
Time Matters: Time-Aware LSTMs for
Predictive Business Process Monitoring

An Nguyen1(B), Srijeet Chatterjee1, SvenWeinzierl2, Leo Schwinn1,
Martin Matzner2, and Bjoern Eskofier1

1 Department of Computer Science, Friedrich-Alexander-University
Erlangen-Nürnberg (FAU), Erlangen, Germany

{an.nguyen,srijeet.chatterjee,leo.schwinn,bjoern.eskofier}@fau.de
2 Institute of Information Systems, Friedrich-Alexander-University

Erlangen-Nürnberg (FAU), Nürnberg, Germany
{sven.weinzierl,martin.matzner}@fau.de

Abstract. Predictive business process monitoring (PBPM) aims to pre-
dict future process behavior during ongoing process executions based on
event log data. Especially, techniques for the next activity and timestamp
prediction can help to improve the performance of operational business
processes. Recently, many PBPM solutions based on deep learning were
proposed by researchers. Due to the sequential nature of event log data,
a common choice is to apply recurrent neural networks with long short-
term memory (LSTM) cells. We argue, that the elapsed time between
events is informative. However, current PBPM techniques mainly use
“vanilla” LSTM cells and hand-crafted time-related control flow fea-
tures. To better model the time dependencies between events, we propose
a new PBPM technique based on time-aware LSTM (T-LSTM) cells.
T-LSTM cells incorporate the elapsed time between consecutive events
inherently to adjust the cell memory. Furthermore, we introduce cost-
sensitive learning to account for the common class imbalance in event
logs. Our experiments on publicly available benchmark event logs indi-
cate the effectiveness of the introduced techniques.

Keywords: Predictive business process monitoring · Deep learning ·
Recurrent neural network · LSTM · Time-Awareness

1 Introduction

In the last years, a variety of predictive business process monitoring (PBPM)
techniques that base on machine learning (ML) were proposed by researchers [6]
to improve the performance of operational business processes [4]. PBPM is a
class of techniques aiming at predicting future process characteristics in running
process instances [12], like next activities, next timestamps or process-related
performance indicators. Such PBPM techniques produce predictions through

S. Chatterjee—Equal contribution with An Nguyen.

c© Springer Nature Switzerland AG 2021
S. Leemans and H. Leopold (Eds.): ICPM 2020 Workshops, LNBIP 406, pp. 112–123, 2021.
https://doi.org/10.1007/978-3-030-72693-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72693-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-72693-5_9

Time-Aware LSTMs for Predictive Business Process Monitoring 113

predictive models. These models are in turn constructed based on historical
event log data.

A current trend in PBPM is to apply deep neural networks (DNNs) to learn
more accurate predictive models from event log data than with “traditional”
ML algorithms like probabilistic automata [7]. DNNs belong to the ML-sub-field
deep learning (DL) and achieve that by identifying the intricate structures in
high-dimensional data through multi-representation learning [11].

Existing DL-based PBPM techniques often rely on DNN architectures con-
sisting of out-of-the-box constructs like layers with a “vanilla” long short-term
memory (LSTM) cell [9] or state-of-the-art loss functions for parameter learning.

Event logs can be seen as sequences of events in continuous time with irregular
intervals (i.e., elapsed time between consecutive events). We argue that these
time intervals are informative in the case of event logs in PBPM. Intuitively, these
time intervals describe human behavior of executing business processes. Thus,
a time-aware PBPM technique considering information on time intervals could
potentially achieve a higher predictive quality. Time information is currently only
exploited via hand-crafted control-flow features as inputs to “vanilla” LSTM cells
[15]. To better account for the time information in event log data, we propose
a new PBPM techniques using time-aware LSTM (T-LSTM). T-LSTM extends
the “vanilla” LSTM cells by incorporating the elapsed time between consecutive
events in order to adjust the memory state and is inspired by work from Baytas
et al. [2].

Furthermore, the problem of next activity prediction is commonly modeled
as a supervised multi-class classification problem. The distribution of activities
in event logs are commonly skewed. Therefore, we additionally introduce cost-
sensitive learning to address the inherent class-imbalances.

