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Abstract. In this paper, the absolute value equation (AVE) is equiv-
alently reformulated as a nonlinear equation in the form of 2 times 2
blocks. A block diagonal inverse block diagonal iteration method based
on block-diagonal and anti-block-diagonal splitting (BAS) is proposed.
Theoretical analysis shows that BAS is convergent, and numerical exper-
iments show that the method is effective.
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1 Introduction

For the given matrix A ∈ R
n×n and the given vector b ∈ R

n, we consider the
iterative solution of the absolute value equation (AVE)

Ax − |x| = b, (1)

where | · | is the absolute value. Like linear programming, quadratic program-
ming, bimatrix games and quasi complementarity problems [1–5]), AVE has been
widely concerned as a practical optimization tool. AVE (1) is a NP hard prob-
lem, because there is a nonlinear and non differentiable term |x|, which makes
AVE (1) nonlinear and non differentiable. When the |x| in (1) disappears, the
AVE (1) will be reduced to a linear system, see [13,14,16,18,24–29].

In recent years, the numerical solutions of AVE can be obtained by itera-
tive methods, including the successful linearization algorithm [2], Picard and
Picard-HSS algorithm [7,8], sign accord algorithm [6] and hybrid algorithm [12],
interval algorithm [19], preconditioned AOR iterative algorithm [22], the gener-
alized Newton algorithm [9,20,21], and so on.
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For solving the AVE (1), the generalized Newton (GN) method in [9] works
below

xk+1 = (A − D(xk))−1b, k = 0, 1, . . . , (2)

where D(xk) = diag(sign(xk)). Here, the sign(x) is a vector composed of
1, 0,−1, which determines whether the value of x is greater than zero, equal
to zero or less than zero.

In [9], the convergence of the GN method is given by Mangasarian under
appropriate conditions. In numerical experiments, the GN method is superior to
the successive linearization method in [2]. After that, the GN method is extended
to solve the GAVE [10,11] related to the second-order cone.

On the basis of the previous work in [14], in [15], on the basis of Hermitian
and skew Hermitian splitting (HSS in [13]) of matrix A in (1), a nonlinear HSS
(NHSS) method for ave (1) is proposed.

The NHSS method. Let α > 0 and x(0) ∈ R
n be an arbitrary initial value.

For k = 0, 1, 2, . . . until the iterative sequences {x(k)}∞
k=0 is convergent, calculate

x(k+1) by the following procedure:
{

(αI + H)x(k+ 1
2 ) = (αI − S)x(k) + |xk| + b,

(αI + S)x(k+1) = (αI − H)x(k+ 1
2 ) + |x(k+ 1

2 )| + b,
(3)

where H = 1
2 (A + AT ) and S = 1

2 (A − AT ), A∗ stands for the transpose of the
matrix A.

Compared with GN method, NHSS method can avoid variable coefficient
matrix A − D(xk), which is an advantage of this method. However, it is worth
noting that in each iteration step using the NHSS iterative method, both matri-
ces αI +H and αI +S need to be calculated. It is well known that the coefficient
matrix of a linear system αI + S is skew-Hermitian, and generally it is difficult
to obtain its solution. See [16] for more details.

It is well known that different iterative methods are suitable for different
matrix splittings. On this basis, based on the block-diagonal and anti-block-
diagonal splitting (BAS) of linear term coefficient matrix in AVE, the block-
diagonal and anti-block-diagonal splitting (BAS) iterative methods for AVE (1)
are designed. Theoretical analysis shows that BAS method is convergent under
mild conditions.

The remainder of the paper lays out below. In Sect. 2, for solving the AVE
(1), the BAS iteration method is established and its convergence properties are
studied in detail. In Sect. 3, numerical experiments are given to confirm the
effectiveness and feasibility of the proposed method. In Sect. 4, some conclusions
are given to end the paper.

