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Preface

We are excited to present the proceedings of the 22nd annual Passive and Active
Measurement (PAM) conference. After more than two decades, PAM continues to
provide an important venue for emerging and early-stage research in network mea-
surement – work that seeks to better understand complex, real-world networked sys-
tems in the wild and provide critical empirical foundations and support to network
research. In light of a still ongoing global COVID-19 pandemic, this 22nd edition of
PAM was again organized as a virtual conference from March 29 to 31st 2021. This
year’s edition benefited from experiences gathered by measuring the participant’s
experience of PAM 2020.

This year’s proceedings demonstrate the import and extent to which measurements
pervade systems – from protocols to performance to security. In total, we received 75
double-blind submissions from authors representing 132 unique institutions, of which
the Technical Program Committee (TPC) selected 33 for publication – making this
year’s PAM program the largest in its history. Particular attention was paid to ensuring
that the TPC was as broadly representative as possible, including both junior and senior
researchers. We are indebted to this hard-working TPC, which ensured that each paper
received three reviews, and carried out a lively (and in several cases spirited) online
discussion to arrive at the final program. TPC members were asked to provide con-
structive feedback, bearing in mind PAM’s focus and goals that recognize promising
early work. This year at PAM we also implemented a Review Task Force (RTF),
following the model used by USENIX Security and ACM IMC. The RTF included
senior, experienced researchers in the community who are also great mentors. The
engagement of such a group ensured that all the TPC’s feedback met high standards of
technical correctness, specific critiques, and a positive, constructive tone. To ensure the
quality of the program and equanimity of the presented results, each paper was
assigned a shepherd from the TPC who reviewed the paper. We are delighted with the
final set of 33 papers and hope the readers find them as valuable and provocative as we
do.

We would be remiss not to thank the Steering Committee for help while organizing
the conference, Georgios Smaragdakis for handling the publication process, Pedro
Casas for publicity, Taejoong “Tijay” Chung for managing the conference web site,
Sebastian Böhm for designing the logo, and the Computer Networks group at
Brandenburg University of Technology including Sebastian Böhm, Helge Reelfs,
Stefan Mehner, Joachim Paschke, and Katrin Willhöft for their support in the orga-
nization and running of PAM 2021. Last, we thank all of the researchers who make
PAM such an interesting and important conference year after year.

March 2021 Oliver Hohlfeld
Andra Lutu
Dave Levin
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Video Conferencing and Flow-Rate
Fairness: A First Look at Zoom

and the Impact of Flow-Queuing AQM

Constantin Sander(B), Ike Kunze, Klaus Wehrle, and Jan Rüth

Communication and Distributed Systems,
RWTH Aachen University, Aachen, Germany

{sander,kunze,wehrle,rueth}@comsys.rwth-aachen.de

Abstract. Congestion control is essential for the stability of the Inter-
net and the corresponding algorithms are commonly evaluated for inter-
operability based on flow-rate fairness. In contrast, video conferencing
software such as Zoom uses custom congestion control algorithms whose
fairness behavior is mostly unknown. Aggravatingly, video conferencing
has recently seen a drastic increase in use – partly caused by the COVID-
19 pandemic – and could hence negatively affect how available Internet
resources are shared. In this paper, we thus investigate the flow-rate
fairness of video conferencing congestion control at the example of Zoom
and influences of deploying AQM. We find that Zoom is slow to react to
bandwidth changes and uses two to three times the bandwidth of TCP
in low-bandwidth scenarios. Moreover, also when competing with delay
aware congestion control such as BBR, we see high queuing delays. AQM
reduces these queuing delays and can equalize the bandwidth use when
used with flow-queuing. However, it then introduces high packet loss for
Zoom, leaving the question how delay and loss affect Zoom’s QoE. We
hence show a preliminary user study in the appendix which indicates
that the QoE is at least not improved and should be studied further.

1 Introduction

The stability of the Internet relies on distributed congestion control to avoid a
systematic overload of the infrastructure and to share bandwidth. Consequently,
protocols that make up large shares of Internet traffic, such as TCP and QUIC,
feature such congestion control mechanisms.

The COVID-19 pandemic and subsequent actions to limit its spread have now
caused a drastic increase in traffic related to remote-working [16]. Of particu-
lar interest is the increasing share of video conferencing software which typically
bases on UDP to conform to the inherent low-latency and real-time requirements
which cannot be provided by TCP [8,14]. Yet, UDP features no congestion con-
trol, meaning that the video conferencing software has to implement it on the
application layer. While this allows for adapting the video conference to the spe-
cific network conditions [11,14], such implementations can introduce unknown
effects and undesired behavior when interacting with “traditional” congestion
c© Springer Nature Switzerland AG 2021
O. Hohlfeld et al. (Eds.): PAM 2021, LNCS 12671, pp. 3–19, 2021.
https://doi.org/10.1007/978-3-030-72582-2_1
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control. Especially in light of the now increased share of the overall traffic, these
tailored implementations can potentially pose a threat to Internet stability.

Thus, we investigate the interaction of real-world video conferencing software
and traditional congestion control. For our study, we choose Zoom as it has seen
an enormous increase in traffic share by at least one order of magnitude from
being marginally visible up to surpassing Skype and Microsoft Teams at certain
vantage points [16]. We focus on how Zoom reacts to loss and how it yields traffic
to competing TCP-based applications. We also study the impact of Active Queue
Management (AQM) on the bandwidth sharing as it is of growing importance.
Specifically, our work contributes the following:

– We present a testbed-based measurement setup to study Zoom’s flow-rate
when competing against TCP CUBIC and BBRv1.

– Comparing different bandwidths, delays, and queue sizes, we find that Zoom
uses a high share on low-bandwidth links and that there are high queuing
delays, even despite TCP congestion control trying to reduce it (e.g., BBR).

– We show that flow-queuing AQM reduces queuing delay and establishes flow-
rate equality to a certain degree reducing Zoom’s and increasing TCP’s rate
by dropping Zoom’s packets, where the former is probably beneficial but the
latter is probably detrimental for Zoom’s QoE. Our preliminary user study
shows that users do not see QoE improvements with flow-queuing AQM.

Structure. Section 2 discusses the definition of fairness, as well as related work
on general and video conferencing specific congestion control fairness analyses.
Section 3 describes the testbed for our flow-rate equality measurements. Section 4
shows our general results on Zoom and the impact of AQM on flow-rate equality,
packet loss, and delay. A preliminary user study evaluating the impact of AQM on
the QoE can be found in the appendix. Finally, Sect. 5 concludes this paper.

2 Background and Related Work

The interaction of congestion control algorithms, especially regarding fairness,
is a frequent focus of research. It has been thoroughly investigated for common
TCP congestion control algorithms. However, the definition of fairness itself has
also been investigated and discussed.

Fairness Definition. Most work relies on the conventional flow-rate definition
of fairness: competing flows should get an equal share of the available band-
width [19]. However, there are compelling arguments that flow-rate fairness is
not an optimal metric [7,27] and new metrics such as harm [27] propose to also
consider the demands of applications and their flows. We agree that flow-rate
equality is no optimal metric for fairness as it ignores specific demands and the
impact of delay, thus making it an outdated fairness estimate.

On the other hand, the notion of harm is hard to grasp as it requires (poten-
tially wrong) demand estimates. Further, techniques such as AQM are demand
unaware and flow-queuing even specifically aims at optimizing flow-rate equality,
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ignoring any actual application demands. Hence, given the prevalence of flow-
rate equality in related work and AQM techniques, we explicitly use flow-rate
equality as our fairness metric to evaluate the precise impact of this metric on
the application performance. That is, we want to, e.g., see the impact on video
conferencing when flow-queuing is used. This naturally also means that results
depicting an “unfair” flow-rate distribution are not necessarily bad.

TCP Congestion Control. Many of the congestion control studies have espe-
cially looked at CUBIC [17] and BBR [10] and found that BBR dominates in
under-buffered scenarios causing packet loss and making CUBIC back off, while
it is disadvantaged in over-buffered scenarios [18,23,26,28]. Here, CUBIC, as
a loss-based algorithm, fills the buffer and increases the queuing delay which
makes BBR back off. Introducing AQM, these behavior differences vanish.

Impact of AQM. AQM mechanisms come with the potential of giving end-
hosts earlier feedback on congestion, thus helping to reduce queuing delays, and
there have been extended studies regarding their fairness (for a survey see [6]).
While some AQM algorithms are specifically designed to enable a fair bandwidth
sharing (see [13] for an overview and evaluation), generally, any AQM can be
made to fairly share bandwidth with the help of fair queuing [15]. Today, this idea
is most commonly implemented through a stochastic fair queuing (SFQ) which
performs similar to a true fair queuing when the number of flows is limited. In
fact, several works (e.g., [22,23]) show that AQM using this SFQ (often called
flow-queuing) can create flow-rate fairness while effectively limiting congestion,
even though there are no comprehensive studies available in literature.

2.1 Congestion Control for Video Conferencing

Loss-based congestion control, such as CUBIC, is not favorable to delay-sensitive
real-time applications. Hence, research has proposed several congestion control
algorithms tailored to the needs of video conferencing. However, in contrast to
general-purpose congestion control, there is only limited research on its interac-
tion mostly focusing on proposed algorithms with known intrinsics.

Known Algorithms. For example, the Google Congestion Control (GCC) [11],
used in Google Chrome for WebRTC, was tested for flow-rate fairness [11,12].
The results indicate that GCC shares bandwidth equally with CUBIC when
using a tail-drop queue and also subject to the CoDel and PIE AQM algorithms.

There are similar findings for the Self-Clocked Rate Adaptation for Multime-
dia (SCReAM) [20] congestion control algorithm. It achieves an approximately
equal share with a long-lived TCP flow on a tail-drop queue and yields bandwidth
when using CoDel [21]. Contrasting, the Network-Assisted Dynamic Adaptation
(NADA) congestion control [32] shares bandwidth equally when using a tail-drop
queue, but uses bigger amounts when being governed by an AQM algorithm.

Unknown Algorithms in Video Conferencing Software. However, many
actually deployed real-world congestion control algorithms in video conferencing
software are unknown and closed-source. Thus, similar to our work, research also
studies the externally visible behavior of video conferencing software.
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De Cicco et al. [14] investigate the behavior of Skype’s congestion control and
find that it is generally not TCP-friendly and claims more than its equal share.
Interestingly, Zhang et al. [29] found that Skype yields a bigger share to com-
peting TCP flows, but only after exceeding a certain loss threshold. However, in
contrast to work on TCP congestion control, these studies only consider limited
scenarios and generally do not provide extensive evaluations (e.g., no AQM).

Other works focus even more only on aspects impacting the video conference,
e.g., how the audio and video quality evolve subject to packet loss with unlimited
rates [24,30] or very specific wireless settings [31].
Takeaway. Studies on general congestion control are not applicable to video
conferencing. Research on video conferencing software, on the other hand, mostly
focuses on the concrete impact on its quality while the number of evaluation
scenarios and the context to the general congestion control landscape is scarce.

We thus identify a need for a more thorough evaluation of real-world video
conferencing congestion control that also considers the impact of different band-
widths, buffer sizes, or AQM on fairness. For this purpose, we devise a method-
ology that centers around a configurable testbed which allows us to evaluate the
behavior of the congestion control of Zoom.

3 Measurement Design

Research on congestion control fairness is often done using simulations or isolated
testbeds to focus on the intrinsics of the algorithms. In contrast, our work on
Zoom forbids such an approach as the Zoom clients interact with a cloud-based
backend that is responsible for distributing audio and video traffic. Thus, to fully
grasp the real-world performance of Zoom, we devise a testbed that connects to
this backend while still letting Zoom’s traffic compete with a TCP flow over
a variety of network settings. While we consequently have to take potential
external effects into account, our testbed still allows us to control parameters,
such as bottleneck bandwidth, queuing, and delay.

3.1 Preliminaries

For our investigations, we set up two Zoom clients which then connect to a joint
Zoom conference via the Zoom backend running in a data center. We find that
free Zoom licenses use data centers operated by Oracle in the US, while our
University license mostly connects to data centers operated by AWS in Europe.
We generally see that connections are established to at least two different AWS
data centers, one in Frankfurt (Germany) and one in Dublin (Ireland). As our
upstream provider peers at DE-CIX in Frankfurt, we choose to focus on these
connections to reduce the number of traversed links, thus minimizing the prob-
ability of external effects, such as changing routes or congestion.

3.2 Testbed Setup

As shown in Fig. 1, our testbed uses a dumbbell topology and consists of five
dedicated machines. In the center, one machine serves as the configurable bot-
tleneck link over which Zoom Client 1 (ZC 1) connects to the Zoom backend to
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Zoom Client 1
(ZC 1)

TCP Client

Zoom Client 2
(ZC 2)

TCP Server

InternetBottleneck

Fig. 1. Testbed setup representing a dumbbell topology

join a conference with Zoom Client 2 (ZC 2). Our two remaining machines (TCP
Client, TCP Server) operate a concurrent TCP flow to assess competition.

Testbed Interconnection. All our machines are interconnected using 1 Gbps
Ethernet links. The uplink to our university’s network is 10 Gbps which in turn
connects to the German Research Network (DFN) via two 100 Gbps links. The
DFN then peers at DE-CIX with, e.g., AWS. We can thus be reasonably sure
that our configurable bottleneck machine represents the overall bottleneck.

Shaping the Bottleneck. We configure our bottleneck using Linux’s traffic
control (TC) subsystem similar to [25] to create network settings with different
bandwidths, delays, queue sizes, and queue management mechanisms. For rate-
limiting, we use token bucket filters with a bucket size of one MTU (to minimize
bursts) on the egress queues in both directions. Similarly, we also configure
the AQM on the egress queues. Delay is modeled on the ingress queues using
intermediate function blocks (ifbs) and netem. We first create an additional
ingress qdisc via ifb and add the delay to the egress of this ifb via netem. This
technique is necessary as netem is not directly compatible with AQM qdiscs [1]
and usage of netem on the end-hosts would cause issues due to TCP small
queues [9]. Further, we add no artificial jitter, as this causes packet reorderings,
as such, jitter is only introduced through the flows filling the queue itself.

Balancing RTTs. Our testbed compensates for differing RTTs and ensures
that the Zoom and the TCP flow have the same RTT, a requirement for the
common flow-rate equality definition. For this, we first measured the average
delay between different AWS hosts and ZC 1 as well as between TCP Client
and TCP Server prior to our experiments. We then adapted the netem delay
accordingly such that the TCP flow and the flow between ZC 1 and AWS have
about the same RTT when the queue is empty. By adapting the delay prior to
our experiments, we avoid skewing the initial RTT of flows which we presume to
be important for Zoom’s congestion control, but accept a potential bias due to
changing hosts at AWS which we cannot predict prior to establishing our video
conferences. However, the relative error of this bias should be insignificant as we
emulate rather large artificial RTTs.

3.3 Fairness Measurement Scenarios and Procedure

With our measurements, we aim to represent video conferences from a low-
speed residential access where Zoom’s video flow and a TCP flow (e.g., a movie
download) compete. The used parameters are shown in Table 1.
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Table 1. Parameter configuration for our testbed

BW [Mbps] RTT [ms] QSize [BDP] AQM CC Order Direction

0.5, 1, 2, 4 30, 50 0.5, 2, 10 Tail-Drop CUBIC Zoom first Downlink

(FQ )CoDel BBRv1 TCP first Uplink

The lowest bandwidth (0.5 Mbps) falls slightly below Zoom’s requirements of
0.6 Mbps [2]. Yet, we argue that it also has to behave sound in out-of-spec cases.

We shape the bandwidth symmetrically, which is atypical for a residential
connection, but study the up- and downlink separately. We also adjust and
balance the minimum RTT (min-RTT) symmetrically as described before. As
queue sizes, we use multiples of the BDP, i.e., 0.5, 2, and 10× the BDP. When
investigating AQM, we use 2×BDP as AQM algorithms require headroom to
operate, and adopt the TC Linux defaults for CoDel (target 5 ms and interval
100 m s). Further, we vary which flow starts first to investigate late-comer effects.

Overcoming Transient States. For our measurements, we want to avoid tran-
sient phases. As such, we usually wait in the order of half a minute after acti-
vating each flow to stabilize. We then start a 60 s measurement period in which
we capture all exchanged packets, measure the queuing delay, and also observe
the queue sizes at the bottleneck using a small eBPF program.

Video Conference. The Zoom video conference itself is established between
ZC 2 and ZC 1 (ensuring connectivity via AWS in Frankfurt). As their video
feeds, both clients simulate a webcam via v4l2loopback [3]. To rule out effects
of video compression on the congestion control behavior of Zoom, we ensure a
constant video data rate by using uniform noise as our video input.

Every scenario is repeated 30 times and retried where, e.g., Zoom restarts
due to high loss. The measurements were made from July 2020 to October 2020
on Linux 5.4.0-31 with Zoom version 5.0.408598.0517. To observe variations,
we sort the points in the following scatterplots chronologically from left to right.

