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Abstract. In healthcare, more and more process execution informa-
tion is stored in Hospital Information Systems. This data, in conjunc-
tion with data-driven process simulation, can be used, e.g. to support
hospital management with Capacity Management decisions. However,
real-life event logs in healthcare often suffer from data quality issues,
affecting the reliability of simulation results. In this work, we illustrate
the effects of disregarding data quality issues on simulation outcomes
and the importance of domain knowledge using a case study at the radi-
ology department of a hospital. Current literature on data-driven process
simulation acknowledges the need for domain expertise but does not pro-
vide a framework for conceptualising the involvement of domain experts.
Therefore, we propose a novel conceptual framework which interactively
involves experts during data-driven simulation model development.

Keywords: Data-driven process simulation · Data quality · Domain
knowledge · Interactive modelling · Healthcare processes

1 Introduction

Worldwide, healthcare systems are under constant pressure. Increasing popu-
lation numbers, lifestyle factors, ageing populations, and new technologies are
the main drivers for increasing healthcare expenses. Simultaneously, healthcare
budgets are under pressure due to national budget deficits and savings [14].
Healthcare managers have to improve their care processes to maintain high-
quality care for all patients. One key aspect of ensuring this is efficient Capacity
Management (CM), which is used to determine the suitable levels of resources,
such as equipment, facilities, and staff size [28].

To support hospital management during CM decisions, Business Process Sim-
ulation (BPS) can be used to determine suitable resource levels objectively. BPS
uses a (computer) model to imitate the process. This allows to evaluate the effect
of various process modifications without actually implementing them into, nor
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disrupting, the real process [21]. For instance, the effect on throughput rates and
patient waiting times of installing an additional X-ray scanner can be simulated
to determine suitable equipment levels.

Conducting a simulation study is often time-consuming and builds upon sub-
jective inputs, such as interviews and observations. The emerging field of data-
driven process simulation in Process Mining (PM) can overcome some of the
limitations of “traditional” simulation model development by using data from
Information Systems. Data-driven process simulation refers to the automated
discovery of a simulation model from process execution data, i.e. an event log
[9]. A key challenge in this field is data quality, given its strong impact on the
reliability of the simulation results [31]. Because data quality issues are often
encountered in healthcare event logs, it is imperative to assess these issues and
correct them if needed. This will require domain knowledge. Current literature
on data-driven simulation does not provide a clear framework to involve domain
experts in model development.

This paper demonstrates the need for interactive data-driven process simu-
lation in healthcare by assessing the impact of data quality issues on simulation
results. To this end, a case study at the radiology department of a hospital is
considered. In addition, we propose a novel conceptual framework which struc-
tures the integration of domain knowledge in the interactive development of
data-driven simulation models.

The remainder of this paper is structured as follows. Section 2 gives an
overview of the related work. The context of the case study is presented in
Sect. 3. The experimental design, results, and discussion are presented in Sect. 4.
Section 5 introduces our proposed framework for interactive data-driven process
simulation. The paper ends with a conclusion in Sect. 6.

2 Related Work

This work relates to three key domains: (i) simulation for CM decisions in health-
care, (ii) data-driven process simulation, and (iii) data quality in process mining.
The following paragraphs give a brief overview of these domains.

Simulation for Capacity Management Decisions in Healthcare. Capacity
Management decisions in healthcare are concerned with determining the suitable
levels of resources, such as staff size, equipment, and facilities [28]. In literature,
simulation has been used to determine the required number of beds in general
surgery [30]; the number of nurses, doctors, and buffer beds in an Emergency
Department (ED) [7]; and the number of computed tomography (CT) scanners
in a radiology department [27]. Within the radiology department, the context
of our case study, Vieira et al. [32] gave an overview of Operations Research
(OR) techniques – which includes simulation – for optimising resource levels and
scheduling. For further reference on CM and the use of simulation in healthcare,
the reader is referred to one of the existing review papers [26,28,33].

