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Dynamics of a Predator
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Abstract. A predator and prey-hibernation system with mutation and
impulsive effects is presented in this work. The globally asymptotically
stable solution (Z,y,0) of system (1) exists. System (1) is proved to be
permanent. Finally, simulations are presented to explain the results.
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1 Introduction

Many authors [1,2] indicated that environmental pollutants caused many dis-
eases. Population dynamics are studied by the theories of impulsive differential
equations [3-6]. Jiao et al. [7] constructed a predator-prey system with peri-
odic switches and impulses. Jiao and Chen [8] presented a predator-prey system
with mutation and impulses. vFor convenience, we make notation N = nr, and
N+il=(n+Dr.

2 The Model

In this work, we presented a predator and prey-hibernation system with mutation
and impulses
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+k252y27

Ax =0,

Ay =—my, Lt = (N +1),

Nz = —poz,

d

ditc = —dsz — B3z,

dy

2~ _dyy —

dt 4Y ﬁ4yza

d

dj —dsz + k3f3xz
+k4ﬂ4yzv

Ax = (]. — 01)[)11’,

Ay = 01b12, t=N+1,

Nz =0,

€ (N,N +1],

e (N+I,N+1],

The biological meanings of the varies and the parameters can reference to [7,8].

3 The Lemmas

If z = 0, we can easily have the subsystem of system (1)

dx 9
i —axr — cx”,
dy € (N7N+l]a
W_ _a
dt 1Y,
Azx =0,
t=N-+1,
Ay = —py,
dr (2)
E = —d3l'
d (N+1,N +1],
27— _d
dt 4Y,
Ax = (1 — 91)b1$,
Ay = Oyby, t=N+1.
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Integrating (2), and the stroboscopic map of (2) is
N+)e—[al+d3(1—l)]‘r

N+ 1%) = [+ (1— )b x 22

(N + 1) = [1+ (1= b)) T2

ax(NJr)ef[alerg(lfl)}‘r
N+1)")=6:b
y(( + ) ) 101 X a—l—cx(N"')(l _ e—alr)

+ (1 . ,ul)67[d1l+d4(17l)]‘ry(N+).

Points G1(0,0) and Ga(z*,y*) are gotten as

* = Ay*, O1byAe lottds(-0l7 L B~

. a glblAef[alerg(lfl)]T
y = —alt X [
cA(l — e—alm) 1-B
01y Ae~lol+ds(I=DlT L B~ 1

—1],

here A = —[H(l_%l)bb‘](l_B) >0and B=(1-— ul)e_[led“(l_l)]T > 0.

Similarly with reference [7], the following lemmas can easily be obtained.
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Lemma 1. i) If §1by Ae~[*+ds(0=DI7 1. B < 1, point G1(0,0) is globally asymp-

totically stable;

i1) If 010y Ae~[0l+ds(1-DI7 L B > 1 point Go(x*, y*) is globally asymptotically

stable.

Lemma 2. i) If 6,0 Ae~le!ds(0=0I7 4 B < 1 periodic solution (0,0) of system

(2) is globally asymptotically stable;

ii) If 610y Ae~lot+ds(1=Dl7 4 B > 1 periodic solution (7,7) of system (2) is

globally asymptotically stable, where

ax*efa(th)

;€ (N, (N +1)],
F=1{ a+cr*(l —ealt=N)) (N, (N +1)]
wrem BN e (N +1), (N + 1),
y e =N e (N, (N +1)],
y**e_d4(t_(N+l)),t c ((N + l), (N + 1)]7

y:

here x*, y* are determined as (5) and z**, y** are determined as

ax*e—alf

a+ cx* (1 — e=alT)’
y** _ (1 _ /Jl)y*e_dlh—'

:I:** —
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For (1), we know

dx 9
P < —ax — cz”,
o te (N, (N +1),
— < —d
dt 1Y,
Az =0,

t=(N+1),
Ay = —my, ( )

(7)

Ccll% S _dea
iy te ((N+1),(N+1),
2 <
dt d4ya
Az = (1 — 91)blx,

Then, we can obtain the following remark.
Remark 3. If ;b Ae~[@l+ds(1=DI7 L B > 1 then
x(t) <z + z™,

and
yt) <y* +y™,

with (z,y) of system (1).
Similar to Ref. [13], we get

Lemma 4. There exists a constant M > 0, which makes z < %,y < M and
z < M for all t large enough.

