
OTOSO: Online Trace Ordering
for Structural Overviews

Florian Richter(B), Andrea Maldonado, Ludwig Zellner, and Thomas Seidl

Ludwig-Maximilians-Universität München, Munich, Germany
{richter,maldonado,zellner,seidl}@dbs.ifi.lmu.de

Abstract. Identifying structures in data is an essential step to enhance
insights and understand applications. Clusters and anomalies are the
basic building blocks for those structures and occur in various types.
Clusters vary in shape and density, while anomalies occur as single-point
outliers, contextual or collective anomalies. In online applications, clus-
ters even have a higher complexity. Besides static clusters, which rep-
resent a persistent structure throughout the whole data stream, many
clusters are dynamic, tend to drift and are only observable in certain time
frames. Here, we propose OTOSO, a monitoring tool based on OPTICS.
OTOSO is an anytime structure visualizer, that plots representations for
density-based trace clusters in process event streams. It identifies tem-
poral deviation clusters and visualizes them as a time-dependent graph.
Each node represents a cluster of traces by size and density. Edges yield
information about merging and splitting trace clusters. The aim is to
provide an on-demand overview over the temporal deviation structure
during the process execution. Not only for online applications, but also
for static datasets, our approach yields insights about temporally limited
occurrences of trace clusters, which are difficult to detect using a global
clustering approach.

Keywords: Trace clustering · Visualization · Operational support ·
Anytime clustering

1 Introduction

The ongoing digitalization of industries and social systems creates a strong
demand for analysis tools to transform data into useful insights. Especially early
warning systems for already known issues or still uncovered problems are highly
requested. However, without a thorough exploration of the data, those systems
cannot be developed, since we need to know what we are looking for beforehand.

In online applications, the time for analysis is always very precious and never
sufficient. Therefore, an in-depth analysis has to be postponed, as interesting
and promising aspects have been identified. A more shallow high-level analysis
is more suitable as a time-efficient first exploration.

In the field of clustering, DBSCAN [4] is a prominent technique for density-
based clustering. However, finding good parameters to generate results that
c© Springer Nature Switzerland AG 2021
S. Leemans and H. Leopold (Eds.): ICPM 2020 Workshops, LNBIP 406, pp. 218–229, 2021.
https://doi.org/10.1007/978-3-030-72693-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72693-5_17&domain=pdf
https://doi.org/10.1007/978-3-030-72693-5_17

OTOSO: Online Trace Ordering for Structural Overviews 219

leverage the data into a given story is very tedious. Restarting clustering algo-
rithms with arbitrary parameters is very different from output-driven experi-
mentation. Therefore, OPTICS [1] was proposed as an extension, that offers
a two-dimensional visualization for any multidimensional dataset. In OPTICS
plots, the structure of the data is abstracted and parameters for density-based
clusterings are visually determined.

In an online process mining application, we need to increase the abstraction
level even further. Anytime variants for DBSCAN and OPTICS have been pro-
posed in literature already. However, the structure of an online process is not
covered by observing an event stream and building an up-to-date process model.
The time perspective provides clusters with a further dimension of volatility.

In the context of processes, we differentiate between the major behavior,
the baseline process, and process variants with deviation behavior. During the
process execution, the baseline stays mostly static and rarely tends to shift its
behavior. In contrast, variants often traverse different lifecycles dynamically.
They emerge at certain points in time, merge with other variants, separate again
and disappear eventually. In some time intervals, variants can remain inactive
and reappear seasonally or randomly later.

In this work, we propose OTOSO, an on-demand temporal structure visu-
alization of event streams. It is based on OPTICS and developed to cope with
dynamic structure transformations. OTOSO collects trace data from an event
stream as temporal deviation signatures, generates temporary OPTICS plots
and aggregates their information into a graph plot. This plot shows relations
between baseline and variant clusters. In a quick analysis, structure changes are
identified visually. Each cluster is represented as a node of a specific size at a
point in time. Relations between clusters are indicated by edges between nodes.
The whole plot can then be interpreted as a map, that show the dynamic changes
of the process during the event stream.

2 Related Work

To the best of our knowledge, there is no direct competitor that proposes an
anytime structure overview for event streams. However, there are related meth-
ods that have to be mentioned here. There is a plethora of published techniques
regarding process discovery, conformance checking and clustering. Due to space
constraints, we only mention works that have a focus on temporal perspectives
or which work on event streams.

