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Abstract. This paper performs a feasibility analysis to find the best-fitting solu-
tion in terms of quality/price ratio for designing and developing a Real-Time
Location System for Indoor Positioning inside healthcare facilities. In particular,
an overall comparison of all the available solutions is done, highlighting pros
and cons of each technology (WiFi, RFID, WLAN, Ultra-Wide Band, Bluetooth
LowEnergy, ZigBee, magnetic fields, infrareds, ultrasounds, computer-vision and
Pedestrian Data-Reckoning) for accuracy, price, coverage, infrastructure develop-
ment and installation, and maintenance. A preliminary scope-review is also pro-
duced, which summarizes the obtained outcomes in similar studies. In the results
section the proposed system is illustrated via flowcharts and block diagrams, both
for off-site and on-site scenarios.
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1 Introduction

Navigation portable applications have largely grown during the last years, especially
because of the huge diffusion of smartphones with inner localization hardware, such as
Global Navigation Satellite System (GNSS), wireless antennas (IEEE 802.11 WiFi and
IEEE 802.15 Bluetooth) and inertial sensors. However, themajority of these applications
works just for outdoor positioning and routing, due to their architecture based upon GPS
(Global Positioning System) signals, which have extremely low power, therefore they
cannot be received inside a building.

New technologies and algorithms have been developed and adopted during the
recent years to face Indoor Positioning System (IPS), such as Radio-frequency Iden-
tification (RFID), Wireless Local Area Network (WLAN), Ultra-wide Band (UWB),
Bluetooth Low Energy (BLE), ZigBee, magnetic fields, infrared (IR), ultrasounds (US)
or computer-vision based systems [1–3].
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Real-time Location Systems (RTLS) is a topic of research which is becoming wider
and wider. No universal standard is currently available, due to the peculiarities of each
building and to the positioning requirements each application has. In fact, mixed tech-
nologies are often implemented depending on the features of the spaces. The application
architecture is also very heterogenous depending on the type of users it is developed
for. A drive system for robots requires a millimetric precision while a public application
for general users, needs less accuracy, but on the other hand, it must be compliant with
multiple operative systems and hardware of different brands of smartphones. Moreover,
some of these systems only works when additional infrastructures have been installed,
which result in extra price and maintenance. Consequentially, the building and field of
application affect the system and the algorithms to choose [4].

The scope of this paper is to find the best-fitting solution for developing a RTLS for
the hospital of Le Scotte in Siena (Italy). The hospital is made out of 12 pavilions and
covers an area of about 208,000 m2 with 800 beds and 8,100 rooms. Each pavilion is
located on a topography which is largely hilly, thus the inner paths and alleys which link
together different buildings are not on the same constant level throughout the hospital
area. In fact, it is very likely to have the first or second basement storey of a building
at the same elevation of the ground floor of an adjoining pavilion. This implies a very
complex spatial management of the whole premise [5–7]. This spatial unicity together
with the heterogeneity of the users of a hospital (patients with limited mobility, visitors,
suppliers, technicians) represents a valid opportunity for implementing a navigation
system in order to improve the user’s experience. The first obstacles which come to
mind in applying such technology to a hospital is the limited availability of a consistent
WiFi coverage throughout the whole premise together with the presence of a lot of metal
devices, some of which may also be moved.

2 Methods

An Indoor Position System is a network of devices which allows accurate and real-time
indoor people and items localization. Generally, an IPS can be divided in 3 main blocks:

• Inner positioning system module
• Navigation module
• Human-machine interaction (HMI) module.

The first one estimates the user’s spatial position, the second one evaluates the
available routes between the starting point and the final destination, while the latter
improves the user’s interaction with the system and gives him/her useful instructions
and information [1].