2 The BAS Method

In this section, to solve the AVE (1), the BAS iteration method is introduced.
To this end, we reformulate equivalently AVE (1) as a nonlinear equation with
two-by-two block form. That is to say, let y = |x|, then the AVE is equal to
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{
Ax − y = b,

− |x| + y = 0,

that is,

Az ≡
[

A −I

−D̂ I

] [
x
y

]
=

[
b
0

]
, (4)

where D̂ = D(x) = diag(sign(x)), x ∈ R
n.

A block-diagonal and anti-block-diagonal splitting (BAS) of matrix A can be
constructed as follows

A =
[

A −I

−D̂ I

]
=

[
A 0
0 I

]
+

[ −I

−D̂ 0

]
.

Further, matrix A can be expressed as

A =
[

A −I

−D̂ I

]
=

[
αI + A 0

0 αI + I

]
−

[
αI I

D̂ αI

]
,

where α is a given appropriate constant. This splitting naturally leads to the
BAS iteration method for solving the nonlinear equation (4).

The BAS iteration method: Let b ∈ R
n and A ∈ R

n×n be a nonsingu-
lar. Given an initial pair vector (x(0)y(0)), for k = 0, 1, 2, ..., until the iteration
sequence {x(k), y(k)}+∞

k=0 is convergent, compute
[

αI + A 0
0 αI + I

] [
x(k+1)

y(k+1)

]
=

[
αI I

D̂ αI

] [
x(k)

y(k)

]
+

[
b
0

]
, (5)

or ⎧⎨
⎩

x(k+1) = (αI + A)−1(αx(k) + y(k) + b),

y(k+1) =
1

1 + α
(D̂x(k) + αy(k)),

(6)

where α is a given appropriate constant.

Lemma 1. [18] Let λ be any root of the quadratic equation x2 − bx+d = 0 with
b, d ∈ R. Then |λ| < 1 if and only if |d| < 1 and |b| < 1 + d.

Let (x∗, y∗) be the solution pair of the Eq. (4) and the iteration errors

ex
k = x∗ − x(k), ey

k = y∗ − y(k),

where (x(k), y(k)) is generated by the iteration method (5) or (6). Then we give
the following main result with respect to the BAS iteration method (5) or (6).

Theorem 1. Let b ∈ R
n and A ∈ R

n×n be nonsingular. Denote

β = ‖(αI + A)−1‖,

where ‖ · ‖ denotes the Euclid norm.
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If
β(1 + α) < 1, (7)

then
|||(ex

k+1, e
y
k+1)||| < |||(ex

k, ey
k)|||, k = 0, 1, . . . ,

where
|||(ex

k, ey
k)||| =

√
‖ex

k‖2 + ‖ey
k‖2.

This implies that the BAS iteration method is convergent.

Proof. Based on (5) and (6),
⎧⎨
⎩

ex
k+1 = α(αI + A)−1ex

k + (αI + A)−1ey
k,

ey
k+1 =

1
1 + α

(D̂ex
k + αey

k).
(8)

From (8), we can get

‖ex
k+1‖ = ‖α(αI + A)−1ex

k + (αI + A)−1ey
k‖

≤ α‖(αI + A)−1ex
k‖ + ‖(αI + A)−1ey

k‖
≤ α‖(αI + A)−1‖ · ‖ex

k‖ + ‖(αI + A)−1‖ · ‖ey
k‖

= αβ‖ex
k‖ + β‖ey

k‖.

and

‖ey
k+1‖ = ‖ 1

1 + α
(D̂ex

k + αey
k)‖

≤ ‖ 1
1 + α

D̂ex
k‖ + ‖ α

1 + α
ey
k‖

=
1

1 + α
‖D̂ex

k‖ +
α

1 + α
‖ey

k‖

≤ 1
1 + α

‖D̂‖ · ‖ex
k‖ +

α

1 + α
‖ey

k‖

≤ 1
1 + α

‖ex
K‖ +

α

1 + α
‖ey

k‖.

