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Abstract. Designing robots by hand can be costly and time consum-
ing, especially if the robots have to be created with novel materials, or
be robust to internal or external changes. In order to create robots auto-
matically, without the need for human intervention, it is necessary to
optimise both the behaviour and the body design of the robot. However,
when co-optimising the morphology and controller of a locomoting agent
the morphology tends to converge prematurely, reaching a local opti-
mum. Approaches such as explicit protection of morphological innova-
tion have been used to reduce this problem, but it might also be possible
to increase exploration of morphologies using a more indirect approach.
We explore how changing the environment, where the agent locomotes,
affects the convergence of morphologies. The agents’ morphologies and
controllers are co-optimised, while the environments the agents locomote
in are evolved open-endedly with the Paired Open-Ended Trailblazer
(POET). We compare the diversity, fitness and robustness of agents
evolving in environments generated by POET to agents evolved in hand-
crafted curricula of environments. Our agents each contain of a popu-
lation of individuals being evolved with a genetic algorithm. This pop-
ulation is called the agent-population. We show that agent-populations
evolving in open-endedly evolving environments exhibit larger morpho-
logical diversity than agent-populations evolving in hand crafted curric-
ula of environments. POET proved capable of creating a curriculum of
environments which encouraged both diversity and quality in the popu-
lations. This suggests that POET may be capable of reducing premature
convergence in co-optimisation of morphology and controllers.

Keywords: Evolutionary algorithms · Evolutionary robotics ·
Open-endedness · Co-optimisation · Environments

1 Introduction

Finding a morphology and controller for a robot, that allows the robot to effi-
ciently complete its task, is a difficult endeavour. Creating and programming
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robots by hand is feasible when the robots’ working environment is predictable,
such as in a factory or warehouse. However, it becomes almost impossible when
the robots are acting outside in a constantly changing world. When a robot needs
to adapt to a variety of new environments, evolutionary algorithms can be used
to automatically optimise both morphology and controllers [1,14,16].

When simultaneously evolving the controller and morphology of a robot the
controller has a tendency to specialise in the current morphology [3]. If the mor-
phology is changed the controller might no longer work. The morphology and
controller are strongly connected, and when the morphology changes it is like the
interface between them has been scrambled. This connection between controller
and morphology can cause the morphological search to stagnate: When the con-
troller has adapted to the morphology, the morphology may stop changing, as
changes will be likely to lower the individual’s fitness. Approaches to tackle this
problem include directly or indirectly protecting individuals that recently expe-
rienced change in their morphology [4], or optimising for morphological novelty
in addition to fitness in a multi objective search [12]. However, we believe it
might be possible to increase the exploration of morphologies by evolving the
agents in changing environments.

Inspired by minimal criterion co-evolution [2], Wang et al. invented the Paired
Open-Ended Trailblazer (POET) [22]. In POET, environments evolve open-
endedly, while agents are optimised to solve them. A minimal criterion ensures
that the environments are appropriately difficult for the agents, increasing in
complexity as the agents learn more efficient behaviours. Wang et al. show that
the environments are used as stepping stones, enabling the agents to learn new
skills, and escape local optima. We modify the part of the algorithm that opti-
mises the agents within their environments, in order to allow POET to modify
the agents’ morphologies as well. The flow of POET, and the genetic algorithm
we use, can be seen in Fig. 1. We explore whether the effect that enabled the
controllers evolved with POET to escape local optima, can reduce the problem
of premature convergence of morphologies.
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Fig. 1. Left: Illustration of our genetic algorithm when used with POET. Right:
Illustration of our genetic algorithm when used with a curriculum of environments.
(Note that in this context the term agent-population refers to a population of 192
individuals)
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Our agents are tested in the OpenAI Gym environment Bipedal Walker [17],
Fig. 2. We compare the performance and diversity of the agents evolved with
POET to agents evolved in two handcrafted curricula of environments. There
are two main contributions in this paper: 1) We show that the environments
and algorithm structure of POET encourages morphological diversity, and 2)
We show that the agents evolved in our handcrafted curriculum with rapid envi-
ronmental change generalise well to many new environments, while the agents
evolved in POET generalise to environments somewhat similar to the ones the
agents have seen previously.

