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1 Introduction

Many investigations [1–4] devoted into impulsive equations. Clack [5] has stud-
ied the logistic equation with optimal harvesting. The environmental toxicant
decreases the carrying capacity in polluted environments [6,7]. They are assumed
that the inputting toxicant was continuous. Liu et al. [8] considered that the
environmental toxicant is often emitted with regular pulse. In this paper, we do
notation as N = nτ and L = lτ.

2 The Model

In this work, we present
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dx

dt
= −(d1 + β1co)x + c1x

2, t ∈ (N, (N + L)],

�x = −μx,

�c0 = 0,

�ce1 = 0,

�ce2 = 0,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

t = (N + L),

dx

dt
= −(d2 + E + β2co(t))x + c2x

2, t ∈ ((N + L), (N + 1)],

�x = bx,

�c0 = 0,

�ce1 = D(ce2 − ce1) + μ1,

�ce2 = D(ce1 − ce2) + μ2,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

t = (N + 1),

dco

dt
= fce1 − (g + m)co,

dce1

dt
= −h1ce1),

dce2

dt
= −h2ce2,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

t ∈ (N, (N + 1)].

(1)

The biological meanings of the varies and parameters can reference [8–10].

3 The Dynamics

For (1), one subsystem of (1) is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx

dt
= −d1x + c1x

2, t ∈ (N, (N + L)],

�x = −μx, t = (N + L),
dx

dt
= −(d2 + E)x + c2x

2, t ∈ ((N + L), (N + 1)],

�x = bx, t = (N + 1).

(2)

Integrating (2), we get

x(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d1x(N+)e−d1(t−N)

d1 + c1x(N+)(1 − e−d1(t−N )
, t ∈ (N, (N + L)],

(d2 + E)x((N + l)+)e−(d2+E)(t−N)

(d2 + E) + c2x((N + l)+)(1 − e−(d2+E)(t−N )
,

t ∈ ((N + L), (N + 1)].

(3)
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Stroboscopic map for (2) is

x((n + 1)τ+) =
M1

M2
, (4)

where M1 = (1 + b)(1 − μ)d1(d2 + E)e−[d1l+(d2+E)(1−l)]τx(N+), M2 = d1(d2 +
E) + [(d2 + E)c1(1 − e−d1l) + (1 − μ)d1c2e−d1lτ (1 − e−(d2+E)(1−l)τ )]x(N+).
We rewrite (4) as

x((N + 1)+) =
A0x(N+)

d1(d2 + E) + B0x(N+)
. (5)

where
A0 = (1 + b)(1 − μ)d1(d2 + E)e−[d1l+(d2+E)(1−l)]τ ,

Bo = (d2 + E)c1(1 − e−d1l) + (1 − μ)d1c2e−d1lτ (1 − e−(d2+E)(1−l)τ ).

We get points G1(0) and G2(x∗) of (4), and

x∗ =
d1(d2 + E)[(1 + b)(1 − μ)e−(d1l+(d2+E)(1−l))τ − 1]

(d2 + E)c1(1 − e−d1l) + (1 − μ)d1c2e−d1lτ (1 − e−(d2+E)(1−l)τ )
,

(1 + b)(1 − μ)e−(d1l+(d2+E)(1−l))τ > 1.
(6)

Condition (1 + b)(1 − μ)e−(d1l+(d2+E)(1−l))τ < 1 is made as (C1), and condition
(1 + b)(1 − μ)e−(d1l+(d2+E)(1−l))τ > 1 is made as (C2).

Theorem 1. i) Suppose (C1) holds G1(0) of (4) is globally asymptotically sta-
ble;

ii) Suppose (C2) holds, G2(x∗) is globally asymptotically stable.

Proof. Marking xn as x(nτ+), we rewrite (4) as

xn+1 = F (xn) =
Axn

d1(d2 + E) + Bxn
. (7)

i) Suppose (C1) holds, then,

dF (x)
dx

|x=0= (1 + b)(1 − μ)e−(d1l+(d2+E)(1−l))τ < 1. (8)

Then, locally stable G1(0) exists, Furthermore, it is globally asymptotically
stable.

ii) Suppose (C2) holds,concerning to G1(0), we get

dF (x)
dx

|x=0 =
Ad1(d2 + E)

[d1(d2 + E) + Bx]2
|x=0

=
A

d1(d2 + E)
.

= (1 + b)(1 − μ)e−(d1l+(d2+E)(1−l))τ > 1,

(9)

then, G1(0) is unstable.



