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Prognostic Factors in AML

Raphael Itzykson, Marco Cerrano, and Jordi Esteve

7.1	 �Introduction

Prognostication in acute myeloid leukemia 
(AML) is the result of a multilayer, comprehen-
sive assessment, comprising a wide diversity of 
variables, including patient-related features, dis-
ease manifestations at the time of presentation, 
and intrinsic disease-related genetic features, 
such as cytogenetic abnormalities and driver 
mutations (Table 7.1). Moreover, prognostic allo-
cation of AML patients will depend not only on 
baseline variables, identifiable at diagnosis, but 
also on evolutive markers, such as measurable 
residual disease at different critical time points 
during treatment.

Disease outcome is a multistage function, 
including early death rate, treatment refractori-
ness, disease recurrence, outcome after salvage 
therapy, and mortality due to treatment-related 
complications. The impact of prognostic vari-
ables varies during disease and treatment phase. 
Thus, disease features at presentation and patient-
related factors have a strong impact on the risk of 
early death, usually quantified as mortality rate at 
30 days after diagnosis. On the other hand, AML 
genetic background is highly predictive of 
response to chemotherapy as well as relapse risk. 
Patient-related variables such as comorbidity or 
Eastern Cooperative Oncology Group (ECOG) 
have a high impact on treatment-related death, 
especially in the setting of hematopoietic cell 
transplantation (HCT). Outcome measures 
reported in AML studies can broadly be divided 
into short-term versus long-term and disease-
specific versus global assessments. These metrics 
are now standardized for clinical trials (Table 7.2).

Importantly, the relative contribution of each 
prognostic factor is influenced by treatment, and 
many inconsistencies in the literature have been 
attributed to differences in treatment intensity or 
modalities, notably regarding post-remission ther-
apy (e.g., autologous versus allogeneic transplant). 
Though intensive chemotherapy remains the main-
stay of AML therapy, the addition of novel agents, or 
the development of novel therapy backbones in unfit 
patients, may impact the prognostic value of differ-
ent patient- or disease-related factors. Accurate 
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Table 7.1  Prognostic factors in AML

Prognostic factors Evaluation measures & scales References
Patient-related
Age >75 years, or <75 years with 

significant comorbidity is a usual 
definition to define patients not 
candidate for intensive 
chemotherapy

Juliusson et al. (2009), Pulte et al. (2016), 
Bower et al. (2016), Appelbaum et al. (2006a)

Performance status ECOG Appelbaum et al. (2006a)
Comorbidity index Hematopoietic cell 

transplantation-comorbidity 
index (HCT-CI score)

Sorror et al. (2007a, b, 2014)

Individual organ severe 
dysfunction (e.g., renal, 
cardiac, hepatic, 
pulmonary)

Renal insufficiency
LVEF<45%

Hupfer et al. (2018), Bhatt (2019), Klepin et al. 
(2013), Hshieh et al. (2018)

Geriatric assessment Cumulative illness rating scale 
geriatrics (CIRS-G)

Kirkhus et al. (2016)

Geriatric assessment for 
Hematology (GAH)

Bonanad et al. (2015)

Disease presentation
Severe infection Cannas et al. (2012)
AML-related coagulopathy Slichter (2004), Lad et al. (2017), De Stefano 

et al. (2005)
Leukostasis Giammarco et al. (2017)
Tumor lysis syndrome Cairo and Bishop (2004)
Hyperleukocytosis Canaani et al. (2017), Tien et al. (2018a)
Extramedullary disease Chang et al. (2004), Tallman et al. (2004), 

Tallman et al. (1993), Byrd et al. (1997), 
Kobayashi et al. (2007), Tsimberidou et al. 
(2008), Ganzel et al. (2016), Cheng et al. 
(2015), Del Principe et al. (2018), Rozovski 
et al. (2015)

Disease biology
AML ontogeny De novo/primary vs Secondary 

AML arising from antecedent 
hematological disorders (MDS, 
MPN, MDS/MPN, BMF)
Therapy-related AML

Hulegårdh et al. (2015), Granfeldt Østgård et al. 
(2015), Lindsley et al. (2015), Kayser et al. 
(2011), Schmaelter et al. (2020)

Dysplastic features Devillier et al. (2015b), Armand et al. (2007), 
Ossenkoppele and Montesinos (2019)

Immunophenotypic markers Leukemia-stem cell phenotype Nakase et al. (1997), Fujiwara et al. (2017), 
Kauer et al. (2019), Märklin et al. (2020), 
Chisini et al. (2017), Costa et al. (2017), Repp 
et al. (2003), Mason et al. (2006), Minetto et al. 
(2018), van Solinge et al. (2018)

Cytogenetics (see Table 7.2)
Recurrent genetic mutations 
(see Table 7.3)

Individual gene mutation Grimwade and Mrózek (2011), Döhner et al. 
(2017), Arber et al. (2016)

Gene-gene interactions (e.g., 
NPM1-FLT3-DNMT3A)

Papaemmanuil et al. (2016), Loghavi et al. 
(2014), Wang et al. (2016), Bezerra et al. (2020)

European LeukemiaNet 
classification

(Döhner et al. 2017)
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prognostic evaluation plays a key role in treatment 
choice. Specifically, the benefit of allogeneic hema-
topoietic cell transplantation (HCT) is mostly 
restricted to patients predicted to have the highest 
risk of relapse without HCT. However, it must be 
emphasized that prognostic assessment in a given 
therapeutic context is methodologically distinct 
from the study of interactions between a “theranos-
tic” factor and different treatment options. The pres-
ent chapter thus focuses on prognosis, and how 
prognostic factors influence treatment choice in 
newly diagnosed AML is presented in Chaps. 8–10.

Biology-driven prognostication of AML has 
long relied on cytogenetics. A limited number of 
gene mutations were then included, initially to 
refine the prognosis of patients with normal 
karyotype. They are now used in all patients 
regardless of cytogenetics. The broader panel of 
recurrent gene mutations uncovered in the 
genomics era occurring, along with cytogenetic 
alterations, in a myriad of combinations, 
challenges conventional risk stratification 
approaches. Baseline gene expression data have 
also been proposed to refine prognosis in 

Table 7.1  (continued)

Prognostic factors Evaluation measures & scales References
Gene-expression profile Leukemia stem-cell-like 

signature
Gentles et al. (2010), Jung et al. (2015), Levine 
et al. (2015), Metzeler et al. (2008), Eppert 
et al. (2011), Marcucci et al. (2014), Bullinger 
et al. (2004), Li et al. (2013), Ng et al. (2016), 
Duployez et al. (2019), Bill et al. (2020)

Non-coding RNA 
expression pattern & 
signature

Schwind et al. (2010b), Marcucci et al. (2013), 
Díaz-Beyá et al. (2014), Beck et al. (2018)

DNA methylation status Bullinger et al. (2010), Figueroa et al. (2010), 
Deneberg et al. (2010), Li et al. (2016), Lin 
et al. (2011), Yang et al. (2019), Deneberg et al. 
(2011), Jost et al. (2014), Kroeze et al. (2014), 
Luskin et al. (2016), DiNardo et al. (2017)

Treatment administered See Chaps. 8–10
Treatment intensity Intensive chemotherapy vs. low 

intensity
Post-remission therapy AlloHCT (CR1)

Maintenance therapy
Response to therapy See Chap. 18
No. of cycles to achieve 
complete remission

>1 course

Measurable residual disease Early evaluation (after induction/
two courses)
Pre-allogeneic stem cell 
transplantation
Follow-up measurement

Appropriate management 
and access to health 
resources

See Chaps. 8–10

Adequate supportive 
treatment

Transfusional support

Prophylactic & treatment of 
infections

Access to allogeneic HCT
Integrative multilayer 
scores
Risk classification 
integrations clinical, genetic 
and treatment data

https://cancer.sanger.ac.uk/
aml-multistage

Gerstung et al. (2017), Huet et al. (2018), 
Fenwarth et al. (2019)
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Table 7.2  Outcome metrics

Outcome Definition Comments
Response to 
treatment
Complete 
remission (CR)

BM blasts <5%; absence of circulating 
blasts and blasts with Auer rods; 
absence of extramedullary disease; 
ANC ≥1.0*10^9/L; PLT ≥1.0*10^9/L

According to NCCN, patients should be 
independent of transfusions

CR with 
incomplete 
hematologic 
recovery (CRi)

All CR criteria except for residual 
neutropenia (ANC < 1.0*10^9/L) or 
thrombocytopenia (PLT <1.0*10^9/L)

According to NCCN, patients should be 
independent of transfusions

Morphologic 
leukemia-freestate 
(MLFS)

BM blasts <5%; absence of blasts with 
Auer rods;absence of extramedullary 
disease; no hematologic recovery 
required

BM not merely “aplastic”; at least 200 cells should 
be enumerated or cellularity should be at least 10%

Partial remission 
(PR)

All hematologic criteria of CR; 
decrease of BM blast percentage to 
5–25% and decrease of pretreatment 
BM blast percentage by at least 50%

Especially important in the context of phase 1–2 
clinical trials

Primary refractory 
disease

No CR or CRi after 2 courses of 
intensive induction treatment; excluding 
patients with death in aplasia or death 
due to indeterminate cause

1.  primary refractory disease is also called 
primary induction failure
2.  death in aplasia is used for deaths occurring 
>7 days following completion of initial treatment 
while cytopenic without evidence of persistent 
leukemia; death due to indeterminate cause refers 
to cases occurring before 7 days after the end of 
treatment or in cases without BM examination

CR without 
minimal 
residualdisease 
(CRmrd-)

If studied pretreatment, CR with 
negativity for a genetic marker by 
RT-qPCR, or CR with negativity by 
MFC

1.  test used and sensitivity of the assay should be 
reported; analyses should be done in experienced 
laboratories
2.  according to NCCN, cytogenetic CR can also 
be defined (in patients with a previous 
abnormality) and molecular CR is firmly 
established for clinical use only in for APL and Ph 
positive leukemias

Hematologic 
relapse

BM blasts ≥5%; or reappearance of 
blasts in the blood; or development of 
extramedullary disease

After CRmrd-, CR, CRi

Molecular relapse Reoccurrence of MRD as assessed by 
RT-qPCR or by MFC

After CRmrd-; test applied, sensitivity of the assay, 
and cutoff values used must be reported; analyses 
should be done in experienced laboratories

Survival 
measures
Overall survival 
(OS)

Measured from the date of entry into a 
clinical trial or from the date of 
diagnosis to the date of death from any 
cause

Defined for all patients of a trial; patients not 
known to have died at last follow-up are censored 
on the date they were last known to be alive

Event-free survival 
(EFS)

Measured from the date of entry into a 
clinical trial or from the date of 
diagnosis to the date of primary 
refractory disease, or relapse from CR 
(or CRi), or death from any cause

Defined for all patients of a trial; patients not 
known to have died at last follow-up are censored 
on the date they were last known to be alive

R. Itzykson et al.
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AML. Initially focused on a limited set of genes, 
they are now expanding to gene expression signa-
tures, leading to further issues related to stan-
dardization. Unbiased, systematic integration of 
these different prognostic factors into personal-
ized predictions is only beginning. Finally, the 
relative contribution of baseline prognostic fac-
tors, compared to dynamic assessment of 
Measurable Residual Disease (Chap. 18), is 
another area of future investigation in AML. Here 
we review the prognostic contribution of recur-
rent molecular lesions. For further insight into 
the pathophysiologic role of these lesions or to 
their diagnostic tools, we refer the reader to 
Chaps. 2 and 5, respectively.

7.2	 �Host-Related Factors

7.2.1	 �Age

Age is a major determinant of patient outcome in 
AML, for different reasons. First, the distribution 
of AML genetic characteristics differs markedly 
with age, with an increasing incidence of high-

risk cytogenetics subtypes and genetic features in 
older patients accounting for treatment resis-
tance. Specifically, the incidence of MDS-related 
cytogenetics such as chromosomal aneuploidies 
with loss of 5q, 7q, and 17p regions surpasses 30 
(×100.000 inhabitants/years), an almost ten-fold 
increase compared to individuals younger than 
60 years of age (Lazarevic et al. 2014). Moreover, 
incidence of many high-risk mutations such as 
those in RUNX1, ASXL1, TP53, or spliceosome 
genes (e.g., SRSF2, U2AF1) is markedly age-
dependent (The Cancer Genome Atlas Research 
Network 2013). Overall, virtually half of elderly 
patients are diagnosed with an unfavorable sub-
type of AML according to European LeukemiaNet 
(ELN) classification (Nagel et al. 2017). Second, 
older age is associated with poorer performance 
status (PS), and higher incidence of frailty and 
comorbidity. Thus, the proportion of PS  ≥  2 
according to the ECOG scale is ≥50% over 
70 years (Juliusson et al. 2009). The prognostic 
relevance of age is reflected on the modest 
improvement on patient outcome observed in 
elderly patients in recent years, compared to a 
higher improvement in younger individuals. 

Table 7.2  (continued)

Outcome Definition Comments
Relapse-free 
survival (RFS)

Measured from the date of achievement 
of a remission until the date of relapse 
or death from any cause

Defined only for patients achieving CR, or CRi; 
patients not known to have relapsed or died at last 
follow-up are censored on the date they were last 
examined; clinical trials in which the response 
criterion CRmrd-, should include molecular 
relapse as a criterion for relapse

Cumulative 
incidence of 
relapse (CIR)

Measured from the date of achievement 
of a remission until the date of relapse; 
patients who died without relapse are 
counted as a competing cause of failure

Defined for all patients achieving CR, CRi; 
patients not known to have relapsed are censored 
on the date they were last examined; clinical trials 
in which the response criterion CRmrd-, should 
include molecular relapse as a criterion for relapse; 
it is important to provide estimates of cumulative 
incidence o f death as well

Time to neutrophil 
recovery

No. of days from day 1 of commencing 
induction therapy to first day ANC 
0.5 ≥ 1.0*10^9/L

And to first day ANC ≥1.0*10^9/L

Time to platelet 
recovery

No. of days from day 1 of commencing 
inductiontherapy to first day PLTS 
≥50*10^9/L

And to first day PLTS ≥100*10^9/L

APL acute promyelocytic leukemia, ANC absolute neutrophil count, BM Bone marrow, MFC multiparameter flow 
cytometry, NCCN national comprehensive cancer network, PLTS platelets, PH Philadelphia, RT-qPCR real-time poly-
merase chain reaction
Adapted from Dohner, Blood 2017 and NCCN V3 2020, AML
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Thus, median survival and 5-year survival remain 
inferior to 1 year and 20% in individuals over 70, 
with limited improvement in recent years (Pulte 
et al. 2016; Bower et al. 2016).

