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Dynamics of a Single Population
Model with Non-transient/Transient
Impulsive Harvesting and Birth
Pulse in a Polluted Environment
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Abstract. In this paper, we present a single population model with
non-transient/transient impulsive harvesting and birth pulse in a pol-
luted environment. The sufficient conditions for system permanence is
presented.
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1 Introduction

Many investigations [1-4] devoted into impulsive equations. Clack [5] has stud-
ied the logistic equation with optimal harvesting. The environmental toxicant
decreases the carrying capacity in polluted environments [6,7]. They are assumed
that the inputting toxicant was continuous. Liu et al. [8] considered that the
environmental toxicant is often emitted with regular pulse. In this paper, we do
notation as N =n7 and L = [7.

2 The Model

In this work, we present
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d
dit” = —(dy + Bico)t + 122, t € (N, (N + L)),
Ar = —px,
ACO =Y,
Ace1—0, t:(N+L)a
ACEQ - Oa
d
dit” = —(dy + E + Baco(t))x + ca2®, t € (N + L), (N +1)],
Azx = bx, (1)
ACO = O,
t=(N+1),
ACel = D(Ce2 - Cel) + M1, ( )
ACeZ = D(Cel - CeZ) + U2,
dco
fcel (g + m)coa
dce
dtl = —hicer), te (N, (N+1)]
dce2
=—-h e2
at 2Ce2

The biological meanings of the varies and parameters can reference [8-10].

3 The Dynamics

For (1), one subsystem of (1) is

d
dit” = —diz+c12%, t € (N, (N + L)],

Az = —pz,t = (N +L), (2)
Cclz:tc ~(d2 + B)z+cae®, t € (N + L), (N + 1)),

Az =bzx,t = (N +1).
Integrating (2), we get

diz(N +)e—d1(t N)
di +cz(NFT)(1 — emhlt= N)7t € (N (N4 L))
sty 1 (ot B)a((N +D)h)e @D 3)
(do + E) + coz((N + 1)) (1 — e~ (d2+E)(E=N)’
e (N+1L),(N+1).
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Stroboscopic map for (2) is

M,

w(n+ 1) = 77, (4)

where M; = (14 b)(1 — p)d; (dy + E)e~ [ttt E)A=0I70(N+) My = dy(dy +
E)+[(de + E)er(1 — e ) + (1 — p)dycge DT (1 — e~ (2 E)A=DT) ] (N+).
We rewrite (4) as

Aol‘(N+)
dq (d2 + E) =+ B(){L‘(N"') ’

z(N+1)7) =
where
Ag = (1+b)(1 = p)dy (dy + E)e” I+ B0,
B, = (dg 4+ E)e (1 — e 4 (1 — p)dycge™ M (1 — e (d2HE)1=DT)
We get points G1(0) and Ga(z*) of (4), and
4y (dy + B)[(1+ B)(1 — p)e” i@ BIA-D)r _ 1]

(d2 + E)er(1 —e=hl) + (1 — p)dicge =47 (1 — e~ (24 E)A=DT) " (g)
(1 + b)(]. _ M)ef(d1l+(d2+E)(1fl))T > 1

*

Condition (1 4 b)(1 — p)e~ (AlH(d2+E)A-D)T < 1 s made as (C}), and condition
(1+0)(1 — p)e (dalt(d+E)A=0)T - 1 is made as (Cy).

Theorem 1. i) Suppose (C;) holds G1(0) of (4) is globally asymptotically sta-
ble;
i1) Suppose (C3) holds, Gz (z*) is globally asymptotically stable.

Proof. Marking 2" as z(n7T), we rewrite (4) as

Ax,,
= Flen) = G0 + Bay @)
i) Suppose (C7) holds, then,
dF
d(xx) loco= (14 B)(1 — p)e~(BlHE+E(A-D)T (®)

Then, locally stable G1(0) exists, Furthermore, it is globally asymptotically
stable.
i1) Suppose (C3) holds,concerning to G1(0), we get

dz ﬁ“ﬂm@+mzawzﬂ

T di(dy+ E)
— (1 + b)(l _ M)ef(dllJr(dz‘i’E)(lfl))T > 17

then, G1(0) is unstable.
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Concerning Ga(z*), we also get

dFﬁm‘ _ Adi(ds + E) |
de "7 [dy(dy + E) 4+ Bx]?2 T
1

= (14 b)(1 — p)e—(dl+dat+B)A-1)7 <L

(10)

Then, locally stable Gao(x*) exists. Furthermore, it is globally asymptotically
stable.
Similarly with Reference [6], the following lemma can easily be proved.

