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Abstract. With the emergence of new requirements for the application of network
access network, network traffic presents new characteristics, and network man-
agement faces new challenges. The main contribution of this paper is to propose
a new network traffic model and prediction method based on generalized linear
regression model. Firstly, the network traffic is modeled and generalized linear
regression model is used to model it. Then, using the generalized linear regression
theory, we can calculate the modified parameters and determine the appropriate
model, so that we can accurately predict the network traffic. The simulation results
show that the method is feasible.

Keywords: Network traffic · Generalized linear regression · Traffic modeling ·
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1 Introduction

With the rise of smart grid related research, due to its unique characteristics, power
line communication plays an increasingly important role in the power network. In the
communication from the user terminal to the service switching point, wireless commu-
nication technology occupies a place and occupies a dominant position. As a kind of
connection communication mode [1, 2], wireless communication can save cost, provide
voice, data, video and other comprehensive services, and canmeet the bandwidth, speed,
waiting time and other QoS requirements. However, with the combination of intelligent
devices and the rapid development of new intelligent network applications, the traditional
intelligent network technology has brought great pressure to the traditional intelligent
network. How to solve this problem is an important research direction, and there is no
feasible solution to solve this problem.

In the network ofwireless communicationLTEandbroadband providers, the network
traffic has the update and unknown characteristics compared with the traditional network
structure [5, 6]. How to effectively analyze and evaluate the transmission characteristics
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of the network is a difficult problem to be solved; many algorithms can be used for
network feature modeling and analysis, which is a new method to extract network traffic
characteristics [7, 8]. Principal component analysis (PCA), RBM model and decision
tree based model can predict network traffic in aggregation network [9, 10].

Deep learning model can also be used for network traffic analysis. Specific trans-
mission modes can be classified by monitoring machine learning [11, 12]. At the same
time, time-frequency analysis can be combined with network feature analysis to analyze
the characteristics of traffic flow [15, 16]; the combination of recurrent neural network
(RNN) and convolutional neural network (CNN) can also be used to construct intelligent,
network traffic classifier with high recognition rate [17, 18].

The above methods can be used for network traffic modeling and analysis, but in
the converged network, the network feature types are more complex. Compared with
the traditional methods, the advantage of this method is that the traditional transmission
analysis method is difficult to apply to this situation.

Figure 1 shows the converged communication network architecture based on LTE
mobile and broadband operators. LTE wireless base station can not only transmit IP
signal through IP network, but also use broadband carrier as support carrier of data
transmission, and use licensed frequency band as main carrier [19, 20]. At present, the
free and unauthorized frequency resources are determined by the cognition of related
professions [21, 22]. It is an accurate and effective method to model and predict network
traffic based on AR model and Taylor series. Generally speaking, terminals and base
stations can control wireless resources within the approved frequency band. Because of
the high temporal variability of network traffic, it is difficult to describe it inmathematical
terms, so it is difficult to establish a model to simulate network traffic. In this paper, we
use AR model for static parts and Taylor model for inactive parts. This defines model
parameters based on network data, and then. Thenwe propose a newprediction algorithm
to accurately evaluate network traffic and the simulation results show the effectiveness
and application prospect of this method.

The rest of this paper is structured as follows. In Sect. 2, we build a mathematical
model and describe the method. In Sect. 3, the experimental simulation is carried out,
and the analysis of the results is given. Finally, we summarize our work in Sect. 4.

2 Problem Statement

Network traffic divides into stable and unstable parts. The stable component is the most
important Energy in the transmission. The unstable component changes greatly with the
passage of time, and network traffic details will also change. We use xS(t) to represent
stable components xNS(t), and show the Components prompt in it. To better simulate
flow, two methods are used in [24].

Firstly, x(t) can be divided into stable and unstable parts by STFT, and x(t) ∈ L2(R)

(the STFT with the window function g(t)) is assumed to be the following STFT.

WXg(ω, b) =
∫ ∞

−∞
x(t)g(t − b)e−jωtdt (1)

In the above equation, b is the time domain migration parameter, ω is the frequency
domainmigration parameter, andWXg(ω, b) is the spectral characteristics near the t = b.
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Fig. 1. The integrated network architecture of LTE wireless and broadband carrier communica-
tions.