Data-Driven Process Simulation. Data-driven process simulation aims to
“discover” BPS models from event logs automatically [9]. While existing PM
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research can support the discovery of individual BPS model components [19] –
e.g. control-flow discovery, decision mining, or organisational mining – less work
has been devoted to integrating all these components into a single, simulation-
ready model. Rozinat et al. [24] made a first attempt by discovering Coloured
Petri Nets (CPNs) to describe the control flow. In addition, gateway rout-
ing logic and resource pools were also included. Later, the authors extended
their method with activity execution times and case inter-arrival times [25].
Khodyrev and Popova [16] described a similar approach. However, the resource
perspective was not included, assuming no resource constraints [16]. Gawin
and Marcinkowski [13] provided support for activity durations, control-flow,
resources, gateway routing logic, resource schedules, and inter-arrival times.
However, the latter two were not automatically derived from data and had to
be defined by domain experts [13]. ClearPath [15] provides a methodology for
discovering and simulating Care Pathways (CPs). Their approach follows an
agile, iterative method which facilitates the interaction between the modeller
and domain expert, but the obtained process models still have to be manually
recreated in their simulation tool NETIMIS [15]. Simod was the first tool to
automatically integrate all components into a single, simulation-ready model to
support BPS [6]. In addition, Simod is also capable of measuring the accuracy
of the derived model and improve it using hyperparameter optimisation [6].

Data Quality in Process Mining. Real-life event logs tend to suffer from data
quality issues, especially when they originate from flexible environments with
substantial manual recording, such as healthcare [5,23]. These issues include
missing events and incorrect timestamps, where the latter is often caused by
batched registrations by healthcare staff [18,31]. Given the potential impact of
event log quality issues on the reliability of PM outcomes, research attention
on this topic is increasing. Research efforts are centred around three key topics.
Firstly, several frameworks are developed which define event log quality issues
[5,29,31]. For instance, Bose et al. [5] define 27 event logs quality issues and
group them in four broad classes (i.e. missing, incorrect, imprecise, and irrele-
vant data). Secondly, research is performed on data quality assessment, targeting
the systematic identification of event log quality issues. In this respect, the R-
package DaQAPO [20], the log query language QUELI [1], and the CP-DQF [12]
for Electronic Health Records (EHRs) provide tools and frameworks to opera-
tionalise data quality assessment. They are based on the event log quality issues
defined in Vanbrabant et al. [31], Suriadi et al. [29], and Bose et al. [5], respec-
tively. Thirdly, heuristics have been developed which tackle specific data quality
issues, e.g. adding missing events [10], imputing missing case identifiers [3], and
handling event ordering issues [11].

3 Background: Capacity Management at the Radiology
Department

To illustrate the impact of data quality issues in the context of data-driven
simulation, a real-life case study is used. This section introduces the case study.
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3.1 General Context

The case study relates to a project at the radiology department of a hospital.
Hospital management is preparing plans to build new facilities and is requesting
input from each department regarding the required capacity. For the radiology
department, this relates to the number of examination rooms – i.e. scanners –
and the size of the waiting rooms – i.e. the number of seats – for each examination
room. The radiology department wants to approach this Capacity Management
problem in a data-driven way.

To support this data-driven analysis, process execution data is obtained from
the Radiology Information Systems (RIS). This system supports the entire pro-
cess flow, of which a simplified representation is shown in Fig. 1. The process
starts when a patient arrives at the registration desk, after which (s)he is regis-
tered. Afterwards, the patient will wait in the waiting room until (s)he is called
into the examination room. A nurse helps the patient onto the scanning table and
correctly positions the scanner. Next, the image is created. In case the patient
needs an additional scan of the same type, e.g. an X-ray scan of both shoulder
and neck, this image can be made without leaving the room. After all required
scans have been made, the patient can leave the examination room, and the
nurse will post-process the images. If the patient still requires additional scans –
of a different kind than the previous (e.g. also a CT scan) – (s)he will go to the
waiting room of the other examination room. After all scans have been made,
the patient can leave the radiology department and return home. Note that the
interpretation of the scans by a radiologist is out of scope as it does not impact
the required scanner and waiting room capacity.