Fig. 2. The Bipedal walker hardcore environment, adjusted to allow for morphological
changes.

2 Background

In 1994 Karl Sims published a study, “Evolving Virtual Creatures” [20], which
showed virtual creatures evolving in an artificial world with simulated physics.
In this artificial evolution the creatures evolved both their bodies and their
behaviours simultaneously, and solved various tasks such as walking, swimming
and competing against each other. Inspired by Sims’ work, many researchers
took interest in creating robots that can evolve both their morphology and con-
troller at the same time [3,4,7,8,10], and the field of co-optimisation of robot
morphology and controller emerged. Although computing power has increased
significantly since Karl Sims’ study was published, the morphological complexity
of evolved agents has not increased as much as could be expected [5]. Deficien-
cies in the morphology encodings [9], deficiencies in the diversity maintenance of
search algorithms [12], and that the environments used are not complex enough
to encourage complex morphologies [1], have been suggested as sources for this
problem. In 2012 Cheney et al. [3] proposed their theory on why it was so dif-
ficult to make further progress. When co-optimising morphology and controller,
the morphology would often converge prematurely. Cheney et al. proposed that
this is due to an effect called embodied cognition.

Embodied cognition is a theory stating that how a creature behaves is influ-
enced heavily by their body. The body can be seen as an interface between the
controller and the environment, and if the body changes, even just a little, it
is as if the interface between body and controller has been scrambled. The con-
troller adapts to its specific morphology, and when the morphology changes, the
controller will have to re-adapt before it can manage to locomote with the new
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body. Cheney et al. [4] continued their research, and studied how explicitly pro-
tecting individuals that had just experienced morphological change affected the
evolution of morphologies. They showed that when giving the controllers time to
adapt to their new bodies, controllers that normally would have been discarded
due to low fitness were kept, as they surpassed the previous elites during the
time they were protected.

Several algorithms that reduce the problem of embodied cognition, with-
out explicitly protecting novel morphologies, have also been proposed. One such
algorithm is ALPS [8], where reproduction is only allowed between candidates
that have experienced approximately the same number of earlier reproduction
steps. This restriction divides the population into layers based on their age,
and lowers the selection pressure on young candidates. Jelisavcic et al. [10], also
take a more indirect approach to protecting new morphologies. In their work all
controllers adapt to their morphologies, before being evaluated, through lamar-
ckian evolution. Lehman et al. [12] do not allow the controllers time to adapt
to their morphologies, but rather increase morphological diversity by optimis-
ing for morphological novelty in addition to performance with a multi-objective
evolutionary algorithm.

2.1 POET

In traditional evolutionary algorithms it is common to optimise for better per-
formance, but this approach can easily lead the algorithm to converge to a local
optimum prematurely. One way to increase the chance of finding good optima
is to increase diversity in the population, with methods such as fitness sharing
[6,18], speciation [21] or crowding [13]. However, open-ended algorithms such as
novelty search [11] have also proven efficient. In the field of open-endedness, the
focus is not to move towards solutions with better performance, but to create
novel and interesting solutions [19], often by optimising for diversity instead of
performance. Counterintuitively, searching for novelty alone can sometimes lead
to better solutions than what can be found by optimising directly for perfor-
mance, as demonstrated by Lehman et al. [11].

The Paired Open-Ended Trailblazer, POET, is an open-ended algorithm cre-
ated by Wang et al. [22]. POET has a population of pairs, where each pair
consists of one environment and one agent. The agents are optimized within
their paired environment, and the environments are evolved with an open-ended
algorithm optimising for novelty. As the environments increase in complexity,
the agents learn increasingly complex behaviours. Wang et al. tested their algo-
rithm in the OpenAI bipedal walker environment [17], and observed that the
agents used the environments as stepping stones to learn behaviours and gaits
they would otherwise not find. The pairs share their knowledge through agent
transfers, helping each other escape local optima.

