|
)
(Wn

i+1 − Wn
i ),

where A
 is a Roe linearization associated to A and 
. In this case, the term
|A
(Wn

i ,Wn
i+1)| plays the role of a viscosity matrix. Using Roe’s property, it is

possible to write the above expression as

D±
i+1/2 = 1

2

∫ 1

0
A(
(s;Wn

i ,Wn
i+1))

∂


∂s
(s;Wn

i ,Wn
i+1) ds

± 1

2
|A
(Wn

i ,Wn
i+1)|(Wn

i+1 − Wn
i ).

Then, it is natural to define the Osher-Solomon scheme for solving the nonconser-
vative system (10) as (11) with

D±
i+1/2 = 1

2

∫ 1

0
A(
(s;Wn

i ,Wn
i+1))

∂


∂s
(s;Wn

i ,Wn
i+1) ds

± 1

2

∫ 1

0
|A(
(s;Wn

i ,Wn
i+1))|

∂


∂s
(s;Wn

i ,Wn
i+1) ds, (13)

or, equivalently,

D±
i+1/2 = 1

2
A
(Wn

i ,Wn
i+1)(W

n
i+1 − Wn

i )

± 1

2

∫ 1

0
|A(
(s;Wn

i ,Wn
i+1))|

∂


∂s
(s;Wn

i ,Wn
i+1) ds. (14)

Notice that (13) is more general than (14), as the latter relies on the existence of
a Roe linearization A
. Therefore, (13) could be used in the cases in which a Roe
linearization is not known or is difficult to compute.

A good choice of the family of paths 
 may be difficult or very costly in
practice, and usually relies on the physics of the problem (see [28]). A sim-
ple choice, commonly used in the literature, is given by the family of segments:

(s;WL ,WR) = WL + s(WR − WL); we will consider this choice throughout the
rest of the section. Then, denoting Ai+1/2 = A
(Wn

i ,Wn
i+1), we have:
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D±
i+1/2 = 1

2

(
Ai+1/2 ±

∫ 1

0
|A(Wn

i + s(Wn
i+1 − Wn

i ))| ds
)

(Wn
i+1 − Wn

i ),

where the integral
∫ 1
0 |A(Wn

i + s(Wn
i+1 − Wn

i ))| ds can be interpreted as a viscosity
term. Next, this integral can be approximated using a Gauss-Legendre quadrature
formula, which leads to

D±
i+1/2 = 1

2

(
Ai+1/2 ±

q∑

k=1

ωk |A(k)
i+1/2|

)
(Wn

i+1 − Wn
i ), (15)

where A(k)
i+1/2 = A(Wn

i + sk(Wn
i+1 − Wn

i )). Therefore, (15) can be interpreted as a
nonconservative extension of the DOT numerical flux. This approach has also been
considered in [16].

Once formula (15) has been derived, AVM-DOT schemes for the nonconservative
system (10) can be built in a natural way, considering

D±
i+1/2 = 1

2

(
Ai+1/2 ±

q∑

k=1

ωk P̃
(k)
i+1/2

)
(Wn

i+1 − Wn
i ),

where P̃ (k)
i+1/2 is defined in (9).

We will focus now in the particular case of a hyperbolic system of conservation
laws with source terms and nonconservative products, that is,

∂tw + ∂x F(w) + B(w)∂xw = G(w)∂x H, (16)

wherew(x, t) ∈ O (beingO ⊂ R
N open and convex), F : O → R

N is a smooth flux
function, B : O → MN (R) is a smooth matricial function, and G : O → R

N and
H : R → R are given functions. System (16) can be written in the form (10) adding
the trivial equation ∂t H = 0 and defining

W =
(

w

H

)
∈ � = O × R ⊂ R

N+1, A(W ) =
(
A(w) −G(w)

0 0

)
,

where A(w) = ∂F
∂w

(w) + B(w). In this case, aRoe linearizationAi+1/2 can be defined
as [27]

Ai+1/2 =
(
Ai+1/2 −Gi+1/2

0 0

)
,

where Ai+1/2 = Li+1/2 + Bi+1/2,Li+1/2 being aRoematrix for the flux F in the usual
sense, that is, Li+1/2(w

n
i+1 − wn

i ) = F(wn
i+1) − F(wn

i ); Bi+1/2 is a matrix verifying

Bi+1/2(w
n
i+1 − wn

i ) =
(∫ 1

0
B(wn

i + s(wn
i+1 − wn

i )) ds

)
(wn

i+1 − wn
i ),
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and Gi+1/2 is a vector satisfying

Gi+1/2(Hi+1 − Hi ) =
( ∫ 1

0
G(wn

i + s(wn
i+1 − wn

i )) ds

)
(Hi+1 − Hi ).

A simple calculation gives

|A(W )| =
(|A(w)| −|A(w)|A(w)−1G(w)

0 0

)
,

as long as A(w) is nonsingular. Substituing in (15), the DOT scheme for solving (16)
can be written as

wn
i+1 = wn

i − �t

�x
(D+

i−1/2 + D−
i+1/2), (17)

with

D±
i+1/2 = 1

2

(
F(wn

i+1) − F(wn
i ) + Bi+1/2(w

n
i+1 − wn

i ) − Gi+1/2(Hi+1 − Hi )

±
q∑

k=1

ωk |A(k)
i+1/2|

(
wn

i+1 − wn
i − (A(k)

i+1/2)
−1G(k)

i+1/2(Hi+1 − Hi )
))

, (18)

where A(k)
i+1/2 = A(wn

i + sk(wn
i+1 − wn

i )), and similarly for G(k)
i+1/2.

Finally, AVM-DOT schemes for (16) are obtained by substituting |A(k)
i+1/2| by

P̃ (k)
i+1/2 in (18):

D±
i+1/2 = 1

2

(
F(wn

i+1) − F(wn
i ) + Bi+1/2(w

n
i+1 − wn

i ) − Gi+1/2(Hi+1 − Hi )

±
q∑

k=1

ωk P̃
(k)
i+1/2

(
wn

i+1 − wn
i − (A(k)

i+1/2)
−1G(k)

i+1/2(Hi+1 − Hi )
))

. (19)

In the case of a systemof conservation laws (that is, B = 0 andG = 0), the scheme
(17) can be written in the form (2) by simply taking Fi+1/2 = D−

i+1/2 + F(wn
i ) or,

equivalently, Fi+1/2 = −D+
i+1/2 + F(wn

i+1).

5 Numerical Experiments

In this section we test the performances of AVM-DOT schemes with some chal-
lenging problems related to ideal MHD equations in the conservative case, and to
multilayer shallow water equations in the nonconservative case.
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Depending on the basis function f (x), the AVM-DOT schemes will be denoted:

• DOT-Cheb-2p: f (x) is the Chebyshev polynomial τ2p(x).
• DOT-Newman-r : f (x) is taken as the Newman rational function Rr (x).
• DOT-Halley-r : f (x) = Hr (x), the r -th Halley rational function.
• DOT: the original DOT method in [15], in which the eigendecomposition is com-
puted numerically.

For higher order schemes, third-order PHM [21] reconstructions have been used,
combined with a third-order TVD Runge-Kutta method for time stepping.

5.1 Applications to Magnetohydrodynamics

The MHD system of equations is given by [4]

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tρ = −∇ · (ρv),

∂t (ρv) = −∇ ·
(

ρvvT +
(
P + 1

2
B2

)
I − BBT

)
,

∂tB = ∇ × (v × B),

∂t E = −∇ ·
((

γ

γ − 1
P + 1

2
ρq2

)
v − (v × B) × B

)
,

(20)

where ρ represents the mass density, v = (vx , vy, vz)
t and B = (Bx , By, Bz)

t are the
velocity and magnetic fields, and E is the total energy. Denoting by q and B the
magnitudes of the velocity and magnetic fields, the total energy is

E = 1

2
ρq2 + 1

2
B2 + ρε,

where the specific internal energy ε and the hydrostatic pressure P are related through
the equation of state P = (γ − 1)ρε, with γ the adiabatic constant. In addition to
the equations, the magnetic field must satisfy the divergence-free condition

∇ · B = 0. (21)

In the numerical experiments, condition (21) has been imposed by means of the
projection method in [3]. Notice that for B = 0, system (20) reduces to the Euler
equations for gases. The eigenstructure of system (20) is completely determined:
see, e.g., [4].
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5.1.1 Stationary Contact Discontinuity

The purpose of this test, first proposed in [17], is to study the effect of the numeri-
cal diffusion in the approximation of a stationary contact discontinuity. This effect,
known as numerical heat conduction, may cause incorrect heating across the discon-
tinuity. The initial conditions for the Euler equations are given by

(ρ, vx , P) =
{

(1, 0, 1) for x ≤ 0.5,

(2, 0, 1) for x > 0.5,

with γ = 1.4. The solution consists in a stationary contact wave located at x = 0.5.
The problem has been solved in the domain [0, 1] with 200 cells and CFL= 0.5
until a final time t = 4.

Figure 3 shows the approximations to the density component. Both in the first- and
third-order solutions, DOT-Newman-4 gives the best approximation to the solution,
followed byDOT-Halley-2, DOT-Cheb-4 andDOT-Halley-1. TheHLL scheme gives
a very diffusive resolution of the discontinuity. On the other hand, Fig. 4 shows the
corresponding efficiency curves which represent, in logarithmic scale, the CPU times
versus the L1 errors with respect to the exact solution for different meshes. In any
case, DOT-Newman-4 is the most efficient solver. This test shows that the choice of

Fig. 3 Test 5.1.1: Left: first order. Right: third order. The solutions obtained with the Roe and DOT
schemes coincide with the reference (exact) solution. The lower row shows a zoom near the upper
part of the discontinuity
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Fig. 4 Test 5.1.1: Efficiency curves CPU vs. L1-error. Left: first order. Right: third order

an appropriate first-order solver is important even when it is going to be used as a
building block for higher-order schemes.

5.1.2 Brio-Wu Shock Tube Problem

This experiment was proposed in [4] to show the formation of a compound wave
consisting of a shock followed by a rarefaction wave. The initial conditions are the
following:

(ρ, vx , vy, vz, Bx , By, Bz, P) =
{

(1, 0, 0, 0, 0.75, 1, 0, 1) for x ≤ 0,

(0.125, 0, 0, 0, 0.75,−1, 0, 0.1) for x > 0,

with γ = 2. The problem has been solved until time t = 0.2 in the interval [−1, 1]
with a 1000 cell spatial discretization andCFL= 0.8. The results are shown in Fig. 5:
in this case there are no appreciable differences between the solutions computed with
Roe, DOT-Newman-4, DOT-Halley-2, DOT-Cheb-4 andDOT. On the other hand, the
first order HLL method provides a worse resolution of the compound wave, which
is however improved in third order.

Fig. 5 Test 5.1.2: Zoom of the density compound wave. Left: first order. Right: third order
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5.1.3 Orszag-Tang Vortex

The Orszag-Tang vortex [25] constitutes a model of transition to supersonic MHD
turbulence in which, departing from a smooth state, complex interactions between
shock waves are generated as the system evolves.

For (x, y) ∈ [0, 2π ] × [0, 2π ], the initial data are given by

ρ(x, y, 0) = γ 2, vx (x, y, 0) = − sin(y), vy(x, y, 0) = sin(x),

Bx (x, y, 0) = − sin(y), By(x, y, 0) = sin(2x), P(x, y, 0) = γ,

with γ = 5/3. Periodic boundary conditions are imposed in the x- and y-directions.
The computations have been done using a 192 × 192 uniform mesh and CFL=0.8.

Figure 6 shows the results obtained with the third-order DOT-Cheb-4 scheme
at time t = 3; similar solutions are obtained with the third-order DOT-Newman-4,
DOT-Halley-2, and DOT schemes. The results are in very good agreement with those
found in the literature, thus showing that our schemes are robust and accurate enough
to resolve the complicated structure of this vortex system. Finally, Table 1 shows the
relative CPU times with respect to the first-order DOT scheme.

The relativistic version of the Orszag-Tang problem has also been considered. In
this case, due to the very complex form of the Jacobians of the system, the Jacobian-
free implementation introduced at the end of Sect. 3 has been found to be a very
advantageous choice. Figure 7 shows the solution computed at time t = 4 with a
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Fig. 6 Test 5.1.3: Density (left) and pressure (right) computed at time t = 3 with the third-order
DOT-Cheb-4 scheme

Table 1 Test 5.1.3: Relative CPU times with respect to the first-order DOT solver

Method CPU (first order) CPU (third order)

DOT 1.00 5.82

DT-Cheb-4 0.16 1.04

DOT-Newman-4 0.38 2.32

DOT-Halley-2 0.50 2.79

HLL 0.05 0.36
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Fig. 7 Relativistic Orszag-Tang vortex: Left: density. Right: pressure

Jacobian-free second-order PVM-int-8 scheme, based on the internal polynomial
approximation introduced in Sect. 2. At a qualitative level, our results are in good
agreement with those found in, e.g., [32]. For a more detailed discussion about
Jacobian-free AVM-DOT solvers applied to relativistic MHD, the reader is referred
to [12].

5.1.4 The Rotor Problem

In this section we consider the rotor problem proposed in [1]. At the beginning, a
dense disk rotates at the center of the domain, while the ambient fluid remains at
rest. These two areas are connected with a taper function, which helps to reduce the
initial discontinuity. As time evolves, the rotating dense fluid tends to be confined
into an oblate shape, due to the action of the magnetic field.

The computational domain is [0, 1] × [0, 1] with periodic boundary conditions.
Defining r0 = 0.1, r1 = 0.115, f = (r1 − r)/(r1 − r0) and r = [(x − 0.5)2 + (y −
0.5)2]1/2, the initial conditions are given by

(ρ(x, y), vx (x, y), vy(x, y)) =

⎧
⎪⎨

⎪⎩

(10, −(y − 0.5)/r0, (x − 0.5)/r0) if r < r0,

(1 + 9 f,−(y − 0.5) f/r, (x − 0.5) f/r) if r0 < r < r1,

(1, 0, 0) if r > r1,

with Bx = 2.5/
√
4π , By = 0 and P = 0.5. We take γ = 5/3.

Figure 8 shows the solutions obtained with the third-order DOT-Cheb-4 scheme
at time t = 0.295 on a 200 × 200 mesh with CFL= 0.8. The results are in good
agreement with those presented in [1]. As in the previous test, DOT-Newman-4 and
DOT-Halley-2 give similar results as DOT-Cheb-4. On the contrary, the DOT scheme
fails for this problem around time t ≈ 0.187. Finally, the third-order HLL and DOT-
Cheb-4 methods are compared in Fig. 9. As it can be seen, DOT-Cheb-4 produces
more precise results than HLL, which indicates that the choice of a precise first-order
solver is important even when designing high-order schemes.
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Fig. 8 Test 5.1.4: Density ρ (left) and pressure P (right) computed at time t = 0.295 with the
third-order DOT-Cheb-4
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Fig. 9 Test 5.1.4: Comparison between the density solutions obtained with the third-order HLL
(left) and DOT-Cheb-4 (right) schemes

5.2 Applications to the Two-Layer Shallow Water System

The two-layer shallow water equations constitute a representative model of the non-
conservative systems considered in Sect. 4, as they include both source and non-
conservative coupling terms (see [7]). The equations governing the one-dimensional
flow of two superposed inmiscible layers of shallow water fluids can be written in
the form (16) by taking

w =

⎛

⎜⎜⎝

h1
q1
h2
q2

⎞

⎟⎟⎠ , F(w) =

⎛

⎜⎜⎜⎜⎜⎜⎝

q1
q21
h1

+ g

2
h21

q2
q22
h2

+ g

2
h22

⎞

⎟⎟⎟⎟⎟⎟⎠
, G(w) =

⎛

⎜⎜⎝

0
gh1
0

gh2

⎞

⎟⎟⎠ , B(w) =

⎛

⎜⎜⎝

0 0 0 0
0 0 gh1 0
0 0 0 0

rgh2 0 0 0

⎞

⎟⎟⎠ ,

where h j are the fluid depths, q j = h ju j represent the discharges, u j are the veloc-
ities, and H(x) is the depth function measured from a fixed level of reference; g
is the gravity constant and r = ρ1/ρ2 is the ratio of densities. Notice that j = 1
corresponds to the upper layer and j = 2 to the lower one.
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To build the AVM-DOT fluxes (19), we define

Bi+1/2 =

⎛

⎜⎜⎝

0 0 0 0
0 0 gh1,i+1/2 0
0 0 0 0

rgh2,i+1/2 0 0 0

⎞

⎟⎟⎠ , Gi+1/2 =

⎛

⎜⎜⎝

0
gh1,i+1/2

0
gh2,i+1/2

⎞

⎟⎟⎠ ,

where

hk,i+1/2 = hk,i + hk,i+1

2
, k = 1, 2.

Notice that the exact eigenstructure of the two-layer system is not explicitely known.
However, a first order approximation of the maximum wave speed is given by

|λi+1/2,max| ≈ |ūi+1/2| + ci+1/2,

where

ūi+1/2 = q1,i+1/2 + q2,i+1/2

h1,i+1/2 + h2,i+1/2
, ci+1/2 = √

g(h1,i+1/2 + h2,i+1/2).

5.2.1 Internal Dam-Break

This test was proposed in [9] to simulate a dam-break in a two-layer system. The
initial conditions are given by

h1(x, 0) =
{
0.9 if x < 5,

0.1 if x ≥ 5,
h2(x, 0) = 1 − h1(x, 0),

and q1(x, 0) = q2(x, 0) = 0, for x ∈ [0, 10]. The ratio of densities is taken as r =
0.99. The problem has been solved using a mesh with 200 grid points until time
t = 20, with CFL number 0.9. Open boundary conditions have been imposed.

Fig. 10 Test 5.2.1: Free surface and interface. Left: first order. Right: third order
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Figure 10 shows the free surface and the interface (η j = h j − H ). The best results
in first order are obtained with the DOT-Newman-4 and DOT schemes, followed by
DOT-Halley-2 and DOT-Cheb-4, while HLL is not able to capture the interface
correctly. On the other hand, in third order all the schemes perform equally well,
being HLL the one that gives the less precise results.

5.2.2 Transcritical Flux with Shock

The initial condition for this test consists in an internal dam-break over a non-flat bot-
tom, which eventually tends towards a stationary transcritical solution with a shock
(see [10]). Specifically, the initial conditions are given by q1(x, 0) = q2(x, 0) = 0,

h1(x, 0) =
{
0.48 for x < 0,

0.02 for x ≥ 0,
h2(x, 0) = H(x) − h1(x, 0),

and the bottom topography is defined by

H(x) = 1 − 1

2
e−x2 , x ∈ [−5, 5].

Open wall boundary conditions have been imposed, and the ratio of densities has
been chosen as r = 0.998.

The numerical solutions have been computed on a mesh with 200 grid points
until final time t = 100, with CFL number 0.9. The results have been represented
in Fig. 11. In first order, the DOT-Newman-4 and DOT schemes provide the best
resolution of the interface, followed by DOT-Halley-2 and DOT-Cheb-4; on the
other hand, HLL is unable to resolve the complex structure of the interface. The
situation improves when going to third order, although again HLL presents a worse
resolution near discontinuities. This can be better seen in the bottom row of Fig. 11,
where a closer view of the shock has been plotted. Notice also that the DOT scheme
presents more pronounced oscillations near the shock than DOT-Newman-4. Finally,
the relative CPU times with respect to the first-order DOT scheme are shown in
Table 2.
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Fig. 11 Test 5.2.2: Free surface, interface and bottom. Left: first order. Right: third order. The lower
row shows a closer view of the shock at the interface

Table 2 Test 5.2.2: Relative CPU times with respect to the first-order DOT solver

Method CPU (first order) CPU (third order)

DOT 1.00 2.98

DOT-Cheb-4 0.15 0.51

DOT-Newman-4 0.37 1.17

DOT-Halley-2 0.44 1.39

HLL 0.06 0.24
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Entropy–Based Methods for Uncertainty
Quantification of Hyperbolic
Conservation Laws

Martin Frank, Jonas Kusch, and Jannick Wolters

Abstract Using standard intrusive techniques when solving hyperbolic conserva-
tion lawswith uncertainties can lead to oscillatory solutions aswell as non-hyperbolic
moment systems. Entropy-based Stochastic Galerkin methods, on the other hand,
guarantee hyperbolicity and entropy decay. A key challenge facing these methods is
computational cost, since they require repeatedly solving a non-linear optimization
problem. Furthermore, the spatial and temporal discretization needs to preserve real-
izability, meaning that the existence of a unique solution to the optimization problem
must be ensured. We review strategies to guarantee realizability, which use a special
choice of the numerical flux while considering errors from the optimization solve.
Most importantly, we indicate how intrusive entropy-based closures can be made
competitive. We show several numerical test cases and discuss the advantages and
disadvantages of several uncertainty propagation methods.

1 Introduction

Hyperbolic equations play an important role in various research as well as indus-
trial areas. The most common equations of this kind model the behavior of liquids,
gases and plasmas and are thus widely used in the automotive and aerospace indus-
try. Because of this popularity, many highly efficient and robust implementations
for these models are available. The respective codes have shown to, for example,
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simulate the airflow around an airfoil very precisely, but only if the provided input
data is identical or at least extremely close to the experimental setup. Any arising
uncertainties in the input parameters, originating from e.g. measurement tolerances,
imperfect information or modeling assumptions cannot be represented and thus lead
to differences in the results of experiments and simulations. Therefore, propagat-
ing these uncertainties through complex partial differential equations has become an
important topic in the last decades.

We consider a parameterized system of hyperbolic equations of the form

∂tu(t, x, ξ) + ∇ · f (u(t, x, ξ)) = 0 in D , (1a)

u(t = 0, x, ξ) = uIC(x, ξ) (1b)

with state variable u ∈ D ⊂ R
m depending on time t ∈ R

+, spatial position x ∈ D ⊂
R

d and uncertain parameter ξ ∈ � ⊆ R
p. The physical flux is given by f : D →

R
d×m . Note, that for ease of notation, the uncertainties ξ here only enter through

the initial condition, i.e. only the initial data is subject to randomness. Boundary
conditions are omitted for now as they are specific to the studied problem and will
be supplied for the individual test cases in the later sections. We assume that all
random parameters are independent with a joint probability density function f� =∏p

i=1 f�,i (ξi ).
As the solution of (1a) is now subject to randomness, one is often interested in

determining the statistical moments of the solution, where the first and second order
moments, i.e. the mean and variance of u, given by

E[u] = 〈u〉, Var[u] = 〈(u − E[u])2〉

are usually most interesting. We define the bracket operator above as

〈·〉 :=
∫

�

· f�(ξ) dξ1 . . . dξp.

Generally, themethods ofUncertaintyQuantification (UQ) canbe divided into two
groups, intrusive and non-intrusive, meaning the methods either require an intrusive
change of an existing deterministic solver, or the existing code can be repurposed in
a black-box manner. Several textbooks on UQ have appeared in recent years [5, 10,
27, 28, 35, 40], and we refer the reader to these textbooks for a general overview and
references to the original works. In this paper, we nevertheless want to shed some
light on how these methods can be expected to perform when applied to hyperbolic
conservation laws.Wewill alsomake some general statements that we believe are not
well-known in some part of the literature. As it has been shown [33], the stochastic
Galerkin method cannot be applied directly to conservation laws because it is prone
to yield oscillatory solutions that might result in the loss of hyperbolicity and e.g.
negative densities. We then discuss in detail the Intrusive Polynomial Moment (IPM)
method [33], which can be seen as a generalization to the stochastic Galerkinmethod.
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This method is based on entropy minimization, and choosing a suitable entropy
guarantees hyperbolicity. On the other hand, the method comes at the cost of solving
an optimization problem at every point in time for every spatial cell.

The IPM method has been inspired by entropy-based closures in kinetic theory.
In fact, the moment closure problem for a kinetic equation in velocity space is very
similar to treating uncertain parameters [20]. In the case of kinetic equations, the
techniques to put entropy-based closures into practice have been refined in a series of
papers [1–3, 9, 14, 29], and the application to UQ draws from this experience. In this
paper, we discuss realizability-preserving spatial discretizations, and acceleration
techniques to solve the IPM system more efficiently. This review is based on the
papers [19, 20, 23].

2 Why Galerkin-Type Intrusive Methods?

For the following discussion, we assume that we want to approximate the expected
value

E[u] = 〈u〉 =
∫

�

u f� dξ1 . . . dξp

of the solution u at a given time t as a function of x. Since the expected value is an
integral of the solution against the probability density function, all non-intrusive UQ
methods can be understood and analyzed as numerical quadrature rules

E[u](t, x) ≈
N∑

k=1

wku(t, x, ξ k) .

• Monte-Carlo (MC) methods sample ξ k from the probability density function f�
and take wk = 1

N .• Number-theoretic/Quasi-Monte Carlo (QMC) methods for uniformly distributed
random variables use a low-discrepancy sequence for ξ k and again wk = 1

N .• Tensorized quadrature rules take one-dimensional (e.g. Gaussian) quadrature rules
for each random input ξi . The grid for the ξ k is defined as a Cartesian product of
the one-dimensional grids and the weights are products of the one-dimensional
weights.

• Sparse grid quadrature rules use nodes ξ k on a (e.g. Smolyak) sparse grid and
weights that come from nested quadrature rules (e.g. Clenshaw-Curtis).

In the UQ literature, these methods are discussed based on their error formulas,
and the so-called curse of dimensionality is often mentioned. If u denotes the true
expected value and uN its approximation with N nodes/samples, then the methods
behave in the following way:

• The MC error is determined by the root mean square error E[(u − uN )2]1/2 =
VMC(u)N−1/2.
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• Multi-level Monte Carlo (MLMC) methods use control variates to make the con-
stant V (u) smaller [11].

• The QMC error typically behaves like |u − uN | ≤ VQMC(u)(log N )pN−1 [6].
• The tensorized grid error has the form |u − uN | ≤ Vtens(u)N−α/p.
• The sparse grid quadrature error behaves like |u − uN | ≤ Vsparse(u)(log N )pN−β .

In the latter two cases, α and β are related to the differentiability of u with respect
to ξ . All error constants V depend on u and certain of its derivatives. For instance,
in the case of sparse grids, u has to be in a certain Sobolev space with mixed higher-
order derivatives. For an overview and a critical discussion of the assumptions on
the solution we refer the reader to the excellent paper [38]. In the mathematical UQ
literature, the curse of dimensionality is usually defined as an effective decay of the
convergence rate when it is measured in the total number of nodes N and when the
dimension p is increased. This is clearly the case for tensorized grids. But one should
also note that for both QMC and sparse grid quadrature the decaying term dominates
the log term only if N � 2p (N � 2p/β respectively). These methods therefore only
mitigate the curse. Finally, one often finds the statement that MC methods do not
suffer from the curse, because the convergence rate is independent of the dimension
p. However, MC methods might be impractical in high dimensions. This can be
seen from the simple example (that every reader can easily try) of approximating the
volume of the unit sphere in p dimensions: Draw a uniform sample in [−1, 1]p and
determine if the sampled node is inside the unit sphere. Then the ratio of the points
inside the sphere to the total number of samples converges to the volume divided by
2p. For p = 20, MC with 100 million samples will not produce any significant digit.
The reason is that the volume of the sphere becomes so small that it becomes almost
impossible to draw a sample within the sphere. In other words, the error constant
increases rapidly with dimension p. It should be noted, however, that all of these
methods are embarrassingly parallel because uncoupled problems need to be solved.

Intrusive methods on the other hand do not rely on any form of quadrature, but
rather derive a system of equations that describes the time evolution of the moments
directly. The resulting systemcan then be solvedwith classical numericalmethods for
deterministic equations. In contrast to non-intrusive methods this does not decouple
the problem. In the stochastic Galerkin (SG) method, the solution u is expanded in a
series of polynomial basis functions ϕi : � → R, such that for the multi-index i =
(i1, · · · , i p) we have |i | :=∑p

k=1 |ik | ≤ N . The usual choice for these functions ϕi

are orthonormal polynomials with respect to the probability distribution function, i.e.
〈ϕiϕ j 〉 =∏p

n=1 δin jn . This yields the so called generalized polynomial chaos (gPC)
expansion

U(û; ξ) :=
∑

|i |≤N

ûiϕi (ξ) = ûTϕ(ξ) . (2)

The unknown, but deterministic expansion coefficients ûi ∈ R
m are called moments.

For a more compact notation, we collect these moments in the moment matrix û.
This matrix holds all moments for which |i | ≤ N holds. Therefore, û is defined
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as û := (ûi )|i |≤N ∈ R
M×m with corresponding basis functions ϕ := (ϕi )|i |≤N ∈ R

M .
The total number of basis functions for which |i | ≤ N holds is

M :=
(
N + p

p

)

.

When the gPC approximation (2) is known, statistical quantities of interest can be
computed as

E[U(û)] = û0 , Var[U(û)] = E[U(û)2] − E[U(û)]2 =
(

N∑

i=1

û2
i

)


=1,··· ,m
.

The SGmoment system is obtained by plugging the gPC ansatz (2) into the stochastic
problem (1a) and projecting the resulting residual to zero (Galerkin projection),
which yields the system

∂t ûi (t, x) + ∇ · 〈 f (U(û))ϕi 〉 = 0 , (3a)

ûi (t = 0, x) = 〈uIC(x)ϕi 〉 . (3b)

As mentioned previously, the main caveat of the method is that the moment system
is not necessarily hyperbolic and thus not applicable to every problem. We will
investigate this thoroughly in the following sections, but at this point we want to
discuss why one should be interested in an intrusive method like SG at all. Putting
SG into practice requires working with the model and new code. Additionally, the
trivial parallelism of non-intrusive methods is lost. A statement one often finds in
the UQ literature is that one should use SG because it has spectral convergence. This
means that the convergence rate of the method only depends on the smoothness of
the function. Moreover, if this smoothness is large or even infinite (i.e. the solution
possesses derivatives of orders up to infinity) then the curse of dimensionality can be
overcome. However, both Gauss and Clenshaw-Curtis quadrature also show spectral
convergence [39], so if a function is smooth enough those methods can be used as
well.

On the plus side, because sparse grids rely on nested quadrature rules, and similar
to modal versus nodal DG methods, SG reaches the same formal accuracy with
fewer unknowns. Furthermore, in many cases the expected value of a solution of
a hyperbolic system is more smooth and does not have shocks (examples can be
found in Sect. 6). Although this is not true in general [37], one often does not have
to use a high-resolution shock-capturing scheme. Two further advantages will be
utilized in this paper: Whereas collocation methods use a global grid in the uncertain
parameters, for intrusive methods one can enrich the discretization of the parameter
space adaptively. Furthermore, especially for the IPM method one can iterate faster
into steady state. Given these potential advantages we argue that although intrusive
methods have shortcomings it is worthwhile to study them, especially in the context
of hyperbolic conservation laws.
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3 Hyperbolic Conservation Laws and the IPM Method

After introducing hyperbolic conservation laws and the concept of entropy, this
section is focused on the derivation of the IPM method.

3.1 Hyperbolic Conservation Laws and Entropy Variables

Our numerical discretization of the random space should preserve certain properties
of hyperbolic equations. Although they are well-known, we briefly summarize them
in the following to fix notation. Ignoring uncertainties for the time being, to character-
ize hyperbolicity we put the conservative form (1a) into its quasi-conservative form.
Defining the flux Jacobians A j := ∇u f j ∈ R

m×m , the system (1a) can be rewritten
as

∂tu +
d∑

j=1

A j (u)∂x j u = 0 . (4)

Denoting the flux Jacobian into direction w ∈ R
d by

A(u,w) :=
d∑

j=1

A jw j ,

we call a system hyperbolic, if the flux Jacobian A(u,w) has only real eigenvalues
λk(u,w) for k = 1, · · · ,m with a complete family of eigenvectors rk(u,w) for all
states u ∈ D and every direction w ∈ R

d with ‖w‖ = 1. Note that for one spatial
dimension, i.e. d = 1, the direction is w = 1 and therefore hyperbolicity holds if the
flux Jacobian ∇u f is diagonalizable with real eigenvalues.

Hyperbolic problems tend to form shocks, inwhich case the original systemcan no
longer be solved.Therefore, the concept ofweak solutions has been introduced,which
tests the original problem against smooth basis functions with compact support and
thenmoves derivatives from the solution onto these basis functions [24, Chapter 3.4].
Unfortunately, weak solutions are not unique and can show non-physical behavior.
Hence, one is left with having to pick physical meaningful solutions from possible
weak solution candidates. This motivates a further concept, called the entropy solu-
tion [24, Chapter 3.8.1]. Note that in the case of scalar equations, the entropy solution
is actually unique under certain smallness assumptions [16, Chapter 2.4]. Let us first
introduce the entropy:

Definition 1 Let D be convex. Then a convex function s : D → R is called an
entropy for the conservation Eqs. (1a) if there exist d functions F̃j : D → R, called
entropy fluxes, which fulfill the integrability condition

∇us(u)∇u f j (u) = ∇u F̃j (u) , j = 1, · · · , d . (5)



Entropy–Based Methods for Uncertainty Quantification ... 35

For classical solutions, the integrability condition ensures conservation of entropy:
By multiplying ∇us(u) from the left with the original Eq. (1a), we get with the
integrability condition (5) as

∂t s(u) +
d∑

j=0

∂x j F̃j (u) = 0 . (6)

Since (6) is again in conservation form, the entropy is conserved at smooth solutions
and the functions F̃j are the flux functions of the entropy balance law (6).

If u is a weak solution, which fulfills

∂t s(u) +
d∑

j=0

∂x j F̃j (u) ≤ 0 (7)

in a weak sense for all admissible entropies s, then u is called an entropy solution.
Note that opposed to the entropy used in thermodynamics, the mathematical entropy
s is dissipated in time: By integrating (7) over the spatial domain, while assuming
that the entropy fluxes are zero at the boundary, we obtain

d

dt

∫

D
s(u) dx ≤ 0 . (8)

The notion of entropy is closely related to hyperbolicity, which can be shown with
the help of the entropy variables

v = ∇us(u)T ∈ R
m . (9)

If s is strictly convex, the mapping v(u) is one-to-one and the solution u can be
represented in termsof entropyvariables as u : Rm → R

m with u(v) = (∇us)
−1 (v).1

A change from the conserved quantities u to their corresponding entropy variables
can be performed to put (1a) in its symmetric form

∂tu(v) +
d∑

j=1

∂x j g j (v) = 0 , (10)

where the flux with respect to the entropy variables has been denoted by g j , i.e.

g j (v) := f j (u(v)) with j = 1, · · · , d . (11)

Our goal is to check hyperbolicity, i.e. (10) needs to be brought into its quasi-
conservative form (4). Applying the chain rule results in

1Note that we have prescribed u to be in Rm , i.e. strictly speaking we have u(v) = (∇us)−T (v).
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H(v)∂tv +
d∑

j=1

B j (v)∂x j v = 0 , (12)

with
H(v) = ∇vu(v) and B j (v) = ∇v g j (v) . (13)

Note that H(v) = (∇2
us(u)

)−1
,which canbe checkedbydifferentiating∇us(u(v)) =

v with respect to v. Therefore, H(v) is symmetric positive definite and can there-
fore be rewritten as Q�QT , where Q ∈ R

m×m is orthonormal and � ∈ R
m×m is a

diagonal matrix with positive entries. Consequently, the regular, symmetric matrix
H1/2 := Q�1/2QT exists. Multiplying (12) with H−1 = H−1/2H−1/2 from the left
results in the system

∂tv +
d∑

j=1

H−1/2H−1/2∇v g j (v)H−1/2H1/2∂x j v = 0 . (14)

It remains to check under which conditions the flux Jacobian of this system is diago-
nalizable with real eigenvalues. Since H−1/2 is symmetric, symmetry of B j suffices
to show symmetry of H−1/2∇v g j (v)H−1/2.Multiplying thismatrixwith H−1/2 from
the left and H1/2 from the right is a similarity transformation and therefore does not
change eigenvalues. Hence when B j is symmetric, the system (14) is diagonalizable
with real eigenvalues and therefore hyperbolic. This can be ensured via the concept
of entropy.

Theorem 1 The matrices B j are symmetric iff the integrability condition (5) holds.

Proof See e.g. [36]. �
In the case of scalar equations, all convex functions can be used as entropies. In
particular, a family of entropies, which is also called the Kružkov entropy [18],
given by

s(u) = |u − k| for all k ∈ R

fulfills the integrability condition for the entropy flux

F̃j (u) = sgn(u − k)( f j (u) − f j (k)) .

This family of entropies can be employed to derive several solution properties for
scalar equations. One of these properties is the maximum–principle

‖u(t, ·)‖L∞(D) ≤ ‖uIC‖L∞(D) , (15)

which guarantees bounds on the solution imposed by its initial condition.
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3.2 The Intrusive Polynomial Moment Method

Let us now consider a system of hyperbolic conservation laws of the form (1a)
and move back to the discretization of the random domain. As discussed earlier, the
polynomial ansatz of stochastic-Galerkin does not necessarily preserve hyperbolicity.
A generalization of stochastic-Galerkin, which ensures hyperbolicity is the Intrusive
PolynomialMoment (IPM)method [33], which in the field of kinetic theory is known
as an entropy closure, see e.g. [25]. Instead of expanding the conserved variables u
with polynomials as done by SG, the IPM method performs such an expansion on
the entropy variables (9). Hence, substituting the entropy variables v = ∇us(u)T into
(1a) yields

∂tu(v(t, x, ξ)) + ∇ · f (u(v(t, x, ξ))) = 0 , (16)

where again u : Rm → R
m with u(v) = ∇us(u). Now, a finite dimensional rep-

resentation of the entropy variables is obtained by an expansion in terms of gPC
polynomials, i.e.

v(t, x, ξ) ≈ vN (t, x, ξ) :=
∑

|i |≤N

v̂i (t, x)ϕi (ξ) = v̂(t, x)Tϕ(ξ) , (17)

where the entropic expansion coefficients (also called dual variables) v̂i ∈ R
m are

collected in thematrix v̂ := (v̂i )i≤|N | ∈ R
M×m . Replacing the exact entropy variables

inside the original problem (16) by this expansion, we obtain

∂tu
(
v̂(t, x)Tϕ(ξ)

)+ ∇ · f
(
u
(
v̂(t, x)Tϕ(ξ)

)) = r̃(t, x, ξ) . (18)

Similar to stochastic-Galerkin, the residual r̃ is again projected to zero, yielding

∂t
〈
u
(
v̂(t, x)Tϕ

)
ϕi
〉+ ∇ · 〈 f (u (v̂(t, x)Tϕ

))
ϕi
〉 = 0 (19)

for |i | ≤ N . The moments belonging to the dual variables v̂ are now given by

ûi (v̂) = 〈u (v̂Tϕ
)
ϕi
〉

for |i | ≤ N . (20)

This mapping, i.e. û : RM×m → R ⊂ R
M×m is one-to-one, meaning that similar

to v(u), we can define a function v̂(û) with v̂ : R → R
M×m . Making use of this

mapping as well as the definition of the moments in (19) yields the IPM system

∂t ûi + ∇ · 〈 f (u (v̂(û)Tϕ
))

ϕi
〉 = 0 , for |i | ≤ N . (21)

The IPM system posses several desirable properties. Especially, if the entropy s(u)

fulfills the integrability condition (5), the IPM system is hyperbolic:
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Theorem 2 The IPM system can be brought into its symmetric form with symmetric
positive definite temporal Jacobian and symmetric spatial Jacobian, if the entropy
s(u) fulfills the integrability condition (5).

Proof In its symmetric form, the IPM system (19) reads

Ĥ(v̂)∂t v̂ +∑d
j=1 B̂ j (v̂)∂x j v̂ = 0 , (22a)

with Ĥ(v̂) := 〈∇vu(vN ) ⊗ ϕϕT
〉

, (22b)

B̂ j (v̂) := 〈∇u f j (u(vN ))∇vu(vN ) ⊗ ϕϕT
〉

. (22c)

Here, we abuse notation by defining the multiplication of Ĥ ∈ R
m·M×m·M with y ∈

R
M×m by

(
Ĥ · y

)

li
:=

m∑

l ′=1

M∑

i ′=1

Ĥ(l−1)m+i,(l ′−1)m+i ′ yl ′i ′ .

The same holds for the multiplication with B̂ j . As done for (12), if we can ensure Ĥ
being symmetric positive definite and B̂ j symmetric, we know that the IPM system
is hyperbolic. Obviously, Ĥ is symmetric. Multiplication with v̂ ∈ R

M×m from both
sides gives

v̂T Ĥ v̂ = 〈vT
N∇vu(vN )vN

〉
> 0 ,

where we use that∇vu = H is symmetric positive definite as done in (12). It remains
to show symmetry of B̂ j for all j = 1, · · · , d. Using the definition of B j from (13),
we can rewrite (22c) as

B̂ j (v̂) := 〈B j (vN ) ⊗ ϕϕT
〉

.

ByTheorem1,weknow that B j is symmetric, fromwhichwe can conclude symmetry
of B̂ j . �
Recall that solving the IPM system requires the mapping v̂(û), i.e. a mapping from
the moments to the dual variables. This mapping can be defined by inverting the
dual variables to moments map (20). The inverse exists, since the Jacobian of û(v̂) is
∇v̂ û(v̂) = Ĥ(v̂) which is positive definite, i.e. the dual variables to moments map is
strictly monotonically increasing. Unfortunately, the inversion can generally not be
performed analytically. In this case one needs to determine v̂ by solving the non-linear
system of equations

〈
u
(
v̂Tϕ

)
ϕT
〉T = û (23)

for a given moment vector û numerically. This task is commonly performed by
reformulating (23) as a root-finding problem

G(v̂; û)
!= 0



Entropy–Based Methods for Uncertainty Quantification ... 39

with
G(w; û) := 〈u (wTϕ

)
ϕT
〉T − û . (24)

Here, one often uses Newton’s method to determine the root of G. Then, with
∇wG(w; û) = Ĥ(w) a Newton update takes the form d : RM×m × R

M×m → R
M×m

with
d(w, û) := w − Ĥ(w)−1 · G(w; û) . (25)

The function d will in the following be called dual iteration function. Now, the
Newton iteration for an input moment vector û is given by

w(l+1) = d(w(l), û) . (26)

The exact dual state is then obtained by computing the fixed point of d, meaning
that one converges the iteration (26), i.e. v̂ := v̂(û) = liml→∞ d(w(l), û). To obtain
a finite number of iterations, a stopping criterion

m∑

i=0

∥
∥G(w(l); û)

∥
∥ < τ (27)

is used, where τ > 0 is a user determined parameter.
It remains to discuss the discretization of the spatial and time domain, which for

ease of presentation, we perform for a scalar problem as well as a one dimensional
spatial domain. When dividing the spatial domain into cells [x j−1/2, x j+1/2] with
j = 1, · · · , Nx and using discrete times tn with n = 1, · · · , Nt , we can approximate
the i-th order moment by

ûn
i j � 1

x

∫ x j+1/2

x j−1/2

ûi (tn, x)dx .

The full moment vector in cell j at time tn is denoted by ûn
j = (ûn

0 j , · · · , ûn
N j )

T ∈
R

M×m . Furthermore, the corresponding dual variables are denoted by

v̂n
j := v̂

(
ûn
j

)
. (28)

Then, a finite-volume scheme for the IPM system (21) can be written as

ûn+1
j = ûn

j − t

x

(
G∗(v̂ j , v̂ j+1) − G∗(v̂ j−1, v̂ j )

)
, (29)

where G∗ : RM×m × R
M×m → R

M×m is the numerical flux which needs to be con-
sistent with the physical flux of the IPM system. i.e. we must have G∗(v̂, v̂) =〈
f
(
u
(
v̂Tϕ

))
ϕT
〉
. In order to evaluate the moments to dual variables map (28), we
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can use the definedNewton iteration for the inputmoments ûn
j . Altogether, this yields

the scheme from Algorithm 1.

Algorithm 1 IPM algorithm
1: for j = 0 to Nx + 1 do
2: û0j = 1

x

∫ x j+1/2
x j−1/2

〈uIC(x, ·)ϕ〉dx
3: for n = 0 to Nt do
4: for j = 0 to Nx + 1 do
5: while ‖G(v

(m)
j ; ûnj )‖ > τ do

6: v
(m+1)
j ← d(v

(m)
j ; ûnj )

7: m ← m + 1
8: v̂nj ← v

(m+1)
j

9: for j = 1 to Nx do
10: ûn+1

j ← ûnj − t
x

[
G∗(v̂ j , v̂ j+1) − G∗(v̂ j−1, v̂ j )

]

4 Realizability-Preserving Spatial Discretization

In this section we further describe the concept of realizability and present a
realizability-preserving discretization and improved version of Algorithm 1.

4.1 Realizability

As previously discussed, the IPM method and minimal entropy closures in general
face several challenges. Besides increased computational costs, the IPM method
cannot invert the mapping û : RM×m → R ⊂ R

M×m when the moment vector û
leaves the so-called realizable set R, which results in a failure of the method [19].
To discuss this issue, we consider a scalar, one-dimensional conservation law of the
form

∂t u(t, x, ξ) + ∂x f (u(t, x, ξ)) = 0 , (30a)

u(0, x, ξ) = uIC(x, ξ) , (30b)

i.e. m, p and d are equal to one. The following discussion is however valid for
arbitrary dimensions and we make this simplification for ease of exposition. For
scalar problems of the form (30), the solution fulfills the maximum–principle [16,
Chapter 2.4]

min
x∈D,ξ∈�

uIC(x, ξ) ≤ u(t, x, ξ) ≤ max
x∈D,ξ∈�

uIC(x, ξ) ,
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which ideally should be preserved by the discretization of the random domain. The
IPMmethod at least enables one to impose a user-defined lower bound u− and upper
bound u+ on the solution by choosing an entropy s(u), which takes infinite values
when u /∈ (u−, u+). One such entropy is the log-barrier entropy [33]

s(u) = − ln(u − u−) − ln(u+ − u) . (31)

Then, by the entropy dissipation property (8), the IPM solution u(vN ) ≡ (s ′)−1(vN )

will remain inside the interval (u−, u+). Similarly, for systems such as the Euler
equations, certain solutionquantities such as positivity of density, energy andpressure
can again be achieved by the choice of a suitable entropy. Recall, that the image of
the dual variables to moments map (20) has been denoted by R. This set is called
realizable set. For entropies imposing solution bounds u− and u+ it is given by

R := { û ∈ R
N+1
∣
∣ ∃u : � → (u−, u+) such that û = 〈uϕ〉} . (32)

When proposing numerical methods to solve the IPM system (21), it is crucial to
prevent the moments generated by this method from leaving this set, since then,
the dual variables to moments map cannot be inverted, i.e. the system (23) has no
solution. In the following, we propose an algorithm which keeps the moments inside
R and we will refer to this property as preserving realizability.

4.2 Realizability-Preserving Discretization

The presented general Algorithm 1 will not necessarily preserve realizability, i.e. it
generates moments û /∈ R. The two sources for this are the choice of the numerical
flux as well as the fact that the system (23) cannot be solved exactly, i.e. the moments
to dual variables map has errors. Let us first write down the realizability preserving
algorithm presented in [19] and then discuss why it maintains û /∈ R. When again
using u : RN+1 → R

N+1 with u(v) = (s ′)−1(v), the chosen numerical flux is the
kinetic flux

G∗(v̂
, v̂r ) = 〈 f ∗(u(v̂T

 ϕ), u(v̂T

r ϕ))ϕ
〉

, (33)

where f ∗(u
, ur ) is a monotone flux for the underlying deterministic problem. Note
that this choice of G∗ is common in the field of kinetic theory, see e.g. [8, 13, 31,
32]. We assume that the original, deterministic scheme

H(u, v, w) = v − t

x

(
f ∗(v,w) − f ∗(u, v)

)
(34)

keeps the solution inside the bounds u− and u+, i.e. H(unj−1, u
n
j , u

n
j+1) ∈ [u−, u+] if

all inputs are bounded by u−, u+. This can for example be achieved with monotone
schemes or, for high order methods, with bound preserving limiters [4, 7, 12, 26,
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41]. Note that since the integral in (33) can generally not be solved analytically, a
quadrature rule must be employed to approximate the kinetic flux. It can however
be shown that the resulting quadrature error will not influence realizability of the
numerical scheme. Then, a realizability preserving implementation is given by

Algorithm 2 Modified IPM algorithm
1: for j = 0 to Nx + 1 do
2: û0j = 1

x

∫ x j+1/2
x j−1/2

〈uIC(x, ·)ϕ〉dx
3: for n = 0 to Nt do
4: for j = 0 to Nx + 1 do
5: while ‖G(v

(m)
j ; ûnj )‖ > τ do

6: v
(m+1)
j ← d(v

(m)
j ; ûnj )

7: m ← m + 1
8: vnj ← v

(m+1)
j

9: unj ←
〈

u

((
vnj

)T
ϕ

)

ϕ

〉

10: for j = 1 to Nx do
11: ûn+1

j ← unj − t
x

[
G∗(v j , v j+1) − G∗(v j−1, v j )

]

Here,we use v and u instead of v̂ and û to stress that these quantities are affected by
the inexact Newton iteration. The main difference to Algorithm 1, besides the choice
of the numerical flux, is the recalculation of the moment vector from the inexact dual
variables v in line 9. It can be shown that Algorithm 2 preserves realizability: To
simplify notation, let us define the exact and inexact dual states� := vN = v̂Tϕ and
� := vTϕ. Then, the inexact moments are given by

un
j = 〈u (�n

j

)
ϕ
〉

(35)

and the moment update becomes

ûn+1
j = un

j − t

x

[〈
f ∗ (u

(
�n

j−1

)
, u
(
�n

j

))
ϕ
〉− 〈 f ∗ (u

(
�n

j

)
, u
(
�n

j+1

))
ϕ
〉]

.

(36)
Plugging the definition of the inexact moments (35) into the moment update (36)
yields

ûn+1
j =

〈(

u
(
�n

j

)− t

x

[
f ∗ (u

(
�n

j

)
, u
(
�n

j+1

))− f ∗ (u
(
�n

j−1

)
, u
(
�n

j

))]
)

ϕ

〉

= 〈
H(u(�n

j−1), u(�n
j ), u(�n

j+1))ϕ
〉

.

Now, since the ansatz u(�) = (s ′)−1(�) only takes values in [u−, u+], we have

H(u(�n
j−1), u(�n

j ), u(�n
j+1)) ∈ [u−, u+]
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for all ξ ∈ �. Therefore, the time updated moments belong to an underlying func-
tion which is bounded by u− and u+, i.e. we have ûn+1

j ∈ R. The construction of the
presented algorithm also guarantees that the CFL condition of the original scheme
ensures stability. Note that the presented IPM scheme can be extended to systems,
multi-dimensional problems andhigher ordermethods,whenever a bound-preserving
scheme (34) exists. Furthermore, when replacing all integrals by quadrature rules,
the time updated moments will remain realizable, since they belong to a function
which fulfills the prescribed bounds on the quadrature points. The main drawback
of this strategy to preserve realizability is that it introduces a non-conservative error
by recalculating moments. However, when using a Lipschitz continuous numerical
flux G∗, the error by recalculating moments is of order O(τ ) [19]. I.e. by choos-
ing a sufficiently small stopping criterion for Newton’s method the error from the
recalculation step becomes negligibly small.

A second strategy, which does not require recomputing moments and therefore
does not add such an error is choosing a modified CFL condition. Here, the main
idea is to account for effects the error in � has on the scheme by choosing a smaller
time step size. Denoting this error by

�n
j = �n

j (ξ) := �n
j (ξ) − �n

j (ξ) ,

a more restrictive CFL condition, which ensures realizability is given by

Theorem 3 Let us assume that the entropy ansatz only takes values in (u−, u+)

and the underlying numerical flux f ∗ is monotone. If furthermore, the numerical
optimizer enforces the stopping criterion

max
ξ∈�

⎧
⎨

⎩
max

�∈
[
�̄n

j,min,�̄
n
j,max

]

u′(�(ξ))

u′(�(ξ) + �n
j (ξ))

⎫
⎬

⎭
≤ γ , (37)

with

�n
j,min(ξ) := min

{
�n

j−1(ξ),�n
j (ξ),�n

j+1(ξ)
}

and �n
j,max(ξ) := max

{
�n

j−1(ξ),�n
j (ξ),�n

j+1(ξ)
}

,

the time updated moment vector ûn+1
j is realizable under the modified CFL condition

γ
t

x
max

u∈[u−,u+] | f
′(u)| ≤ 1 . (38)

The proof of this theorem as well as an implementation strategy can be found in
[19]. Due to its simplicity and efficient implementation of different discretization
schemes, we will use the strategy of recalculating moments, i.e. Algorithm 2 in the
following.
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5 Accelerating the IPM Solution

In this section we describe two acceleration techniques, as presented in [23], which
reduce the numerical effort of the IPM method.

5.1 Adaptivity

As previously mentioned, in contrast to non-intrusive methods, intrusive methods
allow a more fine-grained control over the solution, as the uncertainties or more
precisely their respective moments, are directly propagated through time and the
corresponding quantities of interest (e.g. mean or variance) are not collected in a
secondary step as in e.g. SC or MC methods. Using adaptivity, we try to avoid using
high-order moment representations and corresponding high order quadrature rules
in portions of the domain, where the quantities of interest are well-represented with
low-order moments. As these lower-order moment bases result in non-linear system
(23) that are easier to solve, this approach can significantly reduce overall runtimes.
We use the discontinuity sensor described in [30] in the UQ context. To do this, the
polynomial approximation at refinement level 
 is defined as

ũ
 :=
∑

|i |≤M


uiϕi .

We further define an indicator for a moment vector at level 
 as

S
 := 〈(ũ
 − ũ
−1
)2〉

〈ũ2

〉

. (39)

Note, that a similar indicator has been used in [17] for intrusive methods in UQ. We
use the first element in S
, i.e. the density ρ, to determine the refinement level. This
regularity indicator is therefore computed for every cell at every timestep and the
current refinement level is kept if the indicator lies in the interval Iδ := [δ−, δ+]. If its
value falls below δ−, the refinement level is decreased to the next lower refinement
level and vice versa if the value exceeds δ+. See [23] for more details on the method.