Event stream monitoring emerges as a required preprocessing step for any-
time analyses. Works in this field mainly prepare intermediate data for process
discovery [3,7,9] and conformance checking [2,13]. These works propose methods
to analyze event streams, which is the more complex task in comparison to trace
stream analysis. The latter paradigm assumes that events are already grouped
into traces, which is mostly a difficult requirement. In many practical scenar-
ios, there is also a strong concurrency between cases. Cases can become inactive
or are stopped without any further information. An approach based on event
streams has to come up with a heuristic to deal with the lack of information.

220 F. Richter et al.

In the area of temporal anomaly detection, Rogge et al. [12] analyzed interim
times between events by applying kernel density estimation to identify outliers in
the temporal perspective. In [11], the authors identify such outliers of event pairs
online by using hashing for event collecting and applying z-scoring to define an
in-control area for unsuspicious event relations. In [10], this idea is leveraged on
the trace level to detect collective trace anomalies using density-based clustering
on temporal deviation signatures. We adapt the presented clustering technique
for OTOSO.

The area of event stream concept drift detection contains more established
works. In [6], Hassani elaborated the idea of [7] to detect work-flow-based con-
cept drifts using different structural metrics on process models. In [8], the authors
present a technique to change forecasting models according to changed environ-
ments due to concept drifts. However, we are not aware of any concept drift
detection approaches taking the temporal perspective into account.

3 Preliminaries

An event stream S : N → N × A × N is a mapping from natural numbers to the
event domain. Each event e = (c, a, t) consists of an case identifier c ∈ N, an
activity label a ∈ A and a timestamp t ∈ N. For case identifiers from another
domain, there is typically a canonical translation into the natural numbers. The
same holds for the timestamps. In the following, we will not distinguish between
cases and case identifiers, as the context provides enough clarification.

Since OTOSO can also be applied to event logs, we define an event log as
a finite multiset of events. Although an event log is mostly grouped by case
identifiers, for OTOSO the log should be sorted by timestamp. Additional event
attributes like resources are ignored in this work, although they might enhance
the results in future works.

Next, we call tuples of two activities (a1, a2) ∈ A2 relations. A relation
(a1, a2) exists in a case c, if there are two events e1 = (c, a1, t1) and e2 = (c, a2, t2)
with t1 < t2. We canonically define the mean μ and variance σ of all time inter-
vals in a finite set of cases for a certain relation. Using z-scoring as follows we
account for the imbalance between all different relations and define the temporal
deviation signature as:

TDSc(a1, a2) =

{ |t2−t1|−μ(a1,a2)

σ(a1,a2)
, e1 = (c, a1, t1), e2 = (c, a2, t2) ∈ c

0 , otherwise

In case of multiple occurrences of a relation, the average z-score is used.
A distance is a positive-definite function, that is symmetrical and fulfills the
triangle inequality. In the following, we use the Euclidian distance due to its
popularity and will not go into detail about other functions in this work. For the
clustering step, we require a measure of density. Density is defined by a number

OTOSO: Online Trace Ordering for Structural Overviews 221

of objects n in a certain area of radius ε. If an object, here a case represented by
its temporal deviation signature, contains at least MinPts many objects within
a neighborhood Nε(c) of radius ε, this case is a core object. All cases within
the neighborhood are at least border objects, if their neighborhood is not dense
enough to be core objects themselves. All remaining cases are noise.

One of the most popular density-based methods is DBSCAN [4]. It selects
objects and classifies them depending of their neighborhood as core, border or
noise points. For a more in-depth description, we point to the corresponding
work of Ester et al. A major drawback of DBSCAN is the difficulty to choose
an appropriate value for the neighborhood distance ε. To overcome this issue,
Ankerst et al. developed OPTICS [1]. Given MinPts, this method determines
for each object its core distance, the minimal distance needed such that the ε-
neighborhood contains MinPts many objects. Derived from the core distance,
the reachability distance between two objects is computed then. According to
this distance, the processing order is depending on the nearest neighbor that
has not been processed yet. This 2D reachability plot uses the ordering on the
x-axis and the reachability distance on the y-axis. Since dense object clusters in
the data space have low pairwise reachability distances, they are accumulated
in the plot and clusters are identified as troughs in the reachability plot. Using
a horizontal line as a density threshold, all troughs below this level represent
clusters using the height as the according ε-value.

