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Abstract. The iterative Gauss-Seidel method is an effective and prac-
tical method for solving the absolute value equations. However, the solu-
tion efficiency of this method usually decreases, and even the equation
cannot be solved even when the problem reaches a certain large scale. To
improve the efficiency of the Gauss-Seidel method for solving absolute
value equations, a modified Gauss-Seidel (MGS) iteration method is pre-
sented in this paper. In the our method, we create a diagonal matrix Ω
with nonnegative diagonal elements in the Gauss-Seidel matrix splitting.
Under the given constraints the convergence theory of the MGS method
have been studied. The numerical results show that the method is effec-
tive. It can be noted that with the increase in the scale of the problem,
the setting effect of the matrix Ω is more obvious.

Keywords: Absolute value equation · Gauss-Seidel splitting · MGS
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1 Introduction

Let matrix A = (aij) ∈ R
n×n, b ∈ R

n, we consider the absolute value equation
with the following form

Ax − |x| = b, (1.1)

where |x| denotes the absolute value of the vector x.
Absolute value equalization is a special, non-differentiatable optimization

problem proposed by O.L. Mangasarian in 2006 [1]. Absolute value equaliza-
tion is widely distributed in the optimization field There are many optimization
problems that can be transformed into Eqs. (1.1), such as linear programming
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problems, convex quadratic optimization problems and general linear comple-
mentarity problems [2–6]. Formally, the Eq. (1.1) is relatively simple, but in fact
the equation is NP-hard in general [1].

Since the absolute equation has been proposed, there are many different
methods to solve the Eq. (1.1) from different perspectives have been proposed.
In recent years we have found that there are many iterative methods to solve
the Eq. (1.1). In [7], D.K. Salkuyeh proposed the iterative method picard-HSS,
which is used, to the formula Ax−|x| = b, where A ∈ C

n×n and b ∈ C
n. In [8], by

the Gauss-Seidel matrix splitting, Edalatpour et al. established the generalized
Gauss-Seidel (GGS) iteration method for solving the Eq. (1.1). The Eq. (1.1)
is used on the SOR-like iterative method in two non-linear equations with two
blocks in both [9] and [10] block converted, Ke et al. and Guo et al. presented
the SOR-like iteration methods to solve the Eq. (1.1) respectively.

It is worth mentioning that Edalatpour et al. establishes an iterative Gauss-
Seidel method based on the Gauss-Seidel splitting, and analyses its convergence
from a specific angle in [8]. However, we find that the GGS method cannot
solve the equation when the problem size n becomes larger. Therefore this paper
improves the GGS method to improve the efficiency of theGauss-Seidel method
in solving the Eq. (1.1). Inspired by the work of Edalatpour et al. in [8], by
introducing a diagonal matrix Ω whose diagonal elements are all nonnegative in
the splitting of the matrix A, we propose a modified iterative modified Gauss-
Seide (MGS) to solve the Eq. (1.1). Some convergence theories of the method
are maintained and given limitations proven. In the last phase we give some
examples to illustrate the effectiveness of the iterative MGS method.

In this article the rest of the organization is as follows. In the Second section,
we list some necessary results in the form of symbols, definitions and frames. The
third section, the MGS method for solving the Eq. (1.1) is determined and its
convergence under given conditions has been proven. In fourth section numerical
examples are given to illustrate the effectiveness of the MGS method and the
results of the comparison between the MGS method and the GGS method are
given.

2 Preliminaries

For the sake of the subsequent convergence discussions, we list some summary
results in this section.

For the given matrices A = (aij) ∈ R
m×n and B = (bij) ∈ R

m×n, then
A ≥ B(A > B) if A − B ≥ 0(A − B > 0). The absolute value of the matrix A is
denoted by |A| = (|aij |). The infinity norm of the matrix A is defined as

‖A‖∞ = max
1≤i≤m

n∑

j=1

|aij |.