Several technologies are available for implementing the inner positioning system
module, which can be categorised in: radio frequencies (WLAN, WiFi, RFID, UWB,
ZigBee and Bluetooth), magnetic fields, computer-vision based systems, IR systems,
US systems, Pedestrian Dead-Reckoning (PDR). Each of the above listed wireless tech-
nology utilises a dedicated positioning model which may change in terms of coverage
and precision according to the selected medium (electromagnetic waves, optical waves
or mechanical waves). The main criteria to keep in consideration while choosing the
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appropriate technology are: accuracy (the average Euclidian distance between the actual
ground position and the estimated position coordinates), precision, coverage, scalability,
medium and infrastructure, robustness, power consumption, price, usability, safety and
privacy [1].

A list of all the available technologies follows, highlighting the pros and cons for
each one (which are also summarised in Table 1).

1. WiFi is a RF technology used inWLAN based upon the standard IEEE 802.11. IPS
which uses WiFi infrastructure is often implemented in internal environments with
an already existing access point (AP) architecture for data transferring. In order to
adopt this technology for a full RTLS, multiple wireless access points (WAP) need
to be installed so that the actual coverage can be increased, improving the accuracy
of localizing items and people, with smartphones acting as wireless clients. InWiFi
RTLS, the accuracy is about 3–5 m, which is a non-acceptable value for the scope
of this study, even though new approaches are being developed to improve the
precision of the measurement [8–10]. Another disadvantage is the lack of API for
indoor localization via WiFi for iOS devices. Apple Inc. Stopped designing and
deploying API for signal strength detection via WAP. This results in a practical
difficulty in designing a universal system, requiring the installation of iBeacon as
a support for Received Signal Strength Indication (RSSI) [11].

2. RFID systems are made of tags which contain data that can be recovered with
a radiofrequency reader by employing the Received Signal Strength (RSS), the
Angle of Arrival (AOA), the Time of Arrival (TOA) or the Time Difference of
Arrival (TDOA) for estimating their position. RFID tags can be active, passive
or semi-active. Current RTLS based on RFID use passive tags because they do
not need any internal power supply: the radio waves emitted by the reader provide
sufficient energy to transmit the whole data. This results in a limited reading area of
a fewmeters: the price of the system is kept low, but the number of needed antennas
increase. Another problem which need to be faced when adopting passive tagging
is whenever the reader is not able to evaluate multiple responses from different
tags at the same time (collision), affecting the scalability. Moreover, metals may
cause electromagnetic interferences and distortions. Finally, all the above-cited
approaches, except RSS, may not be able to accurately estimate the tag position in
an indoor environment.

3. UWB is a radio technology that can use a very low energy level for short-range,
high-bandwidth communications over a large portion of the radio spectrum. They
ensure very precise spatial position estimation with deviation of about 0.01 m and
a wide signal coverage of about 30 m. The high-bandwidth ensures a high data-
transfer speed together with a high robustness, also in amultipath environment. The
system uses TOA, AOA, TDOA and RSS for position estimation just like RFID.
UWB is the most accurate system but it is very expensive due to its type of tag and
infrastructure. Besides, the installation may also be very complex [12].

4. ZigBee is an IEEE 802.15.4-based specification for a suite of high-level commu-
nication protocols used to create personal area networks with small, low-power
digital radios, designed for small scale projects which need wireless connection.
Hence, Zigbee is a low-power and close proximity (i.e., personal area) wireless
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ad hoc network. The high coverage (between 10 and 100 m) and the low-power
working rate is however at the expense of the data rate and precision (about 5 m).

5. Bluetooth Low Energy (Bluetooth LE or BLE) is a wireless personal area net-
work technology designed and marketed by the Bluetooth Special Interest Group
(Bluetooth SIG). Compared to Classic Bluetooth, BLE is intended to provide con-
siderably reduced power consumption and price while maintaining a similar com-
munication range. Mobile operating systems including iOS, Android, Windows
Phone and BlackBerry, as well as macOS, Linux, Windows 8 and Windows 10,
natively support Bluetooth Low Energy. Bluetooth beacons are usually used as RF
sources to trace the devices’ position by implementing proximity detection, RSS
fingerprinting or trilateration. Accuracy is of 2–3 m, with a coverage of 10–20 m
(which can be widen at the expense of the battery duration).