Further,
(‖ex

k+1‖
‖ey

k+1‖
)

≤
(

αβ β
1

1+α
α

1+α

) (‖ex
k‖

‖ey
k‖

)

≤
(

αβ β
1

1+α
α

1+α

)2 (‖ex
k−1‖

‖ey
k−1‖

)

. . .

≤
(

αβ β
1

1+α
α

1+α

)k (‖ex
0‖

‖ey
0‖

)
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Let

T =
(

αβ β
1

1+α
α

1+α

)

Clearly, if ρ(T ) < 1, then limk→∞ T k = 0. This implies

lim
k→∞

‖ex
k‖ = 0 and lim

k→∞
‖ey

k‖ = 0.

In this way, the iteration sequence {x(k)} produced by the BAS iteration method
(5) or (6) can achieve to the unique solution of the AVE (1).

Next, we just need to get the sufficient conditions for ρ(T ) < 1. Let λ repre-
sent an eigenvalue of the matrix T . Then λ satisfies

(λ − αβ)(λ − α

1 + α
) − β

1 + α
= 0,

which is equal to
λ2 − (αβ +

α

1 + α
)λ − (1 − α)β = 0. (9)

Applying Lemma 1 to Eq. (9), |λ| < 1 if and only if

|(1 − α)β| < 1

and
|αβ +

α

1 + α
| < 1 − (1 − α)β.

Therefore, if the condition (7) holds, then ρ(T ) < 1. This completes the
proof. �

Theorem 2. Let λmin denote the smallest eigenvalue of matrix A, where A ∈
R

n×n is symmetric positive definite. If

α < λmin,

then
|||(ex

k+1, e
y
k+1)||| < |||(ex

k, ey
k)|||, k = 0, 1, . . . ,

where
|||(ex

k, ey
k)||| =

√
‖ex

k‖2 + ‖ey
k‖2.

This implies that the BAS method is convergent.

Proof. By simple calculation, we have

β(1 + α) = (1 + α)‖(αI + A)−1‖
= (1 + α)‖(αI + A)−1‖
=

1 + α

1 + λmin
.

Obviously, when α < λmin, β(1 + α) < 1. This complete the proof. �



Block-Diagonal and Anti-block-Diagonal Splitting Iteration Method 577

Corollary 1. Let A ∈ R
n×n be nonsingular and b ∈ R

n. If

||A−1‖ ≤ 1
1 + 2α

,

then
|||(ex

k+1, e
y
k+1)||| < |||(ex

k, ey
k)|||, k = 0, 1, . . . ,

where
|||(ex

k, ey
k)||| =

√
‖ex

k‖2 + ‖ey
k‖2.

This implies that the BAS iteration method is convergent.

Proof. Based on the Banach perturbation lemma in [23], we obtain

β(1 + α) ≤ (1 + α)‖A−1‖
1 − α‖A−1‖ .

Obviously, when

||A−1‖ ≤ 1
1 + 2α

,

β(1 + α) < 1. This complete the proof. �

3 Numerical Experiments

In this section, to demonstrate the performance of the BAS method for solving
the AVE (1), some numerical experiments are given. To this end, we compare
the BAS method with the GN method [9] and the NHSS method in [14,15].

In our computations, we chose zero vector as all initial vectors and all itera-
tions are stopped once the relative residual error meets

‖Ax(k) − |x(k)| − b‖2
‖b‖2 ≤ 10−6

or if the prescribed iteration number 500 is exceeded. The vector b in (1) is
properly chosen such that the vector x = (x1, x2, ..., xn)T with

xi = (−1)ii, i = 1, 2, . . . , n,

is the exact solution of the AVE (1). The coefficient matrix αI + H of the first
subsystems in the NHSS method is symmetric positive definite and can be solved
by the Cholesky factorization, and the coefficient matrix αI + S of the second
subsystems in the NHSS method can be solved by the LU factorization. All tests
were completed in MATLAB 7.0.

In our numerical experiments, the experimentally found optimal parameters
αexp are employed, which result in the least numbers of the BAS and NHSS
iterations. Therefore, the optimal parameters employed in the BAS and NHSS
iteration methods are used experimentally. As mentioned in [14] the computation
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of the optimal parameter is generally difficult to be gained and often problem-
dependent.