5.2 One-Shot IPM

The second method is limited to steady state problems. In this case, we are interested
in solving

∇ · f (u(x, ξ)) = 0 in D (40)
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with adequate boundary conditions. Then, the IPM moment system reads

∇ · 〈 f (u(vN (x, ξ)))ϕT 〉T = 0 in D . (41)

Steady state problems are usually solved by introducing a pseudo-time and iterating
the solution until the condition

Nx∑

j=1

x j‖ûn
j − ûn−1

j ‖ ≤ ε , (42)

with convergence tolerance ε, is fulfilled. To obtain a more compact notation, let us
define the pseudo-time update of the moments by

c(w
,wc, wr ) := 〈u(wT
c ϕ)ϕT 〉T (43)

− t

x

(〈g(u(wT
c ϕ), u(wT

r ϕ))ϕT 〉T − 〈g(u(wT

 ϕ), u(wT

c ϕ))ϕT 〉T ) .

Note that the first term of this update recalculates moments from inexact dual vari-
ables, i.e. we perform a recalculation step according to Algorithm 2. To indicate the
usage of inexact dual states, we again use the notation vn

j . Then, the moment iteration
of cell j , which is performed until (42) is fulfilled reads

ûn+1
j = c

(
vn
j−1, v

n
j , v

n
j+1

)
. (44)

During each iteration, the dual variables vn
j are again obtained by iterating

v
(l+1)
j = d(v

(l)
j ; ûn

j )

until the stopping criterion (27) is fulfilled. A schematic of this method is given in
Fig. 1. In the following, we refer to updating the dual variables as the inner loop
and the iteration of the moments as the outer loop. The key idea of the One-Shot
IPM (osIPM) method is to break up the inner loop and iterate moments and dual
variables to their steady state simultaneously. This method is motivated by the One-
Shot method in shape optimization [15], which proposes to perform only a single
iteration for the primal, dual and design updates. The osIPM method now reads

vn+1
j = d(vn

j , û
n
j ) for all j , (45a)

ûn+1
j = un

j − t

x

[
G∗(v j−1, v j ) − G∗(v j , v j+1)

]
for all j . (45b)

Note that the dual variables from the One-Shot iteration are written without a bar
to indicate that they are not intended to be a solution of the dual problem. It can be



46 M. Frank et al.

n ← 0

ûn+1
j = c(vn

j−1,v
n
j ,v

n
j+1)

vl+1
j = d(vl

j , û
n+1
j ) l ← l + 1n ← n+ 1

steady
state?

done

ûn
Δ,vn

Δ

vn+1
Δ

no

yes

ûn+1
Δ

(a)

n ← 0

ûn+1
j = c(vn

j−1,v
n
j ,v

n
j+1)

vn+1
j = d(vn

j , û
n+1
j )n ← n+ 1

steady
state?

done

ûn
Δ,vn

Δ

vn+1
Δ

no

yes

ûn+1
Δ

(b)

Fig. 1 Left: IPM method for steady state problems. Right: osIPM method. The use of  indicates
that all spatial cells of the corresponding quantity are collected in a vector.

shown that the osIPM method converges locally [23]. Numerical studies show that
the One-Shot IPM method requires more iterations of the outer loop compared to
the general IPM method, but as these iterations are significantly cheaper in terms of
computational effort, the method yields a significant boost in the performance [23].

6 Results

In order to demonstrate the properties of the presented IPM method and the related
acceleration techniques, in this section we show four different test cases for the
Burgers and the Euler equations, each highlighting different aspects.

6.1 Burgers’ Equation

In the following, we investigate Burgers’ forming shock testcase from [33], which
has also been investigated in [19–22]. The stochastic Burgers equation for a one-
dimensional spatial domain is given by

∂t u(t, x, ξ) + ∂x
u(t, x, ξ)2

2
= 0 ,

u(t = 0, x, ξ) = uIC(x, ξ) .
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The initial condition is now randomly distributed, i.e. we have

uIC(x, ξ) :=

⎧
⎪⎨

⎪⎩

uL , if x < x0 + σξ

uL + uR−uL
x0−x1

(x0 + σξ − x), if x ∈ [x0 + σξ, x1 + σξ ]
uR, else

. (46)

The initial condition describes a forming shockwith a linear connection from x0 + σξ

to x1 + σξ , i.e. the random variable ξ shifts the forming shock structure to the left
and right. We assume a uniformly distributed random variable in the interval [−1, 1],
i.e. ξ ∼ U ([−1, 1]). Furthermore, we use the following parameter values:

D = [a, b] = [0, 3] Range of spatial domain
Nx = 2000 Number of spatial cells
tend = 0.0909 End time
x0 = 0.5, x1 = 1.5, uL = 12, uR =
1, σ = 0.2

Parameters of initial condition (46)

N + 1 = 6 Number of moments
ε = 10−7 Accuracy of Newton’s method

We compare the solution in ξ at a fixed spatial position x∗ for time tend for
stochastic-Galerkin and IPM in Fig. 2. The IPM method uses the bounded–barrier
entropy

s(u) = (u − u−) ln(u − u−) + (u+ − u) ln(u+ − u) ,

which, in contrast to the log–barrier entropy (31) takes finite values at u− and u+.
Indeed, as seen in Sect. 4.2, it suffices that the ansatz

(
s ′)−1

only takes values in
[u−, u+] to enforce such bounds. For the bounded–barrier entropy, we can choose the
distance to the exact solution to be zero, i.e. we have u := uR − u− = u+ − uL =
0. We also show results for the log–barrier entropy with u = 0.5. It can be seen
that stochastic-Galerkin oscillates heavily while both IPM solutions maintain the
overall shock characteristics.However, the bounded–barrier entropy is able to capture
the shock more adequately while maintaining the maximum–principle (15). In the
following,we focus on the bounded–barrier entropy and investigate its behaviorwhen
approximating expectation value and variance. For this, we let the simulation run
until an increased end time tend = 0.14 is reached. Expectation value and variance
are shown in Fig. 3. While stochastic-Galerkin yields a step-like profile, the IPM
method when using the bounded–barrier entropy shows a significantly improved
solution. Note, that the log–barrier entropy yields a similar result.
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Fig. 2 Solution SG and IPMwith bounded–barrier (u = 0) and log–barrier (u = 0.5) entropies
at fixed spatial position x∗ = 1.5 for time tend = 0.0909.

6.2 Euler Equations

A further commonly used test case for intrusive methods is Sod’s shock tube with
uncertain shock position, see for example [22, 33, 34]. The stochastic Euler equations
in one spatial dimension read

∂t

⎛

⎝
ρ

ρu
ρe

⎞

⎠+ ∂x

⎛

⎝
ρu

ρu2 + p
u(ρe + p)

⎞

⎠ = 0 ,

where, in our test case, we use the initial condition

ρIC =
{

ρL if x < xinterface(ξ)

ρR else
,

(ρu)IC = 0 ,

(ρe)IC =
{

ρLeL if x < xinterface(ξ)

ρReR else
.

Here, ρ denotes the density, u is the velocity and e is the specific total energy. One
can determine the pressure p from

p = (γ − 1)ρ

(

e − 1

2
u2
)

.
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Fig. 3 Expectation value and variance for SG and IPM at time tend = 0.14.

The heat capacity ratio is γ and has a value of 1.4 for air. We use the random
interface position xinterface(ξ) = x0 + σξ , where ξ is again uniformly distributed in
the interval [−1, 1]. The IPM method again needs to pick a suitable entropy. In this
work, we choose the entropy

s(ρ, ρu, ρe) = −ρ ln

(

ρ−γ

(

ρe − (ρu)2

2ρ

))

,

though more choices are possible. Parameter values which differ from Burgers’ test
case are

D = [a, b] = [0, 1] Range of spatial domain
Nx = 5000 Number of spatial cells
tend = 0.14 End time
x0 = 0.5, σ = 0.05 Interface position parameters
ρL = 1.0, eL = 2.5, ρR = 0.125, eR =
0.25

Initial states

When running the simulation, the SG method fails already during the first time
update. The reason for this can be seen in Fig. 4. Here, the SG and IPM reconstruc-
tions of the gas density ρ are depicted at t = 0 s at a fixed spatial cell. While the
IPM reconstruction maintains positivity, the Gibbs phenomena that result from the
polynomial representation of SG lead to negative density values. A similar behavior
can be seen for the energy e. Then, the eigenvalues of the Euler equations, which
include v ± √

γ p/ρ become complex, i.e. the system is no longer hyperbolic.
As discussed, the IPM method maintains hyperbolicity, meaning that one can

run the simulation until the desired end time tend = 0.14 s is reached. The resulting
expectation values and variances are depicted in Fig. 5. It can be seen that the IPM
method yields a satisfactory approximation of the expectation value and variance
at the rarefaction wave as well as the contact discontinuity. However, the shock
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Fig. 4 Initial density for SG and IPM at fixed spatial position x∗ = 0.46 when using 6 moments.
The view is zoomed to ξ ∈ [−1, 0] and negative regions are marked in red.

Fig. 5 Expectation value and variance for SG and IPM at time tend = 0.14 s.

yields discontinuous step-like profiles, similar to the stochastic-Galerkin results for
Burgers’ equation.

6.3 2-D Euler Equations with One-Shot

In order to demonstrate the acceleration impact of the aforementioned One-Shot
strategy for the steady-state case, we will quantify the effects of an uncertain angle
of attack φ ∼ U (0.75, 1.75) for a NACA0012 airfoil using the Euler equations in
two spatial dimensions. This test-case is taken from [23]. Similar to the 1-D case,
the stochastic Euler equations in two dimensions are given by
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∂t

⎛

⎜
⎜
⎝

ρ

ρu1
ρu2
ρe

⎞

⎟
⎟
⎠+ ∂x1

⎛

⎜
⎜
⎝

ρu1
ρu21 + p
ρu1u2

u1(ρe + p)

⎞

⎟
⎟
⎠+ ∂x2

⎛

⎜
⎜
⎝

ρu2
ρu1u2

ρu22 + p
u2(ρe + p)

⎞

⎟
⎟
⎠ = 0 ,

with the closure term for the pressure as

p = (γ − 1)ρ

(

e − 1

2
(u21 + u22)

)

.

As in the previous test case, the heat capacity ratio is set to γ = 1.4. For this test case,
we apply the Euler slip boundary condition to the airfoil’s boundary as vT n = 0,
where n denotes the surface normal. At a sufficiently large distance away from
the airfoil, we prescribe a far field flow with a given Mach number of Ma = 0.8,
pressure p = 101 325 Pa and a temperature of 273.15 K. The uncertain angle of
attack φ is uniformly distributed in the interval of [0.75, 1.75] degrees or in other
words φ(ξ) = 1.25 + 0.5ξ with ξ ∼ U (−1, 1). The initial condition in the entire
domain is equal to the far field boundary values and thus violates the Euler slip
boundary condition at the airfoil. Consequently, we iterate in pseudo-time to correct
the flow solution until the expectation value of the density fulfills the criterion (42)
with ε = 6 · 10−6.

The used computational mesh (see Fig. 6c) consists of 22 361 triangular elements
and resembles a circular domain of 40 m diameter, where the airfoil of 1 m length is
located at the very center. The mesh is finely resolved close to the airfoil as we are
only interested in effects close to the airfoil and becomes coarser the closer to the far
field boundary. In order to be able to measure the quality of the obtained solutions
with andwithout theOne-Shot acceleration strategy, we compute a reference solution
using stochastic-Collocationwith 100Gauss-Legendre quadrature points (see Fig. 6).
We will show the L2-error behavior of the discrete quantity e = (e1, · · · , eNx )

T ,
where e j is the cell average of the quantity e in spatial cell j . The discrete L2 norm
is denoted by

‖e‖ :=
√
√
√
√

Nx∑

j=1

x j e2j .

Given the SC reference solution u and the moments of a compared numerical
method û, we investigate the relative error

‖E[u] − E[U(û)]‖

‖E[u]‖

and
‖Var[u] − Var[U(û)]‖

‖Var[u]‖

.

As small fluctuations in the large cells of the coarse far field would dominate this
error measure, we only compute the error inside a box of one meter height and
1.1m length around the airfoil. Figure 7 shows the resulting error with respect to
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Fig. 6 Reference solution E[ρ] and Var[ρ] and the mesh close to the airfoil which is used in the
computation of all presented methods.

Fig. 7 Comparison of the relative L2-error of the density for IPM, osIPM, readosIPM and SC. All
IPM related methods are converged to a residual of ε = 6 · 10−6, whereas SC is converged to a
residual of ε = 1 · 10−7. All computations are performed with 5 MPI threads.

the reference solution of IPM, osIPM and SC. The superscript in the figure denotes
the number of used quadrature points, whereas the subscript denotes the moment
order. We chose a total polynomial order of 9 for all IPM methods, meaning 10
moments are used in the computation and a Clenshaw-Curtis quadrature rule of
order 4, resulting in 17 quadrature points. Based on the same quadrature set, all IPM
solutions were also compared to a SC solution in order to get a better understanding
of the methods convergence behavior and acceleration properties of osIPM. As it
can be seen from the presented results, the osIPM yields the same error and almost
identical convergence history as IPM, while being significantly faster. In comparison
to SC however, the errors for the mean as well as the variance are comparably small,
but the SC method reaches the given error level faster in terms of computational
time. Only when the One-Shot approach is combined with adaptivity and refinement
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Table 1 Moment and quadrature setup for the applied refinement levels.

Refinement level 0 1 2 3

Total degree of
moments

1 2 3 4

Number of
quadrature points

3 5 5 9

retardation, as it can be seen for the readosIPM plot in Fig. 7, the IPM method is
yields even faster convergence rates than SC. For more information about refinement
retardation and adaptivity, see [23]. Also note that the acceleration of the One-Shot
approach becomesmore dominant when looking at higher dimensional uncertainties,
see [23].

6.4 Unsteady 2-D Euler Equations with Adaptivity

To investigate adaptivity, we again use the two dimensional Euler equations. The
problem setting is similar to the transient Sod shock tube test case from above. The
geometry describes a nozzle similar to a de Laval nozzle (see Fig. 8e), where the
initial condition is set to a discontinuity positioned in the middle of the narrow part
of the nozzle. The density in the left part is set to 1 kg m−3 and the energy is set to
ρe = p/(γ − 1) = 2.5 J m−3 with the pressure p equal to 1 Pa. For the right part of
the domain the density is set to ρ = 0.8 kg m−3 and the pressure p = 0.125 Pa. The
gas in both sides is at rest. For this testcase we inflict the initial condition with one
uncertainty, i.e. the shock’s position,which is nowmodeled as xshock ∼ U (−0.5, 0.5).
The used computational mesh consists of 76 696 triangular cells and is refined in the
area of the shock and the nozzle opening towards the right side of the domain (see
Fig. 8a). The applied boundary conditions are Euler slip conditions for the wall of
the nozzle and Dirichlet conditions set to the initial condition for the left and right
side of the mesh. The shown results in Fig. 8 resemble a time of 6 s.

As for the previous testcases, the reference solutionwas computedusing stochastic-
Collocation (see Figs. 8a, 8b) with a Gauss-Legendre quadrature with 50 quadrature
points. As the previously mentioned parameter δ± are user determined, these refine-
ment/coarsening thresholds were set to δ− = 1.5E − 3 and δ+ = 5E − 4 for the
presented results in Figs. 8c, 8d. The resulting refinement levels are shown in Fig. 8c
and the total order of used moments in combination with the associated quadrature
points for each refinement level are given in Table 1. For the quadrature a tensorized
Clenshaw-Curtis rule is used.

As for the previous test cases, we observe a good agreement between the IPM and
the reference solution computed by SC. Due to the lower degree of moments the IPM
solution again show a more step-like profile in the emerging shocks. As expected,
the presented refinement levels are high in the regions around the shock and lower
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Fig. 8 Comparison for the mean and variance of the SC reference solution (a, b) and the adaptive
IPMmethod (c,d) with the refinement levels in f. e shows the computationalmesh. All computations
are performed using 20 MPI threads.

order moments are started to be used further upstream where the flow becomes more
and more constant as time progresses. Further upstream of the shock, the method
even uses the lowest refinement level as the shock has not yet reached this part of
the nozzle and thus the solution is still equal to the initial condition. All in all the
results show that the method chooses high levels of refinement in areas where they
are required by the complexity of the solution. Thus, the method is computationally
much of efficient in the remainder of the domain.

Acknowledgment Thisworkwas fundedby theDeutscheForschungsgemeinschaft (DFG,German
Research Foundation) – FR 2841/6-1.
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Well-Balanced Reconstruction Operator
for Systems of Balance Laws: Numerical
Implementation

I. Gómez-Bueno, M. J. Castro, and C. Parés

Abstract In some previous works, two of the authors introduced a strategy to
develop high-orderwell-balanced numericalmethods for 1d systems of balance laws.
There, a strategy which allows us to modify any standard reconstruction operator in
order to be well-balanced was also described. This strategy involves a nonlinear
problem at every cell, at every time step, that consists in finding the stationary solu-
tion whose average is the given cell value. Our goal is to present a general efficient
implementation that can be applied to any system of balance laws by interpreting
these nonlinear problems as control problems that are rewritten in functional form.
Newton’s and descent methods are applied and compared. Applications to the Burg-
ers’ equation with a nonlinear source term and to the 1d shallow water model are
finally shown.

1 Introduction

Let us consider a PDE system of the form:

Ut (x, t) + f (U (x, t))x = S(U (x, t))Hx (x), x ∈ R, t > 0, (1)

whereU (x, t) takes values on an open convex set� ⊂ R
N , f : � −→ R

N is the flux
function, S : � −→ R

N , and H : R −→ R is a continuous known function (possibly
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the identity function). It is supposed that system (1) is strictly hyperbolic, that is,

D f (U ) = ∂ f

∂U
(U ) has N real different eigenvalues and eigenvectors.

Systems of the form (1) have non trivial stationary solutions that satisfy the ODE
system:

f (U )x = S(U )Hx . (2)

A numerical method is said to be well-balanced if it solves exactly or with enhanced
accuracy all the stationary solutions of the system or, at least, a relevant family of
them. The use of methods with this property is of major importance when the waves
generated for small perturbations of a steady state are going to be simulated: this is
the case, for instance, for tsunami waves in the Ocean. Well-balanced methods have
been studied by many authors: see [2] and its references for a recent review on this
topic.

Recently, in [5] the following family of semidiscrete high-order well-balanced
finite-volume methods for (1) has been discussed:

dUi

dt
= − 1

�x

(
Fi+ 1

2
(t) − Fi− 1

2
(t)

)
+ 1

�x

∫ xi+ 1
2

x
i− 1

2

S(Pt
i (x))Hx (x) dx, (3)

where:

• Ii =
[
xi− 1

2
, xi+ 1

2

]
are the computational cells, whose length �x is supposed to be

constant for simplicity;
• Ui (t) is the approximation of the average of the exact solution at the i th cell at
time t , that is,

Ui (t) ∼= 1

�x

∫ x
i+ 1

2

x
i− 1

2

U (x, t) dx;

• Pt
i (x) is the approximation of the solution at the i th cell given by a high-order

reconstruction operator from the sequence of cell averages {Ui (t)}:

Pt
i (x) = Pi (x; {Uj (t)} j∈Si );

where Si denotes the set of indexes of the cells belonging to the stencil of the i th
cell.

• Fi+ 1
2

= F(Ut,−
i+ 1

2
,Ut,+

i+ 1
2
), where Ut,±

i+ 1
2
are the reconstructed states at the intercells,

i.e.
Ut,−

i+ 1
2

= Pt
i (xi+ 1

2
), Ut,+

i+ 1
2

= Pt
i+1(xi+ 1

2
),

and F is a consistent first order numerical flux.

It can be then easily shown that, if the reconstruction operator is well-balanced
for a stationary solution U of (1) then the numerical method is also well-balanced
for U according to the following definitions:
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Definition. Given a stationary solution U of (1):

• The numerical method (3) is said to be well-balanced for U if the vector of cell
averages of U is an equilibrium of the ODE system (3).

• The reconstruction operator is said to be well-balanced for U if

Pi (x) = U (x), ∀x ∈ [xi− 1
2
, xi+ 1

2
], ∀i, (4)

where Pi is the approximation ofU obtained by applying the reconstruction oper-
ator to the vector of cell averages of U . ��
The following strategy to design a well-balanced reconstruction operator Pi on

the basis of a standard operator Qi was introduced in [1]: given a family of cell values
{Ui }, at every cell Ii = [xi− 1

2
, xi+ 1

2
]:

1. Look for the stationary solution U ∗
i (x) such that:

1

�x

∫ x
i+ 1

2

x
i− 1

2

U ∗
i (x) dx = Ui . (5)

2. Apply the reconstruction operator to the cell values {Ũ j } j∈Si given by

Ũ j = Uj − 1

�x

∫ x
j+ 1

2

x
j− 1

2

U ∗
i (x) dx,

to obtain:
Qi (x) = Qi (x; {Ũ j } j∈Si ).

3. Define
Pi (x) = U ∗

i (x) + Qi (x). (6)

It can be then easily shown that the reconstruction operator Pi in (6) is well-
balanced for every stationary solution provided that the reconstruction operator Qi

is exact for the null function. Moreover, Pi is conservative, i.e.

1

�x

∫ x
i+ 1

2

x
i− 1

2

Pi (x) dx = Ui , ∀i, (7)

provided that Qi is conservative, and it is also high-order accurate provided that the
stationary solutions are smooth.

The main difficulty when this strategy is applied comes from the first step of the
well-balanced reconstruction operator: a nonlinear problem of the form (5) has to be
solved at every time step. Since the stationary solutions of (1) are the solutions of
the ODE system (2), problem (5) is equivalent to find the solution of an ODE system
with prescribed average in an interval. In some cases, the explicit form of the general
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solution of the ODE is known and (5) can be solved by hand or by using standard
iterative methods for nonlinear problems: see [5] for examples.

Our goal is to describe a general methodology to solve numerically problems of
the form (5) and to apply it to the implementation of well-balanced reconstruction
operators for general systems of balance lawswhether or not the analytical expression
of the stationary solutions is known.

The organization of this work is as follows: in Sect. 2 problem (5) is interpreted
as a control problem. It is first written in functional form; then, the gradient of the
functional is computed using the adjoint equation. Newton’s and descent methods
can be applied to solve numerically the problem: this is done in Sect. 3. A comparison
between both methods is shown in Sect. 4, where different strategies for the choice
of the descent step have been also tried. In practice, the state and the adjoint equa-
tions, the cell-averages, and the integral appearing at the source terms are computed
numerically: two numerical tests are shown in Sect. 5 in order to check the accuracy
and the well-balancedness of the methods. A scalar balance law and the shallow
water model are considered. Finally, some conclusions are drawn.

2 Control Problem

In the first stage of the well-balanced reconstruction procedure one has to find a
solution of the ODE problem

f (U )x = S(U )Hx , (8)

such that its average in the cell [xi−1/2, xi+1/2] is the given cell valueUi . For stationary
solutions such that D f (U (x)) is regular for every x (i.e. no sonic state is reached),
solving (8) is equivalent to solve the ODE system in normal form:

Ux = G(x,U ), (9)

where G is the function G : � × R −→ R
N defined by

G(U, x) = D f (U )−1S(U )Hx . (10)

In this article we focus on the preservation of stationary solutions satisfying (9): the
methods introduced here preserve supersonic or subsonic stationary solutions, but no
transcritical ones. As it will be seen, in the algorithm developed here to compute the
first stage of the well-balanced operator, Cauchy problems associated to the ODE
system (9) will be numerically solved, what can be done with any standard ODE
solver. To adapt the algorithm to the preservation of transcritical stationary solutions,
Cauchy problems associated to (9) should be numerically computed, what can be
difficult when the initial condition is a sonic state or if it is close to it. In this case the
systemmay have no solution or to have more than one. The strategy followed here to
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deal with this difficulty consists on applying the standard reconstruction procedure
whenever a sonic state is detected in the stencil. This simple modification allows us
to overcome this difficulty and the algorithm is only modified in the stencils where
a sonic point is detected. In Sect. 5.2.2 it will be seen that, in the case of the shallow
water equations, this strategy allows one to correctly handle with transonic regimes
and even to accurately preserve transonic stationary solutions.Nevertheless, to extend
the algorithm so that these solutions are genuinely preserved is a challenging problem
that is out of the scope of this work and will be faced in a forthcoming work.

Notice that, even if only stationary solutions satisfying (9) are sought, the problem
consisting in finding a solution of this ODE system with given average may have
no solution. Observe that if (5) has no solution at the i th cell then Ui cannot be the
average of any stationary solution. Therefore, at this cell the standard reconstruction
operator is applied, i.e. U ∗

i ≡ 0 is chosen in the first step.
Let us assume thus that no sonic points have been detected in the stencil Si . Then,

the nonlinear problem (5) to be solved at every cell can be then formulated as follows:
Find Ui−1/2 ∈ � such that

F(Ui−1/2) = Ui , (11)

where F : � �→ R
N is given by

F(U0) = 1

�x

∫ �x

0
Vi (x,U0) dx, (12)

where Vi (x,U0) denotes the solution of the Cauchy problem

{
Vx = G(V, x + xi−1/2),

V (0) = U0.
(13)

Notice that Cauchy problem (13) is equivalent to solve (9) with initial condition

U (xi−1/2) = Ui−1/2.

Once (11) has been solved, the sought stationary solution is

U ∗
i (x) = V (x − xi−1/2,Ui−1/2).

This problem can be interpreted as a control one, and the adjoint technique can
be used to compute the gradient of F , what gives:

DF(U0) = 1

�x
�(0)T ,

where � denotes the matrix whose columns are the so-called adjoint variables
λ1(x), . . . ,λN (x) that solve the following Cauchy problems:
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⎧
⎪⎪⎨
⎪⎪⎩

dλ j

dx
(x) = −e j − ∇UG(U, x + xi+1/2)

T · λ j ,

λ j (�x) = 0,

(14)

where we denote by e j the j th vector of the canonical basis and

∇UG(U, x) =

⎡
⎢⎢⎢⎢⎣

∂G1

∂u1
(U, x) . . .

∂G1

∂uN
(U, x)

...
. . .

...
∂GN

∂u1
(U, x) . . .

∂GN

∂uN
(U, x)

⎤
⎥⎥⎥⎥⎦

; (15)

(see [6] for details).
First and second order methods can be implemented in an easier way if the mid-

point rule is used to approach the cell averages:

1

�x

∫ xi+1/2

xi−1/2

U (x) dx ∼= U (xi ).

In effect, in this case the first step in the reconstruction procedure reduces to look
for the stationary solution U ∗

i such that:

U ∗
i (xi ) = Ui . (16)

There is no need thus to solve nonlinear problems of the form (11): it is enough
to solve standard Cauchy problems to compute U ∗

i . Therefore, in what follows we
focus on methods of order greater than two. In particular, the third order CWENO
reconstruction (see [3, 9]) will be considered in the numerical experiments. The
state and the adjoint differential equations will be numerically computed using the
standard RK4 method.

3 Numerical Algorithms

Let us consider for simplicity that xi−1/2 = 0 and denote by W ∈ � the cell value,
so that the problem to solve is:

Find U0 ∈ � such that
F(U0) = W. (17)

Since problems of this type have to be solved at every intercell at every time step,
it is crucial to choose an efficient numerical method. Two different strategies are
considered here:
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3.1 Newton’s Method

A sensible choice for the initial guess U 0
0 is W : if �x is small, the average of the

solution of the Cauchy problem is expected to be close to the initial condition. The
algorithm is then as follows:

Algorithm. Newton’s method

• U 0
0 = W ;

• For k = 0,1, 2…

– Compute the solutionUk of (13)with initial conditionUk
0 in the interval [0,�x].

– For j = 1, . . . , N compute the solution λ j of (14) with U = Uk in the interval
[0,�x].

– Compute Vk by solving the linear system:

�(0)T Vk = �x(F(Uk
0 ) − W ).

– Update Uk
0 :

Uk+1
0 = Uk

0 − Vk .

At every iteration of the method N + 1 Cauchy problems and a N × N linear
system have to be solved. The computational cost can be reduced by using the mod-
ified Newton’s method in which the matrix �(0) is only updated every K iterations,
where K is a fixed integer.

3.2 Descent Methods

An alternative approach to solve (5) consists in solving the minimization problem:

min
U0∈RN

J (U0) (18)

with:
J (U0) = ‖F(U0) − W‖2 .

If the euclidean norm is chosen, a simple computation shows that:

∇ J (U0) = 2

�x
�(0)T ·

(
1

�x

∫ �x

0
(U (x,U0) − W ) dx

)
. (19)
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Gradient method writes thus as follows:

Algorithm. Gradient method

• U 0
0 = W .

• For k = 0, 1, . . . :

– Compute the solutionUk of (13)with initial conditionUk
0 in the interval [0,�x].

– For j = 1, . . . , N compute the solution λ j of (14) with U = Uk in the interval
[0,�x].

– Compute

∇ J (Uk) = 1

�x
2�(0)T ·

(
1

�x

∫ �x

0
(Uk − W ) dx

)
.

– Update Uk
0 :

Uk+1
0 = Uk

0 − ρkdk,

where ρk is the step and dk = ∇ J (Uk).

Conjugate gradient methods are also considered with the descent directions:

dk =

⎧⎪⎪⎨
⎪⎪⎩

∇ J (Uk) i f k = 0,

∇ J (Uk) + ∇ J (Uk) · (∇ J (Uk) − ∇ J (Uk−1))

‖∇ J (Uk−1)‖2
dk−1 i f k ≥ 1.

At every iteration of the gradient or the conjugate gradient methods, at least N + 1
Cauchy problems have to be solved, but a new Cauchy problem has to be solved in
every evaluation of the cost function in the search of the step ρk .

Search for the Optimal Step

Once the descent direction has been computed, the step ρk has to be chosen. Five
different options of stepsize selection are discussed.

β Stepsize Method. First Version At the kth iteration, when steps 1 and 2 of the
descent algorithm have already been computed, use the following strategy to select
the stepsize:

Algorithm β Stepsize Method. First Version.

• Set ρ0
k = ρk−1. (If k = 1, ρ−1 is arbitrarily chosen).

• Set V 0
k = J (Uk−1)

• Set j = 1:
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– Set V j
k = J (Uk−1 − ρ

j−1
k dk−1).

– If V j
k < V j−1

k , choose ρ
j
k = βρ

j−1
k . In other case, choose ρ

j
k = ρ

j−1
k

β
.

– If j ≥ 2 y ρ
j
k = ρ

j−2
k , stop.

• Set ρk = ρ
j
k .• j = j + 1. ��

Here β is a parameter to be chosen in the interval (0, 1).

β Stepsize Method. Second Version. At the kth iteration, when steps 1 and 2 of the
descent algorithm have already been computed, use the following strategy to select
the stepsize:

Algorithm β stepsize method. Second version

• Set V d
0,k = J (Uk−1), dk−1 = ∇ J (Uk−1).

• ρd
0,k = βρk−1. (If k = 1, ρ−1 is arbitrarily chosen).

• Set V d
1,k = J (Uk−1 − ρd

0,kdk−1).

• Set j = 1.
• While V d

j,k < V d
j−1,k do:

– Set ρd
j,k = β ρd

j−1,k and V d
j+1,k = J (Uk−1 − ρd

j,kdk−1).

– j = j + 1.

• Set V h
0,k = J (Uk−1).

• ρh
0,k = 1

β
ρk−1.

• Set V h
1,k = J (Uk−1 − ρh

0,kdk−1).

• Set j = 1.
• While V h

j,k < V h
j−1,k do:

– Set ρh
j,k = 1

β
ρh
j−1,k and V h

j+1,k = J (Uk−1 − ρh
j,kdk−1).

– j = j + 1.

• If V d
j,k < V h

j,k , set ρk = ρd
j,k . Else, ρk = ρh

j,k . ��
β is again a parameter to be chosen in the interval (0, 1).

Armijo Rule. The following algorithm is based on the Armijo Rule. It requires two
parameters: μ ∈ [0.01, 0.3] and β ∈ [0.1, 0.8]. Let us suppose that Ū is the approx-
imation of the solution at the previous iteration and d̄ is the descent direction. Let us
consider the function J(ρ) = J (Ū − ρd̄). Then the first order approximation of J(ρ)

at ρ = 0 is given by J(0) − ρ J′(0). Define Ĵ(ρ) = J(0) − μρ J′(0). A stepsize ρ̄ is
considered acceptable by the Armijo Rule if J(ρ̄) ≤ Ĵ(ρ̄).

When the steps 1, 2 and 3 of the general algorithm described above have been
computed at the kth iteration, define the functions:

J(ρk) = J (Uk − ρkdk), Ĵ(ρk) = J(0) − μρkJ′(0) = J (Uk) − μρkdk · dk .
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The stepsizeρk+1 is chosen using the next rule: if J(ρk) > Ĵ(ρk), thenρk+1 = βρk ,
and otherwise take ρk+1 = ρk .

This algorithm can be improved by applying the Armijo Rule as many times as
possible at every iteration, provided that the objective function decreases as in the
second version of the β stepsize method.
Wolfe Conditions
The choice of the step is based on Wolfe conditions: see [8]. It requires two param-
eters: m1 ∈ [0.01, 0.3] and m2 ∈ [0.5, 1]. At the kth iteration, once steps 1, 2 and 3
of the general algorithm have been computed, follow the following algorithm:
Algorithm Wolfe Conditions

a. Set ρk
s = 0 and ρk

b = 0.
b. Compute the functions:

J(ρk) = J (Uk − ρkdk),

Ĵ(ρk) = J (Uk) − μρk (dk · dk) .

– If J(ρk) ≤ Ĵ(ρk) and J′(ρk) ≥ m2 J′(0), take ρk+1 = ρk and stop the algorithm.
– If J(ρk) > Ĵ(ρk), set ρk

b = ρk and go to the step c.
– If J(ρk) ≤ Ĵ(ρk) and J′(ρk) < m2 J′(0), set ρk

s = ρk and go to c.

c. Use the following rule to choose ρk+1 :

– If ρk
b = 0, take ρk+1 = aρk , where a > 1.

– Else, take ρk+1 = ρk
s + ρk

b

2
. ��

Fixed Stepsize
The first step ρ0 is computed using any of the previous algorithms and then

ρk = ρ0, ∀k.

3.3 Numerical Integration

In practice, a quadrature rule in [0,�x] is used to compute the averages appearing in
the definition ofF (12), in the expression of the gradients (19), or in the computation
of W (if it is the average of a known function):

∫ �x

0
g(x) dx ∼= �x

M∑
l=0

αl g(xl),

and the Cauchy problems to computeUk and λ j are solved with a numerical method
for ODE using a mesh of the interval [0,�x] whose maximum step will be denoted
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by h. This mesh will be chosen so that all the quadrature points xl are nodes. The
order of themethod and the size of h will be chosen so that errors are close tomachine
precision.

Therefore, in practice the following discrete problems have to be solved :
Find U0 such that

Fh(U0) :=
M∑
l=0

αlUh,l = W̃ ,

where Uh,l represents the numerical approximation of U (x,U0) at the quadrature
point xl given by the numerical method chosen to solve the ODE and W̃ the approx-
imation of W obtained with que quadrature formula.

4 A Numerical Test for the Control Problem

The Newton’s and descent methods with different strategies for the choice of the
descent steps have been tested and compared in order to check their efficiencies.

We will discuss the following scalar problem: find u0 ∈ R such that

F�x(u0) = w, (20)

where

F�x (u0) = 1

�x

∫ �x

0
u(x, u0) dx,

w = 1, and u(x, u0) is the solution of:

⎧⎨
⎩
ux = sin(u)

u
,

u(0) = u0.
(21)

The two-points Gauss quadrature rule is considered to approximate the integrals
and the fourth order Runge-Kutta method is applied to solve the Cauchy problems
using the mesh consisting of the extremes of the interval [0,�x] and the two quadra-
ture points.

In order to check the efficiency of the Newton’s and descent methods we compare
the number of iterations and the CPU times required for solving problem (21) a
big number of times (say 10000 times) with decreasing values of �x and different
error tolerances ε (see Tables1 and 2). The values of �x considered are in the range
of those used in applications to the numerical solution of systems of balance laws:
remember that problems (11) are solved at every computational cell. For these small
values of �x , the number of iterations of the gradient methods is independent in this
case of the strategy followed to select the stepsizes.
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Table 1 Number of iterations for different intervals [0,�x]
�x Tolerance ε = 10−8 Tolerance ε = 10−12

Newton’s method Gradient methods Newton’s method Gradient methods

1 2 6 3 10

0.5 2 4 2 7

0.1 1 2 1 4

Table 2 CPU times in milliseconds for different intervals [0,�x]
�x Newton’s

method
Gradient method

β = 0.5 1V. β = 0.5 2V. Armijo 1V. Armijo 2V. Wolfe

Tolerance ε = 10−8

1 16 47 94 31 31 45

0.5 10 31 63 16 16 31

0.1 2 19 36 11 11 18

Tolerance ε = 10−12

1 31 210 266 125 125 188

0.5 10 142 168 78 78 131

0.1 2 105 136 61 61 79

The value ρ0 = 0.5 is considered as the initial stepsize for the descent methods.
We denote by β = 0.5 1V the first version of the β stepsize algorithm taking β = 0.5,
and β = 0.5 2V is used for the second version. For both versions of the strategy based
on theArmijo rule,μ = 0.1 andβ = 0.5 have been used as parameters andm1 = 0.1,
m2 = 0.6 and a = 2.0 are taken when the Wolfe conditions are considered.

In both versions of the β stepsize method, β ∈ (0, 1) is a parameter to be chosen.
Up to now, β = 0.5 has been chosen. In order to study the influence of this parameter
in the numerical simulations, the problem test has been solved for different values
of β, taking ε = 10−12 as tolerance and �x = 1 (see Table 3).

Notice that, in both versions of the algorithm, the number of iterations decreases
as β tends to 1 and the computational cost increases as β tends to 0 or to 1. In view
of the results, the first version of the β stepsize method with β = 0.9 seems to be the
best choice for this problem test.

As it can be observed, in spite of the bigger number of Cauchy problems to be
solved at every iteration, Newton’s method perform better than gradient methods
both in number of iterations and in CPU time. Moreover, the differences increase as
�x and the tolerance decrease.

Furthermore, the fixed stepsize strategy combined with all the strategies consid-
ered to select the step has been also tested. Despite the fact that the CPU times
obtained when applying this strategy are smaller than the ones shown in Table 2,
Newton’s method is still cheaper in every case. The conjugate gradient method,
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Table 3 Number of iterations and computational time for different values of β

β stepsize method

β First version Second version

Iterations CPU time Iterations CPU time

0.1 10 212 10 266

0.2 10 210 10 267

0.3 10 211 10 266

0.4 10 210 10 266

0.5 10 210 10 266

0.6 10 212 9 245

0.7 6 152 6 234

0.8 5 139 5 215

0.9 4 125 4 190

0.99 4 290 3 320

which has been also applied, increases the computational cost in relation to the gra-
dient methods. Therefore, we conclude that in our case, the Newton’s method is the
most efficient strategy in order to solve the control problem.

In order to confirm this statement, a similar study has been performed in the
numerical examples considered in the next Section. The conclusion has been the
same in all cases: for the typical values of �x used in the applications, Newton’s
method is always the most efficient in terms of the computational cost.

5 Numerical Experiments

In order to implement the high-order well-balanced numerical methods introduced
in Section 1 we consider:

• Rusanov numerical flux;
• the third order CWENO reconstructions (see [3, 9]);
• the third order TVD Runge-Kutta for solving the ODE system (3): see [7];
• the Gauss two points quadrature rule;
• the standard fourth order Runge-Kutta method for solving the state and the adjoint
ODE problems related to the control problem at every cell [xi−1/2, xi+1/2]. The
submesh considered in the cell consists of three (Np + 1)-point uniform partitions
of the subintervals

[xi−1/2, x
i
0], [xi0, xi1], [xi1, xi+1/2],

where xij , j = 0, 1 are the quadrature points. The total number of points of the
submesh is thus of 3Np + 1
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When the initial condition is a stationary solution U ∗ in an interval [a, b], we
approximate its cell averages either by applying the quadrature formula to the exact
solution (when it is available) or by

U ∗
h,i =

M∑
l=0

αi
l U

∗,i
h,l

where U ∗,i
h, j are the approximations at the quadrature points obtained using RK4 to

approximate (2) with initial condition

U (a) = U ∗(a).

Observe that the only information about the particular problem required by the
numerical method is f , S, H , G, ∇G (see (1), (10), (15)) what leads to very general
algorithms.

The following symbols will be used in this section to denote the different methods
considered:

• SM3: numerical method of third order based on the Rusanov flux and the standard
reconstruction operators.

• NWBM3: numerical method of third order based on the Rusanov flux and thewell-
balanced reconstruction operators in which problems (5) are solved numerically
using the Newton’s method.

5.1 Burgers Equation with a Nonlinear Source Term

We consider Burgers equation with a non-linear source term:

⎧⎨
⎩
ut +

(
u2

2

)

x

= sin(u), x ∈ R, t > 0,

u(x, 0) = u0(x).
(22)

This problem is the particular case of (1) corresponding to:

U = u, f (U ) = u2

2
, S(U ) = sin(u), H(x) = x .

The ODE satisfied by the stationary solutions is

du

dx
= sin(u)

u
. (23)
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Therefore:

G(x,U ) = sin(u)

u
, ∂UG(x,U ) = u cos(u) − sin(u)

u2
.

In this case, the stationary solutions satisfy the EDO studied in the test problem
introduced in Sect. 4. These stationary solutions cannot be expressed in terms of
elementary functions so that (5) has to be numerically solved.

We consider x ∈ [−1, 1], t ∈ [0, 5] and CFL = 0.9. The initial condition is the
solution of the Cauchy problem consisting of (23) with initial condition

u(−1) = 2,

which is a stationary solution of the problem. This solution is approximated using
the RK4 method and Np = 1 is considered.

u(−1, t) = 2 is imposed at x = −1 and free boundary conditions are considered
at x = 1.

Figure 1 shows the differences between the stationary solution and the numerical
results obtained with SM3 (left) and NWBM3 (right). Table 4 show the L1-errors
and the empirical order of convergence of SM3. Notice that the non well-balanced
methods perturb the stationary solution.

(a) SM3 (b) NWBM3

Fig. 1 Test 5.1. Differences between the stationary solution and the numerical solutions at t = 5s.
Number of cells: 100

Table 4 Test 5.1. Errors in L1 norm and convergence rates for SM3 and errors in L1 norm and
convergence rates for NWBM3

Cells SM3 NWBM3

Error Order Error

100 7.66E−5 – 2.54E−13

200 9.62E−8 10.506 3.60E−14

400 1.21E−10 7.254 2.12E−14

800 1.51E−11 2.922 9.11E−14
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The maximum number of iterations required to solve the nonlinear problem (5)
applying Newton’s method is two and it converges in only one iteration for meshes
with 200 cells or more. As expected, the well-balanced modification increases the
computational effort. The computational cost required for solving the problem with
100 cells is 50ms for SM3 and 760ms if NWBM3 is applied. If the number of
cells considered is 200, the CPU time for SM3 is 190ms, whereas for NWBM3 is
2220ms. In any case, this extra computational cost is lower than the one that would
be required to lead the discretization errors to close to zero machine by refining the
mesh or increasing the order of non-well-balanced methods.

5.2 Shallow Water Equations

Let us consider the shallow water model, which is the particular case of (1) corre-
sponding to the choices N = 2,

U =
(
h
q

)
, f (U ) =

⎛
⎝

q
q2

h
+ g

2
h2

⎞
⎠ , S(U ) =

(
0
gh

)
.

The variable x makes reference to the axis of the channel and t is the time; q(x, t) and
h(x, t) are the discharge and the thickness, respectively; g is the gravity and H(x)
is the depth function measured from a fixed reference level. We denote by u = q/h
the depth-averaged velocity and c = √

gh.
The eigenvalues of the Jacobian matrix D f (U ) of the flux function f (U ) are the

following:
r1 = u − √

c, r2 = u + √
c.

The Froude number, given by Fr(U ) = |u|/c indicates the flow regime: subcritical
(Fr < 1), critical (Fr = 1) or supercritical (Fr > 1).

If Fr(U ) �= 1 the system of ODE satisfied by the stationary solutions is

⎧⎨
⎩
qx = 0,

hx = ghHx

−u2 + gh
.

(24)

5.2.1 A Subcritical Stationary Solution

Let us consider a test case taken from [4]: x ∈ [0, 3], t ∈ [0, 5], and the depth function
is given by:
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(a) Initial condition. Free surface and bottom. (b) Initial condition. Velocity.

Fig. 2 Test 5.2.1. Initial condition: a subcritical stationary solution computed with RK4

H(x) =
⎧⎨
⎩

−0.25(1 + cos(5π(x + 0.5))) if 1.3 ≤ x ≤ 1.7,

0 otherwise.
(25)

As initial condition, we consider the subcritical stationary solution of (24) with initial
conditions h(0) = 2, q(0) = 3.5, (see Fig. 2).

As boundary conditions, q(0, t) = 3.5 is set upstream, while the water height is
imposed to be h(3, t) = 2.0 downstream. The CFL parameter is set again to 0.9.
The conclusions are similar to the previous test case: Fig. 4 shows the differences
between the stationary solution and the numerical results obtainedwith SM3 (up) and
NWBM3 with Np = 3 (down). Table 5 shows the L1-errors and the empirical order
of convergence for SM3 and NWBM3 with Np = 1 and Np = 3. Errors in NWBM3
are due to the numerical approximation of the stationary solution with RK4 and thus
the empirical order of convergence is 4. In any case they are significantly lower than
those corresponding to SM3.

Concerning the computational cost, we have checked the effect of using Newton’s
method or its modification in which the adjoint variable is recomputed every K
iterations. Since, in this case, themaximum number of iterations of Newton’s method
throughout the computations is 6, we have compared the computational effort for
values of K ranging from 1 (the adjoint variable is recomputed at every iteration) to
6 (it is only computed once at the beginning in all cases): Fig. 3 shows the CPU times
for the third order method. As it can be seen, the best option is to solve the adjoint
problem only once at the beginning.

Again, the well-balanced procedure increases the computational effort. The com-
putational cost required for solving the problem with 100 cells is 300 ms for SM3
and 2010ms if NWBM3with Np = 1 is applied and with 200 cells, the CPU time for
SM3 is 1020ms, whereas for NWBM3 with Np = 1 is 7690ms. The computational
cost increases linearly with Np.
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Fig. 3 Test 5.2.1. CPU times corresponding toNWBM3with different number of cells and different
values of K

Fig. 4 Test 5.2.1. Differences between the stationary solution and the numerical solutions at t = 5s.
Number of cells: 200
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Table 5 Test 5.2.1. Errors in L1 norm and convergence rates for SM3 and NWBM3

Cells SM3 NWBM3

Np = 1 Np = 3

Error Order Error Order Error Order

h

100 5.98E−3 – 7.45E−6 – 3.75E−8 –

200 9.16E−4 2.707 1.93E−7 5.271 1.40E−9 4.743

400 1.21E−4 2.920 6.63E−9 4.863 6.50E−11 4.429

800 1.60E−5 2.919 2.42E−10 4.776 3.23E−12 4.331

q

100 2.12E−2 – 1.83E−5 - 9.16E−8 –

200 3.23E−3 2.714 4.70E−7 5.283 3.39E−9 4.756

400 4.26E−4 2.923 1.62E−8 4.859 1.58E−10 4.423

800 5.47E−5 2.961 5.94E−10 4.769 8.53E−12 4.051

5.2.2 A Transcritical Solution

As it has beenmentioned in Sect. 2 themethod introduced here only preserves station-
ary solutions whose regime doesn’t change, i.e. subcritical or supercritical stationary
solutions. To do this,when a critical state is detected in the stencilSi , i.e. if there exists
x in the stencil such that D f (U (x)) is singular, the standard CWENO reconstruc-
tions is applied. The detection of critical states is performed by using a threshold
ε: if the Froude number Fr is close to one, in the sense that |Fr − 1| < ε, the
standard CWENO reconstruction operator is applied. Otherwise, the well-balanced
reconstruction operator is computed.

To check if the numerical methods behave correctly in the presence of transcritical
regimes, the following test has been considered: the shallow water equations are
solved in the space interval [−3, 3] and the time interval t ∈ [0, 20] with the depth
function:

H(x) = −1

2
e−x2; (26)

As initial condition, the subcritical stationary solution of (24) satisfying h(−3) =
1, q(−3) = 0.64, is imposed (see Fig. 5).

As boundary conditions, q(−3, t) = 1 is set upstream, while the water height is
imposed to be h(3, t) = 1 downstream. The CFL parameter is set to 0.5,�x = 0.02,
and Np = 1 is considered. Figure 6 shows the evolution of the solution obtained
with NWBM3: after the passage of the wave generated by the boundary condition,
a critical state is reached at the point of minimal depth linking a subcritical regime
to the left and a supercritical regime to the right, followed by a stationary hydraulic
jump that links the supercritical region to the subcritical one on the right. As it can
be seen the transcritical regime is well captured by the numerical method and a
stationary solution is reached.
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(a) Initial condition. Free surface and bottom. (b) Initial condition. Velocity.

Fig. 5 Test 5.2.2. Initial condition: a subcritical stationary solution computed with RK4

Fig. 6 Test 5.2.2. Evolution froma subsonic to a transonic regime simulatedwithNWBM3.Number
of cells: 300

Therefore, this basic strategy described in this section allows us to simulate the
evolution of transcritical stationary solutions.

6 Conclusions

The methodology presented in [1] has been followed to obtain a general family of
high-order well-balanced numerical methods that can be applied to 1d systems of
balance laws. The main difficulty related to the implementation of these methods
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is that a nonlinear problem has to be solved at every cell and at every time step
consisting in finding a stationary solution whose average is the given cell value. This
problem has been interpreted as a control one related to an ODE system, in which the
constraint is the given average and the control is the initial condition. The problem
has been then written in functional form and the gradient of the functional has been
computed with the help of the adjoint system. Once the expression of the gradient
has been obtained, Newton’s and descent methods have been applied. In order to test
the efficiency of both methods, they have been tested in several problems, showing
that the Newton’s method is more efficient: a nonlinear scalar test problem has been
shown as an example.

In order to test the efficiency and the well-balancedness of the methods, they
have been applied to two problems: the Burgers equation with a nonlinear source
term and the shallow water model. The tests put on evidence that the well-balanced
modification increases the computational cost. In any case, this extra computational
cost is lower than the one that would require to lead the discretization errors to (close
to) zero machine by refining the mesh or increasing the order of non-well-balanced
methods.

Further developments include applications of the introduced technique to:

• Systems of balance laws (1) in which the function H has jump discontinuities.
• Transcritical stationary solutions.
• Multidimensional problems.

References

1. Castro,M.J.,Gallardo, J.M., López-García, J.A., Parés,C.:Well-balanced high order extensions
of Godunov method for linear balance laws. SIAM J. Numer. Anal. 46, 1012–1039 (2008)

2. Castro, M.J., Morales de Luna, T., Parés, C.: Well-balanced schemes and path-conservative
numerical methods. In: Abgrall, R., Shu, C.-W. (eds.) Handbook of Numerical Methods for
Hyperbolic Problems, vol. 18, pp. 131–175. Elsevier, Amsterdam (2017)

3. Cravero, I., Semplice, M.: On the accuracy of WENO and CWENO reconstructions of third
order on nonuniform meshes. J. Sci. Comput. 67, 1219–1246 (2016)

4. Castro, M.J., López-García, J.A., Parés, C.: In high order exactly well-balanced numerical
methods for shallow water systems. J. Comput. Phys. 246, 242–264 (2013)

5. Castro, M.J., Parés, C.:Well-balanced high-order finite volumemethods for systems of balance
laws. J. Sci. Comput. 82, 48 (2020)

6. Gómez-Bueno, I., Castro, M.J., Parés, C.: High-order well-balanced methods for systems of
balance laws: a control-based approach 394, 125820 (2021)

7. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge-Kutta schemes. Math. Comput.
67, 73–85 (1998)

8. Hager, W.W., Xhang, H.: A survey of nonlinear conjugate gradient methods. Pac. J. Optimiz.
2, 35–58 (2006)

9. Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional con-
servation laws. SIAM J. Sci. Comput. 22, 656–672 (2000)



On High-Precision L∞-stable IMEX
Schemes for Scalar Hyperbolic
Multi-scale Equations

Victor Michel-Dansac and Andrea Thomann

Abstract We present a framework to build high-accuracy IMEX schemes that fulfill
the maximum principle, applied to a scalar hyperbolic multi-scale equation. Moti-
vated by the findings in [5] that implicit R-K schemes are not L∞-stable, our scheme,
for which we can prove the L∞ stability, is based on a convex combination between a
first-order and a class of second-order IMEX schemes. We numerically demonstrate
the advantages of our scheme, especially for discontinuous problems, and give a
MOOD procedure to increase the precision.

Keywords L∞ stability · IMEX R-K schemes · MOOD · Hyperbolic multi-scale
equations

1 Introduction

We consider the scalar multi-scale equation
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wt + cewx + ci
ε

wx = 0, (1)

where we set the constants ce, ci > 0 and the parameter ε > 0. The model (1) mim-
ics the behavior of the isentropic Euler equations with a slow speed ce and a fast
speed ci/ε, where ε corresponds to the square of the Mach number. We treat the
derivative wx associated with the slow scale ce explicitly, whereas wx associated
with the fast scale ci/ε is treated implicitly in time due to the stiffness introduced
by ε < 1. For computational efficiency, the resulting CFL condition, and therefore
the time step, has to be independent of ε. In space, we apply an upwind discretization
because, already having in mind the non-linear nature of e.g. the Euler equations,
using a central scheme for the implicit part will not lead to a L∞-stable scheme, as
shown in [4] for a non-linear system.

The discretization of time and space follows the usual finite difference framework.
The space domain [x1, xN ] is partitioned in N uniformly spaced points (x j ) j∈[1,N ],
with the step size �x . We discretize the time variable with tn = n�t , where �t
denotes the time step. Then, the solution w(t, x) of (1) at (tn, x j ) is approximated
by wn

j . The first-order implicit-explicit (IMEX) discretization of (1) is given by

wn+1
j = w j − λ(wn

j − wn
j−1) − με(w

n+1
j − wn+1

j−1), (2)

where we define λ = ce
�t
�x and με = ci

ε
�t
�x for abbreviation. Note that λ,με > 0.

