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Abstract. The existing software reliability growth model (SRGMs) usually
assumes that the detected faults can be eliminated well when considering different
types of software faults, to simplify the problem. Therefore, given these existing
defects, we propose a new non-homogeneous Poisson process (NHPP) SRGM
based on considering different fault severity. According to the complexity of the
fault, we define the software fault as three levels: Level I is a simple fault, Level II
is a general fault, and Level III is a severe fault. In the process of fault detection,
the model comprehensively considers the tester’s ability to find problems and the
number of remaining issues. In the process of debugging, the problems of imper-
fection and new fault introduction are considered. Two kinds of real data sets,
fault classification and non-classification, were selected and we made simulation
for the proposed model and other traditional SRGMs on the PyCharm platform.
The experimental results show that the software reliabilitymodel considering fault
severity has excellent performance of fault fitting and prediction on both types of
data sets.

Keywords: Fault severity · Non-homogeneous Poisson process · Software
reliability growth models

1 Introduction

With the comprehensive application of computer software technology in various sys-
tems such as daily life and safety-critical applications, software quality is an essential
guarantee for software survival, and software reliability is an important index to mea-
sure software quality [1–3]. In the process of software development, it is necessary to
consider the time of software release, the number of failures after software release, and
the severity of the failures. Therefore, as an important means of quantitative evaluation
and prediction of software reliability, in recent years, many software reliability growth
models (SRGMs) based on time-domain have been proposed and successfully applied
to the development process of various types of security-critical software. Among all
SRGMs, the non-homogeneous Poisson process (NHPP) class SRGM is recognized as
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the most effective and widely used model because of its excellent characteristics such
as easy to understand and easy to use.

In 1979, Goel and Okumoto [4] first used NHPP to describe the SRGM, known as the
G-Omodel. The model assumes that the failure detection rate function is constant. Many
models are based on the G-O model to improve some assumptions and modify the G-O
model to make the newly established model achieve a better fitting effect. Yamada [5]
proposed the Delay S-Shaped model, which believed that the failure detection rate was a
non-decreasing function changingwith time.Meanwhile,Ohba [6, 7] considers that there
is more than one fault in the software. Kapur et al. [8] introduced the concept of Fault
Severity Factor (FSF). They proposed a SRGM with two types of fault. The first type is
the model proposed by Goel and Okumoto. The second type introduced the logistic rate
during the removal process. Later many materials indicate that there is more than one
level of software failure in the software system. However, in the models that have been
proposed, it is usually assumed that the faults detected are immediately eliminated to
simplify the calculations. In other words, they assume that the troubleshooting process is
perfect. This assumption ignores the fact that all detected faults cannot be eliminated due
to resource constraints and the introduction of new faults in the troubleshooting process.
Therefore, the models can not be well applied to a practical application environment.
The fitting ability and prediction ability of the model needs to be improved.

In this paper, we show how to classify software failures into three categories: severe,
general, and simple. According to the severity of the software fault, we proposed a
new SRGM to quantify the software level. In the process of fault detection, for simple
failure, in different time intervals, the probability of testers finding problems is only
related to the number of residual failures. Therefore, unlike Kapur et al., we assume
that the fault detection rate of this fault level is a decreasing function over time. In the
other two more complex fault levels, we will consider the ability of testers to detect
problems and the number of remaining issues. Similarly, during the troubleshooting
process, we introduced the non-removable software failure rate into consideration of the
possibility of imperfect debugging. We entered the failure lead-in rate parameter into
account of the option of adding new errors. Based on the above analysis, we carried out
experiments on two types of failure data and compared the experimental results with the
existing SRGMs. From the results, we can see that the new model has a better fitting
and prediction effect.

The rest of the paper is arranged as follows. In the second part, three models of
different severity fault of software reliability are given. This section also describes the
proposed new model. The third part presents the evaluation criteria of the model. Part
four discusses estimating model parameters using the Least Square Method (LSE) [4,
25] and applying these models to two failure data sets. Finally, in the fifth part, the
experimental results are compared with other classical SRGMs.
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2 The Fault Levels Model

We improved the assumptions of the earliest NHPP class model and obtained the
following assumptions [9–11].

1. The software test runs in the same way as the actual running profile.
2. The different types of software faults are mutually independent.
3. Assume that m(t) is the mean value function (MVF) of the expected number of

problems detected in time (0, t). The cumulative errors to time t follow the Poisson
processwhere theMVF ism(t).We can get the predicted functionm(t) of the increas-
ing error number is a bounded non-subtractive function that satisfies the requirement
that m(0) = 0.