Moreover, the definitions of the absolute value and infinity norm of the matrices
can be applied to the vectors.
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Suppose A = (aij) ∈ R
n×n, then the comparison matrix of A is defined as

〈A〉 = (〈aij〉), where

〈aij〉 =

{
|aij |, for i = j,

−|aij |, for i �= j,
i, j = 1, 2, · · · , n.

The above results can be seen in [11].
Next, we will list some special matrices for the sequel discussions. Assume

that the matrix A = (aij) ∈ R
n×n, then A is said to be [12]

(1) a Z-matrix if aij ≤ 0 holds for all i �= j.
(2) an M -matrix if A−1 ≥ 0 and A is a Z-matrix.
(3) an H-matrix if 〈A〉 is an M -matrix;
(4) an H+-matrix if A is an H-matrix and aij > 0 holds for all i = j.

Lemma 1. [13] If A = (aij) ∈ R
n×n and B = (bij) ∈ R

n×n be two matrices
which satisfy B ≥ A and bij ≤ 0 for any i �= j. Then the matrix B is an
M -matrix if A is an M -matrix.

Lemma 2. [14] If A be an H-matrix. Then 〈A〉−1 ≥ |A−1|.
Lemma 3. [11] If A be a n×n matrix and A = M −N be a regular splitting of
the matrix A. Then A is nonsingular with A−1 ≥ 0 if and only if ρ(M−1N) < 1
.

Lemma 4. [11] If A be a n × n nonnegative matrix. Then I − A is nonsingular
with (I − A)−1 ≥ 0 if and only if ρ(A) < 1.

Lemma 5. [11] Let x, y be two vectors ∈ R
n. Then ‖x − y‖∞ ≥ ‖|x| − |y|‖∞.

3 The MGS Method

For the Eq. (1.1), we make the following matrix splitting

A = D − L − U = (Ω + D − L) − (Ω + U),

where D, L and U , respectively, are the diagonal, the strictly lower-triangular
and the strictly upper-triangular matrices of A, and Ω is a n × n nonnegative
diagonal matrix.

Based on the above splitting, we can convert the Eq. (1.1) to the fixed-point
equation with the form

(Ω + D − L)x − |x| = (Ω + U)x + b. (3.1)

Then, we present a modified Gauss-Seidel (MGS) iteration method to solve the
Eq. (1.1) which has the iterative scheme as follows
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(Ω + D − L)x(k+1) − |x(k+1)| = (Ω + U)x(k) + b, k = 0, 1, 2, . . . , (3.2)

where the initial vector x(0) is given in advance by the experimenter.
By adjusting the matrix Ω, we expect to be able to improve the solving

efficiency of the Gauss-Seidel method for the Eq. (1.1). It is easy to see that the
MGS method just reduces to the GGS method when Ω = 0.

In the following, we will discuss the convergence properties for the MGS
method.

Theorem 1. Assume that the Eq. (1.1) is solvable. Suppose the diagonal entries
of the matrix A are all greater than 1, the matrix Ω is a n × n nonnegative
diagonal matrix, the matrix I is the n × n identity matrix and the matrix Ω +
D − L − I be strictly row diagonally dominant. If

‖(Ω + D − L)−1(Ω + U)‖∞ < 1 − ‖(Ω + D − L)−1‖∞, (3.3)

then the iteration sequence {x(k)}∞
k=0 generated by (3.2) converges to the unique

solution x∗ of the Eq. (1.1) for any initial vector x(0) ∈ R
n .

Proof. By the conditions of the theorem, we can obtain that the diagonal entries
of the matrix D are all greater than 1.

Firstly, we will prove that ‖(Ω + D − L)−1‖∞ < 1.
For L = 0, because Ω is a nonnegative diagonal matrix and the diagonal

entries of D are all greater than 1, it can be shown that

‖(Ω + D − L)−1‖∞ = ‖(Ω + D)−1‖∞ < 1.

We assume that L �= 0 in the following. By the assumption of the theory, one
can get

0 ≤ |L|e < (Ω + D − I)e,

or equivalently,
(Ω + D)−1e < (I − |F |)e, (3.4)

where e = (1, 1, · · · , 1)T and F = (Ω + D)−1L. In addition, we have

0 ≤ |(I − F )−1| = |I + F + F 2 + · · · + Fn−1|
≤ (I + |F | + |F |2 + · · · + |F |n−1) = (I − |F |−1).