We are interested in IMEX schemes that meet the maximum principle. Here, we
focus on L∞-stable schemes, where a scheme is said to be L∞-stable if

‖wn+1‖∞ = max
j∈�1,N�

|wn+1
j | ≤ ‖wn‖∞. (3)

As proven in [3], the first-order scheme (2) is L∞-stable and TVD. Furthermore, as
proven in [5], implicit Runge-Kutta schemes, and consequently second-order IMEX
schemes, are not L∞-stable. Therefore, we would like to propose a convex combina-
tion of (2)with a second-order IMEX scheme and give conditions for the L∞ stability
for the resulting scheme. We define the convex combination between the first-order
scheme w

n+1,1st
j and a second-order update w

n+1,2nd
j for a parameter θ ∈ (0, 1) as:

wn+1
j = (1 − θ) w

n+1,1st
j + θ w

n+1,2nd
j . (4)

2 IMEX Formulation

Generic formulations of an IMEX scheme introduce two s × s matrices A = (ai j )
and Ã = (ãi j ), as well as two vectors b, b̃ ∈ R

s . They are regrouped in two linked
Butcher tableaux
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c A

bT
,

c̃ Ã

b̃T
.

The coefficients c, c̃ are only necessary if the right hand side depends explicitly on
time. In the following we will use the pairs (A, b) for the implicit and ( Ã, b̃) for the
explicit part. To reduce computational costs, we take A to be lower triangular and Ã
to be strictly lower triangular. Applying the IMEX formulation on (1), we obtain the
following scheme:

wn+1 = wn − ce�t
s∑

k=1

b̃kw
(k)
x − ci

ε
�t

s∑

k=1

bkw
(k)
x , (5)

with the stages

w(k) = wn − ce�t
k−1∑

l=1

ãklw
(l)
x − ci

ε
�t

k∑

l=1

aklw
(l)
x . (6)

IMEX Runge-Kutta (R-K) schemes can be classified depending on the structure of
the matrix A.

Definition 1 An IMEX R-K method is said to be of type CK (Carpenter and
Kennedy [6]) if the matrix A ∈ R

s×s can be written as

A =
(
0 0
a Â

)
,

where a ∈ R
s−1 and Â ∈ R

(s−1)×(s−1) is invertible. In the case where a = 0, the
scheme is said to be of ARS type (Asher, Ruuth and Spiteri [1]).

In the following we will consider a second-order 2-stage and a second-order 3-
stage IMEX R-Kmethod of type CK. To obtain a second-order scheme, there are the
following compatibility conditions [9]:

s∑

k=1

b̃k = 1;
s∑

k=1

bk = 1; ∀k, c̃k =
k−1∑

l=1

ãkl; ∀k, ck =
k−1∑

l=1

akl ;
s∑

k=1

b̃k c̃k = 1

2
;

s∑

k=1

b̃kck = 1

2
;

s∑

k=1

bkc̃k = 1

2
;

s∑

k=1

bkck = 1

2
.

(7)

2.1 A 2-Stage CK Type IMEX R-K Method

For a 2-stageCK typemethod,wehave the followingButcher tableaux,witha22 �= 0:
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explicit:

0 0 0

c̃2 ã21 0

b̃1 b̃2

, implicit:

0 0 0

c2 a21 a22

b1 b2

. (8)

With the compatibility conditions (7), we can simplify (8) to

explicit:

0 0 0

α α 0

1 − 1
2α

1
2α

, implicit:

0 0 0

α γ α − γ

1 − 1
2α

1
2α

, (9)

where α − γ �= 0 and α �= 0.
Using (5), (6) and (9), we can define the second-order discretization of (1) as

w
(1)
j = wn

j − λα(wn
j − wn

j−1) − γμε(w
n
j − wn

j−1) − με(α − γ )(w
(1)
j − w

(1)
j−1),

wn+1
j = wn

j −
(
1 − 1

2α

)
(λ + με)(w

n
j − wn

j−1) − 1

2α
(λ + με)(w

(1)
j − w

(1)
j−1).

(10)

Due to the matrix structure of the CK type R-K scheme, we have only two compu-
tational steps. The first one computes w(1), and the second one wn+1. The con-
vex combination (4) between the schemes (2) and (10), with the shorter nota-
tion � = w j − w j−1, is given by:

w
(1)
j = wn

j − λα�n − γμε�
n − με(α − γ )�(1),

wn+1
j = wn

j −
(

λ − θ
1

2α
(λ + με) + θμε

)
�n

− θ
1

2α
(λ + με)�

(1) − (1 − θ)με�
n+1.

(11)

We can sort (11) by grouping the wn+1 and w(1) terms:

(1 + με(α − γ ))w
(1)
j − με(α − γ )w

(1)
j−1 = (1 − (λα + γμε))w

n
j

+ (λα + γμε)w
n
j−1,

(12)

(1 + (1 − θ)με)w
n+1
j − (1 − θ)μεw

n+1
j−1 = wn

j −
(

λ − θ
1

2α
(λ + με) + θμε

)
�n

− θ
1

2α
(λ + με)�

(1).

(13)

In the following, wewill assume periodic boundary conditions.Wewill prove the L∞
stability (3) by starting with the proof of ‖w(1)‖∞ ≤ ‖wn‖∞. For each time step, we
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will use the triangle inequality |x + y| ≤ |x | + |y| and the reverse triangle inequal-
ity |x | − |y| ≤ |x − y| for x, y ∈ R. To apply use those inequalities, we require in
(12)

λα + γμε ≥ 0 (14)

1 − (λα + γμε) ≥ 0 (15)

1 + με(α − γ ) ≥ 0 (16)

με(α − γ ) ≥ 0. (17)

Using equation (12), we can now write the following estimate for ‖wn‖∞:

‖wn‖∞ = (1 − (λα + γμε))‖wn‖∞ + (λα + γμε)‖wn‖∞
≥ ‖(1 − (λα + γμε))w

n
j + (λα + γμε)w

n
j−1‖∞

= ‖(1 + με(α − γ ))w
(1)
j − με(α − γ )w

(1)
j−1‖∞

≥ (1 + με(α − γ ))‖w(1)‖∞ − με(α − γ )‖w(1)‖∞
= ‖w(1)‖∞.

From requirement (14), we get that αce + γ ci
ε

≥ 0. In order to get a Butcher tableau
independent of ε, we require α > 0 and γ ≥ 0. Relation (15) leads to a CFL condi-
tion �t

�x (αce + γ ci
ε
) ≤ 1. Note that, due to computational efficiency, we seek a time

step restriction independent of ε. Therefore, wemust take γ = 0,which is compatible
with the restriction γ ≥ 0. With those settings, (16) and (17) are always fulfilled.

Let us prove now that ‖wn+1‖∞ ≤ ‖wn‖∞. First, we rewrite (12) as follows:

− με�
(1) = 1

α
w

(1)
j − 1

α
wn

j + λ(wn
j − wn

j−1). (18)

After inserting (18) into (13), we obtain further conditions given by

r1 = 1 − θ

2α2
+ λ

(
−1 + θ

α

)
+ μεθ

(
−1 + 1

2α

)
≥ 0, (19)

r2 = λ

(
1 − θ

α

)
+ μεθ

(
1 − 1

2α

)
≥ 0, (20)

θ

2α2
− θλ

2α
≥ 0. (21)

Using (13), as well as the above conditions, we obtain the following estimate
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‖wn+1‖∞ = (1 + (1 − θ)με)‖wn+1‖∞ − (1 − θ)με‖wn+1‖∞
≤ ‖(1 + (1 − θ)με)w

n+1
j − (1 − θ)μεw

n+1
j−1‖∞

= ‖r1wn
j + r2w

n
j−1 + (με − θλ

2a
)w

(1)
j + θλ

2α
w

(1)
j−1‖∞

≤
(
1 − θ

2α2

)
‖wn‖∞ + θ

2α2
‖w(1)‖∞

≤ ‖wn‖∞,

which shows the L∞ stability. From the constraints (19)–(21), we can compute
the final estimates for the free parameters α, θ, λ. The condition (21) gives a CFL
restriction of λ ≤ 1

α
. Since we want to avoid a dependence of ce, ci or ε on α and θ ,

we need in (20) 1 − θ
α

≥ 0, that is α ≥ θ and 1 − 1
2a ≥ 0, which leads to α ≥ 1

2 .
With the same motivation, we need −1 + 1

2α ≥ 0 in (19), that is α ≤ 1
2 . Together it

follows that α = 1
2 and we get from (19) the final CFL condition λ ≤ 1. With α = 1

2
and γ = 0 fixed, we have recovered a 2-stage ARS type method with the midpoint
rule as the implicit part, given by

explicit:

0 0 0
1
2

1
2 0

0 1

, implicit:

0 0 0
1
2 0 1

2

0 1

. (22)

The above results are summed up in the following theorem:

Theorem 1 For periodic boundary conditions and under the CFL condition

�t ≤ �x

ce
,

the scheme consisting of the convex combination of the first-order scheme (2) and
the second-order scheme constructed from (22) is L∞-stable as long as θ ≤ 1

2 .

Remark 1 In order to have the maximal input of the second-order scheme, we would
want to set θ = θopt = 1

2 . With this choice of θ , the restriction (19) for α = 1
2 is

satisfied immediately and we get the less restrictive CFL condition

�t ≤ 2
�x

ce
.

Unfortunately, the midpoint rule with the above CFL condition and θ = θopt exactly
reduces to two steps of a first-order scheme. We therefore advise θ < 1

2 to get a
second-order scheme.

Since γ = 0, the initial CK type method (9) reduces to an ARS type method (22).
This observation is summarized in the following corollary
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Corollary 1 If there is a second-orderCK type IMEXR-K scheme of the form (9) that
is L∞-stable in the convex combination with (2) under a CFL condition independent
of ε, then it has to be of ARS type.

2.2 A 3-Stage CK Type IMEX R-K Method

In this section, we adapt the derivation of the 2-stage case to a 3-stage CK type
method. It is described by the following Butcher tableaux, with a22 �= 0 and a33 �= 0:

explicit:

0 0 0 0

c̃2 ã21 0 0

c̃3 ã31 ã32 0

ã31 ã32 0

, implicit:

0 0 0 0

c2 a21 a22 0

c3 a31 a32 a33

a31 a32 a33

, (23)

To have the same number of computational steps as in the 2-stage scheme (5), we
have set b = (a3 j ) and b̃ = (ã3 j ).

With the second-order compatibility conditions (7) and a22 = β and a33 = α, we
introduce κ = 2(γ+β)(1−α)+2α−1

2(γ+β)
and simplify (23) to:

explicit:

0 0 0 0

γ + β γ + β 0 0

1 1 − 1
2(γ+β)

1
2(γ+β)

0

1 − 1
2(γ+β)

1
2(γ+β)

0

, implicit:

0 0 0

γ + β γ β 0

1 κ 1−2α
2(γ+β)

α

κ 1−2α
2(γ+β)

α

. (24)

Analogously to (10), we can write the second-order scheme using (24) as

w
(1)
j + μεβ�(1) = wn

j − (λ(γ + β) + μεγ )�n

wn+1
j + μεα�n+1 = wn

j −
(

λ
2(γ + β) − 1

2(γ + β)
+ κμε

)
�n

−
(

λ
1

2(γ + β)
+ με

1 − 2α

2(γ + β)

)
�(1).

Weconduct an analogous analysis as in the 2-stage case,which results in the following
ARS-type IMEX R-K method for β ∈ (0, 1

2 ):

explicit:

0 0 0 0

β β 0 0

1 1 − 1
2β

1
2β 0

1 − 1
2β

1
2β 0

, implicit:

0 0 0 0

β 0 β 0

1 0 1
2(1−β)

1 − 1
2(1−β)

0 1
2(1−β)

1 − 1
2(1−β)

. (25)
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Fig. 1 Values of the optimal convex combination parameter θopt (left panel) and the optimal CFL
number Copt (right panel), with respect to the IMEX parameter β.

One example for (25) is the widely used ARS(2,2,2) method with β = 1 −
√
2
2 ,

see [1].

Theorem 2 For periodic boundary conditions and under the CFL condition

�t ≤ �x

ce
,

the scheme consisting of the convex combination of the first-order scheme (2) and
the second-order scheme constructed from (25) with β ∈ (0, 1

2 ) is L
∞-stable as long

as θ ≤ 2β(1 − β).

Remark 2 In order to have the maximal input of the second-order scheme, we set

θopt = 2β(1 − β). (26)

With the choice θ = θopt, we get the less restrictive CFL condition

�t ≤ Copt
�x

ce
, where Copt = 1

1 − β
. (27)

The values of θopt and Copt are displayed with respect to β in Fig. 1.

Remark 3 Allowing β = 1
2 , the 3-stage ARS type method (25) reduces to the 2-

stage ARS type method using the midpoint rule (22). In addition, the choice β = 1
2

maximizes both θopt and λ.

Corollary 2 If there is a second-order CK type IMEX R-K scheme of the form (25)
that is L∞-stable in the convex combination with (2) under a CFL condition inde-
pendent of ε, then it has to be of ARS type.
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3 Numerical Results

This section is dedicated to providing numerical experiments to test the schemes
introduced above:

• The first-order scheme given by (2),
• The second-order scheme given by (25),
• The L∞-stable scheme obtained via the convex combination with the parame-
ter θ = θopt given by (26), between the first-order scheme (2) and the second-order
scheme (25),

• TheMOODscheme resulting from an optimal order detection procedure explained
in Sect. 3.1 and applied to the L∞-stable scheme.

Throughout this section, the space domain is given by [0, 1] and periodic boundary
conditions are prescribed. The time domain is given by [0, tend], where tend chosen
such that the exact solution completes exactly one revolution of the space domain,
as follows:

tend = 1

ce + ci
ε

.

Unless otherwise mentioned, the space and time discretizations are linked with the
optimal CFL condition defined by (27). The constants ce and ci are both taken equal
to 1.

We start this section with an introduction to an order detection procedure in Sect.
3.1. Then, we provide a way to choose the parameter β in Sect. 3.2. Finally, in Sect.
3.3, we provide several numerical tests with smooth and especially non-smooth exact
solutions. The smooth exact solution is given by

wsmooth
ex (t, x) = 1 + ε

2

(
1 + sin

(
2π

(
x −

(
ce + ci

ε

)
t
)))

, (28)

and describes the transport of a sine wave of amplitude ε. The discontinuous exact
solution is given by

wex =

⎧
⎪⎨

⎪⎩
1 + ε if x −

(
ce + ci

ε

)
t ∈

(
1

4
,
3

4

)
,

1 otherwise.
(29)

which corresponds to the transport of a square wave of amplitude ε.

3.1 Optimal Order Detection: A MOOD-like Technique

The L∞-stable scheme is a convex combination between the diffusive first-order
scheme and the oscillatory second-order scheme. Since those oscillationsmay violate
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themaximumprinciple,wedonotwish to use the second-order scheme everywhere in
the computational domain. Using the L∞-stable scheme introduces enough diffusion
to get rid of the oscillations and to ensure the maximum principle. However, once the
diffusion has been introduced, there is no need to add even more diffusion and the
second-order scheme could be used until its result once again violates the maximum
principle, at which point the L∞-stable scheme is necessary once again.

The procedure outlined above is akin to the Multidimensional Optimal-Order
Detection techniques developed in the MOOD framework (see for instance [2]). It
results in the MOOD scheme, given by the algorithm below:

Algorithm If the exact solution is bounded betweenwmin andwmax, using the optimal
CFL number (27), the MOOD scheme is given as a result of applying the following
algorithm at each time step.

1. Compute the second-order solution.
2. Detect if this second-order solution breaks the maximum principle, i.e. if it

oscillates below wmin or above wmax.
3. If the maximum principle is violated, compute and output the solution given by

the L∞-stable scheme; otherwise, output the second-order solution.

This algorithm ensures a drastic improvement in the numerical results when this
procedure is used instead of using the L∞-stable scheme at each time step.

3.2 Choice of β in the 3-Stage Method

This first set of numerical experiments is dedicated to providing a way to choose an
optimal value for β. At the moment, we know that β ∈ (0, 1/2) and we are able to
find a non-zero value of θ for all values of β. According to Fig. 1, the optimal CFL
number as well as the optimal θ increase as β goes to 1/2. Therefore, it would be
tempting to take β as close to 1/2 as possible. To check whether this preliminary
analysis is accurate, we study the CPU time and the L∞ error of the scheme with
respect to β, in order to suggest an optimal value of β.

Throughout this set of numerical experiments, we consider the smooth exact
solution (28) with ε = 10−1.

Study of the CPU time. The CPU time taken by our program is influenced by β

because the CFL number Copt, given by (27), itself depends on β. Indeed, as β varies
from 0 to 1/2, Copt ranges between 1 and 2, as evidenced in Fig. 1.

In Fig. 2, we note that the CPU time for the L∞-stable and MOOD schemes
decreases when β tends to 1/2. This was expected as the CFL numberCopt is increas-
ing with β, thus allowing for larger time steps. Let us also note that the MOOD
procedure is not very costly for this smooth test case. Moreover, we remark that the
second-order scheme takes twice as much CPU time as the first-order scheme, which
is also expected due to the additional intermediate step.
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Fig. 2 CPU time (in milliseconds) with respect to the IMEX parameter β, using the optimal
values θopt and Copt, in the context of the test case presented in Sect. 3.2.

Fig. 3 L∞ error with respect to the IMEX parameter β, using the optimal values θopt and Copt, in
the context of the test case presented in Sect. 3.2. The right panels contain a zoom on the left panel
data.

Study of the L∞ Error.Now, we turn to the study of the L∞ error with respect to β.
Forβ ∈ (0, 1/2), the L∞-stable andMOODschemes are L∞-stable, but this property
alonedoes not indicate their precision. Fromnowon,we take the optimalCFLnumber
Copt.

In Fig. 3, we observe that the second-order scheme is, as expected, much more
precise than the first-order one. In addition, we note that the L∞-stable scheme is
more precise than the first-order one, but not by a large margin. Finally, we remark
that the MOOD procedure is essential to improve the precision of the L∞-stable
scheme.

Regarding the choice of β, we note on the top right panel that the L∞-stable
scheme reduces to the first-order one in two cases. When β = 0, we get θopt = 0,
and the convex combination consists only in the first-order scheme. When β = 1/2,
we get θopt = 0 and Copt = 2, and the convex combination actually coincides with
the first-order scheme. Between these two values, the L∞ error produced by the
L∞-stable scheme reaches a minimum. Interestingly, this minimum is close to the
point where the MOOD error starts increasing (see the bottom right panel). We note
that this minimum is located around β 
 1 − √

2/2, which is widely used e.g. in [1,
3, 9].
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Fig. 4 L∞ error curves for the smooth solution (28), with ε = 10−2.

Conclusion: Choice of β. In this first study, we have observed that:

• the CPU time gets smaller as β gets larger;
• the L∞ error reaches a minimum at β = 1 − √

2/2.

Based on this observations, we define βopt, which will be used in the remainder of
this article, as

βopt = 1 −
√
2

2
.

3.3 Numerical Tests

Before we start with the numerical results, we want to remark that we do not consider
an increase in space order. Such an increase, and its effect on smooth solutions, has
been documented at length in [3]. Therein was concluded that, if ε is close to 1,
then using a second-order scheme in time and a first-order scheme in space does not
provide a significant and observable gain compared to a first-order scheme in time
and space. Conversely, if ε is close to 0, then using a first-order scheme in time and
a second-order scheme in space does not provide a significant and observable gain
compared to a first-order scheme in time and space.

Therefore, we focus here only on second-order time accuracy whereas accuracy
in space will be studied in forthcoming work.

3.3.1 Smooth Solution: Order of Accuracy

To demonstrate that our schemes reach the desired order of accuracy, we compute L∞
error curves with the smooth initial condition (28). In Fig. 4, we display the L∞
error with respect to the number of discretization points for the four schemes under
consideration.

We note, as expected, that the first- and second-order schemes are respectively
first- and second-order accurate. Moreover, the L∞-stable scheme is first-order accu-
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Fig. 5 Approximation of the discontinuous solution (29). From left to right and top to bottom,
we have taken: ε = 1 and N = 40, ε = 10−1 and N = 220, ε = 10−2 and N = 2000, ε = 10−3

and N = 20000. These large values of N have been chosen to ensure that 20 time iterations are
systematically needed to reach tend. If smaller values are taken, the time steps are too large to
visualize noticeable differences between the schemes.

rate, and the MOOD procedure greatly increases the precision of the L∞-stable
scheme, almost bringing it to the level of the second-order scheme. The loss of pre-
cision of the MOOD scheme compared to the second-order scheme is due to the
fact that the MOOD scheme is L∞-stable, contrary to the second-order scheme, and
therefore it does not allow any violation of the maximum principle, even if such a
violation would result in a precision increase.

As a consequence, the MOOD procedure is especially well-suited for smooth
problems where the maximum principle is important. Let us now compare these
approaches on a discontinuous solution, where we expect the L∞-stable scheme to
be of greater interest.

3.3.2 Discontinuous Solution

Wenowconsider the following discontinuous exact solutionwex. In Fig. 5,we display
the results of the four schemes for different values of ε.

We first notice in the top left panel that the approximation of the exact solution is
similar for all four schemes in the case of ε = 1.
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Fig. 6 L1 (left panels) and L1
o (right panels) error curves for the discontinuous solution (29),

for ε = 1 (top panels) and ε = 10−2 (bottom panels).

In the other three panels, for ε ∈ {10−1, 10−2, 10−3}, we note that the first-order
scheme is always in-bounds, while the second-order scheme always violates the
maximum principle. Here, we observe a clear improvement when using the L∞-
stable scheme, but the result is still somewhat diffusive. TheMOODprocedure allows
another gain in precision compared to the first-order scheme, while still staying in-
bounds.

This underlines the necessity of L∞-stable schemes when approximating discon-
tinuous solutions. In addition, the MOOD procedure is useful when approximating
continuous and discontinuous solutions with good precision, while respecting the
maximum principle.

The final numerical experiment consists in quantifying howmuch better the result
of the L∞-stable scheme is, compared to both first- and second-order approxima-
tions,when considering a discontinuous solution. To address such an issue,we cannot
simply compute the error in the L∞ norm. Indeed, this norm is not well-suited for
measuring the errors produced when approximating a discontinuous exact solution
with a diffusive approximation. Instead, we turn to the L1 norm, as well as a modifi-
cation, the L1

o quasinorm, which does not satisfy the triangle inequality property of
a norm but enables us to measure relevant errors, defined as follows:

‖wn‖L1
o

= 1

�x

∑

j

(
|wn

j | + max
m≤n

[(
max

j
wm

j − min
j

wm
j

)
−

(
max

j
w0

j − min
j

w0
j

)])
.
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This quasinorm is the L1 norm added to a quantity which has been designed to
measure only overshoots and undershoots. This quantity encodes how much the
numerical solution violates the maximum principle. Therefore, we expect this added
term to vanish as soon as the L∞-stable scheme,with orwithoutMOOD, is employed.

In the top panels of Fig. 6, we note that, for ε = 1, both errors take similar values
for the four schemes under consideration. This is due to the fact that there are few
spurious oscillations in this case (see Fig. 5, top left panel). In addition, we observe
that the scheme is accurate up to order 1/2 which is expected when approximating
discontinuous solutions, see for instance [7].

Now, looking at the bottom left panel, we note that the L1 error is lower for the
second-order scheme than for the other ones and that the orders of accuracy of all
schemes tend to 1/2 for large enough N . However, the bottom right panel, which
takes into account the over- and undershootswhen computing the error, paints another
picture: the second-order scheme is actually theworst of all four. In addition, the error
actually stays roughly constant when the number of discretization points increases.
This means that, as N increases, the gains in L1 error seem to be compensated by an
increase of the overshoot and undershoot amplitude.

4 Conclusions and Future Work

We have presented a way of constructing L∞-stable IMEX schemes that, combined
with a MOOD procedure, yield high-precision approximate solutions for stiff and
non-stiff systems. As we have demonstrated with simple numerical examples, for
non-stiff systems higher order IMEX R-K schemes still give good results although
violating the maximum principle, whereas for stiff systems they produce spurious
oscillations and L∞-stable schemes are needed to give accurate solutions. In this
work, we have mainly focused on the time accuracy and have neglected higher order
space discretizations. This, together with the extension to TVD and higher order
IMEX schemes, is explored in [8]. In addition, for physical applications, asymptotic
preservation properties, as well as scale-independent diffusion, will be studied.
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A Staggered Pressure Correction
Numerical Scheme to Compute a
Travelling Reactive Interface in a
Partially Premixed Mixture

D. Grapsas, R. Herbin, J.-C. Latché, and Y. Nasseri

Abstract We address a turbulent deflagration model with a flow governed by the
compositional Euler equations and the flame propagation represented by the transport
of the characteristic function. The numerical scheme works on staggered, unstruc-
tured meshes with a time-marching algorithm solving first the chemical species mass
balances and then the mass, momentum and energy balances. A pressure correction
technique is used for this latter step, which solves a balance equation for the sen-
sible enthalpy with corrective terms to ensure consistency of the total energy. The
approximate solutions respect the physical bounds and satisfy a conservative weakly-
consistent discrete total energy balance equation.Numerical evidence shows that they
converge to the solution of the infinitely fast chemistry continuous problem when
the chemical time scale tends to zero with the space and time steps.

1 Problem Position

In this paper,we study anumerical scheme for the computation of large scale turbulent
deflagrations occurring in a partially premixed atmosphere. In usual situations, such
a physical phenomena is driven by the progress in the atmosphere of a shell-shaped
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thin zone, where the chemical reaction occurs and which thus separates the burnt
area from fresh gases; this zone is called the flame brush. The onset of the chemical
reaction is due to the temperature elevation, so the displacement of the flame brush
is driven by the heat transfer inside and in the vicinity of this zone. Modelling of
deflagrations still remains a challenge, since the flame brush has a very complex
structure (sometimes presented as fractal in the literature), due to thermo-convective
instabilities or turbulence [14, 16]. Whatever the modelling strategy, the problem
thus needs a multiscale approach, since the local flame brush structure is out of
reach of the computations aimed at simulating the flow dynamics at the observation
scale, i.e. the whole reactive atmosphere scale. A possible way to completely
circumvent this problem is to perform an explicit computation of the flame brush
location, solving a transport-like equation for a characteristic function of the burnt
zone; such an approach transfers the modelling difficulty to the evaluation of the
flame brush velocity (or, more precisely speaking, to the relative velocity of the
flame brush with respect to the fresh gases), by an adequate closure relation, and
the resulting model is generally referred to as a Turbulent Flame velocity Closure
(TFC) model [18]. The transport equation for the characteristic function of the burnt
zone is called in this context the G-equation, its unknown being denoted by G [14].
Such a modelling is implemented in the in-house software P2REMICS (for Partially
PREMIxed Combustion Solver) developed, on the basis of the software components
library CALIF3S (for Components Adaptative Library For Fluid Flow Simulations,
see [2]) at the French Institut de Radioprotection et de Sûreté Nucléaire (IRSN) for
safety evaluation purposes; this is the context of the work presented in this paper.

Usually, TFC models apply to perfectly premixed flows (i.e. flows with constant
initial composition), and the chemical state of the flow is governed by the value of
G only: G ∈ [0, 1], for G ≥ 0.5, the mixture is supposed to be in its fresh (initial)
state and G < 0.5 is supposed to correspond to the burnt state; in both cases, the
composition of the gas is known (it is equal to the initial value in the fresh zones,
and to the state resulting from a complete chemical reaction in the burnt zone).

However, for partially premixed turbulent flows (i.e. flows with non-constant
initial composition), the situation is more complex, since the composition of the
mixture can no more be deduced from the value of G. An extension for this situation,
in the inviscid case, is proposed in [1]. The line followed to formulate this model
is to write transport equations for the chemical species initially present in the flow,
as if no chemical reaction occured, and then to compute the actual composition in
the burnt zone (i.e. the part of the physical space where G < 0.5) as the chemical
equilibrium composition, thus supposing an infinitely fast reaction. This model is
referred to in the following as the “asymptotic model”, and is recalled in the first
part of Sect. 2.

We propose here an alternate extension, which consists in keeping the classical
reactive formulation of the chemical speciesmass balance, but evaluating the reaction
term as a function of G: it is set to zero in the fresh zone (G ≥ 0.5), and to a finite
(but possibly large) value in the burnt zone (G < 0.5). This model is referred to as
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the “relaxed model”; it is in fact more general, as it can be readily extended to cope
with diffusion terms, while the “asymptotic model” cannot (to this purpose, a balance
for the actual mass fractions is necessary). We then build a numerical scheme, based
on a staggered discretization of the unknowns, for the solution of the relaxed model;
this algorithm is of fractional step type, and employs a pressure correction technique
for hydrodynamics. The balance energy solved by the scheme is the so-called (non
conservative) sensible enthalpy balance, with corrective terms in order to ensure the
weak consistency (in the Lax-Wendroff sense) of the scheme. It enjoys the same
stability properties as the continuous model: positivity of the density and, thanks
to the choice of the enthalpy balance, the internal energy, conservation of the total
energy, chemical species mass fractions lying in the interval [0, 1]. In addition, it is
shown to be in fact conservative: indeed, its solutions satisfy a discrete conservative
total energy balance whose time and space discretization is non-standard, but weakly
consistent with its continuous counterpart. This algorithm is an extension to the
reactive case of the numerical scheme for compressible Navier-Stokes equations
described and tested in [8].

As the reaction term gets stiffer, the relaxedmodel should boil down to the asymp-
totic one, for which a closed form of the solution of Riemann problems is available.
Numerical tests are performed which show that this is indeed the case. In addition,
we observe that the accuracy of the scheme (for this kind of application) is highly
dependent on the numerical diffusion introduced by the scheme in the mass balance
equation for the chemical species, comparing the results for three approximations of
the convection operator in these equations: the standard upwind scheme, a MUSCL-
like scheme introduced in [15] and a first order scheme designed to reduce diffusion
proposed in [5].

The presentation is structured as follows. We first introduce the asymptotic and
the relaxed models in Sect. 2. Then we give an overview of the content of this
paper in Sect. 3, writing the scheme in the time semi-discrete setting and stating its
stability and consistency property. The fully discrete setting is given in two steps,
first describing the space discretization (Sect. 4) and then the scheme itself (Sect. 5).
The conservativity of the scheme is shown in Sect. 6. Finally, numerical experiments
are presented in Sect. 7.

2 The Physical Models

We begin with the description of the asymptotic model introduced in [1] and then
turn to the relaxed model proposed in the present work.

The asymptotic model - For the sake of simplicity, only four chemical species
are supposed to be present in the flow, namely the fuel (denoted by F), the oxydant
(O), the product (P) of the reaction, and a neutral gas (N ). A one-step irreversible
total chemical reaction is considered, which is written:
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νF F + νO O + N → νP P + N ,

where νF , νO and νP are the molar stoichiometric coefficients of the reaction. We
denote by I the set of the subscripts used to refer to the chemical species in the flow,
so I = {F, O, N , P} and the set of mass fractions of the chemical species in the flow
reads {yi , i ∈ I} (i.e. {yF , yO , yN , yP}). We now define the auxiliary unknowns
{ỹi , i ∈ I} as the result of the (inert) transport by the flow of the initial state, which
means that the {ỹi , i ∈ I} are the solutions to the following system of equations:

∂t (ρ ỹi ) + div(ρ ỹiu) = 0, ỹi (x, 0) = yi,0(x), for i ∈ I, (1)

where ρ stands for the fluid density, u for the velocity, and yi,0(x) is the initial mass
fraction of the chemical species i in the flow. These equations are supposed to be
posed over a bounded domainΩ ofRd , d ∈ {1, 2, 3} and a finite time interval (0, T ).
The initial conditions are supposed to verify

∑
i∈I yi,0 = 1 everywhere in Ω , and

this property is assumed to be valid for any t ∈ (0, T ), which is equivalent with the
mixture mass balance, given below. The characteristic function G is supposed to
obey the following equation:

∂t (ρG) + div(ρGu) + ρuu f |∇G| = 0, (2)

associated to the initial conditions G = 0 at the location where the flame starts and
G = 1 elsewhere. The quantity ρu is a constant density, which, from a physical point
of view, stands for a characteristic value for the unburnt gases density. The chemical
mass fractions are now computed as:

∣
∣
∣
∣
∣
∣
∣

if G > 0.5, yi = ỹi for i ∈ I,

if G ≤ 0.5, yF = νF WF z̃+, yO = νO WO z̃−, yN = ỹN ,

with z̃ = 1

νF WF
ỹF − 1

νO WO
ỹO .

(3)

In these relation, z̃+ and z̃− stand for the positive and negative part of z̃, respectively,
i.e. z̃+ = max(z̃, 0) and z̃− = −min(z̃, 0), and, for i ∈ I, Wi is the molar mass of
the chemical species i . The physical meaning of Relation (3) is that the chemical
reaction is supposed to be infinitely fast, and thus that the flow composition is stuck
to the chemical equilibrium composition in the so-called burnt zone, which explains
why the model is qualified as “asymptotic”. The product mass fraction is given by
yP = 1 − (yF + yO + yN ). The flow is governed by the Euler equations:

∂tρ + div(ρu) = 0, (4a)

∂t (ρui ) + div(ρuiu) + ∂i p = 0, i = 1, d, (4b)

∂t (ρE) + div(ρEu) + div(pu) = 0, (4c)

p = (γ − 1) ρes, E = 1

2
|u|2 + e, e = es +

∑

i∈I
yiΔh0

f,i , (4d)
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where p stands for the pressure, E for the total energy, e for the internal energy,
es for the so-called sensible internal energy and, for i ∈ I, Δh0

f,i is the formation
enthalpy of the chemical species i . The equation of state (4d) supposes that the fluid
is a perfect mixture of ideal gases, with the same iso-pressure to iso-volume specific
heat ratio γ > 1. This set of equations is complemented by homogeneous Neumann
boundary conditions for the velocity:

u · n = 0 a.e. on ∂Ω, (5)

where ∂Ω stands for the boundary of Ω and n its outward normal vector.

The “relaxed” model – This model retains the original form of the governing
equations for reactive flows: a transport/reaction equation is written for each of the
chemical species mass fractions; the value of G controls the reaction rate ω̇, which is
set to zero when G ≥ 0.5, and takes non-zero (and possibly large) values otherwise.
The unknowns {yi , i ∈ I} are thus now solution to the following balance equations:

∂t (ρyi ) + div(ρyiu) = ω̇i , ỹi (x, 0) = yi,0(x) for i ∈ I, (6)

where the reactive term ω̇i is given by:

ω̇i = 1

ε
ζi νi Wi ω̇, with ω̇ =η(yF , yO) (G − 0.5)−

and η(yF , yO) = min(
yF

νF WF
,

yO

νO WO
), (7)

with ζF = ζO = −1, ζP = 1 and ζN = 0. Note that, since νF WF + νO W0 = νP WP ,
we have

∑
i∈I ω̇i = 0, which, summing on i ∈ I the species mass balances, allows

to recover the equivalence between the mass balance and the fact that
∑

i∈I yi = 1.
The factor η(yF , yO) is a cut-off function, which prevents the chemical species mass
fractions from taking negative values (and, consequently, values greater than 1, since
their sum is equal to 1).

The rest of the model is left unchanged.

3 General Description of the Scheme and Main Results

Time Semi-discrete Algorithm
Instead of the total energy balance equation, the scheme solves a balance equation
for the sensible enthalpy hs = es + p/ρ, which is formally derived as follows. The
first step is to establish the kinetic energy balance formally and subtract from (4c)
to obtain a balance equation for the internal energy. Thanks to the mass balance
equation, for any regular function ψ
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∂t (ρψ) + div(ρψu) = ρ∂tψ + ρu · ∇ψ.

Using twice this identity and then the momentum balance equation, we have for
1 ≤ i ≤ d:

1

2
∂t (ρu2

i ) + 1

2
div(ρu2

i u) = ρ ui∂t ui + ρuiu · ∇ui

= ui
[
∂t (ρui ) + div(ρuiu)

] = −ui∂i p,

and, summing for i = 1 to d, we obtain the kinetic energy balance:

1

2
∂t (ρ|u|2) + 1

2
div(ρ|u|2u) = u · [

∂t (ρu) + div(ρu ⊗ u)
] = −u · ∇ p.

Substituting the expression of the total energy in (4c), yields

∂t (ρe) + div(ρeu) + 1

2
∂t (ρ|u|2) + 1

2
div(ρ|u|2) + u · ∇ p + pdiv(u) = 0,

which, using the kinetic energy balance, gives the total internal energy balance:

∂t (ρe) + div(ρeu) + pdiv(u) = 0. (8)

Using the linearity of the mass balance of the chemical species i , for any i ∈ I, we
derive the reactive energy balance:

∂t
[
ρ
( ∑

i∈I
Δh0

f,i yi
)] + div

[
ρ
( ∑

i∈I
Δh0

f,i yi
)
u
] =

∑

i∈I
Δh0

f,i ω̇i = −ω̇θ . (9)

Subtracting (9) from (8) yields the sensible internal energy balance:

∂t (ρes) + div(ρesu) + pdiv(u) = ω̇θ . (10)

Finally, using the relation between the sensible energy and the sensible enthalpy, we
obtain the sensible enthalpy balance:

∂t (ρhs) + div(ρhsu) − ∂t p − u · ∇ p = ω̇θ . (11)

The numerical resolution of themathematicalmodel is realized by a fractional step
algorithm, which implements a pressure correction technique for hydrodynamics in
order to separate the resolution of themomentum balance from the other equations of
the Euler system. Supposing that the time interval (0, T ) is split in N sub-intervals,
of constant length δt = T/N , the semi-discrete algorithm is given by:
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Reactive step:

Gn+1 : 1

δt
(ρnGn+1 − ρn−1Gn) + div(ρnGkun) + ρuu f |∇Gk | = 0, (12a)

Y n+1
N : 1

δt
(ρn yn+1

N − ρn−1yn
N ) + div(ρn yk

Nu
n) = 0. (12b)

zn+1 : 1

δt
(ρnzn+1 − ρn−1zn) + div(ρnzkun) = 0. (12c)

Y n+1
F :

1

δt
(ρn yn+1

F − ρn−1yn
F ) + div(ρn yk

Fu
n) =

−1

ε
νF WF ω̇(yn+1

F , zn+1),
(12d)

Y n+1
P : yn+1

F + yn+1
O + yn+1

N + yn+1
P = 1. (12e)

Euler step:

ũn+1 :
1

δt
(ρnũn+1

i − ρn−1un
i ) + div(ρnũn+1

i un)

+
( ρn

ρn−1

)1/2
∂i pn = 0, i = 1, . . . , d,

(12f)

un+1

ρn+1

hn+1
s

pn+1

:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1

δt
ρn(un+1

i − ũn+1
i ) + ∂i pn+1

−
( ρn

ρn−1

)1/2
∂i pn = 0, i = 1, . . . , d,

1

δt
(ρn+1 − ρn) + div(ρn+1un+1) = 0,

1

δt
(ρn+1hn+1

s − ρnhn
s ) + div(ρn+1hn+1

s un+1)

− 1

δt
(pn+1 − pn) − un+1 · ∇ pn+1 = ω̇n+1

θ + Sn+1,

pn+1 = γ − 1

γ
ρn+1 hn+1

s .

(12g)

Equations (12a)–(12g) are solved successively, and the unknown for each equation is
specified before each equation. In the convection term of the equations of the reactive
step, the index k may take the value n (explicit scheme) or n + 1 (implicit scheme).
The unknown z is an affine combination of yF and yO , defined so that the reactive
term cancels:

z = 1

νF WF
yF − 1

νO WO
yO . (13)

Thus the value of yn+1
O is deduced from yn+1

F and zn+1, which allows to express ω̇

in (12d) as a function of yn+1
F and zn+1, instead of yn+1

F and yn+1
O as suggested by

Relation (7). In addition, we have:

η(yn+1
F , yn+1

O ) = min(
yn+1

F

νF WF
,

yn+1
O

νO WO
)



104 D. Grapsas et al.

=

∣
∣
∣
∣
∣
∣
∣

1

νF WF
yn+1

F if zn+1 ≤ 0,

1

νO WO
yn+1

O = 1

νF WF
yn+1

F − zn+1 otherwise.

Hence, because of the specific formof the functionη, the right hand side of (12d) boils
down to an affine term, even if η vanishes when yF or yO vanishes, and the scheme
is fully implicit in time with respect to the reaction term. This is the motivation for
the choice of the form of η. It is fundamental to remark that Eqs. (12b)–(12e) are
equivalent to the following system:

1

δt
(ρn yn+1

i − ρn−1yn
i ) + div(ρn yk

i u
n) = 1

ε
ζiνi Wi ω̇(yn+1

F , yn+1
O ), i ∈ I, (14)

where we recall that ζF = ζO = −1, ζP = 1 and ζN = 0. Indeed, dividing the fuel
mass balance equation (12d) by νF WF , substracting Eq. (12c) and finallymultiplying
by νO WO yields the desired mass balance equation for the oxydant chemical species.
Finally, we suppose that the product mass balance holds:

1

δt
(ρn yn+1

P − ρn−1yn
P) + div(ρn yk

Pu
n) = 1

ε
νP WP ω̇(yn+1

F , yn+1
O ). (15)

Since the sum of the chemical reaction terms vanishes, we have for Σ = yF + yO +
yP + yN , summing all the chemical species mass balances,

1

δt
(ρnΣn+1 − ρn−1Σn) + div(ρnΣkun) = 0, (16)

and this equation may equivalently replace the product mass balance equation (15).
Thanks to the mixture balance, we see that, provided thatΣn satisfiesΣn = 1 every-
where in Ω , the solution to Eq. (16) is Σn+1 = 1 everywhere in Ω . Since the ini-
tialization yields Σ0 = 1, this last equality is indeed true, and (15) is equivalent to
(12e). Finally, note that, when the chemical step is performed, the mass balance at
step n + 1 is not yet solved; hence the (unusual) backward time shift for the densities
and for the mass fluxes in the equations of this step.

Equations (12f)–(12g) implement a pressure correction technique, where the cor-
rection step couples the velocity correction equation, the mass balance and the sen-
sible enthalpy balance. This coupling ensures that the pressure and velocity are kept
constant through the contact discontinuity associated to compositional non-reactive
Euler equations (precisely speaking, the usual contact discontinuity, already present
in 1D equations, but not slip lines); for this property to hold, it is necessary that all
chemical species share the same heat capacity ratio γ . The term Sn+1

K in the sensible
enthalpy balance equation is a corrective term which is necessary for consistency;
schematically speaking, it compensates the numerical dissipation which appears in a
discrete kinetic energy balance that is obtained from the discrete momentum balance.
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Its expression is given in Sect. 5, and its derivation is explained in Sect. 6, where the
conservativity of the scheme is discussed.

Space Discretization
The space dicretization is performed by a finite volume technique, using a staggered
arrangement of the unknowns (the scalar variables are approximated at the cell centers
and the velocity components at the face centers), using either a MAC scheme (for
structured discretizations) or the degrees of freedom of low-order non-conforming
finite elements: Crouzeix-Raviart [4] for simplicial cells and Rannacher-Turek [17]
for quadrangles (d = 2) or hexahedra (d = 3). For the Euler equations (i.e. steps
(12f)–(12g)), upwinding is performed by building positivity-preserving convection
operators, in the spirit of the so-called Flux-Splitting methods, and only first-order
upwinding is implemented. The pressure gradient is built as the transpose (with
respect to the L2 inner product) of the natural velocity divergence operator. For the
balance equations for the other scalar unknowns, the time discretization is implicit
when first-order upwinding is used in the convection operator (in other words, k =
n + 1 in (12a)–(12d)) or explicit (k = n in (12a)–(12d)) when a higher order (of
MUSCL type, cf. Appendix 8) flux or an anti-diffusive flux (cf. Appendix 9) is
used.

Properties of the Scheme
First, the positivity of the density is ensured by construction of the discrete mass
balance equation, i.e. by the use of a first order upwind scheme. In addition, the
physical bounds of the mass fractions are preserved thanks to the following (rather
standard) arguments: first, building a discrete convection operator which vanishes
when the convected unknown is constant thanks to the discretemass balance equation
ensures a positivity-preservation property [13], under a CFL condition if an explicit
time approximation is used; second, the discretization of the chemical reaction rate
ensures either that it vanishes when the unknown of the equation vanishes (for yF and
yO ), or that it is non-negative (for yP ). Consequently, mass fractions are non-negative
and, since their sum is equal to 1 (see above), they are also bounded by 1.

The positivity of the sensible energy stems from two essential arguments: first, a
discrete analog of the internal energy equation (8) may be obtained from the discrete
sensible enthalpy balance, by mimicking the continuous computation; second, this
discrete relation may be shown to have only positive solutions, once again thanks to
the consistency of the discrete convection operator and the mass balance. This holds
provided that the equation is exothermic (ω̇θ ≥ 0) and thanks to the non-negativity
of Sn+1 (see below).

In order to calculate correct shocks, it is crucial for the scheme to be consistent
with the following weak formulation of the problem:
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∀φ ∈ C∞
c (Ω × [0, T )

)
,

∫ T

0

∫

Ω

[
ρ∂tφ + ρu · ∇φ

]
dx dt +

∫

Ω

ρ0(x)φ(x, 0)dx = 0,
∫ T

0

∫

Ω

[
ρui∂tφ + (ρuui ) · ∇φ + p∂iφ

]
dx dt

+
∫

Ω

ρ0(x)(ui )0(x)φ(x, 0)dx = 0, 1 ≤ i ≤ d,
∫ T

0

∫

Ω

[
ρE∂tφ + (ρE + p)u · ∇φ

]
dx dt +

∫

Ω

ρ0(x)E0(x)φ(x, 0)dx = 0,
∫ T

0

∫

Ω

[
ρyi∂tφ + ρyiu · ∇φ

]
dx dt +

∫ T

0

∫

Ω

ρ0(x)yi,0(x)φ(x, 0)dx =

−
∫ T

0

∫

Ω

ω̇iφ dx dt, 1 ≤ i ≤ d,

p = (γ − 1)ρes .

(17)

Remark that this system features the total energy balance equation and not the
sensible enthalpy balance equation, which is actually solved here. However, we show
in Sect. 6 that the solutions of the scheme satisfy a discrete total energy balance, with
a time and space dicretization which is unusual but allows however to prove the
consistency in the Lax-Wendroff sense. Finally, the integral of the total energy over
the domain is conserved, which yields a stability result for the scheme (irrespectively
of the time and space step, for this relation; recall however that the overall stability
of the scheme needs a CFL condition if an explicit version of the convection operator
for chemical species is used).

4 Meshes and Unknowns

Let the computational domain Ω be an open polygonal subset of Rd , 1 ≤ d ≤ 3,
with boundary ∂Ω and let M be a decomposition of Ω , supposed to be regular in
the usual sense of the finite element literature (e.g. [3]). The cells may be:

– for a general domainΩ , either convex quadrilaterals (d = 2) or hexahedra (d = 3)
or simplices, both type of cells being possibly combined in a same mesh for two-
dimensional problems,

– for a domain whose boundaries are hyperplanes normal to a coordinate axis, rect-
angles (d = 2) or rectangular parallelepipeds (d = 3) (and whose faces, of course,
are then also necessarily normal to a coordinate axis).

By E and E(K ) we denote the set of all (d − 1)-faces σ of the mesh and of the
element K ∈ M respectively. The set of faces included in the boundary of Ω is
denoted by Eext and the set of internal edges (i.e. E \ Eext) is denoted by Eint; a face
σ ∈ Eint separating the cells K and L is denoted by σ = K |L . The outward normal
vector to a face σ of K is denoted by nK ,σ . For K ∈ M and σ ∈ E , we denote by
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|K | the measure of K and by |σ | the (d − 1)-measure of the face σ . The size of the
mesh is denoted by h:

h = max
{
diam(K ), K ∈ M}

.

For 1 ≤ i ≤ d, we denote by E (i) ⊂ E and E (i)
ext ⊂ Eext the subset of the faces of E

and Eext respectively which are perpendicular to the i th unit vector of the canonical
basis of Rd .

The space discretization is staggered, using either the Marker-And Cell (MAC)
scheme [9, 10], or nonconforming low-order finite element approximations, namely
the Rannacher and Turek (RT) element [17] for quadrilateral or hexahedric meshes,
or the lowest degree Crouzeix-Raviart (CR) element [4] for simplicial meshes.

For all these space discretizations, the degrees of freedom for the pressure, the
density, the enthalpy, the mixture, fuel and neutral gas mass fractions and the flame
indicator are associated to the cells of the meshM and are denoted by:

{
pK , ρK , hK , yF,K , yN ,K , zK , G K , K ∈ M}

.

Let us then turn to the degrees of freedom for the velocity (i.e. the discrete velocity
unknowns).

– Rannacher-Turek orCrouzeix-Raviart discretizations – The degrees of freedom
for the velocity components are located at the center of the faces of the mesh, and
we choose the version of the element where they represent the average of the
velocity through a face. The set of degrees of freedom reads:

{uσ , σ ∈ E}, of components {uσ,i , σ ∈ E, 1 ≤ i ≤ d}.

– MAC discretization – The degrees of freedom for the i th component of the velocity
are defined at the centre of the faces of E (i), so the whole set of discrete velocity
unknowns reads: {

uσ,i , σ ∈ E (i), 1 ≤ i ≤ d
}
.

For the definition of the schemes, we need a dualmeshwhich is defined as follows.

– Rannacher-Turek or Crouzeix-Raviart discretizations – For the RT or CR dis-
cretizations, the dual mesh is the same for all the velocity components. When
K ∈ M is a simplex, a rectangle or a rectangular cuboid, for σ ∈ E(K ), we define
DK ,σ as the conewith basis σ andwith vertex themass center of K (see Fig. 1).We
thus obtain a partition of K in m sub-volumes, where m is the number of faces of
the mesh, each sub-volume having the samemeasure |DK ,σ | = |K |/m. We extend
this definition to general quadrangles and hexahedra, by supposing that we have
built a partition still of equal-volume sub-cells, and with the same connectivities;
note that this is of course always possible, but that such a volume DK ,σ may be
no longer a cone; indeed, if K is far from a parallelogram, it may not be possible
to build a cone having σ as basis, the opposite vertex lying in K and a volume
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equal to |K |/m (note that these dual cells do not need to be constructed in the
implementation of the scheme, only their volume is needed). The volume DK ,σ is
referred to as the half-diamond cell associated to K and σ .
For σ ∈ Eint, σ = K |L , we now define the diamond cell Dσ associated to σ by
Dσ = DK ,σ ∪ DL ,σ ; for an external face σ ∈ Eext ∩ E(K ), Dσ is just the same
volume as DK ,σ .

– MAC discretization – For the MAC scheme, the dual mesh depends on the com-
ponent of the velocity. For each component, the MAC dual mesh only differs from
the RT or CR dual mesh by the choice of the half-diamond cell, which, for K ∈ M
and σ ∈ E(K ), is now the rectangle or rectangular parallelepiped of basis σ and
of measure |DK ,σ | = |K |/2.

We denote by |Dσ | the measure of the dual cell Dσ , and by ε = Dσ |Dσ ′ the dual
face separating two diamond cells Dσ and Dσ ′ .

In order to be able to write a unique expression of the discrete equations for both
MAC and CR/RT schemes, we introduce the set of faces E (i)

S associated with the
degrees of freedom of each component of the velocity (S stands for “scheme”):

E (i)
S =

∣
∣
∣
∣
E (i) \ E (i)

ext for the MAC scheme,
E \ E (i)

ext for the CR or RT schemes.

Similarly, we unify the notation for the set of dual faces for both schemes by defining:

Ẽ (i)
S =

∣
∣
∣
∣
Ẽ (i) \ Ẽ (i)

ext for the MAC scheme,
Ẽ \ Ẽ (i)

ext for the CR or RT schemes,

where the symbol ˜ refers to the dual mesh; for instance, Ẽ (i) is thus the set of faces
of the dual mesh associated with the i th component of the velocity, and Ẽ (i)

ext stands
for the subset of these dual faces included in the boundary. Note that, for the MAC
scheme, the faces of Ẽ (i) are perpendicular to a unit vector of the canonical basis of
R

d , but not necessarily to the i th one.

5 The Scheme

In this section, we give the fully discrete form of the scheme. Even if it corresponds to
the reverse orderwith respect to the semi-discrete schemegiven in (12),we beginwith
the hydrodynamics (Sect. 5.1) and then turn to the mass balance step for chemical
species and the transport of the characteristic function for the burnt zone (Sect. 5.2).
This choice is due to the fact that the definition of the convection operators for scalar
variables necessitates to introduce the discretization of the mixture mass balance
equation first.
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Dσ

Dσ

σ = K|M
K

L

M

|σ|

σ
=

K
|Lε = D

σ |D
σ

Fig. 1 Primal and dual meshes for the Rannacher-Turek and Crouzeix-Raviart elements.

5.1 Euler Step

For 0 ≤ n < N , the step n + 1 of the algorithm for the resolution of the Euler equa-
tions reads:

Pressure gradient scaling step – Solve for (∇̃ p)n+1 :
∀σ ∈ E, (∇̃ p)n+1

σ =
( ρn

Dσ

ρn−1
Dσ

)1/2
(∇ p)n

σ . (18a)

Prediction step – Solve for ũn+1 :
For 1 ≤ i ≤ d, ∀σ ∈ E (i)

S ,

1

δt
(ρn

Dσ
ũn+1

σ,i − ρn−1
Dσ

un
σ,i ) + divσ (ρnũn+1

i un) + (∇̃ p)n+1
σ,i = 0. (18b)

Correction step – Solve for ρn+1, pn+1 and un+1 :
For 1 ≤ i ≤ d, ∀σ ∈ E (i)

S ,

1

δt
ρn

Dσ
(un+1

σ,i − ũn+1
σ,i ) + (∇ p)n+1

σ,i − (∇̃ p)n+1
σ,i = 0, (18c)

∀K ∈ M,
1

δt
(ρn+1

K − ρn
K ) + divK (ρu)n+1 = 0, (18d)

∀K ∈ M,
1

δt

[
ρn+1

K (hs)
n+1
K − ρn

K (hs)
n
K

] + divK (ρhsu)n+1

− 1

δt
(pn+1

K − pn
K ) − (

u · ∇ p
)n+1

K = (ω̇θ )
n+1
K + Sn+1

K , (18e)
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∀K ∈ M, pn+1
K = γ − 1

γ
(hs)

n+1
K ρn+1

K . (18f)

The initial approximations for ρ−1, h0
s and u

0 are given by the mean values of the
initial conditions over the primal and dual cells:

∀K ∈ M, ρ−1
K = 1

|K |
∫

K
ρ0(x) dx and (hs)

0
K = 1

|K |
∫

K
(hs)0(x) dx,

∀σ ∈ E (i)
S , 1 ≤ i ≤ d, u0

σ,i = 1

|Dσ |
∫

Dσ

(u0(x))i dx.