Theorem 2. i) Suppose (C7) holds, 0 of (1) is globally asymptotically stable;

i1) Suppose (C3) holds, z(t) of (1) is globally asymptotically stable, and
dl.’l?*e_dl (t—N)
— d1+C1$*(1—e*d1(t7N)7t © (N’ (N+L)],
0= (dy + B)rre @ E-N) vonvary TV
te , .
(@t B) + e (1 — e @rmny ' € (VD) (N 1)

(1—p1)dya* e 9117
dit+ciz*(1—e—d1i7) "
For (1), another subsystem of system (1) is obtained as

here x* is by (6), and z** is by z** =

dc,
E = fcel - (g +m)cO’
dce
G = hea (#N,
dCEQ -
a e (12)
Ne, =0,
AcelzD(Cez_c€1)+M1a t=N.
Acez = D(cel - 662) + 2,

Integrating (12), we get

& = CO(N+)6—(9+W)(t—N)

fea(NT)(1 — e_(h—g—m)(t—N))
_|_
h_g—m
ea = ca(NH)e ™0 1 e (N, (N + 1),

Cez = 062(N+)e*h2(t*N),t € (N,(N +1)].

,t € (N, (N +1)], (13)
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The stroboscopic map of (12) is

Co((N 4+ 1)) = co(NT)em o7
fea (NH)(1 = e=thmg=mir)
t N,(N+1
+ h—g—m b€ (N (N +1)],
cer((N+1)T) = (1 — D)ear(NT)e™™7 4 Dego(NT)e ™ 27 4 py, (14)
te (N,(N+1)],
cea(N +1)NF) = Deey(NT)e™™7 + (1 = D)cea(NF)e™ ™7 + py
te(N,(N+1).
A unique fixed point of (14) is
o flm( = (1= D)e"7) + pyDe”"27](1 — e~ (hm9=m7)
CO = b)
M3
_ _ —hQT —hQT
o = pa[l = (1 = D)e™"T] + psDe ’ (15)
My
o el = (= D)t Dot
e2 — M4 )

where Mz = (h—g—m)(1—e~("=9=™T)[(1—(1—-D)e ™M7)(1—(1—D)e "27) -

D2e=(mth2)m] and My = [1 — (1 — D)e ™7]|[1 — (1 — D)e 27| — D2e~ (hatha)7
Writing (14) as a map, and defining it as F': R3 — R

Fi(c) = ¢o(NT)e~lgtm)T

fcel(Nﬂ(l — e~ (hmg=—m)T)
p— .t € (N, (N +1)],

Fy(c) = (1 = D)eer (NT)e ™7 + Deea(N1)e ™27 4 puy,
Fs(c) = Dea(N*)e™7 + (1 = D)eea(N*)e™™7 + pip.

(16)

Lemma 3. Suppose D > 1 holds, F(c}, ¢}y, cly) of (16) is globally asymptoti-
cally stable.

Proof. We mark (c?, ¢, c%) as (co(nTT), ce1(nth), cea(n7)). Rewriting lin-
earity of (16) as

n+1 n

C, C,
n+1 n

Cel =M1 Ce1 |. (17)
n+1 n

Ce2 Ce2

Obviously, the stabilities of F'(c}, ¢y, ¢by) is by eigenvalues A1, A2, Az of M, which
are less than 1.



34 Y. Zhou and J. Jiao

Suppose D > % holds, 0 < e < 1(i =1,2), F(c*, ¢y, c%,) exists, and
2 0> el Fe2

e~(orm)r fe 0o ) 0
M = 0 (1 - D)e ™ De=haT ) (18)
0 De~r (1 — D)e~hem
For
A= e—(g+m)'r <1,
Q=D o) 4 T DY F e — (1 = 2Dye T
9 =
2
B (1 _ D)(efhl‘r _|_efh2‘r) + \/[D(e—h” + e—hg‘r)P 4 (1 _ 2D)(e—(h1—hl)‘r)2
B 2
< efhl‘l' +€7h2‘r < 1
2 )
o (L= D)™ o) /A= D)fe ™7 § e T — 41— 3D)e CrE”
3 =

2

(]- - D)(e*hﬂ' + e*hzfr) _ \/[(1 _ D)(efhl'r _ e*hz‘l’)}z + 4D2e—(hathi)T
2

1—-D : 7h17, —hoT
< O Dpmin{ehn ey

That is, A; < 1(# = 1,2,3), then, F(c},cy,cy) is locally stable. Then, it is
globally asymptotically stable.
Similar to Reference [9], we get

Lemma 4. (12) has a unique globally asymptotically stable periodic solution
(Co, Ce1, Ce2) of (12), and

c = Czef(ﬁm)(t*N)

* (1 — ¢~ (h—g—m)(t—N)
+fcel(1 € ),tG(N,(N+1)},
h—g—m (19)
o =ce MmN e (N (N +1)],

Cor = Clpe 207N [t € (N, (N +1)).

where ¢, ¢&,, ¢ty are by (15).
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Remark 5. m, < ¢,(t) < My, me1 < ce1(t) < Moy and mea < cea(t) < Mo