Equality Metric. We measure flow-rate equality using the metric of our prior
work [25]. In contrast to, e.g., Jain’s fairness index [19], this metric shows which
flow over-utilizes the bottleneck by how much. The metric is defined as:

flow-rate equality =

{
1 − bytes(TCP )

bytes(Zoom) , if bytes(Zoom) ≥ bytes(TCP )

−1 + bytes(Zoom)
bytes(TCP ) , otherwise

flow-rate equality lies in the interval of [−1, 1]. With 0 both flows share the band-
width equally, while 1/−1 means that Zoom/TCP monopolizes the link.

Please note that flow-rate equality is likely not the desired metric to depict
a fair service enablement. For example, Zoom simply needs a certain data-rate
to deliver its service, as such flow-rate equality should likely not be used to
establish fairness, e.g., in an AQM. Nevertheless, we still opted for this metric
to i) judge what happens when an AQM tries to utilize this metric, and ii)
investigate the bandwidth demand and the ability of the congestion controller
to seize the required bandwidth as well as the side effects in doing so.
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Fig. 2. Zoom video flow behavior for a 50 ms RTT and a 10×BDP tail-drop queue.
Bandwidth (dashed) is varied from 4 Mbps to 0.5 Mbps and back to 4 Mbps.

4 Zoom Inter-Protocol Fairness Results

In the following we present our findings on the behavior of Zoom by first ana-
lyzing its general congestion reaction (Sect. 4.1). We then discuss how ZC 1
competes with a TCP flow in scenarios without AQM at low bandwidths sub-
ject to different queue sizes (Sect. 4.2). We further evaluate the effects of using
CoDel (Sect. 4.3) and FQ CoDel (Sect. 4.4) AQM. Lastly, we show results of a
small-scale user study that investigates the effects of FQ CoDel on the actual
QoE, which can be found in the appendix to this work (Appendix A).

Before conducting our experiments, we first verify the standalone throughput
of TCP and Zoom in our scenarios. We find that TCP achieves a utilization above
80% in almost all cases except for 3 outliers out of 4800 runs. Similarly, Zoom’s
throughput for the AQM scenarios only changes by at most 10%. The following
differences in flow-rate equality are thus mainly due to the interaction of the
congestion control algorithms and not rooted in our settings.

4.1 General Observations on Zoom’s Behavior

We first observe the behavior of a single Zoom flow without competition in
a scenario with a 50 ms RTT and a 10×BDP tail-drop queue. Figure 2 shows
Zoom’s video send rate when varying the bandwidth (dashed) from 4 Mbps to
0.5 Mbps and back. At first, Zoom’s backend (left) sends at slightly less than
4 Mbps while the Zoom client (right) sends at ∼2.5 Mbps. In both cases, the
queue is empty. Similar to BBR [10], Zoom seems to repeatedly probe i) the
bandwidth by increasing its rate and ii) the min-RTT by reducing its rate.

Once we reduce the bandwidth to 0.5 Mbps, both Zoom entities keep sending
at ∼3.5 Mbps, thus losing many packets and filling the queue. After ∼30 s, Zoom
reduces its rate to 0.5 Mbps. Surprisingly, the backend again increases the rate
by a factor of 4 shortly thereafter. After resetting the bandwidth to 4 Mbps,
Zoom slowly increases its rate on the uplink and faster on the downlink.

Packet loss and increased queuing delays do not seem to directly influence
Zoom’s sending behavior. However, Zoom occasionally restarted the video con-
ference completely, stopping sending and reconnecting to the backend with a
new bandwidth estimate not overshooting the bottleneck link. We filtered these
occurrences from the following results as the time of reconnecting would influence
our metric and also the meaning of our “Zoom first” scenario.
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Fig. 3. Flow-rate equality for Zoom competing at a 0.5 × BDP queue with TCP.

We also changed the min-RTT from 50 ms to 500 ms instead of the bandwidth.
We did not see any obvious reaction, although we expected that Zoom backs off
to wait for now delayed signaling information or to reduce potential queuing.

To summarize, Zoom handles up- and downlink differently and does not seem
to directly react on increased queuing or loss, instead reacting slowly which leads
to big spikes of loss. We next investigate how this impacts competing flows.

4.2 Competition at Tail-Drop Queues

Undersized Tail-Drop Queue. We first examine Zoom’s behavior when com-
peting at a 0.5×BDP tail-drop queue against TCP CUBIC and BBR. The scat-
terplots in Fig. 3 show our flow-rate equality for downlink (a) and uplink (b).

Downlink. Zoom uses a disproportionate bandwidth share on the downlink
with bottleneck bandwidths ≤ 1 Mbps. The flow-rate equality is mostly above
0.5, i.e., Zoom’s rate is more than twice the rate of the TCP flow. For higher
bandwidths, Zoom yields more bandwidth. Additionally, we can see that TCP
flows starting first result in slightly better flow-rate equality. For CUBIC, equal-
ity values of around 0 can be first seen at 4 Mbps. For BBR, equality values of
around 0 can already be seen at 2 Mbps. However, when being started first and
at 4 Mbps, BBR disadvantages Zoom significantly.

Uplink. For the uplink, the equality values are comparable, but in total
lower. This means that the TCP flows claim more bandwidth (especially with
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Fig. 4. Flow-rate equality for Zoom competing at a 10 × BDP queue with TCP.

BBR) and Zoom seems to act less aggressive. We posit that Zoom’s congestion
control might be adapted to the asymmetric nature of residential access links.

The queuing delays on the down- and uplink mostly exceed 50% of the max-
imum (not shown). We attribute this to the TCP flows as i) CUBIC always
fills queues, and ii) BBR overestimates the available bandwidth when competing
with other flows [28] and then also fills the queue plus iii) Zoom reacting slowly.

Slightly Oversized Tail-Drop Queues. When increasing the buffer size to
2×BDP, the results are surprisingly similar (and thus not visualized). CUBIC
can gather a slightly larger bandwidth share, which we attribute to its queue-
filling behavior. However, Zoom still holds twice the bandwidth of the TCP flows
at links with ≤1 Mbps, i.e. the equality values mostly exceed 0.5. Only on faster
links, CUBIC can gain an equal or higher bandwidth share. For BBR, equality
values are closer to 0 for bandwidths below 2 Mbps, i.e., Zoom as well as BBR
dominate less. For higher bandwidths, the results are equivalent to before. Also
the avg. queuing delay rises to about 75% due to filled queues as before.

Overlarge Tail-Drop Queues. Next, we study the flow-rates for large queues
of 10×BDP. Figure 4 shows the results for downlink (a) and uplink (b).

Downlink. Contrary to our expectation, there is no significant improvement
in flow-rate equality for the downlink. Zoom still uses a high bandwidth share and
CUBIC’s queue-filling behavior does not result in a larger share. Compared to
the previous scenarios, the equality values are not decreasing significantly when
Zoom starts first and it even uses more bandwidth than before for the 4 Mbps
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Fig. 5. Queuing delay for Zoom competing at a 10 × BDP queue on the uplink.

Fig. 6. Queuing delay for Zoom+CUBIC competing at a tail-drop/CoDel queue.

setting. For TCP CUBIC starting first, equality values now spread around 0.5,
regardless of the bandwidth. For Zoom starting first, BBR barely reaches values
below zero.

Uplink. The scenario looks completely different for the uplink. Zoom yields
bigger parts of the bandwidth to CUBIC and even reduces on one third of
the bandwidth when BBR starts first. This is surprising, as BBR is known to
be disadvantaged in this overbuffered scenario [18]. We also checked if changes
between the BBR code used in [18] and our Linux Kernel 5.4 could explain this
difference, but the basic principle seems to be unaltered. Still, we remark that
the BBR codebase has seen significant changes since [18] and we are not aware
of any investigations how these changes affect BBR’s properties.

The queuing delay, shown in Fig. 5 for the uplink, still reaches about 75% of
the maximum queuing delay for CUBIC and BBR in low-bandwidth scenarios
where delay is slightly smaller on the uplink than on the downlink. BBR seems to
be able to reduce queuing delay in the higher bandwidth region, but we expected
that BBR would reduce the queuing delay more strongly in all scenarios.

Takeaway. We can see that Zoom is unfair w.r.t. flow-rate to CUBIC in
low-bandwidth scenarios with 1.0Mbps and less, although Zoom is less aggressive
on the uplink. As BBR is more aggressive, it gains higher rates in these situa-
tions – also on the downlink. However, all scenarios have in common that the
queuing delay is significantly increased being detrimental to video conferencing.



A First Look at Zoom and the Impact of Flow-Queuing AQM 13

Fig. 7. Flow-rate equality for Zoom competing with TCP at an FQ CoDel queue

4.3 Competition at CoDel Queues

Using AQM might be beneficial, given the increased queuing delays. Hence, we
study Zoom and TCP flows competing at CoDel queues. We expect significant
changes in flow-rate equality as CoDel drops packets early to signal congestion.

Yet, our results are very similar to the 2×BDP tail-drop queue, thus we do
not show them here. They only slightly shift towards CUBIC. However, CoDel
keeps its promise of reduced queuing delays, as shown in Fig. 6: The queuing
delay of Zoom competing with CUBIC (BBR looks similar) at 2×BDP queues
roughly halves when CoDel is used at 0.5 Mbps. For higher bandwidths, the
effect is even stronger. This is potentially beneficial for real-time applications.

Takeaway. All in all, CoDel does not significantly alter the flow-rate distribu-
tion. However, it keeps its promise of reducing the experienced queuing delays.

4.4 Competition at FQ CoDel Queues

To enforce flow-rate equality, we next apply FQ CoDel to the queue. FQ CoDel
adds stochastic fair-queueing to CoDel, i.e., it isolates flows into subqueues,
applies CoDel individually, and then serves the queues in a fair manner.

While the queuing delays are equivalent to CoDel and thus not shown, our
flow-rate equality metric significantly shifts towards TCP in most conditions as
shown in Fig. 7 for uplink (a) and downlink (b). For example, the downlink results
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Table 2. Median number of packets received and dropped for CUBIC and Zoom at a
0.5 Mbps, 50ms, 2×BDP bottleneck on the downlink (Zoom started first).

Tail-Drop CoDel FQ CoDel

Dropped Received Dropped Received Dropped Received

TCP CUBIC 188.0 816.5 190.0 935.5 250.5 1260.5

Zoom 331.0 2824.0 515.5 2852.5 903.5 2880.5

mostly range from 0.3 to −0.3 compared to prior findings of Zoom dominating.
The biggest advance for Zoom remains in the 0.5 Mbps setting.

On the uplink, equality differs. Zoom yields bandwidth when using BBR in
mostly all cases except for bandwidths ≤ 1.0 Mbps. For CUBIC, also no perfect
equalization can be seen. For bandwidths above 2.0 Mbps CUBIC gets bigger
shares, below this threshold, vice versa. We deduct this to Zoom being more
careful on the uplink and not using the whole probed bandwidth, leaving a gap.

Zoom’s Reaction to Targeted Throttling. As we could see, FQ CoDel
allows to share bandwidth between Zoom and competing TCP flows after a
bottleneck more equally. However, it is unclear whether Zoom reduces its rate
or whether the AQM is persistently dropping packets, specifically in the low-
bandwidth scenarios. We hence show the dropped and sent packets for CUBIC
and Zoom over 60 s in Table 2 for the 0.5 Mbps bottleneck with 2×BDP queue
and 50 ms RTT. We can see that Zoom does not reduce its packet-rate from a
tail-drop queue up to FQ CoDel. Instead, the AQM drops packets increasingly.
Takeaway. In combination with flow-queuing, CoDel can reduce the experienced
queuing delay, which is probably beneficial for Zoom’s QoE, while equalizing the
bandwidth share with TCP. However, in low-bandwidth scenarios this share is
still not perfectly equal. Zoom does not reduce its rate but CoDel and FQ CoDel
increasingly drop Zoom’s packets which might affect Zoom’s QoE negatively. A
preliminary user study shows that FQ CoDel does, indeed, not improve QoE and
can be found in the appendix.

5 Conclusion

In this work, we recognize the impact of video conferencing on Internet stability
and investigate congestion control fairness in combination with Zoom. Flow-rate
equality as fairness measure is well researched for TCP’s congestion control and
for real-world TCP flows in the Internet. However, for congestion control of video
conferencing software it is not – specifically regarding different scenarios. Hence,
we investigate Zoom as increasingly popular real-world deployment of video con-
ferencing. We find that Zoom uses high shares of bandwidth in low-bandwidth
scenarios yielding it when more bandwidth is available. Adding AQM, such as
CoDel, alone does not improve the bandwidth sharing, but reduces latency which
is probably beneficial for Zoom. Only when also using flow-queuing, more equal
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bandwidth sharing can be achieved with FQ CoDel. However, this fair sharing
comes at the price of reduced bandwidth and packet loss for Zoom, potentially
reducing its QoE. Our small-scale user study found that FQ CoDel did not
improve the QoE. For future work, we imagine a more thorough user study to
evaluate Zoom’s QoE with AQM such as FQ CoDel in more detail. Further,
testing Zoom’s reaction on ECN and multiple Zoom flows competing could give
interesting information on its behavior on backbone congestion.
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Appendix

In the following, we present results of a small-scale user study which we con-
ducted to analyze whether our findings regarding packet loss but also improve-
ments regarding delay have positive or negative impact on Zoom’s subjective
quality. However, as our study was performed with a limited number of partici-
pants due to COVID-19 restrictions, we had to restrict the number of scenarios
that we could investigate. Thus, the results and their generalizability are limited
and this study should be regarded as an initial step in understanding how QoE,
queuing and Zoom interact.

A QoE Impact of Flow-Queuing AQM

As we have shown in Sect. 4.4, flow-queuing AQM can achieve more equal flow-
rates and reduce latency when Zoom and TCP share a bottleneck. However, this
means lower bandwidths for Zoom, so likely worse video quality. In contrast,
lower latencies should probably mean better interactivity. As the exact correla-
tion w.r.t. perceived experience is hard to grasp, we perform a small-scale user
study to capture the influence of flow-rate equality and AQM reduced latency
on Zoom’s QoE.

Limitations of this Study. However, our study is limited, as we had to limit
the number of participants (n = 10) due to COVID-19 restrictions. As such, we
also restricted the number of scenarios to keep the individual study duration
to roughly 25 min. Additionally, we had to switch from synthetically generated
videos (noise to maximize bandwidth utilization) that we used throughout Sect. 4
to real video-conferences. This makes it difficult to compare the video-flows’
demands from our synthetic evaluation to this user study as the bandwidth
demand varies with the compression rate (higher compression for actual webcam
video). In summary, our study should only be regarded as an initial step.

In the following, we introduce the design and stimuli of our study and which
metrics we are interested in. Subsequently, we present the results.
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A.1 User Study Design

We perform a video conference where the subject interacts with an experiment
assistant via Zoom focusing on interactivity and understandability to rate the
quality and whether potentially degraded quality is acceptable when a concurrent
download is active. The assistant reads short paragraphs of texts and the subject
shortly summarizes them once the paragraph ended. This way, we test whether
the video conference allowed for easy understanding but also represent the typical
condition where conference attendees interrupt each other unintentionally. After
5 repetitions of summarizing, the subject and assistant alternately count to 10
to get a feeling for the delay, as proposed by the ITU [4]. Lastly, the assistant
reads random numbers and the subject stops the assistant at a given number
(unknown to the assistant) for the same reasons.

Quality Rating. After every run, the subject rates the overall, audio, video, and
interactivity quality on a seven-point linear scale [5] (c.f., y-axis in Fig. 8). More-
over, the subject decides (yes/no) if communicating was challenging, whether the
connection was acceptable at all, whether the quality was acceptable if they were
downloading a file during a business or private call or when someone else was
downloading documents or watching movies in parallel.

Test Conditions. We test 3 different scenarios using our previously described
testbed; for all conditions, we shape the subject’s link to 0.5 Mbps, adjust the
min. RTTs to 50 ms and use a queue size of 10×BDP. The scenarios differ in
whether an extra flow competes on the downlink and whether the queue is man-
aged. In detail, in Scenario 1 (Tail-Drop) only Zoom is active using a tail-drop
queue. Scenario 2 (Tail-Drop + Flow) adds a TCP CUBIC flow on the downlink,
representing, e.g., a movie download. Scenario 3 (FQ CoDel + Flow) adopts the
TCP flow, but switches to the flow-queuing variant of CoDel.

Study Details. We perform a “within subject” lab study: each subject rates
every test condition selected from a latin square to randomize the order. Each
experiment takes about 5 min and is repeated for the 3 scenarios plus a training
phase at the start using Scenario 1. In total, the 4 experiments plus rating take
about 25 min. Although conducting studies with members familiar to the study
is discouraged [4], we stick to the same experiment assistant to reduce variations.