The main contributions of this work are summarized below:

– We introduce a time-aware LSTM model for the tasks of predicting next
activities and timestamps in PBPM

– We tackle the problem of skewed class distributions via cost-sensitive learning

We evaluate the effectiveness of our proposed techniques by conducting exper-
iments for the next activity and timestamp prediction on publicly available
benchmark event logs commonly used for PBPM.

The remainder of the paper is structured as follows: Sect. 2 presents related
work on DL-based next activity and timestamp prediction. Section 3 introduces
preliminaries and the concept of a LSTM. Sections 4 and 5 describes the archi-
tecture of T-LSTM and our experimental setup respectively. Then, in Sects. 6
and 7, we present and discuss our results. Section 8 concludes our paper and
discusses future research directions.

2 Related Work

Inspired by the field of natural language processing (NLP), Evermann et al. [7]
applied recurrent neural network-based and LSTM-based DNN architectures for

114 A. Nguyen et al.

the next activity and next sequence of activity prediction in PBPM. They made
use of word embeddings to encode activities of event log’s process instances.

Navarin et al. [14] used a “vanilla” LSTM-based DNN architecture for pre-
dicting the completion time of running process instances. They one-hot encoded
the activity attributes, computed temporal control-flow attributes, and consid-
ered additional real-valued or categorical context attributes.

Tax et al.[15] proposed a multitask learning approach using “vanilla” LSTM
cells for next activity and timestamp prediction respectively. Like in [14], they
one-hot encoded the activity and computed temporal control-flow features. How-
ever, the authors did not consider additional data attributes in their approach.
This work acts as a baseline for a variety of other techniques such as [18].

Khan et al. [10] introduced memory augmented neural networks (MANNs)
in PBPM. MANNs reduce the number of trainable parameters. In general, the
network’s architecture consists of an externalized state memory and two “vanilla”
LSTM cells manipulating the memory. One LSTM cell works as encoder and
the other one as decoder. Concerning the predictive quality, their approach is
comparable to the one presented in [15].

Camagro et al. [5] extended the implementation of [15] and fed the resource
attribute into the DNN model. Additionally, instead of one-hot encoding, they
applied embeddings, as proposed by Evermann et al. [7].

Taymouri et al. [16] introduced generative adversarial networks (GANs) for
the next activity and timestamp prediction. The network’s architecture com-
prises two “vanilla” LSTM cells. One for the generator and the other one for the
discriminator.

To date, several studies have investigated DNN-based PBPM techniques.
None of the related works proposes a DL-architecture that explicitly models
the elapsed time between two successive events. We address this gap by adapt-
ing time-aware LSTM cells [2]. Further, Mehdijev et al. [13] tackle the class
imbalance problem in the context of the DNN-based prediction of next activities
through a second neural network, namely radial basis function neural network,
which generates semi-artificial data of the minority class in the pre-processing
phase. In contrast, we adapt cost-sensitive learning to investigate the class-
imbalance problem for DL-architectures comprising T-LSTM cells.

3 Background

3.1 Preliminaries

Definition 1 (Event, Trace, Event Log). An event is a tuple (c, a, ts)
where c is the case id, a is the activity (label) and ts is the timestamp. A
trace is a non-empty sequence σ = 〈e1, . . . , e|σ|〉 of events such that ∀i, j ∈
{1, . . . , |σ|} ei.c = ej .c and ei.ts ≤ ej .ts, for 1 ≤ i < j ≤ |σ|. An event log L
is a set {σ1, . . . , σ|L|} of traces. A trace can also be considered as a sequence
of vectors which contain derived control flow information or features. Formally,
σ =

〈
x(1),x(2), . . . ,x(|σ|)〉, where x(t) ∈ R

n×1 is a vector, and the superscript

Time-Aware LSTMs for Predictive Business Process Monitoring 115

indicates the time-order upon which the events happened. n is the number of
features derived for each event.