6. Magnetic fields localization systems rely on the interferences caused by struc-
tural steel elements of the building to the earth magnetic field, which produce
unique magnetic prints. This technique finds numerous advantages, such as no
pre-implemented infrastructure, low price and no influences by human bodies or
any other kind of barriers. Geomagnetic field ensures high precision despite a low-
energy consumption with a subsequent mobile battery saving [13]. However, it may
not perform well in a large area [4, 14] and it takes long time to build the initial
magnetic map, which also needs updates every time a metal asset or furniture is
added or removed to the scene [15].

7. Vision-based approach utilises computer-vision algorithm to place an image
framed by a smartphone inside a 3D scene, by recognizing key items, shapes or
texts. This technology offers scalable systems at a low price, but it affects the accu-
racy because the device needs to remain in a stable vertical position while targeting
key pictures [16].

8. Infrared positioning systems are based upon IR receivers which can establish the
location of IR transmitters spread throughout the building. IR have a very restricted
coverage and require a Line of Sight (LoS) between transmitters and receivers.
Furthermore, they are very sensitive to interferences of other IR sources (such as
the sun itself) and they also need expensive hardware and maintenance.

9. Ultrasounds can also be used to define the position of ultrasonic tags, in addition
to radio waves and IR. Unfortunately, US are more sensitive to obstacles then radio
waves, and they are obviously also sensitive to sound interferences and to the heat
[17].

10. Pedestrian Dead-Reckoning (PDR) technique estimates the position of a device
by knowing its starting point, direction and travelled distance. Smartphones have
one or more built-in inertial sensors (accelerometer, gyroscope) to perform the
desired evaluation. Usually, these systems obtain the starting position by using
other methodologies and then use the smartphone’s accelerometer to get to know
when and where the user steps over. Position is evaluated at every step by using the
previous known position: in the long run, this brings to an additive error reliant to
the sensor’s precision (drift-error). On the other hand, these systems do not need
any external infrastructure and they are not subject to external interferences.
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Table 1. Highlighting pros and cons of different RTLS technologies.

Accuracy [m] Range [m] Price Pros Cons

Wi-Fi 1 ÷ 5 20 ÷ 30 Medium Existing
infrastructure in
modern buildings

iOS devices
need iBeacons;
high energy
consumption

Passive RFID 2 ÷ 3 2 ÷ 3 Low Passive tagging Small coverage;
tag collision;
electromagnetic
interferences

UWB Less than 1 20 ÷ 30 High High accuracy Expensive tags
and
infrastructure;
complex
installation

ZigBee 3 ÷ 5 10 ÷ 100 High Mesh topology;
wide range

Low precision;
long
implementation
times to reduce
price

BLE 2 ÷ 3 10 ÷ 20 Low Low energy
consumption;
scalability

Expensive
infrastructure
and maintenance

Magnetic Field Less than 1 1 ÷ 10 Null High accuracy; no
infrastructure
needed; low price

Not suitable for
wide area;
complex
mapping

Computer Vision 1 ÷ 3 N/A Null Low price; no
infrastructure
needed; scalable

Stability of
devices during
image
acquisition

IR Less than 1 1 ÷ 5 Medium/High Good precision at
room level

LoS;
interferences;
short range

US Less than 1 2 ÷ 10 Medium/High Accuracy LoS;
interferences

PDR 1 ÷ 6 Null Null No infrastructure
needed; low price;
simplicity

Drift-error;
recalibration
needed

Some of the described technologies can be already excluded from this study because
they do not have properties which well suit the features of a healthcare facility: US
and IR systems are too sensitive to interference with very common signal sources for
hospitals, and ZigBee is specifically designed for low-scale projects. Moreover, UWB
is excluded due to its high price. RFID is often used in hospitals for medical device [18]
and patient tracking [19] or sampling recording, but it is not a successful solution for
RTLS purposes [2, 20].
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The remaining technologies (WiFi, BLE, magnetic field, computer vision and PDR)
are analysed in detail by comparing the dedicated literature in Tables 2, 3, 4 and 5.