7.2.2	 �Performance Status, 
Comorbidity, and Frailty

Performance status (PS), as an instantaneous pic-
ture of general condition, and comorbidity are 
two important prognostic factors, with a clear 
impact on early death rate, chance to achieve 
complete response, and long-term outcome 
(Appelbaum et al. 2006a). Although PS is clearly 
related to age and coexistent chronic diseases, PS 
might be largely determined by disease presenta-
tion, and improve with disease treatment. 
Comorbidity assessment is evaluated using dif-
ferent scales aimed to identify relevant acute and 
chronic illnesses that impact patient outcome. 
The Hematopoietic Cell Transplantation-
Comorbidity Index (HCT-CI score), initially 
designed for predicting risk of non-relapse mor-
tality in patients undergoing allogeneic HCT, 
evaluates 17 different items, including pre-
existing renal, liver, pulmonary, cardiac, endo-
crine, and digestive diseases (Sorror et al. 2005). 
This score has also demonstrated predictive value 
among patients receiving intensive induction 
chemotherapy (Sorror et  al. 2007a, b, 2014). 
Individual organ dysfunction might constitute a 
limitation for specific antileukemic agents, such 
as use of anthracyclines in patients with depressed 
cardiac contractility or standard chemotherapy in 
patients with impaired renal function.

The choice of an adequate therapy in elderly 
patients is a difficult exercise, which may require 
the use of integrative geriatric scales, aimed to 
assess frailty and autonomy of these patients 
(Hupfer et  al. 2018; Bhatt 2019). These scales 
analyze different functional spheres, including 
comorbidity, cognitive function, mobility capa-
bility, autonomy, emotional status, nutritional 
status, or concomitant medication, which can 
interact with antileukemic agents (Klepin et  al. 
2013; Hshieh et al. 2018). Some of the most used 
geriatric scales are CIRS-G (Cumulative Illness 

Rating Scale Geriatrics) and GAH Geriatric 
Assessment for Hematology (GAH) (Bonanad 
et al. 2015; Kirkhus et al. 2016).

7.2.3	 �Disease Presentation

Hyperleukocytosis, defined by a WBC count 
>50–100 * 109/L in different studies, is present in 
5–13% of AML. Risk factors for hyperleukocyto-
sis include younger age, myelomonocytic/mono-
blastic morphology, microgranular APL variant, 
11q23 rearrangements, inv(16), and FLT3-ITD 
mutations (Ganzel et al. 2012).

Hyperleukocytosis is associated with a high 
risk of early mortality due to associated compli-
cations (see infra). However, higher WBC 
remains associated with higher risk of relapse 
and inferior overall survival beyond remission, 
even when adjusting for confounding oncoge-
netic factors, such as FLT3-ITD mutations 
(Canaani et al. 2017; Tien et al. 2018a).

Extramedullary disease (EMD) is present at 
diagnosis in 2–30% of AML patients, notably 
those with high WBC count. This wide distribu-
tion is explained by the lack of standardized eval-
uation, for example, with 18Fluorodesoxy-glucose 
positron emission tomography/computed tomog-
raphy (18FDG-PET/CT) imaging, which reveals 
EMD in ~20% of unselected AML patients 
(Stölzel et al. 2014). EMD frequently involves the 
gingiva, liver, spleen, skin, and lymph nodes but 
can affect any organ, manifesting as a mass 
(“chloroma,” or myeloid sarcoma) or diffuse 
organ infiltration. EMD is more frequent in AML 
with t(8;21) and in patients with high WBC count. 
The prognostic value of EMD is debated (Chang 
et  al. 2004; Tallman et  al. 2004; Tallman et  al. 
1993; Byrd et  al. 1997; Kobayashi et  al. 2007; 
Tsimberidou et al. 2008), but in the largest study 
published so far, lacked independent prognostic 
value when accounting for the poor prognostic 
value of higher WBC count (Ganzel et al. 2016).

Central nervous system (CNS) involvement as 
a specific form of EMD is reported in 5–30% of 
AML patients, based on the presence of blasts in 
the Cerebrospinal fluid (CSF) detected by cyto-
morphology and/or multiparameter flow cytom-
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etry, the presence of neurological symptoms, or 
both. Some studies indicate an adverse prognos-
tic value of CNS involvement, mostly in pediatric 
cohorts where diagnostic lumbar puncture 
remains standard of care (Chang et  al. 2004; 
Kobayashi et  al. 2007; Cheng et  al. 2015; Del 
Principe et al. 2018; Rozovski et al. 2015). Lack 
of systematic CSF evaluation in adults with AML 
in the era of high-dose cytarabine makes it diffi-
cult to ascertain this prognostic value indepen-
dent of other clinical and oncogenetic features.

7.2.4	 �Initial Complications

Determined complications at presentation consti-
tute a real threat for a fatal outcome. Among 
these, severe infection, coagulation disorders 
including disseminated intravascular coagulation 
(DIC), leukostasis, or tumor lysis syndrome 
(TLS) should be evaluated and rapidly reverted.

First, due to the hematopoietic impairment 
caused by AML, patients can present with a con-
comitant severe infection that needs to be prop-
erly and quickly assessed. However, infectious 
complications normally appear during the treat-
ment course due to the usage of cytotoxic agents. 
Cannas et  al. analyzed the frequency of infec-
tious complications in AML patients included in 
the multicenter Acute Leukemia French 
Association (ALFA)-9802 trial and found that 
18% of patients presented with fever of unknown 
origin and 16% with a documented infection at 
the time of diagnosis, most often involving the 
ear-nose-throat area (Cannas et al. 2012).

Second, coagulation disorders at presentation 
are common in AML, clinically evident in 
40–70% of patients at diagnosis. Underlying 
mechanisms can be multiple, highlighting plate-
let abnormalities and coagulopathic situations 
(DIC, excessive fibrinolysis, liver dysfunction). 
Thrombocytopenia at presentation is common, 
although it is unlikely to present spontaneous 
bleeding with a platelet count >20  *  109/L. 
(Slichter 2004) DIC is biologically present in all 
APL patients, being the most common cause of 
death of these patients due to intracranial hemor-
rhage. In non-APL AML, DIC can be also pres-

ent (10–50%), depending upon the subtype of 
leukemia (Lad et  al. 2017). Thrombotic events, 
most often deep vein thrombosis, can also be 
present at the time of presentation (3.9%) (De 
Stefano et al. 2005).

Hyperleukocytosis is the most important risk 
factor for leukostasis, which is the mechanical 
obstruction of the microcirculation due to blast 
accumulation, affecting pronominally brain, lungs, 
and kidney vessels (Giammarco et  al. 2017). 
Finally, TLS occurs at disease presentation or in 
the early therapeutic phase, caused by the massive 
death of malignant cells. Currently, the Cairo–
Bishop definition and grading criteria are widely 
used for TLS diagnosis, taking into account ana-
lytic and clinical variables (Cairo and Bishop 
2004). In a study conducted by Montesinos et al., 
the incidence of TLS and clinical TLS in AML 
patients was 17% and 5%, respectively 
(Montesinos et al. 2008). In a single-center study, 
patients having required intense care during the 
induction phase had comparable disease-free sur-
vival (Schellongowski et al. 2011). Further studies 
are required to determine the long-term impact of 
such early complications on relapse incidence.

7.3	 �AML Ontogeny

Secondary AML (sAML), as opposed to de novo 
or primary AML presentation, is a well-
recognized unfavorable prognostic factor in mul-
tiple studies. The concept of secondary AML is 
often vague and has received multiple definitions, 
referring to patients with an antecedent hemato-
logical disorder (AHD) on complete blood counts 
available before AML diagnosis, patients with a 
bona fide antecedent myeloid neoplasm before 
transformation such as MDS, MPN, or MDS/
MPN (including CMML), patients with an ante-
cedent congenital bone marrow failure syndrome, 
and therapy-related AML (tAML), that is, AML 
arising in a patient with a previous exposure to 
genotoxic agents (mainly chemo-radiotherapy 
for lymphoma and solid tumors) or immunosup-
pressants. Regardless of the precise definition, 
the inferior outcome of sAML has been con-
firmed in population-based studies, with a lower 

7  Prognostic Factors in AML
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response rate after intensive treatment and 
inferior overall survival compare to de novo 
AML, especially among younger patients 
(Hulegårdh et al. 2015; Granfeldt Østgård et al. 
2015). The proportion of AHD-AML and tAML 
in both studies was similar, comprising approxi-
mately 20% and 7%, respectively, of all AML 
registered cases. Since patients with AHD-AML 
are older and harbor a higher proportion of 
adverse cytogenetics and worse mutational pro-
file, the independent value of AML ontogeny per 
se has been debated. Patients with sAML more 
often present with complex karyotype, mutations 
of genes involved in RNA splicing (e.g., SF3B1, 
SRSF2, U2AF1, and ZRSR2), epigenetic regula-
tion, chromatin modification (e.g., ASXL1, EZH2, 
BCOR), RAS signaling, myeloid transcription, 
and cohesion complex such as STAG2, typically 
found in MDS, and often lack oncogenetic events 
characteristic of de novo AML such as NPM1, 
KMT2A, or core-binding factor rearrangements 
(Lindsley et  al. 2015). Moreover, patients with 
tAML, who have received chemotherapy or radi-
ation therapy for a preceding cancer, can present 
with a poorer PS and higher comorbidity and 
eventual immune impairment as a consequence 
of cumulated toxicity derived from treatment 
received. Consequently, higher non-relapse mor-
tality has been reported in tAML patients treated 
intensively, especially among those undergoing 
allogeneic HCT (Kayser et  al. 2011). Indeed, 
sAML remains an adverse prognostic factor 
beyond CR in patients receiving an allogeneic 
transplant, independent of cytogenetic risk 
(Schmaelter et  al. 2020). Novel therapeutic 
options in these patients, including the liposomal 
chemotherapeutic formulation CPX-351  in fit 
patients, or the combination of azacitidine and 
venetoclax in unfit patients, may challenge the 
prognostic value of AML ontogeny in these pop-
ulations (Lancet et al. 2016; DiNardo et al. 2019).

7.4	 �Cytogenetic Abnormalities

Cytogenetic abnormalities are present in 55–60% 
of AML patients and are essential elements both 
for the classification and the prognostic stratifica-

tion of AML (Grimwade and Mrózek 2011; 
Döhner et  al. 2017; Arber et  al. 2016). Indeed, 
recurrent cytogenetic abnormalities have been the 
cornerstone of biology-driven prognostic classifi-
cations in AML (Byrd et al. 2002; Grimwade et al. 
1998; Slovak et al. 2000; Grimwade et al. 2001) 
and their prognostic stratification has now been 
consolidated by European (ELN 2017) (Döhner 
et al. 2017) and US (NCCN 2020) (Tallman et al. 
2019) guidelines thanks to large-scale cohorts. 
Cytogenetic alterations contribute both to the risk 
of induction failure and to post-remission outcome 
(Slovak et al. 2000). The recurrence of cytogenetic 
alterations is crucial to robustly capture their prog-
nostic role, explaining the “intermediate” risk 
value attributed to most rare lesions. Below we 
summarize the prognostic role of the most fre-
quent translocations and copy number of altera-
tions. For their role in the pathophysiology of 
AML, we refer the reader to Chap. 5. The interac-
tions between specific factors and treatment 
modalities, hence their contribution to the choice 
of upfront (e.g., intensive chemotherapy versus 
non-intensive approaches) or post-remission ther-
apy, are discussed in Chaps. 11–13.

7.4.1	 �Favorable-Risk Translocations

The best example of cytogenetic-defined AML 
entity is represented by acute promyelocytic leu-
kemia (APL), which is almost exclusively 
characterized by the t(15;17)(q22;q21) leading to 
the PML-RARA fusion gene and which can be 
cured in the vast majority of the cases with spe-
cific arsenic trioxide-ATRA-based treatment pro-
tocols (Sanz et al. 2019). Given its unique nature, 
APL is now considered as a separate entity and is 
discussed elsewhere (Chap. 8).

Approximately 10–15% of AMLs belong to 
the group of core-binding factor (CBF) leuke-
mias, which include AML with t(8;21)(q22;q22), 
and inv(16)(p13.1q22), or t(16;16)(p13.1;q22), 
leading to the RUNX1-RUNX1T1 and CBFB-
MYH11 fusion genes, respectively (Grimwade 
and Mrózek 2011; Kuykendall et al. 2018). Those 
entities, which are more common in children and 
younger adults (Creutzig et  al. 2016), respond 
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well to intensive chemotherapy, with complete 
remission (CR) rate usually above 85–90%, and 
are associated with generally favorable long-term 
overall survival (OS), exceeding 60% in recent 
reports (Jourdan et al. 2013; Schlenk et al. 2004; 
Marcucci et al. 2005a; Burnett et al. 2013; Boddu 
et al. 2018). Even though often grouped together, 
these two entities are biologically distinct (Faber 
et al. 2016). Some reports have shown superior 
results for CBFB-MYH11 compared to RUNX1-
RUNX1T1 leukemias (Schlenk et  al. 2004; 
Papaemmanuil et  al. 2016; Mosna et  al. 2015; 
Appelbaum et  al. 2006b; Vasu et  al. 2018; 
Fröhling et al. 2006; Herold et al. 2020). Other 
studies did not find differences in outcomes 
between these two entities (Jourdan et al. 2013; 
Boddu et  al. 2018; Ishikawa et  al. 2020; Opatz 
et al. 2020; Cher et al. 2016). Additional chromo-
somal abnormalities are frequently seen in CBF 
leukemias (Faber et  al. 2016; Duployez et  al. 
2018), but their prognostic impact, with the pos-
sible exception of trisomy 22  in CBFB-MYH11 
patients as a favorable prognostic factor, has been 
inconsistent among different reports (Byrd et al. 
2002; Schlenk et al. 2004; Marcucci et al. 2005a; 
Papaemmanuil et  al. 2016; Appelbaum et  al. 
2006b; Ishikawa et al. 2020; Opatz et al. 2020; 
Duployez et al. 2018; Paschka et al. 2013; Shin 
et  al. 2019; Zhou et  al. 2020; Grimwade et  al. 
2010; Krauth et al. 2014; Christen et al. 2019). 
Thus, the impact of these aberrations is not taken 
into account by current guidelines (Döhner et al. 
2017; Tallman et al. 2019). Elderly (i.e., >60 years 
old) patients with CBF leukemias can achieve 
CR in the vast majority of cases as well, but their 
long-term outcomes have been historically 
poorer, at least in part because intensive consoli-
dation could be administered to only a fraction of 
the cases (Appelbaum et  al. 2006b; Fröhling 
et al. 2006; Prébet et al. 2009; Farag et al. 2006).