Then, we can set g(t) that meets this condition.

gω,b(t) = g(t − b)e−jωt (2)

The Eq. (1) then is equal to:

WXg(ω, b) =
∫ ∞

−∞
x(t)gω,b(t)dt = <x(t), gω,b(t)> (3)

When and only if the effective window width of g(t) is Dt , WXg(ω, b) can get the
spectrum information of x(t) in [b − Dt/2, b + Dt/2] time interval.

Owing to the main Energy Sources of the Rivers are concentrated in the stable
Components, the details are reflected in the unstable Components, it is only necessary
to segment the Band signals in the frequency range.

Obviously, low pass filter and high pass filter are selected to filter the transformed
time seriesWXg(ω, b) [27, 28]. For low-pass filter, we can choose exponential low-pass
filter, the formula is as follows.

HL(u, v) = e
−

[√
u2+v2
D0

]2n
(4)

Due to the filtering of low-pass filter, the stable part of the original signal can be
obtained as follows:

WXS(ω, b) = WXg(ω, b) ◦ HL(ω, b) (5)

For high pass filter, since Butterworth high pass filter is selected, its formula will be
as follows:

HH (u, v) = 1
/

(1 + (D0

/√
u2 + v2)2n) (6)

The unstable components ofWXg(ω, b) can be obtained by high pass filter [29, 30].

WXNS(ω, b) = WXg(ω, b) ◦ HH (ω, b) (7)
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What we have to do next is to make different transformations for different dis-
tributions, and get the unstable component and the stable time-domain component as
follows

xS(t) = STFIT [WXS(ω, b)]
=

∫ ∞

−∞

∫ ∞

−∞
WXS(ω, b)g(t − b)ejωtdωdb (8)

xNS(t) = STFIT [WXNS(ω, b)]
=

∫ ∞

−∞

∫ ∞

−∞
WXNS(ω, b)g(t − b)ejωtdωdb (9)

The stable component xS = {xS(t), t = 1, 2, 3, ...} changes slowly and become a
strong short correlation term. The author’s ARmodel is widely used in linear forecasting,
which can extract data from the model. The AR model is better than the interpolation
method [31, 32], which is the representation of historical data Random. The process of
this model may be as follows.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xS(t) = ϕ1xS(t − 1) + · · · + ϕpxS(t − p) + θ(t)
E(θ(t)) = 0

E(θ(s)θ(t)) =
{

σ 2, s = t
0, s �= t

E(θ(s)XL(t)) = 0, s �= t

(10)

where ϕi is the auto-regressive coefficient that affects the other parameters, θ(t) is the
disturbance term at the time t, p is the order of the AR model.

Then, we establish a queue model to describe the disturbance term of the network
traffic, so as to obtain a model which obeys Poisson distribution and probability distribu-
tion [33, 34]. Finally, we express the mathematical description of the stable component
as follows.

θ(t) = αθp(t) + βθe(t) (11)

In the above formula, the parameters θp(t)∼P(λ1) and θe(t)∼e(λ2), λ1 and λ2 are the
relevant parameters of the model distribution respectively. In addition, α and β are traffic
interference coefficients. The probability function of our model can be written as

P
(
θp(t)

) = λk1 exp
(−λ1/θp(t)!

)
(12)

P(X < θe(t)) =
{
1 − exp(−θe(t)

/
λ2), θe(t) > 0

0, θe(t) ≤ 0
(13)

Since we need to estimate the AR model parameters, there are three methods that
can be considered. Moment. According to the characteristics of the model, we choose
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the moment estimation method [35, 36]. In this way, the coefficients of the model can
be described by mathematical formulas, as shown below.

⎡
⎢⎢⎣

ϕ1

ϕ2

· · ·
ϕp

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ρ0 ρ1 · · · ρp−1

ρ1 ρ0 · · · ρp−2
...

...
. . .

...