Fig. 1. Simplified process flow of (ambulatory) patients at the radiology department.

To solve the CM problem in this process, Discrete-Event Simulation (DES) is
used due to the stochastic nature of the process. DES uses simulation to compare
policy alternatives before implementing them in practice [33]. Arena v15 [2] was
used to simulate the model.

In a DES model, entities are dynamic objects which move through the pro-
cess and trigger the execution of activities [19]. In this case study, entities are
patients visiting the radiology department. Four patient types are distinguished:
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(i) ambulatory patients (A) which are outpatients, (ii) day hospital patients (D)
which are admitted to the hospital for at most one day, (iii) hospitalised patients
(H) which are inpatients, and (iv) emergency patients (S) which are transferred
from the Emergency Department (ED).

The process flow depicted in Fig. 1 actually gives an overview of ambulatory
patients. Nevertheless, the flow of the other patient types is, in essence, the same.
Only the way patients arrive and where they wait are different. Hospitalised and
day hospital patients will wait in their room until they are called in. Emergency
patients will wait at the ED.

Depending on the type of scan, a different scanner – and thus a different
examination room – is used. In this case study, there are six different types of
scans of interest: angiogram (ANGIO), computed tomography (CT), echocardio-
gram (ECHO), mammogram (MAMMO), magnetic resonance (MR), and X-ray
(RX). CT, ECHO, MAMMO, and MR all require separate rooms. ANGIO and
RX are performed in RX rooms.

3.2 Data Description

To support the development of the DES model, two years of data from the RIS –
from March 2017 until March 2019 – was available. The dataset includes various
key timestamps for each patient visit, such as time of registration, and start and
end time of scanning. Other attributes, such as the scan type (e.g. ECHO, RX,
etc.) and patient type (e.g. ambulatory, emergency, etc.), were also recorded for
each patient visit.

The dataset contains 404,750 individual patient visits. The proportions per
patient type were 60%, 23%, 15%, and 2% for ambulant, hospitalised, emergency,
and day hospital patients, respectively. In total, 464,053 scans were recorded,
indicating that the majority of patients only needed one scan. Most scans were
RX, i.e. 45%. ECHO represented 19%, followed by MR, 16%, 14% CT, and 5%
MAMMO. A very small proportion, less than 0.001%, were ANGIO.

In the process, the activity “Create Image” (cf. Fig. 1) has the most consid-
erable impact on waiting times and throughput rates because it generally takes
longer than all other activities. Both start and end timestamps are available
of this activity and are recorded when the nurse starts and stops the scanning
device, respectively. We initially expected that this activity would not suffer
much from quality issues because it is recorded automatically. However, this
appeared not to be the case.

Table 1 gives an overview of the scan duration times per scan type. According
to the data, some scans took over several years to complete. A few observations
even had a negative duration, caused by the end timestamp being recorded before
the start timestamp. Given its impact on capacity requirements, the scenario
analysis will focus on the effect of scanning time data with data quality issues
on simulation outcomes.
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Table 1. Scan execution times (in mins).

Scan Type Min Max Mean Median SD IQR

ANGIO 0.00 323,258 14,372.11 26.05 57,336.29 87.83

CT −726.53 30,605 6.73 1.97 196.86 2.23

ECHO −79.00 116,685 71.36 23.38 636.37 28.48

MAMMO −6.48 40,780 16.41 2.98 531.00 1.35

MR 0.00 946,449 161.22 11.48 9,679.90 6.90

RX −1,031.63 2,109,457 22.69 0.55 5,111.25 1.20

4 Scenario Analysis: The Impact of Data Quality Issues

4.1 Experimental Design

To illustrate the impact of data quality issues w.r.t scanning times, we consider
two scenarios:

– Scenario 1 – Direct sampling: In this scenario, actual observed data is
sampled. This is useful when no theoretical distribution, such as the Gaussian,
exponential, or gamma distribution, fits the data well. However, the disad-
vantage is that only the observed values can be used, which is problematic
for smaller datasets [17].