7.4.2	 �Intermediate and Adverse-
Risk Translocations

Balanced translocations involving the KMT2A 
gene (formerly MLL) at 11q23 are found in up to 

5% of AML cases (Grimwade et al. 2010, 2016). 
KMT2A gene fusions involve multiple partners 
(Meyer et  al. 2018), are frequently found in 
therapy-related AML (Bloomfield et  al. 2002), 
most commonly after topoisomerase II inhibitors 
exposure, and are generally associated with unfa-
vorable outcomes (Papaemmanuil et  al. 2016; 
Schoch et al. 2003). Some subgroups, however, 
seem to achieve slightly better outcomes. Patients 
with t(9;11)(p22;q23), the most frequent translo-
cation which leads to the KMT2A-MLLT3 fusion 
gene, show relatively acceptable results with 
intensive chemotherapy (Grimwade et  al. 2010; 
Mrózek et  al. 1997; Stölzel et  al. 2016; Chen 
et al. 2013; Pigneux et al. 2015), placing them in 
the intermediate risk group according to ELN 
2017 classification (Döhner et  al. 2017), while 
patients with t(11;19)(q23;p13) were considered 
at intermediate risk by some (Grimwade et  al. 
2010; Pigneux et al. 2015), but not all (Döhner 
et  al. 2017; Chen et  al. 2013; Bhatnagar et  al. 
2016), studies. Of note, associated (cyto)genetic 
lesions should not be accounted for in the context 
of KMT2A gene fusions. For instance, t(9;11)
(p22;q23) can be found along with additional 
cytogenetic alterations in a “complex” karyotype, 
but should still be considered of intermediate 
prognostic value in this case (Grimwade et  al. 
2010).

Among recurrent translocations associated 
with unfavorable outcomes, t(6;9)(p23;q34.1) 
leading to the DEK-NUP214 fusion gene occurs 
roughly in 1% of AML patients. This entity has 
been associated with relatively younger age, bone 
marrow dysplasia, high incidence of FLT3-ITD, 
and high relapse risk (Papaemmanuil et al. 2016; 
Grimwade et al. 2010; Slovak et al. 2006). It is 
thus regarded as an adverse risk entity (Döhner 
et  al. 2017). Additional cytogenetic aberrations 
occur in 10–20% of the cases, without a clear 
prognostic impact.

Inv(3;3)(q21.3q26.2) or t(3;3)(q21.3;q26.2) is 
a rare entity representing 1–2% of AMLs, driven 
by the repositioning of the GATA2 enhancer 
(located at 3q21), which leads to the overexpres-
sion of MECOM (EVI1) (located at 3q26) and to 
the haploinsufficiency of GATA2. Consequently, 
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EVI1 overexpression can be found in virtually all 
these patients, but also in the majority of cases 
with other 3q abnormalities and in up to 10% 
cases without any 3q aberrations, with significant 
prognostic implications (see below) (Hinai and 
Valk 2016).

Inv(3;3)/t(3;3) AML has been uniformly 
associated with very low CR rate after intensive 
chemotherapy (usually <30–40%) and dismal 
prognosis (Papaemmanuil et al. 2016; Grimwade 
et  al. 2010; Lugthart et  al. 2010; Sitges et  al. 
2020). Conversely, although often associated 
with poor outcomes, the impact of other 3q 
aberrations has been less firmly established, 
possibly due to their heterogeneity (Lugthart 
et  al. 2010). Thus, 3q aberrations other than 
inv(3;3)/t(3;3) are not incorporated in the ELN 
2017 classification (Döhner et al. 2017), but are 
considered high-risk alterations according to the 
Medical Research Council (MRC) classification 
(Table  7.3) (Grimwade et  al. 2010). Recently, 
atypical 3q26 rearrangements have been shown 
to be biologically very similar to inv(3)/t(3;3) 
AML, suggesting that these cases could be 
incorporated with inv(3;3)/t(3;3) AML in the 
broader 3q26-rearranged AML group, and 
treated consequently (Ottema et al. 2020). The 
most frequent additional chromosomal aberra-
tion in inv(3;3)/t(3;3) patients is monosomy 7, 
which does not seem to independently worsen 
prognosis (Grimwade et al. 2010), unless in the 
context of a monosomal karyotype (Lugthart 
et al. 2010; Sitges et al. 2020).

BCR-ABL1-positive AML was recently intro-
duced as a provisional entity in the 2016 WHO 
classification (Arber et al. 2016), distinguishing 
it from myeloid blast crisis of chronic myeloid 
leukemia (Neuendorff et  al. 2016). Although 
ELN guidelines place this entity in the adverse 
risk category (Döhner et  al. 2017), it has been 
suggested that its prognosis largely depends on 
co-occurring genetic abnormalities. Besides, the 
incorporation of TKIs in the treatment strategy is 
likely to change its natural history and alloHCT 
was associated with favorable long-term survival 
in some reports (Lazarevic et al. 2018; Neuendorff 
et  al. 2018). Further effort is required to define 
more accurately this entity.

7.4.3	 �Adverse-Risk Aneuploidies

Among patients with an abnormal karyotype 
lacking recurrent translocations, the adverse 
prognostic role of deletion 5q/−5, deletion 
7q/−7, and deletion 17p/−17 is well established 
(Byrd et  al. 2002; Slovak et  al. 2000; Seifert 
et  al. 2009; Nahi et  al. 2008). Of note, despite 
being grouped together in some reports (Slovak 
et al. 2000; Grimwade et al. 2010), the majority 
of studies have shown that patients harboring 
monosomy 7 have a worse outcome compared to 
those with del(7q) (Byrd et al. 2002; Grimwade 
et al. 1998, 2010), which is consistent with data 
in MDS (Greenberg et  al. 2012; Schanz et  al. 
2012). These results were also confirmed for 
patients undergoing alloHCT (Poiré et al. 2020; 
Canaani et al. 2019). Thus, only monosomy 7 is 
regarded as an adverse risk abnormality accord-
ing to ELN 2017 classification (Döhner et  al. 
2017) (Table 7.3).

The role of other aneuploidies or rare translo-
cations has been more controversial. The MRC 
group performed a detailed analysis including 
5876 intensively treated younger AML patients, 
in order to clarify their impact. The authors 
derived a revised cytogenetic classification 
(Grimwade et al. 2010) that has largely, but not 
entirely, been incorporated into the current ELN 
risk stratification (Döhner et al. 2017). As a mat-
ter of fact, del(7q) and the abnormalities of 3(q) 
are defined as high risk by the MRC classifica-
tion only, which conversely excludes from this 
category patients with t(11;19) and those with 
three unrelated abnormalities (see below and 
Table 7.3).

The presence of a complex karyotype (CK), 
currently defined by the 2017 ELN guidelines as 
the presence of at least 3 unrelated chromosome 
abnormalities—whether or not in the same 
clone—in the absence of one of the WHO-
designated recurrent translocations or inversions 
(Döhner et  al. 2017; Byrd et  al. 2002; Slovak 
et al. 2000; Schoch et al. 2001), occurs in 10–15% 
of AML patients. Its incidence increases with 
age. CK has invariably been associated with 
unfavorable outcomes in AML (Byrd et al. 2002; 
Grimwade et  al. 2001; Creutzig et  al. 2016; 
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Table 7.3  Current prognostic classifications

Risk category Genetic abnormality Comments
Favorable t(8;21)(q22;q22.1); 

RUNX1-RUNX1T1
According to NCCN only, alloHCT should be considered for t(8;21) in 
case of KIT mutations. Favorable risk irrespective of additional 
cytogenetic abnormalities

Inv(16)(p13.1q22) or 
t(16;16)(p13.1;q22); 
CBFB-MYH11

Favorable risk irrespective of additional cytogenetic abnormalities

Mutated NPM1 without 
FLT3-ITD or with 
FLT3-ITDlow*

If allelic ratio is not available, FLT3-ITD pos patients are high risk, or 
intermediate if also NPM1 positive (NCCN)
ELN states that NPM1 positive cases (without FLT3-ITD or with 
FLT3-ITDlow) are considered favorable risk regardless of cytogenetics. 
However, a recent large multinational report suggests this might not be 
true if an adverse risk cytogenetic aberration is present.§

Biallelic mutated 
CEBPA

ELN states that biallelic mutated CEBPA positive cases are considered 
favorable risk regardless of cytogenetics

Intermediate Mutated NPM1 and 
FLT3-ITDhigh*
Wild-type NPM1 
without FLT3-ITD or 
with FLT3-ITDlow*

In the absence of adverse-risk genetic lesions

t(9;11)(p21.3;q23.3); 
MLLT3-KMT2A

The presence of t(9;11)) takes precedence over rare, concurrent 
adverse-risk gene mutations. According to the MRC cytogenetic 
classification, t(11;19)(q23;p13) is also an intermediate risk 
abnormality

Cytogenetic 
abnormalities not 
favorable or adverse

Very large consortium data may be necessary to assign prognostic value 
to rare entities

Adverse t(6;9)(p23;q34.1); 
DEK-NUP214
t(v;11q23.3); 
KMT2A-rearranged

According to the MRC cytogenetic classification, t(11;19)(q23;p13) is 
an intermediate risk abnormality

t(9;22)(q34.1;q11.2); 
BCR-ABL1
Inv(3)(q21.3q26.2) or 
t(3;3)(q21.3;q26.2); 
GATA2,MECOM(EVI1)

According to the MRC cytogenetic classification, all abn(3q), excluding 
t(3;5)(q21 25;q31 35), are adverse risk

Monosomy 5 or del(5q)
Monosmy 7 According to the MRC cytogenetic classification, del(7p) is also a high 

risk abnormality
Monosmy 17/abn(17p)
Complex karyotype Three or more unrelated chromosome abnormalities in the absence of 1 

of the WHO-designated recurring translocations or inversions. 
According to the MRC cytogenetic classification, at least 4 
abnormalities are required

Monosomal karyotype One single monosomy (excluding loss of X or Y) with at least 1 
additional monosomy or structural chromosome abnormality

Wild-type NPM1 and 
FLT3-ITDhigh*
Mutated RUNX1 Not an adverse prognostic marker if co-occurring with favorable-risk 

AML subtypes
Mutated ASXL1 Not an adverse prognostic marker if co-occurring with favorable-risk 

AML subtypes
Mutated TP53

* Low (<0.5) or high (≥0.5) allelic ratio is derived by semi-quantitative assessment using DNA fragment analysis and 
is determined as ratio of the area under the curve “FLT3-ITD” divided by area under the curve “FLT3-wild type”. 
§ Angenendt et al. (2019).
Adapted from Dohner, Blood 2017, NCCN V3 2020 AML and Grimwade Blood 2010 NCCN national comprehensive 
cancer network; MRC Medical Research Council
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Stölzel et al. 2016). It is important to stress that 
CK should not be considered as an unfavorable 
feature in patients with favorable or intermediate 
risk translocations, including t(8;21), inv(16), or 
t(9;11) (Grimwade et  al. 2010). This suggests 
that, in the absence of these recurrent founder 
lesions, CK is only an indirect surrogate of an 
unfavorable disease subtype. Several attempts 
have thus been made to define more accurately 
this subgroup.

Authors initially stressed the importance of 
the number of cytogenetic alterations. 
According to the MRC classification, 4 abnor-
malities (Grimwade et  al. 2010) (or, formerly, 
5) (Grimwade et  al. 2001) were necessary to 
define CK. Stölzel and colleagues analyzed the 
outcome of 3526 AML patients included in 
three prospective trials of the Study Alliance 
Leukemia. They found that patients with ≥4 
abnormalities have an adverse risk per se, while 
patients with 3 abnormalities have a borderline 
intermediate-adverse outcome, in the absence 
of individual abnormalities of strong influence 
(Stölzel et al. 2016). However, irrespectively of 
the cutoff chosen, each additional aberration 
worsens prognosis (Papaemmanuil et al. 2016; 
Grimwade et al. 2010).

Others studied the respective contribution of 
complexity and aneuploidy, given the strong cor-
relation between CK and chromosome 5, 7, and 
17 complete or partial monosomy. Indeed, 
patients with monosomies had unfavorable out-
comes, with long-term survival not exceeding 
15% (Breems et  al. 2008). Among those cases, 
Breems and colleagues identified a group with 
extremely poor outcomes, with 4-year OS of less 
than 5%, characterized by a monosomal karyo-
type (MK). They defined MK as the presence of 
two or more distinct autosomal chromosome 
monosomies or one single autosomal monosomy 
in the presence of at least one structural abnor-
mality. Thus defined, MK showed a greater prog-
nostic impact than CK, as patients with CK but 
lacking MK had relatively better outcomes. The 
negative prognostic value of MK was confirmed 
in the following reports analyzing independent 
patient cohorts (Grimwade et  al. 2010; Kayser 
et al. 2012; Medeiros et al. 2010; Weinberg et al. 
2014; Wierzbowska et al. 2017). Further studies 

indicated that CK defined by exactly 3 altera-
tions, in the absence of MK, was associated with 
a better outcome than MK and/or CK with 4 or 
more abnormalities (Haferlach et  al. 2012). 
Consistently (Slovak et  al. 2000; Breems et  al. 
2008; Chilton et  al. 2014), Mrózek and col-
leagues recently reported that atypical CK, that 
is, lacking 5q, 7q, and/or 17p loss, represents a 
biologically distinct entity and it is associated 
with a relatively superior prognosis compared to 
typical CK (Mrózek et al. 2019).

Hyperdiploidy (i.e., ≥49 chromosomes) is 
infrequent in AML (less than 2% of AML). Its 
prognosis appears heterogeneous, with a poor 
prognosis restricted in most (Chilton et al. 2014; 
Lazarevic et al. 2015; Abaza et al. 2018), but not 
all (Stölzel et  al. 2016), reports to patients also 
harboring adverse risk abnormalities (i.e., chro-
mosome 5, 7, or 17 abnormalities), while those 
with pure hyperdiploid karyotype showed an 
intermediate risk.

In an attempt to define the biological process 
underlying the poor prognosis of MK and CK, 
authors have turned to indirect markers of chro-
mothripsis, a term coined to describe a phenom-
enon of multiple chromosome fragmentation in a 
single catastrophic event, and initially identified 
in cancers through whole genome sequencing 
rather than karyotyping (Stephens et  al. 2011). 
These authors could show that presence of marker 
chromosomes, which reflects gross structural 
chromosomal damage and is sometimes seen in 
patients with CK, was associated with chro-
mothripsis, defined by array of comparative 
genomic hybridization, and with poor outcomes 
independently of adverse-risk karyotype accord-
ing to MRC or ELN.  A strong association of 
chromothripsis with TP53 mutations was found, 
but whether both exert an independent prognostic 
impact remains to be established (Bochtler et al. 
2017; Fontana et al. 2018).