% (1 _—(h—g—m)T
hold for t large enough, and m, = cze’(’”m)T + fc‘fl(lhig_mq ) e > 0,

cl _
M, =c; + (hfgejm) +e, Mer = e —e >0, Moy =iy +6>0me =

cire™T —e>0and My = ¢y +¢ > 0.
Thinking (1), we get

dx
T < —dlx—l—clx?,
te (N,(N+ L),
Azr = —puz,
; t=(N+L), (20)
d%; < —(dy + E)x + co2?,
te ((N+L),(N+1),
Az = bx,
t=(N+1),
and p
dizf > —(dy + S M)z + 122,
te (N,(N+ L),
Ar = —puz,
J t=(N+L), (21)
> ~(de+ B+ f2M,)a + exa?,
te ((N+L),(N+1),
Az = bx,
t=(N+1L),
with their comparative impulsive systems
dx
7; = 7d135‘1 + Cll’%,
te (N,(N+ L),
ALL’] = — Ty,
t=(N+L), (22)
dl’l 2
ﬁ = 7(d2 + E).Il —+ 021‘1,
te((N+L),(N+L),
Az, = bry,
t=(N+1),
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and p
% = —(di + B1M,)zs + c123,
te (N,(N + L),
Axg = —pxs,
t=(N+L
das N+ L), , (23)
== —(dg + E 4 B2M,)xa + cox5,
te (N+L),(N+1),
A.TQ = b’JJg,
t=(N+1)T.

Marking (14 b)(1 — p)e~ (181 Mo)l+ (d2+ E+B2Mo)A=D]7 < | a5 (C3) and (1 +
b)(1 — p)e [(drtpMo)lt(dat B+ Mo)A-DIT - 1 a5 (Cy).

Similar to Theorem 2, we can get

Theorem 6. i) Suppose (Cs) holds, 0 of (23) is globally asymptotically stable;

—~

i1) Suppose (Cy4) holds, z2(t) of (23) is globally asymptotically stable, and

dlx*efdl(th)
(d1 + B1M,)) + cra*(1 — e (i TOiMo))(E=N)
te (N,(N+ L),

To = (24)

(d2 + E + ﬁ2MO))x**e_(d2+E+ﬁ2Mo))(t_N)
(ds 1 E 1 Ball,)) + con™ (1 — e~ @at B450)) -’
te(N+10),(N+1)]

here z5 is by

M
T = ﬁz’ (14 b)(1 — p)e~ (HOMo)lt(datE+G:Mo)1=D)T 7 (25)

where My = (di + BiM,)(d2 + E + BM)1 + b1 — p)
e—[d1+/31Mo)l+(d2+E+BzMo)(1_l)]r—1], M; = (d2+E+BgMo)cl(1—e—(d1+51Mo)l)+
(1 — p)(dy + BiM,)cge=(FAMIr(] _ o=(datE+B2Mo)(1-D7) and z3* =
(1—p1)(di 481 M,))zhe” (d1+F1Mo)lr
(d1+B1My))+cizh(l—e—(d1+81Mo)lry "

Theorem 7. i) Suppose (C1) and (C3) hold, (0,¢,,ce1,cez) of (1) is globally
asymptotically stable;
i1) Suppose (Cs) and (Cy) hold, (1) is permanent.

Proof. i) From condition (Cy), (22), Theorem 2, and the theorem of the impul-
sive equation, we can have x(t) < z1(t) = z1(t) — 0 as t — +o0. From condition
(C3) (23), Theorem 6, and the theorem of the impulsive differential equation,
we can have z(t) > x2(t) — 0 as t — +00. So, the globally asymptotically stable

periodic solution (0, ¢,(t), ce1(t), ce2(t)) exists.
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i1) From condition (C3), (22), Theorem 2, we can have

o dlx*e_dllT
t) < t) < t)—e <
‘r()fxl()fxl() g—dl)_'_clx*(l_e_dll.,—)

(dy + E)z**e~(d2+E)1-D7 A
(d2 + E) + 0237**(1 — e~ (d24+E)(A-0)T —E€=mq.

From condition (Cy), (23), Theorem 6, we can easily obtain

o dlx*efdll‘r

t) > t) > t) —e >
SC( ) zQ( ) IQ( ) €z (dl +ﬂ1Mo)) —|—C1$*(1 _e—(d1+51Mo)lT

(dy + E + BaM,))x** e (d2tE+52Mo))(1=D)7
(dy + E + B2 M,)) + cox**(1 — e—(da+E+52Mo) (1=D7

A
g =ma.

From above discussion and Remark 5, we can have m; < z(t) < ma, m, <
Co(t) < My, mer < Ce1(t) < Moy, Mea < cea(t) < Meg. This completes the proof.

4 Discussion

In this work, we consider we construct a single population model with non-
transient /transient impulsive harvesting and birth pulse in a polluted environ-
ment. From the conditions of Theorem 7, we can deduce that the transient
impulsive harvesting amount 4 Ez}\s_ithreshold w*. If p > p*, the globally asymp-

totically stable (0, ¢,(t), ce1(t), cea(t)) exists. If < p*, system permanence. We
can also obtain the threshold I* for non-transient impulsive harvesting intervals.
Our results present a biological management researching basis in a polluted envi-
ronment.
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