Table 2. RF systems applications for indoor navigation.

Authors Method System Performance Test size

Sadowski S. e
Spachos P. [21]

ZigBee, BLE and
WiFi

Trilateration Average error:
ZigBee: 5.1317 m
BLE: 1.1143 m
WiFi: 0.5183 m

5.6 m × 5.9 m

Wang X. et al.
[22]

WiFi BiLoc, bi-modal
deep learning and
fingerprinting

Errore medio TEST
1: 1.5743 m
Errore medio TEST
2: 2.5101 m

Test 1: 6 × 9 m2

Test 2: 2.4 × 24 m2

Ibrahim M. et al.
[8]

WiFi WiFi fingerprinting
and Fuzzy logic

Average error:
1–2 m
Max error: 3–4 m
Accuracy: <2 m al
95%

10 m2

Joseph R. e Sasi
S. [23]

WiFi Fingerprinting Accuracy:
93% above 20
interactions

–

Yu J. et al. [24] WiFi, PDR Fingerprinting,
KDE and PDR,
UKF

Average error:
0.76 m

43.5 × 11.2 m2

Abdulkarim
H.D. et al. [25]

WiFi, PDR RSS normalization
proximity values,
EKF integrated
PDR
(self-calibration
extended Kalman
filter)

Average error:
Non-normalized:
2.05 m
Normalized RSS:
1.96 m

179 m2

Tian Z. et al.
[26]

WiFi, Micro
Electro-Mechanical
Systems (MEMS)

Fingerprinting
WiFi, EKF
integrated PDR

RMSE: 0.8 m
Accuracy: 90% <

1.7 m

TEST 1: 64.6 ×
18.5 m2

TEST 2: 81.2x18.5
m2

Cui Y. et al. [10] WiFi, MEMS Fingerprinting WiFi
and SKF integrated
PDR
(self-calibration
Kalman filter)

Average error:
0.6086 m

110 × 30 m2
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Table 3. Geomagnetic field systems applications for indoor navigation.

Authors Method System Performance Test size

Selamat M.H. e
Narzullaev A.
[27]

WiFi and
Magnetic field
comparison

Fingerprinting WiFi,
fingerprinting for
magnetic field

Average error:
Magnetic field: cm
WiFi: 1–3 m

–

Ashraf I. et al.
[28]

Magnetic field
integrated with
smartphones’
sensors

Fingerprinting, PDR Accuracy:
Galaxy S8: 50%
0.88 m
75% 1.68 m
LG G6: 50% 1.21 m
75% 2.20 m

85 × 40 m2

50 × 35 m2

30 × 30 m2

50 × 35 m2

90 × 32 m2

Chen Y. et al.
[29]

Magnetic field Fingerprinting,
Magnetic Field
Sorting (MFS)

Average error:
[2.13–3.27]m

–

Shu Y. et al. [30] Magnetic field Magicol Accuracy: 80%:
Office: 4 m
Market: 3.5 m
Underground parking:
1 m

Office:4000 m2

Market:1900 m2

Underground
parking: 3800 m2

Chen L. et al.
[13]

Magnetic field MeshMap Accuracy: 70% < 2 m
95% < 4 m

–

Li P. et al. [31] Magnetic field Converging Stepped
Magnetofluid Seal
(CSMS) by
integrating Chemical
Shift-resolved
Spectroscopic
Imaging (CSI) and
MFS
fingerprinting

Average error:
0.5 m

Laboratorio:
8 m × 20 m
Corridoio:
2.4 m 30 m

Lee N. et al. [32] Magnetic field Accurate Magnetic
Indoor Localization
(AMID), deep
learning

Hallway [1]/Lobby [2]
Average error:
[1]: 0.76 m /[2]: 2.30 m
Accuracy 90%:
[1]:1.50 m/[2]: 8.14 m
Accuracy 50%:
[1]:0.60 m/[2]:0.90 m

Hallway:
15 m 65 m
Lobby:
15 m 22 m

Bhattarai B.
et al. [14]

Magnetic field Fingerprinting, Deep
Recurrent Neural
Network (DRNN)
based on Long
Short-term Memory
(LSTM)

Accuracy:
97.2%

Hallway:
100 m × 2.5 m
Lab:
7 m × 7 m

Ning F.S. et al.
[33]

Magnetic field
integrated with
smartphones’
inertial sensors

PDR, magnetic field
mapping

Average error:
Male: 1 m/Female:
0.6 m
Accuracy: 80% < 1 m
50% < 0.64 m

33 m × 85 m
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Table 4. Hybrid systems applications for indoor navigation.