7.5	 �Gene Mutations

Knowledge on the biological implications, prog-
nostic relevance, and clinical impact of recurrent 
gene mutations has greatly expanded in recent 
years. Extensive molecular characterization at 
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diagnosis has become standard practice in AML 
(The Cancer Genome Atlas Research Network 
2013; Papaemmanuil et  al. 2016; Grimwade 
et al. 2016; Metzeler et al. 2016; Bullinger et al. 
2017; Patel et al. 2012). Below we describe the 
prognostic relevance of the most frequent gene 
mutations (Table  7.4). Importantly, only a few 
(NPM1, CEBPA) can be considered as “founder,” 
class-defining lesions in AML on the basis of 
their near complete exclusivity one from another 
and from the recurrent translocations listed 
above (Papaemmanuil et al. 2016).

7.5.1	 �FLT3

FLT3 is the most commonly mutated gene in 
younger AML patients (Papaemmanuil et  al. 
2016; Nakao et  al. 1996). It is associated with 
cytogenetically normal AML (CN-AML), APL, 
and t(6;9)(p23;q34.1) (Thiede et  al. 2002), and 
the prognostic relevance of its aberrations has 
been extensively explored. Point mutations in the 
Tyrosine Kinases Domain (TKD), more fre-
quently in the D835 residue, occur in 7–10% of 
the patients and do not exert a significant inde-
pendent prognostic role (Döhner et  al. 2017; 
Tallman et al. 2019; Grimwade et al. 2016), with 
some conflicting results (Bacher et  al. 2008; 
Mead et  al. 2007; Fröhling et  al. 2002). FLT3-
TKD mutations could exert distinct prognostic 
impact depending on the context (i.e., CBF, 
NPM1 vs. KMT2A-PTD-positive AML, see also 
below) (Papaemmanuil et al. 2016; Eisfeld et al. 
2018; Boddu et  al. 2017; Perry et  al. 2018). 
Conversely, Internal Tandem Duplications 
(ITDs), which occur in the juxtamembrane (JM) 
domain and/or first tyrosine kinase domain 
(TKD1) of the FLT3 receptor, have been consis-
tently associated with unfavorable outcomes 
(Kiyoi et  al. 1999; Kottaridis et  al. 2001; Port 
et al. 2014; Whitman et al. 2010). FLT3-ITD can 
be categorized based on allelic ratio, size of the 
insertion, and location of the insertion. In several 
reports, the adverse prognostic value of FLT3-
ITD seemed mostly restricted to patients with 
high ITD/wild-type allelic ratios (Thiede et  al. 
2002; Blau et  al. 2013; Gale et  al. 2008; Chen 
et al. 2019; Schnittger et al. 2011a; Schlenk et al. 

2014; Whitman et  al. 2001). FLT3-ITD allelic 
ratio is defined as the ratio of the area under the 
curve of the FLT3-ITD signal divided by the area 
under the curve of the wild-type signal in conven-
tional DNA fragment analysis. Thus defined, 
allelic ratio differs from Variant Allele 
Frequencies (VAF) for other genetic lesions, 
which report the relative abundance of the 
mutated allele over the total (mutant + wild type) 
allele burden. Among the different cutoffs 
reported in the literature (Thiede et  al. 2002; 
Cornelissen and Blaise 2016; Ho et al. 2016; de 
Jonge et al. 2011), the current version of the ELN 
guidelines adopted the value of 0.5 to define low 
(<0.5) and high (≥0.5) FLT3-ITD allelic ratios 
(Döhner et al. 2017). Of note, in some patients, 
multiple ITDs may coexist, presumably in inde-
pendent clones. In those cases, the sum of allelic 
ratios should be compared to the 0.5 threshold. 
An important effort has yet to be done to guaran-
tee the inter-laboratory reproducibility of such 
allelic ratio results, which currently rely on partly 
standardized PCR assays (Daver et  al. 2019). 
Finally, though the length and site of the insertion 
may also play a prognostic role, with longer ITDs 
being associated with the insertion in the TKD1 
domain, and potentially with a more unfavorable 
outcome in several reports (Chen et  al. 2019; 
Schlenk et al. 2014; Kayser et al. 2009; Stirewalt 
et  al. 2006; Kim et  al. 2015; Arreba-Tutusaus 
et al. 2016; Liu et al. 2019; Fischer et al. 2017), 
these parameters are currently not used to stratify 
patients according to current guidelines (Döhner 
et al. 2017; Tallman et al. 2019), because of con-
flicting results (Blau et al. 2013; Gale et al. 2008; 
Ponziani et al. 2006; Kusec et al. 2006), and of 
ongoing efforts to standardize the detailed molec-
ular assessment of FLT3-ITDs (Schwartz et  al. 
2019).

7.5.2	 �NPM1

NPM1 mutations are also common in AML, with 
an overall incidence around 30%. They are 
mostly detected in patients with normal 
karyotype. NPM1 mutations have overall been 
associated with favorable outcomes and good 
response to intensive chemotherapy in most, but 
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Table 7.4  Prognostic role of recurrent gene mutations

Gene Mutation Prognostic significance Subset and interactions References
FLT3 ITD Unfavorable Independently worse OS Kiyoi et al. 

(1999)
Independently worse EFS, RFS, OS Kottaridis et al. 

(2001)
Independently worse RFS and OS only if 
high mutant level

Thiede et al. 
(2002)

Independently worsen OS Fröhling et al. 
(2002)

Independently worse RFS and OS, 
worsening with increasing mutant level

Gale et al. (2008)

Independently worse RFS and OS in 
AML > 60 years

Whitman et al. 
(2010)

Only high AR adverse prognostic impact 
in NPM1-mutated AML

Schnittger et al. 
(2011a, b)

FLT3-ITD worsen prognosis in NPM1 
mutated AML, especially if high AR

Schneider et al. 
(2012)

Independently worsen OS How et al. (2012)
FLT3-ITD worsen OS, EFS, RFS but only 
if high AR in NPM1-mutated AML

Pratcorona et al. 
(2013)

Independently worsen RFS Metzeler et al. 
(2016)

Independently worsen OS Papaemmanuil 
et al. (2016)

TKD Controversial Improved EFS in AML with NPM1- or 
CEBPA mutations

Bacher et al. 
(2008)

Improved OS (only if mutant level >25%) Mead et al. 
(2007)

Improved RFS and a trend for OS in 
NPM1-mutated AML

Boddu (2017)

Independently improved CR rate, no 
impact on OS and RFS

Metzeler et al. 
(2016)

Impact strongly dependent on the 
presence of KMT2A-PTD

Papaemmanuil 
et al. (2016)

Improved OS in NPM1-mutated 
AML > 60 years

Eisfeld et al. 
(2018)

Improved OS in NPM1-mutated AML Perry et al. (2018)
NPM1 Favorable Improve CR rate Falini et al. 

(2005)
No impact on CR and OS in IR-AML Boissel et al. 

(2005)
Improved CR rate and RFS Suzuki et al. 

(2005)
Improved CR rate, OS, RFS in absence 
FLT3-ITD

Thiede et al. 
(2006)

Improved CR rate and OS in absence 
FLT3-ITD

Döhner et al. 
(2005)

Improved CR rate, EFS, OS in the 
absence of FLT3-ITD

Schnittger et al. 
(2005)

Improved EFS, OS, RFS in the absence of 
FLT3-ITD

Verhaak et al. 
(2005)

Improved OS and RFS Gale et al. (2008)
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Table 7.4  (continued)

Gene Mutation Prognostic significance Subset and interactions References
Improved CR rate, OS, RFS in absence 
FLT3-ITD

Schlenk et al. 
(2008)

Improved CR rate, OS, RFS in absence 
FLT3-ITD

Büchner et al. 
(2009)

Improved CR rate, OS, RFS in>60 years 
CN AML

Becker et al. 
(2010)

Favorable OS in absence FLT3 ITD How et al. (2012)
Favorable OS and EFS in absence FLT3 
ITD

Grossmann et al. 
(2012)

Favorable OS and EFS in absence FLT3 
ITD, intermediate if FLT3 low AR

Schneider et al. 
(2012)

Favorable OS and EFS in absence FLT3 
ITD or if FLT3-ITD with low AR

Pratcorona et al. 
(2013)

Improved CR rate and, in de absence of 
FLT3-ITD, improved OS

Kihara et al. 
(2014)

Improved OS for in absence of FLT3-ITD 
only 55-65y, not >65 years

Ostronoff et al. 
(2015)

Improved CR rate and favorable OS (in 
the absence of FLT3-ITD)

Metzeler et al. 
(2016)

Favorable impact on OS Papaemmanuil 
et al. (2016)

DNMT3A Globally Controversial, mostly 
unfavorable

Independently reduce OS, irrespectively 
of age an type of mutations

Ley et al. (2010)

Independently reduce OS but not CR or 
RFS globally, lower OS and CR in 
CN-AML

Thol et al. (2011)

Independently reduced OS and RFS Hou et al. (2012)
Independently reduced OS and EFS in 
CN AML

Shen et al. (2011)

Independently reduced OS and 
RFS < 60 years

Ribeiro et al. 
(2012)

Independently reduced for EFS and OS in 
CN AML <60 years

Renneville et al. 
(2012)

Independently worse RFS and, only in 
AML <60 years, OS and CR rate

Metzeler et al. 
(2016)

No clear independent prognostic value 
(only with some co-mutational patterns)

Papaemmanuil 
et al. (2016)

Worse OS in each ELN2017 defined 
subgroup

Herold et al. 
(2020)

R882 Shorted DFS, not independently worse 
OS. Different impact R882 vs others 
according to age

Marcucci et al. 
(2012)

No effect on OS and EFS globally; 
negative only in unfavorable ELN risk 
and for R882 mutation

Gaidzik et al. 
(2013)

R822 mutations worsen OS, DFS and 
increase CIR; particularly bad with 
FLT3-ITD and NPM1

Bezerra et al. 
(2020)

Non-R882 mutations worsen CIR and 
RFS in NPM1-mutated AML

Peterlin et al. 
(2015)

CEBPA Globally Favorable (restricted 
to bi-allelic)

First study reporting the favorable clinical 
impact of CEBPA mutations on OS

Preudhomme 
et al. (2002)

(continued)
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Table 7.4  (continued)

Gene Mutation Prognostic significance Subset and interactions References
CEBPA independently improve OS Schlenk et al. 

(2008)
Biallelic Only biCEBPA independent favorable 

effect on OS and EFS
Wouters et al. 
(2009)

Only biCEBPA independent favorable 
effect on OS and EFS

Shen et al. (2011)

Only biCEBPA independent favorable 
effect on OS and EFS

Rockova et al. 
(2011)

Only biCEBPA independent favorable 
effect on OS and RFS

Pabst et al. (2009)

Only biCEBPA independent favorable 
effect on OS; FLT3-ITD abolish this 
favorable effect

Green et al. 
(2010)

Only biCEBPA independent favorable 
effect on OS and EFS

Dufour et al. 
(2010)

Only biCEBPA independent favorable 
effect on OS and EFS

Taskesen et al. 
(2011)

biCEBPA favorable impact on OS Grossmann et al. 
(2012)

Only biCEBPA independent favorable 
effect on OS, TET2 worsen outcomes 
while GATA2 has positive effect

Fasan et al. 
(2014)

biCEBPA better OS compared to 
monoallelic mutation only at univariate 
analysis

Marceau-Renaut 
et al. (2015)

biCEBPA favorable long-term OS 
compared to monoallelic mutation

Pastore et al. 
(2014a, b)

biCEBPA favorable long-term OS Papaemmanuil 
et al. (2016)

biCEBPA favorable long-term OS 
(borderline significance)

Metzeler et al. 
(2016)

biCEBPA increased CR, OS, RFS; 
concomitant WT1 mutations worsen OS 
and RSF

Tien et al. (2018a, 
b)

KMT2A PTD Controversial, mostly 
unfavorable

OS and RFS significantly worse in 
CN-AML

Schnittger et al. 
(2000)

Independently worsen RFS Döhner et al. 
(2002)

Worsen OS Shiah et al. 
(2002)

Independently worse RFS Schlenk et al. 
(2008)

Only worsen RFS in <60 years, not OS Steudel et al. 
(2003)

Independently worse EFS Grossmann et al. 
(2012)

Independently worsen OS Kihara et al. 
(2014)

Worsen EFS and OS only at univariate 
analysis

Fasan et al. 
(2014)

No clear impact on any survival outcomes Metzeler et al. 
(2016)
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Table 7.4  (continued)

Gene Mutation Prognostic significance Subset and interactions References
Impact on OS mainly if FLT3-TKD 
co-occurs

Papaemmanuil 
et al. (2016)

No impact on OS and EFS. Unfavorable 
outcome restricted to DNMT3A and NRAS 
comutated

Hinai et al. (2019)

RUNX1 Unfavorable (mostly) Independently worsen OS Tang et al. (2009)
Independently worsen EFS Gaidzik et al. 

(2011)
Independently worsen OS Schnittger et al. 

(2011a, b)
Independently worsen OS in CN-AML Greif et al. (2012)
Independently worsen CR rate, EFS, OS 
RFS

Mendler et al. 
(2012)

Independently worsen OS Kihara et al. 
(2014)

Worsen EFS and OS only at univariate 
analysis

Fasan et al. 
(2014)

Independently worsen EFS Gaidzik et al. 
(2016)

No independent prognostic impact in 
AML-NOS

Weinberg et al. 
(2017)

Independently worse RFS and, only in 
AML <60 years, OS and CR rate

Metzeler et al. 
(2016)

No independent prognostic value Papaemmanuil 
et al. (2016)

Worse prognosis of multiple versus single 
RUNX1 mutation (loss of wt allele)

Stengel et al. 
(2018)

No independent prognostic impact in de 
novo AML

Quesada et al. 
(2020)

Impact on OS more pronounced in AML 
with MDS-related changes

Nguyen et al. 
(2020)

ASXL1 Unfavorable (mostly) Detrimental effect on OS lost at 
multivariate analysis

Chou et al. (2010)

Independent effect on OS in CN-AML 
only

Patel et al. (2012)

Worse CR rate, RFS, OS and EFS among 
ELN2010 favorable patients

Metzeler et al. 
(2011a, b)

Independently worse OS Grossmann et al. 
(2012)

Independently worse OS Pratcorona et al. 
(2012)

Independently worse OS in intermediate-
risk AML

Schnittger et al. 
(2013)

Worsen EFS and OS only at univariate 
analysis

Fasan et al. 
(2014)

Independently worsen OS only when 
co-occur with RUNX1

Paschka et al. 
(2015)

Independently worsen OS in AML-MRC Devillier et al. 
(2015)

No independent prognostic value Metzeler et al. 
(2016)

(continued)
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Table 7.4  (continued)

Gene Mutation Prognostic significance Subset and interactions References
Independently worse OS Papaemmanuil 

et al. (2016)
TET2 Controversial No prognostic impact Nibourel et al. 