32 Y. Zhou and J. Jiao

Concerning G2(x∗), we also get

dF (x)
dx

|x=x∗=
Ad1(d2 + E)

[d1(d2 + E) + Bx]2
|x=x∗

=
1

(1 + b)(1 − μ)e−(d1l+(d2+E)(1−l))τ
< 1.

(10)

Then, locally stable G2(x∗) exists. Furthermore, it is globally asymptotically
stable.

Similarly with Reference [6], the following lemma can easily be proved.

Theorem 2. i) Suppose (C1) holds, 0 of (1) is globally asymptotically stable;
ii) Suppose (C2) holds, x̃(t) of (1) is globally asymptotically stable, and

x̃(t) =

⎧
⎪⎪⎨

⎪⎪⎩

d1x
∗e−d1(t−N)

d1 + c1x∗(1 − e−d1(t−N )
, t ∈ (N, (N + L)],

(d2 + E)x∗∗e−(d2+E)(t−N)

(d2 + E) + c2x∗∗(1 − e−(d2+E)(t−N )
, t ∈ ((N + L), (N + 1)].

(11)

here x∗ is by (6), and x∗∗ is by x∗∗ = (1−μ1)d1x∗e−d1lτ

d1+c1x∗(1−e−d1lτ )
.

For (1), another subsystem of system (1) is obtained as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dco

dt
= fce1 − (g + m)co,

dce1

dt
= −h1ce1,

dce2

dt
= −h2ce2,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

t �= N,

�co = 0,

�ce1 = D(ce2 − ce1) + μ1,

�ce2 = D(ce1 − ce2) + μ2,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

t = N.

(12)

Integrating (12), we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c̃o = co(N+)e−(g+m)(t−N)

+
fce1(N+)(1 − e−(h−g−m)(t−N))

h − g − m
, t ∈ (N, (N + 1)],

c̃e1 = ce1(N+)e−h1(t−N), t ∈ (N, (N + 1)],

c̃e2 = ce2(N+)e−h2(t−N), t ∈ (N, (N + 1)].

(13)
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The stroboscopic map of (12) is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

co((N + 1)+) = co(N+)e−(g+m)τ

+
fce1(N+)(1 − e−(h−g−m)τ )

h − g − m
, t ∈ (N, (N + 1)],

ce1((N + 1)+) = (1 − D)ce1(N+)e−h1τ + Dce2(N+)e−h2τ + μ1,

t ∈ (N, (N + 1)],

ce2((N + 1)N+) = Dce1(N+)e−h1τ + (1 − D)ce2(N+)e−h2τ + μ2

t ∈ (N, (N + 1)].

(14)

A unique fixed point of (14) is
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c∗
o =

f [μ1(1 − (1 − D)e−h2τ ) + μ2De−h2τ ](1 − e−(h−g−m)τ )
M3

,

c∗
e1 =

μ1[1 − (1 − D)e−h2τ ] + μ2De−h2τ

M4
,

c∗
e2 =

μ2[1 − (1 − D)e−h1τ ] + μ1De−h1τ

M4
,

(15)

where M3 = (h−g−m)(1−e−(h−g−m)τ )[(1− (1−D)e−h1τ )(1− (1−D)e−h2τ )−
D2e−(h1+h2)τ ] and M4 = [1 − (1 − D)e−h1τ ][1 − (1 − D)e−h2τ ] − D2e−(h1+h2)τ .

Writing (14) as a map, and defining it as F : R3
+ → R3

+

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

F1(c) = co(N+)e−(g+m)τ

+
fce1(N+)(1 − e−(h−g−m)τ )

h − g − m
, t ∈ (N, (N + 1)],

F2(c) = (1 − D)ce1(N+)e−h1τ + Dce2(N+)e−h2τ + μ1,

F3(c) = Dce1(N+)e−h1τ + (1 − D)ce2(N+)e−h2τ + μ2.

(16)

Lemma 3. Suppose D > 1
2 holds, F (c∗

o, c
∗
e1, c

∗
e2) of (16) is globally asymptoti-

cally stable.