The POET algorithm starts by initialising one environment-agent pair. This
first pair always has a very simple environment, such as flat ground. The main
flow of the POET algorithm has three steps: Creating environments, Optimising
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agents in their paired environments and Transferring agents between environ-
ments. For the optimisation step Wang et al. use an evolutionary strategy. The
two remaining steps are described in detail below.

Creating Environments. The environment creation step of POET is executed
periodically, with a set number of generations between each execution. This step
starts off by checking all pairs against a minimal criterion for reproduction. All
environments that have a paired agent with fitness higher than the minimal
criterion are marked as eligible to reproduce. If there are no eligible environ-
ments the creation of environments is skipped. The new environments are then
generated by randomly selecting and mutating qualified environments.

The newly created environments then need to be assigned an agent to become
a pair. All agents are tested in the new environments, and the environments are
assigned a copy of the agent that performed best in them. The new pairs are then
checked against a second minimal criterion, the minimal criterion of difficulty.
This minimal criterion has an upper and lower boundary for agent fitness, and
ensures the environment is not too difficult nor too easy for its agent. The new
pairs that do not meet this minimal criterion are removed.

The remaining new pairs are then sorted by environment novelty. The novelty
of the environment is found by comparing it to an archive of all environments
that have existed throughout the run. The novelty measure is the euclidean
distance to the five nearest neighbours in the archive. If a child environment
already exists in the archive, it is removed from the list of child pairs. The most
novel child pairs are added to the population until the maximum number of
children that can be added each generation is reached, or until there are no
more children left to add. The POET population has a maximum population
size. When the population size exceeds this limit the oldest pairs are removed.

Transferring Agents Between Environments. In the transfer step, all
agents are cross tested in all environments. If any of the agents performs bet-
ter in an environment than the environment’s paired agent, the paired agent is
removed, and is replaced by a copy of the agent that performs best.

There are two types of transfer, direct and proposal transfer. In direct transfer
the agents are tested directly in the other pairs’ environments, while in proposal
transfer the agents are first trained in the other pairs’ environments before they
are tested. Transferring of agents allows skills learned in one environment to be
used in another environment, and in this way, the pairs trade experiences.

3 Methods

We evolve environment-agent pairs with POET, and compare this approach to
evolving agents in hand-crafted curricula of environments.1 We have substituted

1 Source code can be found at https://github.com/EmmaStensby/poet-morphology.

https://github.com/EmmaStensby/poet-morphology
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the agent optimisation step of POET with a genetic algorithm. While the optimi-
sation step used by Wang et al. [22] in POET only evolves the agent controllers,
our optimisation step evolves the morphologies of the agents as well, allowing
us to look at the effect POET has on morphological development in agents. The
flow of the algorithm can be seen in Fig. 1. In order to reduce the computation
time of POET we only use direct transfer, and not proposal transfer. Table 1
summarises the values we use for parameters required by POET.

Table 1. POET parameters.

Parameter Value

Pair population size 20

Transfer frequency Every 5 generations

Create env. frequency Every 40 generations

Reproduction criterion 200

Difficulty criterion 50–300

Child environments created 20

Child pairs admitted 2

The environments the agents are evaluated in can contain various features:
stumps, pits, rough terrain and stairs. In POET’s environment creation step the
environments’ features are mutated to create new environments. The parameters
for the environment mutation are summarised in Table 2.

Table 2. Environment mutation parameters.