(2010)
Impact on OS lost at multivariable 
analysis

Chou et al. 
(2011a, b)

Shorter EFS, lower CR rate, and shorter 
RFS only among favorable-risk CN-AML

Metzeler et al. 
(2011a, b)

Shorter EFS in favorable-risk de novo 
CN-AML

Weissmann et al. 
(2012)

Impact on OS lost at multivariable 
analysis

Gaidzik et al. 
(2012)

Worse OS in CN-AML Patel et al. (2012)
No significant prognostic impact Metzeler et al. 

(2016)
IDH Grouped 

IDH1/2
Controversial Impact on OS lost at multivariable 

analysis
Gaidzik et al. 
(2012)

Worse OS and RFS only in NPM1-
mutated FLT3-ITD negative AML

Paschka et al. 
(2010)

IDH1 Favorable OS in NPM1-mutated AML Patel et al. (2012)
No prognostic impact Metzeler et al. 

(2016)
Inferior CR rate and OS in intensively 
treated AML over 75 years

Prassek et al. 
(2018)

Worse OS and RFS only in NPM1-
mutated FLT3-ITD negative AML

Marcucci et al. 
(2010)

Worse OS and RFS only in NPM1-
mutated FLT3-ITD negative AML

Boissel et al. 
(2010)

No prognostic impact in CN AML Wagner et al. 
(2010)

Worse OS and EFS only in NPM1wt 
FLT3wt AML

Abbas et al. 
(2010)

Independently worse EFS Schnittger et al. 
(2010)

No prognostic impact Green et al. 
(2011)

No prognostic impact Shenet et al. 
(2011)

Worse RFS and higher CIR in NPM1-
mutated AML

Peterlin et al. 
(2015)

IDH2 (all) No prognostic impact Metzeler et al. 
(2016)

No prognostic impact Thol et al. (2010)
No prognostic impact Shen et al. (2011)
No prognostic impact Abbas et al. 

(2010)
R140 Favorable OS, especially in NPM1-

mutated CN AML
Patel et al. (2012)

No independent impact, strongly 
dependent on co-mutations

Papaemmanuil 
et al. (2016)

Worse OS and RFS only in NPM1-
mutated FLT3-ITD negative AML

Marcucci et al. 
(2010)
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Table 7.4  (continued)

Gene Mutation Prognostic significance Subset and interactions References
Favorable OS and reduced CIR Green et al. 

(2011)
Favorable OS Chou et al. 

(2011a, b)
No prognostic impact Boissel et al. 

(2011)
R172 Trend for better outcomes Papaemmanuil 

et al. (2016)
Lower CR rate and trend for lower OS in 
older AML

Marcucci et al. 
(2010)

Worse OS and higher CIR Green et al. 
(2011)

Independently worse OS and RFS Boissel et al. 
(2010)

Favorable OS Chou et al. 
(2011a, b)

WT1 Controversial Independently worse CR rate, CIR, RFS 
and OS

Virappane et al. 
(2008)

Independently worse OS and RFS Paschka et al. 
(2008)

No independent prognostic impact in 
CN-AML

Gaidzik et al. 
(2009)

Independently worse RFS in CN-AML Renneville et al. 
(2009a, b)

Independently worse OS in CN-AML Patel et al. (2012)
No significant prognostic impact.. Metzeler et al. 

(2016)
TP53 Unfavorable Independently worse OS in 

AML > 55 years
Stirewalt et al. 
(2001)

Independently worse OS and EFS Grossmann et al. 
(2012)

Independently worse OS, RFS and CR 
rate AML with adverse risk cytogenetics

Bowen et al. 
(2009)

Independently worse EFS, RFS, OS in 
AML with CK

Rücker et al. 
(2012)

Independently worse OS Kihara et al. 
(2014)

Independently worse OS in therapy-
related AML

Ok et al. (2015)

Worse OS irrespective of age and 
treatment intensity (only univariate data)

Kadia et al. 
(2016)

Independently worse OS and RFS Metzeler et al. 
(2016)

Independently worse OS Papaemmanuil 
et al. (2016)

Independently worse OS in 
AML > 60 years

Yanada et al. 
(2016)

Independently worse OS Stengel et al. 
(2017)

Significantly shorter RSF in AML > 75 
treated intensively

Prassek et al. 
(2018)

(continued)
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not all, studies (Falini et al. 2005; Boissel et al. 
2005; Suzuki et  al. 2005). These discrepancies 
were soon found to reflect the strong interaction 
between NPM1 and FLT3-ITD statuses to deter-
mine outcome. NPM1 mutations and FLT3-ITD 
co-occur in 40–45% of the cases. The favorable 
outcome of NPM1-mutated patients is mostly 
restricted to those not harboring FLT3-ITD 
(Thiede et al. 2006; Döhner et al. 2005; Schlenk 

et al. 2008; Schnittger et al. 2005; Verhaak et al. 
2005), as initially outlined by the ELN 2010 clas-
sification (Döhner et  al. 2010; Mrózek et  al. 
2012; Röllig et  al. 2011), or to those with low 
allelic ratios FLT3-ITDs as defined above 
(Döhner et  al. 2017), while NPM1-mutated 
patients with FLT3-ITD with high allelic ratio 
(FLT3-ITDhigh) have an outcome comparable to 
NPM1wt patients with intermediate risk disease 

Table 7.4  (continued)

Gene Mutation Prognostic significance Subset and interactions References
KIT Controversial, mostly 

unfavorable in t(8;21)
Exon 8 mutations increased CIR in 
inv(16)

Care et al. (2003)

Shorter EFS and RFS in t(8;21) but not 
inv(16)

Boissel et al. 
(2006)

Worse OS and higher CIR in inv(16); 
Higher CIR similar OS in t(8;21)

Paschka et al. 
(2006)

Worse OS and higher CIR in t(8;21); no 
impact in inv(16)

Cairoli et al. 
(2006)

Lower OS and EFS in patients with 
t(8;21) (D816 Mut at exon 17)

Schnittger et al. 
(2006)

Worse OS and EFS in adult t(8;21) for 
exon 17 Mut; no impact in inv(16) and 
pediatric

Park et al. (2011)

Worse OS and EFS t(8;21) for mutations 
D816 at exon 17

Kim et al. (2013)

Worse RFS in inv(16), mainly if exon 8 
mutations

Paschka et al. 
(2013)

No significant prognostic impact Riera et al. (2013)
Higher CIR (if mutant level > 25%) in 
t(8;21)

Allen et al. (2013)

Higher CIR, worse DFS and OS in adult 
t(8;21) AML; no impact inv(16) and 
pediatric AML

Qin et al. (2014)

D816 mutations negatively impacted on 
OS in t(8;21)

Krauth et al. 
(2014)

No impact in pediatric t(8;21) Klein et al. (2015)
Exon 17 mutations worsen RFS and OS Cher et al. (2016)
Exon 17 mutations worsen OS and EFS Faber et al. (2016)
Higher CIR (if mutant level > 35%) in 
t(8;21)

Duployez et al. 
(2016)

No independent prognostic impact in any 
subgroup

Itzykson et al. 
(2018a, b)

Lower CR,EFS,OS, RFS in t(8;21), but 
outperformed by MRD

Rücker et al. 
(2019)

Inferior RFS and OS (if mutant 
level > 25%) in t(8;21)

Christen et al. 
(2019)

D816 mutation negatively impacted on 
RFS in t(8;21)

Opatz et al. 
(2020)

Exon 17 mutations worsen RFS in t(8;21) 
but not inv(16)

Ishikawa et al. 
(2020)
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(Table  7.2) (Schnittger et  al. 2011a; Schneider 
et al. 2012; Pratcorona et al. 2013).

The role of FLT3-ITD allelic ratio and its 
interaction with NPM1 status remain an area of 
controversy (Daver et al. 2019; Pratz and Levis 
2017; Straube et  al. 2018; Boddu et  al. 2019; 
Versluis and Hout 2017; Harada et al. 2018; How 
et  al. 2012). The MRC group reported that 
NPM1-mutated patients with FLT3-ITD have an 
increased relapse risk and decreased survival, 
irrespective of the allelic ratio (Linch et al. 2014), 
and a recent Japanese study showed that patients 
with NPM1-mutated AML with FLT3-ITDlow 
experienced unfavorable long-term outcomes 
when alloHCT was not performed in CR1 
(Sakaguchi et  al. 2018). Conversely, a recent 
analysis on the RATIFY trial, which demon-
strated the beneficial effect of midostaurin added 
to chemotherapy for FLT3-mutated patients, con-
firmed the ELN 2017 approach on FLT3-ITD 
allelic ratio and its interaction with NPM1 muta-
tions. As a matter of fact, patients belonging to 
the three prognostic subgroups showed markedly 
different OS, EFS, and CIR, both in the midostau-
rin and in the placebo arm (Döhner et al. 2020).

Another controversial topic is the prognostic 
relevance of cytogenetic lesions in NPM1-
mutated patients. These cytogenetic lesions can 
be found in 15–20% of patients and are typically 
nonrecurrent, except for trisomy 8 (Thiede et al. 
2006; Verhaak et al. 2005; Haferlach et al. 2009). 
Most (Thiede et al. 2006; Haferlach et al. 2009) 
but not all (Harada et al. 2018; Micol et al. 2009; 
Balsat et al. 2017) studies initially suggested that 
these infrequent cases with abnormal karyotype 
behaved similarly to NPM1-mutated 
CN-AML. This led to discard normal cytogenet-
ics as a prerequisite to class NPM1-mutated 
patients in the 2017 ELN classification (Döhner 
et al. 2017). However, a recent meta-analysis of 
2426 NPM1-mutated FLT3-ITDneg/low patients 
showed that those with adverse-risk chromo-
somal abnormalities (3.4%) had significantly 
worse CR rate, OS, and increased relapse inci-
dence, independently of other risk factors, thus 
challenging this modification (Angenendt et  al. 
2019).

Finally, additional co-mutation such as 
IDH1/2 and DNMT3A plays a major role, which 
has yet to be fully explored (Papaemmanuil et al. 
2016; Eisfeld et al. 2018) (see below).

7.5.3	 �CEBPA

CCAAT/enhancer binding protein α (CEBPA) 
gene mutations occur in around 10% AML of 
patients and have been initially associated with a 
favorable prognostic value (Schlenk et  al. 2008; 
Fröhling et al. 2004; Pabst et al. 2001; Preudhomme 
et al. 2002; Renneville et al. 2009a). However, sev-
eral reports have subsequently clarified that only 
patients harboring biallelic CEBPA (biCEBPA) 
mutations, generally involving an N-terminal 
frameshift on one allele and an in-frame C-terminal 
mutation in the C-terminal bZIP domains, showed 
favorable outcomes (i.e., classical biCEBPA), with 
5-year OS often reaching 60–70% after intensive 
treatments. Conversely, single allele mutations had 
no prognostic impact (Metzeler et  al. 2016; 
Wouters et al. 2009; Green et al. 2010; Fasan et al. 
2014; Pastore et al. 2014a; Marceau-Renaut et al. 
2015; Pabst et al. 2009; Tien et al. 2018b; Li et al. 
2015; Rockova et  al. 2011). Besides, single 
CEBPA mutations frequently co-occur in other 
well-defined AML entities, while biallelic ones 
define a specific AML genetic subgroup 
(Papaemmanuil et  al. 2016; Fasan et  al. 2014; 
Dufour et  al. 2010; Konstandin et  al. 2018; 
Taskesen et  al. 2011; Grossmann et  al. 2012). It 
should be considered that patients with atypical 
biCEBPA mutations might not achieve results as 
favorable as classical cases (El-Sharkawi et  al. 
2018), although further validation of these find-
ings is required. So far, no significant impact of 
karyotype abnormalities has emerged in this con-
text (Fasan et al. 2014; Schlenk et al. 2013).

7.5.4	 �TP53

TP53 mutations occur in 10–15% of AML 
patients. Their incidence increases with age and 
they are strongly associated with previous 
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chemo-radiotherapy exposure, CK/MK, poor 
response to intensive chemotherapy, and dismal 
prognosis (Papaemmanuil et  al. 2016; Herold 
et  al. 2020; Metzeler et  al. 2016; Grossmann 
et  al. 2012; Prassek et  al. 2018; Rücker et  al. 
2012; Bowen et al. 2009; Haferlach et al. 2008; 
Kadia et al. 2016; Christiansen et al. 2016; Kihara 
et  al. 2014; Yanada et  al. 2016; Stengel et  al. 
2017; Ok et  al. 2015; Stirewalt et  al. 2001). 
Among patients with CK, TP53 aberrations occur 
in up to 70% of the cases and worsen survival, 
even outweighing the role of MK (Rücker et al. 
2012). This observation was recently confirmed 
in a large cohort of patients with myelodysplastic 
syndromes, including a few low blast count 
AMLs (International Working Group for MDS 
Molecular Prognostic Committee et al. 2019). As 
previously discussed, del(17p), leading to TP53 
inactivation, is associated with poor outcomes in 
AML and often co-occurs with a TP53 mutations 
(Seifert et al. 2009; Rücker et al. 2012). Several 
studies are focusing on the impact of mono vs. 
biallelic TP53 alterations, but, unlike in MDS, 
data available so far do not clearly demonstrate a 
worse outcome of patients with TP53 biallelic 
involvement (Rücker et  al. 2012; Stengel et  al. 
2017), possibly due to epigenetic mechanisms for 
bi-allelic TP53 silencing in patients with mono-
allelic genetic inactivation (Moison et al. 2019).

Survival of TP53-mutated AML remains poor 
after alloHCT, not exceeding 10–20% at 
3–5 years (Qin et al. 2017; Middeke et al. 2016; 
Della Porta et  al. 2016). Interestingly, a recent 
Japanese study on a vast cohort of MDS and sec-
ondary AML patients who underwent alloHCT 
suggested that patients with TP53 mutations 
without CK can experience fairly good long-term 
outcomes, while those with both aberrations have 
dismal results (Yoshizato et al. 2017), as already 
seen in the general intensively treated AML pop-
ulation (Papaemmanuil et  al. 2016). Additional 
observations suggest that highly select subgroups 
of patients (i.e., very fit and in CR before  
alloHCT) can achieve long-term survival (Ciurea 
et al. 2018). It should be noted, however, that the 
majority of data come from patients with MDS 
and secondary AML, and it remains to be fully 
proven that these observations hold true in de 
novo AML.

