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Preface

The International Conference on Process Mining (ICPM) was established in 2019 as
the conference where people from academia and industry meet and discuss the latest
developments in the area of process mining research and practice, including theory,
algorithmic challenges, and applications. Although the ICPM conference series is very
young, it is able to attract innovative research of high quality from scholars and
industrial researchers.

While the conference was planned to take place in Padua, Italy this year, things
turned out differently. Just like many other academic conferences, also ICPM had to be
held online due to the COVID-19 pandemic. While this was unfortunate from many
perspectives, it did not negatively affect the program that was offered by ICPM. In fact,
ICPM featured co-located workshops providing a forum for novel research ideas for the
first time. In total, ICPM was complemented by six workshops, each focusing on
particular aspects of process mining. These proceedings present and summarize the
work that was discussed in the context of the workshops. ICPM 2020 featured the
following workshops:

– 1st International Workshop on Event Data and Behavioral Analytics (EDBA)
– 1st International Workshop on Leveraging Machine Learning in Process Mining

(ML4PM)
– 1st International Workshop on Trust and Privacy in Process Analytics
– (TPPA)
– 3rd International Workshop on Process-Oriented Data Science for Healthcare

(PODS4H)
– 1st International Workshop on Streaming Analytics for Process Mining
– (SA4PM’20)
– 5th International Workshop on Process Querying, Manipulation, and Intelligence

(PQMI)

In total, the ICPM 2020 workshops attracted 59 submissions. 29 papers were
accepted for publication, leading to a total acceptance rate of about 50%. Especially
against the background of the COVID-19 pandemic, we consider these numbers a great
success. We are very happy about the interesting contributions and discussions that
took place in the context of the workshops and believe that the workshops further
highlighted the importance of process mining in both research and practice.

We would like to thank all the people from the ICPM community that helped to
make the ICPM 2020 workshops a success. We particularly thank the general chairs,
Massimiliano de Leoni and Alessandro Sperduti, for organizing such an outstanding
conference despite the COVID-19 pandemic and the associated challenges. We also
thank the workshop organizers, the numerous reviewers, and, of course, the authors for
making the ICPM 2020 workshops such a success.

February 2021 Sander Leemans
Henrik Leopold
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1st International Workshop on Event
Data and Behavioral Analytics (EDBA)



First International Workshop on Event Data
and Behavioral Analytics (EdbA’20)

Over the past decades, capturing, storing, and analyzing event data has gained attention
in various domains such as process mining, clickstream analytics, IoT analytics,
e-commerce and retail analytics, online gaming analytics, security analytics, website
traffic analytics, and preventive maintenance, to name a few. The interest in event data
lies in its analytical potential as it captures the dynamic behavior of people, objects, and
systems at a fine-grained level.

Behavior often involves multiple entities, objects, and actors to which events can be
correlated in various ways. In these situations, a unique, straightforward process notion
does not exist or is unclear, or different processes or dynamics may be recorded in the
same data set.

The Event Data Behavioral Analytics (EdbA) workshop’s objective is to provide a
forum for practitioners and researchers to study a quintessential, minimal notion of
events as the common denominator for records of discrete behavior in all its forms. The
workshop aims to stimulate the development of new techniques, algorithms, and data
structures for recording, storing, managing, processing, analyzing, and visualizing
event data in various forms. To this end, different types of submissions are welcome
such as original research papers, case study reports, position papers, idea papers,
challenge papers, and work in progress papers on event data and behavioral analytics.
For more information, visit http://edba.science.

This first edition of the EdbA workshop attracted 14 submissions. After careful
multiple reviews by the workshop’s program committee members, seven were accepted
for presentation at the workshop and inclusion in the proceedings. This year’s papers
cover three main topics: visualization of behavior, the discovery of behavior from event
data, and event abstraction.

The organizers wish to thank all the people who submitted papers to the EdbA’20
workshop, the many participants creating fruitful discussion and sharing insights, and
the EdbA’20 Program Committee members for their valuable work in reviewing the
submissions. A final word of thanks goes out to the organizers of ICPM 2020 for
making this workshop possible.

http://edba.science
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Visually Representing History
Dependencies in Event Logs

Manuel Wetzel1(B), Agnes Koschmider1, and Thomas Wilke2

1 Group Process Analytics, Kiel University, Kiel, Germany
ak@informatik.uni-kiel.de

2 Group Theory of Computing, Kiel University, Kiel, Germany
thomas.wilke@email.uni-kiel.de
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Abstract. Many process mining tools produce directly-follows graphs
(DFG) as visual representations of event logs. While the “directly fol-
lows” relation is a good starting point for visualizations, there are sim-
ple phenomena it does not capture, for instance, when whether or not
an event directly follows another event depends on the event directly
preceding it. We call this a history dependency. This paper presents
an empirical study of preferences for visualizing history dependencies:
plain DFGs and two enhanced variants of DFGs (with additional arcs
or rectangles) are evaluated. Our empirical study provides strong sup-
port for making an effort (to discover and) to explicitly visualize history
dependencies. A ProM plug-in generating such explicit visualization is
described in this paper.

Keywords: Directly-Follows Graph · Process visualization · Process
discovery · History dependency · Empirical study

1 Introduction

Event log files are used as input to any process mining algorithm aiming to
discover an as-is process model, to analyze processes or to identify bottlenecks.
To reduce inappropriate conclusions from the discovered process model, it is
essential that this model reflects the reality found in an event log as best as it
can. Mostly, available commercial process mining tools produce a visualization
of a directly-follows graph (DFG) as a representation of event logs. While the
“directly follows” relation is a good starting point for a visualization, there are
simple phenomena it does not capture, for instance, when whether or not an
event directly follows another event depends on the event directly preceding it.
Figure 1 illustrates this phenomenon in terms of traces.

According to Fig. 1a) the execution of activity D right after C is only allowed
when A was executed directly before C. When activity B was executed directly
before C, then only E may directly follow, but D must not. We call this event

c© Springer Nature Switzerland AG 2021
S. Leemans and H. Leopold (Eds.): ICPM 2020 Workshops, LNBIP 406, pp. 5–16, 2021.
https://doi.org/10.1007/978-3-030-72693-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72693-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-72693-5_1


6 M. Wetzel et al.

Fig. 1. a) example of a history dependency; b) discovered Petri net; c) discovered DFG;
d) proposed visualization

dependency a history dependency (more precisely, a history-1 dependency).
Figure 1b) shows a Petri net modeling the dependencies exactly.

A process mining algorithm based on the directly follows relation would pro-
duce the DFG in Fig. 1c). This DFG allows behavior that is not reflected in
reality, namely the trace 〈B,C,D〉. Although limitations of DFGs have been
demonstrated [9], the graphical visualization as DFG is still a common prac-
tice for available commercial process mining tools. The motivation behind our
research, therefore, is not to resort to a completely different type of visualiza-
tion, but rather to study visual enhancements of DFGs being suitable to visualize
history dependencies. For the example given in Fig. 1a), we propose the visual-
ization in Fig. 1d). Another example is given in Fig. 2. Mining an event log as
given in Fig. 2a) leads to the DFG in Fig. 2c), which has an unintended cycle;
we propose the visualization in Fig. 2d), which reflects reality exactly. A process
model exactly modeling the event log is given in Fig. 2b).

Fig. 2. a) a second example of a history dependency; b) BPMN model; c) discovered
DFG; d) proposed visualization
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To learn more about history dependencies and enhancements of the DFG, we
conducted a user study. We compared plain DFGs to two enhanced visualiza-
tions, one with additional arcs (AA) and another one with additional rectangles
(AR). Our findings show strong support for enhancing DFGs to visualize history
dependencies. Thus, our finding does not correspond to common practical imple-
mentations (where history dependencies are not explicitly visualized); this is why
we developed a ProM plug-in that produces enhanced DFGs, more precisely, it
produces AR visualizations.

This paper is structured as follows. The next section compares our work with
related works. Section 3 discusses, beside the plain DFG, visualization variants
for history dependencies. Section 4 describes the design of a study to provide
evidence about the visualization strategies for history dependency. The results
of the study are discussed in Sects. 5 and 6. The ProM plug-in implementation
is presented in Sect. 7. The paper concludes with a summary and an outlook.

2 Related Work

Process discovery algorithms generally distinguish between two types of depen-
dencies [10]: explicit and implicit ones. An explicit dependency, which is also
called direct or causal dependency [1], exists when an activity is directly followed
by another activity in a considerable number of cases. An implicit dependency
refers to various types of indirect (causal) relationships between activities, for
instance, that an activity is eventually followed by another activity in a consid-
erable number of cases. Dependency measures are used to determine whether or
not and which kind of dependency is present. A history dependency in our sense
takes into account causal dependencies that are not only concerned with two
consecutive activities but a small number of consecutive activities [8]. Process
models visualizing history dependency prevent, in some case, unintended cycles
as demonstrated in Fig. 2 and thus overcome a limitation of the DFG discussed
in [9].

We subsume our approach to techniques explicitly visualizing history- depen-
dent information as in [4,5]. Compared to these approaches we do not introduce
a new visualization technique nor label the process model with additional infor-
mation but rather enhance the DFG, which is commonly used in commercial
process mining tools, aiming to reflect the reality found in an event log better
than a plain DFG.

3 Visualization Techniques

To understand the usefulness of the Directly-Follows Graph in terms of visual-
izing history dependencies we compared it with two other visualization variants
as discussed in this section. The visualization techniques lay the foundation
for the empirical validation of visualization preferences for history dependencies
presented in Sect. 4.
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Fig. 3. Examples for a) DFG-based visualization, b) Visualization Additional Rectan-
gle c) Visualization Additional Arc

3.1 Visualization Directly-Follows Graph

The DFG is widely used to visualize behavior between process activities. It gives
information on a similar level of abstraction as the process modeling notations
BPMN, EPK or Petri nets. Usually, commercial process mining tools also attach
time and frequency based performance measures on the arcs for process moni-
toring reasons. Although the semantics of the DFG is easily understandable, the
DFG does not represent a precise process model since it allows more behavior
than has actually been recorded in the event log and can reasonably be expected
as has shown in the introductory example. In this way, a history dependency is
wrongly visualized and is even hardly spotted, which may lead to inappropriate
conclusions inferred from the DFG. The following two visualization variants aim
to overcome this issue.

3.2 Visualization Additional Rectangle

To visualize history dependency the plain DFG is enhanced with an additional
rectangle. We insert to the activity routing the history dependency. We call
this visualization technique “Additional Rectangle”, see Fig. 3b) for an example.
Additional Rectangle (AR) is inspired by hyperedges, a well-known concept from
graph theory, see [2]. Incoming and outgoing arcs of the additional empty rect-
angle indicate the allowed behavior between two activities. Trace replays on this
model would be: 〈A,C,D〉, 〈A,C,E〉, 〈B,C,E〉, which corresponds to the allowed
behavior in Fig. 1a). The trace 〈B,C,D〉 cannot be replayed by this process model
due to a missing empty rectangle at activity C. A more complex visualization of
AR for large process models can be seen in Fig. 4b).

3.3 Visualization Additional Arc

A second technique to visualize history dependencies is “Additional Arc” (AA),
see Fig. 3c). Here, the plain DFG is enhanced with dashed arcs. This visualiza-
tion, like AR, explicitly illustrates a history dependency. The semantics of the
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dashed arc is “activity D can only be executed if activity A has been executed
previously”. Thus, the process model visualized through AA also does not allow
to replay the trace 〈B,C,D〉 on the model. A complex example process model is
shown in 4a) visualizing a model with a total of seven history dependencies.

Fig. 4. Examples for visualizations a) Additional Arc b) Additional Rectangle for large
process models.

4 Design Setting

To evaluate whether the proposed visualizations are suited to recognize history
dependencies, a questionnaire was designed. The main focus of the study was
to investigate the visualization preferences of the three visualization techniques
presented in the previous section. Therefore, a web-based questionnaire was set
up. Participants were free to answer the questions and could withdraw the com-
pletion of the questionnaire at any time and collection of data was anonymous.
The following section describes the design of the questionnaire.

Objects. The objects evaluated by each participant were a set of traces and
a total of eleven process models. Five of the process models were visualized
according to the AR visualization, five with the AA visualization and one as
a Directly-Follows Graph. Small process models (see Fig. 3) had six activities
and one history-1 dependency. Large process models (see Fig. 4) were designed
through ten activities having seven history dependencies including history-3
dependencies.

Response Variable. The response variable in our study is the level of under-
standing that the respondents displayed with respect to a visualization technique
recognizing history dependencies. Understandability is measured as follows:
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– the perceived ease of understanding (PEOU),
– preference between the visualization techniques,
– the number of correct traces spotted for a visualization technique,
– degree of agreement for comprehension questions

Instrumentation. The questionnaire was constructed as follows. After a moti-
vation in history dependency, we asked the participants to complete for each visu-
alization technique a task and to answer comprehension questions. The seman-
tics of each visualization technique was not formally introduced. The task was
to evaluate against a set of traces whether traces can be replayed by the pro-
cess model. We showed 4 traces for each small process model and 21 traces
for each large process model. The description of a task was “Evaluate for each
trace if the trace can be replayed by the process model. Please tick the corre-
sponding box.”. After having completed this task, we asked the participants to
rank (on a 5 point Likert scale) visualization preferences to represent history
dependencies and to rank the visualization techniques based on their ability to
represent history dependencies in a process model. In the second part of the
questionnaire the participants had to complete two further tasks for the visu-
alization techniques AA and AR. The first task was to choose between true or
false statements. We provided for each of the two visualization techniques the
following statements “Please consider the three process models and choose if one
of these models describes the following behavior according to the Additional Arc
visualization The model is able to replay the traces: 〈A,D,E〉, 〈A,D,F〉, 〈B,D,F〉,
〈C,D,F〉. and is not able to replay 〈B,D,E〉 and 〈C,D,E〉 Please select the correct
representation of the wanted behavior” also providing the option “none of the
shown models describes the desired behaviour.”. Subsequently, the participants
had to complete tasks for the visualizations AA and AR for large process models
and to rank their individual preferences for both visualization techniques.

Subjects. The survey was conducted in July 2020. The link to the survey was
sent to the participants of the “Advanced Process Mining”1 course at the Kiel
University as well as a number of experts across different European universities.

Data Collection. Along with the questionnaire, we asked the participants
about the amount of experience they have in the fields of process mining and
business process management. Furthermore, we asked whether they (practically)
worked with process mining and if they understood the motivation behind his-
tory dependency that we presented at the beginning of the questionnaire.

5 Evaluation Results

Finally, the questionnaire was answered by 13 persons. 62% of the respondents
had more than one year of experience in process mining and 38% had more than
three years of experience. All participants used process mining in research. One

1 Students of the “Advanced Process Mining” course also attended the course “Process
Mining” in the winter term and thus had advanced process mining knowledge.
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person worked with process mining in industry projects. The average time to
complete the questionnaire was 41 min.

The results for visualization preferences were analyzed with respect to fre-
quency distribution. Table 1 shows the statistical results for each preference, its
answer options, the frequency in numbers per option, the frequency (%), and
the cumulative frequency (%) for each question. Cumulative frequency is deter-
mined by aggregating agreement (strong agree, agree) and disagreement (dis-
agree, strongly disagree) with the preference. Table 1 summarizes the statistical
results. The results investigate the PEOU measure for each visualization tech-
nique while Table 2 shows the preference between the visualization techniques
and an order between the three visualization techniques with respect to under-
standability. According to this result DFG is ranked in average 2.85 out of 3
with standard deviation of 0.36 meaning that it is less understandable as repre-
sentation for history dependency. The Directly-Follows Graph is being perceived
as not helpful to understand history dependencies. Visualization preferences for
DFG received very low agreements (8% and 15%). In the ranking of individual
preferences the DFG received the last position.

For small process models a slight preference exists for AR against AA visu-
alization. 69% agreed that the AR visualization helped them better to recognize
history dependencies, while 46% voted for AA as first choice. Related to individ-
ual visualization preferences AR was in average ranked (1.54 out of 3) compared
to 1.62 for AA. The high standard deviation, however, might implicate that the
participants are undecided.

A contrary individual preference is observed for large process models. The
statement “Additional Rectangle helped better than Additional Arc to recognize
implicit dependency” received an 85% approval, while the contrary statement
only received a 23% approval. The preference for AR for large process models is
also confirmed by the results in Table 2. The AR visualization was ranked 1.15
(out of 3), while the preference for AA declined to 1.85. So there is a significant
preference for Additional Rectangle visualization over Additional Arc for larger
process models when many implicit dependencies exist.

The results of user tasks (correct traces spotted for trace replay) are shown
in Table 3. The tasks were not evaluated with respect to the correctness of an
answer since no explanation of the semantics of each visualization technique
was introduced to the users. Instead we compared the visualization techniques
according to the overall consensus for each selection.

For each task multiple measures were calculated. The first three measures
point to the consensus on a decision. This was measured by the relative amount
of participants with identical answers. A consensus of 100% means that all par-
ticipants made the identical decision, while a consensus of 50% means that half
of the participants had the opinion that a trace can be replayed by the model
while the other half had the opposite opinion. As for the trace replay tasks mul-
tiple decisions existed we determined the average [AVG] consensus of all traces
within a task, the corresponding standard deviation [STD] and its minimum
[MIN] which is the consensus on the most controverse trace selection.
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Table 1. Results of preferences

Preference Options Freq Freq. (%) Cum. Freq. (%)

The visualization Directly-Follows Graph helped me

better to recognize the implicit dependency over the

visualization Additional Rectangle

s. agree 1 8 %
8 %

agree 0 0 %

undecided 4 31 %

disagree 3 23 %
62 %

s. disagree 5 38 %

The visualization Directly-Follows Graph helped me

better to recognize the implicit dependency over the

visualization Additional Arc

s. agree 2 15 %
15 %

agree 0 0 %

undecided 3 23 %

disagree 2 15 %
62 %

s. disagree 6 46 %

The visualization Additional Rectangle helped me

better to recognize the implicit dependency over the

visualization Directly-Follows Graph

s. agree 5 38 %
69 %

agree 4 31 %

undecided 2 15 %

disagree 1 8 %
15 %

s. disagree 1 8 %

The visualization Additional Rectangle helped me

better to recognize the implicit dependency over the

visualization Additional Arc

s. agree 3 23 %
62 %

agree 5 38 %

undecided 2 15 %

disagree 1 8 %
23 %

s. disagree 2 15 %

The visualization Additional Arc helped me better

to recognize the implicit dependency over the

visualization Directly-Follow Graph

s. agree 7 54 %
85 %

agree 4 31 %

undecided 1 8 %

disagree 1 8 %
8 %

s. disagree 0 0 %

The visualization Additional Arc helped me better

to recognize the implicit dependency over the

visualization Additional Rectangle

s. agree 1 8 %
46 %

agree 5 38 %

undecided 1 8 %

disagree 5 38 %
46 %

s. disagree 1 8 %

The visualization Additional Rectangle helped me

better to recognize the implicit dependency over the

visualization Additional Arc in large process models

s. agree 6 46 %
85 %

agree 5 38 %

undecided 0 0 %

disagree 1 8 %
15 %

s. disagree 1 8 %

The visualization Additional Arc helped me better

to recognize the implicit dependency over the

visualization Additional Rectangle in large process

models

s. agree 1 8 %
23 %

agree 2 15 %

undecided 1 8 %

disagree 5 38 %
69 %

s. disagree 4 31 %

Table 2. Results of ranking the proposed visualizations

Rank (AVG) Rank (SD)

Additional Rectangle 1.54 0.63

Additional Arc 1.62 0.62

Directly-follows graph 2.85 0.36

Additional Rectangle for large models 1.15 0.36

Additional Arc for large models 1.85 0.36
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The aggregated results show a consensus of 85% vs. 92% on average. Recall
that for small process models users had to evaluate four trace replays. A value
of 92% means that almost all participants had the same understanding of the
AR visualization. Note, that it was a binary decision so the expected value of
a random distribution would have been 50%. But not only the average overall
decisions were better for the Rectangle visualization. The worst consensus was
between 77% to 69% and also both calculated standard deviation metrics are
smaller for AR. When evaluating trace replay for large process models (i.e.,
“Please rate your visualization preferences to represent implicit dependencies in
large process models”), the consensus declines for both visualization techniques.
But still, Additional Rectangle with a consensus of 90% is superior to Additional
Arc. The last task (i.e., “Please rank the presented visualization based on their
ability to represent implicit dependencies in a process model”) shows again a
clear preference for AR (ten out of 13 choose it), while AA was ranked the
second with 54% of the participants.

Table 3. Aggregated results of the tasks

Semantic Task name Cons. [AVG] Cons. [STD] Cons. [MIN]

DFG Trace verification (small example) 100% 0% 100%

AR Trace verification (small example) 92% 9% 77%

Trace verification (large example) 90% 8% 69%

Choose correct Model 77%

AA Trace verification (small example) 85% 15% 69%

Trace verification (large example) 77% 17% 54%

Choose correct Model 54%

6 Discussion

Interpretation: The empirical study provides strong support for another visu-
alization for history dependencies than the Directly-Follows Graph. Additional
Rectangle, as well as Additional Arc, are better suited to visualize history depen-
dencies. This finding does not directly correspond to common practical imple-
mentations. The DFG-based visualization, which is the common practice for
available commercial process discovery tools, does not explicitly visualize history
dependencies. Our statistical results show that AR and AA are easily under-
standable for users for small process models, while a strong support for AR was
observed for large process models. Therefore, Additional Rectangle is a suitable
alternative to current visualizations.

Implications: the design of a visual notation is a challenging task [7]. It requires a
balance between symbol deficit (i.e., no constructs representing a graphical sym-
bol), symbol overload (i.e., same graphical symbol for different representations),
symbol redundancy (i.e., alternative graphical symbols for same representation)
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and symbol excess (i.e., showing all constructs on a diagram). The rejection of a
DFG-based visualization is in line with the postulation of symbol deficit. When
no construct is used to represent a graphical symbol then understandability
decreases. Process discovery tools should implement an explicit visualization for
history dependencies.

Limitations: The similar preference for Additional Rectangle vs. Additional Arc
for small process models might be explained due to a weakness of understanding
the semantics of the AA visualization. There are two contrary ways to interpret
the dashed arc in 3 c). Either it is understood as “If A has been executed then
it must be followed by D” or it can mean “activity D can only be executed if
activity A has been executed before”. Apparently, four out of twelve participants
have intuitively interpreted the arc in the first way.

7 Implementation as ProM Plugin

In response to the evaluation results (and also the limitation of AA visualization
discussed previously) we implemented a ProM plug-in, which experiments with
visualizing history dependencies by enhancing the nodes in a DFG with addi-
tional rectangles. An overview of the components of the plug-in, called Depen-
dent Directly Follows Model Miner (DDFM Miner), is shown in Fig. 5. The
plug-in carries out three sequential steps.

Fig. 5. a) Steps of the DDFM miner and b) its output

Step 1. The plain DFG is mined from an event log in XES format using the
“DirectlyFollowsModelMiner” plugin [6], which produces a directly-follows
matrix.
Step 2. History dependencies are being identified. For this purpose, the algo-
rithm takes as input the directly-follows matrix from Step 1 and compares it
with a Petri net manually mined from the same event log using a suited ProM
plug-in miner (see “Preparation” in Fig. 5). The DDFM Miner then analy-
ses every transition-place-transition triplet in the Petri net and determines
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whether this relation is already in the directly-follows matrix. If this is not
the case, a history dependency is added to the history-dependency matrix.
Step 3. A visualizer plug-in relying on the Graphviz environment [3] translates
the two matrices into a graphical representation. This includes four steps:
1. Calculate all dependent paths that connect two history dependent activi-

ties.
2. Pre-process node names to create the additional rectangles with Graphviz.
3. Generate nodes and directly-follows edges.
4. Iterate through dependent paths to remove directly-follows edges and add

dependency edges.

Figure 5b) shows the final result of the DDFM miner.

8 Summary and Outlook

The simple understandablity of the DFG might be one reason for its high pop-
ularity. With regard to history dependencies, however, the DFG-based visual-
ization fails. The objective of this work was to study how to visualize history
dependencies. For this purpose, we compared the plain DFG with visualization
variants in a user study. The results of the study provide strong support to
enhance the plain DFG with additional rectangles to visualize history depen-
dencies.

In response to our finding, the DDFM miner has been implemented, but
this is only a first step. Future tasks are: (1) to evaluate the DDFM miner on
large event logs, (2) to visualize history dependencies for multiple interfering
dependent paths, as, for instance, present in Fig. 4: consider 〈C,G,H, J〉 and
〈B,D,E,H, I〉, (3) To enhance the semantics of AR visualization (see Appendix)
with quantitative aspects such as frequency and time since our definition of
history dependency is a “discrete” one.

A Rigorous Definitions

Let A be a finite set of activities without � and �. A trace is a finite sequence
�A0 . . . An� which satisfies Ai ∈ A for every i ≤ n. An event log is a finite
non-empty set of traces.

A directly-follows graph with multiplicities (DFG+) consists of a finite set V
of vertices, a finite set E ⊆ V × V of edges, and a labeling function λ : V →
A ∪ {�,�} such that V together with E is a directed acyclic graph (DAG),
there is exactly one vertex labeled �, and this vertex is the only vertex with no
incoming edge, there is exactly one vertex labeled �, and this vertex is the only
vertex with no outgoing edge. A DFG+ represents the event log which consists
of the labelings of all paths through it that are traces.

A DFG+ is a directly-follows graph (DFG) when every event is the label of
at most one vertex. A DFG+ is reduced if every vertex is on some path from the
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vertex labeled � to the vertex labeled � and there are no two distinct vertices
with the same set of successor vertices.

Fact. For every event log there is, up to isomorphism, exactly one reduced DFG+
that represents it. Such a DFG+ is called canonical for the event log.

Definition. Let D be a canonical DFG+ for an event log. 1. The event log is
history-free if D is a DFG.

2. Let k be a non-negative integer and A ∈ A. There is a k-conflict for A if
there are paths v0v1 . . . vk and w0w1 . . . wk in D such that vk 	= wk, λ(vi) = λ(wi)
for all i < k, and A = λ(vk) = λ(wk). There is a k-history dependency (k > 0)
for A if there are no k-conflicts for it, but a (k − 1)-conflict.
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Abstract. Process mining supports business process management with
operational insights extracted from event logs. A key challenge for pro-
cess mining is that operational processes in production and logistics often
include batching and unbatching, e.g., to delivery several packages using
one truck tour. Such n:m relations blur the notion of a process instance
and make the causality between events difficult to trace. In this paper,
we address this research problem by introducing causal event models
that capture batching behavior accurately. To this end, we construct
conflict-free prime event structures for event instances of the event log,
and devise various analysis techniques on top of them. We implemented
the techniques in a tool and run in real data of a manufacturing company
with various 1:n and n:1 relations in their production process showing
the potential of our approach.

Keywords: Process mining · Business process modeling · Batching ·
Causality

1 Introduction

Business Process Management (BPM) comprises the various management activ-
ities that help organizations to discover, analyze, implement and monitor their
processes [10]. Recently, BPM has become increasingly evidence-based thanks
to advancements of process mining [1]. The availability of event log data from
enterprise systems for various business processes is one of the key drivers of these
developments as much as the commercial tool support.

Various algorithms have been proposed that support automatic process dis-
covery, conformance checking, enhancement, or analysis of variants [1,10]. One
aspect of specific interest to the process analyst is the batching behavior of pro-
cesses, i.e., the merge of different objects either within the same case or between
different cases. This practice contributes to both, more cost-efficient processing
as well as delays. In order to grasp the batching behavior precisely, the knowl-
edge about causality between the events is necessary. Without this knowledge
spurious batches may occur.
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In this paper, we address this research problem by introducing causal event
models that capture batching behavior accurately. To this end, we construct
conflict-free prime event structures, inspired by [3], for process instances stored
in event logs, before devising various analysis techniques on top of them. Our use
case demonstrates the benefits of our technique for the case of a manufacturing
company with various 1:n and n:1 relations in their production process.

The rest of the paper is structured as follows. Section 2 discusses a motiva-
tional scenario for our work. Subsequently, Sect. 3 presents prior work related to
our research problem with a focus on n:m relations and batching in business pro-
cesses. Section 4 presents the conceptual foundations of our technique. Section 5
describes findings from applying our technique for a production process and dis-
cusses the lessons learned. Finally, Sect. 6 concludes the paper outlining future
research.

2 Motivational Scenario

To motivate the presented work, we refer to an order-to-cash process example
of one of our industry partners called Pastamaker (a pseudonym). Pastamaker’s
business is producing and delivering pasta to major supermarket chains. Their
order-to-cash process is triggered by direct orders of a supermarket. These orders
contain a list of items, where each of these items needs to be picked separately
from the warehouse. In the next step, each item is packaged and sent as one or
multiple deliveries. Each order generates an invoice that is settled and closed by
a payment. In addition, packaging and delivering steps have sub-steps that are
creating packaging notes and group delivery information.

Pastamaker uses batching at various stages of its production process, most
importantly for bundling deliveries. For instance, one order can trigger different
deliveries, and one delivery can include items from different orders. Such delivery
batches are of central importance for keeping the operational costs of the process
low. To further optimize the batching of the orders, Pastamaker would like to
analyze them. In particular, Pastamaker would like to get information, like how
many batching events took place, what events caused batches, or which steps
are bottlenecks or caused delays.

3 Related Work

Perspectives on this problem have been discussed in two main streams of
research: i) process mining of causal events with n:m relationships, which are
common in database schemas; and ii) batching, which includes modeling batches
and extracting knowledge about batches from event logs.

For what concerns stream i), various recent publications consider the problem
of n:m relationships of events. Lu et al. [19] present an approach that maintains
complex event relationships based on database schemas and domain-knowledge
to construct artifact-centric models with causal relationships. As we will dis-
cuss in the work at hand, we follow a similar approach of defining the causal
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relationships between events. The idea of modeling the causal relationships was
further used in [11,12] to capture the concept of one event being part of multiple
cases by using labeled property graphs. In these publications, Esser and Fahland
transform event logs into graphs to store structural and temporal relationships
between events. They discuss how edges between events define a causal relation-
ship, based on the assumption that events are related to each other if there is an
underlying entity to which both events belong. Moreover, the authors show that
their approach provides the means for fast querying of the data. Berti and van
der Aalst [6] provide support for exploring event logs stored in databases from
multiple viewpoints. González López de Murillas et al. [22] identify interesting
case notions from databases, while Bala et al. evaluate heuristics for finding
suitable case identifiers. [4]. Li et al. [17] follow another approach and create
an object-centric event log format that does not require a case notion as it is
required for the XES format. Li et al. argue that this object-oriented event log
format helps to store relationships in the form of 1:n and n:m as it is common
in databases. The problem involved in the usage of classic “flattened” event logs
is also discussed in [2] in which an object-centric process mining approach is
presented. Lu et al. [18], Diamantini et al. [8] and Genga et al. [14] consider the
causality between events by modeling the traces as a partial order of its events.

Dumas and Garćıa-Bañuelos [9] discuss a process mining approach based
on prime event structures. This publication transforms the cases in an event
log into prime event structures and then use the concept of asymmetric event
structures to create a process model. This approach is further used in [3] to
diagnose behavioral differences between business process models. Ponce de León
et al. choose a similar approach in [16] that uses event structures together with
the occurrence nets to create process models. In [5], the author also uses prime
event structures as an intermediate step to create a process model. In comparison
to [3] and [16], the author uses a different approach for creating the process model
out of the separated prime event structures.

The approach presented in the work at hand is using the concept of prime
event structures to represent the causal relationship between different events
stored in a database with 1:n and n:m relationships. Moreover, we use labeled
property graphs to store and querying the event structures for batching events.

For what concerns stream ii), Fahland [13] presents the concept of event syn-
chronization, which is related to the concept of batching. He emphasizes that
proper semantics for processes with n:m interactions require, among others, car-
dinality constraints and synchronization of transitions. Research on modeling
batch behavior in a business process addresses this point at the type level. Pufahl
et al. [23] extend BPMN with a specific batch activity type that considers an
activation rule, a grouping attribute, a maximum batch size, and an execution
order along with the definition of corresponding operational semantics. Martin
et al. [21] present batching metrics for identifying patterns in event logs that
point to batches. These include frequency of batch processing, batch size,
instances per batch, duration and waiting times of instances in batches and
temporal overlaps of batches. In [20], Martin et al. define a mining technique
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for discovering batch activation rules in event logs assuming that any observa-
tion of events done by the same resource doing the same activity for different
cases represents a batch. Without knowledge about causality between events,
this assumption may lead to spurious batches. Klijn and Fahland [15] present an
approach to detect batches from event logs by analyzing the performance spec-
trum discussed in [7]. Their approach provides different metrics to quantify the
batches, e.g., the batch size, different time metrics, or the batching frequency.
A current limitation of this approach is a clear-cut between when disjoint cases
are batches and when not.

As we will see in the following, we provide the means to identify batching
events and to analyze them in great detail by using the causal event models.

4 Batch Analysis Based on Causal Event Models

This section proposes our approach to discover specific batching behavior, which
explains characteristics in batching behavior from an event log. Section 4.1
presents the underlying formal concept used to capture causally related data
from an ERP system. Section 4.2 discusses how all relevant batching nodes are
identified, how batches are visualized and insights into batching behavior is pre-
sented. Finally, Sect. 4.3 discusses the implementation of our approach.

4.1 Determine Causal Event Models for Event Log

The first step of our approach is concerned with identifying the causal relations
between event instances of the event log. To this end, we make use of foreign
key relationships between entities of the database schema. Based on these rela-
tionships, we are able to reconstruct which events have triggered each other in
passages of the process that exhibits 1:n or n:1 relationships like in order:delivery
(n:1). As a formal structure for representing causal event models of the event
log, we build on conflict-free prime event structures.

Definition 1 (Conflict-free prime event structure). A labeled conflict-free
prime event structure is defined by the tuple cf PES “ xE, ď, λy, where E is
a set of events, ď defines the causality relation as a partial order on E and
λ : E → Λ is a labeling function.

A cf PES is based on the prime event structure (PES) as defined in [3]
excluding conflict relations. The latter are excluded from cf PES, because con-
flicts and decisions that where made during the process execution are not visible
in the event log, and therefore they can also not be represented in our causal
event model. A cf PES is equivalent to the notion of labeled partial order. As
an example for a cf PES, Fig. 1 depicts the order-to-cash processes from our
industry partner discussed in Sect. 2. The example in Fig. 1 shows one order with
three separate items that got picked individually from the warehouse and then
delivered in one package.
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Fig. 1. Example cf PES for the motivational scenario.
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Fig. 2. Example DB PES for the motivational scenario. The numbers in square brack-
ets depicts the order affiliation.

If the whole event log is described by using a cf PES, we call it a database
of conflict-free prime event structure (DB PES) or a causal event log. Such a
DB PES can contain several separated cf PES, but also cf PESs that share
one or several events. We call these shared events batch nodes, since they are
bundling together several process instances.

For example, in the running order-to-cash process example, the orders a1, and
a2 might be bundled into one delivery d. A corresponding cf PES “ xE, ď, λy
would then be composed of E “ {a1, a2, d}, ď“ {(a1, d), (a2, d)}, and λ “
{(a1, order), (a2, order), (d, delivery)}, when we omit the other events. Figure 2
depicts these two order-to-cash cf PES. As can be seen in Fig. 2 the two indi-
vidual orders (the text in square brackets represents the event affiliation to E)
share a common delivery event.

4.2 Batching Analysis

Once the DB PES is created, various analysis operations can be performed to
analyze the data. In the work at hand, the functionality to analyze the batching
behavior is presented. In the following, we will first define some preliminaries
and then the analysis approach.

Definition 2 (Event Type, Case Identifier, Node Identifier, Preset and
Postset Nodes). Given E is a set of events and ET is a set of event types, we
define τ : E → ET as the function that returns the type of an event. We define
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eτ “ τ(e). Furthermore, we define id : E → I as an index function for the node
ID, and c ids : E → I as an index function that defines the case IDs of the cases
that are using an event e P E. Furthermore, for a relation R Ď E ˆ E, we define
for an e P E the preset of nodes •e “ {x | (x, e) P R} and the postset of nodes
e• “ {x | (e, x) P R}.

To perform an analysis of the batching operations, we devise an algorithm
that first identifies all batching nodes Ebatches of a DB PES, i.e., Ebatches “
{e|e P E ^ |c ids(e)| ą 1}. In a second step the algorithm identifies for each e P
Ebatches the cf PES that contains the batching node, defined by cf PESe

batch.
This is done by iterating through the nodes of the DB PES with •e and e•,
starting from the batch node e P Ebatches, until the start and end nodes, i.e.,
| • e| “ 0, respectively |e • | “ 0, are reached. The start and end nodes are stored
in Ee

start and Ee
end.

Depending on the size of the cf PESe
batch, the visualization can be too

crowded for a clear visualization. To overcome this problem, the algorithm aggre-
gates all nodes with the same event type, i.e., eτ , of the cf PESe

batch together.
This aggregation step also counts the quantity of the aggregated nodes and
relationships, and the cardinality in a form of {1:1, 1:N, N:1, N:M} of each rela-
tionship. Additionally, the algorithm gets all preceding nodes of the batching
events, i.e., Ee

prec “ {•e|e P Ebatches}. Eventually, the collected information, i.e.,
cf PESe

batch, Ee
batches, Ee

start, and Ee
end, is returned by the algorithm.

The returned information can then be used to visualize and analyze the
batches. To this end, we use a visualization based on the aggregated cf PESe

batch

in a way that all cf PESs are shown and the corresponding batch nodes (stored
in Ee

batches) are highlighted. Furthermore, we provide for each e P Ee
batches: event

type eτ , the batching factor |c ids(e)| (i.e., the size of the batch), the execution
start and end time of e, the average duration of the start of the preceding nodes
Ee

prec to the start of the batch node e, the earliest start time in Ee
start, and the

latest end time in Ee
end.

4.3 Implementation

Our approach has been implemented as a proof-of-concept, called Causal Miner.
The prototype is developed in Java and uses the Spring Framework (vers. 2.3.0).
We store the cf PESs built from the event log in the graph database Neo4j
(vers. 4.0.4) and use Cypher as query language. At the current state, the event
log data can be read from Oracle DB as well as from Microsoft SQL Server. The
visualizations are provided in a Web UI. The source code of the proof-of-concept
prototype can be accessed on GitHub (https://github.com/piwa/causal-miner).

For the analysis of the batching operations, several Cypher queries are used.
Two of them are presented in Listing 1.1 and Listing 1.2. The former returns
the Ebatches’s ordered by the batching factor. To limit the result, the query
returns only the three Ebatches’s with the highest batching factor, this limitation
is configurable. Listing 1.2 returns the cf PESe

batch for the e P Ebatches with
the node ID(e) “ 5647. For better readability, we replaced some configuration
parameters in line 5 with “· · · ”.

https://github.com/piwa/causal-miner


Analysis of Business Process Batching Using Causal Event Models 23

Listing 1.1. Neo4j Cypher Query to Find all Batching Nodes.

1 MATCH (n:InstanceActivity) WHERE size(n.instanceIds) > 1
2 RETURN DISTINCT ID(n) AS batchNodeId , size(n.instanceIds) AS batchSize ,

n.instanceIds AS batchInstanceIds
3 ORDER BY batchSize DESC LIMIT 3;

Listing 1.2. Neo4j Cypher Query to get all cf PES that Share a Common Batching
Node.

1 MATCH (n:InstanceActivity) WHERE ID(n) = 5647
2 MATCH p=(: InstanceStartActivity) -[*1..10] - >(n) -[*1..10] - >(:

InstanceEndActivity)
3 UNWIND nodes(p) AS unwindedNodes
4 WITH collect(distinct unwindedNodes) AS collectedNodes
5 CALL at.ac.wuwien.extendedGroup (...) YIELD node , relationship
6 RETURN collect(distinct node) AS modelActivityList , collect(distinct

relationship) AS modelRelationshipList

5 Results and Evaluation

In this section, we evaluate our prototypical implementation illustrating how it
enables both visual and quantitative analyses of batching.

5.1 Setup and Dataset

The evaluation uses a real-world dataset from our industry partner, the pre-
viously mentioned food production company Pastamaker. The dataset is com-
posed of the order-to-cash processes of the company. In total the dataset contains
nearly 70,000 orders with more than 8,500,000 events. As discussed in Sect. 2,
the process is composed of the following steps: A new instance is triggered by a
supermarket order. The order is then broken down into single order items. These
items are then picked from the warehouse separately. The items are then packed,
and sent as one or multiple deliveries. As the last step, the invoice is created.
Some of these steps also contain substeps and can be shared by several orders.
For instance, it is often the case that several orders are delivered together, i.e.,
sharing the same delivery event, as depicted in Fig. 2.

The company uses an ERP system, which is built on an SQL database. For
the evaluation, we first import the data from this SQL database into the Neo4j
graph database according to the approach presented in Sect. 4. Subsequently, we
perform different analysis steps on the Neo4j data.

5.2 Visualization of the Results

The Causal Miner offers different ways to work with the data. Figure 3 shows a
screenshot of the Causal Miner. This screenshot exhibits an aggregated view of
the DB PES, which brings together all event nodes of the same type. It also
shows the node and relationship quantity (in parenthesis) and the cardinality.

Along with the aggregated view presented in Fig. 3, the Causal Miner offers
several other visualization methods, such as methods to validate the cf PESs
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Fig. 3. Aggregated view of the DB PES.

according to a given process structure, to visualize single cf PESs, and to rep-
resent the activity durations in GANTT charts. The work at hand focuses on the
visualization of batching. A screenshot of this view is presented in Fig. 4. The
main UI consists of two tabs. In the Filter tab, several filtering functionalities
can be selected. In the Upper Batches tab, the results of the batching queries
are visualized. The view depicted in Fig. 4 is showing the batching node with
the highest batching factor, together with the corresponding cf PESe

batch. The
tables on the right side show the information about the batches that are gathered
by the algorithm discussed in Sect. 4.2. If a deeper analysis of the cf PESe

batch

is required, an analyst can click on the Show Instances link under the table. This
link opens the view depicted in Fig. 5 that shows all cf PESs that are involved
in the current batching node, together with information about the single events.

Fig. 4. Filtering options and the batching node, including the aggregated cf PES,
with the biggest batch factor (exact times obfuscated due to privacy).
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Fig. 5. Depiction of all cf PES that share a particular batch node (note: some infor-
mation was anonymized due to privacy concerns).

Fig. 6. Data analyses of batching.

5.3 Data Analyses

Besides the visualization possibilities shown in Sect. 5.2, the approach presented
in Sect. 4, can be used for more detailed quantitative data analyses.

Figure 6 provides two types of analyses that allow us to gather interesting
insights into the batching. Figure 6a presents a scatter plot that shows the total
amount of nodes before the batching node versus the duration between the ear-
liest start time in Ee

start and the latest end time in Ee
end. Each event type is
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plotted with a distinct shape. Figure 6a helps to visualize at least three main
clusters of batching. Especially, it is possible to observe that Invoices are typi-
cally batched in five days. Figure 6b depicts a boxplot that shows the duration
between the earliest start time in Ee

start and the latest end time in Ee
end in dif-

ferent time periods for each event type. Moreover, it can be observed that most
of the time, the orders that are batched in the Delivery event need more time
than the orders that are batched in different events. The shorter durations in
the other case are partially due to corrections in the bookings without logistic
activities and internal orders without deliveries.

The presented charts enable a process analyst to quickly identify outlier
instances of the process. These outliers can then be analyzed in greater detail
with the help of the Causal Miner by analyzing the cf PESe

batch and the involved
cf PES. Figure 7 presents an outlier that was identified from the scatter plot.

Fig. 7. Identified outlier (Exact Times Obfuscated due to Privacy).

5.4 Discussion

As shown in the evaluation, our approach provides different ways to analyze
the batching behavior: First, the Causal Miner provides a way to visualize the
processes as a whole, together with the event quantities and relationship cardi-
nalities, by using the aggregated view of the DB PES. Second, the Causal Miner
provides a view to analyze the batching behavior of the processes. This view
further provides a filter functionality to analyze the batching behavior regarding
different aspects. At the current state, this filtering provides, e.g., the means to
filter for the batching factor. Third, a separate view allows the analysis of the
batched processes on the instance and single events level. Fourth, the approach
provides different ways to analyze the batching by using plots. As shown, these
plots can be used to analyze the batching behavior and to detect outliers. These
outliers can then be analyzed further by using the process visualizations.

These functionalities provide an analyst a way to start with a high-level
analysis of the batching, using the plots and the filters, and then dig deeper
into the batching behavior by analyzing the aggregated and the single process
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instances. Moreover, an analyst can even go to the level of single events. In
addition to the presented features, the Causal Miner provides different other
views, like representing the process instances as a GANTT chart.

Since our approach considers all events stored in a graph-based database, in
our case Neo4j, query performance also plays an important role. In our evaluation
with the 8,500,000 events, queries that are searching for specific events or process
instances need less than 200 ms. Only queries like the one presented in Listing 1.1
needs around 7.5 s since this query searches for all batching nodes, and Listing 1.2
needs around 1.6 s. The evaluation was done on a server with eight cores with
2,6 GHz and 47 GB RAM.

6 Conclusion

This paper introduces a technique to use causal event models to capture batch-
ing behavior. Our approach can be used to identify batches and determine its
most important attributes, which helps to retrieve further insights of the batch
processing. The algorithm is evaluated on real-world event logs, showing the
practicability and usability of the approach. The resulting data can be used to
discover batches and understand their context.

The implemented approach shows that there are important factors for batch-
ing. The processes are batched by different node types that have different char-
acteristics. Important differences can be seen in the complexity of the process
and total duration time of batches. Process analysts can use the data to conduct
further performance analysis and trigger process improvements.

Future work will aim at empirically comparing alternative batches in pro-
cesses and further improve batching analysis methods. This includes auto-
matic identification of outliers and automatic evaluation of its causing process
instances. Another direction for future research involves the automatic sugges-
tions for process improvement based on the batch analysis.
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2018-2019. LNBIP, vol. 379, pp. 24–51. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-46633-6 2

7. Denisov, V., Fahland, D., van der Aalst, W.M.P.: Unbiased, fine-grained description
of processes performance from event data. In: Weske, M., Montali, M., Weber, I.,
vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 139–157. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98648-7 9

8. Diamantini, C., Genga, L., Potena, D., van der Aalst, W.M.P.: Building instance
graphs for highly variable processes. Expert Syst. Appl. 59, 101–118 (2016)
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Energy Interconnection Queues: A Case Study
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Abstract. Globally, interconnecting a new solar or wind generation project to the
grid involves navigating a queue requiring financial deposits, engineering studies,
and fees to upgrade the electric grid. The process can take years, duringwhich time
changes to regulatory regimes, tax incentives, financial markets, or competitive
pressures canmake a project suddenly nonviable for an investor. For grid operators,
the increasing saturation of intermittent generation concurrent with retiring fossil
fuel generation makes every new project increasingly complex to assess. This
paper provides a case study of applying process mining techniques to address the
question of whether the options proposed by Duke Energy Carolinas (DEC) to
reform its generation interconnection queue process are warranted. Two options
for reform have been proposed: creating study clusters based on concurrency or
creating thembased on locational proximity. Results indicate support for aspects of
both options, although some causes may prove uncontrollable due to their origin
in external factors such as market competition and power systems engineering
decision making.

Keywords: Interconnection queue · Process discovery · Conformance analysis

1 Background

This paper provides a case study of applying process mining techniques to “prospect”
options for reforming generation interconnection queue procedures operated by Duke
Energy Carolinas (DEC), an electric utility in the United States with 2.6M customers
[1]. Interconnection queue refers to the process for new power plants to get approval for
connecting to the electric grid. DEC interconnection workflows consists of the following
steps: 1.) application and review, 2.) system impact study, 3.) potential restudy loops as
needed including feasibility and facilities studies, 4.) interconnection agreement, 5.)
construction, 6.) commissioning, and 7.) commercial operations.

Driven by rapid equipment cost declines, government incentives, and a favorable
economic environment, the quantity of solar generation capacity installed in North Car-
olina (NC) grew from ~1,000MWof installed capacity in 2015 to 6,435MWof installed
capacity as of Q1 2020 [2, 3]. This $9B cumulative investment has made NC the second
ranked state in the United States for solar generation capacity [3].
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Investment has been influenced by periodic expiration of the Federal Production
Tax Credit (PTC). Created in 1992, PTC has been renewed 12 times since expiring in
1999 [4]. In early 2016, PTCwas extended until 12/31/2019. This created unprecedented
market stability for solar project developers. In late 2019, PTCwas extendedonly through
12/31/2020 [4]. For this study, 12/31/2015 and 12/31/2019 are key dates.

Investors risk developing andoperating solar generationplants in exchange for selling
their electricity to an electric utility at a fixed price that guarantees a positive return
on investment. Because these investments are speculative in nature until final stages,
economic and competitive forces can have a large effect on investor behavior.

In 2019, North Carolina Utilities Commission (NCUC), which regulates the electric-
itymarket inNC, requiredDEC to expedite the interconnection queue [5]. DECproposed
two approaches: clustering new solar projects based on a temporal basis versus doing so
on a locational basis. The proposed changes would involve the same activity sequence,
but activities would be coordinated across multiple projects. Grid upgrade costs would
be shared across multiple projects as opposed to having the single project that triggers
an upgrade bearing the full upgrade cost [6].

Quarterly DEC regulatory filings were used as source data for an event log of inter-
connection milestones for new solar projects. Due to their legal nature, the filings were
assumed accurate. Filings had quarterly intervals so trace alignment would not have
tied to daily workflow activities; a standard approach to identify factors driving activity
bottlenecks was not viable. Summarized below, a “prospecting” approach was taken to
compare process performance of multiple study groups filtered within a single data set
(Table 1).

Table 1. The process “prospecting” approach taken for this study.

Research question Data limitation “Prospecting” adaptations

Is there evidence to support
temporally grouped cluster
studies?
• Ha: there is seasonal
variation in project activities

• Ho: there is no seasonal
variation

Data describe queue
performance in quarterly
snapshots but do not capture
daily activities

• Define two seasonal study
groups of cases based on
their queue entry date

• Compare Petri net behavior
and event log conformance
for the seasonal groups

Is there evidence to support
locationally grouped cluster
studies?
• Ha: locational clustering can
be seen in a higher count of
projects per substation
where interconnection
occurs

• Ho: there is no locational
clustering

Data lack project developer
activities that describe how
they select locations or how
they manage projects through
the queue

• Define a third study group
of cases located at top
quartile substations in terms
of project volume.

• Compare Petri net behavior
and event log conformance
for top quartile substation
projects vs. Seasonal groups

(continued)
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Table 1. (continued)

Research question Data limitation “Prospecting” adaptations

Is there evidence to explain
how developers navigated the
key date effect on their
investments?
• Ha: PTC expiration dates
influence activities

• Ho: PTC expiration dates do
not influence activities

The effect of external factors
on queue dynamics was not
directly measured

• Define a fourth study group
of top quartile installers
based on their number of
cases

• Compare project
cancellations or sales in key
date years vs. Other years

2 Methodology

2.1 Gather DEC Regulatory Filing Data and Convert It into MS Excel Format

An event log was assembled by collecting documents provided by DEC to NCUC on
a quarterly basis from Oct 2015–Apr 2020 [7]. The documents were converted to a
spreadsheet, standardized, and prepared for process mining in a relational database.

The original data set contained 18,560 events for 4,868 cases. It included these
attributes: Queue Number, Queue Issued Date, Installer Account Name (5,424 null
entries), Energy Source Type (1 nulls), Installed Capacity (no nulls), Facility County
(919 nulls), SubstationName (752 nulls), andFeederNumber (1,331 nulls). The Installed
Capacity attribute was removed due to unit of measure variations. The following activity
types were discovered: Additional Field Work Required, Cancelled, Construction - In
Progress, Construction –Pending, EngineeringDesign - In Progress, EngineeringDesign
– Pending, Facility Study - In Progress, Facility Study – Pending, Feasibility Study –
Pending, Interconnection Agreement Execution – Pending, IR Review - In Progress,
Open, Request Incomplete, and Superseded.

2.2 Assess Process Performance and Generate an Event Log CSV File

Using SQL queries, start and completion times were calculated for project activities.
Completion times were not given, so they were imputed by determining the quarterly
filing report date in which that activity or project disappeared: for example, if a project
was listed as “construction – in progress” in one report but then the project was no longer
listed in the subsequent report, construction was assumed to have completed and thus
given a completion date of the report when it first disappeared. This reduced total events
from 18,560 to 6,659 as events without date information were removed.

Activity types reported by DEC changed over time. Newer activity types that
appeared from 2018 were filtered because they had low occurrence and incomplete
data. Only these events were analyzed: “Open,” “Cancelled,” “Superseded,” “Construc-
tion – In Progress,” and “Construction – Pending.” Total events reduced from 6,659 to
6,456. A CSV file was created in event log structure and exported.
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2.3 Conduct Petri Net Behavior and Event Log Conformance Analysis

The CSV file was uploaded to PROM 6.9, converted to XES format, and filtered into
the following groups: a.) projects initiated between July 1 and December 31 (“Ones”)
b.) projects initiated between January 1 and June 30 (“Zeros”), and c.) projects initiated
for interconnection at a substation within the top quartile of interconnection requests
(“TopQS”). Filter groups a.) and b.) addressed the temporal clustering question. Filter
group c.) addressed the locational clustering question. The sequence of analysis was as
follows: 1.) Petri net analysis, 2.) Conformance analysis usingMulti-perspective Process
Explorer and Replay A Log On Petri Net for Conformance packages.

Using PROM6.9, Petri nets were created usingMine Petri NetWith InductiveMiner
package utilizing default settings. InductiveMinerwas chosen because it produced aPetri
net model with sequential activities most resembling the actual DEC interconnection
process, unlike Alpha Miner and ILP packages. A key assumption was that Inductive
Minor can correctly identify the main process behavior in this event log; all deviations
identified in conformance analysis are true process deviations.

2.4 Conduct Event Log Visualization and Directly Follows Graph Analysis

Log analysis was conducted using Explore Event Log (Track Variants), Log Pattern
Explorer, and Dotted Chart visualizations. Lastly, Mine Matrix package was run to
generate event causality data for comparison.

2.5 Analyze Key Date Behavior of Project Developers (Installers)

In its regulatory filing data, DEC uses the term installer to refer to project developers.
To assess their key date behavior a fourth study group was created for installers within
the top quartile of solar project volume – TopQI. The project events of TopQI were
compared to the remaining 75% of installers (Rest), focusing on events surrounding key
legislative dates: 12/31/15 and 12/31/19. A key assumption was that larger developers
have more engineers and resources compared to smaller installers. Consequently, TopQI
were expected to be savvier in their responses to key dates.

3 Results

3.1 Assess Process Performance

Figure 1 below is a forward-looking chart created in MS Excel that counts projects in
the queue on a quarterly basis in terms of what their future end state will become.

DEC performance in processing interconnection requests improved after 2017. If
you were a developer entering the queue in August 2018, you would have had 3X
the likelihood of completing your project as someone entering just 10 months before.



34 G. Murphy

 -

 500
Count of Active Projects

Projects That Will Be Completed
Projects That Will Remain In Progress
Projects That Will Be Cancelled or Superseded

Fig. 1. Quarterly count of active projects by future disposition in the DEC interconnection queue.

Above, the 12/31/15 key date effect is visible in the precipitous decline of projects that
will remain in progress following Q1 2015. Of this cohort of 527 projects, 20% were
cancelled in Q3 2015, 64% went on to be cancelled or sold (“superseded”) in 2016–
2019, 11%were in pre-construction state as of April, 2020, and only 6% passed onto the
construction stage. The 12/31/19 key date effect is again visible above in the increase in
projects that will be canceled or superseded as of Q4 2019.

Calculated inMSExcel, Figs. 2 and 3 below show the average and standard deviation
of project duration for projects in the DEC interconnection queue.

 -
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 2,000 Average Project Duration (Days)

Projects That Will Be Completed
Projects That Will Remain In Progress
Projects That Will Be Cancelled or Superseded

Fig. 2. Quarterly average duration (days) of
projects in DEC interconnection queue.
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Fig. 3. Quarterly standard deviation duration
(days) of projects in DEC interconnection
queue.

For projects that will be completed, the average project duration for projects declined
from 1,112 days inQ1 2015 to 161.93 days inQ4 2019. Standard deviation of for projects
that will be completed declined from 482 days in Q1 2015 to 107 days in Q4 2019.

Perhaps the best metric of interconnection queue performance success is whether a
project gets constructed. Figure 4 below gives an overview of project success trends:
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Fig. 4. Success rate for new projects initiated each quarter: the count of projects that eventually
start construction/count of all projects initiated.

Figure 4 provides further evidence of improving queue performance between 2017
and 2019. Yet as the key date of 12/31/2019 approached, construction starts fell.

Table 2 below is a summary of queue performance across the three study groups:

Table 2. 2015–2020 interconnection queue performance for Zeros, Ones, and TopQS groups

Filter group Total projects initiated Avg elapsed time/Case (Days) Success rate

Zeros: Q1–Q2 start 1,671 167.41 89%

Ones: Q3–Q4 start 1,838 154.51 80%

TopQS 890 161.25 88%

Between July and December, Ones group initiated more projects (1,838) vs. Zeros
group from January to June (1,671). Ones group projects had shorter elapsed time com-
pared to Zeros group but had a lower success rate. TopQS located projects had lower
elapsed time compared to Zero group while having a similar success rate to Ones group.

3.2 Petri Net Behavioral Analysis

Petri nets for the Zeros, Ones, and TopQS groups were created using the Mine Petri
Net Using Inductive Miner package and assessed using Analyze Behavioral Property of
Petri Net and Analyze Structural Property of Petri Net packages. Results were compared
using the Show Petri Net Metrics package. Table 3 below summarizes results.

Every Petri net was found to be a sound workflow net. All three groups had Extended
Cardoso values of 14 - 20, which per Cardoso places them in the “easy to under-
stand” complexity category [8]. Extended Cyclomatic metrics show wider variation
than Extended Cardoso metrics: there is a wider difference in the number of possible
linear paths across the three groups compared to the number/type of splits. The Struc-
turedness metric results align more with Extended Cardoso results: TopQS has the most
complex model, followed by Zeros and then Ones. The three filtered study groups each
have greater workflow complexity than the event log as a whole (All).
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Table 3. Petri analysis results for Zeros, Ones, and TopQS groups.

Ones Zeros TopQS All

Density metric 0.08824 0.08824 0.06875 0.16667

|F| 36 36 44 22

|P X T| 204 204 230 66

Extended Cardoso metric 15 17 20 9

Extended Cyclomatic metric 26 22 35 9

Number of arcs 36 36 44 22

Number of places 12 12 16 6

Number of transitions 17 17 20 11

Structuredness metric 66 100 117 22

3.3 Conformance Analysis

Conformance analysis was conducted on each filter group and the results were compared
side by side. The results of Multi-perspective Process Explorer and Replay A Log On
Petri Net are shown in Table 4 below.

Table 4. Conformance analysis results for Zeros, Ones, and TopQS groups.

Ones Zeros TopQS All

Avg activity precision 79.2% 86.4% 72.6% 94.7%

# Moves observed 29,897 27,488 15,089 32,342

# Moves possible 37,726 31,806 20,776 34,143

Avg. fitness 63.7% 58.6% 58.2% 68.2%

% Violations 33.4% 37.9% 39.3% 41.8%

# Correct events 3,983 3,946 1,619 6,973

# Wrong events 1,895 2,160 975 5,011

# Missing events 98 251 75 -

# Traces 2,408 2,548 1,130 4,671

# Events 5,878 6,106 2,594 11,984

# Event classes 5 5 5 5

The Ones group had higher average fitness compared to Zeros and TopQS. All other
conformance metrics were lower for Zeros versus Ones. Combined with the lower Struc-
turedness and Extended Cardoso metrics for Ones in Table 3 above, projects initiated
from July to December (Ones) have better performing models than projects initiated
from January to June (Zeros). TopQS group covers the entire year with a locational
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focus, and it has the lowest overall precision and fitness. Despite its successful balance
of low case duration, high success rate, and lowest raw fitness cost, the TopQS model
has more violations and fewer correct events than Ones and Zeros.

3.4 Event Log Visualizations

The figures below summarize log visualizations for Zeros, Ones, and TopQS groups:

Fig. 5. Zeros group Dotted Chart and Auto-association visualizations.

Fig. 6. Ones group Dotted Chart and Auto-association visualizations.

Fig. 7. TopQS group Dotted Chart and Auto-association visualizations.

The Dotted Charts for Zeros and Ones groups are similar. In the upper right corner of
the chart, which displays recent, lowest duration events, Ones have better performance
than Zeros. For Ones, this corner is denser with events and there are more blue “Con-
struction – In Progress” and green “Construction – Pending” dots that indicate success.
Ones also have more tan “Superseded” dots and fewer pink “Cancelled” dots compared
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to Zeros. TopQS shows strongest overall performance in the dotted chart upper right
corner: it is densest and has highest number of blue “Construction – In Progress” and
green “Construction – Pending” dots.

Auto-association plots vary most in terms of the Goodman and Kruskal’s tau values.
For Ones, association values decline overall in the lag range of 9 down to 4 before
increasing again. Zeros and TopQS do not have this mid-range decline. All three groups
rapidly increase their association values at the lowest lag values.

3.5 Directly Follows Graph

Convert Log to Directly Follows Graph package was next run on each group to compare
high-level views of the queue process. Figures 8, 9 and 10 below show the resulting
graphs.

Fig. 8. Directly follows
graph of the Zeros group

Fig. 9. Directly follows
graph of the Ones group

Fig. 10. Directly follows graph
of the TopQS group

Comparing Figs. 8, 9 and 10 to the interconnection queue in Fig. 1 above, the directly
follows graphs differ in the flow of events through the “Construction – Pending” activity.
The DEC proposed process shows a series of engineering studies of a new power plant
and the milestone payments that lead to a facilities study and then an interconnection
agreement prior to construction start. In Figs. 8, 9 and 10, a project can proceed to
“Construction – Pending” directly from the initial “Open” activity, but it is most common
for a project to attain “Construction – In Progress” prior to “Construction – Pending.”
Ones and Zeros differ in the path to “Cancelled” activity, which in the case of Zeros can
occur directly following the “Construction – Pending” activity. TopQS shows the most
hierarchical flow of events, having both “Cancelled” and “Superseded” both directly
following “Construction – Pending” activity.

3.6 Key Date Behavioral Analysis: Solar Project Developers

Key date behavioral analysis focused on comparing installers (developers) accounting
for the top quartile of solar project volume (TopQI) group to the rest of installers (Rest).
Comparing the October to January period for key dates of 12/31/15 and 12/31/19, when
PTC was set to expire, versus 12/31/2016, 12/31/17, and 12/31/2018, a sharper picture
of queue dynamics emerges. Table 5 below shows this comparison.
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Table 5. Comparison of key project activities that start between October to January for PTC
expiration dates (2015, 2019) versus other years (2016, 2017, 2018).

Time period Cancelled Construction - in
progress

Construction -
pending

Queue issued Superseded

PTC expiration
2015

134 0 0 304 0

PTC expiration
2019

166 0 0 501 47

2016, 2017,
2018

192 296 49 948 60

PTC expiration years of 2015 and 2019 had a disproportionate number of projects
cancelled or superseded (347 = 134 + 166 + 0 + 47) versus the other years (252 =
192 + 60). No projects were committed to construction in 2015 or 2019. More projects
were initiated in the 2019 end of year period (501) versus 2015 (304), although this was
far below 2016–2018 levels (948).

The Tables 6 and 7 below compare top quartile installers (TopQI) to the Rest of
installers.

Table 6. Comparison of key project activities of TopQI group during end of year time intervals.

Time Period Cancelled Construction - in
progress

Construction -
pending

Queue issued Superseded

PTC expiration
2015

77 0 0 218 0

PTC expiration
2019

72 0 0 8 23

2016, 2017,
2018

103 58 13 306 21

Table 7. Comparison of key project activities of rest group during end of year time intervals.

Time period Cancelled Construction -
In progress

Construction -
pending

Queue issued Superseded

PTC expiration
2015

57 0 0 86 0

PTC expiration
2019

94 0 0 493 24

2016, 2017,
2018

89 238 36 642 39
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For Cancelled projects, TopQI did not change practices from 2015 to 2019 key dates
(77 vs. 72), but the Rest increased cancellations by 65% in 2019 (57 vs. 94). For project
starts (Queue Issued), TopQI decreased theirs by 96% from 2015 to 2019 key dates (218
vs. 8) and the Rest increasedQueue Issued by 83% (86 vs. 493). For Superseded, TopQI
and the Rest both increased this activity in 2019 (0 vs. 23 and 24, respectively).

4 Discussion

4.1 Petri Net Behavioral Analysis

Variation in complexity metrics observed across groups and scenarios based on the
same business workflow could point to both anomalies in the data set and opportunities
to streamline the workflow and standardize its data model, simply from the perspective
of reducing errors. Since all groups derive from the same event log which has been
simplified by removing lowoccurrence events, these complexity differences could reflect
real variances in the process. Additionally, better Petri net performance observed in the
Ones model could explain its advantage in average case time assuming poor process
performance is reflected in project delays. However, the observations rely on Inductive
Minor’s ability to correctly portray the main process model in Petri net outputs.

4.2 Conformance and Event Log Analysis

Seasonality is a factor inmodel performance. There is seasonal variance in case duration,
in the number of events and traces per case, and in model conformance.

Assuming Inductive Minor did accurately capture the main process model in its gen-
erated Petri nets so that variance across study groups reflects real process variation, Zeros
had worse model performance than Ones but also had a higher success rate. Projects ini-
tiated from July to December (Ones) hadmore low-occurrence events that were removed
during data preparation and this could have advantaged its model performance compared
to projects that initiated from January to June (Zeros). Having a lower project workload
did not make Zeros group interconnection requests get processed faster than Ones group.
It is possible that Zeros having extra time helped resolve issues blocking construction
starts, but the key date effect could just as likely have increased cancellations for Ones
during the end of the year. The higher share of project cancellations and supersessions
(sales) during the end of year period could have been a factor on Ones having a lower
success rate versus Zeros. Despite having the lowest density model, TopQS had the
lowest model fitness and precision. The simpler model for TopQS did not advantage its
model conformance. From a model conformance perspective, it is not clear what drove
TopQS success.

Dotted Chart results of Figs. 5, 6 and 7 above show differentiation across groups in
shortest duration events occurring in the most recent time intervals. In this upper right
quadrant area, Ones have higher success versus Zeros and TopQS have highest success
overall. Relative success and short duration of TopQS projects could be a recent trend.

Overall, if InductiveMinor did not accurately portray themain process flows then the
validity of conformance analysis results is questionable. However, the study group dif-
ferentiation observed in Dotted Chart results could support the differentiation observed
in conformance analysis.
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4.3 Key Date Behavioral Analysis

End of year project activities differed between the TopQI and Rest of installers group.
Comparing TopQI to the Rest, there is a relative increase in Q4 cancellations across
all years, but not on the specific key dates of 2015 and 2019. TopQI also showed a
relative increase in superseded projects in Q4 and on key dates compared to the Rest.
For project initiations, TopQI had a greater volume in Q4 across all years including key
dates compared to the Rest, but the volume of project initiations was still lower during
this time of year. Overall, it appears that TopQI were reducing DEC area investment at
the end of 2019 while the Rest were still ramping up DEC area investment. TopQI were
aggressive investors in 2015 but cautious or exiting the DEC area in 2019.

4.4 Approach Viability

Converting regulatory filings into an event log for process “prospecting” analysis was
a novel approach. Because the main questions in the queue reform debate had already
been framed within publicly available documents, process “prospecting” was able to
provide valuable context despite limitations of the data set.

Filtering study groups from a common data source met the objective of finding
process variations relative across the groups. Going further to benchmark this inter-
connection queue data set against that for queues in other regions would be a more
challenging topic which would require more robust data.

Addressing more detailed questions about root cause would have required alignment
analysis at the trace level. Alignment analysis was not viable because the end dates of
many activities were imputed on a quarterly basis, which may have created concurrency
that did not really exist.

5 Conclusions

Based on results, the null hypotheses for seasonal and locational cluster patterns can
be rejected. Neither the process performance nor process “prospecting” results indicate
seasonal or locational uniformity in the DEC interconnection queue. In terms of project
developer behavior, the null hypothesis that PTC expiration dates do not influence project
events can also be rejected. Addressing the influence of key dates on project events will
be an important consideration to finalizing the proposed DEC cluster study process.

Process “prospecting” played a useful role in addressing whether the proposed queue
clustering approaches were warranted. Its insights into model performance could be
useful to design the optimal cluster study workflow. As a followup, process mining
on a more robust DEC interconnection queue data set could determine whether the
process variances observed by Inductive Minor are accurate. In addition to supporting
the business and regulatory mandate for queue reform at DEC, this could help improve
the design of the cluster study workflow.

More broadly, this study confirmed that processmining can be incorporated to benefit
process-focused business scenario analysis. PROM 6.9 offered a vast array of analytical
options, which was advantageous. Since it is a research tool, the downside of PROM 6.9
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is that each plugin has its own documentation and accompanying research papers. This
caused some confusion around interpreting process mining results.

From the industry perspective, process “prospecting” is a common scenario; busi-
nesses are likely to begin a process transformation initiativewith a small pilot and limited
data. There is an opportunity in the process mining community to craft a “prospecting”
interface that allows practitioners to assess their data and recommend plugin options that
meet their study objectives. Long term, meta-research studies across the suite of PROM
6.9 plugins may be useful to cultivate the process mining body of knowledge.
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Abstract. Enterprise information systems allow companies to maintain detailed
records of their business process executions. These records can be extracted in
the form of event logs, which capture the execution of activities across multi-
ple instances of a business process. Event logs may be used to analyze business
processes at a fine level of detail using process mining techniques. Among other
things, process mining techniques allow us to discover a process model from an
event log – an operation known as automated process discovery. Despite a rich
body of research in the field, existing automated process discovery techniques do
not fully capture the concurrency inherent in a business process. Specifically, the
bulk of these techniques treat two activities A and B as concurrent if sometimes
A completes before B and other times B completes before A. Typically though,
activities in a business process are executed in a true concurrency setting, mean-
ing that two or more activity executions overlap temporally. This paper addresses
this gap by presenting a refined version of an automated process discovery tech-
nique, namely Split Miner, that discovers true concurrency relations from event
logs containing start and end timestamps for each activity. The proposed tech-
nique is also able to differentiate between exclusive and inclusive choices. We
evaluate the proposed technique relative to existing baselines using 11 real-life
logs drawn from different industries.

1 Introduction

Enterprise information systems, such as Enterprise Resource Planning (ERP) systems,
maintain detailed records of each execution of the business processes they support.
These records can be extracted in the form of event logs. An event log is a set of event
records capturing the execution of activities across a set of instances of a process.

Process mining techniques allow us to exploit event logs in order to analyze busi-
ness processes at a fine level of detail. Among other things, process mining techniques
allow us to discover a process model from an event log – an operation known as auto-
mated process discovery. Despite a rich body of research in the field, existing automated
process discovery techniques do not fully capture the concurrency inherent in business
processes. Indeed, the bulk of automated process discovery techniques operate under
an interleaved concurrency model – a model of concurrency where two events are con-
current if they occur in either order. Specifically, existing techniques treat two activities
c© Springer Nature Switzerland AG 2021
S. Leemans and H. Leopold (Eds.): ICPM 2020 Workshops, LNBIP 406, pp. 43–56, 2021.
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A and B as concurrent if sometimes A completes before B and other times B completes
before A. The interleaved concurrency model is suitable in systems where actions are
atomic. However, in a business process, activities have a duration and the execution of
two or more activities may overlap temporally. In other words, business processes con-
tain true concurrency. The failure of existing automated process discovery techniques
to take into account this true concurrency leads them to miss certain concurrency rela-
tions. For example, when an activity A always completes before activity B (because B
takes longer) even though A and B overlap, existing techniques treat A and B as sequen-
tial. If A is then followed by C and C usually completes after B (but overlaps with it),
they conclude that A, B and C are sequential, thus missing the observed concurrency.

This paper addresses this gap by presenting a refined version of an automated pro-
cess discovery algorithm, namely Split Miner [6], capable of discovering true concur-
rency relations from event logs that record both the start and end timestamps of activity
executions. The proposed technique, namely Split Miner 2.0, is also able to differentiate
between exclusive and inclusive choices. The paper reports on an empirical evaluation
that compares Split Miner 2.0 against existing baselines in terms of accuracy and model
complexity measures.

The rest of the paper is structured as follows. Section 2 briefly reviews existing auto-
mated process discovery techniques. Section 3 introduces the approach to exploit true
concurrency for automated process discovery. Section 4 presents the empirical evalua-
tion while Sect. 5 summarizes the findings and further possible extensions.

2 Background and Related Work

An event log records information about a set of executions of a business processes
(a.k.a. cases). Concretely, an event log is a chronological sequence of events, each one
capturing a state change in the execution of an activity. As a minimum, each event in a
log has three attributes: the identifier of the process execution (a.k.a. case ID); the label
(i.e. the process activity the event refers to); and the timestamp (e.g. 10/07/2020 10.43).
Optionally, an event may have other attributes such as the resource who triggered the
event, their department, etc. In this paper, we require that at least one fourth attribute is
attached to each event, namely the life-cycle transition. For a given event, this attribute
indicates what state-change the referenced activity has undergone. The life-cycle of an
activity captures all the states in an activity execution and their possible transitions. In
general, one could observe very complex life-cycles, including states such as created,
assigned, started, suspended, etc. In this paper, we adopt a simple life-cycle model
wherein an activity execution can be in one of two states: start (i.e. the activity execution
started); and end (i.e. the activity execution ended).

Event logs can be exploited for different types of analysis including conformance
checking, process performance mining, and automated process discovery [16]. In this
paper, we focus on the latter. The goal of automated process discovery is to discover a
process model (such as the one in Fig. 1) by analysing an event log such as the one in
Table 1 (the latter is just an extract and not a full log).

The quality of an automatically discovered process model is traditionally assessed
over four dimensions: fitness – the amount of process behaviour recorded in the event
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Fig. 1. Process model example.

Table 1. Event log example.

Case-ID Activity Life-cycle Timestamp

1 a start 2020-07-08 10.03

2 a start 2020-07-08 10.42

1 a end 2020-07-08 10.57

2 a end 2020-07-08 11.21

1 b start 2020-07-08 13.29

1 c start 2020-07-08 14.13

2 b start 2020-07-08 15.22

2 b end 2020-07-09 10.24

1 b end 2020-07-09 10.37

2 d start 2020-07-09 11.13

2 d end 2020-07-09 12.28

1 c end 2020-07-09 12.53

log that can be replayed by the process model; precision – the amount of behaviour
captured by the process model that can be found in the event log; generalization – the
amount of behaviour captured by the process model that even not being observed in the
event log is likely to belong to the original process; and simplicity – quantifying how
difficult is to understand the process model. Furthermore, a process model should be
sound. The notion of soundness has been defined on Workflow nets [17] as a correct-
ness criterion, and is also applicable to BPMN models. Formulated on BPMN models,
soundness encompasses three properties: i) every process instance eventually reaches
the end event (no deadlocks); ii) no end event is reached more than once during a pro-
cess execution (proper completion); iii) each process activity is triggered in at least one
process execution (no dead activities).

A recent literature review of automated process discovery algorithms [5] showed
that only few algorithms stand out for accuracy and performance among those out-
putting procedural process models. Specifically, Inductive Miner (IM) [10], Evolution-
ary Tree Miner (ETM) [7], and Split Miner (SM) [6]. IM and ETM are known to dis-
cover process models that are either highly fitting or precise, discovering simple, block-
structured and sound process models, while SM focuses on maximizing both fitness
and precision at the cost of simplicity, structuredness, and in rare cases compromising
the soundness of the process models [5,6]. However, of these three automated process
discovery algorithms, only IM provides a variant that takes into account the activities’
life-cycle when discovering a process model. IM life-cycle variant [11] analyses the
activities’ life-cycles to distinguish between concurrency and interleaving relations.

Past studies that investigated the problem of discovering control-flow relations
between activities by leveraging life-cycle information or execution times include: (1) a
simple algorithm [13] for discovering block-structured process models from complete
and noise-free event logs; (2) an extension of the α-algorithm, i.e. the β algorithm [19];
(3) an extension of Heuristics Miner [8]; and (4) the work of Senderovich et al. which
explores process performance modelling via temporal network representation [14]. The
first one is limited to noise-free log. The second and third are based on underlying algo-
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rithms that produce unsound and inaccurate models when applied to real-life event logs,
as shown in [5]. The fourth approach is not geared to discovering process models but
rather targets the problem of performance mining.

In this paper, we extend the SM algorithm, which has been shown to produce
accurate and (generally) sound process models over real-life logs. Figure 2 shows an
overview of how SM discovers a process model from an event log. Given an input event
log, SM operates over five steps: i) discover the directly-follows graph (DFG) and loops
from the event log; ii) analyse the DFG for discovering concurrency relations; iii) fil-
ter the DFG by removing the infrequent behaviour; iv) discover the split gateways; v)
discover the join gateways. Each step is a standalone operation based on tailored algo-
rithms [6], such a modular approach allows the replacement of any step with alternative
methods. In this paper, we show how we updated the first, second, and fifth steps to
discover true concurrency and inclusive choices, and reduce the chances of producing
unsound process models via heuristics.

Event
Log

DFG and
Loops Discovery

Concurrency
Discovery Filtering Splits

Discovery
Joins

Discovery
BPMN
Model

Fig. 2. Overview of the Split Miner approach [6].

3 Approach

In this section, we describe how we redesigned the first two steps of the Split Miner
original approach [6] and integrated in the last step two heuristics to repair models
that are unsound due to improper completion and identify inclusive relations between
activities, enabling the discovery of OR-splits.

3.1 Refined Directly-Follows Graph Discovery

Given an event log, the first step performed by Split Miner is to sequentially read the
events and build the directly-follows graph (DFG). Although this operation is straight-
forward, its output strictly depends on how the event log and the DFG are defined.
Definitions 1, 2, and 3 capture the notion of DFG used in the original Split Miner.

Definition 1. [Event Log as in [6]] Given a set of process activity labels A , an event
log L is a multiset of traces, where a trace t ∈ L is a sequence of activity labels
t = 〈a1,a2, . . . ,ak〉, with ai ∈ A ,1 ≤ i ≤ k. In addition, we use the notation a ∈ A to
refer an activity a that belongs to a generic trace t ∈ L .1

Definition 2. [Directly-Follows Relation as in [6]] Given an event logL and two pro-
cess activities ax,ay ∈ A , we say that activity ay directly-follows activity ax, with nota-
tion ax � ay, if and only if (iff) ∃ 〈a1,a2, . . . ,ak〉 ∈ L | ai = ax∧a j = ay∧ j= i+1∧0<
i< n.
1 For simplicity, we use the term activity to refer to its label.



Automated Discovery of Process Models 47

Definition 3. [Directly-Follows Graph as in [6]] Given an event log L , its Directly-
Follows Graph (DFG) is a directed graph G = (N,E), where N is the non-empty set of
nodes, where each node represents a unique activity a ∈ L and there exists a bijective
function λ : N �→ A such that λ (n) retrieves the activity n refers to; and E is the
set of edges capturing the directly-follows relations of the activities observed in L ,
E = {(n,m) ∈ N×N | λ (n) � λ (m)}.
To capture the activities’ lifecycle information, we refine the concept of event log.

Definition 4. [Refined Event Log] Given a set of events E , a refined event log Lρ is a
multiset of traces, where a trace t ∈ Lρ is a sequence of events t = 〈e1,e2, . . . ,ek〉, with
ei ∈ E ,1 ≤ i ≤ k. Each event e ∈ Eρ is a tuple e = (l, p, t), where l ∈ A is the process
activity the event refers to, retrieved with the notation el; p ∈ {start,end} is the state of
the life-cycle of activity l, retrieved with the notation ep; and t is the timestamp of the
event, retrieved with the notation et .

While redefining the event log to capture the activities’ life-cycle information is intuitive
and follows from its original definition [16], the same does not apply for the DFG.
Indeed, more than one approach could be used to generate a DFG from a refined event
log. The simplest approach would be to disregard all the events of a specific state of an
activity life-cycle, for example, we could remove fromLρ all the events e ∈ Lρ | ep =
start or all the events e ∈ Lρ | ep = end. Then, the refined event log would turn into an
event log (Definition 1) and the DFG would be constructed according to Definition 3,
but this would be equivalent to discarding the activities’ lifecycle information.

An alternative approach was proposed by Leemans et al. [11] and incorporated into
a variant of the Inductive Miner that takes into account lifecycle transitions, herein
called Inductive Miner Lifecycle (IM-lc). According to [11], an activity ay directly-
follows an activity ax if any of the life-cycle states of activity ay is observed after any
of the life-cycle states of activity ax in the same trace and between the two observations
no activity completes the execution of its full life-cycle (see Definition 5).

Definition 5. [Directly-Follows Relation as in [11]] Given a refined event log Lρ and
two process activities ax,ay ∈A , the relation ax � ay holds iff ∃ 〈e1,e2, . . . ,ek〉 ∈ Lρ |
el i = ax∧el j = ay∧ i< j∧�n,m∈ ] i, j [ | n<m ∧epn = start∧epm = end∧eln = elm.

According to Definition 5, a directly-follows relation would hold between two activ-
ities whose life-cycles overlap (i.e. the start-state of an activity is observed between

A
B

C

D

E
F

(a) Split Miner [6].

A
B

C

D

E
F

(b) Inductive Miner LC [11].

A
B

C

D

E

F

(c) Our approach.

Fig. 3. Examples of discovered DFGs by applying Definition 2, 5, and 6 (left to right).
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the start-state and the end-state of another activity). While this is important and use-
ful for IM-lc to discover concurrency relations [10], it would not be beneficial for
Split Miner, since Split Miner requires to remove the directly-follows relations between
activities that are considered concurrent [6]. Consequently, we are interested in dis-
carding directly-follows relations of activities whose life-cycles overlap. We redefine
the directly-follows relation of activities observed in a refined event log as follows. An
activity ay directly-follows an activity ax if the start-state of the life-cycle of activity ay
is observed after the end-state of the life-cycle of activity ax and no end-state of other
activities are observed in between (see Definition 6).

Definition 6. [Directly-Follows Relation] Given a refined event log Lρ and two pro-
cess activities ax,ay ∈ A , the relation ax �r ay holds iff ∃ 〈e1,e2, . . . ,ek〉 ∈ Lρ | el i =
ax ∧ el j = ay ∧ epi = end∧ el j = start∧1 ≤ i< j ≤ k∧�n ∈ ] i, j [ | epn = end.

The new version of Split Miner we propose in this paper relies on Definition 6.
Depending on the definition of directly-follows relation that one adopts when generat-
ing the DFG, one may discover very different DFGs. As an example, let us consider the
following refined event log (captured as a collection of traces, where each event is rep-
resented as the activity it refers to – including its life-cycle state as subscript, s standing
for start and e standing for end): Lρ x ={〈As,Ae,Bs,Cs,Ce,Be,Es,Ds,De,Ee,Fs,Fe〉,〈As,Ae,Bs,Cs,Be,Ce,Es,Ds,Ee,De,Fs,Fe〉,
〈As,Ae,Cs,Bs,Be,Ce,Ds,Es,De,Ee,Fs,Fe〉,〈As,Ae,Cs,Bs,Ce,Be,Ds,Es,Ee,De,Fs,Fe〉};
Fig. 3 shows the DFGs discovered from theLρ x by applying Definition 2 (original Split
Miner approach), Definition 5 (Inductive Miner life-cycle approach), and Definition 6
(this paper approach).

3.2 Refined Concurrency Discovery

The second step of the original Split Miner that we redesigned is the concurrency dis-
covery. Split Miner relies on a simple heuristic to discover concurrency, precisely, given
a DFG and two activities A,B ∈ A such that neither A nor B is a self-loop, A and B are
assumed concurrent iff three conditions are true: A directly-follows B and B directly-
follows A (Relation 1); A and B do not form a short-loop (Relations 2 and 3); the fre-
quency of the two directly-follows relations A � B and B � A is similar (Relation 2).2

A � B∧B � A (1)

�〈a1,a2, . . . ,ak〉 ∈ L | ai = A∧ai+1 = B∧ai+2 = A ∧ i ∈ [1,k−2] (2)

�〈a1,a2, . . . ,ak〉 ∈ L | ai = B∧ai+1 = A∧ai+2 = B ∧ i ∈ [1,k−2] (3)

||A � B|− |B � A||
|A � B|+ |B � A| < ε (ε ∈ [0,1]) (4)

The simplicity of the concurrency oracle of Split Miner derives from the simplicity
of the input event log (see Definition 1). However, when receiving as input a refined

2 The frequency of a directly-follows relation is the number of times the relation is observed.
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event log (Definition 4), it is possible to identify true concurrency by focusing on activ-
ities whose life-cycles overlap and are hence truly executed concurrently (e.g. by dif-
ferent process resources). Consequently, we redefine the concurrency discovery oracle
as follows. Given two activities A,B ∈ A and a refined event log Lρ , we say A and B
are concurrent if the following relation holds:

2 · |A 
 B|
|A|+ |B| ≥ ε (ε ∈ [0,1]) (5)

where |A 
 B| is the total number of observations of overlapping life-cycles of A
and B in Lρ ; |A| and |B| are respectively the total number of complete life-cycle3

observations of activity A and activity B in Lρ ; and ε is an arbitrary variable (given
as input parameter) defining the minimum percentage of times that the two activities’
life-cycles are required to overlap to assume the two activities concurrent. In particular,
when ε = 1 our notion of concurrency is equivalent to the notion of strong simultane-
ousness defined by Van der Werf et al. [18] as well as Allen’s interval relations [3] of
overlaps, contains, starts, and is finished by. While for any other value of ε > 0 it is
equivalent to a parametrized notion of weak simultaneousness [18]. Given that real-life
event logs often contain noise and infrequent process behaviour, requiring ε = 1 would
be very restrictive and may lead to the discovery of no concurrent activities.