Feature Minimum value Mutation value Maximum value

Terrain roughness 0 Uniform(0,0.6) 10

Pit gap [0,0] [±0.4,±0.4] [10,10]

Stump height [0,0] [±0.2,±0.2] [5,5]

Stair height [0,0] [±0.2,±0.2] [5,5]

Stair steps 0 ±1 9

3.1 Genetic Algorithm

This section describes the genetic algorithm we use to co-optimise controllers
and morphologies. The setup and parameters of the genetic algorithm were
decided through initial experiments aiming to find values that efficiently evolved
high-quality agents. The genetic algorithm keeps a population of 192 individu-
als, where each individual consists of a neural network and a morphology, see
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Fig. 3. The neural network and morphology controls the behaviour and body of a
bipedal walker agent. We will use the term individual to refer to a pair consisting
of a neural network and a morphology, and the term agent-population to refer
to a population of 192 individuals being evolved with our genetic algorithm. We
use the term agent in agent-population to emphasise that this is the agent part
of a POET environment-agent pair. The term bipedal agent, is used to refer to
the walking figure in the bipedal walker environment.

Controller. The bipedal agent is controlled by a neural network inputting
state variables such as joint angles, speed, and ground contact sensors, and
outputting force to apply to the leg joints, thus forming a type of closed-loop
control architecture. The neural network has an input layer with 24 nodes, two
hidden layers with 40 nodes each, and an output layer with four nodes. This gives
a total of 2720 weights. The activation function used is the identity function.
This network structure has been used in two other studies that also evolved
agents locomoting in the bipedal walker environment [7,22]. This design choice
was made to reduce the extent of the parameter search. However, it would be
interesting to explore whether the same performance could have been reached
with a smaller network. The neural network weights are initialised to random
values, drawn uniformly between −1 and 1. Mutations can never increase the
weights above 30, or decrease them below −30.
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Fig. 3. Overview of the genotype. The genotype for an individual contains a matrix
with the weights of the neural network controller, and a vector with the leg sizes.

Morphology. The bipedal walker agent has two legs, each consisting of two
segments. The morphology is a vector of eight floats describing the widths and
heights of the bipedal agent’s four leg segments. The sizes are constrained to
values within ±75% of the leg sizes in the original bipedal walker environment.
These constraints have previously been used by Ha et al. [7]. The morphology
values are initialised to random values drawn uniformly between the minimum
and maximum possible size.

Individual Evaluation. To evaluate the fitness of an individual it is tested
in a bipedal walker environment. The individual receives positive reward each
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time step for how far the bipedal agent moved forward, and negative reward for
how much force it applied to the joints. It also receives negative reward if the
bipedal agent’s head touches the ground. The simulation ends when the bipedal
agent’s head touches the ground, it reaches a flag at the end of the course or
1000 time steps is reached. The reward an individual gets in an environment is
not deterministic, and can be unstable. To make the fitness function more stable
the individuals are evaluated four times. The fitness is the mean of the reward
received in the four evaluations. The negative reward received from applying
force to the joints or falling can sometimes exceed the positive reward earned
from walking forward, causing individuals to have negative fitness.

Parent Selection. The parents are selected by tournament. Five individuals
are chosen at random from the population, and compete with their fitness to
become a parent. This is repeated until 192 parents have been chosen. The
same individual can be chosen as a parent multiple times. The parents are then
separated into 96 pairs, and the two parents from each pair are recombined to
create two children.

Recombination and Mutation. The parents are recombined using uniform
crossover. For each neural network weight, or morphology value, the parent con-
tributing the value is chosen at random, with equal probability between the two
parents. The first child gets the chosen values, and the second child gets the
remaining values. After recombination the children are mutated using two types
of mutation: replacement and modification. In replacement mutation, neural net-
work weights, and morphology values, are chosen with a probability of 0.0075.
The chosen values are replaced with new values. The new values are determined
in the same way as initial weights and morphology values were determined at
individual initialisation. In modification mutation, neural network weights, and
morphology values, are chosen with a probability of 0.075. An offset is added
to the chosen weights and values. The offset is a random float drawn uniformly
from (−x, x ). For the neural network weights x is 0.2. For the morphology values
x is 16% of the difference between the minimum and maximum values for the
size of the respective leg segment.

