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Abstract. An NP-hard problem is considered to stab a given set of n
straight line segments on the plane with the smallest size subset of disks
of fixed radii r > 0, where the set of segments forms a straight line
drawing G = (V,E) of a planar graph without proper edge crossings.
To the best of our knowledge, only 100-approximation O(n4 logn)-time
algorithm is known (Kobylkin, 2018) for this problem. Moreover, when
segments of E are axis-parallel, 8-approximation is proposed (Dash et
al., 2012), working in O(n logn) time. In this work another special set-
ting is considered of the problem where G belongs to classes of spe-
cial plane graphs, which are of interest in network applications. Namely,
three fast O(n3/2 log2 n)-expected time algorithms are proposed: a 10-
approximate algorithm for the problem, considered on edge sets of min-
imum Euclidean spanning trees, a 12-approximate algorithm for edge
sets of relative neighborhood graphs and 14-approximate algorithm for
edge sets of Gabriel graphs. The paper extends recent work (Kobylkin et
al. 2019) where O(n2)-time approximation algorithms are proposed with
the same constant approximation factors for the problem on those three
classes of sets of segments.

Keywords: Operations research · Computational geometry ·
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1 Introduction

Facility location problem represents an important application area for many
combinatorial optimization problems. Usually, in facility location problems there
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are objects of interest, e.g. customers, roads, offices or production units, facility
objects, say, inventories, stores, markets, cellular base stations, petrol or charging
stations, and the problem is to place facilities at the vicinity of objects of interest.
Both types of objects are often implied to be geographically distributed. Here
optimization is usually done over locations of facilities to achieve the minimum
average (or maximal) distance from the placed facilities to the objects of interest.
Alternatively, total number is minimized of the located facilities while providing
the necessary degree of coverage of all objects of interest. The latter class of
problems is called a class of coverage problems.

Both types of facility location problems can adequately be modeled by opti-
mization problems from computational geometry. Here objects of interest are
encoded by some simple geometric structures, e.g., points, straight line (or curvi-
linear) segments and rectangles etc. Besides, facility objects are modeled by
translates of fixed objects like points, identical disks, axis-parallel squares or
rectangles. The corresponding optimization problem from the class of coverage
problems can look as follows: given a set K of geometric objects on the plane,
the smallest cardinality set C of objects is to be found, chosen from a class F of
simply shaped objects, such that each object from K is intersected by an object
from C in some prescribed way.

In this paper, subquadratic time small constant factor approximation algo-
rithms are designed for the following problem in which F is a set of radius r
disks and K coincides with a finite set E of straight line segments on the plane.
Intersecting Plane Graph with Disks (IPGD): Given a straight line
drawing (or a plane graph) G = (V,E) of an arbitrary simple planar graph
without proper edge crossings and a constant r > 0, find the smallest cardinal-
ity set C of disks of radius r such that e ∩ ⋃

C∈C
C �= ∅ for each edge e ∈ E. Here

each isolated vertex v ∈ V is treated as a zero-length segment ev ∈ E. Moreover,
the vertex set V is assumed to be in general position, i.e. no triple of points of
V lies on any straight line.

Below the term “plane graph” is used to denote any straight line embedding
of a planar graph whose (straight line) edges intersect at most at their endpoints.

The IPGD problem finds its applications in sensor network deployment and
facility location problems related to optimal coverage of objects of some infras-
tructure with sensors or facilities.

Suppose one needs to provide a certain degree of coverage of a given road
network with facility stations, which could be campings, petrol or charging sta-
tions, police precincts etc. Geometrically, the network roads can be modeled by
piecewise linear arcs on the plane. One can split these arcs into chains of ele-
mentary straight line segments such that any two of the resulting elementary
segments intersect at most at their endpoints. To cover the road network with
facility stations to some extent, it might be reasonable to place the minimum
number of stations such that each piece of every road (represented by an elemen-
tary segment) is within a given distance from some of the placed stations. This
modeling approach gives a geometric combinatorial optimization model, which
coincides with the IPGD problem.
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The IPGD problem has close connections with the classical geometric Hit-
ting Set problem on the plane. To describe a Hitting Set formulation of
the IPGD problem, some notation is given below. Suppose Nr(e) = {x ∈ R

2 :
d(x, e) ≤ r}, Nr(E) = {Nr(e) : e ∈ E} and d(x, e) is Euclidean distance between
a point x ∈ R

2 and a segment e ∈ E, i.e. Euclidean distance between x and its
projection on e; for a zero-length segment x ∈ R

2 Nr(x) denotes a radius r disk
centered at x. Each object from Nr(E) is a Euclidean r-neighborhood of some
segment of E also called r-hippodrome or r-offset in the literature [4].

