
Developing an Interactive Web-Based
Programming Platform for Learning
Computer Networking Protocols

Dewei Zeng, Zhiyu Zhang, Jiye Chen, and Xiaojun Hei(B)

Huazhong University of Science and Technology, Wuhan 430074, China
{zengdewei,zhiyuzhang,youtiao,heixj}@hust.edu.cn

Abstract. Computer networking protocols have become important
domain knowledge for electrical engineering professionals. The learning-
by-doing approach has shown its effectiveness to learn these complex
protocols by reproducing research results. In this paper, we design a
web-based ns-3 lab platform by integrating various open-source modules
for beginners to get hands on network simulations to learn networking
protocols with a smoothed learning curve. This platform consists of a
vue-based front-end and a docker-based back-end to support elastic on-
demand capacity expansion. We implement a simulator scheduling mod-
ule based on Node.js and restify to achieve load balancing for reducing
the simulation waiting time. We conduct a measurement study to evalu-
ate the performance of this prototype system. The measurement results
demonstrate the technical feasibility of the prototype design to develop
a scalable but user-friendly computer network simulation platform for
massive open online lab courses.

Keywords: ns-3 · Online learning · Networking protocols ·
Engineering education

1 Introduction

In recent years, engineering courses have shown strong tendency toward science
courses, lacking of sufficient practical lab platforms. Engineering students are
required to accomplish systematically-designed theory and practice modules in
order to develop their system capabilities progressively in a pipeline fashion [8–
10]. The “computer networking” course is an important professional fundamental
course for undergraduate programs on electrical engineering with both theoreti-
cal and practical characteristics. It is an effective learning approach to reproduce
research results to learn computer networking protocols [1,12]. Nevertheless, it
is prerequisite to provision network facilities to support the reproduction of

D. Zeng, Z. Zhang and J. Chen—These authors contributed equally to this work.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021

Published by Springer Nature Switzerland AG 2021. All Rights Reserved

H. Song and D. Jiang (Eds.): SIMUtools 2020, LNICST 369, pp. 611–625, 2021.

https://doi.org/10.1007/978-3-030-72792-5_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72792-5_48&domain=pdf
https://doi.org/10.1007/978-3-030-72792-5_48


612 D. Zeng et al.

research results. With the rapid development of the network, the complexity
and customization of the network hardware equipments have been increasing
significantly in recent years. Therefore, computer networking educators have
been increasingly adopting network simulation labs instead of hardware-based
networking labs [3–5,14].

Ns-3 is a popular open-source network simulation tool [7] which has been
widely used in the networking research and teaching communities. Many third-
party modules have been developed to enhance ns-3, such as ns3-gym [6] and
ns3-AI [13] to foster artificial intelligence algorithms in networking research.

When beginners learn to conduct ns-3 network simulations, it is common
that they find it difficult and time consuming to get started due to the compli-
cated installation steps and largely scattered learning resources. In this paper,
we are motivated to design an online ns-3 learning platform with potential easy
capacity expansion, which provides the ns-3 tutorial labs for beginners with a
convenient user interface but without any required system configuration. The
learners are able to catch up with the latest networking protocols in a low-cost,
repeatable virtual experiment environment, and potentially large-scale network
simulation experiments. Our platform integrates the ns-3 tutorial guidelines, ref-
erence source codes and various programming functions, which forms a smooth
learning flow of from theory learning, source coding to lab practice. In this
research-oriented learning of network simulation experiments, beginners are able
to concentrate on their learning without being distracted by the simulator config-
uration and maintenance and are motivated to explore more learning experiences
independently. In summary, our contributions are listed as follows.

– We design and implement this web-based ns-3 learning platform, so that
a beginner is able to study the ns-3 tutorial lab guidelines step-by-step in
a learning-by-doing approach. The back-end of the platform is constructed
based on the open-source ns-3 network simulator; hence, the development cost
of the platform is effectively reduced but harness the progress of the active
ns-3 development.

– In order to increase the scalability of the proposed learning system, we create
a ns-3 docker image to generate potentially a large number of isolated ns-3
running containers, which enable the elastic on-demand capacity expansion to
support users as needed. The proposed architecture implements a scheduling
mechanism to balance the simulation jobs to these ns-3 running containers to
minimize the waiting time for learners to receive simulation results.