Survivor Selection. To create niches of different solutions in the population,
and to slow down convergence, deterministic crowding [13] is used when selecting
survivors for the next generation. The difference between two individuals is the
L1-norm of the individuals’ morphologies. We compare only the morphologies,
and not the neural networks, to encourage the niches in the population to explore
different morphologies.

3.2 Environment Curricula

We use two handcrafted curricula of environments in our experiments. The
genetic algorithm used to evolve the POET agent-populations is also used to
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evolve agent-populations in the curricula. The first curriculum is Static, which
only contains one flat featureless environment. Static is used as a baseline, and
has no environmental change. The second curriculum is Round Robin Incremen-
tal (RRI), this curriculum consists of five environments. The agent-populations
are trained for five generations in each of the environments. When training has
finished in the last of the five environments, it starts over again at the first envi-
ronment. The five environments consist of one flat featureless environment, and
four environments with features. Each environment has only one feature. The
environments with features appear in the following order: Pits, Rough terrain,
Stumps, Stairs. The features start out simple. When an individual in the agent-
population reaches 150 or higher fitness in any of the last four environments the
difficulty of that environment is increased.

4 Results

In our experiment we want to find out how effective POET is in creating an
environment curriculum that maintains both quality and morphological diver-
sity in a population. We evolve agent-populations in the dynamically changing
environments of POET, and in the two curricula Static and RRI, with a budget
of 384000 evaluations per run. An evaluation being one individual evaluation as
described in Sect. 3.1. The experiments were performed on a 40 core node on
the UNINETT Sigma2 Saga supercomputer, and each run took about 1895 cpu
hours to finish. Ten runs are performed in each of the Static, RRI and POET
setups. If POET is effective in maintaining both morphological diversity and
quality at the same time, we expect the algorithm to find high fitness solutions
for many different morphologies.

4.1 Morphological Differences

Figure 4 shows the morphological diversity throughout the runs, for agent-
populations evolved in Static, RRI and POET, as well as the morphological
diversity of the populations in the final generation. The population diversity
of POET in these graphs is measured only for the first POET pair, meaning
that we follow an agent-population evolving in a flat environment. However,
the POET agent is sometimes switched due to agent transfers, see Sect. 2.1. The
morphological diversity of an individual is measured as the average distance from
that individual to the other individuals in the population, and the population
diversity of an agent-population is the average diversity of all the individuals
in the population. POET has higher population diversity than Static and RRI
throughout the whole run, and in the resulting populations at the end of the
runs (p < 0.01).

Figure 5 shows morphological feature maps and quality-diversity feature
maps for Static, RRI and POET. To create the feature maps we project the
morphological search space into two dimensions. In our case the dimensions are
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Fig. 4. Left: Morphological diversity through evolution. The graphs shows the mean of
five runs, and the scratched area shows the standard deviation. Right: Morphological
diversity in the final populations. Four to one asterisks indicate respectively p < 0.0001,
p < 0.001, p < 0.01 and p < 0.05 (Mann-Whitney U test with Bonferroni correction).

Fig. 5. Each map is from a separate run of one of the algorithms, and shows the total
width and the total length of the legs of all individuals encountered throughout the
run. Left: Morphological feature maps. Every morphology that appears throughout
the run is represented as a circle. The color of the circle represents when in the search
the morphology appeared. Right: Quality-Diversity feature maps. The feature space
is divided into a grid, and the color of each cell represents the highest fitness found in
that region throughout the run. (Color figure online)
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the total length and width of the bipedal agents’ legs. In the morphological fea-
ture maps we can see that for RRI and Static the morphologies tend to start out
in one area and then collect in a smaller section in the lower right of the search
space, while POET covers more of the same areas at the beginning and the end
of the runs.

In the quality-diversity feature maps, especially in the run on the top row,
we can see that Static has found very high fitness for a few morphologies, while
POET has found good controllers for a larger section of the feature space. RRI
has the lowest fitness. However, it has found mediocre solutions (fitness values
around 100) for large sections of the feature space.