4 The Dynamics

Theorem 1. Suppose

(Hy):
01by Ae~lal+ds(1=DlT B~ 1
(Ho):
1 a+cr*(1—e 7
In—— l 21 ds(1 —1
n1+(1_01)b1—|—a7+ n + ds( )T > 0,
(H3):

In 1 + dgl’]’ + d5(1 - Z)T

— M2

* _ ,—alr * _ ,—dilT
S k151 In a+cx*(1—e ) n kafay*(1 —e )
C a dl
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kgﬂgm**e—dg(l—l)‘r(l _ e—dl(l—l)T) k4ﬁ4y**e—d5(1—l)‘r(1 _ e—d5(1—l)-r)
+ + :
d3 d5
hold, the solution (Z,y,0) of (1) is globally asymptotically stable, and z*, x**
are by (5), y*,y™* are by (7).

Proof. Defining 1 =2 — 2,51 =y — ¥y, 21 = 2, for t € (N, (N +1)], the linear
system of (1) are as

dd% —a—2cx 0 -z 1
Wl = 0 —d ~Ba n
4z 0 0 —dy + k157 + kaSB2y 21

Then, we get the fundamental solution matrix

exp(fi,(—a — 2¢)ds) 1 *9
By (t) = 0 exp(—di(t — N)) #3
0 0 M,

where M; = expl [y (—da + k1517 + k2 (27)ds].

For t € ((N +1), (N 4 1)], the linear system of (1) are also as

doy —ds 0 —B3% T
% _ 0 —dy 754& n
% 0 0 —d5 + ]Qgﬂg?f + k4ﬁ4§ 21

Then, we also get the fundamental solution matrix

exp(—ds(t — (N +1)) *4 *5
Dy (t) = 0 exp(—da(t — (N +1)) ¢
0 0 M,

where My = exp[ﬁtN+l)(—d5 + k3B3T + kqf47)ds]. There is no need to calculate
the form of %;(1 = 1,2,3,4,5,6).
The linearization of the 4th, to 6th equations of (1) is
1 (N +0)T) 1 0 0 z1((N +1))
yi(N+DF) | = | 0Ll—p O yi((N+1))
a((N+0)7) 0 0 1—pp) |\ z((N+1)



44 S. Cai and J. Jiao

The linearization of the 10th, to 12th equations of (1) is

(N +1)7) 14+ (1—=61)b1 00\ [x1((N+1))
yi(N+1)F) | = 6161 10| ]| (N +1))
21((N+1)7) 0 01 21((N +1))

The stability of (Z,y,0) is by eigenvalues of

1 0 0 1+(1—-61)b100
M = 01—y 0 0161 10 @(T),

0 0 1—pus 0 01

which are
T
A= (14 (1—61)by] exp(/ (—a —2cx)ds +d3(1 = 1)7),
0
A2 = (1 — py) exp(—[dil + ds(1 = D)]7) < 1,

and

T

i
)\3 = (1 — ,UQ) exp[/o (—d2 + klﬁlflf—F kzﬁzﬂ)ds + / (—ds + k’353% + k4ﬂ4§)d8]

I
According the conditions of Theorem 1, then A\; < 1, and A3 < 1. Therefore, the
(Z,7,0) is locally stable.
Choose € > 0, we get

T
pr = (1 iz) exp} / [dy + k1 fr(F +€) + koG + ©))ds

+ /ZT[_d5 + k353(5+ E) + k4ﬂ4(§+ 8)]d8} < 1.

T

From (1), we get % < —ax — cx? 7dt < —diz, and 7 < dg,ac7 dt < —dyx, so

dx
ditl = —ax(t) — cy?,
W g
dt 1 )
Al’l = 0,

t=(N+1
Ay1 = —pay, (N +1),
dz, (8)
E = —d3x,,
dy e (N +1), (N +1),
—1 = —dup
dt ’
Aml = (1 — 91>b1$1,

t=(N+1

Ayl = Glblyl, ( + )7
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From Lemma 3, we have z < z1,y < y1, and

r<x; <T+e,
yﬁylﬁﬂ—f'fa

From (1) and (14), we also get

d N N
d—j < z[—dy + k1 By (T + &) + +kaBa (T + €)),

te (N, (N+1)]
Az =—ppz,t = (N +1), (10)

= < z[—ds + k3f3(T + ) + kafBa(y + €)],

dt
te (N+1),(N+1),

Then,

(N+1)

AV 4 1)) < (1 - ) =(N+) exp /N (=da + k1B (T + €) + afBa( + €)ds

(N+1)
+/ (—ds + k3B3(% +€) + kafa(y + €))ds].
(N+1)

and z((N +1)) < z(I71)pt with 2((N +1)) — 0 as n — oo. For 0 < z <
(—ds(1=l)T+ 2858 27" K481 =) .
z((N +1))e 3 a4 for N <t < (N +1). Therefore z — 0 as

t — 0.