Subject Recruitment. Our subjects are 10 colleagues from our institute which
volunteered to take part and are strongly familiar with Zoom. We limited our
study to these participants to reduce contacts during the pandemic. As such we
were able to hold the conferences in the participant’s first language.

A.2 Results

Figure 8a shows the mean opinion score and 95% confidence intervals of the
quality rating (distributions checked for normality via a Shapiro-Wilk test). The
confidence intervals are computed via the t-distribution due to our small sample
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Fig. 8. User study quality rating and votes

size. Further, Fig. 8b shows the distributions of “Yes” (positive, to the right) and
“No” (negative, to the left) answers for the different questions.

Generally looking at the plots we can see that the worst results stem from
using FQ CoDel, while using a tail-drop queue with no concurrent flow results in
the best quality ratings. For the overall quality of the video conference and the
video quality this difference is statistically significant as the confidence intervals
do not overlap. However, for the scenarios where Zoom competes with TCP flows,
the results are statistically insignificant and allow no statement. Similar, all audio
quality and interactivity votes allow no statistically significant statement.

Flow-Queuing AQM Induced QoE Changes. Hence, interpreting these
results is complex. What can be said is that CoDel’s positive effect of reduc-
ing the queuing delay was not perceived by the users. On the other hand, also
the reduction in bandwidth did not yield any statistically significant quality
reduction. However, a trend against using FQ CoDel is visible, but it cannot
be statistically reasoned. Only following the trend, it might be not worth using
FQ CoDel due to its potentially worse QoE. Otherwise, only few users considered
the connection unacceptable (c.f. Fig. 8b), surprisingly uncorrelated to whether
FQ CoDel was used or whether a concurrent flow was actually started. I.e., some
users considered our scenarios generally as unacceptable regardless of FQ CoDel.

Influence of Concurrent Downloads on Acceptability. Surprisingly, users
also consider the quality unacceptable when imagining a concurrent download of
documents in business or private conversations. We expected that users accept
deteriorations, as they would not pay attention to the video conference, but want
their download to complete. However, specifically in the business case, our users
did not. Also quality deteriorations induced by other users downloading movies
or documents were not seen more disturbing. I.e., independent of self-inflicted
or not, some users do not accept quality deteriorations at all, while others do.
Takeaway. Unfortunately, our study did not yield statistically conclusive results
with respect to how participants perceive the difference in Zoom quality between
using a tail-drop queue and FQ CoDel when a flow competes. Also regarding
acceptance, users did not see strong differences and either disliked the quality
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regardless of possible concurrent downloads as reasons or just accepted it, dis-
agreeing on a generally applicable statement. Looking at the general trend of our
study, FQ CoDel could decrease QoE.
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Abstract. The COVID-19 pandemic has resulted in dramatic changes
to the daily habits of billions of people. Users increasingly have to rely on
home broadband Internet access for work, education, and other activities.
These changes have resulted in corresponding changes to Internet traffic
patterns. This paper aims to characterize the effects of these changes with
respect to Internet service providers in the United States. We study three
questions: (1) How did traffic demands change in the United States as a
result of the COVID-19 pandemic?; (2) What effects have these changes
had on Internet performance?; (3) How did service providers respond
to these changes? We study these questions using data from a diverse
collection of sources. Our analysis of interconnection data for two large
ISPs in the United States shows a 30–60% increase in peak traffic rates
in the first quarter of 2020. In particular, we observe traffic downstream
peak volumes for a major ISP increase of 13–20% while upstream peaks
increased by more than 30%. Further, we observe significant variation
in performance across ISPs in conjunction with the traffic volume shifts,
with evident latency increases after stay-at-home orders were issued, fol-
lowed by a stabilization of traffic after April. Finally, we observe that in
response to changes in usage, ISPs have aggressively augmented capac-
ity at interconnects, at more than twice the rate of normal capacity
augmentation. Similarly, video conferencing applications have increased
their network footprint, more than doubling their advertised IP address
space.

1 Introduction

The COVID-19 pandemic has resulted in dramatic shifts in the behavioral pat-
terns of billions of people. These shifts have resulted in corresponding changes
in how people use the Internet. Notably, people are increasingly reliant on home
broadband Internet access for work, education, and other activities. The changes
in usage patterns have resulted in corresponding changes in network traffic
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demands observed by Internet service providers. Many reports have noted some
of the effects of these changes from service provider networks [1,5], application
providers [19,23], and Internet exchange points [20]. Generally, previous findings
and conventional wisdom suggest that while overall traffic demands increased,
the Internet responded well in response to these changing demands.

Previous work has shed light on the nature of the resulting changes in traffic
patterns. In Europe, Internet exchange points saw a 15–20% increase in overall
traffic volumes [3], in some cases resulting in peaks in round trip latency in some
countries (e.g., Italy) that were approximately 30% higher than normal [12]. For
cellular networks in the UK [16], because users were less mobile, downlink traffic
volume decreased by up to 25%. While some of the characteristics of shifting
traffic demands are known, and certain aspects of the Internet’s resilience in
the face of the traffic shifts are undoubtedly a result of robust design of the
network and protocols, some aspects of the Internet’s resilience are a direct
result of providers’ swift responses to these changing traffic patterns. This paper
explores these traffic effects from a longitudinal perspective—exploring traffic
characteristics during the first half of 2020 to previous years—and also explores
how service providers responded to the changes in traffic patterns.

Service providers and regulatory agencies implemented various responses to
the traffic shifts resulting from COVID-19. AT&T and Comcast have made pub-
lic announcements about capacity increases in response to increases in network
load [1,5]. The Federal Communications Commission (FCC) also announced
the “Keep Americans Connected” initiative to grant providers (such as AT&T,
Sprint, T-Mobile, U.S. Cellular, Verizon, and others) additional spectrum to sup-
port increased broadband usage [9]. Web conferencing applications Zoom and
WebEx were also granted temporary relief from regulatory actions [9]. These
public documents provide some perspectives on responses, but to date, there are
few independent reports and studies of provider responses. This paper provides
an initial view into how some providers responded in the United States.

We study the effects of the shifts in Internet traffic resulting from the COVID-
19 pandemic response on Internet infrastructure. We study three questions:

– How did traffic patterns change as a result of COVID-19? Traffic volumes and
network utilization are changing as a reaction to changes in user behaviors.
It is critical to measure the exact alterations in a long time span.

– What were the resulting effects on performance? Considering an expected
surge around the dates when states issued stay-at-home orders or declared
states of emergency, we seek to observe possible changes in the latency and
throughput of network traffic across locations. Further, different ISPs also
have different capacity and provisioning strategies, which provides us a finer
granularity based on these differences.
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– How did ISPs and service providers respond? Finally, to deal with the usage
boosts and performance degradations during the COVID-19 response, oper-
ations and reactions of ISPs and service providers were taken which may
explain the changes in network performance. The answer to this question
informs us of the networks robustness and their effective disaster provi-
sioning strategies. These questions have become increasingly critical during
the COVID-19 pandemic, as large fractions of the population have come to
depend on reliable Internet access that performs well for a variety of applica-
tions, from video conferencing to remote learning and healthcare.

To answer these questions, we study a diverse collection of datasets about net-
work traffic load, through granular measurements, proprietary data sharing
agreements, and user experiences, as well as extensive baseline data spanning
over two years.

Summary of Findings. First, we study the traffic pattern changes in the United
States (Sect. 4) and find that, similar to the changes previously explored for Euro-
pean networks, our analysis reveals a 30–60% increase in peak traffic volumes.
In the Comcast network in particular, we find that downstream peak traffic vol-
ume increased 13–20%, while upstream peak traffic volume increases by more than
30%. Certain interconnect peers exhibit significant changes in the magnitude of
traffic during the lockdown. Second, we observe a temporary, statistically signifi-
cant increase in latency lasting approximately two months (Sect. 5). We observe a
temporary increase of about 10% in average latency around the time that stay-at-
home orders were issued. Typical latency values returned to normal a few months
after these orders were put in place. We also find heterogeneity between differ-
ent ISPs. Finally, we explore how service providers responded to this increase in
traffic demands by adding capacity (Sect. 6). ISPs aggressively added capacity at
interconnects, more than 2x the usual rates. On a similar note, application service
providers (e.g., video conferencing apps) increased the advertised IP address space
by 2.5–5x to cope with the corresponding 2–3x increase in traffic demand.

2 Related Work

The pandemic response has modified people’s habits, causing them to rely heav-
ily on the Internet for remote work, e-learning, video streaming, etc. In this
section, we present some previous efforts in measuring the effects of COVID-19
and past disaster responses on networks and applications.

Network Measurements During COVID-19. Previous work has largely
focused on aggregate traffic statistics surrounding the initial COVID-19 lock-
downs. Traffic surged about 20% in Europe for broadband networks [12]. In the
United States, a blog post [18] reveals that the national downstream peak traf-
fic has recently stabilized, but in the early weeks of the pandemic, it showed
a growth of 20.1%. For wireless networks in the US, volume increases of up to
12.2% for voice and 28.4% for data by the top four providers were shown in an
industry report [6]. Mobile networks in the UK reported roughly 25% drops in
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downlink data traffic volume [16]. Industry operators have self-reported on their
network responses largely through blog posts [1,5,14,17].

For traffic performance changes, different patterns appear in different regions.
Facebook shows that less-developed regions exhibited larger performance degra-
dations through their analysis of edge networks [2]. Network latencies were
approximately 30% higher during the lockdown in Italy [12]. According to an
NCTA report, networks in the United States saw less congestion [18]. Due to
decreased user mobility, cellular network patterns have shifted [16]: The authors
found a decrease in the average user throughput as well as decreased handoffs.
Feldmann et al. [12] observed that the fixed-line Internet infrastructure was able
to sustain the 15–20% increase in traffic that happened rapidly during a short
window of one week.

Our work differs from and builds on these previous studies in several ways:
First, this study extends over a longer time frame, and it also uses longitudinal
data to compare traffic patterns during the past six months to traffic patterns in
previous years. Due to the nascent and evolving nature of COVID-19 and cor-
responding ISP responses, previous studies have been limited to relatively short
time frames, and have mainly focused on Europe. Second, this work explores the
ISP response to the shifting demands and traffic patterns; to our knowledge, this
work is the first to begin to explore ISP and service provider responses.

Application Measurements During COVID-19. Previous work has also
studied application usage and performance, such as increases in web conferenc-
ing traffic, VPN, gaming, and messaging [12]. Favale et al. studied ingress and
egress traffic from the perspective of a university network and found that the
Internet proved capable of coping with the sudden spike in demand in Italy [8].
Another paper used network traffic to determine campus occupancy at the effect
of COVID-19 related policies on three campus populations across Singapore and
the United States [25]. The cybercrime market was also statistically modeled
during the COVID-19 era to characterize its economic and social changes [24].

Network Measurements of Other Disasters. While COVID-19 responses
are ongoing and evolving, making measurement efforts incomplete, network
responses under other disastrous events can be informative. In 2011, the Japan
earthquake of Magnitude 9.0 caused circuit failures and subsequent repairs
within a major ISP. Nationwide, traffic fell by roughly 20% immediately after
the earthquake. However, surprisingly little disruption was observed from out-
side [4]. In 2012, Hurricane Sandy hit the Eastern seaboard of the United States
and caused regional outages and variances over the network [15]. For human-
caused disasters such as the September 11th attacks, routing, and protocol data
were analyzed to demonstrate the resilience of the Internet under stress. Their
findings showed that although unexpected blackouts did happen, they only had
a local effect [21]. Oppressive regimes have also caused Internet outages, such as
a complete Internet shutdown due to censorship actions during the Egypt and
Libya revolts [7], where packet drops and BGP route withdrawals were triggered
intentionally.
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Although there have been several preliminary measurements of the effects
of the COVID-19 response, none have holistically studied traffic data, perfor-
mance analysis, routing data, and ISP capacity information together, as we do
in this paper. It is crucial to collect and correlate such information to better
understand the nature of both traffic demands, the effects of these changes on
performance, and the corresponding responses. This paper does so, illuminating
the collaborative view of responses of service providers in the United States.

3 Data

We leverage multiple network traffic datasets to facilitate our study:

Traffic Demands and Interconnect Capacity: Internet Connection
Measurement Project. We leverage a dataset that includes network intercon-
nection statistics for links between 7 anonymized access ISPs and their neighbor-
ing partner networks in the United States [11]. These access networks contain
about 50% of broadband subscribers across all states within America. At each
interconnect interface connecting a neighboring partner network, the access ISP
collects IPFIX data. The dataset contains roughly 97% of links (paid peering,
settlement-free peering, and ISP-paid transit links) from all participating ISPs.
All of the links represented in the dataset are private (i.e., they do not involve
public IXP switch fabrics). The dataset consists of flow-level statistics over five-
minute intervals, including: timestamp, region (as access ISPs may connect to a
partner network in multiple geographic regions), anonymized partner network,
access ISP, ingress bytes, egress bytes, and link capacity. In terms of either bytes
or packets over a period of time, each five-minute interval provides the sum of the
utilization of traffic flows that were active during that interval. We also calculate
secondary statistics from the dataset, including: timestamp for the peak ingress
and egress hour for each day on each link in terms of usage, ingress/egress peak
hour bytes, and daily 95th and 99th percentile usage.

Performance Data: Federal Communications Commission Measuring
Broadband America (MBA). We analyze the FCC’s ongoing nationwide per-
formance measurement of broadband service in the United States [10]. The raw
data is collected from a collection of distributed measurement devices (named
Whiteboxes) placed in volunteer’s homes across all states of America and oper-
ated by SamKnows. The sample includes tiers composed by the top 80% of the
subscriber base for each ISP and is representative. Measurements are conducted
on an hourly basis. The dataset includes raw measurements of several perfor-
mance metrics, such as timestamp, unit ID, target server, round trip time, traffic
volume, etc. Each Whitebox also includes information pertaining to its ISP, tech-
nology, and state where it is located. We also define dates related to the status
of the pandemic response (e.g., stay-at-home orders, state of emergency declara-
tion, etc.). Based on these, we can compute more statistics for specified groups
(e.g., break into ISPs): average and standard deviation among Whiteboxes, daily
95th and 99th percentile latency/throughput.
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Fig. 1. 99th percentile interconnect link utilization for two ISPs.

To keep the network capacity consistent and to record eventual changes solely
based on utilization factors, we pre-process the MBA dataset with several filters.
First, we filter the non-continuous data within the dates of interest (Dec. 1st,
2019 to June, 30th 2020, and the previous year) to capture successive shifts.
Then, we eliminate the Whiteboxes which do not aggregate a statistically sig-
nificant amount of data, such as some states, ISPs, and technologies with lim-
ited data (e.g., satellite). Finally, we choose the measurements from Whiteboxes
to the top 10 most targeted servers across the United States to represent the
overall US performance. We take this decision because servers with less mea-
surements will have higher variance in sample, and introduce unexpected errors
when tracked across time. These servers are sparsely located in major cities of
the US and they have the most Whiteboxes (over 200 for each ISP) connecting
with them.

IP Prefix Advertisements: RouteViews. To gain insight into changes in
IP address space, we parse Internet-wide BGP information globally from sev-
eral locations and backbones via RouteViews. Raw RIBs (Routing Information
Bases) files were obtained from RouteViews [22] data on a weekly basis. The
average of each Tuesday is computed to represent that week. The RIBs are then
parsed to obtain IPv4 Prefix-to-Autonomous System (AS) relationships, includ-
ing mappings of IP prefix, prefix length, paths of AS numbers. In Sect. 6.2, we
compute the total advertised IPv4 spaces for AS numbers associated with two
popular video conferencing applications: Zoom and Cisco WebEx [9].

4 How Did Traffic Demands Change?

Because most previous studies [3,12,16] focus on Europe, we begin our explo-
rations by validating whether similar traffic changes are observed in the United
States. We consider peak hour link utilization from the Interconnect Measure-
ment Project as a measure of traffic demand. We pre-process the interconnect
dataset and remove anomalous data points that are caused by failures in the
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Fig. 2. Peer link utilization for ISP A between January 15 to April 15, 2020.

measurement system. In particular, we do not analyze dates that are greater
than two standard deviations outside of a 60-day rolling mean for each link. Due
to confidentiality reasons, we present the results in aggregation for the United
States as a whole.

Figure 1 shows both the absolute utilization and the utilization normalized
against the link capacity for two anonymized ISPs. For each ISP, we plot the
value corresponding to the 99th percentile link utilization for a given day. We
observe from Fig. 1a that ISP A saw a dramatic increase in raw utilization at
roughly the same time as the initial COVID-19 lockdowns (early March 2020),
with values tapering off slightly over the summer of 2020. ISP B, on the other
hand, saw a smaller raw increase in utilization for its 99th percentile links. To
better understand whether ISP B’s smaller increase is a byproduct of different
operating behaviors, we explore possible trends in the normalized data (Fig. 1b).
Here we see that both ISPs experienced significant increases in utilization in
March and April 2020.