4 OTOSO

OPTICS visualizes the cluster structure of a static dataset. However, especially
in process mining, process behaviors are dynamic and cluster structures are likely
to change. To visualize not only a snapshot in a particular time frame, but the
evolution of process variants and trace anomalies, we propose OTOSO, which
is briefly summarized a visual time series of trace cluster structures. OTOSO
consists of two phases. First, the event stream is observed and the necessary
statistics are collected. By using a hashing data structure, the data is provided
for the second module on-demand. At any point in time, the stored data can be
queried as input for OPTICS to produce the current temporal cluster structure
in the recent event stream. All those individual clustering snapshots are used to
iteratively plot the clustering overview for the whole event stream.

4.1 Monitoring Temporal Deviations

OTOSO uses an event stream as input. In contrast to trace streams, the events
have to be collected individually before case statistics can be extracted. A major
problem of stream input is that we can never be sure that a case is still active.
Therefore, we need an aging mechanism to discard old cases without the certainty
that they are canceled or just paused and will be continued later.

222 F. Richter et al.

Fig. 1. Example hash table with h = 7 and w = 4. Each observed stream event has
two potential rows to store it. Since the table is already full, either an event can be
appended to its corresponding trace or an old trace has to be discarded. Do not be
confused with the activity labels, since complete event information is stored.

We utilize Cuckoo-Hashing as it already provided a useful discarding tech-
nique for StrProM [7]. A hash table of height h is filled with case data, that is the
last timestamp, the case identifier and all observed events. Two hash functions
are applied on the case identifier to determine two potential hash table cells for
each case. Instead of storing the case data directly in the hash table, we store a
small and finite collection of cases in a cell. Technically, this width w of the table
is implemented using arrays. Thus, the decaying factor can be adjusted without
corrupting the operation complexity.

For each observed event, both hash functions are applied to identify all poten-
tial storage cells. If the case is already stored, it is updated by adding the event
and setting the last-modified timestamp. In Fig. 1, the stream event in the top
left corner belongs to case c = 665. A potential storage option is in the first hash
table row. The case is already present in this row at the third position. We can
update this cell by appending the event and updating the timestamp to t = 40.
If the case has not been stored yet, we replace the case with the stored case,
that has the oldest last-modified timestamp. The replaced case is the least recent
one in this hash table cell. We try to insert it in the secondary position. Either,
the secondary position has empty space, or we replace it again with the oldest
case in this position. The procedure is recursively repeated until the secondary
position has only more current entries and we discard the current item. Consid-
ering Fig. 1 again, the second stream event with c = 838 has storage options for
row 5 and 7. Neither holds data for this case already. Using the first option, we

OTOSO: Online Trace Ordering for Structural Overviews 223

attempt to store this new case in the fifth row, depending on the first of both
hash functions. The oldest case here is case c = 893. We replace it with the new
case and try to re-insert c = 893. The timestamp t = 9 tends to be already
deprecated, however, since there are older entries in the table, there might be
a chance to discard it after a series of replacements. This would be the case, if
the alternative storage position is in row 1 or 3. Otherwise, the already existing
timestamps in the remaining rows are newer and case c = 893 is discarded.

With this strategy, the hash table is always a finite representation of the
recent cases, however some older behaviors potentially survive in the data struc-
ture since the swap operations regard the table only partially. Another drawback
is that events in the beginning of cases are represented excessively, as the chance
to be discarded is increased for longer cases. Alternatively, the length of the case
can be included in the discarding mechanism. Nevertheless, this gives older cases
an advantage to be kept stored, since smaller and recent cases are discarded. To
the best of our knowledge, a perfectly fair sampling for event streams is still an
open research topic, so we accept the drawbacks and discard by recency only.

Regarding hash functions, there are various ways to implement a set of two
functions. Most programming languages provide at least one built-in hash func-
tion. To derive a second one, it is mostly sufficient to reverse the case identifier
and use the same function again. Another strategy splits the identifier in two
chunks and uses the hash value for the first and for the second chunk to deter-
mine both positions. We did not perform an in-depth evaluation on this topic
here.

4.2 Structure Analysis

The hash table provides at most h·w many cases at any point in time t. The cases
do not have to be completed already. The complete hash table is processed to
extract the case data and to generate the z-scored temporal deviation signatures
for all cases, which is used as input for OPTICS to cluster the traces. The
output gives an impression on the recent temporal trace clustering structure.
For the stream structure overview, we extract all clusters depending on the
chosen density parameters (ε,MinPts). For each cluster C, we create a node at
position x = t and y =

∑
c∈C coreε,MinPts(c) which is the occurrence time and

aggregated cluster density. The size of each node is depending on the number of
contained cases in the cluster respectively the number of cluster elements that
are currently stored in the hash table.