(3.5)

Hence, from (3.4) and (3.5), we obtain

|(Ω + D − L)−1|e = |(I − F )−1(Ω + D)−1|e
≤ |(I − F )−1||(Ω + D)−1|e
< |(I − |F |)−1||I − |F ||e = e.

Therefore,
‖(Ω + D − L)−1‖∞ < 1. (3.6)
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Next, we are going to show that the Eq. (1.1) has an unique solution. Assume
that x∗ and y∗ are two different solutions of the Eq. (1.1). From the Eq. (3.1),
we have

x∗ = (Ω + D − L)−1|x∗| + (Ω + D − L)−1[(Ω + U)x∗ + b], (3.7)

y∗ = (Ω + D − L)−1|y∗| + (Ω + D − L)−1[(Ω + U)y∗ + b],

then

x∗ − y∗ = (Ω + D − L)−1(|x∗| − |y∗|) + (Ω + D − L)−1(Ω + U)(x∗ − y∗).

By taking infinity norm on both sides of the latter equation, it holds from
Lemma 5 and the Eq. (3.3) that

‖x∗ − y∗‖∞ ≤‖(Ω + D − L)−1‖∞‖|x∗| − |y∗|‖∞
+ ‖(Ω + D − L)−1(Ω + U)‖∞‖x∗ − y∗‖∞

<‖(Ω + D − L)−1‖∞‖x∗ − y∗‖∞
+ (1 − ‖(Ω + D − L)−1‖∞)‖x∗ − y∗‖∞

=‖x∗ − y∗‖∞,

which is a contradiction. Thus, x∗ = y∗.
Finally, we will prove that the iteration sequence {x(k)}∞

k=0 generated by
(3.2) converges to the unique solution x∗ of the Eq. (1.1). From (3.2), we get

x(k+1) =(Ω + D − L)−1|x(k+1)| + (Ω + D − L)−1[(Ω + U)x(k) + b]. (3.8)

From (3.7) and (3.8), it holds that

x(k+1) − x∗ =(Ω + D − L)−1(|x(k+1)| − |x∗|) + (Ω + D − L)−1(Ω + U)(x(k) − x∗).

Taking infinity norm on both sides of the latter equation. By similarly calcula-
tions, we get the following results

‖x(k+1) − x∗‖∞ =‖(Ω + D − L)−1(|x(k+1)| − |x∗|)
+ (Ω + D − L)−1(Ω + U)(x(k) − x∗)‖∞

≤‖(Ω + D − L)−1(|x(k+1)| − |x∗|)‖∞

+ ‖(Ω + D − L)−1(Ω + U)(x(k) − x∗)‖∞

≤‖(Ω + D − L)−1‖∞‖|x(k+1)| − |x∗|‖∞

+ ‖(Ω + D − L)−1(Ω + U)‖∞‖x(k) − x∗‖∞,

which equivalent to

‖x(k+1) − x∗‖∞ − ‖(Ω + D − L)−1‖∞‖|x(k+1)| − |x∗|‖∞

≤ ‖(Ω + D − L)−1(Ω + U)‖∞‖x(k) − x∗‖∞.
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By Lemma 5, we obtain the following formula

‖x(k+1) − x∗‖∞ − ‖(Ω + D − L)−1‖∞‖x(k+1) − x∗‖∞

≤ ‖(Ω + D − L)−1(Ω + U)‖∞‖x(k) − x∗‖∞.

By a simple calculation, one can see that the above formula is equivalent to

(1 − ‖(Ω + D − L)−1‖∞)‖x(k+1) − x∗‖∞ ≤ ‖(Ω + D − L)−1(Ω + U)‖∞‖x(k) − x∗‖∞.