The rest of the paper is organized as follows. First, we review the related
work in Sect. 2. Then, we present the platform design in Sect. 3, and present the
implementation details in Sect. 4. Next, we present the performance evaluation
results in Sect. 5. Finally, we conclude the paper in Sect. 6.

2 Related Work

In this section, we review the representative work on the online simulation plat-
form in engineering education for communication and networking. Derr et al.



Web-Based NS-3 for Learning Computer Networking Protocols 613

developed a web-based simulation tool, PGCPMT, for power grid communica-
tion network simulation. PGCPMT provides a GUI interface for the network
topology, allowing users to define a network by dragging and dropping net-
work elements [2]. Zou et al. proposed a teaching platform, EasyHPC, deployed
on the supercomputer Milkyway-2 [15]. The front-end of EasyHPC provides an
experimental tutorial, and the back-end of EasyHPC provides the environmental
support for online programming. This is a feasible case of combining an online
programming platform with tutorials. Gao et al. designed a set of ns-3 labs on
the EasyHPC online platform such as learning the IEEE 802.11 Wi-Fi protocol,
and positive feedback was reported from the students [4]. Sljivo et al. developed
an interactive web simulation tool for the IEEE 802.11ah protocol [11]. The
tool provides visual results for ns-3 simulation through PyViz, and provides a
monitoring view of nodes status. Gao et al. re-designed an ns-3 simulation based
networking lab course by reproducing research results aiming to teach both engi-
neering rigor and critical thinking for undergraduate students, which are crucial
for their future career or research [5].

Motivated by these previous works, our platform integrates the ns-3 tuto-
rial guidelines, relevant experimental designs and programming functions, which
creates a smooth learning curve from the theory learning, lab design and cod-
ing practice. In this learning-by-doing approach, this network simulation learn-
ing platform effectively reduces the additional time and efforts for beginners to
quickly get hands on the ns-3 labs.

Fig. 1. User interface design



614 D. Zeng et al.

3 System Design

In this section, we first examine the requirements of an online platform in that we
should provide learners with a user-friendly web-based interface, an online pro-
gram execution environment, learning materials and reference codes, etc. Then,
we present the system architecture design in details.

3.1 User Interface

As shown in Fig. 1, a learner edit the ns-3 source codes online with a code
editor; with a single click on the execute button, the ns-3 source codes can be
uploaded to the back-end ns-3 simulator compiler; the simulation experiments
are conducted by the ns-3 simulator; finally, the simulation results are returned
and displayed on the result page before the learner. Hence, ns-3 learners are able
to enhance the comprehension in a learning-by-doing approach with minimum
configuration efforts.

3.2 System Architecture

Fig. 2. System work flow

Our platform deploys a typical browser/server (B/S) architecture to meet the
needs of user interaction as shown in Fig. 2. The browser provides the user inter-
action interface, including the tutorial guidelines, the code editor and the result
display window. We store the learning materials and the reference codes on the
server. When a learner needs to view the web pages, the browser sends an HTTP
request to the server. After receiving the request, the server will return the cor-
responding web pages to the browser, and the pages are displayed on screen.

When a user needs to run codes online, the codes will be uploaded to the
server by the browser, and the scheduler in the simulation server distributes the
codes to an independent running environment. This selected running environ-
ment executes the codes and returns the simulation results. Finally, the results
are displayed in the browser.



Web-Based NS-3 for Learning Computer Networking Protocols 615

4 Implementation

In this section, we present the web framework to implement our system proto-
type. Then, we present the architecture implementation details.

4.1 Web UI

We use a popular frameworks, Vue, to build the front-end. This framework has
ready-made component libraries, and we can use well-designed UI libraries to
build web sites quickly. We implement the buttons and menu bar based on
the antd-vue component library. Then, we download the ns-3 official web site
tutorial guidelines and render them on the pages. Additionally, we integrate the
code-mirror open source code editor to edit the source codes [11].

4.2 System Architecture

In order to implement the function of the online execution of the simulation
experiments, we set up the ns-3 simulation environment on the server. When a
learner executes the simulation codes, the browser uploads the codes to the server
via HTTP, and the server process the received codes, including compilation,
execution, and returning the simulation results and the execution information
to the learner.