We also investigated how traffic patterns changed between ISP A and each of
its peers, in both the upstream and downstream directions. For this analysis, we
focused on the dates around the utilization peaks shown in Fig. 1. We compared
the peak hour download and upload rates on all of ISP A’s interconnects on
(1) January 15, 2020, and (2) April 15, 2020 (Fig. 2). In general, we see that traffic
patterns to peers do not vary greatly between the two dates. We do see, however,
that traffic volumes to (and from) some peers change significantly—some by
several orders of magnitude. The identities of the peers are anonymous in the
dataset, but some patterns are nonetheless clear: For example, some peers show
an increase of upstream utilization by two or three orders of magnitude. Such
drastic changes may be attributable to users working from home and connecting
to services that would cause more traffic to traverse the peer link in the upstream
direction. We confirmed these results with the operators at ISP A and report
that they observed that streaming video traffic decreased from 67 to 63% of the
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Fig. 3. Daily changes of latency from Dec. 2019 to June 2020. The lockdown period is
marked in red. Change in average latency across the non-satellite ISPs in the FCC MBA
program reflect a small (2–3 ms) but significant increase in overall average latency.
(Note: y-axis does not start at zero.)

total traffic, but video conferencing increased from 1% to 4% as a percentage of
overall traffic.

5 What Was the Effect on Performance?

The surge in interconnect utilization poses a challenge for service providers, as
high utilization of interconnects can potentially introduce high delays for inter-
active traffic, packet loss, or both. These effects can ultimately be observed
through changes in latency (and, potentially, short-term throughput). To exam-
ine whether we can observe these effects, we look into the latency and throughput
reported by the Measuring Broadband America (MBA) dataset [10]. We explore
these effects over the course of several years to understand whether (and how)
performance anomalies that we observe during COVID-19 lockdown differ sig-
nificantly from performance anomalies observed during other time periods.

5.1 How Performance Changed After Lockdown

To better understand how performance changed during the COVID-19 lockdown
in the United States, we explored how latency evolved over the course of 2020.
To establish a basis for comparison, we show the time period from late 2019
through mid-2020. The Appendix also contains a similar analysis for the 2018–
2019 time period. We compute the average latency per-Whitebox per-day, and
subsequently explore distributions across Whiteboxes for each ISP. (As discussed
in Sect. 3, we consider only Whiteboxes in fixed-line ISPs for which there are an
adequate number of Whiteboxes and samples.) We use March 10th1, the average
declaration of emergency date [13], to mark the beginning of the COVID-19
pandmic phase (red shaded for figures).

1 Note that this is also the launch date of Call of Duty Warzone.
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Fig. 4. Latency (95th percentile) for different ISPs.

Longitudinal Evolution of Aggregate, Average Round-Trip Latency.
Figure 3 shows a seven-day moving average of average round-trip latencies
between all Whiteboxes in this study. We observe an increase in average round-
trip latency by as much as 10%, this increase in mean latency is significant,
corresponding to 30x standard deviation among all Whiteboxes. At the end of
April, latencies return to early 2020 levels. It is worth noting that, although this
increase in average latency is both sizable and significant, similar deviations and
increases in latency have been observed before (see the Appendix for comparable
data from 2018–2019). Thus, although some performance effects are visible dur-
ing the COVID-19 lockdown, the event and its effect on network performance are
not significantly different from other performance aberrations. Part of the rea-
son for this, we believe, may be the providers’ rapid response to adding capacity
during the first quarter of 2020, which we explore in more detail in Sect. 6.
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Fig. 5. Latency (99th percentile) for different ISPs.

Longitudinal Evolution of Per-ISP Latencies. In addition to the overall
changes in performance, we also explored per-ISP latency and throughput effects
before and during the COVID-19 lockdown period. Figures 4 and 5 show these
effects, showing (respectively) the 95th and 99th percentiles of average round-trip
latency across the Whiteboxes. These results show that, overall 95th percentile
latency across most ISPs remained stable; 99th percentile latency, on the other
hand, did show some deviations from normal levels during lockdown for certain
ISPs. Notably, however, in many cases the same ISPs experienced deviations in
latency during other periods of time, as well (e.g., during the December holidays).

5.2 Throughput-Latency Relationship

High latencies can sometimes be reflected in achieved throughput, given the
inverse relationship between TCP throughput and round-trip latency. To explore
whether latency aberrations ultimately result in throughput effects, as well as
how those effects manifest at different times of day, we explored the distribution
of latencies before COVID-19 emergency declarations (ED), after the ED but
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Fig. 6. Normalized interconnect capacity increases for two ISPs.

before the stay-at-home order (SO). Our hypothesis was that we might see higher
latencies (and lower throughputs) during “peak hours” of the day from broad-
band access networks, with the peak hours effectively expanded to the weekday
working hours, in accordance with previous descriptions of these effects [5].

We explored these metrics for a baseline period predating COVID-19, the
time between state declaration of emergency and stay at home ordered [13],
after stay-at-home declarations were ordered, and two months after stay-at-home
ordered. Because these dates differed across states, we used known dates for each
state [13] and matched the corresponding dates for each state against the known
location of the Whiteboxes.

Figure 11 shows the distribution throughput and latency distributions across
all Whiteboxes for four time intervals, plotted in four-hour intervals. From
Fig. 11a, it is clear that the quantiles, median, and maximum latencies all exhibit
effects that correlate with these time periods, which are consistent with the
latency changes in Fig. 3.

The period between ED and SO corresponds to abrupt routing changes,
and the latency data thus reflects a corresponding degradation during this time
interval, perhaps at least partially due to the fact that providers cannot immedi-
ately respond after the initial emergency declaration (we discuss the timeframes
during which capacity was added to the networks in Sect. 6). As the transition
continues, SO appears to be a point in time where latency stabilizes. Figure 11b
shows that distributions of throughput measurements are more robust, although
the upper end of the distribution is clearly affected, with maximum achieved
throughputs lower. The median and minimum have negligible changes during
time periods in late April suggesting (and corresponding to) aggressive capacity
augmentation, which we discuss in more detail in Sect. 6.
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6 How Did Service Providers Respond?

In this section, we study how service providers responded to the changes in
traffic demands. We focus on the capacity changes during lockdown by inspecting
two data sources: (1) to understand how ISPs responded by adding capacity
to interconnects, we study the interconnect capacity of two large ISPs in the
United States; and (2) to understand how video service providers expanded their
network footprints in response to increasing demand, we analyze IPv4 address
space from two major video conference providers—WebEx and Zoom—and find
that both providers substantially increased advertised IP address space.

6.1 Capacity Increases at Interconnect

We begin by exploring how ISPs responded to changing traffic demands by
adding network capacity at interconnect links. To do so, we use the Interconnect
Measurement Project dataset. We calculate the total interconnect capacity for
each ISP by summing the capacities for all of the links associated with the ISP.
To enable comparison between ISPs that may have more or less infrastructure
overall, we normalize the capacity values for each using min-max normalization.
We again filter out date values that are beyond two standard deviations from
a rolling 60-day window mean. To show aggregate infrastructure changes over
time, we take all of the data points in each fiscal quarter and perform a least-
squares linear regression using SciKit Learn. This regression yields a slope for
each quarter that illustrates the best-fit rate of capacity increases over that quar-
ter. We scale the slope value to show what the increase would be if the pace was
maintained for 365 days (i.e., a slope of 1 would result in a doubling of capacity
over the course of a year). Figure 6 shows the resulting capacity plots.

The overall trend shows how these two ISPs in the United States aggressively
added capacity at interconnects—at more than twice the rate at which they were
adding capacity over a comparable time period in the previous year. Second, both
ISPs significantly added capacity in the first quarter of 2020—at a far greater
rate than they were adding capacity in the first quarter of 2019. Recall from
the usage patterns shown in Fig. 1, ISP A tends to operate their links at nearly
full capacity, in contrast to ISP B, where aggregate utilization is well below
90%. Both ISPs witnessed a jump in usage around the lockdown; the response of
aggressively adding capacity appears to have mitigated possible adverse effects
of high utilization rates. The increase in capacity was necessary to cope with the
increased volume: although network performance and utilization ratios returned
to pre-COVID-19 levels, the absolute traffic volumes remain high.
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6.2 Increased Advertised IP Address Space

To cope with abrupt changes caused by COVID-19, application service providers
also took action to expand their infrastructure. Previous work has observed
shifted traffic in communication applications (such as video conferencing apps,
email, and messaging) after lockdown [12]. It has been reported informally that
many application providers expanded serving infrastructure, changed the routes
of certain application traffic flows, and even altered the bitrates of services to
cope with increased utilization.

While not all of these purported responses are directly observable in pub-
lic datasets; however, RouteViews makes available global routing information,
which can provide some hints about routes and infrastructure, and how various
characteristics of the Internet routing infrastructure change over time. This data
can provide some indication of expanding infrastructure, such as the amount of
IPv4 address space that a particular Autonomous System (AS) is advertising. In
the case of video conference providers, where some of the services may be hosted
on cloud service providers or where the video service is a part of a larger AS
that offers other services (e.g., Google Meet), such a metric is clearly imperfect,
but it can offer some indication of response.

To understand how service providers announced additional IPv4 address
space, we parsed BGP routing tables from RouteViews [22]. For each route
that originates from ASes of certain application providers, we aggregate IP
prefixes and translate the resulting prefixes into a single count of overall IPv4
address space. We focus on two popular video conferencing applications, Zoom
and WebEx, since they are two of the largest web conference providers in the
United States—as also recognized by the FCC in their recent order for regula-
tory relief [9]. We track the evolution of the advertised IP address space from
the beginning of 2019 through October 2020.

Fig. 7. Normalized advertised IPv4 space.
Red: COVID-19 pandemic phase.

Table 1. Advertised IPv4 space.

App Min Max

Zoom 9,472 46,336

WebEx 110,080 265,728
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Figure 7 demonstrates how each provider increased the advertised IPv4
address space from before the pandemic through October 2020. After the begin-
ning of the COVID-19 pandemic, both Zoom and WebEx rapidly begin to
advertise additional IPv4 address space. Table 1 enumerates the absolute val-
ues of advertised IP address space: Zoom and WebEx increased the advertised
IP address space by about 4x and 2.5x respectively, as we observe a roughly
corresponding 2–3x increase in video conferencing traffic.

7 Conclusion

This paper has explored how traffic demands changed as a result of the abrupt
daily patterns caused by the COVID-19 lockdown, how these changing traffic
patterns affected the performance of ISPs in the United States, both in aggregate
and for specific ISPs, and how service providers responded to these shifts in
demand. We observed a 30–60% increase in peak traffic rates for two major
ISPs in the US corresponding with significant increases in latency in early weeks
of lockdown, followed by a return to pre-lockdown levels, corresponding with
aggressive capacity augmentation at ISP interconnects and the addition of IPv4
address space from video conferencing providers. Although this paper presented
the first known study of interconnect utilization and service provider responses to
changes in patterns resulting from the COVID-19 pandemic, this study still offers
a somewhat limited viewpoint into these effects and characteristics. Future work
could potentially confirm or extend these findings by exploring these trends for
other ISPs, over the continued lockdown period, and for other service providers.

Acknowledgements. This research was funded in part by NSF Award CNS-2028145
and a Comcast Innovation Fund grant. We also thank CableLabs for their help with
acquisition of data from ISP interconnects.

Appendix A Longitudinal Latency Evolution
for 2018–2019 (Previous Year)

This section provides a basis for performance comparison in Sect. 5. Following
the same analysis, we choose the exact same time period in the previous year (i.e.,
late 2018 to mid-2019) in the United States. We compute the average latency per-
Whitebox per-day, and subsequently explore distributions across Whiteboxes for
each ISP.
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Fig. 8. Daily changes of latency from Dec. 2018 to June 2019. (Note: y-axis does not
start at zero.)

Longitudinal Evolution of Aggregate, Average Round-Trip Latency.
Figure 8 shows the aggregate average latency per-Whitebox per-day. The previ-
ous year has an overall latency of about 6ms lower than 2020. We observe that
the latency keeps stable until the end of April, where a deviation of about 2 ms
is shown. The rate of increase is of about 10%, echoing similar effects around
lockdown.

Longitudinal Evolution of per-ISP Latencies. We further break the aggre-
gate results into the granularity of ISPs. We report both 95th and 99th percentile
latencies here. Note that in the 95th percentile plot, we show the groups differ-
ently, mainly because of major differences of latency for Mediacom and AT&T
compared to other ISPs. From Fig. 9, we find that the majority of ISPs per-
formed stably, while Mediacom has a large variance in the average RTT. They
both have a tail that contributes to what we observed in Fig. 8. Figure 10 is
grouped the same as Fig. 5, which shows that for certain ISPs, they experience
similar deviations in latency during similar periods of different years.

Appendix B Throughput-Latency Relationship

We put a supplementary figure referred to in Sect. 5 in this appendix. It shows
the distributional changes in latency and throughput on a 4-h basis. Detailed
explanations are in the main text.
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Fig. 9. Latency (95th percentile) for different ISPs.
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Fig. 10. Latency (99th percentile) for different ISPs.

Fig. 11. Changes in latency and throughput before and after the lockdown. ED means
“Emergency is declared” SO means “Stay-at-home Ordered”.
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Abstract. This work takes a first look at domain names related to
COVID-19 (Cov19doms in short), using a large-scale registered Inter-
net domain name database, which accounts for 260 M of distinct domain
names registered for 1.6 K of distinct top-level domains. We extracted
167 K of Cov19doms that have been registered between the end of Decem-
ber 2019 and the end of September 2020. We attempt to answer the
following research questions through our measurement study: RQ1: Is
the number of Cov19doms registrations correlated with the COVID-19
outbreaks?, RQ2: For what purpose do people register Cov19doms? Our
chief findings are as follows: (1) Similar to the global COVID-19 pan-
demic observed around April 2020, the number of Cov19doms registra-
tions also experienced the drastic growth, which, interestingly, pre-ceded
the COVID-19 pandemic by about a month, (2) 70% of active Cov19doms
websites with visible content provided useful information such as health,
tools, or product sales related to COVID-19, and (3) non-negligible num-
ber of registered Cov19doms was used for malicious purposes. These find-
ings imply that it has become more challenging to distinguish domain
names registered for legitimate purposes from others and that it is cru-
cial to pay close attention to how Cov19doms will be used/misused in
the future.

Keywords: COVID-19 · Domain names · Phishing · Blocklist

1 Introduction

Several researchers have conducted Internet measurement studies to understand
how the COVID-19 pandemic affected the Internet and user behaviors [2,4,8,9,
15]. Favale et al. and Feldmann et al. [8,9] explored the changes in Internet traffic,
Lutu et al. [15] explored the changes in traffic and its impact on user mobility in
mobile operators, Candela et al. [4] analyzed the impact of Internet traffic changes
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on network latency, and Boettger et al. [2] analyzed the changes in social media
access patterns and the implications. The details of these studies will be discussed
in Sect. 5.

To the best of our knowledge, there has been no academic study that has
analyzed the impact of COVID-19 in terms of registered domain names. This
work takes a first look at domain names related to COVID-19 (Cov19doms in
short), using a large-scale set of registered domain names. We note that the only
literature we have been able to find on this subject is a blog article [6], which ana-
lyzed the domain names associated with COVID-19. The article reported that
the number of COVID-19 domain name registrations has spiked in mid-March
2020, with some days seeing the registration of more than 5,000 Cov19doms.
However, we found that the data used in the article contained many false posi-
tives due to the naive string match heuristics. Also, this data is no longer updated
since May 2020, so we cannot perform a longer-term analysis using the data. In
this study, we attempt to extract Cov19doms accurately and analyze how it
changes over a long period of time.

With so many of us keeping an eye on COVID-19 and spending more and
more of our time online, it is crucial to understand the origins and implications
of Cov19doms. Given these backgrounds in mind, we attempt to answer the
following research questions:

RQ1: Is the number of Cov19doms registrations correlated with the COVID-19
outbreaks?

RQ2: For what purpose do people register Cov19doms?

Toaddress the research questions,we compiled an exhaustive list ofCov19doms
using a large-scale registered Internet domain name database [7], which accounted
for 260 M of distinct domain names registered for the 1.6 K of top-level domains.
Using the dataset, we found that at least 167 K of distinct Cov19doms containing
strings such as “covid” or “corona” have been registered from the end of Decem-
ber 2019 to the end of September 2020. We attempt to study how domain name
registration behavior changed with the emergence of COVID-19; i.e., we examine
whether or not the time-series of COVID-19 infections is correlated with the time
series of domain name registrations.

Next, from the 167K of Cov19doms, we extracted active websites that used
Cov19doms by checking DNS A record and HTTP/HTTPS response. We then
randomly sampled 10,000 of the Cov19doms websites to study how Cov19doms
are used in the wild. By applying cluster analysis to the screenshots, we systemat-
ically classified 10 K websites. For the remaining general websites, we performed
manual inspection with the aid of three evaluators. We also leveraged online
virus-testing services to check whether some Cov19doms were used for malicious
activities.