Definition 2 (Prefix and Label). Given a trace σ =
〈
e1, . . . , ek, . . . , e|σ|

〉
,

a prefix of length k, that is a non-empty sequence, is defined as f
(k)
p (σ) =

〈e1, . . . , ek〉, with 0 < k < |σc|. A next activity label for a prefix of length k

is defined as f
(k)
l,a (σ) = ek+1.a, whereas a next timestamp label for a prefix of

length k is defined as f
(k)
l,ts(σ) = ek+1.ts. The above definition also holds for an

input trace representing a sequence of vectors. For example, the tuple of all pos-
sible prefixes, the tuple of all possible next activity labels and the tuple of all
possible next timestamp labels for σ = 〈x(1),x(2),x(3)〉 are 〈〈x(1)〉, 〈x(1),x(2)〉〉,
〈e2.a, e3.a〉, and 〈e2.ts, e3.ts〉.

3.2 Long Short-Term Memory Cells

Most of the DNN architectures proposed for the next activity and timestamp
prediction in PBPM [17] use “vanilla” LSTM cells [9]. LSTMs belong to the
class of recurrent neural networks [11] and are designed to handle temporal
dependencies in sequential prediction problems [3].

Given a sequence of inputs σ = 〈x(1),x(2),x(3), ...,x(k)〉, a LSTM computes
sequences of outputs 〈h(1),h(2),h(3), ...,h(k)〉 via the following recurrent equa-
tions:

f (t)g = sigmoid(Ufh(t−1) + Wfx(t) + bf) (forget gate),

i(t)g = sigmoid(Uih(t−1) + Wix(t) + bi) (input gate),

c̃(t) = tanh(Ugh(t−1) + Wgx(t) + bg) (candidate memory),

c(t) = f (t)g ◦ c(t−1) + i(t)g ◦ c̃(t) (current memory), (1)

o(t)
g = sigmoid(Uoh(t−1) + Wox(t) + bo) (output gate),

h(t) = o(t)
g ◦ tanh(c(t)) (current hidden state),

∀t ∈ {1, 2, . . . , k}.

{Uf,i,g,o,Wf,i,g,o,bf,i,g,o} are trainable parameters, ◦ denotes the Hadamard
product (element-wise product), h(t) and c(t) are the hidden state and cell mem-
ory of a LSTM cell. Additionally, a LSTM cell uses four gates to manage its states
over time to avoid the problem of exploding/vanishing gradients in the case of
longer sequences [3]. f (t)g (forget gate) determines how much of the previous
memory is kept, i(t)g (input gate) controls the amount new information is stored
into memory, c̃(t) (candidate memory) defines how much information is stored
into memory and o(t)

g (output gate) determines how much information is read
out of the memory. The hidden state h(t) is commonly forwarded to a successive
layer.

116 A. Nguyen et al.

4 Methodology

4.1 Time-Aware Long Short-Term Memory Cells

“Vanilla” LSTM cells, as described in Sect. 3.2, assume a uniform distribution of
the elapsed time between events (Δ(t) := xts

(t)−xts
(t−1)). This assumption does

not hold for most event logs analyzed in PBPM though (see Fig. 4). The elapsed
time between consecutive events might have an impact on the next activity
and timestamp prediction. Hence, a LSTM cell should be able to take irregular
elapsed times into account when processing event logs.

Time-aware long short-term memory (T-LSTM) cells are an extension of the
LSTM. Figure 1 depicts the T-LSTM cell and highlights its differences with
regard to the LSTM cell.

Fig. 1. Illustration of a T-LSTM cell with its computational components at time step
t. The dashed and blue components indicate the extensions to the “vanilla” LSTM
cell. The previous cell memory c

(t−1)
S is adjusted to c

(t−1)
∗ (see Eq. (2)) and is then

processed together with h(t−1) and x(t) via the LSTM computations, as formalized in
Eq. (1).

The main idea behind T-LSTM is to perform a subspace decomposition of
the previous cell memory c(t−1). First, a short term memory component c(t−1)

S is
extracted via a network. Next, the short term memory is discounted via a decay
function of the elapsed time and yields ĉ(t−1)

s . Then, the long term memory
(c(t−1)

T = c(t−1) − c(t−1)
S) is calculated. Finally, the previous cell memory is

adjusted c(t−1)
∗ = c(t−1)

T + ĉ(t−1)
s). The adjusted previous memory c(t−1)

∗ is then,
together with h(t−1) and x(t), further processed as in LSTM cells by substituting
c(t−1) with c(t−1)

∗ in Eq. (1). The following equations summarize the T-LSTM
specific computations for the subspace decomposition and adjustment of the
previous memory.