7.5.5	 �RUNX1 and ASXL1

RUNX1 mutations are found in roughly 10% of 
AML patients—more frequently in the 
elderly—and have been associated with male 
gender, secondary AML, and intermediate-risk 
cytogenetics. Several studies have assessed 
their prognostic implications, consistently 
showing reduced CR rate, EFS, and OS (Kihara 
et  al. 2014; Mendler et  al. 2012; Tang et  al. 
2009; Gaidzik et  al. 2011, 2016; Schnittger 
et al. 2011b; Greif et al. 2012). However, recent 
data suggest that the negative impact of RUNX1 
mutations might be more pronounced in sec-
ondary AML and AML with myelodysplasia-
related changes, while truly de novo cases 
could achieve better results despite harboring 
this abnormality (Quesada et al. 2020; Nguyen 
et al. 2020; Weinberg et al. 2017). Interestingly, 
in the two largest studies which explored the 
impact of an extensive panel of somatic muta-
tions in AML, Papaemmanuil et al. did not find 
an independent detrimental effect of RUNX1 
mutations on OS (Papaemmanuil et al. 2016), 
which conversely was significant—but only in 
patients <60 years—in the report by Metzeler 
et  al. (2016) Of note, a recent study showed 
that multiple RUNX1 mutations and loss of 
wild-type RUNX1 are associated with a worse 
prognosis compared to a single mutation 
(Stengel et al. 2018).

ASXL1 mutations are also more common in 
older age, male sex, and secondary AML and 
have been associated with the presence of tri-
somy 8. Several studies have linked this aberra-
tion with poor otcomes (Papaemmanuil et  al. 
2016; Grossmann et  al. 2012; Devillier et  al. 
2015a; Pratcorona et  al. 2012; Schnittger et  al. 
2013), although in some cases its impact was not 
confirmed in multivariate analyses (Metzeler 
et al. 2016; Fasan et al. 2014; Chou et al. 2010) or 
was limited to selected subgroups (Patel et  al. 
2012; Metzeler et al. 2011a).

Given the vast majority of studies showed an 
independent unfavorable prognostic impact of 
RUNX1 and ASXL1 mutations, particularly when 
they co-occur (Papaemmanuil et al. 2016; Stengel 
et al. 2018; Paschka et al. 2015), they were both 
incorporated in the 2017 ELN classification as 
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adverse risk mutations, except in cases with 
favorable risk abnormalities (Table 7.2) (Döhner 
et al. 2017).

7.5.6	 �Other Genes

A partial tandem duplication (PTD) in KMT2A is 
detected in roughly 5% of AML patients. 
KMT2A-PTDs are associated with older age and 
several reports have shown that this lesion is 
associated with unfavorable outcome (Schlenk 
et al. 2008; Kihara et al. 2014; Vetro et al. 2020; 
Schnittger et al. 2000; Döhner et al. 2002; Shiah 
et al. 2002; Dicker et al. 2010). However, it has 
not been uniformly accepted as an independent 
prognostic marker (Döhner et al. 2017; Grimwade 
et  al. 2016; Bullinger et  al. 2017), possibly 
because of the discordant result of some studies 
(Metzeler et al. 2016; Fasan et al. 2014; Steudel 
et al. 2003; Hinai et al. 2019) and the importance 
of the co-mutation patterns (Papaemmanuil et al. 
2016; Hinai et al. 2019).

DNMT3A mutations, which are strongly asso-
ciated with age and clonal hematopoiesis, were 
shown to be independently associated with unfa-
vorable outcomes (Herold et al. 2020; Grimwade 
et  al. 2016; Ley et  al. 2010; Hou et  al. 2012; 
Renneville et  al. 2012; Thol et  al. 2011; Shen 
et al. 2011; Ribeiro et al. 2012), but their role was 
not consistent among all studies as their prognos-
tic role could be influenced by age, co-occurring 
molecular alterations, and possibly the type of 
mutations (i.e., R882 versus others) 
(Papaemmanuil et al. 2016; Metzeler et al. 2016; 
Bullinger et  al. 2017; Gaidzik et  al. 2013; Ahn 
et al. 2016; Marcucci et al. 2012). Likewise, the 
prognostic role of TET2 (Metzeler et  al. 2016; 
Patel et  al. 2012; Chou et  al. 2011a; Gaidzik 
et  al. 2012; Metzeler et  al. 2011b; Weissmann 
et  al. 2012; Nibourel et  al. 2010) or WT1 
(Metzeler et al. 2016; Patel et al. 2012; Virappane 
et  al. 2008; Paschka et  al. 2008; Gaidzik et  al. 
2009; Renneville et  al. 2009b) mutations has 
been controversial (Döhner et al. 2017).

The clinical implications of IDH1 and IDH2 
mutations have been debated as well 
(Papaemmanuil et al. 2016; Metzeler et al. 2016; 
Patel et  al. 2012; Prassek et  al. 2018; Paschka 

et al. 2010; Marcucci et al. 2010; Peterlin et al. 
2015; Boissel et  al. 2010, 2011; Chou et  al. 
2011b; Thol et al. 2010; Abbas et al. 2010), with 
a recent meta-analysis suggesting a detrimental 
effect of IDH1 R132 mutations and a positive 
impact of IDH2 aberrations (Xu et  al. 2017). 
However, IDH2 R140 and R172 mutations should 
not be grouped together, because they are associ-
ated with different co-mutations and clinical out-
comes (Papaemmanuil et al. 2016; Boissel et al. 
2011; Green et  al. 2011). Of note, the role of 
IDH1 single nucleotide polymorphism 
rs11554137 has not been consistent among dif-
ferent reports (Wagner et  al. 2010; Ho et  al. 
2011). The impact of many more recurrently 
mutated genes in AML has been explored, but 
results among studies have been globally incon-
sistent and they do not presently have a recog-
nized prognostic relevance (Bullinger et  al. 
2017). However, it should be noted that patients 
belonging to the genetic chromatin-spliceosome 
group, that is, harboring at least one mutations in 
splicing (SRSF2, SF3B1,U2AF1, and ZRSR2), 
chromatin (STAG2, BCOR, EZH2, PHF6 in addi-
tion to ASXL1, and KMT2A-PTD), or in RUNX1 
in the absence of other class defining lesions, 
showed very unfavorable outcomes in large 
patient cohorts (Papaemmanuil et al. 2016; Ahn 
et al. 2018). Besides, several of these mutations 
(namely, SRSF2, SF3B1, U2AF1, ZRSR2, ASXL1, 
EZH2, BCOR, and STAG2) were shown to be 
highly specific for secondary AML and define an 
entity with poor clinical results (Lindsley et  al. 
2015; Gardin et  al. 2020). Nonetheless, more 
data are required before firm recommendations 
can be made for these patients.

7.6	 �Integration of Prognostic 
Factors

Historically, the integration of the prognostic 
value of cytogenetic and genetic lesions in AML 
has been done in a hierarchical manner. For 
instance, gene mutations were initially consid-
ered only in patients with normal cytogenetics. 
Currently, used prognostic classifications rely on 
a limited number of well-identified, empirically 
determined pairwise interactions between (cyto)
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genetic lesions, as exemplified by NPM1 and 
FLT3-ITD. The identification of mutually exclu-
sive, class-defining “founder” cytogenetic, or 
molecular lesions, such as CBF translocations, or 
NPM1 mutations, has set the ground for the pro-
posal of many class-specific prognostic systems. 
Indeed, the pattern of co-mutations in AML is 
particularly complex to decipher and the prog-
nostic impact of different genetic driver combi-
nations is only partially known so far. Thus, with 
the exception of the NCCN (but not ELN) pro-
posal to account for KIT status in CBF leukemias 
(Döhner et al. 2017; Tallman et al. 2019), none 
has been sufficiently validated to be implemented 
in routine practice (Table 7.2).

7.6.1	 �In Specific Molecular Groups

7.6.1.1	 �CBF-AML
In the cytogenetic subgroup of CBF leukemias, 
the role of signaling genes has been explored in 
several studies, most of which have focused on 
the prognostic influence of KIT aberrations, 
which occur in up to 20–35% of the cases (Faber 
et  al. 2016; Ishikawa et  al. 2020; Opatz et  al. 
2020; Duployez et al. 2016; Itzykson et al. 2018a; 
Eisfeld et al. 2017). The impact of KIT mutations 
has been globally inconsistent in CBFB-MYH11 
AML (Paschka et  al. 2013; Care et  al. 2003; 
Boissel et al. 2006; Riera et al. 2013; Qin et al. 
2014; Paschka et  al. 2006; Park et  al. 2011), 
while they have been associated with increased 
relapse risk and worse OS in RUNX1-RUNX1T1 
patients in several (Boissel et al. 2006; Paschka 
et al. 2006; Park et al. 2011; Cairoli et al. 2006; 
Schnittger et al. 2006; Rücker et al. 2019; Chen 
et al. 2016; Kim et al. 2013), but not all (Itzykson 
et al. 2018a; Klein et al. 2015), reports, including 
some in which their impact was restricted to a 
subgroup of KIT mutations (e.g., above a certain 
VAF cutoff or only when present in a specific 
exon of the gene (Faber et  al. 2016; Ishikawa 
et al. 2020; Opatz et al. 2020; Krauth et al. 2014; 
Christen et al. 2019; Duployez et al. 2016; Kim 
et al. 2013; Allen et al. 2013)). While NCCN rec-
ommendations take KIT mutations into account 
for RUNX1-RUNX1T1 patients, suggesting that 

those cases should be entered in clinical trials and 
considered for alloHCT in CR1 (Tallman et al. 
2019), ELN 2017 guidelines do not account for 
KIT mutations in CBF patients, since their 
impact is outperformed by measurable residual 
disease (MRD) (Döhner et al. 2017), as detailed 
in Chap. 18. FLT3 aberrations are present in 
10–20% of CBF leukemias (Paschka et al. 2013; 
Christen et al. 2019; Duployez et al. 2016) and 
there is some evidence (Paschka et  al. 2013; 
Boissel et al. 2006), possibly restricted to FLT3-
ITDhigh (Christen et al. 2019), of a negative prog-
nostic role of these alterations. Indeed, a recent 
international survey on 65 AML patients with 
CBF-AML and FLT3-ITD showed inferior 
results compared to the general CBF population, 
with 4-year OS around 50% (Kayser et al. 2019). 
Nonetheless, this has not been consistently seen 
(Itzykson et  al. 2018a; Santos et  al. 2011). 
Further studies are needed to better understand 
the impact of FLT3 aberrations in CBF leuke-
mias, which could be influenced by treatments 
such as FLT3 inhibitors or gemtuzumab ozo-
gamicin (Cerrano and Itzykson 2019). A few 
reports also suggested that JAK2 V617F muta-
tions might be detrimental (Christen et al. 2019; 
Illmer et al. 2007).

Recently, researchers have focused on the 
impact of additional genetic lesions belonging to 
chromatin modifiers/cohesin pathway, which are 
more prevalent in RUNX1-RUNX1T1 compared 
to CBFB-MYH11 patients (Faber et  al. 2016; 
Duployez et al. 2016) Although these aberrations 
did not show an independent prognostic impact 
per se, (Faber et al. 2016; Duployez et al. 2016) 
they were associated with a poor prognosis in 
patients with concurrent signaling mutations, 
hinting at synergic cooperation between these 
events (Duployez et al. 2016).

7.6.1.2	 �NPM1-Mutated AML
The impact of the co-mutation pattern in the large 
group of NPM1-mutated AML has been exten-
sively studied, and is emerging as one of the most 
important factors to define the outcome of these 
patients. As already discussed (see above), FLT3-
ITD plays a major role, while the role of FLT3-
TKD is debated.

R. Itzykson et al.

https://doi.org/10.1007/978-3-030-72676-8_18


151

The implications of the presence of DNMT3A 
mutations have been thoroughly studied by 
Papaemmanuil and colleagues, who found that the 
adverse prognostic impact of FLT3-ITD in NPM1-
mutated patients was restricted to those with con-
current DNMT3A mutations (Papaemmanuil et al. 
2016), as suggested in other reports (Patel et  al. 
2018; Loghavi et al. 2014; Wang et al. 2016; Bezerra 
et  al. 2020). DNMT3A was able to influence the 
prognostic impact of other genetic profiles as well, 
including NPM1:NRASG12/13. Besides, Dunlap and 
colleagues showed that a reduced OS was associated 
with the combination NPM1:DNMT3A:IDH1–2 
(Dunlap et al. 2019) and Papaemmanuil et al. found 
that NPM1:IDH2 patients had reduced CR and 
increased relapse rates (Papaemmanuil et al. 2016), 
consistent with some (Paschka et al. 2010), but not 
all (Patel et al. 2012), previous observations.

7.6.1.3	 �biCEBPA AML
Frequent co-mutations in biCEBPA-mutated 
patients affect the GATA2 (Greif et al. 2012) and 
CSF3R (Lavallée et al. 2016) genes, while muta-
tions in chromatin, cohesin, and splicing genes 
are less frequent (Wilhelmson and Porse 2020). 
Mutations of the latter groups, in particular of 
WT1 (Tien et  al. 2018b) or TET2 (Fasan et  al. 
2014; Grossmann et al. 2013a), have been associ-
ated with lower response and survival rates 
(Konstandin et al. 2018). Besides, some evidence 
suggests that the presence of FLT3-ITD, which is 
rarely found in biCEBPA AML, could impact on 
the favorable outcomes of this entity (Green et al. 
2010; Zhang et al. 2019), but this finding was not 
consistent in all reports (Tien et  al. 2018b; 
Grossmann et al. 2013a). The unfavorable impact 
of other signaling mutations, including CSF3R, is 
even more controversial (Konstandin et al. 2018; 
Zhang et  al. 2019; Su et  al. 2018, 2019). 
Conversely, GATA2 mutations were shown to 
exert a favorable impact in earlier reports 
(Grossmann et  al. 2013a; Fasan et  al. 2013, 
2014), but this finding was not confirmed in 
recent studies (Su et al. 2018; Theis et al. 2016).

7.6.1.4	 �KMT2A-Rearranged AML
The signaling/RAS pathway is the most fre-
quently mutated in KMT2A-rearranged AML and 

its alterations have been shown to be associated 
with chemotherapy residence in experimental 
models (Esposito 2019). However, unlike in 
KMT2A-rearranged infant ALL (Driessen et  al. 
2013), no clear prognostic impact has been 
observed in AML (Vetro et al. 2020; Grossmann 
et al. 2013b). Conversely, concurrent TP53 muta-
tions might be associated with reduced OS 
(Grossmann et al. 2013b).