Our chief findings are as follows:

• Similar to the global COVID-19 pandemic observed around April 2020, the
number of Cov19doms registrations also experienced drastic growth, which,
surprisingly, preceded the COVID-19 pandemic by about a month.
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• 70% of active Cov19doms websites with visible content provided useful infor-
mation such as health, tools, or product sales related to COVID-19.

• Non-negligible number (roughly 4%) of registered Cov19doms have been used
for malicious purposes such as phishing or malware distribution.

These findings imply that it has become more challenging to distinguish
between domain names registered for legitimate purposes and those that are
not. It was also indicated that it is necessary for researchers who analyze domain
names, and even operators and blacklisters who take security measures based on
domain names to pay close attention to how Cov19doms currently parked or in
preparation will be used/misused in the future.

2 Data

2.1 Collecting Cov19doms

To collect registered Cov19doms, we used a large-scale commercial domain name
database, domainlist.io [7]. This database contains snapshots of approximately
260M domain names taken from 1.6K of different TLDs, and we continued
to retrieve data daily from 27 December 2019 to 20 September 2020. Of the
98, 940, 555 domain names that have been newly registered since December 27,
2019, we first extracted the domain names that contained “covid” or “corona”
as a substring. As a result, we obtained a total of 170, 846 Cov19doms. We
note that this approach could include false positives such as “covideo.co.uk”, for
instance. However, we can safely ignore the effect of false positives in the fol-
lowing analysis, as our manual inspection of the randomly sampled data showed
that the occurrence of such false positives was extremely rare as these words
are. We believe that these words, especially in the COVID-19 era, are mostly
used in the context of a specific purpose, i.e., “severe acute respiratory syndrome
coronavirus 2,” resulting in fewer false positives.

To study the characteristics of the Cov19doms, it is essential that we can get
information about the creation date of the domain names. Therefore, we used the
WHOIS information for the extracted Cov19doms to obtain information on the
date and time the domain name was created. If the creation date of a domain
name was older than December 27, 2019, those domain names were excluded
from the following analysis. This resulted in a total of 166,825 Cov19doms, as
shown in Table 1. To ensure that domains registered before December 27, 2019
were not related to COVID-19, we manually checked on them and found it be
correct. In fact, most of them were related to Coronado city in California, U.S.

We investigated where the specific words related to COVID-19, i.e., “covid”
and “corona”, are located in the left-most labels of Cov19doms (e.g., “covidcare”
in covidcare[.]example) and confirmed that (a) 59.6% are at the beginning,
(b) 24.2% are at the end, and (c) 16.2% are in the middle of them. The patterns
(a) and (b) mean that the left-most labels of Cov19doms were generated by
concatenating any character at the beginning or end of the COVID-19-related
words such as “covid”. We believe that patterns (a) and (b) are less likely to cause
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Table 1. Statistics of extracted Cov19doms data.

Orig. Cov19doms WHOIS check DNS check HTTP/HTTPS check

# of domain names 170,846 166,825 144,522 77,333

false positives than pattern (c). We further investigated the extent to which sim-
ilar COVID-19-related words, “covid”, “covid19”, and “covid-19”, are included
in Cov19doms and found that they are 41,718, 32,671, and 10,120 Cov19doms,
respectively. These numbers do not overlap, because we checked Cov19doms that
contain “covid19” and “covid-19” earlier. It is interesting that “covid19” is more
common in Cov19doms than its formal name of the desease, “covid-19”. Among
these, “covid” was most frequently included in Cov19doms, and as far as we
manually checked, the majority of cases (about 40%) were used in the context
of the COVID-19. One of the reasons why “covid” is included in Cov19doms in
large numbers is that there are cases where various numbers are added to the
end of “covid” (e.g., covid-2019, covid-2020, and covid-2021). We expect those
domain names to have been acquired for speculative purposes.

We looked into what country registered Cov19doms firstest by usinig
WHOIS registrant information. Of the 165,185 Cov19doms we extracted, 153,243
domains had valid WHOIS registrant country information. Among the countries,
United States was the first to register Cov19doms. The top-5 countries registered
Cov19doms were United States (85,970), Canada (17,229), Panama (6,781), Ger-
many (4,533) and United Kingdom (4,237).

2.2 Collecting Active Websites Using Cov19doms

With the aim of studying the usage of Cov19doms, we extract the active websites
that are operating using Cov19doms. To extract active websites, we first check
the DNS A record to determine if an IP address is assigned to the extracted
Cov19doms. We then send an HTTP/HTTPS request to the domain name where
the DNS A record exists, and record the response. Specifically, we check if a
connection can be established to Port 80 and Port 443 of each host that had a
Cov19dom. Next, if a connection with either port can be established, we made an
HTTP/HTTPS request to those hosts and checked whether the content could be
retrieved from them. This step removes websites that caused connection timeouts
and/or TLS errors such as invalid certificate. These steps resulted in a total of
77,333 of active websites that use Cov19doms, as shown in Table 1.

3 Measurement Study

Figure 1 presents an overview of the measurement processes. We first study
the correlation between the number of COVID-19 infections and the number of
Cov19doms registrations (Sect. 3.1). For this analysis, we used the statistics on
the number of COVID-19 infections by country, provided by WHO [22]. We then
study how Cov19doms are used for various websites (Sect. 3.2). The classification
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Fig. 1. Overview of the measurement processes.

Fig. 2. Number of COVID-19 infections and Cov19doms registrations over time. Cases
for gTLD (left) and ccTLD (right).

of active websites operated using Cov19doms was manually performed by three
evaluators. Due to the large number of websites to be analyzed, we conducted
a random sampling study. Finally, we report the analysis of Cov19doms that
have been used for malicious activities (Sect. 3.3). We used VirusTotal [1] to
investigate the presence of malicious sites using Cov19doms.

3.1 Number of New Infections and Cov19doms Registrations

We analyze the online behavior of people around the world in response to the
unprecedented event of COVID-19 through the lens of DNS. Specifically, we
examine whether or not the time series of COVID-19 infections is correlated
with the time series of domain name registrations.

First, we investigate the time series of new registrations of Cov19doms and
the number of new COVID-19 infections worldwide. We take all Cov19doms and
split them into groups of gTLDs (e.g., .com) and ccTLDs (e.g., .uk). We obtained
information on the number of COVID-19 infections from the official WHO web-
site [22]. Figure 2 shows the time series of the number of new COVID-19 infec-
tions and the number of new registrations in Cov19doms (gTLD and ccTLD).
These figures show that similar to the situation of the COVID-19 pandemic out-
break around the world around April 2020, Cov19doms saw a significant increase
in its new registrations as well. Surprisingly, the number of new domain name
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Fig. 3. Number of COVID-19 infections and Cov19doms registrations over time. Cases
for UK (left) and SE (right). In Sweden, no lockdown enforcement was taken.

registrations peaked around March 2020, about a month ahead of the peak in
the number of new COVID-19 infections. Subsequently, the number of new reg-
istrations of Cov19doms has reached a stable daily registration rate, but the
number of COVID-19 infections has still increasing as of October 2020.

Second, we focus on the Cov19doms of ccTLDs and investigate the rela-
tionship between the number of new registrations of Cov19doms per ccTLD
and the number of new COVID-19 infections in the country corresponding to
the ccTLD over time. Our Cov19doms data included only four ccTLDs: United
Kingdom (.uk), Sweden (.se), Niue (.nu), and Australia (.au). We excluded
.nu, for which no information on the number of WHO infected people existed
from there, and .au, for which we were unable to obtain the full domain name
registration date from the WHOIS data, and conducted a survey of 4,766 .uk
and 549 .se Cov19doms. Figure 3 shows the time-series change in the number
of new infections of Cov19doms and COVID-19 in the UK and Sweden, respec-
tively. Since the lockdown was implemented in the UK, the period is also shown
in .uk graph. In both cases, Cov19doms registrations tend to be more likely to
be ahead of the COVID-19 infection explosion. Furthermore, we find that reg-
istration of Cov19doms moves faster and clearer in the UK than in the Sweden
case.

Our results obtained so far above indicate two things: (1) events like COVID-
19 that affect so many people’s lives will create a massive demand for domain
names and (2) people are anticipating such demand and taking the action of
registering domain names at an amazingly early stage. In subsequent sections,
we will clarify for what purpose people are registering these Cov19doms.

3.2 Understanding the Usage of Cov19doms

In general, automatic website classification is not an easy task as the modern web
is composed of rich and complex multimedia, making it difficult to automatically
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analyze its contents using simple data processing scheme. Therefore, instead of
fully automating the website classification process, this work adopted manual
inspection to ensure the quality of the classification. However, the number of
Cov19doms we have collected is so large that it is infeasible to inspect them
all manually. Therefore, we took the approach of applying random sampling to
reduce the number of domains/websites to be analyzed. As shown in Figure 1,
we randomly sampled 10 K of websites from 77 K active Cov19doms websites to
reduce the number of samples to be classified by human. For the 10K of randomly
sampled Cov19doms websites, we took the following two-stage approach.

In the first stage, we aim to systematically classify websites into the follow-
ing categories: Empty, Error, Parked, Hosted, and Has content, where Empty
represents cases in which HTTP/HTTPS requests were responded to, but the
data was empty, Error represents the websites responded with error codes such
as 404 or 501, Parked represents the domain parking websites, Hosted represents
cases where the domain name has been purchased, but the website only shows
the initial page after installation of Apache, WordPress, etc., and Has content
represents the remaining Cov19doms websites that have some content. In the
second stage, three evaluators manually classify the websites classified as “Has
content.” In the following, we present the details of the analysis to be performed
at each stage and the results obtained.

Stage 1: Systematic Classification. We classify websites into the five classes
defined above based on HTTP/HTTPS response codes and screenshot informa-
tion. Among the five classes, the classification of empty and error is simple. They
can be classified by analyzing the size of the data retrieved and the response code.
For the remaining classes parking and hosted, we use cluster analysis. For park-
ing, we could use domain name registrar information in some cases, however, our
preliminary study shows that we cannot do a comprehensive study due to the
existence of so many different domain parking companies. The key idea is that
the majority of websites that are accessed for parking and hosted are similar in
appearance. Therefore, we apply cluster analysis to the screenshot images and
classify the websites by determining whether each cluster is Parked or Hosted or
Has content. With this approach, we can streamline the classification.

To perform clustering of screenshot images, we need to calculate the distance
between images; i.e., it is necessary to compute the similarity of images. There
are several methods for computing the similarity of images, and in this paper,
we adopt the perceptual hash (pHash) [23], which computes close hash values
for two similar images. pHash is widely used to discover copyright infringement
and is known to be effective in discovering resemblances to certain images.

We first accessed 10K of randomly sampled active websites and extract
HTML, screenshots, and other metadata by navigating Google Chrome1 using
Selenium [18]. The language was set to English, and the User-Agent was set to
Windows 10 Google Chrome. To not halm the websites set to be investigated,
access to the IP address corresponding to each Cov19dom is limited twice (HTTP
1 We used the version of 81.0.4044.129.
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Table 2. Result of systematic classification.

Category # of active websites Fraction (%)

Empty 609 6.1

Error 1,663 16.6

Parked 2,138 21.4

Hosted 1,402 14.0

Has contents 4,188 41.9

Total 10,000 100.0

and HTTPS). Next, we computed the pHash values for the 10,000 screenshots we
collected, using imageHash [3]. We then grouped the corresponding Cov19doms
with the same value of pHash and HTTP status code pairs into the same clus-
ter. Table 2 presents the classification result of the Cov19dom websites. From
the table, we can see that many of the Cov19doms websites resulted in either
domain parking or errors, and that 40% of the websites (classified as “Has con-
tent”) requires detailed manual inspection. We note that 60% of the websites
categorized as other than “Has content” do not currently provide any useful
content, however, they might start providing some content in the future, so we
need to pay attention to them. In the following, we will classify the websites
categorized as “Has content.”

Stage 2: Manual Classification. In the second stage, we will classify the
Cov19doms websites marked as “Has content” in the Stage 1. Since 4K of
websites are too many to analyze manually, further random sampling is per-
formed and 1,000 general websites will be carefully classified by three evalua-
tors. Through the Stage 1 classification, the classification categories for Stage 2
were predetermined and provided to the evaluators with detailed explanations.
Figure 4 presents a screenshot image of a tool developed by the authors to help
evaluators efficiently classify websites. Although the evaluators made a classi-
fication based on screenshot image and metadata, there are cases that cannot
necessarily be determined by screenshot or metadata. For example, if the eval-
uators could not understand the language used in the web content, they also
leveraged external resources such as a search engine.

Three evaluators used the tool to classify 1,000 of websites marked as “Gen-
eral” taking 4.8 h on average, resulting in 477 websites where the three evaluators
agreed, 423 websites where the two evaluators agreed, and 100 websites where they
all disagreed. That is, for 90% of the websites, at least two evaluators’ classification
resultswere consistent.The result of calculating theFleiss’ kappa coefficient,which
is a quantitative measure of inter-rater agreement, was 0.50, which can be inter-
preted as moderate agreement [13]. The results of the interviews with the three
evaluators revealed that the primary reason for the disagreement was the differ-
ence in the decisions they made when they were unsure of their classification. One
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Fig. 4. A screenshot of the website classification tool we developed for our analysis.

Table 3. Results of manual classification.

Category Description #sites

Health Websites providing information on health∗ 405

Sales Websites selling products related to COVID-19 109

Tools Websites providing apps/maps/dashboards of COVID-19 123

Activities Websites dedicated to people’s activities to address COVID-19∗∗ 72

Social security Websites regarding to social security 2

Unrelated Websites unrelated to COVID-19 139

Login Websites showing a login page 26

Index of Websites showing the “Index of /” page 24

Unknown Websites with discrepancies between the evaluators’ classifications 100

Total – 1,000
∗ hospitals, infection testing, sterilization, and other health-related topics.
∗∗Fundraising, volunteering, business, and political movements regarding COVID-19.

of the evaluators reported that he categorized all of his confusion as “activities for
COVID-19.”Discrepancies in judgments also arose because of the existence ofweb-
sites that could be classified into multiple categories. For example, a website that
displays medical products (masks, face shields) may be categorized as both Health
and Sales. Apart from such discrepancies, the classifications were generally consis-
tent and the manual classification results can be considered reasonable. In the final
classification, a majority vote was adopted. Websites with discrepancies between
the three evaluators’ classification results were marked as “Unknown.”

Table 3 presents the classification results. About 70% of the websites were
related to COVID-19. Those websites were medical services, selling products,
providing COVID-19 information such as apps, maps and dashboards, support-
ing people’s activities related to COVID-19, and social security. As would be
expected from the nature of COVID-19, the majority of the websites (40%)
were medical-related. Many of these health-related websites are critical sources
of information in countering COVID-19 pandemic and should never be blocked.
The remaining 30% were completely irrelevant websites, websites with no content
displayed, and “Unknown,” which we defined earlier.
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Table 4. Breakdown of the detection results.

Detected category # detections fraction (%)

Phishing site 117 32.8

Malicious site 52 14.6

Malware site 17 4.7

Pending 171 47.9

Total 357 100.0

3.3 Malicious Activities Using Cov19doms

Finally, we investigate whether Cov19dom websites were involved in any mali-
cious activities. To achieve this goal, we utilize VirusTotal, a large-scale online
virus scanning service. As shown in Figure 1, we target 10K of active websites
that had Cov19doms. Of the 10 K websites, 6,362 of the websites were detected
as malicious by at least one or more scanners. This is an alarming number,
but when we analyzed the detection results, we found that one online scan-
ner detected 6,256 websites as malicious, and that the majority of them (about
98.7%) were classified as phishing sites. Although we cannot determine from our
data whether or not these detections were correct, the result does suggest that
there may be a non-negligible number of malicious sites that use Cov19doms.
On the other hand, one of the reasons why online scanners may falsely detect
Cov19doms as a phishing site is likely to be näıve detection using keyword match-
ing. For example, a scheme that increases the probability of detecting a website
with a domain name containing the strings corona or covid-19 as a malicious site
could be employed. However, such an approach might have the risk of blocking
websites that provide important information about COVID-19.

To reduce the effect of false positives from individual scanners, we examined
websites that were detected as malicious by at least two online scanners. We note
that this approach is consistent with the best practice used in many papers that
make use of multiple engines/vendors of VirusTotal for the labeling task [16].
As a result, we found that the number was 357, which accounted for roughly 4%
of the active Cov19doms websites. The detection categories of those detected
by two or more online scanners are summarized in Table 4. Note that a website
may be detected as a different category (e.g., phishing site and malware site)
by several online scanners . In such cases, the category is decided by majority
vote, and if the category is not uniquely determined, the category is marked
as “pending”. It can be seen that once again, phishing sites have the highest
number of detections, but the number of other malicious sites is also very close.