Fig. 3. System architecture



616 D. Zeng et al.

Our system implements the modules as shown in Fig. 3. In this B/S archi-
tecture, the server is composed of 3 modules: the Nginx server, the manager
container and the ns-3 running container. The Nginx server is a HTTP server,
which can display the web files (such as HTML, pictures) on the server to the
clients through the HTTP protocol, instead of requesting resources through the
server, which could reduce server pressure. It also provides a reverse proxy func-
tion to forward the HTTP request of the browser to the manager container.
Note that a ns-3 process compiles its source codes in a default folder. In order to
maximize the utilization of computing resources, we instrument multiple contain-
ers deployed with duplicated ns-3 environments. When the manager container
receives the codes, it just forwards the codes to an idle ns-3 running container
via HTTP; then, the ns-3 running container compiles the codes and executes the
simulations, and returns the results to the manage container. Afterwards, the
manage container returns the simulation results to the browser, and the browser
displays the results in the output console for learners.

We select the Node.js and restify framework to implement our system.
Node.js is used to provide the HTTP service, which is a JavaScript runtime
built on Chrome’s V8 JavaScript engine. Node.js is a single-threaded language.
It treats the received request as a task and schedules work in a single thread
through a task queue, which reduces the overhead caused by thread switch-
ing, which will show a significant performance advantage when the service is
mainly IO service. Our service is mainly based on IO requests that distribute
tasks through HTTP, so Node.js has a great performance advantage. Restify
is used to accelerate the creation of HTTP services, which is a REST service
framework based on Node.js, and focuses on REST services than modules such
as express, which can effectively separate front-end and back-end development,
reduce project development cycles, and improve service scalability.

4.3 Simulator Scheduler

In order to increase the scalability of the system, we apply the docker to generate
multiple ns-3 running containers from an ns-3 running image. We use the ready-
made Nginx image and build the manage node image and the ns-3 running
image. We created a Nginx server container, a manager container and a changing
number of ns-3 run containers as needed through the Docker-Compose container
orchestration tool1. Docker-Compose is a tool for defining and running multi-
container docker applications by composing a YAML file to configure our ns-3
simulation service.

When the Nginx server receives a ns-3 running request, the request is for-
warded to the manage container. The manage container examines whether there
is an idle ns-3 container. If not, check again after blocking for a period of time. If
there is an idle ns-3 container, the codes are sent to this available ns-3 running
container via HTTP. The ns-3 container compiles and executes the receiving

1 https://github.com/docker/compose.

https://github.com/docker/compose


Web-Based NS-3 for Learning Computer Networking Protocols 617

codes, harvests the simulation results and returns the results to the manage-
ment container. Finally, the management container returns the results to the
learner’s browser for display.

5 Performance Evaluation

5.1 Web UI

Interface Outlook. The Web UI of our platform is shown in Fig. 4. The tutorial
window is on the left side and the code window on the right side.

The tutorial guidelines are transformed from the official web site of the ns-3
tutorial. We have selected 5 basic chapters, and the chapter switching can be
performed by the switch button at the upper left corner.

As shown in Fig. 5, the platform includes 5 basic chapters of ns-3 tutorials for
learners to start with as a use-case, including the conceptual overview, tweaking,
building topologies, tracing and data collection. A learner can click the directory
button in the upper left corner of the Web UI to switch chapters. In addition,
the tutorial labs are also extensible, and instructors can customized tutorial labs
as needed.

Code Editing. In order to allow learning to have enhanced learning expe-
riences, our platform provides the function of online programming, allowing
learners to immediately perform relevant coding training after reading relevant
chapters, so as to understand ns-3 programming and network protocols in a
learning-by-doing approach with immediate feedback.

As shown in Fig. 6, we integrate an online code editor on the right side of
the Web UI, and a learner can edit the ns-3 codes in the code window. After a

Fig. 4. Web UI overview



618 D. Zeng et al.

learner finishes the coding, he or she clicks the Execute Code button to submit
the codes to the back-end, which will compiles the codes by the back-end ns-3
engines. The learner can also click the Reset Code to reset the code editor to its
initial version.

As shown in Fig. 7, the simulation results are returned to the command line
of the code window, which are consistent with the real ns-3 console output as
well.