Time-Aware LSTMs for Predictive Business Process Monitoring 117

c(t−1)
S = tanh(Wdc(t−1) + bd) (short term memory),

ĉ(t−1)
s = c(t−1)

S ∗ decay(Δ(t)) (discounted short term memory),

c(t−1)
T = c(t−1) − c(t−1)

S (long term memory), (2)

c(t−1)
∗ = c(t−1)

T + ĉ(t−1)
s (adjusted previous memory),

... (LSTM computations as in Eq. (1)),
∀t ∈ {1, 2, . . . , k}.

Note, that we only add {Wd,bd} as trainable parameters compared to the
LSTM cell. As recommended in Baytas et al. [2], we chose decay(Δ(t)) =
1/log(e + Δ(t)) since we input the elapsed times in seconds and therefore have
large values for Δt. Any other monotonic decreasing function and scale for Δt

would be valid as well, but our initial choice proved to be effective. The intu-
ition behind the subspace decomposition is that the short term memory should
be discounted if the elapsed time is very large, while the long term memory
should be maintained in the adjusted previous cell memory c(t−1)

∗ . Similar as
for LSTMs, the hidden state h(t) is forwarded to successive layer for further
processing. Hence, it is straightforward to substitute LSTM with T-LSTM cells
in a given DNN architecture.

4.2 Network Architecture

We adapted the multitask architecture proposed by Tax et al. [15] as a base-
line (see Fig. 2). The predicted next activity êk+1.a is the output of a softmax
activation after the last dense layer, where the output dimension is equal to the
number of unique activity labels. êk+1.a is evaluated against the one-hot encoded
ground truth label ek+1.a by using the Cross-Entropy (CE) loss. The predicted
next timestamp êk+1.ts is a scalar output of a dense layer. We do not apply any
additional activation after the time specific dense layer to be consistent with the
implementation1 of Tax et al. [15]. êk+1.ts is compared with the ground truth
timestamp ek+1.ts using the Mean Absolute Error (MAE). The total loss is the
sum of both losses, as implemented in Tax et al. [15]. Further, they applied one-
hot encoding for the activities and compute time-related control-flow features,
which we also used in our experiments. We refer to the baseline architecture as
“Tax”. We performed an ablation study and made three modifications to the
baseline DNN architecture:

– We weighted the CE loss function based on the distribution of activity labels
in the training set. Hence, the classification of under-represented event classes
had larger influence during training. We refer to this model as “Tax+CS”.

– We replaced all LSTM layers with T-LSTM layers and refer to this model as
“Tax+T-LSTM”.

– We added cost-sensitive learning and replaced all LSTM layers with T-LSTM
layers. We call this model “Tax+CS+T-LSTM”.

1 https://github.com/verenich/ProcessSequencePrediction.

https://github.com/verenich/ProcessSequencePrediction

118 A. Nguyen et al.

Input

(T-)LSTM + BN

(T-)LSTM + BN (T-)LSTM + BN

Dense Layer + Softmax Dense Layer

Fig. 2. Network architecture for this work based on the multitask learning approach
proposed by Tax et al. [15]. The dashed components are either LSTM or T-LSTM lay-
ers. The input is of the network is a sequence of vectors representing a prefix 〈e1, . . . , ek〉
as in Tax et al. [15]. For the baseline architecture we applied one-hot encoding and
LSTM layers as in [15]. The outputs of the model are the predicted next activity
(êk+1.a) and timestamp (êk+1.ts). Each of the LSTM layers is followed by a batch
normalization layer (BN) to speed up training, as used in Tax et al. [15].

5 Experiments

5.1 Datasets

We performed our experiments on the same publicly available datasets as Tax
et al. [15] to validate the effectiveness of our proposed techniques. Figure 3
shows the distribution of the activities (labels) for the different datasets. It is
evident that the distributions of activities are skewed for both event logs. Table
1 presents descriptive statistics of the datasets used in this work.

Helpdesk2: This event log originates from a ticket management process of an
Italian software company.

BPI’12W Subprocess3 (BPI12W): The Business Process Intelligence (BPI)
2012 challenge provided this event log from a German financial institution. The
data come from a loan application process. The ‘W’ indicates state of the work
item for the application.