In our numerical experiments, we consider the two-dimensional convection-
diffusion equation

{−(uxx + uyy) + q(ux + uy) + pu = f(x, y), (x, y) ∈ Ω,
u(x, y) = 0, (x, y) ∈ ∂Ω,

(10)

where p ∈ R and q ∈ R is used to measure the magnitude of the diffusive term,
Ω = (0, 1)× (0, 1), and ∂Ω is its boundary, see [15]. On the unit square Ω, using
the five-point finite difference technique for the diffusive terms and the central
difference technique for the convective terms with the mesh-size h = 1/(m + 1),
we obtain the linear equations Cx = d, where C is of the form

C = Tx ⊗ Im + Im ⊗ Ty + pIn,

and its order is n = m2, ⊗ stands for the Kronecker product, Im and In are the
identity matrices of order m and n, respectively,

Tx = tridiag(−1 − Re, 4,−1 + Re), Ty = tridiag(−1 − Re, 0,−1 + Re)

and Re = qh
2 is the mesh Reynolds number. In our numerical experiments, we

define the matrix A in AVE (1) by

A = C + 2(L − LT )

with L being the strictly lower part of C. In Tables 1, 2 and 3, for different values
of n, p and q, the numerical results are listed.

Table 1. Numerical results of (q, p) = (0,−1)

n 400 900 1600 2500 3600

BAS IT 41 53 69 87 107

RES 1.8048e–7 2.7662e–7 3.1273e–7 6.2514e–7 3.0472e–7

αexp 0 0 0 0 0

NHSS IT 51 70 89 111 137

RES 9.2033e–7 8.8056e–7 9.9765e–7 9.9698e–7 8.4863e–7

αexp 7 7 6.9 6.8 7

GN IT − − − − −
RES − − − − −

In Tables 1, 2 and 3, it is easy to find that the number steps of the BAS and
NHSS methods increase with the mesh size n increasing. When the GN method
is used to solve the AVE, we find that it does not converge in 500 iterations
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Table 2. Numerical results of (q, p) = (0,−0.5)

n 400 900 1600 2500 3600

BAS IT 35 45 55 67 83

RES 8.7387e–7 4.5606e–7 4.7165e–7 8.1872e–7 7.8321e–7

αexp 0 0 0 0 0

NHSS IT 38 51 64 78 92

RES 6.0528e–7 7.2623e–7 8.9910e–7 8.1588e–7 8.5619e–7

αexp 5 5.2 4.9 5.4 5.5

GN IT − − − − −
RES − − − − −

Table 3. Numerical results of (q, p) = (1,−1)

n 400 900 1600 2500 3600

BAS IT 39 51 67 85 105

RES 4.9489e–7 5.6453e–7 4.3071e–7 8.6319e–7 4.0652e–7

αexp 0 0 0 0 0

NHSS IT 51 69 88 110 136

RES 6.8367e–7 9.7396e–7 9.6429e–7 8.3406e–7 5.8932e–7

αexp 6.8 6.7 6.8 6.6 7.3

GN IT − − − − −
RES − − − − −

(denoted by ‘−’ in tables). Compared the BAS method with the NHSS method,
the number of iterations of the former are less than that of the latter. This
implies that when the BAS and NHSS iteration methods are employed, the BAS
method overmatches the NHSS method in terms of the number of iterations.
From the numerical results in Tables 1, 2 and 3, the BAS method has better
computing efficiency, compared with the GN and NHSS methods.

4 Conclusions

In this paper, based on the block-diagonal and anti-block-diagonal splitting
(BAS) of the coefficient matrix of the equal two-by-two block nonlinear equation
of the AVE, a block-diagonal and anti-block-diagonal splitting (BAS) iteration
method is introduced. Some convergence conditions are obtained. Numerical
experiments confirm that the BAS method is feasible, robust and efficient for
the AVE.
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