4 Discussion

4.1 Limitations

This study aims to understand the Cov19doms in the wild. In order to ensure
the accuracy of the results, two heuristics were applied to extract such domain
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names, as described in Sect. 2. The first heuristic was to limit the domain search
words to “covid” and “corona.” Such limitation will miss several cases where
domain names contain other keywords such as “virus” or “mask,” which could
bring false positives as we discussed. We also limited our search to the e2LD part;
the limitation will eliminate the cases where an FQDN contains the substrings
in its hostname. Another heuristic was to constrain the registration date for
domain names.

Our analysis also excluded websites that did not include keywords in their
domain name but were COVID-19-related in their website content. Such websites
existed on both malicious and benign sites. Another limitation that we are aware
of is that the URL path is not taken into account when creating a URL from
an FQDN. We only retrieved web content from the top directory on a website
in the web-crawling process. Exploring the URL path might reduce the errors
shown in the Table 2, however we may miss web content if a website does not
configure the setting of index file. Addressing these issues is left for future study.

4.2 Detecting Malicious Cov19doms

As we have shown in this work, simply using a list of Cov19doms as a blocklist
may result in false positives, and this introduces the risk of blocking informa-
tion that is useful for COVID-19 countermeasures. In order to determine if a
detected Cov19dom is malicious, we need to monitor a domain name when it
is being abused and examine the content in a timely manner. The Trademark
Clearinghouse (TMCH) is a global database of trademarks and provides this
information to registries and registrars during the domain name registration
process to thwart unwanted domain name registrations by third-parties. This is
effectively used by trademark owners to fight against a trademark infringement
using fake domain names. Unfortunately, this countermeasure is not effective
against domain names piggybacking on global crises including COVID-19, due
to the fact that there is no right owner of such corresponding keywords. Szurdi
and Christin proposed the anti-bulk registration policy such as dynamic pricing
to make bulk domain registrations expensive [19], which is a potential counter-
measure against bulk-registered COVID-19 domain names.

4.3 Ethical Considerations

Our study analyzed publicly available DNS records and web content correspond-
ing to the domain names without collecting personally-identifiable information.
In our web-crawling process, we sent the minimum amount of legitimate requests
to websites, i.e., two requests (HTTP and HTTPS) per site, and left them and
their users unharmed.

5 Related Work

In this section, we present several related works and clarify how our work differs.
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Internet Measurement Driven by COVID-19. Favale et al. [8] analyzed
the impact of the lockdown enforcement on a campus network in Italy. Through
analyzing Internet traffic statistics, they revealed that while incoming traffic
was reduced by a factor of 10 during the lockdown, outgoing traffic increased
by 2.5 times, driven by more than 600 daily online classes, with around 16,000
students per day. They concluded that the campus network infrastructure is
robust enough to successfully cope with the drastic changes while maintaining
the university operations. Feldmann et al. [9] conducted similar analysis using
traffic data collected at one ISP, three IXPs, and one educational network. They
reported on changes in Internet traffic in various perspectives and concluded
that the Internet infrastructure has been able to deliver the increased Internet
traffic without significant impact.

Candela et al. [4] conducted a large-scale analysis of Internet latencies, which
could be affected by the increased amount of online activities during the lock-
down. By leveraging the measurement data collected with the RIPE Atlas plat-
form [17], they analyzed Internet latencies focusing on Italy, where people expe-
rienced more than a month of lockdown. They reported that the increase in
online activity led to an increase in the variability of Internet latencies, a trend
that intensified in the evening due to the increase in the entertainment traffic.

Event-Driven Domain Name Registration. The strategy of early acqui-
sition of domain names associated with ongoing events has been a well-known
approach in the domain name business community. In fact, a patent of such a
technique was filed by an Internet domain registrar [14]. Although event-driven
domain registration is a widely known best practice in the domain name busi-
ness community, to the best of our knowledge, there has been little research on
the topic in the research community. One of the few available studies is that
Coull et al. [5] derived rules to describe topics, such as ongoing events, from
popular Google search queries with the aim of characterizing the registration of
speculative domain names and empirically evaluated the feasibility of domain
acquisition based on such a method. While they attempted to extract current
events using Google search, COVID-19 is a unique phenomenon, and researchers
have not had an opportunity to study domain names for such a case.

Tombs et al. [21] tried to determine the level of credibility of a top-level
coronavirus-related website that purport to be government websites, and find
out the purpose of non-governmental entity or company register a top-level
coronavirus-related domain name by analyzing data collected from 303 websites
which domains related to COVID-19 between April 5 and April 6, 2020. They
found that 80% of websites presented as government websites cannot be verified
the authenticity. Additionally, about 30% of websites collected had unverified
information and nearly half were squatting domains or “under construction.”
Government websites providing critical information about coronaviruses should
not be subject to ambiguous in their authenticity, and therefore should not
share the top-level domain name space with non-governmental entity or com-
pany. Their findings are important in establishing trusted communication chan-
nel between government and their citizens during this crisis.
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Malicious Domain Names and Websites. Much research has been con-
ducted on ways to observe the registration and early activity of malicious domain
names [10,12,20]. Hao et al. [10] unveiled that DNS infrastructures and early
DNS lookup patterns for a newly registered malicious domain name differ signifi-
cantly from those with a legitimate domain name. Korczynski et al. [12] collected
WHOIS information, web content, and DNS records for corresponding malicious
domain names provided from 11 distinct abuse feeds and observed a growing
number of spam domains in new gTLDs, indicating a shift from legacy gTLDs
to new gTLDs. We conducted our measurement by referring to the ways prac-
ticed in these existing studies. While these studies analyzed fake domain names
containing strings related to brand names having specific owners, our study
focuses on domain names containing strings related to generic crisis having no
specific owners, which makes it be challenging to distinguish between malicious
and legitimate domain names.

There are few academic studies so far on detection of malicious domain names
related to COVID-19. Ispahany and Islam developed a machine learning model
using lexical features to detect malicious domain names and examined registered
domain names in April 2020 [11]. The purpose of our study is not to detect
malicious Cov19doms, but to investigate the usage of Cov19doms. Furthermore,
our study utilized a long-term dataset obtained from the end of December 2019
to the end of September 2020.

6 Conclusion

Through the analysis of 167K of Cov19doms we collected, we found that a month
before the global COVID-19 pandemic hit in April 2020, there was a flood of
domain name registrations. This phenomenon can be attributed to a variety of
people registering domain names for the purpose of COVID-19 countermeasures,
speculative domain name business, or to generate phishing sites, as they pre-
dicted the high impact of COVID-19. Such a global, high-impact phenomenon
is unprecedented in the past and is a remarkable event from the perspective
of Internet measurement. In conventional measures against the registration of
unwanted domain names targeting brands, distinguishing between an original
domain name and a fake domain name has been relatively straightforward since
the brand owner has been determined. In the case of the Cov19doms, on the
other hand, there is no concept of a brand owner, and many different players
have registered Cov19doms to benefit society. Therefore, it is not feasible to
apply traditional domain name analysis methods. As this study revealed, major-
ity of Cov19doms (about 60%) are not active. Even if Cov19doms are uesd for
active websites, many of them are parked or hosted, and it is not clear how
these domain names will change in the future. Addressing these problems is a
challenge for the future. We plan to release our dataset and tools used for our
analyses at https://github.com/cov19doms/cov19doms.

https://github.com/cov19doms/cov19doms
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Abstract. One of the staples of network defense is blocking traffic to
and from a list of “known bad” sites on the Internet. However, few orga-
nizations are in a position to produce such a list themselves, so prag-
matically this approach depends on the existence of third-party “threat
intelligence” providers who specialize in distributing feeds of unwelcome
IP addresses. However, the choice to use such a strategy, let alone which
data feeds are trusted for this purpose, is rarely made public and thus
little is understood about the deployment of these techniques in the wild.
To explore this issue, we have designed and implemented a technique to
infer proactive traffic blocking on a remote host and, through a series of
measurements, to associate that blocking with the use of particular IP
blocklists. In a pilot study of 220K US hosts, we find as many as one
fourth of the hosts appear to blocklist based on some source of threat
intelligence data, and about 2% use one of the 9 particular third-party
blocklists that we evaluated.

1 Introduction

Over the last decade, the use of threat information sharing—commonly labeled
“threat intelligence”—has become a staple in any discussion of network defense.
Based on the premise that by broadly sharing information about known threats,
organizations can better protect themselves, a burgeoning industry has emerged
to collect, aggregate and distribute such information [6,40], largely consisting
of lists of IP addresses, domain names or URLs thought to be associated with
particular classes of threats (a.k.a., indicators of compromise).

However, despite all the promises, it is far from clear how people actually
adopt threat intelligence data, especially for proactive traffic blocking, commonly
called “blocklisting”. Proactively blocking traffic based on threat intelligence
data is uniquely attractive to a defender, since, if effective, it can foreclose threats
without requiring attention from a human analyst. However, it is also a strong
action, and recent work by Li et al. [23] has shown that threat intelligence
feeds can be far from comprehensive and may include significant numbers of
false positives that might cause an organization to inadvertently block benign
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sites. Given this, it is important to understand the extent to which network
administrators are using such data to block network traffic in practice.

Motivated by this issue, our work seeks to infer if online hosts use threat intel-
ligence IP feeds (IP blocklists) to proactively block network traffic. The principal
challenge in pursuing this question is that such decisions are largely invisible: a
network choosing to block IP address A or not is indistinguishable from a third
vantage point, as this vantage point does not have access to either the network
or IP address A. Moreover, for operational security reasons, few organizations
are willing to publicly document the details of their network defenses.

In this paper, we describe an inference technique, based on the IP ID
increment side-channel (inspired by previous work focused on censorship detec-
tion [11,29]), to detect network-layer blocklisting. Our design is both specialized
to the unique characteristics of IP blocklists (e.g., dynamic, overlapping mem-
bership) and is designed to be conservative with respect to common sources of
network measurement error (hence a finding of blocking is robust). To evaluate
this technique, we test against known ground truth data and then conduct a
large-scale pilot study with over 220K U.S. hosts and against 9 popular IPv4
blocklists. In the two cases where network operators were willing to share their
blocking configuration with us, they were in perfect agreement with our findings.

Across our pilot study, we identified 4,253 hosts (roughly 2% of the hosts we
surveyed), consistently using at least one of the 9 lists that we tested against. We
also established that a larger fraction (roughly a fourth) of the hosts we surveyed
make use of some form of security-related blocking and reliably block traffic to
at least some subset of the IP addresses in our lists. This significant level of
security-related blocking is particularly surprising as our pilot study is biased
towards older machines with minimal traffic (a cohort that we would not have
associated with organizations having an aggressive network security posture).

2 Background

There is a large body of literature concerning the use of various kinds of “threat
intelligence” (not always using that term). One popular focus among these is
evaluating their effectiveness, including works that analyze coverage and accu-
racy of spam blocklists [30,37], phishing blocklists [35], and malware domain
blocklists [20]. Others have explored techniques to better populate such lists,
including Ramachandran et al.’s work on inferring botnet IP addresses from
DNSBL lookups [33], and the work of Hao et al. for predicting future domain
abuse [13,14] (among others). More recently, Thomas et al. explored the value of
sharing threat intelligence data across functional areas (e.g., mail spam, account
abuse, search abuse) and found limited overlap and significant numbers of false
positives [39]. Many of these results are echoed by Li et al. [23].

However, there is comparatively little work focused on understanding how
threat intelligence data is being used in practice. Indeed, the literature that
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exists is primary driven by surveys [31,34] and not validated by any empirical
measurement.1

There also has been significant empirical exploration of Internet connection
blocking in the setting of Internet freedom and access. Indeed, there are a range of
studies that measure connection block in the context of Internet censorship [2,4,
10,28,43], geo-blocking [1,25,27], and Tor blocking [18,36]. Most of these studies
rely on vantage points sited in the target networks being studied, and so are not
directly helpful in our work. However, recent work by Ensafi et al. [11] and Pearce
et al. [29] has removed this requirement using an indirect side channel technique
to test connectivity between pairs of remote hosts. While our approach differs
in a number of ways from theirs, it is inspired by the same idea of using IP ID
to infer if a remote host sent an IP packet.

The IP ID traffic side channel has been well-known since mid 1990s. In
particular, the Identification (ID) field of an IPv4 packet is a 16-bit value in
the IP packet header, designed to support fragmentation by providing a unique
value that can be used to group packet fragments belonging to the same IP
datagram [32]. The simplistic approach using a per-host global counter to ensure
unique IP ID values implicitly encodes the number of packets sent. Thus, by
probing a host multiple times one can use the value of the returned IP ID to
infer how many packets have been sent by the remote host between the two
probes. This side channel has been employed for a wide variety of measurement
purposes, including anonymous port scanning [3], host alias detection [38] and
enumerating hosts behind NATs [5] among others. While most operating systems
no longer use such a simple approach, it is still reasonably common across the
Internet. For example, all versions of Windows up to version 7 used the global
increment algorithm [19].

3 Methodology

In this section, we first describe our inference technique, using the IP ID side
channel (Sect. 2), that determines if a particular host uses a known blocklist. The
intuition here is that if a reflector—a host suitable for our technique—blocks all
blocklist IPs from one particular blocklist, then it is likely that the particular
blocklist is being used for blocking traffic at the network-layer. Next, we detail
criteria of suitable reflectors (Sect. 3.2), and our criteria when sampling blocklist
IPs (Sect. 3.3). Finally, we discuss additional validation measures (Sect. 3.4) and
ethical concerns (Sect. 3.5).

3.1 Technique Overview

To measure if a reflector is blocking a particular IP from a blocklist, we send a
train of packets (here we use SYN-ACK packets) from our measurement machine

1 One exception is the recent work of Bouwman et al. [7] which has explored aspects
of this question through the interview of over a dozen security professionals.
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to the reflector. The packet train consists of packets whose source address is the
blocklist IP (spoofed), bracketed by packets whose source address is our mea-
surement machine, as illustrated in Fig. 1. If a firewall in the reflector’s network
blocks packets from the blocklist IP, the reflector will not receive packets with
the blocklisted source address. It will only receive packets with our measurement
machine’s source address. On the other hand, if there is no blocking, the reflector
will receive the entire packet train.

Fig. 1. The basic method to detect network-layer blocking using the IP ID side channel.
When there is no blocking in place (left), the measurement machine will see an IP ID
gap in two RST responses: the second IP ID will increase by two. Whereas if there is
network blocking (right), then the two IP IDs will be consecutive without a gap.

In an ideal world, where there is no packet loss during transmission and no
extra traffic on the reflector, we expect the reflector to send a RST response
for each SYN-ACK packet we send, and we will receive the responses for the
SYN-ACK with our measurement machine’s source address. The IP IDs of these
received RST packets will reflect the number of packets sent by the reflector.
If the reflector did not receive the SYN-ACK packets with the blocklist IP as
source addresses (being blocked by a firewall), the IP ID sequence in the RST
responses will be an increasing sequence without gaps (the “Blocking” case in
Fig. 1). On the other hand, if the reflector did receive the SYN-ACK packets
with the blocklist IP, it would have sent a RST in response to each such packet,
incrementing the IP ID counter each time. While we will not see the RST packets
sent to the blocklist IP, we will observe the increments in the IP ID sequence.
More specifically, we would see a gap in the IP ID sequence of packets received
by our measurement machine (the “No Blocking” case in Fig. 1). These two
cases allow us to determine whether a particular blocklist IP is blocked by some
network device, such as a firewall, somewhere between the measurement host
and the reflector.

In previous works [11,29], the technique relies on sending spoofed SYN pack-
ets to the sites (equivalent to our blocklist IPs here), with the source IPs equal
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to reflector IPs. The sites then reply with SYN-ACK packets to the reflectors.
By monitoring the reflectors’ IP ID changes during this process, the authors can
determine whether the reflectors are blocking the tested sites. To use this strat-
egy, however, one requires both reflectors and sites to be active hosts that reply
to SYN/SYN-ACK probes. Unfortunately, in our case there is no guarantee that
blocklist IPs will reply to TCP probes. In fact, we found that on average only
about 24% of IPs on a blocklist reply to TCP probes. Using only blocklist IPs
that reply would dramatically reduce the candidate IPs we can sample from a
blocklist, especially for small blocklists that only have a few hundred IPs. We
already have many constraints when sampling IPs from a blocklist (Sect. 3.3),
and this extra requirement could leave us with not enough candidates for a
measurement.

Therefore, in our technique, we directly send SYN-ACK packets to reflectors,
with no involvement of hosts behind blocklist IPs. The disadvantage here is
that we cannot detect outbound blocking—wherein the spoofed packet reaches
the reflectors but the responses are blocked when going out of the network.
Based on our experience talking with several security companies, most customers
deploy inbound or bi-directional traffic blocking, so we believe missing outbound
blocking is not a major concern.