Thus, the IPGD problem can equivalently be formulated as follows: given a
set Nr(E) of r-hippodromes on the plane whose underlying straight line segments
form an edge set of some plane graph G = (V,E), find the minimum cardinality
point set C such that C ∩ N �= ∅ for every N ∈ Nr(E). In fact, C represents a
set of centers of radius r disks, forming a solution to the IPGD problem. In the
sequel, a set C0 ⊂ R

2 is called a piercing set for Nr(E) when C0 ∩ N �= ∅ for all
N ∈ Nr(E).

1.1 Related Work and Our Results

Settings close to the IPGD problem are originally considered in [4]. Motivated
by applications from sensor monitoring for urban road networks, they explore
the case in which F contains equal disks and E consists of (generally properly
overlapping) axis-parallel segments. Their algorithms can easily be extended to
the case of sets E of straight line segments with bounded number of distinct
orientations.

In [11] constant factor approximation algorithms are first proposed for the
IPGD problem. Namely, a 100-approximate O(n4 log n)-time algorithm is given
for the problem in its general setting where E is formed by an edge set of an
arbitrary plane graph. Moreover, due to applications, 68- and 54-approximate
algorithms are given in [12] for special cases where E is an edge set of a gen-
eralized outerplane graph and a Delaunay triangulation respectively as well as
a 23-approximation algorithm is proposed under the assumption that all pairs
of non-overlapping segments from E are at the distance more than r from each
other.

Let us give some definitions. Let V be a finite point set in general position
on the plane. Assuming that no 4 points of V lie on any circle, a plane graph
G = (V,E) is called a Gabriel graph [14] when [u, v] ∈ E iff intersection of V is
empty with interior of the disk with diameter [u, v]. Under the same assumption a
plane graph G = (V,E) is called a relative neighborhood graph [6] when [u, v] ∈ E
iff max{d(u,w), d(v, w)} ≥ d(u, v) for any w ∈ V \{u, v}. Both types of plane
graphs defined above appear in a variety of network applications. They represent
convenient network topologies, simplifying routing and control in geographical
(e.g. wireless) networks. They can also be applied when approximating complex
networks.

In [13] faster O(n2)-time 10-, 12- and 14-approximate algorithms are designed
for the NP-hard [10] IPGD problem when E is being an edge set of a min-
imum Euclidean spanning tree, a relative neighborhood graph and a Gabriel
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graph respectively. This paper extends this latter work by presenting faster
O(n3/2 log2 n)-expected time 10-, 12- and 14-approximation algorithms for the
IPGD problem for classes of minimum Euclidean spanning trees, relative neigh-
borhood graphs and Gabriel graphs respectively.

2 Our Approximation Algorithms

2.1 Some Preliminaries

Our subquadratic O(1)-approximation algorithms are improved versions of the
O(n2)-time O(1)-approximation algorithms, given in [13]. The latter algorithms
operate on two concepts whose definitions are given below.

Definition 1. A subset I ⊆ Nr(E) is called a maximal (with respect to inclu-
sion) independent set in Nr(E), if I ∩ I ′ = ∅ for any I, I ′ ∈ I, and for any
N ∈ Nr(E) there is some I ∈ I with N ∩ I �= ∅.

Given N ∈ Nr(E), let e(N) be a straight line segment such that Nr(e(N)) =
N. Let also Nr,e(E) = {N ∈ Nr(E) : N ∩Nr(e) �= ∅} for e ∈ E. Of course, each
maximal independent set I in Nr(E) defines a (possibly non-unique) partition
of the form Nr(E) =

⋃

I∈I
NI , where NI ⊆ Nr,e(I)(E), I ∈ I; moreover, families

NI and NI′ are non-intersecting for distinct I, I ′ ∈ I. It is easy to see that each
maximal independent set in Nr(E) also induces the corresponding partition of
E.