Interactivity. In order to enhance interactive user experience, our platform
implement the interactive design. After a learner submit the codes, the platform
returns the simulation results as soon as the back-end simulator accomplishes
the simulation job. Therefore, the learner can correct the errors in the codes
based on the output log. If the learner still has troubles in coding correctly, she
or he can click the See Answer button at the upper right corner of the Web UI
to find out how the reference codes work.

Platform Comparison. In summary, our platform integrates three impor-
tant features of learning, online programming and interactivity. We compare our
platform qualitatively with several related platforms as shown in Table 1. Our
platform is customized to the need of ns-3 beginners with careful design. Second,
our platform instruments several necessary features for most online programming
platforms. Though our platform does not yet have the full functions of graph-
ical programming, we have been considering to upgrade the system along this
direction in the future development.

5.2 Testbed Setup

In this section, we deploy this ns-3 learning system in a testbed to evaluate the
its performance. As shown in Fig. 8, the server is equipped with a 1-core CPU
Intel Xeon E5-2682 v4 processor, 2 GB memory, and 1 Mbps network bandwidth.
We apply JMeter to conduct the loading test on the server. JMeter is a Java-
based stress testing tool developed by the Apache organization, which can be
used to measure the system response time of the static and dynamic resources,
such as static web files, Java servlets, CGI scripts etc. on the server under dif-
ferent loading levels. We adopt JMeter to simulate different user behaviors by
requesting the tutorial web pages, and downloading the reference codes, submit-
ting the simulation codes for experiments. Round by round, JMeter continuously
initiates simulation testing circles until lasting for 10 min. We also use JMeter to
simulate concurrent requests. When multiple users are simulated, the ramp-up
period between the user’s requests is set at 1 s. JMeter gradually adds up to the
full number of testing threads following the ramp-up period.



Web-Based NS-3 for Learning Computer Networking Protocols 619

(a) Tutorial guidelines (b) Switching button

Fig. 5. Web UI details

Table 1. Platform comparison

Functions EasyHPC [15] PGCPMT [2] Our Platform

Programmability Yes Yes Yes

Results visibility No No Yes

Graphic programming No Yes No

NS-3 tutorial no no yes

5.3 System Performance

Performance Metrics. We measure several important performance metrics
of the ns-3 simulation services, including the response time, throughput, and
CPU & Memory. The response time is defined as the time duration (second)
for a user to download the tutorial pages, fetch reference source codes, execute
the codes and retrieve the simulation results. The throughput is defined as the
traffic volume per unit of time sent and received by a user (bps). We configure the
number of threads of JMeter to simulate different number of users who request
the ns-3 simulation services at the same time. We are interested to examine
the CPU utilization and the memory consumption (such as swap memory, free
memory, buffer size and cache size) of the back end system when the system is
stressed with different loads.



620 D. Zeng et al.

Fig. 6. An online code editor

Fig. 7. Simulation results

Table 2. Average response time with different loads and containers (second)

User concurrency 1 2 4

Single container 5.21 5.51 15.01

Double containers 5.27 10.68 11.57

Triple containers 5.24 11.02 11.64

Response Time. As shown in Table 2, the average response time is 5.21 s
for the case of the single user and the single ns-3 container. Additionally, the
response time of the case of 4 users and the single ns-3 container is 15.01 s,
which demonstrates the queueing effect of the simulator scheduler in our plat-
form. If the number of the ns-3 running containers is not sufficient, the response
time increases and impacts learning experiences significantly. When the server
is lightly loaded with the 1–2 concurrent users, single ns-3 container achieves
the least response time. When the concurrent users increase to 4, more ns-3
containers are required to maintain a small response time. The deployment of
the container mechanism in our platform enable an elastic capacity expansion to
serve an increasing number of concurrent users while maintaining a low response
time.



Web-Based NS-3 for Learning Computer Networking Protocols 621

Fig. 8. Stress tests with JMeter

Table 3. Average throughput in different loads and containers (kbps)

User concurrency 1 2 4

Single container 41.28 80.72 100.48

Double containers 40.96 62.24 118.4

Triple containers 41.04 59.76 117.92

Throughput. As is illustrated in Table 3, the average throughput of a single
user and four users are around 41 kbps and 112 kbps, respectively, where the
network bandwidth of our server is throttled by 1 Mbps. It shows that a local area
network is able to serve the need of ns-3 lab course based on this platform. Thus,
network bandwidth may not be the bottleneck of a high-load ns-3 lab platform
while CPU and memory may bring forth the major resource bottlenecks.