– Scenario 2 – Distribution fitting: In this scenario, a distribution is fitted
to the observed data. We used the distribution with the least worst fit because
not a single distribution fitted the data well. With this approach, we follow
the state-of-the-art of data-driven BPS techniques.

For each scenario, three alternative data filtering approaches are compared:

– Alternative 1 – Validated filtering (VF): In this alternative, which is
the baseline, we used filtered data validated by domain experts. For scenario
2, we had to use empirical distributions for this alternative as none of the
theoretical distribution provided a good fit. In the other two alternatives, we
always used theoretical distributions.

– Alternative 2 – No filtering (NF): Here, we used the unfiltered data
directly. Only observations less than zero were filtered out because the simu-
lation model cannot handle negative activity durations.

– Alternative 3 – Context-agnostic filtering (CAF): Even without any
domain knowledge, one would immediately notice that the maximum values
in Table 1 are unrealistic. Therefore, this alternative uses filtered data to
exclude anomalies. We adopted the commonly used box plot rule to detect
anomalies in the absence of domain knowledge. Any observation smaller than
Q1 − 1.5IQR or larger than Q3 + 1.5IQR is removed [8]. If the lower limit
was less than zero, zero was used instead.
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The length of the simulation run was set at two years for each alternative
in each scenario. Initial experimentation showed that outliers in Alternative 2
caused severe queue accumulation, which resulted in i.a. extreme waiting times.
Therefore, we integrated a weekly “reset”, which removed all patients from
queues and ongoing scans. We will refer to this reset as “flushing” and kept
track of the weekly number of flushed patients.

To compare the alternatives, we focused on patient throughput and waiting
times. Moreover, we looked at the flush count mentioned above. To measure the
true effect of the different distributions used in each alternative, common random
number streams (CRNs) are used. Consequently, the same random numbers are
sampled across all alternatives. To compare the difference between alternatives,
we used the non-parametric Wilcoxon-Mann-Whitney (WMW) test. Instead of
using the original observations, ranks are used to compare the difference between
two samples. This has the advantage that no underlying distribution is assumed
[22]. To control the false discovery rate (FDR) of the multiple testing problem,
we used the Benjamini–Yekutieli procedure [4] to adjust the p-values.

4.2 Results

Throughput Times. The throughput time measures the elapsed time between
the patient’s arrival and departure. Because a patient could require multiple
scans, the average throughput time per examination is considered by dividing the
throughput time of a patient by the number of scans. Patients who were “flushed”
did not complete all scans and are therefore excluded from this measure.

As shown in Table 2, the throughput times for NF are much higher than VF,
e.g. in Scenario 2, the average throughput time per examination for hospitalised
patients is almost 100 times longer. The differences between CAF and VF are
also statistically significant, albeit much smaller. For day hospital patients, rep-
resenting 0.5% of the observations for this measure, the differences between VF
and CAF were not statistically significant. Nevertheless, important differences
in mean throughput times are observed due to larger outlier values for CAF.

Waiting Times. The waiting time is the time a patient spends in a queue
before undergoing a scan. Table 3 shows comparable differences as the through-
put times. Again, large differences between VF and NF are observed, e.g. the
average waiting time for hospitalised patients is more than 150 times longer in
NF than VF for Scenario 2. For day hospital patients, only the difference between
VF and CAF in Scenario 1 is not significant, even though the absolute difference
between the means is, again, rather large, indicating the presence of outliers.