Although both our approach and IM-lc infer concurrency relations between activ-
ities from the observation of overlapping life-cycles, we rely on an heuristic before
validating the concurrency relations (i.e. Eq. 5) – in-line with the original Split Miner;
while IM-lc assumes the information contained in the log to be valid a priori (this is
mitigated by another extension of IM-lc that embeds a filtering technique [11]).

3.3 Heuristic Improvement

Although Split Miner guarantees to discover sound acyclic process models and
deadlock-free cyclic process models with no dead activities, for cyclic process models
it does not guarantee proper completion. However, it is possible to reduce the chances
to discover process models exhibiting improper completion by applying the following
heuristic: for each AND-split gateway in a process model with an outgoing edge that
is a loop-edge (leading to a topologically deeper node of the process model), we create
a preceding XOR-split gateway and set this latter as source of the loop-edge. Figure 4
intuitively show how the heuristic operates, the loop-edge is highlighted in blue and, in
general, activities could be present in the loop-edge.

Lastly, we integrated an heuristic to discern between concurrency and inclusive
relations, in other words identifying when an AND-split gateway is a candidate OR-
split gateway. This second heuristic operates as follows. For each AND-split gateway
in a process model, we consider all the successor activities and we check pairwise
whether there exist traces where the pair of activities are mutually exclusive (i.e. one
of the two activities is executed but not the other). Then, if the majority of the pairs
of activities are both mutually exclusive and concurrent in different traces,4 we turn

3 E.g. including start and end states.
4 With at least one observation of mutual exclusiveness every two observations of concurrency
or vice-versa.
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(a) Model with improper completion. (b) Model after applying heuristic.

Fig. 4. Heuristic removal of improper completion generated by loops.

the AND-split gateway into an OR-split gateway and we update accordingly the OR-
join gateway. As an example, let us consider the model in Fig. 5a and the event log
Lρ y = {〈As,Ae,Bs,Cs,Ds,Be,De,Ce,Es,Ee〉3,〈As,Ae,Cs,Ds,Ce,De,Es,Ee〉2,
〈As,Ae,Bs,Ds,De,Be,Es,Ee〉,}; B andC are observed three times concurrently and three
times are mutually exclusive, B and D are observed four times concurrently and two
times mutually exclusive, C and D are observed five times concurrently and one mutu-
ally exclusive. Given that two pairs of activities out of three (B,D and B,C) are eligible
for inclusiveness, we turn the AND gateways into OR gateways (Fig. 5b).

4 Evaluation

In this section, we present an empirical evaluation that compares Split Miner 2.0
(SM2.0) with three state-of-the-art automated process discovery algorithms: the orig-
inal Split Miner [6] (SM), the Inductive Miner Lifecycle (IM-lc) [10] including its
infrequent behaviour filter [11], and the most recent version of IM, namely IMfa [9].

(a) Before. (b) After.

Fig. 5. Heuristic identification of OR-split gateways.

4.1 Dataset and Setup

As testing dataset, we selected eleven real-life event logs (L1–L11) containing activ-
ity lifecycle information. The logs were sourced from companies operating in different
fields (e.g. insurance, manufacturing, banking) and geographic areas (i.e. Europe and
Australia). Given that these logs are not publicly available, we added a publicly avail-
able simulated event log known as the “Repair example” (R-Log),5 which also contains

5 http://www.promtools.org/prom6/downloads/example-logs.zip.

http://www.promtools.org/prom6/downloads/example-logs.zip
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Table 2. Descriptive statistics of the logs.

Event log Total traces Distinct traces Total events Distinct events Trace length

MIN AVG MAX

L1 28,504 2.64% 443,862 23 4 15 1230

L2 3,885 9.11% 15,096 6 2 3 60

L3 954 10.80% 13,740 18 6 14 46

L4 37 86.49% 1,156 18 22 31 36

L5 146 78.08% 3,764 18 2 25 84

L6 551 96.55% 19,174 80 2 34 126

L7 70,512 0.28% 830,522 8 4 11 40

L8 9,906 2.19% 9,906 26 6 44 354

L9 1,182 92.81% 46,282 9 12 39 276

L10 608 11.51% 18,238 21 4 2 88

L11 1,214 20.18% 11,226 12 4 9 58

R-Log 1,104 5.53% 15,468 8 6 14 30

activity lifecycle information. We did not include the BPIC12 and BPIC17 logs simply
because the former does not have any overlapping lifecycle, and for the latter both SM
and SM2.0 produced the same model, which was analysed in previous studies [4–6].

Table 2 displays the characteristics of the event logs, highlighting their variety, with
logs containing short to long traces (length 2 to 1,230), a wide range of distinct traces
(0.28% to 96.55%) and distinct events (6 to 80), as well as notable differences in the
total number of traces (37 to 70,512) and events (1,156 to 830,522). The lifecycle infor-
mation for each activity recorded in these event logs was complete, i.e. the start and end
events were recorded for each activity.

From each log, we discovered a process model with SM2.0, SM, and IM-lc, and
compared the quality of the discovered models over three quality measures: fitness,
precision, and simplicity. Several methods have been proposed for measuring fitness
and precision of an automatically discovered process model [15]. In this paper we use
two methods, the one proposed by Adriansyah et al. [1,2] (alignment-based accuracy)
and the one proposed by Augusto et al. [4] (Markovian accuracy). As proxy for simplic-
ity we use the following three metrics [12]: Size – the total number of nodes of a process
model; Control-flow complexity (CFC) – the amount of branching induced by the split
gateways in the process model; Structuredness – the percentage of nodes located inside
a single-entry single-exit fragment of the process model.

We implemented SM2.0 as a Java command-line application,6 and we ran the exper-
iments on an Intel Core i7-8565U@1.80GHz with 32GB RAM running Windows 10
Pro (64-bit) and JVM 8 with 14GB of allocated RAM (10GB Stack and 4GB Heap).
All the discovery algorithms (SM, SM2.0, and IM-lc) were executed using their default

6 Available as “Split Miner 2.0” at http://apromore.org/platform/tools.

http://apromore.org/platform/tools
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input parameters, and we set a timeout of 30min for each algorithm execution and for
each measurement.

4.2 Results

Table 3 reports the fitness, precision, and simplicity measurements. Due to space limits,
the table does not show the measurements for IMfa because they were either equal or
worse than those for IM-lc, with the exception of those obtained on L9 (which reported
a slight improvement).

We can observe that SM2.0 is less prone to discovering unsound models than SM,
with the latter discovering an unsound model every three and the former only discov-
ering sound models. This achievement reflects the effectiveness of our heuristics for
removing improper completion.

In terms of accuracy, the results obtained with the alignment-based accuracy and the
Markovian accuracy are partially consistent in line with previous findings [4]. In fact,
the two measuring methods agree on the best models in terms of fitness, precision, and
F-score, respectively 100%, 66%, and 75% of the times.

As for fitness, IM-lc outperforms both SM and SM2.0 as expected [5]. In terms of
precision and F-score SM2.0 and SM achieve the highest scores, with SM2.0 performing
better than SM, most of the times discovering more precise and fitting process models
ultimately achieving a higher F-score. In fact, SM2.0 accuracy scores are either higher
than or equal to those of SM, the latter outperforming the former in fitness or precision
only two times according to the alignment-based accuracy, and only three times accord-
ing to the Markovian accuracy. Compared to IM-lc, SM2.0 discovers eleven times more
precise process models, independently of the measurement method.

As for simplicity, SM2.0 stands out by producing smaller models than those discov-
ered by both SM and IM-lc (9 times out of 12) and with a lower CFC (10 times out
of 12). However, SM2.0 and SM cannot systematically produce fully-structured process
models as opposed to IM-lc which achieves this by design. Lastly, the execution times
of IM-lc, SM, and SM2.0 are negligible: all the process models were discovered within
a minute (except for log L7, where IM-lc timed out).

Figure 6 shows two qualitative examples of the improvements yielded by SM2.0.
Considering the models from the L6 log (Figs. 6a and 6b), SM2.0 discovered the
inclusive-OR relations between several activities of the process and removed the
improper completion, while SM produced an unsound model. In the specific case of
the L6 log, we also had the chance to validate the discovered model with the process
analysts of the organization this log was extracted from, who confirmed that the activ-
ities were indeed in an inclusive-OR relation. Considering the models from the R-log
(Figs. 6c and 6d), only SM2.0 discovers the concurrency relations between its activities,
while SM mixes us the concurrency relations with loops.
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Table 3. Experiment results.

Event log Discovery
approach

Alignment accuracy [1,2] Markovian accuracy [4] Simplicity

Fitness Precision F-score Fitness Precision F-score Size CFC Struct.

L1 IM-lc 0.88 0.78 0.83 0.82 0.15 0.25 40 26 1.00

SM 0.98 0.94 0.96 0.96 0.44 0.60 47 32 0.47

SM2.0 0.83 0.97 0.90 0.44 0.34 0.38 45 25 0.56

L2 IM-lc 0.87 0.44 0.59 0.53 0.14 0.22 20 11 1.00

SM 0.92 1.00 0.96 0.69 0.88 0.77 14 6 1.00

SM2.0 0.92 1.00 0.96 0.69 0.88 0.77 14 6 1.00

L3 IM-lc 0.98 0.71 0.82 0.88 0.08 0.14 49 27 1.00

SM 0.96 0.97 0.96 0.72 0.41 0.52 36 16 0.58

SM2.0 0.93 0.99 0.96 0.40 0.07 0.12 31 10 0.77

L4 IM-lc 0.98 0.41 0.57 1.00 0.06 0.12 35 12 1.00

SM 0.84 1.00 0.91 0.45 0.79 0.57 26 6 0.46

SM2.0 0.94 0.66 0.78 0.93 0.08 0.15 25 3 1.00

L5 IM-lc 0.83 0.53 0.65 0.90 0.17 0.29 33 12 1.00

SM Unsound Unsound 31 11 0.45

SM2.0 0.76 0.79 0.78 0.86 0.19 0.31 27 3 0.59

L6 IM-lc Measurements timeout 0.10 0.00 0.01 126 78 1.00

SM Unsound unsound 161 98 0.14

SM2.0 0.70 0.66 0.68 0.31 0.23 0.26 138 80 0.50

L7 IM-lc Discovery timeout Discovery timeout Discovery timeout

SM 0.88 1.00 0.94 0.73 0.90 0.81 12 2 1.00

SM2.0 0.88 1.00 0.94 0.73 0.90 0.81 12 2 1.00

L8 IM-lc 0.85 0.40 0.55 0.87 0.03 0.06 61 39 1.00

SM Unsound Unsound 160 118 0.02

SM2.0 0.77 0.76 0.77 0.38 0.33 0.35 46 26 0.70

L9 IM-lc 0.94 0.26 0.41 0.92 0.43 0.58 23 11 1.00

SM Unsound Unsound 17 5 0.53

SM2.0 0.57 0.91 0.70 0.28 0.45 0.35 17 5 0.47

L10 IM-lc 0.95 0.75 0.84 0.98 0.15 0.26 31 8 1.00

SM 0.77 1.00 0.87 0.95 0.93 0.94 29 6 1.00

SM2.0 0.77 1.00 0.87 0.95 0.93 0.94 29 6 1.00

L11 IM-lc 0.91 0.75 0.82 0.45 0.14 0.22 36 21 1.00

SM 0.83 0.90 0.87 0.29 0.26 0.28 44 28 0.16

SM2.0 0.84 0.90 0.87 0.06 0.33 0.10 22 11 0.59

R-Log IM-lc 0.99 0.98 0.99 1.00 0.96 0.98 16 5 1.00

SM 0.91 0.99 0.95 0.45 0.83 0.59 14 4 0.36

SM2.0 0.98 0.97 0.98 0.94 0.98 0.96 16 5 0.50
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(a) SM model discovered from L6.

(b) SM2.0 model discovered from L6.

(c) SM model discovered from R-Log.

(d) SM2.0 model discovered from R-Log.

Fig. 6.Models discovered by SM and SM2.0 from the L6 and R-Log.

5 Conclusion

In this paper, we presented Split Miner 2.0 (SM2.0), an extension of Split Miner (SM) [6]
that exploits the activities’ start and end timestamps recorded in an event log to discover
true concurrency and inclusive choice relations between activities. This is achieved by
redesigning the discovery of a directly-follows graph from an event log, adapting the
concurrency notion of Van der Werf et al. [18], and introducing an intuitive heuristic
to identify inclusive relations. Furthermore, given that SM cannot guarantee sound pro-
cess models, we designed an heuristic that reduces the chances of discovering process
models exhibiting improper completion. The empirical evaluation shows that SM2.0 can
discover more concurrent relations than SM, remove improper completion, and identify
OR-splits, while preserving SM’s model accuracy and reducing the complexity.

Although several studies have investigated the problem of automated process dis-
covery from event logs [5], most of them operate on simple event logs with only three
attributes: case id, timestamp, and activity label. Future research work in this area may
focus on designing more sophisticated automated process discovery algorithms that
can discover more complex BPMN process models by leveraging additional informa-
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tion that may be available in real-life event logs. Another direction for future work is to
design accuracy measures such as fitness and precision that go beyond simple control-
flow relations and include support for inclusive gateways, including the OR-join.

Acknowledgments. Research funded by the Australian Research Council (grant DP180102839)
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Abstract. Process mining is a relatively new subject which builds a bridge
between process modelling and data mining. An exclusive choice in a process
model usually splits the process into different branches. However, in some pro-
cesses, it is possible to switch from one branch to another. The inductive miner
guarantees to return sound processmodels, but fails to return a precisemodel when
there are switch behaviours between different exclusive choice branches due to
the limitation of process trees. In this paper, we present a novel extension to the
process tree model to support switch behaviours between different branches of the
exclusive choice operator and propose a novel extension to the inductive miner
to discover sound process models with switch behaviours. The proposed discov-
ery technique utilizes the theory of a previous study to detect possible switch
behaviours. We apply both artificial and publicly-available datasets to evaluate
our approach. Our results show that our approach can improve the precision of
discovered models by 36% while maintaining high fitness values compared to the
original inductive miner.

Keywords: Process discovery · Complex behaviours detection · Switch
behaviours · Inductive miner · Process trees

1 Introduction

Process mining is useful for analyzing business processes along with improving and
predicting which contains three parts – process discovery, conformance checking and
process enhancement [1]. The most critical part of process mining is process discovery,
which aims at extracting insight of the system workflow from real data. The resulting
process model should not only have a high fitness value, but also be an accurate represen-
tation of the real process [2]. The inductive miner is one of the leading process discovery
algorithms which can guarantee to produce sound process models within finite time [1,
3]. Given the direct outcome of the inductive miner is a process tree [3], the behaviours
being represented are limited. When giving complex event logs as input, the inductive
miner often returns so-called “flower models” which preserve high fitness but have very
low precision values [3, 4]. Although we can still replay the majority of traces on the
process model, “flower models” fail to represent real processes accurately and precisely
[1, 2].
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When dealing with an exclusive decision choice in a process model, the decision
point is split into multiple branches [5]. However, in many real-life processes, it can
be possible to switch between branches after a decision has been made. Although the
inductive miner is known to be useful in generating sound models from data, it fails to
discover an accurate model when switch behaviours exist.

In this paper, we propose a novel extension to the process tree model to handle
switch behaviours between different exclusive choice branches.We then develop a novel
extension to the inductiveminer to discover soundprocessmodelswith switch behaviours
based on the theory in [6]. From a broader perspective, our proposed method not only
guarantees to produce sound process models but also not being limited to produce block-
structured process models. We apply both artificial and publicly-available datasets to
evaluate our approach. Fitness, precision and F-score [4, 7] are used to measure the
accuracy of resulting models, size (the number of nodes) and CFC (the number of
branching caused by split gateways) [8] are adopted to measure the model complexity.

The rest of the paper is structured as follows: Sect. 2 is a literature review of related
work. Section 3 introduces formal definitions of some terms. Section 4 introduces the
extension to the process tree model and how to translate it into a workflow net. In Sect. 5,
we describe our process discovery technique. The approach is evaluated in Sect. 6. We
finally conclude our paper in Sect. 7.

2 Background

When modelling switch behaviours between different exclusive choice branches using
Petri-nets, a hidden transition is needed since we cannot connect two places directly [6].
The classical alpha algorithm [9] cannot discover any hidden transitions. [6, 10] improve
the classical alpha algorithm to allow the detection of invisible tasks. Although the alpha
algorithms are not robust to noises and cannot guarantee to produce sound models. [6]
proposes a heuristic for detecting invisible transitions between activities directly from
event logs. If there is a hidden transition between two activities on different exclusive
choice branches, a switch behaviour is detected.

In reviewing other process discovery algorithms which can discover switch
behaviours between different exclusive choice branches including the alpha algorithms
with invisible tasks [6, 10], heuristics miners [11], genetic miners [12] and the ILP algo-
rithm [13], none of them can guarantee to produce a sound process model. In addition,
some of them cannot handle noises, thus, not suitable to be applied to real data. Although
the split miner [7] can discover switch behaviours and guarantee to produce deadlock-
free models. It still cannot guarantee to produce sound models as defined in [9], which
defines soundness as (a) safeness, (b) proper completion, (c) option to complete, (d)
absence of dead tasks.

The inductive miners are a family of process discovery algorithms which utilize the
divide-and-conquer approach in the field of process discovery [3, 14–18]. The inductive
miners recursively divide the activities into different partitions and split event logs until
base cases are touched. The direct outcomes of the inductive miners are process trees,
which can be easily translated into equivalent block-structured workflow nets [3]. An
important feature of the inductiveminer family is that the resultingmodel is always sound
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regardless of the input log. However, process trees also limit the behaviours which can
be represented. For example, they fail to represent switch behaviours between exclusive
choice branches.

When the given event log is complex, the inductive miner [3] can easily return a
“flower model” with high fitness but low precision. [14] removes infrequent relations
between activities before partitioning the activities. However, according to the bench-
mark in both [4] and [7]. The inductive miner infrequent (IMf) in [14] still returns
models with low precision values compared with other algorithms. [19] tries to solve
the problem by giving duplicate labels to the same activity when a local “flower model”
is returned. The algorithm successfully improves the precision of the outcome models
but leads to longer execution time. Besides, if we apply the algorithm in [19] with the
inductive miners, the outcome models are still block-structured workflow nets.

The process mining framework in the original inductive miner [3] allows researchers
to define their ways to partition activities and customized process tree semantics. For
example, [17] puts lifecycle information into the process discovery to distinguish “in-
terleaving” behaviours from “parallel” behaviours. [18] defines new operators on the
process tree and uses the inductive miner to discover cancellation behaviours.

3 Preliminaries

In this section, we present some formal definitions which will be used in this paper.
For process trees and block-structured workflow nets, we refer to [3], for soundness of
Petri-nets, we refer to [9]. Besides, for IWF-net (workflow nets with invisible tasks),
DIWF-net (a subset of IWF-nets) and log completeness, we refer to [6]. For clarification,
in this paper, we use “X” to represent the exclusive choice operator, “→” to represent
the sequence operator, “

∧
” to represent the parallel operator and “�” to represent the

loop operator in the process tree [3].

Definition 1 (Relations between activities). Let L be an event log of a workflow net
N, let a, b be two activities in L. Then:

1. a>Lb if there is a trace t ∈ L where t = < ……, a, b, …… >,
2. a∼Lb if there is a trace t ∈ Lwhere t = < ……, a, b, a, …… >, and there is a trace

t ∈ L where t = < ……, b, a, b, …… >,
3. a→Lb if a>Lb

∧
(b≯La

∨
a∼Lb),

4. a||Lb if a>Lb
∧

b>La
∧

a�Lb.

Definition 2 (Mendacious dependency) [6]. Let N = (P, Tv ∪ Tiv, F) be a potential
sound IWF-net, Tv is the set of visible tasks, Tiv is the set of invisible tasks. There is
a mendacious dependency between activities a, b in event log L, denoted as a�Lb, iff
a →L b ∧ ∃x, y ∈ Tv : a →L x ∧ y →L b ∧ y≯Lx ∧ x∦Lb

∧
a∦Ly.
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4 The Switch Process Tree

In this section, we formally define the switch behaviour and its corresponding repre-
sentation on the process tree. The switch process tree is a novel extension based on the
process tree model described in [3].

Definition 3 (First, Path function). Let n be a leaf in a process tree, tp be an arbitrary
operator type. First (n, tp) refers to the first ancestor node of n with operator typetp.
For example, in the process tree shown in Fig. 1, First (Node 3, X) refers to the root
node. First (n, tp) = ∅ if none of the ancestor nodes of n has typetp. Let n1, n2 be two
arbitrary nodes of a process tree, Path (n1, n2) refers to the path from n1 to n2 (excluding
n1 andn2). Path (n1, n2) = ∅ if n2 is not reachable from n1 or n1 = n2. Referring back
to Fig. 1, Path (Node 0, Node 8) = <Node 2>, Path (Node 1, Node 8) = ∅.

Definition 4 (Switch process tree and switch behaviour). Assume a finite alphabet A
of activities. A switch process tree is a normal process tree with switch leaf operators
a ⇒ B where a ∈ A, B ⊂ A. Combined with an exclusive choice operator X, the novel
leaf node denotes the place we execute activity a, and have an option to switch to one
of the activities in set B on another branch of an exclusive choice operator. a ⇒ b is a
switch behavior if there exists a ⇒ B such that b ∈ B, we call a the source of the switch
behavior, b the destination of the switch behaviour. To ensure the process model is still
sound, we define the constraints below:

1. The activities ondifferent sides of a switch leaf nodemust be put ondifferent branches
of an exclusive choice operator X, i.e. we can only switch execution rights from one
exclusive choice branch to another.

2. If there exists a leaf operator a ⇒ B in the process tree, then ∀b ∈ B, First (a ⇒ B,∧
) = First (b,

∧
), and if First (a ⇒ B,

∧
) = First (b,

∧
) �= ∅, then Path (First

(a ⇒ B,
∧
), a ⇒ B)

⋂
Path (First (b,

∧
), b) �= ∅. i.e. we cannot switch out of a

parallel branch.

Fig. 1. An example switch process tree and its corresponding workflow net

Figure 1 shows an example switch process tree and its corresponding workflow net.
There are three possible traces in the model, which are <A, B, C>, <D, E, F> and <A,
B, E, F>.

Definition 5 (Translating switch process trees into workflow nets). Translating a
switch process tree into a workflow net is straightforward. We first ignore the switch
leaf nodes and translate the process tree into a block-structured workflow net. Then we
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connect the activities on different sides of the switch operators using hidden transitions.
Suppose Tr is a switch process tree, S is the set of all the switch leaf nodes in Tr, Tr∗
is an equivalent process tree of Tr but all the switch behaviours are removed, i.e., for
all the a ⇒ B ∈ S in Tr, we convert them into a in Tr∗. N = (P, Tv ∪ Tiv, F) is a
block-structured workflow net corresponding to Tr∗. For each a ⇒ B ∈ S and b ∈ B,
we create a new invisible task tswitch into set Tswitch, then:

1. If |a·| = 1 in N, pa−out = a·, |·pa−out\Tswitch| = 1, then we add a new arc f into N ,
f = (pa−out , tswitch).

2. If |·b| = 1, pb−in = ·b, |pb−in · \Tswitch| = 1, then we add a new arc f into N , f =
(tswitch, pb−in).

3. If |a·| = 1 in N, pa−out = a·,|·pa−out\Tswitch| > 1, we first delete the arc f1 = (a,
pa−out) from N, then we create another new invisible task tbridge and place pbridge
into N.We finally add arcs f2 = (a, pbridge), f3 = (pbridge, tbridge), f4 = (tbridge,pa−out)
and f5 = (pbridge, tswitch).

4. If |·b| = 1, pb−in = ·b, |pb−in · \Tswitch| > 1, we first delete the arc f1 = (pb−in, b)
from N, then we create another new invisible task tbridge and place pbridge into N.
We finally add arcs f2 = (pbridge, b), f3 = (tbridge, pbridge), f4 = (pb−in, tbridge) and f5
= (tswitch, pbridge).

5. If |a·| > 1, there is a “and split” after a. We add a new invisible task tbridge after a as
the split point and then go back to step 1, i.e., |a·| = 1,

∣
∣tbridge·

∣
∣ > 1, a ·∩· tbridge �= ∅.

6. If |·b|> 1, there is a “and join” before b.We add a new invisible task tbridge before b as
the joining point and then goback to step 1, i.e., |·b|=1,

∣
∣·tbridge

∣
∣>1, ·b∩tbridge· �= ∅.

To illustrate the translation process, we use three examples translated from the above
different scenarios in Fig. 2, Fig. 3 and Fig. 4:

Fig. 2. An example translation from a switch process tree to a workflow net (Definition 5, case
1, 2).

Fig. 3. An example translation from a switch process tree to a workflow net (Definition 5, case
3, 4).

Theorem 1. If we translate a switch process tree into a workflow net, the resulting
workflow net is always sound if the constraints in Definition 4 are all satisfied.
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Fig. 4. An example translation from a switch process tree to a workflow net (Definition 5, case
5).

Proof. Assume we ignore all the switch behaviours in the process tree during the trans-
lation, according to [3], we can get an equivalent sound block-structured workflow net.
According to Definition 5, each switch invisible transition is always connected to one
single input place and one single output place. The translation process does not increase
the number of input/output places of any transitions. As a result, it is free for a token in
the model to choose whether firing a switch invisible transition or not. Thus, the result-
ing process model will not contain dead tasks and is always safe. In addition, since the
original block-structured workflow net is sound, if we move a token from one exclusive
choice branch to another one, the process can still be completed properly as long as we
don’t move the token out of a parallel branch. Thus, if the constraints in Definition 4 are
all satisfied, the resulting workflow net is always sound.

5 Discovering Switch Process Trees

In [6], researchers define the prime invisible tasks into SKIP, REDO, SWITCH, INI-
TIALIZE and FINALIZE where SWITCH refers to switching execution rights between
alternative branches. Thus, the SWITCH invisible tasks can be used to represent the
switch behaviours we define in Sect. 4. Researchers in [6] prove that given L is a com-
plete event log of a sound DIWF-net N = (P, Tv ∪ Tiv, F), if a, b ∈ Tv are two visible
tasks, then there is a prime invisible task t ∈ Tiv between a and b, i.e., a · ∩ · t �= ∅
and t · ∩ · b �= ∅ iff a�Lb. Although the scope of the proof is limited, the evaluation
of [6] shows that the power of the theory is not limited to complete logs of DIWF-nets.
More importantly, [6] provides us with a heuristic to predetermine possible invisible
tasks between activities from event logs directly. Suppose we know two activities are
on two different exclusive choice branches and there is an invisible task between them,
then we know there is a switch behaviour between the two activities.

To discover switch process trees using the inductive miner, we extend the normal
exclusive choice cut of the inductive miner framework to a switch exclusive choice
cut. In this section, we show the switch exclusive choice cut step by step. To illustrate
the process, we use a complete log of the example model presented in Fig. 2 L1 =
〈A,B,C〉, 〈D,E,F〉, 〈A,B,E,F〉 as a running example. To make sure we detect all the
switch behaviours, we put the switch exclusive choice cut before the other three cuts in
each iteration. The extended IM framework is shown in Algorithm 1.
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5.1 The Switch Exclusive Choice Cut (Line 3)

Step 1: Adding Artificial Start and End Activities
According to Definition 5, if the source activity of a switch behaviour is at the end of
an exclusive choice branch or if the destination activity of a switch behaviour is at the
beginning of an exclusive choice branch, we need to add an extra invisible task before
the destination activity or after the source activity to represent the process precisely.
However, the process model is no longer a DIWF-net after adding the extra invisible
task according to [6], so we may fail to detect an invisible task between the two activities
using the mendacious dependency.

To solve the problem, before a switch cut, we first identify all the start and
end activities in the event log and add a unique start and end activity to each
of them. For example, after adding artificial activities into L1, we get L∗

1 =
〈StartA,A,B,C,EndC〉, 〈StartD,D,E,F,EndF 〉, 〈StartA,A,B,E,F,EndF 〉.
Step 2: Calculating All the Mendacious Dependencies Between Activities
We then go through the event log and identify all the mendacious dependencies. Besides,
we ignore all the mendacious dependencies containing artificial start and end activities.
After the mendacious dependencies are identified, we delete all the artificial start and
end activities.

In our example, we get one mendacious dependency, which is B�LE.

Step 3: Finding Switch Exclusive Choice Cut and Switch Leaf Operators
Firstly, if there is amendacious dependency between two activities in the directly-follows
graph, we replace the edge between them with an invisible edge.
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Definition 6 (Invisible edge). Given G(L) is a directly-follows graph of event logs L,
A is the set of activities in L. a, b ∈ A, there is an invisible edge from a to b in G(L) iff
a�Lb.

Definition 7 (Switch exclusive choice cut). Suppose E is the set of all edges in G(L),
E∗ is the set of all invisible edges. A switch exclusive choice cut is a cut�1, �2, . . . , �n

of a directly-follows graph G(L) such that (Fig. 5):

1. There are only invisible edges between �1≤i≤n and �1≤j≤n.

∀i �= j
∧

ai ∈ �i

∧
aj ∈ �j : (

ai, aj
)

/∈ E\E∗

Fig. 5. Switch exclusive choice cut for L1

If an invisible edge is cut during the switch exclusive choice cut, i.e., ∃ai ∈ �i, aj ∈
�j : (

ai, aj
) ∈ E∗, then a new switch behaviour ai ⇒ aj is discovered. By merging all

the switch behaviours with the same source together in the end, we can get switch leaf
operators.

Step 4: Removing Traces with Switch Behaviours
Weuse the same exclusive choice cut split function as the inductiveminer infrequent [14]
to split the event logs after an exclusive choice switch cut. A problem here is splitting
the event log could cause extra “skip” behaviours. In our running example, since we
partitioned the activities into two groups which are {A,B,C} and {D,E,F}, the trace
<A, B, E, F> will be projected into either < A, B > or < E, F>. The options will either
produce an extra end activity B or an extra start activity E in the local sub-process. To
resolve the issue, we consider deleting the traces with switch behaviours before splitting
the log. For example, we delete<A, B, E, F> from L1 before splitting the log. However,
deleting traces increases the requirement of log completeness, which may cause the loss
of activities or behaviours when dealing with real-life data.We decide tomake the option
adjustable (Fig. 6).

Fig. 6. The resulting model of L1 with the deleting traces option off (left) and on (right), there is
one more extra trace < A, B > on the left graph.



A Novel Approach to Discover Switch Behaviours in Process Mining 65

5.2 Verifying the Exclusive Choice Switch Cut (Line 10–18)

Performing the switch exclusive choice cut and splitting the event log may cause unnec-
essary loss of activities. Every time after we perform the switch exclusive choice cut
and split the event log, we check if the total number of activities changes. If there is a
change in the number of activities (line 12), we abort the whole cut, redo the log split and
disable the exclusive choice cut in the next iteration (line 13). We enable the exclusive
choice cut again after the current log has been split into sub logs.

5.3 Removing Incorrect Switch Behaviours

Although we can identify switch behaviours during the exclusive choice cut, we are
unable to determine if the constraints in Definition 4 are met before the whole process
tree has been constructed. To ensure a sound model is returned, we iterate through
the whole process tree at the end and delete any switch behaviours which violate the
constraints defined in Definition 4.

6 Evaluation

We implement our approach on the inductiveminer directly in the ProM framework [20].
Our code and evaluation results are available at https://github.com/bearlu1996/switch.
We applied both artificial and publicly-available event data to evaluate our algorithm.
Fitness andprecision are used to evaluate the accuracy of our processmodels.Besides,we
use the formula in [4] and [7] to calculate F-score, i.e., F −Score = 2 ∗ fitness ∗ precision

fitness+ precision .
CFC (the number of branching caused by split gateways) [8] and size (the number of
nodes) are also used to evaluate the complexity of our process models. For replicable
purposes, we use “Replay a log on Petri net for conformance analysis” in ProM to
calculate fitness, “Check Precision based on Align-ETConformance” to calculate the
precision.We use “CalculateBPMNMetrics” to calculatemodel complexity. In addition,
the tools in the “BPMN Miner” are used to covert between Petri-nets and BPMNs. We
use default settings for all the parameters.

6.1 Evaluation Using Artificial Data

Wefirst use several artificial logswith switch behaviours to demonstrate the performance
of our approach. When applying the original inductive miner on these logs, it fails to
discover precise models. Instead, “flower” models with low precision are returned. We
show that after using our extension, we can get precise models (Table 1).

6.2 Evaluation Using Publically-Available Data

We use a publicly-available dataset called “BPIC13-incident” from the “4TU Center
for Research Data” to evaluate our algorithm. We use “Event name + lifecycle” as the
activity classifier, the dataset contains 7554 traces, 2278 distinct traces, 65533 events
and 13 distinct events. The average length of traces is 9 while the shortest length is 1 and

https://github.com/bearlu1996/switch
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Table 1. Evaluation using artificial data.

Log: <A, B, C>, <D, E, F>, <A, F> 
IM IM augmented with switch behaviours 

Fitness: 1.0, Precision: 0.38 Fitness: 1.0, Precision: 1.0 
Log: <A, B, C>, <D, E, F>, <A, E, F>, <D, E, C>, <A, E, C> 
IM IM augmented with switch behaviours 

Fitness: 1.0, Precision: 0.42 Fitness: 1.0, Precision: 1.0 
Log: <A, B, C>, <D, E, F>, <A, B, D, E, F> 
IM IM augmented with switch behaviours 

Fitness: 1.0, Precision: 0.94 Fitness: 1.0, Precision: 1.0 
Log: <A, B, C>, <D, E, F>, <D, E, C>, <A, F>, <A, C> 
IM IM augmented with switch behaviours 

Fitness: 1.0, Precision: 0.42 Fitness: 1.0, Precision: 0.97 

the longest length is 123. We combine our approach with the inductive miner infrequent
(IMf) [14] and switch off the “delete trace” option, we also compare our results with the
split miner (SM) [7]. In addition, we use default settings for all the parameters.

Evaluation results are presented in Table 2. All three methods can produce a model
with high fitness. However, the IMf returns a model with low precision. Our approach
rises the precision of IMf by 36%. In addition, our approach returns a model with both
higher precision and F-score than the splitminer. For themodel complexity, our approach
also achieves both smaller size and CFC than the split miner.
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Table 2. Evaluation results with the publicly-available dataset (IMs refers to our approach)

Accuracy Complexity

Fitness Precision F-Score Size CFC

IMf 0.95 0.59 0.73 35 33

SM 0.98 0.71 0.82 39 48

IMs 0.97 0.80 0.88 33 46

7 Discussion and Conclusion

In this paper, we present an extension to both the inductive miner and the process tree
model. We allow the inductive miner to discover sound process models but not being
limited to block-structured workflow nets. The evaluation results show that our approach
can reduce the chance for the inductive miner to return flower models. Besides, in our
evaluation, our approach can also discover models that are comparable in terms of both
model accuracy and complexity to these produced by the split miner.

One limitation is that when performing the switch exclusive choice cut, we do not
know if the switch behaviour is valid or not, thus we need to check the validity of the
switch behaviours to make sure the model is still sound in the end. It has to be noted
that the fitness of resulting models might be reduced if too many switch behaviours are
removed.We aim to develop better algorithms to repair themodels in the future. Besides,
as shown in the artificial data evaluation, when the same place is both the input and output
of two switch invisible transitions, there might be redundant hidden transitions in the
model, future work is required to remove these redundant hidden transitions.

Finally, we also aim to conduct more experiments to evaluate the performance of
our approach in the future, including the impacts of different orders of cuts.

References

1. van der Aalst, W.M.P.: ProcessMining - Data Science in Action. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49851-4_1

2. Buijs, J., van Dongen, B.F., van der Aalst, W.M.P.: Quality dimensions in process discovery:
the importance of fitness, precision, generalization and simplicity. Int. J. Coop. Inf. Syst.
23(1), 1440001 (2014)

3. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI
NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38697-8_17

4. Augusto, A., et al.: Automated discovery of process models from event logs: review and
benchmark. IEEE Trans. Knowl. Data Eng. 31, 686–705 (2018)

5. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business Process
Management. Springer, Heidelberg (2013).https://doi.org/10.1007/978-3-642-33143-5

6. Wen, L., Wang, J., van der Aalst, W.M.P., Huang, B., Sun, J.: Mining process models with
prime invisible tasks. Data Knowl. Eng. 69(10), 999–1021 (2010)

https://doi.org/10.1007/978-3-662-49851-4_1
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-642-33143-5


68 Y. Lu et al.

7. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Polyvyanyy, A.: Split miner: automated
discovery of accurate and simple business process models from event logs. Knowl. Inf. Syst.
59(2), 251–284 (2018). https://doi.org/10.1007/s10115-018-1214-x

8. Cardoso, J.S.: Business process control-flow complexity: metric, evaluation, and validation.
Int. J. Web Serv. Res. 5(2), 49–76 (2008)

9. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

10. Guo, Q., Wen, L., Wang, J., Yan, Z., Yu, P.S.: Mining invisible tasks in non-free-choice
constructs. In:Motahari-Nezhad, H.R., Recker, J.,Weidlich,M. (eds.) BPM2015. LNCS, vol.
9253, pp. 109–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4_7

11. Weijters, A., Ribeiro, J.: Flexible heuristics miner (FHM). In: CIDM, pp. 310–317. IEEE
(2011)

12. de Medeiros, A., Weijters, A., van der Aalst, W.: Genetic process mining: an experimental
evaluation. Data Min. Knowl. Discov. 14(2), 245–304 (2007)

13. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.: Discovering
workflow nets using integer linear programming. Computing 100(5), 529–556 (2017). https://
doi.org/10.1007/s00607-017-0582-5

14. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed,
P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-06257-0_6

15. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from incomplete event logs. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014.
LNCS, vol. 8489, pp. 91–110. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
319-07734-5_6

16. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery and con-
formance checking. Softw. Syst. Model. 17(2), 599–631 (2016). https://doi.org/10.1007/s10
270-016-0545-x

17. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Using life cycle information in process
discovery. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 204–217.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42887-1_17

18. Leemans, M., van der Aalst, W.M.P.: Modeling and discovering cancelation behavior. In:
Panetto, H., et al. (eds.) OTM 2017. LNCS, vol. 10573, pp. 93–113. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69462-7_8

19. Lu, X., Fahland, D., van den Biggelaar, F.J.H.M., van der Aalst, W.M.P.: Handling duplicated
tasks in process discovery by refining event labels. In: La Rosa, M., Loos, P., Pastor, O. (eds.)
BPM 2016. LNCS, vol. 9850, pp. 90–107. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45348-4_6

20. van Dongen, B.F., deMedeiros, A.K.A., Verbeek, H.M.W.,Weijters, A.J.M.M., van der Aalst,
W.M.P.: The ProM framework: a new era in process mining tool support. In: Ciardo, G.,
Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg
(2005). https://doi.org/10.1007/11494744_25

https://doi.org/10.1007/s10115-018-1214-x
https://doi.org/10.1007/978-3-319-23063-4_7
https://doi.org/10.1007/s00607-017-0582-5
https://doi.org/10.1007/978-3-319-06257-0_6
https://doi.org/10.1007/978-3-319-07734-5_6
https://doi.org/10.1007/s10270-016-0545-x
https://doi.org/10.1007/978-3-319-42887-1_17
https://doi.org/10.1007/978-3-319-69462-7_8
https://doi.org/10.1007/978-3-319-45348-4_6
https://doi.org/10.1007/11494744_25


Process Model Discovery from Sensor
Event Data

Dominik Janssen1(B) , Felix Mannhardt2,3 , Agnes Koschmider1 ,
and Sebastiaan J. van Zelst4,5

1 Group Process Analytics, Kiel University, Kiel, Germany
{dominik.janssen,ak}@informatik.uni-kiel.de

2 Department of Technology Management, SINTEF Digital, Oslo, Norway
f.mannhardt@tue.nl

3 Department of Computer Science, NTNU, Trondheim, Norway
4 Fraunhofer Institute for Applied Information Technology, Fraunhofer Gesellschaft,

Sankt Augustin, Germany
sebastiaan.van.zelst@fit.fraunhofer.de

5 Chair of Process and Data Science, RWTH Aachen University, Aachen, Germany

Abstract. Virtually all techniques, developed in the area of process
mining, assume the input event data to be discrete, and, at a relatively
high level (i.e., close to the business-level). However, in many cases, the
event data generated during the execution of a process is at a much lower
level of abstraction, e.g., sensor data. Hence, in this paper, we present a
novel technique that allows us to translate sensor data into higher-level,
discrete event data, thus enabling existing process mining techniques to
work on data tracked at a sensory level. Our technique discretises the
observed sensor data into activities by applying unsupervised learning in
the form of clustering. Furthermore, we refine the observed sequences by
deducing imperative sub-models for the observed discretised data, i.e.,
allowing us to identify concurrency and interleaving within the data. We
evaluated the approach by comparing the obtained model quality for
several clustering techniques on a publicly available data-set in a smart
home scenario. Our results show that applying our framework combined
with a clustering technique yields results on data that otherwise would
not be suitable for process discovery.

Keywords: Process mining · Sensor data · Event correlation · IoT

1 Introduction

The rise of the Internet-of-Things (IoT), i.e., interconnected devices, mechanical
and digital machines, gradually digitalises the day-to-day operations of modern-
day enterprises. More-and-more devices are interconnected and store valuable
traces of behavioural data, generated during their interaction with humans,
as well as other interconnected devices. For example, consider the concepts of

c© Springer Nature Switzerland AG 2021
S. Leemans and H. Leopold (Eds.): ICPM 2020 Workshops, LNBIP 406, pp. 69–81, 2021.
https://doi.org/10.1007/978-3-030-72693-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72693-5_6&domain=pdf
http://orcid.org/0000-0003-0218-8628
http://orcid.org/0000-0003-1733-777X
http://orcid.org/0000-0001-8206-7636
http://orcid.org/0000-0003-0415-1036
https://doi.org/10.1007/978-3-030-72693-5_6


70 D. Janssen et al.

autonomous production and the adoption of robotics in healthcare, in which oper-
ational processes are gradually digitised and automated, utilising interconnecting
and communicating devices and machines.

Whereas the design of a single device, connected to a larger network of
devices, remains manageable (though it is complex in its own right), deficien-
cies in inter-device communication or handover of work-packages, easily lead to
global process under-performance. Hence, a clear understanding of the general
flow of work, as well as an understanding of bottlenecks and synchronisation
points is of utmost importance to further improve the efficiency of the executed
processes. Process mining techniques aim to exploit behavioural data, stored
in the information systems to support the execution of processes and to distil
process models [1]. In particular, they can derive-and-construct process models
based on tracked event data, i.e., in a completely automated fashion.

In general, process mining relies on discrete event data, typically assumed to
be tracked at the business level, i.e., the event data directly relates to high-level
business process concepts. However, often, the level at which the event data is
tracked within information systems is at a much lower level.

Possible application scenarios are settings where the movement of objects or
people (entities) is tracked by motion sensors, light barriers or similar types of
sensors that only detect absence and presence of a person or object and cannot
distinguish between different observed entities. Those sensors can be found in
smart home settings, smart factories and healthcare-related applications. If in
these possible settings, it is of interest to discover frequent behaviour patterns
or abnormal behaviour, our proposed method provides a novel approach that
translates sensory data, into a process model. In particular, unlabelled raw sen-
sor events are aggregated and clustered by an unsupervised learning technique
to identify activities through clusters of related event sequences. To identify the
activities, we discover a process model for each identified cluster. The activi-
ties, labelled by a domain expert, serve as input for process mining-based model
discovery, which allows to identify concurrent and interleaving behaviour in sen-
sor event data. We evaluate our approach on the publicly available CASAS
dataset [2] and compare two clustering methods. The obtained results show
promising results, hinting towards a better result by using clustering based on a
self-organising map (SOM) in comparison to basic k-means in this context based
on our methodology.

To the best of our knowledge, this paper suggests the first activity and pro-
cess discovery technique for unlabelled sensor event data using SOM as model
and addressing the challenges of concurrent behaviour between activities and
multiple residents.

The remainder of this paper is structured as follows. The next section presents
related work. Subsequently, Sect. 3 presents our approach, which has been eval-
uated using a real-life data-set. The evaluation is summarised in Sect. 4. The
paper concludes with an outlook on future work in Sect. 5.
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2 Related Work

A large body of research exists that partially addresses the discovery of events
and activities at different levels. In the following we consider related approaches
that use sensor data aiming to translate it into higher-level, discrete event data
or applying process mining on raw sensor data. Our focus of related approaches
also lays in smart homes as we used data of smart home sensors for evaluation.

Activity recognition in smart home has been widely addressed relying the
recognition on different sensor types like motion or video [3–5] or analysing
data from wearables [6] or reference sensors [7]. Recently, Deep Learning (DL)
methods for detecting and predicting activities in IoT environments have been
increasingly explored [8]. Unlike classical machine learning techniques, DL net-
works automatically derive features from the data and produce promising results
in different domains. Particularly in the field of smart homes or ambient assisted
living, there are first approaches that recognise activities based on sensor event
data [9–12]. Activity recognition is predominantly used for a situational progno-
sis [13]. Also these kinds of approaches identify simple activities [14,15]. Com-
plex activities like people’s daily activities can only be identified using extra
sensors [14,16]. Although our method for process model discovery from raw
location sensor data also requires a manual labelling of clusters of high-level
events, we believe that the process model view on raw sensor data advances
existing approaches and is beneficial in terms of evaluating the quality of data
aggregations, which DL-based approaches are not capable of.

Mapping low-level events to activities for process mining is still a chal-
lenge [17]. Leotta et al.[18] envision to use similar techniques as we employ: how-
ever, only discuss challenges. The current status-quo is that approaches indicate
only likelihoods of mappings, since there is often more than one possible solu-
tion [19]. Our approach for event aggregation in combination with unsupervised
learning aims to bridge this gap. Related literature for activity discovery for pro-
cess mining either use supervised techniques [6,20] or visualise human habits [21]
in order to accurately identify activities. Some works exist that detect activities
from high-level events through unsupervised techniques [20,22,23], which have
been compared in this paper. These related works [20,22,23] use patterns or
local process models to aggregate event data towards higher abstraction levels.
But they did not allow to discover meaningful activities for our data set. For
unlabelled training sets, related approaches suggest to use a time-based label
refinement [24] or locations [25] as characteristics in order to segment the event
log and to abstract activities out of it. However, the methods already expects
particular representations of traces. Given our scenario, the application of local
process models did not allow to identify useful process fragments.

3 Translating Sensor Data to High-Level Traces

Our method for process model discovery from raw location sensor data assumes
a location sensor event log EL as input derived from a set of sensors S e.g.,
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Fig. 1. Process discovery approach for location sensor event data.

networks of WiFi-access points, or motion sensors in smart homes. We expect
events e ∈ EL to satisfy some minimal requirements: For each event we can
retrieve a timestamp time(e) inducing a partial order on the events, a sensor label
sensor(e) ∈ S indicating which sensor was activated and some form of informa-
tion that either implicitly or explicitly refers to a location (i.e., location(e) ∈ L).
The location information can be explicit in the form of coordinates (e.g., latitude,
longitude) or implicit by providing labelled locations together with a distance
function providing pairwise distances between them. Throughout the paper we
assume that EL was generated by one or more entities n ∈ N . An entity may
be a person or an object in the observed area.

Events in a location sensor log do not necessarily have a unique identifier
attached to identify by which entity they were triggered. Often data contains
overlapping and concurrent activities by multiple entities. In smart homes or
factories, multiple entities can be present at the same time. It has to be ensured
that the analysed activities are all associated with the correct entity, to obtain a
meaningful process model on a by-entity-level. Our method targets such scenarios
where a sensor cannot identify entities utilising a unique identifier. Figure 1 gives
an overview of the proposed approach, which consists of the following four steps
that are explained in the following sections:

1. Event Correlation: Correlation of events from a location sensor event log EL

to (unlabelled) activity instances yielding an instance log EI .
2. Activity Discovery: Discovery of process activities A together with their labels

and sensor-level process models describing the expected behaviour on a sensor
level.

3. Event Abstraction: Abstraction of the instance log EI to a process event log
EP where events are directly related to the start or completion of process
activities A.
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4. Process Discovery: Process discovery based on the process event log EP result-
ing in an activity-level process model defined over activities A.

3.1 Event Correlation

The first step towards process mining on raw sensor events is to group the
input data according to a set of numbered activity instances by correlating each
individual location sensor event e ∈ EL to an activity instance i ∈ N. This
results in an instance log EI in which, beyond the requirements for EL, each
event ei ∈ EI is additionally assigned an activity instance that can be retrieved
with instance(e) ∈ N. The main goal of this step is to produce traces such
that each trace can be associated with an activity instance. We assume every
recorded event in the raw data is caused by an entity. In order to determine
which entity n ∈ N caused which event, the raw event location data is assigned
to the respective entities. Eventually the trace of each entity is divided into
smaller sub-traces (cases) that contain only one single activity: we denote this
as sensor case slicing. Here, also an approach for entity detection is required.

Entity Detection. In a setting with sensors providing only information whether
an object is present or absent, a distinction between entities is not possible. How-
ever, if we know the relative location of the sensors to each other, our weighted
average distance approach can be implemented and distinguish between multiple
entities. The very first time any of the sensors detects the presence of an entity
is the beginning of the first entity’s trace. For every subsequent sensor activa-
tion, we have to decide which entity caused the activation of a sensor. Each time
a sensor is activated, we calculate which already registered entity is closest to
the current sensor activation, based on the entities’ last known position. If no
entity is close enough, the algorithm assumes that a new entity has entered the
observed area and creates a new trace for this new entity. Both the proximity
threshold and the maximum number of entities are parameters that can be man-
ually adjusted based on the scenario. This straightforward implementation works
well if entities keep their distance to each other. But as soon as entities cross
paths in a spot that is only covered by a single sensor, this method will not be
able to correctly assign the sensor activations after the entities moved on, since
the newly activated sensor has the same distance to every entity in that single
spot. This limitation can be overcome, by assuming, entities will preserve their
direction of motion and predict where entities are headed by also considering
the entities’ previous locations combined with a decay function in the distance
function.

Sensor Case Slicing. During its presence in the observed area, the entity exe-
cutes most likely more than one activity. To identify meaningful activities from
the continuous recording (what is called a “long trace”), an appropriate sepa-
ration into smaller sub-traces, called cases, is required. We have to divide the
traces here, because we are identifying and clustering activities by their sensor-
activation-signature, therefore the sub-traces can only contain one single activity.



74 D. Janssen et al.

In concrete terms, in our approach, a long trace is cut into sub-traces of a
predefined fixed length. Depending on the application, the optimal fixed length
might be different. Our implementation incorporates a grid search, comparing
the results for different sub-trace lengths, to maintain flexibility. The challenge
is to avoid sub-traces that are too short and contain too little sensor-data to
extract meaningful activities. But at the same time, the sub-traces cannot be
too long, as a too-long sub-trace may consist of multiple activities.

3.2 Activity Discovery

Having obtained the instance log EI , we aim to infer a set of process activities A
that are likely to have generated the raw sensor events. The outputs of this step
in our approach are a set of activities A. Each activity a ∈ A has both an activity
label label(a) as well as a process model describing the low-level behaviour of
that activity a in terms of events on the sensor-level. The main challenge in this
part of the approach is to determine a good division of activity instances into
clusters, i.e., an activity clustering where each of the clusters should represent a
distinct activity on the process level. This refers not only to the clustering itself
but also to finding a good number of clusters. Furthermore, a suitable activity
labelling needs to be found.

Activity Clustering. Independent of the implemented clustering technique, the
objective remains the same: Find similar sub-traces and group them. For this,
we used a Self-Organising Map (SOM) clustering and k-means. The challenge
with the discovery of similarities is to find a criterion to define the similar-
ity between sub-traces. Usually, in SOM this is achieved by calculating the
euclidean distance between vectors. However, this is challenging if sensors have
arbitrary label names. We experimented with three alternative representations
of the traces: First, we counted how often each sensor is activated in a trace.
Second, we counted for how long each sensor is activated for in a trace. And
third, we combined both the quantity method and time method in one vector.
The third representation retains the most information of the original trace and
is, therefore, the preferred choice.

Activity Labelling and Validation. Having discovered clusters of similar traces
corresponding to distinct activities, we still lack insights into the kind of activity
that are represented by each cluster. Also, it may be challenging to judge the
quality of the obtained clustering. We assume that activity labelling generally
requires a human-in-the-loop with appropriate domain knowledge. Thus, we pro-
pose to discover a process model based on the events of each cluster by using
the Inductive Miner. The quality of the process model is evaluated based on
the F1-score combination of the common fitness and precision measure. These
interpretable process models make our method suitable for complex processes
and the quality measure can be used to validate the clustering result. Having
access to the process models and their quality evaluation a domain expert can
interpret, validate and label each cluster with an appropriate activity label.
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3.3 Event Abstraction

The third step of our approach combines the sub-traces yielded by the event cor-
relation step (Sect. 3.1) and the activity clusters detected in the Activity Discov-
ery step (Sect. 3.2). This results in a process event log EP that groups together
events from the original location sensor event log EL to process events ep ∈ EP .
For each process event ep we can obtain the following attributes: time(eP ) ∈ R,
activity(eP ) ∈ A, entity(eP ) ∈ N , and transition(eP ) ∈ {start, completed}.
Thus, each process event refers to a specific high-level process activity and indi-
cates a transition in the transactional life-cycle, i.e., whether the activity instance
has been started or completed.

3.4 Process Discovery

Having promoted the raw location sensor events EL to the level of activity
instances, our process event log EP fulfills almost all requirements for high-level
process discovery. Anyway, still missing are process cases that are meaningful to
our analysis goal. Identifying process cases is highly dependent on the particular
circumstance. In our application scenario, we propose to focus on re-occurring
behaviour of an entity starting with a specific activity (e.g., entering the smart
home). Based on our event correlation step (Sect. 3.1), we build a separate trace
for each entity. Then, the potentially very long trace referring to a single entity
is subdivided into multiple traces by dividing it into separate traces each time
the activity of interest occurs. To discover a meaningful process model, we have
to assume that regular and routine behaviour is observable. As a starting point,
an activity has to be selected that most likely will be the origin of the rou-
tine behaviour such as entering the observed area. Finally, an overall process
model is discovered using a standard technique, e.g., Inductive Miner [26]. The
final output is a process model reflecting the observed behaviour of the entities
aggregated only from raw sensor data.

4 Evaluation

4.1 Set-up

We evaluated our approach on the publicly available CASAS data-set, which con-
tains raw sensor data from a smart home environment [2]. The CASAS data fulfils
the two requirements of our approach: it contains the timestamps and location
information of sensor events. The data was recorded in a smart home test-bed
with two residents and a house equipped with 51 motion sensors. Figure 2 shows
the house plan and the positions of the motion sensors. Each motion sensor gen-
erates low-level events, where each sensor entry is tagged with a timestamp, the
sensor ID and the binary sensor value (active/not active). We extracted sensor
data from 7 consecutive days (02/05–09/02/2010) from the 20-Kyoto-2-Daily
life, 2010–2012 data set.
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Fig. 2. Sensor layout of an apartment in the CASAS project [2].

We applied our method for different values of parameters such as sub-trace
length, number of clusters and the similarity measure used. We used grid search
to identify best parameter values for the clustering based on the average com-
bined fitness [27] and precision [28] (F1-score) obtained for the process models
discovered for each cluster of high-level events. We employ standard filtering
techniques (most frequent traces and activities) used in process mining to focus
on the dominant behaviour in each cluster. We compared the proposed SOM
clustering with k-means clustering based on the same similarity measures. The
implementation of step 1 and 2 is openly accessible1 We used PM4Py 1.1.1 and
heuristicmineR for the process discovery and evaluation.

Having discovered activities and obtained traces based on the idea to discover
re-occurring behaviour starting with the same activity (Sect. 3.4), we applied
Heuristics Miner to discover a process model of the behaviour. Based on the
spatial layout of the smart home (Fig. 2), we choose to create traces that start
with the activity Walk entrance/stairs/storage as the entry point into the house.
Heuristics Miner was selected as we expect the inhabitants of the smart home
environment to show a lot of infrequent behaviour, for which Heuristics Miner
has shown to be appropriate [29].

4.2 Results and Discussion

Figure 3 shows the results of our grid search. We experimented with trace lengths
ranging from four to twelve. Shorter trace lengths generally lead to a better F1-
score. However, we need to impose a minimal trace length since traces consisting
only of a single event would trivially lead to the discovery of process models with
perfect fitness and precision. In our case, less than four events did not allow to
infer a set of meaningful activities.

Evaluating sample data has shown that considering both the frequency of
activation as well as the duration of the activations as a similarity measure (the

1 https://github.com/d-o-m-i-n-i-k/Process-Model-Discovery-public.

https://github.com/d-o-m-i-n-i-k/Process-Model-Discovery-public
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Fig. 3. Average F1-score for process models discovered for the clusters based on six
different cluster sizes (6–16), five different maximum trace lengths (4–12), four vector
preparation methods and two clustering algorithms.

Fig. 4. Example of a Petri net discovered using Inductive Miner for a cluster in the
Activity Discovery step.

method quantity time) yields superior results, compared to only regarding one
aspect. When choosing too few clusters or too many, the quality score decreases.
In turn, choosing too many clusters may lead to several clusters representing the
same activities, which should have been grouped. We also qualitatively evaluated
the clustering by manually inspecting and labelling some of the results.

For example, the Petri net discovered by Inductive Miner on a cluster shown
in Fig. 4 is a reasonable candidate. The three sensors that can be activated
simultaneously are all located in the bathroom. The subsequent sensors M29 and
M28 are located in the hall with M28, which is furthest from the bathroom. From
this example process model, it is reasonable to infer that this cluster refers to
activities where the entity spends some time in the bathroom and then left the
room. Overall, the similar results are obtained for 10 and 16 clusters with a trace
length of 4 and using our proposed quantity&time vectorisation approach.

We grouped the activity instances of the best clustering results (16 clusters)
into traces at the level of process instances. Afterwards we filtered the resulting
event log to only retain traces of a length in the range of 5 to 25 events. This
yields a log with 5898 events grouped in 273 traces with an average length of
21.6. The application of Heuristics Miner with a dependency threshold of 0.8
and a frequency threshold of 10 returns the Causal net dependencies shown in
Fig. 5. The activity in entrance area of the house marks the starting point of our
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Fig. 5. Causal net discovered with the Heuristics Miner on the obtained process event
log.

Causal net. The activities that can mostly be observed after the entry activity
are walking between the rooms, walking in the upper hallways and going to the
kitchen to cook or wash the dishes. After cooking the dishes it often occurs that
the resident would walk between the rooms to sit down, presumably to eat in
the living room.

4.3 Limitations

A drawback of our method is the assumption of continuous movement in the
event correlation step (Sect. 3.1). As soon as the motion at the rendezvous loca-
tion is more than just a mere passing by, our approach might not return the
desired results. Additionally, the entity recognition could be improved by using
more sophisticated methods, e.g. hidden Markov models that have already shown
promising results in differentiating people from one another [30]. Moreover, the
sensor case slicing mechanism could take variable sub-trace length into consider-
ation, i.e., depending on the activity, the number of involved events, and there-
fore the sub-trace length may vary. For example, the activities sleeping, cooking
and washing hands are activities with a distinctive difference in the number of
involved events.

5 Conclusion

IoT environments generate a large amount of data, predestined for further anal-
ysis. Process mining can give valuable insights into how real-life activities per-
form when extracting meaningful activities instances from raw sensor events.
This paper combined unsupervised learning in the form of clustering and pro-
cess mining, to discover activities and process models from motion sensors. We



Process Model Discovery from Sensor Event Data 79

evaluated our approach by comparing the obtained model quality for several
clustering techniques on a publicly available data-set in a smart home scenario
and found it to be superior. To fully relieve domain experts from process mod-
elling and to automate the process of model discovery, we believe that an accurate
approach for entity centricity is imperative. For this, future tasks are to fuse het-
erogeneous sensor events as input for high-level aggregation, to take into account
other vectorisation methods such the shortest path distance between sensors (i.e.,
relational or pair-wise distances only) to better disambiguate between residents
and to apply non-end-to-end process discovery methods such as Local Process
Model discovery [22]. In further research, we plan to include spatial information,
like room layouts in smart homes, into our approach as well as implement vari-
able trace lengths and experiment with other machine-based learning techniques
to further improve the discovered process models.
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Abstract. Due to the rise of IoT, event data becomes increasingly fine-
grained. Faced with such data, process discovery often produces incom-
prehensible spaghetti-models expressed at a granularity level that doesn’t
match the mental model of a business user. One approach is to use event
abstraction patterns to transform the event log towards a more coarse-
grained level and to discover process models from this transformed log.
Recent literature has produced various (partial) implementations of this
approach, but insights how these techniques compare against each other
is still limited.

This paper focuses on the use of Local Process Models and Combi-
nation based Behavioural Pattern Mining to discover event abstraction
patterns in combination with the approach of Mannhardt et al. [15] to
transform the event log. Experiments are conducted to gain insights into
the performance of these techniques. Results are very limited with a gen-
eral decrease in fitness and precision and only a minimal improvement
of complexity. Results also show that the combination of the process dis-
covery algorithm and the event abstraction pattern miner matters. In
particular, the combination of Local Process Models with Split Miner
seems to improve precision.

Keywords: Process mining · Unsupervised learning · Event log ·
Abstraction

1 Introduction

Process Discovery focuses on the discovery of the process flow from an event
log [2], in order to gain insights in the real execution of a business process [1].
However, when event logs are recorded at a fine-grained level, the activities in
the discovered process model become increasingly less recognisable to the busi-
ness users. Furthermore, fine-grained event data often result in incomprehensible
spaghetti-models [22].
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Against this background, [14] introduced a pattern-based approach to aug-
ment low-level events to higher-level activities, resulting in more insightful pro-
cess models. Their original approach requires domain experts to provide event
abstraction patterns which map low-level events to higher-level activities, which
are subsequently used to transform the event log.

Mannhardt and Tax [16] studied the use of Local Process Models to learn
these event abstraction patterns from data. More recently, [3] introduced a new
unsupervised technique to discover event abstraction patterns that are compact
and maximal, increasing the options to apply the technique proposed in [16] in
an unsupervised manner. This raises the question how well these two options
perform with the end goal in mind, i.e. to transform the log such that a process
model is discovered which is more comprehensible and remains properly fitting
and precise.

This paper describes a benchmark study of Local Process Models (LPMs)
and Combination based Behavioral Pattern Mining (COBPAM) in combina-
tion with the approach in [16], focused on their capabilities to obtain models
of lower complexity without sacrificing fitness and precision. Furthermore, per-
formance differences between these two approaches were explored in order to
identify underlying mechanisms at work. This resulted in following contribu-
tions:

– In contrast to previous studies, this study also considers the impact of event
pattern abstraction on the understandability of the final process models,
approximated by a broad set of complexity measures.

– This study provides an empirical comparison between LPM and COBPAM in
combination with the method presented in [16], providing initial suggestions
which of both event abstraction pattern miners performs best.

– This work provides empirical insights into the interaction between the process
discovery algorithm and the event abstraction pattern miner with respect to
their conjoint impact on fitness, precision and comprehensibility.

The remainder of this paper is structured as follows. Section 2 gives an outline
of related work in the domain. Next, Sect. 3 defines the methodology for the
benchmark study, as well as elaborates on the experimental design. Section 4
then gives an overview of the experiment’s results before Sect. 5 concludes the
paper.

2 Related Work

This paper builds further on the work in [16], which studied the use of LPMs to
discover event abstraction abstraction patterns in combination with the approach
in [14]. However, their work was slightly different than ours, as they only focused
on fitness and precision, whereas we also take process model complexity into
account.

LPM [23] can be used to discover event abstraction patterns in an unsuper-
vised manner. It extends frequent pattern mining techniques to more complex
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patterns and aims to describe frequent behaviour in an event log in local pat-
terns. In [21], LPM is extended with utility functions and constraints to mine
more meaningful patterns, while [9] shows how high quality sets of a limited
number of LPMs can be constructed. However, both latter approaches require
some kind of domain expert interaction, which puts them outside the scope of
our study.

Inspired by LPM, Acheli et al. [3] designed the Combination based
Behavioural Pattern Mining (COBPAM) approach. It exploits a partial order
on potential patterns to discover only those that are compact and maximal, i.e.
least redundant.

The recently conducted review study of van Zelst et al. [25] proposes a tax-
onomy of supervised and unsupervised techniques for event abstraction. Some
interesting unsupervised ones are global trace segmentation [11], HLPM-Mine
[10], Bose et al. [8], Alharbi et al. [6], RefMod-Miner [18] and the work of
Sánchez-Charles et al. [19]. This study focuses on LPM and COBPAM as the
setup under consideration employs the approach in [16], which requires a defined
process pattern between the low-level events in the event abstraction pattern.
Another approach producing compatible patterns for this setup would be the
RefMod miner [18]. Unfortunately, as no public implementation was available
for this technique, it was not considered in this study.

It is worth noting that the combination of event abstraction pattern miners
and the technique in [16] is not the only possibility to discover higher-level
process models from low-level event data. For example, [20] presents a framework
designed to transform location sensor data to an event log via interaction mining
that business users can understand.

3 Methodology and Experimental Setup

This study takes the following algorithmic problem class as a starting point:

A process model discovered from an event log is too complex to understand
because the event log is too fine-grained. What is needed, is a technique
which augments the event log to a higher abstraction level such that this
transformed event log results in less complex discovered process models
which are still correctly representing the underlying process.

This paper considers an algorithmic design to tackle this problem based on
the approach in [14] in combination with two unsupervised abstract pattern
discovery techniques, i.e. LPM [23] and COPBAM [3].

The quality of the algorithm design is defined on three criteria. Firstly, we
want the process model discovered from the transformed log to be more compre-
hensible. The second and third criteria state that the model discovered from the
transformed log should remain fitting and precise with respect to the original
data.
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3.1 Evaluation Method

To evaluate the comprehensibility of the model discovered from the transformed
log, we use complexity as a proxy, which has been shown to be inversely related
to the model understandability [17]. In total, ten complexity metrics were used,
covering the four complexity dimensions identified in [13]1. These complexity
metrics are computed for the process models discovered from the transformed
event logs.

(2)

(4)Event Abstraction
Patterns

(5)Expanded Process
Model

(1)

(2)

(5)

Event Log Fitness / Precision

(3)Transformed Event
Log

(4)

Process Model

Fig. 1. Method to evaluate fitness and precision: (1) event abstraction patterns are dis-
covered from the original event log, (2) the event log is transformed to higher abstrac-
tion level, (3) a process model is discovered, (4) the process model is expanded with
the event abstraction patterns to the original granularity level, (5) precision and fitness
are computed.

To evaluate the fitness and precision of the model discovered from the trans-
formed event log with respect to the original event log, the same approach as in
[16] was used. First, event abstraction patterns are discovered from the original
event log. These event abstraction patterns map a local process pattern, defined
at the original granularity level, to a higher level activity. Second, these pat-
terns are used to transform the event log. Third, a process model is discovered
from this transformed event log. Fourth, the event abstraction patterns are used
to expand the process model into an expanded process model which is at the
abstraction level of the original event log. This is done by replacing the higher-
level activities by its corresponding local pattern. Fifth, the original event log
is compared against the expanded process model to calculate fitness and preci-
sion values. Fitness is measured by the alignment-based fitness measure [4] and
precision is measured with the alignment-based ETC precision measure [5].

3.2 Data

Six publicly available real-life event logs2 with different characteristics are used
in this study. Table 1 illustrates the variation among the logs in terms of number
of events, number of activities, number of cases and number of distinct traces.

Regarding the BPI challenge 2019 log, similar to [7], a sample of the event
log was taken for performance reasons. We preserved case variants containing at
least 50 cases, leaving us with 71% of the events.
1 This is done via the R package understandBPMN [13].
2 The event logs were extracted from the 4TU Centre for Research Data in May 2020.

https://data.4tu.nl/repository/collection:event_logs
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Table 1. Event log characteristics.

# events # activities # cases # distinct traces

Road traffic fine
management

561.470 11 150.370 231

Hospital billing 451.359 18 100.000 1.020

Sepsis case 15.214 16 1.050 846

BPI 2019 1.135.258 27 224.768 192

BPI 2020 - request for
payment

36.796 19 6.886 89

BPI 2020 - domestic
declarations

56.437 17 10.500 99

3.3 Experimental Design

Every experiment consists of controlled variables that are of interest to the study.
In our setup, the controlled variables are the event abstraction pattern miners
and the process discovery algorithms used.

Two event abstraction pattern miners were considered in this study, i.e. LPM
and COBPAM. For LPM the ProM implementation [24] was used with default
parameter settings, except for the maximum number of transitions (5) and the
number of patterns to discover (10). From the 10 patterns discovered, the top
3 according to the model ranking were selected, ignoring patterns subsumed by
other better-scoring patterns. For COBPAM, the ProM implementation [24] is
used with support threshold, language fit threshold and maximum depth set to
respectively 0.7, 0.7 and 2 in accordance to the original work [3]. Patterns are
sorted by support value and the top 3 patterns which are not subsumed by other
patterns are selected.

Furthermore, two discovery algorithms were used, i.e. the split miner [7] and
inductive miner infrequent [12]. Both are configured with their default values.
This means there is a conversion step from BPMN to Petri net in the case of
split miner3. The split miner is implemented as stand-alone Java application,
while the inductive miner is accessed via the ProM framework [24].

For all 4 combinations of the 2 event abstraction pattern miners and 2 dis-
covery algorithms, the following experiment was performed. For each event log,
an initial process model was discovered and corresponding complexity, fitness
and precision values were computed. These values serve as the baseline. Next,
event abstraction patterns were mined from the event log and the top three were
used to transform the event log to a higher abstraction level using the approach
in [14]. The ProM implementation was used [24] and low-level events that were
not mapped to higher-level events were kept in the transformed log. All other
parameters were set at their default values. Finally, a new process model was
discovered from the transformed event log and complexity, precision and fitness

3 Done via the convert BPMN diagram to Petri Net (Control Flow) plug-in in ProM.
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values were computed as described in Sect. 3.1. These measures can be compared
against the baseline values to evaluate the impact of a specific event abstraction
pattern miner for a given event log and discovery technique.

4 Empirical Results

This section will explain the results of our experiment per quality dimension. In
total, the six event logs, three abstraction levels, two miners and 12 metrics for
each model, resulted in 432 metrics. The raw result set is available online4.

4.1 The Effect of Abstraction on Model Complexity

Complexity is measured by ten metrics in total. These are cognitive weight, token
split, connector heterogeneity, control flow complexity, sequentiality, cyclicity,
diameter, depth, density and coefficient of network connectivity [13]. From these
ten, token split, connector heterogeneity, control flow complexity, sequentiality,
cyclicity and the coefficient of network connectivity did not improve on average
due to event abstraction for any activity pattern miner, regardless of the process
model miner. The results concerning the remaining four are not uniform, how-
ever, as is shown in Table 2. The table describes, for each combination of miner
and complexity metric, the number of event logs for which an improvement was
observed and the average change. Note that a negative delta is considered an
improvement, i.e. a reduction in complexity.

Table 2. Abstraction impact on cognitive weight, depth, density and diameter.

Split miner Inductive miner

# Improvements Delta # Improvements Delta

Cognitive weight LPM 3/6 −3.37% 2/6 2.54%

COBPAM 4/6 −2.88% 2/6 3.45%

Depth LPM 2/6 −7.14% 0/6 33.33%

COBPAM 4/6 −35.71% 1/6 22.22%

Density LPM 1/6 12.18% 3/6 −1.52%

COBPAM 1/6 16.35% 3/6 −0.42%

Diameter LPM 1/6 4.92% 3/6 −5.41%

COBPAM 2/6 −2.19% 2/6 2.70%

Cognitive weight, which is the weighted sum of gateways and activities, seems
to improve for both LPM and COBPAM when paired with the split miner.
Depth, the amount of split minus join gateways, behaves in a similar fashion.
The inductive miner has a tendency to generate more (parallel) gateways than

4 https://github.com/gregvanhoudt/UnsupervisedEventAbstraction.

https://github.com/gregvanhoudt/UnsupervisedEventAbstraction
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the split miner, and this effect is still present after abstraction. However, it is
important to note that the baseline values for the inductive miner are already
lower than the split miner’s.

Density represents the percentage of sequence flows which are present com-
pared with the theoretical maximum number of sequence flows. It shows the
inverse behaviour of cognitive weight and depth, improving when paired with
the inductive miner. However, the improvement here is much smaller than the
deterioration with the split miner. A small density value indicates that the pro-
cess is more sequential. The models substantiate this, as the split miner has a
tendency to loop back to previous gateways to allow for repetitive behaviour,
creating more sequence flows. In that regard, it is possible for depth to improve
while density worsens.

The diameter metric only seems to improve, on average, for the combinations
COBPAM-split miner and LPM-inductive miner. Also, even if diameter improves
on average, the value decreases for the majority of the logs. Given that the results
do not seem to correlate with a discovery miner or activity pattern miner, specific
conclusions cannot be drawn for this metric. Further experimentation is required
to obtain more conclusive results.

When considering all complexity measures simultaneously, we count 15 and
19 improvements for LPM and COBPAM, respectively. Although the difference
is small, this seems to indicate COBPAM is slightly better in reducing complexity
than LPM, independent of the process discovery algorithm. In general, we can
conclude that, in our experimental setting, pattern-based event abstraction does
not reduce the complexity of newly learnt models. However, caution is advised
as we limited ourselves to only three patterns for each abstraction. Inserting
additional patterns might have a positive impact on complexity. Keep in mind
this will probably also impact fitness, and potentially precision.

4.2 The Effect of Abstraction on Model Fitness and Precision

The second facet of the study, the accuracy of process models, is measured by
fitness and precision. Table 3 summarises the outcomes. A positive delta is now
considered an improvement. Note that for precision - LPM - Inductive miner,
we were unable to compute two values.

Table 3. Abstraction impact on fitness and precision.

Split miner Inductive miner

# Improvements Delta # Improvements Delta

Fitness LPM 0/6 −23.86% 1/6 −13.00%

COBPAM 0/6 −32.04% 0/6 −22.93%

Precision LPM 4/6 0.67% 1/4 −34.25%

COBPAM 1/6 −4.78% 1/6 −26.00%
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Regarding fitness, the data shows there is a severe negative effect: only one
improvement is observed. Performing a t-test at the 5% significance level, the
only insignificant difference was for LPM in combination with the inductive
miner. Of course, the numbers have to be nuanced as the split miner gener-
ated a baseline of nearly perfect fitness, so an increase will be very difficult
to accomplish. However, the magnitude of the decrease makes clear automated
pattern-based abstraction negatively affects the fitness of new high-level process
models.

One possible explanation is the overlap between activity patterns. Recall that
fitness can only be calculated after the high-level model is expanded to again
include the low-level event classes. This means one event class can now be present
at multiple locations in the model. This can result in the obligation of an event
class to be executed multiple times according to the high-level process models,
which is not the case on the lower level. Also, the overlaps make it unclear which
low-level event belongs to which high-level activity [16], generating potential
confusion during the abstraction of the event log.

The precision metric also shows clear evolutions, although not as uniform
as fitness. In fact, the average precision metric for LPM in combination with
the split miner increased. However, the differences were not significant at the
5% significance level. A potential reason for decreases of precision is that we
assume parallel relations between activity patterns. Should patterns overlap,
it could be more reasonable to state that two patterns cannot co-exist. If two
overlapping high-level patterns are present in the model, this is an introduction
of additional behaviour. On the other hand, the goal of event log abstraction is
hiding/grouping low-level behaviour, which should have a positive influence on
precision.

In general, fitness only increased once for LPM without observing any
improvements for COBPAM. The precision metric improved 5 and 2 times for
LPM and COBPAM respectively, with the majority of improvements located at
LPM-split miner in particular. Results suggest that LPM performs better when
interested in fitness and precision of abstracted models.

4.3 Discussion

Overall, the study shows that the use of event abstraction pattern miners to
transform an event log with the purpose of discovering less complex process
model with good fitness and precision, has limited success. On average, it seems
that this approach, using either LPM or COPBAM, results in a decrease of
fitness and precision, with only limited effect on complexity.

Fitness typically takes a hit when abstracting the event log, which is not com-
pletely unexpected as abstraction patterns hide complex behaviour which can
no longer be accounted for by the miner. It is also remarkable that the impact
on fitness appears to be correlated to the process discovery algorithm. Before
abstraction, the split miner produces the best-fitting models. After abstraction,
however, this fitness drops heavily, to the extent that the inductive miner pro-
duces better-fitting models at that stage.
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Precision also has a tendency to deteriorate, with the exception for the com-
bination of LPM with split miner. For this combination, in the majority of the
cases we saw an improvement of precision and the average effect was also pos-
itive. It is remarkable that this result is not observed for the combination with
COBPAM and that LPM cannot reproduce these effects with inductive miner.
This again confirms the pattern that there is some kind of interaction between
the process discovery algorithm and the event abstraction pattern miner.

As for complexity, for most of the measures no clear improvement was
observed. The only pattern that could be distinguished, which supports the
goal of this approach, is the slight improvement of cognitive weight and depth
for split miner and the improvement of density for inductive miner. Again, these
results hint at an interaction between the discovery miner and abstraction pat-
tern miner.

Overall, we can conclude that this approach combined with LPM and COB-
PAM has limited results. Future research will be needed to improve these results
in order to make them impactfull enough for practical use. Based on our empir-
ical analysis, a potential direction for future research is to delve into the inter-
action between the discovery algorithm and the abstraction pattern miner. It is
clear that there are mechanisms at work and understanding these could open up
avenues for improved algorithms. Another path worth investigating is the auto-
matic discovery of how activity patterns interrelate. The approach in [16] has
parameters which define which patterns can or cannot co-exist and in what type
of interrelation. The current event abstraction pattern miners do not provide
this type of information.

Finally, based on these mixed empirical results, one must be careful to draw
strong conclusions with respect to the performance of LPM versus COBPAM.
One might suggest that both approaches are competitive to each other, with the
exception of the combination of split miner with LPM, which actually appears
to improve the precision of the models on average. As with respect to reducing
complexity, COBPAM seems to have a small edge over LPM, albeit too small to
make conclusive statements.

4.4 Limitations

This experiment can be extended in several ways. First of all, a new approach to
evaluate LPMs was recently proposed [9], which is not implemented in our work
yet. This new evaluation acknowledges the excessive amount of overlapping pat-
terns and disregards confidence and determinism as quality measures. For COB-
PAM, we only have access to support and language fit scores. A more advanced
scoring and selection technique of activity patterns could have improved the
experiment, obtaining less overlapping patterns as with the meaningful LPMs
[9].

On the other hand, the current study fixes the number of activity patterns
that are taken into consideration to three. Mannhardt and Tax [16] concluded
that the optimal number of patterns varied per event log. No doubt the same
applies to this study.
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Next, this experimental setup uses six event logs. Each of them returns
six process models: a low-level, a LPM-abstracted and a COBPAM-abstracted
model for both the split miner and the inductive miner. Therefore, this study
compares 36 process models. To obtain a larger number of observations to draw
conclusions from, this number of event logs can easily be increased.

Finally, as discussed in Sect. 2, the RefMod-Miner also satisfies the require-
ments to take part of this experiment, yet no public implementation is available.

5 Conclusion

In this paper, local process models and the combination based behavioural pat-
tern mining approach are put against each other in unsupervised event log
abstraction. The goal was to produce process models at a higher abstraction
level with better comprehensibility, while still being well-fitting and properly
precise.

However, the experiments show only limited results. While some aspects of
complexity show possibilities for improvements, they seem tied to the process
model miner. Fitness gets a significant hit overall and precision only tends to
improve for the combination of LPM and Split Miner.

Future research is required with respect to the interactions between activ-
ity pattern miners and process discovery algorithms. This could allow for more
accurate abstraction techniques. Also, discovering meaningful and more precise
activity patterns is an interesting research track. But perhaps more importantly,
the possibility to discard our assumption about only parallel inter-pattern rela-
tions must be explored. Being able to learn this from data could greatly improve
the abstraction quality.
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variability in logs by clustering of word embeddings. In: Teniente, E., Weidlich, M.
(eds.) BPM 2017. LNBIP, vol. 308, pp. 191–203. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-74030-0 14

20. Senderovich, A., Rogge-Solti, A., Gal, A., Mendling, J., Mandelbaum, A.: The
ROAD from sensor data to process instances via interaction mining. In: Nurcan,
S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 257–273.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5 16

https://doi.org/10.1007/978-3-642-03848-8_12
http://ceur-ws.org/Vol-2625/paper-01.pdf
http://ceur-ws.org/Vol-2625/paper-01.pdf
https://doi.org/10.1007/978-3-319-19027-3_14
https://doi.org/10.1007/978-3-642-12186-9_13
https://doi.org/10.1007/978-3-642-12186-9_13
https://doi.org/10.1007/978-3-030-00787-4_4
https://doi.org/10.1007/978-3-319-45348-4_8
https://doi.org/10.1007/978-3-030-11641-5_1
https://doi.org/10.1007/978-3-030-11641-5_1
https://doi.org/10.1007/978-3-319-74030-0_14
https://doi.org/10.1007/978-3-319-74030-0_14
https://doi.org/10.1007/978-3-319-39696-5_16


Unsupervised Event Abstraction in a Process Mining Context 93

21. Tax, N., Dalmas, B., Sidorova, N., van der Aalst, W.M., Norre, S.: Interest-driven
discovery of local process models. Inf. Syst. 77, 105–117 (2018)

22. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.P.: Event abstraction
for process mining using supervised learning techniques. In: Bi, Y., Kapoor, S.,
Bhatia, R. (eds.) IntelliSys 2016. LNNS, vol. 15, pp. 251–269. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-56994-9 18

23. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.: Mining local process
models. J. Innov. Digit. Ecosyst. 3(2), 183–196 (2016)

24. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.,
van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool
support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp.
444–454. Springer, Heidelberg (2005). https://doi.org/10.1007/11494744 25

25. van Zelst, S.J., Mannhardt, F., de Leoni, M., Koschmider, A.: Event abstraction
in process mining: literature review and taxonomy. Granular Comput. 1–18 (2020)

https://doi.org/10.1007/978-3-319-56994-9_18
https://doi.org/10.1007/11494744_25


1st International Workshop on
Leveraging Machine Learning in

Process Mining (ML4PM)



1st International Workshop in Leveraging
Machine Learning for Process Mining

(ML4PM 2020)

The field of Machine Learning (ML) continues to grow, with new and promising
techniques, and with applications across numerous areas. In the past few years, we have
seen strong interest from both industry and academia in leveraging ML techniques in
the Process Mining (PM) field. The application of ML to PM is today discussed as the
emerging technology that will foster a new paradigm for improving business process
management by enabling process task automation and simplification. The intent of the
1st International Workshop on Leveraging Machine Learning for Process Mining was
to establish a venue to discuss recent research developments at the intersection of ML
and PM by bringing together practitioners and researchers from both communities who
are interested in making the ML-generation of PM tools a reality. The open call for
contributions solicited submissions in the areas of automated process modeling, pre-
dictive process mining, application of deep learning techniques, and online process
mining. The workshop attracted fifteen submissions from six different countries
(Germany, Italy, Spain, France, Norway, and Egypt), which shows the liveliness of this
field. From the received fifteen submissions, seven submissions were passed to the
review process and accepted for presentation at the workshop. Each paper was
reviewed by three members of the program committee. Papers presented at the
workshop were also selected for inclusion in the post-proceedings. These articles are
briefly summarized below.

The paper by Baskharon et al. describes a novel ML algorithm to predict the
remaining cycle time of running cases. It resorts to survival analysis to learn from
incomplete ongoing traces.

The paper by Quishpi et al. investigates how to determine hierarchical/tree patterns
through inter-sentence analysis, in order to improve the extraction of process annota-
tions from text.

The paper by Peeperkorn et al. tackles the problem of conformance checking in the
supervised setting by training a Recurrent Neural Network classifier.

The paper by Nguyen et al. explores the use of time-aware LSTM (T-LSTM) cells
in predictive process monitoring by formulating a cost-sensitive learning approach to
account for the common class imbalance in event logs.

The paper by Boltenhagen et al. applies Recurrent Neural Networks and Random
Forest classifiers to the problem of classifying traces based on their alignment costs to a
reference process model.

The paper of Chiorrini et al. explores the opportunities and issues of applying
reinforcement learning to tasks of predictive process monitoring.

The paper of Luettgen et al. illustrates the design of a learning technique that uses
word embeddings to encode process cases and evaluates the proposed approach in the
context of trace clustering.



In addition to these seven papers, the program of the workshop included the invited
talk “Applying AI to BPM: opportunities and pitfalls”, given by Ernesto Damiani.
Around 120 attendees were present during the workshop presentations, talk, and
discussion.

We would like to thank all the authors who submitted papers for publication in this
book. We are also grateful to the members of the Program Committee and external
referees for their excellent work in reviewing submitted and revised contributions with
expertise and patience. Our event received a total of 461 attendees, a fact that
demonstrates the interest in the area and paves the way for new editions.

