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Abstract. In this paper, we use the rational Lanczos method to approx-
imate Toeplitz matrix functions, in which the matrices are symmetric
positive semidefinite (SPSD). In order to reduce the computational cost,
we use the inverse of the Toeplitz matrix and the fast Fourier transform
(FFT). Then, we apply this method to solve a heat equation. Numeri-
cal examples are given to show the effectiveness of the rational Lanczos
method.
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1 Introduction

Recently, many authors have been interested in exponential integrators which
are widely used in various fields [15,16,27,32]. In the exponential integrators,
one needs to compute some products of ϕi matrix functions and vectors:

yi(t) = ϕi(−tAm)v, i = 0, 1, 2, . . . , s1, (1)

where Am is an m × m matrix, s1, t are given parameters, and v is a vector.
And ϕi-functions are of the following form

ϕ0(x) = exp(x), ϕi(x) =
∫ 1

0

exp
(
(1 − ξ)x

)
ξi−1

(i − 1)!
dξ, i ∈ Z

+. (2)

Furthermore, the ϕi-functions satisfy the following relations

ϕi(x) = xϕi+1(x) +
1
i
, i ∈ Z

+. (3)
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Toeplitz matrices have various applications [5,6]. Based on the importance of
Toeplitz matrices, we want to approximate the products of the ϕi matrix func-
tions and vectors (TMF), in which the matrices are the SPSD Toeplitz matrix.
That is, in (1), the matrix Am is the SPSD Toeplitz matrix. TMF can be applied
to practical calculation problems; see [12,36] for example. Recently, some new
techniques are proposed to improve network routing and performance measure-
ment [17,39]. Based on effective user behavior and traffic analysis approaches
[19,20], we can design more effective scheduling strategies to raise resources uti-
lization [22,26] and energy-efficiency [23,24]. To test new scheduling strategies,
traffic must be reconstructed in test bed [18,21,25,34,38]. Fluid model is effec-
tive model to reconstruct the bursty data traffic. In this situation, TMF can also
be used to build the fluid model.

Classical methods for solving ϕi matrix functions require very high complex-
ity [2]. Recently, Krylov subspace method has been widely studied in large-scale
sparse matrix due to its high efficiency [1,3,4,7–9,29,30,40]. In this method, we
only need to compute the smaller matrix functions instead of computing the
large matrix functions. Moreover, rational technique could be exploited to speed
up Krylov subspace method [10,11].

It is known that we can calculate Toeplitz matrix-vector products by the fast
Fourier transform [5,6], and one can calculate the explicit inverse of the Toeplitz
matrix by the Gohberg-Semencul formula (GS) [13,14]. These important prop-
erties can be used to accelerate the rate of convergence of the computation of
TMF. In this work, we use the rational Lanczos method to compute the TMF
and reduce the computational cost by using the GS.

2 Toeplitz Matrix

An m×m Toeplitz matrix Tm satisfies (Tm)i,j = ti−j for 1 ≤ i, j ≤ m. A circulant
matrix Cm((Cm)i,j = ci−j) satisfies ci = ci−m, 1 ≤ i ≤ m − 1. According to [5],
we know that the complexity is O(m log m), if one computes the products Cmu
and C−1

m u for a given vector u by the FFT.
A skew-circulant matrix Sm((Sm)i,j = si−j) satisfies si = −si−m for 1 ≤

i ≤ m − 1. Similarly, the computational complexity of the products of Smu and
S−1

m u is also O(m log m) by the FFT.
In addition, by constructing a proper circulant matrix, we can compute Tmu

in O(2m log(2m)) complexity by the FFT; see [5,6].
The GS for the inverse of a Toeplitz matrix Tm which is SPD is as follows [13]

T−1
m =

1
a1

(AmAᵀ
m − ÂmÂᵀ

m), (4)

where the matrices Am and Âm are of the following forms

Am =

⎡
⎢⎢⎢⎢⎣

a1 0 · · · 0

a2 a1
. . .