Authors Method System Performance Test size

Li Y. et al. [34] WiFi, Magnetic
field and inertial
sensors

WiFi fingerprinting,
magnetic matching
(MM), PDR

RMS:
- Area E: 3.2 m
- Area B: 3.8 m

Area E:
120 ×
40 m2

Area B:
140 ×
60 m2

Bellutagi G.S. et al.
[35]

BLE, QR code and
inertial sensors

QR code, iBeacon High accuracy
Low maintenance
price
Medium infrastructure
price

–

Chirakkal V. V. et al.
[36]

QR code and
inertial sensors

PDR Average error:
0.64 m

–

Real Ehrlich C. e
Blankenbach J. [37]

Inertial sensors
and Building
Information
Modeling (BIM)

Sequential Monte
Carlo (SMC), WLAN
fingerprinting, RSS
BLE, Magnetic
Anomaly (MA)

Average error:
(Sony Z5/Google
Pixel 2 XL)
11.19 m/11.78 m +
WLAN fingerprint:
7.22 m/7.03 m + BLE
beacon:
1.98 m/3.27 m +
MA:18.2 m/10.45 m
+WLAN FP + BLE:
2.95 m/3.25 m +MA
+ BLE:
2.24 m/2.06 m
Together:
2.54 m/3.28 m

83.325 ×
50.50 m2

Park J.W. et al. [38] BLE, BIM and
inertial sensors

RSSI BLE, PDR, BIM Average
error/(Standard
deviation)
1st SCENARIO:
1.15 m/(0.72 m)
2nd SCENARIO:
2.03 m/(1.22 m)

27.4 ×
39 m2



118 N. Falleri et al.

Table 5. Computer-vision systems applications for indoor navigation.

Authors Method System Performance Test size

Elloumi W.
et al. [39]

Computer-vision,
inertial sensors

Harris-Based
Matching, ZUPT
(Zero Velocity
Update)

Average error:
Computer-vision: from
0.519 m to 1.503 m
Sensors: from 1.276 m to
4.146 m

Different
route lengths

Zhou Y.
et al. [40]

Computer-vision,
BIM

Visual matching
between artificial
target (BIM) and
smartphones’
cameras

0.01 m Few meters

Huang G.
et al. [41]

WiFi, visual sensors Wi-Fi fingerprint Average error:
<0.5 m

Area 12
000 m2

Kunhoth J.
et al. [42]

Computer-vision with
BLE, trained deep
learning
computer-vision
(CamNav) and QR
code computer-vision
(QRNav) comparison

Scene analysis with
smartphones’
camera; BLE
fingerprinting and
multilateration;
deep learning with
Tensorflow; QR
code

Standard deviation:
Route 1/Route 2
CamNav
3.1 m(0.56 m)/6.1 m(1.10 m)
QRNav 3.3 m
(0.48 m)/5.5m(0.84 m)
BLE APP
4.3 m(0.94 m)/8.7 m(1.33 m)

–

Neges M.
et al. [43]

Augmented Reality
(AR) and inertial
sensors integration

Recalibration
occurs every time a
natural marker is
identified

Good accuracy –

3 Results

The ideal solution for the main scope of this project, a RTLS for indoor navigation of
patients and general users throughout Le Scotte Hospital of Siena, would be the adoption
of a hybrid systemwithAugmentedReality (AR) techniqueswithQR-code identification

Fig. 1. Ideal RTLS model.
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wherever a junction is, in order to re-calibrate the position, magnetic field systems along
the hallways, WiFi and BLE to better perform in terms of accuracy, and PDR algorithms
(Fig. 1).