CPU and Memory. We examine the utilization of CPU and memory of the
sever to analyze the resource utilization when deploying different numbers of
containers when the concurrent users are simulated up to 4.

In Fig. 9, the green line depicts the percentage of the time the CPU runs
user-level codes. The dark blue line depicts the percentage of the time the CPU
runs system-level codes. The purple blue line depicts the percentage of the time
the CPU is idle. The light blue line depicts the CPU usage for waiting I/O
devices. When the concurrent user number is 4, the CPU idle time with single
ns-3 container is expectedly larger than the double-container case. Because when
a process executes a task, it will not completely exhaust the computing resources
of the CPU, which means that the computing resources are not fully utilized.
While if there are two processes compile, CPU computing resources will be more
fully utilized. For triple-container, the concurrent user number is 4 means that
there will be 3 task being executed together, which takes about 3 times the time
to execute a single task, and the last one will be executed separately. This results
in about 3/4 of the time that the CPU idle is extremely low, and the remaining
1/4 of the time CPU idle is slightly higher, just like what shown in Fig. 9. When
the concurrent user number is 4, the total user-level and system-level CPU usage
is beyond 80% most of the time. It shows that the performance bottleneck of
the platform lies in the computing power of the CPU.

As shown in Fig. 10, with 4 concurrent users, we compare the memory con-
sumption with different ns-3 running containers. “Swapped” depicts the amount



622 D. Zeng et al.

(a) Single ns-3 Running Container

(b) Double ns-3 Running Containers

(c) Triple ns-3 Running Containers

Fig. 9. CPU utilization 4 concurrent users



Web-Based NS-3 for Learning Computer Networking Protocols 623

(a) Single ns-3 Running Container

(b) Double ns-3 Running Containers

(c) Triple ns-3 Running Containers

Fig. 10. Memory consumption with 4 concurrent users



624 D. Zeng et al.

of virtual memory used. “Free” depicts the amount of free memory. “Buffers”
depicts the amount of memory used for buffers. “Cache” depicts the amount of
memory used as the page cache. The fluctuating base of free memory is affected
by the system environment during a test, so the memory fluctuation range and
frequency can better reflect the memory usage of the task. Just like the purple
curve in Fig. 9, the free memory fluctuation frequency with single ns-3 container
is more frequently than the double-container case, and the range is less. This
means when there are both tasks being executed at the same time, the peak
memory usage will be higher and the free memory changes more smoothly. For
triple-container, about 3/4 of the time that the free memory fluctuation fre-
quency is lower and the range is higher, while the remaining 1/4 of the time
that the free memory fluctuation frequency is higher and the range is lower.
Consequently, when the number of ns-3 running containers executing Simulta-
neously increases, the CPU utilization increases, the idle time of CPU decreases,
and the free memory fluctuation frequency reduces, the range increases. In sum-
mary, an increase number of containers will increase the load on the server CPU
and reduce the memory consumption.

6 Conclusion

In this paper, we design and implement a web-based ns-3 learning platform 2 to
provide beginners to learn computer networking protocols in an easy learning-
by-doing approach. Our platform integrates various tutorial lab modules with
convenient learning resources, which smoothes the learning curves. The platform
supports simultaneous usage by multiple users, and returns simulation results for
users with a web user interface, which effectively reduces the difficulty of getting
hands on with ns-3. This platform can be used for lab course learning as well
as personal learning and research. On the other hand, there are some rooms for
improvement along several aspects: 1) asynchronous mechanism: the back-end
uses a scheduling mechanism to distribute the user’s compilation requests, and
then uses the container cloud as the load balancing for ns-3 tasks; 2) topology
customization: use an XML parser to implement visual network icons dragged
and dropped by users for configuring network topologies in ns-3 programming
labs; 3) user management: for student users, the platform provides a login mech-
anism so that the student users are able to code and submit labs in the back-end
database; for teacher users, the platform provides the lab customization module
to the support specific learning outcomes of a lab course.

Acknowledgment. The authors would like to express their gratitude to the anony-
mous reviewers for their constructive comments which the quality of this paper very
much. This work was supported in part by the National Natural Science Foundation of
61972172) and the teaching research fund by the Huazhong University of Science and
Technology (no. 2018077).