For (1) and t € (N, (N +1)], we have

dz
—(a+ Bre)r — ca? < — < —ax — cx?,

dt
I (11)

—(d1 + Pae)y < yr < —dyy,

and for t € (N +1), (N +1)],

dt — (12)
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then, wy <o < my,wp <y < mg, with w; — w1, wp — W2, M1 — T, My — ¥, as
t — oo. While (wy,ws) and (mq,ms) are the solutions of

d

% = —(a+ pre)w; — cw?,

d’wg te (Na (N—Fl)),
W = —(dl + 525)71127

Awl = O7

Aws = —piyws, t=(N+1),

13)
dw (
ditl = —(d3 + B3e)wr,

e € (N +1), (N +1),

e —(dy + Bag)ws,

Awl = (1 — 01)b1w1),

NAwy = 01bywy), t=W+1),

and
dm1
W = —amjy — Cmpy,
dms te (N, (N+1)),
W —dima,
Aml = 0,
Amg = —pyma, t=@+1),
dmy (14)
. = —dsm,
imy (1S DN
W = —a4Mma,
Aml = (1 — 91)blm1,
Ay = 01bym,y . t=(N+1).
Here (w7, ws) can be expressed as
—(a+pB1e)(t—N)
_ [ et b & (N, (N +1)],
w1 =1 (a+ Bie) + cwi(l — e~ (atFre)(t= N))
wi*ef(ngrﬁSs)(t (N+D) ¢ e ((N+1),(N+1)), (15)

whe=(di+B22)(t=N) ¢ ¢ (N, (N +1)],
wy = whte(datha)t=(N+D) ¢ e (N 41), (N +1)],
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while wi, w3 are determined as

wh = Ajw}, 01by ApeetPre)lt(ds+8se)A=D]m L g~ 1

* (a’ + ﬂls) 91[)1Al67[(a+515)l+(d3+ﬁ3€)(lfl)]-r 6
Wz = CAl(l — e—(a"'ﬁlE)lT) [ 1- B - 1]7 ( )
O1b1 Ae” (a+ﬁla)l+(d3+ﬁge)(1 DIf L B > 1,

where A; = 1+(1-— 95)51](1 B1) < 0 and By =(1 M)e—[(d1+ﬁ2€)l+(d4+546)(1—l)]7 >
0, and wi™*, w3* are détermmed as

o (at preuierho
T (@ Bi) + ewi(1— e @B (a7)
wy' = (1= e (BRI

For any €1 > 0, there exists a t1,t > t; such that
w) —e1 <x<T+e,
and
Wy —e1 <y<y-+e.

Let € — 0, we have
T—e1<x<T+er,

and
y—e1<y<y-te,

for ¢ large enough, which indicates x — z,y — ¥y as t — oo.

Theorem 2. If (Hy), (Hs) and (Hy):

1
ln + dgl’T + d5(1 — Z)’T
— M2
* _ ,—alr * _ ,—dilT
< k151 lna—i—cx (I1—e ) n kafay*(1 —e )
C a dl

k3ﬂ3x**efd3(lfl)r(1 _ efdl(lfl)'r) k4ﬁ4y**efd5(lfl)‘r(1 _ €7d5(17l)'r)
+ + :
d3 d5
hold, (1) is permanent, where *, ** are by (5) and y*, y** are by (7).
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Proof. By Lemma 3, we get that z(t) < & y(¢t) < 4L, 2(t) < M for ¢ large

* —alT
enough. From Theorem 1, we know z(t) > e 4+ grreds(l-D7 _ o) —

may and y(t) > y*e DT e (=0T _ oy — my, for t. Thus, we will seek out
mq > 0 making y(t) > m;.

By the conditions Hy, we can choose mgz > 0,e7 > 0 small enough to have

k151 In (a4 Bims) + czi(1 — e~ (atBims)ir)
o =
¢ (a + Bims)

+ klﬁlﬁll’r

ko + Bozs (1 — e~ (datfims)ir)
(d1 + Bims)lT + kofSomnslr
]{;Bﬂgz’f*e*(dﬁﬁlmg)(l*l)‘r(1 _ e*(d1+ﬁ1m3)(1*l)7)
* (d3 + Bim3)
k4ﬂ4z;*@*(d5+ﬁsm3)(1*l)7(1 — e~ (ds+Bsms)(1-1)7
* (ds + Bsms)
1
1— po

+ kofoeqlT

+ k36351(1 — Z)T

+ kafBaei (1 =),

—In

- dgl’]’ - d5(1 - Z)T] > 0,

here 27, 25 are by

2f = Agz, glblAQS*[(a+ﬁ1m3)l+(d3+ﬁ3m3)(1*l)]’r + By > 1,
¥ — (a + ﬁlmf”))
2 — CAQ(l _ e—(a+61m3)l7')
01b1 Age~l(atBima)it+(ds+B3ms) (1-D)]T ) (18)
X [ 1— B, - ]7
91blAQe—[(a+51m3)l+(d3+53m3)(1—l)]7' + By > 1,
and 27, z5* are by
ok (a+51m3)’zf€7(a+ﬁlm3)l7
b (at fums) + c2f (1 — em(atfima)in)’ (19)
4= (1L p)ae (T,
with Ay = [1+(1_05)b1](1_32) > 0 and By = (1 — p)