Definition 2. Let G = (V,E) be a plane graph and α > 0 be some (r-indepen-
dent) absolute constant. An edge e ∈ E is called α-coverable with respect to
E, if for any constant ρ > 0 one can construct at most α-point piercing set
U(ρ, e, E) ⊂ R

2 for Nρ,e(E) in polynomial time with respect to |Nρ,e(E)|.
It turns out (see Lemmas 1 and 5 in [13] for proof) that any edge of every

Gabriel and relative neighborhood graph is α-coverable for some suitable positive
integer α.

Lemma 1. Any edge e ∈ E is 12-coverable of an arbitrary subgraph G = (V,E)
of a relative neighborhood graph. More precisely, for any ρ > 0 respective piercing
set U(ρ, e, E) for Nρ,e(E) can be found in O(1) time.

Lemma 2. Any edge e ∈ E is 14-coverable of an arbitrary subgraph G = (V,E)
of a Gabriel graph. Namely, for any ρ > 0 respective piercing set U(ρ, e, E) for
Nρ,e(E) can be found in O(1) time.

Let G = (V,E) be a Euclidean minimum spanning tree with a root v0 ∈ V,
depth(u) = depth(u|v0, G) be the (graph-theoretic) distance in G from v0 to an
arbitrary u ∈ V and V (u|v0) be the subset of those vertices w ∈ V such that the
shortest path in G from w to v0 (with respect to the number of its edges) passes
through u. If an edge e = [u1, u2] ∈ E is such that depth(u1) = depth(u2) − 1,
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then int N2Δ(u2)∩ (V \V (u2|v0)) = ∅, where Δ = d(u1, u2)/2 and intN denotes
interior of a set N ⊂ R

2.
It can also be proved (see the lemma 3 from [13]) that in any subgraph of a

minimum Euclidean spanning tree there always exists a 10-coverable edge.

Lemma 3. Let G0 = (V0, E0) be a subgraph without isolated vertices of a
Euclidean minimum spanning tree G = (V,E). Let depth(·|v0) be a distance
function on V with respect to a chosen v0 ∈ V as defined above. Then an edge
e = [u1, u2] ∈ E0 is 10-coverable with respect to E0, if u2 ∈ Arg max

u∈V0
depth(u).

Besides, for any constant ρ > 0 the corresponding piercing set U(ρ, e, E0) of size
at most 10 can be found in O(1) time.

Roughly, O(1)-approximate algorithms from [13] compute a partition
Nr(E) =

⋃

I∈I
NI , defined by some maximal independent set I for Nr(E). More-

over, on the way of constructing I, a constant sized piercing set U(I) is computed
for each NI ⊆ Nr,e(I)(E), I ∈ I, as described in proofs of lemmas 1, 3 and 5 from

[13]. Finally, it turns out that
{

Nr(u) : u ∈ ⋃

I∈I
U(I)

}

is an O(1)-approximate

solution to the IPGD problem.
The key to the performance gain, achieved in our algorithms over the algo-

rithms of [13], lies in the efficient way of constructing a partition of Nr(E),
which is induced by I. Here, our algorithms additionally maintain a special
data structure. For a given set F of non-intersecting straight line segments and
a point x ∈ R

2, this data structure allows to efficiently compute the segment
f ∈ F, which is the nearest to x with respect to Euclidean distance. In fact, it
implicitly implements a Euclidean Voronoi diagram for F. Voronoi diagram for
sets of pairwise non-overlapping straight line segments is a generalization of the
well-known Euclidean Voronoi diagram for point sets on the plane.

Definition 3. Let F be a set of pairwise non-intersecting straight line segments.
A Voronoi diagram V(F ) for F is a partition of the plane into a set of open
regions and their boundaries where each region represents a locus of those points,
which are closer to a particular segment f ∈ F than to any other segment of
F\{f}. Boundary of each region is composed of curvilinear edges and vertices.
Each (relatively open) edge is the locus of points, which are equidistant from
two distinct segments f, f ′ ∈ F while being at the larger distance from segments
of F\{f, f ′}. Each vertex represents a endpoint of an edge of V(F ), which is
equidistant from more than two distinct segments of F.