4.2 Robustness of Solutions

Next we tested the robustness of the agent-populations by looking at their per-
formance in environments they had not seen during training. This is shown in
Fig. 6. We divided the environmental search space into five categories based on
difficulty. The environment difficulty is based on the definition used by Wang
et al. [22]. The first category has flat featureless environments. The environments
in the simple category have three features: stumps, pits and terrain roughness.
However, the sizes of all the features are below difficulty thresholds. The thresh-
olds are: 3.0 for terrain roughness, 2.5 for pits, 1.5 for stumps. The environments
in the next three categories have respectively one, two or three features with val-
ues above its threshold. 10 environments were generated for each category, giving
a total of 50 environments. We can see that POET and Static perform better
than RRI in the flat category (p < 0.0001), and all three perform similarly in
the simple category. However, as the difficulty of the environments increase RRI
seems more robust, as it has a lower fitness loss compared to POET and Static,
and performs best in the most difficult category (p < 0.0001).

In Fig. 7 we observe the agent-populations’ generalisation to environments
similar, but slightly different, to the ones seen during training. Here the first envi-
ronment class consists of the original environments that the agent-populations
encountered during training. In the following classes the environments have been
mutated, respectively one, two, four or eight times, to increase their difficulty.
A mutation is done by choosing a random feature, and adding an offset to the
feature variable. The offset is 2.4 for terrain roughness, and 0.8 for the other
features. We can see that in the first and second classes, where the environments
are very similar to POET and RRI’s original environments, POET performs best
(p < 0.05). However, as the difficulty of the environments increase POET loses
fitness faster than RRI, and in the last class RRI performs better than POET(p
< 0.05).

5 Discussion

POET seems to explore approximately the same areas of the morphological
feature space in the beginning and end of the evolution, as we saw in Fig. 5.



Co-optimising Robot Morphology and Controller 45

This suggests that morphologies that are not easy to exploit are kept by POET
even if the algorithm does not quickly find a good controller for it. From the
feature maps it looks like the Static and RRI agent-populations quite quickly
discard morphologies that do not have a good controller, leading to the large
purple sections in the morphological feature maps. These maps, together with
the high morphological diversity observed for POET in Fig. 4, lead us to believe
that the POET agent-populations have slower morphological convergence than
the Static and RRI agent-populations.

Fig. 6. The agent-populations tested in randomly selected unseen environments of
increasing difficulty. Four to one asterisks indicate respectively p < 0.0001, p < 0.001,
p < 0.01 and p < 0.05 (Mann-Whitney U test with Bonferroni correction).

Fig. 7. The agent-populations tested in randomly selected environments from the vicin-
ity of the agent-populations’ original environments, with increasing difficulty. Four to
one asterisks indicate respectively p < 0.0001, p < 0.001, p < 0.01 and p < 0.05
(Mann-Whitney U test with Bonferroni correction).
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We think this may be caused partly by the environmental change, as the
RRI agent-populations also have slightly larger yellow areas in the feature maps
compared to the Static agent-populations, but also by POET’s population size
gradually increasing as new environment-agent pairs are added. The pairs can
act as niches, exploring different sections of the search space. An example demon-
strating the morphological development in a Static and POET agent-population
throughout a run can be seen in Fig. 8. We see that in this run the Static agent-
population converged to long thin legs while the POET agent-populations’ legs
were still evolving.

Fig. 8. The top performing morphology in the flat environment captured every 40 gen-
erations for 880 generations. Top two rows: Morphologies from the Static curriculum.
Bottom two rows: POET morphologies.