Unfortunately, this solution results in a very expensive system, because it would
require a massive WiFi coverage and iBeacons for iOS compatibility. Furthermore,
the system itself would also need frequent re-calibration due to the normal mov-
ing of metal medical devices through the facility [44]. A better solution, in terms of
price/quality ratio is the adoption of an AR system wherever the environment is wider

Fig. 2. Flowchart of a hybrid solution with AR, PDR and QR-code.



120 N. Falleri et al.

and more complex. PDR can be used along the hallways, by implementing equally
spaced QR-code to perform re-calibration of devices to avoid drift-error divergency
(Figs. 2 and 3).

Fig. 3. Map-loading diagram (left) and functional diagram (right).

Two different scenarios must be taken into consideration: off-site and on-site naviga-
tion. The former helps the users to prior analyse the route of interest before reaching the
hospital, while the latter guides the users to the desired destination step by step, directly
in place.

3.1 Off-Site Navigation

For off-site navigation the best designing option is a web-site with 2D digital plan
navigation and virtual touring [45]. BIM data are used to obtain 3D images of the inner
structure of the hospital, while panorama pictures, which are directly attached on the 3D
model, are the main inputs for a virtual tour recreation: it offers navigation by images of
the site with manual scrolling. The chosen software for this particular task is Unity 3D,
because it is easily programmable via Javascript and C#, a lot of online helping material
is available and freely accessible, and it also has cross-platform compatibility, avoiding
dedicated Android and iOS programming. In particular, Navigation Mesh (NavMesh)
functionality of Unity, may be helpful to find the shortest path between two given points
once a 3Dmodel is loaded into the software (Fig. 4). BIM data can also be used to extract
2D information for digital plan navigation [46–48].

Fig. 4. NavMesh algorithm in Unity 3D
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3.2 On-Site Navigation

When users are right on place, an easier way to guide them from their current position
to the desired destination must be designed. During this preliminary designing phase,
easy-access routing is not taken into consideration, because it requires different types
of navigation according to the disabilities of the users, which is postponed to future
development (Fig. 5).

Fig. 5. User action flowchart.

In this scenario, a mobile-application is the best solution, because it can easily access
the hardware of the device itself (accelerometer, gyroscope, camera), which ismandatory
to perform the chosen hybrid RTLS (Chapter 2). The main problem when it comes to
mobile application deploying, is the different framework each Operative System (iOS
and Android) is compliant to. The adoption of cross-platform deploying framework,
such as Apache Cordova or Xamarin, is the best option to avoid redundant programming
and maintenance. These frameworks allow natively programming in Javascript, C#,
HTML5, CSS, and then to compile the code for Android and iOS by using inner libraries.
Apache Cordova has been chosen among the various possibilities because it can easily
communicate with the needed hardware via API, in order to perform AR, QR-code
identifying and PDR algorithms.
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4 Conclusions

This work presented different solutions for indoor Real-Time Location System. WiFi,
WLAN, UWB, BLE, magnetic fields, infrareds, ultrasounds, computer-vision and PDR
have all been analysed and compared in terms of accuracy, coverage, price, installation
complexity and maintenance. Actually, the main scope is to design a RTLS for both
on-site and off-site navigation, for hospitals and healthcare facilities. The case study the
project is focuses to is Le Scotte Hospital in Siena (Italy), so that the peculiarities of the
premise have also been taken into consideration when it came to choose the best-fitting
solution.

The result is a hybrid system, which combined computer-vision and PDR tech-
nologies, together with simple QR-coding. A web-site with virtual touring and plain
map navigation developed with Unity 3D is the solution adopted for off-site navigation,
while a mobile application with actual RTLS functionalities developed by using the
cross-platform framework Apache Cordova, is the chosen solution for on-site IPS.

Future works will surely consist in developing and deploying the system, testing it
on the case-study hospital, and they may also include easy-access routing for people
with disabilities.
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