In the basic variant, OTOSO connects cluster nodes if the distance between
cluster centers is below the distance threshold ΔTDS and the nodes occur in con-
secutive time slots. The extension connects cluster nodes of distant time slots.
This allows to identify temporally limited clusters that reoccur after a period of
inactivity. In Fig. 2, OTOSO is applied to an event stream producing OPTICS
plots for various timestamps. At a tickrate of 10k events, further intermedi-
ate results are requested. For four of these intermediate queries, we show the
OPTICS plots in the top row of the figure. For each OPTICS plot, a vertical
slice in the OTOSO plot below is generated. Typically, a process produces one

224 F. Richter et al.

Fig. 2. OTOSO applied to an event stream. Each slice corresponds to a point in time
and a hierarchy of clusterings at this timestamp.

major cluster containing cases that behave ordinary. These are the large spheres
in each slice. For the 50k mark, besides the major cluster, two variants of low
density are active. Both are related to previous queries, but disappear for the
next two queries. Solid lines indicate a strong similarity between clusters of con-
secutive clusters. Dashed lines indicate similarity between slices over a larger
timeframe. Here, we only include lines connecting slices within a timeframe of
30k events. In slice 60k, all variants disappear. In 70k, a small variant emerges. It
has some similarity with the major cluster in 50k, but no connection to the major
cluster in 60k. Hence, the temporal deviation profile first covered this deviation,
but the variant did not occur in the succeeding process window. Interestingly,
the small cluster in slice 80k grows slightly in size, but drastically in density.
Regarding the solid line, we recognize a close similarity between both clusters,
so their behavior represented by the temporal deviation signature is also similar.

This visualization allows to detect different structural changes in an event
stream. Lifecycles of emerging and vanishing variants can be followed as illus-
trated before. The connections of a cluster node indicates, whether this variant
has disappeared or has been inactive for some time. If a node emerges with-
out initial connection, the corresponding variant starts suddenly. Otherwise, a
connected new node hints towards a gradually emerging variant. These mecha-
nisms are related to types of concept drift, however it is difficult to clearly label
the effects according to sudden, gradual and incremental drifts due to the com-
plexity of an event stream. Many activities and therefore activity relations are
included in the temporal deviation profile. Nevertheless, the OTOSO plot gives
an overview over the whole structure. A sudden drift, for instance, will likely
affect a small number of traces and will maybe only affect some activities. The
abstraction level of the visualization is to high to register concept drifts with a
high confidence, except they appear as large-scale effects.

OTOSO: Online Trace Ordering for Structural Overviews 225

5 Evaluation

In the following, we evaluate the correlation between the size of the hash table
and the currency of the collected event data. Afterwards, we show the benefits
of applying OTOSO in comparison to using density-based clustering on the data
as a static data chunk. Finally, we build a stream of a sequence of event logs
to show the capability to detect the transitions between dissimilar event stream
sections. We uploaded OTOSO into a GitHub project1, thereby the experiments
can be reproduced.

5.1 Datasets

Working with pure synthetic datasets causes some issues concerning the detec-
tion simplicity of anomalies or clusters in the data. We need datasets that
are realistic, because synthetic datasets allow too much freedom and often are
unfairly beneficial to the method’s evaluation. Therefore, we utilize the BPI chal-
lenge datasets from 20152 and 20173, in the following abbreviated as BPIC15 and
BPIC17. BPIC15 contains data of building permit applications over four years in
five Dutch municipalities. Five partitions show the process of each municipality
individually. Each sublog contains about a thousand cases. The challenge of this
dataset lays in its about 400 activities and its resulting complexity from the large
number of potential relations. The publications regarding this challenge show,
that there is a high similarity between sublog 1, 2 and 5 while sublog 3 and 4
represent a slightly different behavior. In BPIC17, a loan application process of
a Dutch financial institute over one year is logged. The offer log contains only a
subset of 24 offer related activities. 128985 events are recorded in 42995 cases.
Due to its larger size, we are able to simulate an online observation of the whole
fiscal year.

5.2 Hash Table Size

We use BPIC17 to investigate the influence of the hash table size on the currency
of the data. Each event log is transformed into an event stream. Observing
the stream event by event, each recent event is inserted into the hash table.
Every 1000 events, we determine the average time difference to the current event
timestamp. In Fig. 3, we show the results. Starting with a small hash table, which
only contains 1000 cases, we compare three different dimensions for the table.
In the first case, a table of height 10 with 100 buckets in each position is used.
The second hash table has height 100 and width 10, while the third is a one-
dimensional table of height 1000. The average recency is below 10 days. Towards
the end, no new cases are starting, so no old cases are discarded and the table
gets slightly outdated.