ρp−1 ρp−2 · · · ρ0

⎤
⎥⎥⎥⎦

−1⎡
⎢⎢⎣

ρ1

ρ2

· · ·
ρp

⎤
⎥⎥⎦ (14)

In the above formula, ρ̂k = γk/γ0 =
N∑

t=k+1
XtXt−k

/ N∑
t=1

X 2
t is the autocorrelation

function of the model. Furthermore, we can get the stable component of network traffic
according to the above conclusions and expressions.

x̂S(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p∑
i=1

ϕixS(t − i), t = 1

s−1∑
t=1

ϕi x̂S(t − i)+
p∑

t=1
ϕixS(t − i), 1 < t ≤ p

p∑
i=1

ϕt x̂S(t − i), t > p

(15)

Naturally, the stable part xS(t) can be predicted by known conditions.
The unstable part includes more detailed information on network traffic and fluc-

tuations. A general function can be approximated to a finite number of dates in the
Taylor series. Theoretical Taylor gives a quantitative estimate of the error produced
using this approach. It is the polynomial that records several initial conditions of Tay-
lor’s sequence. It’s Taylor polynomial. This model extracts two concepts from the Taylor
series of unstable components.

Therefore, we use the classical theory of Taylor series to express the unstable
component.

xNS(t) =
∞∑
n=0

x(n)
NS (t0)

n! (t − t0)
n (16)

In the allowable range of error, the redundant terms of Taylor series of unstable
components are removed.

x̂NS(t) = x′
NS(t0)

n! (t − t0) + x′′
NS(t0)

n! (t − t0)
2 (17)

The final expression of the flow is as follows.

x̂(t) = x̂S(t) + x̂NS(t) (18)

Combined with the abovemathematical derivation, we can design such an algorithm.

Step 1: According to formula (8), (9), the network is classified into two categories:
steady state and unsteady state;
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Step 2: According to formula (10), for Part 1, the method in (10) can be used for
parameter setting;
Step 3: The selected probability method be used for parameter estimation;
Step 4: According to formula (17), the mathematical description of Part 2 is carried out
and the approximate expression is established;
Step 5: Combine part one and part two to get the whole estimation model and calculate
the result;

The final algorithm flow chart is shown in Fig. 2.

Start

Execute STFT

Filter traffic with Low-
pass Filter

Filter traffic with High-
pass Filter

Execute STFIT Execute STFIT

Obtain Low-frequency 
components XS(t)

Obtain High -frequency 
components XNS(t)

Input data

End

Predict with 
autoregressive model

Approximate with 
Taylor series

Obtain  the network 
traffic model X(t)

Fig. 2. The flow chart of the flow traffic model.

3 Simulation Results and Analysis

In this part, we conductedmany tests to demonstrate our algorithmGLMTMA.Weverify
GLMTMA using real data from the U.S. real Abilene backbone. In order to highlight the
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performance of our algorithm, we compare our method with the best method today. All
the experimental data are true and reliable. First of all, we carried out several groups of
experiments on different methods. After the experiment, we analyze the network traffic
prediction results of GLMTMA algorithm, and compare GLMTMAwith other methods,
and give the average relative error of network traffic of four algorithms. Moreover, in
order to better highlight the performance ratio of the algorithm, we discuss the perfor-
mance improvement of GLMTMA on PCA, WABR and HMPA. In our simulation, the
data of the first 500 slots are used to train the models, while the other data are used to
verify the performance of all algorithms.

Figure 3 shows the prediction results of network traffic 53 and 96, in which network
traffic 53 and 96 are randomly selected from 144 end-to-end service pairs (or flows) in
the Abilene backbone network. In our experiments, the results are basically in a stable
range. The experiment only selected the most classic network traffic 53 and 96. Network
traffic is also known as an origin destination (OD) pair. Figure 1(a) shows that GLMTMA
can detect the dynamic changes of network flow 53 very quickly. For different time slots,
the network traffic in the experiment also has a significant change law with time.