Proof. We mark (cn
o , cn

e1, c
n
e2) as (co(nτ+), ce1(nτ+), ce2(nτ+)). Rewriting lin-

earity of (16) as ⎛

⎜
⎜
⎜
⎝

cn+1
o

cn+1
e1

cn+1
e2

⎞

⎟
⎟
⎟
⎠

= M

⎛

⎜
⎜
⎜
⎝

cn
o

cn
e1

cn
e2

⎞

⎟
⎟
⎟
⎠

. (17)

Obviously, the stabilities of F (c∗
o, c

∗
e1, c

∗
e2) is by eigenvalues λ1, λ2, λ3 of M , which

are less than 1.
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Suppose D > 1
2 holds, 0 < e−hi < 1(i = 1, 2), F (c∗

o, c
∗
e1, c

∗
e2) exists, and

M =

⎛

⎜
⎜
⎜
⎝

e−(g+m)τ f(1−e−(h−g−m)τ )
h−g−m 0

0 (1 − D)e−h1τ De−h2τ

0 De−h1τ (1 − D)e−h2τ

⎞

⎟
⎟
⎟
⎠

. (18)

For
λ1 = e−(g+m)τ < 1,

λ2 =
(1 − D)(e−h1τ + e−h2τ ) +

√
[(1 − D)(e−h1τ + e−h2τ )]2 − 4(1 − 2D)e−(h1+h1)τ

2

=
(1 − D)(e−h1τ + e−h2τ ) +

√
[D(e−h1τ + e−h2τ )]2 + (1 − 2D)(e−(h1−h1)τ )2

2

<
e−h1τ + e−h2τ

2
< 1,

λ3 =
(1 − D)(e−h1τ + e−h2τ ) −

√
[(1 − D)(e−h1τ + e−h2τ )]2 − 4(1 − 2D)e−(h1+h1)τ

2

=
(1 − D)(e−h1τ + e−h2τ ) −

√
[(1 − D)(e−h1τ − e−h2τ )]2 + 4D2e−(h1+h1)τ

2

<
(1 − D)min{e−h1τ , e−h2τ}

2
< 1.

That is, λi < 1(i = 1, 2, 3), then, F (c∗
o, c

∗
e1, c

∗
e2) is locally stable. Then, it is

globally asymptotically stable.
Similar to Reference [9], we get

Lemma 4. (12) has a unique globally asymptotically stable periodic solution
(c̃o, c̃e1, c̃e2) of (12), and

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c̃o = c∗
oe

−(g+m)(t−N)

+
fc∗

e1(1 − e−(h−g−m)(t−N))
h − g − m

, t ∈ (N, (N + 1)],

c̃e1 = c∗
e1e

−h1(t−N), t ∈ (N, (N + 1)],

c̃e2 = c∗
e2e

−h2(t−N), t ∈ (N, (N + 1)].

(19)

where c∗
o, c

∗
e1, c

∗
e2 are by (15).
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Remark 5. mo ≤ co(t) ≤ Mo, me1 ≤ ce1(t) ≤ Me1 and me2 ≤ ce2(t) ≤ Me2

hold for t large enough, and mo = c∗
oe

−(g+m)τ + fc∗
e1(1−e−(h−g−m)τ )

h−g−m − ε > 0,

Mo = c∗
o + fc∗

e1
(h−g−m) + ε, me1 = c∗

e1e
−h1τ − ε > 0, Me1 = c∗

e1 + ε > 0 me2 =
c∗
e2e

−h2τ − ε > 0 and Me2 = c∗
e2 + ε > 0.

Thinking (1), we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
< −d1x + c1x

2,

t ∈ (N, (N + L)],
�x = −μx,

t = (N + L),
dx

dt
< −(d2 + E)x + c2x

2,

t ∈ ((N + L), (N + 1)],
�x = bx,

t = (N + 1),

(20)

and ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
> −(d1 + β1Mo)x + c1x

2,

t ∈ (N, (N + L)],
�x = −μx,

t = (N + L),
dx

dt
> −(d2 + E + β2Mo)x + c2x

2,

t ∈ ((N + L), (N + 1)],
�x = bx,

t = (N + L),

(21)

with their comparative impulsive systems

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1

dt
= −d1x1 + c1x

2
1,

t ∈ (N, (N + L)],
�x1 = −μx1,

t = (N + L),
dx1

dt
= −(d2 + E)x1 + c2x

2
1,

t ∈ ((N + L), (N + L)],
�x1 = bx1,

t = (N + 1),

(22)
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and ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx2

dt
= −(d1 + β1Mo)x2 + c1x

2
2,

t ∈ (N, (N + L)],
�x2 = −μx2,

t = (N + L),
dx2

dt
= −(d2 + E + β2Mo)x2 + c2x

2
2,

t ∈ ((N + L), (N + 1)],
�x2 = bx2,

t = (N + 1)τ.