1 https://github.com/Skarvir/OTOSO.
2 https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1.
3 https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b.

https://github.com/Skarvir/OTOSO
https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b

226 F. Richter et al.

Fig. 3. Avg. recency and standard deviation is given for nine Cuckoo hash tables with
different dimensions as height× width.

The second plot shows three hash tables of size 5000 having analogous
changes regarding their dimensions. Due to the higher capacity, more cases can
be stored and the table contains more obsolete items. Storing more items leads
to a more stable clustering and following techniques are affected by noise or
short-term outliers. There is no clear method to determine the best recency and
the corresponding table size, since this is completely depending on the user-
defined time window and the arrival frequency of events and cases. Finally, the
application is also an important factor, since the detection of point-wise anoma-
lies benefits from higher currency while the detection of long-term structures
requires data with high stability. However, the important point we want to high-
light is the advantage of using a two-dimensional hash table. The width allows
shorter rehash cycles, which is already shown in [5,7]. The new insight here is
the greater recency for small numbers of buckets in each position. Already in the
second plot, but much clearer in the third one with a hash table of size 10000,
the one-dimensional hash table has a delay of about 40 days, while both variants
with few buckets have smaller temporal shifts. The difference between using 10
or 100 buckets is rather marginal. Therefore, we recommend using small numbers
of buckets, since the iteration over a large list of buckets is more time-consuming
than rehashing at another position.

5.3 Static Clustering vs. Dynamic Clustering

The BPIC17 dataset contains a significant cluster with deviating temporal
behavior, that contains accepted offers with a delay in its execution. In Fig. 4a,

OTOSO: Online Trace Ordering for Structural Overviews 227

we show the result of OPTICS applied to the whole event log using the tempo-
ral deviation signatures as a representation. Using a neighborhood size of 0.5,
two major clusters are yielded. The largest one contains the majority of cases
and represents the baseline of this process. The second largest one is shown in
OPTICS as a thinner and deep trough on the right side. Since this method yields
a static overview over the temporal clustering structure, we would assume that
the cluster is omnipresent during the complete event stream.

In Fig. 4c, the final OTOSO plot is given. After all events in the stream
have been processed, the clusters are nodes with radii according to the number
of contained cases. The height is determined by their density. Lines indicate
a strong similarity between consecutive clusters. Thus, by following a line we
observe the lifecycle of a specific cluster.

Fig. 4. OPTICS and OTOSO applied on the BPIC17 datalog. MinPts = 100 and
results are yielded each 10k events.

In the beginning, the results are not reliable. Many cases have been collected
only partially yet. As a rule of thumb, we recommend to neglect insights from
the first k cases if the hash table has size k = h ·w. Hence, starting with April, a
baseline of large clusters has been emerged and retains an almost constant size
for the remaining stream. More interesting is the other line above. It indicates
a much smaller cluster, that still has a high density. During August the cluster
vanishes but returns again in September. Instead, two new and dissimilar clusters
emerge for this short period and vanish afterwards again. To show what OTOSO
has highlighted there, we extract all cases contained in the previously mentioned
deviating cluster. This set of cases corresponds to the thin and deep trough in
Fig. 4a. For this cluster and also for the remaining cases, we plotted the starting

228 F. Richter et al.

times as a kernel density estimation in Fig. 4b. Here, we observe a peak in starting
cases in August. The rising number of arriving cases, which do not belong to the
variant cluster, shifts more weight towards the baseline cluster and the two new
variants. The resulting loss in density for our previous variant cluster leads to its
disappearance for one observation tick. While it is possible to detect such effects
with static methods, this analysis is quite tedious. Besides, we already knew
what we were looking for. OTOSO highlights this anomaly during the online
observation of the event stream. In applications, that require short reaction
times, observing the OTOSO visualization provides a very quick indication for
an abnormal behavior.

Fig. 5. OTOSO applied to a five-fold concatenation of all five BPIC15 sublogs.
MinPts = 100 and an intermediate result is demanded every 10k events.