4. The expected number of errors at any time interval (t, t + �t) is proportional to
the number of errors remaining at time t. The ratio is the failure detection rate b(t).
The function of the failure detection rate over time for different problem levels is
assumed as follows:

1) For Level I, in different time intervals, the probability of testers finding minor
problems is only related to the number of residual failures, and the failure
detection rate function is b1(t).

2) For Level II, the probability of the tester finding non-minor problems is related
not only to the number of residual failures, but also to the tester’s learning ability.
The failure detection rate function is b2(t).

3) For Level III, similarly, we can assume the fault detection rate function of Level
III is the same as that of Level II, which is b3(t).

5. We assume that the original fault content in the software isN .N1,N2 andN3 represent
the initial fault number of simple, general, and severe levels respectively. Eliminating
errors isn’t all perfect for problems of different grades. Thus, we introduce the failure
introduction rate a.

1) For Level I and Level II, when the fault level is low, the developer does not
introduce new errors in the debugging process, the failure introduction rate are
a1 and a2, and a1 = a2 = 0.

2) For Level III, at this point, developersmay introduce new problemswhen solving
the problem, so assume that the failure introduction rate is a3.

6. In practice, due to limited test resources, the skill and experience of the tester, and
different severity of fault, it is not possible to eliminate all detected faults in the test
phase. Therefore, we introduce the non-removable failure rate c.

1) For Level I and Level II, when the fault is relatively simple, we assume that the
fault can be completely removed, so the non-removable failure rate is c1 = c2 =
0.

2) For Level III, there are some software glitches that the software development
team can not eliminate, so we assume that the non-removable failure rate is c3.
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Based on the above assumptions, we can construct the model as follows, where, the
m(t) of Level I, II, III are respectively expressed as m1(t), m2(t), m3(t).

2.1 Level I SGRM

According to the above assumptions, and from [12, 13], the model of the simple problem
can be expressed as

dm(t)

dt
= b1(t) × [N − m1(t)] (1)

Since the failure detection rate of minor problems by testers is only related to the
number of remaining faults, with the continuous correction of the failures, the number
of residual failures in the software become less and less, and the probability of detec-
tion becomes lower and lower. Therefore, it is assumed that the function of the failure
detection rate over time of the tester for minor problems satisfies the following equation.

b1(t) = b1
1 + t

(0 ≤ b1 ≤ 1) (2)

In the formula, b1 denotes a fault detection rate of simple faults found by the tester
at the initial time.

Substitute (2) into (1), and solving (1) under the condition m1(0) = 0, we can get
the MVF of Level I as follows

m1(t) = N [1 − (1 + t)−b1] (3)

2.2 Level II SGRM

Similarly, according to the above assumptions, the model of the middle problem can be
formulated as

dm(t)

dt
= b2(t) × [N − m2(t)] (4)

The logistic Testing-Effort Function (TEF) [14–18] can well describe extensive test
work, we use the ratio of test coverage growth rate and uncovered code to express the
failure detection rate of the Level II fault.

The logistic TEF formula for the period (0, t] is

W (t) = Wmax
1 + A exp(−αt)

(5)

Where A is a constant, α is the consumption rate of testing effort, and Wmax is the
total testing effort that can be consumed finally. The current TEF rate at test time t can
be shown as

W ′(t) = WmaxAα exp(−αt)

[1 + A exp(−αt)]2 (6)
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For simplicity of calculation, we assume Wmax = 1. The function of the failure
detection rate over time can be represented as

b2(t) = W ′(t)
1 − W (t)

= α

1 + A exp(−αt)
(7)

With the tester’s continuous understanding of the software under test, the tester can
write better test cases, and the failure detection rate will increase; at the same time, as
the failure is constantly corrected, the remaining failure in the software is less and less,
and the probability of detection is lower and lower. Therefore, the fault detection rate at
this time is affected by these two aspects.