January 2021 Paolo Ceravolo
Sylvio Barbon Jr.
Annalisa Appice

1st International Workshop in Leveraging Machine Learning 97



Organization

Workshop Chairs

Paolo Ceravolo Università degli Studi di Milano, Italy
Sylvio Barbon Jr. State University of Londrina, Brazil
Annalisa Appice Università degli Studi di Bari, Italy

Program Committee

María Teresa Gómez-López Gómez University of Seville
Rafael Accorsi PwC Digital Services
Niek Tax Booking.com
Josep Carmona Universitat Politècnica de Catalunya
Ernesto Damiani Khalifa University
Chiara Di Francescomarino Fondazione Bruno Kessler
Antonella Guzzo Università della Calabria
Mariangela Lazoi University of Salento
Matthias Ehrendorfer University of Vienna
Fabrizio Maria Maggi Free University of Bozen-Bolzano
Paola Mello Università di Bologna
Gabriel Marques Tavares Università degli Studi di Milano
Emerson Cabrera Paraiso Pontifícia Universidade Católica do Paraná
Bruno Bogaz Zarpelão State University of Londrina
Irene Teinemaa Booking.com
Michelangelo Ceci University of Bari Aldo Moro
Natalia Sidorova Eindhoven University of Technology
Domenico Potena Università Politechnica delle Marche

Additional Reviewers

Mathilde Boltenhagen
Graziella De Martino
Angelo Impedovo
Vincenzo Pasquadibisceglie

https://orcid.org/0000-0002-4519-0173
https://orcid.org/0000-0002-4988-0702
https://orcid.org/0000-0002-4988-0702


Predicting Remaining Cycle Time from
Ongoing Cases: A Survival
Analysis-Based Approach

Fadi Baskharon1, Ahmed Awad1,2(B) , and Chiara Di Francescomarino3

1 Information Technology and Computer Science School, Nile University, Giza, Egypt
{f.zaki,aawad}@nu.edu.eg

2 University of Tartu, Tartu, Estonia
3 Fondazione Bruno Kessler, Trento, Italy

dfmchiara@fbk.eu

Abstract. Predicting the remaining cycle time of running cases is one
important use case of predictive process monitoring. Different approaches
that learn from event logs, e.g., relying on an existing representation of
the process or leveraging machine learning approaches, have been pro-
posed in literature to tackle this problem. Machine learning-based tech-
niques have shown superiority over other techniques with respect to the
accuracy of the prediction as well as freedom from knowledge about the
underlying process models generating the logs. However, all proposed
approaches learn from complete traces. This might cause delays in start-
ing new training cycles as usually process instances might last over long
time periods of hours, days, weeks or even months.

In this paper, we propose a machine learning approach that can learn
from incomplete ongoing traces. Using a time-aware survival analysis
technique, we can train a neural network to predict the remaining cycle
time of a running case. Our approach accepts as input both complete and
incomplete traces. We have evaluated our approach on different real-life
datasets and compared it with a state of the art baseline. Results show
that our approach, in many cases, is able to outperform the baseline
approach both in accuracy and training time.

Keywords: Predictive process monitoring · Remaining time
prediction · Survival analysis · Incomplete traces

1 Introduction

Predictive process monitoring [7] is a sub-field of process mining that is concerned
with predicting an outcome of interest while an execution is still running, for
instance with the purpose of proactively taking corrective actions before things
go wrong. Different types of outcomes can be predicted, as for instance, the
remaining time for a case to finish [11,14,15], which activity to be executed
next [3,9], or the fulfillment of a certain goal [4,5]. Different techniques have
c© Springer Nature Switzerland AG 2021
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been used to tackle the prediction challenge, such as machine learning, statistical
methods, annotated transition systems and hybrid approaches [7]. However, all
these techniques require as a major input a history of complete cases, in order
to train a model that will be used at run-time to predict the respective outcome
for running cases.

Among the techniques for predictive process monitoring, machine learning
and deep learning-based approaches have shown superiority with respect to the
accuracy of the prediction [14,17]. Yet, as known, training deep learning models
requires more resources and a large dataset to obtain better results. Moreover,
process instances generally run for long time, days, weeks or even months. A
direct threat in this case is the possibility of concept drifts [6] that render the
currently-used model for prediction useless and triggers the need to train a new
model on a larger set of traces containing newly complete traces. In such case,
the retraining has to be delayed until a sufficiently large set of newly completed
cases has been collected.

A main limitation of contemporary predictive monitoring techniques is the
need for complete traces to train their models. This causes delays of retraining
cycles until new completed cases are collected. In this paper, we alleviate this
limitation by allowing learning from ongoing cases, i.e. incomplete traces, by
employing survival analysis techniques [2]. Treating incomplete traces as cen-
sored data, we are able to train a neural network to predict the remaining time
for a running case. Compared to the state-of-the-art, our results show at least
comparable accuracy to methods that require complete traces with better results
on several data sets; additionally, our training takes much less time to complete.

The rest of this paper is organized as follows. Section 2 summarizes the
related work. Section 3 provides the necessary details about survival analysis
and the specific techniques we employ. Our contributions are detailed in Sect. 4
for the encoding of (incomplete) traces and the architecture of the neural net-
work and Sect. 5 for the experimental evaluation and comparison to the baseline
method. Finally, Sect. 6 concludes the paper.

2 Related Work

In general, literature on predictive process monitoring can be classified based on
the type of targeted prediction: next activity, outcome, delays or the remaining
cycle time. Due to space limitations, we will discuss the literature related to the
prediction of the remaining cycle time, as this is the focus of our work. We refer
the user to [7] for a survey on the wider domain of predictive process monitoring.

A recent survey by Verenich et al. [17] has benchmarked the different
approaches for predicting the remaining cycle time of a running instance. In gen-
eral, prediction approaches have been categorized as generative or discriminative.
Generative approaches are process-aware, that is, they require a pre-existing rep-
resentation of the process whose execution generates the traces. Discriminative
approaches, instead, are process-agnostic and can learn directly from traces.

Concerning the generative approaches, in [15] the authors discover a transi-
tion system from the log and augment it with information about the remaining
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time of cases; in [11] stochastic Petri nets are leveraged for making predictions;
in [18], flow analysis is used to aggregate the remaining cycle time on the case
level over its individual activities.

Discriminative methods can rely on different approaches. Some of them lever-
age non-parametric regression models [12,16], others propose clustering-based
techniques, as the work in [1], while others rely on neural networks [14] for the
prediction of the remaining cycle time. We will use this latter approach and the
work in [14] as baseline for our work.

2.1 Baseline Approach

The baseline approach in [14] predicts the next activity in a process as well as
its timestamp. Each event occurring in the trace is transformed into a feature
vector x1, ..., xk to be fed as input to an LSTM network as follows: (i) activity
type (A), i.e., the type of the activity in a one-hot-encoding representation;
(ii) delta t (fvt1), i.e., the time between the previous and the current event
in the trace that allows the network to learn the time dependencies between
the process’ events; (iii) two time-based features, (fvt2) and (fvt3), that
correspond to the hour of the event within the day in 24-h format and the hour
of the event since the start of the week, respectively, so as to learn when the
event has happened with respect to a working day or a working week. The LSTM
has two outputs: (i) Ok

a that corresponds to a one-hot-encoding representation
of the type of the next event with an extra bit representing whether or not this
event occurs at the end of the case; and (ii) Ok

t representing the relative time
difference between the current event and the next event. The remaining cycle
time can be computed by summing Ok

t for all the events from the current event
until the last event of the trace. This model needs to be trained with complete
traces, as the model needs to learn the process sequence, as well as when the
sequence ends. The model also suffers when dealing with sequences containing
loops, as loops cause the model to predict overly long sequences.

3 Background

In this section we will briefly introduce the notations we use throughout the rest
of the paper and a quick overview on survival analysis as the inspiring method
to the contribution of this paper.

3.1 Events, Trace, Logs

The occurrence of an event is the manifestation of the evolution of a running
process. Each event contains at least three pieces of information: a reference to
the activity, a reference to the process instance, and a timestamp. Events can
have more information, e.g., cost, the human resource who executed it, and the
lifecycle transition, e.g., started, completed, etc. In this paper, we require just
the three basic pieces of information.
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Let A be the set of all activities that an event can reference. The set Aend ∈ A
contains end activities. Additionally, the set T is the time domain and C is the
universe of case identifiers. Finally, the set E is the universe of events. Thus, an
event e ∈ E represents the execution of some activity a ∈ A within a case c ∈ C
that occurred at time t ∈ T . A shorthand for these notations are e.a, e.c, e.t
respectively.

Definition 1 (Trace). A trace is a finite non-empty sequence of events σ ∈ E∗.
|σ| defines the length of the trace. σi ∈ E is the event at position i, 1 ≤ i ≤ |σ|. A
trace is called complete if and only if σ|σ|.a ∈ Aend, otherwise it is incomplete.

A prefix of a trace is defined as a function pre : E ∗ ×N → E∗ that returns
a sub-sequence of a trace σ up to and including the event at position i in the
trace.

A log L ⊂ E∗ is a set of traces where each trace appears at most once.

3.2 Survival Analysis and Censored-Learning

Survival analysis models [2] are key players in statistical studies that focus on
analyzing the waiting duration or the remaining time until an event happens,
such as a death, failure, churn, or any other event of interest. These kinds of
models are capable of answering even more complex questions like “What is
the probability that an event does/doesn’t happen within an amount of time
T?”, “What is the probability distribution of the event occurrence over time?”
or “What is the proportion of a population which will survive passed a certain
time?”.

Let T be a random variable denoting the waiting time until the occurrence
of an event, survival models provide information about the probability density
function f(t) = Pr(T = t) and the survival function S(t) = Pr(T > t), among
other functions. The probability density function gives information about the
likelihood of the occurrence of the event at time t. The survival function repre-
sents the probability of surviving until a certain time t without experiencing the
event of interest (See Fig. 1 for the difference between the two functions).

There are three types of survival models: Non-parametric, semi-parametric,
and parametric approaches [13]. Only the latter has the ability to extrapolate
or predict beyond the data time limit, since it fits the survival curve to a time
distribution. There are many suitable distributions to represent a time-based
random variable T as stated in [10], such as exponential, log-logistic, log-normal,
gamma, Poisson, Geometric, and the Weibull distribution.

A capability of survival models is the ability to learn from unobserved events
which are called “censored data”. That is, the collected data represent a snapshot
in time, where some samples have experienced the event of interest, but most of
the samples have not. Yet, these samples contain useful information telling that
“at least we have not observed an event until the time t”.
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(a) f(t) (b) S(t)

Fig. 1. Probability density function vs. Survival function

0  t          time
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e4

Interval censoring

e3

Fig. 2. Observed Vs. Censored events

Figure 2 illustrates the random
variable T that represents the time
to an event of interest. We say
that T is observed when we observe
the actual waiting time within the
period of our study, hence we call it
un-censored (observed) event
T ∈ [0, t] (e1 in Fig. 2), where
the event of interest is exactly
observed. We say that T is censored
when we partially know about the
event occurrence time. We have
three types of censored data [13]:

Right-censored event T ∈
[t,∞) refers to cases that have
started with the study but the event of interest was not observed during the
study time (e2 in Fig. 2). Right-censored events are useful under the assumption
of non-informative censoring. That is, censoring is independent of the likelihood
of the occurrence of the event of interest. In other words, we assume that the cases
whose data are censored would have the same distribution of time to event if they
were actually observed. Interval-censored event T ∈ [a, b], where 0 < a, b < t,
rather than knowing the exact time of the event, all we know is that the event
occurred between two known time points (e3 in Fig. 2). Left-censored Mathe-
matically, left censored is no different from interval censoring. It indicates that
the event occurred at some point prior to the period of study (e4 in Fig. 2).

In the context of predictive process monitoring, only observed events and
right-censored events are relevant. That is because, for the set of traces used for
learning, we either know the exact end time of the trace, or we don’t capture
the trace end in our study (in case of incomplete traces).
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4 Learning from Incomplete Traces

Traditional survival models are designed to handle records with static features
that affect the waiting time. It is not meant to handle time varying features. In
the context of predictive process monitoring, cases are time varying as the same
activity may have different durations across different cases.

Martisson [8] proposed a model that benefits from the survival analysis inter-
pretation and is able to deal with the time varying features by training a gated
recurrent neural network (GRU) that captures the temporal relations between
the time steps. The network is trained to predict the parameters of the Weibull
distribution by optimizing the log of a special likelihood function to consider
both observed and censored events, as explained in Sect. 4.2. The Weibull distri-
bution turns out to be a suitable choice since it is controlled by two parameters
α and β, that makes it flexible to interpret complex outputs, and because of its
ability to fit both discrete and continuous problems.

In our work, we adapt the network architecture of the baseline method [14]
by changing the encoding of the input traces to account for incomplete traces
(Definition 1) and adapt the likelihood function from [8] to train the network to
predict the parameters of the Weibull distribution that fits the time to the end
event of a case. We discuss these two steps in detail in the following subsections.

4.1 Neural Network Setup

Fig. 3. Network architecture

The problem of measuring the
remaining time till a process ends
can be tackled using a similar app-
roach like [8]. However, the original
work was designed to predict the
waiting time to recurrent events,
e.g. the time to the next failure of a
machine. In our case, we are inter-
ested in the time until a process
instance ends.

To adapt the approach to the
prediction of the remaining time to
an end event, we kept the same loss
function and Weibull parameters as
in [8]. Then, we adapted the net-
work design from many-to-many to
many-to-one to account for non-
recurrent end events.
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Considering a log L, we use Nmax to denote the length of the longest trace
σl ∈ L. We train a model for each possible prefix pre(σ, p) (Definition 1), where
σ ∈ L and p ∈ {2, 3, 4, . . . , Nmax − 1}.

As shown in Fig. 3, the model consists of an input layer [X1,X2, ...Xn], which
is the vector representation of the prefix, as explained in Sect. 2.1, connected to
two GRU layers; and a dense layer of 2 neurons for the output representing
the α and the β of the distribution of the random variable T for a given trace.
Having the Weibull distribution, we need to find the most likely value in the
curve, which turns out to be the mode of the distribution.

4.2 Optimization Function

Let T be a random variable for the waiting time having some parameters θ, and
t the observed cycle time, we are interested in the negative likelihood as a loss
function. In other words, we aim at maximizing the likelihood of T being around
the true observation t for complete traces or at pushing it to the right beyond
the censored point t in case of incomplete traces:

L(t, θ) ∝
{

P (T = t|θ) Observed events (complete trace)
P (T > t|θ) Censored events (incomplete trace)

(1)

This can be expressed mathematically as follows (detailed proof in [8]):

L(t, θ) ∝ log
[
fT (t)uST (t)1−u

]
= u.

[
β.log(

t

α
) + log(β)

]
−

( t

α

)β (2)

where u is the event indicator, meaning that u = 1 in case of observed events
and u = 0 in case of censored events. This is equivalent to optimizing θ to
maximize the PDF fT (t) around t for the observed cases, and maximize the
survival function ST (t) beyond t for the censored cases. Figure 4 illustrates what
the objective function aims to do.

(a) Maximize f(t) (b) Maximize S(t)

Fig. 4. Illustration of the optimization function



106 F. Baskharon et al.

In order to train the neural network, we need a (t, u) pair for each observation.
For complete traces, t is the actual time till the end of the trace and u = 1 means
we observed the end of the trace. For incomplete traces, t is the time till the last
event observed (not the end event) and u = 0 means that we have not observed
the trace end till this time.

5 Evaluation

In this section we report on the implementation, used datasets, procedure and
results of the experiments performed for the evaluation of the proposed approach
and its comparison with the baseline.

Implementation
We have used Tensorflow 2.0.1 to build and train our network. All experiments
were run on an Intel Core i7-8650U CPU @ 1.90 GHz 2.11 GHz. The code for
the network and the experiments can be found on our Git hub repo.

Datasets
We have evaluated our approach on four datasets (real life logs) that are
described next.

a. Helpdesk dataset: This log contains events from a help desk ticketing sys-
tem of an Italian software company1. The process consists of 9 activities, and
all cases start with the ticket creation into the system. Each case ends when
the issue is resolved and the ticket is closed.

b. BPI’12 subprocess W dataset:2. The log contains data from the appli-
cation procedure for financial products at a large financial institution. This
process consists of three sub-processes. Two of them have events correspond-
ing to automatic activities, whereas the third sub-process (items sub-process)
contains events for manual (human executed) tasks. We only used the items
sub-process.

c. BPI’12 subprocess W dataset with no repetition: This is the same
dataset as “b” but without loops.

d. Environmental permit dataset: This is a log of an environmental per-
mitting process at a Dutch municipality3. Each case refers to one permit
application.

The four datasets have very different characteristics in terms of trace length
and the number of unique activities, as shown in Fig. 5 and Fig. 6 respectively.
Datasets a and c are the simplest with few unique activities and short traces,
while dataset b contains loops in the process which affects the performance of
the baseline method. Finally, dataset d is considered to be the most complex
with very long traces and different activities. Moreover, it also presents a large
variation of the distribution of the log duration.
1 https://doi.org/10.17632/39bp3vv62t.1
2 https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
3 https://doi.org/10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270

https://github.com/fazaki/cycle_prediction
https://doi.org/10.17632/39bp3vv62t.1
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270
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Fig. 5. Length of traces in each dataset

Fig. 6. Unique activities per trace in each dataset

Experimental Procedure
Each dataset is pre-processed in order to (i) remove the traces with length below
p + 1, for each prefix p ∈ {2, ..., Nmax − 1}, with Nmax the longest trace of the
log; and (ii) build the needed features using the first p events and the time till
the last event. The dataset is then split into three equal parts: training set (TS),
validation set and test set.

In order to evaluate the effect of censored data, we built a special training
set (TSC) composed of 50% of complete traces and 50% of incomplete traces4.
To this aim, we split the training set TS further into two sets of traces: the first
representing observed cases and the second representing censored cases, which
are simulated by randomly cutting the traces. If n is the trace length and p the
length of the prefix used for the features, the time till the last observed event
is computed looking at the event at position n, if the trace belongs to the first
set, or looking at the event in position j, where j is randomly chosen between

4 The choice of 50% as a fixed ratio for complete/incomplete traces is to reduce the
variables in the experiments for better comparison.
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p + 1 to n, if the trace belongs to the second set. For censored data, traces need
to have at least p + 2 events.

The following three experiments have been conducted:

• Experiment 1: training on TS using the time to event approach (Sect. 4).
• Experiment 2: training on TS using the time to event approach and trans-

formation of the output to a new less biased space. For the output transfor-
mation we used a root cubic transformation where φ(x) = 3

√
x, and inverse

transformation where f(x) = x3, which turns out to give the best results
given the output distribution (See Fig. 7).

• Experiment 3: training on TSC using the time to event approach and trans-
formation of the output to a new less biased space.

We used the same hyperparameters for simplicity, and preserve the same valida-
tion and test sets per dataset and prefix throughout the 3 models. The validation
set is used to avoid over-fitting, and the test set to compute the performance.

(a) original label (b) transformed label

Fig. 7. Label distribution before and after transformation

Results
We have executed the three experiments described above and compared the
results with the ones of the baseline [14] in terms of the mean absolute error
(MAE) expressed in days. Figure 8 summarizes the results.

In general, our approach better captures long term dependencies for longer
traces (datasets b and d). The accuracy is further enhanced when transforming
the label (Experiment 2). With 50% censored data, we find that the accuracy
of the model is not harmfully impacted. Instead, it sometimes outperforms the
baseline due to its ability to further remove any bias. The number on top of each
prefix represents the number of traces used for testing. Obviously, it decreases as
the prefix increases since we have less traces matching the length criteria. Yet,
our model is able to learn from the smallest set and outperforms the baseline.

There is a little variation in performance with datasets a and c due to their
short traces and limited number of possible activities. However, we can see that
training with 50% of right-censored traces improves the model performance in
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Fig. 8. MAE for experiments 1–3 and the baseline method for the four datasets

almost all the prefixes. This is due to the balance achieved from having both
observed and censored traces. In other words, when the majority of the traces
are very short, the network tends to predict zero remaining time producing a
large MAE for the large traces, affecting the overall performance. The existence
of right-censored traces reduces this tendency and forces the network to com-
promise between short and long traces. Datasets b and d are very challenging
due to their very long traces, loops, and random behavior especially in dataset
d (Fig. 6). This is obviously affecting the performance of the baseline method
since it tries to predict all the remaining events.

Our three experiments have close performance, and surprisingly having 50%
of right-censored traces did not harm the performance. This empirically proves
that incomplete traces are quite insightful and the network did learn from them.

Fig. 9. Training duration

Figure 9 reports the training time of
our approach compared to the baseline.
We run the training using the setup men-
tioned in Sect. 4.1. This huge difference
in training time is expected because the
network focuses only on predicting the
remaining time instead of learning the
actual events sequence till the end of the
trace.
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6 Conclusion

In this paper, we present an approach to predict the remaining cycle time of
ongoing cases based on learning from incomplete traces. The approach employs
survival analysis techniques for this purpose. Our results show, in general, besides
a reduced training time, a lower MAE compared to the baseline approach. Using
incomplete traces can be useful in several cases, especially when concept drifts
occur. Waiting until collecting complete traces, indeed, might compound the
impact of degrading model performance as process instances usually take long
time to complete.

As future work, we will investigate the applicability of survival analysis tech-
niques and learning from incomplete traces to predict the outcome of a running
case. Additionally, we intend to experiment with more data sets and with differ-
ent percentages of censored traces.
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Abstract. Predictive business process monitoring (PBPM) aims to pre-
dict future process behavior during ongoing process executions based on
event log data. Especially, techniques for the next activity and timestamp
prediction can help to improve the performance of operational business
processes. Recently, many PBPM solutions based on deep learning were
proposed by researchers. Due to the sequential nature of event log data,
a common choice is to apply recurrent neural networks with long short-
term memory (LSTM) cells. We argue, that the elapsed time between
events is informative. However, current PBPM techniques mainly use
“vanilla” LSTM cells and hand-crafted time-related control flow fea-
tures. To better model the time dependencies between events, we propose
a new PBPM technique based on time-aware LSTM (T-LSTM) cells.
T-LSTM cells incorporate the elapsed time between consecutive events
inherently to adjust the cell memory. Furthermore, we introduce cost-
sensitive learning to account for the common class imbalance in event
logs. Our experiments on publicly available benchmark event logs indi-
cate the effectiveness of the introduced techniques.

Keywords: Predictive business process monitoring · Deep learning ·
Recurrent neural network · LSTM · Time-Awareness

1 Introduction

In the last years, a variety of predictive business process monitoring (PBPM)
techniques that base on machine learning (ML) were proposed by researchers [6]
to improve the performance of operational business processes [4]. PBPM is a
class of techniques aiming at predicting future process characteristics in running
process instances [12], like next activities, next timestamps or process-related
performance indicators. Such PBPM techniques produce predictions through

S. Chatterjee—Equal contribution with An Nguyen.

c© Springer Nature Switzerland AG 2021
S. Leemans and H. Leopold (Eds.): ICPM 2020 Workshops, LNBIP 406, pp. 112–123, 2021.
https://doi.org/10.1007/978-3-030-72693-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72693-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-72693-5_9


Time-Aware LSTMs for Predictive Business Process Monitoring 113

predictive models. These models are in turn constructed based on historical
event log data.

A current trend in PBPM is to apply deep neural networks (DNNs) to learn
more accurate predictive models from event log data than with “traditional”
ML algorithms like probabilistic automata [7]. DNNs belong to the ML-sub-field
deep learning (DL) and achieve that by identifying the intricate structures in
high-dimensional data through multi-representation learning [11].

Existing DL-based PBPM techniques often rely on DNN architectures con-
sisting of out-of-the-box constructs like layers with a “vanilla” long short-term
memory (LSTM) cell [9] or state-of-the-art loss functions for parameter learning.

Event logs can be seen as sequences of events in continuous time with irregular
intervals (i.e., elapsed time between consecutive events). We argue that these
time intervals are informative in the case of event logs in PBPM. Intuitively, these
time intervals describe human behavior of executing business processes. Thus,
a time-aware PBPM technique considering information on time intervals could
potentially achieve a higher predictive quality. Time information is currently only
exploited via hand-crafted control-flow features as inputs to “vanilla” LSTM cells
[15]. To better account for the time information in event log data, we propose
a new PBPM techniques using time-aware LSTM (T-LSTM). T-LSTM extends
the “vanilla” LSTM cells by incorporating the elapsed time between consecutive
events in order to adjust the memory state and is inspired by work from Baytas
et al. [2].

Furthermore, the problem of next activity prediction is commonly modeled
as a supervised multi-class classification problem. The distribution of activities
in event logs are commonly skewed. Therefore, we additionally introduce cost-
sensitive learning to address the inherent class-imbalances.

The main contributions of this work are summarized below:

– We introduce a time-aware LSTM model for the tasks of predicting next
activities and timestamps in PBPM

– We tackle the problem of skewed class distributions via cost-sensitive learning

We evaluate the effectiveness of our proposed techniques by conducting exper-
iments for the next activity and timestamp prediction on publicly available
benchmark event logs commonly used for PBPM.

The remainder of the paper is structured as follows: Sect. 2 presents related
work on DL-based next activity and timestamp prediction. Section 3 introduces
preliminaries and the concept of a LSTM. Sections 4 and 5 describes the archi-
tecture of T-LSTM and our experimental setup respectively. Then, in Sects. 6
and 7, we present and discuss our results. Section 8 concludes our paper and
discusses future research directions.

2 Related Work

Inspired by the field of natural language processing (NLP), Evermann et al. [7]
applied recurrent neural network-based and LSTM-based DNN architectures for
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the next activity and next sequence of activity prediction in PBPM. They made
use of word embeddings to encode activities of event log’s process instances.

Navarin et al. [14] used a “vanilla” LSTM-based DNN architecture for pre-
dicting the completion time of running process instances. They one-hot encoded
the activity attributes, computed temporal control-flow attributes, and consid-
ered additional real-valued or categorical context attributes.

Tax et al.[15] proposed a multitask learning approach using “vanilla” LSTM
cells for next activity and timestamp prediction respectively. Like in [14], they
one-hot encoded the activity and computed temporal control-flow features. How-
ever, the authors did not consider additional data attributes in their approach.
This work acts as a baseline for a variety of other techniques such as [18].

Khan et al. [10] introduced memory augmented neural networks (MANNs)
in PBPM. MANNs reduce the number of trainable parameters. In general, the
network’s architecture consists of an externalized state memory and two “vanilla”
LSTM cells manipulating the memory. One LSTM cell works as encoder and
the other one as decoder. Concerning the predictive quality, their approach is
comparable to the one presented in [15].

Camagro et al. [5] extended the implementation of [15] and fed the resource
attribute into the DNN model. Additionally, instead of one-hot encoding, they
applied embeddings, as proposed by Evermann et al. [7].

Taymouri et al. [16] introduced generative adversarial networks (GANs) for
the next activity and timestamp prediction. The network’s architecture com-
prises two “vanilla” LSTM cells. One for the generator and the other one for the
discriminator.

To date, several studies have investigated DNN-based PBPM techniques.
None of the related works proposes a DL-architecture that explicitly models
the elapsed time between two successive events. We address this gap by adapt-
ing time-aware LSTM cells [2]. Further, Mehdijev et al. [13] tackle the class
imbalance problem in the context of the DNN-based prediction of next activities
through a second neural network, namely radial basis function neural network,
which generates semi-artificial data of the minority class in the pre-processing
phase. In contrast, we adapt cost-sensitive learning to investigate the class-
imbalance problem for DL-architectures comprising T-LSTM cells.

3 Background

3.1 Preliminaries

Definition 1 (Event, Trace, Event Log). An event is a tuple (c, a, ts)
where c is the case id, a is the activity (label) and ts is the timestamp. A
trace is a non-empty sequence σ = 〈e1, . . . , e|σ|〉 of events such that ∀i, j ∈
{1, . . . , |σ|} ei.c = ej .c and ei.ts ≤ ej .ts, for 1 ≤ i < j ≤ |σ|. An event log L
is a set {σ1, . . . , σ|L|} of traces. A trace can also be considered as a sequence
of vectors which contain derived control flow information or features. Formally,
σ =

〈
x(1),x(2), . . . ,x(|σ|)〉, where x(t) ∈ R

n×1 is a vector, and the superscript
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indicates the time-order upon which the events happened. n is the number of
features derived for each event.

Definition 2 (Prefix and Label). Given a trace σ =
〈
e1, . . . , ek, . . . , e|σ|

〉
,

a prefix of length k, that is a non-empty sequence, is defined as f
(k)
p (σ) =

〈e1, . . . , ek〉, with 0 < k < |σc|. A next activity label for a prefix of length k

is defined as f
(k)
l,a (σ) = ek+1.a, whereas a next timestamp label for a prefix of

length k is defined as f
(k)
l,ts(σ) = ek+1.ts. The above definition also holds for an

input trace representing a sequence of vectors. For example, the tuple of all pos-
sible prefixes, the tuple of all possible next activity labels and the tuple of all
possible next timestamp labels for σ = 〈x(1),x(2),x(3)〉 are 〈〈x(1)〉, 〈x(1),x(2)〉〉,
〈e2.a, e3.a〉, and 〈e2.ts, e3.ts〉.

3.2 Long Short-Term Memory Cells

Most of the DNN architectures proposed for the next activity and timestamp
prediction in PBPM [17] use “vanilla” LSTM cells [9]. LSTMs belong to the
class of recurrent neural networks [11] and are designed to handle temporal
dependencies in sequential prediction problems [3].

Given a sequence of inputs σ = 〈x(1),x(2),x(3), ...,x(k)〉, a LSTM computes
sequences of outputs 〈h(1),h(2),h(3), ...,h(k)〉 via the following recurrent equa-
tions:

f (t)g = sigmoid(Ufh(t−1) + Wfx(t) + bf ) (forget gate),

i(t)g = sigmoid(Uih(t−1) + Wix(t) + bi) (input gate),

c̃(t) = tanh(Ugh(t−1) + Wgx(t) + bg) (candidate memory),

c(t) = f (t)g ◦ c(t−1) + i(t)g ◦ c̃(t) (current memory), (1)

o(t)
g = sigmoid(Uoh(t−1) + Wox(t) + bo) (output gate),

h(t) = o(t)
g ◦ tanh(c(t)) (current hidden state),

∀t ∈ {1, 2, . . . , k}.

{Uf,i,g,o,Wf,i,g,o,bf,i,g,o} are trainable parameters, ◦ denotes the Hadamard
product (element-wise product), h(t) and c(t) are the hidden state and cell mem-
ory of a LSTM cell. Additionally, a LSTM cell uses four gates to manage its states
over time to avoid the problem of exploding/vanishing gradients in the case of
longer sequences [3]. f (t)g (forget gate) determines how much of the previous
memory is kept, i(t)g (input gate) controls the amount new information is stored
into memory, c̃(t) (candidate memory) defines how much information is stored
into memory and o(t)

g (output gate) determines how much information is read
out of the memory. The hidden state h(t) is commonly forwarded to a successive
layer.
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4 Methodology

4.1 Time-Aware Long Short-Term Memory Cells

“Vanilla” LSTM cells, as described in Sect. 3.2, assume a uniform distribution of
the elapsed time between events (Δ(t) := xts

(t)−xts
(t−1)). This assumption does

not hold for most event logs analyzed in PBPM though (see Fig. 4). The elapsed
time between consecutive events might have an impact on the next activity
and timestamp prediction. Hence, a LSTM cell should be able to take irregular
elapsed times into account when processing event logs.

Time-aware long short-term memory (T-LSTM) cells are an extension of the
LSTM. Figure 1 depicts the T-LSTM cell and highlights its differences with
regard to the LSTM cell.

Fig. 1. Illustration of a T-LSTM cell with its computational components at time step
t. The dashed and blue components indicate the extensions to the “vanilla” LSTM
cell. The previous cell memory c

(t−1)
S is adjusted to c

(t−1)
∗ (see Eq. (2)) and is then

processed together with h(t−1) and x(t) via the LSTM computations, as formalized in
Eq. (1).

The main idea behind T-LSTM is to perform a subspace decomposition of
the previous cell memory c(t−1). First, a short term memory component c(t−1)

S is
extracted via a network. Next, the short term memory is discounted via a decay
function of the elapsed time and yields ĉ(t−1)

s . Then, the long term memory
(c(t−1)

T = c(t−1) − c(t−1)
S ) is calculated. Finally, the previous cell memory is

adjusted c(t−1)
∗ = c(t−1)

T + ĉ(t−1)
s ). The adjusted previous memory c(t−1)

∗ is then,
together with h(t−1) and x(t), further processed as in LSTM cells by substituting
c(t−1) with c(t−1)

∗ in Eq. (1). The following equations summarize the T-LSTM
specific computations for the subspace decomposition and adjustment of the
previous memory.
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c(t−1)
S = tanh(Wdc(t−1) + bd) (short term memory),

ĉ(t−1)
s = c(t−1)

S ∗ decay(Δ(t)) (discounted short term memory),

c(t−1)
T = c(t−1) − c(t−1)

S (long term memory), (2)

c(t−1)
∗ = c(t−1)

T + ĉ(t−1)
s (adjusted previous memory),

... (LSTM computations as in Eq. (1)),
∀t ∈ {1, 2, . . . , k}.

Note, that we only add {Wd,bd} as trainable parameters compared to the
LSTM cell. As recommended in Baytas et al. [2], we chose decay(Δ(t)) =
1/log(e + Δ(t)) since we input the elapsed times in seconds and therefore have
large values for Δt. Any other monotonic decreasing function and scale for Δt

would be valid as well, but our initial choice proved to be effective. The intu-
ition behind the subspace decomposition is that the short term memory should
be discounted if the elapsed time is very large, while the long term memory
should be maintained in the adjusted previous cell memory c(t−1)

∗ . Similar as
for LSTMs, the hidden state h(t) is forwarded to successive layer for further
processing. Hence, it is straightforward to substitute LSTM with T-LSTM cells
in a given DNN architecture.

4.2 Network Architecture

We adapted the multitask architecture proposed by Tax et al. [15] as a base-
line (see Fig. 2). The predicted next activity êk+1.a is the output of a softmax
activation after the last dense layer, where the output dimension is equal to the
number of unique activity labels. êk+1.a is evaluated against the one-hot encoded
ground truth label ek+1.a by using the Cross-Entropy (CE) loss. The predicted
next timestamp êk+1.ts is a scalar output of a dense layer. We do not apply any
additional activation after the time specific dense layer to be consistent with the
implementation1 of Tax et al. [15]. êk+1.ts is compared with the ground truth
timestamp ek+1.ts using the Mean Absolute Error (MAE). The total loss is the
sum of both losses, as implemented in Tax et al. [15]. Further, they applied one-
hot encoding for the activities and compute time-related control-flow features,
which we also used in our experiments. We refer to the baseline architecture as
“Tax”. We performed an ablation study and made three modifications to the
baseline DNN architecture:

– We weighted the CE loss function based on the distribution of activity labels
in the training set. Hence, the classification of under-represented event classes
had larger influence during training. We refer to this model as “Tax+CS”.

– We replaced all LSTM layers with T-LSTM layers and refer to this model as
“Tax+T-LSTM”.

– We added cost-sensitive learning and replaced all LSTM layers with T-LSTM
layers. We call this model “Tax+CS+T-LSTM”.

1 https://github.com/verenich/ProcessSequencePrediction.

https://github.com/verenich/ProcessSequencePrediction
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Input

(T-)LSTM + BN

(T-)LSTM + BN (T-)LSTM + BN

Dense Layer + Softmax Dense Layer

Fig. 2. Network architecture for this work based on the multitask learning approach
proposed by Tax et al. [15]. The dashed components are either LSTM or T-LSTM lay-
ers. The input is of the network is a sequence of vectors representing a prefix 〈e1, . . . , ek〉
as in Tax et al. [15]. For the baseline architecture we applied one-hot encoding and
LSTM layers as in [15]. The outputs of the model are the predicted next activity
(êk+1.a) and timestamp (êk+1.ts). Each of the LSTM layers is followed by a batch
normalization layer (BN) to speed up training, as used in Tax et al. [15].

5 Experiments

5.1 Datasets

We performed our experiments on the same publicly available datasets as Tax
et al. [15] to validate the effectiveness of our proposed techniques. Figure 3
shows the distribution of the activities (labels) for the different datasets. It is
evident that the distributions of activities are skewed for both event logs. Table
1 presents descriptive statistics of the datasets used in this work.

Helpdesk2: This event log originates from a ticket management process of an
Italian software company.

BPI’12W Subprocess3 (BPI12W): The Business Process Intelligence (BPI)
2012 challenge provided this event log from a German financial institution. The
data come from a loan application process. The ‘W’ indicates state of the work
item for the application.

5.2 Preprocessing

We used the cleaned and prepared datasets as in Tax et al. [15]. The datasets
can be found on the corresponding GitHub repository4. The preprocessing steps
include splitting the data into training and test set, calculating time divisors,
and ASCII encoding activities and sequence generation. Datasets were split into
2/3rd and 1/3rd for training and testing respectively and preserve the temporal
order of cases. We additionally used the last 20% of the training data as a
validation set in order to tune the hyperparameters. We adapted the sequence

2 https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb.
3 https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.
4 https://github.com/verenich/ProcessSequencePrediction/tree/master/data.

https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://github.com/verenich/ProcessSequencePrediction/tree/master/data
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Fig. 3. Activity distribution in training and test set for Helpdesk and BPI12W datasets.
It is evident that the distributions of the activity labels are skewed.

Fig. 4. Event duration distribution for the complete Helpdesk and BPI12W datasets.
It can be observed that the majority of the events are completed within one day.
However, there are many events with longer duration. Note that we input the elapsed
time between events (Δt) in seconds for T-LSTM.

and feature generation methods by Tax et al. [15]. The features include the
activity of the event, position of the event in the case, time since the last event,
time from the starting event of the case, time from midnight, and day of the
week. We create one-hot encoded versions of the ground truth labels ek+1.a for
the next activity prediction in order to compare them with the predicted next
activity labels êk+1.a.

5.3 Training Setup

For hyperparameter tuning, we performed a grid search on the training set and
chose the model with the lowest validation loss. The validation loss is the sum
of activity-related validation loss and time-related validation loss. The num-
ber of LSTM or T-LSTM units were set to 64 or 100. For the dropout rate
(for both dense layers), we tried the values 0.0 and 0.2. We choose Nadam
as an optimization algorithm, as used in [15]. Nesterov accelerated gradient
(NAG) calculates the step using the ‘lookahead’ algorithm, which approximates
the next parameters. Adam optimizer estimates learning rates based on ini-
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Table 1. Descriptive statistics of the datasets used in this study.

Characteristic Helpdesk BPI12W

Number of instances 3,804 9,658

Case variants 154 2,263

Unique activities 9 6

Events 13,710 72,413

Max # events per case 14 74

Min # events per case 1 1

Avg # events per case 3.604 7.497

tial moments of the gradients. Nadam is a combination of both and is robust
in noisy datasets. Furthermore, we tested a range of different learning rates
{0.0001, 0.0002, 0.001, 0.002, 0.01} since this is known to have a large impact on
LSTMs [8]. We trained each model for 150 epochs, with a batch size of 64 and
apply early stopping with patience 25 for regularization.

5.4 Evaluation

We applied the same evaluation metrics as in [15]. We used the Accuracy metric
to evaluate the next activity prediction. For the next timestamp prediction, we
used the Mean Absolute Error (MAE) to evaluate our models.

5.5 Implementation

We conducted all experiments on a workstation with 24 CPU cores, 748 GB
RAM and a singe GPU NVIDEA QUADRO RTX6000. We implemented the
experiments in Python 3.7. We used the DL framework TensorFlow 2.15. The
source code is available on GitHub6.

6 Results

6.1 Next Activity Prediction

Table 2 shows the results for the next activity prediction in terms of Accuracy.
For Helpdesk and BPI12W, the approach Tax+CS+T-LSTM achieved the high-
est Accuracy (0.724 and 0.778) among all approaches. The approach’s improve-
ment compared to the baseline is 0.012 and 0.018. While the two approaches,
Tax+CS and Tax+T-LSTM, outperformed the baseline for Helpdesk, these
approaches achieved a lower Accuracy for BPI12W than the baseline.

5 https://www.tensorflow.org.
6 https://github.com/annguy/time-aware-pbpm.

https://www.tensorflow.org
https://github.com/annguy/time-aware-pbpm
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Table 2. Results for the next activity prediction in terms of Accuracy. The best result
for each dataset is highlighted (larger is better).

Approach Helpdesk BPI12W

Tax (baseline) 0.712 0.760

Tax+CS 0.713 0.757

Tax+T-LSTM 0.718 0.693

Tax+CS+T-LSTM 0.724 0.778

6.2 Next Timestamp Prediction

Table 3 shows the results for the next timestamp prediction task in terms of MAE
in days. All approaches with a T-LSTM cell, clearly outperformed the baseline
for both event logs. Thereby, the approach Tax+CS achieved the lowest MAE of
2.87 days and 0.88 days for Helpdesk and BPI12W respectively. Compared to the
baseline, this approach reduced the MAE by 0.88 days (Helpdesk) and 0.68 days
(BPI12W). The other two approaches, Tax+T-LSTM and Tax+CS+T-LSTM,
achieved a slightly worse MAE values compared to Tax+CS for both event
logs. It is worth noticing that for Helpdesk Tax+CS+T-LSTM and for BPI12W
Tax+T-LSTM yielded the second best results with MAE close to Tax+CS.

Table 3. Results for next step time prediction in terms of MAE in days. The best
result for each dataset is highlighted (lower is better).

Approach Helpdesk BPI12W

Tax (baseline) 3.75 1.56

Tax+CS 2.87 0.88

Tax+T-LSTM 3.01 0.88

Tax+CS+T-LSTM 2.94 0.90

7 Discussion

In this paper, we argued that the elapsed time between consecutive events carries
valuable information on human behavior in running business processes. There-
fore, we introduced T-LSTM cells for PBPM which inherently model the elapsed
time between consecutive events. Further, we introduced of cost-sensitive learn-
ing to better cope with the problem of imbalanced data.

The obtained results indicate that the elapsed time between consecutive
events is informative and that a DNN architecture relying on T-LSTM cells
cab yield more accurate models for PBPM. Especially, with the approach
Tax+CS+T-LSTM, we could outperform the baseline (Tax) for both datasets
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(i.e., Helpdesk and BPI12W) and both prediction tasks (i.e., next activity pre-
diction and next timestamp prediction). Thereby, we could observe that cost-
sensitive learning plays a crucial role for the predictive quality of a DNN archi-
tecture using T-LSTM cells instead of “vanilla” LSTM cells. Interestingly, the
effectiveness of the introduced techniques is more evident for the next timestamp
prediction compared to the next activity prediction

Even though our presented results on DNN architectures using T-LSTMs
seem promising, there are a few limitations to our work. First, we need to ver-
ify our findings by performing experiments on more datasets. Second, a better
hyperparameter tuning approach like Bayesian optimization [1] could be applied
for all configurations to get a better estimate of their effectiveness. Further, sev-
eral runs with random initialization should be performed to estimate the stability
of the models.

8 Conclusion and Future Work

We propose T-LSTM as an alternative to the commonly used “vanilla” LSTM
cell to better exploit information on the elapsed time between consecutive events.
Furthermore, we introduced the concept of cost-sensitive learning to account for
the common class-imbalance in event log data. Our results indicate the effective-
ness of the introduced techniques for the next activity and timestamp prediction.
This suggests that integrating specific mechanisms into neural network layers to
incorporate event log specific characteristics might be an interesting direction for
future research. Here, we mainly demonstrated the benefit of replacing a normal
LSTM with a time-aware LSTM cell for a given baseline approach [15].

An avenue for future research is to investigate if T-LSTM cells might also
improve other LSTM-based PBPM approaches such as Camargo et al. [5] involv-
ing resource attributes or Taymouri et al. [16] generating fake event logs. Another
direction for future research is to further customize an LSTM cell in terms specif-
ically for PBPM. For example, a process-aware LSTM cell could not only deal
with time information but also with resource information.
Author contributions. Srijeet Chatterjee: Equal contribution with An Nguyen
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Abstract. The present paper explores the opportunity of applying rein-
forcement learning to various typical tasks in the field of predictive pro-
cess monitoring. The tasks considered are the prediction of both next
event activity and time completion as well as the prediction of the whole
progression of running cases. Experiments have been conducted on the
popular benchmark dataset, BPI’ 2012, on which we compare the pro-
posed learning system with state of the art methods adopting LSTM net-
works trained through supervised learning. Results enlighten promising
features of the approach and interesting research issues and challenges, as
well as proving the applicability of reinforcement learning to predictive
process monitoring.

Keywords: Predictive process monitoring · Reinforcement learning ·
Outcome and time prediction · Process mining

1 Introduction

Recently the field of predictive process monitoring is receiving increasing atten-
tion [7,8]. It aims at improving process monitoring through the introduction of
predictive capabilities, allowing both process improvement and proactive prob-
lem handling. Predictive process monitoring relies on models, obtained from
historical process logs, able to forecast the evolution of a process instance based
only on the first part of it. In detail, predictive process monitoring tries to han-
dle several different problems, such as the one step ahead prediction of the next
activity that will be performed and the estimation of its execution time, or the
prediction of all the activities to be performed until the end of the trace, i.e. the
trace suffix, and the total execution time of the trace, i.e. the trace time. Recently,
different machine learning techniques have been adopted to deal with predictive
process monitoring tasks, with a particular focus on Long Short-Term Memory
(LSTM) networks. In this paper we investigate the use of reinforcement learning
to predict, both suffix and one step ahead, activities and execution times. Rein-
forcement Learning (RL) is a particular kind of machine learning paradigm that
c© Springer Nature Switzerland AG 2021
S. Leemans and H. Leopold (Eds.): ICPM 2020 Workshops, LNBIP 406, pp. 124–135, 2021.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72693-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-72693-5_10


Reinforcement Learning for Predictive Process Monitoring 125

trains models to directly maximize a reward signal, without assigning any label
or necessarily trying to find some hidden structure in the data. Reinforcement
learning has been gaining increasing attention since 2015, when [9] trained an
agent that bested many human professional players over various Atari games.
This has led the scientific community to further investigate the techniques, lead-
ing to various interesting results (e.g., [13,14]), up until the latest astonishing
artificial agent [17] that managed to beat professional human player in Star-
craft II, an extremely complex real time strategy game. An interesting feature
of this family of algorithms is that learning is guided by an objective function
that takes into account all the chain of future decisions and its effects, instead
of focusing only on the decision at hand. This could be an interesting feature in
the predictive process mining field, where events to be predicted are conditioned
by the process workflow.

Motivated by past success of RL and this observation, we set as our goal to
study if it is possible to apply reinforcement learning to the field of predictive
process monitoring. At the best of our knowledge this is the first study of this
kind. The only other study that applied reinforcement learning in the process
mining field is [4], where the problem of efficient resource allocation is considered.
Our results enlighten promising features of the approach and interesting research
issues.

The rest of the paper is organized as follows: Sect. 2 is devoted to introduce
related work. In Sect. 3 background knowledge about reinforcement learning is
provided, while Sect. 4 explains our proposed approach. Section 5 presents the
performed experiments and discusses achieved results. Finally, Sect. 6 concludes
the paper and outlines some directions for future works.

2 Related Work

Recent efforts in predictive process monitoring exploits Deep Neural Networks,
specifically LSTM and CNN [1,3,6,10,11,16].

In particular, [16] trained an LSTM for the one step ahead event prediction,
in particular the activity associated to the next event and its completion time,
as well as the suffix of the trace, iteratively using the one step ahead event
prediction. They encoded each event into a feature vector that is a combination
of the one-hot encode of the associated activity and three temporal features
related to the event’s timestamp such the time of the day, the time since the
previous event, and the accumulated duration since the start of a process case.
LSTM has also been used in [3] to predict the activity associated with the next
event of a case, but this approach, differently from [16], uses the embedded
dimension of LSTM to both reduce the input’s size and include extra attributes
like the resource associated to each event. Their experiments show that the
proposed approach sometimes outperforms [16] for the prediction of the next
event. However, [3] only focuses on predicting event activity types and cannot
predict the next event’s timestamp as it cannot handle numerical variables.

In [1] a combination of approaches in [3] and [16] is proposed for the one step
ahead event prediction. The approach considers and predicts the next activity,
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the timestamp and type of resource of next event. To do so they introduce a
notion of abstract class of resource, i.e. group of resources that usually performs
similar activities, this way they manage to avoid the main limit of [3] which is the
inability of handling numerical variables and therefore predicting next event’s
timestamp.

Another LSTM model has been proposed by Lin et al. [6] for the prediction
of the next activity and all the other categorical attributes of the next event
(e.g. the associated resource) of the past events, using an approach similar to
an attention mechanism for weighting the event attributes on the basis of their
relevance in the prediction of future events. Again this approach suffers from the
inability of handling numerical values and therefore predicting timestamps.

Even more recently, the usage of CNN has been investigated. The basic idea
is to convert the temporal data enclosed in an event log into spatial data so as
to treat them as images [10] This idea has been further extended in [11], where
an RGB encoding of process instances is used to train a 2-D CNN based on two
inception blocks. Both papers only tackle the one step ahead activity prediction
task.

3 Background

In this section we provide general background knowledge on RL.
Reinforcement learning is learning what to do—how to map situations to

actions—so as to maximize a numerical reward signal. The learner is not told
which actions to take, but instead must discover which actions yield the most
reward by trying them. A reinforcement learning problem is formalized using
ideas from dynamical systems theory, specifically, as the optimal control of
incompletely-known Markov decision process [15].

The learner (agent) interacts with an environment during a sequence of
timesteps composing the learning episode. In the domain of process mining we
can think the learning episode as the evolution of the trace, and the occurrence
of an event in it as a timestep. At each timestep, an interaction between agent
and environment occurs through observations (x) of the environment, actions
(a) and rewards (r). The observation is the trace event, the action is the predic-
tion for the next event, and the reward is derived from the comparison between
the next event information and the predicted one. The agent’s goal is to max-
imize its cumulative future reward performing its actions, with respect to the
state of the environment. The state si of the environment is defined as the
full sequence of observations and actions performed until timestep i, formally:
si = x1, a1, x2, ..., ai−1, xi. However, it is complex to use a state composed of a
variable number of observations and actions as input. Hence, it is usually pre-
ferred to use a constant fixed number of observations and actions. In this paper
we refer to the number of past timesteps considered to define the state as win-
dow size. Having fixed the window size to a generic k, the state is written as
si = xi−k, ai−k, xi−k+1, ..., ai−1, xi.
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The objective function of the agent at timestep i can be expressed as:

Ri =
T∑

t=i

γt−irt, (1)

where γ < 1 is the discount factor of future rewards, used to prioritize more
recent rewards, and T is the number of timesteps in the whole learning episode.
In particular, the methodology adopted in this paper considers Q learning agents.
This type of agents tries to approximate the optimal action-value function
Q∗(s, a), learning it from the transitions from a state si to a next state si+1

on the basis of the performed action ai and the received reward ri. The optimal
action-value function may be expressed as:

Q∗(s, a) = max
π

E [Ri|s = si, a = ai, π] (2)

which is the maximum expected reward achievable after seeing sequence s and
taking action a, by following any behaviour policy π for mapping sequences to
actions.

This reinforcement learning algorithm is based on the fact that knowing
Q∗(s, a) an agent can choose the best sequence of actions at any state, maximiz-
ing its reward.

Obviously, perfectly knowing Q∗(s, a) it is not always possible, especially
in complex environment. Still it is possible to discover Q(s, a, θ), through a
machine learning model, where θ are the parameters of the trained model so
that Q(s, a, θ) ≈ Q∗(s, a). In the case of deep Q network (DQN) agents, the
model adopted is a deep neural network, and θ are its weights, used to approx-
imate the optimal action-value function. In our study we used as underlying
model to approximate the Q-function an LSTM based neural network. The net-
work weights may be adjusted through training using as loss function, that varies
at each timestep, the mean squared error defined as follows:

Li(θi) = E(s,a,r,s′)

[
r + γ max

a′
Q̃(s′, a′, θ−

i ) − Q(s, a, θi)
]2

(3)

in which γ is a discount factor determining a penalty for more future reward,
θi are the parameters of the Q-network at iteration i and θ−

i are the network
parameters used to compute the target at iteration i used in place of the optimal
and unknown maxa′Q∗(s′, a′).

Therefore, in contrast to supervised learning where targets are fixed before
learning begins, the targets depends on the network weights. Though, since θ−

i

is kept fixed at the ith optimization of Li(θi), all the optimization problems at
each iteration are well defined. In our case we used a so called soft update of θ
which updates the parameters at each iteration on the basis of a coefficient β
accordingly to the formula: θ−

i+1 = (1 − β)θ−
i + βθi, where β ∈ (0, 1).

It is worth noting that this algorithm is model-free as it solves the reinforce-
ment learning task directly, without estimating the system transition dynam-
ics. Also it is an off-policy algorithm, since it learns a greedy policy where
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a = argmaxa′Q(s, a′, θ) but it still ensure, through its behaviour policy, an
adequate exploration of the state space through a random action. This allows
to discover if there are better actions to perform with respect to the recom-
mended one. In our particular case, for training, we used a Boltzmann Q Policy,
which builds a probability law on q values and returns an action selected ran-
domly according to this law while, for prediction purposes, a GreedyQPolicy is
adopted which selects the action with the highest reward.

For further details, the full description of the algorithm can be found in [9],
which originally proposed it.

4 Methodology

This section is devoted to describe the proposed methodology, which uses two
agents trained through reinforcement learning to predict activity and execution
time of both the one step ahead event as well as the activities suffix and trace
time. First, we give some preliminary definitions of event, trace, and event log.

Let ε be the event universe, i.e., the set of all possible event identifiers.
An event ei ∈ ε is characterized by a set of properties. In the context of the
present paper, we assume the availability of the following properties: the activity
associated to the event, denoted by ai and the complete timestamp ti. A trace
is a finite non-empty sequence of events σ = <e1, e2, . . . , ek>, ei ∈ ε, ei �= ej for
i �= j. We assume the events are ordered with respect to their timestamp, i.e.
ti < tj for i < j. An event log L is a set of traces such that each event appears
at most in one trace.

In the following, we describe the pre-processing performed to make event log
data suitable for being fed to our system, and the details on the architecture
adopted.

4.1 Pre-processing

As it will be clear in the following we use an LSTM as agent’s model. Here we
describe how log data are processed to generate the input sequences to the model.
An event ei in the sequence is logically represented by 4 components, namely the
activity ai, and three temporal features. Each activity is expressed by a binary
vector built using the one-hot encoding of the activity type. One-hot encoding
has been chosen as it is an effective and popular way of representing categori-
cal data. Its main advantage is that one-hot encoding transformation does not
introduce any order or similarity among the representation of categorical data.

Regarding the three added temporal features, the first is the time passed
between Sunday midnight and the event ei (twi in Eq. 4) which is useful to
express the seasonality of the process. The second is the time passed between
the completion of an event ei and the completion of the previous event ei−1 (tei
in Eq. 5), thus substantially corresponding to the event duration (plus possible
idle time between the two events). The last temporal feature is the time passed
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between the start of the trace and the event ei (tti in Eq. 6), which gives infor-
mation about the progression of the trace. This last one is particularly relevant
since there may be a strong correlation between the performed actions and the
“age” of the process case.

Formally:

twi =
ti − tw0

Δtw
(4)

{
tei = 0 if i = 1,

tei = ti−ti-1
Δmaxe

otherwise
(5)

tti =
ti − t0
Δmaxt

(6)

where ti is the timestamp of the event at index i, tw0 is the timestamp of
the last passed Sunday midnight, and t0 is the start timestamp of the process.
Δtw Δmaxe

and Δmaxt
are normalization factors to make features varying in the

range [0, 1], as it improves the performance of the network. Δtw is the amount
of time in a week, while Δmaxe

and Δmaxt
are, respectively, the maximum event

duration and the maximum trace duration. It is also worth noting that given tei

and both twi−1 and tti−1 , it is possible to derive the value of both twi
and tti .

4.2 Learning Architecture

The overall architecture is shown in Fig. 1. In the Figure, dashed lines enlighten
the learning phase, while solid lines refer to the prediction phase. In the system,
we have two different agents. Both take as input a sequence of events, in which
every event is defined by the three temporal features and the one-hot encoding of
the activity as explained before. One agent predicts the one step ahead activity,
the next one that will be performed, while the other is devoted to predict its
completion time. As said, every DQN agent has an underlying neural network
that models the reward function. For each of our two agents, we used an LSTM
based neural network to learn and approximate the optimal Q∗(s, a), instead of
training them using ground-truth labels, typical of supervised learning. This is
done, through the agents’ interaction with their respective environment, thanks
to which they receive their reward. The LSTM architecture have been chosen
because of its widespread adoption in predictive process mining. We hasten to
note that DQN agents only work with a discrete action space and therefore they
are unable to produce continuous outputs. To address this issue we divided the
output time in bins, each representing the range in which the estimated time
falls, and we designed the time agent so as to produce bin indexes as outputs.

As explained in Sect. 3, the learning process of our RL agents is based on the
notion of transition from a state of the environment to another on the basis of
the performed action and its associated reward at each timestep.

We set the reward functions in each environment as binary reward functions:
in the time environment, the reward gives a plus one when the predicted bin
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included the true time, and zero otherwise; similarly in the activity environment
the reward gives a plus one when the prediction is correct and a zero otherwise.

For the one step ahead prediction of the next activity and time the two
agents work in isolation exploiting their underlying LSTM network model to
perform their prediction. For suffix prediction the situation is more complex, as
each agent has access only to the information of the first part of the trace. In
particular, it reads only the first k events where k is the window size. Hence, each
agent needs to rely both on its own prediction and on the other agent’s prediction
to have all the required inputs for predicting more than one step ahead, as the
true information is not available. In a way, the two agents cooperates exchanging
messages to inform the other of their prediction, at each timestep. This way the
whole sequence may be predicted using the predicted information when the true
one is not available. All this is iterated until the end of the trace is predicted.

Formally, at the first iteration we consider the sequence σk = <e1, e2,
. . . , ek> of events of length k (window size), where ej be the j-th event of a
trace, which is characterized by the tuple <aj , twj

, tej
, ttj>. The time predictor

agent αt and the action predictor agent αa are defined as follows:

αt : σk �→ t′ek+1
,

αa : σk �→ a′
k+1,

where apex denotes the predicted value. Each agent will inform the other of
its prediction and therefore the predicted next event e′

k+1 will be characterized
by the tuple <a′

k+1, t
′
wk+1

, t′ek+1
, t′tk+1

>, where t′wk+1
and t′tk+1

are derived from
t′ek+1

, ttk and twk
. Then a new prediction will be performed by each agent using

as input σk+1 = <e2, . . . , ek, e′
k+1>. Iterating at the i-th step, the sequence σi

will be formed by k−i real events and i predicted ones. The algorithm is iterated
until the end event of the process is predicted.

Fig. 1. Overall architecture.



Reinforcement Learning for Predictive Process Monitoring 131

5 Evaluation

In this section we empirically evaluate the performance of the proposed approach.
Results are compared with those of other approaches using LSTM networks for
uniformity reasons, so to remark the contribution of RL paradigm.

The following subsections describe the experimental setup, reference metrics
and results.

5.1 Experimental Setup

Dataset. The experimental dataset is a subset of an event log from the Busi-
ness Process Intelligence Challenge (BPI’12) [2] which contains data from the
application procedure for financial products at a large financial institution. This
process consists of three subprocesses: one that tracks the state of the applica-
tion, one that tracks the states of work items associated with the application,
and a third one that tracks the state of the offer. Since our goal is to predict the
coming events and their timestamps, events that are performed automatically
aren’t considered relevant. Therefore, we limit our evaluation to the work items
subprocess (BPI’2012 W): the one containing events that are manually executed.
As done in [16], to perform our experiments we used chronologically ordered first
2/3 of the traces as training data, and evaluate the activity and time predictions
on the remaining 1/3 of the traces.

The dataset has been pre-processed as explained in Sect. 4. For what concerns
the setting of bins defining the output values of the time agent, we analyzed the
whole distribution of events duration in the dataset. This allowed to set the
various ranges so as to both balance the number of elements in a bin and to
maintain a reasonable similarity between elements in the same bin.

The resulting bin endpoints are [0, 1, 10, 60, 120, 240, 480, 1440, 2880, 4320,
7200, 10080, 14400, 20160, 30240, 40320, 50400] expressed in minutes. Also note
that the chosen endpoints correspond to meaningful time frames such as hours,
days or weeks. Figure 2 shows the distribution of events duration in the dataset.
The x-axis is in logarithmic scale for visualization purposes.

Fig. 2. te distribution in bins
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Agents. We performed the experiments using Keras-rl [12], running on a
machine with two NVIDIA GeForce GTX 1080, a i7 8700K CPU @3.70 GHz
and 32 GB RAM. Each agent was trained for 600000 steps and is characterized
by the use of a sequential memory of dimension 500000, a BoltzmannQPolicy
clipped in range (−15, 15) as behaviour train policy, and a GreedyQPolicy as
test policy; the target function was updated through soft update using β = 10−2

as coefficient. The underlying neural network has two hidden LSTM layers with
200 neurons each and ReLU activation; during training we used an Adam opti-
mizer with a learning rate of 10−3. This configuration was kept for all the tested
window size, as it had the best performance for approximating the Q function,
between those tested.

5.2 Metrics

In order to properly compare our results with previous work, we adopted the
same evaluation metrics.

One-Step Ahead Prediction. We evaluate our results in terms of accuracy,
for the next activity prediction, and in terms of mean absolute error (MAE) in
days, for the predicted time. For the purpose of comparison with the baselines
we use the MAE but it is important to remember that our time agent predicts
ranges of time. Therefore, since we need a continuous value for the time in order
to compute the MAE, we choose for this the inferior endpoint of the bin predicted
as value. For example, if the predicted bin is the third one, which corresponds
to range [10, 60), the time used for computing the MAE will be 10 min.

Suffix Prediction. For the suffix completion time prediction we consider the
absolute trace duration error (TDE)

TDE = |t′tf − ttf | (7)

where, with some abuse of notation, f refers to the final event in the true and
estimate trace, hence ttf (t′tf ) represents the total duration of the true (esti-
mated) trace. The TDE is then averaged over all traces.

For evaluating the accuracy of the activity suffix prediction the most well
known and used distance is the Damerau-Levenshtein distance, which is defined
as the minimum number of deletion, insertion, substitution and transposition
operations needed to transform the first string to the second. In particular,
this distance can be normalized dividing its value for the length of the longer
string. What we adopted for comparison purposes is the Damerau-Levenshtein
similarity expressed as one minus the normalized Damerau-Levenshtein distance.

5.3 Results

In Table 1 we present the performances achieved for the one step ahead prediction
tasks. For next completion time prediction (Table 1(a)) we compare our results
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with the best reported by Tax et al. [16] for different window sizes. Table 1(b)
reports the accuracy of the next activity prediction of our method, and the ones
reported by Tax et al. [16] and Camargo et al. [1]. In [1] the next completion
time task is not addressed. In Table 1(a) the row “All” reports the average per-
formance over all the tested window sizes. In [16] these correspond to all the
values in the range [2, 20], whereas in our case we considered the set {2, 3, 4, 5,
6, 7, 10, 20}.

It can be seen that our performance in the next completion time prediction
are clearly better than the baseline, whilst our accuracy is worse. In particular,
the relative improvement in the case of completion time prediction is about 27%,
and the relative accuracy degradation is only about 8% with respect to best result
provided by [1]. These results may be justified as follows. DQN agents optimize
a cumulative reward function that takes into account rewards on future actions,
in a sense trying to simulate the future. Completion times show a form of depen-
dency on the total trace duration. For instance, overestimating the duration of
early events will lead to an excessively long overall trace duration estimate. This
may guide the learner through states with a better generalization ability. On the
contrary, a similar relation does not exist for activities in the considered setting,
where only the structural perspective of the process (i.e. the workflow) is taken
into account. Thus enriching the log with other perspectives and in particular
with data regarding case-specific and event-specific properties may likely high-
light dependencies among activities and thus lead to improved results. We plan
to verify such hypothesis in future work.

Table 1. Comparison of performances for the one step ahead prediction tasks. (a) Next
completion time. (b) Next activity.

MAE (days)
Window size Ours Tax et al.

2 1.34 1.69
10 1.05 1.45
20 0.62 0.98
All 1.17 1.59

Accuracy
Ours Tax et al. Camargo et al.
71.3% 76% 77.8%

)b()a(

We also show in Table 2 the performance achieved in suffix prediction tasks.
The results confirm a better behavior of the proposed RL architecture on the
completion time prediction than on the activity prediction task. For the former,
the relative improvement is about 21%, which is in line with the one step ahead
performance. For the latter, we observe a much worse performance degradation
of about the 66% with respect to [1], and about 50% with respect to [16]. This
is in part due to an expected error propagation effect, since errors committed
at the early suffix prediction stages progressively compromise all the subsequent
ones. As another issue reducing our systems performance, we observed that the
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event agent struggle to predict the end of the trace, leading to excessively long
traces. To verify this, we calculated the DL-similarity truncating the predicted
traces to the length of the true traces, discovering that performances improves
up to a DL-similarity of 0.2974, which is comparable with the accuracy obtained
by [16]. For what concerns computational complexity, clearly the time required
to train an RL agent is much higher than the LSTM alone. We experimented
an increase factor of about 20× of the required training time. This is a well
known characteristics of RL training although alternative techniques with better
computational performance have been proposed [5]. We plan to investigate them
in future work.

Table 2. Comparison of performances for the suffix prediction tasks. (a) Completion
time. (b) Next activities.

mean TDE (days)
Window size Ours Tax et al. Camargo et al.

2 12.66 ≈ 14 ≈ 11
10 6.17 ≈ 9 ≈ 9
20 4.63 ≈ 6 ≈ 9

DL-similarity
Ours Tax et al. Camargo et al.
0.174 0.3533 0.525

)b()a(

6 Conclusions and Future Works

The main contribution of this paper is to provide a preliminary study of the
applicability of reinforcement learning techniques to predictive process monitor-
ing tasks. In particular we used Deep Q Networks agents to address both the
one step ahead activity and completion time prediction, and the trace suffix out-
come prediction. Through our experiments on the BPI’2012 popular benchmark
dataset, we showed that DQN agents can fully exploit time information, achiev-
ing results that significantly outperforms state of the art approaches based on
LSTM architectures, while the plain workflow information seems to be insuffi-
cient to train an RL agent for the activity prediction task. The present paper also
highlights several interesting research directions. First of all, as already noticed
the proposed approach may be further refined through the use of case-specific
data, and event-specific data. Second, more complex reward functions may be
used in order to weight the activity and/or case importance, for instance some-
thing like the amount of money involved in a loan procedure or the cost to
perform a specific activity. Third, alternative RL techniques can be considered,
to investigate both their efficiency and accuracy performances.
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1. Camargo, M., Dumas, M., González-Rojas, O.: Learning accurate LSTM mod-
els of business processes. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M.,
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Abstract. Conformance checking is an important aspect of process min-
ing that identifies the differences between the behaviors recorded in a log
and those exhibited by an associated process model. Machine learning
and deep learning methods perform extremely well in sequence analysis.
We successfully apply both a Recurrent Neural Network and a Random
Forest classifiers to the problem of evaluating whether the alignment cost
of a log trace to a process model is below an arbitrary threshold, and
provide a lower bound for the fitness of the process model based on the
classification.

1 Introduction

With the cost of computer memory becoming negligible, organizations have
become able to store extremely complex event logs from their systems. Pro-
cess Mining (PM) is a field of study that attempts to make sense of these logs by
producing corresponding process models. As decision makers increasingly rely on
such models, it is crucial to ensure that they model the targeted systems reliably.
Conformance checking is an entire subfield of PM that aims at defining the key
criteria of a good process model [1]. As of today, the four main criteria that are
considered are fitness, precision, generalization, and simplicity. Because of the
complexity of the involved data and of the resulting process models, the fitness
criterion is the only one unanimously accepted in the community. Computing
the fitness requires alignments of the event logs with the process model, which
often is costly [2,3] and for which a trade-off is possible between higher result
quality and lower computational complexity. The need for such a compromise
begs the question: is it possible to extract high-quality conformance checking
information through a less complex process?

To motivate such research, the 2016 Process Discovery Contest invited sci-
entists to study model compliance from a classification-oriented perspective [4].
The event logs were classified in two classes—compliant and deviant—using pure
data mining techniques. By encoding event logs into sequences of activities called
c© Springer Nature Switzerland AG 2021
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log traces, it is possible to perform such a classification using Recurrent Neural
Networks (RNNs). RNNs are at the core of significant progress in other fields of
Computer Science such as Natural Language Processing, or Bioinformatics [5].
The PM community has recently shown significant interest in RNNs, but prin-
cipally on the topic of Predictive Business Process Monitoring [6–11].

In this paper, we focus on the efficiency of Deep Learning (DL) and classical
Machine Learning (ML) methods in conformance checking scenarios. Our core
contribution is an application of a RNN and a Random Forest (RF) classifier to
the problem of classifying traces based on their alignment costs to a reference
process model. We provide some theoretical properties of the fitness along with
reproducible experiments.

2 Related Work

The classification of log traces has been studied in the context of system devia-
tion analysis. Such works generally consider two classes of processes (normal and
deviant) and aim at explaining why discrepancies occur and deviant processes
arise. Nguyen et al. defined trace classes from data attributes and investigated
the problem of classification using decision trees, the k-Nearest Neighbors algo-
rithm and neural networks [12]; Sun et al. and Bose et al. investigated labeled
traces and association rules mining methods that can be used to extract human
readable results from them [13,14]. Similarly, Bellodi et al. provided a method
to classify log traces using Markov Logic formulas [15]. One glaring difference
between these works and ours is that we have an oracle at our disposal to classify
our traces, i.e. a process model.

The application of Long Short-Term Memory (LSTM) networks to the prob-
lem of predicting the next event in a business process was previously investigated
in several works [6–9]. In lieu of RNNs, Pasquadibisceglie et al. investigated Con-
volutional Neural Networks for the same purpose [10]. Building on top of all these
approaches, Taymouri et al. tackled the problem by implementing a Generative
Adversarial Network, with promising results [11].

The present paper is probably most similar to the work of Nolle et al. [16],
whose results, which are based on RNN-based alignments, are extremely promis-
ing, though they perform anomaly detection instead of log trace classification.

3 Preliminaries

In this section, we provide some background and notation for both PM and ML.

3.1 Log Traces, Process Model, Fitness and Alignments

We represent event data as log traces.

Definition 1 (Log traces). Let A be a set of activities. We define a log L as
a finite multiset of sequences σ ∈ A∗, which we refer to as log traces.
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〈open, read, wait, wait, close〉
〈open, read, close〉
〈write, wait, close〉
〈open,wait, write, close〉

open

read

write

close

wait

Fig. 1. A log L and an associated process model M

Process models can be generated from an event log; these models extrapolate a
set of possible runs from the recorded log traces exhibited in the aforementioned
event log. An example of a log and associated process model is provided in Fig. 1.

Definition 2 (Runs of a process model). Let M be a process model defined
over a set of activities A. We write Runs(M) ⊆ A∗ the set of sequences generated
by M .

This paper does not discuss the structure of process models; for a given model
M , we consider the set Runs(M) to be a sufficient description of M . How well
M models a log is measured by the fitness criterion and can be computed based
on Runs(M) as the minimal cost of aligning each log trace to a run of M .

Definition 3 (Alignment Cost, Optimal Alignment). Given a log trace
σ = 〈σ1, . . . , σm〉 ∈ L, and a process model M , we define the alignments of σ
with M as sequences of pairs (moves) 〈(σ′

1, u
′
1), . . . , (σ

′
p, u

′
p)〉 with p ≤ m + n

such that, for a given index i and a given run u = 〈u1, . . . , un〉 ∈ Runs(M):

– each move (σ′
i, u

′
i) is either: a synchronous move (σj , uk) with σj = uk, a

log move (σj ,�), which represents the deletion of σj in σ, or a model move
(�, uk), which represents the insertion of uk in σ, where j ∈ {1, . . . ,m} and
k ∈ {1, . . . , n};

– the left projection 〈σ′
1, . . . , σ

′
p〉 of the alignment to A∗ (which drops the occur-

rences of �), yields σ;
– the right projection 〈u′

1, . . . , u
′
p〉 of the alignment to A∗(which drops the occur-

rences of �), yields u.

We call alignment cost the count of non-synchronous moves in the alignment. An
optimal alignment is an alignment in which the alignment cost is the minimum
possible given σ and M .

The table below describes an optimal alignment of the log trace
〈open,wait, write, close〉 with the process model drawn in Fig. 1. Since the align-
ment contains one non-synchronous move, its cost is 1.

trace open wait write close

run open � write close
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We compute the fitness of a process model with regards to a trace as follows:

fitness(σ, M) = 1 − minCost(σ, select(σ, M))

|σ| + min
u′∈Runs(M)

|u′| (1)

where select(σ,M) returns a run u ∈ Runs(M) such that the set of alignments
of σ with M using u contains an optimal alignment, and minCost(σ, u) returns
the minimum cost of aligning σ with M using a run u.

A trace is said to be fitting when its fitness is 1, i.e. when its optimal align-
ment has a cost of 0. We define the fitness of a process model M with regards to
a log L to be the average of the fitness of M with regards to each log trace of L.

3.2 Supervised Learning from Sequences

There are several approaches towards training classification models from sequen-
tial data in a supervised way. They have in common that they must encode
sequences of variable lengths as fixed-size vectors; these vectors are subsequently
used as training examples for the classifier, which learns a classification model
from them. The quality of the model is then assessed using several metrics and
methods, based on its ability to accurately classify new inputs.

Building a Model. One can construct the vectors referenced above in different
ways, e.g. by ignoring the order of the sequences (Bag-of-words) in the hope that
knowledge about the frequency of each word in the sequences is sufficient to train
a classifier (e.g. a RF classifier), or by training Deep Neural Networks able to
encode the ordering of the sequences in the vectors (e.g. a LSTM network).

Long Short-Term Memory networks are RNNs able to learn and remember over
long sequences of inputs [5]. They achieve that by integrating neurons specifically
designed to determine whether a piece of information should be remembered or
forgotten, depending on whether it is relevant for classification. Figure 2 gives
the structure and relevant equations of an LSTM cell.

When one uses LSTM networks for sequence classification, the sequences
(represented as sequences of integers) are usually first passed through an embed-
ding layer before being passed through the LSTM layer; the prediction is then
the output of a dense layer. One may add dropout layers to the network, in
order to randomly ignore a percentage of units during training to avoid overfit-
ting. The specificity of this architecture is that the whole sequence is fed as input
to the network and that the embedding is learned through the training process;
this permits learning a representation of the sequence that somehow embeds its
sequential properties.

Definition 4 (Bag-of-words (BoW) encoding). For an alphabet A and a
sequence σ ∈ A∗, a Bag-of-words encoding canonically maps σ to a multiset of
words of A.
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ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(Wc · [ht−1, xt] + bc)

ot = σ(Wo · [ht−1, xt] + bo)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ht = ot ∗ tanh(Ct)

where bg is the bias added at gate g, Wg is the weight vector for gate g, xt is the current input,

Ct−1 the memory of last hidden unit, and ht−1 the output of last hidden unit.

Fig. 2. LSTM cell (adapted from [17])

In its simplest version, the multiset is encoded as a vector of integers Xσ,
and the element at index i in Xσ gives the count of the word at index i in OA
in the sequence σ, where OA is a vector containing exactly all the elements of
A in some arbitrary order. For instance, the respective BoW encodings of the
log traces in Fig. 1 are 〈1, 1, 2, 1, 0〉, 〈1, 1, 0, 1, 0〉, 〈0, 0, 1, 1, 1〉, and 〈1, 0, 1, 1, 1〉
for OA = 〈open, read,wait, close, write〉.

Random Forests (RFs) are an ensemble learning method for classification. A
RF constructs a bootstrapped collection of decision trees, i.e. a collection of
decision trees that are sampled with replacement. Each decision tree consists of
inner dichotomous nodes representing tests on random subsets of features, and
of leaf nodes representing the possible output classes. The class of a given input
can be predicted by taking the majority vote of the classification trees [18].
These decision trees can help to understand which features are important for
classification, since every output can be represented as a list of decisions taken
at the dichotomous nodes.

Validating a Model. We recall some metrics used to evaluate classification
models, as well as one famous validation technique, namely the K-fold cross-
validation.

Definition 5. In the following, given a classification model C and a given input
i, we write yC,i the actual class of the input and ŷC,i its predicted class by C.

Definition 6 (Accuracy). For a given classification model C and an input i,
we say that the classification is accurate when yC,i = ŷC,i. For a set of inputs
S, we define ES,C = {i : i ∈ S, ŷC,i = yC,i}. The accuracy accC(S) of the
classification of S by C is given as accC(S) = |ES,C |

|S| .

Definition 7 (Cross-Entropy Loss). For a given binary classification model
C and a given set of inputs S, there exists an error function called cross-entropy
loss lossC(S) defined by lossC(S) = 1

|S|
∑

i∈S − log(P (ŷCi
= yCi

)).
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K-fold Cross-validation. K-fold cross-validation is a model validation technique
used to lower the biases that may emerge when one only selects one training
set and one testing set. Given K ∈ N

∗, the dataset D is split into K i-indexed
subsets Di. For each subset, one trains a model using D \Di as the training set,
and subsequently evaluates it using Di as the testing set. The performance of
the model is then summarized using the mean and variance of the evaluation
scores.

4 Classifying Traces and Bounding the Fitness of a Model

The fitness of a log trace to a process model represents important information
in conformance checking. Computing the fitness requires computing alignments
of the trace with the model, which is a costly process. In this section, we present
a binary classification of log traces based on their closeness to a process model:
the Alignment Cost Threshold-based Classification (ACTC). This classification
provides means of extracting relevant information at a much lower cost than
alignments, while still guaranteeing a lower bound for the fitness of a process
model to a log.

Definition 8 (Alignment Cost Threshold-based Classification). Let M
be a process model and L be a log. For a given alignment cost threshold tAC ∈ N,
the ACTC maps each log trace σ ∈ L to one of two classes depending on its
minimal alignment cost cσ,M :

– the positive class Lpos if cσ,M ≤ tAC;
– the negative class Lneg otherwise.

The tAC parameter allows us to have more flexibility—in that we can now
work with arbitrarily close traces instead of only fitting ones—and to control the
balance of our two classes.

Theorem 1. Given the ACTC of a log L for a model M and a cost threshold
tAC, the following holds:

fitness(L,M) ≥

∑

σ∈Lpos

1 − tAC
|σ| + min

u∈Runs(M)
|u|

|L| (2)

i.e. fitness(L,M) is bounded from below.

Proof. The fitness of a process model M with regards to a log L is defined as
the average of the fitness of M with regards to each log trace of L, i.e.

fitness(L,M) = 1 −

∑

σ∈L

minCost(σ, select(σ,M))
|σ| + min

u′∈Runs(M)
|u′|

|L| . (3)
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Let there be an ACTC of cost threshold tAC . For every σ ∈ L, we have

fitness(σ,M) ≥

⎧
⎪⎨

⎪⎩

0 if σ ∈ Lneg

1 − tAC
|σ|+ min

u′∈Runs(M)
|u′| if σ ∈ Lpos , (4)

since tAC is the highest allowed alignment cost for a trace to be classified into
Lpos. It follows trivially that:

fitness(L,M) ≥

∑

σ∈Lpos

1 − tAC
|σ| + min

u∈Runs(M)
|u|

|L| . (5)

In the following, we write B = fitness(σ,M) for any σ ∈ Lpos. 	

Taking a small value for tAC results in a large B, but a potentially smaller

cardinality for Lpos; on the other hand, a large tAC will induce a larger cardi-
nality for Lpos but a smaller B. The aim of the following is to compute B from
predictions, i.e. in a case where Lpos is built using a predictive approach. In this
case, there is a risk that traces will be classified erroneously. We show in the next
sections that classification models are good enough in practice to guarantee a
lower bound of their fitness that is very close to the one outlined above.

5 Experiments

In this section, we present our datasets; we follow by describing how we param-
eterize our classification models; finally, we present our experimental results.

5.1 Alignment Datasets

The ACTC requires a training set of alignments; for that purpose, we have
created alignments datasets that contain the trace variants of each dataset (i.e.
the unique sequences in the log) and their minimal alignment costs for several
process models1; that way, we rid our results of the noise induced by duplicate
traces.

We ran our experiments on the three largest logs from the Business Process
Intelligence Challenges available at the time of writing, using models from the
work of Augusto et al. [19]. The models were discovered using the preprocessing
method of Conforti et al. [20], and then either the Inductive Miner (IM) [21], the
Split Miner (SM) [22], or the Heuristic Miner (SHM) [23]. Table 1 summarizes
the relevant pieces of information pertaining to the datasets.

For each log, we also generate a set of 1000 random mock traces of lengths
varying between 1 and the length of the longest trace in the log. These traces
have, in most cases, a very high alignment cost with regards to the process
models.
1 https://github.com/BoltMaud/An-Alignment-Cost-Based-Classification-of-Log-

Traces-Using-ML.

https://github.com/BoltMaud/An-Alignment-Cost-Based-Classification-of-Log-Traces-Using-ML
https://github.com/BoltMaud/An-Alignment-Cost-Based-Classification-of-Log-Traces-Using-ML
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Table 1. Event log description and alignment costs

Log Number of
trace
variants

Method of model
discovery

Average
alignment
cost

Median
alignment
cost

Dataset
name

BPIC 2012 4 366 Noise filter + IM 2.14 2.00 Aim
2012

Noise filter + SM 3.02 3.00 Asm
2012

Noise filter + SHM 7.60 6.00 Ashm
2012

BPIC 2017 15 930 Noise filter + IM 14.90 13.00 Aim
2017

Noise filter + SM 15.03 13.00 Asm
2017

Noise filter + SHM 16.31 14.00 Ashm
2017

BPIC 2019 11 973 Noise filter + IM 24.38 6.00 Aim
2019

5.2 Learning Methods

We train two classifiers, namely a RF on BoW-encoded sequences, and a LSTM
network on sequences whose encoding embeds the sequential properties of the
activities. The general overview of the training process is shown in Fig. 3.

Fig. 3. Overview of the experimental setup

LSTM Network. This model takes constant-length vectors of integers as
inputs, in which a given integer corresponds to exactly one activity. Traces that
are shorter than the expected length of the vectors are padded as needed.

The architecture of the model we train is given in Fig. 3. The input layer
takes a vector of size m (corresponding to the length of the longest trace in the
log) containing elements belonging to the set of all the actions taken in the log
traces. The vector is encoded into a vector of 15 elements using an embedding
layer. The resulting vector is then fed to a bi-LSTM layer—ensuring that theleft
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and right contexts of the actions in the input traces are remembered—and then
to another simpler LSTM layer. Dropout layers with a frequency rate of 0.5
are added to prevent overfitting. The dense layer uses the softmax activation
function to output the predicted classes, thus ensuring that they are mutually
exclusive. We train the model for 10 epochs and with a batch size of 50 instances2.

RF Classifier. The RF classifier does not take into account the order of the
events, as it takes as input vectors that represent an ensemble of features, in our
case activities. The classifier is thus trained with vectors resulting from a BoW
encoding of the traces.

The target values, i.e. the prediction classes, are 0 (negative) or 1 (positive)
depending on the minimal alignment cost of the sequence.

We set up 3 verification steps: first, we split the dataset into a training set
(67%) and a testing set (33%) using a 10-fold cross-validation on the training
sets to find the best predictive model in terms of accuracy. Second, we predict
the classes of the sequences in the testing sets, and compare the accuracy during
training to the accuracy during testing; they should be similar. Finally, we feed
randomly generated traces with a high alignment cost to the predictive model;
they should always be classified negatively.

5.3 Results and Interpretation

We built two distinct classifiers—one RNN and one RF—for each pair (d,m),
with d one of the 7 datasets in Table 1, and m one of the possible alignment
costs for the model; each pair represents an ACTC problem.

Table 2 summarizes the results of the experiments, where tAC is the median
of the alignment costs given in Table 1. The table contains the accuracies and
losses for our testing data, and we compare our running times with the ones of
ProM3 for computing the alignments.

Both learning models exhibit good accuracy and low losses, thus confirm-
ing the potential of predictive approaches for the problem of alignment. The
predicted lower bound of the fitness is computed from the traces classified as
positive and is very close to the exact fitness lower bound. However, we note a
significant difference between the actual fitness and these lower bounds. This is
because the fitness function we use is coarse-grained, in that it gives a purely
binary score denoting whether a log trace is classified as negative or positive.
Despite this weakness, it remains somewhat useful as a heuristic to decide which
of two models better fits a trace. It is also worth noting that our binary clas-
sification is straightforward to understand, whereas understanding alignments
tends to require more expertise; such a classification is therefore likely to be
very valuable to decision makers.
2 The size of the embedding layer, the number of epochs, the batch size, and the

stack of LSTM layers were chosen after several initial experiments, as they were the
parameters that yielded the best results.

3 https://www.promtools.org.

https://www.promtools.org
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Table 2. Alignment cost threshold-based classification by using a RNN and a Random
Forest classifier, with tAC the median of the alignment costs.

Alignments Fitness tAC % of
positive

Fitness
lower
bound

RNN Random
Forest

ProM
avg.
run-
time
(ms)

Acc Loss Predicted
fitness
lower
bound

Avg.
run-
time
(ms)

Acc Loss Predicted
fitness
lower
bound

Avg.
run-
time
(ms)

Aim
2012 0.950 2 73 0.695 0.999 0.011 0.695 12.00 0.988 0.057 0.700 0.06 42.28

Asm
2012 0.932 3 73 0.670 0.829 0.377 0.745 19.72 0.820 0.472 0.713 0.08 52.85

Ashm
2012 0.837 6 56 0.476 0.969 0.104 0.491 23.75 0.972 0.136 0.479 0.06 99.89

Aim
2017 0.874 13 53 0.463 0.984 0.047 0.473 10.01 0.979 0.056 0.467 0.03 5.12

Asm
2017 0.819 13 52 0.415 0.985 0.049 0.420 2.70 0.985 0.053 0.421 0.03 7.72

Ashm
2017 0.794 14 52 0.400 0.981 0.055 0.410 4.05 0.984 0.055 0.405 0.03 33.23

Aim
2019 0.561 6 53 0.328 0.973 0.078 0.338 15.11 0.958 0.103 0.344 0.03 1.09

Once the model has been trained, predicting the class of a trace is, in most
cases, significantly faster than computing its exact alignment, as summarized
in Table 2. One glaring exception is in the case of Aim

2019, in which computing
exact alignments remains roughly 14 times more efficient than performing a
prediction using the RNN. This is because the model is very simple (made of
only 13 transitions, without loops); this is not surprising and should not matter
in practice, as predictive approaches are tools designed to outperform exact
approaches in complex cases with big or even intractable search spaces. One
noteworthy caveat of using predictive approaches, however, is the fact that the
models must be trained before they become able to output predictions. In our
experiments, training a model took from 3.18 s to 8.97 s for our RF classifier,
and from 2675.87 s to 34837.31 s for our LSTM network—both of which involved
a 10-fold cross validation.