Open regions, edges and vertices of V(F ) are called Voronoi cells, edges and
vertices respectively.

An additional assumption is imposed below on sets of segments for simplicity.

Definition 4. A set F of pairwise non-overlapping straight line segments is
called to be in general position if:
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1. no quadruple exists of segments from F which is touched by any single disk;
2. the set is in general position of endpoints of segments from F.

Generality of position can be achieved by a small perturbation of endpoints of
E.

2.2 Implementation of Algorithms

Let G = (V,E) be a plane graph and r > 0 be a constant, forming an input
of the IPGD problem. Work of our algorithms can be split into two stages. At
their first stage a partition Nr(E) =

⋃

I∈I
NI is efficiently extracted, which is

induced by a maximal independent set I in Nr(E). Then, during the second
stage, another pass is performed over the built set I to construct a piercing set
U(I) of NI for each I ∈ I. Here, U(I) is built in the analogous way to that done
in the algorithms from [13]. Merging those piercing sets together into a point
set C =

⋃

I∈I
U(I) ⊂ R

2, a set C = {Nr(c) : c ∈ C} is yielded as an approximate

solution to the IPGD problem instance, defined by G and r. In our algorithms
below, the sought partition Nr(E) =

⋃

I∈I
NI is found implicitly in the form of

constructing the corresponding partition of E, induced by E′ = {e(I) : I ∈ I}.
Algorithmic work at the first stage is split into n1 phases, where n1 ≤ √

n.
During the ith phase a pass is performed over some part of E to iteratively grow
a subset F ⊆ E by adding segments from E into F one by one such that:

1. Nr(F ) contains pairwise non-overlapping r-hippodromes;
2. the upper bound |F | ≤ √

n holds.

During ith phase a special incremental data structure is applied. It allows to
do the following two operations:

1. query: given a straight line segment e /∈ F, return a segment f ∈ F such that
Nr(e) ∩ Nr(f) �= ∅ or report that Nr(e) ∩ Nr(f) = ∅ for all f ∈ F ; namely,
in the former case the segment f is returned along with the truth value of a
special indicator variable named flag; otherwise, flag = False is returned;

2. insertion: insert a segment e /∈ F into F.

Here the segment e is allowed to intersect segments of F at most at their end-
points. When F = ∅, f lag = False is returned.

Below a pseudo-code is presented of two of our algorithms. Their input is
formed by a graph G which is either a Gabriel or a relative neighborhood graph.
Moreover, they contain a constant parameter α > 0, which is specific to the class
of plane graphs from which G is chosen. Here α = 14 for the case where G is a
Gabriel graph whereas α = 12, when G is a relative neighborhood graph.

Covering segments with r-disks.

Input: a constant r > 0 and a plane graph G = (V,E);
Output: an α-approximate solution C of radius r disks for the IPGD problem
instance, defined by G and r.
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1. set n = |E|, E′ := ∅, E′′ := ∅, E0 := E and C := ∅; // stage 1
2. while |E′′| ≤ √

n, process edges of E0 one by one: do steps 3−5 //phase
begins

3. choose e ∈ E0 and perform a query to the data structure built for F = E′′;
4. if flag = True and a segment g ∈ E′′ are returned, set Eg := Eg ∪ {e};

otherwise, when flag = False is returned, insert e into E′′ and set Ee := ∅;
5. set E0 := E0\{e};
6. if E0 = ∅, go to step 9; otherwise, process edges of E0 one by one: do steps

7–8
7. choose e ∈ E0 and perform a query to the data structure built for F = E′′;
8. if flag = True and g ∈ E′′ are returned, set Eg := Eg ∪ {e} and E0 :=

E0\{e};
9. set E′ := E′ ∪ E′′ and E′′ := ∅;

10. if E0 �= ∅, go to step 2; //phase finishes
11. for each e′ ∈ E′ repeat steps 12–13 // stage 2
12. construct a piercing set U(e′) of at most α points for Nr(Ee′), applying

e.g. the corresponding O(1)-time procedure, mentioned in lemmas 1 and 2
above;

13. set C := C ∪ U(e′);
14. return C := {Nr(c) : c ∈ C} as an α-approximate solution.