7.6.1.5	 �DEK-NUP214 AML
FLT3-ITD is present in roughly 70% of patients 
harboring DEK-NUP214, but its prognostic 
impact has been controversial in this context. 
While earlier data suggested a detrimental effect 
(Thiede et al. 2007), additional studies could not 
confirm this finding (Díaz-Beyá et  al. 2020; 
Sandahl et al. 2014; Tarlock et al. 2014).

7.6.2	 �In Specific Clinical Groups

Most of our knowledge on the prognostic impact 
of genetic aberrations come from cohorts of 
younger AML patients enrolled in clinical trials. 
However, things might be different in biologi-
cally distinct subgroups, which are underrepre-
sented in most studies.

7.6.2.1	 �Older Patients
Median age of AML diagnosis isabove 65 years, 
but data on the prognostic impact of genetic aber-
rations are less abundant in older patients.The 
favorable prognostic role of NPM1 mutations has 
been challenged in this context (Straube et  al. 
2018; Prassek et  al. 2018; Becker et  al. 2010; 
Lazenby et al. 2014; Juliusson et al. 2020). Some 
reports confirmed the relatively favorable out-
come of these patients, although they rarely 
reached a long-term survival plateau indicative of 
cure (Hefazi et  al. 2015; Daver et  al. 2013; 
Büchner et  al. 2009; Scholl et  al. 2008). Data 
from the Southwest Oncology Group (SWOG) 
showed that isolated NPM1-mutated patients 
>65 years had unfavorable results even early after 
diagnosis (2  year-OS around 30%) (Ostronoff 
et al. 2015).The relatively favorable outcome of 
NPM1-mutated AML thus results fromtheir 
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chemosensitivity, andis thus dependent on treat-
ment intensity. This illustrates the need to inter-
pret prognosis in a given therapeutic context. 
This becomes challenging in a dynamic thera-
peutic landscape (see Chap 12).

In addition, the impact of other mutations has 
been controversial, including FLT3-ITD (Straube 
et al. 2018; Prassek et al. 2018; Juliusson et al. 
2020; Heiblig et al. 2019). Differences in the pat-
terns of co-mutations between older and younger 
patients could contribute to these differences 
(Prassek et al. 2018; Silva et al. 2017).

Globally, the applicability of current prognos-
tic stratifications has been weaker in patients 
above 60 years (Mrózek et al. 2012; Röllig et al. 
2011). Thus, specific prognostic classification 
systems have been developed in this population 
(Eisfeld et al. 2018; Itzykson et al. 2018b; Tsai 
et al. 2016). Recently, in a large cohort of inten-
sively treated patients above 60 years, the ALFA 
group showed that the presence of secondary 
AML-type mutations (as defined by Lindsley 
et al. (2015), excluding ASXL1) could refine the 
2017 ELN classification, identifying among 
intermediate-risk patients those with worse out-
come whocould possibly benefit from alloHCT 
(Gardin et  al. 2020). These new classification 
systems have yet to be validated in independent 
cohorts.

7.6.2.2	 �Childhood AML
AML is a rare disease in children, with signifi-
cant biological and clinical differences compared 
to adult disease. The molecular landscape of 
pediatric AML is different, lacking almost 
entirely certain aberrations relevant for adults 
(e.g., DNMT3A mutations (Bolouri et al. 2018)), 
but being enriched for other entities virtually 
absent in adults.

Acute megakaryoblast leukemia (AMKL) is 
not uncommon in infants and young children. 
While in patients with Down Syndrome (DS)—
generally experiencing positive results—this 
entity has been associated with GATA1 mutations 
and excellent long-term OS (around 90%) in 
recent studies (Taub et al. 2017), clinical results 
in non-DS patients is more heterogeneous. 
AMKL patients with t(1;22)(p13;q13) leading to 
the RBM15-MKL1 translocation (Ma et al. 2001) 

generally show intermediate-to-favorable out-
comes. Those harboring the CBFA2T3-GLIS2 
fusion gene, which characterizes an extremely 
aggressive subtype—frequent in non-DS AMKL 
leukemia but not limited to this entity—experi-
ence dismal outcomes (de Rooij et  al. 2017; 
Masetti et al. 2019; Inaba et al. 2015).

CBF leukemias, which are more common 
among older children and adolescents, are associ-
ated with favorable prognosis, like in the adult 
population (Harrison et  al. 2010; von Neuhoff 
et al. 2010). Recently, a rare entity characterized 
by the t(16;21)(q24;q22), resulting in the RUNX1-
CBFA2T3 fusion and whose gene expression pro-
file resembles that of RUNX1-RUNX1T1 AML, 
was shown to be associated with favorable out-
comes. Conversely, a completely different entity 
characterized by the t(16;21)(p11;q22) transloca-
tion resulting in the fusion FUS-ERG has been 
associated with very poor survival (Noort et  al. 
2018).

KMT2A rearrangements are significantly more 
common in children than adults, being observed 
in roughly 20% of AML cases, especially in 
infants and young children. Globally, the out-
come of KMT2A-rearranged AML is considered 
similar to that of patients not harboring this 
abnormality, thus intermediate (Harrison et  al. 
2010; von Neuhoff et al. 2010; Marceau-Renaut 
et al. 2018). However, this subgroup is quite het-
erogeneous, with some entities such as t(10;11)
(p12;q23) and t(6;11) (q27;q23) being associated 
with poor prognosis, while others, such as t(1;11)
(q21;q23), showing favorable outcomes. Of note, 
the positive results reported in some studies for 
t(9;11)(p22;q23), the most common KMT2A 
translocation, were not confirmed in a large retro-
spective international report (Balgobind et  al. 
2009, 2011).

NPM1 mutations, which are less frequent in 
children compared to adults, are also relatively 
favorable in this context (Bolouri et  al. 2018; 
Hollink et al. 2009). Conversely, the prognostic 
role of FLT3-ITD has been more controversial, 
although a detrimental effect was demonstrated 
in the majority of reports, especially in cases with 
FLT3-ITDhigh (Marceau-Renaut et  al. 2018; 
Meshinchi et  al. 2006; Manara et  al. 2017; 
Shimada et al. 2018; Wu et al. 2016). The NUP98-
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NSD1 fusion gene, which is cryptic at conven-
tional karyotype analysis and more frequent in 
children and young adults (Hollink et  al. 2011; 
Thol et  al. 2013), exerts a negative prognostic 
role which is significantly increased by the pres-
ence of FLT3-ITD, leading to CR rates below 
30% and dismal long-term OS (Ostronoff et al. 
2014). Indeed, this was recently confirmed by 
Bolouri and colleagues, who demonstrated that 
FLT3-ITD positive patients’ prognosis could be 
stratified according to co-occurring aberrations: 
while those with concomitant NPM1 mutations 
were confirmed to experience rather favorable 
outcomes, FLT3-ITD in association with NUP98-
NSD1 (or WT1 mutations) was associated with 
reduced CR rate and dismal EFS (Bolouri et al. 
2018). The role of another NUP98 rearrange-
ment, NUP98-KDM5A, which demonstrated a 
trend toward poor outcomes in non-DS AMKL 
(de Rooij et al. 2017), was explored in a recent 
large multinational pediatric study outside 
AMKL. NUP98-KDM5A was associated with 
different clinical features compared to NUP98-
NSD1, but retained an adverse prognosis (Noort 
et al. 2021).

Although the impact of several—but not all—
adult AML prognostic factors was often con-
firmed in children, including recent data on 
RUNX1 mutations (Yamato et al. 2018), the per-
formance of stratification systems developed in 
the adult population is less robust in pediatric 
patients. Recently, the French group showed that 
ELN 2017 classification was able to identify 
good risk patients but failed to separate interme-
diate from adverse risk ones. Conversely, the 
presence of NUP98 fusions, WT1, RUNX1, and 
PHF6 mutations were able to identify a poor 
molecular subgroup with 3-year OS below 50%, 
underling the need of larger studies to better clar-
ify the impact of gene mutations in pediatric 
AML and to improve patients’ stratification 
(Marceau-Renaut et al. 2018).

7.6.2.3	 �Secondary AML
Secondary AML (sAML) occurring after an ante-
cedent MDS (or more rarely MPN or MDS/
MPN) is an entity distinct from WHO-defined 
therapy-related myeloid neoplasms (t-MN, when 
blasts are ≥20%). The WHO classification pro-

posed to group sAML along with de novo AML 
presenting with myelodysplasia-related cytoge-
netic or morphologic changes (Arber et al. 2016), 
while others have attempted to identify a molecu-
lar portrait of sAML (notably mutations in 
SRSF2, SF3B1, U2AF1, ZRSR2, ASXL1, EZH2, 
BCOR, and STAG2) that could then be applied to 
de novo AML to define “secondary-type” AML 
(Lindsley et al. 2015).

Secondary AML has historically been associ-
ated with unfavorable outcome (Arber et  al. 
2016; Kuykendall et al. 2018), but this category 
is heterogeneous. Response to treatment and 
prognosis can vary considerably among patients. 
Along with clinical differences (e.g., s-AML 
arising from myeloproliferative neoplasms is 
associated with worse outcome compared to 
AML secondary to MDS (Granfeldt Østgård 
et  al. 2015)), the genetic profile plays a major 
role. Cytogenetic risk stratification remains a 
major determinant of outcome in sAML, although 
unfavorable subtypes are overrepresented com-
pared to de novo cases. Most, but not all (Schoch 
et  al. 2004), studies suggested that the clinical 
prognostic factors of AML with myelodysplasia-
related changes or t-MN could lose their signifi-
cance when cytogenetic risk is taken into account, 
outlining the importance of this parameter in this 
context (Devillier et  al. 2015b; Armand et  al. 
2007; Ossenkoppele and Montesinos 2019). 
Specifically, favorable translocations such as 
t(15;17) or CBF translocations induced by 
anthracyclines/epipodophyllotoxins exposures 
retain their favorable prognosis in t-MNs (Braun 
et al. 2015; Heuser 2016). Other therapy-related 
AML, notably those induced by alkylating 
agents, are characterized by a high frequency of 
TP53 mutations (Ok et  al. 2015; Christiansen 
et  al. 2001). Globally, adverse risk mutations 
have been shown to maintain their adverse impact 
in sAML and t-AML (Rücker et  al. 2012; 
Devillier et al. 2015a).

7.6.2.4	 �Relapsed AML
Even though the impact of genetic aberrations at 
AML relapse has not been completely explored 
so far, it is emerging as one of the most important 
predictors of response to treatment and patients’ 
long-term outcomes (Montesinos et al. 2019). In 
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intensively treated patients, the role of cytogenet-
ics has been confirmed, with patients with CBF 
leukemias, especially those with CBFB-MYH11, 
showing relatively high salvage rates, adverse 
cytogenetic abnormalities being associated with 
poor prognosis (Breems et  al. 2005; Chevallier 
et  al. 2011). Among gene mutations, biCEBPA 
have been associated with relatively good salvage 
rates while NPM1 mutations do not seem to exert 
a positive impact in this context (Schlenk et al. 
2017; Bergua et al. 2016). Relapsed patients with 
FLT3-ITD have been consistently shown to 
obtain dismal results with conventional treat-
ments and IDH1 mutations have emerged as a 
negative prognostic factor in a recent report as 
well (Wattad et al. 2017). This picture will prob-
ably change with the advent of novel targeted 
therapies (Cerrano and Itzykson 2019). Indeed, 
considering the frequent changes in the molecu-
lar landscape compared to diagnosis (Greif et al. 
2018), obtaining a detailed genetic reassessment 
at relapse before choosing the therapeutic 
approach is now mandatory (detailed in Chaps. 
11–12).

7.7	 �Clonal Architecture

Despite significant progresses, the extensive 
cytogenetic and mutational characterization rou-
tinely obtained at AML diagnosis cannot com-
prehensively depict its biological basis, and it is 
not always able to accurately estimate disease 
behavior and response to treatments in individual 
patients. Thus, other aspects of AML are being 
explored to improve patients’ stratification.

As discussed supra, FLT3-ITD impact 
strongly depends on its mutated/wild-type ratio, 
prompting its integration in current guidelines 
(Döhner et al. 2017). Besides, the clinical impli-
cations of mutational burden are emerging for 
several candidate genes in specific contexts. 
Several studies found that KIT and FLT3-ITD 
prognostic impact in CBF leukemias was 
restricted to those above a certain burden thresh-
old (Christen et al. 2019; Duployez et al. 2016; 
Allen et al. 2013), likewise FLT3-TKD or NRAS/
KRAS mutations in other reports (Mead et  al. 

2007; Duployez et al. 2016). A recent study by 
Patel and colleagues suggested that NPM1 muta-
tional burden could also be important. The 
authors showed that patients with NPM1 muta-
tions having a variant allele frequency (VAF) 
above the upper quartile had a significantly 
reduced OS, independently of other baseline 
known prognostic variables (Patel et  al. 2018). 
However, this finding has been mitigated (Linch 
et al. 2020), or infirmed (Abbas et al. 2019), in 
the following reports, suggesting that NPM1 VAF 
impact might be mostly due to co-mutations and/
or a reflection of higher leukemia burden. Several 
reports explored the impact of the allele burden 
of other mutations, including DNMT3A (Yuan 
et  al. 2019), TP53 (Prochazka et  al. 2019), and 
ASXL1 (Sasaki et al. 2020), without being vali-
dated so far. With the possible exception of FLT3-
ITD, further validation and better standardization 
methods (Touw and Sanders 2020) are thus nec-
essary to account for mutational burden for daily 
prognostic purposes.

Mounting evidence suggests that a better 
understanding of clonal architecture may refine 
risk stratification. Intra-tumor heterogeneity is 
associated with unfavorable outcomes in many 
cancers (Andor et al. 2016), but its precise role 
remains to be defined in AML. Indeed, a higher 
number of driver lesions has been proven to be a 
marker of poor prognosis (Papaemmanuil et  al. 
2016; Wakita et al. 2016). However, whether this 
unfavorable outcome has to be attributed to the 
additive fitness of driver lesions accumulated in a 
single clone or to the presence of clonal heteroge-
neity is not clear. In CBF leukemias, the presence 
of clonal interference, that is, the co-existence of 
clones sharing a common ancestor and harboring 
independent lesions targeting the same path-
way—signaling in this case—was associated 
with reduced event-free survival, independent of 
other baseline clinical variables and MRD 
(Itzykson et al. 2018a). Besides, a higher number 
of clones, as assessed by conventional cytoge-
netic, was shown to worsen prognosis in AML, 
but mainly in the context of complex karyotype 
(Bochtler et  al. 2013; Medeiros et  al. 2015), 
while clonal dominance, as assessed by the 
Shannon diversity Index (Maley et al. 2017), may 
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worsen prognosis (Cerrano et al. 2021). Further 
efforts are needed to fully understand the impact 
of clonal architecture and dynamics on AML 
behavior.