To better assess the impact of tAC on our results, we perform a comparison of
the predictions with varying tAC values in Table 3. We summarize the accuracy,
loss, and distribution into the two output classes for the testing data, as well
as for randomly generated mock data. We notice that the accuracy drops very
fast as tAC grows larger for the mock data; this is induced by an equally quick
drop in the percentage of log traces classified as negative. Given actual log traces
however, both classifiers are reasonably accurate in each one of the considered
cases. As was the case in Table 2, we note that the predicted lower bound of the
fitness is close to the one given by our exact formula. This is also a nice result,
although the actual fitness of the process model with regards to the log is pretty
far off at 0.837.
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Table 3. Comparison of the prediction results for different tAC values for the testing
set of Ashm

2012. The exact fitness for the used sublog is 0.837.

tAC Class % Fitness lower
bound

RNN Random Forest

Acc Loss Predicted fitness
lower bound

Acc Loss Predicted fitness
lower bound

2 all 100 0.071 0.992 0.029 0.076 0.998 0.009 0.073

pos 8 0.982 0.214 1.000 0.043

neg 92 0.992 0.013 0.998 0.006

mock 100 / 0.961 0.108 / 0.904 0.207 /

4 all 100 0.169 0.991 0.042 0.166 0.999 0.016 0.170

pos 20 0.968 0.151 1.000 0.021

neg 80 0.997 0.016 0.998 0.015

mock 100 / 0.937 0.303 / 0.876 0.317 /

6 all 100 0.476 0.971 0.104 0.491 0.972 0.150 0.479

pos 56 0.990 0.066 0.978 0.063

neg 44 0.944 0.156 0.962 0.268

mock 100 / 0.871 0.543 / 0.837 0.548 /

8 all 100 0.500 0.976 0.092 0.498 0.984 0.077 0.501

pos 65 0.980 0.079 0.989 0.031

neg 35 0.970 0.116 0.974 0.161

mock 100 / 0.818 1.189 / 0.782 0.911 /

10 all 100 0.524 0.937 0.165 0.508 0.971 0.103 0.522

pos 73 0.943 0.100 0.979 0.055

neg 27 0.921 0.336 0.949 0.233

mock 100 / 0.364 3.759 / 0.620 1.650 /

6 Conclusion and Opening

We presented a compelling use of ML for conformance checking by constructing
binary oracles—using a RF classifier and a LSTM network—that are able to
predict with high accuracy whether the minimal alignment cost of a log trace
with regards to a process model is below an arbitrary threshold. The method
we proposed is more flexible, cheaper, and easier to understand for humans
than the one usually used for exact alignments. We furthermore proved the
existence of a lower bound for the fitness of a process model. Our work shows
that there is a lot of value to be gained in exploring the use of ML methods
in conformance checking. Future investigations may include whether the exact
minimal alignment cost of a trace with a process model can be predicted from
a regression model; another interesting project could build on the work of Nolle
et al. [16] to predict optimal alignments of a log trace to a process model.
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Abstract. The automatic extraction of formal process information from
textual descriptions of processes is a challenging problem, but worth
exploring, since it enables organizations to align complementary informa-
tion that talks about processes. In this paper we continue our previous
work on this area, based on defining hierarchical/tree patterns on the
dependency trees that arise from the linguistic analysis. We now incor-
porate a new abstraction layer on these patterns, that consider relation-
ships between nearby sentences. The aim of this extension is to capture
inter-sentence relationships that typically arise in textual descriptions of
processes. The experiments done on publicly available benchmarks cor-
roborate this intuition, showing a significant rise in the ability to capture
all the important control-flow relationships defined in the text.

1 Introduction

As it has been recently acknowledged, there are quite important challenges on
applying Natural Language Processing (NLP) techniques in the field of Business
Process Management (BPM) [12]. Among the important ones, the extraction of
process models from textual process descriptions is a very attractive use case,
since the creation of process models consumes up to 60% of the time spent on
process management projects. This paper focuses on this challenging task.

Although different approaches have been considered in the last years (see
Sect. 2), a number of open challenges remain for reaching a maturity level
enabling its widespread adoption. For instance, techniques must be able to iden-
tify sentences that provide contextual information, rather than describe process
steps. Furthermore, the inherent ambiguity of natural language can lead to dif-
ferent interpretations regarding the process that is described [14].

In this paper we significantly expand the techniques and results recently pre-
sented in [9], where we described robust tree-based patterns to be queried over
the dependency trees arising from the NLP analysis of the textual descriptions.
Patterns in [9] where only applicable in the context of a single sentence, which
made our approach unable to extract inter-sentence relationships. The contribu-
tion of this paper is therefore the extension of our previous contribution with a
c© Springer Nature Switzerland AG 2021
S. Leemans and H. Leopold (Eds.): ICPM 2020 Workshops, LNBIP 406, pp. 149–161, 2021.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72693-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-72693-5_12


150 L. Quishpi et al.

more general set of patterns, resulting in a significant boost in the recall of the
original framework (see experiment results in Sect. 5).

The paper is organized as follows: next section shortly describes the work
related to this contribution. Section 3 overviews the main components of our
proposal, presented in Sect. 4. Experiments and tool support are reported in
Sect. 5, whilst Sect. 6 concludes the paper and outlines future work.

2 Related Work

For the sake of space, we only report here the related work that focuses on the
extraction of process knowledge from textual descriptions [1,4,13], or the work
that considers textual annotations in the scope of BPM [7,10].

For the former, the work by Gonçalves et al. [1] adopts important steps to
extract the different BPMN elements and the work by Friedrich et al. [4] is
acknowledged as the state-of-the-art for extracting process representations from
textual descriptions, so we focus our comparison on this approach. As we will
see in the evaluation section, our approach is significantly more accurate with
respect to the state-of-the-art in the extraction of the main process elements.
Likewise, we have incorporated as well the patterns from [13], and a similar
outcome is reported in the experiments. The main reason is that approach relies
on a deep NLP analysis and patterns on the syntactic structure of the sentence,
instead of a shallow analysis and flat patterns.

For the later type of techniques [7,10], we see these frameworks as the princi-
pal application for our techniques. In particular, we have already demonstrated
in the platform https://modeljudge.cs.upc.edu an application of the use of anno-
tations in the scope of teaching and learning process modeling1.

3 Preliminaries

The core of our proposal is the use of deep NLP analyzers to convert a textual
description of a process into a syntax-semantic structure. Then, this structure is
mined using tree-shaped patterns to obtain a conceptual representation of the
process. Although other tools could be used, we resort to FreeLing as a NLP
analyzer, TRregex as a tree-oriented pattern matching tool, and ATDP as a
conceptual representation support. We describe each of them below.

3.1 Natural Language Processing

Linguistic analysis tools can be used as a means to structure information con-
tained in texts for its later processing in applications less related to language
itself. This is our case: we use NLP analyzers to convert a textual description of
a process model into a structured representation.
1 The reader can see a tutorial for annotating process modeling exercises in the
ModelJudge platform at https://modeljudge.cs.upc.edu/modeljudge tutorial/.

https://modeljudge.cs.upc.edu
https://modeljudge.cs.upc.edu/modeljudge_tutorial/
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The NLP processing software used in this work is FreeLing2 [8], an open–
source library of language analyzers providing a variety of analysis modules for a
wide range of languages. More specifically, the natural language processing layers
used in this work are: tokenization & sentence splitting, morphological analysis,
PoS-Tagging, Named Entity Recognition, Word sense disambiguation, Depen-
dency parsing, Semantic role labeling and Coreference resolution. The three last
steps are of special relevance since they allow the top-level predicate construc-
tion, and the identification of actors throughout the whole text: dependency
parsing identifies syntactic subjects and objects (which may vary depending,
e.g., on whether the sentence is active or passive), while semantic role labeling
identifies semantic relations (the agent of an action is the same regardless of
whether the sentence is active or passive). Coreference resolution links several
mentions of an actor as referring to the same entity.

3.2 Annotated Textual Descriptions of Processes (ATDP)

ATDP is a formalism proposed in [10], aiming to represent process models on top
of textual descriptions. This formalism naturally enables the representation of a
wide range of behaviors, ranging from procedural to completely declarative, but
also hybrid ones. Different from classical conceptual modeling principles, this
highlight ambiguities that can arise from a textual description of a process, so
that a specification can have more than one possible interpretation3.

ATDP specifications can be translated into linear temporal logic over finite
traces [2,5], opening the door to formal reasoning, automatic construction of
formal models (e.g. in BPMN) from text, and other interesting applications
such as simulation: to generate end-to-end executions (i.e., an event log [15])
that correspond to the process described in the text, which would allow the
application of process mining algorithms.

ATDP models are defined over an input text, which is marked with typed text
fragments, which may correspond to entities, or activities. Marked fragments can
be related among them via a set of fragment relations.

Entity Fragments. The types of entity fragments defined in ATDP are:

– Role. The role fragment type is used to represent types of autonomous actors
involved in the process, and consequently responsible for the execution of
activities contained therein.

– Business Object. This type is used to mark all the relevant elements of the
process that do not take an active part in it, but that are used/manipulated
by process activities.

2 http://nlp.cs.upc.edu/freeling.
3 In this work we consider a flattened version of the ATDP language, i.e., without the
notion of scopes.

http://nlp.cs.upc.edu/freeling
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Activity Fragments. ATDP distinguishes two types of activity fragments:

– Condition. It is considered discourse markers that mark conditional state-
ments, like: if, whether and either. Each discourse marker needs to be tailored
to a specific grammatical structure.

– Task and Event. Those fragment types are used to represent the atomic units
of work within the business process described by the text. Usually, these
fragments are associated with verbs. Event fragments are used to annotate
other occurrences in the process that are relevant from the point of view of
the control flow, but are exogenous to the organization responsible for the
execution of the process.

Fragment Relations. Text fragments can be related to each other by means of
different relations, used to express properties of the process emerging from the
text:

– Agent. Indicates the role responsible for the execution of an activity.
– Patient. Indicates the role or business object on which an activity is per-

formed.
– Coreference. Induces a coreference graph where each connected component

denotes a distinct process entity.
– Sequential. Indicates the sequential execution of two activity fragments A1 and
A2 in a sentence. We consider two important relations from [10]: Precedence
and Response. Moreover, to cover situations where ambiguities in the text
prevent selecting any of the two aforementioned relations, we also incorpo-
rate a less restrictive constraint WeakOrder, that only applies in case both
activities occur in a trace.

– Conflicting. A conflict relation between two condition activity fragments
〈C1, C2〉 in a sentence indicates that one and only one of them can
be executed, thus capturing a choice. This corresponds to the relation
NonCoOccurrence from [10].

3.3 TRegex

In this paper, we use Tregex4 [6], a query language that allows the definition of
regular-expression-like patterns over tree structures. Tregex is designed to match
patterns involving the content of tree nodes and the hierarchical relations among
them. In our case we will be using Tregex to find substructures within syntactic
dependency trees. Applying Tregex patterns on a dependency tree allows us to
search for complex labeled tree dominance relations involving different types of
information in the nodes. The nodes can contain symbols or a string of characters
(e.g. lemmas, word forms, PoS tags) and Tregex patterns may combine those
tags with the available dominance operators to specify conditions on the tree.
Additionally, as in any regular expression library, subpatterns of interest may

4 https://nlp.stanford.edu/software/tregex.html.

https://nlp.stanford.edu/software/tregex.html
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be specified and the matching subtree can be retrieved for later use. This is
achieved in Tregex using unification variables as shown in pattern (2) in Fig. 1.

Figure 1 describes the main Tregex operators used in this research to specify
pattern queries.

Operator Meaning A

B

E

C

F

K L

G

D

H I J

X << Y X dominates Y
X >> Y X is dominated by Y
X !>> Y X is not dominated by Y
X < Y X immediately dominates Y
X > Y X is immediately dominated by Y
X >, Y X is the first child of Y
X >- Y X is the last child of Y (1) E>>(A<<G) (4) F!>>A
X >: Y X is the only child of Y (2) E>>(A=x)>:(B=y) (5) H>:D
X $-- Y X is a right sibling of Y (3) K!>>B>>(A<D) (6) A<J
X $. Y X is the immediate left sibling of Y

Fig. 1. Some operators provided by Tregex (left). The tree on the right would match
patterns (1), (2), (3), and would not match patterns (4), (5), (6). Note that unless
parenthesized, all operators refer to the first element in the pattern. Pattern (2) uses
operator = to capture nodes A and B into variables x and y respectively.

4 Generalized Approach

4.1 Basic Approach: Intra-sentence Analysis

In this paper we describe an extension to the approach presented in [9]. This
subsection summarizes the basic original approach, and following subsections
provide details on the added extensions, which mainly consist of the extraction
of relations between actions or conditions in different sentences, as well as an
extended evaluation covering not only entities and actions, but also relations.

In [9] we presented a proposal to extract Business Process elements (entities,
actions, conditions, events, and relations) from a process textual description.

The approach consists of: (a) Use a full-fledged NLP analysis pipeline [8]
to analyze the text and extract verbal predicates, involved actors and objects,
syntactic trees of all sentences, and coreferences between different mentions of the
same actor/object, and (b) apply a cascade of TRegEx patterns on the output
of the NLP preprocess to extract and elaborate the relevant process information.
These patterns perform the following tasks:

1. Select the appropriate description for an entity or object. For instance, in
the sentence “The process starts when the female patient is examined by an
outpatient physician, who decides whether she is healthy or needs to undertake
an additional examination” the results of the NLP semantic role labeling
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step for Agent would return the whole subtree headed by physician (i.e. an
outpatient physician, who decides. . . examination).
The used Tregex patterns will strip down such a long description removing
the determiner and the relative clause, while keeping the core actor/object
and its main modifiers, thus extracting respectively outpatient physician
as a role, and female patient as a business object.

2. Next step is identifying relevant activities. The NLP preprocess detects all
predicates in the text (mainly, all verbs are considered a predicate, plus
some deverbal nouns such as “reception”, “meeting”, etc.). However, although
many verbs in a process description may be predicates from a linguistic per-
spective, they do not correspond to actual process activities. Thus, we use
a set of patterns that discard predicates unlikely to be describing a relevant
process task, or relabel them as condition or event fragments:
(a) More specifically, we use a set of predicates that check for syntactic

structures involving conditional clauses (if, whether, either, ...) and the
appropriate nodes in the tree are marked as condition fragments. In this
step, we determine, for instance, that she is healthy and needs an
additional examination are conditions in the sentence “... who decides
whether she is healthy or needs an additional examination.”.

(b) Another set of patterns deal with syntactic structures involving keywords
like when, once, as soon, whenever, etc., and mark the related predicates as
event fragments. These patterns allow us to identify the fragment confirm
(payment) as an event fragment in the sentence “Once the payment is
confirmed, the ZooClub department can print the card...”

(c) A third batch of patterns takes care of discarding activities that are not
relevant to the process. To this end, we use two different strategies: one
is removing all activities related to auxiliary, control, or subjective verbs
(be, have, start, want, think, believe, etc.) which are unlikely to describe
an actual process task. The second strategy relies on removing actions
described in a subordinate clause. For instance, in the sentence “..., the
examination is prepared based on the information provided by the outpa-
tient section”, the verbs base and provide would be removed as activities,
since the main action described by this sentence is just prepare (exam-
ination), and the subordinate clause just gives additional details on the
object or procedure, but not on the actual process activity.

3. The last set of patterns deal with relations between activities. In our original
work we tackled only relations between two activities in the same sentence.
We considered different types of relations:
(a) Precedence: We use patterns to detect sentences relating one event and

one activity in a precedence relation. E.g. in the sentence “An intaker
keeps this registration with him at times when visiting the patient”, it
would extract the sequential relation from visit (patient) to keep
(registration).
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(b) Response: This relation is identified between condition and activity frag-
ments, which typically occur in conditional sentences such as “If the
patient signs an informed consent, a delegate of the physician arranges
an appointment with one of the wards and updates the HIS selecting the
first available slot”. From this sentence, we would extract the relation
that arrange (appointment) responds to sign (consent).

(c) Weak Order: There are many pairs of activities appearing in the same
sentence where some kind of sequential order can be deduced, but it
is not possible for an automatic system to determine their exact kind
of relation. In these cases, we take a conservative approach and extract
the least restrictive constraint, WeakOrder. For instance, in the sentence
“The Payment Office of SSP generates a payment report and then pays
the vendor”, we could extract that generate and pay are in WeakOrder.

(d) Conflict: Conflict relations can be determined between condition frag-
ments, provided they are in the right syntactic structure. In this way, we
can extract the constraint that the sample can not be safely used and
contaminated at the same time from the sentence “... decides whether the
sample can be used for analysis or whether it is contaminated”, or that
conditional fragments approve and deny from the sentence “The next
step is for the IT department to analyse the request and either approve or
deny it.” are considered in conflict.

4.2 Inter-sentence Analysis

Patterns used in [9] for relation extraction summarized in Sect. 4.1 aimed to
capture relations between two activities/events mentioned in the same sentence.
The main contribution of this paper is the extension of these patterns to capture
also relations between activities or events located in different sentences.

To achieve this goal, since TRegEx is able to handle a single tree at a time,
we first need to join together the syntactic trees for all sentences in the text in a
single tree. For this, we add two kinds of artificial parent nodes: A <PARAGRAPH>
node that has as children the root nodes for each of the sentences in the same
paragraph, and a <DOCUMENT> node that has as children all the <PARAGRAPH>
nodes. With that, we obtain a unique tree for all the document, and we can
apply TRegEx patterns that span over more than one sentence. Figure 2 shows an
example of a tree representing a short document. We apply patterns on the doc-
ument tree to extract conflict and sequence relations between activities, events,
or conditions detected in previous steps (see Sect. 4.1).

Conflicts. Conflicts between activities in the same sentence are detected
using patterns described in [9]. The following patterns deal with conflicts
between activities in different sentences. Their goal is to instantiate in vari-
ables originRef and destinationRef verbs that head sentences which may
contain nodes marked as <ACTIVITY> or <CONDITION> on which the relation will
be extracted.
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DOCUMENT

PARAGRAPH

arrive
verb

<ACTION>

request
noun

a
det

PARAGRAPH

send
verb

<ACTION>

if
adv

accepted
verb

<CONDITION>

it
pron

is
aux

manager
noun

the
det

.
it

pron

to
prep

sales
noun

archive
verb

<ACTION>

otherwise
adv

secretary
noun

the
det

it
pron

Fig. 2. Document tree for a text with two paragraphs: The first one with the sentence
“A request arrives”, the second with two sentences: “If it is accepted, the manager sends
it to sales. Otherwise, the secretary archives it”. Nodes in the syntactic dependency
trees have been marked as <ACTION> or <CONDITION> in previous steps.

PC1 /verb/=originRef > /<PARAGRAPH>/

<< /<CONDITION>/

$. (/verb/=destinationRef << /<CONDITION>/)

PC2 /verb/=originRef > /<PARAGRAPH>/

<< /<CONDITION>/

$. (/verb/ !<< /<CONDITION>/

$. (/verb/=destinationRef << /<CONDITION>/))

Pattern PC1 checks for a verb directly under a <PARAGRAPH> (i.e. main sen-
tence verb) that has a condition as a child, and that its right sibling (i.e., main
verb in the following sentence) also has a condition. This would extract a conflict
between proceed and repeat in the pair of sentences “If sample is ok, proceed with
examination. If contamination is detected, repeat sampling.” Pattern PC2 cap-
tures the same kind of structure, when there is an additional sentence without
a condition in between (e.g. “If sample is ok, proceed with examination. Fill out
treatment request form. If contamination is detected, repeat sampling.” )
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Sequences. A second batch of patterns takes care of extracting sequence rela-
tions between activities in contiguous sentences. As in the case of conflicts, the
patterns instantiate the variables originRef and destinationRef to candidate
subtrees that are then searched for <ACTIVITY> or <CONDITION> nodes. Some
patterns directly instantiate the variable destination, the actual target of the
extracted relation.

PS1 /verb/=originRef > /<PARAGRAPH>/

$. (/verb/=destinationRef

< /afterwards|then|immediately/)

PS2 /verb/=originRef > /<PARAGRAPH>/

$. (/verb/ << (/<CONDITION>/=destination << /or/))

PS3 /verb/=originRef > /<PARAGRAPH>/

$. (/verb/ << (/or/ << /<CONDITION>/=destination))

PS4 /verb/=originRef > /<PARAGRAPH>/

$. (/verb/ << /<CONDITION>/=destination

< /otherwise|else/)

PS5 /verb/=originRef > /<PARAGRAPH>/

$. (/verb/ << /<CONDITION>/

< (/otherwise|else/=destination)

Pattern PS1 extracts a sequence relation between the main verb of a sequence
and the main verb of the next one provided the latter has a modifier such as
afterwards, then, immediately, etc. Patterns PS2 and PS3 establish sequence
relations between an activity and or-ed conditions in the following sentence (e.g.
extract sequences send→fill and send→reject in sentences “Send form to cus-
tomer. The customer can fill the form or reject to do it.”) Patterns PS4 and PS5
check a similar case, but where the second sentence has an “if-else” structure.
They would extract the sequence relations send→accept and send→cancel in
the sentence “A budget is sent to the customer. If he accepts it, the bill is issued,
otherwise the operation is cancelled.”

5 Tool Support and Experiments

This section presents experiments evaluating the performance gain obtained
when including patterns to capture relations between activities or events located
in different sentences. We report two different results: First, we report relations
extraction performance using a baseline based on [9] where we extract relations
only for pairs in the same sentence. Second, we report results applying patterns
to extract both intra- and inter-sentence relations.

The evaluation is performed comparing the relations extracted against gold
standard manual annotations. For both Table 1 and Table 2, the test data set
used in our experiments are the same as that used in the original proposal [9],
which consists of 18 text-model pairs, each example includes a textual process
description paired with the corresponding BPMN models created by a human.
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The first 13 models stem from material in the appendix of [3], and the last 5
from our academic dataset5 used in [11].

As a gold reference for evaluation, we manually created one ATDP for each
example following the activities and relations in those BPMN models, i.e. mark-
ing as activity fragments only the text pieces that had a corresponding element
in the BPMN model and connecting only the activities fragments that had a
corresponding relation in the BPMN model.

Intra-sentence. Results for the first scenario (only intra-sentence patterns) are
shown in Table 1, and correspond to results obtained using the patterns described
in [9], which rely on extracting relations just within sentences. Precision is the
percentage of right relations over predicted relations (P = #ok/#pred). Recall
is the percentage of expected relations extracted (R = #ok/#gold). F1 score
is the harmonic mean of precision and recall (F1 = 2PR/(P + R)). We only
count extracted relations as right if they match the gold annotations in type

Table 1. Evaluation of relation extraction using only intra-sentence patterns. Sequence
relations are evaluated on the transitive clausure of both the sets of gold annotations
and annotations produced by the system.

Source Conflict Sequence

#gold #pred #ok P R F1 #gold #pred #ok P R F1

1-1 bicycle manufacturing 2 1 1 100 50 67 59 8 6 75 10 18

1-2 computer repair 1 0 0 0 0 0 59 9 7 78 12 21

2-1 sla violation 5 2 0 0 0 0 372 46 14 30 4 7

3-1 2009-1 mc finalice sct 0 0 0 0 0 0 52 4 3 75 6 11

3-2 2009-2 conduct 1 0 0 0 0 0 20 8 4 50 20 29

3-6 2010-1 claims notification 2 0 0 0 0 0 63 9 7 78 11 19

4-1 intaker workflow 0 0 0 0 0 0 596 17 5 29 1 2

5-1 active vos tutorial 3 0 0 0 0 0 15 4 3 75 20 32

6-1 acme- 1 0 0 0 0 0 340 22 11 50 3 6

7-1 calling leads 1 0 0 0 0 0 13 2 1 50 8 13

8-1 hr process simple 0 0 0 0 0 0 15 7 6 86 40 55

9-2 exercise 2 3 0 0 0 0 0 11 6 6 100 55 71

10-2 process b3 3 0 0 0 0 0 114 7 3 43 3 5

1081511532 rev3 1 0 0 0 0 0 47 9 5 56 11 18

1120589054 rev4- 0 0 0 0 0 0 66 9 6 67 9 16

1364308140 rev4 1 0 0 0 0 0 21 8 4 50 19 28

20818304 rev1 3 2 2 100 67 80 36 11 6 55 17 26

784358570 rev2 2 0 0 0 0 0 126 11 6 55 5 9

TOTAL 29 5 3 60 10 18 2025 197 103 52 5 9

5 https://github.com/setzer22/alignment model text/tree/master/datasets/
NewDataset.

https://github.com/setzer22/alignment_model_text/tree/master/datasets/NewDataset
https://github.com/setzer22/alignment_model_text/tree/master/datasets/NewDataset
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(<SEQUENCE>, <CONFLICT>). In both experiments, sequence relations are evalu-
ated over the transitive closure of the sequence annotations.

Inter-sentence. In the second evaluation scenario, in addition to patterns cre-
ated in [9], we use inter-sentence patterns described in Sect. 4.2.

Obtained results presented in Table 2 show that our new contribution extracts
more relations, thus obtaining a large boost in recall (from 0.05 to 0.70 overall)
with a very mild loss of precision (from 0.52 to 0.50 overall). Recall is boosted
both for conflict and sequence relations, while precision is increased for conflicts,
but slightly decreased for sequences.

Table 2. Evaluation of relation extraction using both intra- and inter- sentence pat-
terns. Sequence relations are evaluated on the transitive clausure of both the sets of
gold annotations and annotations produced by the system.

Source Conflict Sequence

#gold #pred #ok P R F1 #gold #pred #ok P R F1

1-1 bicycle manufacturing 2 2 2 100 100 100 59 90 54 60 92 72

1-2 computer repair 1 0 0 0 0 0 59 65 33 51 56 53

2-1 sla violation 5 4 2 50 40 44 372 572 152 27 41 32

3-1 2009-1 mc finalice 0 0 0 0 0 0 52 57 42 74 81 77

3-2 2009-2 conduct 1 0 0 0 0 0 20 33 19 58 95 72

3-6 2010-1 claims 2 1 1 100 50 67 63 76 53 70 84 76

4-1 intaker workflow 0 0 0 0 0 0 596 906 455 50 76 61

5-1 active vos tutorial 3 3 3 100 100 100 15 16 12 75 80 77

6-1 acme- 1 0 0 0 0 0 340 561 287 48 84 61

7-1 calling leads 1 1 1 100 100 100 13 41 13 32 100 48

8-1 hr process simple 0 0 0 0 0 0 15 21 15 71 100 83

9-2 exercise 2 3 6 3 50 100 67 11 10 9 90 82 86

10-2 process b3 3 1 1 100 33 50 114 138 83 60 73 66

1081511532 rev3 1 1 1 100 100 100 47 41 30 73 64 68

1120589054 rev4 0 0 0 0 0 0 66 78 66 85 100 92

1364308140 rev4 1 0 0 0 0 0 21 26 10 38 48 43

20818304 rev1 3 3 3 100 100 100 36 29 19 66 53 58

784358570 rev2 2 3 2 67 100 80 126 118 85 72 67 70

TOTAL 29 25 19 76 66 702025 2878 1437 49 71 59

6 Conclusions and Future Work

We have presented an extension of our work in [9], consisting in adding syntax-
tree based patterns to capture relations between activities or events located in
different sentences. Results show that crossing the sentence boundaries is a highly
productive strategy, since many more relations can be extracted. Also, the fact
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of using syntax-aware patterns, and not just flat regular expressions allows this
extension to be done with almost no loss of precision.
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10. Sànchez-Ferreres, J., Burattin, A., Carmona, J., Montali, M., Padró, L.: Formal
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Abstract. The execution of a business process is often determined by
the surrounding context, e.g., department, product, or other attributes
an event provides. Process discovery mainly focuses on the executed
activities, although the context of a case may be needed to accurately
represent a process instance, e.g., for clustering, prediction, or anomaly
detection. Hence, in this paper, we present a representation learning
technique (Case2vec) using word embeddings for business process data
to better encode process instances. Our work extends Trace2vec and
incorporates an additional semantic level by using not only the activity
name but also the attributes and thereby incorporating the context. We
evaluate our approach in the context of trace clustering. Additionally, we
show that Case2vec can be used to abstract events which are semantically
similar but syntactically different. We also show that word embeddings
allow for interpretability when employing vector space arithmetic.

Keywords: Representation learning · Word embeddings · Process
context

1 Introduction

In recent years, process mining has become an important technology for organi-
zations analyzing their business processes. Event logs recorded by process-aware
information systems can be analyzed with process mining to obtain valuable
insights about how a business process is executed in reality. However, process
mining techniques primarily focus on the control-flow of a process without con-
sidering the context a case is executed in, e.g., department, product, customer,
or other attributes an event provides. This additional process context may help
to further reveal patterns within the event log, which are not visible in the
control-flow perspective, to enhance process mining techniques. Our goal is to
learn vector representations of process cases that include this context informa-
tion that can be used in various process mining techniques.

Vector representations of cases are required by many techniques in process
mining such as trace clustering [4,11,12], prediction [3], and anomaly detec-
tion [10,13]. Trace clustering aims to improve the discovery of process models
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by grouping similar cases. Clusters of cases that are executed in similar contexts
can be generated, allowing the user to compare process models of different con-
texts. Improved prediction models can be learned that also consider the process
contexts. Furthermore, anomaly detection methods based on extended vector
representations can provide more reliable results. These are just a few examples
for potential use cases of context-including vector representations.

Our work is based on a technique proposed in the area of natural language
processing (NLP) for learning vector representations of words and sentences.
Similar to a sentence with words, a case of a business process consists of a
sequence of activities. Activities are also not executed in random order, but
according to a predefined grammar, the underlying process model. The core
idea is to model similarities and intentionally avoid comparing by words only,
because we know that different words or sentences can bear the same meaning.

A previous work, Trace2vec [4], showed that the representation learning app-
roach Word2vec [8], which constructs a vector space of the words of a corpus to
capture similarities, can also be used on process data. To model such similari-
ties, a large event log is crawled to order activities which occur together within
this vector space. However, Trace2vec also showed some difficulties in the exper-
iments with the BPIC15 event log: First, the vocabulary of event logs is much
smaller compared to the vocabulary of natural language. Second, the context
of a case is not taken into account, which can provide further details about the
dependencies between activities and attributes. For instance, if the BPIC15 event
log is clustered into the municipalities without considering the process context,
it is assumed that the control-flow alone clearly determines the municipality. In
highly standardized processes like governmental processes, the control-flow is the
very part that does not separate one trace from another, but rather its context,
e.g., an officer working exclusively in one or a few municipalities.

In this paper, we present an extended approach based on Trace2vec that
can indeed lead to sensible results when evaluating these representations for a
trace clustering task. We name this extension Case2vec, because it uses event
and case attributes to capture the process context. Our extension increases the
vocabulary that allows to better exploit case relationships. Besides our extension,
we examine a proper hyperparameter strategy that can better deal with the
sparse vocabulary in business process data. We revisit the original approach
using the BPIC15 event log and show how parameter tuning and especially
incorporating attributes improves results. We also show a wider range of results
on the BPIC19 event log, which holds not only more traces, but also more
attributes.

As additional tasks we investigate two useful applications of the neural net-
work architecture presented: (1) Event abstraction allows to show that syntacti-
cally different activities are semantically similar, given enough traces in a similar
context. (2) Arithmetic operations within the vector space keep semantic mean-
ing which we show in an interpretability task. This is done on an artificial paper
writing process to show the task more clearly because we know how the activities
in this process depend on each other.



164 S. Luettgen et al.

2 Related Work

Process case representations are used by various process mining techniques such
as trace clustering, anomaly detection, and prediction. Different representations
have been proposed in the related work. A simple representation technique is
the bag-of-words model which is used to compute the similarity of sentences
based on the co-occurrences. Song et al. [12] encode sequences of activities as
one hot vectors, in which each component corresponds to an activity. Transitions
between activities are used instead by Bose et al. [1] to compare cases.

Besides manually defined case representations, automatically generated rep-
resentation vectors can be learned. For instance, a word embedding is a feature
learning technique in which words are mapped to a vector space. Words appear-
ing together frequently within a text corpus will be mapped close together within
a vector space to capture their semantic relationship. Word embeddings do not
rely on syntactical features and, therefore, can compute a similarity value of two
sentences, even if none of the words of each sentence is the same. De Koninck et
al. [4] transferred the idea of Word2vec [8] and Doc2vec [7] to process data. An
LSTM and CBOW-based approach was introduced by Bui et al. [2]. A super-
vised representation learning approach based on conditional random fields for
event abstraction was introduced by Tax et al. [14].

Representation learning has been used for different analysis methods. Trace2-
vec representations were used to cluster traces into similar groups in [4]. Tavares
et al. [13] use the same representations to identify anomalous cases.

A drawback of most related work in this field is the limitation to the pure
control-flow, namely the sequence of activities to learn case representations.
Thus, the process context of the cases is not considered.

3 Case2vec

In NLP, word embeddings use the context of the words in a document to exploit
semantic similarities of words by mapping them to a vector space. The closer
these words appear together in the document the closer they are mapped together
in the vector space. Thereby, semantic similarity of different statements can be
confirmed as long as they are mapped close together.

As already mentioned, a popular technique for modeling word embeddings
is Word2vec [8]. The task is to model what is in the neighborhood of a word.
This can be done using two different approaches. We can predict a word given
its surrounding words (continuous bag of words, short CBOW), or the other way
round, predict the surrounding words given one word (skip-gram). For example,
in the sentence I like ... process mining, continuous bag of words would insert
words of similar representation to fill the gap, e.g., business. Vice versa, skip-
gram would take the word business and amend it with preceding and succeeding
words given by example sentences in the training data.

Word2vec learns a CBOW or skip-gram model using a neural network
and implicitly constructs an abstract representation of the vocabulary and its
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Fig. 1. Architectural overview of Case2vec where each trace’s activity names, event,
and case attributes are concatenated as single words.

relationships between each other. Similarly, activities within a sequence of a
business process are also dependent on the preceding and succeeding activities
which form the context. We can employ the idea of word embeddings and map
activities to a vector space such that activities in similar regions are related to
each other according to their function in the underlying process. Doc2vec serves
as a representation of a collection of words, namely a document. Analogous to
the Word2vec model, in Doc2vec a word is a document and we want to predict
the surrounding documents. The structure of a trace from an event log is of
similar form when considering activity names as words in a trace sequence. The
resulting embedding space is a representation where activities and traces, given
enough sample traces, are projected according to their role in the overall process
model.

The embedding on the control-flow level is constructed by using the activity
name as a single word. The set of different activity names forms the vocabu-
lary of the embedding, and a Doc2vec representation is constructed by treating
a trace as a document. The control-flow level (Fig. 1 without event and case
attributes) has been introduced as Trace2vec [4]. One drawback of this app-
roach is the focus on the control-flow. Therefore, we introduce Case2vec, which
incorporates the different kinds of attributes by concatenating them with the
corresponding activity name. The key idea is to incorporate attributes in addi-
tion to activity names to enlarge the vocabulary and induce a better separation
of cases. If attributes are taken into account, the concatenation of the activity
and its respective attributes becomes an additional word and, therefore, includes
the process context.

Figure 1 shows the architecture with the attribute extension, where the words
of the vocabulary are constructed by concatenating Activity, Resource, and
Vendor. We also evaluate the approach either using event or case attributes.
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4 Experimental Evaluation

We implemented1 the described representation learning techniques using gensim,
scikit-learn and fastcluster in Python to evaluate their performance. We use two
Business Process Intelligence Challenge (BPIC) event logs, an amended version
of them, and a fully synthetic paper writing process to evaluate on the follow-
ing objectives: Trace clustering, event abstraction, and interpretability through
vector arithmetic operations in the vector space.

In the following, we describe the event logs, the experimental setup and report
the results.

4.1 Datasets

We use real-life and artificial event logs to evaluate the different objectives.

Real-Life Event Logs. We use the BPIC15 [5] and BPIC19 [6] event logs to
compare the applicability of the different approaches. We select a case attribute
for both event logs that can be considered as the ground truth label for clustering.
Although we do not know in advance if this process provides features that will
lead to good clustering results with this label, we are not necessarily interested
in the best clustering result, but rather how incorporating different attributes
can influence the clustering performance.

For BPIC15, event logs are already split into five different municipalities. In
BPIC19, the case attribute Item Type is used as the cluster label without the
Standard cases to obtain evenly distributed clusters.

During the experiments for event abstraction we amended the real-life event
logs with noise or additional attributes. For the event abstraction task, we
amended activity names with random numbers in a certain amount of traces
to show that the method is robust to small changes in activity names.

Artificial Event Log: Paper Writing Process. The artificial example event
log is based on a synthetically generated process depicted in Fig. 2. It describes
the main steps in a scientific paper writing process from identifying a problem to
the submission of the paper. The activities are dependent on each other according
to their sequential order. This event log is more comprehensible for interpreting
the results of the vector arithmetic experiment. For the experiments we sampled
5, 000 traces of this process according to [9].

4.2 Real-Life Event Logs: Trace Clustering

In the first experiment, we use the case representations for clustering cases into
their classes to show applicability for process context separation.

1 Source code publicly available at: https://github.com/alexsee/case2vec.

https://github.com/alexsee/case2vec
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Fig. 2. Overview of the paper writing process [9].

Experimental Setup. Each event log is used individually to train the network
according to the description in Sect. 3. For training, activities and attributes are
used and none of the sequences are trimmed. Afterwards, we obtain the internal
representation of each case and use the feature vectors as input for clustering.

Taking into account that process data in comparison to natural language
has shorter sentence length and substantially smaller vocabulary, we employ
a hyperparameter strategy to overfit the dataset for the clustering task. This
is done using the ground truth label as an attribute with the goal to reach a
Normalized Mutual Information (NMI) measure of 1.0 to ensure that the trained
vector space has the capacity to model the underlying processes. This step is
important before running the actual experiments to exclude weak results because
of an impaired modeling capability of the underlying neural network. After a
set of parameters is found that can overfit the dataset, the same optimization
strategy can be employed during the actual experiments to maximize the NMI
without the ground truth label.

In our parameter optimization strategy, we first optimize the vector size.
We vary the vector size of the hidden and the embedding layer (2, 3, 4, 8,
16, 32, 64, 128, 256), and the number of epochs (10, 25, 50). Next, we optimize
the window size of the embedding which determines how many activities before
and after the current activity are considered. A value 5 or 7 seems optimal,
and similar to the vector size, larger values do not improve the result and only
run the risk of overfitting. Training epochs are varied between 10 and 50. The
other parameters were standard parameters according to [4]. We trained the
embedding with sg = 0 for the CBOW model, a learning rate set constant with
lr = 0.025 for both Trace2vec and Case2vec and the decay factor alpha to 0.002.
The number of inference epochs is set to 50. For clustering we opted to use
hierarchical clustering. As a distance metric we use cosine distance to avoid a
bias when dealing with traces of different length.

As an evaluation metric, we measure the NMI. We analyze the results using
the non-parametric Friedman test. The Bonferroni corrected pairwise Wilcoxon
signed-rank test is used for post-hoc analysis. We further report Kendall’s W
effect size.
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Table 1. Best clustering performance grouped by approach, configuration, and event
log.

Log Approach Vector size Epochs NMI

BPIC15 Trace2vec (original) 64 40 0.080

Trace2vec (optimized) 4 50 0.132

Case2vec (org:resource) 8 25 0.980

Case2vec (Case Type) 3 25 0.010

Case2vec (org:resource + Case Type) 8 50 0.983

Case2vec (Responsible Actor) 128 25 0.398

Case2vec (org:resource + Responsible Actor) 4 50 0.424

BPIC19 Trace2vec 32 10 0.560

Case2vec (org:resource) 128 50 0.657

Case2vec (org:resource + Document Type) 16 50 0.566

Case2vec (Document Type) 128 25 0.591

Case2vec (org:resource + Item Category) 16 25 0.626

Case2vec (Item Category) 256 50 0.805

Case2vec (org:resource + Vendor) 128 25 0.330

Case2vec (Vendor) 2 50 0.296

Results. As a first step, we recreated the results by De Koninck et al. using the
BPIC15 event log. As depicted in Table 1, Trace2vec reaches an NMI of 0.080 and
increases to 0.132 after hyperparameter optimization. Using Case2vec with the
case attribute Responsible Actor leads to a significant performance increase
up to 0.398. The event attribute org:resource, which refers to the executing
user, shows a performance of 0.980. Combining org:resource with one of the
case attributes Case Type or Responsible Actor decreased the performance.

For the BPIC19 event log, Trace2vec reaches a performance up to 0.560.
The case attribute Item Category reached the highest results with 0.805. How-
ever, using the Vendor results in a lower NMI than the control-flow only. Also,
combining attributes also does not guarantee better results. Used separately,
org:resource results in an NMI of 0.657 and Document Type in an NMI of
0.591. Combining the two leads to an NMI of 0.566, which results in a lower
NMI than used separately.

Detailed results regarding the vector size are depicted in Fig. 3. The anal-
ysis of the results confirmed significant differences (χ2(2) = 108, p < .001,
W = 1) between the approaches with a large effect. Post-hoc tests confirmed
differences (p < .001) between all approaches with Case2vec performing better
than Trace2vec. Incorporating org:resource lead to a significant better per-
formance (p < .001) for BPIC15. For BPIC19, we discovered consistent results
across the different parameter configurations, still there are significant differ-
ences (χ2(2) = 24.111, p < .001, W = .223) between the approaches. Similar
to BPIC15, post-hoc tests confirm significant (p < .001) differences between all
approaches.
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Fig. 3. Clustering results grouped by vector size, approach, configuration, and event
log with 50 epochs.

4.3 Amended Real-Life Event Logs: Event Abstraction

The goal of event abstraction is to identify similar traces although activity
names are slightly different. Eventually, these activity names can be adjusted
to clean the event log. An example would be the activity name PR created and
Create PR, which describes the same action with just a different name. The idea
is to identify activities with similar function within the process so that a vec-
tor representation will allocate both activities close together in the vector space
despite their different names.

The level of distorted activity names ranges from 0%, which is the normal
case, up to 50%. The number of variations indicates the number of noise which
is added to the activity name, e.g., letters or numerals. For example, if there
are 2 variations and a 20% distortion level, the same random number is added
to 20% of the traces, and the remaining 80% describe the unmodified variation.
In case of 6 variations, besides the undistorted traces, there are traces distorted
with 5 different random numbers to further increase uncertainty. Figure 4 shows
results for different levels for different variations of the activity names. Case2vec
with event attribute shows consistent results with deviations of ≤0.1 in NMI for
distortion levels from 0% to 40%. A larger deviation of ∼0.1 can only be seen
with Trace2vec for 20% distortion.
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Fig. 4. Overview of the results of the event abstraction task.

Table 2. More paper process interpretability tasks

Add Subtract Top result

Experiment, Develop Method, Submit Final Decision Conduct Study

Conclude, Review, Submit Final Decision Develop Method

Develop Method, Submit Final Decision Conclude

Final Decision Submit Review

Experiment, Conclude Submit Develop Method

4.4 Synthetic Paper Process: Vector Arithmetic Interpretability

Since representation vectors are spanned within a vector space, arithmetic oper-
ations can be performed between vectors. The famous king - man + woman =
queen example from Word2vec showed that representations can contain impor-
tant semantic relationships. In this experiment, we investigate if vector arith-
metic operations can also be used with process data. For testing the interpretabil-
ity task, we have to come up with a certain scenario which allows a semantic
interpretation. We use the paper writing process (see Fig. 2) because it is not
pseudonymized and the activities can be read and understood by an analyst.

The first scenario is that the experiment was done and the paper was sub-
mitted, but the final decision has not taken place, because something is still
missing that fulfills the criteria for an accepted paper. A possible composition
would be to add the experiment and submission but subtract the final decision.
When performing Experiment + Submit − Final Decision we would expect
that something between Experiment and Submit is missing so that the Final
Decision is still pending. The result of this computation returns Evaluate as
the top result. The second top result is Conduct Study and the third top result
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is Review. Table 2 shows more example interpretability tasks. The result column
shows the top result.

5 Discussion

In this section, we elaborate on the results from the experiment section and
follow the order presented there.

5.1 Trace Clustering

BPIC15. Our experiments showed that hyperparameter optimization increases
the performance of the original approach, but did not lead to useful results.
However, it is not known if the separation by municipality solely based on the
control-flow is possible. The process of a building permit application may be pre-
sumably highly standardized and, therefore, not a useful criterion for separating
by municipality.

The results of our experiments show that the user of an activity is an attribute
that is able to separate the cases into the five municipalities. This may be an
obvious observation because persons may only work for a specific municipality.
However, the event log also contains several persons that work across multiple
municipalities. Case2vec, which includes the control-flow and the attributes, is
able to find case representations for clustering that discriminate between the
municipalities.

BPIC19. For the BPIC19 experiments, we found that Trace2vec performed
significantly better compared to the BPIC15 event log. The best result was
achieved by incorporating the Item Category case attribute, which seems to be
strongly related to the Item Type. Interestingly, not all attributes improve the
control-flow performance. For instance, the case attribute Vendor decreased the
performance down to 0.290. This could be explained by the fact that a vendor is
not a good separating attribute when categorizing according to an item type a
company purchases. This would be the case if the company acquires most of its
items from the same vendor regardless of the category of the item. Hence, even
if the control-flow is able to separate by item type to some extent, an attribute,
which is identical for most items, like a vendor, can obfuscate the results. This
means that we cannot arbitrarily add more attributes for better results.

Case2vec seems to be sensitive to the selection of the attributes. Even though
we showed that those methods provide good results after hyperparameter tun-
ing, applying them to real-life event logs can be difficult because the quality of
the result can usually not be determined since the ground truth is unknown.
Attributes that contain random values or do not contribute to the desired clus-
tering result lead to a significant drop in performance. However, when selecting
appropriate attributes, Case2vec can outperform Trace2vec significantly. Still,
finding good attributes can be difficult without prior knowledge.
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5.2 Event Abstraction

For event abstraction, we ran several experiments with different amounts of
traces including random numbers. We also changed the amount of different ran-
dom numbers. Every attribute including a different random number will increase
the vocabulary size. Still, Case2vec was able to identify and group traces accord-
ing to their function despite them being amended. An even more interesting
application than finding functionally similar traces with different names would
be finding functionally similar traces with different performance metrics like cost
or time. An analyst could study why these traces are similar in their role but
differ in cost or time.

5.3 Interpretability Task

The example computation Experiment + Submit − Final Decision returns
Evaluate as the top result and Conduct Study as the second top result. Both
are sensible choices when we assume that Evaluate has already taken place
and both are performed before Submit. The third top result is Review, which
takes place directly after Submit and also shows a sensible reason assuming
Evaluate and Conduct Study have been taken place and therefore cannot be
the reason the submission is still blocked. Further results shown in Table 2 can
be interpreted with similar reasoning.

However, in real-life event logs the interpretation of activities is not as clear
because often they do not have interpretable names and even if, these names do
not necessarily relate to a role in the process its name might suggest. Addition-
ally, the developers of the Word2vec framework remark that vector arithmetic
is not guaranteed to always produce sensible results. It is still interesting to see
that on a small and well-defined event log the vector representation can deliver
these results.

6 Conclusion

In this paper, we presented Case2vec, a representation learning technique based
on a vector space model. It is trained using a neural network in an unsupervised
fashion by using the sequence of activities including event attributes. It does not
rely on any prior knowledge about the process and is able to learn robust and
compact representations automatically.

The results of the evaluation in a trace clustering task showed that Case2vec
is able to learn a good representation given useful control-flow or case attributes.
When selecting appropriate attributes Case2vec can outperform Trace2vec sig-
nificantly as shown in our real-life evaluation. The experiments on the additional
tasks like event abstraction or arithmetic operations in the constructed vector
space support that the learned representation is able to capture semantic charac-
teristics of the process. However, Trace2vec and Case2vec seem to be sensitive to
the selection of the attributes and finding good attributes can be difficult with-
out prior knowledge. Feature selection methods from machine learning may help
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to identify attributes with a high information value, helping analysts to select
useful attributes. Another limitation is that Case2vec only supports categorical
attributes. Numerical values could be incorporated by grouping them into bins
beforehand.

In conclusion, the internal representation of Case2vec is highly useful for
trace clustering, finding functionally similar traces or executing vector space
arithmetic operations for interpretability tasks.
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Abstract. Conformance checking is concerned with the task of assessing
the quality of process models describing actual behavior captured in an
event log across different dimensions. In this paper, a novel approach
for obtaining the degree of recall and precision between a process model
and event log is introduced. The approach relies on the generation of a
so-called “antilog”, randomly constructed from the activity vocabulary,
on one hand, and a simulated “model log”, which is played-out from the
given model. In the case of recall the antilog and model log are used
to train a recurrent neural network classifier. This network allows for
calculating the probability of a trace being part of the model log or the
antilog. If thereupon the event log is fed to the neural network, a value
for recall can be obtained. In the case of precision the neural network is
trained using a given event log and the antilog, and the model log is fed
to it afterwards. We show that this new method can be used to measure
global recall and precision correctly in some common examples.

Keywords: Process mining · Conformance checking · Machine
learning · Neural networks · RNN

1 Introduction

Conformance checking covers different process mining techniques to compare
event logs with process models. The latter can either be normative or an auto-
matically discovered model. Conformance checking techniques can include both
global conformance analysis, typically represented in the form of metrics, as
well as local diagnostics, i.e. pinpointing conformance problems at a more fine-
granular level, either in the log or in the model. Global conformance metrics
typically measure conformance across one of the following quality dimensions:
recall (or fitness), precision, generalisation and simplicity.

In this work, we propose a novel, fully data driven technique that can be used
to measure recall and precision between process models and event logs and thus
works at a global level, although it also has potential to provide insights into
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local conformance diagnostics in future work. For now, the technique relies on
the generation of a model log and comparing this with the given event log. This
comparison is carried out by first generating a so-called “antilog” of either one
of these two logs (the given event log or the model log). The antilog represents
behavior not present in the log and could be generated in multiple ways. In this
work, we investigate the potential of using the simplest of strategies to produce
such an antilog, i.e. traces consisting of events representing activity executions
randomly selected from the activity vocabulary. Once we have such an antilog,
a recurrent neural network is trained to discriminate whether process instances
belong to the (model or event) log or the antilog. Using this network we can
obtain scores for the instances of the other (model or event) log. These scores
represent how well an instance is described by the behavior in the log used for
training.

Our technique has several compelling advantages. First of all, it proposes an
new alternative to the common alignment or replay based algorithms, by utilizing
a recurrent neural network classifier (RNN) model. Second, the RNN models are
intrinsically probabilistic, thus giving a fine-grained analysis of model-log con-
formance. Furthermore, they are able to automatically detect temporal relations
in sequences, making them a fitting tool to assess process instances. Moreover,
by increasing the sample size of the antilog, we can investigate convergence and
stability of metrics. Third, while being a black-box model, the RNN model could
be complemented with visualizations that can pinpoint conformance problems
at a local level, indicating at which timestep (activity) the prediction changes
to antilog. Fourth, our technique allows for incremental updating of the model.
Once the RNN is trained, conformance analysis can happen very fast, e.g. when
checking the precision of different models. Fifth, despite the fact that we rely on
model simulation to obtain a representation of the model behaviour, our tech-
nique is intrinsically more model-agnostic than other techniques which assume a
certain model representation, and can be applied on any model that defines exe-
cution semantics. Finally, our technique links very well with predictive process
monitoring techniques and has a lot of potential to extend conformance analy-
sis towards other dimensions than control-flow, i.e. also including the resource
and data dimensions. The use of RNNs in process mining is not new and has
been applied in several areas such as predictive process monitoring [11,22]. How-
ever, the application of RNNs to conformance checking has not been investigated
before.

The remainder of our paper is structured as follows: first the technique and
its different components are introduced in Sect. 2. In Sect. 3 a set of initial exper-
iments are detailed, which show our approach’s potential for global conformance
analysis. The paper is concluded by a section discussing previous related work
(Sect. 4) and conclusions and directions for future work in Sect. 5.
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2 RNN-Based Conformance Checking

2.1 Overview

Figure 1 presents the key idea behind our proposed technique. RNN based con-
formance checking relies on first “playing-out” the process model to obtain a
model log. From this point onward the approaches to obtain either precision or
recall differ. If we want to calculate recall, we take the model log and generate its
model antilog. Again, we need to generate the antilog to capture non-conforming
behaviour (not present in the model), in order to train the RNN. A recurrent
neural network classifier is then trained to discriminate whether a certain process
instance comes from the model log or its antilog. In practice this discriminator
uses a sequence of activities as input, and outputs the probability of the instance
belonging to either antilog or log (a value between 0 and 1). If we now use a
new process instance as input in this network, we obtain a score on how well the
model log (and therefore the model) describes it. Using the event log as input
grants us an opportunity to obtain a global recall score. We can either use the
average predicted value over all instances or we can use the fraction of instances
with a score higher than a certain threshold (e.g. 0.5).

When precision of the process model is of interest, the technique starts with
the event log and trains an RNN-classifier by combining it with its event antilog.
By then training the RNN-classifier in a similar fashion and letting it classify
the traces in the model log, we can obtain precision scores for every trace and
thus for the entire model. Because the method as a whole provides labels for the
RNN to train with automatically, it can be regarded as “self-supervising”.

Fig. 1. Overview of the technique.

2.2 Model Log Generation

For the time being, the method relies on capturing the model behavior by means
of a generated model log. In this work, we opted to “play-out” the model stochas-
tically. This means that not necessarily all possible execution sequences allowed
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by the model are captured by the model log. However by making the model log
sizeable enough, this problem can be partially solved. Only in extreme cases (like
e.g. the flower model [9]), where the model entails a very large (infinite) set of
potential process variants, this may lead to lower recall values than imposed by
ground truth. However, we argue that this should not be seen as a major down-
side of our technique because even for models with a very large behavioural size
(thus allowing a large number of variants), we can continually increase the size of
the model log by simulating more cases. Moreover, because of the probabilistic
nature of the approach, it will be possible to assess stability and convergence of
recall and precision scores when increasing the size of the model log. In addi-
tion, the technique itself is fairly robust to infinite behaviour due to loops, given
that the RNN discriminator in itself has sufficient generalization power to deal
with such constructs. One advantage of using a model log is that the method is
model agnostic and can be applied on any model that defines play-out execution
semantics. For the time being, we have chosen to use the play-out functionality
of the Python Process Mining library PM4PY [4].

2.3 Antilog Generation

Multiple methods to obtain the antilog were considered before settling on the
intuitive approach proposed here. That is, experiments demonstrated that a
strategy as straightforward as random generation produced satisfactory results,
which indeed is an appealing proposition towards end-users. More specifically,
we generate process instances with a sequence length uniformly selected between
the minimal and maximal sequence length found in the log it is based on. Each
activity is randomly selected from the activity vocabulary present in both event
log and model log. This choice of vocabulary is not set in stone, as one could
also opt to use only the vocabulary of the log in question. Therefore the model
antilog and the event log antilog are likely to be very similar, only the array
of different potential sizes of the instances might be different. Finally, a check
is performed whether the newly generated antilog instance does not correspond
to a certain instance variant from the log it is based on. In this way another
possible difference between the model antilog and the event log antilog is created.
However if the event log or simulated model log is large enough (i.e. has enough
instances of each possible variant), this check is not strictly necessary and can
be ignored. After all, the classifier will usually have significantly more examples
of this particular instance with the correct (real) label than with the incorrect
(antilog) label in its training set.

Observe that, despite the fact that in the current configuration the two
antilogs will typically not differ much, we decided to still make a distinction
between model antilog and event log antilog, given that we investigated some
alternative antilog generation methods, which might lead to more significant dif-
ferences between the two types of antilog. For instance, we considered a strategy
that involved the addition of noise to the log. More sophisticated antilog gener-
ation strategies, e.g. relying on artificial negative event generation or generating
the model antilog directly from the model also seem worthwhile. Nonetheless,
given both the satisfactory results detailed below, as well as the fact that the
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random model log generation and random antilog generation provide the tech-
nique with a clear probabilistic nature, we argue that this is a proper choice. The
antilog size was taken to be equal to the log it is based on. This was chosen in
order to not introduce class imbalance in the training set of the classifier. If the
training set would be wildly imbalanced, the likelihood of the classifier getting
stuck in a local minimum whilst training would increase, with the end result of
simply predicting the majority label with a near-certain probability, ultimately
resulting in recall/precision scores of either 0 or 1.

2.4 Recurrent Neural Network Classifier

Recurrent neural networks (RNNs) are a type of artificial neural network specif-
ically designed to handle sequential data. RNNs can be seen as a combination of
multiple feedforward neural networks (one for each time step in the sequence).
The hidden layers (recurrent layers) passing on messages, either one directional
forward or bi-directional back and forth. Due to the vanishing/exploding gradient
problem, simple recurrent neural networks do not handle long term dependencies
well. Multiple solutions for this have been proposed, the most popular being Long
Short-term Memory (LSTM) [15] and Gated Recurrent Units (GRU) [5]. Using
such networks provides several advantages when there is a reason to incorporate
these long term dependencies. However in this particular setting, we noticed
that (non-fitting) switching of two subsequent activities was not being discrimi-
nated as nonconforming by the network when using an LSTM, which might be a
problem in a conformance checking context. For example, when “sign contract”
occurs before “check contract”, this did not lead to a large change in predictions
by the network, but could still indicate a problematic conformance error. There-
fore we opted to use a bi-directional simple recurrent layer. The full architecture
can be found in Fig. 2.

Fig. 2. Overview of the Recurrent Neural Network discriminator architecture.

The input is a process instance, i.e. a sequence of activities. These activ-
ities are presented one by one to the network, in an integer encoded fashion.
In a first hidden layer this integer vector is converted into an embedding vec-
tor. An embedding is a vector representation, trained to be meaningful in the
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sense of constructing a lower-dimensional vector which retains as much of the
original topology of the input space as possible. Embeddings can be trained in
self-supervised fashion on a big corpus (e.g. word2vec [18]) or in a supervised
fashion, added as an extra layer, as done here. The one-hot encoded vectors are
multiplied by a weight matrix with dimensions dimension embedding × activity
vocabulary size. This weight matrix thus contains the embeddings of the different
activities in each column and is trained while training the entire network. You
could also extract these embeddings for other purposes afterwards. Or use pre-
trained embeddings, trained in a word2vec like fashion, as done by [7], albeit in
different contexts. The activity embeddings are fed to the bi-directional simple
RNN layer. The output of this layer is then send through a dense layer which
predicts the label of the sequence. This output is a number between 0 and 1
and can be interpreted as a probability. This label is taken from the output of
the last time step in the sequence (the final activity), but in theory the label
could be predicted at each time step. This could provide extra insights into at
which specific activity the nonconforming behavior takes place and could pro-
vide interesting visualizations. For now, however, the focus lies on predicting
one overall label, i.e. whether a trace stems from a log or its antilog. In this
research setting, the neural network implementation was executed by means of
the Python library Keras1 and sequences were padded to the maximal length,
such that all eventual input sequences had the same size. The dimension of the
embedding layer was set to 4 and the dimension of the recurrent layer was set
to 8. The RNN uses a sigmoid activation function and was trained to optimize
the binary cross entropy loss using RmsProp [24] for 40 epochs with a minibatch
size of 64. In order to counteract overfitting a dropout of 0.5 was added between
the recurrent layer and the dense output layer.

3 Experimental Evaluation

In this section the newly introduced technique will be tested2. In this experiment,
we focus on global recall and precision calculation. Hereto, we use the event log
in Table 1 together with the models 1–10 in Fig. 3, obtained from van Dongen
et al. [9]. This set of models was supplemented with model 11, a model with low
recall and high precision. We also use a model discovered from the event log by
the Alpha miner [25] and 3 models discovered by the inductive miner [17], with
the noise parameter set to 0, 0.5 and 1 respectively. These models can also be
found in Fig. 3. The discovery algorithms were used as implemented in the ProM
framework [10].

For each of the models we calculate the global fitness and precision, both
by averaging the probability values as well as by counting the fraction of
instances with a probability above the 0.5 threshold. This was done using the
1 https://keras.io.
2 The implementation of the technique, tests and the synthetic data used can be

found on https://github.com/jaripeeperkorn/Supervised-Conformance-Checking-
using-Recurrent-Neural-Network-Classifiers.

https://keras.io
https://github.com/jaripeeperkorn/Supervised-Conformance-Checking-using-Recurrent-Neural-Network-Classifiers
https://github.com/jaripeeperkorn/Supervised-Conformance-Checking-using-Recurrent-Neural-Network-Classifiers
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Table 1. The test log used for the experimental setup [9].

Instance #

〈A,B,D,E, I〉 1207

〈A,C,D,G,H, F, I〉 145

〈A,C,G,D,H, F, I〉 56

〈A,C,H,D, F, I〉 23

〈A,C,D,H, F, I〉 28

setting described above. We each time generated a model log with 1500 pro-
cess instances, which is not sufficient to capture all possible behavior in some
of the extreme models (e.g. the flower model). In most cases however, this was
more than sufficient. The technique was performed 10 times for each model,
and the median is taken to be the eventual value as well as the standard error
σ/

√
10. These values are compered with different methods from literature: align-

ment based recall and precision [1], behavioral recall [13] and precision [27] and
Markovian recall and precision with k = 3 [3]. We used the implementations in
CoBeFra [26] for the alignment and behavioral based metrics. The results can
be found in Table 2.

Table 2. Resulting recall and precision values.

Model Recall Precision

Prob. Count [1] [13] [3] Prob. Count [1] [27] [3]

1 1.00 ± 0.00 1.00 ± 0.00 1.00 1.00 1.00 1.00 ± 0.04 1.00 ± 0.03 0.98 1.00 0.88

2 0.83 ± 0.00 0.83 ± 0.00 0.92 0.81 0.23 1.00 ± 0.00 1.00 ± 0.00 1.00 0.89 1.00

3 0.79 ± 0.01 1.00 ± 0.00 1.00 1.00 1.00 0.00 ± 0.00 0.00 ± 0.00 0.14 0.12 0.00

4 1.00 ± 0.00 1.00 ± 0.00 1.00 0.99 1.00 1.00 ± 0.01 1.00 ± 0.00 1.00 0.94 1.00

5 1.00 ± 0.00 1.00 ± 0.05 1.00 1.00 1.00 0.91 ± 0.02 0.89 ± 0.02 0.95 0.95 0.56

6 1.00 ± 0.00 1.00 ± 0.00 1.00 1.00 1.00 0.77 ± 0.01 0.77 ± 0.02 0.95 0.87 0.18

7 1.00 ± 0.00 1.00 ± 0.00 1.00 1.00 1.00 0.58 ± 0.04 0.60 ± 0.06 0.80 0.72 0.35

8 0.52 ± 0.02 0.52 ± 0.14 0.74 1.00 1.00 0.00 ± 0.00 0.00 ± 0.00 0.34 0.16 0.01

9 1.00 ± 0.00 1.00 ± 0.00 1.00 1.00 — 0.50 ± 0.01 0.50 ± 0.01 0.84 0.60 —

10 0.43 ± 0.11 0.45 ± 0.15 0.62 0.59 0.09 0.00 ± 0.00 0.00 ± 0.00 0.89 0.19 0.06

11 0.15 ± 0.01 0.17 ± 0.02 0.62 0.35 0.64 1.00 ± 0.01 1.00 ± 0.00 1.00 0.36 1.00

Alpha 0.96 ± 0.00 0.97 ± 0.00 1.00 0.99 0.77 0.73 ± 0.01 0.72 ± 0.01 0.96 0.92 0.38

Ind. 0 1.00 ± 0.00 1.00 ± 0.00 1.00 1.00 1.00 0.86 ± 0.04 0.89 ± 0.05 0.72 0.59 0.42

Ind. 0.5 1.00 ± 0.00 1.00 ± 0.00 1.00 0.99 0.77 0.84 ± 0.03 0.86 ± 0.04 0.79 0.69 0.44

Ind. 1 0.18 ± 0.11 0.17 ± 0.12 0.86 0.84 0.68 0.82 ± 0.06 0.81 ± 0.07 0.87 0.64 0.48

Our new technique approximately agrees with existing metrics from the lit-
erature for most of the models. The recall values obtained for model 2 can be
explained by looking at the fraction of instances in the event log correspond-
ing to the most frequent trace 1207/1459 ≈ 0.83. Similarly, for model 11, the
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Model 1: good recall and good pre-
cision [9].

Model 2: single most frequent
trace [9]. Model

3: flower
model [9].

Model 4: all traces in paral-
lel [9]. Model 5: G and H in paral-

lel [9].

Model 6: G and H in self-
loops [9].

Model 7: D in a self-loop [9].
Model 8:
all tran-
sitions in
parallel [9].

Model 9: C and F are in a loop
and need to be executed the same
amount to reach the final mark-
ing [9].

Model 10:
Round-robin
model [9].

Model 11: 3 least common traces
in parallel.

Model alpha: discovered by alpha
miner [25] using the log in Table 1.

Model Ind. 0: discovered by
inductive miner with noise
set to 0 [17] using the log in
Table 1.

Model Ind. 0.5: discovered
by inductive miner with
noise set to 0.5 [17] using
the log in Table 1.

Model Ind. 1: discovered by
inductive miner with noise
set to 1 [17] using the log in
Table 1.

Fig. 3. Models used for the experimental setup.

fraction of the least frequent traces in the event log (56 + 23 + 28)/1459 ≈ 0.07
can be obtained. The recall score provided by the RNN is slightly higher, but
not as high as the scores provided by alignment or Markovian based recall. For
both model 2 and model 11 the precision is 1, as it should be. Noticeable differ-
ences in recall and/or precision appear in the special cases, i.e. model 3 (flower),
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model 8 (all parallel) and model 10 (round-robin). Whereas the extremely low
precision values can be seen as correct, the incorrect low recall values can be
attributed to an (incomplete) random model log generation. Due to the infinite
(for the flower model) or high number of possible traces that can be generated
by these models, the chance that not all or even few traces present in the event
log are not simulated is high. This leads to incorrectly low recall values. This
might be solvable by generating the model log in a different way (e.g. complete
log generation with a maximum on the number of times a particular marking
can be seen). However, for these overly general models, simply generating a big-
ger model log will not work, as the random antilog grows simultaneously (we
chose to keep them the same size). The chance for a flower model to generate
something close to the instances in the event log, is similar to the chance of the
random antilog to generate it. In a way, an extra punishment on the recall value
is given to overly general and imprecise models. It however also clear that each
of the other method from literature have different examples they cannot handle
properly. Another important difference in recall values can be seen in the model
discovered by the inductive miner with noise parameter set to 1. Our newly pro-
posed technique outputs a recall value significantly lower than the ones obtained
by the methods from the literature. When looking at the model, you can actually
see that it is not able to replay the most frequent instance from the event log
〈A,B,D,E, I〉, but is able to replay the other ones. The value obtained by our
technique corresponds approximately with the fraction of the replayable traces
in the event log (145 + 56 + 23 + 28)/1459 ≈ 0.17, while the other techniques
return values significantly higher. Apart from the extreme case in model 8, the
method using the average of the probabilities and the method using the counts
do not differ much.

We further investigated the convergence of the recall and precision values
with increasing model log size (and therefore with increasing model antilog size
as well). It was observed that convergence happens at a significantly higher num-
ber of instances than the amount of different variants the model can produce.
This indicates that not necessarily the model log generation, but rather the ran-
dom antilog generation requires enough examples in order to obtain a stable
result. Because the RNN outputs the probability of an instance belonging to
either the event log or the antilog, we can also show a probability distribution
over all instances. This might provide end-users with a valuable visualisation. We
also manually confirmed the method was able to pick up on small (unwanted)
change. There is off course a trade-off. If it is necessary that small changes (e.g.
switch “sign contract” before “check contract”) not yet seen, result in a noncon-
forming label, having a RNN which is trained to generalize its predictions maxi-
mally, might provide an issue in combination with the current antilog generation.
By reducing possible overfitting measures (e.g. dropout between layers) the shape
of the distribution becomes more bimodal with two peaks (at 0 and 1) and no
or little mass in between. On the other hand, if small changes are not a problem
and we are more interested in the distribution of the fitness values, it is neces-
sary to make sure the neural network is still generalizing enough. If you already
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know which specific behavior is certainly not desired, you can add this behavior
manually to the antilog. This means adding multiple (different) traces contain-
ing the unwanted behavior to the antilog. The time it takes to run the method
(precision or recall) with two event logs (and one antilog) of 1500 instances (size
20 activities, vocabulary size of 10) one time (including) training is around 9s,
as performed on an Intel(R) Core(TM) i7-9850h CPU @ 2.60 ghz. If the RNN is
already trained and you would only need to put through one log this reduces to
0.2 s.

4 Related Work

One of the earliest research on Conformance Checking can be found in Cook
et al. (1999) [6]. Multiple techniques for obtaining recall or precision have been
proposed ever since. One example of an early precision metric was introduced
by Greco et al. (2006) [14] which calculates a “set difference”, between a set of
traces representing the log’s behavior and one representing the model’s behav-
ior. Other noteworthy earlier contributions are proper completion, token based
sequence replay and the advanced behavioral appropriateness [20]. Behavioral
recall (using a percentage of correctly classified positive events) and behavioral
specificity (replaying the sequences and taking the percentage of correctly clas-
sified negative events) were introduced by Goedertier et al. (2009) [13] and was
later supplemented with a similar method using the amount of “false positives”
(behavior allowed by model, but labeled a negative event based on the log) [8]
and by the behavioral precision [27]. Another method using behavioral profile
based metrics, based on different constraints a process model can impose on a
log, was introduced by Weidlich et al. (2011) [28]. Another metric is ETC preci-
sion which uses log prefix automatons and the number of “escaping” edges [19].
This was later altered in projected conformance checking (PCC), better scaled
to real-life logs [16]. A lot of focus has been on the (average) alignment based
trace recall and precision approach introduced in [1], supplemented by the one
align precision and best align precision [2]. Van Dongen et al. (2016) proposed
the use of “anti-alignments” to obtain a model’s precision [9]. Recently promis-
ing work comparing Markovian abstractions of both event log and model has
been shown as a potential efficient alternative to alignments based methods [3].
In recent years different axioms were proposed as well, describing (un)wanted
behavior that conformance checking metrics should (not) adhere to [21].

The method introduced in this work draws some resemblance to Classifier-
Adjusted Density Estimation for Anomaly Detection and One-Class Classifica-
tion (or CADE) [12], which is an anomaly detection method that uses a clas-
sifier trained on discriminating between real data and synthetic data generated
uniformly over all features. RNN’s have earlier been used in predictive process
monitoring [11,22]. Recent work in predictive monitoring has also introduced
the use of Generative Adverserial Nets [23]: a self-supervising machine learn-
ing technique based on training a discriminator and a generator simultaneously,
which draws some similarities to the technique introduced here.
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5 Conclusion and Future Work

We have presented a new technique to obtain recall and precision of event logs
and process models. The technique was tested on a small example log and models
to show its potential for global conformance analysis. In future work, it should
be interesting to hold our new technique against the recently proposed confor-
mance checking axioms [21]. However, due to the intrinsic probabilistic nature
of the technique, doing this theoretically might be hard and require empirical
backing. Another interesting avenue would be to directly rely on the given pro-
cess model, omitting the model log generation step, although this would require
serious alterations to the technique. A less drastic improvement could be found
in a more sophisticated antilog generation, though the simplicity combined with
good results obtained by the current approach is nonetheless appealing. Another
method could e.g. use negative events [8,13,27] or other smart usage of differ-
ent data features. Next, it could be interesting to use the output at each time
step (see Fig. 2) for explanatory purposes. Since we could then inspect at which
activity exactly the model starts to classify the instance as being nonconform-
ing. Preliminary results show that such an approach is viable. Finally, since the
model could in theory be extended to include additional data attributes (e.g. the
resource or other perspectives), including this in future implementations might
provide us with additional advantages compared to competitive conformance
checking techniques.
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20. Muñoz-Gama, J., Carmona, J.: A fresh look at precision in process conformance.
In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 211–226.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15618-2 16

21. Syring, A.F., Tax, N., van der Aalst, W.M.P.: Evaluating conformance measures
in process mining using conformance propositions. In: Koutny, M., Pomello, L.,
Kristensen, L.M. (eds.) Transactions on Petri Nets and Other Models of Concur-
rency XIV. LNCS, vol. 11790, pp. 192–221. Springer, Heidelberg (2019). https://
doi.org/10.1007/978-3-662-60651-3 8

22. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process mon-
itoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017.
LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59536-8 30

https://doi.org/10.1007/978-3-319-98648-7_18
https://doi.org/10.1007/978-3-319-45348-4_3
https://doi.org/10.1007/11494744_25
https://doi.org/10.1137/1.9781611973440.67
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/s10270-016-0545-x
https://doi.org/10.1007/s10270-016-0545-x
https://doi.org/10.1007/978-3-319-07734-5_6
https://doi.org/10.1007/978-3-319-07734-5_6
https://doi.org/10.1007/978-3-642-15618-2_16
https://doi.org/10.1007/978-3-642-15618-2_16
https://doi.org/10.1007/978-3-662-60651-3_8
https://doi.org/10.1007/978-3-662-60651-3_8
https://doi.org/10.1007/978-3-319-59536-8_30
https://doi.org/10.1007/978-3-319-59536-8_30


Conformance Checking using RNN’s 187

23. Taymouri, F., Rosa, M.L., Erfani, S., Bozorgi, Z.D., Verenich, I.: Predictive busi-
ness process monitoring via generative adversarial nets: the case of next event
prediction. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020.
LNCS, vol. 12168, pp. 237–256. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-58666-9 14

24. Tieleman, T., Hinton, G.: Lecture 6.5–RmsProp: divide the gradient by a running
average of its recent magnitude. COURSERA Neural Netw. Mach. Learn. 4, 26–31
(2012)

25. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process
models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

26. vanden Broucke, S.K.L.M., De Weerdt, J., Vanthienen, J., Baesens, B.: A com-
prehensive benchmarking framework (CoBeFra) for conformance analysis between
procedural process models and event logs in ProM. In: 2013 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM), pp. 254–261 (2013)

27. vanden Broucke, S.K.L.M., De Weerdt, J., Vanthienen, J., Baesens, B.: Determin-
ing process model precision and generalization with weighted artificial negative
events. IEEE Trans. Knowl. Data Eng. 26(8), 1877–1889 (2014)

28. Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J., Weske, M.: Process compli-
ance analysis based on behavioural profiles. Inf. Syst. 36, 1009–1025 (2011)

https://doi.org/10.1007/978-3-030-58666-9_14
https://doi.org/10.1007/978-3-030-58666-9_14


1st International Workshop
on Streaming Analytics for Process

Mining (SA4PM’20)



1st International Workshop on Streaming
Analytics for Process Mining (SA4PM)

Streaming Process Mining is an emerging area in process mining that spans data
mining (e.g. stream data mining; mining time series; evolving graph mining), process
mining (e.g. process discovery; conformance checking; predictive analytics; efficient
mining of big log data; online feature selection; online outlier detection; concept drift
detection; online recommender systems for processes), scalable big data solutions for
process mining and the general scope of online event mining, in addition to many other
techniques that are all gaining interest and importance in industry and academia.

The SA4PM workshop aims at promoting the use and the development of new
techniques to support the analysis of streaming-based processes. We aim at bringing
together practitioners and researchers from different communities, e.g. Process Mining,
Stream Data Mining, Case Management, Business Process Management, Database
Systems and Information Systems who share an interest in online analysis and opti-
mization of business processes and process-aware information systems with time,
storage or complexity restrictions. The workshop aims at discussing the current state of
ongoing research and sharing practical experiences, exchanging ideas and setting up
future research directions.

The workshop started with an interesting invited talk by Albert Bifet on “Adaptive
Machine Learning for Data Streams” with an extensive overview on recent contribu-
tions in the data stream mining field and on existing open-source tools. The invited talk
also highlighted open issues in the field.

This 1st edition of the workshop attracted 8 international submissions. Each paper
was reviewed by at least three members of the Program Committee. From these sub-
missions, the top 4 were accepted as full papers for presentation at the workshop. The
workshop was held in an online format due to the COVID-19 pandemic. The papers
presented at the workshop provide a mix of novel research ideas and focus on online
anomaly detection, concept drift detection, trace ordering and performance mining.

Jonghyeon Ko and Marco Comuzzi focus on online anomaly detection on the trace-
level in event logs, in contrast to existing solutions that mainly addressed this problem
in the offline setting. The online setting is crucial in this task for discovering anomalies
in process execution as soon as they occur and, consequently, allowing early corrective
actions to be promptly taken. This paper describes a novel approach to event log
anomaly detection on event streams that uses statistical leverage. Leverage has been
used extensively in statistics to develop measures to identify outliers and it has been
adapted in this paper to the specific scenario of event stream data.

Next, Ludwig Zellner et al. address the problem of concept drift detection on
streaming data by aggregating a considerable number of outliers in the stream. After
considering various application of the proposed method, the authors concentrate on
non-conforming traces of a stream on which they compute a local outlier factor and
identify drifts as considerably changing outlier scores.

In a third contribution, Florian Richter et al. focus on online trace ordering by
proposing an anytime structure visualizer called OTOSO, which is a monitoring tool



based on OPTICS. The tool plots representations for density-based trace clusters in
process event streams and identifies temporal deviation clusters as a time-dependent
graph. The aim is to provide an on-demand overview of the temporal deviation
structure during the process execution. Additionally, the work offers insights about
temporally limited occurrences of trace clusters, which are usually difficult to detect
when using a global clustering approach.

Finally, Andrea Maldonado et al. address the performance mining task by incor-
porating time interval information. The paper proposes the performance skyline
approach to discover events that are crucial to the overall duration of real process
executions. The authors then contribute three techniques for statistical analysis of
performance skylines and process trace sets enabling more accurate process discovery,
conformance checking and process enhancement.

We hope that the reader will find this selection of papers useful to keep track of the
latest advances in the stream process mining area. We are looking forward to contin-
uing to present new advances in future editions of the SA4PM workshop.
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Online Anomaly Detection
Using Statistical Leverage for Streaming

Business Process Events

Jonghyeon Ko and Marco Comuzzi(B)

Department of Industrial Engineering, Ulsan National Institute of Science
and Technology (UNIST), Ulsan, Republic of Korea

{whd1gus2,mcomuzzi}@unist.ac.kr

Abstract. While several techniques for detecting trace-level anomalies
in event logs in offline settings have appeared recently in the litera-
ture, such techniques are currently lacking for online settings. Event
log anomaly detection in online settings can be crucial for discovering
anomalies in process execution as soon as they occur and, consequently,
allowing to promptly take early corrective actions. This paper describes
a novel approach to event log anomaly detection on event streams that
uses statistical leverage. Leverage has been used extensively in statis-
tics to develop measures to identify outliers and it has been adapted in
this paper to the specific scenario of event stream data. The proposed
approach has been evaluated on both artificial and real event streams.

Keywords: Process mining · Online anomaly detection · Event
streams · Information measure · Statistical leverage

1 Introduction

Information logged during the execution of business processes is available in so-
called event logs, which contain events belonging to different process instances
(or cases). Each event is described by multiple attributes, such as a timestamp
and a label capturing the activity in the process that was executed.

Event logs are prone to errors, which can stem from a variety of root
causes [1,2], such as system malfunctioning or sub-optimal resource behaviour.
For instance, sloppy human resources may forget to log the execution of specific
activities in a process, or a system reboot may assign a different case id to all the
new events recorded after rebooting. Errors in event log hamper the possibility
of extracting useful process insights from event log analysis, and should therefore
be fixed as early as possible [20].

To this end, the research field of event log anomaly detection (or event log
cleaning) has emerged recently, providing methods to detect anomalies at trace
level [1,2,9,10,13], i.e., concerning the order and occurrence of activities in a
process, and at event level [15,16,18], i.e., concerning the value of attributes

c© Springer Nature Switzerland AG 2021
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of events, using a variety of different approaches. Note that event log anomaly
detection is normally (process) model-agnostic, that is, it does not assume the
existence of a process model or clean traces from which a model can be extracted.
This aspect separates this research field from traditional process mining research
on compliance checking [14].

In the specific case of online settings, i.e., event streams, while research has
recently emerged in the field of online compliance checking, only the work by
Tavares et al. [19] addresses the issue of anomaly detection. In particular, the
authors propose a method to detect point anomalies specified by Principal Com-
ponent Analysis (PCA). These point anomalies, however, do not normally reflect
real-life anomaly patterns, such as inserting, skipping or switching events, com-
monly considered by event log anomaly detection in offline settings. Therefore,
we argue that there is a lot of potential for new research in this area.

More in general, event log anomaly detection in online settings can be crucial
for discovering anomalies in process execution as soon as they occur and, conse-
quently, allowing to promptly take early corrective actions. The online settings,
however, obviously introduce additional challenges to the design of an event log
anomaly detection method. In particular, owing to the finite memory assumption
of online settings [4–6,19,20], only a limited number of (recent) events are avail-
able at any given time to take a decision. This prevents to apply effectively some
of the approaches that have been proposed in the literature for event log anomaly
detection in offline settings. Probabilistic methods that detect anomalies after
having created an intermediate model of frequent process behaviour [1,10,13]
are hampered by the fact that only a limited number of events may be available
to create such models. Online settings also prevent the application of machine
learning reconstructive techniques for anomaly detection, e.g. [16,17]. These, in
fact, normally rely on deep learning models, which require a high number of data
points (complete process traces in this scenario) to be trained effectively. Also,
any update of these models may require a long training time.

In this paper we propose an information-theoretic approach to online event
log anomaly detection at trace level. Specifically, we devise an anomaly score
based on statistical leverage [11]. The leverage is a relative measure of the infor-
mation content of observations in a dataset that has been used extensively in
statistics to develop observation distance measures and outlier detection tech-
niques. Since leverage captures the information content of one observation in
respect of all others in a dataset, the anomaly score proposed in this paper can
always be calculated reliably based on the information available at any point in
time, resulting in an anomaly detection method that does not require extensive
amount of data to be executed effectively.

After having presented the related work (in Sect. 2), Sect. 3 presents a trace
anomaly score based on the notion of statistical leverage. Then, we discuss how
this score can be applied to anomaly detection of streams of events, addressing
issues such as the grace period, the finite memory assumption, and the identi-
fication of anomaly detection thresholds. The proposed method is evaluated (in
Sect. 4) on both artificial and real event logs injected with trace-level anomalies.
Conclusions finally are drawn in Sect. 5.
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2 Related Work

While there is only limited literature regarding online event log anomaly detec-
tion, a number of recent contributions have focused on online conformance check-
ing. To some extent, conformance checking can be seen as model-aware anomaly
detection, since process models, given or extracted from clean traces, can be
seen as signatures of positive behaviour to detect anomalies. As referred by [6],
there are currently two research lines in online conformance checking: the prefix-
alignment approach [20] and the model-based approach [4–6].

Conformance checking/alignment of streaming events tends to overestimate
the computation of optimal alignments. In order to avoid this issue, [20] pro-
vides the first incremental/online conformance checking technique that uses
prefix-alignment. Prefix-alignment [20] is characterised by high computational
complexity and prevents to define a warming up period. Alternatively, Online
Conformance Transition Systema (OCTS) [4,5] can partially check compliance
on regions of a process. This technique also suffers from high computational
complexity and prevents to consider the warm start scenario. In [6], the first
solution to achieve a warm start with streaming events has been proposed by
introducing weak order relations, that have reduced computational complexity.

Regarding event log anomaly detection, as mentioned in the Introduction,
Tavares et al. [19] have first applied the online clustering algorithm DenStream [7]
to detect anomalies on event streams. DenStream clusters cases into two groups,
normal and anomalous, using histogram-based frequency of activities contained
in each case. Since the histogram-based frequency ignores the sequence of events
in traces, DenStream detects point anomalies in event logs defined by Principal
Component Analysis (PCA) [21].

3 Research Framework

There are two different elements in the proposed framework: the anomaly score
and the anomaly detection method. The former (presented in Sect. 3.1) concerns
the definition of a trace anomaly score based on statistical leverage. The latter
(Sect. 3.2) concerns setting a threshold value above which a trace is considered
anomalous based on its anomaly score.

3.1 Anomaly Score

Statistical leverage [11] is a measure indicating how far away each observation
is scattered from other observations in a dataset. It has been used as a key
support measure for developing different observation distance metrics, such as
Cook’s distance, the Welsch-Kuh distance, and the Welsch’s distance.

Given a matrix X, with X ∈ R
J×I , of a dataset with J observations and I

numerical attributes (or variables), the leverage of the observations in X are the
diagonal elements of the projection matrix H = X(XT X)−1XT . Specifically, the
leverage of the j-th observation in X is the diagonal element hj,j ∈ H, which
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Case_ID Event_ID Ac vity_Name

CaseX

CaseY

CaseID EventID

CaseX
1 0 0 0
0 1 0 0
0 0 1 0

CaseY
0 1 0 0
0 0 0 1

CaseID

CaseX 1 0 0 0 0 1 0 0 0 0 1 0

CaseY 0 1 0 0 0 0 0 1 0 0 0 0

Step 1. One-hot encoding

Step 2. Concatenate grouped events & 0-padding

0-padding

Fig. 1. One-hot encoding and 0-padding

is comprised by definition between 0 and 1. The higher its leverage, the more
likely an observation to be an anomaly.