Then, ρ0 is computed by the mass balance equation (18d) and p0 is computed by the
equation of state (18f).

We now define each of the discrete operators featured in System (18).

Mass Balance Equation. Equation (18d) is a finite volume discretisation of the
mass balance (4a) over the primal mesh. For a discrete density field ρ and a discrete
velocity field u, the discrete divergence is defined by:

divK (ρu) = 1

|K |
∑

σ∈E(K )

FK ,σ , FK ,σ = |σ | ρσ uK ,σ ,

where uK ,σ is an approximation of the normal velocity to the face σ outward K .
The definition of this latter quantity depends on the discretization: in the MAC case,
uK ,σ = uσ,i e(i) · nK ,σ for a face σ of K perpendicular to e(i), with e(i) the i-th vector
of the orthonormal basis of Rd , and, in the CR and RT cases, uK ,σ = uσ · nK ,σ for
any face σ of K . The density at the face σ = K |L is approximated by the upwind
technique, so ρσ = ρK if uK ,σ ≥ 0 and ρσ = ρL otherwise. Since we assume that
the normal velocity vanishes on the boundary faces, the definition is complete.

Convection Operators Associated to the Primal Mesh
Wemay now give the general form of the discrete convection operator of any discrete
field z defined on the primal cell:

divK (ρzu) = 1

|K |
∑

σ∈E(K )

FK ,σ zσ , (19)

where zσ is an approximation of the unknown z at the face σ .

Momentum Balance Equation and Pressure Gradient Scaling
We now turn to the discrete momentum balance (18b). For the MAC discretization,
but also for the RT and CR discretizations, the time derivative and convection terms
are approximated in (18b) by a finite volume technique over the dual cells, so the
convection term reads:
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divσ (ρũiu) = divσ

(
ũi (ρu)

) = 1

|Dσ |
∑

ε∈Ẽ(Dσ )

Fσ,εũε,i ,

where Fσ,ε stands for a mass flux through the dual face ε, and ũε,i is a centered
approximation of the i th component of the velocity ũ on ε. The density in the dual
cell ρDσ

is obtained by a weighted average of the density in the neighbour cells:
|Dσ | ρDσ

= |DK ,σ | ρK + |DL ,σ | ρL for σ = K |L ∈ Eint, and ρDσ
= ρK for an exter-

nal face of a cell K . The mass fluxes (Fσ,ε)ε∈E(Dσ ) are evaluated as linear combina-
tions, with constant coefficients, of the primal mass fluxes at the neighbouring faces,
in such a way that the following discrete mass balance over the dual cells is implied
by the discrete mass balance (18d):

∀σ ∈ E and n ∈ N,
|Dσ |
δt

(ρn+1
Dσ

− ρn
Dσ

) +
∑

ε∈E(Dσ )

Fn+1
σ,ε = 0. (20)

This relation is critical to derive a discrete kinetic energy balance (see Sect. 6 below).
The computation of the dual mass fluxes is such that the flux through a dual face
lying on the boundary, which is then also a primal face, is the same as the primal
flux, that is zero. For the expression of these fluxes, we refer to [6, 11, 12]. Since the
mass balance is not yet solved at the velocity prediction stage, they have to be built
from the mass balance at the previous time step: hence the backward time shift for
the densities in the time-derivative term.

The term (∇ p)σ,i stands for the i-th component of the discrete pressure gradient at
the face σ . This gradient operator is built as the transpose of the discrete operator for
the divergence of the velocity, i.e. in such a way that the following duality relation
with respect to the L2 inner product holds:

∑

K∈M
|K |pKdivK (u) +

d∑

i=1

∑

σ∈E (i)
S

|Dσ |uσ,i (∇ p)σ,i = 0.

This leads to the following expression:

∀σ = K |L ∈ Eint, (∇ p)σ,i = |σ |
|Dσ | (pL − pK ) nK ,σ · e(i).

The scaling of the pressure gradient (18a) is necessary for the solution to the scheme
to satisfy a local discrete (finite volume) kinetic energy balance [8, Lemma 4.1].

Sensible enthalpy equation The convection term for the sensible enthalpy takes
the form (19), with an implicit and upwind (with respect to the mass flux FK ,σ )
approximation of the unknown at the face. In addition, this equation is discretized in
such a way that the present enthalpy formulation is strictly equivalent to the internal
energy formulation of the energy balance equation used in [8]. Consequently, the
term −(

u · ∇ p
)

K reads:
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−(
u · ∇ p

)
K = 1

|K |
∑

σ∈E(K )

|σ | uK ,σ (pK − pσ ),

where pσ is the upwind approximation of p at the face σ with respect to uK ,σ . The
reaction heat, (ω̇θ )K , is written in the following way:

(ω̇θ )K =−
Ns∑

i=1

Δh0
f,i (ω̇i )K = (

νF WFΔh0
f,F +νO WOΔh0

f,O −νP WPΔh0
f,P

)
ω̇K .

The definition of ω̇K is given in Sect. 5.2, and the definition of the corrective term
Sn+1

K is given in Sect. 6 (see Eq. (31) and Remark 3 below).

5.2 Chemistry Step

For 0 ≤ n < N , the step n + 1 for the solution of the transport of the characteristic
function of the burnt zone and the chemical species mass balance equations reads:

Computation of the burnt zone characteristic function – Solve for Gn+1 :
∀K ∈ M,

1

δt
(ρn

K Gn+1
K − ρn−1

K Gn
K ) + divK (ρnGkun)

+ (ρuu f |∇Gk |)K = 0. (21a)

Computation of the variable z – Solve for zn+1 :
∀K ∈ M,

1

δt
(ρn

K zn+1
K − ρn−1

K zn
K ) + divK (ρnzkun) = 0. (21b)

Neutral gas mass fraction computation – Solve for yn+1
N :

∀K ∈ M,
1

δt

[
ρn

K (yN )n+1
K − ρn−1

K (yN )n
K

] + divK (ρn yk
Nu

n) = 0. (21c)

Fuel mass fraction computation – Solve for yn+1
F :

∀K ∈ M,
1

δt

[
ρn

K (yF )n+1
K − ρn−1

K (yF )n
K

]

+ divK (ρn yk
Fu

n) = −1

ε
νF WF ω̇n+1

K . (21d)

Product mass fraction computation – Compute yn+1
P given by:

∀K ∈ M, (yP)n+1
K = 1 − (yF )n+1

K − (yO)n+1
K − (yN )n+1

K . (21e)

The initial value of the chemical variables is themean value of the initial condition
over the primal cells:



A Staggered Pressure Correction Numerical Scheme to Compute a Travelling ... 113

∀K ∈ M, G0
K = 1

|K |
∫

K
G0(x) dx, z0K = 1

|K |
∫

K
z0(x) dx,

(yi )
0
K = 1

|K |
∫

K
(yi )0(x) dx, i = N , F,

where the reduced variable z is the linear combination of yF and yO given by Eq.
(13).

In Eqs. (21a)–(21d), the discretization of the convection terms is performed by
a discrete operator of the form (19). Several choices are possible (and compared in
numerical tests) for the evaluation of the value at the face: either an implicit scheme
(i.e. k = n + 1) with a first-order upwind space discretization, either an explicit
scheme (i.e. k = n) with a MUSCL or an anti-diffusive space approximation. These
latter discretizations are described in Sect. 8 and Sect. 9 of the appendix, respectively.

According to the developments of Sect. 3, the chemical reaction term reads ω̇n+1
K =

η((yF )n+1
K , zn+1

K ) (Gn+1
K − 0.5)− with

η((yF )n+1
K , zn+1

K ) =

∣
∣
∣
∣
∣
∣
∣

1

νF WF
(yF )n+1

K if zn+1 ≤ 0,

1

νF WF
(yF )n+1

K − zn+1
K otherwise,

and the chemical species mass fractions satisfy the following system, which is equiv-
alent to (21b)–(21e):

1

δt

(
ρn

K (yi )
n+1
K − ρn−1

K (yi )
n
K

) + divK (ρn yk
i u

n) = 1

ε
ζi νi Wi ω̇n+1,

for i ∈ I and K ∈ M. (22)

At the continuous level, the last term of equation (21a) may be written

ρu u f |∇G| = a · ∇G = div(G a) − G div(a), with a = ρu u f
∇G

|∇G| ,

and we use the same decomposition at the discrete level:

|K | (ρu u f |∇G|)K =
∑

σ∈E(K )

|σ | (Gk
σ − Gk

K ) an
σ · nK ,σ ,

where Gk
σ may be given by one of the three above-mentioned schemes, namely an

implicit upwind (with respect to an · nK ,σ ) scheme, an explicitMUSCL or an explicit
anti-diffusive scheme. The flame velocity on σ , an

σ , is evaluated as

an
σ = ρu u f

(∇G)n
σ

|(∇G)n
σ | ,
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where the gradient of G on σ = K |L is computed as:

(∇G)σ = 1

|K ∪ L|
[ ∑

τ∈E(K )

|τ | Ĝτ nK ,τ +
∑

τ∈E(L)

|τ | Ĝτ nL ,τ

]
,

where Ĝτ is a second order approximation of G at the center of the face τ .

6 Scheme Conservativity

Let the discrete sensible internal energy be defined by pn
K = (γ − 1) ρn

K (es)
n
K for

K ∈ M and 0 ≤ n ≤ N . In view of the equation of state (18f), this definition implies
ρn

K (hs)
n
K = ρn

K (es)
n
K + pn

K , for K ∈ M and 0 ≤ n ≤ N . The following lemma states
that the discrete solutions satisfy a local internal energy balance.

Lemma 1. (Discrete internal energy balance)
A solution to (18)–(21) satisfies the following equality, for any K ∈ M and
0 ≤ n < N:

1

δt

[
(ρe)n+1

K − (ρe)n
K

] + d̃ivK (ρeu)n+1 + pn+1
K divK (u)n+1 = Sn+1

K , (23)

where
(ρe)n+1

K = ρn+1
K (es)

n+1
K + ρn

K

∑

i∈I
Δh0

f,i (yi )
n+1
K ,

d̃ivK (ρeu)n+1 = divK

[
(ρes)

n+1un+1 + ρn
[∑

i∈I
Δh0

f,i yk
i

]
un

]
.

Proof. We begin by deriving a local sensible internal energy balance, starting from
the sensible enthalpy balance (18e) and mimicking the previously given formal pas-
sage between these two equations at the continuous level (i.e. the passage from Eq.
(11) to Eq. (10)). To this purpose, let us write (18e) as T1 + T2 = T3 with

T1 = 1

δt

[
ρn+1

K (hs)
n+1
K − ρn

K (hs)
n
K

] − 1

δt
(pn+1

K − pn
K ),

T2 = divK (ρhsu)n+1 − (
u · ∇ p

)n+1
K ,

T3 = (ω̇θ )
n+1
K + Sn+1

K .

Using ρ�
K (hs)

�
K = ρ�

K (es)
�
K + p�

K for � = n and � = n + 1, we easily get

T1 = 1

δt

[
ρn+1

K (es)
n+1
K − ρn

K (es)
n
K

]
.
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The term T2 reads:

|K | T2 =
∑

σ∈E(K )

|σ | [
ρn+1

σ (hs)
n+1
σ − pn+1

σ + pn+1
K

]
un+1

K ,σ .

If un+1
K ,σ > 0, by definition, ρn+1

σ (hs)
n+1
σ = ρn+1

K (hs)
n+1
K and pn+1

σ = pn+1
K ; otherwise,

thanks to the assumptions on the boundary conditions, σ is an internal face and,
denoting by L the adjacent cell to K such that σ = K |L , ρn+1

σ (hs)
n+1
σ = ρn+1

L (hs)
n+1
L

and pn+1
σ = pn+1

L . In both cases, denoting by (es)
n+1
σ the upwind choice for (es)

n+1

at the face σ , we get

ρn+1
σ (hs)

n+1
σ − pn+1

σ = ρn+1
σ (es)

n+1
σ ,

so, finally
|K | T2 =

∑

σ∈E(K )

Fn+1
K ,σ (es)

n+1
σ + pn+1

K

∑

σ∈E(K )

|σ | un+1
K ,σ .

We thus get the following sensible internal energy balance:

|K |
δt

[
ρn+1

K (es)
n+1
K − ρn

K (es)
n
K

] +
∑

σ∈E(K )

Fn+1
K ,σ (es)

n+1
σ

+ pn+1
K

∑

σ∈E(K )

|σ | un+1
K ,σ = |K | [

(ω̇θ )
n+1
K + Sn+1

K

]
, (24)

or, using the discrete differential operator formalism,

1

δt

[
ρn+1

K (es)
n+1
K − ρn

K (es)
n
K

] + divK (ρesu)n+1

+ pn+1
K divK un+1 = (ω̇θ )

n+1
K + Sn+1

K . (25)

We now derive from this relation a discrete (sensible and chemical) internal energy
balance. Multiplying the mass fraction balance equations by the corresponding for-
mation enthalpy (Δh0

f,i )i∈I and summing over i ∈ I yields:

1

δ
t
∑

i∈I
Δh0

f,i

[
ρn

K (yi )
n+1
K − ρn+1

K (yi )
n
K

]+
∑

σ∈E(K )

Fn
K ,σ

∑

i∈I
Δh0

f,i (yi )
k
σ =

∑

i∈I
Δh0

f,i (ω̇i )
n+1
K = (ω̇θ )

n+1
K .

Adding this relation to (24) yields the balance equation (23).

Remark 1. (Positivity of the sensible internal energy) Equation (25) implies that the
sensible internal energy remains positive, provided that the right-hand side is non-
negative,which is true if ω̇θ ≥ 0, i.e. if the chemical reaction is exothermic. The proof
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of this property may be found in [8, Lemma 4.3], and relies on two arguments: first,
the convection operator may be recast as a discrete positivity-preserving transport
operator thanks to the mass balance, and, second, the pressure pn+1

K vanishes when
(es)

n+1
K vanishes, by the equation of state.

The following local discrete kinetic energy balance holds on the dual mesh (see
[8, Lemma 4.1] for a proof).

Lemma 2. (Discrete kinetic energy balance on the dual mesh)
A solution to (18)–(21) satisfies the following equality, for 1 ≤ i ≤ d, σ ∈ E (i)

S and
0 ≤ n < N:

|Dσ |
δt

[
(ek)

n+1
σ,i − (ek)

n
σ,i

] +
∑

ε∈Ẽ(Dσ )

Fn
σ,ε(ek)

n+1
ε,i + |Dσ |(∇ p)n+1

σ,i un+1
σ,i = −Rn+1

σ,i , (26)

where

(ek)
n+1
σ,i = 1

2
ρn

Dσ
(un+1

σ,i )2 + δt2

2ρn
Dσ

(
(∇ p)n+1

σ,i

)2
,

(ek)
n+1
ε,i = 1

2
ũn+1

σ,i ũn+1
σ ′,i , for ε = σ |σ ′

Rn+1
σ,i = |Dσ | ρn−1

Dσ

2δt
(ũn+1

σ,i − un
σ,i )

2.

Wenow derive a kinetic energy balance equation on the primal cells fromRelation
(26). For the sake of clarity, we make a separate exposition for the Rannacher-Turek
case and the MAC case. The case of simplicial discretizations, with the degrees of
freedom of the Crouzeix-Raviart element, is an easy extension of the Rannacher-
Turek case.

The Rannacher-Turek Case
Since the dual meshes are the same for all the velocity components in this case, we
may sum up Eq. (26) over i = 1, . . . d to obtain, for σ ∈ E and 0 ≤ n < N :

|Dσ |
δt

[
(ek)

n+1
σ − (ek)

n
σ

] +
∑

ε∈Ẽ(Dσ )

Fn
σ,ε(ek)

n+1
ε + |Dσ |(∇ p)n+1

σ · un+1
σ = −Rn+1

σ , (27)

with (ek)
�
σ =

d∑

i=1

(ek)
�
σ,i , for � = n or � = n + 1,

(ek)
n+1
ε =

d∑

i=1

(ek)
n+1
ε,i and Rn+1

σ =
d∑

i=1

Rn+1
σ,i .

For K ∈ M, let us define a kinetic energy associated to K and the flux Gn+1
K ,σ as

follows (see Fig. 2):
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K
ε
1

−Fσ,ε1

ε2
−

F
σ

,ε
2

ε
3

Fσ,ε3

ε4

F
σ
,ε

4

σ

GK,σ = 1
2 (−Fσ,ε1(ek)ε1 − Fσ,ε2(ek)ε2

+Fσ,ε3(ek)ε3 + Fσ,ε4(ek)ε4)

Fig. 2 From fluxes at dual faces to fluxes at primal faces, for the Rannacher-Turek discretization.

(ek)
�
K = 1

2 |K |
∑

σ∈E(K )

|Dσ | (ek)
�
σ , � = n or � = n + 1,

Gn+1
K ,σ = −1

2

∑

ε∈E(Dσ ),ε⊂K

Fn
σ,ε (ek)

n+1
ε + 1

2

∑

ε∈E(Dσ ),ε ⊂K

Fn
σ,ε (ek)

n+1
ε .

We easily check that the fluxes Gn+1
K ,σ are conservative, in the sense that, for σ = K |L ,

Gn+1
K ,σ = −Gn+1

L ,σ . Let us now divide Eq. (27) by 2 and sum over the faces of K . A
reordering of the summations, using the conservativity of the mass fluxes through
the dual edges and the expression of the discrete pressure gradient, yields:

|K |
δt

[
(ek)n+1

K − (ek)n
K

] +
∑

σ∈E(K )

Gn+1
K ,σ

+ 1

2

∑

σ=K |L
|σ | (pn+1

L − pn+1
K ) un+1

K ,σ
= −Rn+1

K ,

with Rn+1
K = 1

2

∑

σ∈E(K )

Rn+1
σ . (28)

The MAC Case
Let 1 ≤ i ≤ d, let K ∈ M, let us denote by σ and σ ′ the two faces of E (i)(K ), and
let us define:
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K

σ σ

ε 1

Fσ,ε1

ε 2

−Fσ,ε2

GK,σ,1 = 1
2 Fσ,ε1(ek)ε1,1 − Fσ,ε2(ek)ε2,1

Fig. 3 From fluxes at dual faces to fluxes at primal faces, for the MAC discretization, primal faces
parallel to the dual edges, first component of the velocity.

K

τ

σ σ

ε F
σ

,ε

ε F
σ

,ε

GK,τ,1 = 1
2 Fσ,ε(ek)ε,1 + Fσ ,ε (ek)ε ,1

Fig. 4 From fluxes at dual faces to fluxes at primal faces, for the MAC discretization, primal faces
orthogonal to the dual edges, first component of the velocity.

(ek)
�
K ,i = 1

2 |K |
[
|Dσ | (ek)

�
σ,i + |Dσ ′ | (ek)

�
σ ′,i

]
, for � = n or � = n + 1.

Case of Primal Faces Parallel to the Dual Faces. Let τ = σ or τ = σ ′, let ε1 and ε2
be the two faces of Dτ perpendicular to e(i), and let ε2 be the one included in K (see
Fig. 3). Then we define

Gn+1
K ,τ,i = 1

2

[
Fτ,ε1(ek)

n+1
ε1,i

− Fτ,ε2(ek)
n+1
ε2,i

]
.

Case of Primal Faces Orthogonal to the Dual Faces. For τ ∈ E(K ) \ {σ, σ ′}, let ε

and ε′ be such that τ ⊂ (ε̄ ∪ ε̄′) with ε a face of Dσ and ε′ a face of Dσ ′ (see Fig. 4).
Then we define

Gn+1
K ,τ,i = 1

2

[
Fσ,ε(ek)

n+1
ε,i + Fσ ′,ε′(ek)

n+1
ε′,i

]
.
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Summing Eq. (26) written for σ and for σ ′ and dividing the result by 2 yields:

|K |
δt

[
(ek)

n+1
K ,i − (ek)

n
K ,i

] +
∑

σ∈E(K )

Gn+1
K ,σ,i

+ 1

2

∑

σ∈E (i)(K )
σ=K |L

|σ | (pn+1
L − pn+1

K ) un+1
K ,σ = −1

2

(
Rn+1

σ,i + Rn+1
σ,i

)
. (29)

Now let (ek)
�
K =

d∑

i=1

(ek)
�
K ,i , for � = n or � = n + 1, and

Gn+1
K ,σ =

d∑

i=1

Gn+1
K ,σ,i , for σ ∈ E(K ).

Since only one equation is written for a given face σ of the mesh (for the velocity
component i with i such that the normal vector to σ is parallel to e(i)), we may define
in the MAC case Rn+1

σ = Rn+1
σ,i . Summing Eq. (29) over the space dimension, we

finally get

|K |
δt

[
(ek)

n+1
K − (ek)

n
K

] +
∑

σ∈E(K )

Gn+1
K ,σ + 1

2

∑

σ=K |L
|σ | (pn+1

L − pn+1
K ) un+1

K ,σ

= −Rn+1
K , with Rn+1

K = 1

2

∑

σ∈E(K )

Rn+1
σ , (30)

which is formally the same equation as Relation (28) (although with a different
definition of all the terms in the equation except the pressure gradient).

Remark 2. (On the definition of the cell kinetic energy) Note that, both in the
Rannacher-Turek and the MAC case, the cell kinetic energy is not a convex com-
bination of the face kinetic energies, since, on a non-uniform mesh, the equalities
|K | = 1

2

∑
σ∈E(K ) |Dσ | (Rannacher Turek case) and |K | = 1

2

∑
σ∈E (i)(K ) |Dσ | (MAC

case) do not hold in general. Consequently, the cell kinetic energy may oscillate
from cell to cell while the face kinetic energy does not. Nevertheless, the discrete
time derivative of the cell kinetic energy is consistent in the Lax-Wendroff sense,
because, despite these oscillations, the cell kinetic energy still converges weakly if
the velocity converges.

Equations (28) and (30) suggest a choice for the term Sn+1
K , the purpose of which is to

compensate the numerical dissipation terms appearing in the kinetic energy balance:

Sn+1
K = Rn+1

K , for K ∈ M and 0 ≤ n < N . (31)
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This expression yields a conservative scheme, in the sense that the discrete solutions
satisfy a discrete total energy balance without any remainder term (see Eq. (4c)
below); as a consequence, the scheme can be proven to be consistent in the Lax-
Wendroff sense. However, different definitions are possible (and this latitude may
be useful in explicit variants of the scheme, to ensure the positivity of Sn+1

K , see
Remark3 below).

We are now in position to state a total energy balance for the scheme.

Theorem 1. (Discrete total energy and stability of the scheme).
A solution to (18)–(21) satisfies the following discrete total energy balance, for any
K ∈ M and 0 ≤ n < N:

1

δt

[
(ρE)n+1

K − (ρE)n
K

] + d̃ivK ((ρE + p)u)n+1 = 0, (32)

where

(ρE)�K = (ek)
�
K + ρ�

K (es)
�
K + ρl−1

K

∑

i∈I
Δh0

f,i (yi )
�
K , for � = n and � = n + 1,

d̃ivK ((ρE + p) u)n+1 = divK

[
(ρes)

n+1un+1 + ρn
[ ∑

i∈I
Δh0

f,i yk
i

]
un

]

+ 1

|K |
∑

σ∈E(K )

Gn+1
K ,σ + 1

|K |
∑

σ=K |L
|σ | pn+1

K + pn+1
L

2
un+1

K ,σ .

Let us suppose that e0s , ρ0 and ρ−1 are positive. Then, a solution to (18)–(21) satisfies
ρn > 0, en

s > 0 and the following stability result:

En = E0,

where, for 0 ≤ n ≤ N,

En =
∑

K∈M
|K |(ρe)n

K + 1

2

d∑

i=1

∑

σ∈E (i)
S

|Dσ | ρn−1
Dσ

(un
σ,i )

2 + δt2

2

∑

σ∈Eint

|Dσ |
ρn−1

Dσ

|(∇ p)n
σ |2.

Proof. The discrete total energy balance equation (32) is obtained by summing the
internal energy balance (23) and the kinetic energy balance, i.e. Eq. (28) in the
Rannacher-Turek case and Eq. (30) for the MAC scheme, and remarking that the
numerical dissipation terms in the kinetic energy balance Rn+1

K exactly compensate
with the corrective terms Sn+1

K in the internal energy balance. Then the stability result
is obtained by summation over the time steps.

Remark 3. (Consistency of the scheme) The consistency in the Lax-Wendroff sense
follows from the conservativity of the scheme (for all balance equations) so, in
particular, from the fact that the discrete solutions satisfy the discrete total energy
balance (32), thanks to standard (but technical) arguments.
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Note however that the consistency of the scheme does not require a strict conser-
vativity, and in particular, variants for the choice (31) of the compensation term in the
sensible enthalpy balance are possible; indeed, what is really needed is only that the
difference between the dissipation in the kinetic energy balance and its compensation
tend to zero in a distributional sense. In practice, this allows a different redistribution
of the face residuals to the neighbour primal cells, and this can help to preserve the
non-negativity of the compensation term for explicit versions of the scheme.

7 Numerical Tests

At the continuous level, the boundedness of the chemical mass fractions formally
implies that, when ε → 0, the relaxedmodel converges to the asymptotic one. Indeed,
integrating any of the reactive species mass balance equations with respect to time
and space, we observe that ||ω̇||L1(Ω×(0,T )) tends to zero as ε, and thus two separate
zones appear: a zone characterized by G < 0.5 where the reaction is complete, and
a zone corresponding to G ≥ 0.5, where no reaction has occured.

A closed form of the solution of the Riemann problem for the asymptotic model
is available [1]. In order to perform numerical tests, a Riemann problem with initial
conditions such that the analytic solution has the profile presented in Fig. 5 is chosen.

Moreover, the selected configuration imposes zero amplitude for the contact dis-
continuity and the left non linear wave, thus the solution consists of three different
constant states: W∗

R,W∗∗ and W R . The right state corresponds to a stoichiometric
mixture of hydrogen and air (so the molar fractions of Hydrogen, Oxygen and Nitro-
gen are 2/7, 1/7 and 4/7 respectively) at rest, at the pressure p = 9.9 104 Pa and
the temperature T = 283◦ K. The velocity is supposed to be zero in the left state,
which is sufficient to determine the solution. Physically, speaking, supposing that
the initial discontinuity lies at x = 0, this situation corresponds to the left part of
a (symmetrical) constant velocity plane deflagration starting at x = 0. The flame
velocity is u f = 63 m/s and the formation enthalpies are zero except for the product

x

W

Precursor shock

Reactive shock

CD

NL wave WR

W

WL

WR

WL

Fig. 5 The analytic solution of the numerical test configuration.
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Fig. 6 Upwind scheme – From top left to bottom right, fuel mass fraction, G, velocity, pressure,
temperature and density at t = 0.005, as a function of the space variable.

(i.e. steam), withΔh0
f,O = −13.255 106 J (KgK)−1. The quantity ρu is the analytical

density in the intermediate state (so the total velocity of the flame brush is equal to
the sum of u f and the material velocity on the right side of the reactive shock, see
[1]). The computation is initialized by the analytical solution at t = 0.002 and the
final time is t = 0.005. The computational domain is the interval (0, 4.5).

The numerical tests performed aim at checking the convergence of the scheme to
such a solution, which in fact may result from two different properties: the conver-
gence of the relaxed model to the asymptotic model when ε tends to zero, and the
convergence of the scheme towards a numerical solution when the time and space
steps tend to zero. To this purpose, we choose ε proportional to the space step and
make it tend to zero, with a constant CFL number. We test the scheme behaviour
with three different discretizations of the convection operator in the chemical mass
species balances: the standard upwind scheme, aMUSCL-like discretizationwhich is
an extension to variable density flows of the scheme proposed in [15] and is described
in Appendix 8, and a first-order anti-diffusive scheme which is an adaptation to our
setting of the scheme proposed in [5]; we detail it in Appendix 9 for the sake of
completeness.

Results obtained at t = 0.005 with the upwind scheme, the MUSCL-like scheme
and the anti-diffusive scheme, for increasingly refined meshes, are shown on Fig.
6, Fig. 7 and Fig. 8 respectively, together with the analytical solution. The expected
convergence is indeed observed but, with the upwind discretization, the rate of con-
vergence is poor. This seems to be due to the interaction between the numerical
diffusion of the upwind scheme, which artificially introduces unburnt reactive chem-
ical species into the burnt zone, and the stiffness of the reaction term. As expected
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Fig. 7 MUSCL scheme – From top left to bottom right, fuel mass fraction, G, velocity, pressure,
temperature and density at t = 0.005, as a function of the space variable.

Table 1 L1 norm of the error between the discrete and continuous solutions for the various schemes
- Black: upwind scheme, blue: MUSCL scheme, orange: anti-diffusive scheme; h0 = 4.5/250 is
the size of the least refined mesh.

h ||p − pex||L1 × 10−4 ||u−uex||L1 × 10−2 ||ρ − ρex||L1 × 10
h0 16.5 7.26 4.59 2.17 1.56 1.07 7.69 3.71 2.74
h0
2 12.5 3.88 2.43 1.64 0.787 0.579 6.16 2.23 1.65

h0
4 9.66 2.05 1.38 1.23 0.471 0.371 4.73 1.26 0.913

h0
8 7.58 1.17 0.708 0.958 0.263 0.175 3.63 0.691 0.476

h0
20 5.78 0.673 0.375 0.728 0.160 0.103 2.77 0.382 0.267
h0
40 4.31 0.414 0.194 0.543 0.0786 0.0458 2.03 0.201 0.134

in such a case, the results are significantly improved by the use of a less diffusive
scheme for the chemical species balance equations. Indeed, passing from the upwind
to the MUSCL-like and to the anti-diffusive discretization improves the accuracy of
the scheme, as may be observed in Fig. 9, where the results obtained by the three
discretizations for a regular mesh composed of 500 cells are plotted together with
the continuous solution.

This observation is comforted by the measure, in L1-norm, of the difference
between the discrete and continuous solutions, see Table 1. For every mesh and
variable, the anti-diffusive scheme is the most accurate and the upwind one the least.
The calculated order of convergence is close to 0.5 for the upwind scheme, and to 1
for the MUSCL-like and anti-diffusive schemes.
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Fig. 8 Anti-diffusive scheme – From top left to bottom right, fuel mass fraction, G, velocity,
pressure, temperature and density at t = 0.005, as a function of the space variable.
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Fig. 9 Comparison of the solutions obtained with the upwind,MUSCL and anti-diffusive scheme –
From top to bottom, fuel mass fraction, G, velocity, pressure, temperature and density at t = 0.005,
as a function of the space variable. Results obtained with a regular mesh composed of n = 500
cells.
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8 Appendix A: The MUSCL Scheme

The MUSCL discretization of the convection operators of the chemical species bal-
ance and G-equation closely follows the technique proposed in [15]. To present this
discretization, we consider the following system of equations:

∂tρ + div(ρu) = 0,
∂t (ρu) + div(ρuy) = 0.

We suppose for short that this system is complemented by impermeability boundary
conditions, i.e. that the normal velocity, both at the continuous and the discrete level,
vanishes on the boundary of the computational domain.

The discretization of the above system reads:

∀K ∈ M,
ρn+1

K − ρn
K

δt
+ 1

|K |
∑

σ∈E(K )

Fn+1
K ,σ = 0,

ρn+1
K yn+1

K − ρn
K yn

K

δt
+ 1

|K |
∑

σ∈E(K )

Fn+1
K ,σ yn

σ = 0.

For any σ ∈ E , the procedure consists in three steps:
– calculate a tentative value for yσ as a linear interpolate of nearby values,
– calculate an interval for yσ which guarantees the stability of the scheme,
– project the tentative value yσ on this stability interval.

For the tentative value of yσ , let us choose some real coefficients (ασ
K )K∈M such

that
xσ =

∑

K∈M
ασ

K xK ,
∑

K∈M
ασ

K = 1.

The coefficients used in this interpolation are chosen in such a way that as few as
possible cells, to be picked up in the closest cells to σ , take part. For example, for
σ = K |L and if xK , xσ , xL are aligned, only two non-zero coefficients exist in the
family (ασ

K )K∈M, namely ασ
K and ασ

L . Then, these coefficients are used to calculate
the tentative value of yσ by

yσ =
∑

K∈M
ασ

K yK .

The construction of the stability interval must be such that the following property
holds:

∀K ∈ M, ∀σ ∈ E(K ) ∩ Eint, ∃βσ
K ∈ [0, 1] and Mσ

K ∈ M such that

yn
σ − yn

K =
∣
∣
∣
∣
∣

βσ
K (yn

K − yn
Mσ

K
), if Fn+1

K ,σ ≥ 0,
βσ

K (yn
Mσ

K
− yn

K ), otherwise.
(33)



126 D. Grapsas et al.

Indeed, under this latter hypothesis and a CFL condition, the scheme preserves the
initial bounds of y.

Remark 4. Note that, in Assumption (33), only internal faces are considered, since
the fluxes through external faces are supposed to vanish. However, the present discus-
sion may easily be generalized to cope with convection fluxes entering the domain.

Definition 1. The so-called CFL number reads for any 0 ≤ n ≤ N :

CFLn+1 = max
K∈M

{ δt

ρn+1
K |K |

∑

σ∈E(K )

∣
∣Fn+1

K ,σ

∣
∣
}
.

Lemma 3. Let us suppose that CFLn+1 ≤ 1. For K ∈ M, let us note by V(K ) the
union of the set of cells Mσ

K , σ ∈ E(K ) ∩ Eint such that (33) holds. Then ∀K ∈ M,
the value of yn+1

K is a convex combination of {yn
K , (yn

M)M∈V(K )}.
Proof. The discrete mass balance equation yields:

ρn
K = ρn+1

K + δt

|K |
∑

σ∈E(K )

Fn+1
K ,σ .

Replacing this expression of ρn
K in the discrete balance equation of y and using the

relations provided by (33), we obtain:

ρn+1
K yn+1

K = ρn
K yn

K − δt

|K |
∑

σ∈E(K )

Fn+1
K ,σ

yn
σ

= ρn+1
K yn

K − δt

|K |
∑

σ∈E(K )

Fn+1
K ,σ

(yn
σ − yn

K )

= ρn+1
K yn

K − δt

|K |
∑

σ∈E(K )

(
Fn+1

K ,σ

)+
(yn

σ − yn
K ) + δt

|K |
∑

σ∈E(K )

(
Fn+1

K ,σ

)−
(yn

σ − yn
K )

= ρn+1
K yn

K − δt

|K |
∑

σ∈E(K )

(
Fn+1

K ,σ

)+
βσ

K (yn
K − yn

Mσ
K

) + δt

|K |
∑

σ∈E(K )

(
Fn+1

K ,σ

)−
βσ

K (yn
Mσ

K
− yn

K ).

This relation yields

yn+1
K = yn

K

(
1 − δt

ρn+1
K |K |

∑

σ∈E(K )

βσ
K

∣
∣Fn+1

K ,σ

∣
∣
)

+ δt

|K |
∑

σ∈E(K )

yn
Mσ

K
βσ

K

∣
∣Fn+1

K ,σ

∣
∣,

which concludes the proof under the hypothesis that CFL ≤ 1.

We now need to reformulate (33) in order to construct the stability interval. Let
σ ∈ E , let us denote by V − and V + the upstream and downstream cell separated
by σ , and by Vσ (V −) and Vσ (V +) two sets of neighbouring cells of V − and V +
respectively, and let us suppose:
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Ki−1 Ki

yn
i−1

yn
i

(H2)
Ki Ki+1

yn
i

yn
i+1

(H1)

Fig. 10 Conditions (H1) and (H2) in 1D.

(H1) − ∃M ∈ Vσ (V +) s.t. un
σ ∈ |[un

M , un
M + ζ+

2
(un

V + − un
M)]|,

(H2) − ∃M ∈ Vσ (V −) s.t. un
σ ∈ |[un

V − , un
V − + ζ−

2
(un

V − − un
M)]|,

where for a, b ∈ R, we denote by |[a, b]| the interval {αa + (1 − α)b, α ∈ [0, 1]},
and ζ+ and ζ− are two numerical parameters lying in the interval [0, 2].

Conditions (H1)-(H2) and (33) are linked in the following way: let K ∈ M and
σ ∈ E(K ). If Fn

K ,σ ≤ 0, i.e. K is the downstream cell for σ , denoted above by V +,
since ζ+ ∈ [0, 2], condition (H1) yields that there exists M ∈ M such that un

σ ∈
|[un

K , un
M ]|, which is (33). Otherwise, i.e. if Fn

K ,σ ≥ 0 and K is the upstream cell for
σ , denoted above by V −, condition (H2) yields that there exists M ∈ M such that
yn
σ ∈ |[yn

K , 2yn
K − yn

M ]|, so yn
σ − yn

K ∈ |[0, yn
K − yn

M ]|, which is once again (33).

Remark 5. For σ ∈ E , if V − ∈ Vσ (V +), the upstream choice yn
σ = yn

V − always sat-
isfies the conditions (H1)-(H2), and is the only one to satisfy them if we choose
ζ− = ζ+ = 0.

Remark 6. (1D case) Let us take the example of an interface σ separating Ki and
Ki+1 in a 1D case (see Fig. 10 for the notations), with a uniform meshing and a
positive advection velocity, so that V − = Ki and V + = Ki+1. In 1D, a natural choice
is Vσ (Ki ) = {Ki−1} and Vσ (Ki+1) = {Ki }. On Fig. 10, we sketch: on the left, the
admissible interval given by (H1) with ζ+ = 1 (green) and ζ+ = 2 (orange); on the
right, the admissible interval given by (H2)with ζ− = 1 (green) and ζ− = 2 (orange).
The parameters ζ− and ζ+ may be seen as limiting the admissible slope between
(xi , yn

i ) and (xσ , yn
σ ) (with xi the abscissa of the mass centre of Ki and xσ the

abscissa of σ ), with respect to a left and right slope, respectively. For ζ− = ζ+ = 1,
one recognizes the usual minmod limiter (e.g. [7, Chapter III]). Note that, since, on
the example depicted on Fig. 10, the discrete function yn has an extremum in Ki ,
the combination of the conditions (H1) and (H2) imposes that, as usual, the only
admissible value for yn

σ is the upwind one.
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V −
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F

(a)

V −
V +

F

(b)

Fig. 11 Notations for the definition of the limitation process. In orange, control volumes of the set
Vσ (V −) for σ = V −|V +, with a constant advection field F: upwind cells (a) or opposite cells (b).

Finally, we need to specify the choice of the sets Vσ (V −) and Vσ (V +). Here, we
just setVσ (V +) = {V −}; such a choice guarantees that at least the upstream choice is
in the intersection of the intervals defined by (H1) and (H2), as explained in Remark
6. The set Vσ (V −) may be defined in two different ways (cf. Fig. 11):

– as the “upstream cells” to V −, i.e.

Vσ (V −) = {L ∈ M, L shares a face σ with V − and FV −,σ ≤ 0},

– when this makes sense (i.e. with a mesh obtained by Q1 mappings from the
(0, 1)d reference element), the opposite cells to σ in V − are chosen. Note that for
a structured mesh, this choice allows to recover the usual minmod limiter.

9 Appendix B: An Anti-diffusive Scheme

The scheme proposed in [5] by of B.Després and F. Lagoutière for the constant veloc-
ity advection problem presents some interesting properties in one space dimension
(and may be extended to structured multi-dimensional meshes using alternate direc-
tions techniques); in particular, it notably limits the numerical diffusion. We extend
here this scheme to work with unstructured meshes for which the “opposite cell to
a face” (in the sense introduced in the previous section) may be defined and with
a variable density. With the same notations as in the previous section, for σ ∈ Eint,
σ = K |L with Fn+1

K ,σ ≥ 0,

– the tentative value for yσ is chosen as the downwind value, i.e. yn
σ = yn

L ,
– Then we project yn

σ on the interval

Iσ = [
yn

K , yn
K + 1 − ν

ν
(yK − yM)

]
, ν = |Fn+1

K ,σ | δt

ρn+1
K |K | ,
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where M ∈ M is the control volume which stands at the opposite side of K with
respect to L .

The original scheme presented in [5] is recovered by this formulation for the one-
dimensional constant velocity convection equation. Note however, that if the space
dimension is greater than one, the above limitation may be not sufficient to reserve
the maximum principle.
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New Invariant Domain Preserving Finite
Volume Schemes for Compressible Flows

Mária Lukáčová-Medvid’ová, Hana Mizerová, and Bangwei She

Abstract Wepresent new invariant domain preserving finite volume schemes for the
compressible Euler and Navier–Stokes–Fourier systems. The schemes are entropy
stable and preserve positivity of density and internal energy. More importantly, their
convergence towards a strong solution of the limit system has been proved rigorously
in [9, 11].Wewill demonstrate their accuracy and robustness on a series of numerical
experiments.

Keywords Compressible Euler and Navier–Stokes–Fourier systems · Finite
volume methods · Invariant domain preserving properties · Entropy stability ·
Convergence

1 Introduction

Numerical simulations of compressible flows find their applications in many
everyday problems, ranging from engineering, oceanography, meteorology to
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hemodynamics. Over the years a large variety of powerful numerical schemes has
been developed. Let us point out a few well-established and practical schemes, e.g.,
[1, 5, 6, 12, 16, 18, 19, 23, 25]. Despite of their practical success the rigorous
numerical analysis, in particular, in multiple space dimensions, is still open in gen-
eral.

In [13, 14] the concept of invariant domain preserving schemes for hyperbolic
conservation laws has been introduced. These methods satisfy some important struc-
ture preserving properties, such as positivity of some quantities, entropy production
or the minimum entropy principle. In our recent works [9–11] we have proposed
new finite volume schemes for the compressible Euler equations of gas dynamics,
compressibleNavier–Stokes andNavier–Stokes–Fourier equations, respectively.Our
new finite volume methods belong to the class of the invariant domain preserving
schemes. Their properties further allowed us to study the convergence of the schemes
rigorously. More precisely, we proved a nonlinear variant of the Lax equivalence the-
orem: a consistent numerical scheme is convergent if and only if it is stable.

Of course, the compressible Euler and Navier–Stokes–Fourier equations are truly
nonlinear, thuswe have to overcomedifficulties arising due to nonlinear terms. To this
goal, we apply a concept of dissipative measure–valued solutions developed in [2, 3,
8] for the above mentioned systems, respectively. Indeed, the Young measures which
are the space-time parametrized probability measures replace the linearity setting.
They allow us to pass to the limit in nonlinear terms and show the convergence of
our finite volume schemes. A limit is in general only a measure, more precisely a
dissipative measure–valued solution. We refer a reader to [2, 3, 8] and [9–11] for
more details on its definition.

A crucial ingredient of our convergence analysis is the fact that we have the weak-
strong uniqueness principle for all systems mentioned above. More precisely, if the
strong solution exists our dissipative measure–valued solution coincides with the
former on its lifespan. Consequently, we get the strong convergence of our numerical
solutions to the strong solution in appropriate Lebesgue spaces. The main aim of
this paper is to illustrate experimentally the behavior of our new invariant domain
preserving finite volume schemes for compressible fluids, namely for the Euler and
the Navier–Stokes–Fourier systems, cf. [9, 11].

The gas dynamics of inviscid compressible flows is governed by the Euler equa-
tions

∂t� + divxm = 0,

∂tm + divx (m ⊗ u) + ∇x p = 0,

∂t E + divx ((E + p)u) = 0, (1)

where �, p, u,m = �u, and E represent the density, pressure, velocity, momentum
and the total energy of a fluid, respectively. Taking into account the viscous and heat
conducting effects yields the Navier–Stokes–Fourier equations

∂t� + divxm = 0,
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∂tm + divx (m ⊗ u) + ∇x p = divxS(D(u)),

∂t (�e) + divx (�eu) − divx (κ∇xϑ) = S(D(u)) : ∇xu − pdivxu, (2)

where the viscous stress tensor S reads

S(D(u)) = 2μD(u) + λdivxuI, D(u) = ∇xu + ∇xuT

2
.

The systems Eq.1 and Eq.2 are closed by the standard pressure law for a perfect
gas p = p(�, ϑ) = �ϑ, ϑ is the temperature. Denoting further e the specific internal
energy, s the physical entropy, γ > 1 the adiabatic coefficient and cv = 1

γ−1 the
specific heat at constant volume we have

e(�, ϑ) = cvϑ, s(�, ϑ) = log

(
ϑcv

�

)
= 1

γ − 1
log

(
p

�γ

)
.

The total energy E = 1
2
m2

�
+ �e consists of the kinetic energy and the internal energy.

Both systems Eq.1 and Eq.2 are solved in the time-space cylinder (0, T ) × �,

� ⊂ Rd , d = 2, 3. We assume that these systems are accompanied with appropriate
boundary conditions: either the periodic boundary conditions when the domain � is
identified with a flat torus, or the no-flux boundary conditions,

u|∂� · n = 0, ∇xϑ · n = 0

in the case of the Euler equations, see Eq.1, or the no–slip boundary conditions,

u|∂� = 0

for the Navier–Stokes–Fourier system, see Eq.2. To close the formulation of the
problem we impose the initial conditions

U(0) = U0, with �0 > 0 and E0 − 1

2

|m0|2
�0

> 0, (3)

where U = (�,m, E) or U = (�,m, ϑ) for the Euler and the Navier–Stokes–Fourier
equations, respectively.

2 Finite Volume Schemes

We start by introducing the mesh, space discretization and suitable discrete spaces.
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2.1 Mesh and Space Discretization

Primary Grid. We suppose the physical space to be a polyhedral domain � ⊂ Rd ,
d = 2, 3, that is decomposed into compact elements,

� =
⋃

K∈Th

K .

The elements K are sharing either a common face, edge, or vortex.

They can be chosen to be triangular, rectangular, or any combination of them. The
primary mesh Th is assumed to satisfy the standard regularity assumptions, cf. [4,
7]. The set of all faces is denoted by 	, while the set of faces on the boundary is
denoted by 	ext , and the set of interior faces by 	int = 	\	ext . Note that there is
no boundary if the flow is periodic:

	ext = ∅ and 	int = 	.

Each face is associated with an outer normal vector n. Let |K |, |σ | be the Lebesgue
measure of an element K and a face σ , respectively. We shall suppose

|K | ≈ hd , |σ | ≈ hd−1 for any K ∈ Th, σ ∈ 	.

The parameter h ∈ (0, 1) is the maximum element size, i.e., the size of the mesh Th .

For the discretization of the Navier–Stokes–Fourier system, see Eq. 2, we addi-
tionally require the primary grid Th to satisfy the following property: there is a family
of control points Ph = {xK | xK ∈ K , K ∈ Th}, such that the segment [xK , xL ] for
any adjacent elements K and L is perpendicular to their common face σ = K ∩ L .
We denote by dσ = (xK , xL) the Euclidean distance between the points xK and xL

in Rd . This requirement is naturally satisfied by any rectangular mesh with Ph being
the set of gravity centers of all elements. For a triangular mesh, we can use the well-
centered mesh [24], where Ph is the set of circumcenters of all elements.

Dual Grid. For the theoretical analysis of our finite volume scheme for the Navier–
Stokes–Fourier system it is convenient to introduce a dual mesh Dh . A dual cell Dσ

associated to a face σ = K ∩ L is defined as Dσ = Dσ,K ∪ Dσ,L , where Dσ,K (Dσ,L )
is a triangle (tetrahedron) built by xK and the common vertices of K and L , see Fig. 1
for a two-dimensional example.

Discrete Function Spaces. We denote by Qh and Wh the set of piecewise constant
functions on the primary grid Th and the dual grid Dh , respectively. Moreover, vh ∈
Qh (resp. vh ∈ Wh) means that each component of vh belongs to Qh (resp. Wh).
Further, for a piecewise continuous function v, whenever x ∈ σ ∈ 	int , we define
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Fig. 1 Dual grid

vout(x) = lim
δ→0+ v(x + δn), vin(x) = lim

δ→0+ v(x − δn),

v(x) = vin(x) + vout(x)

2
, �v� = vout(x) − vin(x).

Upwind Flux. Given a velocity uh ∈ Qh and a function rh ∈ Qh,we define for each
face σ ∈ 	int the upwind flux

U p[rh, uh] = ruph uh · n = r inh [uh · n]+ + routh [uh · n]−

= rh uh · n − 1

2
|uh · n|�rh�,

where

[ f ]± = f ± | f |
2

and rup =
{

r in if uh · n ≥ 0,

rout if uh · n < 0.

Furthermore, we define the numerical flux function

Fh(rh, uh) = U p[rh, uh] − hβ�rh�, 0 < β < 1.

Discrete Operators. For any rh, vh ∈ Qh and qh ∈ Wh we define the following
discrete gradient and Laplace operators
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∇D : Qh → Wh

∇Drh =
∑
σ∈	

(∇Drh)σ1Dσ
, (∇Drh)σ = 1

dσ

�rh�n,

∇h : Qh → Qh

∇hrh =
∑
K∈Th

(∇hrh)K1K , (∇hrh)K =
∑

σ∈∂K

|σ |
|K |rhn,

h : Qh → Qh

hrh =
∑
K∈Th

(hrh)K1K , (hrh)K =
∑

σ∈∂K

|σ |
|K |

�rh�

dσ

,

and discrete divergence operators

divT : Wh → Qh

divT qh =
∑
K∈Th

(divT qh)K1K , (divT qh)K =
∑

σ∈∂K

|σ |
|K |qh · n,

divh : Qh → Qh

divhvh =
∑
K∈Th

(divhvh)K1K , (divhvh)K =
∑

σ∈∂K

|σ |
|K |vh · n,

divuph : Qh → Qh

divuph (rhvh) =
∑
K∈Th

1Kdiv
up
h (rhvh)K , divuph (rhvh)K =

∑
σ∈∂K

|σ |
|K | Fh(rh, vh).

Further, the discrete symmetric gradient operator is given by

Dh(vh) = 1

2
(∇hvh + ∇hv

T
h ), vh ∈ Qh .

Note that the operators ∇D and h can be extended to vector-valued functions com-
ponentwisely. Let vh = (v1,h, . . . , vd,h) ∈ Qh . Then we have

∇Dvh = (∇Dv1,h, . . . ,∇Dvd,h
)
, hvh = (

hv1,h, . . . ,hvd,h
)
,

and

(∇Dvh)σ = 1

dσ

�vh� ⊗ n, (hvh)K =
∑

σ∈∂K

|σ |
|K |

�vh�

dσ

.
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2.2 Numerical Scheme for the Euler System

We recall a semi-discrete finite volume scheme for the Euler system Eq.1,

Dt�h + divuph (�huh) = 0,

Dtmh + divuph Fh(mh, uh) + ∇h ph = hα−1huh,

Dt Eh + divuph Fh[Eh, uh] + uh · ∇h ph + phdivhuh = hα−1

2
h(u2

h),

where uh = mh
�h

, ph = (γ − 1)
(

Eh − 1
2

|mh |2
�h

)
and Dt stands for the time derivative.

The scheme was firstly introduced and studied in its weak form in our recent work
[9]. Hereafter we will refer to it as the FLM method.

Definition 1 (FLM method) Given the initial values (�0,h,m0,h, E0,h) ∈ Qh ×
Qh × Qh, we seek a piecewise constant approximation (�h,mh, Eh) ∈ Qh × Qh ×
Qh which solves at any time t ∈ (0, T ] the following equations:

∫
�

Dt�hφh dx −
∑

σ∈	int

∫
σ

Fh(�h, uh)�φh�dSx = 0, ∀ φh ∈ Qh, (5a)

∫
�

Dtmh · φh dx −
∑

σ∈	int

∫
σ

Fh(mh, uh) · �φh�dSx −
∑

σ∈	int

∫
σ

phn · �φh�dSx

= −hα−1
∑

σ∈	int

∫
σ

�uh� · �φh�dSx , ∀ φh ∈ Qh, (5b)

∫
�

Dt Ehφh dx −
∑

σ∈	int

∫
σ

Fh(Eh, uh)�φh�dSx −
∑

σ∈	int

∫
σ

ph�φhuh� · ndSx

+
∑

σ∈	int

∫
σ

phφh�uh� · ndSx = −hα−1

2

∑
σ∈	int

∫
σ

�u2
h��φh�dSx , ∀ φh ∈ Qh . (5c)

The initial values can be obtained by a standard projection onto the space Qh,

�h[r ]|K = 1

|K |
∫

K
r dx for any K ∈ Th,

i.e. (�0,h,m0,h, E0,h) = (�h[�0],�h[m0],�h[E0]).
Remark 1 The FLM method in Eq. 5 can be also rewritten in the following per-cell
flux formulation
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Dt�K +
∑

σ∈∂K

|σ |
|K | Fh(�h, uh) = 0,

DtmK +
∑

σ∈∂K

|σ |
|K | (Fh(mh, uh) + phn) = hα−1

∑
σ∈∂K

|σ |
|K |�uh�,

Dt EK +
∑

σ∈∂K

|σ |
|K |

(
Fh(Eh, uh) + (phuh + phuh) · n

)
= hα−1

2

∑
σ∈∂K

|σ |
|K |�u

2
h�,

for any K ∈ Th .

Remark 2 Our finite volume method is based on an upwinding, which naturally
yields a numerical diffusion. In addition we include a numerical diffusion of the
form hβ+1hrh , where rh = �h,mh, Eh . Altogether this diffusion is of the form
( 12 |uh · n| + hβ)hhrh . Note that we have an additional numerical diffusion term
hαhuh and 1

2hαhu2
h in the momentum and energy equation, respectively. In the

case the sound speed is larger than hβ , the numerical diffusion w.r.t. hrh is smaller
than that of standard numerical fluxes based on the Riemann problem solution.

It is truth, that we do not take a special care for the approximation of the con-
tacts. On the other hand, a better resolution can be achieved by introducing a linear
reconstruction and limiting to obtained second-order extension.

2.2.1 Properties of the FLM Method

For the rigorous convergence analysis of scheme in Eq. 5 a few important properties
are inevitable.

• Existence of numerical solution
The discrete problem Eq. 5 admits a solution (�h(t),mh(t), Eh(t)) ∈ Qh × Qh ×
Qh, for any t ≥ 0. As shown in [9], the result follows from the standard theory of
ODEs and sufficiently strong a priori bounds.

• Conservation of discrete mass and energy
In a straightforward way it can be shown that

∫
�

�h(t, ·) dx =
∫

�

�0,h dx = M̃0 > 0,
∫

�

Eh(t, ·) dx =
∫

�

E0,h dx = Ẽ0 > 0, t ≥ 0.