As the pseudo-code above shows, in accordance with the basic algorithm of
[13], the Covering segments with r-disks algorithm computes a maximal
independent set in Nr(E) by iteratively growing a subset E′ ⊆ E such that
r-hippodromes of Nr(E′) are pairwise non-overlapping. The algorithm grows
the set E′ by chunks E′′ of size

√
n except the last chunk, where each chunk

is computed in a single phase. While |E′′| ≤ √
n, each chunk E′′ is grown by

performing query and insertion operations of the data structure, built on top of
E′′, for the remaining unprocessed segments of E0, which are tried one by one.
When |E′′| >

√
n, those remaining segments e ∈ E0 are removed from E0 for

which query operation returns flag = True. As shown below, the used random-
ized data structure allows to perform query operation in O

(
log2 |E′′|) expected

time. Besides, the maintained bound |E′′| ≤ √
n helps keep total expected time

complexity of insertion operations as low as O(n log n) in each phase.
The described organization of processing of segments of E and favourable

query times of the used data structure allow to formulate the following

Theorem 1. Suppose G = (V,E) is a plane graph whose edge set is in general
position. The Covering segments with r-disks algorithm is

1. 12-approximate when G is a subgraph of a relative neighborhood graph;
2. 14-approximate if G is a subgraph of a Gabriel graph.

It admits an implementation, which works in O
(
(n + OPT

√
n) log2 OPT

)

expected time and O(n) expected space, where OPT is the problem optimum.

Theorem 2. The Covering segments with r-disks algorithm can be slightly
modified to become a 10-approximate O

(
(n + OPT

√
n) log2 n

)
-expected time and

O(n)-expected space algorithm when G is a subgraph of a minimum Euclidean
spanning tree whose edge set is in general position.
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Proofs of Theorems 1 and 2 are given in Sect. 4.
It can be seen that expected complexity of the Covering segments with

r-disks algorithm depends on OPT. For example, if OPT <
√

n, then this
algorithm is of almost linear expected time complexity. Due to an obvious bound
OPT ≤ n, the algorithm has at most O

(
n3/2 log2 n

)
expected time complexity.

To compare performance of the Covering segments with r-disks algo-
rithm with the basic algorithm from [13] it is enough to observe that the former
algorithm would coincide with the latter one if the restriction |E′′| = 1 was
imposed on all chunks E′′. This restriction leads to the O(nOPT) expected and
worst case time complexity: here one has at most OPT singleton chunks as well
as constant query and insertion times.

Key to the achieved performance gain in our algorithms over the related work
lies in efficient implementation of query operations of the data structure, built
on top of E′′, within the Covering segments with r-disks algorithm. This
core data structure is described in the section below.

3 Description of the Core Data Structure

3.1 Implementing the Query Operation with a Few Nearest
Neighbor Queries

Suppose a set F is given of pairwise non-intersecting straight line segments on
the plane. Besides, let e be a straight line segment such that its intersection
with each segment of F (if it is nonempty) can only be at the common endpoint.
The query operation for e on F can in theory be implemented by computing
the segment f ∈ F, being the closest to e, and checking if Nr(e) ∩ Nr(f) �= ∅.
It means that the query operation admits its implementation by performing a
segment nearest neighbor query operation on F.

Unfortunately, this approach fails to efficiently work within the Covering
segments with r-disks algorithm. In fact, there is a variety of incremental
algorithms to maintain efficient point nearest neighbor queries for sets of point
sites. The most efficient known data structure [2] provides O(log2 |F |) expected
query time and O(log4 |F |) expected insertion time. However, there is a lack
of available incremental data structures to maintain segment nearest neighbor
queries. The only available incremental randomized data structure to work with
straight line segment sites and segment queries, which we are able to find, implic-
itly maintains their segment Voronoi diagram [7]1.

In this data structure segment nearest neighbor queries cost O(log2 |F | + t)
expected time, where t is the number of segments of F, sharing a Voronoi edge
with e in the Voronoi diagram V(F ∪ {e}). Thus, t can be Ω(|F |) on average in
general. Therefore with this idea one can not guarantee for the query to have
sublinear expected time complexity and, as a consequence, for the Covering

1 Its C++ implementation is built in the CGAL library (see https://www.cgal.org/),
providing robust geometric computations.

https://www.cgal.org/
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segments with r-disks algorithm to have subquadratic expected time com-
plexity.