5.2 Preprocessing

We used the cleaned and prepared datasets as in Tax et al. [15]. The datasets
can be found on the corresponding GitHub repository4. The preprocessing steps
include splitting the data into training and test set, calculating time divisors,
and ASCII encoding activities and sequence generation. Datasets were split into
2/3rd and 1/3rd for training and testing respectively and preserve the temporal
order of cases. We additionally used the last 20% of the training data as a
validation set in order to tune the hyperparameters. We adapted the sequence

2 https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb.
3 https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.
4 https://github.com/verenich/ProcessSequencePrediction/tree/master/data.

https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://github.com/verenich/ProcessSequencePrediction/tree/master/data

Time-Aware LSTMs for Predictive Business Process Monitoring 119

Fig. 3. Activity distribution in training and test set for Helpdesk and BPI12W datasets.
It is evident that the distributions of the activity labels are skewed.

Fig. 4. Event duration distribution for the complete Helpdesk and BPI12W datasets.
It can be observed that the majority of the events are completed within one day.
However, there are many events with longer duration. Note that we input the elapsed
time between events (Δt) in seconds for T-LSTM.

and feature generation methods by Tax et al. [15]. The features include the
activity of the event, position of the event in the case, time since the last event,
time from the starting event of the case, time from midnight, and day of the
week. We create one-hot encoded versions of the ground truth labels ek+1.a for
the next activity prediction in order to compare them with the predicted next
activity labels êk+1.a.

5.3 Training Setup

For hyperparameter tuning, we performed a grid search on the training set and
chose the model with the lowest validation loss. The validation loss is the sum
of activity-related validation loss and time-related validation loss. The num-
ber of LSTM or T-LSTM units were set to 64 or 100. For the dropout rate
(for both dense layers), we tried the values 0.0 and 0.2. We choose Nadam
as an optimization algorithm, as used in [15]. Nesterov accelerated gradient
(NAG) calculates the step using the ‘lookahead’ algorithm, which approximates
the next parameters. Adam optimizer estimates learning rates based on ini-

120 A. Nguyen et al.

Table 1. Descriptive statistics of the datasets used in this study.

Characteristic Helpdesk BPI12W

Number of instances 3,804 9,658

Case variants 154 2,263

Unique activities 9 6

Events 13,710 72,413

Max # events per case 14 74

Min # events per case 1 1

Avg # events per case 3.604 7.497

tial moments of the gradients. Nadam is a combination of both and is robust
in noisy datasets. Furthermore, we tested a range of different learning rates
{0.0001, 0.0002, 0.001, 0.002, 0.01} since this is known to have a large impact on
LSTMs [8]. We trained each model for 150 epochs, with a batch size of 64 and
apply early stopping with patience 25 for regularization.

5.4 Evaluation

We applied the same evaluation metrics as in [15]. We used the Accuracy metric
to evaluate the next activity prediction. For the next timestamp prediction, we
used the Mean Absolute Error (MAE) to evaluate our models.

5.5 Implementation

We conducted all experiments on a workstation with 24 CPU cores, 748 GB
RAM and a singe GPU NVIDEA QUADRO RTX6000. We implemented the
experiments in Python 3.7. We used the DL framework TensorFlow 2.15. The
source code is available on GitHub6.

6 Results

6.1 Next Activity Prediction

Table 2 shows the results for the next activity prediction in terms of Accuracy.
For Helpdesk and BPI12W, the approach Tax+CS+T-LSTM achieved the high-
est Accuracy (0.724 and 0.778) among all approaches. The approach’s improve-
ment compared to the baseline is 0.012 and 0.018. While the two approaches,
Tax+CS and Tax+T-LSTM, outperformed the baseline for Helpdesk, these
approaches achieved a lower Accuracy for BPI12W than the baseline.

5 https://www.tensorflow.org.
6 https://github.com/annguy/time-aware-pbpm.

https://www.tensorflow.org
https://github.com/annguy/time-aware-pbpm

Time-Aware LSTMs for Predictive Business Process Monitoring 121

Table 2. Results for the next activity prediction in terms of Accuracy. The best result
for each dataset is highlighted (larger is better).