Since ‖(Ω + D − L)−1‖∞ < 1, then

‖x(k+1) − x∗‖∞ ≤ ‖(Ω + D − L)−1(Ω + U)‖∞
1 − ‖(Ω + D − L)−1‖∞

‖x(k) − x∗‖∞.

By the above inequality, we can find that the sequence {x(k)}∞
k=0 converges to

the unique solution x∗ when the condition (3.3) is fulfilled.
The convergence theory of the MGS method to solve the Eq. (1.1) is proved.

By the Theorem 1, one can obtain the following corollary easily.

Corollary 1. Assume that the Eq. (1.1) is solvable. Suppose the matrix A − I
is a strictly row diagonally dominant matrix with positive diagonal entries and
the matrix Ω is a nonnegative diagonal matrix. If

‖(Ω + D − L)−1(Ω + U)‖∞ < 1 − ‖(Ω + D − L)−1‖∞, (3.9)

then the iteration sequence {x(k)}∞
k=0 generated by (3.2) converges to the unique

solution x∗ of the Eq. (1.1) for any initial vector x(0) ∈ R
n.

Following, we will demonstrate the convergence property of the MGS method
when the matrix A is an H-matrix.

Theorem 2. Assume that the Eq. (1.1) is solvable. Suppose the matrix A − I
is an H+-matrix and the matrix Ω is a nonnegative diagonal matrix. Then the
iteration sequence {x(k)}∞

k=0 obtained from (3.2) converges to the unique solution
x∗ for any initial vector x(0).

Proof. From the mentioned splitting in this section

A = (Ω + D − L) − (Ω + U),

by the definition of the comparison matrix, we can get

〈A〉 = 〈Ω + D − L〉 − |Ω + U |.

Then, we obtain

〈A − I〉 ≤ 〈A〉 ≤ 〈Ω + D − L〉 ≤ diag(Ω + D − L) = Ω + D.
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Therefore, by Lemma 1, it can be easy to know that Ω + D − L is an H-matrix.
With that, we get the following formula by Lemma 2

|(Ω + D − L)−1| ≤ 〈Ω + D − L〉−1. (3.10)

Since x∗ is the solution of the Eq. (1.1), from (3.2) and (3.7) we obtain

x(k+1) − x∗ =(Ω + D − L)−1(|x(k+1)| − |x∗|) + (Ω + D − L)−1(Ω + U)(x(k) − x∗).

By the inequality (3.10), by taking absolute values on both sides of the latter
equation, we get

|x(k+1) − x∗| ≤|(Ω + D − L)−1||x(k+1) − x∗| + |(Ω + D − L)−1||Ω + U ||x(k) − x∗|
≤〈Ω + D − L〉−1|x(k+1) − x∗| + 〈Ω + D − L〉−1|Ω + U ||x(k) − x∗|.

(3.11)

Let G = 〈Ω+D−L〉−1. Because of the matrix Ω+D−L is an H-matrix, we can
know that the matrix 〈Ω + D − L〉 is an M -matrix with 〈Ω + D − L〉−1 ≥ 0. In
addition, it is obviously shown that ρ(G) < 1 because A−I is an H+-matrix. By
Lemma 4, one can derive that I −G is nonsingular and (I −G)−1 ≥ 0. Therefore,
it follows from the Eq. (3.11) that

|x(k+1) − x∗| ≤(I − 〈Ω + D − L〉−1)−1〈Ω + D − L〉−1|Ω + U ||x(k) − x∗|
≤(〈Ω + D − L〉 − I)−1|Ω + U ||x(k) − x∗|.

Let M̃ = 〈Ω+D−L〉−I and Ñ = |Ω+U |. Assume that Ã = M̃−Ñ , it just be
a matrix splitting of Ã, then G̃ = M̃−1Ñ is the iteration matrix corresponding
to the splitting. As we all know that the sequence {x(k)}∞

k=0 converges to x∗

if ρ(G̃) < 1. Since the matrix A − I is an H+-matrix, the diagonal entries of
A are all greater than one. It is obviously that Ã = 〈A〉 − I = 〈A − I〉 and
M̃ = 〈Ω +D −L− I〉. Hence, by Lemma 1, we know that Ã is an M -matrix and
then M̃ is also an M -matrix because of M̃ > Ã. Moreover, the matrix splitting
Ã = M̃ − Ñ is a regular splitting because of Ñ ≥ 0. Then, by Lemma 3, it holds
true that

ρ(G̃) = ρ(M̃−1Ñ) < 1.