5.4 OTOSO on Event Stream with Concept Drifts

Finally, we use the BPIC15 dataset to how concept drifts affect the structural
overview. The dataset is quite small, so we concatenate all five sublogs into one
larger event log. Further, we concatenated this event log 5 times with itself to
create an even larger log with five segments or 25 sublogs. This event log is then
transformed into an event stream.

In Fig. 5, the OTOSO plot is given after processing the event stream. As
discussed before, we neglect the results from the first two segments of the stream.
After 500k events have been processed, the hash table is filled sufficiently and the
structure of the data starts to appear. The red lines indicate the border points
when a sublog ends and a new one starts. Especially in the last two segments,
there is a significant similarity in BPIC15 between sublog 1, 2 and 5 and also
between 3 and 4. The black similarity line indicates this relation. There is a
much sparser and small cluster above. We do not have expert knowledge to verify
or explain its meaning. On the one hand, it is possible to neglect it due to its
sparsity. On the other hand, this cluster exists in all sublogs and it shows a strong
similarity. In reality, we would recommend a thorough examination, but due to
the lack of expert knowledge, we have to dispense with further speculations.

6 Conclusion

In a world of continuously emerging digitalization, it is very important to get
preliminary insights early and with a high level of abstraction. OTOSO provides

OTOSO: Online Trace Ordering for Structural Overviews 229

an online overview over structures in an event stream. Emerging or vanishing
clusters are visually identified and lifecycles of those structures are tracked.

Although some structural dimensions are monitored like density, size and
similarity of clusters, process data contains more information, which can be
used to augment the structural overview plot. Also, the plot depends on suitable
user-defined parameters. Estimating good parameters is a very difficult task.
Thus, and because a data stream cannot be replayed, it is beneficial to enable
on-demand parameter adaptations while results are visualized.

References

1. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: ordering points to
identify the clustering structure. ACM SIGMOD Rec. 28(2), 49–60 (1999)

2. Burattin, A., Carmona, J.: A framework for online conformance checking. In:
Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 165–177.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74030-0 12

3. Burattin, A., Sperduti, A., van der Aalst, W.M.: Control-flow discovery from event
streams. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 2420–
2427. IEEE (2014)

4. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for
discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp.
226–231 (1996)

5. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: prac-
tically better than bloom. In: Proceedings of the 10th ACM International on Con-
ference on emerging Networking Experiments and Technologies, pp. 75–88 (2014)

6. Hassani, M.: Concept drift detection of event streams using an adaptive window.
In: ECMS, pp. 230–239 (2019)

7. Hassani, M., Siccha, S., Richter, F., Seidl, T.: Efficient process discovery from
event streams using sequential pattern mining. In: 2015 IEEE Symposium Series
on Computational Intelligence, pp. 1366–1373. IEEE (2015)

8. Maisenbacher, M., Weidlich, M.: Handling concept drift in predictive process mon-
itoring. In: 2017 IEEE International Conference on Services Computing (SCC),
pp. 1–8. IEEE (2017)

9. Navarin, N., Cambiaso, M., Burattin, A., Maggi, F.M., Oneto, L., Sperduti, A.:
Towards online discovery of data-aware declarative process models from event
streams. In: 2020 International Joint Conference on Neural Networks. IEEE (2020)

10. Richter, F., Lu, Y., Sontheim, J., Zellner, L., Seidl, T.: TOAD: trace ordering for
anomaly detection. In: 2020 International Conference on Process Mining (ICPM),
pp. 1–8. IEEE (2020)

11. Richter, F., Seidl, T.: Looking into the tesseract: time-drifts in event streams using
series of evolving rolling averages of completion times. Inf. Syst. 84, 265–282 (2019)

12. Rogge-Solti, A., Kasneci, G.: Temporal anomaly detection in business processes.
In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 234–249.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10172-9 15

13. van Zelst, S.J., Bolt, A., Hassani, M., van Dongen, B.F., van der Aalst, W.M.:
Online conformance checking: relating event streams to process models using
prefix-alignments. Int. J. Data Sci. Anal. 8(3), 269–284 (2019)

https://doi.org/10.1007/978-3-319-74030-0_12
https://doi.org/10.1007/978-3-319-10172-9_15

	OTOSO: Online Trace Ordering for Structural Overviews
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 OTOSO
	4.1 Monitoring Temporal Deviations
	4.2 Structure Analysis

	5 Evaluation
	5.1 Datasets
	5.2 Hash Table Size
	5.3 Static Clustering vs. Dynamic Clustering
	5.4 OTOSO on Event Stream with Concept Drifts

	6 Conclusion
	References