b
e~ l(dr+Bama)lH(dat Bama) 1-DIr 5 0 (1)
establish. Otherwise,

< mg will be proved that it can not
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(Z% > —(a+ fims)x — ca?,
d te (N,(N+1),
LB —(dy + Bams)y
dt = 1 21763 )Y,
Az =0,
t= (N +1),
Ay = —my, ( )
20)

dx (
T > —(d3 + f3ms)z,
d te((N+1),(N+1),

Yy
df 2 7(d4 + ﬂ4m3)y7

t
Az = (1—61)bz,
Az = O1bya, t=W+1).

By Lemma 4, we have x > 21, y > 2o with z; — 21,29 — z9,t — o0, where
(21, 22) is the solution of

dz
aTtl = —(a+ fimz)z1 — czf7
a2 te (N, (N+1),
at —(dy + Bams) 2
Azl = O7
Dzy = —pza, t=(N+1),
21)
dz (
aTt1 = —(ds + Bzms) 21,
e tE (N +0), (N +1)],
= = ~(dat Bama)zs,
Az = (1= 01)biz,
Azy = b1b123, t=(N+1),
and
(a + Bimg)zje(atFma)(t=n7)
g at S N’ N 1 ,
21 =4 (a+ Bims) + cz} (1 — e~ (atBims)(t=N)) (N, (N +1)]
2t (st Bma) (=(N+D) ¢ ¢ (N 4+ 1), (N + 1)), (22)

sem (BB (=N) ¢ ¢ (N, (N +1)),

2T et Ama) (= (NHD) ¢ ¢ (N +1), (N + 1)),

here z7, z5 are by (18) and z7*, 23* are by (19) with Ay = [1+(1_9;1)21](1_32) >0
and By = (1 — p)e~l(dit0zms)l+(datBama)A=DlT ~ (. Therefore, there exists a

T1 > 0 such that
rT>2 > 2 €1,
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and
Y > 29 > Zp —E1.
Then &
pr [—di + k151(21 — €1) + k2f2(22 — 1))z,
te (N,(N +1)],
Nz = —pgz,t = (N +1), (23)

> s+ kafhs(5 — e0) + kafa(5 — 1))
te((N+1),(N+1).

For ¢t > Ty, Let Ny € N and Ny7 > T3, integrating (28) on (N, (N +1)],n > Ny,
we have

y(N +1)) 2 2(NT)(A = m)
el V= ditk B (Fi—e1 )+ B2 (2 —e)lds + [N ) [~ ds ks B3 (51 —e1) +haBa (52 —e1)]ds
= (1= p)z(NT)e?,

then z((Ny + k)7) > (1 — p1)*2(N171)e* — oo, as k — oo, which is a contra-
diction to the boundedness of z. Hence there exists a t; > 0 such that z(t) > m;.
The proof is complete.

5 Discussion

In this work, we consider a predator and prey-hibernation model with genic
mutation and impulsive effects. If it is supposed that the variables are shown in
the table below:

z(0) | y(0) | 2(0) di |dg |d3 |d4 |d5 |B1 |B2 |B3 |Ba k1 k2 |k3 |ka |01 [b1 (p1 p2 |l |7
1 1 1 0.3/0.1/0.3/0.3/0.3/0.1/0.1/0.4/0.6/0.3/0.4/0.1/0.1/0.1/0.1/0.6/1.5/0.4/0.1/0.5|1

Q
o

system (1) is permanent (one can see Fig.1). If it is supposed that another
variables are shown in the table below:

z(0) | y(0) | 2(0) dy |da |d3 |dq |d5 |81 |B2 |Bs |Ba |k1 ko |k3 |ka |01 |b1 |p1 |p2 |1 |7
1 1 1 0.3/0.1/0.3/0.3/0.3/0.1/0.1/0.4/0.6/0.3/0.4{0.1/0.1/0.1/0.1/0.6/1.5/0.4/0.1/0.5|1

i)

there exists a globally asymptotically stable solution (Z, 7, 0) of system (1) (one
can see Fig.2). Our results show that the environmental pollution will reduce
biological diversity of the nature world. So we must be in harmony with the
environment.
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(a) (b)

g 2
15,
1
05
0 50 100 150 200 0 50 100 150 200
t t
() (d)
1
09
08
07
08
Zos
04
03
02
01
0 50 100 150 200

v ¥ o0 X

Fig. 1. The permanence of system (2.1) with parameters in the first table.

(e) ()

0 50 100 150 200 0 50 100 150 200
t t

Fig. 2. The dynamics of the globally asymptotically stable microorganism-extinction
with parameters in the second table.
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