Our objective is to detect anomalies at the level of occurrence and order of
events in traces. Therefore, we can abstract an event log E as a set of J traces
{σj}j=1,...,J . Each trace is a sequence of events ei,j of variable length Nj , i.e.,
σj = {e1,j , . . . , eNj ,j}. Events are ordered in a trace by timestamp in ascending
order and are defined by the activity that they represent, which is one in a set
A = {a1 . . . , aK} of K possible activity labels.

In order to define a leverage-based anomaly measure of traces in an event
log, two pre-processing steps are necessary. The first one is an integer encoding
step. This is necessary because the attributes of a dataset X must be numerical
to calculate H, while the activity attribute in event logs is categorical. Second,
events in an event log must be aggregated at trace level, such that the resulting
matrix X has J rows, i.e., one for each trace. In conclusion, the projection matrix
H(E) can be calculated by considering an observation matrix X(E) obtained
from E applying the following pre-processing steps.

In the first pre-processing step (see Fig. 1), similarly to [16], we apply one-hot
encoding, that is, each event ei,j is encoded into a set K dummy attributes di,j,k

such that:

di,j,k =

{
1 if ei,j = ak

0 otherwise

Then, for trace-level aggregation, the one-hot encoded events are horizon-
tally concatenated for each trace. Since traces have different length, for the
traces shorter than the longest one(s) in E, i.e., with less events than Nmax =
maxσj∈E{Nj}, zero padding is applied. For example, given a case consisting of
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4 events and Nmax = 5, the fifth event of this case is zero padded, therefore,
d5,j,k = 0, ∀k. Based on this pre-processing, an event log E is encoded into
an observation matrix X(E) with J rows (traces) and I = Nmax × K columns
(attributes).

Using X(E), we can now define a first leverage-based anomaly score l̂(σj) by
extracting the diagonal elements of H(E) = X(E) · (X(E)T · X(E))−1 · X(E)T :

l̂(σj) = hj,j

a00 a01 a02 a03 a04 a05 a06 a07 a08 a09

0 0 0 1 0 0 0 0 0 0

a80 a81 a82 a83 a84 a85 a86 a87 a88 a89

0 0 0 0 0 0 0 0 0 0

7

5

4

3

1 111

2

case.01

case.02

case.03

case.04

case.05

case.06

case.07

case.08

case.09

case.10

case.11

case.12

case.13

case.14

case.15
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case.17
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case.19

case.20
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case.22

case.23

case.24

case.25

(a) Histogram for trace length (b) Preprocessed matrix of log

Fig. 2. Seesaw effect of zero-padding

This first anomaly score is likely to be biased by the zero-padded attributes
in the aggregation pre-processing step. Normally, these zero-padded attributes
should be treated as null values by any statistical method and therefore not
considered in the analysis. However, this is not the case when calculating l̂(σj).
The presence of 0-padded values, as shown in Fig. 2, creates a a seesaw effect
that increases the leverage of longer traces and decrease the one of shorter traces.
Shorter traces, in fact, are more likely to be considered similar to each other,
and therefore not anomalous, because they are encoded into a higher number of
zero-padded values.

In order to counter this issue, we introduce a weighting factor wj as a function
of the trace length to increase/decrease the leverage l̂(σj) of shorter/longer traces
σj . This weighting factor is calculated by first normalising the trace length Nj

in the range [0, 1]. This is done by applying the Z transformation to normalize
Nj to the average mean[Nj ], followed by the application of a sigmoid function.
The sigmoid-based normalisation is generally used to improve the fit accuracy
and decrease the computational complexity of the fitting model [12]:

sig(Zj) =
1

1 + e−Zj
, with Zj =

{Nj − mean[N ]}
stdev[N ]

(1)
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The weighting factor wj is then defined as:

wj =
[
1 − sig(Zj)

]c(Nmax) (2)

The power coefficient c(Nmax) is required to adjust the strength of the
weighting factor for different event logs. Intuitively, if all traces in a log have
similar length, then this adjustment factor should be low, approaching 1; if trace
length variance is very high, then the adjustment should be higher.

To define an appropriate value of the power coefficient c(Nmax), a relation
between Nmax and the anomaly detection performance bias should be first found.
However, this relation can only be estimated and not optimised because trace
length has no upper bound, which would lead to a non-finite state optimisation
problem. Therefore, we have estimated the value of c(Nmax) by fitting a non-
linear regression using 6 real-life event logs1 . To model a non-linear regression
function, we use the values of c(Nmax) that achieve the highest F1-score in
anomaly detection using the 6 different logs in offline settings, i.e., considering
all the traces in an event log at the same time in the observation matrix X.
Under significance level 0.01, the non-linear equation in Eq. 3 has been fitted
with two coefficient parameters a and b as in Table 1.

c(Nmax) =

{
−2.2822 + (Nmax)0.3422 if Nmax > 2.2822

0.3422

0 otherwise
(3)

Table 1. Result of fitted non-linear regression model: f(x) = a + xb

Parameter Estimate Standard Error t value p-value

a −2.2822 0.3533 −6.46 0.0030

b 0.3422 0.0191 17.96 0.0001

In the end, using the estimated power coefficient c(Nmax), we define the
weighted leverage-based anomaly score as:

l̂w(σl) = wj · l̂(σl). (4)

3.2 Online Anomaly Detection

After having defined an anomaly score, the proposed anomaly detection method
is complemented by the following four aspects: (i) grace period, (ii) finite memory
usage, (iii) update of leverage scores, and (iv) anomaly threshold setting. These
are described in detail next.

1 These event logs belong to the ones made available by the Business Process Intelli-
gence Challenge in 2012, 2013 and 2017.
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Grace Period. Similarly to other online anomaly detection methods in the lit-
erature [8,19], for practical reasons it makes sense to begin taking decision on
trace anomaly only after having received a sufficient number of events. For this
purpose, we introduce the parameter Grace Period (GP), which specifies the
minimum number of traces and events per trace that must be received before
trace anomaly decisions can begin to be taken. In other words, the GP prevents
to run the anomaly detection model at early stages, when a sufficient number of
events has not been received yet. In this paper, the GP parameter is defined as
the number of traces for which at least 2 events have been received. For exam-
ple, if GP = 100, the anomaly detection starts from the first event after having
received at least the first 2 events of 100 different traces.

Finite Memory Usage. Another condition to be satisfied by an anomaly detec-
tion method in online settings is the one of finite memory usage. In principle,
events may be infinitely received as time goes by. However, handling an infinite
number of events would require infinite memory, which is impossible in practical
settings [19,20]. Therefore, to calculate leverage using always a finite number of
events received from a stream, we introduce the parameter windows size (W),
defined as the number of recent cases that are considered to determine anomalies
when a new event is received. More formally, at a given time t, let us refer to Et

as the set of events received until t. Now, if the number of (possibly incomplete)
traces represented by events in Et is more than W , then the earliest traces are
removed from the set of traces considered to calculate the projection matrix H.
Specifically, events of the trace whose first event is the earliest in Et is first
removed and so on until the number of traces represented in Et is W.

Update of Leverage Scores. Each time a new event is received, the leverage of
the case to which this event belongs is updated (see Fig. 3). More in detail, let
us assume that an event ei,j is received at time t. Then, after having possibly
removed some cases represented by events in Et to maintain the finite memory
usage assumption, the leverage of the remaining traces l̂w(σj) is calculated. The
result obtained determines, based on the value of the considered anomaly detec-
tion threshold, whether the trace σj is considered anomalous after the arrival of
event ei,j , or not. This procedure is replicated each time a new event is received.

Anomaly Threshold Setting. The objective of anomaly detection is ultimately
to determine whether traces are anomalous or not. Therefore, the problem of
anomaly detection can be reduced to a binary classification problem. Based
on the anomaly score l̂w(σj), a decision should be made whether the trace
σj is anomalous or not. This is normally done by setting the value of an
anomaly detection threshold T for l̂w(σj), such that a trace is anomalous if
l̂w(σj) > T . In this work, we consider three constant thresholds and one
variable threshold. We consider the constant values Tc1 = 0.1, Tc2 = 0.15,
and Tc3 = 0.2. These values are based on our experience in experiments in
online and offline settings, where anomalous traces tend to have an anomaly
score l̂w(σj) greater than 0.1. As variable threshold, we consider the value
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Step 1. A new 300th event in event streams

Case.70

Step 2. Preprocess 
the event log of total 300 events

(one-hot encoding and zero padding)

Event_300
Case.70

Step 3. Calculate anomaly score

Anomaly score ( )
0.09 

0.19 

0.04 

0.02 

0.32 

0.01 

0.06 

0.08 

0.05 

0.21 

…

0.83

0.07 

0.16

Step 4. Allocate the anomaly score of case.70 
to corresponding event (Event_300)

Event_ID Ac vity Timestamp Anomaly score ( )
Event_1 A 2019/09/01 09:10 0.00 ( )

Event_2 A 2019/09/01 09:25 0.01 ( )

Event_3 O 2019/09/02 09:05 0.01 ( )
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Event_5 Y 2019/09/03 09:13 0.26 ( )
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… … … …
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Event_299 B 2020/08/10 14:44 0.19 ( )
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zero padding
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… … … …
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Fig. 3. Example of anomaly detection using a fixed anomaly threshold T = 0.1

Tv = meanσj⊆Et
[l̂w(σj)] + stdevσj⊆Et

(l̂w(σj)), which calculates the threshold
based on the mean and standard deviation of the leverage scores of the traces
considered in the observation matrix X. A similar principle to set the anomaly
detection threshold is used by [16] for the timestamp anomaly detection thresh-
old.

4 Evaluation

This section describes first the datasets that we used for evaluating the proposed
online anomaly detection framework. Then, we present the evaluation metrics
and experiment settings and, finally, we discuss the performance and computa-
tional cost of the proposed framework.

We consider two artificial logs used by [18] and one real-life log publicly
available. The artificial logs are generated by simulating 2 process models (Small
and Medium in [18]) using the PLG2 tool. Regarding the real log, we consider
the Helpdesk event log, which contains events logged by a ticketing management
system of the help desk of an Italian software company. These logs have been
chosen because they have been considered by previous work in anomaly detection
and they are also sufficiently small to control the running time of experiments.
Descriptive statistics of these logs are reported in Table 2.

Evaluating an unsupervised approach of anomaly detection like the one that
we propose requires event logs with labelled traces (normal v. anomalous),
which are generally unavailable in practice. Therefore, a common practice in this
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Table 2. Descriptive statistics of event logs (Log statistics are counted after injecting
anomalies)

Type Data Statistics Value

Artificial log Small - Number of cases 5,000

- Number of events 44,811

- Number of activities 20

- Average # of cases per day 5,000

- Average # of events per day 44,811

Medium - Number of cases 5,000

- Number of events 29,683

- Number of activities 32

- Average # of cases per day 5,000

- Average # of events per day 29,683

Real log Helpdesk - Number of cases 3,804

- Number of events 13,901

- Number of activities 9

- Average # of cases per day 10.94

- Average # of events per day 18.06

research field is to inject anomalies using different types of anomaly patterns in
event log and creating labels during the anomaly injection process [1–3,16,18].
We consider the 5 anomaly patterns Skip, Insert, Early, Late, and Rework as
defined in [18]: in Skip, a sequence of events is skipped in some cases; in Insert,
one or more events are generated in random positions within existing traces;
in Early/Late, timestamps of events are manipulated such that a sequence of
events is moved earlier/later in a trace; in Rework, a sequence of events is
repeated after its occurrence. Anomalies are randomly injected in an event log
until 10% of the traces in the log have become anomalous. As far as performance
measures are concerned, we consider the typical measures for classification prob-
lems obtained from the confusion matrix, i.e., precision, recall and F1-score. The
datasets used in this paper and the code to reproduce the experiments discussed
next are available at https://github.com/jonghyeonk/OnlineAnomalyDetection.

We set the GP to 1,000 cases and consider 3 values of window size W, i.e.,
W ∈ [1000, 2000, 3000]. A larger value of GP and W is likely to lead to better
and more stable performance, while also implying a higher computational cost.
The experiments are implemented in R on an Intel i7 Linux machine using a
single CPU and 5 GB memory limit.

Table 3 shows the performance of anomaly detection in event streams for
different anomaly detection threshold values and different values of W. Note
that the 4 columns Tc1 to Tv report average performance measures calculated
from the start of the streaming (after the GP condition has been reached). It
can be noticed that the three constant thresholds show on average better perfor-

https://github.com/jonghyeonk/OnlineAnomalyDetection
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Table 3. Performance of online anomaly detection (average from the start of the stream
and calculated only on first/last 100 events)

Data Window size Time cost
(average sec)

Metric Threshold

Tc1 Tc2 Tc3 Tv TF :100
v TL:100

v

Small 1,000 1.09 Precision 0.22 0.22 0.22 0.21 0.06 1.00

Recall 0.63 0.62 0.59 0.62 1.00 0.63

F1-score 0.33 0.32 0.32 0.31 0.11 0.77

2,000 1.07 Precision 0.26 0.25 0.25 0.25 0.06 1.00

Recall 0.61 0.60 0.57 0.61 1.00 0.63

F1-score 0.36 0.36 0.35 0.35 0.11 0.77

3,000 1.23 Precision 0.75 0.79 0.82 0.75 0.20 1.00

Recall 0.57 0.55 0.53 0.57 0.17 0.63

F1-score 0.65 0.65 0.64 0.65 0.18 0.77

Medium 1,000 1.42 Precision 0.16 0.17 0.17 0.15 0.50 1.00

Recall 0.72 0.71 0.71 0.73 0.29 0.50

F1-score 0.26 0.27 0.27 0.25 0.36 0.67

2,000 1.46 Precision 0.37 0.45 0.52 0.26 0.50 1.00

Recall 0.65 0.64 0.63 0.68 0.29 0.50

F1-score 0.47 0.53 0.57 0.38 0.36 0.67

3,000 2.06 Precision 0.28 0.30 0.31 0.25 0.50 1.00

Recall 0.67 0.67 0.66 0.67 0.29 0.50

F1-score 0.39 0.41 0.42 0.37 0.36 0.67

Helpdesk 1,000 0.34 Precision 0.06 0.06 0.06 0.06 0.00 0.50

Recall 0.99 0.98 0.96 1.00 0.00 0.96

F1-score 0.12 0.12 0.12 0.12 0.00 0.66

2,000 0.37 Precision 0.08 0.08 0.09 0.08 0.00 0.51

Recall 0.80 0.74 0.68 0.77 0.00 0.96

F1-score 0.15 0.15 0.15 0.14 0.00 0.67

3,000 0.39 Precision 0.09 0.11 0.13 0.10 0.00 0.61

Recall 0.59 0.49 0.39 0.60 0.00 0.93

F1-score 0.16 0.19 0.20 0.17 0.00 0.74

mance than the variable threshold Tv. To better observe a trend of performance
improvement as more events are received, the last two columns TF :100

v and TL:100
v

show the average performance values calculated on the first 100 events received
(after the GP condition has been met) and last 100 events received, respectively.
The result shows a clear tendency of increasing performance. The performance
is low at the initial stage, and it increases remarkably for the last 100 events
received. Particularly in the case of the Helpdesk log, the proposed framework
could not detect any anomalous cases in the first 100 events, while the perfor-
mance clearly increases for the last 100 events. It should be noted that, as the
number of events received increases, the performance of the proposed framework
is likely to converge to the one showed by the average on the last 100 events.
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Fig. 4. Performance values as number of events received increases (Small log is applied,
using Tv, W = 3000)

Regarding the window size W, the average time cost increases with the value of
W. A larger window size also leads to better anomaly detection performance.

As an example, Fig. 4 breaks down the performance of the proposed frame-
work along time, counted as the number of events received, in the case of the
Small event log with W = 3000. It can be noted that the performance oscillates
wildly until 20,000 events are received. After that, the performance tends to
stabilise and, while the precision remains high, the recall also begins increasing
more regularly. After 30,000 events are received, all the performance metrics
appear to have become stable.

5 Conclusions

This paper has presented an approach to detect trace level anomalies in business
process event streams using an anomaly score based on statistical leverage. A
preliminary evaluation on artificial and real event logs also has been presented.
The results obtained in this paper are important to determine the future work
in this line of research.

First, the performance in the case of the Helpdesk log highlights an issue
with anomaly threshold setting. The constant values chosen for the experiment
(between 0.1 and 0.2) appear to be too low for this event log, which results
in low precision and F1-score and only high recall. This points to the need for
developing an advanced variable threshold that can adapt to the characteristics
of different event logs.

Another limitation of the proposed approach, which also impacts the perfor-
mance, is the fact that it does not distinguish between incomplete and completed
traces when calculating the anomaly score. Therefore, many traces may be con-
sidered anomalous because they are incomplete, even though they will turn into
normal at some point in the future as more events are received. A possible strat-
egy to prevent this is to organise the events received into batches by different
prefix length before calculating the anomaly score. This is inspired by [20] that,
in the case of online compliance checking, addresses the issue of trace incom-
pleteness using prefix-alignment.
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Finally, considering word-embedding instead of one-hot encoding and zero-
padding during pre-processing may be likely to reduce the size of the observation
matrix X and, therefore, speed up the calculation of anomaly scores.
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2. Böhmer, K., Rinderle-Ma, S.: Multi-perspective anomaly detection in business pro-
cess execution events. In: Debruyne, C., et al. (eds.) OTM 2016. LNCS, vol. 10033,
pp. 80–98. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48472-3 5
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Abstract. Many processes no matter what kind are regularly changing
over time, adapting themselves to external and internal circumstances.
Analyzing them in a streaming context is a very demanding task. Partic-
ularly the detection and classification of significant deviations is impor-
tant to be able to re-integrate these possible micro-processes. Assuming
a deviation of a certain process, the significance is implicitly given when
a high number of instances contain this deviation similarly. To enhance
a process the integration of or preventive measures against those anoma-
lies is of high interest for all stakeholders as the actual process core gets
discovered more and more in detail. Considering various areas of applica-
tion, we focus on previously neglected but potentially significant anoma-
lies like small changes in the disease process of a virus infection that
has to be discovered to develop an appropriate reaction mechanism. We
concentrate on non-conforming traces of a stream on which we compute
a local outlier factor. This allows us to detect relations between traces
based on changing outlier scores. Hence, hereby connected traces are clus-
ters with which we achieve the detection of concept drift. We evaluate
our approach on a synthetic event log and a real-world dataset corre-
sponding to a process representing building permit applications which
emphasizes the extensive applicability.

Keywords: Concept drift detection · Local outlier factor ·
Micro-clusters

1 Introduction and Motivation

Nearly every established process consists of deviations, which potentially con-
tain valuable information impelling its context. E.g. by considering the Internet
of Things as highly attractive for botnet attacks, it is a very interesting task to
distinguish, detect and classify attack traces from operations of the ordinary pro-
cess. The classification task to identify device-threatening traces is pursued by
attack triage systems, in which our approach can provide outlier scores. A second
example is the analysis of disease spreading processes. Regarding the regulations
of the German public health department in the 2020’s pandemic, symptomatic
people have to keep health journals during the course of an infection to record
c© Springer Nature Switzerland AG 2021
S. Leemans and H. Leopold (Eds.): ICPM 2020 Workshops, LNBIP 406, pp. 206–217, 2021.
https://doi.org/10.1007/978-3-030-72693-5_16
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the timeline of symptoms. These journals are eventually gathered to construct
the typical disease process. Fever, dry cough and fatigue count as common symp-
toms for Covid-19 and represent the aforementioned process. Extraordinary and
more rare symptoms are: Loss of the senses of taste and smell, conjunctivitis
and the so called covid toes. Having these symptoms occur for some patients,
their disease process is non-conforming and a concept drift emerges. To extend
the process, the course of treatment and its effects can also be incorporated. In
general, the detection and classification of new types of infectious diseases can
be done independently of the deeper understanding of its nature and, therefore,
this procedure can also be mapped to various other diseases. Regarding busi-
ness processes, in case of structural changes in the business itself, the question
is, which deviations occur in reaction to initial changes. In particular, using a
building permit application process, we apply our approach to detect deviating
subprocesses as candidates for reintegration after a split of departments.

At large, process mining has its focus on conformance checking for a long
time. Particularly considering an anomalous group of traces which neverthe-
less belongs to the main process, can help to enhance the main process by re-
integrating this process deviation. The deviation itself qualifies for further anal-
ysis by consisting of multiple similar instances. Hereafter, we refer to an anomaly
as a micro-cluster of non-conforming traces i.e. anomalous traces. This micro-
cluster is defined by multiple related process instances. The relation between
traces can manifest itself in different ways. Therefore, a specific distance between
these instances is crucial, which will be defined for our specific case in Sect. 3.

In this work, we introduce a novel approach to classify non-conforming traces
into micro-clusters on trace streams. Based on these clusters we then achieve a
more fine-grained concept drift detection. Specifically, the basis of our approach
is a stream of traces. As a combination of state-of-the-art methods from process
mining and an established algorithm from the field of machine learning and
data mining, our approach is very flexible due to its modularity. As mentioned
before the field of application is very wide concerning current emergency cases
but can also be applied to every other process which consists of interesting
and critical deviations. An evaluation on a synthetic event log and the building
permit application dataset from the BPI Challenge of 2015 demonstrates the
considerable effects of our method.

In Sect. 2 we analyze the existing work related to clustering traces to groups
of anomalies. Section 3 describes the background of our work. Our framework
and our algorithmic methods are explained in Sect. 4. Sections 5 and 6 address
the performed experiments and corresponding evaluation. We conclude our work
with Sect. 7.

2 Related Work

The aggregation of outliers by leveraging local outlier factor serves as means to
cluster data. In addition, LOF also incorporates concepts from density-based
algorithms like reachability or core distance from the field of data mining [2].
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However, a major difference to its original field of application is the goal, which
is not defined by finding local outliers, but is to find reductions of local outlier-
ness, which eventually yield a new micro-cluster. First and foremost, the focus
lies on finding groups of outliers, which define an anomaly of the underlying pro-
cess, and detect concept drifts of different degree. Because this anomaly consists
of a number of traces, it is highly probable, that there is a hidden micro-process
driving those process instances. For that reason, it is an important task to ana-
lyze those micro-clusters and recognize the drift of the main process into one
of those micro-processes. The underlying idea to our approach is trace cluster-
ing [5], which is based on an embedding of traces into vector space. The overall
purpose is to split highly diverse processes into homogeneous subsets. Thus, the
complexity is reduced, while the interpretability is increased.

In comparison to our approach Richter et al. [9] also use the idea of lever-
aging a reference model for distance computation between traces. They aim at
clustering traces based on their distances to each other. However, the approach
requires manual user knowledge to define the agglomerative clustering manually.
It is not developed for stream application and does not provide further analysis
like concept drift detection as we do.

With TESSERACT [8], concept drifts regarding the time dimension are
focused. Interim-times between events of a stream are used to derive a drift
indicator regarding sudden and incremental drifts. However, the change of com-
pletion times of an event often can have other reasons than indicating a drift.
Therefore, we use the conformance of a trace by activity labels as a more direct
indication.

Using statistical hypothesis testing Maaradji et al. [6] are detecting drifts
between consecutive batches of traces by comparing the distribution of runs
statistically. A subsequent paper by Ostovar et al. [7] focuses on the detection
of drift within a trace rather than between traces. By using sliding windows and
applying the G-test of independence this method even can be applied to event
logs which are highly variable. In our approach high variability also is supported
resulting in many micro-clusters which are given as means of drift categorization.

3 Preliminaries

In this section we describe the background of the methods, which will be har-
nessed in Sect. 4. These include a definition of trace streams, conformance check-
ing, the method to compute distances between traces and the procedure behind
the popular local outlier factor from the field of machine learning. Case identi-
fiers, activity labels and timestamps are the minimal components of event logs.
Their counterpart on streams can be defined similarly. In an event stream S an
event e is emitted continuously in a specific order, duration and by reference
to a certain case identifier. That means, that the context, in which the event is
emitted, is known. However, the differences between an event log and an event
stream is (1) the potentially infinite sequence of events and (2) the incomplete-
ness of a case, which means that at a certain point in time a case does not have
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to be necessarily completed, since a new event could possibly be executed in con-
text of this case [11]. Additionally the timestamp at which an event is emitted
depends on the stream. Thus, it can be neglected and we define #case(e) = c
and #act(e) = a for e = (c, a). Because of the different structure this type
of data needs a different handling compared to conventional process discovery.
Hence, we refer hereby to state-of-the-art methods in the literature and assume
incoming data to be given as traces #trace(c) = ĉ consisting of occurring events.
Furthermore, we check every trace for conformance against the reference model
and additionally against every micro-cluster model in each iteration. Thus, we
utilize a preferably fast but efficient conformance checking method. We decide
to apply token-based replay [10] as it has an advantage in speed compared to
alignments [1]. Furthermore, to concentrate on the applicability of our approach,
we focus on incremental and recurring drifts in Sect. 5 and Sect. 6.

To be able to provide every trace with a comparable distance property we
utilize the reference model by following the approach of Richter et al. [9]. By
interpreting the model as a map, we define the geodesic distance between two
traces as the average number of edges on the shortest paths between every vertex
of two traces. A transition is only counted as a vertex, if it is one of the tran-
sitions causing problems in the conformance checking procedure. The distance
computation follows the approach in [9] and is defined by the following formula
where X and Y are traces and x and y are transitions within:

dist(X,Y ) =
1

|X| · |Y | ·
∑

x∈X

∑

y∈Y

shortest path(x, y)

Essentially, every trace is reduced to its events, which cause problems on the
reference model. Thereafter, the reduced traces are compared pairwise by com-
puting the geodesic distance between every contained event. After we average
the result we get the required distance between two traces, which is also known
as average-linkage. The ulterior motive is, that for deviating traces one or mul-
tiple transitions can be determined, which lead to the low fitness value. These
transitions posses different distances to each other when the missing transitions
are filled up by the reference model and the amount of edges between the tran-
sitions are counted. Thus, traces deviating with similar problematic transitions
have a lower distance as deviating traces with very different problematic transi-
tions. This part as another module can be substituted by any other computation
method as well, which possibly leads to different results. The main part of our
novel method is the usage of the popular Local Outlier Factor developed by
Breunig et al. [3] from the field of machine learning. This algorithm is con-
structed to detect local outliers in a dataset. Therefore, every trace is assigned
a degree (LOF ), which describes its outlierness with respect to the surround-
ing neighborhood. The problem of different types of outliers, i.e. global versus
local is described in [3]. Local outlierness, therefore, is defined relatively to the
neighborhood of a data point. We leverage this perspective in our work by ana-
lyzing traces with respect to their surroundings. These neighboring traces can be
arbitrarily distant to each other. If the average reachability distance, described
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below, between the neighbors is similar to the reachability distance of the trace
itself, it gets reflected in a LOF of ∼ 1.0. The LOF of a trace σ and the local
reachability distance lrd is computed in the following way:

LOFk(σ) =

∑
γ∈Nk(σ)

lrdk(γ)
lrdk(σ)

|Nk(σ)| , lrdk(σ) =
|Nk(σ)|∑

γ∈Nk(σ)

reach − distk(σ, γ)

The variable k denotes the number of nearest neighbors surrounding σ, where
the set of these neighbors is called k -neighborhood (Nk(σ)). and lrd refers to the
local reachability distance: where reachability–distance is either the distance of
γ to its k-th nearest neighbor or the real distance between γ and σ depending on
which distance is greater. Analogously, if LOFk(σ) � 1.0 the trace is an outlier.

4 Dynamic Outlier Aggregation

Our novel approach combines conformance checking from Process Mining with
Local Outlier Factoring from the field of Data Mining to achieve the automated
detection and classification of deviating traces in streams. The emerging micro-
clusters are then used to detect concept drift on the aforementioned streams.
This procedure differs from [9] to the extent that we aim for concept drift detec-
tion on streams. Richter et al. aim at clustering deviating traces by using a
reference model given by the main process. The resulting micro-clusters repre-
sent deviations with increased potential due to its density. Furthermore, they do
not provide means to the reader to automatically cluster or even classify new
upcoming data. Trace clustering on deviating traces could also be achieved by
our approach but it is not subject to this paper. After conformance checking of
incoming traces to both the reference and micro-models, only the non-conforming
traces are analyzed.

Fig. 1. Overview of our approach. Steps 1–4 denote the
successive procedure to detect anomalous clusters.

Our approach can be
split into four modules
(see Fig. 1), i.e. initial
process discovery, confor-
mance checking, LOF com-
putation and micro-cluster
aggregation. The former
has to be done once for ini-
tiation to prepare a pro-
cess model as a reference
for further computations.
The latter three steps are
processed repeatedly after
initiation. At first, in the
initiation phase, a main
model is discovered, which
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serves as a reference model (Fig. 1 (1)). This reference model can be normative
or declarative but the premise is that it does not yet hold traces, which actually
should be considered non-conforming. Afterwards, in the iteration phase, the
conformance of the incoming traces is checked and filtered by non-conformance,
which means that we only analyze non-conforming traces in the following (Fig. 1
(2a and b)). Therefore, we use the popular method of token-replay as a confor-
mance checking step. Here, the reference model is used to compute the fitness
of a trace. For this purpose, the four counters produced, consumed, missing and
remaining are used as described in Sect. 3 to determine, if a trace fits a model
or not. Every conforming trace then is removed and the next steps are only
based on the set of non-conforming traces. In the next step, we compute a local
outlier factor (LOF ) on every trace (Fig. 1 (3)). Gradually, the latest incoming
traces are filtered in the aforementioned way and the local outlier factor of every
stored trace is re-computed. Those computations serve as a snapshot, at which
we decide, if there is a relation between two or more traces. This decision is
based on the fact, that the scores of those traces drop below a given clustering
threshold at a specific snapshot. For those corresponding traces a process model
is discovered (Fig. 1 (4)). These micro-cluster models then are used as addi-
tional reference models, against which every incoming trace is checked before
it is labelled non-conforming (Fig. 1 (2b)). Since the non-conforming traces are
not removed from the set of local outlier factors, the computation of it has an
increase in accuracy over time until it reaches the size of a sliding window. This
sliding window is used to limit the complexity of re-computations. Algorithm 1
depicts the described procedure in pseudocode.

We assume that the streaming events are already gathered to traces. This
means, that the procedure, in which we wait for a trace to start and end, is trans-
ferred to already existing efficient algorithms [8]. Furthermore, the outcome of
this procedure does not have to be completely accurate since our approach can
cope with inaccuracies arising in this step. In addition, it is assumed that the
process model, which we use as a reference, is already discovered, solely relies
on conforming traces and only has to be prepared for further usage. Another
possibility is to provide a normative model by a domain expert. The iteration
phase comprises repeating steps mainly consisting of the novel approach we call
Dynamic Outlier Aggregation. This aggregation refers to the grouping of traces.
Thus, if there is a number of traces, of which the LOF scores are below a con-
stant threshold, which T exceeds a given constant number K, these traces are
aggregated to micro-clusters. To compute the LOF for each trace we utilize a
matrix holding all distances between every trace in the window. We start with
the first trace having a distance of 0.0 to itself. For every trace being emitted
afterwards by the stream we compute the distance between the current and every
other trace in the sliding window based on their transitions causing problems on
the reference model. The pairwise combination of the traces and the cartesian
product between all these problematic transitions of a pair form the basis for
further computation. The average of the overall hop count of the shortest paths
between every aforementioned transition yields our resulting lower triangular
matrix, which then is extended to a symmetric matrix for further computation.
Besides, if in the next iteration step the number of distances exceeds W , the
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Algorithm 1. Dynamic Outlier Aggregation
Input: The emission interface of a stream SI of single traces i, a lower bound L and a sliding

window size W , MinPts K for LOF computation and a threshold T , below which a
trace is assigned to a micro-cluster

Output: A collection of micro-clusters represented by event logs and
a LOF for each trace

1: R ← discover reference model() � Assumption: Traces are conforming

2: MC ← ∅ � MC denotes the set of micro-clusters

3: IBT ← ∅ � IBT denotes the set of non-conforming traces with LOF below threshold

4: M ← ∅ � M denotes the distance matrix

5: while |SI| > 0 do
6: Get next i
7: if !fitsR(i) ∧ !fitsM(i) then � Check conformance with reference model and

micro-cluster models

8: M ← compute distances(IBT, i)
9: IBT ← token replay(R, i) � Save activities with problems

10: M ← sym(M) � Create symmetric matrix from M

11: if |rows(M)| > L then
12: IBT ← IBT [1 :] � Remove first element

13: if |rows(M)| > W then
14: M ← delete first row col(M)
15: end if
16: � Separate traces forming a micro-cluster from outliers

17: micro cluster ← separate(IBT, lof, T )
18: if |micro cluster| ≥ K then
19: MC ← MC ∪ micro cluster
20: end if
21: end if
22: end if
23: end while

oldest trace is removed and so on. Thus, we can use the pre-computed distance
matrix to return LOF for every trace. Because the LOF of every trace potentially
changes in each iteration step, we have to separate the possible micro-clusters
from the outliers. On that account, a threshold T is required, which indicates
the affiliation of a trace to a micro-cluster. Hence, every trace, which possesses
a LOF below T , is returned in a separate log. However, the connected trace and
LOF is not yet removed from the matrix. The reason behind it is the increas-
ing accuracy of LOF the more traces are located in a micro-cluster. Since the
computational complexity of LOF is O(W 2), the overall complexity of Dynamic
Outlier Aggregation is O(W 3) in a naive implementation. However, the theoret-
ical complexity analysis based on stream data seems high, the actual complexity
strongly depends on the window size, which covers only a small portion of the
data. Thus, by choosing a fixed window size, which should be preferably small
compared to the expected emitted data, the goal of our approach can be achieved
in constant time (O(1)).

5 Evaluation on a Synthetic Log

The proposed approach can be inspected and reproduced on GitHub1. The imple-
mentation is used to experiment with both synthetic and real-world logs. In
1 https://github.com/zellnerlu/DOA.

https://github.com/zellnerlu/DOA


Concept Drift Detection with Dynamic Outlier Aggregation 213

addition to the applicability on real-world data, we focus on the detection of
recurring drifts as an example. Furthermore, the results of the usage within a
fixed parameter set are compared. Moreover, the limitations of our approach are
discussed.

As a proof of concept we create an event log consisting of 1000 traces with
the Processes and Logs Generator (PLG2) by Burattin [4] with which it is also
possible to produce an evolution of a given process. Thus, we start with a rather
small main process consisting of 6 activities and 2 XOR-gateways. Addition-
ally, 3 deviation processes with the size of 1000 traces each are created by using
the aforementioned option and the given parameters such as depth, AND/XOR
branches, AND/XOR weight etc. are adjusted accordingly, such that the prob-
ability of occurrence is de- and increased. We inject the drifts, by splitting up
and interleaving parts of the deviation processes with parts of the main pro-
cess. Thus, an event log is produced, which consists of all 4 processes appearing
successively. Here, we concentrate mainly on recurring drifts as an example to
illustrate the process of detection. The scalability of our approach is evaluated
by measuring the required time of the trace from comparison to the other traces
in the sliding window until the clustering step. Furthermore, we utilize F1-Score
as a quality measure, which is defined as the harmonic mean between precision
and recall. Since our approach heavily relies on the creation of process models in
different steps of the framework, we globally measure precision and recall instead
of using a multi-class perspective.

5.1 Execution Times

We perform the experiments on an Intel Core i7 with 3.2 Ghz and 32 GB RAM.
The operating system is Windows 10. The measured time required for the dis-
tance computation to the other traces in the sliding window as well as the clus-
tering procedure varies between 1ms and 20 ms with an average duration of
about 7 ms. In Fig. 2b the application of a sliding window of size 200 shows
an outlier in terms of maximum duration, which indicates the increasing time
requirement with larger sliding windows. Nevertheless, this shows the applica-
bility at least on trace streams and the approach also qualifies for an extension
to event streams due to the fast processing.

5.2 Impact of Inter-drift Distance and Sliding Window Size

At first we analyze the detection quality by varying the distance between drifts.
This means, that we vary the size of the interleaved parts, namely inter-drift
distance, by 5–75%, which means that 50, 100, 250, 500 and 750 traces of every
event log are arranged in sequence. This is repeated until log completion. We
choose LOF plots and Gantt Charts for visualization, where the x-axis shows
the global trace identifiers, i.e. trace IDs within all emitted traces and the y-axis
represents the LOF of a trace (LOF plot), i.e. the micro-cluster affiliation (Gantt
Chart). It is also perceivable, that the LOF of some traces is highlighted with a
certain color, i.e. the bars in the Gantt Charts are depicted with a certain color.
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(a) Analyzing the performance on various
inter-drift distances by number of inter-
leaved traces and the application of differ-
ent sliding window sizes.

(b) Execution times by using different sizes
of sliding windows. Min. Trace Duration is
between 30 and 60 microseconds.

Fig. 2. Quality measure and execution time depending on the sliding window size

This color represents the affiliation of the trace to a certain micro-cluster model.
As it is shown in Fig. 2a, the resulting F1-Score increases in all three cases
similarly, when increasing the inter-drift distance. This is due to the decreasing
number of changes, which have to be detected. Thus, the probability of detecting
False Positives decreases, as well. Figure 2a shows a continuously high detection
quality, which also can be confirmed visually in Fig. 3.

Fig. 3. Recurring drift detection on a a
synthetic log with inter-drift distance of
50. The change points are emphasized
with vertical black bars.

Fig. 4. Resulting Gantt Chart on an
inter-drift distance of 750 and a sliding
window size of 100.

One can see, that micro-cluster 0–2 are reliably representing the injected
deviations from the main model. Interestingly, our approach regularly detects
additional micro-clusters (3–5) beyond change points, which neither resemble
recurring drifts nor were injected by design. This could be for reason of overly
similar traces, which also neither do fit to the reference model nor to one of
the micro-cluster models. Nonetheless, the visualization shows a clear detection
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of recurring drifts, where false micro-clusters can be simply excluded and the
remainder can be analyzed by a domain expert further on. When we increase
the size of the sliding window by keeping a relatively small lower bound L, we get
a result as shown in Fig. 4. Here, the recurring drifts are still detected very well,
but two micro-cluster models, e.g. green and yellow or purple and red, share one
injected cluster each. In the latter pair another red cluster besides the first one is
created, because the purple cluster was initially created before the change point
at trace id 1500. This issue brings some limitations to light. On the one hand,
to estimate a fitting sliding window size is difficult as a minimum of K ≤ W of
LOF scores have to drop below T to be detected as a cluster. Therefore, a high
difference between K and W leads to the detection of very small micro-clusters
and a low difference leads to a very low sensitivity against concept drifts. On the
other hand, some test execution have to be made to estimate a fitting threshold.
In the experiments it appears, that T is preferably set right below the average
LOF. Additionally, the current implementation poses the problem that concept
drift detection is constrained to the control-flow dimension. To include other
perspectives like time or resources the approach has to be altered.

6 Evaluation on the Event Log of BPIC 2015

Fig. 5. Snapshot of five overlapping sliding
window states. Every trace ID (x-axis) is
assigned a LOF (y-axis). Background colors
represent assignments to micro-clusters.

As it is already introduced in Sect. 1,
we use data from the Business Pro-
cess Intelligence Challenge 20152. It
consists of building permit applica-
tions of five Dutch municipalities
with a total number of 5649 traces.
Due to the four year period, in which
changes were regularly made to the
rules and regulations, an incremen-
tal concept drift is expected in the
data. For the first experiment we
use the first log with 1199 traces.
Figure 5 shows a snapshot of our
analysis in LOF-plot format, which
reveals the direction of the resulting
Gantt-Chart. One has to be aware,
that appearing traces in this plot are already classified non-conforming to both
the reference and all other micro-cluster models. The colors show, that clus-
ters are aggregated, which are temporally overlapping. This implies the affinity
for each outlier aggregation to a different, successive cluster. Thus, incremental
drifts are detected as new micro-clusters are consecutively created.

Because BPIC 2015 is of high variability regarding the activity domain, traces
inherently posses a rather high distance in between. Increasing the sliding win-
dow size does not lead to the expected micro-clusters in the data already holding
2 https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1.

https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
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Fig. 6. Micro-cluster detection on hybrid log of BPIC 2015. The x-axis shows the
non-conforming trace identifiers in both figures and the y-axis shows the micro-cluster
affiliation (Fig. 6a) and the LOF (Fig. 6b).

an incremental drift but the loss in performance was relatively high. Thus, to
show the applicability to on small recurring drifts, we extend the log to serve
as a hybrid by repeatedly injecting data unrelated to the process. We randomly
use 5–25 traces with an inter-drift distance between 25–100 to alter the log.
Following this strategy, we simulate a changed process based on real-world data
already comprising realistic noise and inherent drifts. The first 100 traces are
used to create the initial reference model. We discover this model with a high
dependency threshold to force many traces to be classified as non-conforming.
In this setup, we set the sliding window size to 60, the lower bound to 35 and
the offset to 0.005. The Gantt Chart in Fig. 6a marks all non-conforming traces,
which are aggregated to a micro-cluster and the aggregation is derived by high
difference between the LOF of each trace in Fig. 6b. By simulating the basic
process as a recurring drift in otherwise noisy data, we cluster the BPIC 2015
as one micro-cluster. An important aspect, which has to be considered is, that
real noisy traces in the basic process also get filtered. This leads to a more pure
version of the BPIC 2015 as a micro-cluster.

7 Conclusion

With our novel Dynamic Outlier Aggregation we detect concept drifts of dif-
ferent extent. Trace clustering of non-conforming traces is used as a first step.
Afterwards, we focus on the detection of recurring drifts as an example. Using
a sliding window approach allows us to discover changes of different magnitude
in the underlying process. Depending on the size of the traces these parameters
provide control over the results as we exchange processing time for accuracy.
In respect of a process like the spread of a disease, changes happen in a very
different time span. For example, we are constantly in need of knowledge about
mutating viruses like influenza or other more recent ones. Thus, the origin and
classification of a newly mutated kind is of high interest for the development of
a vaccine. Furthermore, if the sliding window is chosen with an appropriate size,
and the underlying reference model consists of enough information of former
viruses, even a rapid and significant change of a virus, is detected.
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In future works, we will look at the application of this approach to single
events instead of traces. The advantage of working on events instead of traces is
the processing of incomplete traces with a higher rate. This involves the output
of a micro-cluster probability for every emitted batch of connected events. In
addition, we will be working on an appropriate solution to re-integrate clustered
anomalies including a high amount of traces. This will also lead to great benefits
for real-world applications, since unknown deviations are thoroughly analyzed,
and the main process is purposefully extended.
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Abstract. Identifying structures in data is an essential step to enhance
insights and understand applications. Clusters and anomalies are the
basic building blocks for those structures and occur in various types.
Clusters vary in shape and density, while anomalies occur as single-point
outliers, contextual or collective anomalies. In online applications, clus-
ters even have a higher complexity. Besides static clusters, which rep-
resent a persistent structure throughout the whole data stream, many
clusters are dynamic, tend to drift and are only observable in certain time
frames. Here, we propose OTOSO, a monitoring tool based on OPTICS.
OTOSO is an anytime structure visualizer, that plots representations for
density-based trace clusters in process event streams. It identifies tem-
poral deviation clusters and visualizes them as a time-dependent graph.
Each node represents a cluster of traces by size and density. Edges yield
information about merging and splitting trace clusters. The aim is to
provide an on-demand overview over the temporal deviation structure
during the process execution. Not only for online applications, but also
for static datasets, our approach yields insights about temporally limited
occurrences of trace clusters, which are difficult to detect using a global
clustering approach.

Keywords: Trace clustering · Visualization · Operational support ·
Anytime clustering

1 Introduction

The ongoing digitalization of industries and social systems creates a strong
demand for analysis tools to transform data into useful insights. Especially early
warning systems for already known issues or still uncovered problems are highly
requested. However, without a thorough exploration of the data, those systems
cannot be developed, since we need to know what we are looking for beforehand.

In online applications, the time for analysis is always very precious and never
sufficient. Therefore, an in-depth analysis has to be postponed, as interesting
and promising aspects have been identified. A more shallow high-level analysis
is more suitable as a time-efficient first exploration.

In the field of clustering, DBSCAN [4] is a prominent technique for density-
based clustering. However, finding good parameters to generate results that
c© Springer Nature Switzerland AG 2021
S. Leemans and H. Leopold (Eds.): ICPM 2020 Workshops, LNBIP 406, pp. 218–229, 2021.
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leverage the data into a given story is very tedious. Restarting clustering algo-
rithms with arbitrary parameters is very different from output-driven experi-
mentation. Therefore, OPTICS [1] was proposed as an extension, that offers
a two-dimensional visualization for any multidimensional dataset. In OPTICS
plots, the structure of the data is abstracted and parameters for density-based
clusterings are visually determined.

In an online process mining application, we need to increase the abstraction
level even further. Anytime variants for DBSCAN and OPTICS have been pro-
posed in literature already. However, the structure of an online process is not
covered by observing an event stream and building an up-to-date process model.
The time perspective provides clusters with a further dimension of volatility.

In the context of processes, we differentiate between the major behavior,
the baseline process, and process variants with deviation behavior. During the
process execution, the baseline stays mostly static and rarely tends to shift its
behavior. In contrast, variants often traverse different lifecycles dynamically.
They emerge at certain points in time, merge with other variants, separate again
and disappear eventually. In some time intervals, variants can remain inactive
and reappear seasonally or randomly later.

In this work, we propose OTOSO, an on-demand temporal structure visu-
alization of event streams. It is based on OPTICS and developed to cope with
dynamic structure transformations. OTOSO collects trace data from an event
stream as temporal deviation signatures, generates temporary OPTICS plots
and aggregates their information into a graph plot. This plot shows relations
between baseline and variant clusters. In a quick analysis, structure changes are
identified visually. Each cluster is represented as a node of a specific size at a
point in time. Relations between clusters are indicated by edges between nodes.
The whole plot can then be interpreted as a map, that show the dynamic changes
of the process during the event stream.

2 Related Work

To the best of our knowledge, there is no direct competitor that proposes an
anytime structure overview for event streams. However, there are related meth-
ods that have to be mentioned here. There is a plethora of published techniques
regarding process discovery, conformance checking and clustering. Due to space
constraints, we only mention works that have a focus on temporal perspectives
or which work on event streams.

Event stream monitoring emerges as a required preprocessing step for any-
time analyses. Works in this field mainly prepare intermediate data for process
discovery [3,7,9] and conformance checking [2,13]. These works propose methods
to analyze event streams, which is the more complex task in comparison to trace
stream analysis. The latter paradigm assumes that events are already grouped
into traces, which is mostly a difficult requirement. In many practical scenar-
ios, there is also a strong concurrency between cases. Cases can become inactive
or are stopped without any further information. An approach based on event
streams has to come up with a heuristic to deal with the lack of information.
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In the area of temporal anomaly detection, Rogge et al. [12] analyzed interim
times between events by applying kernel density estimation to identify outliers in
the temporal perspective. In [11], the authors identify such outliers of event pairs
online by using hashing for event collecting and applying z-scoring to define an
in-control area for unsuspicious event relations. In [10], this idea is leveraged on
the trace level to detect collective trace anomalies using density-based clustering
on temporal deviation signatures. We adapt the presented clustering technique
for OTOSO.

The area of event stream concept drift detection contains more established
works. In [6], Hassani elaborated the idea of [7] to detect work-flow-based con-
cept drifts using different structural metrics on process models. In [8], the authors
present a technique to change forecasting models according to changed environ-
ments due to concept drifts. However, we are not aware of any concept drift
detection approaches taking the temporal perspective into account.

3 Preliminaries

An event stream S : N → N × A × N is a mapping from natural numbers to the
event domain. Each event e = (c, a, t) consists of an case identifier c ∈ N, an
activity label a ∈ A and a timestamp t ∈ N. For case identifiers from another
domain, there is typically a canonical translation into the natural numbers. The
same holds for the timestamps. In the following, we will not distinguish between
cases and case identifiers, as the context provides enough clarification.

Since OTOSO can also be applied to event logs, we define an event log as
a finite multiset of events. Although an event log is mostly grouped by case
identifiers, for OTOSO the log should be sorted by timestamp. Additional event
attributes like resources are ignored in this work, although they might enhance
the results in future works.

Next, we call tuples of two activities (a1, a2) ∈ A2 relations. A relation
(a1, a2) exists in a case c, if there are two events e1 = (c, a1, t1) and e2 = (c, a2, t2)
with t1 < t2. We canonically define the mean μ and variance σ of all time inter-
vals in a finite set of cases for a certain relation. Using z-scoring as follows we
account for the imbalance between all different relations and define the temporal
deviation signature as:

TDSc(a1, a2) =

{ |t2−t1|−μ(a1,a2)

σ(a1,a2)
, e1 = (c, a1, t1), e2 = (c, a2, t2) ∈ c

0 , otherwise

In case of multiple occurrences of a relation, the average z-score is used.
A distance is a positive-definite function, that is symmetrical and fulfills the
triangle inequality. In the following, we use the Euclidian distance due to its
popularity and will not go into detail about other functions in this work. For the
clustering step, we require a measure of density. Density is defined by a number
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of objects n in a certain area of radius ε. If an object, here a case represented by
its temporal deviation signature, contains at least MinPts many objects within
a neighborhood Nε(c) of radius ε, this case is a core object. All cases within
the neighborhood are at least border objects, if their neighborhood is not dense
enough to be core objects themselves. All remaining cases are noise.

One of the most popular density-based methods is DBSCAN [4]. It selects
objects and classifies them depending of their neighborhood as core, border or
noise points. For a more in-depth description, we point to the corresponding
work of Ester et al. A major drawback of DBSCAN is the difficulty to choose
an appropriate value for the neighborhood distance ε. To overcome this issue,
Ankerst et al. developed OPTICS [1]. Given MinPts, this method determines
for each object its core distance, the minimal distance needed such that the ε-
neighborhood contains MinPts many objects. Derived from the core distance,
the reachability distance between two objects is computed then. According to
this distance, the processing order is depending on the nearest neighbor that
has not been processed yet. This 2D reachability plot uses the ordering on the
x-axis and the reachability distance on the y-axis. Since dense object clusters in
the data space have low pairwise reachability distances, they are accumulated
in the plot and clusters are identified as troughs in the reachability plot. Using
a horizontal line as a density threshold, all troughs below this level represent
clusters using the height as the according ε-value.

4 OTOSO

OPTICS visualizes the cluster structure of a static dataset. However, especially
in process mining, process behaviors are dynamic and cluster structures are likely
to change. To visualize not only a snapshot in a particular time frame, but the
evolution of process variants and trace anomalies, we propose OTOSO, which
is briefly summarized a visual time series of trace cluster structures. OTOSO
consists of two phases. First, the event stream is observed and the necessary
statistics are collected. By using a hashing data structure, the data is provided
for the second module on-demand. At any point in time, the stored data can be
queried as input for OPTICS to produce the current temporal cluster structure
in the recent event stream. All those individual clustering snapshots are used to
iteratively plot the clustering overview for the whole event stream.

4.1 Monitoring Temporal Deviations

OTOSO uses an event stream as input. In contrast to trace streams, the events
have to be collected individually before case statistics can be extracted. A major
problem of stream input is that we can never be sure that a case is still active.
Therefore, we need an aging mechanism to discard old cases without the certainty
that they are canceled or just paused and will be continued later.
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Fig. 1. Example hash table with h = 7 and w = 4. Each observed stream event has
two potential rows to store it. Since the table is already full, either an event can be
appended to its corresponding trace or an old trace has to be discarded. Do not be
confused with the activity labels, since complete event information is stored.

We utilize Cuckoo-Hashing as it already provided a useful discarding tech-
nique for StrProM [7]. A hash table of height h is filled with case data, that is the
last timestamp, the case identifier and all observed events. Two hash functions
are applied on the case identifier to determine two potential hash table cells for
each case. Instead of storing the case data directly in the hash table, we store a
small and finite collection of cases in a cell. Technically, this width w of the table
is implemented using arrays. Thus, the decaying factor can be adjusted without
corrupting the operation complexity.

For each observed event, both hash functions are applied to identify all poten-
tial storage cells. If the case is already stored, it is updated by adding the event
and setting the last-modified timestamp. In Fig. 1, the stream event in the top
left corner belongs to case c = 665. A potential storage option is in the first hash
table row. The case is already present in this row at the third position. We can
update this cell by appending the event and updating the timestamp to t = 40.
If the case has not been stored yet, we replace the case with the stored case,
that has the oldest last-modified timestamp. The replaced case is the least recent
one in this hash table cell. We try to insert it in the secondary position. Either,
the secondary position has empty space, or we replace it again with the oldest
case in this position. The procedure is recursively repeated until the secondary
position has only more current entries and we discard the current item. Consid-
ering Fig. 1 again, the second stream event with c = 838 has storage options for
row 5 and 7. Neither holds data for this case already. Using the first option, we
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attempt to store this new case in the fifth row, depending on the first of both
hash functions. The oldest case here is case c = 893. We replace it with the new
case and try to re-insert c = 893. The timestamp t = 9 tends to be already
deprecated, however, since there are older entries in the table, there might be
a chance to discard it after a series of replacements. This would be the case, if
the alternative storage position is in row 1 or 3. Otherwise, the already existing
timestamps in the remaining rows are newer and case c = 893 is discarded.

With this strategy, the hash table is always a finite representation of the
recent cases, however some older behaviors potentially survive in the data struc-
ture since the swap operations regard the table only partially. Another drawback
is that events in the beginning of cases are represented excessively, as the chance
to be discarded is increased for longer cases. Alternatively, the length of the case
can be included in the discarding mechanism. Nevertheless, this gives older cases
an advantage to be kept stored, since smaller and recent cases are discarded. To
the best of our knowledge, a perfectly fair sampling for event streams is still an
open research topic, so we accept the drawbacks and discard by recency only.

Regarding hash functions, there are various ways to implement a set of two
functions. Most programming languages provide at least one built-in hash func-
tion. To derive a second one, it is mostly sufficient to reverse the case identifier
and use the same function again. Another strategy splits the identifier in two
chunks and uses the hash value for the first and for the second chunk to deter-
mine both positions. We did not perform an in-depth evaluation on this topic
here.

4.2 Structure Analysis

The hash table provides at most h·w many cases at any point in time t. The cases
do not have to be completed already. The complete hash table is processed to
extract the case data and to generate the z-scored temporal deviation signatures
for all cases, which is used as input for OPTICS to cluster the traces. The
output gives an impression on the recent temporal trace clustering structure.
For the stream structure overview, we extract all clusters depending on the
chosen density parameters (ε,MinPts). For each cluster C, we create a node at
position x = t and y =

∑
c∈C coreε,MinPts(c) which is the occurrence time and

aggregated cluster density. The size of each node is depending on the number of
contained cases in the cluster respectively the number of cluster elements that
are currently stored in the hash table.

In the basic variant, OTOSO connects cluster nodes if the distance between
cluster centers is below the distance threshold ΔTDS and the nodes occur in con-
secutive time slots. The extension connects cluster nodes of distant time slots.
This allows to identify temporally limited clusters that reoccur after a period of
inactivity. In Fig. 2, OTOSO is applied to an event stream producing OPTICS
plots for various timestamps. At a tickrate of 10k events, further intermedi-
ate results are requested. For four of these intermediate queries, we show the
OPTICS plots in the top row of the figure. For each OPTICS plot, a vertical
slice in the OTOSO plot below is generated. Typically, a process produces one
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Fig. 2. OTOSO applied to an event stream. Each slice corresponds to a point in time
and a hierarchy of clusterings at this timestamp.

major cluster containing cases that behave ordinary. These are the large spheres
in each slice. For the 50k mark, besides the major cluster, two variants of low
density are active. Both are related to previous queries, but disappear for the
next two queries. Solid lines indicate a strong similarity between clusters of con-
secutive clusters. Dashed lines indicate similarity between slices over a larger
timeframe. Here, we only include lines connecting slices within a timeframe of
30k events. In slice 60k, all variants disappear. In 70k, a small variant emerges. It
has some similarity with the major cluster in 50k, but no connection to the major
cluster in 60k. Hence, the temporal deviation profile first covered this deviation,
but the variant did not occur in the succeeding process window. Interestingly,
the small cluster in slice 80k grows slightly in size, but drastically in density.
Regarding the solid line, we recognize a close similarity between both clusters,
so their behavior represented by the temporal deviation signature is also similar.

This visualization allows to detect different structural changes in an event
stream. Lifecycles of emerging and vanishing variants can be followed as illus-
trated before. The connections of a cluster node indicates, whether this variant
has disappeared or has been inactive for some time. If a node emerges with-
out initial connection, the corresponding variant starts suddenly. Otherwise, a
connected new node hints towards a gradually emerging variant. These mecha-
nisms are related to types of concept drift, however it is difficult to clearly label
the effects according to sudden, gradual and incremental drifts due to the com-
plexity of an event stream. Many activities and therefore activity relations are
included in the temporal deviation profile. Nevertheless, the OTOSO plot gives
an overview over the whole structure. A sudden drift, for instance, will likely
affect a small number of traces and will maybe only affect some activities. The
abstraction level of the visualization is to high to register concept drifts with a
high confidence, except they appear as large-scale effects.
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5 Evaluation

In the following, we evaluate the correlation between the size of the hash table
and the currency of the collected event data. Afterwards, we show the benefits
of applying OTOSO in comparison to using density-based clustering on the data
as a static data chunk. Finally, we build a stream of a sequence of event logs
to show the capability to detect the transitions between dissimilar event stream
sections. We uploaded OTOSO into a GitHub project1, thereby the experiments
can be reproduced.

5.1 Datasets

Working with pure synthetic datasets causes some issues concerning the detec-
tion simplicity of anomalies or clusters in the data. We need datasets that
are realistic, because synthetic datasets allow too much freedom and often are
unfairly beneficial to the method’s evaluation. Therefore, we utilize the BPI chal-
lenge datasets from 20152 and 20173, in the following abbreviated as BPIC15 and
BPIC17. BPIC15 contains data of building permit applications over four years in
five Dutch municipalities. Five partitions show the process of each municipality
individually. Each sublog contains about a thousand cases. The challenge of this
dataset lays in its about 400 activities and its resulting complexity from the large
number of potential relations. The publications regarding this challenge show,
that there is a high similarity between sublog 1, 2 and 5 while sublog 3 and 4
represent a slightly different behavior. In BPIC17, a loan application process of
a Dutch financial institute over one year is logged. The offer log contains only a
subset of 24 offer related activities. 128985 events are recorded in 42995 cases.
Due to its larger size, we are able to simulate an online observation of the whole
fiscal year.

5.2 Hash Table Size

We use BPIC17 to investigate the influence of the hash table size on the currency
of the data. Each event log is transformed into an event stream. Observing
the stream event by event, each recent event is inserted into the hash table.
Every 1000 events, we determine the average time difference to the current event
timestamp. In Fig. 3, we show the results. Starting with a small hash table, which
only contains 1000 cases, we compare three different dimensions for the table.
In the first case, a table of height 10 with 100 buckets in each position is used.
The second hash table has height 100 and width 10, while the third is a one-
dimensional table of height 1000. The average recency is below 10 days. Towards
the end, no new cases are starting, so no old cases are discarded and the table
gets slightly outdated.

1 https://github.com/Skarvir/OTOSO.
2 https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1.
3 https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b.

https://github.com/Skarvir/OTOSO
https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
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Fig. 3. Avg. recency and standard deviation is given for nine Cuckoo hash tables with
different dimensions as height× width.

The second plot shows three hash tables of size 5000 having analogous
changes regarding their dimensions. Due to the higher capacity, more cases can
be stored and the table contains more obsolete items. Storing more items leads
to a more stable clustering and following techniques are affected by noise or
short-term outliers. There is no clear method to determine the best recency and
the corresponding table size, since this is completely depending on the user-
defined time window and the arrival frequency of events and cases. Finally, the
application is also an important factor, since the detection of point-wise anoma-
lies benefits from higher currency while the detection of long-term structures
requires data with high stability. However, the important point we want to high-
light is the advantage of using a two-dimensional hash table. The width allows
shorter rehash cycles, which is already shown in [5,7]. The new insight here is
the greater recency for small numbers of buckets in each position. Already in the
second plot, but much clearer in the third one with a hash table of size 10000,
the one-dimensional hash table has a delay of about 40 days, while both variants
with few buckets have smaller temporal shifts. The difference between using 10
or 100 buckets is rather marginal. Therefore, we recommend using small numbers
of buckets, since the iteration over a large list of buckets is more time-consuming
than rehashing at another position.

5.3 Static Clustering vs. Dynamic Clustering

The BPIC17 dataset contains a significant cluster with deviating temporal
behavior, that contains accepted offers with a delay in its execution. In Fig. 4a,
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we show the result of OPTICS applied to the whole event log using the tempo-
ral deviation signatures as a representation. Using a neighborhood size of 0.5,
two major clusters are yielded. The largest one contains the majority of cases
and represents the baseline of this process. The second largest one is shown in
OPTICS as a thinner and deep trough on the right side. Since this method yields
a static overview over the temporal clustering structure, we would assume that
the cluster is omnipresent during the complete event stream.

In Fig. 4c, the final OTOSO plot is given. After all events in the stream
have been processed, the clusters are nodes with radii according to the number
of contained cases. The height is determined by their density. Lines indicate
a strong similarity between consecutive clusters. Thus, by following a line we
observe the lifecycle of a specific cluster.

Fig. 4. OPTICS and OTOSO applied on the BPIC17 datalog. MinPts = 100 and
results are yielded each 10k events.

In the beginning, the results are not reliable. Many cases have been collected
only partially yet. As a rule of thumb, we recommend to neglect insights from
the first k cases if the hash table has size k = h ·w. Hence, starting with April, a
baseline of large clusters has been emerged and retains an almost constant size
for the remaining stream. More interesting is the other line above. It indicates
a much smaller cluster, that still has a high density. During August the cluster
vanishes but returns again in September. Instead, two new and dissimilar clusters
emerge for this short period and vanish afterwards again. To show what OTOSO
has highlighted there, we extract all cases contained in the previously mentioned
deviating cluster. This set of cases corresponds to the thin and deep trough in
Fig. 4a. For this cluster and also for the remaining cases, we plotted the starting
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times as a kernel density estimation in Fig. 4b. Here, we observe a peak in starting
cases in August. The rising number of arriving cases, which do not belong to the
variant cluster, shifts more weight towards the baseline cluster and the two new
variants. The resulting loss in density for our previous variant cluster leads to its
disappearance for one observation tick. While it is possible to detect such effects
with static methods, this analysis is quite tedious. Besides, we already knew
what we were looking for. OTOSO highlights this anomaly during the online
observation of the event stream. In applications, that require short reaction
times, observing the OTOSO visualization provides a very quick indication for
an abnormal behavior.

Fig. 5. OTOSO applied to a five-fold concatenation of all five BPIC15 sublogs.
MinPts = 100 and an intermediate result is demanded every 10k events.

5.4 OTOSO on Event Stream with Concept Drifts

Finally, we use the BPIC15 dataset to how concept drifts affect the structural
overview. The dataset is quite small, so we concatenate all five sublogs into one
larger event log. Further, we concatenated this event log 5 times with itself to
create an even larger log with five segments or 25 sublogs. This event log is then
transformed into an event stream.

In Fig. 5, the OTOSO plot is given after processing the event stream. As
discussed before, we neglect the results from the first two segments of the stream.
After 500k events have been processed, the hash table is filled sufficiently and the
structure of the data starts to appear. The red lines indicate the border points
when a sublog ends and a new one starts. Especially in the last two segments,
there is a significant similarity in BPIC15 between sublog 1, 2 and 5 and also
between 3 and 4. The black similarity line indicates this relation. There is a
much sparser and small cluster above. We do not have expert knowledge to verify
or explain its meaning. On the one hand, it is possible to neglect it due to its
sparsity. On the other hand, this cluster exists in all sublogs and it shows a strong
similarity. In reality, we would recommend a thorough examination, but due to
the lack of expert knowledge, we have to dispense with further speculations.

6 Conclusion

In a world of continuously emerging digitalization, it is very important to get
preliminary insights early and with a high level of abstraction. OTOSO provides
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an online overview over structures in an event stream. Emerging or vanishing
clusters are visually identified and lifecycles of those structures are tracked.

Although some structural dimensions are monitored like density, size and
similarity of clusters, process data contains more information, which can be
used to augment the structural overview plot. Also, the plot depends on suitable
user-defined parameters. Estimating good parameters is a very difficult task.
Thus, and because a data stream cannot be replayed, it is beneficial to enable
on-demand parameter adaptations while results are visualized.
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Abstract. Performance mining from event logs is a central task in
managing and optimizing business processes. Established analysis tech-
niques work with a single timestamp per event only. However, when
available, time interval information enables proper analysis of the dura-
tion of individual activities as well as the overall execution runtime. Our
novel approach, performance skyline, considers extended events, includ-
ing start and end timestamps in log files, aiming at the discovery of
events that are crucial to the overall duration of real process executions.
As first contribution, our method gains a geometrical process represen-
tation for traces with interval events by using interval-based methods
from sequence pattern mining and performance analysis. Secondly, we
introduce the performance skyline, which discovers dominating events
considering a given heuristic in this case, event duration. As a third
contribution, we propose three techniques for statistical analysis of per-
formance skylines and process trace sets, enabling more accurate process
discovery, conformance checking, and process enhancement. Experiments
on real event logs demonstrate that our contributions are highly suitable
for detecting and analyzing the dominant events of a process.

Keywords: Interval events · Performance analysis · Process mining ·
Dominant duration path · Skyline operator

1 Introduction

To plan a process optimally, prevent mistakes as well as to answer questions
about its performance, we need to know the process. The more substantial the
knowledge, the better informed decisions users can take about their plan of
action. Over a century ago Gantt charts [1] were introduced to schedule work
according to resources in the manufacture industry. Since then data-centric pro-
cess mining models aid to understand constantly changing processes by consid-
ering both, their prescription and the posterior description of run instances, in
multiple fields. Often certain tasks in a process last long, without the user know-
ing whether that duration is expected or not. By taking performance indicators
of the time dimension, such as the lead-, service- and waiting time into account,
performance analysis examines event data over time [2].
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This analysis enables businesses to discover performance patterns, optimize
processes as well as to identify and prevent mistakes in them. In many cases, ana-
lyzing processes that contain big amounts of events often includes computational
and visual overhead for the user, specially when only a subset of them might be
interesting to asses the user’s question. Furthermore including additional perfor-
mance information for more substantial knowledge may worsen the visual charge.
To alleviate this, we select a subset of events that may be specially interesting
using the skyline operator [3], considering that events of dominant duration are
crucial to process performance, and moreover optimization, resources usage and
task prioritization.

Consider the following example: After a vacation visit to your favorite city,
you write a review about the hotel you stayed in. This review is added to a
platform’s collection, from which hotel reputation companies forward customer
feedback to hotels. Broadly speaking, this process ingests customer reviews from
multiple sources, does multiple transformations, aggregates them and stores the
result at a given location to provide hotels with an accurate rating. Since ratings
may strongly influence guests booking decisions, an up-to-date result is essential
to a host’s reputation in the hospitality market. If all events of this process are
executed sequentially, they all directly contribute to the overall duration of the
process. For this reason it is often shorten by executing events parallely. Knowing
events inter dependencies, service- and waiting times is advantageous to choose
which activities should run in parallel. Independent events or events series of
similar length can be run in parallel to make the process more efficient. Improv-
ing a process that already utilizes parallel event executions requires performance
analysis of previously ran instances on a activity level. Focusing and speeding up
activities that last considerably longer than others might have a higher impact
on the overall duration than doing so on the ones that already perform rela-
tively well on the same trace. Thus identifying these activities is key, specially
for traces with a high amount of events and high service time deviation. Our
performance skyline approach highlights events that dominate others in some
given metric on one trace, in this occasion the metric is the service duration.
The next section, presents state-of-the art methods to analyze process perfor-
mance as the performance spectrum miner and the critical path method. Subse-
quently, Sect. 3 presents interval events, the skyline operator and the geometric
interval representation. These concepts form the basis of our methods. Section 4
and Sect. 5 introduces our contributions: The geometrical process representa-
tion, the performance skyline and three statistical analysis techniques. Following
then, Sect. 6 demonstrates how our approaches work beyond theory by experi-
menting with them on real process logs from TrustYou GmbH, a German Guest
Feedback and Hotel Reputation Software company. Lastly Sect. 7 closes listing
achievements and further expansion possibilities as future work on this topic.
Code and real log data for replicating our experiments are available on the open
source project [https://github.com/andreamalhera/performanceskyline].

https://github.com/andreamalhera/performanceskyline
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2 Related Work

Performance models regard temporal aspects of processes. The performance spec-
trum miner [2] maps all observed flows between activities together regarding their
performance over time . Bringing a temporal perspective into process analysis,
performance spectrum enables reliable pattern recognition for batching behavior.
Nevertheless, using only one timestamp the performance spectrum forces models
to overlook some aspects like waiting time, actual event duration and actual trace
duration i.a. service time. Not extracting this knowledge restricts models and pat-
tern detection methods derived from it. Other models, as for example PROM’s
dotted chart [4], use two-dimensional space projections with start time in the hor-
izontal axis and case ids in the vertical axis to describe processes. Nevertheless it
is also limited by using a single timestamp. Event intervals [5] have proven useful
to extract insights about the idle periods of processes even from events of a single
timestamp, but are limited by the assumption that all tasks occur sequentially.

When logs provide additional time interval information, performance insight
may be mined using e.g. interval events. Heuristics miner for time intervals
[6,7] uses interval events to mine the dependency relations among activities in
a process more precisely. Similarly to transactional events [8] with transaction
types like start and complete, interval events have already been defined by others
[2,6,7,9,10], but slightly differently than in this paper. In the first one instance
of an activity, which starts and ends, is described as two transactional events of
the same activity. Other definitions of interval events implicitly assume that an
event ends exactly when the next one begins. Another kind of multi-timestamped
events are queue events in a single station queue log [11], which are used to
predict delays in service processes online and thus improve customer experience.
Being highly adapted to queues, queue events are not suitable to answer other
performance questions nor to handle more complex processes, containing non-
sequential activities as well. Disregarding complexity and in other cases provided
multiple timestamps, hinders to identify gaps between two events.

Flow analysis [12] is a family of control-flow model based techniques to estimate
the overall performance of a process given some knowledge about the performance
of its tasks. These promising techniques can be extended [13] to also mine perfor-
mance relations between a set of events and the overall process. Moreover another
possible extension could focus on finer granularity for the dominating tasks regard-
ing a given heuristics. Flow analysis is also restricted by process complexity, work-
ing properly for control-flow based models and furthermore block-structured mod-
els [8] only. Even when one disposes of logs containing interval events, it is a
challenge to find suitable ways to integrate additional timestamps for events in
a model including as much information as necessary but without generating an
visual overload. Comparably the non-control-flow based model, multi-channel per-
formance spectrum for predictive monitoring, [10] classifies cases using multiple
performance-related dimensions, yet intra-case features of individual cases remain
undiscovered due to its relatively coarse granularity and inter-case design.

The critical path method (CPM) [12,14–16] also filters interesting points
from a process. The critical path comprehends the longest series of dependent
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events required from start to end, which add up to the overall trace duration [16].
Applying the CPM, identifies the critical path in petri-nets and precedence net-
work process models [17] by noting estimated/early and late, start time and end
time for each activity. Broadly this methods demonstrates how combining state-
of-the-art process mining with other approaches results in suitable opportunities.
Even though, real processes often present deviation in their duration. Since this
approach only considers constant duration of activities across traces and focuses
on precedence rather than process performance, analysis could be enriched by
performance mining and statistical inspection of time deviating events.

3 Preliminaries

3.1 Interval Events

A process instance can be split into events. An event e = (c, a, t) ∈ N × A × N

is as an tuple consisting of case id c, an activity id a, and a timestamp t. If
any two events contain the same case id, they belong to the same trace. A
trace is an instance of a process, containing multiple events. An interval event
e = (c, a, t+, t−) ∈ N×A×N×N is as an tuple consisting of case id c, an activity
id a, a start timestamp t+ and an end timestamp t−. The duration of an event
ei its duration can be computed as (πt−(ei)−πt+(ei)), where πk(ei) is the value
for key k in event ei.

3.2 Skyline Operator

In the field of database queries, the Skyline Operator [3] filters out a set of
interesting points from a potentially large set of data points. Whether or not a
point is interesting depends on metrics given by the user and if a point is not
dominated by any other. It can be used for example to find interesting hotel
matches, meaning all hotels that are not worse than any other hotel in nearness
to the beach and price. We call the line connecting the set of dominating points
of interest: the dominant path. To the best of our knowledge skyline operators
have not been used in the field of process mining before. Mostly because often
control-flow models are used to analyze a process. For the purpose of performance
analysis in processes we consider the dominant duration path of a trace, which
comprehends the series of events, which last the longest in a trace or process
from start to end and add up to the overall trace duration, similar to dominant
points of interest presented in [3]. Consider the following example: A trace is
composed of two events, A and B, both starting at t1. Additionally, A ends at
t3, and B ends at t2 with t3 > t2. Thus, the overall duration of the trace is
(t3 − t1) and only A is part of the dominant path. Consequently, to decrease the
process duration based on this trace, event A needs to be sped up. Decreasing
the duration of only event B would not improve the overall performance, it is not
part of the dominant path and its duration (t2 − t1) is lower than (t3 − t1). For
our approach the skyline operator was implemented using Allen’s interval terms
[18]: The performance skyline includes all events without during relationship to
any other event in the same trace.
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3.3 Geometric Interval Representation

Fig. 1. Schematic representation of four
example intervals depicted in the geo-
metric interval representation with start
time and end time as axes. Ad.

In a geometric interval representation
[20] temporal intervals are projected to
points in a two-dimensional space, as in
Fig. 1. At the top of both subfigures of
Fig. 1, a schematic representation of a
series containing 4 events A, B, C and D
is depicted. Below it events are projected
as points in a two-dimensional space.
Using start and end time as axes. E.g.
event A starts at t1 and finishes at t3;
event B starts at t2 and finishes at t7;
event C starts at t4 and ends at t5; and
event D starts at t6 and finishes at t7,
lasting for (t7 − t6) time units.

4 Performance Models for
Interval Events

4.1 Geometrical Process
Representation

Process interval events as defined previously in Sect. 3.1 contain temporal inter-
vals, thus can be visualized in the geometric interval representation. Figure 2
describes an example trace, which entails four events similar to Fig. 1 with their
corresponding start; end timestamps and a different activity each. Events A, B,
C, and D are connected through a line marking they correspond to the same
trace. Event B lasts the longest in this trace, since it is furthest away from the
zero-duration diagonal. In contrast, the event with activity A appears to have
the lowest duration. Events on the same vertical, start at the same time; those
sharing one horizontal position end at the same time and if a line passing through
two events is parallel to the zero-duration diagonal, they last the same.

4.2 Performance Skyline

The performance skyline ρc of a trace σc is the largest sub sequence of events
ρc = (e1, · · · , ei . . . , ej , . . . , en), where ρc ⊆ σc, and πt−(ei) ≤ πt−(ej) for all
1 ≤ i ≤ j ≤ n. Additionally, because a trace of interval events is ordered based
on the start timestamps πt+(ei) ≤ πt+(ej) ⇔ i ≤ j. For the reason that events
in the performance skyline in the case of start time and end time as axis are
those which directly contribute to the overall duration of a process at any given
point, they are equivalent to the set of events on the dominant path, previously
presented in Sect. 3. If ei ∈ ρc, there is no other event, which starts before πt+(ei)
and ends after πt−(ei). The performance skyline of the trace in Fig. 2 is depicted
in Fig. 3. In this example ρT1 = {A,B,D} compose the performance skyline. C
does not belong to the performance skyline, because even though {C,B} ∈ σT1

and πt−(C) = t5 ≤ t7 = πt−(B), also πt+(C) = t4 � t2 = πt+(B).
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Fig. 2. Schematic representation of one
example trace with four activities as
intervals in [19]

Fig. 3. Performance skyline for example
trace T1 in Fig. 2. Ad. [19].

Fig. 4. Real log snippet from industry process with 390
event points of 30 activities, with corresponding point
colors, from 13 traces represented by different line colors.
Horizontal axis shows starting times within the first 01:06
h and vertical axis shows ending times between 00:05 h–
02:00 h. (Color figure online)

To understand a pro-
cess we analyze a rep-
resentative set of traces.
To include and compare
events from several traces
of the same process with
each other, these are
aligned to the left by sub-
tracting the start time
value π+

t (e1) to all times-
tamps π+

t (ei), π−
t (ei) for

all depicted events in
the same trace. This
way for every trace ρc

the first aligned event
e′
1 starts at π+

t (e′
1) =

π+
t (e1) − π+

t (e1) = 0
and ends at π−

t (e′
1) =

π−
t (e1) − π+

t (e1). Any
other aligned event e′

i

starts and ends rela-
tively to it, computed
π+

t (e′
i) = π+

t (ei)−π+
t (e1)
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and π−
t (e′

i) = π−
t (ei) − π+

t (e1) correspondingly. Thus events that usually start
at a certain time after the whole process starts are easier to compare with each
other. From here on in this paper, events in all presented traces are aligned.

Figure 4 shows a sample of a real log containing 390 events describing 30
activities on 13 traces of a process. Points in similar positions and same color
represent similar activities. Detected patterns between traces identifies behavior
that could be expected from future traces of the same process. In this case
similarities between traces can be observed in the peak often on the last event on
most traces depicted as a blue point. Even so, contemplating all events of several
traces simultaneously challenges recognizably in the visualization and burdens
performance with computational overhead. Selecting only a subset of interesting
events, e.g. those on the dominant path, to form a baseline of expected behavior
for a trace set eases its comparison between traces as well as with future ones.
For this purpose statistical analysis techniques will be introduced next.

5 Statistical Analysis Techniques

Methods in this section generalize the process analysis by considering multi-
ple traces in the same performance skyline model and furthermore depicting
stochastic summaries of these traces in the plot. Results visualized in this section
originate from real logs.

5.1 Average Trace Skyline

The average trace σ̄ = {ēa1 , . . . , ēai
, . . . , ēan

} of a process trace set is the result-
ing trace of averaging all events start and end times for each activity on the trace
set, i.e. for every activity the start time results in π+

t (ēai
) = 1

m

∑m
j=1 π+

t (ej) and
the end time in π−

t (ēai
) = 1

m

∑m
j=1 π−

t (ej), where πa(ej) = ai. An average trace
is suitable as a comparable expectation for inquires that involve all activities of
a trace set. It eases the view to gain representative knowledge about all activities
start and end times as well as the relationships between consecutive activities.
Figure 5 shows the average trace of the depicted trace set in Fig. 4. Comparing
the form of the average trace to the trace set’s, e.g. peaks in the 4th and last
activities of the average trace with the ones of similar color in the trace set, a
common behavior of the underlying process is revealed.

Moreover combining the average trace and the performance skyline in the
average trace skyline results in a description of a representative dominant path
for multiple traces of a process. For further details on the dominant path, see
Sect. 3. The average trace skyline of a process is the performance skyline of
the average trace. An average trace skyline is suitable to evaluate performance
expectations for a trace set because it facilitates gaining knowledge about activ-
ities that are often part of the dominant path and their relations to each other.
Figure 6 shows the average trace skyline of the trace set in Fig. 4, which is the
performance skyline of the trace in Fig. 5. This average trace skyline highlights
five out of thirty activities, which are part of the dominant path. With this
information, the user can focus on those sparing them of unnecessary visual and
computational overhead.
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Fig. 5. Average trace from Fig. 4 with 30
activities. Horizontal axis shows starting
times within the first 01:06 h and vertical
axis shows ending times between 00:05 h–
02:00 h.

Fig. 6. Performance skyline with five
activities on the dominant path marked
by line. Horizontal axis shows starting
times within the first 01:06 h and vertical
axis shows ending times between 00:05 h
–02:00 h.

5.2 Average Skyline Trace

Fig. 7. Average skyline trace with 30 activ-
ities. Horizontal axis shows starting times
within the first 01:06 h and vertical axis shows
ending times between 00:05 h–02:00 h.

The average skyline trace ρ̄ =
{ē1, . . . , ēi, . . . , ēn} of a process is
the resulting skyline from averag-
ing activities in performance sky-
lines of all traces. π+

t (ēai
) =

1
m

∑m
j=1 π+

t (ej) and the end time in
π−

t (ēai
) = 1

m

∑m
j=1 π−

t (ej), where
πa(ej) = ai and ej ∈ ρk, with ρk

being a performance skyline from a
trace in the trace set. An average
skyline trace is suitable to consider
performance aspects for a given
trace set, because it offers knowl-
edge about activities that might be
part of any trace’s dominant path,
here dominant duration path, and
their relations to each other. Conse-
quently it is more inclusive regard-
ing what activities to include than
the average trace skyline. Figure 7

shows the average of the performance skylines of traces in Fig. 4. This average
trace skyline highlights seventeen out of thirty activities, more than the average
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trace skyline in Fig. 6. With this information, the user can focus on duration
dominant activities for any of the traces. This is useful in case traces contain a
diverse set of duration dominant activities between them.

5.3 Expected Skyline Activity Set

Having computed performance skylines of a process trace set RΣ =
{ρ1, . . . , ρj , . . . , ρn}, the expected skyline activity set RA of that process
is the set of activities that have a probability of appearance on performance
skylines that is equal or higher than a given threshold tA. The appearance prob-
ability for an activity ak is computed as follows:

P (πa(ei) = ak) =
|πa(ei) = ak|

|ei ∈ ρj | , where ei ∈ ρi

Furthermore tak
≤ P (πa(ei) = ak) ⇒ ak ∈ RΣ . After computing appear-

ance probabilities, an expected threshold value shall be chosen to define the
expected skyline activity set of the presented process. The higher the chosen
threshold value, the fewer activities will be part of the expected skyline activ-
ity set. Analogously the lower the chosen threshold value, the more activities
will be part of the expected skyline activity set. An expected skyline activity
set is suitable to analyze performance of a process across events and traces;
as well as provide estimation and knowledge about deviation of events in a
process dominant path. Figure 8 shows a bar chart, where each bar repre-
sents one of seventeen activities in the data set and their length corresponding
appearance probabilities in RΣ . Choosing e.g. tA = 60% results in |RΣ | = 4,
containing following activities: UpdateCrawlStartTask, SplitCrawlInputTask,
DumpTask(target filename=review 2yold)(chunk=prep)(sql filename=re-
view) and ConvertDumpTask(filename=review 2017 3)(chunk=prep)(sql -
filename=review).

Fig. 8. Performance skyline activity set with corresponding probabilities of activity
belonging to the performance skyline.
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6 Discussion

Considering that performance skyline explicitly includes multiple traces, it offers
a suitable method for performance analysis and thus provides the user to take
more informed scheduling and planing decisions than the one offered by combin-
ing critical path method and process discovery models [17]. Furthermore intro-
duced interval events bearing multiple timestamps extend performance spectrum
[2] analysis techniques by including bi-dimensional information about relations
between events within one trace or process while still offering a slim visualiza-
tion. This way both time stamps can be used to take waiting times and events’
duration into consideration.

The experimental dataset comprehends three months of logs for a process
called daily at TrustYou GmbH, a German Guest Feedback and Hotel Reputa-
tion Software company. Broadly explained this process ingests customer reviews
from multiple sources, does multiple transformations, aggregates them and stores
the result at a given location. Being a data process, only computing resources
are involved and thus control-flow deviations such as order of activities execu-
tion, do not vary without showing performance deviations on interdependent
activities as well. The data collection compounds 62,074 interval events spread
among 50 traces. It contains 261 different values for activity id. A trace has on
average 1238 events. Most activities appear mostly once in a trace, except for
six of them which correspond to a few hundred events.

Additionally taking only a subset of dominant activities of interest into
account to describe a whole process reduces computational time an eases the
search for potential improvement and answers to performance questions that
might only concern a certain metric. For example finding events of dominant
duration is useful when searching long lasting single activities that can be opti-
mized while also regarding their order of execution and parallelization, which
might be inflexible due to their inter-dependencies. For the experiment trace
set an average of 5, 22% of its events are part of the performance skyline. In
order to include the performance knowledge of multiple traces at once, statis-
tical analysis techniques select duration dominant activities that concern any,
most or some of the traces. Different techniques serve multiple purposes and
data and show advantages to solve various matters: First, the average trace sky-
line includes only activities that belong to the dominant path. These are highly
suited for comparing the average behavior of activities with each other. With
this information independent non-dominant events can be paralleled to duration
dominant events and thus performance of the whole process can be optimized.
Nevertheless being very exclusive with average duration activities, which means
that if there is an activity A, which due to high performance variance often
appears on the performance skyline for some traces, but which is on average
dominated by another activity B. Activity A will not be part of the average
trace skyline. Furthermore, groups of traces that have different sets of activities
on their skyline might be representative, and conforming, without appearing
most often. For this reason the order of steps, averaging and computing a sky-
line, for a trace set leads to different expectation skylines. Second, the average
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skyline trace includes every activity on any skyline in the set to the average
skyline trace. Even if this technique is advantageous to compare all duration
dominant activities, it can produce an expectation skyline trace that is signifi-
cantly sensitive to outliers because it includes activities that might only be part
of a skyline computed from some traces or even the average trace. Lastly, as a
trade off between only including most frequent dominant path’s activities and
all activities from any dominant path disregarding their relevance, an expected
skyline activity set provides estimation and knowledge about performance devi-
ation of events in a process dominant path, which can be used e.g. to identify
trace anomalies. All of our presented statistical analysis techniques enable more
informed decisions taking, e.g. how to best schedule events, without overflowing
the visualization. Furthermore as a rather data-driven opposed to control-flow
based approach, our performance skyline yields flow analysis [12] like results for
mining non-block-structured models.