Approach Helpdesk BPI12W

Tax (baseline) 0.712 0.760

Tax+CS 0.713 0.757

Tax+T-LSTM 0.718 0.693

Tax+CS+T-LSTM 0.724 0.778

6.2 Next Timestamp Prediction

Table 3 shows the results for the next timestamp prediction task in terms of MAE
in days. All approaches with a T-LSTM cell, clearly outperformed the baseline
for both event logs. Thereby, the approach Tax+CS achieved the lowest MAE of
2.87 days and 0.88 days for Helpdesk and BPI12W respectively. Compared to the
baseline, this approach reduced the MAE by 0.88 days (Helpdesk) and 0.68 days
(BPI12W). The other two approaches, Tax+T-LSTM and Tax+CS+T-LSTM,
achieved a slightly worse MAE values compared to Tax+CS for both event
logs. It is worth noticing that for Helpdesk Tax+CS+T-LSTM and for BPI12W
Tax+T-LSTM yielded the second best results with MAE close to Tax+CS.

Table 3. Results for next step time prediction in terms of MAE in days. The best
result for each dataset is highlighted (lower is better).

Approach Helpdesk BPI12W

Tax (baseline) 3.75 1.56

Tax+CS 2.87 0.88

Tax+T-LSTM 3.01 0.88

Tax+CS+T-LSTM 2.94 0.90

7 Discussion

In this paper, we argued that the elapsed time between consecutive events carries
valuable information on human behavior in running business processes. There-
fore, we introduced T-LSTM cells for PBPM which inherently model the elapsed
time between consecutive events. Further, we introduced of cost-sensitive learn-
ing to better cope with the problem of imbalanced data.

The obtained results indicate that the elapsed time between consecutive
events is informative and that a DNN architecture relying on T-LSTM cells
cab yield more accurate models for PBPM. Especially, with the approach
Tax+CS+T-LSTM, we could outperform the baseline (Tax) for both datasets

122 A. Nguyen et al.

(i.e., Helpdesk and BPI12W) and both prediction tasks (i.e., next activity pre-
diction and next timestamp prediction). Thereby, we could observe that cost-
sensitive learning plays a crucial role for the predictive quality of a DNN archi-
tecture using T-LSTM cells instead of “vanilla” LSTM cells. Interestingly, the
effectiveness of the introduced techniques is more evident for the next timestamp
prediction compared to the next activity prediction

Even though our presented results on DNN architectures using T-LSTMs
seem promising, there are a few limitations to our work. First, we need to ver-
ify our findings by performing experiments on more datasets. Second, a better
hyperparameter tuning approach like Bayesian optimization [1] could be applied
for all configurations to get a better estimate of their effectiveness. Further, sev-
eral runs with random initialization should be performed to estimate the stability
of the models.

8 Conclusion and Future Work

We propose T-LSTM as an alternative to the commonly used “vanilla” LSTM
cell to better exploit information on the elapsed time between consecutive events.
Furthermore, we introduced the concept of cost-sensitive learning to account for
the common class-imbalance in event log data. Our results indicate the effective-
ness of the introduced techniques for the next activity and timestamp prediction.
This suggests that integrating specific mechanisms into neural network layers to
incorporate event log specific characteristics might be an interesting direction for
future research. Here, we mainly demonstrated the benefit of replacing a normal
LSTM with a time-aware LSTM cell for a given baseline approach [15].

An avenue for future research is to investigate if T-LSTM cells might also
improve other LSTM-based PBPM approaches such as Camargo et al. [5] involv-
ing resource attributes or Taymouri et al. [16] generating fake event logs. Another
direction for future research is to further customize an LSTM cell in terms specif-
ically for PBPM. For example, a process-aware LSTM cell could not only deal
with time information but also with resource information.
Author contributions. Srijeet Chatterjee: Equal contribution with An Nguyen

References

1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation
hyperparameter optimization framework. In: Proceedings of the 25rd International
Conference on Knowledge Discovery and Data Mining (KDD) (2019)

2. Baytas, I.M., Xiao, C., Zhang, X., Wang, F., Jain, A.K., Zhou, J.: Patient sub-
typing via time-aware LSTM networks. In: Proceedings of the 23rd International
Conference on Knowledge Discovery and Data Mining (KDD), pp. 65–74 (2017)