Luckily, query operations, performed in the Covering segments with r-
disks algorithm, can efficiently be implemented using a constant number of
nearest neighbor queries of the special type in which sites are straight line seg-
ments whereas query objects are points.

Nearest Neighbor Query. Given a point x ∈ R
2, find a segment f ∈ F, being

the closest to x among segments of F with respect to Euclidean distance between
points and segments.

Lemma 4. Let e be a query straight line segment in a query operation for a
set F of pairwise non-intersecting striaght line segments on the plane, being in
general position. Suppose the following assumptions are hold:

1. F ∪ {e} is a subset of edges of a Gabriel graph;
2. Nr(f) ∩ Nr(g) = ∅ for any distinct f, g ∈ F.

Then, the query operation can be implemented using at most 14 nearest neigh-
bor query operations and at most 14 operations to check if two r-hippodromes
intersect.

Proof. Let Δ = d(x, y)/2, where x and y are endpoints of e. First, nearest
neighbor query operation is applied for both x and y, returning segments fx and
fy of F respectively. If either Nr(fx) ∩ Nr(e) �= ∅ or Nr(fy) ∩ Nr(e) �= ∅, it is
done. Otherwise, consider three cases.

Case 1. Let Δ ≤ r. Let also z1 and z2 be points at the intersection
bdN2r(x) ∩ bd N2r(y), where bdN denotes boundary of a set N ⊂ R

2. Per-
form another two nearest neighbor queries for z1 and z2. Let fzi

∈ F be closest
to zi. If Nr(e) ∩ Nr(fzi0

) �= ∅ for some i0 ∈ {1, 2}, then it is done. If not, it can
be proved that Nr(e) ∩ Nr(f) = ∅ for all f ∈ F.

Indeed, suppose, in contrary, that f0 ∈ F exists such that Nr(e)∩Nr(f0) �= ∅

or, equivalently, f0 intersects N2r(e). Obviously, the case f0∩ ⋃

u∈{x,y}
N2r(u) �= ∅

is impossible. Therefore f0 must intersect N2r(e)\
⋃

u∈{x,y}
N2r(u). Of course, if

f0 intersects N2r(e) inside the same half-plane Hi0 , bounded by the straight line
through e, as that in which the point zi0 lies for some i0 ∈ {1, 2}, then both
f0 and fzi0

must intersect N√
8r2−4r

√
4r2−Δ2

(zi0). As Δ ≤ r, it implies that

Hi0 ∩ N2r(e)\
⋃

u∈{x,y}
N2r(u) is covered by N2r(fzi0

) and, therefore Nr(fzi0
) ∩

Nr(f0) �= ∅, a contradiction with the assumption 2. Thus, at most 4 nearest
neighbor query operations are enough in the considered case.

Case 2. If r < Δ ≤ 2r, split e into two subsegments of length Δ and apply
the same technique for each subsegment as in the previous case. Here at most 7
nearest neighbor query operations are enough.

Case 3. Suppose that Δ > 2r. Let z be the midpoint of e. Recall that NΔ(z)
does not contain endpoints of segments of F ∪{e} in its interior according to the
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assumption 1. Let z1 and z2 be projections of 4 points from bdNΔ(z) ∩ bdN2r(e)
onto e, where z1 ∈ [x, z] and z2 ∈ [y, z]. Below it is proved that length of [z1, x]
is less than 2r. Indeed, d(x, z1) = Δ − √

Δ2 − 4r2 ≤ 2r. Moreover, d(x, z1) ≤ r
when Δ > 5r

2 .
From [13] (see Sect. 2 and the Lemma 5 therein) it follows that if some f0 ∈ F

intersects N2r(e), then f0 must intersect N2r(e)\NΔ(z). Therefore at most 14
nearest neighbor query operations are enough for 2r < Δ ≤ 5r

2 and 8 nearest
neighbor query operations are sufficient when Δ > 5r

2 .

Any relative neighborhood graph and minimum Euclidean spanning tree is
a subgraph of a Gabriel graph. Therefore the following corollary holds.