(23)

Marking (1+ b)(1−μ)e−[(d1+β1Mo)l+(d2+E+β2Mo)(1−l)]τ < 1 as (C3) and (1+
b)(1 − μ)e−[(d1+β1Mo)l+(d2+E+β2Mo)(1−l)]τ > 1 as (C4).

Similar to Theorem 2, we can get

Theorem 6. i) Suppose (C3) holds, 0 of (23) is globally asymptotically stable;
ii) Suppose (C4) holds, ˜x2(t) of (23) is globally asymptotically stable, and

x̃2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1x
∗e−d1(t−N)

(d1 + β1Mo)) + c1x∗(1 − e−(d1+β1Mo))(t−N )
,

t ∈ (N, (N + L)],

(d2 + E + β2Mo))x∗∗e−(d2+E+β2Mo))(t−N)

(d2 + E + β2Mo)) + c2x∗∗(1 − e−(d2+E+β2Mo))(t−N )
,

t ∈ ((N + l), (N + 1)].

(24)

here x∗
2 is by

x∗
2 =

M4

M5
, (1 + b)(1 − μ)e−[(d1+β1Mo)l+(d2+E+β2Mo)(1−l))τ > 1, (25)

where M4 = (d1 + β1Mo)(d2 + E + β2Mo)[(1 + b)(1 − μ)
e−[d1+β1Mo)l+(d2+E+β2Mo)(1−l)]τ −1], M5 = (d2+E+β2Mo)c1(1−e−(d1+β1Mo)l)+
(1 − μ)(d1 + β1Mo)c2e−(d1+β1Mo)lτ (1 − e−(d2+E+β2Mo)(1−l)τ ) and x∗∗

2 =
(1−μ1)(d1+β1Mo))x

∗
2e−(d1+β1Mo)lτ

(d1+β1Mo))+c1x∗
2(1−e−(d1+β1Mo)lτ )

.

Theorem 7. i) Suppose (C1) and (C3) hold, (0, c̃o, c̃e1, c̃e2) of (1) is globally
asymptotically stable;

ii) Suppose (C2) and (C4) hold, (1) is permanent.

Proof. i) From condition (C1), (22), Theorem 2, and the theorem of the impul-
sive equation, we can have x(t) ≤ x1(t) = x1(t) → 0 as t → +∞. From condition
(C3) (23), Theorem 6, and the theorem of the impulsive differential equation,
we can have x(t) ≥ x2(t) → 0 as t → +∞. So, the globally asymptotically stable

periodic solution (0, ˜co(t), ˜ce1(t), ˜ce2(t)) exists.
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ii) From condition (C2), (22), Theorem 2, we can have

x(t) ≤ x1(t) ≤ ˜x1(t) − ε ≤ d1x
∗e−d1lτ

d1) + c1x∗(1 − e−d1lτ )

+
(d2 + E)x∗∗e−(d2+E)(1−l)τ

(d2 + E) + c2x∗∗(1 − e−(d2+E))(1−l)τ
− ε

Δ= m1.

From condition (C4), (23), Theorem 6, we can easily obtain

x(t) ≥ x2(t) ≥ ˜x2(t) − ε ≥ d1x
∗e−d1lτ

(d1 + β1Mo)) + c1x∗(1 − e−(d1+β1Mo)lτ

+
(d2 + E + β2Mo))x∗∗e−(d2+E+β2Mo))(1−l)τ

(d2 + E + β2Mo)) + c2x∗∗(1 − e−(d2+E+β2Mo))(1−l)τ
− ε

Δ= m2.

From above discussion and Remark 5, we can have m1 ≤ x(t) ≤ m2, mo ≤
co(t) ≤ Mo, me1 ≤ ce1(t) ≤ Me1, me2 ≤ ce2(t) ≤ Me2. This completes the proof.

4 Discussion

In this work, we consider we construct a single population model with non-
transient/transient impulsive harvesting and birth pulse in a polluted environ-
ment. From the conditions of Theorem7, we can deduce that the transient
impulsive harvesting amount μ has a threshold μ∗. If μ > μ∗, the globally asymp-
totically stable (0, ˜co(t), ˜ce1(t), ˜ce2(t)) exists. If μ < μ∗, system permanence. We
can also obtain the threshold l∗ for non-transient impulsive harvesting intervals.
Our results present a biological management researching basis in a polluted envi-
ronment.
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