Flush Counts. The more patients are flushed at the end of a week, the more
this indicates that queues have accumulated throughout that week. Especially
in the NF alternative, many patients have to be flushed to “reset” the process
at the end of a week, in some cases even more than a thousand patients in total.
The differences between VF and CAF are much smaller, i.e. on average less
than one patient more was flushed in CAF. However, it should be noted that
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Table 2. Throughput times per examination (in min) per patient type (A, D, H, S)
and alternative (VF, NF, CAF).

ADHS Model 1 Model 2 Mean Model 1 Mean Model 2 Adj. p-value Significance

Scenario 1

A VF NF 25.8493 556.622 <0.0001 ****

A VF CAF 25.8493 45.8470 <0.0001 ****

D VF NF 25.0905 129.1714 0.0077 **

D VF CAF 25.0905 42.2703 0.6525 ns

H VF NF 29.6365 606.8702 <0.0001 ****

H VF CAF 29.6365 34.1812 <0.0001 ****

S VF NF 13.4890 92.7292 <0.0001 ****

S VF CAF 13.4890 16.3655 <0.0001 ****

Scenario 2

A VF NF 25.8622 938.1933 <0.0001 ****

A VF CAF 25.8622 48.8646 <0.0001 ****

D VF NF 24.6727 363.3950 <0.0001 ****

D VF CAF 24.6727 118.0489 0.1479 ns

H VF NF 29.6764 2,740.0265 <0.0001 ****

H VF CAF 29.6764 253.3411 <0.0001 ****

S VF NF 13.5586 76.9503 <0.0001 ****

S VF CAF 13.5586 17.5182 <0.0001 ****

****: p-value < 0.0001, ***: p-value < 0.001, **: p-value < 0.01, *: p-value < 0.05,
ns: not signif.

Table 3. Waiting times (in min) per patient type (A, D, H, S) and alternative (VF,
NF, CAF).

ADHS Model 1 Model 2 Mean Model 1 Mean Model 2 Adj. p-value Significance

Scenario 1

A VF NF 8.7470 536.3071 <0.0001 ****

A VF CAF 8.7470 26.4227 <0.0001 ****

D VF NF 10.8402 112.1685 <0.0001 ****

D VF CAF 10.8402 27.4978 1.0000 ns

H VF NF 17.3111 592.3354 <0.0001 ****

H VF CAF 17.3111 20.7817 <0.0001 ****

S VF NF 1.7663 76.4688 <0.0001 ****

S VF CAF 1.7663 3.6703 <0.0001 ****

Scenario 2

A VF NF 8.7252 912.6071 <0.0001 ****

A VF CAF 8.7252 31.3267 <0.0001 ****

D VF NF 10.3187 337.0036 <0.0001 ****

D VF CAF 10.3187 99.9275 0.0140 *

H VF NF 17.2705 2,737.3727 <0.0001 ****

H VF CAF 17.2705 243.9300 0.0140 *

S VF NF 1.7545 47.0165 <0.0001 ****

S VF CAF 1.7545 5.3972 <0.0001 ****

****: p-value < 0.0001, ***: p-value < 0.001, **: p-value < 0.01, *: p-value < 0.05,
ns: not signif.
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sometimes the maximum number of flushed patients in CAF was much higher
than in VF, e.g. for Scenario 2, VF flushed at most two hospitalised patients,
whereas in CAF this was at most 46. For ambulatory patients, this was smaller,
i.e. nine and seventeen, respectively.

4.3 Discussion

The results illustrate the need to consider data quality issues seriously. The unfil-
tered alternative – which completely neglects these issues – exhibits much higher
throughput times, waiting times, and flush counts than the validated baseline.
The difference between context-agnostic and validated filtering is smaller but
still highly relevant. For instance, waiting times for hospitalised patients are
up to eight times longer in CAF. However, for other performance metrics, such
as flush counts, the differences between VF and CAF are smaller.

In this case study, the cut-off points for outliers in VF and CAF happened
to be reasonably close to each other, except for echocardiograms. The domain
experts indicated a maximum of 30 mins, whereas the box plot rule returned
84.64 min. However, this does not give any guarantee for other cases as context-
agnostic filtering does not take into account the specificities of a particular
domain in any way. Therefore, domain knowledge is always required to achieve
accurate simulation results.