The conclusion is obtained.

4 Numerical Examples

In this section, three examples are used to verify the efficiency of the MGS
method to solve the Eq. (1.1). We compare the MGS method with the GGS
method in the iteration steps (IT), CPU time in seconds (CPU).

In the examples, the right-hand-side vector b is uniquely determined by sub-
stituting the vector x∗ = (x1, x2, ..., xn)T (xi = (−1)i, i = 1, 2, ..., n) into the Eq.
(1.1). Let Ω = αI with α ≥ 0, the values of α is obtained by the experiments.
For the sake of clarity, we denote the experimental optimum parameter as αexp
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in the following examples. All of the runs terminated if the current iteration
satisfies IT ≥ 500 or ERR < 10−9, where

ERR =
‖Ax(k) − |x(k)| − b‖2

‖b‖2 .

Example 1. [15] Let m ∈ N
+ and n = m2, we consider the Eq. (1.1) in which

A = M + μI ∈ R
n×n, where

M = tridiag(−I, S,−I) ∈ R
n×n,

with
S = tridiag(−1, 4,−1)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

4 −1 0 · · · 0 0
−1 4 −1 · · · 0 0
0 −1 4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 4 −1
0 0 0 · · · −1 4

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
m×m,

and I being the m order identity matrix. b = Ax∗ − |x∗| ∈ R
n, here x∗ =

(−1, 1, ..., (−1)n)T .

Table 1. Numerical results for Example 1

M Method μ = 0 μ = −0.5

αexp IT CPU αexp IT CPU

20 GGS – 112 0.1875 – 68 0.1719

MGS 0.10 111 0.1563 0 68 0.1719

40 GGS – 112 3.8125 – 73 4.4063

MGS 0.20 102 3.4688 0 73 4.4063

60 GGS – 115 22.0469 – 75 25.7813

MGS 0.20 100 19.1406 0 75 25.7813

80 GGS – 119 121.5781 – 76 81.2188

MGS 0.20 98 125.5938 0.10 75 47.2188

100 GGS – 122 315.4375 – 77 133.1875

MGS 0.20 97 321.0781 0.10 75 127.8438

We use the methods GGS and MGS to use the Eq. (1.1) of Example 1 sep-
arately. Table 1 lists the calculation results of the CPU time of the above two
methods for different problem sizes of n are listed when μ = 0 and μ = −0.5.

For μ = 0, we found that the MGS method is smaller than the GGS method
when the parameter αexp is correctly specified. In other words, the matrix Ω =
αI plays an important regulating role in our method, and with the magnification
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of the problem the adaptation effect of the matrix Ω is more obvious. For μ =
−0.5, we can see that the parameter αexp = 0 when the scale of the problem is
small (m = 20, 40, 60), and the MGS method is reduced exactly to GGS. It is
not difficult to see that the MGS method is also superior to the GGS method
when we choose αexp = 0.1 with the larger problem size (m = 80, 100).

Example 2. [15] Let m ∈ N
+ and n = m2, we consider the Eq. (1.1) in which

A = M + μI ∈ R
n×n, where

M = tridiag(−1.5I, S,−0.5I) ∈ R
n×n,

with
S = tridiag(−1.5, 4,−0.5)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 −0.5 0 · · · 0 0
−1.5 4 −0.5 · · · 0 0

0 −1.5 4 · · · 0 0
...

...
. . . . . .

...
...

0 0
. . . . . . 4 −0.5

0 0
. . . . . . −1.5 4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
m×m,

and I being the m order identity matrix. b = Ax∗ − |x∗| ∈ R
n, here x∗ =

(−1, 1, ..., (−1)n)T .