...
...

. . . . . . 0
am . . . a2 a1

⎤
⎥⎥⎥⎥⎦



166 L. Chen et al.

and

Âm =

⎡
⎢⎢⎢⎢⎣

0 0 · · · 0

am 0
. . .

...
...

. . . . . . 0
a2 . . . am 0

⎤
⎥⎥⎥⎥⎦ .

Denote a = [a1, a2, . . . , am]ᵀ, then we can get a by solving the following linear
system

Tma = e1 = [1, 0, . . . , 0]ᵀ. (5)

According to [31,33], by using (4), one can obtain

T−1
m u = Re(p) + ĴIm(p) (6)

and
p =

1
2a1

[
(Am + Âᵀ

m)(Aᵀ
m − Âm)

]
(u + iĴu), (7)

where i is the imaginary unit and Ĵ is the anti-identity matrix, and Re(p) is
the real part of p and Im(p) is the imaginary part of p. Thus, we can compute
T−1

m u in O(m log m) operations. To construct T−1
m by the GS, we need to solve

the Toeplitz linear system (5). We use the PCG with Strang’s preconditioner to
solve (5) in this paper.

3 Rational Lanczos Method

In this section, we first introduce the Lanczos method for solving yi(t) =
ϕi(−tTm)v. By using the Lanczos algorithm for a symmetric matrix Tm, we
can get a basis of a Krylov subspace

Kn(Tm, v) = span{v, Tmv, T 2
mv, . . . , Tn−1

m v}.

Please see [35] for the details of this algorithm.
The following formulation can be obtained by the Lanczos algorithm [35]

TmUn = UnHn + hn+1,nvn+1eᵀ
n, (8)

where Un = [u1,u2, . . . ,un] is an m × n matrix. Hn is an n × n symmetric tri-
diagonal matrix, and en is the n-th column of the identity matrix. Therefore, we
can give the following approximation

ϕi(−tTm)v ≈ β̂Unϕi(−tHn)e1, β̂ = ‖v‖2.

Therefore, the computation of large matrix functions ϕi(−tTm) are replaced by
the computation of the small matrix functions ϕi(−tHn). In addition, ϕi(−tHn)
can be effectively calculated by the function “phipade” in the software package
EXPINT [2].
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According to [35], we note that, for approximating ϕi(−tTm)v, the rate of
convergence of the Lanczos algorithm is very slow when the 2-norm of tTm gets
larger. In order to overcome this drawback, the rational Krylov subspace method
is proposed [10,11,30,40].

Let Im be the identity matrix and σ̂ is a parameter. We give the rational
Lanczos algorithm as follows:

Algorithm 1: Rational Lanczos algorithm
1. Calculate u1 = v

‖v‖2

2. For i = 1, 2, . . . , n
3. hi,i = uᵀ

i (Im + σ̂Tm)−1ui

4. ûi+1 = (Im + σ̂Tm)−1ui − hi,iui − hi−1,iui−1

5. hi+1,i = ‖ûi+1‖2
6. hi,i+1 = hi+1,i

7. ui+1 = ûi+1
hi+1,i

8. End

Similar to (8), we have the following formulation

(Im + σ̂Tm)−1Un = UnHn + hn+1,nun+1eᵀ
n, Uᵀ

nUn = In. (9)

Therefore, we can approximate ϕi(−tTm)v by

ϕi(−tTm)v ≈ β̂Unϕi(−tBn)e1, β̂ = ‖v‖2, (10)

where

Bn =
1
σ̂

(H−1
n − In) + h2

n+1,n

(
1
σ̂

+ uᵀ
n+1Tmun+1

)
H−1

n eneᵀ
nH−1

n = Uᵀ
nTmUn.

In [11], the following error bound for approximating (10) is given.