3. Bengio, Y., Simard, P., Frasconi, P., et al.: Learning long-term dependencies with
gradient descent is difficult. Trans. Neural Networks 5(2), 157–166 (1994)

4. Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible predictive
models for business processes. MIS Q. 40(4), 1009–1034 (2016)

Time-Aware LSTMs for Predictive Business Process Monitoring 123

5. Camargo, M., Dumas, M., González-Rojas, O.: Learning accurate LSTM mod-
els of business processes. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M.,
Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 286–302. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26619-6 19

6. Di Francescomarino, C., Ghidini, C., Maggi, F.M., Milani, F.: Predictive process
monitoring methods: which one suits me best? In: Weske, M., Montali, M., Weber,
I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 462–479. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98648-7 27

7. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using
deep learning. Decis. Support Syst. 100, 129–140 (2017). https://www.
evermann2017predicting

8. Greff, K., Srivastava, R.K., Koutńık, J., Steunebrink, B.R., Schmidhuber, J.:
LSTM: a search space odyssey. IEEE Trans. Neural Networks Learn. Syst. 28(10),
2222–2232 (2017)

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

10. Khan, A., et al.: Memory-augmented neural networks for predictive process ana-
lytics. arXiv preprint arXiv:1802.00938 (2018)

11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
12. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitor-

ing of business processes. In: Jarke, M., et al. (eds.) CAiSE 2014. LNCS, vol. 8484,
pp. 457–472. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-
6 31

13. Mehdiyev, N., Evermann, J., Fettke, P.: A novel business process prediction model
using a deep learning method. Bus. Inf. Syst. Eng. 62(2), 143–157 (2018). https://
doi.org/10.1007/s12599-018-0551-3

14. Navarin, N., Vincenzi, B., Polato, M., Sperduti, A.: LSTM networks for data-
aware remaining time prediction of business process instances. In: IEEE Sympo-
sium Series on Computational Intelligence (SSCI), pp. 1–7. IEEE (2017)

15. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process mon-
itoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017.
LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59536-8 30

16. Taymouri, F., La Rosa, M., Erfani, S., Bozorgi, Z.D., Verenich, I.: Predictive busi-
ness process monitoring via generative adversarial nets: the case of next event pre-
diction. In: Proceedings of the 18th International Conference on Business Process
Management (BPM) (2020)

17. Weinzierl, S., et al.: An empirical comparison of deep-neural-network archi-
tectures for next activity prediction using context-enriched process event logs.
arXiv:2005.01194 (2020)

18. Weinzierl, S., Dunzer, S., Zilker, S., Matzner, M.: Prescriptive business process
monitoring for recommending next best actions. In: Fahland, D., Ghidini, C.,
Becker, J., Dumas, M. (eds.) BPM 2020. LNBIP, vol. 392, pp. 193–209. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-58638-6 12

https://doi.org/10.1007/978-3-030-26619-6_19
https://doi.org/10.1007/978-3-319-98648-7_27
https://www.evermann2017predicting
https://www.evermann2017predicting
http://arxiv.org/abs/1802.00938
https://doi.org/10.1007/978-3-319-07881-6_31
https://doi.org/10.1007/978-3-319-07881-6_31
https://doi.org/10.1007/s12599-018-0551-3
https://doi.org/10.1007/s12599-018-0551-3
https://doi.org/10.1007/978-3-319-59536-8_30
https://doi.org/10.1007/978-3-319-59536-8_30
http://arxiv.org/abs/2005.01194
https://doi.org/10.1007/978-3-030-58638-6_12

	Time Matters: Time-Aware LSTMs for Predictive Business Process Monitoring
	1 Introduction
	2 Related Work
	3 Background
	3.1 Preliminaries
	3.2 Long Short-Term Memory Cells

	4 Methodology
	4.1 Time-Aware Long Short-Term Memory Cells
	4.2 Network Architecture

	5 Experiments
	5.1 Datasets
	5.2 Preprocessing
	5.3 Training Setup
	5.4 Evaluation
	5.5 Implementation

	6 Results
	6.1 Next Activity Prediction
	6.2 Next Timestamp Prediction

	7 Discussion
	8 Conclusion and Future Work
	References