In this section, we explain how the technique works on a theoretical level. The
actual implementation needs to handle potential packet loss and other extrane-
ous traffic at reflectors. We list the full implementation of the technique and
false positive and false negative analyses in Appendix A.

3.2 Criteria for Reflectors

At a high level, our technique relies on the presence of the IP ID side channel.
Keeping that in mind, listed below are the criteria for suitable reflectors.

– RST packet generation: The reflectors must reply with a RST packet
to a TCP SYN-ACK packet without an established connection. Hosts that
drop incoming SYN-ACK packets without a corresponding SYN packet are
not suitable for our methodology. We use SYN-ACK packets instead of SYN
because it does not create an intermediate state on the reflectors and the
connection is terminated in one go.

– Shared monotonic increasing IP ID counter: The reflector should have a
monotonically increasing globally shared IP ID counter, so all network traffic
from the host uses the same IP ID counter counter and the number of packets
generated by the host between two measurements is implicit in the difference
of IP IDs.

– Low traffic: Our technique relies on a clear observable difference in IP ID.
As such, hosts must have low traffic volumes since a high traffic volume makes
it infeasible to observe the IP ID changes triggered by our probing packets.

– No ingress filtering: We send spoofed packets to reflectors to infer traffic
blocking. However, some network providers use ingress filtering techniques
and drop packets once they detect the packets are not from the networks
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they claimed to originate. This filtering would cause our spoofed packets
being dropped and give us a false signal of traffic blocking.

– No stateful firewall blocking: Some networks deploy a stateful firewall
that blocks access from a source IP after receiving too many repetitive pack-
ets. One example is to defend against SYN floods [21]. While we try to keep
the number of our probing packets as low as possible, if our spoofed packets
trigger such firewall rules and then we are blocked by the firewall, we will
incorrectly conclude that the reflector uses a blocklist to block that IP.

Our goal is to discover if online hosts are using IP blocklists to block traffic.
But when looking at the problem on a global scale, there are many policy related
reasons why a host blocks network traffic, such as censorship. These alternate
sources of blocking could disrupt our experiments. To simplify the problem, and
for ethical considerations, in this paper we only test the hosts located in the
United States.

3.3 Sampling Blocklist IPs

To determine if a reflector uses a particular IP blocklist, we use a sample of
IPs from a blocklist, as it would be infeasible for us to test all blocklist IPs.
Further, to obtain a definitive signal from our experiment, we need to adhere to
the following constraints when sampling blocklist IPs to avoid possible noise:

– Exclusive: A blocklist can share part of its contents with other blocklists.
To reasonably infer whether a reflector is using a specific blocklist, we need
to test with IPs unique to that blocklist—IPs that are only in this blocklist
but no others.

– Stable: IPs on a blocklist change over time. To reliably measure if a reflector
blocks IPs from a certain blocklist, we need the sampled IPs to stay in the
list throughout one experiment. This cannot be enforced beforehand, so we
discard the cases where a blocklist IP does not remain on the list for the
duration of the experiment.

– Routable: IP blocklists can contain unroutable IPs [23]. Sending packets
with an unroutable source address results in a large portion of packets being
dropped, as we have observed (which could potentially happen at end ISPs
or transient links). Packet drops due to unroutable IPs would create noise in
the experiment. Therefore, when sampling IPs from blocklists we ensure that
the IPs are routable.

– Geo-location diversified: Besides blocklisting, another common reason for
traffic blocking is geo-blocking, where a host blocks all traffic coming from a
certain country or region. To minimize the effect of geo-blocking, we prioritize
IPs that are from the United States when sampling IPs, assuming a host in
the US will not geo-block traffic from the US. For IPs in other countries, we
try to increase the diversity of IP locations, making sure the sampled IPs are
not concentrated in only a few countries when possible.
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– Not from reflectors’ network (AS disjoint): We observed that not many
networks have implemented ingress filtering (we saw less than 2% of the
total hosts we scanned showing this behavior). However, many networks drop
spoofed packets when the spoofed source addresses are within their own net-
work. So when selecting blocklist IPs, we make sure that these IPs are not
from the same ASes as one of our reflectors.

3.4 Control Group

To further validate our technique, every time we test a set of blocklist IPs against
each reflector, we also include a control group of 20 randomly chosen IPs that
are BGP routable, geo-located in the United States and not blocklisted (see
Sect. 4.2). The control group represents a random set of IPs that are unlikely to
be blocked in bulk by a reflector. We use US IPs to avoid the potential problem
of geo-blocking. If a reflector does block a significant fraction of control IPs, it is
probably because the reflector is not suitable for this technique (one reason can
be that our ingress-filtering step did not catch these IPs), and we should discard
all the results associated with this reflector.

3.5 Ethical Considerations

In our experiments, we send spoofed packets to reflectors impersonating traffic
from other IPs to infer the presence of network-layer blocking based on IP block-
lists. A key ethical concern with this kind of measurement is the extent to which
either receiving such packets or being seen to have received such packets would
put the recipients at undue risk. Indeed, this is particularly problematic in cen-
sorship measurements [11,29] because of the potential to inadvertently cause a
host to be associated with content that is politically dangerous in their country.
However, our work operates in a context that is substantially less risky, and we
have further designed multiple aspects of our protocol to minimize the likelihood
of risk. In particular, our methodology incorporates the following approaches to
minimize risk:

Restriction in Scope: We have specifically restricted our measurements to only
reflectors within the United States, which affords relatively robust free speech
rights and considerable transparency around criminal proceedings. Indeed, from
our conversations with both network operators and law enforcement, we are
unaware of a realistic scenario where the mere receipt of a packet has led to
criminal or civil liability.

Conventional Sources: Unlike in censorship studies, the source IP addresses
being spoofed in our measurement are those that have been used to mount
wide-spread abusive activity such as spamming, port scanning, etc. and these
represent precisely the kinds of traffic that a typical host on the Internet would
expect to receive.

Inbound, Connection-Free Probes: Our measurements are constructed to
be inbound only and connection free; that is, a network monitor could witness
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traffic consistent with an external scan of one of their hosts, but will never
witness a completed connection or any data transmission. From our discussions
with network operators and network security vendors, we could not identify a
scenario where the mere receipt of the packets we send would be sufficient to
drive an incident response team to action.

Minimal Use of End-Host Resources: Our scans are purposely constructed
with SYN-ACK packets to ensure that no state is created on the reflector. More-
over, our peak probing rate per reflector is 6 min-sized packets per second (see
appendix for more details). But even that rate only persists for two seconds in
each test, and in the following pilot study, we probe each reflector no more than
once every 3 mins.

4 Pilot Study Implementation

With the technique discussed in the previous section, one can then infer if an
online host (reflector) satisfying the selection criteria outlined above is block-
ing traffic using a specific IP blocklist. To evaluate our inference technique, we
conducted a pilot study over a large number of reflectors to infer their blocklist
usage. In this section, we explain in detail the implementation of our experiment,
including reflector selection, blocklist selection, sampling IPs from blocklists and
measurement setup.

4.1 Reflector Selection

We start our selection of reflectors using a snapshot of Censys [9] scanning data
from November 8, 2019, consisting of over 40 million IPv4 hosts with open ports
in the US. We then send multiple probes to each host targeting an open port
from different source addresses, checking the IP IDs of responses to identify the
ones with the IP ID side channel. We further run tests to make sure they meet
the criteria listed in Sect. 3.2 (see Appendix A). If one host has multiple open
ports, we randomly pick one to probe.

Table 1. The number of reflectors (IP addresses) identified in the United States, and
the corresponding count of /24 prefixes and Autonomous Systems.

Category Count

IP addresses 222,782

/24 Count 128,712

Autonomous Systems 3,371

We identified 222,782 IP addresses in the US that meet our criteria. For
the purpose of this paper, we treat each individual IP address as a distinct
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reflector. Table 1 counts these addresses at different network aggregations. By
construction, the set of reflectors we use will necessarily have certain biases. To
understand what fraction of networks of potential interest to others this might
cover, we queried the Alexa top 100K domains as of Dec. 17th, 2019 for their
A records and MX records and obtained their corresponding IP addresses. Of
these, we identified a total of 94,846 IPs that are located in the US, covering
34,083 /24 s. While we made no attempt to find reflectors in these networks
a priori, our selection methodology identified at least one reflector in 16.9% of
these /24 s. When only looking at the top 10K domains, our data set covers
13.2% of US /24 s.

We also checked the WHOIS record of each reflector and identified all hosts
associated with education institutions. In total, our data set includes 4,370 edu-
cation IPs, ranging across 181 different institutions, and covers 40 out of the top
100 US universities based on the US News ranking [42]. Thus, while there may
be networks without a suitable reflector for one reason or another, our technique
is applicable to a large number of existing networks.

4.2 Choosing Blocklists and Sampling IPs

For the pilot study, we choose candidate blocklists from public IPv4 blocklists.
We use the FireHOL IP blocklist collection [12], which aggregates over 100 pub-
lic IP blocklists every day. However, we cannot reasonably test against all the
blocklists and so, for the purposes of this paper, we select the most popular
public IP blocklists and then do a more detailed measurement on them.

For each of the public IP blocklists, we sample five IPs (using the criteria in
Sect. 3.3) from each list and test how many reflectors block all sampled blocklist
IPs in each blocklist. The goal of this step is to roughly estimate how widely
used these blocklists might be, so that we can pick the most prevalent ones for
more detailed measurements later in Sect. 5. We repeat the measurement twice
and select the top 9 blocklists:

1. Spamhaus DROP: Spamhaus Don’t Route Or Peer Lists
2. Spamhaus EDROP: An extension of the Spamhaus DROP list
3. DShield Top Blocklist: DShield.org recommended top 20 /24 s to block
4. ET Compromised: EmergingThreats.net recorded compromised hosts
5. Snort IP Filter List: labs.snort.org supplied IP blocklist
6. BDS IP Ban List: Binary Defense System ban list
7. Feodo IP Blocklist: Abuse.ch Feodo tracking list
8. Blocklist De Blocklist: Blocklist.de blocklist IPs
9. Tor IP Blocklist: IPs that belong to the Tor network (not just exit nodes)

When sampling IPs from blocklists to test, we use the criteria listed in
Sect. 3.3. To find the exclusive IPs on each blocklist, we use the public IP block-
lists collected by FireHOL, as mentioned earlier, and calculate the unique part
of each target blocklist. For the stable IP requirement, we collect all the target
blocklists hourly, and ensure the sampled IPs are in the blocklist through the
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duration of the experiment. To satisfy the routable requirement, we use daily
RouteView data [41] to identify BGP routable IPs. For geo-location diversity,
we use NetAcuity [26] to make sure for each experiment the sampled IPs cover
as many different countries as the data allows.

4.3 Measurement Setup

Having selected the reflectors and blocklists, we can now conduct the experiment
to infer which reflectors use which specific blocklist.

For a particular experimental run, we randomly selected 25 IPs from each
blocklist that satisfy the requirements defined in Sect. 3: exclusive, stable,
routable, geo-diversified, and AS disjoint. Then we evaluated the blocking behav-
ior for all 220K reflectors against the 225 blocklist IPs sampled from the 9 block-
lists. To handle cases where reflectors might take time to update and start block-
ing the newest IPs on the blocklist, we ensure the sampled IPs have appeared in
the blocklist at least 2 weeks before our experiment. During post-processing, we
remove blocklist IPs from consideration that did not remain on the list for the
duration of the experiment. Furthermore, we conducted three experimental runs,
each time using a different set of 25 IPs from each blocklist. We then conclude
that a reflector is using a blocklist if and only if all experiment runs show that
it blocked all the sampled IPs from that blocklist.

We conducted our measurements from December 3–23rd, 2019. During this
period, we tested in total 96,067,051 distinct (reflector, blocklist IP) pairs.
(In the first two experiments, we tested against all reflectors. In the last exper-
iment, we only tested the ones that have shown blocking behavior in the first
two tests.) Among these pairs, 894,570 pairs display a clear signal indicating
“blocking”.

5 Pilot Study Overall Results

Use at least one blocklist (1.9%)

Block at least
one IP (21.2%) No blocking observed (76.9%)

Fig. 2. Breakdown of reflector blocking based on three experimental runs. We identified
4,253 reflectors that use at least one blocklist (Sect. 5.1). We also found a large number
of reflectors blocking at least some IPs in blocklists (Sect. 5.2).

Figure 2 presents the overall blocking behavior of all 222,782 reflectors we tested
partitioned into four categories: those reflectors that we conclude use at least
one of the public blocklists (1.9%), reflectors that block at least one blocklist IP



Clairvoyance: Inferring Blocklist Use on the Internet 67

(21.2%), and reflectors that do not block any blocklist IPs (76.9%). Note that
given the attributes of hosts to be reflectors, such as running old OS versions, it
is not surprising a large percentage shows no blocking of the blocklist IPs: they
already have attributes anti-correlated with high degrees of security hygiene. The
following sections explores each of these categories of reflector blocking behavior
in more detail.

Table 2. Breakdown of reflectors we con-
clude using each of the nine blocklists.

Blocklist (abbr.) Reflectors /24s ASes

Spamhaus DROP (DROP) 4,142 1,782 50

Spamhaus EDROP (eDROP) 1,272 362 25

DShield Top Blocklist (DTop) 223 69 18

ET Compromised (ET) 116 58 15

BDS IP Ban List (BDS) 85 41 3

Feodo IP Blocklist (Feodo) 64 26 16

Snort IP Filter List (Snort) 52 20 11

Blocklist De Blocklist (DE) 36 18 8

Tor IP Blocklist (Tor) 24 9 8

Total Unique 4,253 1,827 77
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Fig. 3. CDF of the number of
blocklists used by reflectors.

5.1 Reflectors Using Blocklists

We identified 4,253 (1.9%) reflectors that use at least one of the 9 public block-
lists. Table 2 shows the number of reflectors using each of the nine different
blocklists, as well as the number of unique /24 s and ASes those reflectors appear
in. Spamhaus DROP is by far the most popular blocklist in our collection, fol-
lowed by Spamhaus EDROP. The remaining blocklists have a comparatively
small number of reflectors using them. Since many aspects of our method and
experiment make conservative choices, these results should be considered a lower
bound.

Figure 3 shows the cumulative distribution of the number of blocklists these
reflectors use. For the 9 public blocklists we studied, over 68.6% use just one
blocklist, 23.8% use two or more, and 7.6% use three or more. One reflector used
6 of the 9 blocklists.

For these reflectors, though, there are interesting patterns to the multiple
blocklists used. Figure 4 shows the use of multiple blocklists with a heatmap.
Rows and columns correspond to blocklists, and each cell of the heatmap shows
the fraction of the reflectors using the blocklist in row R that are also using the
blocklist in column C. For example, the first cell for ET Compromised shows
that 78% of the reflectors that use ET also use the Spamhaus DROP blocklist.
Diagonal cells are 1.00 since they show blocklists compared with themselves.
Blocklists are ordered in the same order as in Table 2.
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Fig. 4. Pair wise intersection between
reflectors that use each blocklist.
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Fig. 5. Breakdown of the number of
organizations covered by each blocklist.

The first cell of the Spamhaus EDROP row indicates that all reflectors that
use Spamhaus EDROP also use Spamhaus DROP. Since the eDROP list is an
extension of the DROP list, the behavior is strongly consistent with expectations.
Moreover, the many significant values in the first two columns show that reflec-
tors that use any of the other blocklists very often also use Spamhaus DROP
and eDROP. At least for the hosts that we select for, these results underscore
the popularity of Spamhaus lists and indicate that, if a reflector blocks traffic
using blocklists, it very likely uses Spamhaus.

Ultimately the blocklist use and blocking behavior of the reflectors is strongly
tied to the organization to which they belong. While inferring the exact organiza-
tion behind an IP is difficult, we can still explore some high-level organizational
aspects of blocklists. We first identify the AS for every reflector, then use the
CAIDA AS-to-Organization dataset [8] to map the AS to an organization. Then,
we manually partition the organizations into six categories: ISPs (e.g., Comcast),
Hosting Providers (e.g., GoDaddy web hosting, AWS cloud computing), Educa-
tion (e.g., universities), Healthcare (e.g., hospitals), Government (e.g., state and
federal agencies), and Enterprise (individual companies owning the IPs).

Figure 5 shows the number of organizations using each blocklist, and their
breakdowns by organization category. Most blocklists are used by a wide variety
of organizations. Feodo IP Blocklist is the most diverse blocklist in our study, as
organizations from all six categories use it. From the perspective of organizations,
Educational institutions cover 8 of the 9 blocklists we selected, suggesting a
potential preference among universities on using public blocklists.

Validation: Based upon the locations of blocking reflectors, we reached out
to two universities that we concluded are using blocklists. In both cases, the
blocklists we inferred matched the blocklists they reported using, validating the
technique in these two cases. More specifically, University A confirmed our find-
ings that they use BDS IP Ban List, ET Compromised, Spamhaus DROP and
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Spamhaus EDROP. University B confirmed our findings that they use Spamhaus
DROP and Spamhaus EDROP.