When comparing the differences between the two scenarios for each alter-
native (i.e. comparing the outcomes under direct sampling with their counter-
part under distribution fitting), large differences are often observed between
throughput and waiting times, even though the same input data was used. A
possible explanation is that the theoretical distributions did not fit the data
well. Therefore, we highlight the need to report goodness-of-fit (GoF) statistics
in state-of-the-art data-driven BPS discovery algorithms and use direct sampling
or empirical distributions in case no theoretical distribution fits the data well.

5 Interactive Data-Driven Process Simulation

As illustrated in the case study, data quality issues can have a profound impact
on the reliability of simulation results. Moreover, domain knowledge plays a vital
role in the development of a simulation model. Without domain knowledge, it
is, e.g. challenging to determine whether particular observations are exceptional
– but plausible – or data errors. Even though current literature on data-driven
process simulation acknowledges the need for domain expertise for i.a. validation
purposes, no framework conceptualises how this knowledge should be incorpo-
rated.

To enhance the integration of domain knowledge in the development of data-
driven simulation models, we propose a novel conceptual framework which inter-
actively involves experts during model building. This framework, which is visu-
alised in Fig. 2, distinguishes three interaction cycles. In the first cycle, the initial
model is constructed. For each required modelling task (e.g. entity arrival rate,
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activity durations, resource roles, etc.) – of which an overview is presented in
Martin et al. [19] – the data requirements are verified. For instance, mining
resource roles requires the presence of a resource attribute. If these requirements
are not fulfilled, the domain expert is asked for additional input to perform this
modelling task. Conversely, if the requirements are fulfilled, the quality of the
data is assessed, and an applicable discovery algorithm is employed. Next, the
results of the discovery algorithm and detected data quality issues are presented
for a check by the domain expert. (S)he can then solve any data quality-related
issues and tweak the discovery parameters until the results are satisfactory.

The second cycle integrates all discovered model components from the first
cycle into a single, simulation-ready model. The entire model is simulated, and
the domain expert checks the preliminary results. If the simulation outputs do
not satisfactorily reflect reality, the model can be “calibrated” by altering the
simulation parameters. An estimation of the impact of the altered parameter
on simulation outcomes is delivered in real-time, so the expert does not have to
wait until the entire simulation has been completed before receiving an indication
whether the altered parameter results in the desired change.

The final and third cycle is concerned with the validation of the model.
The calibrated model from the second cycle is simulated comprehensively and
validated by the domain expert. In addition, a validation dataset – which was
not used to discover the model – can be used as well. If the desired accuracy level
is not achieved, the domain expert can modify the simulation parameters again.
The final validated model can be used for the evaluation of various scenarios and
further analyses.

Fig. 2. Interactive data-driven process simulation framework.

6 Conclusion

Data-driven process simulation has great potential within a healthcare context,
e.g. to support hospital management with Capacity Management decisions. How-
ever, real-life data extracted from Hospital Information Systems tend to suf-
fer from data quality issues, which affects the reliability of simulation results.
The presented case study at the radiology department of a hospital illustrates
the impact of these issues, as well as the importance of domain knowledge.
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Current literature on data-driven process simulation acknowledges the need for
domain expertise but does not provide a framework to conceptualise the involve-
ment of domain experts. Therefore, we propose a novel conceptual framework
which interactively involves experts during data-driven simulation model build-
ing. In this framework, a distinction is made between three cycles: an initial
development cycle, a calibration cycle, and a validation cycle.

Future work will focus on how the interaction between the domain expert and
the framework will occur more specifically. Ultimately, our goal is to implement
our framework into a tool to support the integration of domain knowledge into
the development of data-driven process simulation models. In addition, this case
study highlights the need for further research on identifying and remedying data
quality issues in a healthcare context.
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