Substitute (7) into (4), and solving (4) under the boundary condition m2(0) = 0, we
can obtain the MVF of Level II as follow

m2(t) = N [exp(αt) − 1]
A + exp(αt)

(8)

2.3 Level III SGRM

According to the above assumptions, the model of the complex problem can be shown
as

dm3(t)

dt
= b3(t) × [N (1 + a3t) − m3(t)] − c3m3(t) (9)

According to assumptions 2, the parameters of b2(t) and b3(t) should be differ-
ent. Therefore, the function of the failure detection rate over time of Level III can be
formulated as

b3(t) = α1

1 + A1 exp(−α1t)
(10)

Substitute (10) into (9), and solving (9) with the condition m3(0) = 0, the MVF of
Level III is

m3(t) = Nα1

[exp(α1t) + A1](α1 + c3)2 exp(c3t)
×

[(1 + a3t)(α1 + c3) exp(α1t + c3t) − a3 exp(α1t + c3t) + a3 − α1 − c3]
(11)

Therefore, we can assume different parameters in front of the formulas of varying
Level and get the new SGRM as follow

m(t) =
k=3∑

i=1

pimi(t) (12)

We call it a fault levels model. In Eq. (12), p1, p2 and p3 need to satisfy
k=3∑
i=1

pi = 1.

And the initial fault number satisfies piN = Ni(i ∈ 1, 2, 3).
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3 Model Comparison Criteria

We analyze models based on the ability to fit software failures and the ability to predict
future software behavior based on observed failure data sets. The four standards ofmodel
comparison are:

3.1 The Fitting Effect Criterion

To quantitatively compare the effects of model fitting data, we use the Sum of Squared
Errors (SSE), the Mean Square of Fitting Errors (MSE), and the R-square (R) [19–22].

MSE. The MSE formula is shown below

MSE =

k∑
i=1

(m(ti) − mi)
2

k
(13)

The smaller the value of MSE, the lower the fitting error, and the better the
performance.

SSE. The calculation formula of SSE is as follows

SSE =
k∑

i=1

(m(ti) − mi)
2 (14)

Similarly, the smaller the value of SSE is, the lower the fitting error is, that is, the
better the performance is.

R. The formula for R is

R = 1 −
k∑

i=1

(m(ti) − mi)
2

/
k∑

i=1

(mi − mave)
2 (15)

Unlike the above, the closer the value of R is to one, the better the fitting effect will
be.

3.2 The Predictive Goodness Criterion

The ability of a model to predict failure behavior based on the current number of failures
is called predictive validity. Musa [8, 23, 24] proposed a method that could be used to
calculate the Relative Error (RE) of the data set to represent the predictive validity.

RE = m̂(tq) − q

q
(16)

First, assuming that q faults are found at the end of the test time tq, we use the failure
data before te(te ≤ tq) to predict the parameters of m(t). By substituting the values of
these prediction parameters into MVF, we can obtain the number of failures m(tq) over
time tq. The second step is to compare the predicted value with the actual amount q.
Third, repeat the process for different te values. The validity of the prediction can be
verified by drawing the relative errors of different tq values. The closer the number is to
zero, the better the prediction. Where the positive error represents an overestimate; A
negative error indicates underestimation.
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4 Model Simulation and Result Analysis

In this section, the proposed model has been tested on two real data sets to evaluate
its validity. At the same time, the model with better performance on each data set and
the classical models are used as the comparison model. In this paper, we use PyCharm
software as a simulation platform. The Least Square Estimation (LSE) method is used
to estimate the model parameters [4, 25, 26], and the estimation results generated by
LSE are unbiased.

4.1 Data Set I

The data is from Misra, which is the failure data of software developed in the contract
between IBM’s Federal Systems Division and NASA’s Johnson [27, 28]. The software
was tested for 38 weeks, during which 2456.4 computer hours were used, and 231 faults
were removed. It can be seen that faults are classified when failure data is recorded. The
proposed model has been compared with the model proposed by Kapur et al. [29, 30],
who also used the data set for experiments.

Analysis of Fitting Results. The Parameter Estimation result and the goodness of fit
results for the proposed SRGM are given in Table 1. It is observed that the proposed
model has the smallest value of SSE andMSEwhen compared with the SDEmodel. The
twomodels have the same value of R. From the weight coefficient values of the proposed
model, we found that Level I and Level II faults account for a significant proportion of
the DS-I, while Level III accounts for a small percentage. The SDE model also reflects
this phenomenon. The fitting results of the two models are close to the original data set,
which further proves the validity of the model. Compared with the SDE model, the total
number of faults fitted by the proposed model is closer to the total number of faults in
the original data set. Figure 1 describes the comparison between the fitting valuem(ti) of
each failure data in the DS-I by the twomodels and the actual observed failure datami. It
can be seen from Fig. 1 that the fitting results of the two models basically coincide with
the real data. Combined with Table 1 and Fig. 1, the proposed model performs better in
DS-I fitting.