• Positivity of the discrete density, pressure and temperature
For any fixed h, the approximate density, pressure and consequently also temper-
ature remain strictly positive on any finite time interval. We refer the reader to [9,
Sections4.3, 4.4] for more details.
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• Discrete entropy inequality
The discrete (renormalized) entropy inequality in the sense of Tadmor is satisfied,
cf. [20, 21]. More precisely, it holds that

d

dt

∫
Th

�hχ(sh)�h dx ≥
∑

σ∈	int

∫
σ

U p[�hχ(sh), uh][[�h]]dSx+

+
∑

σ∈	int

∫
σ

μh

(
∇�(�hχ(sh))[[�h]] + ∇p(�hχ(sh))[[ph]]

)
[[�h]]dSx ,

where χ is a non-decreasing, concave, twice continuously differentiable function
on R that is bounded from above. For the derivation and proof see [9, Section3.2].

• Minimum entropy principle
The discrete physical entropy sh = log

(
ϑ

cv

h /�h
)
attains its minimum at the initial

time, cf. [13, 22], i.e.,

sh(t) ≥ s0, t ≥ 0, where − ∞ < s0 < min sh(0).

The entropy is either constant or produced over time, thus the second law of
thermodynamics holds. See [9, Section4.2] for more details.

Clearly, the FLMmethod belongs to the class of invariant domain preserving schemes
introduced in [13, 14]. Based on the above properties the following convergence
result for the FLM method was proved in [9].

Theorem 1 (Convergence of the FLM method) Let the initial data (�0,h,m0,h,

E0,h) satisfy

�0,h ≥ � > 0, E0,h − 1

2

|m0,h |2
�0,h

> 0.

Let (�h,mh, Eh) ∈ Qh × Qh × Qh be the solution of the scheme Eq. 5 such that

0 < β < 1, 0 < α <
4

3
,

and

0 < � ≤ �h(t), ϑh(t) ≤ ϑ for all t ∈ [0, T ] uniformly for h → 0.

Then the family of approximate solutions {�h,mh, Eh}h>0 generates a dissipative
measure–valued (DMV) solution of the complete Euler system Eq.1 in the sense of
[2].

Let us point out that a DMV solution of the Euler system is a time-space parametrized
probability measure, i.e. the Young measure. The expected values of density and
entropy with respect to this Young measure satisfy the corresponding weak formula-
tion of mass conservation and entropy inequality, respectively. The weak formulation
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for the expected value of the momentum allows a concentration defect that is con-
trolled by the dissipation in the energy balance. The energy conservation is relaxed
and the expected value of the energy dissipates in time, see [2] and [9].

Furthermore, evoking the DMV–strong uniqueness result proved in [2, Theorem
3.3] we obtain the following strong convergence result.

Theorem 2 (Strong convergence of the FLM method) In addition to the hypothe-
ses of Theorem1, suppose that the complete Euler system Eq.1 admits a Lipschitz–
continuous solution (�,m, E) defined on [0, T ].

Then

�h → �, mh → m, Eh → E (strongly) in L1((0, T ) × �).

In Sect. 3 we will illustrate numerical behavior of the FLM method on a series of
well-known benchmarks. In what follows we recall the extension of the FLMmethod
to the finite volumemethod for theNavier–Stokes–Fourier system introduced in [11].
It turned out that for the convergence analysis of the latter system it ismore convenient
to work with the temperature formulation instead of the internal energy in the last
equation of Eq.2.

2.3 Numerical Scheme for the Navier–Stokes–Fourier System

Having introduced the notation in Sect. 2.1, we now present a semi-discrete finite
volume approximation of the Navier–Stokes–Fourier (NSF) system Eq.2,

Dt�h + divuph (�huh) = 0,

Dt (�huh) + divuph (�huh, uh) + ∇h ph = 2μdivh Dh(uh) + λ∇hdivhuh,

cv Dt (�hϑh) + cvdiv
up
h (�hϑh, uh) − κhϑh

= 2μ |Dh(uh)|2 + λ |divhuh |2 − phdivhuh .

Note that a fully discrete (implicit in time) version of this scheme was analyzed in
our work [11].

Definition 2 (Finite volume (FV) method for NSF) Given the initial values
(�0,h, u0,h, ϑ0,h) ∈ Qh × Qh × Qh, we seek a piecewise constant approximation
(�h, uh, ϑh) ∈ Qh × Qh × Qh which solves at any time t ∈ (0, T ] the following
equations:

∫
�

Dt�h φh dx −
∑

σ∈	int

∫
σ

Fh(�h, uh)�φh�dSx = 0, ∀φh ∈ Qh, (6a)
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∫
�

Dt (�huh) · φh dx −
∑

σ∈	int

∫
σ

Fh(�huh, uh) · �φh�dSx −
∫

�

phdivhφh dx

= −2μ
∫

�

Dh(uh) : ∇hφh dx − λ

∫
�

divhuhdivhφh dx, ∀φh ∈ Qh, (6b)

cv

∫
�

Dt (�hϑh) φh dx − cv

∑
σ∈	int

∫
σ

Fh(�hϑh, uh)�φh�dSx − κ

∫
�

hϑh φh dx

=
∫

�

(
2μ |Dh(uh)|2 + λ |divhuh |2 − phdivhuh

)
φh dx, ∀φh ∈ Qh . (6c)

Remark 3 Let us point out that the hα−1-terms inEq.5b andEq.5c yield an additional
diffusion and make the FLM method a particular vanishing viscosity approximation
of the Euler system. Since the physical viscosity is naturally included in the Navier–
Stokes–Fourier system, we do not need to include the additional diffusion in Eq.
6.

Remark 4 The numerical scheme in Eq. 6 can be also rewritten in the usual finite
volume formulation for any K ∈ Th,

Dt�K +
∑

σ∈∂K

|σ |
|K | Fh(�h, uh) = 0,

Dt (�u)K +
∑

σ∈∂K

|σ |
|K | (Fh(�huh, uh) + phn)

=
∑

σ∈∂K

|σ |
|K |

(
2μDh(uh) · n + λdivhuhn

)
,

cv Dt (�ϑ)K +
∑

σ∈∂K

|σ |
|K |

(
cv Fh(�hϑh, uh) − κ

�ϑh�

dσ

)

=
∑

σ∈∂K

|σ |
|K |

(
2μ |Dh(uh)|2K + λ |divhuh |2K − pK (divhuh)K

)
.

2.3.1 Properties of the FV Method for NSF

Analogously as in the inviscid case for the convergence analysis it is fundamental
that our numerical scheme fulfills some invariant domain preserving properties. In
[11] we have proved the following:
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• Conservation of discrete mass
One can easily show that

∫
�

�h(t, ·) dx =
∫

�

�0,h dx = M̃0 > 0, t ≥ 0.

• Non-negativity of the discrete density
The approximate density remains non-negative on any finite time interval.

• Discrete total energy dissipation
Let (�h, uh, ϑh) ∈ Qh × Qh × Qh be a solution to Eq. 6. Then

Eh(t) ≤ E0, t ≥ 0,

where

Eh(t) =
∫

�

(
1

2
�h(t)|uh(t)|2 + cv�h(t)ϑh(t)

)
dx .

See [11, Theorem 3.1] for the proof.
• Discrete entropy inequality
The scheme in Eq. 6 is entropy stable. It holds that

∫
�

Dt (�hsh) dx ≥ −
∫

�

κ∇Dϑh · ∇D

(
1

ϑh

)
dx

+
∫

�

1

ϑh

(
2μ|D(uh)|2 + λ|divhuh |2

)
dx,

see [11, Lemma 3.4].

Remark 5 Note that the above properties shown in [11] for a fully discrete implicit
in time version of scheme Eq. 6 can be proven in a straightforward manner for the
semi-discrete scheme presented here.

The structure preserving properties listed above, together with the assumptions on
uniform boundedness of the discrete density and temperature, are sufficient to derive
suitable a priori estimates and consistency formulation of scheme Eq. 6 which are
inevitable for the convergence of its solutions. We now recall the convergence results
proved in [11].

Theorem 3 (Convergence of the FV method for NSF) Let the initial data satisfy
the assumptions

0 < � ≤ �0,h ≤ �, 0 < ϑ ≤ ϑ0,h ≤ ϑ, ‖u0,h‖L2 ≤ u,

for some positive constants �, �, ϑ, ϑ, u. Let (�h, ϑh, uh) ∈ Qh × Qh × Qh be the
solution of the finite volume scheme Eq. 6, satisfying the assumptions
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0 < � ≤ �h(t) ≤ �, 0 < ϑ ≤ ϑh(t) ≤ ϑ uniformly for h → 0, and all t ∈ (0, T ).

Then the family {�h, ϑh, uh,Dh(uh),∇Dϑh}h>0 generates a DMV solution of the
Navier–Stokes–Fourier system Eq.2 in the sense of [3].

Analogously as for the inviscid flows a DMV solution is the Young measure.
Expected values of density, momentum, energy and entropy satisfy appropriate gen-
eralized formulation of Eq.2. Further, applying the DMV–strong uniqueness prin-
ciple established in [3, Theorem 6.1] and [11, Theorem 5.5] we have the following
strong convergence result.

Theorem 4 (Strong convergence of the FV method for NSF) In addition to the
hypotheses of Theorem3 assume that {Vt,x }(t,x)∈(0,T )×� is a DMV solution of the
Navier–Stokes–Fourier system Eq.2 in the sense of [3] such that

Vt,x

{
0 < � ≤ � ≤ �, ϑ ≤ ϑ, |u| ≤ u

}
= 1 for a.a. (t, x) ∈ (0, T ) × � (7)

for some constants �, �, ϑ , and u. Let, moreover,

V0,x = δ�0(x),ϑ0(x),u0(x) for a.a. x ∈ �,

where (�0, ϑ0, u0) belongs to the regularity class

�0, ϑ0 ∈ W 3,2(�), �0, ϑ0 > 0 in �, u0 ∈ W 3,2
0 (�; R3). (8)

Finally, suppose that the Navier–Stokes–Fourier system Eq.2 is endowed with the
initial data (�0, ϑ0, u0) satisfying Eq.8. Let (�h, ϑh, uh) be the solution of the finite
volume scheme Eq. 6, and in addition,

|uh(t)| ≤ u uniformly for h → 0 and all t ∈ (0, T ).

Then

�h → � (strongly) in L p ((0, T ) × �) ,

ϑh → ϑ (strongly) in L p ((0, T ) × �) ,

uh → u (strongly) in L p
(
(0, T ) × �; Rd

)
, p ∈ [1,∞),

where (�, ϑ, u) is a strong (classical) solution of the Navier–Stokes–Fourier system.

3 Numerical Experiments

In this section we demonstrate the performance of both finite volume methods, the
FLM method, see Eq. 5, for the Euler equations, and the finite volume method, see
Eq. 6, for the Navier–Stokes–Fourier equations.
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For time discretization we use the forward finite differences which yield the
explicit finite volume scheme for the Euler system. Diffusive fluxes in the Navier–
Stokes–Fourier equations are approximated by the backward finite differences
and thus implicitly in time. For stability reasons, we set the time step as t =
min{ta,tb} in each sub-iteration. The first term arises from the CFL stability
condition: ta = CFL h/max{|u| + c}, c = √

ϑ . In our numerical simulations we
set CFL = 0.5 if not explicitly claimed otherwise. The second term is due to the
parabolic regularization: tb = h1−β/(2d).

3.1 Numerical Experiments for the FLM Method

3.1.1 Experimental Order of Convergence (EOC)

We aim to validate the theoretical result on the convergence of �,m, E presented in
Theorem2 by computing the corresponding norms of numerical errors

∥∥e f

∥∥ =
∥∥ f − fre f

∥∥
L1

t L1
x∥∥ fre f

∥∥
L1

t L1
x

, f ∈ {�,m, E},

where L1
t L1

x is a shortening for L1(0, T ; L1(�)). Analogous notation is used for
other Bochner spaces below. Additionally, we also provide the numerical errors of
the velocity u in L2

t L2
x−norm and pressure p in L∞

t L1
x−norm. The reference solution

is the exact solution to Eq.1

�re f = 2 + cos(2πx), ure f = sin(π t)

2 + cos(2πx)

(
1

−1

)
,

pre f = (2 + cos(2πx))(2 + sin(2πx)), x ∈ [0, 1].
(9)

Setting γ = 1.4, α = 1.3, β = 0.2 and CFL = 0.6, we observe the first order con-
vergence rate for the FLM method, see Table1.

Table 1 Relative errors and EOC for the FLM method at time t = 0.1
h ||e� || EOC ||em || EOC ||eE || EOC ||eu || EOC ||ep || EOC

1/32 9.00e−03 – 4.15e−02 – 1.21e−02 – 5.75e−02 – 1.94e−02 –

1/64 4.05e−03 1.15 1.88e−02 1.14 5.40e−03 1.16 2.65e−02 1.12 8.74e−03 1.15

1/128 1.81e−03 1.16 8.36e−03 1.17 2.41e−03 1.16 1.20e−02 1.14 3.94e−03 1.15

1/256 8.07e−04 1.17 3.71e−03 1.17 1.08e−03 1.16 5.41e−03 1.15 1.78e−03 1.15
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Table 2 Initial data of 1D tests

Test �L uL pL �R u R pR Tmax xm

1 1.0 −2.0 0.4 1.0 2.0 0.4 0.15 0.5

2 1.0 0.0 1000.0 1.0 0.0 0.01 0.012 0.5

3 1.4 0.0 1.0 1.0 0.0 1.0 2.0 0.5

4 1.4 0.1 1.0 1.0 0.1 1.0 2.0 0.5

3.1.2 1D Benchmark Problems

We test one-dimensional Riemann problems studied in [15, 23] with the initial data

(�, u, p) =
{

(�L , uL , pL) if 0 ≤ x < xm,

(�R, u R, pR) if xm ≤ x ≤ 1,

with the corresponding values presented in Table2.
Test 1 has a weak solution consisting of two rarefaction waves and it is typically

used for checking the positivity of density; Test 2 is designed for strong shock;
Test 3 and 4 are designed to capture stationary contact waves. We set γ = 1.4,
β = 0.2 and aim to show the numerical performance of the scheme Eq. 5 on the
domain � = [0, 1] with mesh size h = 1/400. First, we present in Fig. 2 the results
of numerical simulations for different choices of α, that is the parameter appearing
in the artificial diffusion terms in Eq.5b and Eq.5c. Secondly, we show in Fig. 3 the
comparison of the numerical solutions obtained by the FLMmethod with that of the
HLL finite volume method [23].

3.1.3 2D Benchmark Problems

Now we test the two-dimensional Riemann problems studied in [15–17] with � =
[−1, 1]2. Boundary values are obtained by extrapolation of conservative variables
(�,m, E).

Test 1: circular two-dimensional Sod problem with the initial data

(�, u1, u2, p) =
{

(1.0, 0, 0, 1.0), |x | < 0.4,

(1.0, 0, 0, 0.1), else.

Figure4 displays the contour lines of the numerical solution of density, velocity
components, and pressure at time t = 0.2 which are in a very good agreement with
the results presented in literature, cf., e.g., [23].
Test 2: two-dimensional benchmark Riemann problem consisting of two moving
shocks and two standing slip lines. The initial values are set as
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Fig. 2 1D tests: from top to bottom are Tests 1 to 4, from left to right numerical solutions of �,
u, p. The solid blue lines represent solutions obtained by the exact Riemann solver. The dotted
red lines and the dashed black lines are solutions obtained by the FLM scheme with α = 1.5 and
α = 3, respectively

(�, u1, u2, p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0.5313, 0, 0.7276, 0.4), x > 0, y > 0,

(1.0, 0.7276, 0, 1.0), x < 0, y > 0,

(0.8, 0, 0, 1.0), x < 0, y < 0,

(1.0, 0, 0.7276, 1.0), x > 0, y < 0.

Figure5 shows the numerical solution for density and pressure for different CFL
numbers. Numerical solutions obtained by the FLM method are in good agreement
with the results presented in literature, see, e.g., [16].
Test 3: two-dimensional Riemann problem with the initial condition
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Fig. 3 1D tests: from top to bottom are Tests 1 to 4, from left to right numerical solutions of �, u,
p. The solid blue lines, the dotted red lines and the dashed black lines are solutions obtained by the
exact Riemann, HLL, and FLM (α = 1.5) solvers, respectively

(�, u1, u2, p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1.1, 0, 0, 1.1), x > 0, y > 0,

(0.5065, 0, 0.8939, 0.35), x < 0, y > 0,

(1.1, 0.8939, 0.8939, 1.1), x < 0, y < 0,

(0.5065, 0, 0.8939, 0.35), x > 0, y < 0.

In this configuration there are two forwardmoving shocks and two backwardmoving
shocks. Figure6depicts the contour lines of the numerical solutionof density, velocity
components, and pressure at time t = 0.25. We can again confirm that the numerical
solution is in good agreement with the results presented in the literature, cf., e.g.,
[16].
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Fig. 4 Test 1: Sod problem solution on rectangular mesh hx = hy = 0.05 with α = 1.5, β = 0.2
at time t = 0.2

3.2 Numerical Experiments for the FV Method for NSF

3.2.1 Experimental Order of Convergence (EOC)

Our aim in this section is to validate theoretical results on the convergence of �, u, ϑ

presented in Theorem4 by computing the numerical errors

‖e f ‖ = ‖ f − fre f ‖Lq
t Lq

x

‖ fre f ‖Lq
t Lq

x

, f ∈ {�, u, ϑ}, q = 1, 2.

Here the reference solution is the same as in Eq.9. Thus, we have a manufactured
exact solution with a suitable external force in the momentum and energy equa-
tion. Setting μ = λ = κ = 1, β = 0.2 and CFL = 0.6 we observe the first order
convergence rate for the scheme Eq. 6, see Table3. We can observe the first order
convergence on rectangular as well as triangular mesh.
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Fig. 5 Test 2: solution of � (upper row) and p (lower row) on rectangular mesh hx = hy = 0.05
with α = 1.5, β = 0.5 at time t = 0.52

Table 3 Relative errors and EOC for the FV method for NSF at time t = 0.1
h

∥∥e�
∥∥ EOC ‖eu‖ EOC

∥∥eϑ
∥∥ EOC

∥∥e�
∥∥ EOC ‖eu‖ EOC

∥∥eϑ
∥∥ EOC

L1((0, T ) × �)-norm L2((0, T ) × �)-norm

Rectangular mesh

32 2.09e−02 – 2.24e−02 – 1.27e−02 – 2.52e−02 – 2.71e−02 – 1.49e−02 –

64 9.51e−03 1.14 1.06e−02 1.08 5.78e−03 1.13 1.15e−02 1.12 1.31e−02 1.05 6.84e−03 1.12

128 4.27e−03 1.16 4.87e−03 1.12 2.60e−03 1.15 5.21e−03 1.15 6.10e−03 1.10 3.09e−03 1.15

256 1.90e−03 1.16 2.21e−03 1.14 1.16e−03 1.16 2.34e−03 1.16 2.80e−03 1.12 1.38e−03 1.16

512 8.49e−04 1.17 9.98e−04 1.15 5.20e−04 1.16 1.05e−03 1.16 1.27e−03 1.14 6.19e−04 1.16

Triangular mesh

1/32 9.17e−03 – 1.23e−02 – 4.90e−03 – 1.10e−02 – 1.60e−02 – 5.82e−03 –

1/64 4.02e−03 1.19 6.68e−03 0.89 2.43e−03 1.01 4.83e−03 1.18 8.79e−03 0.87 2.92e−03 0.99

1/128 1.78e−03 1.18 4.10e−03 0.70 1.20e−03 1.02 2.13e−03 1.18 5.44e−03 0.69 1.45e−03 1.01

1/256 7.92e−04 1.17 2.99e−03 0.46 5.87e−04 1.03 9.50e−04 1.17 3.94e−03 0.46 7.19e−04 1.01

1/512 3.56e−04 1.15 2.53e−03 0.24 2.89e−04 1.02 4.27e−04 1.15 3.31e−03 0.25 3.57e−04 1.01
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Fig. 6 Test 3: solution of �, u1, u2, and p on rectangular mesh hx = hy = 0.05 at time t = 0.25

3.2.2 2D Benchmark Problems

Test 4: Circular shock problem.
We again test the two-dimensional Sod problem using the same initial data as in the
first experiment of Sect. 3.1.3 with μ = λ = κ = 0.001 and CFL = β = 0.6. The
contour lines of the numerical solutions are shown in Fig. 7. Small viscosity effects
can be noticed but overall the numerical solutions for inviscid and viscous case are
similar as expected.
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Fig. 7 Test 4: Circular shock solution on rectangular mesh hx = hy = 0.05 at time t = 0.2

Test 5: Gresho Vortex problem with the initial data [15]

(u, p)(r) =

⎧⎪⎨
⎪⎩

(5r, 5 + 12.5r2) r < 0.2,

(2 − 5r, 9 − 4 ln 0.2 + 12.5r2 − 20r + 4 ln r) 0.2 ≤ r < 0.4,

(0, 3 + 4 ln 2) r > 0.4.

Figure8 displays the contour lines of the numerical solutions obtained by the scheme
Eq. 6 with the parameters μ = λ = κ = 0.01, and CFL = β = 0.6 at time t = 0.2.
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Fig. 8 Test 5: Gresho vortex solution on rectangular mesh hx = hy = 0.05 at time t = 0.2

Conclusion

We have presented behavior and performance of two new convergent finite volume
methods for compressible fluids, both inviscid and viscous. These new finite volume
methods satisfy some important invariant domain preserving properties, such as the
minimum entropy principle, mass and energy conservation, positivity preservation,
total energy dissipation and entropy production. These are crucial for showing the
stability and consistency of the schemes. In the framework of a nonlinear version of
the Lax equivalence theorem, see [9, 11], these properties directly imply the strong
convergence of numerical solutions to a strong solution on its lifespan. Our numerical
experiments presented in Sect. 3 confirm these theoretical convergence results.
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Recent Advances and Complex
Applications of the Compressible
Ghost-Fluid Method

Steven Jöns, Christoph Müller, Jonas Zeifang, and Claus-Dieter Munz

Abstract In this paper, improvements to a level-set ghost-fluid scheme in a high
order discontinuous Galerkin framework with finite-volume sub-cells are presented.
We propose the use of a path-conservative scheme for the level-set transport in both
the discontinuous Galerkin and the finite-volume framework. Additionally, improve-
ments regarding the curvature calculation and velocity extrapolation are described.
The modified scheme is validated by a comparison of shock-drop and drop-drop
interaction simulations from literature.

1 Introduction

Compressible multi-phase flow is of major interest in many scientific and industrial
applications. Two major concepts can be distinguished: sharp and diffuse interface
methods. Popular sharp interface methods are the volume-of-fluid and the ghost-
fluidmethod. The volume-of-fluidmethod iswidely used for incompressible flow, but
was also applied to compressiblemulti-phase problems, see e.g. [15]. The ghost-fluid
method has been introduced by Fedkiw et al. [13] andwas improved bymany authors,
see e.g. Liu et al. [28], [27] and Wang et al. [45]. Merkle and Rhode demonstrated a
modified version, where amulti-phase Riemann problem is solved to obtain the ghost
states at the interface. The concept was modified to allow approximate two-phase
Riemann solvers by Fechter et al. [10–12]. The method was applied within a high
order level-set ghost-fluid framework. A discontinuous Galerkin method [17] was
used to transport both the bulk phases and the level-set field. Shocks as well as the
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phase boundary between the bulk phases were captured by a finite-volume sub-cell
scheme [39]. In [31], the sub-cell shock capturing method was used for the level-set
transport aswell. Another level-set ghost-fluid approach is based on cut-cellmethods,
see e.g. [32] or [44]. These approaches use similar methods to handle the level-set
and the geometry calculation, however their treatment of the phase boundary is based
on cut-cells. While the method of Nourgaliev et al. [32] is non-conservative like the
method presented in this paper, Vahab and Miller [44] considered a conservative
handling of the phase boundary.

In this paper, we focus on modifications to the interface handling of a compress-
ible sharp interface method in order to simulate merging droplets and bubbles. The
numerical framework is based on a discontinuous Galerkin flow solver with finite
volume sub-cells for the bulk phases, which are coupled with a level-set ghost-fluid
method. The description of the scheme will be kept short, details are described in
[11] and [31]. We propose the use of a path-conservative scheme to transport the
level-set field. This leads to a modified sub-cell shock capturing based on [8]. We
additionally discuss novel modifications of the curvature calculation and the level-set
transport, which allow the simulation of phase boundaries with high curvatures as
well as topological changes. Afterwards, complex test cases are shown to validate
the scheme: two cases with merging drops and two shock-drop interactions, which
are compared with results from literature.

2 Governing Equations

The level-set ghost-fluid framework under consideration is a sharp interface method
and assumes two distinct pure phases without a mixing zone.Wemodel each of these
bulk phases with the compressible Euler equations

∂Q
∂t

+ ∇ · F(Q) = 0, with Q =
⎛
⎝

ρ

m
E

⎞
⎠ and F(Q) =

⎛
⎝

ρu
ρuu + Ip
(ρe + p)u

⎞
⎠ , (1)

with densityρ, momentumm = ρu and total energy E = ρe as conserved quantities.
The total energy E is the sumof the internal energy per unit volume ρε and the kinetic
energy 1

2ρu · u

E = ρε + 1

2
ρu · u, (2)

with u denoting the velocity. An equation of state (EOS) has to be specified to link
the pressure and the internal energy per unit mass ε:

p = p(ρ, ε), ε = ε(ρ, p). (3)
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With our framework, an arbitrary EOS can be used. Efficiency is secured by using the
tabulation technique by Föll et al. [14], whereas an explicit evaluation of algebraic
EOS is also possible. In this paper, we fit a stiffened gas EOS, see Saurel et al. [35],
for the liquid phase and use the perfect gas law for the gaseous phase. The stiffened
gas law is chosen over the Tait EOS although the latter has been found out to model
water more precisely, see e.g. [34]. However, the Tait EOS simply links density and
pressure. Therefore, it cannot be applied to the full compressible Euler equations
directly. Following [13, 29], an additional equation for the internal energy has to be
added to use it in this case. With the choice in [13] the Tait EOS can be rewritten to
the form of the stiffened gas EOS. This approach was used in e.g. [20, 52] as well.
For a further discussion on the use of different EOS for the modeling of water see [5,
20], and e.g. [46, 47] as exemplary applications with different EOS.

The interface between the two phases is tracked by the level-set function�, which
is transported by a velocity field s according to

∂�

∂t
+ s · ∇� = 0. (4)

The transport velocity of the level-set function depends on the flow states at the
interface s = f (Qliq , Qgas). It is initially given on the phase boundary and is then
extrapolated into the volume. In our numerical framework (Sect. 3), it is only cal-
culated at the beginning of each time-step to reduce the complexity of the coupling
between fluid motion and level-set transport. As a direct consequence, the transport
velocity field is constant within each timestep and thus we can rewrite Eq. (4) to

∂W

∂t
+ B(x) · ∇W = 0 with W = � and B(x) = s. (5)

Equation (5) is formulated in the general form of non-conservative hyperbolic equa-
tions to introduce the notation for the numerical scheme, which is discussed in Sect.
3. The root of the level-set field marks the phase interface. The level-set function
initially fulfills the signed distance property. However, this property is not preserved
by the level-set transport (Eq. (5)). As a result, the level-set function needs to be
reinitialized. In this work, the method of choice is the solution of a Hamilton-Jacobi
equation

∂�

∂t
+ sign(�) (|∇�| − 1) = 0 (6)

as proposed in [40]. There are other approaches to reinitialize the level-set field, see
e.g. [37, 43]. A beneficial aspect of level-set methods is that geometrical properties,
such as normal vectornLS and curvature κLS can be calculated directly from the level-
set function by differentiation. According to [6], the level-set normal is calculated
by
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nLS = ∇�

|∇�| . (7)

For the calculation of the curvature the general formulation given in [6]

κLS =�2
x�yy − 2�x�y�xy + �2

y�xx

|∇�|3 +
�2

x�zz − 2�x�z�xz + �2
z�xx

|∇�|3 +
�2

y�zz − 2�y�z�yz + �2
z�yy

|∇�|3 .

(8)

is preferred over the simpler formulation

κLS = ∇ · nLS. (9)

We found that the general formulation is beneficial to obtain stable simulations of
merging droplets. A possible reason is the underresolution of the level-set field in
these situations. More sophisticated algorithms for the normal and curvature calcula-
tion based on curve parametrizations are discussed e.g. in [26], but are not considered
in this work due to their increased computational cost. In addition to the geometrical
properties, the velocity of the level-set field s has to be determined as well. It is only
calculated on the phase boundary and has to be extrapolated into the volume. This
is typically done in a two-step procedure: First, the data is set in the neighborhood
of the phase boundary. Afterwards, this initial field is extrapolated by solving the
Hamilton-Jacobi equations

∂si

∂τ
+ sign(�)nLS · ∇si = 0 i = 1, . . . , d, (10)

for the direction-wise components si of the d-dimensional velocity field s follow-
ing [1]. This is discussed in more detail in Sect. 3.2.3.

Both the reintialization and the velocity extrapolation are only performed in a
narrow, radial band around the level-set zero. Outside the narrow band the level-set
function is set to the bands fixed radius and the velocity field is set to zero.

3 Numerical Method

In this section, the general numerical framework is described briefly. First, the build-
ing blocks for the method are described in Sect. 3.1. Afterwards, they are assembled
in Sec. 3.2 to form the high order framework for the sharp interface simulations.
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Fig. 1 Domain
decomposition into liquid
(dark gray) and vapor (light
gray) region, using the zero
position of a level-set
function (green). Instead of
the DG method, a FV
sub-cell scheme is used in a
narrow band around the
resulting surrogate phase
boundary.

We start by introducing basic notation. The domain � is divided into a liquid
region �l and a vapor region �v with the phase interface 	. It holds

� = �l ∪ �v, �l ∩ �v = ∅, and �l ∩ �v = 	.

Furthermore, � is discretized with hexahedral elements such that

� =
⋃
e

�e, and �i ∩ � j = ∅, ∀i �= j.

The numerical framework used in this work is based on [11] and [31]. Liquid and
vapor region are both discretized with the discontinuous Galerkin method. At the
phase boundary, which is defined by the zero position of a level-set function, a finite
volume sub-cell scheme is applied to ensure a better representation of the surrogate
phase boundary. This surrogate surface discretely represents the phase boundary and
is aligned with the sub-cell interfaces. For an overview on the domain decomposition
see Fig. 1.

3.1 Building Blocks for the Level-Set Ghost-Fluid Method

3.1.1 The DGSEM with Finite-Volume Sub-Cells

In this subsection, we discuss the Discontinuous Galerkin Spectral Element Method
(DGSEM) [23] with finite-volume sub-cells [18, 33, 39] for hyperbolic conservation
laws. We extend the DGSEM with finite-volume sub-cells to the case of hyperbolic
equations with non-conservative products, following [8]. Therefore, the framework
of path-conservative schemes is used [4]. In theDGSEM, the approximate solution of
both the bulk phases and the level-set is described by piecewise polynomials Qh and
Wh of degree N , respectively. Within each element �e the solutions are represented
by a tensor product of nodal one-dimensional Lagrange basis functions. The basis
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functions are chosen to be identical to the test functions l in the weak formulations.
The weak formulations for Eqs. (1) and (5) read

∂

∂t

∫

�e

Qhldx +
∮

∂�e

F(Qh) · nlds −
∫

�e

F(Qh) · ∇ldx = 0, (11)

∂

∂t

∫

�e

Whldx +
∮

∂�e

B(x) · ∇Whlds +
∫

�e

B(x) · ∇Whldx = 0, (12)

with the outward pointing normal vector n. In the Euler equations, the neighboring
elements are coupled by a numerical flux function F∗(Q−

h , Q+
h ) · n ≈ F(Qh) · n.

We use the HLLC [42] and the HLLE [9] Riemann solver. For the level-set transport
equation, the path-conservative jump term D∗(W−

h ,W+
h ) · n ≈ B(x) · ∇Wh has to

be approximated. We use the path-conservative Rusanov Riemann solver [8]

D∗(W−
h ,W+

h ) · n = 1

2

(B̃ · n − smaxI
) (
W+

h − W−
h

)
(13)

with the maximal signal speed

smax = max
(|s+ · n|, |s− · n|) . (14)

The superscript (·)− identifies the value inside the current cell and the superscript (·)+
identifies the value outside the current cell. To approximate the Roe type matrix B̃
we substitute the spatial dependency ofB on x with a dependency onWh . In general,
this is not valid as the advection field is a function of space. However, the level-set
variable � carries the signed-distance property. Hence, in a 1D Riemann problem it
is possible to transform the spatial dependency to a dependency on the level-set field.
This enables to approximate B̃ by integrating along a linear path 
(W−

h ,W+
h , b),

with b ∈ [0, 1] between W−
h and W+

h as

B̃ · n ≈
1∫

0

B(
(W−
h ,W+

h , b)) · ndb, 
(W−
h ,W+

h , b) = W−
h + b(W+

h − W−
h ).

(15)

We evaluate the path numerically with the trapezoidal rule and obtain

B̃ · n ≈ B(W−
h ) + B(W+

h )

2
· n. (16)

The volume terms in Eq. (11) and Eq. (12) can be calculated directly from Qh

and Wh . The derivatives of the test function and the solution can be calculated by
derivating the respective polynomial.
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The main idea of the DGSEM is to choose the same N + 1 Legendre-Gauss
points for both the numerical integration and the interpolation of the solution. This
reduces the number of operations per degree of freedom and increases the efficiency.
In addition, the multi-dimensional operator simplifies to a subsequent application of
the one-dimensional operator. Details on the implementation can be found in [2, 24]
and [17].

The finite-volume formulations of Eqs. (1) and (5) are a special case of the weak
formulations Eqs. (11) and (12). If both the solution and the testfunction are chosen
out of the space of piecewise constant polynomials, e.g. l = 1, Eqs. (11) and (12)
simplify to the finite-volume methods

∂

∂t

∫

�e

Qhdx +
∮

∂�e

F∗(Q−
h , Q+

h ) · nds = 0, (17)

∂

∂t

∫

�e

Whdx +
∮

∂�e

D∗(W−
h ,W+

h ) · nds = 0. (18)

We combine the DGSEM and FV approach to capture discontinuities in the high
order DGSEM solution, which would otherwise lead to oscillations. In the Euler
equations, shocks and the phase boundary have to be captured. For the level-set
equation, the edge of the narrow band requires stabilization. In addition, areas with
a high curvature with respect to the grid resolution are troublesome. This can be
resolved by either a grid refinement or the sub-cell scheme. Additional problems
occur if level-set contours merge, e.g. merging drops. In this case, the process has
to be captured by a low order scheme like the sub-cell approach. For the sub-cell
method we formulate an a priori limiter following [39] in contrast to the a posteriori
limiter in [8]. The biggest advantage is a reduction in computational cost, since only
one operator is evaluated in each cell. A disadvantage is that there is no guarantee
of a stable solution. We combine multiple approaches to identify trouble cells of the
DGSEMmethod: First, a modal indicator following [18, 33] is used to detect strong
gradients in the solution of the Euler equations and the edge of the narrow band in the
solution of the level-set function. Details on modifications and the implementation
can be found in [38]. Second, the position of the level-set zero is used to capture the
phase boundary in the Euler equations. Finally, we detect zones in which two phase
boundaries meet, e.g. the merging of two droplets. Details are discussed in Sect.
3.2.4. After the troubled cells are identified, the polynomial solution is switched to a
finite-volume representation. If the cells are no longer problematic they are switched
back. The switch upholds

∫
�e

Udx ≡
∫

�e

UDGdx =
∫

�e

UFV dx U = Q,W (19)
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and hence is conservative. It can be formulated as a matrix vector multiplication with
an integration matrix V

VUDG = UFV U = Q,W. (20)

The polynomial representation has (N + 1)d degrees of freedom, with d denoting
the number of dimensions. For the finite-volume method, we choose to use (N + 1)d

equidistantly distributed finite-volume sub-cells. This choice allows the use of the
same data structure and hence an easy implementation. For the Euler equation, the
finite-volume scheme is extended to a second order TVD scheme. The coupling
between the DGSEM and the sub-cells occurs via the surface terms on the element
boundaries. The fluxes and jump terms are evaluated in the finite-volume discretiza-
tion and then projected to the polynomial discretization for the DG elements. The
scheme handles discontinuities well, since it switches to the finite-volume repre-
sentation if necessary. Its use of finite-volume sub-cells intrinsically leads to a grid
refinement, which prevents a strong loss of accuracy.

We want to highlight some advantages of the novel approach for the level-set
transport comparedwith the previously discussed approach in [12, 31]. There, Eq. (5)
is used in a divergence form with a source term

∂�

∂t
+ ∇ · (s�) = �∇ · s. (21)

In the incompressible case the right hand side of Eq. (21) is zero since the velocity
field is divergence free (∇ · s = 0), see e.g. [16, 30]. However, in the compressible
case this term needs to be discretized.

The novel path-conservative scheme has two advantages: First, the DGSEM and
finite-volume sub-cell scheme are derived from the sameweak formulation and solve
the same equation on the discrete level. In this sense, they are consistent. If Eq. (21) is
solved instead,∇ · s �= 0 still holds discretely for the discontinuousGalerkinmethod.
However, in the finite-volume scheme s is discretized with constant polynomials and
thus ∇ · s = 0. As a result both schemes solve different equations although they are
formally derived from the same weak formulation. Secondly, the time-step is only
limited by the eigenvalues of the hyperbolic transport, which is the process of interest.
If Eq. (21) is solved, the source term might be stiff. In this case the eigenvalues of
the source are larger than those of the hyperbolic transport. This leads to smaller
time-steps and thus higher costs of the numerical simulations.

3.1.2 Time Discretization

For the temporal discretization of the level-set transport and the Euler equations we
either use a fully explicit 4th order Runge-Kutta (RK) scheme from [3] or an implicit-
explicit 4th order Runge-Kutta scheme by Kennedy and Carpenter [21]. The goal of
implicit-explicit time discretization is to overcome the severe time step restriction
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of explicit schemes at low Mach numbers. Hence, we treat the Euler equations with
an implicit scheme and the level-set transport with an explicit scheme. For solving
the arising non-linear equation system of the implicit part we rely on a matrix-free
Newton-GMRES approach [22] as it is applied to the DGSEM formulation in [50,
51] and extend it to the mixed DG-FV ghost-fluid formulation. More details about
this time discretization will be presented in a follow-up publication.

3.2 The Level-Set Ghost-Fluid Method

The numerical methods described above are the building blocks of the present level-
set ghost-fluid framework. In the following,we describe the necessary steps to assem-
ble the framework.

3.2.1 Algorithmic Details of the Level-Set Ghost-Fluid Method

We follow the approach in [11] for the development of our method. It consists of the
repetition of the following steps:

1. The RK-DGSEM/RK-FV solver is used to advance the level-set field and the
Euler equations for the pure phases in time.

2. The level-set function is reinitialized.
3. Depending on the level-set root, the domain � is decomposed into �l and �v

along the boundaries of the finite-volume sub-cells using already existing phys-
ical states and ghost states. This creates a surrogate phase boundary 	s .

4. The DG-FV distribution of both the Euler equations and the level-set is updated
based on modal smoothness indicators and geometrical information of the level-
set function.

5. The normal vector at the phase interface and the curvature are calculated.
6. The boundary conditions at the surrogate phase boundary and its velocity are

calculated with a two-phase Riemann solver, the so called HLLP Riemann
solver [11, 36]. It models surface tension with a jump term across the phase
boundary and provides both fluxes for each phase as well as the velocity of the
phase boundary.

7. The interface velocity is then extrapolated into the volume to obtain a velocity
field for the level-set transport.

Before the initial time-step is executed, the above mentioned procedure has to be
done once without step 1. Additionally, step 6 is applied in each Runge-Kutta stage.
The presented level-set ghost-fluid algorithm does not guarantee conservation due
to two reasons. First, the fluxes at the surrogate phase boundary may be distinct to
ensure a stable two-fluid simulation. Secondly, the state of cells which change from
the liquid into the vapor domain and vice versa are replaced with their respective
ghost state in step 3. For more details about the method the reader is referred to [31].
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3.2.2 Calculation of Derivatives: The Level-Set Normal Vector and
Curvature

The normals and the curvature are calculated by first transforming the level-set solu-
tion to the finite-volume sub-cell representation via Eq. (20) and secondly calculating
the derivatives of the level-set function with a 5th order WENO stencil as proposed
in [10]. The same operator is applied again to the components of ∇� to obtain the
second order derivatives of the level-set field. With these gradients we then evaluate
Eq. (7) and Eq. (8) to calculate normal vectors and curvature of the level-set function.
We additionally limit the curvature by an upper bound that depends on the grid reso-
lution, which we characterize by rmin = min(VFV )1/d . Thereby, VFV is the volume
of a finite-volume sub-cell. With this we can define

|κLS|max = d − 1

2rmin
= d − 1

2min(VFV )1/d
, (22)

as the maximum absolute value of the curvature, which can be resolved by the grid
assuming a safety factor of 0.5.

3.2.3 Solution of Hamilton-Jacobi Equations: Reinitialization and
Velocity Extrapolation

Two sets ofHamilton-Jacobi equations need to be solved: the reinitialization equation
Eq. (6) and the equations for the velocity extrapolation Eq. (10). Each set of equations
is solvedwith a 5th orderWENO scheme [19] in combination with a third order order
lowstorageRunge-Kuttamethodwith three stages [48]. For the velocity extrapolation
an additional step is necessary. The solution of the two-phase Riemann problem gives
a transport velocity on the cell edges that form the surrogate phase boundary. This
velocity canbe directly copied to the neighboringfinite-volume sub-cells. If a sub-cell
is involved in more than one two-phase Riemann problem, we average the velocities.
In the direct neighbors of the surrogate phase interface, the velocity is fixed. In all
other cells within the narrow band, we solve Eq. (10) to obtain a smooth velocity
field.

3.2.4 Specific Modifications of the Algorithm for Simulating Merging
Droplets

If topological changes are simulated, e.g. merging droplets, special attention has to
be payed in regions where those topological changes take place. In the following we
detail the two necessary modifications.

In a first step, we have to ensure that we capture topological changes with the
finite-volume sub-cell framework, since they are associated with discontinuities in
the level-set field. We use the topological information that is available through the
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sign of the level-set function. Therefore, we switch the level-set solution to the finite-
volume sub-cell discretization in each element. Afterwards, we evaluate the level-set
sign line-wise in all spatial directions. If the sign changes more than once, the DG
element contains a topological change which has to be captured with the sub-cell
approach. In a second step, we have to identify the specific sub-cells that are involved
in the topological change. We check the number of two-phase Riemann problems a
sub-cell is involved in. If a sub-cell is affected by more than one two-phase Riemann
problem per direction it is identified as a potential merge cell (Itopo = 1). In those
cells, the advection velocity cannot be determined by averaging, cf. Sect. 3.2.3.
The use of the advection velocity in the merge cells is avoided by introducing a
specific form of the path-conservative jump term. Summarizing Eqs. (13)-(16), the
path conservative jump term D∗(W−

h ,W+
h ) for the transport of the level-set field

Eq. (5) is

D∗(�−,�+) = 1

4
((s+ + s−) − 2 max

(|s+|, |s−|))(�+ − �−), (23)

where the velocities s+, s− are selected via

s− = s− · n, s+ = s+ · n if I−
topo = I+

topo,

s− = s− · n, s+ = s− · n if I−
topo = 0, I+

topo = 1,

s− = s+ · n, s+ = s+ · n if I−
topo = 1, I+

topo = 0.

(24)

Hence, the transport velocity is chosen according to theItopo identifier. This procedure
ensures that the velocity for the level-set transport is taken only from cells that are
not involved in a topological change.

4 Numerical Results

In this sectionwe apply the numerical framework to test problems in the low and high
Mach number regime. First, we look at two droplets in a gas with a linear velocity
profile to evaluate the accuracy of the curvature calculation. Secondly, a simulation of
two merging droplets with a Weber number of We = 2.2 is performed. Afterwards,
two shock-drop interactions with a shock Mach number of Ms = 1.47 and Weber
numbers of We = 7339 and We = 12 are simulated and compared to results from
literature.

4.1 Drop Collision in Linear Velocity Profile

The first testcase is an adaption from [25] inwhich a drop collision in a shear layer has
been described. Since we only consider inviscid fluids in this paper, we have slightly
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Fig. 2 Computational setup for a drop collision in a gas with a linear velocity profile. The upper
and lower boundaries are slip walls whereas the left and right boundaries are periodic. The domain
is discretized with 90 × 60 4th order elements coupled with a HLLC Riemann solver.

Table 1 Initial conditions and material parameters for the drop collision in a linear velocity profile.

p0 ρ0 γ p∞ σ

Gas phase 71.43 1.0 1.4 0 −
Liquid phase 81.43 1.0 7.15 3307 10

altered the test case into a collision of twodrops emerged in a gaswith a linear velocity
profile. It allows to benchmark the curvature calculation during the merging process.
It is a difficult test, since the droplets have only a small relative velocity in normal
direction. The setup is visualized in Fig. 2 with the following parameters: radius
r = 1, position of the left drop (−2.5, 0.84), position of the right drop (2.5,−0.84)
and maximum velocity U = 1. The initial conditions and material parameters are
given in Table 1. For the time discretization an explicit 4th order Runge-Kutta scheme
with CFL = 0.3 is used. If the static capillary time step restriction is calculated as
in [7], the time-step is limited by the wave propagation of the acoustic waves. The
ratio of capillary to accoustic time-step is tcapillary/tacoustic ≈ 24.

In Fig. 3 the temporal evolution of the phase boundary during a collision is visu-
alized. Due to the linear velocity profile, the drops are deformed as they approach
each other. The distance between the two drops shrinks until it can no longer be
resolved by the grid. At this instance the drops merge. We observe two merges at two
different positions that happen almost at the same time. They enclose a vapor bubble,
which vanishes quickly due to its underresolution. Afterwards, a wave moves along
the drop surface and changes the droplets shape towards a spherical form. The same
qualitative behavior is observed in [25]. We conclude that our numerical framework
is suitable to simulate merge phenomena.
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Fig. 3 Temporal evolution of the phase boundary for the drop collision in linear velocity profile.
Due to inertial forces the drops are deformed as they approach each other. Then they merge and
form a single drop.

Table 2 Initial conditions and material parameters for collision of liquid ethanol droplets in air.

p0[bar] ρ0[kg m−3] γ [−] p∞[bar] σ [kg s−2]
Air 1.0 1.226 1.4 0 −
Ethanoll 1.11375 791 1.208 8466.14 2.275

4.2 Droplet Collisions with Wec = 2.2

In a next step, we apply our framework to a binary droplet collision. Inspired by [41],
we simulate ethanol droplets in air with a collision Weber number of Wec = 2.2,
being defined as

Wec = ρlU 2
c d

σ
, (25)

with the liquid densityρl , the droplet diameterd and the relative velocity of the droplet
Uc. The initial conditions and material parameters are summarized in Table 2.

Both drops have a radius of r = 0.2 mm. Initially, they are seperated by a distance
of 2.5r . The droplets are initialized with a vertical velocity of v(1) = 2.0m

s and
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Fig. 4 Temporal evolution of the phase boundary (white line) and the absolute value of the momen-
tum for the drop collision with Wec = 2.2, choosing 1282 elements with N = 4 for the spatial
resolution. The gray and the black line indicate the phase boundary of the simulations with 642 and
322 elements, respectively.

v(2) = −2.0m
s to obtain a collision Weber number of Wec = 2.2. Following [41],

we expect coalescence of the two droplets and an oscillation of the remaining single
drop. Diverging from the setup in [41] we do not use radial coordinates and neglect
viscous effects. The domain � = [−0.75mm, 0.75mm]2 is discretized with three
different resolutionswith 322, 642 and 1282 elements. A polynomial degree of N = 4
and the HLLC Riemann solver is used. A 4th order implicit-explicit scheme, see
Sect. 3.1.2, is used for the time discretization. For this setup, we achieve a speed-up
of approximately 4 compared to the fully explicit scheme. Due to the low Mach
number, we can choose a time-step that is approximately 25 times larger than for the
explicit scheme with a CFL number of CFL = 0.8. Still, the acoustic waves are the
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Fig. 5 Computational setup for the shock droplet interaction assuming symmetric conditions. The
shock is depicted in red.

fastest characteristics as the ratio tcapillaryexplicit /tacousticexplicit ranges from ≈ 75 to ≈ 150 for
the three different spatial resolutions.

In Fig. 4, the temporal evolution of the absolute value of the momentum for the
discretization with 1282 elements is visualized. Additionally, the phase boundary for
the simulations with 322, 642 and 1282 elements is indicated with a black, a gray
and a white line, respectively. We observe the expected behavior qualitatively. A
quantitative comparison with [41] is not possible due to the neglect of viscous and
three-dimensional effects. A particular consequence of the inviscid flow model is
the occurence of further deformations of the phase interface under grid refinement.
The only stabilizing mechanism is the numerical viscosity, which decreases as the
grid resolution increases. A convergent behavior of the observed phenomena should
occur if viscous effects are considered.

4.3 Shock-Droplet Interaction

In the following, we simulate 2D shock-droplet interactions at two different Weber
numbers, We = 7339 and We = 12. The numerical setup is taken from Winter et
al. [49] and is visualized in Fig. 5. However, we neglect viscous effects. We initialize
a water droplet at rest surrounded by air at x = 0. A right moving shock wave with a
Mach number ofMs = 1.47 is positioned at x = −D0. The initial droplet diameter is
chosen as D0 = 1m. The lower domain boundary is set as a symmetry plane. On the
left, Dirichlet boundary conditions impose the initial conditions onto the boundary.
The remaining boundaries are treated as supersonic outflows. Since both Ms andWe
are higher than in the test cases considered in Sects. 4.1 and 4.2, the capillary time-
step restriction is not considered here. The domain� = [−2D0, 10D0] × [0, 3D0] is
discretizedwith 512 × 256DGelements. For this testcasewe use theHLLERiemann
solver, explicit 4th order Runge-Kutta time integration and a polynomial degree of
N = 3. Initial conditions andmaterial parameters for both considered cases are given
in Table 3. The droplet is initialized in mechanical equilibrium with the surrounding
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Table 3 Initial conditions and material parameters for the shock-droplet interaction.

p0[bar] ρ0[kg m−3] γ [−] p∞[bar] σ [Nm−1]
Air 1.01325 1.204 1.4 0 −
Water (SIE) 1.01355 1000 6.12 3430 15.1571

Water (RTP) 1.19865 1000 6.12 3430 9269.85

air. The pressure difference between droplet and air is given by the Young-Laplace
Law. For the comparison with the literature, the non-dimensional time t∗ is defined
as

t∗ = t
D0
us

√
ρL

ρs

, (26)

with us denoting the post shock velocity and ρs the post shock density.
As in Winter et al. [49], we considered two breakup regimes: the shear induced

entrainment (SIE) regime and the Rayleigh-Taylor piercing (RTP) regime. For the
SIE case, We = 7339, we show the results at the time instances t∗ = 0.25, t∗ = 0.75
and t∗ = 1.5 in Fig. 6. After the shock impinges on the droplet, the surrounding
flow deforms the droplet’s surface and a complex vortex system is generated in the
wake. The two disconnected ligaments at t∗ = 1.5 stem from the fact that part of
the interface has already left the domain. Comparing with the results of Winter et
al. [49], the deformations are very similar in the early stages of the simulation.
At later stages, differences become more and more apparent. These stem from the
neglect of viscous effects in the presented results. The inclusion of viscosity at the
interface by Winter et al. [49] produces a smoother droplet surface and a postponed
breakup. This can be observed by comparing the time instance t∗ = 1.5 from Fig. 6
with their results. Nevertheless, this testcase displays the capability of the proposed
framework to capture strongly deformed interfaces. An inclusion of viscous effects
will be considered in future work.

Next, we consider the RTP case, We = 12. Here, viscous effects are negligible.
Results for the non-dimensional time instances t∗ = 0.25, t∗ = 0.75 and t∗ = 1.5
can be seen in Fig. 7. Similar to the SIE case, the droplet deforms after the shock
impingement. However, due to the larger surface tension forces, the dropletmaintains
amore compact form in contrast to the casewith a higherWe number.Comparingwith
the results shown in [49], both simulations show a good agreement in the predicted
droplet shape. These results demonstrate that our method allows to simulate complex
high Mach number settings.
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Fig. 6 Numerical Schlieren image(top) and non-dimensional streamwise velocity(bottom) u∗ =
u/us for the SIE case at different time instances. The phase interface is depicted in white.
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Fig. 7 Numerical Schlieren image(top) and non-dimensional streamwise velocity(bottom) u∗ =
u/us for the RTP case at different time instances. The phase interface is depicted in white.
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5 Conclusion

In this paper we provided an overview over a level-set ghost-fluid framework for
sharp interface multi-phase flow simulations based on the work in [10] and [31]. We
discussed an improved finite-volume sub-cell scheme for the level-set equation based
on path-conservative schemes. In addition, two changes in the curvature calculation
were presented. At first, the general second derivative of the level-set was used.
Secondly, we introduced an upper bound of the curvature value, depending on the
size of the grid elements, limiting the curvature by the grid resolution. At last, we
discussed a necessary modification of the level-set transport to capture merging
phenomena. We avoided the use of the transport velocity in the merge cells since it
cannot be defined properly.

We showed that these modifications allow the simulation of merging drops with
surface tension in two settings: drops in a gas with a linear velocity profile and
colliding drops. Afterwards we showed that complex shock-drop interactions are
also well within the capabilities of the framework. The modifications allowed the
resolution of very fine two-phase structures with respect to the grid size and ensured
a stable simulation. We currently work on an extension of the framework to viscous
flows. In addition, more complex interactions of bubbles and droplets and drop-
wall interactions will be addressed. Detailed investigations on the implicit-explicit
framework are currently underway.
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Entropy Stable Numerical Fluxes for
Compressible Euler Equations Which
Are Suitable for All Mach Numbers

Jonas P. Berberich and Christian Klingenberg

Abstract We propose two novel two-state approximate Riemann solvers for the
compressible Euler equations which are provably entropy dissipative and suitable
for the simulation of low Mach numbers. What is new, is that one of our two meth-
ods in addition is provably kinetic energy stable. Both methods are based on the
entropy satisfying and kinetic energy consistent methods of [5]. The lowMach num-
ber compliance is achieved by rescaling some speed of sound terms in the diffusion
matrix in the spirit of [17]. In numerical tests we demonstrate the low Mach number
compliance and the entropy stability of the proposed fluxes.