7.8	 �Other Biological Risk Factors

Additional biological factors have been explored 
in AML, with a vast number of studies outlying 
their prognostic implications. Although the 
majority of the data we present below do not 
affect the clinical management of AML patients 
in current practice, with the implementation of 
more comprehensive diagnostic platforms some 
of the risk factors described below might soon be 
integrated in prognostic stratification algorithms.

7.8.1	 �Gene Expression

Several studies have focused on the impact of the 
over-expression of certain genes. One of the most 
extensively studied is MECOM (or EVI1), the 
hallmark of inv(3)/t(3;3), which is overexpressed 
also in up to 10% of AML cases that do not carry 
any 3q aberrations, most commonly in those har-
boring monosomy 7 and 11q23 abnormalitis 
(Hinai and Valk 2016). High MECOM expression 
was associated with unfavorable outcomes in 
several studies, especially in CN (Barjesteh van 
Waalwijk van Doorn-Khosrovani et  al. 2003; 
Gröschel et al. 2010; Lugthart et al. 2008; Valk 
et  al. 2004) and KMT2A-rearranged AML 
(Gröschel et al. 2013), thus assigning patients to 
the adverse risk group according to some authors 
(Cornelissen and Blaise 2016). The overexpres-
sion of other genes (Damm et al. 2011), including 
BAALC (Weber et  al. 2014; Torrebadell et  al. 
2018; Schwind et al. 2010a; Baldus et al. 2006; 
Langer et al. 2008), ERG (Schwind et al. 2010a; 
Metzeler et  al. 2009; Marcucci et  al. 2005b, 
2007), and MN1 (Langer et al. 2009), has been 
linked to adverse outcome as well, but their inde-
pendent prognostic value has been questioned 
due to the correlations with relevant genetic alter-
ations (Weber et al. 2016). They are not employed 
to stratify patients’ risk by current guidelines 
(Döhner et al. 2017; Tallman et al. 2019).

Additional efforts have been made to derive 
gene expression profiles (GEP) to stratify AML 
patients. Among many signatures and scores pro-
posed (Gentles et  al. 2010; Jung et  al. 2015; 
Levine et al. 2015; Metzeler et al. 2008; Eppert 
et al. 2011; Marcucci et al. 2014; Bullinger et al. 
2004; Li et al. 2013), Ng and colleagues estab-
lished a panel of 17 genes defining a “stemness” 
signature called LSC17 (i.e., indicating overrep-
resented gene sets with stem cell-like properties), 
the expression of which was highly indicative of 
poor clinical outcomes in multiple AML cohorts 
(Ng et al. 2016; Duployez et al. 2019), even in the 
context of ELN 2017 classification (Bill et  al. 
2020). In this regard, it has been suggested the 
applicability and performance of genetic signa-
tures might be improved if restricted to defined 
patient subgroups (Wiggers et  al. 2019). 
Interestingly, Herold and colleagues recently val-
idated a score integrating 29 gene expression 
markers and the MRC cytogenetic risk groups. 
This score which was able to accurately predict 
resistance to induction chemotherapy, outper-
forming currently available models (Herold et al. 
2018).

In addition, also microRNA expression might 
play a role in CN-AML stratification (Marcucci 
et al. 2008). The up-regulation of miR-181a was 
shown to be associated with favorable prognosis, 
whereas higher expression of miR-155, miR-
196b, and miR-644 was independently associ-
ated with shorter overall survival (Schwind et al. 
2010b; Marcucci et  al. 2013; Díaz-Beyá et  al. 
2014). Expression signatures of large non-coding 
RNAs, such as long intergenic non-coding RNAs 
(lincRNA) involved in gene expression regula-
tion and cell lineage and differentiation, have 
demonstrated added prognostic value to standard 
cytogenetic and genetic molecular stratification 
(Beck et al. 2018).

7.8.2	 �Flow Cytometry

Flow cytometry has entered routine clinical prac-
tice in AML diagnosis, almost completely replac-
ing cytochemical stains. Besides, the prognostic 
implications of the immunophenotypic charac-
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terization of AML blasts have been extensively 
explored.

For instance, the expression of CD25 (IL-2 
receptor alpha) has been associated with reduced 
response to chemotherapy and inferior survival 
(Nakase et  al. 1997; Fujiwara et  al. 2017) and 
CD105 was shown to be associated with unfavor-
able outcomes in AML (Kauer et  al. 2019), 
including in the HCT setting (Märklin et  al. 
2020). Many additional immunophenotypic 
markers have been shown to exert a meaningful 
prognostic impact, including but not limited to 
CD7, CD56, CD82, CD93, CXCR4, CD262, 
CD120a, hMICL, CD96,CD11b, CD117, CD34, 
CD13, CD14, CD15 (Chisini et al. 2017), some 
of these recently reviewed by Costa et al. (2017), 
but these and the aforementioned findings have 
neither been consistent nor been robustly vali-
dated in adequately sized independent cohorts.

The combination of multiple immunopheno-
typic markers could also be prognostically infor-
mative. Initial studies suggested that patterns of 
myeloid lineage differentiation could impact on 
outcomes (Repp et  al. 2003); however, results 
have been inconsistent (Mason et  al. 2006). 
Recently, the co-expression of CD56, CD123, 
CD4 was shown to identify a subgroup of NPM1-
mutated patients with blastic plasmacytoid den-
dritic cell neoplasm (BPDCN)-like AML with 
poor prognosis, an intriguing finding which needs 
to be validated (Minetto et al. 2018).

Globally, the prognostic value of immuno-
phenotype has been difficult to reproduce, prob-
ably because of the size and heterogeneity of 
patient cohorts, and difficulties to standardize 
MFC in a multicentric way. Besides, the associa-
tion of immunophenotypic markers with relevant 
genetic alterations interferes with their prognos-
tic impact (van Solinge et al. 2018), which has 
not been firmly proven to add independent infor-
mation so far.

7.8.3	 �Proteomic

The impact of protein expression in AML has 
been studied for more the 20 years, with earlier 
reports focusing mostly on the impact of proteins 

involved in chemotherapy resistance, such as 
P-glycoprotein (the MDR1 gene product), MRP1 
(multidrug resistance-associated protein 1), and 
LRP (lung resistance protein). The majority of 
these reports associated the hyperexpression of 
these proteins with worse prognosis, especially 
for P-glycoprotein, albeit with some inconsisten-
cies (Pirker et al. 1991; Leith et al. 1997, 1999; 
Tsuji et al. 2000; Legrand et al. 1998; Laupeze 
et al. 2002).

In addition, several studies assessed the impact 
of the hyperexpression of anti-apoptotic proteins 
(e.g., BCL-2 and survivin) or pro-apoptotic ones 
(e.g., measuring BAX levels or BAX/BCL2 ratio) 
suggesting they can affect outcomes in opposite 
ways, although with some contrasting results 
(Ong et  al. 2000; Lauria et  al. 1997; Del Poeta 
et  al. 2003; Karakas et  al. 2002; Carter et  al. 
2012; Venditti et al. 2004; Zhou et al. 2019a).

Subsequent functional protein studies showed 
that signal transduction pathways activation had 
an adverse effect on prognosis (Kornblau et  al. 
2006), and that specific functional proteomic pro-
files correlated with known morphologic fea-
tures, cytogenetics, and outcome (Kornblau et al. 
2009, 2010a, 2011).

Investigators also explored the role of circulat-
ing cytokines and chemokines, which were 
shown to be differently expressed in AML com-
pared to healthy controls and whose patterns of 
expression might have prognostic relevance 
(Kornblau et  al. 2010b). Many of these studies 
were performed before the genomics era. Thus, 
the independence prognostic value of protein 
expression in AML remains to be determined.

7.8.4	 �DNA Methylation

Deregulation of DNA methylation plays a key 
role in AML pathogenesis, and genes involved in 
its regulations (i.e., DNMT3A, TET2, IDH1/2) 
are among the most frequently mutated in 
AML.  Along with these gene mutations (dis-
cussed supra), several studies have explored the 
clinical and prognostic implications of DNA 
methylation patterns. Unsupervised clustering 
analysis demonstrated that some cytogenetic sub-
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groups (e.g., CBF leukemias) are associated with 
distinct epigenetic modifications. Besides, DNA 
methylation signatures could also sub-stratify 
large genetic groups, such as NPM1-mutated 
AML, possibly identifying new clinically rele-
vant disease entities (The Cancer Genome Atlas 
Research Network 2013; Bullinger et  al. 2010; 
Figueroa et al. 2010).

Aberrant DNA methylation was shown to be 
independently associated with outcomes 
(Deneberg et al. 2010; Li et al. 2016), and spe-
cific quantitative methylation patterns could give 
significant prognostic information. Further stud-
ies suggested that aberrant methylation of indi-
vidual (Deneberg et  al. 2010; Lin et  al. 2011; 
Yang et  al. 2019) or multiple genes (Marcucci 
et al. 2014; Figueroa et al. 2010; Deneberg et al. 
2011; Jost et al. 2014) was associated with clini-
cal outcomes.

In addition, the level of hydroxy-methylation, 
measured by 5-hydroxymethylcytosine levels, 
was shown to offer meaningful prognostic infor-
mation (Kroeze et al. 2014), although these find-
ings need validation.

Beyond clinical validation, simple and reli-
able methylation assays are warranted before 
these potential biomarkers enter yet clinical prac-
tice. Recently, Luskin and colleagues developed 
a microsphere-based assay for simultaneous 
assessment of DNA methylation status at multi-
ple loci and generated, in relatively large AML 
cohort, a methylation-based risk score (M-score), 
which was independently associated with CR and 
OS probability, and validated in independent 
cohorts (Luskin et al. 2016; DiNardo et al. 2017). 
This approach, if confirmed robust in additional 
studies, might be implemented in routine AML 
diagnostic panels.

7.9	 �Global Risk Assessment 
Strategies

Currently available (cyto)genetic prognostic 
stratification models are simple and provide reli-
able prognostic stratification (Table  7.2). Their 
performance has improved over time. Indeed, 
ELN 2017 classification has been validated, and 

was shown to be globally superior to previous 
stratification models (Döhner et al. 2017; Boddu 
et al. 2019; Harada et al. 2018). Further improve-
ments to ELN 2017 could be brought by the 
inclusion of additional genes on its backbone 
(Herold et al. 2020; Gardin et al. 2020).

However, clinical parameters, such as age, 
WBC count, performance status, or previous 
hematologic malignancies, exert a meaningful 
prognostic impact and interact with genetic 
parameters to influence patients’ outcome 
(Papaemmanuil et  al. 2016). Recommendations 
for alloHCT in CR1 are starting to incorporate 
most of these factors and weighting them against 
the risk of non-relapse mortality in an integrated 
system aiming to develop a tailored approach to 
the individual patient (Cornelissen and Blaise 
2016; Cornelissen et al. 2012).

To integrate cytogenetic, molecular, and clini-
cal factors in a more objective way, different 
scoring systems have been proposed (Pastore 
et  al. 2014b; Stölzel et  al. 2011; Zhou et  al. 
2019b; Malagola et  al. 2011), but they are not 
able to keep up with complex and frequently 
changing molecular data and their use is not 
widespread. Indeed, the comparison of various 
risk stratification tools based on genetics and/or 
gene expression profiling revealed that several of 
them can add significantly to the current prog-
nostic models (Wang et al. 2017), but it has been 
difficult to incorporate them in clinical practice.

It is now clear that approaches based on a hier-
archical, step-by-step integration of (cyto)genetic 
lesions are currently reaching their limit. First, 
not all gene lesions may have the same impact. 
This is well known for FLT3 (ITD vs TKD) or 
KMT2A (fusions vs PTD, fusion depending on 
partner). Other examples may include DNMT3A 
(R882 vs others) (Peterlin et  al. 2015) or KIT 
(exon 8 vs 17) (Paschka et  al. 2013). Second, 
three-gene interactions have recently been 
reported to be of major importance in patients 
stratification (Papaemmanuil et al. 2016; Bezerra 
et al. 2020).

To overcome these limitations, two approaches 
have been undertaken, the first relying on the inte-
gration of (cyto)genetic lesions into a global 
“clonal architecture” of each AML to derive prog-
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nosis (see supra). The second relies on machine 
learning approaches to integrate all available 
prognostic information layers, agnostic to biolog-
ical studies on specific genetic interactions. 
Gerstung and colleagues recently reported on a 
“knowledge bank approach” (Gerstung et  al. 
2017) able to improve OS prediction compared to 
current risk classifications, thanks to the use of 
matched genomic–clinical data derived from over 
1500 AML patients (Papaemmanuil et al. 2016). 
Importantly, this multistage model was able to 
predict the probability of different causes of mor-
tality in each patient (i.e., death without remis-
sion, death after relapse, death without relapse), 
and to weight the impact of alloHCT on these 
probabilities. The use of this system might signifi-
cantly impact on patients’ care, and the authors 
estimated that this tailored approach could reduce 
the number of alloHCT by 20–25%, while main-
taining OS rates. An online tool, which allows an 
accurate prediction even if some of the data origi-
nally used for the development of the model are 
missing, was also developed (https://cancer.
sanger.ac.uk/aml-multistage). The performance 
of this “knowledge bank” approach was recently 
validated in the real life setting (Huet et al. 2018) 
and could possibly be combined with ELN2017 
risk stratification to optimize indications of  
alloHCT in CR1 (Fenwarth et  al. 2019). 
Knowledge banks could optimize personally tai-
lored therapeutic decisions; however, they require 
frequent updating. As new effective drugs are 
becoming available (Cerrano and Itzykson 2019), 
the survival estimation of a given patient might 
become inaccurate if the knowledge bank relies 
only on data of patients treated with “3 + 7” like 
traditional chemotherapy program. Besides, 
inclusive cohorts are necessary, not to underrepre-
sent certain subgroups (e.g., elderly patients less 
often enrolled in clinical trials) and all the impor-
tant prognostic factors identified should ideally be 
considered, including recently discovered ones 
(Walker et al. 2019; Nibourel et al. 2017), stress-
ing the need for constant update. Finally, such 
global risk assessment strategies will increasingly 
rely on MRD (see Chap. 18), which have yet to be 
implemented in these models (Schuurhuis et  al. 
2018; Estey and Gale 2017; Patkar et al. 2019). 

Large cohorts are required to accurately estimate 
the impact of rare co-mutational patterns, as dis-
cussed supra. International consortia, such as the 
European Union funded HARMONY project, 
will likely be instrumental to that prospect 
(Bullinger et al. 2019). Such “big data” analyses 
including many layers of information are hoped to 
be a turning point on the road toward precision 
medicine in AML.
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