Analysis of Prediction Results. We train with the failure data of the first 22 weeks, and
compare the predicted value with the real cost to get the RE curves in Fig. 2. It can find
that the RE value of the proposed model is the closest to zero as a whole when compared
with the SDE model. It means that the proposed model predicts more accurately.
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Table 1. Fitting parameters for DS-I.

Models under
comparisons

Parameter estimation MSE SSE R

Stochastic
differential
equation-based
(SDE) model

b1 = .059, b2 = .104, b3 = .378, β = 66.593

p1 = .64, p2 = .342, p3 = .018, a = 420

σ1 = .048, σ2 = .185, σ3 = .599

7.22 274.35 .999

Proposed SRGM
(fault level (FL)
model)

p1 = .711, p2 = .268, p3 = .021

N = 382,A = 12.01,A1 = −8.14

α = 1.98, α1 = 2.91, a3 = .006, c3 = 2.89

6.32 240.15 .999

Fig. 1. Goodness of fit curves for DS-I.

4.2 Data Set II

The Ohba data set is mentioned in a paper written by Ohba for a database software
system that contains approximately 1317,000 lines of code [12, 31, 32]. The softwarewas
tested for 19 weeks, during which 47.65 computer hours were used, and 328 faults were
removed. Different from the DS-I, DS-II does not classify the failures when recording
the failure data. Therefore, we choose three models that are tested with DS-II to compare
with the proposed and prove that the proposed model has an excellent performance in
both classified and unclassified data sets.
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Fig. 2. RE curves on DS-I.

Analysis of Fitting Results. Table 2 lists the estimates of differentmodel parameters on
DS-II, including the G-O model, and the traditional Yamada Delayed S-Shaped model.
We also give the values of SSE, MSE, and R in Table 2. It is observed that the proposed
model has the smallest value of SSE and MSE, and the value of R for the proposed
model is the closest to one when compared with other SRGMs.

Table 2. Fitting parameters for DS-II.

Models under
comparisons

Parameter estimation MSE SSE R

G-O model N = 760.53, r = .03 139.82 2656.48 .986

Delay
S-shaped
model

N = 374.05, r = .21 168.67 3204.79 .984

Improved G-O
model

N = 451.32, b = 13.03,A = .04 89.81 1706.43 .991

Proposed
SRGM (fault
level (FL)
model)

p1 = .073, p2 = .755, p3 = .172

N = 506,A = 19.28,A1 = 61.88

α = .301, α1 = 1.64, a3 = −0.095, c3 = .47

32.47 616.95 .997
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Different from the DS-I, we found that Level II and Level III faults account for a
significant proportion of the DS-II, while Level I accounts for a small percentage. This
is because different software development environments and application scenarios have
different fault level distribution.

To clearly show the fitting effect diagram, we chose the two models with the best
fitting effect for comparison. The two models with better fitting effect are the proposed
model, and the Improved G-Omodel. Figure 3 describes the contrast between the appro-
priate value (m(ti)) of each failure data in the DS-II by the above two models and the
actual observed failure data (mi). On average, the proposed model performs better in
data set fitting.

Fig. 3. Goodness of fit curves for DS-II.

Analysis of Prediction Results. In DS-II, we train with the failure data of the first 12
weeks, and compare the predicted value with the real value to get the RE curves in Fig. 4.
For the convenience of observation, the RE curves of two models with a better fitting
effect on the DS-II are depicted in Fig. 4. It is worth noting the curve of the Improved
G-Omodel deviates from zero by a large margin. The RE value of the proposed model is
the closest to zero as a whole, and the speed of the curve approaching zero is the fastest
after eighteen weeks, which indicates that the proposed model has excellent predicted
results on the DS-II.
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Fig. 4. RE curves on DS-II.

5 Conclusion

This paper provides a new SRGM based on three different types of fault severity. The
model not only considers the existence of more than one type of software failure but also
considers the possibility of imperfect debugging in the real world, introducing failure
introduction rate and non-removable software failure rate. This makes the establishment
of the model more in line with the actual situation and the calculation is simple, which is
convenient for transplantation and application. The simulation results on two different
types of data sets show that, compared with the previous methods, the fault severity clas-
sification can effectively improve the fitting effect and prediction effect of the traditional
software reliability model, which plays an essential role in the theoretical research and
engineering application of the software reliability model.
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