As seen in Fig. 6 the RRI agent-populations have lower fitness in the flat
environment than the agent-populations from Static and POET. However, four
out of five of the environments in the RRI curriculum increase in difficulty when-
ever the agent-population reaches 150 fitness. This is likely what causes the RRI
agent-populations to usually not reach much more than 150 fitness, even in sim-
ple environments. The RRI agent-populations have likely sacrificed gait speed to
generalise well to the four difficult environments. The rapidly changing environ-
ments in RRI force the agent-populations to take a careful approach, as failing in
just one of the five environments will likely mean that an individual is removed
from the population. This can also explain the lower diversity observed in RRI.
Only the individuals that locomote reasonably well in all five environments have
high chances of survival, causing the algorithm to quickly converge to this type of
individual. However, the RRI agent-populations were more robust to increase in
environmental difficulty, as seen in both Fig. 6 and Fig. 7, where RRI performed
better than the Static and POET agent-populations in the most difficult envi-
ronments. This suggests that the quick environmental change in RRI encourages
generalisation to new environments.

Evolving in multiple environments in parallel should naturally promote a
diverse set of morphological strategies. This can be observed in the quality-
diversity maps: we see that POET tends to have larger high-fitness areas com-
pared to RRI and Static, meaning that POET has found high fitness for a larger
variety of morphologies. In Fig. 4 we saw that, although POET and RRI both
differ from static in that they experience several different environments, POET
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had increased population diversity, while RRI had decreased population diver-
sity. RRI likely had decreased diversity due to the difficult nature of its rapidly
changing environments, leading RRI to quickly exploit the solutions that were
the most robust. The population diversity for POET in this graph is the diver-
sity within the population of a single pair, so the increased diversity is not due
to the pairs acting as niches and thus being different from each other. Rather, we
believe that this increased diversity is due to the transfer mechanism in POET.
The morphologies that are best for the agents current environment may not be
best for some other environment. Agent-populations with diverse populations
may therefore be more likely to be transferred, as diversity may increase its
chances of being a good fit for a new environment. When an agent is trans-
ferred it is duplicated, thus increasing its presence in the population. Further
experiments would be necessary to confirm this.

6 Conclusion

In our experiments we compared agent-populations evolved in a static envi-
ronment, in a curriculum of environments and in POET. We observed that the
agent-populations evolved in POET had higher morphological diversity than the
agent-populations evolved in a static environment, or in a curriculum of envi-
ronments. This correlation suggests that evolving agent-populations with POET
causes increased exploration of morphologies. This property could be promising
for tackling the challenging problem of stagnation in co-optimisation of mor-
phology and control in robotics, and suggest that POET could be applied to
this domain.

We also compared the robustness of agent-populations when they encoun-
tered unseen environments. We conclude that the agent-populations evolved in
the hand crafted curriculum, RRI, were most robust to environmental change.
The agent-populations evolved in RRI performed best in the most difficult envi-
ronments, but their fitness values were relatively low across all environments.
The POET agent-populations had high fitness values in their original environ-
ments, and generalised quite well to environments slightly different from these.

POET requires a lot of time and computation power to reach the most dif-
ficult environments. Due to limited time, the environments POET found in our
runs were not very difficult. It would have been interesting to see how the diver-
sity, robustness and morphological convergence developed if the algorithms were
allowed to run longer.

In future work it would be interesting to test our approach in a complex
domain, where the morphologies could evolve more freely, such as on modular
robots. We used the bipedal walker environment in order to be able to compare
to previous research using this environment [7,22]. However, the differences in
morphologies might have been more prominent had we used an environment with
more complex morphologies. It would also be interesting to look at how envi-
ronment curricula could be created to most efficiently promote both high qual-
ity, robust individuals and exploration of morphologies. This could be explored
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either by looking at how features in hand crafted curricula affect the search, or
by attempting to create an algorithm similar to POET that is more computa-
tionally efficient, and encourages more frequent environmental change. Perhaps
this could be achieved by using information about the progress of the search,
or the morphological diversity of the agent-populations, when choosing the next
environment. We would also like to compare this approach to other approaches
that increase morphological diversity, such as protection of individuals that have
experienced morphological change [4], NSLC [12] or map-elites[15].
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