1 Introduction

Compressible Euler equations are used to model the flow of compressible inviscid
fluids such as air. To find approximate solutions of the Euler system it is common to
use finite volumemethods. These are well-suited due to their conservative nature and
their capability to resolve discontinuities. The fluxes at the cell interfaces are often
determined by approximating the solution of the 1-d interface Riemann problem
using numerical (two-state) fluxes.

For a sequence of ever lower Mach numbers, the solutions of the compressible
Euler equations with well-prepared initial data converge towards solutions of the
incompressible Euler equations [8]. This limit, however, is not correctly represented
in a finite volume scheme using conventional numerical fluxes due to excessive
diffusion at low Mach numbers. Special low Mach number compliant numerical
fluxes have been developed (e.g. [2, 4, 7, 17–19, 22, 27, 28], to correct this behavior.

Stability is required to ensure the convergence of a finite volumemethod. There are
different notions of stability, one of them being entropy stability. Entropy stability is
a non-linear stability criterion which additionally ensures that the entropy inequality
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-an admissibility criterion for physical solutions- is satisfied. Ismail and Roe [14],
and later Chandrashekar [5], developed two-state Riemann solvers based on the Roe
flux [23], which ensure entropy dissipation to achieve entropy stability. The flux by
Chandrashekar [5] is kinetic energy consistent additionally.

Recently, a numerical flux based on [14] has been developed which is entropy
dissipative and low Mach compliant [6]. In this article we present two methods for
compressible Euler equations closed with an ideal gas law based on the entropy
stable and kinetic energy compliant fluxes of Chandrashekar [5] and a low Mach
modification of Li and Gu [17]. The methods we propose are entropy dissipative
and low Mach compliant. One of our methods is additionally kinetic energy stable.
The low Mach number method from Li and Gu [17] has the tendency to develop
so-called checkerboard instabilities at low Mach numbers. Numerical experiments
indicate that the methods developed in this article suppress the checkerboard modes.

The rest of the article is structured as follows: In Sect. 2 we describe the entropy
and kinetic energy dissipative methods introduced in [5]. In Sect. 3 we discuss the
behavior of the method at low Mach numbers and we present a correction in Sect. 4.
Numerical tests demonstrating the improved results at low Mach numbers and the
entropy dissipation of the proposed methods are presented in Sect. 5.

2 Kinetic Energy and Entropy Stable Fluxes

The 2-d Euler equations which model the conservation laws of mass, momentum,
and energy of a compressible inviscid fluid are given by

∂q
∂t

+ ∂ f
∂x

+ ∂ g
∂y

= 0, (1)

where the conserved variables and fluxes are

q =

⎡
⎢⎢⎣

ρ

ρu
ρv

E

⎤
⎥⎥⎦ , f =

⎡
⎢⎢⎣

ρu
ρu2 + p

ρuv

(E + p)u

⎤
⎥⎥⎦ , g =

⎡
⎢⎢⎣

ρv

ρuv

ρv2 + p
(E + p)v

⎤
⎥⎥⎦ . (2)

Moreover, E = ρε + 1
2ρ|v|2 is the total energy per unit volume with v = [u, v]T

being the velocity. The pressure p is related to the density and internal energy via
the ideal gas equation of state

p = RTρ with T = γ − 1

R

ε

ρ
. (3)
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The dependent variable T is called temperature, the constants are the gas constant
R, and the ratio of specific heats γ .

2.1 Entropy-Entropy Flux and Entropy Variables

A pair (U,φ) with a convex function U (q) and a vector valued function φ(q) =
[φx(q), φy(q)]T is called entropy-entropy flux pair, if it satisfies the relations

U ′(q) f ′(q) = φ′
x (q), U ′(q)g′(q) = φ′

y(q). (4)

Using this pair, we can add the additional conservation law

∂U

∂t
+ ∂φx

∂x
+ ∂φy

∂y
= 0 (5)

to Eq. (1). As usual in the context of hyperbolic conservation laws, we also want
to admit discontinuous solutions and interpret all the derivatives in Eq. (1) in the
weak sense. At discontinuities, the entropy is not necessarily conserved. Instead, the
inequality

∂U

∂t
+ ∂φx

∂x
+ ∂φy

∂y
≤ 0 (6)

is demanded as a criterion to choose admissible (physical) solutions. We define
entropy variables by

r(q) := U ′(q) (7)

and the dual to the entropy flux by ψ(r) = [ψx (r), ψy(r)]T with

ψx (r) := r · f (q(r)) − φx (q(r)), ψy(r) := r · g(q(r)) − φy(q(r)), (8)

where q(r) is the inverse of r(q) defined above. The inverse exists because of the
convexity of U (q).

For the Euler Eq. (1), the most common choice of an entropy-entropy flux pair is

U := − ρs

γ − 1
, φ := − ρvs

γ − 1
, (9)

where s := ln
(
pρ−γ

) = −(γ − 1) ln(ρ) − ln(β) − ln(2) up to a constant with β :=
1/(2RT ). This choice is not unique [12], but it is the one consistent with the entropy
condition from thermodynamics in the presence of heat transfer [13]. The entropy
variables are subsequently given by

r :=
[ [γ−s]

γ−1 − β|v|2, 2βu, 2βv, −2β
]T

. (10)
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and the entropy flux dual
ψ = ρv. (11)

2.2 A Basic Finite Volume Method

In this section, for brevity reasons, we only describe a simple quadrature-free finite
volume method, which is a second order accurate finite volume method on a static
Cartesian grid. In practice, more elaborate methods are used (see e.g. [26]).

We divide the domain 	 = [a, b] × [c, d] with a < b, c < d into cells

	i j :=
[
xi− 1

2
, xi+ 1

2

]
×

[
y j− 1

2
, y j+ 1

2

]
(12)

for i = 0, . . . , N − 1, j = 0, . . . , M − 1. The cell-interface centers are

x
i− 1

2 , j
:=

[
a + i
x, c +

(
j + 1

2

)

y

]T
, x

i, j− 1
2

:=
[
a +

(
i + 1

2

)

x, c + j
y

]T
(13)

with 
x := b−a
N ,
y := d−c

M . We integrate q in each cell to obtain cell-averaged
values

q̂i j (t) := 1


x
y

∫
	i j

q(x, t) dx. (14)

We find an evolution equation for the cell-average values by cell-wise integrating
Eq. (1):

∂t q̂i j (t) = − 1


x
y

∫
	i j

∂x f (q(x, t)) + ∂y g(q(x, t)) dx. (15)

To construct our simple finite volume method we use Fubini’s theorem, the funda-
mental theorem of calculus, and an approximation of the interface integral by the
interface centered point value. The interface centered fluxes are approximated using
a numerical two-state flux. This yields

∂t q̂i j (t) ≈ − 1


x

[
F

(
q̂−
i+ 1

2 , j
(t), q̂+

i+ 1
2 , j

(t)
)

− F
(
q̂−
i− 1

2 , j
(t), q̂+

i− 1
2 , j

(t)
)]

− 1


y

[
G

(
q̂−
i, j+ 1

2
(t), q̂+

i, j+ 1
2
(t)

)
− G

(
q̂−
i, j− 1

2
(t), q̂+

i, j− 1
2
(t)

)]
, (16)

where the q̂± values are obtained using a non-oscillatory reconstruction on the cell-
average values. This set of ODEs is then integrated numerically to evolve the approx-
imate solution q̂ in time. In the rest of the article we drop the hat at q̂i j and just write
qi j . Also, in the rest of the article we will only consider numerical fluxes in x-
direction, since the fluxes f and g for Euler equations can be converted into each
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other by only correctly rotating velocity vectors. For symmetry reasons we assume
F and G to have the same relation.

2.3 Entropy Conservative Numerical Fluxes

Tadmor [24, 25] introduced the concept of entropy conservative numerical fluxes
Fec, which have to satisfy the relation

(r(q+) − r(q−)) · Fec(q−, q+) = ψ(r(q+)) − ψ(r(q−)) = (ρv)+ − (ρv)−. (17)

The last identity is only valid for the Euler Eq. (1). Different entropy conservative
numerical fluxes have been proposed by Tadmor [24], Ismail and Roe [14], and
Chandrashekar [5]. Our method is based on the numerical flux by Chandrashekar [5],
which can be written as

F∗(q−, q+) :=

⎡
⎢⎢⎣
F∗,ρ

F∗,ρu

F∗,ρv

F∗,E

⎤
⎥⎥⎦ :=

⎡
⎢⎢⎢⎣

ρ̂ū
ūF∗,ρ + p̃

v̄F∗,ρ(
1

2(γ−1)β̂
− 1

2 |v|2
)
F∗,ρ + v̄ · [F∗,ρu, F∗,ρv]T

⎤
⎥⎥⎥⎦ .

(18)
The averages are the arithmetic average ā := 1

2 (a
− + a+) and the logarithmic aver-

age â := a+−a−
ln a+−ln a− . A non-singular implementation of â is presented in [14]. The

pressure average is p̃ := ρ̄/(2β̄) where β̄ is computed from β± = ρ±/(2p±). This
pressure average corresponds to the harmonic average in the temperature [5]. The
notations for the averages are used throughout this article.

2.4 Kinetic Energy Preserving Fluxes

From the density and momentum equations in the Euler Eq. (1) the balance law

∂K

∂t
+ ∂(Ku)

∂x
+ ∂(Kv)

∂y
= −u

∂p

∂x
− v

∂p

∂y
(19)

for the kinetic energy K := 1
2ρ|v|2 can be derived. Integration over thewhole domain

	 while ignoring the boundaries yields

∂

∂t

∫
	

K dx =
∫

	

p
∂u

∂x
+ p

∂v

∂y
dx. (20)

Jameson [15] shows that any numerical flux FJ which can be formulated in the form
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FJ (q−, q+) =

⎡
⎢⎢⎣

F J,ρ

ūF J,ρ + 〈p〉
v̄F J,ρ

F J,E

⎤
⎥⎥⎦ , (21)

satisfies the discrete analogon

∂

∂t

∑
i, j

Ki j
x
y =
∑
i, j

(
−1

2
|vi j |2 ∂ρi j

∂t
+ vi j

∂(ρv)i j
∂t

)

x
y

=
∑
i, j

(
〈p〉i+ 1

2 , j


ui+ 1
2 , j


x
+ 〈p〉i, j+ 1

2


vi, j+ 1
2


y

)

x
y (22)

of Eq. (20). Equation (22) can easily be computed using the flux from Eq. (21) and
the corresponding flux in y-direction GJ . The fluxes F J,ρ and F J,E are consistent
approximations of the density and energy flux and 〈p〉 approximates the interface
pressure. Clearly, the entropy conservative numerical flux F∗ from Eq. (18) is in this
kinetic energy preserving form.

In the low Mach number limit, the right-hand side of Eq. (20) vanishes with the
divergence of velocity (e.g. [11]). Equation (20) then describes the conservation
of kinetic energy. This makes kinetic energy consistency especially relevant for low
Mach number fluxes.Most numerical flux functions violate this condition. For exam-
ple, in [18] it is numerically shown that the kinetic energy rises for a simulation of the
incompressible Gresho [10] vortex using a central flux and implicit time stepping.

2.5 Entropy Diffusion

For the scheme to be stable in the presence of discontinuities it needs to dissipate
entropy. Following [5] this is achieved by modifying the Roe scheme diffusion [23]
such that the Roe matrix is applied to the jump in entropy variables r instead of
conserved variables q. The standard Roe scheme uses the diffusion

FRoe,diff
(
q−, q+) := −1

2
DRoe
q := −1

2
R|�|RoeR−1
q, (23)

where

R :=

⎡
⎢⎢⎣

1 1 0 1
u − c u 0 u + c

v v −1 v

H − cu 1
2 |v|2 −v H + cu

⎤
⎥⎥⎦ , (24)

with the enthalpy H = c2

γ−1 + |v|2
2 , is the matrix of right eigenvectors of ∂ f (q)

∂q and
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|�|Roe := diag
([|λ1|, |λ2|, |λ3|, |λ4|

]) = diag
([|u − c|, |u|, |u|, |u + c|]) (25)

is the diagonal matrix with the absolute values of the corresponding eigenvalues.
The whole matrix DRoe is evaluated at the Roe average state [23] to ensure accurate
shock capturing. In order to apply the diffusion matrix DRoe to the jump in entropy
variables, we have to transform these to conserved variables. So the diffusion part of
our numerical flux is

FES,diff
(
q−, q+) := −1

2
R|�|RoeR−1 ∂q

∂r

r. (26)

The entropy diffusion FES,diff can be formulated in a simpler form which can lead
to a more efficient implementation: It is shown by Barth [3] that there is a scaling
R̃ = RS− 1

2 of the Eigenvectors R with ∂q
∂r = R̃ R̃T which leads to the form

FES,diff
(
q−, q+) = −1

2
R̃|�|Roe R̃−1 R̃ R̃T
r = −1

2
R|�|RoeSRT

︸ ︷︷ ︸
=:Q


r = −1

2
Q
r

(27)
with the scaling matrix

S := diag
([

ρ

2γ ,
(γ−1)ρ

γ
, p, ρ

2γ

])
. (28)

Since Q is positive definite by construction, FES,diff is dissipative in the entropy
variables. The numerical flux

FES
(
q−, q+) := F∗ (

q−, q+) + FES,diff
(
q−, q+)

(29)

is hence entropy satisfying in the sense, that a spatially discrete analogon of the
entropy inequality is satisfied. Proofs are analogously to [5, 20]. The numerical flux
in y-direction is constructed in the same way.

2.6 Kinetic Energy Diffusion

Alongside entropy stability we also aim for kinetic energy stability.We have seen that
F∗ ist consistent with the evolution of kinetic energy derived from the Euler Eq. (1).
In order to guarantee kinetic energy stability, the diffusive term in the numerical flux
has to do dissipate kinetic energy. Chandrashekar [5] shows that this requires the
condition |λ1| = |λ4| to hold in Eq. (25). The most obvious way to achieve this is to
choose

|�|KES := diag
([|λ1|, |λ2|, |λ3|, |λ4|

]) = diag
([|u| + c, |u|, |u|, |u| + c

])
. (30)
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in the definition of the entropy-diffusion matrix Q. The numerical flux defined by
this modification on the ES scheme will be called ES-KES or FES-KES throughout
this article. Note that this method is more diffusive than the ES scheme. However, it
adds one more relevant stability property.

2.7 Intermediate State

To ensure correct upwinding, the diffusion matrix in the standard Roe scheme is
evaluated at the so-called Roe average state. Anyway, in our numerical flux FES

we use F∗ instead of the standard central flux, so we can not expect the shock-
capturing property to still hold for our method. In the following we discuss at which
intermediate state the diffusion matrix Q should be evaluated.

The entropy stability property does not depend on the intermediate state, since
Q is positive definite for any state by construction. The kinetic energy stability also
does not depend on the particular choice of the intermediate state, only on the relation
of the entries in the diagonal matrix |�|. For the flux to have the contact property,
Chandrashekar [5] shows that we have to choose

cint =
√

γ

2β̂
and Hint = c2int

γ − 1
+ 1

2
|vint|2. (31)

All other averages can be chosen freely, so we can use arithmetic or logarithmic
averages for example.

However, for implementation reasons it can be useful to hand a intermediate state
vector in primitive variables to the routine which computes the diffusion matrix. We
can realize this using the average state

vint := v̄ pint := p̄ ρint := 2pintβ̂. (32)

In the computation of the diffusion matrix we compute all the other variables from
the primitive intermediate state in the straight forward way, e.g. cint = √

γ pint/ρint

and the enthalpy as described in Eq. (31).

3 Low Mach Number Asymptotics

The Euler Eq. (1) can be cast in the non-dimensional form
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∂

∂t

⎡
⎢⎢⎣

ρ

ρu
ρv

E

⎤
⎥⎥⎦ + ∂

∂x

⎡
⎢⎢⎣

ρu
ρu2 + 1

M2 p
ρuv

(E + p)u

⎤
⎥⎥⎦ + ∂

∂y

⎡
⎢⎢⎣

ρv

ρuv

ρv2 + 1
M2 p

(E + p)v

⎤
⎥⎥⎦ = 0 (33)

using only the assumption that the reference velocity is computed as the quotient of
the reference length and time and one parameter, which we will call reference Mach
number M.

The low Mach number limit of the Euler equations Eq. (33) is well-known and
studied (e.g. [1, 8, 11]). For well-prepared initial data a series of solutions of Eq. (33)
with different reference Mach numbers converge to solutions of the incompressible
Euler equations for M → 0. Conventional finite volume methods tend to fail to
correctly represent this limit for their numerical solutions. One reason for this is
excessive diffusion at low Mach numbers.

Consider the ES-flux introduced in Sect. 2.5. Note that, again, we only consider
the flux in x-direction for simplicity. For small jumps we can approximate

FES
(
q−, q+) = F∗ (

q−, q+) − 1

2
DRoe(qint)

∂q(r)
∂r

∣∣∣∣
r=r(qint)

(
r
(
q+) − r

(
q−))

≈ J (qint) qint − 1

2
DRoe (qint)
q

= ∂q
∂u

∣∣∣∣
qint

Jprim (qint)
∂u
∂q

∣∣∣∣
qint

qint − 1

2

∂q
∂u

∣∣∣∣
qint

DRoe
prim (qint)

∂u
∂q

∣∣∣∣
qint


q

(34)

because of q− ≈ qint ≈ q+ and consequently F∗ (
q−, q+) ≈ f (qint). The interme-

diate state qint is the one defined in Sect. 2.7. The flux Jacobian in primitive variables
is Jprim = ∂u

∂q J
∂q
∂u with the flux jacobian in conserved variables J = ∂ f

∂q and the Roe

diffusion matrix in primitive variables is DRoe
prim = ∂u

∂q D
Roe ∂q

∂u . The primitive variables
are

u := [ρ, u, v, p]T . (35)

Equation (34) justifies the comparison of the two matrices Jprim and DRoe
prim with

regard of their formal scaling with the reference Mach number to gain insight into
the asymptotic behavior of the method for small Mach numbers:
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Jprim =

⎡
⎢⎢⎣
O (1) O (1) 0 0
0 O (1) 0 O (

1
M2

)
0 0 O (1) 0
0 O (1) 0 O (1)

⎤
⎥⎥⎦ , (36)

DRoe
prim =

⎡
⎢⎢⎣
O (1) 0 0 O (

1
M

)
0 O (

1
M

)
0 O (

1
M

)
0 0 O (1) O (1)
0 0 0 O (

1
M

)

⎤
⎥⎥⎦ + O (M) . (37)

Note that the diffusion matrix scaling for the ES-KES flux is the same, since for
low Mach numbers |u + c| ≈ |u| + c ≈ |u − c|. From Eqs. (36) and (37) we see
that there are some terms in which the diffusion matrix dominates the flux Jacobian
for small Mach numbers. This explains the excessive diffusion of the method at
low Mach numbers. Different methods have been proposed to correct those terms in
the Roe diffusion matrix (e.g. [2, 18, 19, 22, 27]). For the entropy stability of our
method, however, the modification should keep the positive definiteness of Q. The
following modification provides this.

4 Low Mach Modifications of the ES and ES-KES Fluxes

Following [17] we modify the diagonal matrices Eqs. (25) and (30) to make the
schemes low Mach number compliant: We use

|�|RoeLM := diag
([|u − c̃|, |u|, |u|, |u + c̃|]) , (38)

|�|KESLM := diag
([|u| + c̃, |u|, |u|, |u| + c̃

])
(39)

with

c̃ := c · max(min(M, 1), Mcut) with M := |v|
c

and Mcut ∈ [0, 1]. (40)

Other possible definitions of the rescaled speed of sound c̃ can be found e.g. in [6, 17].
The global cut-off Mach number Mcut can be used to increase the diffusion and thus
the stability at Mach numbers which are lower than the one expected in a particular
simulation. Using those diagonal matrices instead of |�|Roe and |�|KES yields the
numerical fluxes FES-LM and FES-KES-LM. It is obvious that this modification is com-
patible with the proof of entropy stability in [5]. Also, FES-KES-LM still satisfies the
relation |λ1| = |λ4| required for kinetic energy stability. This modification changes
Eq. (37) into



Entropy Stable Numerical Fluxes for Compressible Euler Equations... 187

(
DRoe

LM

)
prim =

⎡
⎢⎢⎣
O (1) 0 0 O (1)
0 O (1) 0 O (

1
M

)
0 0 O (1) 0
0 0 0 O (1)

⎤
⎥⎥⎦ + O (M) . (41)

and the terms of dominating diffusion at low Mach numbers vanish. As before, this
scaling is also valid for the diffusion matrix of the ES-KES-LM flux.

5 Numerical Tests

In our tests we include the standard Roe flux [23] (Roe), the Roe flux with the
low Mach fix [17] described in Eq. (38) (Roe-LM), the entropy stable fluxes (ES,
ES-KES) from [5] and the entropy stable fluxes with low Mach fix (ES-LM, ES-
KES-LM) proposed in this article. In the low Mach methods we use Mcut = 0. For
time-stepping we use the third order accurate four stage Runge–Kutta Method as
described in [16]. In practice, an implicit method should be used to evolve lowMach
number flows in time due to the stiffness in time [18]. However, this is not in the
scope of this short article.

For the equation of state we choose γ = 1.4, which is a suitable value to describe
air. We set the value of the gas constant to R = 1, such that density and pressure
have the same order of magnitude.

5.1 Test of the Entropy Stability

One test for the entropy compliance of a method is a standing sound wave, for which
e.g. the Roe scheme is well-known to produce a non-physical jump. We solve the
1-d Riemann-problem given by

(ρ, u, p)(x < 0.5) := (1, 0.75, 1) (42)

(ρ, u, p)(x ≥ 0.5) := (0.125, 0, 0.1) (43)

on 100 equidistant grid cells in the domain 	 = [0, 1]. We use the standard Roe-
flux, the standard Roe-flux with the low Mach modification Eq. (38) (Roe-LM),
and the entropy stable low Mach methods ES-LM and ES-KES-LM introduced in
this article (Sect. 4) with constant (which means no) reconstruction. The result at
t = 0.2 is shown in Fig. 1. As a reference solution we use a simulation with the
local Lax–Friedrichs numerical flux on 100 000 grid cells. We see the non-entropic
jump which is produced by the Roe scheme. The lowMach modification in Roe-LM
even increases the non-entropic jump. As expected, for the entropy stable all Mach
methods ES-LM and ES-KES-LM there is no significant non-entropic jump. It is
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Fig. 1 Standing sound wave test at t = 0.2 with different numerical fluxes at a 100 cells grid. The
test-setup is described in Sect. 5.1. Top: density on the whole domain. Middle: Magnified views of
particular regions of the top panel. Bottom: Entropy at the whole domain

notable that the methods proposed in this article also have an improved accuracy
on the expansion shock (zoom 2). In the bottom panel of Fig. 1 we see the entropy
of the solution at time t = 0.2. While the entropy at initial time is non-positive on
the whole domain (This is easy to compute from the initial conditions), the Roe and
Roe-LM method lead to positive values of entropy at time t = 0.2. The ES-LM and
ES-KES-LM method lead to non-positive entropy values on the whole domain.

5.2 Test of the Contact Property

We test the contact property of the method using the Riemann problem
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Fig. 2 Density of a contact discontinuity at t = 0.2 computed using the entropy stable low Mach
methods ES-LM and ES-KES-LM. The setup is described in Sect. 5.2

(ρ, u, p)(x < 0.5) := (1, 0.75, 1) (44)

(ρ, u, p)(x ≥ 0.5) := (0.125, 0, 0.1) (45)

on 100 equidistant grid cells in the domain [0, 1]. We use the ES-LM and ES-KES-
LM fluxes with constant reconstruction and the intermediate state described in Sect.
2.7. The result at t = 0.2 is shown in Fig. 2. Both methods accurately resolve the
contact discontinuity.

5.3 Low Mach Gresho Vortex

The incompressible Gresho vortex [10] can be extended to a family of stationary
solutions of the Euler equations with a parameter that adjusts the maximal local
Mach number in the setup [2]. The setup is

(ρ, v, p) =

⎧⎪⎨
⎪⎩

(1, 5reφ, pc + 25
2 r

2) if r < 0.2,(
1, (2 − 5r)eφ, pc + 4 ln(5r) + 4 − 20r + 25

2 r
2
)

if 0.2 ≤ r < 0.4,

(1, 0, pc + 4 ln(2) − 2) else,

where pc = 1
γ M̃2

1
2 and eφ is the unit vector in angular direction.We apply the standard

Roe flux, the Roe flux with lowMach fix [17], the entropy stable fluxes from [5] and
the entropy stable fluxes with low Mach fix proposed in this article. We use limited
linear reconstruction on a 32 × 32 cells grid with periodic boundary conditions to
evolve the vortex for 0.1 revolutions. For the lowMach number fluxes we use Mcut =
0. TheMach number at final time is shown in Fig. 3 for the different numerical fluxes
(columns) and maximal initial Mach number parameters M̃ = 1, 0.1, 0.01 (rows).
The Roe, ES, and ES-KES numerical fluxes lead to completely diffused vortexes
for lower Mach number, while the proposed fluxes (ES-LM, ES-KES-LM) are as
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Fig. 3 Local Mach number of the Gresho vortex test from Sect. 5.3 after 0.1 rotations. The initial
maximal Mach number decreases from top to bottom. In the different columns different numerical
fluxes are applied

capable of accurately resolving the Gresho vortex at lower Mach numbers as the Roe
method with low Mach fix (Roe-LM, [17]).

6 Conclusions and Outlook

We presented novel numerical flux functions which combine the entropy and kinetic
energy stability properties of the fluxes proposed in [5] with the low Mach number
compliance of the method from [17]. The entropy stability and the lowMach number
compliance have been shown in numerical tests. The contact property holds due to the
correct choice of the intermediate state. It is worth noting that the proposed methods
also show an improved performance at fast shocks. For practical applications of the
proposed methods we suggest the combination with implicit time-stepping to over-
come the stiffness in time. To extend the method to higher order while maintaining
the entropy stability, special care has to be given to the reconstruction procedure, as
discussed in [9, 21]. To avoid the carbuncle phenomenon at strong shocks, [5, 20]
suggest a hybrid diffusion with a Rusanov-type diffusion term.
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Residual Based Method for Sediment
Transport

P. Poullet, P. Ramsamy, and M. Ricchiuto

Abstract This contribution deals with a high order Residual Distribution (RD)
numerical scheme to simulate sediment transport. The morphodynamic model that
has been used, couples shallow–water equations for the fluid flow and the Exner
law for the sediment part. Thus, the choice of the approach by a non-conservative
hyperbolic system has been made. Different schemes have already been applied
to approximate the entropic solution for several test cases [10]. The one proposed
in this paper resorts to RD-method, TVD Runge Kutta [27, 31] and stabilisation
upwind methods [13], with limiters. It can be viewed as an improvement of the
generalized approximate Roe method [8, 14, 29] with some other good properties
(Path-conservative, well-balanced...). Numerical results show the ability of themodel
in 1D to compute accurate solutions and to reproduce some classical test problems.
The best results that we obtained, use MinMod flux limiters.

1 Introduction

This work is incorporated within the framework of the study of a sediment transport
modelling. One aim of this contribution, is to provide first, an useful simulation
tool, in the context of a 1D space-time problem. Considering the geophysical aspect,
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the sediment transport can be divided into several categories, in this paper we will
be interested in bedload transport. The governing equations consist of a system of
three equations, modelling the interaction between fluid and sediment in a river. The
hydrodynamical component is described by the shallow–water equations (SWE) and
the morphodynamical component, is given by a solid transport discharge due to
the Exner law with the Grass formula. In this way, the model can be depicted by
a non-conservative and non-linear hyperbolic system, and our main objective is to
seek numerical solutions in accordance with these specific aspects. In particular, a
good scheme for that model, must comply with the well-balanced property and the
path-conservative character. Moreover, as the fluid interacts very weakly with the
sediment and characteristic velocities being such a different magnitude, long time
simulation and high order accuracy (at least second order) are needed.

To treat hyperbolic problem, finite volumes are the most popular methods as
the Godunov scheme. For conservation laws, first attempts to propose approximate
solver for hyperbolic systems in non-conservative form, were due to Roe [28]. After
that, several approaches have been introduced like approximate finite volume Roe
with characteristic flux scheme [14], schemes based on exact or incomplete Riemann
solvers [5], WENO schemes [32], generalized Roe methods with or without WENO
reconstruction [8–10], or kinetic schemes [24].

In parallel to finite volume, another family ofmethods calledResidualDistribution
(RD) methods that emerged from Roe’s works in the 80s, is used in this paper [11,
28]. Combining advantages from finite volume and finite element methods, their
construction allows them nowadays to be monotone, conservative, well-balanced
and easily high order accurate [1, 2, 19, 20, 27, 31].

In this contribution, a RD scheme, viewed as a recast of the approximate Riemann
solver, called FV-Roe approximation scheme is proposed with simulations. Often
used to solve the shallow–water problem, the residual based method is adapted here
to solve the coupling problemwith sediment transport. And for that the use of a TVD
Runge Kutta procedure, but also upwinding and a flux limiter procedures, have been
added, to compute weak entropic solution, considering Lax entropy.

To introduce our scheme, the present paper is organized according to the following
outline: In Sect. 2, the governing equations are introduced. In Sect. 3, our scheme is
proposed. And finally, numerical tests are given, in order to show how accurate the
scheme is, but also its well-balanced preserving aspect, for the lake at rest.

2 A Sediment Transport in a Shallow Water

In the context of the study of sediment transport in shallow water, several morphody-
namical models can be found in the litterature depending on the way of considering
the displacement mode. In the case of bedload transport, among several models [12,
18, 21, 30], the discharge is written by the Grass formula [15] for simplicity. It
involves that the critical shear stress is neglected, then the sediment is viewed as
starting its own movement as soon as the fluid starts to move. About the hydrody-
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Fig. 1 A sediment layer in a
shallow water

S h

η

namical part, shallow–water equations are considered. The result is an hyperbolic
system of three equations.

The governing system for the 1D space-time problem, is as follows

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂h
∂t + ∂q

∂x = 0

∂q
∂t + ∂

∂x

(
q2

h + 1
2gh

2

)

= gh ∂S
∂x − ghS f

∂S
∂t − ζ

∂qb
∂x = 0,

(1)

where x denote the horizontal variable at the axis of the channel and t the time
variable (see [10]). By h(x, t) we denote the height of the water column, q(x, t)
is the discharge, g is the gravity constant, S f models the friction term and ζ a
parameter linked to the sediment porosity (ζ = 1/(1 − ρ0) with ρ0 the porosity).
The third equation of the model describes the sediment transport by the expression
of the sediment volume equation, qb being the solid transport discharge obtained by
Grass formula (here, qb = Ag(q/h)3 with Ag related to the interaction between the
fluid and the sediment). The variable S(x, t) is the distance from a given reference
level to the bottom layer. A schematic description is provided (see Fig. 1), η denoting
the extra height of the water column.

Neglecting S f in this study, a classical approach is to treat the system (1) as a
hyperbolic system with a non-conservative term B:

∂W

∂t
+ A(W )

∂W

∂x
= 0, (2)

with W = W (x, t) and (x, t) ∈ IR × IR+. In fact, the vector of unknowns is

W = (h, q, S)T ,

F is the flux function and, A(W ) equals to the difference between the Jacobian
matrix of F and the non-conservative part:

A(W ) = ∂F

∂W
(W ) − B(W ).



196 P. Poullet et al.

More precisely,

F(W ) =
⎛

⎜
⎝

q
q2

h + 1
2 gh

2

−ζqb

⎞

⎟
⎠ , B =

⎛

⎝
0 0 0
0 0 gh
0 0 0

⎞

⎠ , A(W ) =

⎛

⎜
⎜
⎜
⎝

0 1 0

−q2

h2
+ gh 2qh 0

−ζ
∂qb
∂h −ζ

∂qb
∂q 0

⎞

⎟
⎟
⎟
⎠

,

and A(W ) =

⎛

⎜
⎜
⎜
⎝

0 1 0

−q2

h2
+ gh 2qh −gh

−ζ
∂qb
∂h −ζ

∂qb
∂q 0

⎞

⎟
⎟
⎟
⎠

.

3 A Residual Based Predictor-Corrector Upwind
Discretization for 1D Space-Time Sediment Transport

Following the introduction, the scheme built in this work, can be viewed as an high
order recast of the approximate FV-Roe as introduced by Ghidaglia et al. in [14].
Instead of using a high order reconstruction, our approach exploits the residual based
approach discussed in [26, 27].

To present the scheme, one neglects the friction term, and one considers the
hyperbolic system with a non-conservative term. Also, to simplify writing in this
section, in integrals the term dx will be omitted (all are space integrals).

Onewill consider the intervals (computing cells) definedby Ii = [xi− 1
2
, xi+ 1

2
], i ∈

ZZ, but also the intervals Ii+ 1
2

= [xi , xi+1]. Let the step �xi = xi+ 1
2
− xi− 1

2
and that

xi− 1
2

=
i−1∑

k=1

�xk is the intercell located at the middle of Ii−1 ∪ Ii . �t is the time step

and tn = n�t . As usual, we denote by Wn
i the approximate mean value of W in

node xi and at time tn . The RD procedure consists of making the computation of the
residual, called global, on a cell Ii and then distributing fractions of this quantity to
each of its verteces. Under these assumptions, one gets for a linear approximation of
W (x, tn),

Wn
i := 1

�xi

∫

Ii

W (x, tn) ≈ W (xi , t
n).

Then, the residual–based predictor corrector method developed in [26, 27] can be
written as follows

Wn+1
i = Wn

i − �t

�x

{
1

2
�i (W

n) + 1

2
�i (W

∗)
}

+ �i− 1
2
+ �i+ 1

2
, (3)
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with�i (W ) corresponds to the approximate FV-Roe scheme discrete evolution oper-
ator (without the additional term)

�i (W ) = P+(Ai− 1
2
)φi− 1

2
+ P−(Ai+ 1

2
)φi+ 1

2
.

Concerning the non-conservative terms, one proceeds by linearization along the path
joining Wi and Wi±1, to compute an approximate value of Wi± 1

2
= 1

2 (Wi + Wi±1).
We then denote by Ai± 1

2
= A(Wi± 1

2
), Bi± 1

2
= B(Wi± 1

2
). Also, the fluctuations

are:

φi− 1
2

= Fi − Fi−1 − Bi− 1
2
(Wi − Wi−1) and φi+ 1

2
= Fi+1 − Fi − Bi+ 1

2
(Wi+1 − Wi ),

and the projectors,

P±(Ai∓ 1
2
) = 1

2
(I ± sign

(Ai∓ 1
2
)),

with the sign of a matrix computed by eigen-decomposition

sign(Ai∓ 1
2
) = Ki∓ 1

2
sign(Li∓ 1

2
)K−1

i∓ 1
2
.

The matrixK gathering the eigenvectors of the Roe matrix (along the path), sign(L)

is the diagonal matrix whose coefficients are the sign of the eigenvalues (see [23] for
example). We denote byW ∗, a predicted value of the solution that has been obtained,
from the upwind scheme,

W ∗
i =Wn

i − �t

�xi
�i (W

n).

Actually, if we introduce a parallel approach using Galerkin method by seeking a
piecewise linear solution, in a domain 
 =]0, L[,

Wh(x, t) =
∑

i

ϕi (x)Wi (xi , t), and Fh = F(Wh),

with ϕi representing the standard Lagrange basis fonctions associated to the node
xi . One replaces the unknown solution by its approximate solution by finite element
from the variational form

∫




ϕi∂tWh +
∫




ϕi∂x Fh −
∫




ϕi B(Wh)∂xWh = 0. (4)

And one can notice that by linear approximation,
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∫




ϕi∂x Fh =
∫

I
i− 1

2

ϕi∂x Fh +
∫

I
i+ 1

2

ϕi∂x Fh ≈ Fi − Fi−1

2
+ Fi+1 − Fi

2
. (5)

Hence, the resulting non-stabilized method reads

∫




ϕi∂tWh + 1

2
φi+ 1

2
+ 1

2
φi− 1

2
= 0, (6)

with the approximation of the first term �xi
dWi
dt , one recovers the mass lumping

process.
But as it is known that Galerkin method suffers from lack of stability, one adds a

residual based stabilization in the spirit of the streamline upwind method or Stream-
line Upwind Petrov Galerkin (SUPG) [17, 26, 27].

For a node xi , the stabilization operator Si reads

Si =
∫




A(Wh)∂xϕi T r̃ with r̃ = ∂tWh + ∂x Fh − B(Wh)∂xWh,

the matrixT being a scaling factor guaranteeing the uniform boundedness of the sta-
bilization w.r.t. the residual. As before, explicit computable expressions are obtained
when introducing the linear finite element approximation and introducing appropri-
ate mean value linearizations of the matrices that appear. Recalling that for a linear
approximation ∂xϕi

∣
∣
I
i± 1

2

= ∓1/�xi± 1
2
, the stabilization term can be evaluated as

Si = Ai+ 1
2
Ti+ 1

2

(∫

I
i+ 1

2

∂tWh + φi+ 1
2

)
− Ai− 1

2
Ti− 1

2

(∫

I
i− 1

2

∂tWh + φi− 1
2

)
(7)

In one dimension, a typical definition of the scaling matrix T , also used here, being
the following

Ti± 1
2

= 1

2
�xi± 1

2
sign(Ai± 1

2
)A−1

i± 1
2

= �xi± 1
2

2
|Ai± 1

2
|−1, (8)

the complete semi-discrete (in space) equations read

∫

Ii− 1
2

(
ϕi + sign(Ai− 1

2
)
)

∂tWh +
∫

Ii+ 1
2

(
ϕi − sign(Ai+ 1

2
)
)

∂tWh

= −
(
P+(Ai− 1

2
)φi− 1

2
+ P−(Ai+ 1

2
)φi+ 1

2

)
.(9)
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As it has been explained in [27], a simplified stabilization step can be added in the
Galerkin process with the Runge-Kutta scheme without any loss of accuracy (here,
an explicit RK2 of second order accuracy is used). Thus, the residual

rn+1 := Wn+1
h − Wn

h

�t
+ 1

2
(∂x Fh − Bh∂xWh)

∗ + 1

2
(∂x Fh − Bh∂xWh)

n (10)

can be replaced with a simplified residual

r∗ := W ∗
h − Wn

h

�t
+ 1

2
(∂x Fh − Bh∂xWh)

∗ + 1

2
(∂x Fh − Bh∂xWh)

n, (11)

to design the scheme by computing

∫




ϕi r
n+1 +

∫

I
i− 1

2
∪I

i+ 1
2

A(Wh)∂xϕi T r∗ = 0. (12)

Using an explicit scheme by performing mass lumping in the predictor step (6), and
with midpoint rule to evaluate the integrals, one obtains after few calculations and
recast Eq. (3), that one recalls

Wn+1
i = Wn

i − �t

�x

{
1

2
�i (W

n) + 1

2
�i (W

∗)
}

+ �i− 1
2
+ �i+ 1

2
,

with the aim to define �i± 1
2
as:

ψi± 1
2

= �t

�x

∫

I
i± 1

2

(
ϕi − 1

2
(I ∓ sign(Ai± 1

2
))

)W ∗
h − Wn

h

�t

≈1

2

(
W ∗

i − Wn
i − (I ∓ sign(Ai± 1

2
))(W ∗

i± 1
2
− Wn

i± 1
2
)
)
.

However, comparing to the FV-Roe scheme, the additional terms �i± 1
2
that derive

from residual stabilization are of second order, that cannot always match with non
regular solution. To avoid their effects accross discontinuous features, cell based
limiters have been introduced and finally,

�i± 1
2

= δi± 1
2
ψi± 1

2

with δi± 1
2
computed by means of a standard finite volume limiters using values

of the MUSCL MinMod flux limiter function [7].
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4 Numerical Results

We present the numerical results of several reference problems. In this section, we
aim at validating our numerical scheme and highlighting its characteristic properties
against classical tests. The first test consists in proving an approximate well-balanced
property of our scheme. We then underline the ability of our scheme to simulate a
parabolic sediment transport until a discontinuous solution is obtained.We also prove
its high order accuracy by means of an order test problem that has been discussed
in [10]. Finally, we prove that our scheme is capable of faithfully reproducing a
dam-break problem over a wet bottom topography [4].

4.1 Test of Well-Balanced Property

To check the property, the following numerical test is used [25]. It deals with the
ability of the scheme to reproduce the behaviour of the steady state. Thus, if the
numerical scheme is well-balanced, a small difference should be observed between
the initial solution and the solution obtained at the final instant.

For this, the interval [0, 10] is assumed as the physical domain and the simulation
is performed up to T = 0.5s with 100 and 200 cells. A discontinuity in the bed is
assumed as the initial condition, so the thickness of the sediment layer is considered,

zb(x, 0) =
{
4 if 4 ≤ x ≤ 8
0 elsewhere

(13)

and
q(x, 0) = 0, h(x, 0) + zb(x, 0) = 10.

The results in Table 1, show that the scheme preserves the approximate well-
balanced property [22]. The differences between the initial solution and the solution
at final time are very small.More precisely, the ratio is of around 1.5 between the dou-
bled gridpoints and the coarser one. The accuracy seems to be of order 1.5 (Table 1).

Table 1 Accuracy of the scheme for the well-balanced test property

Precision L2-error h Ratio L2-error q Ratio

100 8.6052 × 10−16 - 7.1712 × 10−15 -

200 5.2050 × 10−16 1.65 5.8743 × 10−15 1.22
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Fig. 2 The dune at initial
time

Fig. 3 zb at 700s for RD
scheme and FV-Roe

4.2 A 1D Space-Time Dune Test Case

To verify the shock capturing property, the classical transport of parabolic sediment
layer has been taken. For this case proposed in [7, 10, 16], the interval [0, 1000] is
assumed as the physical domain and a strong interaction between the fluid and the
sediment is taken (Ag = 1). The initial conditions are given as follows (see Fig. 2):
the bathymetry is of 10 m, q(x, t) = 10 for the discharge of the fluid, h(x, t) =
10 − zb(x, t) for the water column height with the sediment layer thickness ,

zb(x, 0) =
{
0.1 + sin2

(
π(x−300)

200

)
if 300 ≤ x ≤ 500

0.1 elsewhere
. (14)

Numerical solutions are generated up to T = 700 s.As shown inFig.3, the solution
of our scheme (solid line) is compared to the solution of the FV-Roe approximation
(dotted line), and we note that the RD scheme is less diffusive than the first and
the shock is more visible (thanks to the limiters). Therefore, the results show that
our numerical scheme seems to satisfy the shock capturing property for this test. It
can be noted that it is also stable, more precisely the RD scheme does not generate
oscillations even though the interaction between the fluid and the sediment is strong
(somewhat artificialwith the initial conditions chosen [16]). The comparison between
the evolution of the dune between the RD scheme and the SRNH scheme (a second-
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Fig. 4 zb at 700s for RD
scheme and SRNH

Fig. 5 zb at 700s for RD
scheme and SRNH: zoom on
the shock

order scheme extracted from [6], see Figs. 4 and 5) seems to confirm that our scheme
is of the second order and is less diffusive than the other.

4.3 A Test of Order

To check the accuracy of the numerical scheme, let us introduce the following one-
dimensional problem for which initial conditions are:

q(0, x) = 0, h(0, x) = 2 − 0.1 exp(−x2), zb(0, x) = 0.1 − 0.01 exp(−x2).
(15)

This test problem has been considered in a previous work by Castro Diaz et al. [10],
and as the exact solution is unknown, we use a reference solution obtained by a fine
mesh of 5120 volumes (as it has been done in their work) with a medium interaction
(Ag = 0.3).

Numerically, the results for h, q and the sediment layer thickness (zb) and different
error norms, show that the second order of accuracy seems to be obtained (see Tables
2, 3 and 4).
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Table 2 Accuracy of the RD-scheme with distributed residual scheme for h
# gridpts L1-error Order L2-error Order L∞-error Order

20 5.628 × 10−3 - 8.600 × 10−3 - 2.088 × 10−2 -

40 2.421 × 10−3 1.22 4.159 × 10−3 1.05 1.086 × 10−2 0.94

80 7.918 × 10−4 1.61 1.408 × 10−3 1.56 4.036 × 10−3 1.43

160 2.072 × 10−4 1.93 3.815 × 10−4 1.88 1.211 × 10−3 1.74

320 5.257 × 10−5 1.98 9.693 × 10−5 1.98 3.159 × 10−4 1.94

640 1.314 × 10−5 2.00 2.423 × 10−5 2.00 7.927 × 10−5 1.99

Table 3 Accuracy of the RD-scheme with distributed residual scheme for q, the discharge
# gridpts L1-error Order L2-error Order L∞-error Order

20 2.350 × 10−2 - 3.771 × 10−2 - 9.248 × 10−2 -

40 1.042 × 10−2 1.17 1.835 × 10−2 1.04 4.783 × 10−2 0.95

80 3.435 × 10−3 1.60 6.205 × 10−3 1.56 1.783 × 10−2 1.42

160 8.995 × 10−4 1.93 1.681 × 10−3 1.88 5.349 × 10−3 1.73

320 2.281 × 10−4 1.98 4.269 × 10−4 1.98 1.397 × 10−3 1.94

640 5.697 × 10−5 2.00 1.067 × 10−4 2.00 3.510 × 10−4 1.99

Table 4 Accuracy of the RD-scheme with distributed residual scheme for zb, the height of the
sediment layer
# gridpts L1-error Order L2-error Order L∞-error Order

20 2.969 × 10−5 - 5.443 × 10−5 - 1.423 × 10−4 -

40 1.265 × 10−5 1.23 2.739 × 10−5 0.99 8.168 × 10−5 0.80

80 4.469 × 10−6 1.50 9.014 × 10−6 1.60 2.861 × 10−5 1.51

160 1.200 × 10−6 1.90 2.536 × 10−6 1.83 8.578 × 10−6 1.74

320 3.019 × 10−7 1.99 6.409 × 10−7 1.98 2.217 × 10−6 1.95

640 7.516 × 10−8 2.01 1.596 × 10−7 2.00 5.571 × 10−7 1.99

4.4 A Dam Break Test over a Wet Bottom Topography

In this classical test case ([4]) a dam break is considered over a flat wet bottom, in a
channel of 10m long. A low interaction between the fluid and the sediment is taken
(Ag = 0.005), and the initial conditions are,

h(x, 0) =
{

2 if x ≤ 5m
0.125 if x > 5m

, (16)

q(x, 0) = 0m/s and the bottom topography zb = 0m. The numerical test is per-
formed until T = 1s. The results confirm that our scheme keep the stability as
attempted for the coupled approaches (see Fig. 6, 7), in comparison the approach
by splitting [3]. The accuracy of our RD scheme is of course better than those
obtained by the FV-Roe scheme (8). More precisely, as expected and considering



204 P. Poullet et al.

Fig. 6 Dam break over a
wet bottom: h at t = 1s for
RD scheme with 1000 cells

Fig. 7 Dam break over a
wet bottom: zb at t = 1s for
RD scheme with 1000 cells

Fig. 8 Dam break over a
wet bottom: error analysis
for RD scheme

the bottom firstly (Fig. 6) the solution computed with the RD scheme forms two
plates without any oscillation (in a critical region includes the interval [4, 6] with
−0.1 < zb < −0.05, and in a region where x > 6.5 with zb > 0.5). Then, for the
free surface (Fig. 7), the solution of the RD scheme (dashed line) is decreasing along
the time, and a plate is reached without oscillation in the critical region [4, 6]. For
both unknowns, a comparison with the FV-Roe approximation (dotted line) is pro-
posed, underlying that the results are quite similar. However the RD scheme is more
accurate for the bottom (see Fig. 8 for which the L2 errors are produced from a
referent solution computed with 2000 elements grid).

5 Concluding Remarks

This contribution proposed a new predictor-corrector scheme, based on the residual,
to simulate a sediment transport problem. Numerical tests have highlighted its high
order accuracy, its approximate well-balancedness property and its stability for some
test problems. In particular, the solutions obtained for the problem of dam-break with
wet topography are sharp. Work is in progress to take into account dry bottoms, for
example. The extension of this model to take into account a coastal configuration (2D
physical domain), by parallel programming,will also be done in a future contribution.
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Pseudo-compressibility, Dispersive Model
and Acoustic Waves in Shallow Water
Flows

Anne-Sophie Bonnet-Ben Dhia, Marie-Odile Bristeau, Edwige Godlewski,
Sébastien Impériale, Anne Mangeney, and Jacques Sainte-Marie

Abstract In this paper we study a dispersive shallowwater type model derived from
the free surface compressible Navier-Stokes system. The compressible effects allow
to capture the acoustic-like waves propagation and can be seen as a relaxation of an
underlying incompressible model. The first interest of such a model is thus to capture
both acoustic and water waves. The second interest lies in its numerical approxima-
tion. Indeed, at the discrete level, the pseudo-compressibility terms circumvent the
resolution of an elliptic equation to capture the non-hydrostatic part of the pressure.
This drastically reduces the cost of the numerical resolution of dispersive models
especially in 2d and 3d.
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1 Presentation

The non linear shallow water model with topography [7] is widely used to describe
geophysical flows and an extensive literature exists for its numerical approxima-
tion [3, 6, 10, 22, 25]. But the classical shallow water equations rely on the hydro-
static assumption and many shallow water type models taking into consideration the
dispersive effects have been proposed and studied in the literature, see [2, 8, 9, 12,
13, 19, 23, 27, 28], the list being non-exhaustive.

Considering a two-dimensional domain � ⊂ R
2 delimited by the boundary � =

�in ∪ �out ∪ �s as described in Fig. 1-(a), some of the authors have proposed a family
of 2d shallow water dispersive models written under the form [2]

∂h

∂t
+ ∂(hu)

∂x
+ ∂(hv)

∂y
= 0, (1)

∂(hu)

∂t
+ ∂

∂x

(
hu2 + g

2
h2 + hp

)
+ ∂(huv)

∂y
= −(gh + γ 2

2
p)

∂zb
∂x

, (2)

∂(hv)

∂t
+ ∂(huv)

∂x
+ ∂

∂y

(
hv2 + g

2
h2 + hp

)
= −(gh + γ 2

2
p)

∂zb
∂y

, (3)

∂(hw)

∂t
+ ∂(huw)

∂x
+ ∂(hvw)

∂y
= γ p, (4)

γw = −h
∂u

∂x
+ γ 2

2
u

∂zb
∂x

− h
∂v

∂y
+ γ 2

2
v
∂zb
∂y

, (5)

where u(t, x) = (u, v, w)T is the velocity of the fluid with x = (x, y), p is the non-
hydrostatic part of the fluid pressure, the total pressure is given by ptot = gh/2 + p
and g represents the gravity acceleration. The value of the parameter γ ∈ R will be
discussed in Remark 1. The water depth (resp. the topography profile) is denoted
h(t, x) (resp. zb(x)) and the free surface is defined by (see Fig. 1-(b))

η(t, x) := h(t, x) + zb(x). (6)

For smooth solutions, the system (1)–(5) satisfies the following energy balance

∂E

∂t
+ ∇0 ·

(
u(E + g

2
h2 + hp)

)
= 0, (7)
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(a) (b)

Fig. 1 Model domain and notations, a view from above and b vertical cross section

with the operator ∇0 = ( ∂
∂x ,

∂
∂y , 0)

T and

E = h(u2 + v2 + w2)/2 + g(η2 − z2b)/2. (8)

The system (1)–(5) defines a family {Mγ } of dispersive models written in the
more compact form

∂h

∂t
+ ∇0 · (hu) = 0, (9)

∂(hu)

∂t
+ ∇0 · (hu ⊗ u) + ∇0(

g

2
h2) + ∇γ

sw p = −gh∇0zb, (10)

divγ
sw(u) = 0, (11)

where the shallowwater versions of the gradient and divergence operators are defined
by

∇γ
sw f =

⎛
⎝
h ∂ f

∂x + f ∂ζ

∂x
h ∂ f

∂y + f ∂ζ

∂y

−γ f

⎞
⎠ , (12)

divγ
sw(w) = ∂(hw1)

∂x
+ ∂(hw2)

∂y
− w1

∂ζ

∂x
− w2

∂ζ

∂y
+ γw3, (13)

for w = (w1, w2, w3)
T and

ζ = h + γ 2

2
zb. (14)

Whereas ζ depends on γ , for the sake of simplicity, we have adopted a simplified
notation and ζγ is replaced by ζ .

The model studied in this paper consists in a compressible version of the
model (9)–(11) where the divergence free constraint (11) is replaced by an evolution
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equation—a relaxed version of (11)—modeling the propagation of acoustic-type
waves.

Remark 1 The value of the parameter γ is discussed in [2]. Here we just recall the
two extreme hydraulic regimes that can be represented by shallow water models.
First the case where u � √

gh i.e. the fluid velocity is very small compared to the
water wave velocity or equivalently the Froude number is very low. In this situation
the value γ = √

3 is well adapted sinceM√
3 corresponds to the well known Green-

Naghdi model [23]. Another typical situation is the case of advection dominated
flows—u cannot be neglected with respect to

√
gh—where the value γ = 2 is more

appropriate.

The numerical analysis of the system (9)–(11) is studied in [2] and a numerical
scheme based on a projection-correction scheme [14] has been proposed. Since the
model (9)–(11) appears as an extension of the classical Saint-Venant system, the
hyperbolic part is treated using a finite volume approach—explicit in time—coupled
with the resolution of a saddle point problem—implicit in time—corresponding to
an elliptic-type equation for the contribution of the dispersive terms.

Because of the divergence free constraint (11) used to approximate the non-
hydrostatic part of the pressure p, an implicit treatment is natural (see Sect. 3.2)
but it significantly increases the computational costs. Indeed, an explicit in time
scheme constrained by a CFL condition is required for the approximation of the
hyperbolic part implying small time steps but simple computations of the numerical
fluxes. Whereas the dispersive terms are obtained though the resolution of an elliptic
equation for the whole domain. Therefore, for the numerical approximation of the
model (9)–(11) over a 2d geometrical domain discretized with N cells, at each time
step we have to compute O(N ) numerical fluxes and to perform the resolution of a
linear symmetric problem. For a stationary linear symmetric problem having at our
disposal a good preconditioner, the resolution cost can be estimated as O(N log N )

computations but in our situation, the matrices depend on time—and hence have to
be built at each time step—and we do not have any high-performance preconditioner.
Hence the computational costs can be estimated as O(N 3/2), the resolution of the
elliptic part becoming very limitative.