2 http://cloud.eic.hust.edu.cn:8585.

http://cloud.eic.hust.edu.cn:8585


Web-Based NS-3 for Learning Computer Networking Protocols 625

References

1. David, A., et al.: Reproducible computer network experiments: a case study using
popper. In: Proceedings of the 2nd International Workshop on Practical Repro-
ducible Evaluation of Computer Systems, pp. 29–34 (2019)

2. Derr, K.: Ns-3 web-based user interface: power grid communications planning and
modeling tool. In: Proceedings of the Workshop on Ns-3, pp. 93–100 (2016)

3. Gao, Y., Peng, J., Yin, Y., Hei, X., Wang, X.: Improving a software/hardware inte-
grated computer networking laboratory course. In: IEEE International Conference
on Teaching, Assessment, and Learning for Engineering (TALE), pp. 1189–1192
(2018)

4. Gao, Y., Peng, J., Yin, Y., Hei, X., Wu, D.: Developing wireless networking labs
for MOOC learners on an online programming platform. In: IEEE International
Conference on Teaching, Assessment, and Learning for Engineering (TALE), pp.
1154–1157 (2018)

5. Gao, Y., Zhang, C., Zhong, G., Hei, X.: Learning networking by reproducing
research results in an ns-3 simulation networking laboratory course. In: IEEE
International Conference on Teaching, Assessment, and Learning for Engineering
(TALE) (2019)

6. Gaw�lowicz, P., Zubow, A.: Ns-3 meets OpenAI Gym: the playground for machine
learning in networking research. In: Proceedings of the 22nd International ACM
Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
pp. 113–120 (2019)

7. Gupta, S., et al.: Open-source network simulation tools: an overview. Int. J. Adv.
Res. Comput. Eng. Technol. (IJARCET) 2(4), 1629 (2013)

8. Hei, X., Cheng, W.: Work in progress: fostering a telecommunication engineering
pipeline: a curriculum design. In: IEEE International Conference on Teaching,
Assessment, and Learning for Engineering (TALE), pp. 258–261 (2015)

9. Hei, X., Cheng, W.: Developing a telecommunication engineering pipeline of com-
munication networks. In: IEEE International Conference on Teaching, Assessment,
and Learning for Engineering (TALE), pp. 185–189 (2016)

10. Hei, X., Wen, H., Cheng, W., Huang, X.: Boosting computer-assisted telecommuni-
cation engineering education in internet thinking. In: Proceedings of ACM Turing
Celebration Conference - China, pp. 123–124 (2018)

11. Šljivo, A., Kerkhove, D., Moerman, I., De Poorter, E., Hoebeke, J.: Interactive web
visualizer for IEEE 802.11ah ns-3 module. In: Proceedings of the 10th Workshop
on Ns-3, pp. 23–29 (2018)

12. Yan, L., McKeown, N.: Learning networking by reproducing research results. SIG-
COMM Comput. Commun. Rev. 47(2), 19–26 (2017)

13. Yin, H., et al.: NS3-AI: Fostering artificial intelligence algorithms for networking
research. In: Proceedings of the 2020 Workshop on Ns-3, pp. 57–64 (2020)

14. Yin, Y., Gao, Y., Hei, X.: Performance evaluation of a unified IEEE 802.11 DCF
model in ns-3. In: Song, H., Jiang, D. (eds.) Simulation Tools and Techniques, pp.
395–406 (2019)

15. Zou, Z., Zhang, Y., Li, J., Hei, X., Du, Y., Wu, D.: EasyHPC: an online program-
ming platform for learning high performance computing. In: IEEE International
Conference on Teaching, Assessment, and Learning for Engineering (TALE), pp.
432–435 (2017)


	Developing an Interactive Web-Based Programming Platform for Learning Computer Networking Protocols
	1 Introduction
	2 Related Work
	3 System Design
	3.1 User Interface
	3.2 System Architecture

	4 Implementation
	4.1 Web UI
	4.2 System Architecture
	4.3 Simulator Scheduler

	5 Performance Evaluation
	5.1 Web UI
	5.2 Testbed Setup
	5.3 System Performance

	6 Conclusion
	References