7 Conclusion and Future Work

With our new approach of performance skyline we introduce a novel approach for
the performance mining of events containing multiple timestamps. Combining
interval based sequence pattern mining and process mining techniques facilitates
more accurate process discovery by integrating additional performance knowl-
edge across traces and events. Applying statistical analysis techniques on the
performance skyline enrich dominant path analysis with probabilistic perfor-
mance knowledge enabling more complete conformance checking, detecting and
discerning patterns, and thus adapting processes to be faster and more resource-
ful. Results from applying these methods to the real data set for a company
exemplifies how combining performance mining and sequence pattern mining
techniques is most suitable to identify and analyze the dominant path in a pro-
cess model using a trace set containing interval events.

Future work involves further experiments with variations on implementation
of the skyline operator, e.g. investigating minimal time duration as a domi-
nant feature, which may be useful to optimize resources allocation. Further-
more it includes testing different alignment references, and inquiring skylines
on other dominant features besides duration, as waiting time, or even non-time
related aspects as memory usage. Moreover investigation of inferring models from
streaming interval events as well as general research for suitability solving tasks
in process discovery, conformance checking, and process enhancement could be
expanded:

– Broader process discovery: identify loops and choices in the performance
skyline aggregations, extending the model by adding more information or
enriching further the visualization of already present items, researching more
variations of this model, as adding a third dimension plotting information
about resources, dependencies, further timestamps and case id.

– Conformance checking for recognition and prediction tasks: Anomaly
detection on trace - activity and event level, drift recognition, and more
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specifically predictive process monitoring for interval events, using e.g. sky-
line expectation maximization [21] for performance prediction on event level,
as well as event anomaly detection through such predictions.

– Process enhancement: recognizing bottlenecks, or using detected proba-
bilistic pattern knowledge for optimal networks queuing and resource alloca-
tion efficiently.
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Abstract. Comparing observed behavior (event data generated during
process executions) with modeled behavior (process models), is an essen-
tial step in process mining analyses. Alignments are the de-facto standard
technique for calculating conformance checking statistics. However, the
calculation of alignments is computationally complex since a shortest
path problem must be solved on a state space which grows non-linearly
with the size of the model and the observed behavior, leading to the
well-known state space explosion problem. In this paper, we present a
novel framework to approximate alignments on process trees by exploit-
ing their hierarchical structure. Process trees are an important process
model formalism used by state-of-the-art process mining techniques such
as the inductive mining approaches. Our approach exploits structural
properties of a given process tree and splits the alignment computation
problem into smaller sub-problems. Finally, sub-results are composed to
obtain an alignment. Our experiments show that our approach provides
a good balance between accuracy and computation time.

Keywords: Process mining · Conformance checking · Approximation

1 Introduction

Conformance checking is a key research area within process mining [1]. The
comparison of observed process behavior with reference process models is of cru-
cial importance in process mining use cases. Nowadays, alignments [2] are the
de-facto standard technique to compute conformance checking statistics. How-
ever, the computation of alignments is complex since a shortest path problem
must be solved on a non-linear state space composed of the reference model and
the observed process behavior. This is known as the state space explosion prob-
lem [3]. Hence, various approximation techniques have been introduced. Most
techniques focus on decomposing Petri nets or reducing the number of align-
ments to be calculated when several need to be calculated for the same process
model [4–8].

In this paper, we focus on a specific class of process models, namely pro-
cess trees (also called block-structured process models), which are an important
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process model formalism that represent a subclass of sound Workflow nets [9].
For instance, various state-of-the-art process discovery algorithms return process
trees [9–11]. In this paper, we introduce an alignment approximation approach
for process trees that consists of two main phases. First, our approach splits
the problem of alignments into smaller sub-problems along the tree hierarchy.
Thereby, we exploit the hierarchical structure of process trees and their seman-
tics. Moreover, the definition of sub-problems is based on a gray-box view on the
corresponding subtrees since we use a simplified/abstract view on the subtrees to
recursively define the sub-problems along the tree hierarchy. Such sub-problems
can then be solved individually and in parallel. Secondly, we recursively compose
an alignment from the sub-results for the given process tree and observed pro-
cess behavior. Our experiments show that our approach provides a good balance
between accuracy and computation effort.

The remainder is structured as follows. In Sect. 2, we present related work. In
Sect. 3, we present preliminaries. In Sect. 4, we present the formal framework of
our approach. In Sect. 5, we introduce our alignment approximation approach.
In Sect. 6, we present an evaluation. Section 7 concludes the paper.

2 Related Work

In this section, we present related work regarding alignment computation and
approximation. For a general overview of conformance checking, we refer to [3].

Alignments have been introduced in [2]. In [12] it was shown that the com-
putation is reducible to a shortest path problem and the solution of the problem
using the A* algorithm is presented. In [13], the authors present an improved
heuristic that is used in the shortest path search. In [14], an alignment approxi-
mation approach based on approximating the shortest path is presented.

A generic approach to decompose Petri nets into multiple sub-nets is intro-
duced in [15]. Further, the application of such decomposition to alignment com-
putation is presented. In contrast to our approach, the technique does not return
an alignment. Instead, only partial alignments are calculated, which are used, for
example, to approximate an overall fitness value. In [4], an approach to calculate
alignments based on Petri net decomposition [15] is presented that additionally
guarantees optimal fitness values and optionally returns an alignment. Com-
paring both decomposition techniques with our approach, we do not calculate
sub-nets because we simply use the given hierarchical structure of a process tree.
Moreover, our approach always returns a valid alignment.

In [5], an approach is presented that approximates alignments for an event log
by reducing the number of alignments being calculated based on event log sam-
pling. Another technique based on event log sampling is presented in [8] where
the authors explicitly approximate conformance results, e.g., fitness, rather than
alignments. In contrast to our proposed approach, alignments are not returned.
In [6] the authors present an approximation approach that explicitly focuses on
approximating multiple optimal alignments. Finally, in [7], the authors present
a technique to reduce a given process model and an event log s.t. the original
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Table 1. Example of an event log from an order process

Event-id Case-id Activity name Timestamp · · ·
· · · · · · · · · · · · · · ·
200 13 create order (c) 2020-01-02 15:29 · · ·
201 27 receive payment (r) 2020-01-02 15:44 · · ·
202 43 dispatch order (d) 2020-01-02 16:29 · · ·
203 13 pack order (p) 2020-01-02 19:12 · · ·
· · · · · · · · · · · · · · ·

behavior of both is preserved as much as possible. In contrast, the proposed
approach in this paper does not modify the given process model and event log.

3 Preliminaries

We denote the power set of a given set X by P(X). A multi-set over a set
X allows multiple appearances of the same element. We denote the universe
of multi-sets for a set X by B(X) and the set of all sequences over X as X∗,
e.g., 〈a, b, b〉 ∈ {a, b, c}∗. For a given sequence σ, we denote its length by |σ|. We
denote the empty sequence by 〈〉. We denote the set of all possible permuta-
tions for given σ ∈ X∗ by P(σ)⊆ X∗. Given two sequences σ and σ′, we denote
the concatenation of these two sequences by σ ·σ′. We extend the · operator to
sets of sequences, i.e., let S1, S2 ⊆X∗ then S1 ·S2 = {σ1 ·σ2 |σ1 ∈S1∧σ2 ∈ S2}.
For traces σ, σ′, the set of all interleaved sequences is denoted by σ � σ′, e.g.,
〈a, b〉 � 〈c〉= {〈a, b, c〉, 〈a, c, b〉, 〈c, a, b〉}. We extend the � operator to sets of
sequences. Let S1, S2 ⊆X∗, S1 � S2 denotes the set of interleaved sequences, i.e.,
S1 � S2 =

⋃
σ1 ∈ S1,σ2 ∈ S2

σ1 � σ2.
For σ ∈X∗ and X ′ ⊆X, we recursively define the projection func-

tion σ↓X′ :X∗→(X ′)∗ with: 〈〉↓X′ = 〈〉,
(
〈x〉 · σ

)
↓X′

= 〈x〉 · σ↓X′ if x∈X ′ and
(〈x〉 · σ)↓X′ =σ↓X′ else.

Let t = (x1, . . . , xn)∈ X1× . . . ×Xn be an n-tuple over n sets. We
define projection functions that extract a specific element of t, i.e.,
π1(t)= x1, . . . , πn(t)= xn, e.g., π2 ((a, b, c)) = b. Analogously, given a sequence
of length m with n-tuples σ = 〈(x1

1, . . . , x
1
n), . . . , (xm

1 , . . . , xm
n )〉, we define

π∗
1(σ)= 〈x1

1, . . . , x
m
1 〉, . . . , π∗

n(σ)= 〈x1
n, . . . , xm

n 〉. For instance, π∗
2

(
〈(a, b), (a, c),

(b, a)〉
)
= 〈b, c, a〉.

3.1 Event Logs

Process executions leave event data in information systems. An event describes
the execution of an activity for a particular case/process instance. Consider
Table 1 for an example of an event log where each event contains the executed
activity, a timestamp, a case-id and potentially further attributes. Since, in this
paper, we are only interested in the sequence of activities executed, we define an
event log as a multi-set of sequences. Such sequence is also referred to as a trace.
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×
n2.1

→
n3.1

a

n4.1

b

n4.2 ∧
n3.2

c

n4.3

d

n4.4

τ

n2.2 ∧
n1.2

e

n2.3

a

n2.4

T1=�T0 (n1.1) T2=�T0 (n1.2)

Fig. 1. Process tree T0 =
(
{no, . . . , n4.4},

{
(n0, n1.1), . . . , (n3.2, n4.4)

}
, λ, n0

)
with

λ(n0) = →, . . . , λ(n4.4) = d

Definition 1 (Event log). Let A be the universe of activities. L∈ B(A∗) is an
event log.

3.2 Process Trees

Next, we define the syntax and semantics of process trees.

Definition 2 (Process Tree Syntax). Let A be the universe of activities
and τ /∈A. Let

⊕
= {→,×,∧,�} be the set of process tree operators. We define

a process tree T = (V,E, λ, r) consisting of a totally ordered set of nodes V , a set
of edges E, a labeling function λ:V →A∪ {τ}∪

⊕
and a root node r ∈ V .

–
(
{n}, {}, λ, n

)
with λ(n)∈ A ∪ {τ} is a process tree

– given k > 1 process trees T1 = (V1, E1, λ1, r1), . . . , Tk = (Vk, Ek, λk, rk), T=
(V,E, λ, r) is a process tree s.t.:

• V = V1 ∪ . . . ∪Vk ∪{r} (assume r /∈V1∪ . . . ∪Vk)
• E = E1 ∪ . . . ∪Ek ∪

{
(r, r1), . . . , (r, rk)

}

• λ(x)= λj(x) ∀j ∈{1, . . . , k}∀x∈ Vj , λ(r)∈ {→,∧,×}
– given two process trees T1 = (V1, E1, λ1, r1) and T2 = (V2, E2, λ2, r2),

T = (V,E, λ, r) is a process tree s.t.:
• V = V1 ∪ V2∪{r} (assume r/∈V1 ∪ V2)
• E = E1 ∪E2∪

{
(r, r1), (r, r2)

}

• λ(x)= λ1(x) if x∈ V1, λ(x)= λ2(x) if x∈ V2, λ(r)= �

In Fig. 1, we depict an example process tree T0 that can alterna-
tively be represented textually due to the totally ordered node set, i.e.,
T0=̂→(�(×(→(a, b),∧(c, d)), τ),∧(e, a)). We denote the universe of process
trees by T . The degree d indicates the number of edges connected to a
node. We distinguish between incoming d+ and outgoing edges d−, e.g.,
d+(n2.1) = 1 and d−(n2.1)= 2. For a tree T = (V,E, λ, r), we denote its leaf
nodes by TL = {v ∈V |d−(v) = 0}. The child function cT :V →V ∗ returns a
sequence of child nodes according to the order of V , i.e., cT (v)= 〈v1, . . . , vj〉 s.t.
(v, v1), . . . , (v, vj)∈ E. For instance, cT (n1.1)= 〈n2.1, n2.2〉. For T = (V,E, λ, r)
and a node v ∈ V , �T (v) returns the corresponding tree T ′ s.t. v is the root node,
i.e., T ′ = (V ′, E′, λ′, v). Consider T0, �T0(n1.1)= T1 as highlighted in Fig. 1. For
process tree T ∈ T , we denote its height by h(T )∈N.
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trace part a b � � c f � �
model part n4.1

λ(n4.1)=a
n4.2

λ(n4.2)=b
n2.2

λ(n2.2)=τ
n4.4

λ(n4.4)=d
n4.3

λ(n4.3)=c
� n2.4

λ(n2.4)=a
n2.3

λ(n2.3)=e

Fig. 2. Optimal alignment γ =
〈
(a, n4.1), . . . , (�, n2.3)

〉
for 〈a, b, c, f〉 and T0

Definition 3 (Process Tree Semantics). For given T = (V,E, λ, r)∈ T , we
define its language L(T )⊆ A∗.

– if λ(r)= a∈ A, L(T )= {〈a〉}
– if λ(r)= τ , L(T )= {〈〉}
– if λ(r)∈ {→,×,∧} with cT (r)= 〈v1, . . . , vk〉

• with λ(r)= →, L(T )= L(�T (v1)) · . . . ·L(�T (vk))
• with λ(r)= ∧, L(T )= L(�T (v1)) � . . . �L(�T (vk))
• with λ(r)= ×, L(T )= L(�T (v1))∪ . . . ∪L(�T (vk))

– if λ(r)= � with cT (r)= 〈v1, v2〉, L(T )= {σ1 ·σ′
1 ·σ2 ·σ′

2 · . . . ·σm | m≥ 1 ∧
∀1≤ i≤ m

(
σi ∈ L(�T (v1))

)
∧ ∀1≤ i≤m− 1

(
σ′

i ∈ L(�T (v2))
)
}

In this paper, we assume binary process trees as input for our approach, i.e.,
every node has two or none child nodes, e.g., T0. Note that every process tree
can be easily converted into a language equivalent binary process tree [9].

3.3 Alignments

Alignments [12] map observed behavior onto modeled behavior specified by pro-
cess models. Figure 2 visualizes an alignment for the trace 〈a, b, c, f〉 and T0

(Fig. 1). The first row corresponds to the given trace ignoring the skip sym-
bol �. The second row (ignoring �) corresponds to a sequence of leaf nodes
s.t. the corresponding sequence of labels (ignoring τ) is in the language of the
process tree, i.e., 〈a, b, d, c, a, e〉 ∈ L(T0). Each column represents an alignment
move. The first two are synchronous moves since the activity and the leaf node
label are equal. The third and fourth are model moves because � is in the log
part. Moreover, the third is an invisible model move since the leaf node label is
τ and the fourth is a visible model move since the label represents an activity.
Visible model moves indicate that an activity should have taken place w.r.t.
the model. The sixth is a log move since the trace part contains �. Log moves
indicate observed behavior that should not occur w.r.t. the model. Note that we
alternatively write γ=̂

〈
(a, a), . . . , (�, e)

〉
using their labels instead of leaf nodes.

Definition 4 (Alignment). Let A be the universe of activities, σ ∈A∗ be a
trace and T = (V,E, λ, r)∈ T be a process tree with leaf nodes TL. Note that
�, τ /∈A. A sequence γ ∈

(
(A ∪ {�})× (TL ∪ {�})

)∗ with length n= |γ| is an
alignment iff:

1. σ =π∗
1(γ)↓A

2.
〈
λ
(
π2

(
γ (1)

))
, . . . , λ

(
π2

(
γ(n)

))〉

↓A
∈ L(T )

3. (�,�)/∈γ and (a, v) /∈ γ ∀a∈ A ∀v∈TL
(
a �= λ(v)

)
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For a given process tree and a trace, many alignments exist. Thus, costs
are assigned to alignment moves. In this paper, we assume the standard cost
function. Synchronous and invisible model moves are assigned cost 0, other moves
are assigned cost 1. An alignment with minimal costs is called optimal. For a
process tree T and a trace σ, we denote the set of all possible alignments by
Γ (σ, T ). In this paper, we assume a function α that returns for given T ∈ T
and σ ∈ A∗ an optimal alignment, i.e., α(σ, T )∈ Γ (σ, T ). Since process trees can
be easily converted into Petri nets [1] and the computation of alignments for
a Petri net was shown to be reducible to a shortest path problem [12], such
function exists.

4 Formal Framework

In this section, we present a general framework that serves as the basis for
the proposed approach. The core idea is to recursively divide the problem of
alignment calculation into multiple sub-problems along the tree hierarchy. Sub-
sequently, we recursively compose partial sub-results to an alignment.

Given a trace and tree, we recursively split the trace into sub-traces and
assign these to subtrees along the tree hierarchy. During splitting/assigning, we
regard the semantics of the current root node’s operator. We recursively split
until we can no longer split, e.g., we hit a leaf node. Once we stop splitting, we
calculate optimal alignments for the defined sub-traces on the assigned subtrees,
i.e., we obtain sub-alignments. Next, we recursively compose the sub-alignments
to a single alignment for the parent subtree. Thereby, we consider the semantics
of the current root process tree operator. Finally, we obtain a valid, but not
necessarily optimal, alignment for the initial given tree and trace since we regard
the semantics of the process tree during splitting/assigning and composing.

Formally, we can express the splitting/assigning as a function. Given a trace
σ ∈A∗ and T = (V,E, λ, r)∈ T with subtrees T1 and T2, ψ splits the trace σ into
k sub-traces σ1, . . . , σk and assigns each sub-trace to either T1 or T2.

ψ(σ, T )∈
{〈

(σ1, Ti1), . . . , (σk, Tik
)
〉

| i1, . . . , ik ∈{1, 2}∧σ1 · . . . ·σk ∈P(σ)
}

(1)

We call a splitting/assignment valid if the following additional conditions are
satisfied depending on the process tree operator:

– if λ(r)= ×: k = 1
– if λ(r)= →: k = 2 ∧ σ1 ·σ2 =σ
– if λ(r)= ∧: k = 2
– if λ(r)= �: k ∈{1, 3, 5, . . . } ∧ σ1 · . . . ·σk = σ ∧ i1 = 1 ∧ ∀j ∈ {1, . . . , k −

1}
(
(ij = 1⇒ij+1 = 2) ∧ (ij = 2⇒ij+1 = 1)

)

Secondly, the calculated sub-alignments are recursively composed to an
alignment for the respective parent tree. Assume a tree T ∈T with sub-
trees T1 and T2, a trace σ ∈ A∗, a valid splitting/assignment ψ(σ, T ),
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Algorithm 1: Approximate alignment
input: T =(V, E, λ, r)∈ T , σ ∈ A∗, TL ≥ TH≥1
begin

1 if |σ| ≤ TL ∨ h(T )≤ TH then
2 return α(σ, T ); // optimal alignment

3 else
4 ψ(σ, T )= 〈(σ1, Ti1 ), . . . , (σk, Tik

)
〉
; // valid splitting

5 for (σj , Tij
)∈ 〈

(σ1, Ti1 ), . . . , (σk, Tik
)
〉
do

6 γj ←approx. alignment for σj and Tij
; // recursion

7 γ ← ω(σ, T, 〈γ1, . . . , γk〉); // composing
8 return γ;

→

T1 T2

σ=〈d, c, a, b, c, d | a, e〉

A(T1)={a, b, c, d} 〈〉/∈L(T1)

SA(T1)={a, c, d}
EA(T1)={b, c, d}

A(T2)={e, a} 〈〉/∈L(T1)

SA(T2)={e, a}
EA(T2)={e, a}

σ1=〈d, c, a, b, c, d〉 σ2=〈a, e〉

(a) Trace splitting and assignment

→

T1 T2

γ1=̂
d c a b c d
d c b b c d

γ2=̂
a e
a e

γ=̂
d c a b c d
d c b b c d

· a e
a e

(b) Alignment composition

Fig. 3. Overview of the two main actions of the approximation approach

and a sequence of k sub-alignments 〈γ1, . . . , γk〉 s.t. γj ∈Γ (σj , Tij
) with

(σj , Tij
)= ψ(σ, T )(j) forall j ∈{1, . . . , k}. The function ω composes an align-

ment for T and σ from the given sub-alignments.

ω(σ, T, 〈γ1, . . . , γk〉)∈ {γ | γ ∈ Γ (σ, T ) ∧ γ1 · . . . · γk ∈P(γ)} (2)

By utilizing the definition of process tree semantics, it is easy to show that, given
a valid splitting/assignment, such alignment γ returned by ω always exists.

The overall, recursive approach is sketched in Algorithm 1. For a given tree T
and trace σ, we create a valid splitting/assignment (line 4). Next, we recursively
call the algorithm on the determined sub-traces and subtrees (line 6). If given
thresholds for trace length (TL) or tree height (TH) are reached, we stop split-
ting and return an optimal alignment (line 2). Hence, for the sub-traces created,
we eventually obtain optimal sub-alignments, which we recursively compose to
an alignment for the parent tree (line 7). Finally, we obtain a valid, but not
necessarily optimal, alignment for T and σ.

5 Alignment Approximation Approach

Here, we describe our proposed approach, which is based on the formal frame-
work introduced. First, we present an overview. Subsequently, we present specific
strategies for splitting/assigning and composing for each process tree operator.
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5.1 Overview

For splitting a trace and assigning sub-traces to subtrees many options exist.
Moreover, it is inefficient to try out all possible options. Hence, we use a heuristic
that guides the splitting/assigning. For each subtree, we calculate four character-
istics: the activity labels A, if the empty trace is in the subtree’s language, possi-
ble start-activities SA and end-activities EA of traces in the subtree’s language.
Thus, each subtree is a gray-box since only limited information is available.

Consider the trace to be aligned σ = 〈d, c, a, b, c, d, a, e〉 and the two sub-
trees of T0 with corresponding characteristics depicted in Fig. 3a. Since T0’s
root node is a sequence operator, we need to split σ once to obtain two sub-
traces according to the semantics. Thus, we have 9 potential splittings positions:
〈|1 d |2 c |3 a |4 b |5 c |6 d |7 a |8 e |9〉. If we split at position 1, we assign σ1 = 〈〉
to the first subtree T1 and the remaining trace σ2 =σ to T2. Certainly, this is
not a good decision since we know that 〈〉/∈L(T1), the first activity of σ2 is not
a start activity of T2 and the activities b, c, d occurring in σ2 are not in T2.

Assume we split at position 7 (Fig. 3a). Then we assign σ1 = 〈d, c, a, b, c, d〉 to
T1. All activities in σ1 are contained in T1, σ1 starts with d ∈ SA(T1) and ends
with d ∈ EA(T1). Further, we obtain σ2 = 〈a, e〉 whose activities can be replayed
in T2, and start- and end-activities match, too. Hence, according to the gray-
box-view, splitting at position 7 is a good choice. Next, assume we receive two
alignments γ1 for T1, σ1 and γ2 for T2, σ2 (Fig. 3b). Since T1 is executed before
T2, we concatenate the sub-alignments γ = γ1 · γ2 and obtain an alignment for
T0.

5.2 Calculation of Process Tree Characteristics

In this section, we formally define the computation of the four tree character-
istics for a given process tree T = (V,E, λ, r). We define the activity set A as a
function, i.e., A:T →P(A), with A(T )= {λ(n) | n∈ TL, λ(n) �= τ}. We recursively
define the possible start- and end-activities as a function, i.e., SA:T →P(A) and
EA:T →P(A). If T is not a leaf node, we refer to its two subtrees as T1 and T2.

SA(T ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{λ(r)} if λ(r) ∈ A
∅ if λ(r) = τ

SA(T1) if λ(r) = →∧〈〉/∈L(T1)

SA(T1) ∪ SA(T2) if λ(r) = →∧〈〉 ∈ L(T1)

SA(T1) ∪ SA(T2) if λ(r) ∈ {∧, ×}
SA(T1) if λ(r) = �∧〈〉/∈L(T1)

SA(T1) ∪ SA(T2) if λ(r) = �∧〈〉 ∈ L(T1)

EA(T )=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{λ(n)} if λ(r) ∈ A
∅ if λ(r) = τ

EA(T2) if λ(r)=→∧〈〉/∈L(T2)

EA(T1) ∪ EA(T2) if λ(r) = →∧〈〉 ∈ L(T2)

EA(T1) ∪ EA(T2) if λ(r) ∈ {∧, ×}
EA(T1) if λ(r) = �∧〈〉/∈L(T1)

EA(T1) ∪ EA(T2) if λ(r) = �∧〈〉 ∈ L(T1)

The calculation whether the empty trace is accepted can also be done recursively.

– λ(r)= τ ⇒ 〈〉∈ L(T ) and λ(r)∈ A ⇒ 〈〉 /∈ L(T )
– λ(r)∈ {→,∧} ⇒ 〈〉∈ L(T1) ∧ 〈〉∈ L(T2) ⇔ 〈〉∈ L(T )
– λ(r)∈ × ⇒ 〈〉 ∈ L(T1) ∨ 〈〉∈ L(T2) ⇔ 〈〉∈ L(T )
– λ(r)= �⇒ 〈〉∈ L(T1) ⇔ 〈〉∈ L(T )
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5.3 Interpretation of Process Tree Characteristics

The decision where to split a trace and the assignment of sub-traces to subtrees is
based on the four characteristics per subtree and the process tree operator. Thus,
each subtree is a gray-box for the approximation approach since only limited
information is available. Subsequently, we explain how we interpret the subtree’s
characteristics and how we utilize them in the splitting/assigning decision.

Consider Fig. 4 showing how the approximation approach assumes a given
subtree T behaves based on its four characteristics, i.e., A(T ), SA(T ), EA(T ),
〈〉 ∈ L(T ). The most liberal interpretation I(T ) of a subtree T can be consid-
ered as a heuristic that guides the splitting/assigning. The interpretation I(T )
depends on two conditions, i.e., if 〈〉 ∈ L(T ) and whether there is an activ-
ity that is both, a start- and end-activity, i.e., SA(T )∩ EA(T )�=∅. Note that
L(T )⊆ L(I(T )) holds. Thus, the interpretation is an approximated view on the
actual subtree.

In the next sections, we present for each tree operator a splitting/assigning
and composing strategy based on the presented subtree interpretation. All strate-
gies return a splitting per recursive call that minimizes the overall edit distance
between the sub-traces and the closest trace in the language of the interpretation
of the assigned subtrees. For σ1, σ2 ∈ A∗, let �(σ1, σ2)∈N∪ {0} be the Leven-
shtein distance [16]. For given σ ∈ A∗ and T ∈T , we calculate a valid splitting
ψ(σ, T )=

〈
(σ1, Ti1), . . . , (σj , Tik

)
〉

w.r.t. Eq. (1) s.t. the sum depicted below is
minimal. ∑

j ∈ {1,...,k}

(
min

σ′ ∈ I(Tij
)
�(σj , σ

′)
)

(3)

In the upcoming sections, we assume a given trace σ = 〈a1, . . . , an〉 and a
process tree T = (V,E, λ, r) with subtrees referred to as T1 and T2.

→

�× SA(T )
) �

τ �× A(T )
)

�× EA(T )
)

(a) 〈〉/∈L(T ) and SA(T )∩EA(T )=∅

×

→

�× SA(T )
) �

τ �× A(T )
)

�× EA(T )
)

�× SA(T )∩EA(T )
)

(b) 〈〉/∈L(T ) and SA(T )∩EA(T )	=∅
×

→

�× SA(T )
) �

τ �× A(T )
)

�× EA(T )
)

τ

(c) 〈〉∈L(T ) and SA(T )∩EA(T )=∅

×

→

�× SA(T )
) �

τ �× A(T )
)

�× EA(T )
)

�× SA(T )
)
∩EA(T )

)
τ

(d) 〈〉∈L(T ) and SA(T )∩EA(T )	=∅

Fig. 4. Most liberal interpretation I(T ) of the four characteristics of a process tree
T ∈ T . For a set X = {x1, . . . , xn}, �×(X) represents the tree ×(x1, . . . , xn)
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5.4 Approximating on Choice Operator

The choice operator is the most simple one since we just need to assign σ to one
of the subtrees according to the semantics, i.e., assigning σ either to T1 or T2.
We compute the edit distance of σ to the closest trace in I(T1) and in I(T2) and
assign σ to the subtree with smallest edit distance according to Eq. (3).

Composing an alignment for the choice operator is trivial. Assume we even-
tually get an alignment γ for the chosen subtree, we just return γ for T .

5.5 Approximating on Sequence Operator

When splitting on a sequence operator, we must assign a sub-trace to
each subtree according to the semantics. Hence, we calculate two sub-traces:
〈(σ1, T1), (σ2, T2)〉 s.t. σ1 ·σ2 =σ according to Eq. (3). The optimal split-
ting/assigning can be defined as an optimization problem, i.e., Integer Linear
Programming (ILP).

In general, for a trace with length n, n+ 1 possible splitting-positions exist:
〈|1 a1 |2 a2 |3 . . . |n an |n+1〉. Assume we split at position 1, this results in〈
(〈〉, T1), (σ, T2)

〉
, i.e., we assign 〈〉 to T1 and the original trace σ to T2.

Composing the alignment from sub-alignments is straightforward. In general,
we eventually obtain two alignments, i.e., 〈γ1, γ2〉, for T1 and T2. We compose
the alignment γ for T by concatenating the sub-alignments, i.e., γ = γ1 · γ2.

5.6 Approximating on Parallel Operator

According to the semantics, we must define a sub-trace for each subtree, i.e.,
〈(T1, σ1), (T2, σ2)〉. In contrast to the sequence operator, σ1 ·σ2 = σ does not
generally hold. The splitting/assignment w.r.t. Eq. (3) can be defined as an ILP.
In general, each activity can be assigned to one of the subtrees independently.

For example, assume σ = 〈c, a, d, c, b〉 and T =̂∧
(
→(a, b),�(c, d)

)
with subtree

T1=̂→(a, b) and T2=̂�(c, d). Below we assign the activities to subtrees.

〈 c, a, d, c, b 〉
T2 T1 T2 T2 T1

Based on the assignment, we create two sub-traces: σ1 = 〈a, b〉 and σ2 = 〈c, d, c〉.
Assume that γ1=̂〈(a, a), (b, b)〉 and γ2=̂〈(c, c), (d, d), (c, c)〉 are the two align-
ments eventually obtained. To compose an alignment for T , we have to con-
sider the assignment. Since the first activity c is assigned to T2, we extract
the corresponding alignment steps from γ1 until we have explained c. The
next activity in σ is an a assigned to T1. We extract the alignment moves
from γ1 until we explained the a. We iteratively continue until all activi-
ties in σ are covered. Finally, we obtain an alignment for T and σ, i.e.,
γ=̂

〈
(c, c), (a, a), (d, d), (c, c), (b, b)

〉
.



Alignment Approximation for Process Trees 257

5.7 Approximating on Loop Operator

We calculate m∈ {1, 3, 5, . . . } sub-traces that are assigned alternately to the two
subtrees: 〈(σ1, T1), (σ2, T2), (σ3, T1), . . . , (σm−1, T2), (σm, T1)〉 s.t. σ =σ1 · . . . ·
σm. Thereby, σ1 and σm are always assigned to T1. Next, we visualize all possible
splitting positions for the given trace: 〈|1 a1 |2 |3 a2 |4 . . . |2n − 1 an |2n〉. If we split
at each position, we obtain

〈(
〈〉, T1

)
,
(
〈a1〉, T2

)
,
(
〈〉, T1

)
, . . . ,

(
〈an〉, T2

)
,
(
〈〉, T1

)〉
.

The optimal splitting/assignment w.r.t Eq. (3) can be defined as an ILP.
Composing an alignment is similar to the sequence operator. In gen-

eral, we obtain m sub-alignments 〈γ1, . . . , γm〉, which we concatenate, i.e.,
γ = γ1 · . . . ·γm.

6 Evaluation

This section presents an experimental evaluation of the proposed approach.
We implemented the proposed approach in PM4Py1, an open-source process

mining library. We conducted experiments on real event logs [17,18]. For each log,
we discovered a process tree with the Inductive Miner infrequent algorithm [10].

In Figs. 5 and 6, we present the results. We observe that our approach is on
average always faster than the optimal alignment algorithm for all tested param-
eter settings. Moreover, we observe that our approach never underestimates the
optimal alignment costs, as our approach returns a valid alignment. W.r.t. opti-
mization problems for optimal splittings/assignments, consider parameter set-
ting TH:5 and TL:5 in Fig. 5. This parameter setting results in the highest
splitting along the tree hierarchy and the computation time is the lowest com-
pared to the other settings. Thus, we conclude that solving optimization prob-
lems for finding splittings/assignments is appropriate. In general, we observe
a good balance between accuracy and computation time. We additionally con-
ducted experiments with a decomposition approach [15] (available in ProM2)
and compared the calculation time with the standard alignment implementation
(LP-based) [12] in ProM. Consider Table 2. We observe that the decomposi-
tion approach does not yield a speed-up for [17] but for [18] we observe that
the decomposition approach is about 5 times faster. In comparison to Fig. 6a,
however, our approach yields a much higher speed-up.

Table 2. Results for decomposition based alignments

Approach [17] (sample: 100 variants) [18] (sample: 100 variants)

Decomposition [4] 25.22 s 20.96 s

Standard [12] 1.51 s 103.22 s

1 https://pm4py.fit.fraunhofer.de/.
2 http://www.promtools.org/.

https://pm4py.fit.fraunhofer.de/
http://www.promtools.org/
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(a) Avg. computation time (s) (b) Avg. alignment costs

Fig. 5. Results for [17], sample: 100 variants, tree height 24, avg. trace length 28

(a) Avg. computation time (s) (b) Avg. alignment costs

Fig. 6. Results for [18], sample: 100 variants, tree height 10, avg. trace length 65

7 Conclusion

We introduced a novel approach to approximate alignments for process trees.
First, we recursively split a trace into sub-traces along the tree hierarchy based
on a gray-box view on the respective subtrees. After splitting, we compute opti-
mal sub-alignments. Finally, we recursively compose a valid alignment from sub-
alignments. Our experiments show that the approach provides a good balance
between accuracy and calculation time. Apart from the specific approach pro-
posed, the contribution of this paper is the formal framework describing how
alignments can be approximated for process trees. Thus, many other strategies
besides the one presented are conceivable.
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Sepúlveda, M.: Recomposing conformance: closing the circle on decomposed
alignment-based conformance checking in process mining. Inf. Sci. 466, 55–91
(2018)

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7


Alignment Approximation for Process Trees 259

5. Fani Sani, M., van Zelst, S.J., van der Aalst, W.M.P.: Conformance checking
approximation using subset selection and edit distance. In: Dustdar, S., Yu, E.,
Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 234–251.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3 15

6. Taymouri, F., Carmona, J.: An evolutionary technique to approximate multiple
optimal alignments. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.)
BPM 2018. LNCS, vol. 11080, pp. 215–232. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-98648-7 13

7. Taymouri, F., Carmona, J.: Model and event log reductions to boost the compu-
tation of alignments. In: SIMPDA 2016, vol. 1757 (2016). CEUR-WS.org

8. Bauer, M., van der Aa, H., Weidlich, M.: Estimating process conformance by
trace sampling and result approximation. In: Hildebrandt, T., van Dongen, B.F.,
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Abstract. Many algorithms now exist for discovering process models
from event logs. These models usually describe a control flow and are
intended for use by people in analysing and improving real-world organi-
zational processes. The relative likelihood of choices made while follow-
ing a process (i.e., its stochastic behaviour) is highly relevant informa-
tion which few existing algorithms make available in their automatically
discovered models. This can be addressed by automatically discovered
stochastic process models.

We introduce a framework for automatic discovery of stochastic pro-
cess models, given a control-flow model and an event log. The frame-
work introduces an estimator which takes a Petri net model and an
event log as input, and outputs a Generalized Stochastic Petri net. We
apply the framework, adding six new weight estimators, and a method
for their evaluation. The algorithms have been implemented in the open-
source process mining framework ProM. Using stochastic conformance
measures, the resulting models have comparable conformance to existing
approaches and are shown to be calculated more efficiently.

Keywords: Stochastic Petri nets · Process mining · Stochastic process
mining · Stochastic process discovery

1 Introduction

The world abounds in information systems, generating data about the processes
they mediate, execute, or observe. Using this data to compute and analyze pro-
cess models is the concern of process mining [3], within the field of Business
Process Management (BPM). BPM studies the impact and improvement of pro-
cesses in organizations. Automatic process discovery is one aspect of process
mining concerned with finding a formal process model computationally from an
input event log.

To understand a process, we often want to know how likely an event is. If we
travel to work, a journey where our train reliably arrives on time is different from
one where the train sometimes breaks down, is sometimes replaced by a bus, or
is often so crowded that it’s quicker to ride a bike. A highly contagious disease
with rare side effects differs importantly from one difficult to transmit but with
severe side effects, even if observable symptoms are similar. Detecting fraud in
c© Springer Nature Switzerland AG 2021
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financial transactions depends on recognizing certain client actions happening
more frequently than usual. Existing process mining techniques already recognize
this: where noise or probability is considered in creating control flows (e.g. [19,
30]), they acknowledge the importance of likelihood in process modeling. Better
stochastic representations and stochastic-aware techniques have been flagged as
a key research challenge for process mining [2].

Process discovery techniques have become quite sophisticated at determining
causal relationships between activities from event logs, and representing that in
process models. There are far fewer techniques for discovering relative probabil-
ities (discussed in Sect. 5). We introduce a framework in Sect. 3 which leverages
this by allowing transformation of models with only control flows into stochas-
tic process models. This extends an existing stochastic process discovery tech-
nique by Rogge-Solti et al. (RSD) [25,26], in two ways. Firstly, it generalizes
one estimation algorithm to a general class of weight estimators. Secondly, it
specializes the possible outputs from general probability distributions to Gen-
eralized Stochastic Petri Nets (GSPNs) [4]. The framework does not prescribe
whether the estimation calculation is deterministic, uses stochastic simulation,
or other techniques, and our introduced estimators include both deterministic
and non-deterministic types.

We describe our approach as a form of Stochastic Process Discovery, as it
takes an event log input and produces a GSPN output. In decoupling weight
estimation from control flow discovery, the technique also shares some features
with process model enhancement for time and probability [3, p. 290]. Unlike
enhancement techniques, estimators can potentially change control flows when
producing a stochastic process model. Stochastic process models have a corre-
sponding, emerging, set of stochastic process conformance measures [16,20,21].
Consequently, the algorithms and models presented here are evaluated, in Sect. 4,
as stochastic process discovery algorithms, using stochastic process conformance
measures. Evaluation, which also includes performance, is against real-life event
logs, multiple control flow discovery algorithms, and RSD [25].

In the next section, we introduce existing concepts. In Sect. 3, we describe
the weight estimation framework and instantiate it by introducing novel estima-
tors. In Sect. 4, the results of using the estimators on real-world event logs are
presented. Related work is reviewed in Sect. 5, and Sect. 6 concludes the paper.

2 Preliminaries

Petri nets and Generalized Stochastic Petri Nets are well-established formalisms
for modelling processes and a number of good overviews exist [4,8]. We use
notations from the process mining literature [3,21].

A Petri net is a tuple PN = (P, T, F,M0), where P is a finite set of places,
T is a finite set of transitions, and F : (P × T ) → (T × P ) is a flow relation. A
marking is a multiset of places ⊆ P that indicate a state of the Petri net, with
M0 the initial marking. A transition is enabled if every incoming place contains a
token. A transition fires by changing the marking of the net to consume incoming
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tokens and producing tokens for its outgoing transitions. For a node n ∈ P ∪ T ,
we define •n = {y | (y, x) ∈ F} and n• = {y | (x, y) ∈ F}.

A Generalized Stochastic Petri Net (GSPN) is a tuple (P, T, F,M0,W, Ti, Tt)
such that Ti ⊆ T , Tt ⊆ T and Ti ∩ Tt = ∅. Weight function W : T → R

+

assigns each transition a weight. Ti is a set of immediate transitions. If multiple
transitions Te ⊆ Ti are enabled in a particular marking, the probability of a
transition t ∈ Ti firing is given by W (t)

Σt′∈Te
W (t′) . Tt is a set of timed transitions.

Immediate transitions take priority over timed transitions. A timed transition,
if enabled, fires according to an exponentially distributed wait time. Given a set
of enabled timed transitions Te ⊆ Tt, a particular transition t fires first with
probability W (t)

Σt′∈Te
W (t′) [4].

Event Logs. A process consists of activities from the set A. A trace is a non-
empty sequence of activities, and an event log L is a finite multiset of traces
observing the underlying process. Partial function λ : T → A designates labels
for Petri net transitions that represent log activities. The number of traces in a
log L is denoted with |L|, while the number of events is denoted with ||L||.
Control Flow Process Discovery. A process discovery algorithm for Petri Nets is
then defined by cfd : L → (P, T, F,M0).

Sequence Operations. A finite sequence over A of length n is a mapping σ ∈
{1..n} → A and denoted by σ = 〈a1, a2, ..., an〉 where ∀iai = σ(i). Concatenation
operator + appends one sequence to another such that 〈a1, ..., an〉+〈b1, ..., bm〉 =
〈a1, ...an, b1, ..., bm〉. The tail function is then tail(〈a〉 + σ) = σ.

Subsequence. Function ct returns the number of times a subsequence is present

in a sequence: ct(ς, σ) =

⎧
⎪⎨

⎪⎩

0 if σ = 〈〉
1 + ct(ς, tail(σ)) if σ = ς + x

ct(ς, tail(σ)) if σ �= ς + x

Alignments. An alignment [1] represents paired paths between a log and a model.
That is, a move is a tuple where (a, t) represents a synchronous move on activity
a in a trace and a transition t in the model (with the same label: λ(t) = a), (a,⊥)
represents a log move, and (⊥, t) represents a model move. For our purposes, we
assume that a function γ is available taking a Petri net, a set of final markings
and an event log, and that γ returns a sequence of move tuples that represent
all moves necessary to align every trace in the log.

3 Stochastic Process Model Weight Estimation

In this section, we first introduce our framework to transform a Petri net into a
GSPN using an event log. Then, we introduce six estimators using the framework,
which we will illustrate using the running example shown in Fig. 2. Estimators are
a large solution space with many potential algorithms. Our six estimators are
chosen to emphasize broad applicability of inputs, computational tractability,
using the implicit causal information in control flow models, and reapplying
established process mining concepts.
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3.1 A Framework for GSPN Discovery

The framework defines functions which together transform an event log into a
GSPN, as shown in Fig. 1.

A stochastic process discovery algorithm for GSPNs (mine spn) is a func-
tion mine spn : L → (P, T, F,M0,W, Ti, Tt). Our framework considers functions
of the form mine spn = est(cfd(L), L). Functions est : L × (P, T, F,M0) →
(P, T, F,M0,W, Ti, Tt) are termed estimators.

Functions se : L × (P, T, F,M0) → T ×R
+ are simple weight estimators and

use the control flow of the input Petri net intact in the output Petri net, such
that for discovered control flow model cfd(L) = (Pd, Td, Fd,Md0),

∃pe∈estpe = (Pd, Td, Fd,Md0, se(L, (Pd, Td, Fd,Md0)), Td, ∅)

The estimators discussed next are of this simpler form.
Specific estimators may have further restrictions on their inputs, or provide

guarantees on their outputs. For example, estimators discussed below do not
distinguish transitions with duplicate labels. A challenge common to several
estimators is treatment of silent transitions, as those transitions in a discovered
model serve a structural role and do not directly represent an activity in the log.
Assigning such a transition a weight of zero in a stochastic net is equivalent to
deleting the transition, and all subsequent model paths. To avoid this impact,
default values are assigned to silent transitions where the calculation would oth-
erwise result in zero weights. In general, estimators make no distinction between
silent transitions and transitions without a corresponding activity in the log. In
the remainder of this section, we introduce several examples of estimators that
instantiate this framework.

3.2 Frequency Estimator

The first estimator, wfreq, straightforwardly uses how often each transition t
appeared in the event log L:

wfreq(L, t) = max(1, Σσ∈L ct(〈λ(t)〉, σ))

Silent transitions are assigned the arbitrary weight of 1, equivalent to a single
observation in the log. The complexity of this estimator is linear in the number
of events in the log. Figure 2c shows the results of this estimator on our running
example, e.g. wfreq(EL, b) = 15.

3.3 Activity-Pair Frequency Estimators

An Activity-Pair Estimator uses the frequency of pairs of successor activities to
better reflect the constraints of more general Petri nets. These are edge-structured
estimators, in that Petri net edges inform the weighting.

We first introduce some frequency definitions. The functions qI and qF cap-
ture how often an activity appears as the first/last in a trace. The function qP
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Log
Control flow
Discovery Petri net Estimator GSPNdiscover estimate

Fig. 1. Our framework for GSPN discovery.

[〈a, b, c, d〉5,
〈a, c, b, d〉4,
〈a, b, b, d〉2,
〈a, b, c, b, d〉]

(a) Log EL.

a

c

b

τ d

(b) Petri net EPN .

wfreq wlhpair wrhpair wpairscale wfork walign

a 12 12 12 1 11
49

12 12
b 15 8 7 35

49
8 14

c 10 4 5 1 1
49

4 10
11

9
d 12 12 12 1 11

49
11 6

13
12

τ 1 1 1 1 129
143

0

(c) Six example estimators.

Fig. 2. Running example of an event log and a Petri net, and the estimators.

captures the frequency of activity pairs in the log, that is, where the two given
activities follow one another directly in the log:

qI(L, t) = |[〈λ(t), . . .〉 ∈ L]|
qF (L, t) = |[〈. . . , λ(t)〉 ∈ L]|

qP (L, s, t) = Σσ∈L ct(〈λ(s), λ(t)〉, σ)

There are both left-handed and right-handed variants of the Activity-Pair
estimator, depending on whether weights are informed by successor or predeces-
sor transitions, defined as:

wlhpair(L, t) = max(1, qI(L, t) + qF (L, t) +
∑

s∈•(•t)

qP (L, s, t))

wrhpair(L, t) = max(1, qI(L, t) + qF (L, t) +
∑

s∈(t•)•
qP (L, t, s))

There are no restrictions on input Petri nets and they can be calculated in
time O(||L|||F |), that is, the number of events times the number of model edges.

When using activity pair frequency data, two important types of path
through the model are neglected for any given trace: paths from the initial place
to the first transition, and the paths from the last transition to the final place.
Traces of length one are also invisible from this perspective. To account for this,
how often an activity appears as the initial or final activity in a trace is also
included in the weight estimation. Note that not all activity pairs occurring in
the log are used to calculate the resulting transition weights. For instance, where
a given Petri net represents two transitions a and b as concurrent, the frequency
of 〈a, b〉 will not be used. In our running example (see Fig. 2c), wlhpair(EL, c) = 4
and wrhpair(EL, c) = 5.
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3.4 Mean-Scaled Activity-Pair Frequency Estimator

The previous estimators depend on the size of the log. Two logs with the same
traces in the same ratios will result in two models with two distinct sets of
weights, which challenges human analysis. Though comparison and comprehensi-
bility of stochastic process models appears not to have been directly addressed in
the literature, it is consistent with research that finds “small variations between
models can lead to significant differences in their comprehensibility” [24] and the
usability principle of minimizing user memory load. The mean-scaled activity-
pair estimator wpairscale mitigates this effect by scaling weights by average tran-
sition frequency ( ||L||

|T | ) in the log L:

pairscale(L, T, t) =
qI(L, t) + qF (L, t) +

∑
s∈(t•)• qP (L, t, s)

||L||
|T |

wpairscale(L, (P, T, F,M0), t) =

{
pairscale(L, T, t) if pairscale(t) �= 0
1 otherwise

One effect of defaulting after scaling is that silent or unrepresented transitions
are weighted more heavily, that is, the same as an activity of mean-frequency,
rather than the equivalent of an activity occurring once in the log. In our running
example of Fig. 2c, ||L|| = 49, |T | = 5 and the numerator of pairscale is equal
to wrhpair for a, b, c and d. Then, for instance wpairscale of c is 10

49
5

= 1 1
49 .

3.5 Fork Distribution Estimator

The Fork Distribution Estimator wfork uses a two-stage approach: it first assigns
weights to each place in a Petri net using activity-pair frequencies. Second, it
distributes those weights to transitions according to the activity frequency in
the event log.

pw(L, p) =

{
|L| if p ∈ M0

Σs∈•pΣt∈p•qP (L, s, t) otherwise

placeWeights(L, p) = max(1, pw(L, p))

wfork(L, (P, T, F,M0), t) = Σp∈•tplaceWeights(L, p)
wfreq(t)

Σp•
t′ wfreq(t′)

This estimator only applies to Petri nets which have at least one place without
incoming edges, such as workflow nets [3, p. 81]. This is an edge-structured esti-
mator informed by the structure of the input net. The complexity is O(||L|| |F |).
The wfork estimator shares similarities with the Alpha algorithm [3, p. 167], in
that it treats a place as defining a neighbourhood of related activities represented
as transitions. In our example (Fig. 2), let p1 be the top-right place and p2 the
bottom-right place. Then, pw(EL, p1) = qP (c, d) + qP (τ, d) = 5, pw(EL, p2) =
qP (τ, d) + qP (b, d) = 7, placeWeights(EL, p1) = 5, placeWeights(EL, p2) = 7
and wfork of d = 512

12 + 712
13 = 11 6

13 .
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Log Petri net GSPN

Fodina [10]
Inductive Miner [19]
Split Miner [7]
discover

wfreq

wlhpair

wrhpair

wpairscale

wfork

walign

estimate

RSD [25]

tEMSC [20]
Entropy Recall & Precision [21]

entity count
edge count
duration
measures

BPIC2013 closed
BPIC2013 incidents

BPIC2013 open
BPIC2018 control

BPIC2018 dept
BPIC2018 reference

SEPSIS

Fig. 3. Set-up of the evaluation.

3.6 Alignment Estimator

The estimator walign applies alignments [1] to estimate weights. To this end, it
counts the number of times a transition t appears either as a model move or as
a synchronous move in the alignments:

walign(L,PN,MF , t) = |[(x, t) ∈ γ(PN,MF , L)]|

This algorithm only applies to Petri nets with at least one final marking.
The time complexity is O(|T | |γ|) plus the time to compute γ. The alignment
estimator has similarities with RSD [25], which fits duration distributions to
aligned logs. In our example of Fig. 2, the last trace of log EL does not fit the
model EPN , as b is executed a second time and c is executed. Thus, align-
ments will (based on a cost function, or if that does not discriminate the options
an arbitrary choice) include a log move on either b or a log move on c. If the
alignments choose a b for a log move, then walign(EL,EPN,MF , b) = 14 and
walign(EL,EPN,MF , τ) = 0. Alignments are not always deterministic, and con-
sequently neither is walign.

4 Implementation and Evaluation

4.1 Evaluation Design

The six estimators introduced in Sect. 3 were implemented in the ProM frame-
work [13]1. For our evaluation, a discovery algorithm was applied to an event log.
Where necessary, the result was converted to a Petri net. Each estimator was
invoked on the resulting Petri net, resulting in a GSPN. Finally, the conformance
of the resulting GSPN was measured against the original log. For comparison,
an existing stochastic discovery algorithm by Rogge-Solti et al. [25] (RSD) was
also applied to the log. This direct discovery algorithm also outputs GSPNs,
and the same conformance measures were applied. The implementation of this

1 Source code is accessible via https://github.com/adamburkegh/spd we.

https://github.com/adamburkegh/spd_we
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plugin in ProM 6.9 uses the Inductive Miner internally as an initial control flow
discovery step, which has been updated from the gradient-descent procedure
described in [25]. Algorithms, reference event logs and conformance measures
are summarized as Fig. 3.

Measures include (1) Truncated Earth Movers’ Distance (tEMSC) [20], a
measure expressing the cost of transforming the distribution of activity traces
from one stochastic language into another. We use a minimum probability mass
parameter setting of 0.8 for feasibility. (2) Entropy Precision and Recall [21] are
stochastic conformance measures based on the entropy of equivalent automata
constructed from a given log or model. (3) Petri net entity count (places and tran-
sitions) and (4) edge count are used as structural simplicity measures, ensuring
that conformance quality has not been achieved by sacrificing model simplic-
ity and comprehensibility. Entity and arc counts have existing uses in process
model evaluation [14,17], and were preferred here over behavioural simplicity
measures [16], though these measures also have limitations, including specificity
to Petri nets, and insensitivity to the stochastic perspective of GSPNs. The
duration of a discovery process was also captured, and direct discovery times are
compared with combined runtimes for discovery and estimation.

The experiments were run on a Windows 10 machine with 2.3 GHz CPU
and 50 GB of memory allocated to each process on JDK 1.8.0 222. All logs are
publicly available at https://data.4tu.nl/. The full results for these experiments
are available in an accompanying technical report [11].

4.2 Results and Discussion

(a) tEMSC (b) entropy-recall (c) entropy-precision

Fig. 4. Results on BPIC 2018 control log categorized by {estimator}-{control flow
algorithm}, plus RSD.

The estimators produced different, relevant, stochastic models when applied to a
range of real-life logs. As seen in Figs. 4 and 5, stochastic conformance for these
models was comparable, but not uniformly better, than existing techniques, and
was highly dependent on the discovery algorithm and log.

https://data.4tu.nl/
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(a) tEMSC (b) entropy-recall (c) entropy-precision

Fig. 5. Results on BPIC 2018 reference log.

The estimators combined well with the Inductive Miner and Split Miner
control discovery algorithms. Frequency-based estimators combined poorly with
the Fodina discovery algorithm for some logs. This is at least partly due to
Petri net representational bias in the presented framework. Fodina outputs a
causal net, which was converted to a Petri net. The resulting Petri net includes
a large number of silent transitions, often intermediating between transitions
corresponding to activity pairs in the log. This can be seen distinctly in results
for BPIC 2018 reference log in Fig. 5, where walign produces a stochastically
relevant model on the output of a Fodina input, but no other estimator does.
For Split Miner and Inductive Miner, though they use other representations
internally, the Petri net model produced used fewer silent transitions and were
less impacted by this property.

For the BPIC 2013 closed and incidents logs, Fodina returned a model with-
out an initial place, to which wfork, walign, tEMSC and Entropy-Recall and
Entropy-Precision conformance measures do not apply. For some algorithm-
estimator combinations, these conformance measures could not be calculated
due to soundness, time or memory constraints. Nevertheless, in these results
it is clear that tEMSC 0.8 is more sensitive to the stochastic perspective pro-
duced by estimators than the Entropy Precision and Recall measures. Where
RSD [25] produced a model on which measures could be calculated, the result-
ing models often conformed well to the logs, but not consistently better than
the estimator-produced models. There were a number of event logs where RSD
returned no model within the constraints of time (12 h timeout) and machine
memory, or where conformance measures were unable to be calculated within
time (5 h timeout) and memory constraints.

The run time of the estimators, which took never more than 10 s, was always
comparable or better than RSD, orders of magnitude better in some cases, as
shown in Fig. 6. In the future, we aim to extend these experiments with larger
logs containing more traces, events, and activities. However, even though our
estimators returned results for each model and log combination quickly, the
conformance measures were the limiting factors in these experiments in terms
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Fig. 6. Run times for control flow discovery and weight estimation by event and trace
count. 12 h time out for RSD [25] on sepsis log is excluded.

of time and memory, which indicates that future research should be directed
towards more efficient stochastic conformance checking techniques.

In summary, our new estimators, even the alignment-based walign, are able to
handle real-life event logs and outputs from existing discovery techniques much
faster than existing approaches. Depending on the applied discovery technique,
they can also achieve higher stochastic quality, providing alternatives to the
existing RSD discovery technique when analyzing control flow and stochastic
perspectives.

5 Related Work

Significant work exists on performance analysis using process mining and
Stochastic Petri Nets (SPNs) with pre-existing normative models. This includes
improving parameters from an input SPN [22,26,29], from models in UML [9],
and industrial case studies [9,26]. These and other applications can benefit
directly from automatic discovery of stochastic models.

RSD [25] is a technique, with publicly available implementation, for discov-
ering Generally Distributed Transition Stochastic Petri Nets (GDT SPNs), with
some high level descriptions of techniques and algorithms preceding it [6,15,18].
RSD first discovers a control flow model in the form of a Petri net, then per-
forms a fitness calculation, and attempts to repair the model if fitness is low.
An alignment and replay calculation then informs the production of an out-
put GDT SPN. The distinction between control flow discovery and stochastic
perspectives is extended by our proposed framework to many possible weight
estimators. The post-control flow discovery steps in RSD are a weight estimator,
but not a simple estimator, in our terminology.

In [27,28], queues are discovered in stochastic process mining using two
formalisms, Process Trees [28] and Queue-Enabling Colored Stochastic Petri
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Nets [27]. The Process Tree approach is informed by statistics theory and uses
both Bayesian and Markov-Chain Monte-Carlo fitting.

Hidden Markov Models (HMMs) have seen some applications to stochastic
process discovery [5,12]. For instance, [12] constructs HMMs for resource usage
using a variant of the Alpha algorithm [3, p. 167], an early process mining algo-
rithm with known weaknesses on real-world event data. [5] uses event log data
to prune unlikely paths from a HMM process model in the context of a semi-
automated stochastic process discovery procedure.

Declarative process models describe a process in terms of constraints on
behaviour. This contrasts with control-flow based process models, such as Petri
nets used in our framework, which describe permitted behaviour. Techniques for
automatic process discovery of probabilistic declarative models also exist [23].
Transforming the significant differences between the forms of control-flow and
declarative models, and evaluating the result for stochastic conformance, put
rigorous comparison beyond the scope of this paper.

6 Conclusion

The likelihood of an event is important information in understanding many real-
world processes. Automatically discovered stochastic process models may then
help analyze and improve organizations. In this paper we presented a frame-
work for discovery of Generalized Stochastic Petri Nets (GSPNs) from logs. The
framework leverages existing control flow discovery algorithms, and introduces
estimators which transform discovered Petri nets into GSPNs. We introduced
six estimators; their implementation is publicly available, and evaluated against
real-life logs using multiple stochastic conformance measures. The evaluation
used three existing flow discovery algorithms, and an existing stochastic discov-
ery technique, finding models of comparable quality, across a broader range of
logs, in a generally shorter time.

The estimators presented here are not exhaustive, and we look forward to
future research on novel, improved estimators. The estimator framework also
implies the possibility of “direct stochastic discovery” algorithms which do not
use a separate control flow algorithm, but produce a control flow model as a
side-effect of a stochastic one. A simplicity measure sensitive to both structural
representation and stochastic information in a process model would be a useful
evaluation tool for work in this area, and is an avenue of future research.
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eResearch Office at QUT.
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Abstract. Process mining is an area of research that supports discover-
ing information about business processes from their execution event logs.
One of the challenges in process mining is to deal with the increasing
amount of event logs and the interconnected nature of events in orga-
nizations. This issue limits the organizations to apply process mining
on a large scale. Therefore, this paper introduces and formalizes a new
approach to store and retrieve event logs into/from graph databases. It
defines an algorithm to compute Directly Follows Graph (DFG) inside
the graph database, which shifts the heavy computation parts of process
mining into the graph database. Calculating DFG in graph databases
enables leveraging the graph databases’ horizontal and vertical scaling
capabilities to apply process mining on a large scale. We implemented
this approach in Neo4j and evaluated its performance compared with
some current techniques using a real log file. The result shows the possi-
bility of using a graph database for doing process mining in organizations,
and it shows the pros and cons of using this approach in practice.

Keywords: Process mining · Graph database · Big data · Neo4j

1 Introduction

Business Process Management (BPM) is a research area that aims to enable orga-
nizations to narrow the gap between business goals and information technology
support [21]. Business process evaluation is a key support in narrowing down this
gap. There are two evaluation techniques to analyze business processes, a.k.a.,
model-based analysis, and data-based analysis [17]. While model-based analysis
deals with analyzing business process models, the data-based analysis mostly
focuses on analyzing business processes based on their execution event logs.

Process Mining is a discipline in the BPM area that enables data-based anal-
ysis for business processes in organizations [18]. It allows analysts not only to
evaluate the business processes but also to perform process discovery, compli-
ance checking, and process enhancement based on the execution result, a.k.a.,
event logs. As the volume of logs increases, new opportunities and challenges
also appear. The large volume of logs enables the discovery of more information
about business processes; while also raises some challenges, such as feasibility,
performance, and data management.
c© Springer Nature Switzerland AG 2021
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The large volume of data is a challenge to perform process mining in orga-
nizations. There are different approaches to deal with this problem. This paper
proposes and formalizes a new approach to store and retrieve event logs in graph
databases to do process mining on a large volume of data. It also defines an algo-
rithm to compute Directly Follows Graph (DFG) inside the graph database. As
a result, it enables i) removing the requirement to move data into analysts’
computer, and ii) scaling the DFG computation vertically and horizontally.

The approach is implemented in Neo4j, and its performance is evaluated
in comparison with some current techniques based on a real log file. The result
shows the feasibility of this approach in discovering process models when the data
is much bigger than the computational memory. It also shows better performance
when dicing data into small chunks.

The remainder of this paper is organized as follows. Section 2 gives a short
background on process mining and graph database. Section 3 introduces the
graph-based process mining approach, and Sect. 4 elaborates on the implemen-
tation of the approach in Neo4j. Section 5 reports the evaluation results. Section 6
discuss alternative approaches and related works, and finally, Sect. 7 concludes
the paper and introduces future research.

2 Background

2.1 Process Mining

Process Mining is a research area that supports business process data-based
analysis [18]. Process discovery is a sort of process mining technique that enables
identifying process models from event logs automatically. There are different
sorts of perspectives that can be discovered from event logs. Control-flow, which
describes the flow of activities that happened in a business process, is one of
the most important ones. Directly-Follows Graphs (DFGs) is a simple notation
widely used and considered a de-facto standard for commercial process mining
tools [19].

Figure 1 shows an overview of how a process model can be discovered from
event logs using DFG graphs. The process discovery starts by loading a log file
that stores business process execution results, a.k.a., log files. Each log contains

activity 1 activity 2

activity 1 0 100

activity 2 0 0 Activity 1 Activity 2

case id , activity name
1           , activity 1
1           , activity 2
2           , activity 1
2           , activity 2
3           , activity 1
...

Log File Directly Follows Graph
(DFG)

Process Model

DFG 
Calculation

Discovery 
Algorithm

Fig. 1. Steps in a process discovery algorithm
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a set of traces representing different cases that are performed in the business
process. Each trace contains a set of events representing the execution result of
activities in the business process. Thus, a log file shall contain information about
traces and events at a minimum. Note that the events should be stored according
to the execution order with this basic setup, unless we have information about
execution time. It is usual to have more information like the execution time and
the resource who has done the activity in the log file.

The next step is calculating the Directly Follows Graph (DFG). This graph
shows the frequency of direct relations between activities that are captured in
the log file. The result can be considered as a square matrix with the activity
names as the index for rows and columns. Let’s consider the cell with the index
of activity 1 for the row and activity 2 for the column (see Fig. 1). The value of
the cell shows the number of times that the activity 2 happened after activity
1. Although the calculation of DFG comes back to alpha miner, which was
introduced around 20 years ago, it is still the backbone for many process mining
algorithms and tools [20]. There are different variations of DFG that store more
information, but the basic idea is the same.

The last step is to infer the process model from DFG matrix based on rules
that are specified by a process discovery algorithm. This step usually does not
take much time since the computation is performed on top of DFG.

2.2 Graph Database

Graph databases are Database Management Systems (DBMS) that support cre-
ating, storing, retrieving, and managing graph database models. Graph database
models are defined as the data structure where schema and instances are mod-
eled as graphs, and the operation on graphs are graph-oriented [2]. The idea is
not new, and it comes back to the late eighties when the object-oriented mod-
els were also introduced [2]. However, it recently got much attention in both
research and industry due to its ability to handle the huge amount of data and
networks. It enables leveraging parallel computing capabilities to analyze mas-
sive graphs. As a result, a new discipline is emerged in research, called Parallel
Graph Analytics [15].

There are different sorts of graph databases with different features. For exam-
ple, Neo4j is a graph DBMS that supports both vertical and horizontal scaling,
meaning that not only the hardware of the system that runs the DBMS can be
scaled out, but the number of physical nodes that run the DBMS as a network
can be increased. These features enable having a considerable performance at
runtime.

3 Approach

This paper proposes a new approach to store event logs and retrieve a DFG using
a graph database. In this way, the scalability capabilities in graph databases
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can be used in favor of applying process mining. The aim is to introduce an
alternative approach to enable discovering process models from large event logs.

Thus, the formal definitions of event repository in graph form are introduced.
Then, the soundness property of such a repository log is defined. Finally, an
algorithm to discover DFG is introduced.

Note that the formal definition is simplified by limiting the set of attributes
to hold information about activities. In practice, the definition of attributes can
be extended to store all information about the data perspective.

3.1 Definitions

Definition 1 (Event Repository). An event repository is a tuple G = (N =
L ∪ T ∪ E ∪ A,R), where:

– N is the superset of L, T , E, and A subsets which are pairwise disjoint,
where:
– L represents the set of logs,
– T represents the set of traces,
– E represents the set of events,
– A represents the set of attributes, representing activities, where:
– L ∩ T ∩ E ∩ A = ∅.

– R = L × T ∪ T × E ∪ E × E ∪ E × A is the set of relations connecting:
– logs to traces, i.e., L × T
– traces to events, i.e., T × E,
– events to events, i.e., E × E,
– events to attributes, i.e., E × A, where:
– N ∩ R = ∅

Let’s also define two operators on the graph’s nodes as:

– •n represents the operator that retrieves the set of nodes from which there are
relations to node n, i.e., •n = {∀e ∈ N |(e, n) ∈ R}.
– This operator enables retrieving incoming nodes for a given node, e.g.,

retrieving the set of events that occurred for an activity.
– n• represents the operator that retrieves the set of nodes to which there are

relations from node n, i.e., n• = {∀e ∈ N |(n, e) ∈ R}.
– This operator enables retrieving outcoming coming nodes for a given node,

e.g., retrieving the set of events that occurred for a trace.

Note that the relations among logs, traces, events, and attributes are adopted
from the eXtensible Event Stream (XES) standard [1]. The information is stored
in attributes like XES standard which states: “Information on any component
(log, trace, or event) is stored in attribute components” [1]. This is the reason
why the activities are represented as attributes in this work. Note that we limit
attributes to represent activities only in this work for making formalization sim-
ple for the sake of presentation. In practice, the attributes can have types to
represent different properties. For example, they can be used to store different
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data properties of an event, e.g., who has performed it, what data it generates,
etc. The usage of attributes in practice can also be extended to hold case id
properties for traces and metadata information for the log node. Despite it is
good to have the case id as an attribute, we kept the formalization simple by
ignoring that as traces represent cases in this structure. Note that you need to
know the case id to create such a structure, which is needed in the ETL process.

Definition 2 (Soundness). An event repository G = (N = L ∪ T ∪ E ∪
A,R), where N,L, T,E,A,R, represent the set of Nodes, Logs, Traces, Events,
Attributes, Relations respectively, is sound iff:

– ∀t ∈ T, | • t| = 1, meaning that a trace must belong to 1 and only 1 log.
– ∀e ∈ E, | • e ∩ T | = 1, meaning that an event must belong to 1 and only 1

trace.
– ∀e ∈ E, | • e∩E| <= 1, meaning that an event can only have at most 1 input

flow from another event.
– ∀e ∈ E, |e •∩E| <= 1, meaning that an event can only have at most 1 output

flow to another event.
– ∀e ∈ E, |e • ∩A| = 1, meaning that an event must be related to 1 and only 1

attribute.

Note that the soundness is a property of event repository and shall not be
mistaken by the soundness property of a modeling notation like Petri nets. It
is worth mentioning that this formalization can be extended to enable several
types of sequences among event logs. To calculate DFG, we need to count the
number of direct relations among events for each activity pairs. Algorithm 1
defines how the DFG for a given sound event repository can be calculated.

Algorithm 1: Algorithm for calculating dfg
1 Algorithm dfgcalculator(G = (N = L ∪ T ∪ E ∪ A, R))
2 Ψ ← ∅;
3 foreach two attributes a, b ∈ A do
4 c ← 0;
5 foreach e ∈ •a, e′ ∈ •b do
6 if (e, e′) ∈ R then
7 c ← c + 1;

8 Ψ ← Ψ ∪ {(a, b, c)};

9 return Ψ ;

3.2 Example

This section elaborates on the definitions through an example.
Figure 2 shows an example of a sound event repository graph. The set of

nodes for Log, Trace, Event, and Attribute are colored as green, red, white, and
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l1t1

e1
e2

e3

t2

e4
e5

e6

a1 a2
a3

a4

Fig. 2. An example of a sound event repository graph

yellow, respectively. This repository includes one log file, called l1, which has
two traces, i.e., t1 and t2. t1 has three events that occurred in this order e1 →
e2 → e3. t2 also has three events that occurred in this order e4 → e5 → e6.

As it can be seen, each event is related to one activity, e.g., e1 is the execution
of activity a1. To get the list of events that happened for an activity a1, we can
use •a1 operator, which returns {e1}. For some activities, there might be more
than one event, e.g., •a2 returns {e2, e4}. Applying Algorithm 1 on this event
repository will return the DFG. The DFG calculation is described as below:

– for each pair of activities, the algorithm will calculate the frequency. We show
the calculation for one pair example, i.e., a2, a3:

– •a2 retreives {e2, e4}
– •a3 retreives {e3, e5}
– c =

∑

∀e∈•a2,e′∈•a3
|(e, e′) ∈ R| =

∑

∀e∈{e2,e4},e′∈{e3,e5}
|(e, e′) ∈ R|

= |{(e2, e3), (e4, e5)}| = 2

If we calculate the frequencies for all pairs of activities, the result will be like
Table 1.

Table 1. DFG calculation for the sample event repository graph

a1 a2 a3 a4

a1 0 1 0 0

a2 0 0 2 0

a3 0 0 0 1

a4 0 0 0 0

4 Implementation

The approach presented in this paper is implemented using the Neo4j, which
was chosen because it supports i) storing graphs and doing graph operations,
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ii) both vertical and horizontal scaling, iii) querying the graph using Cypher, iv)
containerizing the database, which allows controlling the computational CPU
and memory.

We implemented a data-aware version of the approach. The main differences
with the formalization are:

– Attributes store activity names and other attributes that might be associated
with an event like resource id, case id, etc. To comply with PM4Py, we stored
the log, case, and activity name by ’log concept name’, ’case concept name’,
and ’concept name’ respectively.

– events have timestamps to enable dicing information based on time. Note
that the timestamp cannot be defined as an attribute with its own key since
we will end up with many extra nodes due to many timestamps that exist for
each event. Thus, they are kept as an attribute of Event class, following the
same practice to deal with times in data warehousing [14].

The calculation of DFG is implemented using a Cypher query as below:

match

(a1:Attribute {key:’concept_name ’}) <--(:Event)-[n]->(:Event)

-->(a2:Attribute {key:’concept_name ’})

return

a1.val as dfg_from , a2.val as dfg_to , count(n) as dfg_freq

The match clause in the query identifies all patterns in sub-graphs that match
the expression. This expression selects two attributes a1 and a2 with the type of
concept name, which indicates that they are activities’ names. Then, it selects all
incoming events to those attributes where there is a direct relationship between
those two events. The return clause retrieves all combinations of attributes in
addition to the number of total direct relations between their events, which is
the calculation that we formalized in Algorithm 1.

To limit the number of events based on their timestamp, we can easily add
a where clause to the cypher query to limit the timestamp. For other attributes,
the associated attribute node can be filtered.

5 Evaluation

This section reports the evaluation result of the approach, which is presented in
this paper1. To evaluate the approach, we calculated DFG for a real public log
file [6] using Process Mining for Python (PM4Py) library [3]. This dataset [6] is
selected because it is published openly, which makes the experiment repeatable.
It is also the biggest log file that we could find in the BPI challenges, which can
help us to evaluate the performance.

1 The data, code and instructions can be found at https://github.com/neo4pm/
supporting materials/tree/master/papers/Graph-based%20process%20mining.

https://github.com/neo4pm/supporting_materials/tree/master/papers/Graph-based%20process%20mining
https://github.com/neo4pm/supporting_materials/tree/master/papers/Graph-based%20process%20mining
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To evaluate the performance, we need to control the resources that are avail-
able for performing process mining. Thus, we decided to containerize the exper-
iments and run them with Docker. Docker is a Platform as a Service (PaaS)
product that enables creating, running, and managing containers. It also enables
the control of the resources that are available for each container, such as RAM
and CPU.

Among different process mining tools, we chose PM4Py [3], because i) it is
open-source; ii) the DFG calculation step and discovery step can be separated
easily, and iii) it can easily be encapsulated in a container. The separation of DFG
calculation and discovery step in this library also enables reusing all discovery
algorithms along using our approach, which makes our approach very reusable.

We designed two experiments to evaluate our approach. In Experiment 1, we
loaded the whole log file into both containers running neo4j and PM4Py, so we
kept the number of event logs constant. We calculated DFG several times by
changing the RAM and CPU, so we defined the computational resources as a
variable. In Experiment 2, we kept RAM and CPU constant for both containers,
and we calculated DFG by dicing the data. The dicing is done based on a time
constraint, and we added more days in an accumulative way to increase the
number of events. We ran the experiments for each container separately to make
sure that the assigned resources are free and available (Table 2).

Table 2. Evaluation setting

Constant Variable

Experiment 1 Events in the log (9 million events) CPU & RAM

Experiment 2 CPU & RAM Events in the log

5.1 Experiment 1

To simulate the situation where the computational memory is less than the log
size, we started by assigning 512 megabytes of ram to each container. We added
the same amount of RAM in each experiment round until we reached 4 gigabytes.
We also changed the CPU starting from half of a CPU (0.5), by adding the same
amount at each round until we reached 4.0.

Figure 3 shows the execution result for both containers, where the x, y and z
axes refer to the available memory (RAM) (in megabytes), DFG calculation time
(in seconds), and available CPU quotes, respectively. The experiment related to
neo4j and PM4Py containers is plotted in red and blue, respectively. As can be
seen, PM4Py could not compute DFG when the memory was less than the size
of the log, i.e., around 1.5 gigabytes, while neo4j could calculate DFG in that
setting. This shows that the graph database can compute DFG when compu-
tational memory is less than the log size, which is an enabler when applying
process mining on a very large volume of data.
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As it can be seen in the figure, the increasing amount of memory reduced
the time that neo4j computed the DFG, while it has very little effect on PM4Py.
This is no surprise for in-memory calculation since if the log fits the memory,
then the performance will not be increased much by adding more memory. It is
also visible that assigning more CPU does not affect the performance of either
of these approaches.

It should also be mentioned that despite increasing memory can reduce the
DFG calculation time for neo4j significantly; it cannot be faster than PM4Py
when calculating the DFG on the complete log file. The reason can be that
graph databases shall process metadata, which adds more computation than
in-memory calculation approaches. Thus, for small log files that can fit the com-
puter’s memory, the in-memory approach can be better if the security and access
control are not necessary.

5.2 Experiment 2

Event logs usually contain different variations that exist in the enactment of busi-
ness processes [4]. These variations make process mining challenging because dis-
covering the process based on the whole event log usually produces the so-called
spaghetti models, which usually cannot be comprehended by humans, so they
have very little value. Thus, analysts need to filter data to produce a meaningful
model, which is a common practice in applying process mining [4,11]. There-
fore, we designed this experiment to compare our approach and PM4Py when
calculating DFG on a filtered subset of data without scaling the infrastructure.

Fig. 3. Evaluating DFG calculation time by scaling resources
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Fig. 4. Evaluating DFG calculation time by dicing the log

To evaluate this scenario, we kept the resources (RAM and CPU) constant
for both containers, but we changed the condition for filtering the data. The
condition is set based on the dates in which the event occurred. We started by
filtering events for a day range, and we calculated DFG for the filtered data.
Then, we expanded the filter range by including events that occurred the day
after, and we calculated DFG again. We repeated the process for 30 days. As
we expanded the filter range by including events that occurred on more days,
we increased the number of events. This means that we kept the number of
events in the log as a variable. We assigned 14 Gb for RAM and 4 CPU for
each container, which was run separately. We diced the data in both settings by
filtering events that happened during the first day; then, we added one more day
to the filter condition to increase the events in an accumulative way. We repeated
this step for almost four months. In this way, we could compare the performance
by considering how the size of the filtered events affects the performance of
calculating DFG.

Figure 4 shows the evaluation result, where the x and y axes refer to the
number of events (in millions) and DFG calculation time (in seconds). As can
be seen, our approach performed better when the number of events is less than
2 million. Note that this is still a very big sub-log to analyze for process mining,
so this shows that our approach can improve the performance of process mining
when dealing with sub-sets of the log. However, PM4Py performed better when
the number of events exceeded 2 million. This is no surprise since PM4Py loaded
logs into memory first, so increasing the size will have less effect on its perfor-
mance. Indeed, the difference is only related to filtering the log and retrieving
the biggest chunk of data in each iteration.
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6 Related Work and Discussion

The related work can be divided into two categories: those related to scalability
and those using graph databases.

6.1 Scalability

The scalability issue in process mining is a big concern for applying the tech-
niques on a large volume of data. Thus, different researchers investigated this
problem through different techniques.

Hernández, S. et al. computed intermediate DFG and other matrixes through
the MapReduce technique over a Hadoop cluster [10]. The evaluation of their
approach shows a similar trend for a performance like what we presented in
Fig. 4. The performance cannot be compared precisely due to different setup
and resources. This is the closest approach to ours.

MapReduce has been used by other researchers for the aim of process mining,
e.g., [9,16]. As discussed by [10], MapReduce has been used to support only event
correlation discovery in [16], and it is used to discover process models using Alpha
Miner and the Flexible Heuristics Miner in [9].

6.2 Graph Database

There are different attempts to use graph databases with process mining.
Esser S. and Fahland D. used the graph database to query multi-dimensional

aspects from event logs. This is one important use case that has been introduced
by a graph database, i.e., adding more features to the data [7]. They have used
Neo4j as the graph database and used Cypher to query the logs. The approach
uses a graph database as a log repository to store data without any predefined
structure, which is quite different from the topic of this paper. In this regard,
the approach is similar to [5], where a relational database is used to store the
data. The main difference is that [7] demonstrates that the graph database has
more capability to add more features to data, which is a very important topic
in any machine learning related approach in general.

Joishi J. and Sureka A. also used a graph database for storing non-structured
event logs [12,13]. They also demonstrated that Actor-activity matrix could be
calculated using Cypher. However, the approach is context-dependent since the
logs are not standardized like our approach. Also, the approach cannot be used
with other process discovery algorithms since it does not shift and separate the
computation of DFG to a graph database.

Parallel to this work, we realized that Esser S. and Fahland D. [8] extended
their approach [7] to discover different perspectives from events which are stored
in neo4j. They also introduced an approach to discover DFG from their repos-
itory. The approach is similar in creating the event repository, yet this paper
also focuses on evaluating the performance and scalability to some extent. This
study also confirms the benefits of using a graph database for process mining,
which can extend the application of process mining in practice.
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7 Conclusion

This paper introduced and formalized a new approach to support process mining
using graph databases. The approach defines how log files shall be stored in a
graph database, and it also defines how Directly Follows Graphs (DFG) can be
calculated in the graph database. The approach is evaluated in comparison with
PM4Py by applying it to a real log file. The evaluation result shows that the
approach supports mining processes when the event log is bigger than compu-
tational memory. It also shows that it is scalable, and the performance is better
when dicing the event log in a small chunk.

Graph databases can bring more benefits to process mining than what we
have presented in this paper. They are useful to support complex analysis, which
requires taking the interconnected nature of data into account. Thus, they can
enable more advanced analysis by incorporating data relations while applying
different process mining techniques. As future work, we aim to extend the for-
malization to represent the data-aware event repository. It is also interesting to
compare this approach with process discovery approaches that can be imple-
mented in Apache Spark. We also intend to develop a new library to support
the use of a graph database for process mining for practitioners and researchers.
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Abstract. Thanks to its ability to offer a time-oriented perspective on
the clinical events that define the patient’s path of care, Process Mining
(PM) is assuming an emerging role in clinical data analytics. PM’s ability
to exploit time-series data and to build processes without any a priori
knowledge suggests interesting synergies with the most common statis-
tical analyses in healthcare, in particular survival analysis. In this work
we demonstrate contributions of our process-oriented approach in ana-
lyzing a real-world retrospective dataset of patients treated for advanced
melanoma at the Lausanne University Hospital. Addressing the clini-
cal questions raised by our oncologists, we integrated PM in almost
all the steps of a common statistical analysis. We show: (1) how PM
can be leveraged to improve the quality of the data (data cleaning/pre-
processing), (2) how PM can provide efficient data visualizations that
support and/or suggest clinical hypotheses, also allowing to check the
consistency between real and expected processes (descriptive statistics),
and (3) how PM can assist in querying or re-expressing the data in terms
of pre-defined reference workflows for testing survival differences among
sub-cohorts (statistical inference). We exploit a rich set of PM tools for
querying the event logs, inspecting the processes using statistical hypoth-
esis testing, and performing conformance checking analyses to identify
patterns in patient clinical paths and study the effects of different treat-
ment sequences in our cohort.
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1 Introduction

Process Mining (PM) is a family of process analysis methods that aim at dis-
covering, monitoring and improving the efficiency of real processes by extracting
knowledge from the Event Logs (EL) recorded by an information system. Ana-
lytic algorithms are applied to ELs with the main goals of: (i) mining the data
in order to represent the process able to produce them (Process Discovery, PD),
(ii) measuring to which extent a given process can represent an input EL or how
much an EL complies with a given process (Conformance Checking, CC), and
(iii) improving process efficiency, by allowing problem diagnosis and delay pre-
diction, recommending process redesigns or supporting decision making (Process
Enhancement) [2].

In PM for Healthcare (PM4HC), processes are meant as a graph of activities
which can be performed with the aim of diagnosing, treating and/or prevent-
ing diseases to improve the patients’ health status. The activities can be clinical
and non-clinical and may represent different behaviours according to the specific
organization [12]. Often, such processes are highly dynamic, complex, increas-
ingly multidisciplinary [8]. Notably, the complexity increased recently due to the
advent of personalized approaches to care, in which treatments are tailored to the
specific profile of the patient and disease, such that the diversity of therapeutic
pathways exploded compared to traditional standardized care guidelines.

Pragmatically, PM4HC has shown interesting applications in many domains,
and in Oncology in particular, PM4HC was successfully applied to identify the
most common patterns of care for many kinds of tumors, even though the
purpose remained exploratory. Rectal cancer [7], gynecological cancer [11], and
melanoma [13] were investigated both in terms of PD and CC, even if in most
cases the focus was more on CC, while the application of PD remained descrip-
tive of the general trend [9]. From this perspective, there were only few cases
where the PM4HC analysis was used for statistical inference, i.e. to concretely
develop predictive models assessing the role of covariates in determining disease
evolution or patient clinical pathway. While the idea of applying a combina-
tion of PM and statistics for a complete statistical analysis is not entirely new
[4,10], it is not a very common approach and still requires to be consolidated, in
particular to integrate survival analysis, which plays a forefront role in Oncology.

In this work, we focus on exploring the contributions of PM when perform-
ing statistical analyses in Oncology. As an application, we examined a real-world
cohort of advanced melanoma patients treated at the Lausanne University Hos-
pital (CHUV); here we show how PM can guide and/or assist researchers in all
the classical steps of statistical analysis, that is, data preprocessing, descriptive
statistics, and inferential statistics. Figure 1 summarizes these steps.

In the preprocessing step, we approached the data inspecting their struc-
ture, their information content, and their quality: after identifying the clinical
milestones of interest (like diagnosis, treatments, survival outcome), data were
first shaped as EL. We then employed the visualization tools provided by PM to
detect data inconsistencies due to input errors or missing values. This allowed
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PRE PROCESSING
DATA CLEANING

Preliminary activities (also
including PD, CC) to shape the

data, reveal mistakes, coping with
missing data, etc..

Dataset
(CSV)
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distributions of the considered

covariates

Event Log

INFERENTIAL
STATISTICS

Inferences and predictions on the
population or sub-cohorts with

corresponding p-value 
and/or other metrics

Measures Knowledge

Fig. 1. Workflow of the classical steps of a statistical analysis, here implemented
exploiting a process-oriented approach.

us to go back to the data sources, recheck and correct the recorded information,
thus recursively improving the data quality.

In the descriptive analysis step, we first employed the EL time-oriented struc-
ture to inspect cardinality and order of the administered pharmacological treat-
ments. Then, we implemented both unsupervised and supervised methods to
capture the flow of the patients’ pathways over data-driven graphs (PD app-
roach) or user-defined graphs (CC approach), respectively. In this part of the
analysis, the graphical output provided by PM allows a fast access to the design
and/or interpretation of the models, and an immediate assessment of the treat-
ments in terms of type, order and timing of consecutive administrations.

Finally, in the inferential statistics step, we build upon the processes con-
structed in the previous step to quickly select sub-cohorts of patients character-
ized by similar patterns of care and/or clinical attributes. The cohorts were then
compared in terms of time-to-event outcome and overall survival (OS), using
Kaplan-Meier analysis and log-rank test.

2 Materials and Methods

2.1 Material

In this work, we analyzed the data of a cohort of patients treated at the CHUV
and diagnosed with advanced melanoma.

Melanoma is an aggressive cancer that arises from melanocytes (pigment
cells). Cutaneous melanoma is the most common type. However, it exists also
uveal and mucosal melanomas, which occur in the eye and in the mucosa (such
as the mouth or the vulva), respectively. The primary risk factor of cutaneous
melanoma is ultraviolet light exposure. As outdoor activities are a way of life in
Switzerland, the melanoma incidence is high in the country [3]. The extent of
the disease progression is described by a staging system, ranging from I to IV:
Stage IV indicates metastatization of melanoma cells to distant organs. Surgery
is the most common and resolutive approach for the lowest stages, but when
the disease is more extensive, systemic treatments such as Immunotherapy are
required, with Radiotherapy also used as palliative or local treatment.

The study cohort includes 184 patients diagnosed with advanced melanoma
between March 18th, 2008 and November 17th, 2019, with follow-up up to 2019,
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December 30th.1 Data were sourced from the electronic healthcare records avail-
able at CHUV and curated by trained oncologists.