In this paper we propose, starting from the compressible Navier-Stokes equations,
a modified version of (9)–(11) allowing to propagate both water and acoustic-type
waves. The proposed model consists in modifying Eq. (11) in order to include com-
pressibility effects. The new formulation has another advantage since it is possible
to discretize it with a fully explicit time scheme and the computational costs are
asymptotically O(N/

√
ε),

√
ε being a parameter that will be precised later. Even if

the parameter ε can be small, in 2d cases or with fine meshes we have εN 	 1 and
hence O(N/

√
ε) � O(N 3/2).

This paper is organized as follows. First starting from the 3d compressible Navier-
Stokes equations, we derive a 2d shallow water model where the acoustic waves—
that can be seen as pseudo-compressibility effects—are considered. Then a numer-
ical scheme—explicit in time—is proposed for this 2d model and its properties are
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studied. Some stability properties—especially a discrete entropy equality—for the
proposed scheme are established in the 1d context. Finally for a well known test
case, an illustration comparing the implicit strategy and the resolution of the pseudo-
compressible model are presented and the associated computational costs are given.

2 A Compressible and Dispersive Model in Shallow Water
Context

In this section, we derive a shallow water approximation of the 3d compressible
Navier-Stokes with free surface. The model obtained in Proposition 5 propagates
both water and acoustic waves and its dispersive properties are studied. Finally,
considering the acoustic velocity is very large compared to the gravity wave velocity,
we propose a new formulation as a pseudo-compressible shallow water dispersive
model.

2.1 The Compressible Navier-Stokes-Fourier System

We consider the classical compressible Navier-Stokes system describing a free sur-
face gravitational 3d flow over a bottom topography zb(x, y) (see Fig. 2),

∂ρ̃

∂t
+ ∇ · (ρ̃U) = 0, (15)

∂(ρ̃U)

∂t
+ ∇ · (ρ̃U ⊗ U) + ∇ p̃ − ∇ · σ = ρ̃g, (16)

∂

∂t

(
ρ̃

|U|2
2

+ ρ̃ẽ

)
+ ∇ ·

((
ρ̃

|U|2
2

+ ρ̃ẽ + p̃ − σ
)
U
)

= −∇ · QT̃ + ρ̃g · U, (17)

Fig. 2 Flow domain with
water height h(t, x), free
surface η(t, x) and bottom
zb(x)
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where U = (u1, u2, u3)T is the velocity, ρ̃ is the density, p̃ is the fluid pressure, σ is
the viscosity stress and g = (0, 0,−g)T represents the gravity forces. The internal
specific energy is denoted by ẽ, the temperature by T̃ . The symbol ∇ denotes ∇ =(

∂
∂x ,

∂
∂y ,

∂
∂z

)T
. In the following, we will also use the notation v = (u1, u2)T for the

horizontal velocity and ∇x,y corresponds to the projection of ∇ on the horizontal

plane i.e. ∇x,y =
(

∂
∂x ,

∂
∂y

)T
. The square norm of the velocity vector is |U|2 = u21 +

u22 + u23.
The term ρ̃g · U = −ρ̃gu3 in (17) prevents this equation from being directly a

local energy conservation law. But multiplying the mass conservation (15) by z we
get the identity

∂(zρ̃)

∂t
+ ∇ · (zρ̃U) = ρ̃u3. (18)

Computing the integral along the vertical axis of relation (18) and using the boundary
conditions (24), (22)—that are described below—one obtains

∂

∂t

∫ η

zb

gzρ̃dz + ∇x,y ·
∫ η

zb

gzρ̃vdz =
∫ η

zb

gρ̃u3dz, (19)

which is the integrated local conservation of gravitational potential energy.
Regarding constitutive equations, we assume that the fluid is Newtonian i.e. the

viscous part of the Cauchy stress depends linearly on the velocity and is given by

σ = ξ∇ · U I + 2μD(U),

where μ is the viscosity coefficient, ξ is the second viscosity and D(U) = (∇U +
(∇U)T )/2. The heat flux QT̃ obeys the Fourier law QT̃ = −λ̃∇ T̃ , which explains
the name “Navier-Stokes-Fourier” which is often given to system (15)–(17), λ̃ being
the heat conductivity.

Among the thermodynamic variables ρ̃, p̃, T̃ , ẽ, only two of them are independent.
Indeed, we have a state law under the form

f (ρ̃, T̃ , p̃) = 0, (20)

where f is a real valued function. We give some examples below. Moreover, the
thermodynamic variables are linked by the Gibbs identity

dẽ = p̃

ρ̃2
dρ̃ + T̃ ds, (21)

where s is the specific entropy of the fluid. Classically, in order to have a convenient
entropy dissipation one has to assume that −s is a convex function of 1/ρ̃, ẽ.
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2.1.1 Boundary Conditions at the Bottom

Let nb and ns be the unit outward normals at the bottom and at the free surface
respectively, defined by (see Fig. 2)

nb = 1√
1 + |∇x,yzb|2

(∇x,y zb
−1

)
, ns = 1√

1 + |∇x,yη|2
(−∇x,yη

1

)
.

On the bottom we prescribe an impermeability condition

U · nb = 0, (22)

and a friction condition given e.g. by a Navier law

(
(σ − pI) · nb

) · ti = −κU · ti , i = 1, 2, (23)

with κ a Navier coefficient and (ti , i = 1, 2) two tangential vectors.

Remark 2 The formulation of the two boundary conditions (22), (23) means that
the fluid remains in contact with the topography. Besides, we assume throughout the
paper that the total pressure remains non-negative.

2.1.2 Boundary Conditions at Free Surface

On the free surface z = η(t, x, y), we use the kinematic boundary condition

∂η

∂t
+ v(t, x, y, η) · ∇x,yη − u3(t, x, y, η) = 0, (24)

and the no stress condition

(σ − pI) · ns = −pa(t, x, y)ns + W (t, x, y)ts, (25)

where pa(t, x, y), W (t, x, y) are two given external forcings, pa (resp. W ) mimics
the effects of the atmospheric pressure (resp. the wind blowing at the free surface)
and ts is a given unit horizontal vector. Throughout the paper we assume pa = cst ,
W = 0.

2.1.3 Boundary Conditions for the Temperature

The heat flux in Eq. (17) requires to define boundary conditions for the temperature.
Moreover when the state law (20) will be precised, the definition of the temperature
at each boundary will be mandatory. We can choose either Neumann or Dirichlet
conditions namely at the bottom
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λ
∂ T̃

∂nb
= FT̃ 0

b , (26)

or
T̃b = T̃ 0

b , (27)

and at the free surface

λ
∂ T̃

∂ns
= FT̃ 0

s , (28)

or
T̃s = T̃ 0

s , (29)

where FT̃ 0
b , FT̃

0
s are two given temperature fluxes and T̃ 0

b , T
0
s are two given tem-

peratures.

2.2 Thermodynamic Considerations

In the following proposition, we propose a formulation of the compressible Euler
system—corresponding to the system (15)–(17) with λ = ξ = μ = 0—where the
acoustic speed explicitly appears. The system is deduced from the compressible
Navier-Stokes system (15)–(17) with the boundary conditions (22)–(25).

Proposition 1 Considering a state law under the form

p̃ = f (ρ̃, T̃ ), (30)

the compressible Euler system can be rewritten under the form

∂ρ̃

∂t
+ ∇ · (ρ̃U) = 0, (31)

∂(ρ̃U)

∂t
+ ∇ · (ρ̃U ⊗ U) + ∇ p̃ = ρ̃g, (32)

∂(ρ̃ p̃)

∂t
+ ∇ · (ρ̃U p̃) + ρ̃2c̃2∇ · U = 0, (33)

where the sound speed c̃ is defined below by (47).
The system (31)–(33) is completed with the boundary conditions (22), (24)

and (25) which becomes

p̃(t, x, y, η) = pa(t, x, y) = cst. (34)
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Smooth solutions of the system (31)–(33) satisfy the energy balance

∂

∂t

(
ρ̃

|U|2
2

+ ρ̃ẽ

)
+ ∇ ·

((
ρ̃

|U|2
2

+ ρ̃ẽ + p̃
)
U
)

= ρ̃g · U, (35)

where the internal energy ẽ satisfies the equation

∂(ρ̃ẽ)

∂t
+ ∇ · (ρ̃ẽU) = − p̃∇ · U. (36)

Notice that in this proposition we have kept the same notations even if we have
switched from the Navier-Stokes to the Euler system.

For the Euler system (31)–(33)—and also for theNavier-Stokes system—a crucial
point is the duality relation between the gradient and divergence operators which
writes

∫

�×[zb,η]
p̃∇.Vdxdz =

∫

∂(�×[zb,η])
p̃V.nds −

∫

�×[zb,η]
V.∇ p̃dxdz. (37)

It will be important to have, in the shallowwater context, a relation analogous to (37),
see (95) below.

Proof (Proposition 1) The main point of this proof is the derivation of Eq. (33).
Taking the scalar product of Eq. (16) by U yields the kinetic energy equation

∂

∂t

(
ρ̃

|U|2
2

)
+ ∇ ·

((
ρ̃

|U|2
2

+ p̃ − σ
)
U
)

= p̃∇ · U − σ : D(U) + ρ̃g · U. (38)

Subtracting (38) to (17) gives the equation for the internal energy

∂(ρ̃ẽ)

∂t
+ ∇ · (ρ̃ẽU) = − p̃∇ · U + σ : D(U) − ∇ · QT̃ , (39)

or equivalently

ρ̃
Dẽ

Dt
= − p̃∇ · U + σ : D(U) − ∇ · QT̃ , (40)

with the classical notation D/Dt ≡ ∂/∂t + U · ∇. We can write the continuity equa-
tion (15) as

ρ̃
Dρ̃

Dt
+ ρ̃2∇ · U = 0. (41)

With the thermodynamic relation (21) one can write ds = dẽ/T̃ − ( p̃/T̃ ρ̃2)dρ̃, thus
multiplying (40) by 1/T̃ and (41) by − p̃/T̃ ρ̃2 we obtain
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ρ̃
Ds

Dt
= 1

T̃
σ : D(U) − 1

T̃
∇ · QT̃ . (42)

This can be written also

∂(ρ̃s)

∂t
+ ∇ · (ρ̃sU) = 1

T̃
σ : D(U) − ∇ · QT̃

T̃
− QT̃ · ∇ T̃

T̃ 2
, (43)

which gives the increase with time of
∫

ρ̃s, the second principle of thermodynamics.
The state law (20) plays the role of a closure relation. When written under the

form (30), it allows to write

d p̃ =
(

∂ p̃

∂ρ̃

)

T̃

dρ̃ +
(

∂ p̃

∂ T̃

)

ρ̃

dT̃ . (44)

Therefore, from Eqs. (44), (42) and using Eqs. (41) we get

ρ̃
D p̃

Dt
+ ρ̃2

((
∂ p̃

∂ρ̃

)

T̃

+
(

∂ p̃

∂ T̃

)

ρ̃

(
∂ T̃

∂ρ̃

)

s

)
∇ · U =

1

T̃

(
∂ p̃

∂ T̃

)

ρ̃

(
∂ T̃

∂s

)

ρ̃

(
σ : D(U) − ∇ · QT̃

)
.(45)

Using the chain rule this can be written

ρ̃
D p̃

Dt
+ ρ̃2c̃2∇ · U = 1

T̃

(
∂ p̃

∂s

)

ρ̃

(
σ : D(U) − ∇ · QT̃

)
, (46)

with the sound speed c̃ given by

c̃2 =
(

∂ p̃

∂ρ̃

)

T̃

+
(

∂ p̃

∂ T̃

)

ρ̃

(
∂ T̃

∂ρ̃

)

s

=
(

∂ p̃

∂ρ̃

)

s

. (47)

And coupled with (15), Eq. (46) writes

∂(ρ̃ p̃)

∂t
+ ∇ · (ρ̃U p̃) + ρ̃2c̃2∇ · U = 1

T̃

(
∂ p̃

∂s

)

ρ̃

(
σ : D(U) − ∇ · QT̃

)
, (48)

Equations (15), (16) and (48) with λ = ξ = μ = 0 give Eqs. (31)–(33).
Using (36), taking the scalar product of (32)withU and after simple computations,

we obtain the energy balance (35). ��
Remark 3 Whereas, Eq. (31) expresses the local mass conservation, the volume
variations can be related to the temperature variations. Indeed, since
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dT̃ =
(

∂ T̃

∂ρ̃

)

s

dρ̃ +
(

∂ T̃

∂s

)

ρ̃

ds,

using relations (42) and (41)we get the following equation governing the temperature

ρ̃
DT̃

Dt
+ ρ̃2

(
∂ T̃

∂ρ̃

)

s

∇ · U = 1

T̃

(
∂ T̃

∂s

)

ρ̃

(
σ : D(U) − ∇ · QT̃

)
. (49)

2.3 Acoustic Waves and Water Waves

The system (31)–(33)—completedwith theboundary conditions (22), (24) and (34)—
is a compressible model with a free surface and hence acoustic and water waves can
propagate.

Let us define p̂ by

p̃ = pa +
∫ η

z
ρ̃gdz + p̂,

with pa = cst thus p̂ denotes the non-gravitational part of the pressure. Then the
system (31)–(33) with (22) and (24) also writes

∂ρ̃

∂t
+ ∇ · (ρ̃U) = 0, (50)

∂U
∂t

+ (U · ∇)U + 1

ρ̃
∇ p̂ + 1

ρ̃
∇
∫ η

z
ρ̃gdz1 = g, (51)

∂

∂t

(∫ η

z
ρ̃gdz + p̂

)
+ U · ∇

(∫ η

z
ρ̃gdz + p̂

)
+ ρ̃c̃2∇ · U = 0, (52)

∂h

∂t
+ vs · ∇x,yh = u3,s, (53)

where the subscript corresponds to the value of the free surface z = η.
Assuming a flat bottom and in a two dimensional setting (x, z), the system (50)–

(53) has the following compact formulation

M
∂Y

∂t
+ Ax

∂Y

∂x
+ Az

∂Y

∂z
= S, (54)
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with

Y =

⎛
⎜⎜⎜⎜⎝

ρ̃

u1
u3
p̂
h

⎞
⎟⎟⎟⎟⎠

, Ax =

⎛
⎜⎜⎜⎜⎝

u1 ρ̃ 0 0 0
g(h−z)

ρ̃
u1 0 1

ρ̃
g

0 0 u1 0 0
g(h − z)u1 ρ̃c̃2 0 u1 gρ̃u1

0 0 0 0 u1,s

⎞
⎟⎟⎟⎟⎠

,

Az =

⎛
⎜⎜⎜⎜⎝

u3 0 ρ̃ 0 0
0 u3 0 0 0
0 0 u3

1
ρ̃
0

0 0 ρ̃c̃2 u3 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

, M =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

g(h − z) 0 0 1 ρ̃g
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

,

and

S =

⎛
⎜⎜⎜⎜⎜⎝

0
g
ρ̃

∂
∂x

∫ h
z
(
ρ̃(t, x, z) − ρ̃(t, x, z1)

)
dz1

0

g ∂
∂t

∫ h
z
(
ρ̃(t, x, z) − ρ̃(t, x, z1)

)
dz1 − gu1

∂
∂x

∫ h
z
(
ρ̃(t, x, z) − ρ̃(t, x, z1)

)
dz1 + gρ̃u3

u3,s

⎞
⎟⎟⎟⎟⎟⎠

.

Considering we are in a shallow water context, we can further assume

∂ρ̃

∂z
= ∂u1

∂z
= 0, (55)

then the system (54) reduces to

Msw ∂Y

∂t
+ Asw

x

∂Y

∂x
+ Az

∂Y

∂z
= B, (56)

with

Asw
x =

⎛
⎜⎜⎜⎜⎝

u1 ρ̃ 0 0 0
g(h−z)

ρ̃
u1 0 1

ρ̃
g

0 0 u1 0 0
ghu1 ρ̃

(
c̃2 + gz

)
0 u1 gρ̃u1

0 0 0 0 u1

⎞
⎟⎟⎟⎟⎠

, Msw =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
gh 0 0 1 ρ̃g
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

.

The eigenvalues of the matrix aAsw
x + bAsw

z for (a, b) ∈ R
2 cannot be easily

computed explicitely but the following result holds.

Proposition 2 The eigenvalues of the matrix (Msw)−1(aAsw
x + bAsw

z ) with u1 =
u3 = 0, are given by

0,±1

2

√
2C1 ± 2

√
C2 + C3, (57)
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with

C1 = c̃2(a2 + b2) − b2gh, C2 = (a2 + b2)2c̃4 + b2g2(8a2hz − 4a2z2 + b2h2),

C3 = −2b2(3a2 + b2)c̃2gh.

Proof (Proposition 2)The proof relies on simple computations that are not presented
here. ��
Remark 4 Notice that the quantitiesC2 is non-negativewhereasC3 is non-positive. In
the situation where c̃2 ≥ gh that is encountered in practice, then C1 ≥ 0, C2 + C3 ≥
0 and C1 − √

C2 + C3 ≥ 0 therefore the system has 4 real eigenvalues. But when
c̃2 ≤ gh—corrresponding to a less realistic situation—then complex eigenvalues
could appear.

Notice also that we are considering situations where c̃ 	 1 (see Eq. (68) below),
hence the eigenvalues defined by (57) satisfy the estimates

0, ±c̃
√
a2 + b2 + O

(1
c̃

)
, ±√

gh
ab√

a2 + b2
+ O

( 1

c̃2

)
, (58)

where the second ones correspond to acoustic waves and the third one to surface
waves. The first eigenvalue is zero because of the linearization of the velocity field.

2.4 Sound Speed for Sea Water

In this paragraph, we are going to precise the expression of the sound speed c̃ defined
by (47) in the particular case of sea water.

We start from an expression of the state law (30) given by [29] under the form

ρ̃ = ρ̃( p̃, T̃ ) = ρ̃0(T̃ )

1 − ε
ρ0
p̃

= ρ0ρ̃0(T̃ )

ρ0 − ε p̃
, (59)

ρ0 and ε being two constants with ε � 1 and where

ρ̃0(T̃ ) = ρ0 + a(T̃ − T0)
2, (60)

with T0 = 4 ◦C, ρ0 = 9999.7 kg.m−3, a = −6.63 10−3 kg.m−3.K−2. Notice that
from the state law (59) we have

ε p̃ = o(1). (61)

When multiplied by ε, the relation (21) is compatible with the scaling (61) if

εẽ = o(1), and εs = o(1). (62)
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Rewritting (21) under the form

d(ẽ − T̃ s) = −sdT̃ + p̃

ρ̃2
dρ̃, (63)

the Schwarz theorem applied to (63) gives the equality

−
(

∂s

∂ρ̃

)

T̃

=
(

∂( p̃/ρ̃2)

∂ T̃

)

ρ̃

,

and using the expression of p̃ given by (59) we obtain

(
∂s

∂ρ̃

)

T̃

= ρ0ρ̃
′
0(T̃ )

ερ̃3
.

An integration of the previous relation gives

s = s0(T̃ ) − ρ0ρ̃
′
0(T̃ )

2ερ̃2
, (64)

and from (64) we obtain

ds =
(
s ′
0(T̃ ) − ρ0ρ̃

′′
0 (T̃ )

2ερ̃2

)
dT̃ + ρ0ρ̃

′
0(T̃ )

ερ̃3
dρ̃,

leading to (
∂ T̃

∂ρ̃

)

s

= − 2

ρ̃

ρ0ρ̃
′
0(T̃ )

2ερ̃2s ′
0(T̃ ) − ρ0ρ̃

′′
0 (T̃ )

. (65)

Using (59), (65) we obtain the expression for the sound speed c̃ defined by (47) under
the form

c̃2 = ρ0ρ̃0(T̃ )

ερ̃2
+ ρ0ρ̃

′
0(T̃ )

ερ̃

2

ρ̃

ρ0ρ̃
′
0(T̃ )

2ερ̃2s ′
0(T̃ ) − ρ0ρ̃

′′
0 (T̃ )

. (66)

Becauseof the estimate (62) concerning the entropy, a possible choice is s ′
0(T̃ ) = 0

leading to the expression

ρ̃2c̃2 = ρ0

ε

(
ρ̃0(T̃ ) − 2

(
ρ̃ ′
0(T̃ )

)2
ρ̃ ′′
0 (T̃ )

)
. (67)

Moreover, since ε � 1 and a � 1, we have ρ̃(T̃ ) ≈ ρ0 leading to an expression for
the sound speed under the form
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ρ̃2c̃2 ≈ ρ2
0

ε

(
1 − 4a

(
T̃ − T0

)2
ρ0

)
≈ ρ2

0

ε
= ρ2

0c
2. (68)

Using the assumption (68), it is possible to combine Eq. (33) with Eq. (31) to obtain

∂

∂t

(
ρ̃

p̃2

2ρ2
0c

2

)
+ ∇ ·

(
ρ̃

p̃2

2ρ2
0c

2
U
)

+ p̃∇ · U = 0, (69)

giving a formulation of the energy balance (35) under the form

∂

∂t

(
ρ̃

|U|2
2

+ ρ̃
p̃2

2ρ2
0c

2

)
+ ∇ ·

((
ρ̃

|U|2
2

+ ρ̃
p̃2

2ρ2
0c

2
+ p̃

)
U
)

= ρ̃g · U. (70)

Hence, when ρ̃2c̃2 = ρ2
0c

2 = cst , the internal energy corresponds to p̃2

2ρ2
0 c

2 .

2.5 A Shallow Water Approximation of the Compressible
Euler System

For free surface flows, the vertical direction plays a particular role since it corresponds
to the direction of the gravity. Moreover the fluid domain, in our case, is thin in this
direction and it is natural to perform a depth averaging of system (31)–(33) together
with some approximations. Then, the two following propositions hold.

Remark 5 Notice that whereas the models described in the sequel differ from the
model (9)–(11), for the sake of simplicity, we have kept the same notations for some
of the variables of each model.

Proposition 3 Assuming ρ̃c̃ is constant, see (68), a shallow water approximation
of the compressible Euler system (31)–(33) completed with (22), (24) leads to the
model

∂η

∂t
+ u · ∇0(η + zb) = γw, (71)

∂(ρh)

∂t
+ ∇0 · (ρhu) = 0, (72)

∂(ρhu)

∂t
+ ∂

∂x

(
ρhu2 + ρg

2
h2 + hP

)
+ ∂(ρhuv)

∂y
= −(ρgh + γ 2

2
P)

∂zb
∂x

, (73)

∂(ρhv)

∂t
+ ∂(ρhuv)

∂x
+ ∂

∂y

(
ρhv2 + ρg

2
h2 + hP

)
= −(ρgh + γ 2

2
P)

∂zb
∂y

, (74)

∂(ρhw)

∂t
+ ∇0 · (ρhwu) = γ P, (75)

∂

∂t

(
ρhP + ρ2gh2

2

)
+ ∇0 ·

((
ρhP + ρ2gh2

2

)
u
)

+ ρ20c
2divγ

sw(u) = 0, (76)
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where ρ,u = (u, v, w)T ,P represent respectively a density, a velocity vector, and a
pressure term, all functions of (t, x, y), and γ a parameter.

The model described in Proposition 3 satisfies an energy balance described in the
following proposition.

Proposition 4 Smooth solutions of the system (71)–(76) satisfy the energy balance

∂

∂t

(ρh

2
|u|2 + 1

2

(
2 − γ 2

2

)
ρghzb + ρhe

)
+ ∇0 ·

(
u(

ρh

2
|u|2

+1

2

(
2 − γ 2

2

)
ρghzb + ρhe + ρg

2
h2 + hP)

)
= −γ

2
ρghw, (77)

where e is defined by

e = 1

2ρ2
0c

2

(
P + ρgh

2

)2
. (78)

And Eq. (77) can be written in a conservative form

∂

∂t

(ρh

2
|u|2 + ρg

h(η + zb)

2
+ 1

2

(
2 − γ 2

2

)
ρghzb + ρhe

)
+ ∇0 ·

(
u(

ρh

2
|u|2

+ρg
h(η + zb)

2
+ 1

2

(
2 − γ 2

2

)
ρghzb + ρhe + ρg

2
h2 + hP)

)
= 0. (79)

In other words, (78) gives a shallow water version of the internal energy defined
after (36).

The two operators divγ
sw and ∇γ

sw defined by (12), (13) appear in Eqs. (71)–(76)
so that we can rewrite this system in a more compact form

∂η

∂t
+ u · ∇0(η + zb) = γw, (80)

∂(ρh)

∂t
+ ∇0 · (ρhu) = 0, (81)

∂(ρhu)

∂t
+ ∇0 · (ρhu ⊗ u) + ∇0(

ρg

2
h2) + ∇γ

swP = −gh∇0zb, (82)

∂

∂t

(
ρhP + ρ2gh2

2

) + ∇0 ·
((

ρhP + ρ2gh2

2

)
u
)

+ ρ2
0c

2divγ
sw(u) = 0, (83)

An important point is that whatever the value of γ , these operators satisfy the
duality relation

∫

�

∇γ
sw( f ) · wdx = −

∫

�

divγ
sw(w) f dx +

∫

�

h f w · nds, (84)
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where the vector n = (nx , ny, 0)T is the outward unit normal vector to the boundary
�, see Fig. 1. In Eq. (84), f and w belong to suitable function spaces that will be
precised later. Notice that, we also have a local form of (84) under the form

∇γ
sw( f ) · w = ∇0 · (h f w) − divγ

sw(w) f. (85)

Proof (Proposition 3) It is easy to see (cf. [21, Lemma 2.1]) that a depth averaging
of the compressible Euler system with gravity and free surface (31)–(33)—with,
according to Sect. 2.4, ρ̃c̃ ≈ ρ0c—completed with the boundary conditions (22),
(24), (34) leads to

∂

∂t

∫ η

zb
ρ̃dz + ∇x,y ·

∫ η

zb
ρ̃vdz = 0, (86)

∂

∂t

∫ η

zb
ρ̃vdz + ∇x,y ·

∫ η

zb
ρ̃v ⊗ vdz + ∇x,y

∫ η

zb
p̃dz = p̃(t, x, zb(x))∇x,y zb, (87)

∂

∂t

∫ η

zb
ρ̃u3dz + ∇x,y ·

∫ η

zb
ρ̃u3vdz = p̃(t, x, zb(x)) −

∫ η

zb
ρ̃gdz, (88)

∂

∂t

∫ η

zb
ρ̃ p̃dz + ∇x,y ·

∫ η

zb
ρ̃ p̃vdz + ρ20c

2
∫ η

zb
∇ · Udz = 0. (89)

As in [2] we are now going to make some assumptions concerning the variations
along the vertical axis of the velocity field U, the density ρ̃ and of the pressure p̃. In
order to be consistent with the shallow water assumption, the choice

u1(t, x, z) = u(t, x), u2(t, x, z) = v(t, x), ρ̃(t, x, z) = ρ(t, x), (90)

is natural since it consists in assimilating the horizontal velocity field and the density
with their vertical means. For the velocity u3 and the pressure p̃, we choose

u3(t, x, z) =ϕδ

(
η − z

h

)
w(t, x), (91)

p̃(t, x, z) =ρg(η − z) + ψδ

(
η − z

h

)
P(t, x), (92)

and the two families of functions ψδ = ψδ(z) and ϕδ = ϕδ(z) satisfy

{∫ 1
0 ϕδ(z)dz = ∫ 1

0 ψδ(z)dz = 1
2

∫ 1
0 ϕδ(z)ψ ′

δ(z)dz = 1,
ψδ(1) = δ, ψδ(0) = 0, ϕδ(1) = 1.

(93)

Notice that these choices are similar to those in [2]. Figure2 in [2, paragraph 2.3.2]
illustrates the shape of the functionsψδ and ϕδ for two typical values of δ namely δ =
2 and δ = 3/2 (corresponding to γ = 2 and γ = √

3). It appears that the functions
ψδ and ϕδ do not significantly differ when δ = 2 or when δ = 3/2, the choice δ = 2
corresponding to a linear profile.
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The duality relation (37) is a guideline for the definition of the shallow water
versionof the divergence operator. Therefore, from (90)–(93) andusing an integration
by parts, we obtain

∫ η

zb

ψδ

(
η − z

h

)
∇ · Udz =

∫ η

zb

ψδ

(
η − z

h

)
∇0 · udz +

[
u3ψδ

(
η − z

h

)]η

zb

−
∫ η

zb

wϕδ

(
η − z

h

)
∂

∂z
ψδ

(
η − z

h

)
dz

= 2w + h∇0 · u − δu · ∇0zb, (94)

where (22) has been used and allowing us to write

∫ η

zb

p̃∇ · Udz ≈
∫ η

zb

(
1

h

∫ η

zb

g(η − z1)dz1 + P

)
ψδ

(
η − z

h

)
∇ · Udz

=
(

ρgh

2
+ P

)∫ η

zb

ψδ

(
η − z

h

)
∇ · Udz

=
(ρgh

2
+ P

)(
2w + h∇0 · u − δu · ∇0zb

)
. (95)

The computations (94), (95) are used to approximate the last term in Eq. (89) under
the form ∫ η

zb

∇ · Udz ≈ 2w + h∇0 · u − δu · ∇0zb.

And with the choices (90)–(93), the system (86)–(89) writes

∂(ρh)

∂t
+ ∇0 · (ρhu) = 0, (96)

∂(ρhu)

∂t
+ ∂

∂x

(
ρhu2 + ρg

2
h2 + hP

)
+ ∂(ρhuv)

∂y
= −(ρgh + δP)

∂zb
∂x

, (97)

∂(ρhv)

∂t
+ ∂(ρhuv)

∂x
+ ∂

∂y

(
ρhv2 + ρg

2
h2 + hP

)
= −(ρgh + δP)

∂zb
∂y

, (98)

∂(ρhw)

∂t
+ ∇0 · (ρhwu) = δP, (99)

∂

∂t

(
ρhP + ρ2gh2

2

)
+ ∇0 ·

((
ρhP + ρ2gh2

2

)
u
)

+ρ2
0c

2 (2w + h∇0 · u − δu · ∇0zb) = 0. (100)

Using the choices (90)–(93), Eq. (19) gives

∂

∂t

(
ρh(η + zb)

2

)
+ ∇0 ·

(
ρh(η + zb)

2
u
)

= ρhw, (101)
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and combining (101) with (96) gives

∂η

∂t
+ u · ∇0(η + zb) = 2w. (102)

Finally, a simple change of variables, namely w = γ ŵ/2 with γ 2 = 2δ in the
system (96)–(100), (102) leads to Eqs. (71)–(76) where the symbol ˆ has been
dropped. ��
Proof (Proposition 4) After simple computations and using Eq. (72), Eq. (76) mul-
tiplied by (P + ρgh

2 )/(ρ2
0c

2) gives

∂

∂t

(
ρh

2ρ20c
2

(
P + ρgh

2

)2) + ∇0 ·
(

ρh

2ρ20c
2

(
P + ρgh

2

)2
u

)
+

(
P + ρgh

2

)
divγ

sw(u) = 0, (103)

Now, taking the scalar product of Eqs. (73)–(75) with u, using the duality rela-
tion (85) and adding the obtained relation with (103) gives (77).

And the sum of Eq. (77) with (101) multiplied by g—in which the change of
variable w = γ ŵ/2 is done and the symbol ˆ has been dropped—gives (79).

��

2.6 When the Density is Almost Constant

On the one hand, the propagation of acoustic waves requires a compressible medium,
on the other hand the variations of the fluid density are often neglected e.g. when
considering a linearized version of the Euler system (31)–(33).

In this paragraph, we assume that the variations of the fluid density have little
influence over the hydrodynamic regime and the waves propagation, that is not a
strong assumption for water, see (60). Nevertheless, it is not possible to simply
consider that the density is constant in the consideredmodels. Indeed, the assumption
ρ = cst in the 3d case—Eq. (15)—or in the shallowwater context—Eq. (101)—leads
to a divergence free condition that is not compatible with the equations governing
the pressure variations namely Eq. (33) or Eq. (76) in the shallow water regime.

Hence when the variations of the fluid density can be neglected, the Proposition 3
can be reformulated as follows.

Proposition 5 Assuming the setting of Proposition 3 and neglecting the variation
of the fluid density, a shallow water approximation of the compressible Euler sys-
tem (31)–(33) is given by
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∂h

∂t
+ ∇0 · (hu) = 0, (104)

∂(hu)

∂t
+ ∇0 · (hu ⊗ u) + ∇0(

g

2
h2) + ∇γ

sw p = −gh∇0zb, (105)

∂

∂t

(
hp + gh2

2

) + ∇0 ·
((
hp + gh2

2

)
u
)

+ c2divγ
sw(u) = 0, (106)

where the operators ∇γ
sw and divγ

sw are defined by (12), (13).

Proof (Proposition 5) The model (81)–(83) is nothing else than a rewritting of
Eqs. (72)–(76) where the variations of the fluid density are neglected i.e. ρ ≡ ρ0 and
we have introduced p = P/ρ0. ��

For the model obtained in Proposition 3, Eq. (101) is crucial to obtain an energy
balance. In order to obtain an energy balance for the model given in Proposition 5,
we introduce a function ζ̃ = ζ̃ (t, x) solution of the transport equation

∂ζ̃

∂t
+ u · ∇0ζ̃ = γw, (107)

or equivalently using (104)

∂(hζ̃ )

∂t
+ ∇0 · (hζ̃u) = hγw. (108)

From the definition (13) and using (104), we can write

hdivγ
sw(u) = hγw + h∇0 · (hu) − hu · ∇0ζ = hγw − ∂(hζ )

∂t
− ∇0 · (hζu

)
,

and hence, Eq. (108) can be written under the form

∂(hζ̂ )

∂t
+ ∇0 · (hζ̂u

) = hdivγ
sw(u), (109)

with ζ̂ = ζ̃ − h − γ 2zb/2 = ζ̃ − ζ . Notice that ζ̃ is an approximation in the con-
stant density case of the variable η + zb governed by Eq. (80). And from Eq. (106),
ζ̂ = O(1/c2). The existence of solution for Eq. (107) has been widely studied, let us
mention the contributions of Di Perna and Lions by the means of renormalized solu-
tions [17] and two extensions [16, 26], see also [11].Weassumehere that the variables
h, u and the quantity zb are regular enough so that these existence results are valid.

As alreadymentionned, the assumption ρ = cst implies that mass and volume are
conserved that could be seen as contradictory with the capability of acoustic waves to
propagate—with finite speed—since it requires a compressibility in the considered
media. But the quantity ζ̂ can also be related to the temperature effects and allows
to circumvent this difficulty. More precisely, when λ = μ = 0 and assuming
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(
∂ T̃

∂ρ̃

)

s

= τ = cst,

Equation (109) looks like a shallow water version of Eq. (49), the variable ζ̂ corre-
sponding to a shallow water approximation of the quantity T̃

τρ0
. Hence the variations

of ζ̂ correspond to volume variations and can be assimilated to dilatation effects
generated by temperature variations.

Proposition 6 Smooth solutions of the system (104)–(106) satisfy the energy bal-
ance

∂

∂t

( h
2

|u|2 + g

2

(
2 − γ 2

2

)
hzb + h

2c2
(
p + gh

2

)2) + ∇0 ·
(

u(
h

2
|u|2

+ g

2

(
2 − γ 2

2

)
hzb + h

2c2
(
p + gh

2

)2 + g

2
h2 + hp)

)
= −γ h

2
gw, (110)

that is a shallow water version of Eq. (35). Equation (110) can be rewritten under
a conservative form given by

∂

∂t

( h
2

|u|2 + g
h(η + zb)

2
+ g

hζ̂

2
+ h

2c2
(
p + gh

2

)2) + ∇0 ·
(

u(
h

2
|u|2

+g
h(η + zb)

2
+ h

2c2
(
p + gh

2

)2 + g

2
h2 + g

hζ̂

2
+ hp)

)
= 0. (111)

Multiplying Eq. (106) by p + gh/2 and after simple computations, we obtain the
relation

∂

∂t

(
h

2c2
(
p + gh

2

)2) + ∇0 ·
(

h

2c2

((
p + gh

2

)2
u
))

+ (p + gh

2
)divγ

sw(u) = 0.

(112)
And comparing (112) with (36) we obtain that when the density is kept constant, the
internal energy is given by (p + gh/2)2/(2c2), see also (78).

Proof (Proposition 6) Taking the scalar product of Eq. (105) by u gives

∂

∂t

(h
2
|u|2

)
+ ∇0 ·

(
u
(h
2
|u|2 + g

2
h2

)) + u · ∇γ
sw p − g

2
h2∇0 · u + ghu · ∇0zb = 0.

(113)
Using the duality relation (85) in (113) and adding Eq. (112) gives (110).

Besides, using Eq. (109) multiplied by g/2 and added to (110) gives (111). ��
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2.7 The Boundary Conditions

The set of equations (104)–(106) is completed with the following boundary con-
ditions. We are considering a channel with an inlet �in and an outlet �out and we
impose specific conditions on each of them, see Fig. 1. The inflow is imposed by
a given discharge qg on �in , and a water depth hg is imposed on �out . Finally, we
prescribe slip boundary conditions for the velocity at the walls of the channel �s .
Hence we have

hu(t, x) = qg(t, x), on �in, (114)

h(t, x) = hg(t, x), on �out , (115)

u(t, x) · n = 0, on �s . (116)

Notice that we can replace the prescribed water depth at the outflow by a free outflow
consisting in imposing a Neumann boundary condition over the elevation

∇0h · n = 0, on �out .

2.8 Dispersion Relation

The model (104)–(106) is a shallow water type model with compressible effects
coming from the acoustic wave propagation. A fundamental question is to know
what are the velocities of the waves propagating in such a model and typically the
influence of the sound speed c over these velocites.

Let us consider the system (104)–(106) in the one-dimensional case, with flat
topography and where the temperature variations are neglected. It has the form of an
advection-reaction system, namely

∂Y

∂t
+ A

∂Y

∂x
+ BY = 0, (117)

with

Y =

⎛
⎜⎜⎝
h
u
w

p

⎞
⎟⎟⎠ , A =

⎛
⎜⎜⎝

u h 0 0
g + p

h u 0 1
0 0 u 0
0 c2 − gh

2 0 u

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 − γ

h

0 0 γ c2

h 0

⎞
⎟⎟⎠ .

Let us introduce Y0 ∈ R
4 and k, ω being two constants, namely the wave number

and the frequency. A necessary condition so that the system (117) admits a solution
having the form Y = Y0ei(kx−ωt) is that
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det(iωI4 − ik A + B) = 0,

I4 being the identity matrix of dimension 4. This leads to the four roots

ω

k
= u ±

√
2

2

√
Csw,1 ±

√
(Csw,1)2 − Csw,3, (118)

withCsw,1 = c2 + gh + p + c2 γ 2

(hk)2 andCsw,2 = 4c2γ 2(gh + p). As in (58), we can
assume that c 	 1 leading to the four approximated roots

u ± γ

√
gh + p

γ 2 − (hk)2
+ O

(
1

c2

)
, u ± c

√
1 + γ 2

(hk)2
+ O

(
1

c

)
. (119)

Remark 6 From the estimates (119), it appears that the model (104)–(106) is able to
propagate both water waves and acoustic waves. But since we are in a shallow water
context, we have hk � 1 and for the acoustic waves we do not exactly recover the
expected velocities u ± c.

Remark 7 In the context of wave propagation i.e. with flat bottom and assuming the
water depth has the form h = h0 + f (kx − ωt) with h0 = cst and | f (.)| � h0, it is
easy to see that the first term in (119) becomes

γ

√
gh0

γ 2 − (hk)2
+ O

(
1

c2

)
,

corresponding for γ = √
3 in the context of large wavelength (kh0 � 1) and up to

O((kh0)2) terms, to the classical Airy wave dispersion relation [1].

2.9 A Pseudo-compressible Model

As we have seen in the previous paragraph, if c is chosen corresponding to the sound
speed in water, then the model (104)–(106) is able to propagate, in a shallow water
context, both water and acoustic waves. But since c 	 1, we introduce

ε = 1

c2
,

then the model (104)–(106) can be seen as a pseudo-compressible version of the
model (9)–(11) allowing to derive an explicit in time numerical scheme that will be
studied in the following section. More precisely Eq. (106) writes



232 A.-S. Bonnet-Ben Dhia et al.

ε

(
∂

∂t

(
hp + gh2

2

) + ∇0 ·
((
hp + gh2

2

)
u
))

+ divγ
sw(u) = 0,

and corresponds to Eq. (11) when ε goes to 0. Following the results obtained in
Proposition 6, it is important to notice that in the formulation (104)–(106), the limit
ε → 0 is not singular. Unlike the incompressible limit of compressible models, the
limit when ε → 0 of the model (104)–(106) is the model (9)–(11).

Hence the model (104)–(106) can be seen as

• a dispersive shallow water type model propagating water and acoustic waves,
• a pseudo-compressible dispersive model whose numerical resolution is easier to
implement compared to a fully compressible model. This second aspect is studied
in the two next sections.

Notice that several authors have proposed approximated versions of the divergence
free constraint for dispersivemodels [19, 24], for which the origin of relaxation is not
related to acoustics. The model formulation (104)–(106) is similar to the one studied
in [20] but the derivation process—based on the so-called hyperbolic divergence
cleaning [15]—differs. The numerical strategy proposed in [20] based on high order
discontinuous Galerkin schemes is also different from the one presented hereafter.

3 The Numerical Scheme (Explicit in Time)

In this section, we propose and study a numerical scheme for the system (104)–(106)
with ε = 1/c2.

Let us introduce the notations

X =

⎛
⎜⎜⎝

h
hu
hv

hw

⎞
⎟⎟⎠ , F(X) =

⎛
⎜⎜⎝

hu hv

hu2 + g
2h

2 huv

huv hv2 + g
2h

2

huw hvw

⎞
⎟⎟⎠ ,

and S(X) = (0,−gh∇0(zb))T , R = (0,∇γ
sw p)T where∇γ

sw p is definedby (12). Then,
the system (104)–(106) can be written under the form

∂X

∂t
+ ∇x,y · F(X) + R = S(X), (120)

ε
( ∂

∂t

(
hp + gh2

2

) + ∇0 ·
((
hp + gh2

2

)
u
))

+ divγ
sw(u) = 0. (121)
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3.1 Time Discretisation

Let us sketch the main steps of the procedure. We set t0 the initial time and tn+1 =
tn + �tn where �tn satisfies a stability condition (CFL) precised later—at the fully
discrete level—and the state Xn denotes an approximation of X (tn). For each time
step, we consider an intermediate state which will be denoted with the superscript
n+1/2. The first step consists in solving the Saint-Venant part of the system (120)
with the topography source term and completed with the hyperbolic part of (121)
in order to obtain the state Xn+1/2 = (hn+1/2, (hu)n+1/2)T and (hp)n+1/2. Then the
state Xn+1 is computed taking into account the contribution of the non-hydrostatic
pressure terms.

More precisely, in the system (120), (121) water waves generally propagate at a
lower velocity than acoustic waves. Therefore, we propose an explicit time scheme—
constrained by an associated CFL condition that will be precised in the fully discrete
case, see (159)—for the Saint-Venant part of Eq. (120). For the dispersive terms, we
adopt an iterative resolution scheme explicit in time and constrained by a generally
more restrictive CFL condition associated with the sound speed. Hence, the proposed
semi-discretization in time consists in the following time-splitting strategy

⎧⎪⎪⎨
⎪⎪⎩

Xn+1/2 = Xn − �tn∇x,y · F(Xn) + �tn S(Xn),

(hp)n+1/2 = (hp)n − g
2

(
hn+1/2)2 − hn)2

)

−�tn∇0 ·
(
hn

(
pn + g

2 (h
n)2

)
un

)
,

(122)

{
pn+1/2,k+1 = pn+1/2,k − �tn

εKhn+1 divγ
swun+1/2,k,

un+1/2,k+1 = un+1/2,k − �tn

Khn+1 ∇γ
sw pn+1/2,k+1,

k = 1, . . . , K (123)

with pn+1/2,1 = pn+1/2, un+1/2,1 = un+1/2, pn+1 = pn+1/2,K+1, un+1 = un+1/2,K+1

and where for the first component of X we have hn+1 = hn+1/2 since the first compo-
nent of R is zero. Notice that the two operators divγ

sw and∇γ
sw are defined by Eqs. (12),

(13) using hn+1. K is an integer that is defined in order to ensure a stability condi-
tion for the acoustic-like wave propagation. The value of K is precised in the fully
discrete case, see (162).

3.2 Influence of the Pseudo-compressibility over the
Computational Costs

In [2], the authors have studied the model (1)–(5)—that is exactly the model (104)–
(106) with ε = 0—and proposed the following semi-discretization in time
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Xn+1/2 = Xn − �tn∇x,y · F(Xn) + �tn S(Xn), (124)

(hu)n+1 = (hu)n+1/2 − �tn∇γ
sw pn+1, (125)

divγ
swun+1 = 0, (126)

in which Eq. (125) allows to correct the predicted value Xn+1/2 in order to obtain a
state which satisfies the divergence free condition (126). The equation satisfied by
the pressure is then an elliptic equation which is obtained by applying the shallow
water divergence operator divγ

sw to Eq. (125) and reads

divγ
sw

(
1

hn+1
∇γ
sw pn+1

)
= 1

�tn
divγ

sw

(
(hu)n+1/2

hn+1

)
. (127)

Once the pressure has been determined by the elliptic equation (127), the correction
step (125) gives the final step Xn+1.

The main drawback of the time scheme (124)–(126) is the numerical cost of the
resolution of Eq. (127). And Eq. (106) can be seen as a relaxed version of Eq. (126)
allowing to replace the step (125)–(126) by the iterative method (123) applied to
the model (120)–(121). More precisely, inserting the second equation of (123) (at
iteration k − 1) into the first one gives the relation

pk+1 = pk − �tn

εK
divγ

swun+1/2,k−1 + (�tn)2

εK 2 hn+1
divγ

sw

( 1

hn+1
∇γ
sw pk

)
,

= 2pk − pk−1 + (�tn)2

εK 2 hn+1
divγ

sw

( 1

hn+1
∇γ
sw pk

)
, (128)

where the superscripts n+1/2 have been dropped. Equation (128) appears as an explicit
in time discretization of a wave equation. As expected, when ε tends to 0, Eq. (128)
reduces to Eq. (127). Likewise, inserting the first equation of (123) into the second
one gives the relation

uk+1 = 2uk − uk−1 + (�tn)2

εK 2 hn+1
∇γ
sw

( 1

hn+1
divγ

swuk
)
. (129)

The stability of the two discretizations (128), (129) will be examined in Sect. 4.4.
As alreadymentioned, if N is the number of cells in the consideredmesh, the com-

putational cost of the resolution of (127) is O(N 3/2) whereas the resolution of (123)
is O(K N ) = O(N/

√
ε). And hence, an estimation of ε is required to compare the

costs of the explicit and implicit resolutions.
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3.3 Choice of ε

If one is interested in the simulation of both water and acoustic waves, ε is chosen so
that ε = 1/c2, c being the sound speed. But if the objective is to approximate a relaxed
version of the system (1)–(5) then ε is no more a physical parameter and has to be
chosen so that the system (104)–(106) is a good approximation of the system (9)–
(11). Hence, at each time step, ε can be chosen according to the computed values of
the velocities and of the water depth.

And we can proceed as follows.
The energy of the model (104)–(106) behaves as

h
u2 + v2 + w2

2
+ g

2
hζ + g

(
2 − γ 2

2

)
hzb + εh

2

(
p + g

2
h
)2

.

Hence, we have to choose ε such that

ε
(
p + g

2
h
)2 � u2 + v2 + w2 + g(η + zb) + g

(
4 − γ 2) zb. (130)

Another possibility is to recall that ε is related to the sound speed with ε = 1/c2 and
hence ε has to satisfy

1√
ε

= c 	 |u| + |v| + √
gh,

i.e.

ε � 1

(|u| + |v| + √
gh)2

. (131)

The two conditions (130) and (131) are easy to implement and similar when |u| +
|v| + |w| � √

gh. But, in the context of dispersive flows (130) is more appropriate
since the vertical velocity w is taken into account.

We have seen that the choice ε = 1/c2 corresponds to the propagation of acoustic
waves. Smaller values of ε increase the computational costs of the scheme since
it enlarges the value of the number of iterations K for the resolution of (123), see
Sects. 3.1 and 3.2.

4 Detailed Numerical Scheme in 1d

A numerical scheme for the model (9)–(11) has been proposed and studied in [2].
Here we focus on the one dimensional case in order to prove the capability of the
pseudo-compressible formulation.

In the one dimensional case, the model (104)–(106) writes
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∂h

∂t
+ ∂(hu)

∂x
= 0, (132)

∂(hu)

∂t
+ ∂

∂x

(
hu2 + g

2
h2 + hp

)
= −(gh + γ 2

2
p)

∂zb
∂x

, (133)

∂(hw)

∂t
+ ∂(huw)

∂x
= γ p, (134)

ε

(
∂

∂t

(
hp + gh2

2

) + ∂

∂x

((
hp + gh2

2

)
u
))

+ γw + h
∂u

∂x
− γ 2

2
u

∂zb
∂x

= 0. (135)

In a more compact form and with obvious notations, the system (132)–(135)
becomes

∂X

∂t
+ ∂F(X)

∂x
+ R = S(X), (136)

ε
(∂(h p̂)

∂t
+ ∂(hu p̂)

∂x

)
+ divγ

sw(u) = 0, (137)

with u = (u, w)T , p̂ = p + gh/2 and

X =
(
h
hu

)
, (138)

∇γ
sw f =

(
h ∂ f

∂x + ∂ζ

∂x f−γ f

)
, divγ

swu = ∂(hu)

∂x
− u

∂ζ

∂x
+ γw. (139)

Notice that the fundamental duality relation

∫

C
p divγ

swu dx = [hup]∂C −
∫

C
∇γ
sw p · u dx, (140)

holds for any interval C .
The smooth solutions of Eqs. (132)–(135) satisfy the energy equality

∂

∂t

(h
2
(u2 + w2) + g

2

(
2 − γ 2

2

)
+ εh

2

(
p + gh

2

)2) + ∂

∂x

(
u(

h

2
(u2 + w2)

+g

2

(
2 − γ 2

2

)
+ εh

2

(
p + gh

2

)2 + g

2
h2 + hp)

)
= −γ gh

2
w. (141)

Introducing the 1d version of Eq. (109) given by

∂(hζ̂ )

∂t
+ ∂

∂x

(
hζ̂u

) = hdivγ
sw(u), (142)

allows to have a conservative form of Eq. (141) under the form
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∂

∂t

(
Ē + εh

2

(
p + gh

2

)2) + ∂

∂x

(
u
(
Ē + εh

2

(
p + gh

2

)2 + g

2
h2 + hp

)) = 0,

(143)
with Ē = h(u2 + w2)/2 + gh(η + zb)/2 + g hζ̂

2 , see Proposition 6.

4.1 Semi-discrete (in Time) Scheme

The 1d version of the time discretization (122)–(123) writes

{
Xn+1/2 = Xn − �tn ∂F(Xn)

∂x + �tn S(Xn)

(h p̂)n+1/2 = (h p̂)n − �tn ∂(hn p̂nun)
∂x

(144)

{
pn+1/2,k+1 = pn+1/2,k − �tn

εKhn+1 divγ
swun+1/2,k

un+1/2,k+1 = un+1/2,k − �tn

Khn+1 ∇γ
sw pn+1/2,k+1 (145)

with pn+1/2,1 = pn+1/2, un+1/2,1 = un+1/2 and pn+1 = pn+1/2,K+1, un+1 =
un+1/2,K+1 where for the first component of X we have hn+1 = hn+1/2.

The scheme (144)–(145) is explicit in time so it is important to examine its stability
w.r.t. the discretisation step �tn , this will be done in Sect. 4.4.

4.2 The Semi-discrete (in Space) Scheme

To approximate the solution X = (h, hu, hw)T , hp of the system (132)–(135), we
use a combined finite volume/finite difference framework. We assume that the com-
putational domain is discretized with I nodes xi , i = 1, . . . , I . We denote Ci the
cell (xi−1/2, xi+1/2) of length �xi = xi+1/2 − xi−1/2 with xi+1/2 = (xi + xi+1)/2.
We denote Xi = (hi , qx,i , qz,i )T with

Xi ≈ 1

�xi

∫

Ci

X (t, x)dx,

the approximate solution at time t on the cell Ci with qx,i = hiui , qz,i = hiwi . Like-
wise, for the topography, we define

zb,i = 1

�xi

∫

Ci

zb(x)dx .

The non-hydrostatic part of the pressure is discretized on a staggered grid

pi+1/2 ≈ 1

�xi+1/2

∫ xi+1

xi

p(t, x)dx,
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with �xi+1/2 = xi+1 − xi and we set p̂i+1/2 = pi+1/2 + ghi+1/2/2 where hi+1/2 is
defined by �xi+1/2hi+1/2 = (�xi hi + �xi+1hi+1)/2.

Now we propose and study the semi-discrete (in space) scheme approximating
the model (136)–(137). The semi-discrete scheme writes

�xi
∂Xi

∂t
+ (

Fi+1/2− − Fi−1/2+
) + Ri = 0, (146)

�xi+1/2ε
∂

∂t

(
hi+1/2 p̂i+1/2

)
+ ε

(
Fp̂,i+1 − Fp̂,i

) + divγ

sw,i+1/2 ({u j }) = 0, (147)

with the numerical fluxes

Fi+1/2+ = F (Xi , Xi+1, zb,i , zb,i+1) + Si+1/2+ (148)

Fi+1/2− = F (Xi , Xi+1, zb,i , zb,i+1) + Si+1/2−. (149)

F is a numerical flux for the conservative part of the system, S is a convenient
discretization of the topography source term.