Corollary 1. Let e be a query straight line segment. Suppose the assumptions
are hold:

1. F ∪ {e} is a subset of edges of either a relative neighborhood graph or a
minimum Euclidean spanning tree;

2. Nr(f) ∩ Nr(g) = ∅ for any distinct f, g ∈ F.

Then, the query operation for e on F can be implemented using at most 14
nearest neighbor query operations and at most 14 operations to check if two r-
hippodromes intersect.

Due to the Lemma 4 and the Corollary 1, the data structure from [7] can be
used to implement query and insertion operations, performed within the Cov-
ering segments with r-disks algorithm. To the best of our knowledge, this
data structure has the most efficient implementation of point nearest neighbor
queries for segment sites. Being incorporated into our algorithm, it implicitly
stores a Voronoi diagram V(E′′) of the set E′′. Its performance is summarized
in the following lemma (see works [1,7–9,15] for proofs).

Lemma 5. Let F be a set of pairwise non-intersecting straight line segments in
general position on the plane. A randomized data structure can be built incre-
mentally in O(|F |2 log |F |) expected time and O(|F |) expected space cost such
that:

1. given a point x ∈ R
2, nearest neighbor query for x and F can be performed

in O(log2 |F |) expected time;
2. given a segment e /∈ F such that Nr(F ∪ {e}) contains only pairwise non-

overlapping r-hippodromes, insertion of e into F can be done in O(|F | log |F |)
expected time.

In distinction to the data structure from [7] only a single type of randomization
is applied in the implementation of the used data structure, which is related to
generating a random hierarchy of nested subsets of F.

In [7] another type of randomization is also used implied by a random order
of insertion of segments into F : i.e. it is assumed that the order of insertion
of segments into F is a random permutation on F and all insertion orders are
equally likely. Applying both randomization types allows to reduce expected time
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complexity of insertion operations to O(1). In the Covering segments with
r-disks algorithm this favourable symmetry of insertion of segments into F can
not be guaranteed even if E is preliminarily randomly shuffled at the algorithm
step 1.

4 Proofs of Theorems 1 and 2

4.1 Proof of the Theorem1

Proof. In each phase (steps 2–10 of the Covering segments with r-disks
algorithm) query operations are performed for at most n segments of E.
Therefore running these operations takes O(n log2 OPT) expected time in each
phase due to the Lemma 4, the Corollary 1 and the Lemma 5. As |E′′| ≤
min{√

n,OPT}, at most min{√
n,OPT} insertions are done in each phase. Thus,

insertion operations take O(min{n,OPT2} log OPT) expected time, again, due
to the Lemma 5. There are at most OPT√

n
+1 phases in the algorithm as OPT ≤ n.

Steps 11–13 require O(OPT) time in view of Lemmas 1 and 2. Thus, total
expected complexity of the algorithm is of the order

O

(

n

(
OPT√

n
+ 1

)

log2 OPT
)

,

or of the order O
(
(n + OPT

√
n) log2 OPT

)
. Its expected space cost is O(n).

4.2 Proof of the Theorem2

Proof. One can maintain an O(n) sized search tree (see e.g. the Chap. 13 of [3]) to
report an edge of E0 in O(log n) time at the algorithm step 3, which is incident
to a vertex, being the most distant from some fixed vertex of G. This search
tree can be preliminary created in O(n log n) time by performing a breadth-first
search over G. Each time when a segment is removed from E0 at steps 5 and 8
of the Covering segments with r-disks algorithm, the corresponding node
is removed from the tree in O(log n) time. Thus, first, n insertions in a row are
performed into the tree; second, n consecutive deletions are done.

5 Conclusion

The paper presents randomized subquadratic small constant factor approxima-
tion algorithms for three special cases of the problem of intersecting a given
set of straight line segments on the plane with the least number of identical
disks of potential interest in facility location. When OPT = O(

√
n), these

algorithms have almost linear expected time complexity of O(n log2 n), where
OPT is the problem optimum. In the general case their expected complexity
is O

(
(n + OPT

√
n) log2 n

)
, i.e. with OPT√

n
superlinear multiplicative overhead.

Approximation factors of the proposed algorithms are still prohibitively high to
be practical as being only theoretically guaranteed upper bounds on approxima-
tion ratios of the algorithms in the worst case. In the follow-up paper their actual
approximation factors will be explored for real-world facility location problems.
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