Data includes: sex, date of birth, primary tumor type, stage and diagnosis
date, advanced tumor diagnosis date and mutation type (among BRAF-V600,
BRAF-nonV600, NRAS, wild type (wt)), pharmacological treatments, and sur-
vival information (date of death or last follow-up). In this study, only the med-
ications administered after the stage IV diagnosis were considered.

2.2 Methods

We implemented the classical statistical analysis pipeline shown in Fig. 1 by
employing PM4HC techniques to achieve the goals of each step. To perform
the analyses, we used pMineR, an open source R library implementing PM4HC
functionalities [5]. By handling data in the form of EL, it allows, among its
features, to implement PD and CC analyses.

We started with the raw data set, which we first assumed to be clean from
mistakes. First, we cast the data in the form of EL, by selecting the main clinical
milestones of interest for the analysis and defining the rules to cope with missing
values. Then, we implemented a PD algorithm based on First Order Markov
Models (FOMMs) [5], to provide a fast and easy-to-understand representation
of the subsequent events. This representation allowed us to identify visually some
unexpected links between clinical events (e.g. due to mistakes in some dates).
With the help of a physician, we iteratively reviewed the data and rerun the PD
algorithm in order to increasingly approach the expected graph and thus refine
the data quality.

To describe the general statistics of the population and quantify the flux
of patients though different patterns of cares (the second step in Fig. 1), we
exploited both PD and CC techniques. The unsupervised PD analysis is based
on the same FOMM model as described above. The supervised CC approach
is based on a pre-defined representation of the different treatment lines imple-
mented with the Pseudo-Workflow formalism (PWF) available in the software
tool. Once performed PD and CC, the patients were grouped according to their
paths through the graphs using the selection language provided by the tool. Then
Kaplan-Meier survival curves and log-rank tests were used to quantify statistical
differences between the groups, considering as end-points time-to-event in PD
and OS in CC.

Process Discovery. In PD, one of the most diffused process representation
exploits the directly-follows graphs (DFGs): in this graphical representation,
directed edges link all the couples of nodes representing subsequent activities
in the EL. Even if DFGs have some well-known limitations [1], they are very
1 This study was approved by the Research Ethical Committee of Canton de Vaud

(CER-VD) and includes only patients who did not oppose usage of their data, and
was conducted according to the Swiss Federal Act on Research involving Human
Beings.
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intuitive and can be helpful to share with clinicians a first representation of the
data. In the pMineR implementation, DFGs correspond to FOMMs.

Conformance Checking. CC was performed by using the PWF, designing
a diagram that describes the expected flow of events in terms of diagnoses,
treatment lines, and survival events. Graphically, this results in a set of nodes,
representing the status that the subjects can assume, and a set of conditions
(triggers) which fire transitions between status [6]. This representation allows to
count which triggers/status are activated while automatically running down the
events of each subjects, thus capturing the population behaviours through the
diagram.

3 Results

3.1 Data Preprocessing

Event Log. For each patient, we built the EL with the following events, each
associated with a time stamp:

– Primary Stage: the primary diagnosis, with melanoma type, tumor stage at
the diagnosis, and somatic mutation harboured by the tumor as attributes;

– Stage IV : the diagnosis of stage IV;
– T-Begin: the begin of a line of treatment, with the type of the given drug(s)

as attribute;
– T-End : the end of a line of treatment, with the type of the given drug(s) as

attribute;
– Dead, Censored : the survival information, consisting in the dead of the patient

or in the last follow-up date, respectively.

The collected treatments belong to the following categories:

– Immunotherapy (IO): anti-CTLA4, anti-PD1, anti-CTLA4 + anti-PD1 (in
combination), or other IO;

– Chemotherapy (Chemo);
– Targeted therapy : tyrosine kinase inhibitors (TKI), other targeted therapy

(TT).

In this study, only the treatments after stage IV diagnosis were considered.

Missing Data. In time-oriented analyses, missing information can consist either
in unrecorded events or in missing dates associated to the events themselves. In
order to preserve the clinical information we kept only complete treatments
lines: the EL of patients with an incomplete line were thus truncated to the
last available certain information (stage IV diagnosis or end of a previous line),
artificially introducing a Censored event before the line with missing information.
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Fig. 2. First Order Markov Models obtained on all the events constituting the EL: a)
before cleaning the information of a subject with an error in the dates, b) after data
cleaning.

Data Cleaning. To detect mistakes in the data, we adopted an iterative app-
roach: a FOMM process was discovered and visually analyzed to detect inconsis-
tencies on unexpected edges. Then, the data were updated and the the procedure
repeated until no more mistakes were found.

To give a practical example of detection, we report in Fig. 2a) the FOMM
resulting from an intermediate version of the dataset, where unexpected edges
emerge because the beginning of the first line of treatment was erroneously dated
before the stage IV diagnosis for one patient in the source data. In Fig. 2b) we
can observe the FOMM after correction of the inaccurately collected information.
This updated graph presents, conversely, only relations fully compliant with the
nature (and the collection design) of the data.

With this approach we revealed some previously uncaught mistakes in the
original data, such as inconsistency in data representation (e.g. dd/mm/yy vs
dd/mm/yyyy), or temporal event inversion (e.g. cancer treatment begin before
a tumor diagnosis).

3.2 Descriptive Statistics

A first descriptive statistics was performed by querying the input EL, consisting
of 1196 records: this allowed us to explore in the first instance cardinality and
order of the administered treatments. Then, we delved into the data by using
the FOMM, to obtain an agnostic data representation, and a PWF diagram, to
verify the consistency of the process with respect to the expected behaviour.
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Event Log Querying. By analysing the EL it was possible to perform some
first descriptive investigations. We focused, specifically, on the treatments admin-
istered to the patients. Considering the events of all the patients, regardless of
the position in the path of care, we extracted a total of 322 administered treat-
ments. Table 1 reports, for each treatment category, its absolute and relative
frequency of occurrence, and its duration in terms of median and inter-quartile
range (25%–75%).

Out of 163 patients that received at least one recorded line of treatment, we
identified 49 distinct patterns of treatment sequence. The most frequent ones
are reported in Table 2.

Table 1. Occurrences and duration (in days) of the administered treatments collected
in the data. The inter-quartile ranges (IQR) are computed at 25% and 75%.

Drug category Occurrences

(n = 322)

(%) Median (IQR) duration [days]

TKI 76 (23.6) 122 (76.5–228.0)

anti-CTLA4 + anti-PD1 70 (21.7) 46.5 (0.0–167.8)

anti-PD1 66 (20.5) 84.0 (33.0–253.2)

anti-CTLA4 66 (20.5) 61.5 (31.0–63.0)

Chemo 29 (9.0) 44.0 (22.0–67.0)

Other IO 13 (4.0) 92.0 (22.0–203.0)

TT 2 (0.6) 461.5 (300.7–622.2)

Table 2. Most frequent patterns of treatment recorded in the data. The relative fre-
quency of occurrence is computed over the total number of patients with at least one
recorded treatment.

First line Second line Occurrence
(n = 163)

(%)

anti-CTLA4 + anti-PD1 – 36 (22.1)

anti-PD1 – 22 (13.5)

anti-CTLA4 – 11 (6.7)

anti-CTLA4 + anti-PD1 TKI 11 (6.7)

Chemo anti-CTLA4 9 (5.5)

anti-CTLA4 anti-PD1 8 (4.9)

TKI anti-CTLA4 6 (3.7)

anti-CTLA4 TKI 5 (3.1)

TKI – 3 (1.8)
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Fig. 3. First Order Markov Models obtained on the treatments.

Process Discovery on Treatment Sequences. Figure 3 shows the FOMM
obtained from the clean EL considering only the administered treatments (ignor-
ing diagnosis and survival events). Such a process allows to inspect the temporal
causality of the treatments, highlighting the most frequent connections over all
the population. It also provides a first overview of the position of the treatments
in the paths.

Conformance Checking for Treatment Sequences. We designed a PWF
able to capture the chronological order of the events: at the top, we represented
the events related to the staging, and then the different treatment lines. In order
to be able to define treatments paths at different levels of granularity we added
a further status for each treatment line, that is, IO (immunotherapy). This is
doable thanks to the possibility in the PWF formalism to define simultaneous
activation of multiple status. Finally, we introduced two additional status to
catch the survival outcomes, namely Dead and Censored, that can be activated
without constraints on the previous status, as soon as a survival event is read
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Fig. 4. Conformance Checking model (limited to the first two lines of treatments)
reporting the status activated by the patients’ processes over the used-defined PWF.

in the EL. The activation of the survival status terminates the inspection of the
flow of events for that patient.

Figure 4 reports the result of the run on our cohort. Nodes and boxes report
the number of times that a status/trigger was reached/fired. Due to space con-
straints, we limited the plot to the first two lines of treatment, even if the PWF
included all the 7 lines of treatments available in the data.

By inspecting the graph, it is possible to follow the population’s paths
and read the corresponding number of subjects that run specific patterns. For
instance, we can observe that all the patients included in the dataset (and thus
with a BEGIN event) had a Stage IV diagnosis (expected by design), that the
most frequent first line of treatment was the combination of anti-CTLA4 and
anti-PD1 with a total of 56 occurrences, or that only 163 over 184 patients had
a first line recorded, followed in 89 cases by a second line.

The survival nodes (Dead and Censored) are graphically separated from the
others in order to limit the number of edges in the graph. However they can be
reached from any point in the graph, and the available query tool can inspect
at what precise point they were activated.
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3.3 Inferential Statistics

By exploiting the EL, the FOMM and the PWF diagrams of the previous anal-
yses, we could easily select cohorts characterized by specific patterns of interest
and perform survival analyses. While the FOMM strongly reflects (and is limited
to) the events and the information present in the EL, the PWF represents an
abstraction where the user has the opportunity to provide additional knowledge
in the definition of the PWF structure itself. This enhanced semantic expres-
siveness is one of the main reasons why PWF was previously used in structuring
Clinical Guidelines [5]. Descriptive statistics can help in suggesting hypotheses:
in our case, the previous PWF and FOMM diagrams allowed to easily iden-
tify and query cohorts for statistical inference analyses. We report below two
examples of the investigations we performed.

First, we inspected the relationship between type of somatic tumor mutation
and time between primary and Stage IV diagnosis. Here, we consider the follow-
ing mutation status: BRAF V600 mutated, BRAF non-V600 mutated, NRAS
mutated, and wt. For this study, we limited the cohort to cutaneous melanoma
patients, exploiting filtering tool to easily query the EL attributes.

We implemented a survival analysis by first using the FOMM structure of
Fig. 2 to query the path of interest (between the nodes Primary Stage and Stage
IV) and obtain the time between the two events. Then, the Kaplan-Meier esti-
mator is computed, with patients stratified by mutation status, as shown in
Fig. 5a). Even if a difference between the BRAF v600 mutated and the NRAS
mutated sub-cohorts seems to emerge, the log-rank test computed between all
the survival distributions pairs report no significant differences (all p-values were
>0.05) for any combinations.

Fig. 5. Time-to-event analysis based on a mined FOMM: time from primary to stage
IV diagnosis, stratified by: a) mutation, b) mutation and type of primary.
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To demonstrate the potential of the analysis – even if in this case limited
by the sample cardinality – we performed a further stratification of the data,
distinguishing patients by their primary stage. Also here, pMineR facilitates this
step, by allowing direct selection on the patient attributes. Figure 5b) reports
the plot of the corresponding Kaplan-Meier estimator. Even if, as expected, no
statistically significant clinical evidence emerges from this analysis, mainly due
to the low number of subjects per category, it is interesting to observe how
rapidly this approach allows to enrich the analysis’ level of detail.

The second survival analysis exploits the PWF defined in Fig. 4. We queried
the data in order to identify any differences in terms of OS based on the fol-
lowing patterns of interest: (1) only IO (any BRAF status), (2) IO → TKI, (3)
TKI → IO, (4) only TKI. In defining the rules, we grouped together consec-
utive lines belonging to the same category. Patterns interspersed with TT or
Chemo treatments were excluded. Upon the suggestions of clinicians, in case
of sequences with multiple treatment lines, only the first occurring pattern was
considered. The resulting OS survival curves are shown in Fig. 6. Table 3 reports
the frequency of occurrence of each pattern, the median OS time (in years), and
the percentage of patients alive at 1.5 and 3 years (CI at 95%), respectively.
Statistical significance of OS differences was assessed with the log-rank test,
which turned out to be significant for IO vs IO → TKI (p-value < 0.0001) and
IO vs TKI → IO (p-value: 0.012). The difference between IO and IO → TKI
is expected because patients who receive TKI after IO are those who did not
respond to IO. Knowing that the benefits of TKI are usually only temporary, it
is not surprising that these patients have shorter OS. The difference between IO
and TKI → IO is interesting, as it may be related to recent biological findings
showing that acquired resistance to TKI may hinder IO efficacy.

Fig. 6. Overall survival analysis based on a CC graph: time from stage IV diagnosis
to death, stratified by treatment pattern.
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Table 3. OS for the main treatment patterns of interest.

Treatment path Frequency Median OS [years] 1.5-year OS % (95% CI) 3-year OS % (95% CI)

all 100 % 3.87 72.7 (66.1–80.1) 54.9 (47.1–64.1)

IO 45.7 % NA 76.9 (68.0–86.9) 69.4 (59.1–81.5)

IO → TKI 17.9 % 1.77 63 (48.3–82.1) 18.6 (7.7–45.2)

TKI → IO 8.7 % 1.92 57.4 (36.6–90.1) 25.1 (9.7–65.3)

TKI 1.6 % 1.00 0 0

4 Discussion and Conclusion

PM4HC is expected to have an increasingly relevant role in the analysis of health-
care data, in particular in Oncology. Process-oriented representations, together
with tools able to interrogate the data in terms of temporal patterns identified
through paths in a workflow, are efficient ways to easily generate clinically-
relevant hypotheses and measure statistical significance, in particular in survival
analysis.

In this preliminary work, we demonstrated the added value of a process-
oriented approach when performing three classical steps of data analysis: pre-
processing, descriptive statistics, and inferential statistics. The main remarkable
points emerging from this experience are: (a) query languages for EL, PD and
CC are efficient tools for data cleaning and preprocessing, by quickly identifying
previously unrecognized mistakes; (b) graphical representations can promote dia-
logue between clinicians and data scientists, suggesting alternative perspectives
and possible research questions; (c) PD gives a relevant contribute in repre-
senting the data in an agnostic way; on the other hand CC (with formalisms
such as PWF) allows implementing multi-scale data abstractions and identi-
fying patterns or inconsistencies of the data in pre-defined workflows; (d) the
process representations, both in PD and CC, effectively support survival analy-
sis techniques, allowing rapid definition of sub-cohorts of interest and providing
immediate statistical measures of differences between various paths of the graph.

Noticeably, each step of this study was performed in close cooperation
between clinicians and PM scientists, in the effort of creating a multidisciplinary
team with shared PM skills. The final goal will be to give full autonomy to
physicians to perform PM analyses themselves.

In the future, PM4HC has great potential to be developed further in synergy
with classical statistical tools to analyze healthcare-related data. In particular,
the fast-growing amount of real-world clinical data produced in modern hos-
pitals, each patient’s therapeutic journey being by nature a temporal process,
represents a formidable opportunity for PM4HC to contribute to the advent of
precision medicine.
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Abstract. A temporal disease trajectory describes the sequence of diseases that
a patient has experienced over time. Electronic health records (EHRs) that con-
tain coded disease diagnoses can be mined to find common and unusual disease
trajectories that have the potential to generate clinically valuable insights into the
relationship between diseases. Disease trajectories are typically identified by a
sequence of timestamped diagnostic codes very similar to the event logs of times-
tamped activities used in process mining, and we believe disease trajectory mod-
els can be produced using process mining tools and techniques. We explored this
through a case study using sequences of timestamped diagnostic codes from the
publicly available MIMIC-III database of de-identified EHR data. In this paper,
we present an approach that recognised the unique nature of disease trajectory
models based on sequenced pairs of diagnostic codes tested for directionality. To
promote reuse, we developed a set of event log transformations that mine dis-
ease trajectories from an EHR using standard process mining tools. Our method
was able to produce effective and clinically relevant disease trajectory models
fromMIMIC-III, and the method demonstrates the feasibility of applying process
mining to disease trajectory modelling.

Keywords: Disease trajectories · Process mining · Electronic Health Records

1 Introduction

There is a small but growing body of literature exploring the generation of disease
trajectories using electronic health records (EHR) [1, 2]. The rich collection of patient
data in the EHR is a valuable source to get an extensive trail of disease diagnoses over
time [3]. Mining the trails of disease diagnoses and the temporal information may help
to identify patterns in disease trajectories of clinical value. A better understanding of
patterns of diseasemay advance precisionmedicine to improve care at an individual level
[4] and improvemedical understanding of common disease progression at the population
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level [5, 6]. A study by Jensen et al. [7] had identified the disease trajectories of a large
cohort by combining a data-driven and statistical approach. However, their trajectories
were built based on overlapping pairs of diagnostic codes suggesting the presence of
longer trajectories without confirming if such trajectories are available in the data. Based
on this, we propose an improvement by incorporating process mining as a toolset and
method for mining end-to-end disease trajectories.

Process mining utilises a set of tools to discover process models using data from an
organisation’s information system. Extracted data are transformed into an event log, a
collection of activities and its corresponding timestamps, sometimes supplemented with
additional attributes. There is now a large body of literature applying process mining
to the domain of healthcare, typically focussed on discovery of actual care processes
[8], conformance to guidelines and enhancement to improve the quality of healthcare
services [9], the safety of the patients, and better management of resources [10, 11].

Jensen et al. [7] defined a disease trajectory as the patient’s orderly series of diag-
noses. The definition is comparable to the concept of a trace in process mining where
a trace is the sequence of activities for an individual case [12]. We hypothesise that it
should be feasible to apply process mining to discover a disease trajectory model [2]. To
the best of our knowledge, this is the first time process mining has been used to identify
disease trajectories from a real world EHR.

In this paper, we present a novel disease trajectory mining method using process
mining techniques applied to the MIMIC-III open access EHR database. We identified
the sequence of diagnoses (trace) based on the temporal aspect of the patients’ admis-
sions, broke down each trace into pairs of diagnoses, statistically analysed the pair’s
correlation and represented the identified disease trajectories using a directly-followed
graph produced by standard process mining visualisation tools [12]. The research ques-
tions are as follow: Q1-Can disease trajectories be identified using a process-mining
approach? Q2-What are the most followed trajectories and what exceptional trajecto-
ries are followed? Q3-Are there differences in trajectories followed by different patient
groups (by sex, by age group, by mortality status)? And, Q4-What are the longest and
shortest average time transition trajectories?

2 Background

Process mining provides a set of techniques and tools to uncover the real behaviour of
processes from a range of perspectives including, but not limited to [12]: control-flow,
performance, conformance, and organisational. There are three types of process mining:
first, process discovery to generate process models from event log data, second, process
conformance to check either a process model conforms to an event log or vice versa
and third, process enhancement to improve a process model using the information of the
actual process recorded in the event log [12].

In healthcare, process mining techniques may help the clinicians answer questions
associated to each characteristic of the healthcare processes (e.g. primary care, secondary
care, tertiary care, etc.) [8]. The rich information in the EHR is the source of answer
to the four types of data science questions: “what happened?”, “why did it happen?”,
“what will happen?”, and “what is the best that may happen?”. In this study, we followed
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the most widely used methodology, the PM2 framework, which describes six process
mining stages and defines the set of activities to complete each stage.

The diagnostic codes availablewithin electronic health records result fromdiagnostic
decisions made by clinical specialists after considering the patient’s health problem
[13]. Jutel [14] described the diagnosis as a process of assessing and making a formal
judgement based on a specific physical symptom that takes place at a particular time
involvingboth patient anddoctor.Once the disease is determined it is recorded in theEHR
using standard diagnostic codes such as the World Health Organisation’s International
Classification of Diseases (ICD) [15].

3 Method

The goal of this case study was to identify patients’ disease trajectories using a process-
mining approach.We conducted a retrospective cohort study of patients whowere admit-
ted to critical care using theMIMIC-III database as our data source [16]. TheMIMIC-III
database contains a detailed record of patients’ clinical care that has been de-identified
to respect the sensitive nature of the data. It is available online to researchers (https://
mimic.physionet.org) under an open access policy. We obtained access through two
mandatory steps: a training program in human research subject protections and a data
user agreement. The Process Mining Project Methodology (PM2) was followed in this
study as the methodology allows us to have multiple research questions that require
iterations of analyses [17].

3.1 Data Source for the Case Study

MIMIC-III provides a database of de-identified electronic health records containing the
medical history from 2001 to 2012 of 46,520 critical care patients extracted from the
EHR of the Beth Israel Deaconess Medical Centre in Boston, USA [16]. The database
includes data on patient demographics, laboratory tests, diagnostic codes (in ICD-9
coding standard), medications, bedside monitoring, clinicians’ notes and reports, and
death records (linked to Social Security Death Index for outpatient death). As part of the
anonymisation process, the timestamps used in the MIMIC-III dataset have been inten-
tionally shifted into the future (between 2100 and 2200) by a random offset generated
for each patient. This means that the sequence of disease codes and the time intervals
between disease codes has been preserved for individual patients but no comparisons
between patients are possible. This does not affect disease trajectory mining, but does
limit other process-mining approaches such as the identification of bottlenecks. Our
group has experience of applying process mining to MIMIC-III and in earlier work have
published a data quality assessment on the suitability of the various MIMIC-III data
components that are compatible with process mining [18].

3.2 PM2 for Disease Trajectory Mining

In this section, we identify those sections of the PM2 that we have adapted for disease
trajectory mining. For a full understanding of the PM2 method see [17].

https://mimic.physionet.org
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In Stage 1 (Planning), our research questions were identified from a literature review
and confirmed by a project team composed of a clinician, and epidemiologist and process
mining and data science researchers.

In Stage 2 (Extraction), we defined the scope by determining the granularity level
of data, the time period, and attributes of interest. The MIMIC-III database contains
admissions of adult patients aged 16 years old or older [16] who were admitted to the
hospital between 1 June 2001 and 10 October 2012. Only patients with at least two
admissions were selected to capture the progression of the disease. Patients were fol-
lowed up for mortality status until the last available discharge as the last censoring date
and time for those who died within the hospital. The censoring date for patients who
died outside of the hospital is the date recorded in the social security master death index
in the MIMIC-III database. We used the first 3-digit ICD-9 codes to indicate diagnoses,
[19] but excluded codes known not to be related to development of diseases, e.g. admin-
istration codes. Event data were extracted from the ADMISSIONS, PATIENTS, and
DIAGNOSES_ICD tables in MIMIC-III database as the input for creating an event log
(Table 1). The time of admission was used as the activity timestamp and the diagnostic
code as the activity name. The patients were grouped according to their age in bands of 5
years. The attribute of age group was calculated from the patient’s age at first admission.

In Stage 3 (Data Processing), we created the event log as defined in the PM2 by cre-
ating the views, then filtering and enriching them. The case identifier for each event was
taken from the patient identifier (subject_id), the diagnostic code was used as the
event name (diagnosis_code), and the admission time as the timestamp (admit-
time). The event log was filtered by removing recurring diagnostic codes (retaining
the first occurrence), then reapplying the exclusion of patients with only one diagnostic
code. The sequences of diagnostic codes for each patient in the event log informed a set
of ordered pairs of diagnostic codes, D1 D2, where the diagnostic code D1 preceded
the diagnostic code D2. For example, a patient’s event log, D1 D2 D3 , informed two
ordered pairs of diagnostic codes,D1 D2andD2 D3 . We excluded ordered pairs that
occurred only once. To measure the strength of association between the ordered pairs,
we compared the probability of diagnosis D2 occurring among patients who did and did
not have a D1 diagnosis previously in the event log. This relative risk (RR) [20] indicated
whether the D2 diagnosis was more incident in the group with a D1 diagnosis (RR > 1),
less incident in the group with a D1 diagnosis (RR < 1), or equivalent (RR = 1). The
RR is calculated as

RR = (a/(a + b))

(c/(c+ d))
(1)

where a is the number of patients having D1 and D2, b is the number of patients having
D1 but not D2, c is the number of patients without having D1 but having D2, and d is
the number of patients neither having D1 nor D2.

Following Jensen et al. [7], only pairs with RR > 1 were carried forward for further
processing. For a given pair of diagnosesD1 andD2, it was possible for bothD1 D2and
D2 D1trajectories to satisfy the RR > 1 threshold. Our goal was to identify disease
trajectories that were acyclic, so we carried forward the dominant directionality of a
given pair of diagnostic codes, only. We applied one-tailed binomial tests [21] to define
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Table 1. Source of the required data from MIMIC-III database

Variables Table source in MIMIC-III Field name

Case identifier PATIENTS subject_id

Event DIAGNOSES_ICD hadm_id, icd9_code, seq_num

Activity name DIAGNOSES_ICD icd9_code (first 3 digits)

ADMISSIONS hospital_expire_flag

PATIENTS expire_flag (translated into 1:Dead, 0:End of
data)

Time stamps ADMISSIONS admittime, dischtime, deathtime

PATIENTS dod, dod_hosp, dod_ssn,

Sex PATIENTS gender

Age* PATIENTS dob

ADMISSIONS admittime

Age group** PATIENTS dob

ADMISSIONS admittime

* the age calculation using PATIENT’s dob and ADMISSIONS’s admittime.
** the variable was added to group the patients’ age.

the dominant directionality of pairs, i.e. D1 D2 or D2 D1 . Using a significance level
of α = 0.5, only ordered pairs of diagnostic codes with one statistically significant
direction were carried forward to define the final pairlog.

The final pairlog was transformed back into an event log and recurring diagnoses
in each trace were merged to avoid loops. The event log was then enriched by adding
attributes of age at admission, sex, age group and the mortality status. These attributes
were not used to define the disease trajectory models, but allowed post-hoc analyses
to determine differences between disease trajectories according to each attribute. The
enriched event log was then loaded into ProM, an open-source process mining tool
(https://promtools.org). A START and END event was added to every case in the event
log to provide common start and end points of traces. The final event log then converted
into the XES format. Common traces were grouped in trace variants using the Explore
Event Log (Trace Variants/Searchable/Sortable) feature in ProM [22].

In Stage 4 (Mining and Analysis) we used ProM to analysed the event log to identify
unique trace variants, performed process discovery, visualised the discovered model and
performed conformance checking. For process analysis, we calculated descriptive sum-
mary statistics of the disease trajectories that were identified, including stratification by
patient groups. The event log was visualised using the Explore Event Log (Trace vari-
ants/Searchable/Sortable). The Interactive Data-aware Heuristics Miner (iDHM) [23]
plug-in was used to discover the disease process models.

The quality of the discovered models were evaluated using replay fitness, precision
and generalisation [24]. Replay fitness is a measure of howmany traces from the log can
be reproduced in the process model, with penalties for skips and insertions. Precision is

https://promtools.org
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a measure of how ‘lean’ the model is at representing traces from the log. Lower values
indicate superfluous structure in the model. Generalisation is a measure of generalis-
ability as indicated by the redundancy of nodes in the model; The more redundant the
nodes, themore variety of possible traces that can be represented. The value of eachmea-
sure represents by a number between 0–1. Discovery and conformance checking used
plugins in ProM. The Replay a Log on Petri Net for Conformance Analysis plug-in for
measuring the fitness [25], Align-ETConformance plug-in [26] for the precision, and the
Measure Precision/Generalization plugin for measuring the generalisation. Other tools
used in this study were PostgreSQL as the database management system of MIMIC-III,
and Python through Jupyter Notebook [27].

4 Results

An event log was extracted from an EHR to identify disease trajectories, pairs of diag-
noses were identified and analysed for correlation measurement and tested for direction-
ality. The discovery algorithm is applied to produce the disease trajectory model and
represented using the directly-followed graph.

In Stage 1 (Planning), we aimed to mine the disease trajectory agnostically without
any specific selection of diagnosis and time window. Following the literature review
in Sect. 2, we defined the main research question as: (Q1) Can disease trajectories be
identified using a process-mining approach? Further questions added which were moti-
vated by the frequently posed question for process mining in healthcare [28]: (Q2) What
are the most followed trajectories and what exceptional trajectories are followed?(Q3)
Are there differences in trajectories followed by different patient groups (by sex, by
age group, by mortality status)? (Q4) What are the longest and shortest average time
transition trajectories?

In Stage 2 (Extraction), Of the 58,976 unique admissions in MIMIC-III from 46,520
patients, there were 6,984 unique ICD-9 diagnostic codes used for 651,000 diagnoses.
From this dataset, we excluded 172,685 (26.5%) diagnostic codes that are medically
known to be codes related to external factors not directly related to the development
of diseases [5], including pregnancy (ICD-9 3-digit codes 630–679, 760–779), general
symptoms and signs not related to a disease (780–799), external cause (800–999, E800-
E999), and administration (V01-V89). We further excluded 436,483 (67%) secondary
diagnostic codes and focused on the 41,832 primary diagnostic codes whilst there will
be valuable opportunity in exploring the secondary diagnostic codes.

In Stage 3 (Data Analysis), we composed the selected variables in a way that fol-
lows the minimum requirements of event log (see Fig. 1a). The traces of each patients
are illustrated in Fig. 1b. We removed 2,692 (16.2%) recurrent diagnoses, retained the
first occurrence, excluded patients with only one admission, and subsequently excluded
patients who were less than 16 years old at their first ever admission. A total of 4,911
patients remained in the event log consisting of 11,725 diagnostic codes. Figure 1 shows
the transformation of event logs into a log of ordered pairs of diagnostic codes (pair-
log)(see Fig. 1c). The resulting pairlog contained 6,814 ordered pairs of diagnostic codes.
Only 3,781 pairs remained after filtering for RR > 1 and the binomial tests for direc-
tionality suggested there were 826 ordered pairs of diagnostic codes with a statistically
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significant dominant direction. The resulting data contained 796 traces where each trace
represents a patient’s disease trajectory.

subject_id diagnostic_code timestamp
21 410 11/09/2134 12:17
21 038 30/01/2135 20:50
124 433 24/06/2160 21:25
124 441 17/12/2161 03:39
124 440 21/05/2165 21:02
124 569 31/12/2165 18:55

(a) The extracted event log

subject_id Antecedent Subsequent Time1 Time2
21 410 038 11/09/2134 12:17 30/01/2135 20:50

124 433 441 24/06/2160 21:25 17/12/2161 03:39
124 441 440 17/12/2161 03:39 21/05/2165 21:02
124 440 569 21/05/2165 21:02 31/12/2165 18:55

(c) The pairlog

#21: 410 038

#124: 433 441 440 569

(b) The trace of diagnosis

Fig. 1. Illustration of the transformation steps of event log for pairwise analysis. (a) The extracted
event log from MIMIC-III; (b) the illustration of traces of diagnoses for each patient; (c) the
transformed event log into pairlog.

In the last step of filtering, we transformed the pairlog back to an event log and
enriched with age at admission, sex, age group and the mortality status. We then loaded
the enriched event log into ProM, artificial ‘START’ and ‘END’ events were added and
then analysed the trace variants using the Explore Event Log feature. Among the 796
traces, we further removed twenty traces that were unique to a single, individual patients
as part of good anonymisation practice. Finally, the 776 common traces found in the
event log were grouped into 81 trace variants.

In Stage 4 (Mining and Analysis), there were eighty one unique trace variants
informed the processing discovery algorithms to answer the Q1. The conformance of the
discovered disease trajectory model demonstrated fitness= 0.93, precision = 0.94, and
generalisation = 0.92. Further evaluation was done by 5-folds cross-validation where
the original event log was randomly divided into five groups of sub-event log equally.
One sub-event log was used as the validation data and the remaining four sub-event logs
as training data. The cross-validation process was done five times to allow each sub-
event log used once as the validation data. The average value from the cross-validation
are expected to be lower than the conformance, resulting fitness = 0.92 (SD: 0.006),
precision = 0.82 (SD: 0.06), and generalisation = 0.88 (SD: 0.02). This suggests that
the discovered trajectory model (Fig. 2) is robust to sampling, allows the traces seen in
the event log, is precise enough to not allow behaviour unrelated to what was seen in the
event log, and general enough to reproduce future behaviour of the trajectories.

In respond to the Q2, among 776 patients there are 81 distinct trajectories (Table
2). The most-followed trajectory (n = 80; 10.3%) was acute myocardial infarction to
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Fig. 2. The directly-follow graph representation of Disease Trajectory Model of Critical Care
patients in MIMIC-III with the minimum case frequency = 6.

Table 2. The three most-common and least-common trace variants.

Traces (%) Trace Variant Median (months) Dead (%) Male (%)
80 (10.31%) START 410 414 END 6.5 75 70
62 (7.99%) START 410 428 END 3.9 72.58 54.84
45 (5.80%) START 430 437 END 3.9 4.44 35.56
… … … … …
2 (0.26%) START 410 427 486 END 28.3 100 50
2 (0.26%) START 507 491 482 END 43.6 50 100
2 (0.26%) START 518 250 038 END 14.6 100 0

ICD-9 Codes translation: 038 = Septicaemia, 250 = Diabetes mellitus, 410 = Acute myocardial
infarction, 414 = Ischemic heart disease, 427 = Cardiac dysrhythmias, 428 = Heart failure, 430
= Subarachnoid haemorrhage, 437= Other and ill-defined cerebrovascular disease, 482= Other
bacterial pneumonia, 486 = Pneumonia, organism unspecified, 491 = Chronic bronchitis, 507 =
Pneumonitis due to solids and liquids, 518 = Other diseases of lung.

ischemic heart disease, which is consistent with the published literature [7, 29, 30].
Septicaemia occurred most frequently (n = 212; 27.3%), both as a precedent (n = 50;
6.4%) and subsequent (n = 162; 20.9%), with mortality in the end (n = 143; 66.9%).
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This supported previous findings that it is associated with morbidity and mortality [16,
31]. There are three exceptional trajectories of two patients each (0.26%) (Table 2).

The third questionwas (Q3)Are there differences in trajectories followed by different
patient group?We answered the question by comparing trajectories by sex (male, female)
and age band (18–34 years, 35–64 years, and > 64 years). The male cohort consisted of
447 patients with the median duration of follow-up 6.98 months (IQR 1.6–28.2) where
252 cases (56.3%) ending in death. The most-common trajectory was acute myocardial
infarction followed by other forms of chronic ischemic heart disease (56 cases, 12.5%)
with median interval 6.5 months (IQR 1.5–35.3). In the female cohort, there were 329
patients with the median duration of follow-up 7 months (IQR 2–24.4) where 176 cases
(54.4%) ending in death. The most-common trajectory was subarachnoid haemorrhage
followed by other and ill-defined cerebrovascular disease (29 cases, 8.8%) with median
interval 3.4 months (IQR 2.3–7.5). The most-followed trajectory in a group of 18 to 34-
year-old cohort was diabetes followed by hypertensive chronic kidney disease (3 cases)
with median interval 55.8 months (IQR 33–56.5). For the group of 35 to 64 years, there
were 44 cases (14.5%) with acute myocardial infarction followed by ischemic heart
disease, with median interval 7.8 months (IQR 1.9–39.7). Among 329 cases in this age
group, there were 133 cases (40.4%) ending in death. Patients in >64 years, there were
293 (68.1%) deaths while the most-common trajectory was acute myocardial infarction
followed by heart failure, with median interval 4.7 months (IQR 1.5–21.8).

The fourth question was (Q4) What are the longest and shortest average time tran-
sition trajectories? The longest disease progression at 63 months was Ischemic heart
disease to Diverticula of intestine while the shortest progression was Gastrointestinal
hemorrhage to Liver abscess and sequelae of chronic liver disease with average time
transition is less than a month (0.98) (Table 3).

Table 3. The three longest and shortest average time interval trajectories in MIMIC-III.

Antecedent Subsequent Mean* Median (IQR)**

A. The three longest average time interval trajectories (descending)

Chronic ischemic heart
disease

Diverticula of intestine 63 75.9 (54–84.8)

Chronic ischemic heart
disease

Occlusion of cerebral arteries 52.7 51.2 (40.4–52.6)

Chronic ischemic heart
disease

Heart failure 46 41.5 (4.6–89.7)

B. The three shortest average time interval trajectories (ascending)

Gastrointestinal hemorrhage Liver abscess and sequelae of
chronic liver disease

0.98 0.81 (0.6–1.3)

Other diseases of
endocardium

Other diseases of pericardium 1 0.8 (0.6–1.13)

Chronic bronchitis Other bacterial pneumonia 2.2 2.2 (1.6–2.7)
*Mean is in months. **Median is in months (IQR); IQR = interquartile range.
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5 Discussion

We present a case study of 776 patient admissions associated with 81 different disease
transitions to demonstrate the feasibility of using a process-mining approach to reveal
disease trajectories using a hospital electronic health record database. We show that
the PM2 framework is suitable for mining disease trajectories and is complemented
by the addition of descriptive summary statistics in Stage-3 (Data Processing). Our
approach applies a number of transformations to the data, which were adapted from
published disease trajectory methods for constructing selected pairs of diagnoses with
strong correlation, followed by testing the pairs’ directionality to form the trajectories.

Process mining offers techniques to discover disease trajectories and measure the
quality of the algorithm to discover the trajectorymodel. In thisworkwe presented replay
fitness, precision, generalisation and cross-validation to validate themodel. The process-
mining approach opens opportunities to cross-reference discovered disease trajectories
with other critical care event data by defining workflows that can actioned using widely-
available software. By conducting conformance checking,we have the indicators to show
if the discovered model has a good quality. We note that the earlier study by Jensen et al.
[7], did measure the robustness of their discovered disease trajectory model with one
indicator that is similar to the replay fitness in process mining. This approach is useful
to validate that the final model conforms closely to the data.

A particular benefit of the process-mining approach to constructing disease tra-
jectories is that it may provide summaries of cases, events and time interval between
occurrences of disease. For example, our method identified the trajectory of acute kid-
ney injury (AKI) (584) followed by septicaemia (038) with an average interval of 16.22
months. This finding supports the conclusion of [32] where sepsis was a frequent con-
sequence after AKI in intensive care setting. Also, the process-mining approach could
provide an estimation of sepsis development after AKI as suggested in [33]. Our method
also incorporates additional case attributes that easily facilitate outputs to be stratified by
specific characteristics, e.g. sex, age group, and mortality status. For example, although
the data were not pre-stratified for females, process mining tools made it easy to query
the event log to reveal a dominant trajectory in females – subarachnoid haemorrhage
(430) followed by other and ill-defined cerebrovascular disease (437) – that agrees with
previous research [34].

6 Conclusion

In this paper, we have presented the mining of disease trajectories using a process-
mining approach. The mining used the MIMIC-III dataset which is comparable to many
databases from EHR systems in use at hospitals across the world. Our study included the
use of PM2 framework to mine a representative disease trajectory model from an EHR
and addressed quality dimension standards. This study opens opportunities for future
works in implementation of the technique using population sized EHR data. We believe
the association of pairs of diagnoses might be improved by null hypothesis significance
testing of relative risk rather than magnitude-based testing. Future work might assess
the sensitivity of the method to the choice of process discovery algorithm used to mine
the disease trajectory model.
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Abstract. In healthcare, more and more process execution informa-
tion is stored in Hospital Information Systems. This data, in conjunc-
tion with data-driven process simulation, can be used, e.g. to support
hospital management with Capacity Management decisions. However,
real-life event logs in healthcare often suffer from data quality issues,
affecting the reliability of simulation results. In this work, we illustrate
the effects of disregarding data quality issues on simulation outcomes
and the importance of domain knowledge using a case study at the radi-
ology department of a hospital. Current literature on data-driven process
simulation acknowledges the need for domain expertise but does not pro-
vide a framework for conceptualising the involvement of domain experts.
Therefore, we propose a novel conceptual framework which interactively
involves experts during data-driven simulation model development.

Keywords: Data-driven process simulation · Data quality · Domain
knowledge · Interactive modelling · Healthcare processes

1 Introduction

Worldwide, healthcare systems are under constant pressure. Increasing popu-
lation numbers, lifestyle factors, ageing populations, and new technologies are
the main drivers for increasing healthcare expenses. Simultaneously, healthcare
budgets are under pressure due to national budget deficits and savings [14].
Healthcare managers have to improve their care processes to maintain high-
quality care for all patients. One key aspect of ensuring this is efficient Capacity
Management (CM), which is used to determine the suitable levels of resources,
such as equipment, facilities, and staff size [28].

To support hospital management during CM decisions, Business Process Sim-
ulation (BPS) can be used to determine suitable resource levels objectively. BPS
uses a (computer) model to imitate the process. This allows to evaluate the effect
of various process modifications without actually implementing them into, nor
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disrupting, the real process [21]. For instance, the effect on throughput rates and
patient waiting times of installing an additional X-ray scanner can be simulated
to determine suitable equipment levels.

Conducting a simulation study is often time-consuming and builds upon sub-
jective inputs, such as interviews and observations. The emerging field of data-
driven process simulation in Process Mining (PM) can overcome some of the
limitations of “traditional” simulation model development by using data from
Information Systems. Data-driven process simulation refers to the automated
discovery of a simulation model from process execution data, i.e. an event log
[9]. A key challenge in this field is data quality, given its strong impact on the
reliability of the simulation results [31]. Because data quality issues are often
encountered in healthcare event logs, it is imperative to assess these issues and
correct them if needed. This will require domain knowledge. Current literature
on data-driven simulation does not provide a clear framework to involve domain
experts in model development.

This paper demonstrates the need for interactive data-driven process simu-
lation in healthcare by assessing the impact of data quality issues on simulation
results. To this end, a case study at the radiology department of a hospital is
considered. In addition, we propose a novel conceptual framework which struc-
tures the integration of domain knowledge in the interactive development of
data-driven simulation models.

The remainder of this paper is structured as follows. Section 2 gives an
overview of the related work. The context of the case study is presented in
Sect. 3. The experimental design, results, and discussion are presented in Sect. 4.
Section 5 introduces our proposed framework for interactive data-driven process
simulation. The paper ends with a conclusion in Sect. 6.

2 Related Work

This work relates to three key domains: (i) simulation for CM decisions in health-
care, (ii) data-driven process simulation, and (iii) data quality in process mining.
The following paragraphs give a brief overview of these domains.

Simulation for Capacity Management Decisions in Healthcare. Capacity
Management decisions in healthcare are concerned with determining the suitable
levels of resources, such as staff size, equipment, and facilities [28]. In literature,
simulation has been used to determine the required number of beds in general
surgery [30]; the number of nurses, doctors, and buffer beds in an Emergency
Department (ED) [7]; and the number of computed tomography (CT) scanners
in a radiology department [27]. Within the radiology department, the context
of our case study, Vieira et al. [32] gave an overview of Operations Research
(OR) techniques – which includes simulation – for optimising resource levels and
scheduling. For further reference on CM and the use of simulation in healthcare,
the reader is referred to one of the existing review papers [26,28,33].

Data-Driven Process Simulation. Data-driven process simulation aims to
“discover” BPS models from event logs automatically [9]. While existing PM
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research can support the discovery of individual BPS model components [19] –
e.g. control-flow discovery, decision mining, or organisational mining – less work
has been devoted to integrating all these components into a single, simulation-
ready model. Rozinat et al. [24] made a first attempt by discovering Coloured
Petri Nets (CPNs) to describe the control flow. In addition, gateway rout-
ing logic and resource pools were also included. Later, the authors extended
their method with activity execution times and case inter-arrival times [25].
Khodyrev and Popova [16] described a similar approach. However, the resource
perspective was not included, assuming no resource constraints [16]. Gawin
and Marcinkowski [13] provided support for activity durations, control-flow,
resources, gateway routing logic, resource schedules, and inter-arrival times.
However, the latter two were not automatically derived from data and had to
be defined by domain experts [13]. ClearPath [15] provides a methodology for
discovering and simulating Care Pathways (CPs). Their approach follows an
agile, iterative method which facilitates the interaction between the modeller
and domain expert, but the obtained process models still have to be manually
recreated in their simulation tool NETIMIS [15]. Simod was the first tool to
automatically integrate all components into a single, simulation-ready model to
support BPS [6]. In addition, Simod is also capable of measuring the accuracy
of the derived model and improve it using hyperparameter optimisation [6].

Data Quality in Process Mining. Real-life event logs tend to suffer from data
quality issues, especially when they originate from flexible environments with
substantial manual recording, such as healthcare [5,23]. These issues include
missing events and incorrect timestamps, where the latter is often caused by
batched registrations by healthcare staff [18,31]. Given the potential impact of
event log quality issues on the reliability of PM outcomes, research attention
on this topic is increasing. Research efforts are centred around three key topics.
Firstly, several frameworks are developed which define event log quality issues
[5,29,31]. For instance, Bose et al. [5] define 27 event logs quality issues and
group them in four broad classes (i.e. missing, incorrect, imprecise, and irrele-
vant data). Secondly, research is performed on data quality assessment, targeting
the systematic identification of event log quality issues. In this respect, the R-
package DaQAPO [20], the log query language QUELI [1], and the CP-DQF [12]
for Electronic Health Records (EHRs) provide tools and frameworks to opera-
tionalise data quality assessment. They are based on the event log quality issues
defined in Vanbrabant et al. [31], Suriadi et al. [29], and Bose et al. [5], respec-
tively. Thirdly, heuristics have been developed which tackle specific data quality
issues, e.g. adding missing events [10], imputing missing case identifiers [3], and
handling event ordering issues [11].

3 Background: Capacity Management at the Radiology
Department

To illustrate the impact of data quality issues in the context of data-driven
simulation, a real-life case study is used. This section introduces the case study.
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3.1 General Context

The case study relates to a project at the radiology department of a hospital.
Hospital management is preparing plans to build new facilities and is requesting
input from each department regarding the required capacity. For the radiology
department, this relates to the number of examination rooms – i.e. scanners –
and the size of the waiting rooms – i.e. the number of seats – for each examination
room. The radiology department wants to approach this Capacity Management
problem in a data-driven way.

To support this data-driven analysis, process execution data is obtained from
the Radiology Information Systems (RIS). This system supports the entire pro-
cess flow, of which a simplified representation is shown in Fig. 1. The process
starts when a patient arrives at the registration desk, after which (s)he is regis-
tered. Afterwards, the patient will wait in the waiting room until (s)he is called
into the examination room. A nurse helps the patient onto the scanning table and
correctly positions the scanner. Next, the image is created. In case the patient
needs an additional scan of the same type, e.g. an X-ray scan of both shoulder
and neck, this image can be made without leaving the room. After all required
scans have been made, the patient can leave the examination room, and the
nurse will post-process the images. If the patient still requires additional scans –
of a different kind than the previous (e.g. also a CT scan) – (s)he will go to the
waiting room of the other examination room. After all scans have been made,
the patient can leave the radiology department and return home. Note that the
interpretation of the scans by a radiologist is out of scope as it does not impact
the required scanner and waiting room capacity.

Fig. 1. Simplified process flow of (ambulatory) patients at the radiology department.

To solve the CM problem in this process, Discrete-Event Simulation (DES) is
used due to the stochastic nature of the process. DES uses simulation to compare
policy alternatives before implementing them in practice [33]. Arena v15 [2] was
used to simulate the model.

In a DES model, entities are dynamic objects which move through the pro-
cess and trigger the execution of activities [19]. In this case study, entities are
patients visiting the radiology department. Four patient types are distinguished:
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(i) ambulatory patients (A) which are outpatients, (ii) day hospital patients (D)
which are admitted to the hospital for at most one day, (iii) hospitalised patients
(H) which are inpatients, and (iv) emergency patients (S) which are transferred
from the Emergency Department (ED).

The process flow depicted in Fig. 1 actually gives an overview of ambulatory
patients. Nevertheless, the flow of the other patient types is, in essence, the same.
Only the way patients arrive and where they wait are different. Hospitalised and
day hospital patients will wait in their room until they are called in. Emergency
patients will wait at the ED.

Depending on the type of scan, a different scanner – and thus a different
examination room – is used. In this case study, there are six different types of
scans of interest: angiogram (ANGIO), computed tomography (CT), echocardio-
gram (ECHO), mammogram (MAMMO), magnetic resonance (MR), and X-ray
(RX). CT, ECHO, MAMMO, and MR all require separate rooms. ANGIO and
RX are performed in RX rooms.

3.2 Data Description

To support the development of the DES model, two years of data from the RIS –
from March 2017 until March 2019 – was available. The dataset includes various
key timestamps for each patient visit, such as time of registration, and start and
end time of scanning. Other attributes, such as the scan type (e.g. ECHO, RX,
etc.) and patient type (e.g. ambulatory, emergency, etc.), were also recorded for
each patient visit.

The dataset contains 404,750 individual patient visits. The proportions per
patient type were 60%, 23%, 15%, and 2% for ambulant, hospitalised, emergency,
and day hospital patients, respectively. In total, 464,053 scans were recorded,
indicating that the majority of patients only needed one scan. Most scans were
RX, i.e. 45%. ECHO represented 19%, followed by MR, 16%, 14% CT, and 5%
MAMMO. A very small proportion, less than 0.001%, were ANGIO.

In the process, the activity “Create Image” (cf. Fig. 1) has the most consid-
erable impact on waiting times and throughput rates because it generally takes
longer than all other activities. Both start and end timestamps are available
of this activity and are recorded when the nurse starts and stops the scanning
device, respectively. We initially expected that this activity would not suffer
much from quality issues because it is recorded automatically. However, this
appeared not to be the case.

Table 1 gives an overview of the scan duration times per scan type. According
to the data, some scans took over several years to complete. A few observations
even had a negative duration, caused by the end timestamp being recorded before
the start timestamp. Given its impact on capacity requirements, the scenario
analysis will focus on the effect of scanning time data with data quality issues
on simulation outcomes.
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Table 1. Scan execution times (in mins).

Scan Type Min Max Mean Median SD IQR

ANGIO 0.00 323,258 14,372.11 26.05 57,336.29 87.83

CT −726.53 30,605 6.73 1.97 196.86 2.23

ECHO −79.00 116,685 71.36 23.38 636.37 28.48

MAMMO −6.48 40,780 16.41 2.98 531.00 1.35

MR 0.00 946,449 161.22 11.48 9,679.90 6.90

RX −1,031.63 2,109,457 22.69 0.55 5,111.25 1.20

4 Scenario Analysis: The Impact of Data Quality Issues

4.1 Experimental Design

To illustrate the impact of data quality issues w.r.t scanning times, we consider
two scenarios:

– Scenario 1 – Direct sampling: In this scenario, actual observed data is
sampled. This is useful when no theoretical distribution, such as the Gaussian,
exponential, or gamma distribution, fits the data well. However, the disad-
vantage is that only the observed values can be used, which is problematic
for smaller datasets [17].

– Scenario 2 – Distribution fitting: In this scenario, a distribution is fitted
to the observed data. We used the distribution with the least worst fit because
not a single distribution fitted the data well. With this approach, we follow
the state-of-the-art of data-driven BPS techniques.

For each scenario, three alternative data filtering approaches are compared:

– Alternative 1 – Validated filtering (VF): In this alternative, which is
the baseline, we used filtered data validated by domain experts. For scenario
2, we had to use empirical distributions for this alternative as none of the
theoretical distribution provided a good fit. In the other two alternatives, we
always used theoretical distributions.

– Alternative 2 – No filtering (NF): Here, we used the unfiltered data
directly. Only observations less than zero were filtered out because the simu-
lation model cannot handle negative activity durations.

– Alternative 3 – Context-agnostic filtering (CAF): Even without any
domain knowledge, one would immediately notice that the maximum values
in Table 1 are unrealistic. Therefore, this alternative uses filtered data to
exclude anomalies. We adopted the commonly used box plot rule to detect
anomalies in the absence of domain knowledge. Any observation smaller than
Q1 − 1.5IQR or larger than Q3 + 1.5IQR is removed [8]. If the lower limit
was less than zero, zero was used instead.
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The length of the simulation run was set at two years for each alternative
in each scenario. Initial experimentation showed that outliers in Alternative 2
caused severe queue accumulation, which resulted in i.a. extreme waiting times.
Therefore, we integrated a weekly “reset”, which removed all patients from
queues and ongoing scans. We will refer to this reset as “flushing” and kept
track of the weekly number of flushed patients.

To compare the alternatives, we focused on patient throughput and waiting
times. Moreover, we looked at the flush count mentioned above. To measure the
true effect of the different distributions used in each alternative, common random
number streams (CRNs) are used. Consequently, the same random numbers are
sampled across all alternatives. To compare the difference between alternatives,
we used the non-parametric Wilcoxon-Mann-Whitney (WMW) test. Instead of
using the original observations, ranks are used to compare the difference between
two samples. This has the advantage that no underlying distribution is assumed
[22]. To control the false discovery rate (FDR) of the multiple testing problem,
we used the Benjamini–Yekutieli procedure [4] to adjust the p-values.

4.2 Results

Throughput Times. The throughput time measures the elapsed time between
the patient’s arrival and departure. Because a patient could require multiple
scans, the average throughput time per examination is considered by dividing the
throughput time of a patient by the number of scans. Patients who were “flushed”
did not complete all scans and are therefore excluded from this measure.

As shown in Table 2, the throughput times for NF are much higher than VF,
e.g. in Scenario 2, the average throughput time per examination for hospitalised
patients is almost 100 times longer. The differences between CAF and VF are
also statistically significant, albeit much smaller. For day hospital patients, rep-
resenting 0.5% of the observations for this measure, the differences between VF
and CAF were not statistically significant. Nevertheless, important differences
in mean throughput times are observed due to larger outlier values for CAF.

Waiting Times. The waiting time is the time a patient spends in a queue
before undergoing a scan. Table 3 shows comparable differences as the through-
put times. Again, large differences between VF and NF are observed, e.g. the
average waiting time for hospitalised patients is more than 150 times longer in
NF than VF for Scenario 2. For day hospital patients, only the difference between
VF and CAF in Scenario 1 is not significant, even though the absolute difference
between the means is, again, rather large, indicating the presence of outliers.

Flush Counts. The more patients are flushed at the end of a week, the more
this indicates that queues have accumulated throughout that week. Especially
in the NF alternative, many patients have to be flushed to “reset” the process
at the end of a week, in some cases even more than a thousand patients in total.
The differences between VF and CAF are much smaller, i.e. on average less
than one patient more was flushed in CAF. However, it should be noted that
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Table 2. Throughput times per examination (in min) per patient type (A, D, H, S)
and alternative (VF, NF, CAF).

ADHS Model 1 Model 2 Mean Model 1 Mean Model 2 Adj. p-value Significance

Scenario 1

A VF NF 25.8493 556.622 <0.0001 ****

A VF CAF 25.8493 45.8470 <0.0001 ****

D VF NF 25.0905 129.1714 0.0077 **

D VF CAF 25.0905 42.2703 0.6525 ns

H VF NF 29.6365 606.8702 <0.0001 ****

H VF CAF 29.6365 34.1812 <0.0001 ****

S VF NF 13.4890 92.7292 <0.0001 ****

S VF CAF 13.4890 16.3655 <0.0001 ****

Scenario 2

A VF NF 25.8622 938.1933 <0.0001 ****

A VF CAF 25.8622 48.8646 <0.0001 ****

D VF NF 24.6727 363.3950 <0.0001 ****

D VF CAF 24.6727 118.0489 0.1479 ns

H VF NF 29.6764 2,740.0265 <0.0001 ****

H VF CAF 29.6764 253.3411 <0.0001 ****

S VF NF 13.5586 76.9503 <0.0001 ****

S VF CAF 13.5586 17.5182 <0.0001 ****

****: p-value < 0.0001, ***: p-value < 0.001, **: p-value < 0.01, *: p-value < 0.05,
ns: not signif.

Table 3. Waiting times (in min) per patient type (A, D, H, S) and alternative (VF,
NF, CAF).

ADHS Model 1 Model 2 Mean Model 1 Mean Model 2 Adj. p-value Significance

Scenario 1

A VF NF 8.7470 536.3071 <0.0001 ****

A VF CAF 8.7470 26.4227 <0.0001 ****

D VF NF 10.8402 112.1685 <0.0001 ****

D VF CAF 10.8402 27.4978 1.0000 ns

H VF NF 17.3111 592.3354 <0.0001 ****

H VF CAF 17.3111 20.7817 <0.0001 ****

S VF NF 1.7663 76.4688 <0.0001 ****

S VF CAF 1.7663 3.6703 <0.0001 ****

Scenario 2

A VF NF 8.7252 912.6071 <0.0001 ****

A VF CAF 8.7252 31.3267 <0.0001 ****

D VF NF 10.3187 337.0036 <0.0001 ****

D VF CAF 10.3187 99.9275 0.0140 *

H VF NF 17.2705 2,737.3727 <0.0001 ****

H VF CAF 17.2705 243.9300 0.0140 *

S VF NF 1.7545 47.0165 <0.0001 ****

S VF CAF 1.7545 5.3972 <0.0001 ****

****: p-value < 0.0001, ***: p-value < 0.001, **: p-value < 0.01, *: p-value < 0.05,
ns: not signif.
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sometimes the maximum number of flushed patients in CAF was much higher
than in VF, e.g. for Scenario 2, VF flushed at most two hospitalised patients,
whereas in CAF this was at most 46. For ambulatory patients, this was smaller,
i.e. nine and seventeen, respectively.

4.3 Discussion

The results illustrate the need to consider data quality issues seriously. The unfil-
tered alternative – which completely neglects these issues – exhibits much higher
throughput times, waiting times, and flush counts than the validated baseline.
The difference between context-agnostic and validated filtering is smaller but
still highly relevant. For instance, waiting times for hospitalised patients are
up to eight times longer in CAF. However, for other performance metrics, such
as flush counts, the differences between VF and CAF are smaller.

In this case study, the cut-off points for outliers in VF and CAF happened
to be reasonably close to each other, except for echocardiograms. The domain
experts indicated a maximum of 30 mins, whereas the box plot rule returned
84.64 min. However, this does not give any guarantee for other cases as context-
agnostic filtering does not take into account the specificities of a particular
domain in any way. Therefore, domain knowledge is always required to achieve
accurate simulation results.

When comparing the differences between the two scenarios for each alter-
native (i.e. comparing the outcomes under direct sampling with their counter-
part under distribution fitting), large differences are often observed between
throughput and waiting times, even though the same input data was used. A
possible explanation is that the theoretical distributions did not fit the data
well. Therefore, we highlight the need to report goodness-of-fit (GoF) statistics
in state-of-the-art data-driven BPS discovery algorithms and use direct sampling
or empirical distributions in case no theoretical distribution fits the data well.

5 Interactive Data-Driven Process Simulation

As illustrated in the case study, data quality issues can have a profound impact
on the reliability of simulation results. Moreover, domain knowledge plays a vital
role in the development of a simulation model. Without domain knowledge, it
is, e.g. challenging to determine whether particular observations are exceptional
– but plausible – or data errors. Even though current literature on data-driven
process simulation acknowledges the need for domain expertise for i.a. validation
purposes, no framework conceptualises how this knowledge should be incorpo-
rated.

To enhance the integration of domain knowledge in the development of data-
driven simulation models, we propose a novel conceptual framework which inter-
actively involves experts during model building. This framework, which is visu-
alised in Fig. 2, distinguishes three interaction cycles. In the first cycle, the initial
model is constructed. For each required modelling task (e.g. entity arrival rate,
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activity durations, resource roles, etc.) – of which an overview is presented in
Martin et al. [19] – the data requirements are verified. For instance, mining
resource roles requires the presence of a resource attribute. If these requirements
are not fulfilled, the domain expert is asked for additional input to perform this
modelling task. Conversely, if the requirements are fulfilled, the quality of the
data is assessed, and an applicable discovery algorithm is employed. Next, the
results of the discovery algorithm and detected data quality issues are presented
for a check by the domain expert. (S)he can then solve any data quality-related
issues and tweak the discovery parameters until the results are satisfactory.

The second cycle integrates all discovered model components from the first
cycle into a single, simulation-ready model. The entire model is simulated, and
the domain expert checks the preliminary results. If the simulation outputs do
not satisfactorily reflect reality, the model can be “calibrated” by altering the
simulation parameters. An estimation of the impact of the altered parameter
on simulation outcomes is delivered in real-time, so the expert does not have to
wait until the entire simulation has been completed before receiving an indication
whether the altered parameter results in the desired change.

The final and third cycle is concerned with the validation of the model.
The calibrated model from the second cycle is simulated comprehensively and
validated by the domain expert. In addition, a validation dataset – which was
not used to discover the model – can be used as well. If the desired accuracy level
is not achieved, the domain expert can modify the simulation parameters again.
The final validated model can be used for the evaluation of various scenarios and
further analyses.

Fig. 2. Interactive data-driven process simulation framework.

6 Conclusion

Data-driven process simulation has great potential within a healthcare context,
e.g. to support hospital management with Capacity Management decisions. How-
ever, real-life data extracted from Hospital Information Systems tend to suf-
fer from data quality issues, which affects the reliability of simulation results.
The presented case study at the radiology department of a hospital illustrates
the impact of these issues, as well as the importance of domain knowledge.
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Current literature on data-driven process simulation acknowledges the need for
domain expertise but does not provide a framework to conceptualise the involve-
ment of domain experts. Therefore, we propose a novel conceptual framework
which interactively involves experts during data-driven simulation model build-
ing. In this framework, a distinction is made between three cycles: an initial
development cycle, a calibration cycle, and a validation cycle.

Future work will focus on how the interaction between the domain expert and
the framework will occur more specifically. Ultimately, our goal is to implement
our framework into a tool to support the integration of domain knowledge into
the development of data-driven process simulation models. In addition, this case
study highlights the need for further research on identifying and remedying data
quality issues in a healthcare context.
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Abstract. In healthcare, process mining has been used in many case studies to
discover and analyse process models of patient treatments. Process mining is
generally applied to analyse the event log of patient treatments as extracted from
the Electronic Health Record (EHR). In this study, we proposed an approach to
combine the event log of patient treatments with the clinical user access log of the
hospital information system to analyse systemusage during patient treatments.Our
case study combined an event log of breast cancer patients receiving chemotherapy
treatments in the Leeds Cancer Centre with the user access log in the hospital
information system. The event log of patient records during chemotherapy was
extracted from the EHR system. The clinical user access log was extracted from
the Splunk web-based log management system in the hospital. Combining records
from those two logs has been useful to provide information on system usage
during patient treatment. Our experiment focused on the GPTab, a functionality
that allows clinicians during consultations to check on patient records on their GP
visits.We applied both statistical and clinical evaluations to ensure that the findings
are statistically correct and clinically meaningful. We captured the phenomena of
the decreasing number of patients on the subsequent cycles of chemotherapy and
when GPTab has been used during the course of chemotherapy. This approach
is potentially useful for general cases to analyse system usage during process
execution and can be applied to investigate the effects of system changes to process
executions.

Keywords: Process mining · Extended event log · Clinical user access log ·
Chemotherapy · Cancer treatment · EHR

1 Introduction

As a large group of diseases, cancer is very complex and can affect any part of the
body [1]. There are at least 65 recognised types of cancer [2]. Breast cancer is the most
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common cancer in women affecting about 12% of women in the world [3]. In the UK,
breast cancer is one of the four most common cancer types, along with prostate cancer,
lung cancer, and colorectal cancer [4]. Breast cancer [5] is diagnosed by physical exam,
mammogram, ultrasound, MRI, blood chemistry studies, and biopsy of the affected area
of the breast. Surgery is the primary treatment, which may be followed by chemotherapy
or radiation therapy, or both [6]. A course of chemotherapy [7] is usually done in six
cycles, where each cycle is given 21 days after the previous one. Some patients might not
be able to get a cycle of chemotherapy due to some adverse events, including emergency
admission and neutropenia.

Process mining is a process-oriented data science approach that uses event logs
for discovering and analysing business process models [8]. An event log is a record
of timestamped activities generated automatically by the information system. Process
mining has been applied in healthcare processes [9] for quality improvement, patient
safety, and resource optimisation in healthcare settings [10]. Our literature review of
process mining in Oncology [11], the study of cancer, found the limited availability
and accessibility of suitable datasets for process mining. Our earlier study explored a
publicly available dataset for process mining in healthcare [12, 13]. In this study, we
were fortunate in having access to explore the in-house developed PPM EHR system
including the database, the software developers of the system, the training team, clinical
staff and senior clinicians involved in the process.

Our case study is based on a de-identified extract from the Patient Pathway Manager
(PPM) database of the PPM EHR system [14]. The patient dataset has been used in
the previous study to define real-life clinical pathways during chemotherapy [15]. This
paper presents a worked example to analyse General Practitioner (GP) Tab usage during
chemotherapy treatment on breast cancer patients. GPTab is amenu that allows clinicians
to access patient records in the GP system. The GPTab presents clinical information
(diagnosis, allergies, medications, etc.) recorded in the registered Leeds GPs. Accessing
GP Tab during consultations in chemotherapy cycles improves understanding of patient
condition and support decision making for patient treatment. We described an approach
to enhance a process model through an extension of the event log, by combining patient
records with the user access log. This approach is potentially useful in many other cases
to enhance processmining approacheswith user access log describing real user accessing
information systems.

2 Patient Pathways Manager (PPM) EHR System

The PPM EHR system is used in the Leeds Teaching Hospitals NHS Trust (LTHT), the
largest provider of specialised services in England that manages six hospitals, including
St James’s University Hospital (SJUH) [16]. The SJUH hosts the Leeds Cancer Centre,
one of Europe’s large cancer centres [17]. The PPM system integrates data from multi-
ple systems within the LTHT, including patient admissions, treatments (chemotherapy,
surgery, and radiotherapy), pathology, investigations, Multidisciplinary Team (MDT)
meetings, consultations, and outpatients.

The PPMdatabase contains clinical information about all patientswithin the hospital,
including cancer patients. We gained access to the PPM database through an IRAS
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application that allows direct access to a secure SQL database on a virtual machine.
The data has been checked, cleaned, and aggregated before approval for access by the
research team. The PPMdatabase consists of clinical data ofmore than 3million patients,
of which more than 270,000 patients have at least one cancer-related diagnosis. The
PPM EHR system is connected to patient records in other service providers, including
General Practitioners (GPs), Mental Health, and Community services. Figure 1 shows
a screenshot of GPTab screen in the PPM EHR system.

Fig. 1. Screenshot of the GPTab in the PPM EHR system, from the PPM support website [18].

The clinical user access log is recorded in PPM Splunk. The PPM Splunk is web-
based application management that captures real-time user access to the PPM system,
which is useful in analysing system usage for specific functionalities. Every time a user
views data in the PPM EHR system, the system automatically recorded the activity in
the PPM Splunk. In this study, the healthcare user access log was focused on the GPTab
access log, as a representative of functionalities related to cancer treatment. GPTab is a
functionality that can be used by clinicians to access patient records in the GP system,
to support clinical decisions related to patient treatment.

3 Methodology

The general methodology is based on the Process Mining Project Methodology (PM2)
[19] with a focus on the Mining and analysis step (Fig. 2).

Fig. 2. The general methodology (based on PM2)
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We did the stages in the methodology in at least two iterations: once with only the
clinical records as the input, and once with a combination of the clinical records and the
healthcare user access log. For simplicity and ease-of-understanding, this paper describes
only the final iteration and summarise the findings in the intermediate iterations as part
of the final iteration.

The Planning stage identified the scope, the team, and the research questions in
the study. The scope of this study was to analyse GPTab usage during chemotherapy
treatment of breast cancer patients in the PPM system. The research questions were:

Q1. What are the most followed paths and the exceptional paths?
Q2. How did clinicians use GPTab during the course of chemotherapy?

Our team consisted of process mining experts, clinical experts, representatives of the
development and training teams of the PPM EHR system. We did at least one meeting
in each stage of the study to discuss the plan, progress of the study, and validation of
the findings. The discussion was done to ensure domain expert engagement during all
stages of the study, as suggested in the ClearPath method [20].

The Extraction stage included the patient clinical records from the PPM database
and the user access log from PPM Splunk. The patient clinical records are included if
(1) the patient had at least one diagnosis of breast cancer (ICD-10 C50) and received
epirubicin and cyclophosphamide (EC90) chemotherapy as adjuvant treatment and (2)
the patient was first diagnosed with breast cancer between 2014 and 2018. The EC90 is
one of the most commonly used regimens in Leeds Cancer Centre in the specified time
period. TheGPTab user access records fromPPMSplunk are included if clinicians access
GP records of patients in the cohort during their cancer treatment between 2014 (when
GPTab was introduced) and 2018. Combining patient clinical records with user access
records is useful to get additional data from user access log that is not recorded in the
patient clinical records, in this study, adding GPTab access activity to the chemotherapy
pathways. The extraction stage is illustrated in Fig. 3.

Fig. 3. The extraction stage, combining patient clinical records with user access records.

TheDataProcessing stage consistedof creatingviews, aggregating events, enriching
logs, and filtering logs. The views were created by focusing on the chemotherapy cycles
of breast cancer patients. Instead of aggregating events, we used the fine-grained event
names, which are Cycle 1, Cycle 2, up to Cycle 6, representing the cycle number of
chemotherapy. Log enrichment added information to the event log, in this case, the
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process duration for each patient that was calculated as the number of days from the
first activity to the last one in the recorded treatment. We also included Emergency and
Neutropenia events as suggested by clinical experts to be the two events potentially
affecting chemotherapy progressions. We extracted the Emergency events as they were
recorded in the Admission table with an Emergency Admission type. Neutropenia is a
condition where a patient had a neutrophil count less than normal (<1.5× 109/L). More
details about those two additional events had been described in our previous study using
the same dataset [15]. An attribute-based log filtering was done by filtering in selected
events to include only the chemotherapy cycle events of patient treatment. The patient
records were transformed into an event log, which contains {case_id, activity, resource,
timestamp}. The event log was loaded into ProM tools and R for analysis in the next
stage.

The Mining and Analysis stage included process discovery, conformance checking
[21], enhancement, and process analytics.Process discoverywas done in the fine-grained
level to model chemotherapy cycles of patients in the selected cohort. The adjuvant
chemotherapy for breast cancer patients is commonly given in six cycles, sequentially
from Cycle 1 to Cycle 6. The main tools for process discovery were ProM 6.8 [22],
DISCO [23], and bupaR [24]. ProM is an academic platform that is widely used in
process mining projects. DISCO is used in this study to get an early model easily, based
on the fuzzy miner algorithm. BupaR is a library in R that was used in this study to
support a more detailed statistical analysis. Enhancement was done by extending the
event log of the patient records with the GPTab access log in the PPM Splunk. Figure 4
shows a screenshot containing detailed data on the date and time, page address, patient
id and user id recording a time when a clinician had accessed the GP Tab page of a
patient. There is also a bar chart visualising the number of records on a daily basis. The
bar chart shows an obvious pattern of weekday- and weekend- usages.

Fig. 4. A query result in the PPM Splunk. Confidential information such as Patient ID and dates
are blocked in black.

The Evaluation stage was done to diagnose, verify, and validate the results of the
previous stages. In this study, the evaluation analysed all findings from the statistics and
clinical perspectives. The statistical evaluation was done to verify and validate the result
quantitatively, which was later confirmed to the clinical experts and the representative of
the development team. The clinical evaluation was done to make sure that the findings
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reflected reality, supported and enhanced prior knowledge of the clinical experts about
patient treatment.

4 Results and Discussion

4.1 The Extracted Data

We extracted Leeds patients diagnosed with breast cancer (C50) who received EC-90 as
adjuvant chemotherapy, whose GP Tab was accessed by clinicians from 2014 to 2018.
There were 738 patients included in this selection. Table 1 shows a list of the eight
selected events for process discovery, which consists of six cycles of chemotherapy and
two adverse events (emergency admission and neutropenia).

Table 1. Selected events for process discovery

Event name Cycle Emergency Neutropenia

1 2 3 4 5 6

Patients (n) 738 725 699 487 402 380 380 412

Percentage 100% 99% 95% 66% 55% 52% - -

Med (days) 21 21 21 21 21 - - -

Table 1 shows that 738 patients received Cycle 1 of chemotherapy, but the number
decreases in the following cycles. The median duration from a Cycle to the next one
is 21 days, which reflects the typical duration of treatment in reality. This finding has
been discussed with clinical experts. It has been confirmed to reflect the reality where
patients might find several conditions that prevent them from completing the course of
chemotherapy. It is shown that among patients who started receiving Cycle 1 of EC-90
as adjuvant chemotherapy, only around half of them (n = 380; 52%) completed Cycle
6. This condition needs to be explored more, to learn what were the possible conditions
preventing patients from completing the treatment.

4.2 Discovered Process Models and the Conformance

We presented Table 2 to show the 15 most common trace variants out of 289 variants in
total. Each of those 15 variants followed by at least seven patients.

Table 2 shows that the most common variant is a sequence of Cycle 1 to Cycle 6 (n
= 120; 16.26%), followed by the second variant that is a sequence of Cycle 1 to Cycle 3
(n = 56; 7.59%). Our clinical experts confirmed that even though a complete sequence
of Cycle 1 to Cycle 6 is expected, a lot of patients needed a consultation after Cycle
3 to decide if the chemotherapy regimen can be continued. Patients might also change
regimen after Cycle 3 and therefore are not captured in this study.

Figure 5 shows a dotted chart of routine chemotherapy cycles of patients treatments
of up to 7 years. The chart shows groups of patients who had not completed six cycles
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Table 2. Top fifteen trace variants

Var Trace variant n (%)

1 Cycle 1 - Cycle 2 - Cycle 3 - Cycle 4 - Cycle 5 - Cycle 6 120 16.26

2 Cycle 1 - Cycle 2 - Cycle 3 56 7.59

3 Cycle 1 - Cycle 2 - Cycle 3 – Emergency 37 5.01

4 Cycle 1 - Cycle 2 - Cycle 3 - Cycle 4 - Cycle 5 - Cycle 6 - Emergency 25 3.39

5 Cycle 1 - Cycle 2 - Cycle 3 - Cycle 4 14 1.90

6 Cycle 1 - Cycle 2 - Cycle 3 - Cycle 4 - Cycle 5 - Neutropenic - Cycle 6 11 1.49

7 Cycle 1 - Neutropenic - Cycle 2 - Neutropenic - Cycle 3 - Neutropenic 10 1.36

8 Cycle 1 - Cycle 2 - Cycle 3 - Cycle 4 - Neutropenic - Cycle 5 - Cycle 6 10 1.36

9 Cycle 1 - Cycle 2 - Cycle 3 - Cycle 4 - Emergency 9 1.22

10 Cycle 1 - Cycle 2 - Cycle 3 – Emergency - Neutropenic 9 1.22

11 Cycle 1 - Cycle 2 - Cycle 3 – Neutropenic 8 1.08

12 Cycle 1 - Cycle 2 - Cycle 3 - Cycle 4 - Cycle 5 8 1.08

13 Cycle 1 - Cycle 2 - Cycle 3 - Neutropenic - Cycle 4 - Cycle 5 - Cycle 6 -
Emergency

8 1.08

14 Cycle 1 - Cycle 2 - Cycle 3 - Neutropenic - Emergency 8 1.08

15 Cycle 1 - Cycle 2 - Cycle 3 - Neutropenic - Cycle 4 - Cycle 5 - Cycle 6 7 0.95

of chemotherapy (the one-third top part of the chart), who completed six cycles of
chemotherapy (the middle part), and who had more complicated courses of treatment
(the bottom part). In total, 51% (n = 376) patients completed all six cycles, without
any acute event (n= 158; 21%) or having at least one acute event including Emergency
Admission orNeutropenia (n= 218; 30%). The patients who did not complete six cycles
(n = 392; 49%), might had acute events (n = 207; 28%) or not completing for other
reasons (n = 155; 21%). Based on our discussion with clinical experts, some of those
reasons are missing appointments, disease complications, and personal reasons.

This dotted chart had been shown to the clinicians and all of them agreed that this
visualisation helped them understanding the situation more clearly. There are only about
a third of patients had the normal and ‘happy’ path of six cycles of chemotherapy, while
the others had incomplete or overly complicated paths of treatment. Some example of
patients were picked and discussed with clinical experts to see specific cases where
patient conditions preventing them from completing the treatment. Those specific cases
are not presented in this paper because presenting data of a small number of patient
would breach ethical approvals.

Further analysis of the result was examining the cycles leading to an emergency
admission or a neutropenic condition. Table 3 shows that most patients who had emer-
gency admission got it after Cycle 3 (n= 117; 16%), Cycle 6 (n= 90; 12%), or Cycle 1
(n = 81; 11%); while most patients who had Neutropenic got it after Cycle 3 (n = 142;
19%), Cycle 2 (n = 123; 17%), or Cycle 1 (n = 94; 13%). Collectively, adverse events
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Fig. 5. Dotted chart showing adverse events during six chemotherapy cycles. The x-axis shows
duration from the first activity to the last one. The y-axis shows patient id, sorted by durations.

(Emergency or Neutropenic) havemostly occurred afterCycle 3. Table 2 summarised the
pattern of the cycles leading to an acute event and might have a one-to-many relation to
trace variants presented in Table 2. For example, Cycle 3 leading to a Neutropenic event
in Table 3 (n = 142; 19%) is related to variants 7, 11, 13, 14, 15 and other infrequent
variants in Table 2.

Table 3. The cycles leading to an acute event

Activity Leads to emergency Leads to neutropenic

N (%) Med; Mean N (%) Med; Mean

Cycle 1 81(11) 8 d; 18.4 d 94(13) 19 d; 23.1 d

Cycle 2 52(7) 8 d; 43.9 d 123(17) 19 d; 20.6 d

Cycle 3 117(16) 28 d; 27.3 w 142(19) 18 d; 61.1 d

Cycle 4 64(9) 14d; 27.3 w 84(11) 19 d; 16 d

Cycle 5 22(3) 13.5 d; 19.2 w 70(9) 19 d; 33.5 d

Cycle 6 - - - -

It is also important to note that the median and mean duration of acute events after a
chemotherapy cycle are generally under 21 days, within the expected duration of a cycle
to the next one. This means that patients experienced one or more acute events before the
next cycle of chemotherapy, got treated, and continue to the next cycle of chemotherapy
as planned. On the last row, Emergency and Neutropenic events after Cycle 6 are not
presented because they are not part of this study.

4.3 The Enhanced Process Model

There were 339 out of 738 patients (46%) who had their GPTab accessed by clinicians.
This percentage is higher than the percentage of all cancer patients who had their GPTab
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accessed by clinicians (46,547 out of 339,127 patients; 37%), which showed that clini-
cians made use of the patient records in the GPTab to support their decisions on the next
treatment for their patients. Figure 6 shows the process model containing the flow from
Cycle 1 to Cycle 6 of chemotherapy. During the course of chemotherapy, the GPTab
might be accessed by clinicians. Themost frequent sequence is that GPTab was accessed
after Cycle 6 (n = 160; 47%), followed by GPTab access after Cycle 3 (n = 110, 32%)
and GPTab access after Cycle 4 (n = 31; 9%).

Fig. 6. Process model showing GPTab access during chemotherapy cycles (bupaR). It shows that
GPTab was mostly accessed after Cycle 3, Cycle 6, or Cycle 4.

These results have been confirmed by the clinical experts to reflect reality. The
clinicians are most likely need to check on patient records in GPTab after the sixth cycle
to decide whether to discharge the patient, to follow on the next cycle of chemotherapy,
or to suggest another treatment. Clinicians might need to check on patient records in
GPTab after Cycle 3, to decide if the next cycles should be delivered as planned or not.
Another finding was that GPTab click is mostly the last activity in the pathways, or at the
end of treatment (n= 326; 96%). The enhanced process model revealed some important
insights into how GPTab has been used during the treatment process.

4.4 Process Analytics

Process analytics was done to analyse GPTab usage chemotherapy. This was based on
a discussion with a representative of the PPM development team who mentioned that
the GPTab had been through some changes during the study period. We followed up
this discussion by exploring the increasing pattern of GPTab usage over time. Figure 7
shows a bar chart of the number of GPTab clicks from July 2014 to December 2018.

Further exploration of the PPM Splunk records shows that in March 2018, the first
version of GPTab (GPv1) has been replaced by the second version (GPv2). In September
2017 to February 2018 both versions were accessed by clinicians, and this has been
confirmed as the transition period. The transition period from GPv1 to GPv2 can be
captured in the monthly usage from 2017 to 2018, as shown in Fig. 8. This has not been
seen in Fig. 7, which shows that the transition from the first version to the second one
has been done smoothly.
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Fig. 7. GPTab clicks each day. It shows that the number of clicks generally increased over time,
with steady fluctuations showing the pattern of weekday- and weekend- usages.

4.5 Statistical and Clinical Evaluation

The evaluation was done in both statistical and clinical aspects. Statistical evaluation
was done throughout the stages by analysing the occurrence numbers and percentages
of events in the process. This has been presented in the relevant steps in the previous
sections of this paper.

Fig. 8. Monthly usage of GPTab during 2017–2018. The blue dots are monthly usage of the first
version (GPv1) and the orange dots are those of the second version (GPv2).

Clinical evaluation was done through discussion with clinical experts. In the Plan-
ning stage, clinical experts suggested the scope of the study. The GPTab functionality
was chosen based on the availability of the related data to enhance process model of
patient treatment. One important insight from the software training team was that for
some new features introduced in the PPM software, there was a period when training
was given to the clinicians to introduced the use of the new feature, such as GPTab.
During the Extraction stage, clinical experts evaluated and suggested details the extrac-
tion step. One important suggestion in this stage was the specific type of chemotherapy
for breast cancer selected in this study, which is EC90 for adjuvant treatment. In the
Data processing stage, clinicians suggested focusing on the effect of the GPTab intro-
duction to the chemotherapy cycles. The findings from the Mining and analysis stage
have been discussed with clinical experts. Some of their comments had been presented
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in the relevant part in Sect. 4.1 to Sect. 4.4. The GPTab supported clinicians to decide
on the next treatment suitable for their patients, such as to follow with the next cycle of
chemotherapy, to change the regimen of chemotherapy, or to discharge the patient.

5 Conclusion

This paper described a process analytics approach by combining patient clinical records
with user access log to analyse system usage during patient treatment. A case study
presented in this paper was GPTab usage during chemotherapy treatment. Two research
questions had been established and answered through a structured experiment follow-
ing the PM2 stages. The first research question has been answered in the Mining and
analysis stage, specifically in the process model (see Sect. 4.2). Additional analysis to
support this answer has been presented in a trace variant list (Table 2) and a dotted
chart (Fig. 5). The second research question has been answered by the enhanced process
model (Fig. 6) which shows how GPTab has been used to support clinician to decide
the next treatment for their patients. General comments of the findings throughout the
stages are that process mining is potentially useful to improve clinical pathway analysis
by providing visualisation of process models and additional results such as trace vari-
ance diagrams and dotted charts. Those visualisations supported discussions with the
multi-disciplinary team.

Some limitations and potential improvements in this study are as follow. The first is
to explore the aggregated events to see how chemotherapy has been given in the sequence
from a referral, diagnosis, and a set of treatments. Second, the idea of combining user
access records in PPM Splunk with the treatment records in the PPM database was good
to analyse the effect of system functionality to the treatment process. Another possibility
discussed was to analyse PPM Splunk separately to be compared to the discovered
process model from the patient records. Since PPM Splunk recorded all actions done by
clinicians during patient treatment, the treatment process itself should be reflected in the
records. Third, the extraction and data processing in this study relied on the selection of
the best set of events of the specific cohort of patients, based on the understanding of the
data and problem domain. Further improvement might be to explore possible ways to
select the best set of events based on the data attributes, with less dependence on clinical
expert judgments.
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Abstract. Process mining has become its own research discipline over
the last years, providing ways to analyze business processes based on
event logs. In healthcare, the characteristics of organizational and treat-
ment processes, especially regarding heterogeneous data sources, make
it hard to apply process mining techniques. This work presents an app-
roach to utilize established standards for accessing the audit trails of
healthcare information systems and provides automated mapping to an
event log format suitable for process mining. It also presents a way to
simulate healthcare processes and uses it to validate the approach.

Keywords: Process mining · Healthcare · HL7 FHIR

1 Introduction

We provide a process analytics approach to enable the mining of standardized
audit trails of healthcare information systems by transforming them into eXten-
sible Event Stream (XES) logs via an automated mapping approach. We tested
it by simulating a radiology practice workflow, and analyzed the results with a
process mining tool.

With diverse use cases and different approaches, techniques, and algorithms,
process mining became its own scientific discipline over the last 20 years [1].
With the goal of understanding and improving the real-world processes, pro-
cess mining provides an evidence-based (i.e., data-driven) view on the processes
recorded by information systems. An increasing number of case studies also show
the applicability of process mining in the healthcare domain (cf. the reviews in
[4,18]). Most of those case studies focus their analysis on single hospitals or even
departments due to problems of data integration or data availability [4].
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1.1 Problem Statement

Rebuge and Ferreira [17] conclude in their work that healthcare processes,
both organizational and medical treatment, are highly dynamic, highly com-
plex, increasingly multi-disciplinary and generally ad-hoc. All four characteristics
make it hard to apply process mining techniques. In this work we focus on the
aspect of high complexity, partly caused by the high number of participants, het-
erogeneous information systems, and the resulting lack of interoperability [4,17].

Rojas et al. [18] found in their review that three implementation strategies for
process mining projects in healthcare exist: (1) The majority of case studies work
with direct implementations, where data is gathered directly from hospital infor-
mation systems (HIS) for building an event log. Data extraction and building the
correct event log poses major challenges here. (2) The second, semi-automated,
strategy involves the integration and extraction of data from different sources
via custom-made developments. The disadvantage here is the ad-hoc, propri-
etary nature of these developments, as they only work for specific data sources
and environments. Both strategies, direct implementation and semi-automated,
share the need to understand process mining tools and algorithms for conducting
process analytics. (3) The third strategy is the implementation of an integrated
suite. Specific data sources are connected and integrated, and specific process
mining algorithms are executed in order to perform defined analytics tasks. Once
implemented, these solutions are easily applicable, but like the semi-automated
strategy, fail to integrate other data sources and environments.