Since the first two lines of (136) correspond to the classical Saint-Venant system,
the numerical fluxes

Fi+1/2± =
⎛
⎝

Fh,i+1/2

Fqx ,i+1/2±
Fqz ,i+1/2

⎞
⎠ , (150)

can be constructed using any numerical solver for the Saint-Venant system. More
precisely for Fh,i+1/2,Fqx ,i+1/2± we adopt numerical fluxes suitable for the Saint-
Venant system with topography [10, 22, 25]. Notice that from the definition (138),
since only the second component of S(X) is non zero, only Fqx has two interface
values under the form Fqx ,i+1/2±. For the definition of Fqz ,i+1/2, the formula (see [5])

Fqz ,i+1/2 = Fh,i+1/2wi+1/2, (151)

with

wi+1/2 =
{

wi if Fh,i+1/2 ≥ 0
wi+1 if Fh,i+1/2 < 0

(152)

can be used. The fluxes Fp̂,i are defined similarly to (151), (152) but on the staggered
grid by the following formula

Fp̂,i = Fh,i+1/2 + Fh,i−1/2

2
p̂i , (153)

with

p̂i =
{
p̂i−1/2 if Fh,i+1/2+Fh,i−1/2

2 ≥ 0
p̂i+1/2 if Fh,i+1/2+Fh,i−1/2

2 < 0.
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Combining the finite volume approach for the hyperbolic part with a finite differ-
ence strategy for the parabolic part, the non-hydrostatic part Ri is defined by

Ri =
(

0
∇γ

sw,i p

)
,

where the two components of ∇γ

sw,i p are defined (see (139)) by

�xi ∇γ

sw,i p
∣∣
1

= hi (pi+1/2 − pi−1/2) + pi+1/2

2

(
ζi+1 − ζi

)

+ pi−1/2

2

(
ζi − ζi−1

)
, (154)

�xi ∇γ

sw,i p
∣∣
2

= −γ

2

(
�xi+1/2 pi+1/2 + �xi−1/2 pi−1/2

)
, (155)

with ζi = hi + γ 2

2 zb,i . And in (147), divγ

sw,i+1/2 (u) is defined by

�xi+1/2div
γ

sw,i+1/2 (u) =hi+1 + hi
2

(ui+1 − ui ) − ui + ui+1

2

(
zb,i+1 − zb,i

)

+ γ�xi+1/2

2

(
wi+1 + wi

)

= (hu)i+1 − (hu)i − ui + ui+1

2

(
ζi+1 − ζi

)

+ γ�xi+1/2

2

(
wi+1 + wi

)
. (156)

Notice that in the definitions (154)–(155) and in the sequel, the quantity p means
{p j }. Likewise in Eq. (156) and in the sequel, u means {u j } for 1 ≤ j ≤ I .

4.3 Wet-Dry Interface

The method presented above supposes that the water depth does not vanish since
the resolution of (145) requires dividing the shallow water gradient and divergence
operators by h. We use a strategy similar to [2, paragraph 5.2] that can be viewed as
a Dirichlet condition on the dry zone of the domain, such that the non-hydrostatic
pressure is solved only on the wet domain.

In practice, we introduce a small parameter θ � 1 and the definitions (154)–(155)
become
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�xi ∇γ

sw,i p
∣∣∣
1

= 1hi≥hθ

(
hi (pi+1/2 − pi−1/2) + pi+1/2

2

(
ζi+1 − ζi

) + pi−1/2

2

(
ζi − ζi−1

))
,

�xi ∇γ

sw,i p
∣∣∣
2

= − γ 1hi≥hθ

2

(
�xi+1/2 pi+1/2 + �xi−1/2 pi−1/2

)
,

�xi+1/2div
γ

sw,i+1/2 (u) = 1hi≥hθ

(
(hu)i+1 − (hu)i − ui + ui+1

2

(
ζi+1 − ζi

)

+ γ�xi+1/2

2

(
wi+1 + wi

))
,

with hθ = max(h, θ).

4.4 Stability of the Scheme

Using the definitions (144), (145), (146), (147), (154) and (155), the fully discrete
scheme for the system (136)–(137) writes

⎧⎨
⎩

Xn+1/2
i = Xn

i − �tn

�xi

(
Fn
i+1/2− − Fn

i−1/2+
)

,

(h p̂)n+1/2
i+1/2 = (h p̂)ni+1/2 − �tn

�xi+1/2

(
Fn
p̂,i+1 − Fn

p̂,i

)
,

(157)

{
pn+1/2,k+1
i+1/2 = pn+1/2,k

i+1/2 − �tn

εKhn+1 div
γ

sw,i+1/2 un+1/2,k,

un+1/2,k+1
i = un+1/2,k

i − �tn

Khn+1 ∇γ

sw,i p
n+1/2,k+1.

(158)

The first equation of (157) gives a finite volume scheme for the Saint-Venant system.
The choice of numerical fluxes Fi+1/2± (see [10]) coupledwith a numerical treatment
of the topography source term e.g. using the hydrostatic reconstruction [3] gives
a numerical resolution of the Saint-Venant system endowed with strong stability
properties [4] that are recalled in Propositions 7 and 8. In Eqs. (157)–(158), �tn

satisfies a CFL condition having the form

�tn = max
i∈I

�xi
|V n

i | , (159)

where V n
i is related to the eigenvalues of the Saint-Venant system, see [10]. Since the

expression of the numerical fluxes (Rusanov, HLL, kinetic solver…) is not precised
we are not able to give the exact expression of the CFL condition. In order to study
the discrete energy balance induced by the numerical scheme (157)–(158), we define
a discrete version of (142) under the form

�tn

�xi
(hζ̂ )

n+1/2,k+1
i = �xi

�tn
(hζ̂ )

n+1/2,k
i − 1

K

(
ζ̂
n+1/2,k
i+1/2 Fh,i+1/2 − ζ̂

n+1/2,k
i−1/2 Fh,i−1/2

)

+
�xi+1/2h

n+1
i+1/2

2K
divγ

sw,i+1/2 (un+1/2,k ) +
�xi+1/2h

n+1
i−1/2

2K
divγ

sw,i−1/2 (un+1/2,k ), (160)
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where ζ̂i+1/2 is defined by

ζ̂i+1/2 =
{

ζ̂i if Fh,i+1/2 ≥ 0
ζ̂i+1 if Fh,i+1/2 < 0.

Now we focus on the stability condition for the resolution of (145) or equiva-
lently (128). Using the definitions (154) and (155), we obtain the discrete version of
the operator

�γ
sw p = divγ

sw

(1
h

∇γ
sw p

)
,

with Di+1/2 p = −�xi+1/2�
γ

sw,i+1/2 p and

Di+1/2 p = − hi+1

�xi+1

(
pi+3/2 − pi+1/2

)
+ hi

�xi

(
pi+1/2 − pi−1/2

)

− pi+3/2

2�xi+1

(
ζi+2 − 2ζi+1 + ζi

)
− �xi − �xi+1

�xi+1�xi
pi+1/2

(
ζi+1 − ζi

)

− pi−1/2

2�xi

(
ζi+1 − 2ζi + ζi−1

)

+ pi+3/2

4hi+1�xi+1

(
ζi+2 − ζi+1

)(
ζi+1 − ζi

)

+ pi+1/2

4

(
1

hi+1�xi+1
+ 1

hi�xi

)(
ζi+1 − ζi

)2

+ pi−1/2

4hi�xi

(
ζi+1 − ζi

)(
ζi − ζi−1

)

+ γ 2�xi+1/2

4

(
�xi+3/2 pi+3/2 + �xi+1/2 pi+1/2

�xi+1hi+1

+ �xi+1/2 pi+1/2 + �xi−1/2 pi−1/2

�xi hi

)
. (161)

Using the expression (161), we are now able to precise the CFL type stability
condition for the discretized version of Eq. (128) that writes

2 − (�tn)2

εK 2 hi+1/2�xi+1/2

(
hi+1

�xi+1
+ hi

�xi
+ 1

4

(
1

hi+1�xi+1
+ 1

hi�xi

)(
ζi+1 − ζi

)2

−�xi − �xi+1

�xi+1�xi

(
ζi+1 − ζi

)
+

γ 2�x2i+1/2

4

(
1

hi+1�xi+1
+ 1

hi�xi

))
≥ 0,

that is fulfilled for
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K 2 ≥ (�tn)2

2εhi+1/2�xi+1/2

(
hi+1

�xi+1
+ hi

�xi
+ 1

4

(
1

hi+1�xi+1
+ 1

hi�xi

)(
ζi+1 − ζi

)2

+|�xi − �xi+1|
�xi+1�xi

|ζi+1 − ζi | +
γ�x2i+1/2

4

(
1

hi+1�xi+1
+ 1

hi�xi

))
. (162)

And the condition (162) is satisfied when

K 2 ≥ (�tn)2

2εhmin�x2min

(
2hmax + 2

hmin
(δζ )2max + (δζ )max + γ 2�x2max

2hmin

)
,

with rmin = min1≤i≤I ri , rmax = max1≤i≤I ri for r = h,�x and δζmax =
max1≤i≤I−1 |ζi+1 − ζi |.

The fully discrete scheme (157), (158) satisfies the following stability properties.

Proposition 7 Assuming a suitable CFL condition (159) adpated to the chosen
numerical fluxes (150) for the hyperbolic part, the scheme obtained by coupling the
semi-discretizations (144), (145) and (146), (147)

(i) preserves the nonnegativity of the water depth i.e. hni ≥ 0, ∀i , ∀n,
(ii) preserves the steady state of the lake at rest,
(iii) is consistent with the model (136)–(137).

Let us consider that, under a suitable CFL condition associated with the time
discretization (144) and the chosen numerical fluxes Fh,i±1/2 and Fqx ,i±1/2 in (150),
the numerical approximation of the Saint-Venant part of Eq. (136) allows to obtain
a discrete entropy equality under the form

�xi
(
Esv
i

)n+1/2 = �xi
(
Esv
i

)n − �tn
(Gn

i+1/2 − Gn
i−1/2

) + Dn
i , (163)

with Esv
i = hi

2 u
2
i + g

2 (η
2
i − z2b,i ) and where Gn

i±1/2 are numerical fluxes. Dn
i is a

nonpositive term and contains typically two different contributions: the numerical
dissipation coming from the upwinding in the space discretization and the error due
to the explicit time scheme.

Then assuming (163), we now prove that the numerical scheme (157), (158)
satisfies a discrete entropy equality.

Proposition 8 Assuming (163), the scheme (144), (145), (146),(147) satisfies the
following discrete entropy equality

�xi Ē
n+1
i = �xi Ē

n
i − �tn

(Ḡn
i+1/2 − Ḡn

i−1/2

) + D̄n
i , (164)

where Ēi = Esv
i + hi

2 w2
i + g(hζ̂ )i + ε

2
˜hi p̂2i and
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Ḡn
i+1/2 = Gn

i+1/2 + Fn
h,i+1/2

(wn
i+1/2)

2

2
+ εFn

h,i+1

( p̂ni+1)
2

2

+ 1

K

K∑
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(
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i+1/2u

n+1/2,k
i+1/2 pn+1/2,k+1

i+1/2 + ζ̂
n+1/2,k
i+1/2 Fh,i+1/2

)
,

�xi (
˜hi p̂

2
i )n+1 = 1

2K
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k=1

⎛
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2

(
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(
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i−1/2

)2
⎞
⎠ ,

with

�xi D̄n
i = �xiDn

i + �tn
([

Fn
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]
− (wn
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i )2 −
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Fn
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]
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2
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2
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ε
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−
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)

.

Remark 8 When considering the semi-descrete in space scheme detailed in Sect. 4.2,
a semi-discrete in space version of (164) holds where all the non-negative terms in
the expression of D̄n

i corresponding to time discretisation errors vanish.

Proof (Proposition 7) (i) The statement that F preserves the nonnegativity of the
water depth means exactly that

Fh(hi = 0, ui , hi+1, ui+1) − Fh(hi−1, ui−1, hi = 0, ui ) ≤ 0,

for all choices of the other arguments. From (144), (146), (148) and (149), we need
to check that, with obvious notations

Fh(X
n
i+1/2−, Xn

i+1/2+) − Fh(X
n
i−1/2−, Xn

i−1/2+) ≤ 0,

whenever hni = 0. And this property holds typically when the hydrostatic recon-
struction (HR) is used to approximate the topography source term since for the HR
technique hi = 0 implies hi+1/2− = hi−1/2+ = 0, see [3].

(ii) When uni = 0 for all i , the properties of the hydrostatic reconstruction tech-
nique ensure Fn

i+1/2− = Fn
i−1/2+ in (144), (146) and Fn

p,i+1− = Fn
p,i+ in (147). More-
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over since uni = 0 ∀i we have Ri = 0 in (146) and divγ

sw,i+1/2 ({u}) = 0 in (147).
Therefore ∀i

Xn+1
i = Xn

i , and pn+1
i+1/2 = pni+1/2,

proving that the scheme is well-balanced.
(iii) The discretization (144), (145) is an explicit first order time scheme. The

numerical fluxes defined by (148), (149) and (153) are a consistent discretization
of the hyperbolic part of the system (136), (137) without topography. Likewise, the
hydrostatic reconstruction applied to the fluxes (150), (153) gives a consistent dis-
cretization of the system (136), (137) with topography and the discretizations (154),
(155) being obviously consistent with the dispersive part, this proves the result. ��
Proof (Proposition 8) Since we have assumed that the kinetic energy of the Saint-
Venant part of Eq. (136) satisfies (163), this means that the first two components
of the first equation of (157) multiplied respectively by ghni − (uni )

2/2 and uni give
Eq. (163). It remains to consider the contributions to the energy balance of the last
two components of (157) and of Eq. (158).

First let us multiply the third component of the first equation of (157) by wn
i , then

we get

hn+1
i
2

(w
n+1/2
i )2 − hni

2
(wn

i )2 + �tn

�xi

(
Fn
h,i+1/2

(wn
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2

2
− Fn
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2

2

)
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Fn
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]
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i )2 −

[
Fn
h,i−1/2

]
+ (wn

i − wn
i−1)

2
)

+ hn+1
i
2

(w
n+1/2
i − wn

i )2,

with the notations [a]+ = max(a, 0), [a]− = min(a, 0)a = [a]+ + [a]− andwn
i+1/2

is defined by (152). Then we multiply the last component of Eq. (157) by pni+1/2 +
g
2h

n
i+1/2 leading to

hn+1
i+1/2

2

(
p̂n+1/2
i+1/2

)2 −hni+1/2

2

(
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)2 + �tn
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(
Fn
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2
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(
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)2
,

with Fh,i+1 = (Fh,i+3/2 + Fh,i+1/2)/2. Thanks to the definition (151), the two quan-
tities

Fn
h,i+1

2
( p̂ni+1 − p̂ni+1/2)

2, and − Fn
h,i

2
( p̂ni − p̂ni−1/2)

2,

are always non-positive.
Second, we multiply the equations (158) respectively by p̂n+1/2,k+1

i+1/2 and un+1/2,k
i

and sum the obtained relations for k = 1, . . . K . Precisely, starting from the defini-
tions (154), (155), we rewrite ∇γ

sw,i p under the form
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∇γ

sw,i p = ∇γ

sw,i+1/2− p + ∇γ

sw,i−1/2+ p,

with

∇γ

sw,i+1/2− p =
∣∣∣∣
hi (pi+1/2 − pi ) + pi+1/2

2

(
ζi+1 − ζi

)
− γ

2 �xi+1/2 pi+1/2

and we obtain a discrete version of the duality relation (140) under the form

�xi∇γ

sw,i+1/2− pn+1/2,k+1 · un+1/2,k
i = en+1/2,k+1/2

i+1/2−

− �xi+1/2

2
divγ

sw,i+1/2

(
un+1/2,k

)
pn+1/2,k+1
i+1/2 , (165)

with en+1/2,k+1/2
i+1/2− defined by

en+1/2,k+1/2
i+1/2− = hn+1

i+1/2u
n+1/2,k
i+1/2 pn+1/2,k+1

i+1/2 − hn+1
i un+1/2,k

i pn+1/2,k+1
i

+ pn+1/2,k+1
i+1/2

(
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i − un+1/2,k
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2

− γ

4
�xi+1/2 p

n+1/2,k+1
i+1/2 (w

n+1/2,k
i − w
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i+1 ).

Notice that in the expression of en+1/2,k+1/2
i+1/2− the last two terms are second order and

en+1/2,k+1/2
i+1/2+ + en+1/2,k+1/2

i+1/2− = hn+1
i+1 u

n+1/2,k
i+1 pn+1/2,k+1

i+1 − hn+1
i un+1/2,k

i pn+1/2,k+1
i .

The duality relation (165) has been written for the variable pn+1/2,k+1
i±1/2 but the last

two terms in (165) should be a discrete version of the r.h.s. of Eq. (112) i.e. of the
quantity p̂divγ

sw(u). And since p̂ = p + gh/2 the reminder is (for interfaces i ± 1/2)

g

2
hn+1
i+1/2div

γ

sw,i+1/2

(
un+1/2,k) + g

2
hn+1
i−1/2div

γ
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(
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corresponding to the right hand side of (160) multiplied by g.
For the errors coming from the time dicretization of Eqs. (158), we have
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Summing the previous relations for k = 1, . . . , K and adding the result to the other
contributions gives the corresponding expressions appearing in relation (164). This
ends the proof. ��
Remark 9 For the discretization of the model (132)–(135), we have presented a first
order scheme in space and time. Second order extensions (in space and time) can be
proposed, following [2].

4.5 Simulation Results

In this paragraph, only few numerical examples are presented. A more complete
validation of the numerical procedure will be presented in a companion paper. Notice
that in the 1d case, we mainly validate the numerical scheme but the reduction of the
computation costs will be more significant in a two-dimensional setting.

4.5.1 Dingemans Experiments

The experiments carried out by Dingemans [18] at Delft Hydraulics deal with the
wave propagation over uneven bottoms. A wave generator produces a small ampli-
tude wave (0.02 m) at the left boundary of a basin with vertical shores. A vertical
shore closes the basin at the right boundary, due to the considered time window, the
measurements are not perturbed by the reflected wave on the right boundary. At rest,
the water depth in the channel varies from 0.4 m to 0.1 m, see Fig. 3. Eight sensors
recording the free surface elevation are located at abscissa 2m, 4m, 10.5m, 12.5m,
13.5m, 14.5m, 15.7m and 17.3m.

For γ = √
3, we compare the simulation results obtained with the two numerical

schemes (the one proposed in [2] and the one proposed in this paper with ε = 1/c2 =
10−4 m−2.s2). The results obtained with a uniform mesh of 1600 nodes are depicted
over Fig. 4 where the computed and measured free surface elevations at four points
are presented. Notice that for ε = 10−7 m−2.s2 that is the most physical choice, the
simulations of the complete and relaxed model cannot be distinguished.

Fig. 3 Channel profile for
the experiments and location
of the sensors
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Fig. 4 Comparisons between the experimental data (solid line), the simulations of the dispersive
model with the model presented in [2] (blue dashed line) and the relaxed model presented in this
paper (red dashed-dotted line) with ε = 10−4 m−2.s2. Figures (a), (b), (c) and (d) respectively
correspond to the results for the sensors 3, 4, 5 and 6

Fig. 5 Variations of the quantity x �→ ε(p + gh/2) with ε = 10−7 m−2.s2 at time t = 0.01 s

For the test case depicted in Sect. 4.5.1, the basin is at rest at the initial instant and
we give at time t = 0.01 s, the value of the quantity ε(p + gh/2) representing the
pseudo-compressible effects. It appears over Fig. 5 that at time t = 0.1 s, whereas the
free surface has just begun to deform at the boundary where the wave is generated,
the acoustic-type waves have already propagated in the basin.
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4.5.2 Comparison of the Computational Costs

For the simulation results given in Sect. 4.5.1, we compare the computational costs
of the numerical schemes with and without pseudo-compressibility effects. More
precisely, we compare the CPU time necessary to simulate the test case presented
in Sect. 4.5.1 with the method proposed in [2]—corresponding to an incompressible
model and requiring to solve the elliptic Eq. (127)—and the proposed explicit in time
scheme (122)–(123) with the pseudo-compressible effects.

The advantages of the model and numerical strategy presented in this paper are
significant for 2d problemswith a large number of nodes but can hardly be highlighted
in the 1d case where the elliptic operator to inverse is a symmetric tridagonal matrix.
Hence, in order to illustrate the interest of the proposed scheme, we have used a
conjugate gradient technique mimicking what would be done to solve (127) in 2d
for an unstructured mesh.

Figure6 presents the CPU time required to perform the simulations of the Dingue-
mans experiment with several meshes namely with 2000, 4000, 8000, 16000 and
32000 nodes. It appears that when the number of nodes increases, the proposed
explicit in time scheme is more efficient than the conjugate gradient algorithm (used
here without preconditioning). Notice that the authors have not performed an exhaus-
tive comparison between the costs of the conjugate gradient technique—for which
several optimizations are possible—and the iterative and explicit time resolution
scheme (122)–(123).

Fig. 6 Computational costs
necessary to simulate the
Dinguemans experiment
with several meshes
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A Generalised Serre-Green-Naghdi
Equations for Variable Rectangular
Open Channel Hydraulics and Its Finite
Volume Approximation

Mohamed Ali Debyaoui and Mehmet Ersoy

Abstract We present a non-linear dispersive shallow water model which enters in
the framework of section-averagedmodels. These new equations are derived up to the
second order of the shallowwater approximation starting from the three-dimensional
incompressible and irrotational Euler system. The derivation is carried out in the
case of non-uniform rectangular section and it generalises the well-known one-
dimensional Serre-Green-Naghdi (SGN) equations on uneven bottom. The section-
averaged model is asymptotically consistent with the Euler system in terms of mass,
momentum, and energy equation which provides the richness of content for this
model. We propose a well-balanced finite volume approximation and we present
some numerical results to show the influence of the section variation.

Keywords Open channel flow · Euler equations · Asymptotic approximation ·
Serre-Green-Naghdi equations · Free surface shallow water equations ·
Non-hydrostatic pressure · Dispersive model · Finite volume

1 Introduction

In environmental modeling of free surface flows, whenever the aspect-ratio of the
domain is small enough, the shallow water approximation is introduced to obtain
reduced model for which the computational cost is lower than the one implied by the
numerical solution of the full three-dimensional free surface equations. One of the
most widely used models to describe the channel and river motion of watercourses
is the section-averaged free surface model [2, 7, 8] which is a generalisation of
the well-known Saint-Venant system (introduced by Adhémar Jean Claude Barré de
Saint-Venant in the 19th Century [18]):
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⎧
⎨

⎩

∂t A + ∂x Q = 0,

∂t Q + ∂x

(
Q2

A
+ I1(x, A)

)

= I2(x, A).
(1)

In these equations, A = σh is the wet area of fluid cross-section, Q is the water dis-
charge, I1(x, A) = A2

2F2
r σ

is the hydrostatic pressurewhere Fr is the Froude’s number

and I2(x, A) = σ ′(x)
σ (x)

A2

2Fr 2σ(x)
− A

Fr 2
d ′(x) is the hydrostatic pressure source term

which takes into account the variation of the channel width σ and the bottom d. The
model (1) reduces to the well-known one-dimensional Saint-Venant equations for
uniform rectangular section, i.e. if σ is constant. The free surface model is the first
order shallow water approximation of the section-averaged Navier-Stokes or Euler
equations under suitable assumptions on the horizontal and the vertical scales (see,
e.g., [2, 7, 8, 10, 11] and the reference therein).

As it is well-known, the solutions of these equations are usually suitable to approx-
imate breaking waves with turbulent rollers for large transitions of the Froude’s num-
ber. However, for small or moderate transitions, the solutions of these equations are
not able to catch undular bores induced by a non-hydrostatic pressure distribution
[17]. Up to our knowledge, the first section-averaged dispersive shallow water equa-
tions for quite general assumptions on the geometry of the channel was proposed in
[6], thus allowing for the application of the resulting equations to natural rivers with
arbitrarily shaped cross-sections. This model reads
⎧
⎪⎨

⎪⎩

∂t A + ∂x Q = 0

∂t Q + ∂x

(
Q2

A
+ I1(x, A) + μ2DI1(x, A, Q)

)

= I2(x, A) + μ2DI2(x, A, Q) + O(μ2
2)

where DI1 and DI2 are the non-hydrostatic counterparts of the hydrostatic pressure
and the hydrostatic pressure source term.The case of non-uniform rectangular section
can be regarded as the natural extension of the usual one-dimensional Serre-Green-
Naghdi (SGN) equations over uneven bottom [5, 12, 19].

In this work, we focus only on the case of a rectangular variable section. We first
present the geometrical set-up in Sect. 2. Then we give the outline of the asymp-
totic derivation, and in particular, we show that the section-averaged model is fully
consistent with the Euler system in Sect. 3. Finally, in Sect. 4, we construct a first
order well-balanced finite volume approximation and we present some numerical
test cases.

2 The Three-Dimensional Incompressible Euler Equations

2.1 Settings

We consider the motion of an incompressible and irrotational fluid with constant
density ρ0 > 0 in a three-dimensional domain (see Fig. 1)
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Fig. 1 Geometric set-up

�(t) =
{
(x, y, z) ∈ R

3; x ∈ [0, Lc], α(x) ≤ y − ϕ(x) ≤ β(x), d(x) ≤ z ≤ η(t, x, y)
}

where ϕ describes the transversal variation of the channel with respect to the main
channel direction, α and β are the transversal limits of the channel, Lc its length, d
is the bottom, η is the free surface and h = η − d is the water height. The boundary
of the domain �(t) is defined by ∂�(t) and is decomposed into four parts: the free
surface 
fs(t), the wet boundary 
wb(t), the inflow boundary 
i(t) and the outflow
boundary
o(t). Thewet boundary can be decomposed itself in three parts: the bottom

b(t), the left lateral boundary 
lb(t), and the right one 
rb(t).

The governing equations for the motion of the fluid are the incompressible and
irrotational Euler equations in �(t), for all t ∈ (0, T ], which can be written as fol-
lows:

div [u] = 0 ,

∂

∂t
(u) + div [u ⊗ u] + ∇ p

ρ0
− F = 0

(2)

where u = (u, v, w)T is the velocity field, F = (0, 0,−g)T is the gravity accelera-
tion and p is the pressure. These equations are completed by the irrotational equation:

curl [u] = 0. (3)

The system is closed by suitable boundary conditions. We denote by nfs the
outward normal to the free surface which depends on time:

nfs = 1
√

1 + (∂xη)2 + (∂yη
)2

(−∂xη, −∂yη, 1
)T

,

and by nwb the outward normal to the wet boundary:
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nwb =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
√
1 + (∂xd)2

(∂xd, 0, −1)T if nwb = nb

1
√
1 + (∂xα)2

(∂xα, −1, 0)T if nwb = nlb

1
√
1 + (∂xβ)2

(∂xβ, 1, 0)T if nwb = nrb

At the free surface, we prescribe a kinematic boundary condition

∂tη + u∂xη + v∂yη = w on 
fs(t) (4)

completed with the dynamical condition which takes into account the equilibrium
with atmospheric stress

p = pa on 
fs(t). (5)

In the sequel, without loss of generality, we set pa = 0.
At the wet boundary, we prescribe a no-penetration condition:

u∂xd − w = 0 on 
b(t),
u∂xα − v = 0 on 
lb(t),
u∂xβ + v = 0 on 
rb(t).

(6)

2.2 Dimensionless Euler Equations

Let us consider the following scales involved in the wave motion: L a wave-length in
the longitudinal direction, H2 a characteristic water depth, H1 a characteristic scale
of the channel width and h1 a wave-length in the transversal direction.We then define
the classical dispersive parameter μ2 (see e.g. [13])

μ2 = H 2
2

L2

and μ1 = h21
L2 where μ1 is also a dispersive parameter but in the transversal direction.

In the following, we consider the asymptotic regime:

h1 < H1 = H2 � L

such that the following inequality holds

μ1 < μ2
2.
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Under these assumptions, we get the following ordering:

μ21 <
μ21
μ2

< min

⎛

⎝
μ21
μ22

, μ1μ2

⎞

⎠ < max

⎛

⎝
μ21
μ22

, μ1μ2

⎞

⎠ < μ1 < min

(
μ1
μ2

, μ22

)

< max

(
μ1
μ2

, μ22

)

< μ2 � 1.

We also introduce (U, V = √
μ1U,W = √

μ2U )T the scale of fluid velocity. The

time scale is T = L

U
. Let us define P = p

ρ0
and choose the pressure scale to be

P = U 2.
This allows us to introduce the dimensionless quantities of time t̃ , space (̃x, ỹ, z̃),

pressure P̃ , depth d̃, water elevation η̃ and velocity field (̃u, ṽ, w̃), via the following
scaling relation

x̃ = x

L
, ỹ = y

h1
, z̃ = z

H2
, t̃ = t

T
, P̃ = P

P , ϕ̃ = ϕ

h1
, ũ = u

U
, d̃ = d

H2
, ṽ = v

V
, η̃ = η

H2
, w̃ = w

W
.

(7)

Finally, we define the non-dimensional Froude’s number by Fr = U√
gH2

.

For the sake of clarity and simplicity dropping ·̃, using the dimensionless vari-
ables (7), and reordering the terms with respect to the powers of μ1 and μ2, the
dimensionless incompressible Euler system (2) reads as follows:

∂xu + ∂yv + ∂zw = 0, (8)

∂t u + u∂xu + v∂yu + w∂zu + ∂x P = 0, (9)

μ1
(
∂tv + u∂xv + v∂yv + w∂zv

)+ ∂y P = 0, (10)

μ2
(
∂tw + u∂xw + v∂yw + w∂zw

)+ ∂z P = − 1

Fr
2 . (11)

Under this scaling, the boundary conditions (4)–(5) and (6) remain unchanged and
the dimensionless irrotational Eq. (3) becomes

∂yu = μ1∂xv, μ1∂zv = μ2∂yw, ∂zu = μ2∂xw. (12)

Thanks to the ordering μ2
1 < μ2 and the structure of Eqs. (12), it is natural to

compute the asymptotic expansion of u in two steps first with respect to y, then
with respect to z. It can be achieved by first width-averaging the Euler system (8)–
(11), then by depth-averaging the resulting equations. For the sake of completeness,
skipping the technical details, we present the outline of the derivation. Interested
readers can found the details in [6].
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3 Derivation of the Section-Averaged Model

3.1 Width-Averaged Equations

By integrating for s ∈ [α(x), y], the first two equations of the irrotational equations
(12) and the divergence equation (8), keeping in mind the boundary conditions (4)–
(5) and (6), we get the following asymptotic expansions:

u(t, x, y, z) = uα(t, x, z) − μ1

2
∂xdivx,z

[
wα(t, x, z)(y − α(x))2

]+ O

(
μ2
1

μ2

)

,

(13)

v(t, x, y, z) = −divx,z [wα(t, x, z)(y − α(x))] + O

(
μ1

μ2

)

(14)

and

w(t, x, y, z) = wα(t, x, z) − μ1

2μ2
∂zdivx,z

[
wα(t, x, z)(y − α(x))2

]+ O

(
μ2
1

μ2
2

)

(15)
where Xα(t, x, z) := X (t, x, α(x), z).

For a given function (t, x, y, z) 	→ X (t, x, y, z), we define its width-average by

〈X〉(t, x, z) := 1

σ(x)

∫ β(x)

α(x)
X (t, x, y, z) dy

where σ(x) = β(x) − α(x) is the width of the channel.
Integrating Eqs. (8)–(11) for y ∈ [α(x), β(x)], using Leibniz integral rule, keep-

ing inmind the boundary conditions (4)–(5) and (6), using the asymptotic expansions
(13)–(15), we obtain the width-averaged Euler system:

divx,z [σwα] = O

(
μ1

μ2

)

,

∂

∂t
(σuα) + divx,z [σuαwα] + ∂

∂x
(σ Pα)+ = Pα

∂σ

∂x
+ O

(
μ1

μ2

)

,

μ2

(
∂

∂t
(σwα) + divx,z [σwαwα]

)

+ ∂

∂z
(σ Pα) = − σ

Fr 2
+ Pα

∂σ

∂z
+ O(μ1)

(16)

where Pα(t, x, z) + O(μ1) = P(t, x, y, z) thanks to Eq. (10). The motion of the
fluid is now in a two-dimensional domain:

〈�〉(t) = {(x, z) ∈ R; d(x) ≤ z ≤ η∗(t, x)
}
.

The irrotational condition (12) reduces to
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∂uα

∂z
= μ2

∂wα

∂x
+ O(μ1) (17)

and the boundary conditions to

∂η∗

∂t
+ uα

∂η∗

∂x
= wα + O

(
μ1

μ2

)

and Pα = O(μ1) on 〈
fs〉(t) , (18)

uα∂xd = wα + O

(
μ1

μ2

)

on 〈
b〉(t) (19)

where 〈
fs〉(t) is the free surface boundary and 〈
b〉(t) the bottom boundary of the
width-averaged fluid domain 〈�〉(t).

The function η∗ in the above expression depends only on t and x . Indeed, inte-
grating Eq. (11) for s ∈ [z, η(t, x, y)], using the previous asymptotic expansions,

and noting
D

Dt
w = ∂tw + u∂xw + v∂yw + w∂zw, we can write

Pα(t, x, z) = η(t, x, y) − z

Fr 2
+ μ2

∫ η(t,x,y)

z

D

Dt
wα(t, x, s) ds + O(μ1) .

Thus, taking the y-derivative of the above expression provides

0 = ∂yη

(
1

F2
r

+ μ2
D

Dt
wα |z=η

)

+ O(μ1) = −∂yη ∂z P|z=η + O(μ1)

Consequently, since ∂z P|z=η �= 0, we get ∂yη = O(μ1). This is the so-called flat free
surface approximation. Therefore, one can write

η(t, x, y) = η∗(t, x) + O(μ1) (20)

where the * is dropped in the following.

3.2 Depth-Averaged Equations

Integrating Eq. (17) together with the first equation of System (16) for s ∈ [d(x), z],
keeping in mind Eqs. (18)–(19), we obtain

uα(t, x, z) = ud(t, x) − μ2

∫ z

d(x)
∂xS(ud , x, s) ds + O(μ2

2)

and
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wα(t, x, z) = − 1

σ(x)

∂

∂x
(ud(t, x)S(x, z)) + O(μ2)

where S(u, x, z) = 1

σ(x)

∂

∂x
(uS(x, z)), S(x, z) = σ(x)(z − d(x)) and Xd(t, x) =

Xα(t, x, d(x)).
Thanks to the flat free surface approximation (20), one can write the section-

average of the velocity u as follows:

u = 1

A

∫ η(t,x)

d(x)

∫ β(x)

α(x)
u(t, x, y, z) dy dz

where A = ∫ η(t,x)
d(x)

∫ β(x)
α(x) dy dz = σ(x)h(t, x) is thewet area, σ = β − α is thewidth

of the channel and h = η − d is the water height.
Thus, since u(t, x, y, z) = uα(t, x, z) + O(μ1) = ud(t, x) − μ2

∫ z
d(x) ∂xS(ud , x,

s)ds + O(μ2
2), we deduce the following asymptotic expansion of u:

u = u(t, x) + μ2B0(u, x, z) + O(μ2
2) (21)

where

B0(u, x, z) = 1

A(t, x)

∫ η(t,x)

d(x)

(

σ(x)
∫ z

d(x)
∂xS(u, x, s) ds

)

dz −
∫ z

d(x)
∂xS(u, x, s) ds.

Similarly, we get for w:

w(t, x, y, z) = −S(u, x, z) + O

(
μ1

μ2

)

. (22)

Using the asymptotic expansion of u (21) and w (22) , we obtain the asymptotic
expansion of the pressure P at order O(μ2

2)

P(t, x, y, z) = Pα(t, x, z) + O(μ1) = Ph(t, x, z) + μ2Pnh(t, x, z) + O(μ2
2)

where

Ph(t, x, z) = (η(t, x) − z)

Fr
2

is the usual hydrostatic pressure and

Pnh(t, x, z) = ∫ η(t,x)
z

1

2σ(x)2
∂z
(
(σ (x)S(u, x, s))2

)
ds

− ∫ η(t,x)
z ∂tS(u, x, s) + u(t,x)

σ (x) ∂x (σ (x)S(u, x, s)) ds

is the non-hydrostatic part of the pressure.
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3.3 Section-Averaged Model

To end the asymptotic derivation, we integrate vertically the set of equations (16)
between d and η and drop all terms of order lower than μ2. We get the generalised
Serre-Green-Naghdi equations for non-uniform rectangular section:

⎧
⎨

⎩

∂t A + ∂x Q = 0

∂t Q + ∂x

(
Q2

A
+ I1(x, A) + μ2DI1(x, A, Q)

)

= I2(x, A) + μ2DI2 + O(μ2
2)

(23)
where A = σh is the wet area, Q is the water discharge, I1(x, A) = A2

2F2
r σ(x) is

the hydrostatic pressure, I2(x, A) = σ ′(x)
σ (x)

A2

2Fr 2σ(x)
− A

Fr 2
d ′(x) is the hydrostatic

pressure source term, DI1 = ∫ η(t,x)
d(x) Pnh(t, x, z)σ (x) dz is the non-hydrostatic pres-

sure and DI2 = ∫ η(t,x)
d(x) Pnh(t, x, z)σ ′(x) dz − σ(x)Pnh(t, x, d(x))d ′(x) is the non-

hydrostatic pressure source term.
Moreover, Eqs. (23) are by construction asymptotically consistent with the Euler

system (8)–(11). We have the following result:

Theorem 1 System (23) admits a total energy

E = A
u2

2
+ A

η

F2
r

− I1 + μ2

2

∫

�

S2(u, x, z) dydz (24)

which satisfies the following energy equation

∂t E + ∂x ((E + I1 + μ2DI1)u) = 0. (25)

Moreover, the quantity E is consistent with the total energy E = u2+μ1v
2+μ2w

2

2 + z
F2
r

of the Euler equation (8)–(11), in the sense that

∂t

∫

�

E dydz + ∂x

∫

�

(E + P)u dydz = ∂t E + ∂x ((E + I1 + μ2DI1)u) + O(μ2
2).

Remark 1 This is a positive feature of the approximate model (23), which provides
the richness of content for thismodel and can be used in the estimation of the accuracy
of numerical algorithms.Moreover, it is well-known that the energy conservation law
plays a fundamental role in the justification of the theory of shallow water equations.

Remark 2 As a direct consequence of (24) and (25), we are able to recover the
energy conservation law of the usual models in the case of σ ≡ 1, i.e. A = h:

• ifμ2 = 0, we recover the classical total energy of the Saint-Venant system, namely
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E = hu2

2
+ h(h + 2d)

2F2
r

.

• if μ2 �= 0, we recover the classical total energy of the Serre-Green-Naghdi system
(see for instance [9]), namely

E = hu2

2
+ h(h + 2d)

2F2
r

+ μ2

(
h3

6
(∂xu)2 − d ′ h

2

2
∂xu + (d ′)2

2

)

.

4 A Well-Balanced Finite Volume Approximation

The main drawback of Eqs. (23) is that it has third order terms in space which may
lead to instabilities at the numerical level. Therefore, we first propose a more stable
formulation of Eqs. (23) before presenting its numerical approximation.

Skipping the technical details, defining a linear operator L (where L is defined
below)

L[A, d, σ ](u) = AL[A, d, σ ]
( u

A

)
,

one can show that System (23) can be written:

⎧
⎨

⎩

∂t A + ∂x Q = 0
(
Id − μ2L[A, d, σ ])

(

∂t (Au) + ∂x

(
Q2
A

))

+ ∂x I1(x, A) + μ2AQ[A, d, σ ]
(
Q
A

)
= I2(x, A) + O(μ2

2)
(26)

where Q = Au is the discharge, Id is the identity operator, L is a linear operator

L[A, d, σ ](u) = 1
A

[
∂x
(T [A, d, σ ] (u, σ )

)− T [A, d, σ ] (u, ∂xσ)
]

+ 1
Aσ(x)d ′(x) T [A, d, σ, z = d(x)] (u)

and Q is a quadratic operator

Q[A, d, σ ](u) = 1
A

[
∂x
(G[A, d, σ ] (u, σ )

)− G[A, d, σ ] (u, ∂xσ)
]

+ 1
Aσ(x)d ′(x) G[A, d, σ, z = d(x)] (u)

with T , G are given by

T [A, d, σ, z](u) = ∂x (u)

∫ η

z

S(x, s)

σ (x)
ds + u

∫ η

z

1

σ(x)
∂x S(x, s) ds,

and

G[A, d, σ, z](u) = ∫ ηz 2 (∂x u)2 S(x,s)
σ (x) + u2

σ(x)

(
∂x S(x,s)∂x σ(x)

σ (x) − ∂x ∂x S(x, s)
)

+ ∂x

(
u2
2

)
S(x,s)∂x σ(x)

σ (x)2
ds
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with

X[A, d, σ ](u, ψ) =
∫ η

d(x)
ψX[A, d, σ, z](u) dz.

In particular, one can explicitly compute those operators:

• if σ ∈ R
+∗ and d ∈ R are constant then we recover the standard one-dimensional

SGN equations (see for instance [14–16]) over flat bottom with

L[A, d, σ ](u) = L0[A, σ ](u) = 1

σh
∂x

(
σh3

3
∂x u

)

and

Q[A, d, σ ](u) = Q0[A, σ ](u) = 1

σh
∂x

(
2

3
σh3 (∂x u)2

)

.

• if σ ∈ R
+∗ is constant and d = d(x) then we recover the standard one-dimensional

SGN equations (see for instance [14–16]) over uneven bottom with

L[A, d, σ ](u) = L1[A, d, σ ](u) = L0[A, σ ](u) − 1

σh
∂x

(
σh2

2
ud ′(x)
)

+ h

2
∂x ud

′(x) − u
(
d ′(x))2

and

Q[A, d, σ ](u) = Q1[A, d](u) = Q0[A, σ ](u) + 1

σh
∂x

(

σ
h2

2
u2d ′′(x)

)

+ h (∂x u)2 d ′(x) + u2d ′(x) d ′′(x).

• if σ = σ(x) and d = d(x) then we get the generalised one-dimensional SGN
equations for non-uniform rectangular channel over uneven bottom with

L[A, d, σ ](u) = L1[A, d, σ ](u) + 1

σh
∂x

(

σ ′(x) h
3

3
u

)

− σ ′(x)
σ

(

∂x u
h2

3
+ u

h2

3

σ ′(x)
σ

− u
h

2
d′(x)
)

and
Q[A, d, σ ](u) = Q1[A, d, σ ](u) + 1

σh ∂x

(
(
σ ′(x))2 u2

σ
h3
3

)

+ 1
σh ∂x

(

d′(x)σ ′(x)u2 h2
2

)

− 1
σh ∂x

(

σ ′(x)u2 h3
3

)

+ ∂x

(

∂x

(
u2
2

)

σ ′(x) h33
)

− 1
σh σ ′(x)R[A, d, σ ](u)

with
R[A, d, σ ](u) = (∂x u)2 h3

3 + u2
(

σ ′(x)
σ

)2
h3
3 + u2

(
σ ′(x)

σ

)

d′(x) h22 − u2
(

σ ′′(x)
σ

)2
h3
3 + u2d′′(x) h22

+∂x

(
u2
2

)
σ ′(x)

σ
h3
3 − u2d′(x) σ ′(x)

σ
h2
2 − u2σ ′(x) (d′(x))2 h + u2σ ′′(x)d′(x) h22

−∂x

(
u2
2

)

σ ′(x)d′(x) h22 .

It is known that third order derivatives involved in the initial model (23) may create
high frequencies instabilities, but the presence of the

(
Id − μ2L[A, d, σ ])−1

in the
second equation of (26) stabilises the equations with respect to these perturbations.
Therefore, in the following, we construct a numerical scheme for Eqs. (26) instead
of Eqs. (23).
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4.1 Numerical Method

This section is devoted to the numerical method to solve the reformulated dispersive
model (26). It is rather natural to split the hyperbolic part to the dispersive one as
done by several authors (see for instance [3–5]).

Let N ∈ N
∗. Let us consider the following uniform mesh on [0, Lc]. Cells are

denoted for every i ∈ [0, N + 1], by mi = (xi−1/2, xi+1/2) with xi = xi−1/2+xi+1/2

2 the
cell center and δx = xi+1/2 − xi−1/2 the space mesh. The interfaces x1/2 = 0 and
x = xN+1/2 denote the upstream and the downstream ends. We also consider a time
discretisation tn defined by tn+1 = tn + δtn where the time step δtn is computed
through a CFL condition related to the hyperbolic part.

Let us first highlight that the still water steady state for Eqs. (26) is independent
of μ2. Indeed, one has ∀μ2 > 0, the still water steady state equation reads

u = 0,
A

σ
+ d = h0

for some positive h0. As a consequence, the construction of a well-balanced scheme
can be easily achieved considering only the hyperbolic part of Eqs. (26), for instance,
by the use of the hydrostatic reconstruction (see for instance [1]).

Let us define di+1/2 = max(di , di+1) where di = 1
δx

∫

mi
d(x)dx , σi+1/2 =

max(σi , σi+1) where σi = 1
δx

∫

mi
σ(x)dx and let us define the reconstructed states

A−
i+1/2 = σi+1/2

(
Ai

σi
+ di − di+1/2

)

, A+
i+1/2 = σi+1/2

(
Ai+1

σi+1
+ di+1 − di+1/2

)

with
U−

i+1/2 = (A−
i+1/2, A

−
i+1/2ui ), U+

i+1/2 = (A+
i+1/2, A

+
i+1/2ui+1)

where Ui = (Ai , Aiui )T ≈ 1
δx

∫

mi
(A, Au)T dx .

Let us introduce the flux

F1(U ) = Q, F2(U ) = Q2/A and F3(x,U ) = I1(x, A) + μ2G[A, d, σ ] (u, σ )

and

S(x,U ) = I2 + μ2G[A, d, σ ] (u, ∂xσ) − μ2σ(x)d ′(x) G[A, d, σ, z = d(x)] (u) .

Then, one can write System (26) as follows:

∂t A + ∂x F1(U ) = 0(
Id − μ2L[A, d, σ ]) (∂t Q + ∂x F2(U )) + ∂x F3(x,U ) − S(x,U ) = 0

With these settings, we define the following numerical scheme:
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An+1
i = An

i − δtn
δx

(
F1

(
U−,n

i+1/2,U
+,n
i+1/2

)
− F1

(
U−,n

i−1/2,U
+,n
i−1/2

))

Q∗
i = Qn

i − δtn
δx

(
F2

(
U−,n

i+1/2,U
+,n
i+1/2

)
− F2

(
U−,n

i−1/2,U
+,n
i−1/2

))

Qn+1
i = Q∗

i − δtn
δx (Y n)i

where

AnY n =
(
F3

(
xi+1/2,U

−,n
i+1/2,U

+,n
i+1/2

)
− F3

(
xi−1/2,U

−,n
i−1/2,U

+,n
i−1/2

)
+ μ2Nn

i

)

1≤i≤N
.

The matrix An is the cell-centered approximation of the linear operator
(
Id −

μ2L[A, d, σ ]) andNn
i is the cell-centered approximation of−G[A, d, σ ] (u, ∂xσ) +

σ(x)d ′(x) G[A, d, σ, z = d(x)] (u).
The numerical fluxes are defined by

F1

(
U−,n

i+1/2,U
+,n
i+1/2

)
= F1
(
U−,n

i+1/2

)
+F1
(
U+,n

i+1/2

)

2 − sni+1/2(A
+,n
i+1/2 − A−,n

i+1/2)

F2

(
U−,n

i+1/2,U
+,n
i+1/2

)
= F2
(
U−,n

i+1/2

)
+F2
(
U+,n

i+1/2

)

2 − sni+1/2(Q
+,n
i+1/2 − Q−,n

i+1/2)

F3

(
xi+1/2,U

−,n
i+1/2,U

+,n
i+1/2

)
= F3
(
xi+1/2,U

−,n
i+1/2

)
+F3
(
xi+1/2,U

+,n
i+1/2

)

2 +
(

An
i
2

2σi F2
r

− A−,n
i+1/2

2

2σi+1/2F2
r

)

F3

(
xi+1/2,U

−,n
i+1/2,U

+,n
i+1/2

)
= F3
(
xi+1/2,U

−,n
i+1/2

)
+F3
(
xi+1/2,U

+,n
i+1/2

)

2 +
(

An
i+1

2

2σi+1F2
r

− A+,n
i+1/2

2

2σi+1/2F2
r

)

such that whenever μ2 = 0, we recover the classical numerical scheme1 for the
hyperbolic part

Un+1
i = Un

i − δtn
δx

(
F (xi+1/2,U

−,n
i+1/2,U

+,n
i+1/2) − F (xi−1/2,U

−,n
i−1/2,U

+,n
i−1/2)
)

with F (x,U, V ) = (F1(U, V ),F2(U, V ) + F3(x,U, V )). In these expressions,

si+1/2 = max
j=1,2

∣
∣
∣λ j (xi+1/2,U

−,n
i+1/2)

∣
∣
∣ ,

∣
∣
∣λ j (xi+1/2,U

+,n
i+1/2)

∣
∣
∣

where λ j (x,U ) = Q/A + (−1) j
√

A
σ(x)F2

r
, j = 1, 2 are the eigenvalues of the Jaco-

bian matrix of (F1, F2 + F3)
T .

The numerical scheme is consistent and stable under the CFL condition

max
1≤i≤N

(∣
∣λ1(xi ,U

n
i )
∣
∣ ,
∣
∣λ2(xi ,U

n
i )
∣
∣
) δtn

δx
≤ 1 .

1For the sake of simplicity and clarity, we have presented the finite volume method using the
Rusanov solver but the method is not limited to this one.
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4.2 Propagation of a Solitary Wave

In this section, we test the accuracy of themethod andwe show numerically the influ-
ence of the section variation in the case of the propagation of a solitary wave. For this
purpose, we consider the exact solitary wave solutions of the Green-Naghdi equa-
tions in the one-dimensional setting over a flat bottom (see [15]), given in variables
with dimensions, by

η(t, x) = asech2(k(x − ct)), u(t, x) = c

(
η(t, x)

η(t, x) + z0

)

with k =
√
3a

2z0
√
z0 + a

and c = √g(z0 + a) (27)

where z0 is the depth of the fluid and a is the relative amplitude.

Accuracy
The propagation of the solitary wave (27) is initially centered at x0 = 10 m with a
relative amplitude a = 0.2 m over a constant water depth z0 = 2 m. The computa-
tional domain is Lc = 100 m and it is discretized with N cells. The single solitary
wave propagates from left to right. In this test, since the solitary wave is initially
far from boundaries, the boundary conditions do not affect the computation, thus we
choose to impose free boundary conditions at the downstream and upstream ends.
The exact solution is computed in a channel of width σ = 1.

In what follows, we quantify the numerical accuracy of our numerical scheme
by computing the numerical solution for this particular test case for an increasing
number of cells N over a duration T = 20 s. Starting with N = 100 number of cells,
we successively multiply the number of cells by two. For all n, we compare, in Fig. 2,
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Mn := max0≤i≤N+2(hni ) of our numerical solution provided by Eqs. (26) with the
exact one M(tn) := max h(tn, x)x∈[0,Lc] = 2.2 given by (27). One can easily remark
that the first order discretisation is not accurate for long time simulation due to the
numerical dissipation. However, to limit the numerical dissipation of the first order
numerical scheme, one can either limit the simulation time or consider a very large
number of cells. However, it is better to increase the order of the numerical scheme
but this is left to future work. Therefore, in what follows, we consider a shorter
simulation time and a large number of cells, just to illustrate the influence of the
variation of the channel.

Influence of the Section Variation
We consider again the propagation of a solitary wave initially centered at x0 = 10
m of relative amplitude a = 0.2 m, over a constant water depth z0 = 2 m onto a
computational domain of Lc = 50 m and discretized with N = 5000 cells. The final
simulation time is T = 8 s. Initially starting with (η(0, x), u(0, x)) (see Eqs. (27)),
we compute the numerical simulation for the channels defined by

σ(x; ε) = β(x; ε) − α(x; ε) with β = 1

2
− ε

2
exp
(−ε2
(
x − L/2)2

))
and α = −β

with ε = 0, ε = 0.1, ε = 0.2, ε = 0.3 and ε = 0.4. The obtained results are presented
in Fig. 3. In Fig. 3a, for each geometry, we show the evolution of the maximum of the
water level Mn := max0≤i≤N+2(hni ). As expected, since the first part for x ≤ 25 is
linearly converging, thewater level increaseswhile for x > 25, the channel is linearly
diverging and therefore, the amplitude of the water level decreases. Moreover, in all
numerical simulations, the mass is conserved. Indeed, for each value of ε, we have
displayed in Fig. 3b, the ratio of mn

m0 wheremn := 1
N+2

∑N+1
i=0 An

i is the mass of water

at time tn . The ratio mn

m0 is almost equal to 1, up to the order of accuracy of the
numerical scheme.

In what follows, we quantify the numerical accuracy of our numerical scheme.
Starting with N = 100 number of cells, we successively multiply the number of cells
by two. The errors on the water surface deformation are presented in Table1 and in
Table2. These errors are computed at t = 8 s using the L2:

‖ηnum − ηref‖2 =
√

δx
∑

i

∣
∣ηnumi (t = 8) − ηref(t = 8, xi )

∣
∣

and the L∞ norms where ηref is the exact solution in the case ε = 0 and is a reference
one computed with 10 000 cells for ε = 0.4. Since the results are almost the same
whatever ε is, we have decided to present only the results for ε = 0 and ε = 0.4 in
Table1 and in Table2.

As expected, the obtain numerical order is slow because of the numerical dissi-
pation of the solitary wave (as already pointed out in several works, see for instance
[3] for which we obtain almost the same order of convergence in the case of uni-
form section). Moreover, as expected, cross-sectional variations have no influence
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Table 1 Convergence rate of the L2 error for ε = 0. The order is computed through first order
interpolation polynomial

N ‖ηnum − ηexact‖2 ‖ηnum − ηexact‖∞
100 0.0789 0.0449

200 0.0497 0.0288

400 0.0304 0.0180

800 0.0198 0.0116

1600 0.0153 0.0081

3200 0.0138 0.0062

Order 0.53 0.58

Table 2 Convergence rate of the L2 error for ε = 0.4. The reference solution is computed with 10
000 cells. The order is computed through first order interpolation polynomial

N ‖ηnum − ηref‖2 ‖ηnum − ηref‖∞
100 0.05212 0.02533

200 0.02096 0.01082

400 0.01079 0.00554

800 0.00748 0.00503

1600 0.00635 0.00412

3200 0.00505 0.00300

Order 0.64 0.56

on the convergence rate. Let us just emphasise that the convergence rates are slightly
better in the case of non-uniform section because we are comparing our results to a
reference solution and not to the exact one.

5 Conclusions and Perspectives

We have presented the derivation of a new dispersive model for open channel with
non-uniform rectangular section. This model generalises the usual Serre-Green-
Naghdi equation. We have presented its numerical finite volume approximation for
which we have proposed two simple test cases. In a forthcoming paper, we will focus
on the case of arbitrary channel section and we will propose a high order numerical
scheme.
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