Table 2. Numerical results for Example 2

M Method μ = 0 μ = −0.5

αexp IT CPU αexp IT CPU

20 GGS – 143 0.6563 – Fail –

MGS 0 143 0.6563 0.20 263 1.1719

40 GGS – Fail – – Fail –

MGS 0.075 284 12.8594 0.29 263 12.0156

60 GGS – Fail – – Fail –

MGS 0.19 444 91.1875 0.30 255 55.9375

80 GGS – Fail – – Fail –

MGS – Fail – 0.30 249 157.1563

100 GGS – Fail – – Fail –

MGS – Fail – 0.30 244 366.7656

For Example 2, we also list the calculation data related to the Example 2
for different problem sizes of n when μ = 0 and μ = −0.5 in Table 2. The table
shows ′Fail′ that the method cannot find a solution if the abortion condition is
met, such as Example 4.2.
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Table 2 shows that the GGS method can solve the problem of μ = 0 when
m = 20 and and the GGS method is ′Fail′ when m > 20. Compared with
the GGS method, the MGS method can solve the problem when m ≤ 60. For
μ = −0.5, it is obvious that the GGS method cannot find the solution for all the
given m in Table 2. Nevertheless, the MGS method can solve the problems for
all the given m when the the parameters αexp are suitable choice. That is to say,
the regulating role of the matrix Ω = αI becomes more obvious as the problem
size has increased.

Example 3. Let m ∈ N
+ and n = m2, we consider the Eq. (1.1) in which

A = M + μI ∈ R
n×n, where

M = tridiag(−0.5I, S,−1.5I) ∈ R
n×n,

with
S = tridiag(−0.5, 4,−1.5)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 −1.5 0 · · · 0 0
−0.5 4 −1.5 · · · 0 0

0 −0.5 4 · · · 0 0
...

...
. . . . . .

...
...

0 0
. . . . . . 4 −1.5

0 0
. . . . . . −0.5 4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
m×m,

and I being the m order identity matrix. b = Ax∗ − |x∗| ∈ R
n, here x∗ =

(−1, 1, ..., (−1)n)T .

Table 3. Numerical results for Example 3

M Method μ = 0 μ = −0.5

αexp IT CPU αexp IT CPU

20 GGS – 143 0.7344 – Fail –

MGS 0 143 0.7344 0.20 263 1.2344

40 GGS – Fail – – Fail –

MGS 0.075 284 13.8438 0.29 263 11.0469

60 GGS – Fail – – Fail –

MGS 0.19 444 90.2563 0.30 255 45.4688

80 GGS – Fail – – Fail –

MGS 0.20 462 220.3634 0.30 249 154.3366

100 GGS – Fail – – Fail –

MGS – Fail – 0.30 243 328.6675

To better observe the adaptation effect of the matrix Ω = αI in MGS method,
we construct Example 3. Similar to the Example 1 and Example 2, we also list
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the calculation data for different problem sizes of n when μ = 0 and μ = −0.5
in Table 3. In the table, ′Fail′ still denotes that the method cannot find the
solution for Example 3 when the termination conditions are satisfied.

As shown in Table 3, if the parameter αexp is the right choice, the MGS
method can solve more problems than the GGS method. The results also show
that Matrix Ω plays an important role in the solution.

5 Conclusion

In this paper, by introducing a non-negative diagonal matrix Ω, a new split of
the matrix A in the absolute Eq. (1.1) is given firstly. And then, based on the
new splitting, we have presented the MGS method for solving the Eq. (1.1) and
discussed the convergence theory of the method. The numerical results show that
the MGS method is better than the GGS method if the matrix Ω is appropriate.
In general, the matrix Ω plays an important role in our method. It can effec-
tively improve not only the convergence rate, but also the iterative Gauss-Seidel
method for solving Eqs. (1.1). It creates some uncertainty that the parameter α
in the matrix Ω = αI is acquired by the experiments. This affects the efficiency
of the algorithm to some extent. In the following research, we will try to deter-
mine the optimal parameters α through the theoretical derivation and further
improve the efficiency of the method.
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