Theorem 1. Let Am = P ᵀ
mTmPm, where Pm is the projection operator of Tm

on the subspace Kn((Im + σTm)−1, v), then the approximation of ϕi(−tTm)v on
the subspace Kn((Im + σ̂Tm)−1, v) has the following error bound

‖ϕi(−tTm)v − ϕi(−tAm)v‖ ≤ D
mi/2

‖v‖, (11)

where D is a constant which depends on σ̂ and i.

For the rational Lanczos algorithm, Pm = UnUᵀ
n , and

ϕi(−tAm)v = ϕi(−tPmTmPm)v

= Unϕi(−tUᵀ
nTmUn)Uᵀ

nv

= β̂Unϕi(−tBn)e1.

The error bound of Theorem1 shows: Firstly, the error bound of the rational
Lanczos method (11) does not depend on the 2-norm of the matrix tTn. Secondly,
if the i increases, the rate of convergence of the approximation ϕi(−tTm)v will
increase.



168 L. Chen et al.

3.1 Implementation for the TMF Algorithm

In this section, we give the implementation of the algorithm for approximating
the TMF. We note that if a Toeplitz matrix Tm is a SPSD, then Im + σ̂Tm

(σ̂ > 0) is a SPD Toeplitz matrix. Therefore, the GS can be used to solve the
inverse of the Toeplitz matrix Im + σ̂Tm. For the computation of the TMF, the
rational Lanczos algorithm using the GS is as follows:

Algorithm 2: Rational Lanczos algorithm for the TMF
1. Solve (Im + σ̂Tm)a = e1
2. Run Algorithm 1, where (Im + σ̂Tm)−1uj is computed by (6) and (7)
3. Calculate ỹi(t) = β̂Unϕi(−tBn)e1

In step 1 of Algorithm 2, the cost of solving (Im + σ̂Tm)a = e1 is O(m log m)
[5,6]. Then, the matrix-vector products (Im + σ̂Tm)−1uj in step 2 of Algorithm 2
can be computed by using (6) and (7), and the cost of computation is O(m log m).
In step 3 of Algorithm 2, we need to approximate ϕi(−tBn)e1. From [37], we
know that n � m in general. Therefore, ϕi(−tBn)e1 can be fast approximated
by the function “phipade” in the software package EXPINT [2], the computation
amount is O(n3). As a consequence, the computation amount of Algorithm 2 is
O(nm log m).

4 Numerical Examples

In this section, we show the effectiveness of the rational Lanczos algorithm to
approximate ϕi(−tTm)v by two numerical examples. In Example 1, we use MAT-
LAB command “phipade” to calculate the exact solution ŷ(t). In the tables of
numerical examples, “m” is the size of the matrix Tm, and “Itol” is the accuracy
of the error ‖ŷ(t) − ŷn(t)‖2

‖ŷ(t)‖2 < Itol,

where ŷn(t) is the approximation of ŷ(t). “IStand” and “IRL” denote the Lanczos
method and rational Lanczos method, respectively. The parameter σ̂ in Algo-
rithm 2 is σ̂ = t

10 [28].

Example 1. In the first example, we study the SPD Toeplitz matrix. The ele-
ments of the SPD Toeplitz matrix are as follows [6].

ti =
1
2π

∫ π

−π

x4 exp(−iix)dx, i = 0,±1,±2, . . . ,±(m − 1).

The elements of the vector v are all 1. We approximate ϕi(−tTm)v (i = 1, 2, 3).
In this example, the order of the matrix Tm is 210 and the value of t changes.

It can be seen from Tables 1, 2 and 3 that the numbers of iterations of the
IRL are much less than these of the IStand, especially when the 2-norm of tTm

gets larger. In addition, for the IRL, the numbers of iterations do not change.
This indicates that the rate of convergence of the IRL does not depend on the
2-norm of tTm compared with the IStand.
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Table 1. Numerical results for Example 1 (i = 1)

Itol = 10−4 Itol = 10−7

m = 210 t IStand IRL IStand IRL

1 17 6 30 10

10 56 6 91 11

102 177 6 286 13

103 562 6 880 13

Table 2. Numerical results for Example 1 (i = 2)