We conclude, that a major problem with starting a process mining project
in healthcare is that one has to choose between either complex manual data
extraction and integration, or locking oneself in on specific data sources and
environments (i.e., vendor lock-in).

1.2 Related Work

To overcome the problems of process mining on heterogeneous data sources in
healthcare, some studies tried to analyze standardized audit trails [3,7,16]. We
will build on this work, using their concepts of audit events, mapping strategies,
and multi-perspective process mining.

Cruz-Correia et al. [3] were the first to explicitly make the connection between
standardized auditing in healthcare and process mining. They specifically looked
at the Integrating the Healthcare Enterprise (IHE) integration profile Audit
Trail and Node Authentication (ATNA). Being one of the core profiles dealing
with IT infrastructure in healthcare, ATNA defines how to build up a secure
domain that provides patient information confidentiality, data integrity, and user
accountability. They analyzed ATNA audit trails from four different hospitals in
Portugal and identified several data quality issues.

Later, Helm and Paster [7] investigated the suitability of event logs recorded
by the means of IHE ATNA for process mining. They adopted a direct map-
ping approach, transforming IHE audit messages into XES event logs. They
encountered issues regarding the determination of trace identifiers and seman-
tics preserving mapping.
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De Murillas et al. [16] took on the previous approach [7] and presented a
method to overcome the problems of trace identification and incorrect mappings.
By integrating the audit trail data into a generic meta model (OpenSLEX), they
provided the means to query and analyze the data from different perspectives.

While these approaches try to solve the issue of heterogeneous data sources,
they either lock the user in on a predefined mapping [7] or provide a non-
standardized interface to the process data [16] – two shortcomings that can
be avoided with our approach.

1.3 Proposed Solution

Supporting definition, instantiation, and execution of workflows is still a topic of
vivid discussions in the respective standards development working groups. For
the analysis part, first steps have been taken. Standardized Operational Log of
Events (SOLE) is a recently developed IHE integration profile. It is a supplement
for the radiology technical framework and currently in revision 1.2, published for
trial implementation in mid 2018 [13]. SOLE describes the capture and retrieval
of operational events in the radiology domain and utilizes transactions from
the ATNA profile, including the new RESTful ATNA [12], based on the Health
Level Seven (HL7) standard Fast Healthcare Interoperability Resources (FHIR).
The profile authors’ incentive for writing the SOLE integration profile was the
strong desire of healthcare providers “to increase throughput and efficiency, both
to improve the quality and timeliness of care and to control costs” [13]. They
conclude, that workflow events must be captured in order to be able to apply
business intelligence tools [13].

We propose an open standards-based process analytics approach for health-
care information systems to overcome the problems mentioned above. It enables
the development of tools that combine the easy applicability of an integrated
suite with the ability to integrate different data sources. This will make existing
process mining tools the business intelligence tools the community wants.

To this end, this paper aims to show how existing concepts can be utilized
and what changes in the standard are necessary to enable process mining based
on HL7 FHIR. This paper also contributes to the field by presenting a novel
approach to utilize a process simulation tool in a healthcare environment.

2 Background

This section provides a brief overview on the two major standards involved in
building the open process analytics approach, HL7 FHIR and XES.

2.1 HL7 FHIR

FHIR1 is the latest addition to the family of healthcare interoperability stan-
dards maintained and published by HL7 International [8]. FHIR provides a
1 HL7, FHIR and the FHIR logo are the registered trademarks of Health Level Seven

International and their use does not constitute endorsement by HL7.
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comprehensive information model which is geared towards supporting seman-
tic interoperability of clinical data. The fundamental building blocks for this
information model are resources. A resource as described by Mandel et al. [15] is
a coherent expression of clinical data and is based on a set of well-defined fields
and data types. Every resource comprises the standard defined data content, a
human-readable representation of respective content and has an identity. The
FHIR specification defines resources for common clinical concepts, e.g., Patient,
Medication, Observation, Condition. Besides that, FHIR leverages modern web
technologies together with a strong foundation of web standards and offers sup-
port for RESTful architectures. Following the RESTful paradigm, FHIR allows
to alter the state of a particular resource using a set of predefined actions for Cre-
ate/Read/Update/Delete (CRUD). If required by a given use-case, it is also pos-
sible to apply a more Remote Procedure Call (RPC)-like interaction paradigm.
This is achieved by defining operations that work on input and produce an out-
put [9]. The operations can be executed on the server level, on the resource type
level, or on the instance level of a specific resource and are typically invoked by
a HTTP POST or can alternatively be invoked by a HTTP GET if no changes
are caused on the server.

According to HL7 International [8], a central challenge for the FHIR specifi-
cation is handling the wide variety and variability in diverse healthcare processes.
This challenge is solved by offering a simple framework for extending the existing
resources and describe use cases based on profiles. Profiling a resource allows to
constrain and extend a resource specification for a given context [15]. By pro-
viding reference implementations for the specification, HL7 intends to reduce
the entry barrier for developing FHIR conformant solutions. The development
of the specification and the standard follows a developer first approach, which is
reflected by the specification as a mixed standard comprising normative portions
and parts still undergoing trial use [8].

2.2 XES

Log data is created from a variety of different systems with their own propri-
etary data models, formats, and semantics. Process mining techniques require
their input data in a specific format. Some tools directly integrate data from
(1) Enterprise Resource Planning (ERP) systems, (2) databases, or (3) Comma
Separated Value (CSV) files, all three in a proprietary way. However, developed
in 2010, XES became the IEEE standard for “achieving interoperability in event
logs and event streams” [11]. Today, XES is supported by the majority of process
mining tool vendors.

XES defines three basic objects: log, trace and event. Log (the process) con-
tains a collection of traces (execution instances) and a trace contains a collec-
tion of events [20]. Each object can contain an arbitrary set of strongly typed
attributes in the form of key-value pairs. Every attribute value has a data type,
like string, boolean, or date. To add semantics to these data types, XES defines
the concept of extensions. An extension defines a set of attributes, their types,
and keys with a specific semantic meaning.
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3 Materials and Methods

This section describes which standards and tools were used in building the ana-
lytics suite and how we utilized and extended them to enable process mining
based on HL7 FHIR.

Fig. 1. The three steps of the interface test setting including the respective consumed
and produced data. The numbers correspond to sections or figures in this paper.

Figure 1 depicts the three steps (1) simulate, (2) store&provide, and (3)
analyze, that aim to show how the open standardized process analytics approach
works. The circles represent data consumed and produced in those three steps.

To test the approach, a simple process was used. Figure 2 shows a simplified
process model for an examination in a radiology practice using Business Process
Model and Notation (BPMN). It shows the main steps from the appointment
scheduling to the distribution of the diagnostic report. It is based on the work
of Erickson et al. on business analytics in radiology [5] and on the process model
used for evaluation in [7]. This is of course just an example and the approach is
applicable to other healthcare domains as well.

Fig. 2. BPMN process model of the radiology practice workflow based on [5,7].
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In the first step, a patient that, e.g., received a referral for a radiological
examination, calls the practice to schedule an appointment. In some cases of our
simulation, this step can be skipped and the patient arrives without a sched-
uled appointment. On the day of the examination, the patient arrives at the
reception and is placed on the waiting list (patient admission). When called,
the patient enters the procedure room and the radiological examination takes
place. Afterwards, the radiologist makes a diagnosis and dictates the report. The
report writing is done by trained specialists. The resulting report is attested by
the radiologist. Finally, the report is sent to a requesting physician or handed
out directly to the patient (report transmission).

3.1 Simulate

In order to be able to automatically generate process data, some sort of process
engine or simulator is required. Burattin [2] developed a tool specifically designed
to simulate processes and generate event logs for process mining, the Processes
and Logs Generator (PLG2). The tool allows to generate and simulate random
BPMN models, and to add randomized noise (e.g., double activity execution,
skipping activities, etc.). The tool also allows to load an existing model, in our
case the model from Fig. 2, and simulate it.

To use PLG2 for the simulation, we needed to make REST calls to our HL7
FHIR server. PLG2 allows to specify the execution time of different activities
using Python scripts [2]. We adapted those scripts to execute REST calls using
Client for URLs (cURL). By default PLG2 provides a single parameter, that is,
the case identifier (caseId), to these python functions. We used this parameter to
make the process instances distinguishable by deriving resource identifiers from
it (i.e., patientId and encounterId).

Each activity in the process from Fig. 2 was extended with REST calls,
creating, reading, or updating resources and executing operations on the FHIR
server (according to the mapping described in the next section). The process
was then simulated 10 times without randomized noise, each run resulting in
one process instance recorded on the server.

3.2 Store and Provide

We set up a FHIR server including the required extensions and operations to
automatically record audit trails, and to transform and provide this information
in the XES format for process mining.

FHIR Server. We implemented our FHIR Server based on the open-source
project “HAPI-FHIR Starter”2. This project provides a fully working FHIR
server, including a database connection, based on the HAPI FHIR JPA project.
Adjustable configuration files and the interceptor framework [19] create high

2 https://github.com/hapifhir/hapi-fhir-jpaserver-starter.

https://github.com/hapifhir/hapi-fhir-jpaserver-starter
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flexibility for custom changes and for adding extensions to the existing server
implementation.

We utilized the Consent Interceptor, which amongst other functionalities has
the ability to hook into the point of the server code, where a CRUD operation
(e.g., creating an appointment or reading a patient record) has been finished.
One of the Consent Interceptor’s roles is to write audit trail records, creating an
AuditEvent resource every time an operation has been finished successfully or
with a failure.

In addition to the interceptor implementation, we provided the FHIR oper-
ation $fhirToCDA as part of our custom extensions to the server implementa-
tion. The operation can be executed on a specific instance of the DiagnosticRe-
port resource and it returns an empty document to the client. An AuditEvent
recording the execution of this operation in the context of a radiology workflow
encounter will, for mapping purposes, be interpreted as a report transmission
activity.

To query for an event log in the XES format, we extended our FHIR server
by the $xes operation, which is defined to work on the AuditEvent resource
type and is there to identify and transform all AuditEvents of the radiological
workflow “rad-wf” into the XES format:

GET [fhirserver]/AuditEvent/$xes?plandefinition=PlanDefinition/rad-wf

Extending AuditEvent. We filled the AuditEvent resource with request
details that are automatically provided for any standard CRUD operation. In
order to be able to query for relevant AuditEvent resources, we needed to iden-
tify grouping elements. We decided to extend the AuditEvent resource by refer-
ences to the Encounter and PlanDefinition resources (cf. Sect. 5.1). Geared to
the other resources containing the Encounter resource reference as part of their
standard FHIR resource definition, we named the extended AuditEvent element
“encounter”. An additional extension “basedon” is used to reference the PlanDef-
inition resource “rad-wf”, that defines the radiological workflow. This element
can later be used to filter AuditEvent resources related to the executions of the
radiological workflow process, while Encounter references are used to distinguish
the single process instances (i.e., the traces).

Mapping FHIR AuditEvent to XES. For the test setting, we base our
mapping on the assumption that Encounter identifier can be utilized as trace
identifiers and that recorded events refer to a common process description, i.e.,
a medical guideline or pathway defined as a PlanDefinition. Of course, this is
just one perspective, and different perspectives can be taken on the data (cf.
Sect. 5.3).

Let R be the set of all resources on the FHIR server. Let A ⊆ R be the set of
all AuditEvent resources, and E ⊆ R be the set of all Encounter resources, and
P ⊆ R be the set of all PlanDefinition resources. All three subsets are disjoint,
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Table 1. Mapping table of operations on specific FHIR resources to activities of the
radiology practice workflow, ordered by occurence in the simulated model in Fig. 2.

Operation FHIR Resource �→ Activity

Create Appointment Schedule appointment

Update Appointment Patient admission

Create Procedure Radiological examination

Create Media Diagnosis

Create DiagnosticReport Report writing

Update DiagnosticReport Report attestation

Execute *$fhirToCDA Report transmission

i.e., A∩P = ∅, A∩E = ∅, and E ∩P = ∅. Resources can refer to other resources
via the predicate refersTo(r, r′) :⇔ (r, r′) ∈ R, where r’ is referenced by r, i.e., r
contains the identifier of r’.

Let pw ∈ P be the PlanDefinition resource “rad-wf” defining the radiology
workflow. Then, Aw = {a ∈ R|∀a∈A refersTo(a, pw)} is the set of all AuditEvent
resources recorded during the execution of radiology workflows.

For our mapping, let Aw be a set of disjoint sets Awi, where every Awi

represents a set of AuditEvents recorded during a specific radiology workflow
encounter ∃e ∈ E of one patient. Then, every Awi will be mapped to a trace σ
in an XES event log L.

For testing the approach, we only map to mandatory fields in L, e.g., concept:
name of the event (providing the activity name) and time: timestamp of the event
(for ordering). Table 1 describes which recorded combination of operation and
resource is mapped to which activity name. The timestamp is mapped directly
from the recording time AuditEvent.recorded.

3.3 Analyze

Querying the FHIR server for AuditEvent resources using the $xes operation
returns an XES event log. Since the operation already utilizes XES standard
extensions (i.e., Concept and Time), the semantics of the fields are clear for
process mining tools. The next step is to analyze if the simulated process matches
the one stored and provided by the HL7 FHIR server. Thus, we want to compare
the input model with a model generated based on the retrieved XES event log.
We use the process mining tool ProM 6.9 [20] with the Visual Inductive Miner
plugin [14] to generate a model.

4 Results

This section shows three exemplary results of the implementation: (1) a FHIR
resource generated by the simulator, (2) the corresponding event in the XES
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event log, and (3) the process model created based on the event log. All results
and examples can also be found in our GitHub open-source project3.

4.1 FHIR Resources

As described in the mapping in Table 1, the Report Writing activity is asso-
ciated with creating a DiagnosticReport resource. The simulator thus executes
the following cURL statement:

POST [fhirserver]/DiagnosticReport

{ "resourceType": "DiagnosticReport",

"subject": { "reference": "Patient/[patientId]" },

"encounter": { "reference": "Encounter/[encounterId]" },

"status": "preliminary",

"code": {

"coding": [ {

"system": "http://loinc.org",

"code": "LP31534-8",

"display": "Study report"

} ]

}

}

This triggers the creation of an AuditEvent resource. This one is shown in abbre-
viated form, focusing on the elements relevant for the mapping:

{ "resourceType": "AuditEvent",

"extension": [

{ "url": "https://fhirserver.com/extensions/auditevent-encounter",

"valueReference": { "reference": "Encounter/[encounterId]" }},

{ "url": "https://fhirserver.com/extensions/auditevent-basedon",

"valueReference": { "reference": "PlanDefinition/rad-wf" }}

],

"action": "C",

"recorded": "2020-08-14T08:42:51.523+02:00",

"entity": [ {

"what": { "type": "DiagnosticReport" },

"detail": [ {

"type": "RequestedURL",

"valueString": "[fhirserver]/DiagnosticReport/"

} ]

} ]

}

The created AuditEvent resource refers to the respective Encounter resource and
to the PlanDefinition resource “rad-wf” that defines the radiology workflow. The
action field indicates the type of operation (C = Create) and the entity element
contains details about the manipulated resource, i.e., the DiagnosticReport.
3 https://github.com/fhooeaist/ProcessMiningOnFHIR/.

https://github.com/fhooeaist/ProcessMiningOnFHIR/
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4.2 XES Log

The query for AuditEvent resources with the $xes operation returns the following
XES event log (only one trace with one event is shown, extensions left out):

<?xml version="1.0" encoding="UTF-8" ?>

<log xmlns="http://www.xes-standard.org/">

<string key="concept:name" value="PlanDefinition/rad-wf"/>

<trace>

<string key="concept:name" value="Encounter/enccase55"/>

<event>

<string key="concept:name" value="Report Writing"/>

<date key="time:timestamp" value="2020-08-14T08:42:51.523+02:00"/>

</event>

</trace>

</log>

This detail of the resulting XES log shows the concept: name attributes on
log and trace level, derived from the referenced PlanDefinition and Encounter
resources respectively. The event (report writing) was generated for the
AuditEvent resource presented in the previous Sect. 4.1, that recorded the cre-
ation of a DiagnosticReport.

4.3 Process Model

Figure 3 shows the resulting model after importing the XES event log in ProM
and analyzing it with the Inductive Visual Miner [14]. It is split up in two
parts and highlights the similarity to the input model in Fig. 2. All traces were
identified based on their Encounter reference and all AuditEvents were correctly
mapped according to Table 1. All 10 recorded executions are visible, with 5
skipping the first (schedule appointment) activity.

Fig. 3. Process model generated with the Inductive Visual Miner.

5 Discussion

The presented work is a proof of concept, making the case for a standards-based
process analytics approach and making sure that the standard in development,
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HL7 FHIR, is aware of the capabilities and requirements of process mining. We
were able to show how only minor extensions, namely the addition of Encounter
and PlanDefinition references, and a simple mapping, enabled the analysis of the
radiology practice workflow with process mining tools.

5.1 Impact on Standardization

In the FHIR Workflow project, the authors made a case for checking the usabil-
ity of FHIR resources for process mining. Together, the working group members
proposed the addition of a trace identifier to the AuditEvent and Provenance
resources4: “We want to be able to search on all events (creates, updates, deletes,
etc.) that happened during a given encounter, that happened based on a par-
ticular protocol or as a result of a particular order”. Based on the discussions
in that group, we decided to use PlanDefinition and Encounter for the group-
ing and mapping approach. A proposal to extend AuditEvent to support this is
currently under review for inclusion in the next FHIR release R5.

5.2 AuditEvent vs. Provenance

In this work we analyzed AuditEvent resources, building on existing approaches
that aimed to analyze audit data [3,7,16]. However, HL7 FHIR also makes use of
the concept of provenance, recording “information about entities, activities, and
people involved in producing a piece of data or thing, which can be used to form
assessments about its quality, reliability or trustworthiness” [6]. A Provenance
resource is created by the client (i.e., the person or system conducting the work)
as opposed to the AuditEvent resource, which is created automatically by a
server. The client should explain for what purpose a resource was edited (created,
updated, deleted). In addition, a client can add information about the process
(or policy) behind the edit, and provide reasoning why something was done
(i.e., which path of a process model was taken). However, Provenance is (1) not
widely used (yet), and (2) not documenting non-changing access to a resource
(i.e., read). To summarize, Provenance can provide more detailed information
on a process, but relies on the clients to record it and might thus be not present
at all. Further research on the utilization of the Provenance resource for process
mining is needed.

5.3 Considering Different Perspectives

In our example, Aw, the set of all AuditEvent resources recorded during the
execution of a radiology workflow (as defined by the referenced PlanDefinition
“rad-wf”), was split to traces based on the referenced Encounter resources. How-
ever, in fact, Aw represents a multiset of traces, that can be split based on the
perspective you take on the data. A more generic approach should thus indicate
the grouping behaviour in the query, based on the concepts developed in [12].
4 https://jira.hl7.org/projects/FHIR/issues/FHIR-28100.

https://jira.hl7.org/projects/FHIR/issues/FHIR-28100
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Another viable perspective would be, for example, to look at the active par-
ticipants of the workflow. AuditEvent.agent is described as “an actor taking
an active role in the event or activity that is logged” [10]. Mapping name and
role to the corresponding fields of the XES Organizational extension allows for
additional analysis, e.g., social networks or handover of work for medical or care
personnel.
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Abstract. Clinical pathway (CP), a standardized treatment process
based on a clinical guideline, is widely used to reduce costs while main-
taining or improving patient care quality. However, there is a gap between
the actual clinical process and the guideline, that causes CP application
to be disturbed. A study on developing a data-driven automated clinical
pathway to obtain insight into real clinical processes has been conducted.
Still, patient characteristics and conditions, which could cause a varia-
tion, have not been fully considered. In this study, we aimed to develop
a framework to derive a sophisticated clinical pathway from electronic
health records (EHRs) data by exploring process variations according to
the patient characteristics and conditions. To validate the applicability
of the proposed framework, We conducted a case study using the Total
Laparoscopic Hysterectomy (TLH) CP data, which was retrieved from
an EHR system of a tertiary general hospital in South Korea between
January 2012 and April 2016. We found that diabetic TLH patients show
different medical performances with other TLH patients. We developed
a tailored CP that adds eleven orders over the standard TLH CP, and
experts evaluated it as meaningful.

Keywords: Clinical pathways · Electronic health records (EHR) ·
Statistical analysis · Evidence-based approach · Clinical features ·
Business process analysis

1 Introduction

A clinical pathway (CP) is a standardized care process in a specific setting
such as a particular surgery [4,7]. The use of CPs is gaining interest to help
decrease hospital costs and improve the quality of medical services by reducing
undesired practice variability [12,13]. Additionally, CPs shorten the length of
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hospital stays, lower costs, reduce complications and lower mortality [8,13]. As
such, more than 80% of hospitals in the United States adopted CPs in the late
1990s [14], and currently, the implementation of CPs is widely contemplated by
hospitals all over the world [21].

The traditional approach for developing a CP relied solely on the knowledge
of clinical experts and clinical guidelines. Although the approach was a valuable
method derived from solid theoretical backgrounds, it was limited by the time
and effort required and the lack of generalization [17,19]. Due to the highly
dynamic, highly complex and ad hoc features of the medical treatment process,
there is also a gap between the actual clinical process and the CP. As such, an
automated approach from data is needed, and researchers have tried to resolve
these challenges using process mining and data mining.

Mans et al. [10] applied heuristic miner, and a further work [11] used fuzzy
miner and trace clustering to obtain insights from CPs. Huang et al. [4] proposed
a new approach for mining CP patterns with time information from chronicle
mining. Rebuge et al. [16] suggested a framework to compare the discovered
CP and its variants using sequence clustering. Xu et al. [18] developed a more
straightforward CP using the Latent Dirichlet Allocation technique. Addition-
ally, researchers have employed further data mining techniques to develop CPs,
such as frequent itemset mining [15], sequential pattern mining [15], and a rule
induction algorithm [5].

These studies have contributed to developing the automated and accurate
CPs based on data, deriving a standardized CP for the majority of patients.
Despite these efforts using the data-driven approaches, it is still challenging to
apply and complete CP with little effort in practice. In general, most hospitals
only implement a single universal CP for a specific surgery or procedure. But,
given the various clinical features of diabetes, cardiovascular, age, and medi-
cal history, a single CP cannot cover all different patients even with the same
surgery; thus, a CP needs to be subdivided according to the clinical features.
Therefore, with the aim of the increase of practical use, it is required to imple-
ment an approach for CP segregation with clinical features.

This study aims to identify the distinctive clinical characteristics that affect
to distinguish a new clinical pathway. To this end, this paper suggests a frame-
work consisting of four phases: data preparation, feature engineering, statisti-
cal analysis, and CP development. We first define the outcome measures and
explanatory variables from the data. The matching rate, which represents a sim-
ilarity between clinical trace and reference CP, is adopted as one of the medical
performances for process-oriented assessment. Then, statistical testing is con-
ducted to identify the key features highly related to clinical performance mea-
sures. Based on decisive factors from the statistical results, we distinguish a new
CP (i.e., CP development) after post-hoc analysis with trace alignment. To val-
idate the proposed framework, we performed a case study with real data from a
tertiary hospital in South Korea.
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The remainder of this paper is organized as follows. Section 2 explains the
proposed framework. Section 3 shows a case study, and Sect. 4 discusses the
results. Finally, Sect. 5 concludes the paper with future work.

2 Proposed Framework

In this section, we propose a framework for CP segmentation by patient char-
acteristics. As shown in Fig. 1, the framework consists of four phases: data
preparation, feature engineering, statistical analysis, and post hoc analysis &
CP development. Data preparation, the first phase, aims to identify the data
that can be utilized for data analysis by wrangling the collected data. Then,
dependent (i.e., outcomes) and explanatory variables (i.e., patient characteris-
tics) are defined in the feature engineering step. The statistical analysis phase
conducts experiment to identify the relationship between outcome and indepen-
dent variables. Lastly, in the post hoc analysis and CP development phase, we
distinguish the new CP based on the result of comparing the clinical orders by
statistical analysis and trace alignment.

Fig. 1. The proposed framework in this paper.

2.1 Step 1: Data Preparation

The first phase of the framework aims to prepare data with a suitable format for
statistical analysis by collecting and pre-processing records. Clinical data gener-
ally are complex and heterogeneous [3]. There are four kinds of quality issues:
missing data, incorrect data, imprecise data, and irrelevant data [1]. Missing
data indicates that data is missing from logs, while incorrect data signifies that
information recorded is not correct. Imprecise data represents that the level of
data is too coarse, whereas irrelevant data means that information is not related
at all with the log. These four types of quality issues are explicitly connected
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with the healthcare environment, and it needs to be processed thoroughly. To
resolve these issues, users can choose proper data repair and noise removal meth-
ods based on the data quality. In our case, the most of issues was relevant with
missing data, and we tried to remove all problematic data. Details will be given
in the Result section.

2.2 Step 2: Feature Engineering

One of the main parts in our framework is to identify the patient characteristics
that are highly relevant to the outcomes. To this end, we perform feature engi-
neering to build a research model before the data analysis. As such, the second
phase aims to derive dependent and explanatory variables implied for statistical
modelling. In more detail, dependent variables represent the outcomes, such as
the length of stays or matching rate, i.e., an indicator that signifies the differ-
ence between the clinical pathway and relevant clinical log [20], while indepen-
dent variables signify the patient characteristics. They are derived by selecting
or refining records from the prepared data.

Dependent Variables (Outcome Measures). Dependent variables represent
the materials to evaluate the outcomes, such as length of stays, hospital costs,
the amount of antibiotics used, and matching rates with respect to efficiency and
complication rates, re-hospitalization rates, and mortality with respect to quality
of the clinical services. Among these variables, in this study, we only employed
the length of stays and matching rates, i.e., the efficiency-focused, because of
the insufficiency of data related to the quality perspective. More in detail, we
were not able to collect the patients’ records who re-visited the hospital with
the same diagnosis within the 30 days (i.e., re-hospitalization) or were turned
out to be dead (i.e., mortality).

The length of stays is one of the critical indicators in most hospitals because
it lowers the risk of infection and medical costs for patients. In this study, we
derived the length of stays by calculating the difference between the admission
date and discharge date.

The matching rates signify how patient records collected from the logs coin-
cide with the orders in the CPs. Thus, the rates can be used to evaluate the
practical application of the CP in the quantitative approach. The matching rate
is formalized as follows [20].

CP order matching rate =
1
2
(1 − Mcp

Ncp
) +

1
2
(1 − Rlog

Nlog
) (1)

MCP is the number of orders included in the CP but not shown in the log, NCP

is the number of orders included in the CP, Rlog is the number of orders included
in the log but not shown in the CP and Nlog is the number of orders included
in the log.
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Explanatory Variables (Patient Characteristics). As introduced earlier,
explanatory variables represent the materials that classify patients with their
characteristics. Thus, regarding these characteristics, patients can be divided
into groups. For example, patients are divided into age groups, such as infants,
children, young adults, middle-aged adults, and older adults. Additionally, they
may be classified by whether they have a specific history or not.

EHR system contains numerous patient characteristics, including age, sex,
family history, past history, and they can be categorized into three types: back-
ground information, clinical events, and non-clinical events. The background
patient information signifies historical records of patients before hospitalization.
This group includes age, sex, allergy, operation history, medication history, fam-
ily disease history, and chronic diseases (diabetes, hypertension, hyperlipidaemia,
and cardiovascular and cerebrovascular diseases). The second group is the data
derived from the clinical events during hospitalization, such as transfer of wards,
transfer of departments, diagnosis from another department (not from obstetrics
and gynaecology), and operation from another department. The last category
is related to the administrative information during hospitalization, including
severity, admission type, Diagnosis Related Group (DRG).

2.3 Step 3: Statistical Analysis

This step performs a statistical analysis to identify the distinctive patient char-
acteristics considered for CP development. To this end, hypothesis testing is
performed based on dependent and independent variables derived in Step 2.
Regarding hypothesis testing, different types of methods are utilized consider-
ing the number of groups and shape of distributions. In this study, we applied
two types of statistical analysis methods: Mann-Whitney U test and Jonckheere-
Terpstra test.

Mann-Whitney U Test. The Mann-Whitney U test identifies whether two
populations are equal or not [9]. As such, the test was applied when the patients
were divided into two groups by a patient characteristic, such as sex and severity.
Its null(H0) and alternative(H1) hypotheses are as follows.; H0: Two populations
are equal, H1: Two populations are not equal.

Jonckheere-Terpstra Test. As a substitute for the Mann-Whitney U test, the
Jonckheere-Terpstra test is applied when the number of groups is more than two
(i.e., three or more) and they tend to increase or decrease [6]. For example, the
changes of outcome variables can be identified by the increase in the number of
operations. Letting di be the median for the population i, the null and alternative
hypotheses are defined as follows; H0 : d1 = d2 = d3 = · · · = dk,H1 : d1 ≤ d2 ≤
d3 ≤ · · · ≤ dk (where, k is the number of groups).
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2.4 Step 4: Post Hoc Analysis and CP Development

The last step compares the selected patients’ clinical orders based on their
characteristics and derives a new CP. Here, the critical patient characteristics
are employed from the statistically significant factors in Step 3. In this phase,
patients are grouped by a specific feature, and the application rates of clinical
orders are measured for each group. Then, the difference in the application rates
of the orders between groups is identified. For example, if the order applies only
to 90% of the severely ill group and 10% of non-severe patients, the order should
be included in the CP of the severely ill group. Then, if a group of features
differentiates multiple clinical orders, some traces from each group are sampled
to visualize the differences and discuss with clinical experts. CP segmentation is
performed when the clinical expert concludes that the functional group needs a
new CP.

3 Case Study

3.1 Introduction

A general tertiary hospital in South Korea has developed and applied numer-
ous electronic CPs based on clinical experience to provide appropriate medical
services to patients. In this case study, we primarily analyzed the Total Laparo-
scopic Hysterectomy (TLH) CP, which has been in use since August 2009. From
the hospital’s EHR system, log data of patients determined as candidates to be
applied to the TLH CP were extracted from January 2012 to April 2016, resulting
in data collected from 1100 inpatients. EHR data of patients’ demographics, hos-
pitalization, applied CP, surgery, diagnosis, transfers, referrals, physician orders
including medications and labs, and CP history was extracted.

3.2 Data Preparation

Based on the collected data from 1100 inpatients, we performed data preprocess-
ing. Among the four types of data quality issues, e.g., missing data, incorrect
data, imprecise data, and irrelevant data, our data included the first type as we
lacked the medical history of patients, such as operations and medication history.
Additionally, the second-hand data collected from surveys, such as drinking and
smoking, had many blank spaces. As such, those characteristics were removed
from the data to be analysed. Furthermore, part of the clinical orders had incor-
rect data, such as an unexpected hold (3.4%) and immediate removal by systems
(2.5%). These were also excluded, and finally, the data was prepared.

3.3 Feature Engineering

Dependent Variables (Outcomes). As introduced earlier, we applied the
length of stays and matching rates as dependent variables (i.e., outcomes).
Regarding the length of stays, the average value was 4.57 days (median: 4 days
and standard deviation (SD): 1.8 days). Regarding the matching rate, the aver-
age was 0.716 (median: 0.724 and SD: 0.053).
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Explanatory Variables (Patient Characteristics). After preparing the
data, we selected 11 explanatory variables based on a thorough discussion with
clinical experts: diabetes, hypertension, hyperlipidaemia, cardiovascular, cere-
brovascular, severity, operations, transfers of departments, transfers of wards,
diagnosis from other departments (not from obstetrics and gynaecology), and
referrals to other departments.

Only a small number of patients had chronic diseases, including diabetes,
hypertension, hyperlipidaemia, cardiovascular, and cerebrovascular at 3.5%,
4.7%, 1.5%, 0.1%, and 0.6%, respectively. The number of patients with severity,
however, was relatively high at 33.1%. Regarding the number of operations, most
patients received only one operation while 0.9% of patients received two oper-
ations. Regarding transfers of departments, only four patients (0.4%) changed
departments. Lastly, regarding the other characteristics (e.g., transfers of wards,
diagnosis from other departments, and referrals to other departments), for each
feature, more than 50% of the patients were not associated with the feature at
all, but the remaining patients had more than one frequency.

3.4 Statistical Analysis

Among the 11 independent variables (i.e., patient characteristics), only six, e.g.,
diabetes, hypertension, severity, transfers of wards, diagnosis from other depart-
ments (not from obstetrics and gynaecology), and referrals to other departments,
were considered for statistical testing because the sample size for testing should
be sufficient (i.e., more than 30) [9], and the sample sizes for the other features
are not sufficient.

We applied two different statistical testing methods: the Mann-Whitney
U test and Jonckheere test. The Mann-Whitney U test was applied to dia-
betes, hypertension, and severity while the Jonckheere test was employed for
the remaining variables. Table 1 presents the statistical testing results of the
length of stays and matching rates on patient characteristics.

Table 1. Statistical testing results on patient characteristics.

Patient characteristics p-value Test type

LOS Matching rates

Diabetes <0.01 <0.01 Mann-Whitney U test

Hypertension 0.014 0.045 Mann-Whitney U test

Severity <0.01 <0.01 Mann-Whitney U test

Transfers of wards <0.01 0.035 Jonckheere test

Diagnosis from the other departments
(not from obstetrics and gynaecology)

<0.01 0.149 Jonckheere test

Referrals to other departments <0.01 <0.01 Jonckheere test
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As a result of the statistical tests, diabetes, severity, transfers of wards, diag-
nosis from other departments and referrals to other departments significantly
affected the length of stays while the matching rates were significantly affected
by diabetes, severity, and referrals to other departments. Therefore, we con-
cluded that only three features, e.g., severity, diabetes, and referrals to other
departments, are key characteristics for CP segmentation.

Based on these results, we had a thorough discussion with clinical experts.
First, regarding severity, we determined that the result was caused by incorrect
application of the CP in cancer patients, not the CP target patients. In the hos-
pital, clinicians sometimes applied the CP to cancer patients because there was
no significant difference in clinical operation processes between the two. The can-
cer patients, however, required a longer stay and different routines from the CP
patients. Thus, we determined that it was misleading that there was an impact
on clinical outcomes. Additionally, regarding the referrals to other departments,
the domain experts concluded that the feature needs to be managed by monitor-
ing rather than CP development. For these reasons, we performed further post
hoc analysis and CP development based on diabetes.

3.5 Post Hoc Analysis and CP Development

Considering diabetes, we analyzed the differences in clinical orders between dia-
betic and non-diabetic patients. The total number of diabetic and non-diabetic
patients was 38 and 1062, respectively. We performed trace alignment to visual-
ize how the order records of each group differ. For simplicity, in each group, 20
patients, who stay in the hospital for four days, are sampled, and the result of
trace alignment is in Fig. 2.

Additionally, we employed the CP development methodology [2], which
derives an optimal set of clinical orders that maximize the matching rates.
Based on the exploited method, we received clinical orders for diabetic and non-
diabetic patients. After, the developed CP for diabetes was compared with that
for non-diabetes. We identified that 11 clinical orders, e.g., Pot chloride, Huma-
log, Palonosetron, Ephedrine, Electrolyte panel, Glucose, DM diet (for diabetes),
BST, Infusion pump, Interceed, and Simple hysterectomy, were applied for most
of the diabetic application rates. In contrast, two clinical orders (i.e., Granisetron
and Other dermatological) were utilized only for non-diabetic patients.

Table 2 provides the clinical order application rates of diabetic and non-
diabetic patients. Overall, we were able to identify a clear difference in each
code’s application rates by the group. Therefore, we concluded that the new CP
for diabetes should be distinguished from the general one.
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Fig. 2. Trace alignment result of diabetic patients and non-diabetic patients.

Table 2. Clinical order application rates of diabetic and non-diabetic patients.

Order information Application rates (%)

Type Name Diabetic Non-diabetic

Medications Pot chloride 84.2 2.7

Humalog 84.2 2.0

Palonosetron 57.9 47.1

Ephedrine 50 36.3

Granisetron 42.1 56.2

Other dermatologicals 44.7 49.3

Lab test Electrolyte panel 79.0 9.5

Glucose 79.0 3.2

Diet DM diet (for diabetes) 71.1 1.6

Treatment BST 89.5 2.2

Procedures Infusion pump 81.6 7.1

Interceed 57.9 47.6

Simple hysterectomy 50 39.9
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4 Discussion

The results of the analysis showed that diabetes affects medical outcomes, such
as the length of stays and matching rates. To this end, we identified that glucose
control is the reason for the extended hospital stays and the lower matching
rates. Patients with diabetes require a specific amount of time to control their
blood sugar before surgery, which can lead to longer hospital stays. Additionally,
the diabetic patients received surgery later than general patients.

Regarding the lower matching rate for diabetic patients, we found that con-
trolling the patient’s blood sugar affected the results through the post hoc anal-
ysis. We identified that diabetic patients received insulin (e.g., humalog) with
Alberti regimen and dextrose fluid (e.g., pot chloride) containing potassium chlo-
ride to ensure adequate water, electrolyte, and feeding before operations. Addi-
tionally, diabetic patients received tests to check blood sugar and electrolytes for
glucose control. Moreover, some materials (e.g., infusion pump) were also utilized
for diabetic patients to inject the proper medicines. Therefore, we determined
that these orders are required entirely for diabetic patients with both data and
clinical perspectives.

This research has important contributions for both practice and research
standpoints. As far as practical use is concerned, this research helps to develop
the clinical decision support system by resolving the large demands from hospi-
tals to continuously improve and manage CPs. Despite the facts that hospitals
generally cannot develop and enhance CPs due to an insufficient workforce, time,
and costs, however, it is required to implement a tool that gives accurate clinical
pathways to clinicians, driving to provide high-qualified patient-centric services.
In this standpoint, this paper is of value as it automatically recommends distinc-
tive patient characteristics and develops a new CP with a data-driven approach.

Also, as far as the research standpoint is concerned, this paper is different
from existing works that merely discover a one-off CP and provides a direction
that enables the continuous development of improved CPs with a statistical app-
roach. Furthermore, the patient characteristics and clinical outcome measures
derived in this research are applicable to multiple clinical research disciplines,
such as real-time monitoring and prescriptive analytics in hospitals.

Despite these contributions, this paper has some challenges. First, there has
been a problem that the number of patients to be analyzed is reduced because
latest data of short-term period data must be used to reflect the latest order
information. Nonetheless, it is significant that we were able to segment the CP
according to the patient condition of diabetes. The framework presented in this
study considerably contributes in terms of managing the clinical pathway and
practical use of the clinical pathway and will continue to demonstrate its useful-
ness through further data acquisition.

Also, this research did not address the inter-relationship between patient
characteristics and thus only aimed at developing new CPs for each patient
feature. However, it is possible to construct CPs that consider multiple patient
characteristics at once (e.g., diabetic-female-TLH CP). Furthermore, we limited
clinical outcome measures to length of stays and matching rates. Future studies
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should be expanded to more scalable methodologies, including patient costs and
the use of antibiotics. Lastly, the analysis result presented in this paper was only
based on a single hospital. As there are differences in CPs and data between
hospitals, the study may lack generalizability. Thus, we need to perform more
case studies using data from multiple hospitals. We believe that we can build a
more robust framework for CP segmentation by resolving these issues.

5 Conclusion

In this paper, we proposed a framework for CP segmentation based on patient
characteristics. In this process, we performed feature engineering to define the
clinical outcome measures related to CPs (i.e., dependent variables) and patient
characteristics (i.e., independent variables). We also conducted statistical testing
using the Mann-Whitney U test and Jonckheere test, and finally a new CP was
distinguished from the general CP.

This paper proposes guidelines to increase the applicability of CPs and sug-
gests how to develop CP variants using patient characteristics and clinical out-
comes. Additionally, the proposed framework has a distinctiveness that enables
the continuous development of improved CPs different from existing works that
merely discover a single CP. Therefore, we believe that our methodology is help-
ful for practical use.

In future studies, we will consider the inter-relationship between patient char-
acteristics for CP segmentation. Additionally, other clinical outcomes, such as
patient costs and the use of antibiotics, may be included. Furthermore, more
case studies should be performed to validate our approach and make various use
cases.
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Juan José Lull1(B) , Onur Dogan2 , Angeles Celda4, Jesus Mandingorra4 ,
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Abstract. The way patients are treated in Hospital Emergency Depart-
ments changes during the year, depending on many factors. One key
component is weather temperature. Some seasonal maladies are tightly
related to temperature, such as flu in cold weather or sunburn in hot
weather. In this study, data from a hospital in Valencia was used to
explore how harsh weather changes affect the emergency department,
obtaining information about probable impacts of global warming effects
in healthcare systems. Process mining techniques helped in the discovery
of changes in the Emergency Departments. Some illnesses, such as heat
stroke, are more prevalent during heatwaves, but more interestingly, the
time to attend patients is also higher. Rapid changes in temperature are
also analyzed through Process Mining techniques.
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1 Introduction

Emergency departments (EDs) work seven days, 24 hours a week. They are key
departments that provide urgent care to the patients. Since many patients get
further care after the ED’s first response, they are regarded as the gateway to
other hospital departments. The EDs aim to present urgent care to treat people
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recover from their illnesses or at least alleviate the symptoms. Well-performed
and standard processes can accomplish this aim in the ED, where healthcare pro-
fessionals collaborate systematically. The increasing number of patients causes a
crisis of agglomeration in the gateway of hospitals [20]. Although it is well-known
among professionals and literature that most EDs are frequently crowded, many
questions wait for their answers [2]. Among these questions, one is how global
warming affects emergency departments.

The Intergovernmental Panel on Climate Change (IPCC) points out that
weather conditions will probably become hotter or colder frequently and
intensely during the next years [12,18]. Large parts of the World, especially Asia,
Europe and Australia have encountered an increased recurrence of heatwaves
[14]. Besides, human mortality rates related to extreme hot weather have raised
with global warming [14]. Several reasons may affect the correlation between dis-
ease and global warming, such as local demographics, economic welfare, under-
lying disease risk or weather variability in seasons [8]. Another reason is that
steep changes in daily temperature may have an impact on ED processes. For
this consideration, more reliable intellection of disease conditions during temper-
ature changes is an essential tool for health practitioners and the investigation
of ED processes is gaining more and more attention [6,9].

Despite progress in the analysis of ED processes, novel strategies are required
because of complexity, diversity and non-adaptability reasons [1,15]. ED pro-
cesses are not adjustable or adaptable from another process model because of
their nature and complexity. This complexity makes it hard to provide a clear
representation of the patient flow. Hence, most investigations focus on the obser-
vations to discover the process model, which is time-consuming and unreliable.
Process models are the central part of crowded ED problems. Therefore, they
should represent real and reusable patient flows to find acceptable solutions. Pro-
cess mining (PM) automatically creates process models using real data stored in
the IT system as event logs [19]. By applying PM methods, the actual ED pro-
cesses followed by patients can be discovered to see the effects of environmental
temperature.

The studies presented in the following sections show the relation between
higher temperatures and extra attention time, and explore the connection
between patient cases and harsh, sudden temperature changes. This shows the
potentiality of using PM in the study of global warming and healthcare.

2 Materials and Methods

For the study data was collected from 483,229 visits to the Emergency Depart-
ment at Hospital General of Valencia. These were records from the years 2015
till 2018. The records included: patient ID; date and time of arrival; date and
time of the start of the triage and its end; waiting queue assigned to the patient
in the triage; the specific service that attended the patient (e.g. surgery, derma-
tology) and timestamp, both at the beginning and end of the attention to the
patient; patient destination (e.g. home, hospitalization, another medical service);
patient’s date of birth; patient’s diagnostic.
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Daily temperature information was also available, including per day: aver-
age temperature, minimum temperature and maximum temperature. Across the
years, subjects usually go to the hospital more than once. Specifically, 192,884
patients generated the 483,229 visits, with an average of 2.5 visits to the hospital
per patient. Process Mining [19] solutions facilitate a clear understanding of the
care process and it can help build models that can be understood by humans who
can modify those processes according to their expert understanding of the pro-
cesses. It also lets them measure changes objectively. The doctor or technician
can thus understand the models that show their patients’ behaviour.

When the user is set at the center, specifically the user with expert knowledge
about the processes but with little to no PM abilities, interactive and visual tools
are needed in what is known as Interactive Process Mining (IPM). PMApp [5] is
an application that facilitates IPM. With PMApp and the PM algorithm PALIA,
the processes with the data are represented as Timed Parallel Automata (TPA)
and can be outlined visually in workflows with color gradients, or with other
representations. In this case, workflows representing the different events in an
ordered way, their connections, the time spent at each activity and the flow
that was followed, all were summarized in a specific workflow, as seen in Fig. 1.
This powerful visualization is called an Interactive Process Indicator (IPI) and
is explained in the following lines.

Fig. 1. IPI representing all the visits, including 393,963 traces after incorrect traces
were discarded. Redder color in nodes, as opposed to green, represents higher time
in that stage while redder color in transition means larger number of cases in that
transition. (Color figure online)

In Fig. 1 a model of an ED is shown. The events (nodes) that exist, as seen
in the IPI, are: 1. “Artificial” Start (@Start). Initial event, always present. 2.
Arrival to the ED 3. Triage of the patient: Assessment of severity and urgency
of the treatment 4. Wait 1–5, indicating the queue the patient was assigned to 5.
Attention 1–5, indicating the attention associated to the corresponding queue 6.
Final step, which can be Home, Admission into the Hospital, Exitus (decease) or
Others (e.g. the patient ran away) 7. “Artificial” End (@End), always present.
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In the IPI, it is observed that the patient can be assigned to different queues,
different destinations, etc. A transition is needed so a visit can be traced e.g. a
patient is assigned waiting queue 2 and then, after the attention, is sent home.
This is represented by transitions (arrows) between the nodes.

There is key information that resides in the time spent at the nodes, and
the different paths that the visits go through. Summarized information about
e.g. waiting times, distribution of waiting queues, etc. can be seen through color
gradients in the IPI for the nodes and transitions. In this specific study, there
is a green-to-red gradient for the nodes that represents median duration in the
node (e.g. time spent at waiting queue 1). As seen in Fig. 1, waiting time is lower
the lower the wait queue number. Conversely, attention time is higher the lower
the attention number.

The same gradient color coding exists for the transitions and it represents the
number of visits that went through any transition. Thus, all the 393,963 visits
went from arrival to triage. Most visits were assigned to wait queues 3 and 4, as
seen color-coded in the transition.

The Waiting 1 to 5 and Attention 1 to 5 nodes represent the queues (and
level of emergency, top to bottom) that each patient is assigned after the arrival,
at the triage step. After attention the patient usually returns home, though
he or she could also be admitted into the hospital, or finish in exitus, among
other possibilities. The Emergency Department modelling has been described
elsewhere [7].

The IPI shown at Fig. 1 comprises the whole dataset that generated the
model.

2.1 Assigning Temperature to Cases and Discretization

With the help of PMApp, daily temperature information about Valencia city,
where the hospital is located, was fused with the ED data, by assigning tem-
perature to the date of each case. Average temperature information was then
discretized, generating sub-groups of cases: 15–20 ◦C, 20–25 ◦C, 25–30 ◦C, 30–
35 ◦C. Also, taking into account the average, minimum and maximum tempera-
ture, day to day steep temperature changes were selected and then divided into
sudden temperature increases and sudden temperature decreases.

Inaccurate data (i.e. blank information, wrong dates) were removed, leaving
393,963 correct traces corresponding to visits to the ED. The other 89,266 traces
either had empty values for any needed date or had an incorrect process flow
(e.g. date of attention was prior to the date of arrival). PMApp let the user
create groups dividing the TPA into groups by different patterns e.g. average
temperature group, diagnosis, etc. and a combination of those.

Different models were explored relating temperature to diagnosis. Some of
them did not show any interesting information. Others did and are exposed in
the Results section. Firstly, high temperature and heat strokes was analyzed. An
IPI for each temperature group was generated and inspected. In an exploratory
way, correlations between diagnostics and temperature increases were also looked
for and the otitis cases related to temperature are also shown. Finally, in order
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to study how sudden changes in the weather (a phenomenon related to global
warming) affect the ED, harsh changes in day-to-day temperature were detected
and those with a higher sudden change were selected and their processes were
visualized and studied.

In order to select the days with higher changes, they were compared: Each
day’s minimum temperature was subtracted to the minimum temperature from
the previous day. The same calculation was performed for the maximum and the
average temperatures. Finally, those values were multiplied and a threshold of
100 was introduced, accounting for 14 days with increased temperature and 17
days with reduced temperature. Two groups were created according to tempera-
ture increase and decrease and an IPI was generated for each along with another
one for stable temperature.

For the three mentioned IPIs, in order to assess the significance in the dif-
ferences for specific nodes, the normality of each population of durations was
assessed by the Kolmogorov-Smirnov test. In case both populations are normal,
a Student T test is applied. Otherwise, a Mann-Whitney-Wilcoxon is applied. In
any case, a p value is applied as a threshold to determine statistical significance
between the populations. In this study a p value of 0.05 was set as the threshold
for statistical significance. Yellow circles around nodes indicate a significant sta-
tistically difference between the duration in the population of days with a steep
change compared to days without important changes in temperature. These are
also shown in the results section.

3 Results

3.1 Temperature and Heat Strokes

The first study is related to daily weather temperature and heat strokes. As
the WHO relates [21], heat is one important factor that affects mainly the elder
population, causing cardiovascular and respiratory diseases. According to the
same report, in 2003 an excess 70,000 elderly people died due to a heat wave.

IPIs were generated for each temperature range and it was visually observed
that the attention of patients with heat stroke took longer the higher the tem-
perature. The three IPIs corresponding to the ranges 20–25 ◦C 25–30 ◦C are
shown in Fig. 2. The color gradients are common for the three IPIs so it can be
seen that attention time for the 25–30 ◦C was highest, especially in Attention 2
(the following highest duration was Attention 3 from the range 25–30 ◦C, then
came Attention 4 from the range 25–30 ◦C). The color for number of executions
(coded in the transitions) was also common to all IPIs, so it can be observed
that most of the visits corresponded to temperatures between 25 ◦C and 30 ◦C
(mostly in Wait queue 3, then queue 4). There were very few cases in the 30–
35 ◦C range, so they were not included in the Figure. Generally, waiting times
were low compared to the time spent at Attention.
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(a) 20-25oC

(b) 25-30oC

Fig. 2. Interactive Process Indicators (IPIs) with groups of average temperature per
day, in heat stroke patients.

3.2 Otitis Cases Related to Temperature

A high number of otitis (inflammation of the ear due to infection) cases were
detected that related to high temperature. Their IPI is shown in Fig. 3.

Fig. 3. IPI for otitis patients. Gradient colors represent the same durations as in Fig. 1.

As can be seen in Fig. 3, there were no otitis cases among the 568 diagnosed
ones that were considered as serious, since none were triaged in the most urgent
queues, 1 and 2. It was observed that the number of otitis patients related to
the number of general patients increased with temperature, as seen in Fig. 4.
Although the attention of those patients took little time, their wait time was
very high (as seen in Fig. 3). This indicates a higher load of waiting rooms.
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Fig. 4. Relative number of otitis cases (percentage of cases by general emergency
patients), and its increase with temperature.

3.3 Harsh Changes in Temperature and ED

Fig. 5. IPI with information on days without harsh temperature changes. The redder
the color, the longer the time at a node. Node colors (i.e. durations), are directly
comparable between this Figure and Figs. 6 and 7. (Color figure online)

In the IPIs that compare to the baseline, greener means higher times while redder
means lower (negative) subtracted times (Figs. 6(b) and 7(b)).

The IPI that represents days without steep day-to-day changes in tempera-
ture is shown in Fig. 5.

The comparison between days with a high change in temperature compared
to the previous one, generally showed higher attention times. Specifically, for
increases in temperature, attention in queues 2 and 3 took longer than days with
no significant change in temperature (see Fig. 6). The same situation happened
for steep temperature decreases, with a higher attention time and wait time
for patients classified in queue number 3, and wait time for queue 5 was also
higher, along with the triage time (see Fig. 7). These findings were statistically
significant. There were no statistically significant reductions in time.
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(a) IPI for harsh increase in temperature (b) Same IPI, compared to baseline

Fig. 6. IPIs for ED patients in days with steep increases in temperature. (Color figure
online)

(a) IPI for harsh decrease in temperature (b) Same IPI, compared to baseline

Fig. 7. IPIs for ED patients in days with steep decreases in temperature. (Color figure
online)

4 Conclusion and Discussion

This study considered data collected from an emergency department (ED) at a
Hospital in Valencia city, from 2015 to 2018. 483,229 visits created by 192,884
patients were investigated for four years. The main goal of the study was to
analyze a large dataset that had ED data along with weather temperature infor-
mation through PM, specifically through a tool that allowed for visual inspection
and surveillance of the processes discovered by PM, PALIA.

The effects of temperature on heat stroke and otitis cases are investigated in
this study by analyzing process flows, along with a general investigation about
the effects of steep changes in temperature on the Emergency Departments.
Valencia is a warm Mediterranean coastal city, so the weather is generally mild.
However, we could detect changes in the processes inside the Emergency Depart-
ment that depended on weather temperature. This is especially interesting for
our study, since extreme weather conditions such as heatwaves are more prevalent
with global warming [4]. According to the Weather Meteorological Organization,
heatwaves are the meteorological hazards that have created the maximum num-
ber of deaths in the recent years [22]. The effects of heatwaves and other steep
temperature changes on the EDs can be observed and may be interpolated to
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places with more extreme weather conditions and to how attention may change
in the future.

In the study, temperature data was categorized and linked to process cases
to explore possible effects of heatwaves. Then PALIA algorithm created pro-
cess flows of patients under categorized (discretized) temperature data. It was
observed that Heat Stroke processes in EDs took longer the higher the tempera-
ture. There were also many more cases in the range of 25 to 30 ◦C. The number
of cases confirms the intuition that sunburns are more prevalent the higher the
temperature (it should be considered that roughly 20% of days had an average
temperature at or above 25 ◦C, across the years of the study). The higher treat-
ment time span per case could be thought of as intuitive too, but in this case
the potential effect of global warming on the EDs is clear: with the increase of
heatwaves, sunburns are expected to grow in number and EDs will have more
cases that will need extra attention time. This is also compatible with the study
by [10] where they analyzed the effect in a hospital during the most extreme
heatwave in Melbourne. It was unexpected that wait time for these cases was
very low compared to the usual wait times. In fact, heat stroke patients did not
wait more in lower urgency waiting queues. This suggests that the ED treats
those patients as soon as possible independently of the waiting queue.

In the case of otitis, this was an unexpected finding. It should be reviewed
how much confounding factors played a role in the cases, such as infections due to
longer times spent in swimming pools, as is usually the case during the summer
vacations. This could nevertheless be attributed to overcrowded waiting rooms
in humid areas with high temperatures.

The study also presented the effects of sudden changes in weather conditions
to the ED. Generally, time spent at the waiting rooms and while being attended
were longer for both sudden temperature increases and decreases. This explo-
ration points in the direction that the more the sudden changes in temperature,
the more collapsed EDs will be. And sudden changes in temperature are more
and more frequent due to climatic change.

In future studies a correction for multiple condition tests should be added,
such as a Bonferroni correction. The authors of PMApp have this in mind for the
tool so these adjustments could be applied directly from the PM tool in future
developments [7].

A formal definition of heatwave could have been used and the temperature
ranges could have been defined accordingly. There are proposals for such a def-
inition as in [17,23]. However, the purpose of this study was mainly focused on
the exploration, through PM, of the effects of temperature changes. Since the
importance of heatwaves has been found, this require further refinement. The
use of IPIs for the detection of changes in processes has been proposed in other
realms such as Operating Rooms processes [11], Type 2 Diabetes Primary Care
[3], etc. In fact, as stated in [16], it is important that there exist visual tools
that let the care professionals analyze complex processes in a simple visual way,
which are currently lacking. This would help and sometimes enable the user to
interpret the outcomes of the PM techniques applied to their data.
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Visual inspection, through IPIs, as shown through the figures, let us see
differences in processes at a glance. In this study, duration in each node (e.g. a
waiting queue) was accounted for by a color gradient where green meant 0 time
and red the maximum duration in the specific graph. Another visual cue was
the coloring of the transitions. The arrows were redder the higher the number
of cases and greener the lower the number of cases. This turns the graphs into
powerful visual tools that the doctor (or any other user) can manage easily.
Furthermore, as shown in some figures, difference maps can also be created
where colors represent the difference in duration for two process groups in the
case of nodes, and the difference between the number of occurrences in the case
of transitions. The information in the flows could be enhanced by adding a legend
to the graphics, that would allow the user to see the exact amount of traces or
the amount of time spent at a specific activity. These are things that will be
incorporated to PALIA in future releases.

With the presented results, the study puts forwards that global warming
may have a significant impact on Emergency Department processes. This is an
exploratory study that shows how PM enables ED workers, mainly medical doc-
tors and technicians, to explore ED event data related to weather. The incidence
of global warming on the treatments has been analyzed by watching the cases
related to high temperature and also through one key hazard that is caused by
global warming: steep temperature changes (mainly heatwaves). Direct observa-
tion of year-to-year increase in temperature and its effect on EDs is not feasible,
since the average increase of 0.18 ◦C per decade since 1981 (according to the
American National Oceanic and Atmospheric Administration) [13] per decade
would take several decades of data to extract valuable information. However,
although the year by year increase is out of the scope of this paper, the effects
that global warming in the next decades can be analyzed showing how temper-
ature affects the citizens’ health in a critical service as ED. This information is
central to make the scientific community aware of the effects of global warming
on our health.

The study also highlights the power of visual tools to understand the dynam-
ics of the processes in the EDs and how these tools can help the people working
in the healthcare domain to inspect large amounts of event data in a friendly
but comprehensive way.
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1st International Workshop on Trust
and Privacy in Process Analytics (TPPA)



1st Workshop on Trust and Privacy in Process
Analytics (TPPA)

Process mining has been successfully applied in analysing and improving processes
based on event logs in all kinds of environments. However, the impact of trust and
privacy on the technical design as well as the organizational application of process
mining has been largely neglected. Both topics are closely related to the responsible
application of data science, a topic that has received more attention in recent years as
data-driven methods have started to permeate our society.

Privacy relates to the concern that event logs may contain personal data of both
customers and employees and the challenge of protecting the information about indi-
viduals while still being useful for process mining (e.g., differential privacy,
k-anonymity, homomorphic encryption, secure multi-party computing). Often, security
aspects (e.g., encryption) are closely connected when processing personal data. On the
other hand, the workshop is about the concept of trust, which is required both from the
perspective of trust in organizational and technological measures that ensure event logs
are not misused (e.g., for worker surveillance) as well as from the perspective of trust
that the results of a process mining analysis faithfully reflect reality (e.g., data quality,
traceability, auditability).

The main objective of the TPPA workshop was to give a forum for the trust and
privacy aspects and responsible application of process mining. Finally, one paper was
accepted for publication and a second paper was accepted for presentation only. The
paper “Towards Quantifying Privacy in Process Mining” authored by M. Rafiei and
W.M.P. van der Aalst proposes an approach to quantify the effectiveness of privacy
preservation techniques. For this purpose, two measures for quantifying disclosure
risks are introduced. The second paper (accepted only for presentation) entitled
“Differentially-Private Process Mining (DPPM): Using A Real-World Sepsis Dataset in
the Context of Privacy Preserving Process Mining” authored by S. Amna Sohail,
F. Allah Bukhsh, and M. van Keulen summarizes the evaluation of the data utility of
noise-generating plugins for privacy-preserving process mining.

In addition to these two papers, the program of the workshop included a panel
discussion on “Trust and Privacy in Process Analytics”. A summary of the panel
discussion has been published in the special issue “Towards Privacy Preservation and
Data Protection in Information System Design” of the EMISA Journal1. Around 50
attendees were present during the workshop presentations and panel discussion.

1 The summary can be accessed at https://doi.org/10.18417/emisa.15.8.
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Towards Quantifying Privacy in Process
Mining

Majid Rafiei(B) and Wil M. P. van der Aalst
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majid.rafiei@pads.rwth-aachen.de

Abstract. Process mining employs event logs to provide insights into
the actual processes. Event logs are recorded by information systems and
contain valuable information helping organizations to improve their pro-
cesses. However, these data also include highly sensitive private informa-
tion which is a major concern when applying process mining. Therefore,
privacy preservation in process mining is growing in importance, and
new techniques are being introduced. The effectiveness of the proposed
privacy preservation techniques needs to be evaluated. It is important to
measure both sensitive data protection and data utility preservation. In
this paper, we propose an approach to quantify the effectiveness of pri-
vacy preservation techniques. We introduce two measures for quantifying
disclosure risks to evaluate the sensitive data protection aspect. More-
over, a measure is proposed to quantify data utility preservation for the
main process mining activities. The proposed measures have been tested
using various real-life event logs.

Keywords: Responsible process mining · Privacy preservation ·
Privacy quantification · Data utility · Event logs

1 Introduction

Process mining bridges the gap between traditional model-based process analysis
(e.g., simulation), and data-centric analysis (e.g., data mining) [1]. The three
basic types of process mining are process discovery, where the aim is to discover a
process model capturing the behavior seen in an event log, conformance checking,
where the aim is to find commonalities and discrepancies between a process
model and an event log, and process re-engineering (enhancement), where the
idea is to extend or improve a process model using event logs.

An event log is a collection of events. Each event has the following manda-
tory attributes: a case identifier, an activity name, a timestamp, and optional
attributes such as resources or costs. In the human-centered processes, case iden-
tifiers refer to individuals. For example, in a patient treatment process, the
case identifiers refer to the patients whose data are recorded. Moreover, other
attributes may also refer to individuals, e.g., resources often refer to persons per-
forming activities. When event logs explicitly or implicitly include personal data,
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privacy concerns arise which should be taken into account w.r.t. regulations such
as the European General Data Protection Regulation (GDPR).
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Fig. 1. Overview of privacy-related activities in process mining. Privacy preservation
techniques are applied to event logs to provide desired privacy requirements. The aim is
to protect sensitive personal data, yet, at the same time, preserve data utility, and gen-
erate as similar as possible results to the original ones. The parts indicated by dashed
callouts show the analyses that need to be performed to evaluate the effectiveness of
privacy preservation techniques.

The privacy and confidentiality issues in process mining are recently receiving
more attention and various techniques have been proposed to protect sensitive
data. Privacy preservation techniques often apply anonymization operations to
modify the data in order to fulfill desired privacy requirements, yet, at the same
time, they are supposed to preserve data utility. To evaluate the effectiveness
of these techniques, their effects on sensitive data protection and data utility
preservation need to be measured. In principle, privacy preservation techniques
always deal with a trade-off between data utility and data protection, and they
are supposed to balance these aims.

Figure 1 shows the general view of privacy in process mining including
two main activities: Privacy-Preserving Data Publishing (PPDP) and Privacy-
Preserving Process Mining (PPPM). PPDP aims to hide the identity and the
sensitive data of record owners in event logs to protect their privacy. PPPM aims
to extend traditional process mining algorithms to work with the non-standard
event data so-called Event Log Abstraction (ELA) [16] that might result from
PPDP techniques. Abstractions are intermediate results, e.g., a directly follows
graph could be an intermediate result of a process discovery algorithm. Note that
PPPM algorithms are tightly coupled with the corresponding PPDP techniques.
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In this paper, our main focus is on the analyses indicated by the check-
boxes in Fig. 1. Note that disclosure risk analysis is done for a single event
log, while for data/result utility analysis, the original event log/result need to be
compared with the privacy-aware event log/result. We consider simple event logs
containing basic information for performing two main process mining activities:
process discovery and conformance checking. We introduce two measures for
quantifying disclosure risks in a simple event log: identity (case) disclosure and
attribute (trace) disclosure. Using these measures, we show that even simple
event logs could disclose sensitive information. We also propose a measure for
quantifying data utility which is based on the earth mover’s distance. So far,
the proposed privacy preservation techniques in process mining use the result
utility approach to demonstrate the utility preservation aspect which is not as
precise and general as the data utility approach, since it is highly dependent
on the underlying algorithms. We advocate the proposed measures by assessing
their functionality for quantifying the disclosure risks and data utility on real-
life event logs before and after applying a privacy preservation technique with
different parameters.

The remainder of the paper is organized as follows. Section 2 outlines related
work. In Sect. 3, formal models for event logs are presented. We explain the mea-
sures in Sect. 4. The experiments are described in Sect. 5, and Sect. 6 concludes
the paper.

2 Related Work

In process mining, the research field of confidentiality and privacy is growing in
importance. In [2], Responsible Process Mining (RPM) is introduced as the sub-
discipline focusing on possible negative side-effects of applying process mining. In
[12], the authors propose a privacy-preserving system design for process mining,
where a user-centered view is considered to track personal data. In [18], a frame-
work is introduced providing a generic scheme for confidentiality in process min-
ing. In [14], the authors introduce a privacy-preserving method for discovering
roles from event data. In [6], the authors apply k-anonymity and t-closeness on
event data to preserve the privacy of resources. In [11], the notion of differential
privacy is employed to preserve the privacy of cases. In [17], the TLKC-privacy
model is introduced to deal with high variability issues in event logs for applying
group-based anonymization techniques. In [5], a secure multi-party computation
solution is proposed for preserving privacy in an inter-organizational setting. In
[13], the authors analyze data privacy and utility requirements for healthcare
event data, and the suitability of privacy-preserving techniques is assessed. In
[16], privacy metadata in process mining are discussed and a privacy extension
for the XES standard (https://xes-standard.org/) is proposed.

Most related to our work is [22], where a uniqueness-based measure is pro-
posed to evaluate the re-identification risk of event logs. Privacy quantification
in data mining is a well-developed field where the effectiveness of privacy preser-
vation techniques is evaluated from different aspects such as dissimilarity [3],

https://xes-standard.org/
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information loss [7], discernibility [8], and etc. We utilize the experiences
achieved in this field and propose a trade-off approach as suggested in [4].

3 Preliminaries

In this section, we provide formal definitions for event logs used in the remain-
der. An event log is a collection of events, composed of different attributes, such
that they are uniquely identifiable. In this paper, we consider only the manda-
tory attributes of events including case identifier, activity name, and timestamp.
Accordingly, we define a simple event, trace, and event log. In the following, we
introduce some basic concepts and notations.

Let A be a set. A∗ is the set of all finite sequences over A, and B(A) is
the set of all multisets over the set A. For A1, A2 ∈ B(A), A1 ⊆ A2 if for
all a ∈ A, A1(a) ≤ A2(a). A finite sequence over A of length n is a mapping
σ ∈ {1, ..., n} → A, represented as σ = 〈a1, a2, ..., an〉 where σi = ai = σ(i) for
any 1 ≤ i ≤ n, and |σ| = n. a ∈ σ ⇔ a = ai for 1 ≤ i ≤ n. For σ1, σ2 ∈ A∗,
σ1 	 σ2 if σ1 is a subsequence of σ2, e.g., 〈a, b, c, x〉 	 〈z, x, a, b, b, c, a, b, c, x〉.
For σ ∈ A∗, {a ∈ σ} is the set of elements in σ, and [a ∈ σ] is the multiset of
elements in σ, e.g., [a ∈ 〈x, y, z, x, y〉] = [x2, y2, z].

Definition 1 (Simple Event). A simple event is a tuple e = (c, a, t), where
c ∈ C is the case identifier, a ∈ A is the activity associated to event e, and t ∈ T
is the timestamp of event e. πX(e) is the projection of event e on the attribute
from domain X, e.g., πA(e) = a. We call ξ = C × A × T the event universe.

Definition 2 (Simple Trace). Let ξ be the universe of events. A trace σ =
〈e1, e2, ..., en〉 in an event log is a sequence of events, i.e., σ ∈ ξ∗, s.t., for each
ei, ej ∈ σ: πC(ei) = πC(ej), and πT (ei) ≤ πT (ej) if i < j. A simple trace is a
trace where all the events are projected on the activity attribute, i.e., σ ∈ A∗.

Definition 3 (Simple Event Log). A simple event log is a multiset of simple
traces, i.e., L ∈ B(A∗). We assume each trace in an event log belongs to an
individual and σ 
= 〈〉 if σ ∈ L. AL = {a ∈ A | ∃σ∈La ∈ σ} is the set of activities
in the event log L. L̃ = {σ ∈ L} is the set of unique traces (variants) in the
event log L. We denote UL as the universe of event logs.

Definition 4 (Trace Frequency). Let L be an event log, fL ∈ L̃ → [0, 1] is a
function which retrieves the relative frequency of a trace in the event log L, i.e.,
fL(σ) = L(σ)/|L| and

∑
σ∈L̃ fL(σ) = 1.

Definition 5 (Event Log Entropy). ent ∈ UL → R≥0 is a function
which retrieves the entropy of traces in an event log, s.t., for L ∈ UL,
ent(L) = −

∑
σ∈L̃ fL(σ)log2fL(σ). We denote max ent(L) as the maximal

entropy achieved when all the traces in the event log are unique, i.e., |L̃| = |L|.
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4 Privacy Quantification

We employ a risk-utility model for quantifying privacy in process mining where
disclosure risk and utility loss are measured to assess the effectiveness of privacy
preservation techniques before and after applying the techniques.

4.1 Disclosure Risk

In this subsection, we introduce identity/case disclosure and attribute/trace dis-
closure for quantifying disclosure risk of event logs. Identity disclosure quantifies
how uniquely the trace owners, i.e., cases, can be re-identified. Attribute disclo-
sure quantifies how confidently the sensitive attributes of cases (as individuals)
can be specified. As discussed in [17], traces play the role of both quasi-identifiers
and sensitive attributes. That is, a complete sequence of activities, which belongs
to a case, is sensitive person-specific information. At the same time, knowing a
part of this sequence, as background knowledge, can be exploited to re-identify
the trace owner. In a simple event log, traces, i.e., sequence of activities, are the
only available information. Therefore, attribute disclosure can be seen as trace
disclosure.

In the following, we define set, multiset, and sequence as three types of back-
ground knowledge based on traces in simple event logs that can be exploited for
uniquely re-identifying the trace owners or certainly specifying their complete
sequence of activities. Moreover, we consider a size for different types of back-
ground knowledge as their power, e.g., the set background knowledge of size 3
is more powerful than the same type of background knowledge of size 2. Note
that the assumed types of background knowledge are the most general ones, and
more types can be explored. However, the general approach will be the same.

Definition 6 (Background Knowledge 1 - Set). In this scenario, we
assume that an adversary knows a subset of activities performed for the case,
and this information can lead to the identity or attribute disclosure. Let L be
an event log, and AL be the set of activities in the event log L. We formalize
this background knowledge by a function projL

set ∈ 2AL → 2L. For A ⊆ AL,
projL

set(A) = [σ ∈ L | A ⊆ {a ∈ σ}]. We denote candl
set(L) = {A ⊆ AL | |A| =

l ∧ projL
set(A) 
= []} as the set of all subsets over the set AL of size l for which

there exists matching traces in the event log.

Definition 7 (Background Knowledge 2 - Multiset). In this scenario,
we assume that an adversary knows a sub-multiset of activities performed for
the case, and this information can lead to the identity or attribute disclosure.
Let L be an event log, and AL be the set of activities in the event log L. We
formalize this background knowledge by a function projL

mult ∈ B(AL) → 2L. For
A ∈ B(AL), projL

mult(A) = [σ ∈ L | A ⊆ [a ∈ σ]]. We denote candl
mult(L) =

{A ∈ B(AL) | |A| = l ∧ projL
mult(A) 
= []} as the set of all sub-multisets over the

set AL of size l for which there exists matching traces in the event log.
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Definition 8 (Background Knowledge 3 - Sequence). In this scenario,
we assume that an adversary knows a subsequence of activities performed for
the case, and this information can lead to the identity or attribute disclosure.
Let L be an event log, and AL be the set of activities in the event log L. We
formalize this background knowledge by a function projL

seq ∈ A∗
L → 2L. For

σ ∈ A∗
L, projL

seq(σ) = [σ′ ∈ L | σ 	 σ′]. We denote candl
seq(L) = {σ ∈ A∗

L |
|σ| = l ∧ projL

seq(σ) 
= []} as the set of all subsequences of size (length) l, based
on the activities in AL, for which there exists matching traces in the event log.

Example 1 (background knowledge). Let L = [〈a, b, c, d〉10, 〈a, c, b, d〉20,
〈a, d, b, d〉5, 〈a, b, d, d〉15] be an event log. AL = {a, b, c, d} is the set of unique
activities, and cand2set(L) = {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {d, c}} is the set
of candidates of the set background knowledge of size 2. For A = {b, d} ∈
cand2set(L) as a candidate of the set background knowledge of size 2, projL

set(A) =
[〈a, b, c, d〉10, 〈a, c, b, d〉20, 〈a, d, b, d〉5, 〈a, b, d, d〉15]. For A = [b, d2] as a candidate
of the multiset background knowledge, projL

mult(A) = [〈a, d, b, d〉5, 〈a, b, d, d〉15].
Also, for σ = 〈b, d, d〉 as a candidate of the sequence background knowledge,
projL

seq(σ) = [〈a, b, d, d〉15].

As Example 1 shows, the strength of background knowledge from the weakest
to the strongest w.r.t. the type is as follows: set, multiset, and sequence, i.e., given
the event log L, projL

seq(〈b, d, d〉) ⊆ projL
mult([b, d

2]) ⊆ projL
set({b, d}).

Identity (Case) Disclosure. We use the uniqueness of traces w.r.t. the back-
ground knowledge of size l to measure the corresponding case disclosure risk in
an event log. Let L be an event log and type ∈ {set,mult, seq} be the type of
background knowledge. The case disclosure based on the background knowledge
type of size l is calculated as follows:

cdl
type(L) =

∑

x∈candl
type(L)

1/|projLtype(x)|
|candl

type(L)| (1)

Equation (1) calculates the average uniqueness based on the candidates
of background knowledge, i.e., x ∈ candl

type(L). Note that we consider equal
weights for the candidates of background knowledge. However, they can be
weighted based on the various criteria, e.g., the sensitivity of the activities
included. One can also consider the worst case, i.e., the maximal uniqueness,
rather than the average value.

Example 2 (insufficiency of case disclosure analysis). Consider L1 =
[〈a, b, c, d〉, 〈a, c, b, d〉, 〈a, b, c, c, d〉, 〈a, b, b, c, d〉] and L2 = [〈a, b, c, d〉4, 〈e, f〉4,
〈g, h〉4] as two event event logs. AL1 = {a, b, c, d} and AL2 = {a, b, c, d, e, f, g, h}
are the set of unique activities in L1 and L2, respectively. cand1set(L1) =
{{a}, {b}, {c}, {d}} and cand1set(L2) = {{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}} are
the set of candidates of the set background knowledge of size 1. Both event logs
have the same value as the case disclosure for the set background knowledge of
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size 1 (cd1set(L1) = cd1set(L2) = 1/4). However, in L2, the complete sequence of
activities performed for a victim case is disclosed by knowing only one activity
without uniquely identifying the corresponding trace.

Example 2 clearly shows that measuring the uniqueness alone is insufficient
to demonstrate disclosure risks in event logs and the uncertainty in the set of
sensitive attributes matching with the assumed background knowledge need to
be measured, as well. In the following, we define a measure to quantify the
uncertainty in the set of matching traces. Note that, the same approach can be
exploited to quantify the disclosure risk of any other sensitive attribute matching
with some background knowledge.

Attribute (Trace) Disclosure. We use the entropy of matching traces w.r.t.
background knowledge of size l to measure the corresponding trace disclosure
risk in an event log. Let L be an event log and type ∈ {set,mult, seq} be the
type of background knowledge. The trace disclosure based on the background
knowledge type of size l is calculated as follows:

tdl
type(L) = 1 −

∑

x∈candl
type(L)

ent(projLtype(x))/max ent(projLtype(x))

|candl
type(L)| (2)

In (2), max ent(projL
type(x)) is the maximal entropy for the matching traces

based on the type and size of background knowledge, i.e., uniform distribution
of the matching traces. As discussed for (1), in (2), we also assume equal weights
for the candidates of background knowledge. However, one can consider different
weights for the candidates. Also, the worst case, i.e., the minimal entropy, rather
than the average entropy can be considered.

The trace disclosure of the event logs in Example 2 is as follows: td1set(L1) = 0
(the multiset of matching traces has the maximal entropy) and td1set(L2) = 1
(the entropy of matching traces is 0). These results distinguish the disclosure
risk of the event logs.

4.2 Utility Loss

In this subsection, we introduce a measure based on the earth mover’s distance
[19] for quantifying the utility loss after applying a privacy preservation technique
to an event log. The earth mover’s distance describes the distance between two
distributions. In an analogy, given two piles of earth, it expresses the effort
required to transform one pile into the other. First, we introduce the concept of
reallocation indicating how an event log is transformed into another event log.
Then, we define a trace distance function expressing the cost of transforming
one trace into another one. Finally, we introduce the utility loss measure that
indicates the entire cost of transforming an event log to another one using the
introduced reallocation and distance functions.
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Reallocation. Let L be the original event log and L′ be an anonymized event
log derived from the original event log. We introduce r ∈ L̃ × L̃′ → [0, 1] as
a function that indicates the movement of frequency between two event logs.
r(σ, σ′) describes the relative frequency of σ ∈ L̃ that should be transformed
to σ′ ∈ L̃′. To make sure that a reallocation function properly transforms L
into L′, the frequency of each σ ∈ L̃ should be considered, i.e., for all σ ∈ L̃,
fL(σ) =

∑
σ′∈L̃′ r(σ, σ′). Similarly, the probability mass of traces σ′ ∈ L̃′ should

be preserved, i.e., for all σ′ ∈ L̃′, fL′(σ′) =
∑

σ∈L̃ r(σ, σ′). We denote R as the
set of all reallocation functions which depends on L and L′.

Table 1. The dissimilarity between two event logs based on the earth mover’s distance
assuming rs as a reallocation function and ds as the normalized Levenshtein distance.

rs · ds 〈a, b, c, d〉 〈a, c, b, d〉 〈a, e, c, d〉49 〈a, e, b, d〉49
〈a, b, c, d〉50 0.01 · 0 0 · 0.5 0.49 · 0.25 0 · 0.5

〈a, c, b, d〉50 0 · 0.5 0.01 · 0 0 · 0.5 0.49 · 0.25

Trace Distance. A trace distance function d ∈ A∗ × A∗ → [0, 1] expresses
the distance between traces. This function is 0 if and only if two traces are
equal, i.e., d(σ, σ′) = 0 ⇐⇒ σ = σ′. This function should also be symmetrical,
i.e., d(σ, σ′) = d(σ′, σ). Different distance functions can be considered satisfying
these conditions. We use the normalized string edit distance (Levenshtein) [9].

Utility Loss. Let L be an original event log, and L′ be an anonymized event
log derived from the original event log. Several reallocation functions might
exist. However, the earth mover’s distance problem aims to express the shortest
distance between the two event logs, i.e., the least mass movement over the
least distance between traces. Therefore, the difference between L and L′ using
a reallocation function r is the inner product of reallocation and distance. The
data utility preservation is considered as du(L,L′) = 1 − min

r∈R
ul(r, L, L′).

ul(r, L, L′) = r · d =
∑

σ∈L̃

∑

σ′∈L̃′
r(σ, σ′)d(σ, σ′) (3)

Example 3 (using earth mover’s distance to calculate dissimilarity
between event logs). Let L = [〈a, b, c, d〉, 〈a, c, b, d〉, 〈a, e, c, d〉49, 〈a, e, b, d〉49]
and L′ = [〈a, b, c, d〉50, 〈a, c, b, d〉50] be the original and aninymized event logs,
respectively. Table 1 shows the calculations assuming rs as a reallocation function
and ds as the normalized Levenshtein distance, e.g., rs(〈a, b, c, d〉, 〈a, e, c, d〉) =
0.49 and ds(〈a, b, c, d〉, 〈a, e, c, d〉) = 0.25. ul(rs, L, L′) = 0.24 and du(L,L′) =
0.76.
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5 Experiments

In this section, we demonstrate the experiments on real-life event logs to advo-
cate the proposed measures. We employ two human-centered event logs, where
the case identifiers refer to individuals. Sepsis-Cases [10] is a real-life event log
containing events of sepsis cases from a hospital. BPIC-2017-APP [21] is also a
real-life event log pertaining to a loan application process of a Dutch financial
institute. We choose these event logs because they are totally different w.r.t. the
uniqueness of traces. Table 2 shows the general statistics of these event logs. Note
that variants are the unique traces, and trace uniquness = #variants/#traces.
The implementation as a Python program is available on GitHub.1

Table 2. The general statistics of the event logs used in the experiments.

Event log #traces #variants #events #unique activities trace uniqueness

Sepsis-Cases [10] 1050 845 15214 16 80%

BPIC-2017-APP [21] 31509 102 239595 10 0.3%
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Fig. 2. Analyses of the case disclosure (cd) and the trace disclosure (td) based on
the three types of background knowledge (i.e., set, mult, and seq) when we vary the
background knowledge power (size) from 1 to 6. For example, in the Sepsis-Cases event
log, the case disclosure risk of the background knowledge seq (cd seq) of size 3 is 0.188.

5.1 Disclosure Risk Analysis

In this subsection, we show the functionality of the proposed measures for disclo-
sure risk analysis. To this end, we consider three types of background knowledge
(set, multiset, and sequence) and vary the background knowledge power (size)
from 1 to 6. Figure 2a shows the results for the Sepsis-Cases event log where the
uniqueness of traces is high. As shown, the disclosure risks are higher for the
more powerful background knowledge w.r.t. the type and size.
1 https://github.com/m4jidRafiei/privacy quantification.

https://github.com/m4jidRafiei/privacy_quantification
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Figure 2b demonstrates the results for the BPIC-2017-APP event log, where
the uniqueness of traces is low. As shown, the case disclosure risk is low, which
is expected regarding the low uniqueness of traces. However, the trace disclosure
risk is high which indicates low entropy (uncertainty) of the traces. Moreover, for
the stronger background knowledge w.r.t. the size, one can assume a higher case
disclosure risk. However, the trace disclosure risk is correlated with the entropy of
the sensitive attribute values and can be a high value even for weak background
knowledge. The above-mentioned analyses clearly show that uniqueness alone
cannot reflect the actual disclosure risk in an event log.

5.2 Utility Loss Analysis

In this subsection, we demonstrate the functionality of the proposed measure
in Sect. 4.2 for quantifying data utility preservation after applying a privacy
preservation technique. We use PPDP-PM [15] as a privacy preservation tool
for process mining to apply the TLKC-privacy model [17] to a given event log.
The TLKC-privacy model is a group-based privacy preservation technique which
provides a good level of flexibility through various parameters such as the type
and size (power) of background knowledge. The T in this model refers to the
accuracy of timestamps in the privacy-aware event log, L refers to the power
of background knowledge2, K refers to the k in the k-anonymity definition [20],
and C refers to the bound of confidence regarding the sensitive attribute values
in an equivalence class.
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Fig. 3. The utility loss and disclosure risk analyses for the Sepsis-Cases event log
where the background knowledge is set or sequence, and the power (size) of background
knowledge is 6.

Assuming set (Definition 6) and sequence (Definition 8) as the types of back-
ground knowledge, we apply the TLKC-privacy model to the Sepsis-Cases event
log with the following parameters: L = 6 (as the maximum background knowl-
edge power in our experiments), K = {20, 40, 60}, C = 1 (there is no additional
2 Note that this L is identical to the l introduced as the power (size) of background

knowledge and should not be confused with L as the event log notation.
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Table 3. The general statistics before and after applying the TLKC-privacy model.

Event log #traces #variants #events #unique activities

Original Sepsis-Cases 1050 845 15214 16

Anonymized

Sepsis-Cases

BK type = set

BK size (L) = 6

K = 20 1050 842 15103 12

K = 40 1050 842 14986 11

K = 60 1050 818 14809 11

BK type = seq

BK size (L) = 6

K = 20 1050 34 3997 6

K = 40 1050 33 4460 5

K = 60 1050 18 3448 4

sensitive attribute in a simple event log), and T is set to the maximal precision
(T has no effect on a simple event log). That is, the TLKC-privacy model is
simplified to k-anonymity where the quasi-identifier (background knowledge) is
the set or sequence of activities. Table 3 demonstrates the general statistics of
the event logs before and after applying the privacy preservation technique.

Figure 3a shows disclosure risk and data utility analyses for the background
knowledge set, and Fig. 3b shows the same analyses for the background knowl-
edge sequence. In both types of background knowledge, the data utility value
decreases. For the stronger background knowledge, i.e., sequence, the utility loss
is much higher which is expected w.r.t. the general statistics in Table 3. However,
the data utility for the weaker background knowledge remains high which again
complies with the general statistics. Note that since we apply k-anonymity (sim-
plified TLKC-model) only case disclosure, which is based on the uniqueness of
traces, decreases. Moreover, for the sequence background knowledge, higher val-
ues for K result in more similar traces. Therefore, the trace disclosure risk, in the
anonymized event logs, drastically increases. These analyses demonstrate that
privacy preservation techniques should consider different aspects of disclosure
risk while balancing data utility preservation and sensitive data protection.

6 Conclusion

Event logs often contain highly sensitive information, and regarding the rules
imposed by regulations, these sensitive data should be analyzed responsibly.
Therefore, privacy preservation in process mining is recently receiving more
attention. Consequently, new measures need to be defined to evaluate the effec-
tiveness of the privacy preservation techniques both from the sensitive data pro-
tection and data utility preservation point of views. In this paper, using a trade-
off approach, we introduced two measures for quantifying disclosure risks: iden-
tity/case disclosure and attribute/trace disclosure, and one measure for quantify-
ing utility loss. The introduced measures were applied to two real-life event logs.
We showed that even simple event logs could reveal sensitive information. More-
over, for the first time, the effect of applying a privacy preservation technique on
data utility rather than result utility was explored. The data utility measure is
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based on the earth mover’s distance and can be extended to evaluate the utility
w.r.t. the different perspectives of process mining, e.g., time, resource, etc.
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