Obviously, we can draw the following conclusion from Fig. 3(a). Our algorithm can
well detect the change trend of network traffic. In addition, as shown in Fig. 3(b), the
change trend of network flow 96 is in winter. Although our method has a large prediction
error for network traffic 96 under experimental conditions, it can still capture its changing
trend. We also show a method that can effectively predict the change in network traffic
over time.
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Fig. 3. Prediction results of network traffic flows 53 and 96.

From the above we can see that our method has good performance. In view of the
limitation that traditional methods are difficult to detect the dynamic trend of network
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traffic, we can effectively solve this limitation. In order to further verify our method,
we conducted a number of grouping experiments, each of which had more than 500
repetitions. The average relative prediction error is calculated.

The expression of average relative prediction error is as follow:

d(t) = 1

N

∑N

i=1

||ŷi(t) − yi(t)||2
||yi(t)||2 (19)

In the above formula, i = 1, 2, ...,N andN are the running times of the experimental
algorithm, ||.||2 is the norm of L2, and ŷi(t) is the traffic prediction value of i running in
time slot t.

Figure 4 shows the average relative prediction error of four algorithms for network
level traffic 53 and 96. It can be seen from the figure that the relative errors of three
methods (WABR, HMPA and GLMTMA) are relatively small for the two classic traffic
53 and 96, while the prediction error of PCA is relatively large. In addition, we can also
see that the relative error of GLMTMA is the smallest. Based on this, we can conclude
that GLMTMA has better network traffic prediction ability than the other three methods.
More importantly, considering the comparison of repeated experiments, we can see the
stability of the algorithm from the fluctuation of the average value of the experiment.
Compared with the other three algorithms, GLMTMA has better stability, especially in
detecting the dynamic trend of network traffic, which makes it more suitable for net-
work traffic prediction and network analysis modeling. Based on the above conclusion,
GLMTMA can predict network traffic more effectively than previous methods.

Finally, the performance of the algorithm is also an important part. Through many
experiments, we have obtained the performance improvement rate of network traffic

500 650 800 950 1100 1250 1400 1550 1700 1850 2000
0

1

2

3

4

5

time slots (5-minute interval)

(a
) 

re
la

tiv
e

 e
rr

o
rs

 o
f 

O
D

 5
3

PCA
WABR
HMPA
GLMTMA

500 650 800 950 1100 1250 1400 1550 1700 1850 2000
0

1

2

3

4

5

time slots (5-minute interval)

(b
) 

re
la

tiv
e

 e
rr

o
rs

 o
f 

O
D

 9
6

PCA
WABR
HMPA
GLMTMA

Fig. 4. Average relative errors for network traffic flows 53 and 96.
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53 and 96, as shown in Fig. 5. For network traffic 53, GLMTMA is 23.1%, 20.3% and
1.33% higher than PCA,WABR andHMPA, respectively. In addition to the first time, for
another network traffic, our method improves by 13.6%, 26.2% and 4.77% respectively
compared with PCA, WABR and HMPA. The performance improvement of our method
for other methods is at least 1.33%, and the maximum performance improvement is
23.1%. Moreover, this is the performance improvement under the condition of ensuring
the prediction effect. This shows that our method has a comprehensive improvement
over other methods in terms of performance. This is of great significance for the imple-
mentation of the algorithm. Because the efficiency and performance of the algorithm
are closely related, the less the performance consumption and the faster the speed, the
better the overall energy efficiency ratio. Based on this, we can see that our method
has relative advantages in specific implementation, and can be better used as a tool for
network traffic prediction.
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Fig. 5. Improvement ratio of network traffic flows 53 and 96.

4 Conclusions

Anetwork trafficmodeling and predictionmethod proposed in this paper, which is based
on generalized linear regression theory. Different from the traditional methods, the gen-
eralized linear regression model with good robustness is selected to forecast the network
flow. Firstly, we model the model in the way of probability, and express the parameters
of the model with probability formula. Secondly, according to the regression character-
istics of the model, the parameters of the model are iterated by the algorithm. Finally,
through repeated iterations and calculations, we get the appropriate model parameters,
so as to get a model that can effectively describe the network traffic. The simulation
results show that the method is effective.
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