Itol = 10−4 Itol = 10−7

m = 210 t IStand IRL IStand IRL

1 15 5 27 9

10 48 5 83 10

102 155 5 261 10

103 493 6 807 12

To compare the computational time of the IStand and the IRL, we give the
results of the numbers of iterations and computational time in seconds of the
IStand and the IRL in Table 4, where Itol = 10−9 and m = 210. It can be seen
from Table 4: Firstly, the computational times and the numbers of iterations of
the IRL are much less than these of the IStand. Furthermore, if the size of the
matrix Tm gets larger, the superiority of the IRL will become more obvious.
Secondly, if t is fixed, as i increases, the iteration numbers of the IRL decreases,
which also validates the result of (11) in Theorem 1.

Example 2. In the second example, we study a heat equation [12]. Please refer
to [12] for the detailed equation. Numerically solving the heat equation leads to
a matrix function problem

v̂(t) = (−tTm)ϕ1(−tTm)v0 + v0,

Table 3. Numerical results for Example 1 (i = 3)

Itol = 10−4 Itol = 10−7

m = 210 t IStand IRL IStand IRL

1 13 4 25 9

10 43 5 77 9

102 139 5 242 10

103 444 5 752 10
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Table 4. Numerical results of the IRL and the IStand for Example 1

i = 1 i = 2 i = 3

t IStand IRL IStand IRL IStand IRL

1 36(0.0107) 14(0.0030) 33(0.0113) 13(0.0042) 31(0.0073) 12(0.0014)

10 110(0.0261) 17(0.0041) 102(0.0246) 14(0.0012) 95(0.1597) 13(0.0056)

102 343(0.0524) 17(0.0043) 319(2.6682) 14(0.0019) 300(1.5130) 14(0.0063)

103 1050(59.1512) 17(0.0050) 980(77.9534) 16(0.1218) 915(85.0608) 14(0.0071)

where
v̂(t) = [v̂1(t), v̂2(t), . . . , v̂m(t)]ᵀ

is an approximation solution, Tm is a SPD Toeplitz matrix, and v0 is an initial
vector. We solve v̂(t) by the IStand and the IRL, respectively. Table 5 lists the
numbers of iterations and computational times of the IStand and the IRL for
different m and t.

Table 5. Numerical results for Example 2

t = 60 t = 300

m Ier IRL IStand Ier IRL IStand

27 7.88 × 10−5 12(0.0020) 60(0.0192) 6.71 × 10−5 12(0.0011) 64(0.0231)

28 1.97 × 10−5 14(0.0022) 142(0.0753) 1.68 × 10−5 12(0.0011) 128(0.1570)

29 4.92 × 10−6 14(0.0076) 270(0.9505) 4.19 × 10−6 12(0.0069) 256(1.0489)

210 1.23 × 10−6 14(0.0080) 510(8.0049) 1.05 × 10−6 12(0.0241) 512(9.4987)

211 3.08 × 10−7 14(0.0110) 1020(56.4147) 2.62 × 10−7 12(0.0739) 1024(65.0765)

212 7.70 × 10−8 14(0.0231) 2039(384.2013) 6.55 × 10−8 12(0.2682) 2048(450.0337)

213 1.92 × 10−8 14(0.0501) > 3600 1.66 × 10−8 12(0.3201) > 3600

According to Table 5, it is seen that the IRL needs fewer numbers of iterations
and calculation times to reach the final accuracies than these of the IStand. In
addition, for the large matrix size, the IStand becomes unacceptable due to a
lot of iteration numbers, while the IRL still works well.

5 Conclusion and Future Work

In this work, we use the rational Lanczos algorithm to approximate the TMF,
and this method is applied to the numerical calculation. Using the GS, we can
avoid the use of internal iterations to implement the rational Lanczos algorithm.
In addition, due to the Toeplitz matrix, the amount of computation can be
reduced. Numerical results show the advantage of the new method.
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