5.2 Partial Blocking

Partial blocking is when a reflector blocks some of the blocklist IPs but not all
of them. There are many reasons, unrelated to the use of a blocklist, why a
reflector may block a blocklist IP. A host may have internal policies that deny
access from some network providers, or network administrators may add IPs into
their firewall on an ad-hoc basis based on an organization’s own policies. These
alternate blocking behaviors could overlap with the blocklist IPs we sampled,
leading to partial blocking behavior.

Geo-blocking is one cause of partial blocking we identified, where a reflector
drops all traffic from a particular country. DShield Top Blocklist, for example,
had over 50% of its IPs on January 25, 2020 geo-located in the Netherlands.
If a reflector blocks traffic from the Netherlands, then we would observe that
the reflector is partially blocking DShield Top Blocklist. To identify whether
a reflector uses geo-blocking, we check whether the reflector consistently blocks
IPs from a particular country. For all countries related to blocklist IPs we tested,
we sample IP addresses from those countries based on four IP location services:
MaxMind [24], IP2Location [15], IPDeny [16], and IPIP.net [17], and test against
our reflectors. Overall, we identified a small number of reflectors, 614 (0.28%),
that consistently block traffic from at least one country.

After removing the geo-blocking reflectors from partial blocking cases, we
noticed that a small percentage of reflectors consistently blocked a significant
subset of blocklist IPs, but not all, in every experiment. This consistency sug-
gests that there is a large overlap between the blocklist and the blocking policy of
the reflector. If a reflector blocks over 50% of sampled IPs from a blocklist every
time we test, we regard the reflector as exhibiting significant partial blocking
over a blocklist. In total we identified 871 (0.4%) such reflectors. These hosts are
probably using a source that is very similar to the blocklists we tested, as previ-
ous work has shown that commercial products can aggregate data from public
blocklists, and then conduct post-processing to eliminate some content [23]. It
is also possible that they are using an older version of the same list, where the
content is mostly the same.

Besides these cases, an additional fifth of reflectors demonstrate blocking
behavior, as evidenced in Fig. 2. Although we do not know the exact reason for
the blocking, the result suggests that security-related network blocking is rela-
tively prevalent even among low security hygiene hosts such as these reflectors.

Finally, we had originally hypothesized that network layer blocking would
be primarily implemented in border devices (e.g., firewalls, gateways) and thus
affect whole network blocks identically. However, when checking reflectors within
the same /24 s, we find that reflectors under the same /24 frequently do not block
the same set of IPs. We refer to this as inconsistent blocking. Our experiment
found 8,909 (/24, blocklist) pairs where multiple reflectors under that /24
block some IPs in that specific blocklist. Among them, 3,263 (36.6%) pairs show
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inconsistent blocking behavior. This result implies there is considerable intra-
network diversity in blocking policy. More analyses and details on the method-
ology can be found in Chap. 4 in [22].

6 Conclusion

Our paper proposes, implements and tests a technique for inferring the deploy-
ment of network-layer blocklists and, further, for attributing the use of partic-
ular blocklists by particular hosts. While our technique depends on hosts that
are largely quiescent (not sending or receiving much traffic) and use a global
increment strategy for IP ID generation (typically those with older operating
systems), both of these limitations may be addressable to some extent. Hosts
with modest levels of traffic are likely still amenable to testing by using larger
sample sizes and more sophisticated statistical testing regimes. As well, while
many modern hosts purposely obfuscate the generation of IP ID values, recent
work by Klein and Pinkas [19] has demonstrated attacks on these algorithms (in
Windows and Linux in particular) which may provide purchase for using the IP
ID side channel with more contemporary machines. Future work could leverage
these methods to apply our technique to more blocklists with a broader set of
reflectors.

Our pilot study covered 220K US hosts, identified blocking behavior in
roughly a fourth of all reflectors, but only 2% show clear use of the blocklists
we tested against. This difference is puzzling on multiple fronts. It suggests that
even among older quiescent hosts that there are significant network security con-
trols in place. Also, it indicates that there may be far more diversity in blocklist
usage than we had initially imagined.

A Inference Technique Details

Our technique, while simple in theory, needs to handle real-world scenarios,
including packet losses, packet reordering during transition, and other traffic on
reflectors. The inference method needs to be efficient, accurate, and have low
overhead. Blocklists can change frequently, leaving a short window to infer a
stable behavior. As such, for the measurement to finish in a reasonable amount
of time requires an efficient inference method. Additionally, the method should
also have low false positive and false negative rates so that we can be confident
about the result. Finally, it should require as few packets as possible to reduce
potential impact on reflectors.

The first step is to find reflectors suitable to our measurement technique.
Recall that a suitable reflector should have minimal background traffic, and not
be part of a network doing ingress filtering for spoofed packets. To find quiescent
hosts, reflectors with low background traffic, we send 24 probes to each candidate
host, 1 per second, and repeat the experiment 5 times at different times of the
day. We then only select hosts where at least 30% of their IP ID increases are
equal to 1 per second—the host did not receive any extra traffic in that one
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second. We use the 30% threshold to select hosts that are largely “quiet”, and
thus more likely to yield a perfect signal in the experiment. Next, to identify
hosts behind ingress filtering, we acquired 7 vantage points around the world
to exercise different paths to the reflector. We sent spoofed packets from our
measurement machine to the hosts with spoofed source addresses corresponding
to the 7 vantage points, and then collected responses at each vantage point. We
only select the hosts that send responses to all 7 vantage points, meaning they
did not drop spoofed packets on any of the exercised network paths.

Next, we describe how we infer if a given reflector blocks an IP using multiple
trials. We define a trial as a single experiment that tests if a reflector blocks
one blocklist IP. Figure 6 shows the process of one trial. For each trial, the
measurement machine sends five consecutive probe packets to the reflector, with
each packet being sent one second apart. In our experiment, the probe packets
are TCP SYN-ACK packets and we get IP IDs from response RST packets.
Between the third and fourth probe packets, the measurement machine sends
five spoofed packets, also TCP SYN-ACK, with source IPs equal to the blocklist
IP. And between the fourth and the fifth probe packets, it sends another five
spoofed packets. We send the five spoofed packets 0.15 s apart consecutively
each time, spreading them across the one-second window between two probes.

Measurement
Machine

  IP ID Probe   

  Spoofed Packets x 5  

1 second apart

Fig. 6. Blocking inference methodology.
Solid blue lines are probe packets, dashed
red lines are spoofed packets. (Color
figure online)

Fig. 7. Experiment design and false pos-
itive and false negative analysis

We then inspect the increases between the IP IDs in the packets received by
the measurement machine. Ideally, assuming no additional traffic and no packet
loss, the IP ID should increase by exactly one between consecutive probes. For
the last two deltas, since we send the spoofed packets in between our probe
packets, the final IP ID increases will be different based on the host’s blocking
behavior.

If the reflector does not block the blocklist IP, then we will observe an IP ID
increase sequence in our received RST responses that is: [+1, +1, +6, +6]. Here
the last two deltas are +6 since the reflector does not block the blocklist IP and
thus responds to spoofed packets, causing IP ID to increase by 5, and our probe
packet causes it to increase by another 1, which together make +6.
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On the other hand, if the reflector blocks the blocklist IP, then we will see
an IP ID increase sequence that is: [+1, +1, +1, +1]. Here the last two deltas
are +1 since the reflector blocks the blocklist IP, leading to no extra change in
IP ID.

The first three probes—corresponding to the first two IP ID deltas—act as a
control. The last two “probe and spoof” patterns perform the actual experiment.
Seeing the initial two “+1” indicates this host is in a quiet period (no extra
network traffic). Therefore, we can be more confident that the following IP ID
jump (“+6” in our case) is because of our experiment. While the choice of the
numbers in the experiment may seem arbitrary, there is a rationale behind the
choice which we will discuss in following sections.

A.1 Inference Criteria

We now look at the criteria to infer if a reflector blocks a blocklist IP or not. Our
limited vantage point from the measurement machine limits our information to
the IP IDs seen from the reflector. Moreover, we desire to be conservative when
inferring blocking. Thus, our approach is to try the same trial, between a reflector
and a blocklist IP, until we get a “perfect signal”—a response which matches all
the criteria below:

1. The measurement machine received exactly five RST responses from the
reflector.

2. The five responses are received one second apart consecutively.
3. The IP ID increase sequence is either [+1, +1, +6, +6], which we will conclude

as no blocking, or [+1, +1, +1, +1], which we will conclude as blocking.
4. If any of the above three criteria are not met, we repeat the same experiment

again. We repeat up to 15 trials before giving up.

The first requirement ensures no packet loss. The second requirement ensures
responses we received reflect the real IP ID changes in the reflector. The Internet
does not guarantee the order of packet arrival. Although we send one probe
packet per second, these packets might not arrive at the reflector in the same
order. Thus, the IP ID sequence from the response packets might not represent
the real order of IP ID changes at the host. Hence, by requiring that the response
packets cannot be less than 0.85 or more than 1.15 s apart we can minimize the
probability of reordered packets.

The third requirement is the core of our inference logic. Since we ignore
everything other than an IP ID increase sequence of [+1, +1, +1, +1] or [+1,
+1, +6, +6], we can assure that our inference of blocking is conservative. If we
saw a sequence of [+1, +1, +1, +1] but the reflector does not block the blocklist
IP, that would mean all 10 spoofed packets were lost. On the other hand, if we
see [+1, +1, +6, +6] and the reflector actually blocks the blocklist IP, that would
mean there are exactly five extra packets generated by the reflector during each
of the last two seconds. Both cases are very unlikely, which we will demonstrate
next with an analysis of false positives and false negatives.
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A.2 False Positive and False Negative Analysis

For our experiment, a false positive is when a reflector is not blocking a blocklist
IP, but we mistakenly conclude it is blocking. On the other hand, a false negative
is when a reflector is blocking a blocklist IP, but we mistakenly conclude it is
not. To evaluate false positive and false negative rates, we conduct experiments
on all the reflectors under consideration and measure the false positive and false
negative rates.

For false positive evaluation, we first acquire a list of IPs that are verifiably
not being blocked by reflectors. Since we own these IPs, we can easily verify
by directly probing reflectors from these IPs. We acquired and tested 1,265 IPs
from five different /24s. Then we probe reflectors and send the spoofed packets
with source addresses set to these pre-selected IPs. Since these IPs are not being
blocked, if we observe an IP ID increase sequence of [+1, +1, +1, +1], then we
know it is a false positive.

For false negatives, we run the experiment with only probe packets, and no
spoofed packets. This scenario is equivalent to the one where the reflector blocks
the spoofed IP. If we observe an IP ID increase sequence of [+1, +1, +6, +6],
then we know it was due to the background traffic at the reflector and hence is
a false negative.

Although we present the experiment design with five spoofed packets in each
of the last two seconds, we also experimented with a range of numbers and
calculated their false positive and negative rates. We tested 15 times with spoofed
packets equal to 3, 4, 5, 6, and 7 with every reflector, and we repeated the
experiment again on a different day. The final results are shown in Fig. 7.

We need to trade off between keeping false positive and negative rates low
while generating as little traffic as possible. We choose 5 spoofed packets as a
balance. By sending 5 spoofed packets, we get a false positive rate of 2.5e-5, and
a false negative rate of 8.5e-5. Furthermore, we also experimented with strategies
where we send 4 probe packets, from which we get 3 IP ID deltas, and sending
6 probe packets, from which we get 5 IP ID deltas. With only 3 deltas we suffer
a higher false negative rate, as it is easier for the reflector to show the same IP
ID increase sequence with extra traffic. With 6 probes, on the other hand, we
prolong the experiment, making it harder to get a “perfect signal”. Thus, our
choice of 5 probe packets with 5 spoofed packets in between is a good balance
between competing factors.
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Abstract. Software updates take an essential role in keeping IT envi-
ronments secure. If service providers delay or do not install updates, it
can cause unwanted security implications for their environments. This
paper conducts a large-scale measurement study of the update behav-
ior of websites and their utilized software stacks. Across 18 months, we
analyze over 5.6M websites and 246 distinct client- and server-side soft-
ware distributions. We found that almost all analyzed sites use outdated
software. To understand the possible security implications of outdated
software, we analyze the potential vulnerabilities that affect the utilized
software. We show that software components are getting older and more
vulnerable because they are not updated. We find that 95 % of the ana-
lyzed websites use at least one product for which a vulnerability existed.

Keywords: Updates · Vulnerabilities · Security · Web measurement ·
Web security

1 Introduction

Nowadays, we use the Web for various tasks and services (e.g., talking to our
friends, sharing ideas, to be entertained, or to work). Naturally, these services pro-
cess a lot of personal and valuable data, which needs to be protected. Therefore,
web services need to be hardened against adversaries, for example, due to imper-
fections of software. An essential role in every application’s security concept is the
updating process of the used components [9]. Not updating software might have
severe security implications. For example, the infamous Equifax data breach that
affected 143 million people was possible because the company used software with
a known vulnerability that has already been fixed in a newer version [26].

However, keeping software up to date is not always easy and, from the security
perspective, not always necessary (i.e., not every update fixes a security issue).
Modern applications require a variety of different technologies (e.g., libraries, web
servers, databases, etc.) to operate. Updating one of these technologies might
have unforeseeable effects and, therefore, updates might create potentially high
overhead (e.g., if an update removes support of a used feature). More specifically,
service providers might object to install an update because they do not directly
c© Springer Nature Switzerland AG 2021
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profit from the new features (e.g., changes in an unused module). Hence, it is
reasonable not always to install every available update (e.g., to ensure stability).

In this work, we show that this challenge can have grave implications. To
understand how up to date the utilized software on the Web is and to under-
stand its possible security implications, we conduct a large-scale measurement.
Previous work also analyzed update behavior on the Web (e.g., [19,23]) but –
to the best of our knowledge – our measurement is more comprehensive than
the previous studies. While we analyze over 5.6M sites and nearly 250 software
(SW) products, other work in this field often only analyzed one specific type
of software or a small subset. Therefore, our results are more generalizable and
provide a better overview of the scale of the problem.

To summarize, we make the following contributions:

1. We conduct a large-scale measurement that evaluates 246 software products
used on 5.6M websites over a period of 18 months, to determine update
behavior and security impact of not updating.

2. We show that 96 % of the analyzed websites run outdated software, which is
often more than four years old and is getting even older since no update is
applied.

3. We show that a vast majority of the analyzed websites (95%) use software
for which vulnerabilities have been reported, and the number of vulnerable
websites is increasing over time.

2 Background

In this section, we discuss the principles of how web applications work and how
known vulnerabilities are publicly managed, both necessary to appreciate our
work.

2.1 Preliminaries

We start by introducing key terminology. In this work, we use the term site (or
website) to describe a registerable domain, sometimes referred to as eTLD+1
(“extended Top Level Domain plus one”). Examples for sites are foo.com and
bar.co.nz. Each site may have several subdomains (e.g., news.foo.com and
sport.foo.com). Following the definition of RFC 6454 [1], we call the tuple of
protocol (e.g., HTTPS), subdomain (or hostname), and port origin. This dis-
tinction is important since the well-known security concept Same-Origin Policy
(SOP) guarantees that pages of different origins cannot access each other. We
use the term page (or webpage) to describe a single HTML file (e.g., a webpage
hosted at a specific URL).

2.2 Web Technologies and Updating

To implement modern web applications, service providers rely on a diverse set
of server-side (e.g., PHP or MySQL) and client-side technologies (e.g., HTML
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or JavaScript). This combination of different technologies often results in a very
complex and dynamic architecture, not always under full control of the service
provider (e.g., usage of third parties [8]). Furthermore, the update frequency of
web technologies is higher compared to desktop software [20]. Web applications
are commonly composed of different modules that rely on each other to perform
a given task. Hence, one vulnerability in any of these modules might undermine
the security of the entire web app, depending on the severity of the vulnerability.
Once a vulnerability of an application is publicly known or privately reported to
the developers (see also Sect. 2.3), the provider of that application (hopefully)
provides an update to fix it. Therefore, service providers need to check the avail-
ability of updates of the used components and their dependencies and transitive
dependencies regularly. However, it should be noted that not all updates fix
security issues, and, therefore, it is not necessary or desired (e.g., for stability
reasons) to install all updates right away.

2.3 Common Vulnerabilities and Exposures

Once vulnerabilities in software systems are discovered, reported to a ven-
dor, or shared with the internet community publicly, they are published in
vulnerability database platforms (e.g., in the National Vulnerability Database
(NVD)). The NVD utilizes the standardized Common Vulnerabilities and Expo-
sures (CVE) data format and enriches this data. Each CVE entry is provided
in a machine-readable format and contains details regarding the vulnerabil-
ity (e.g., vulnerability type, vulnerability severity, affected software, and ver-
sion(s)). The primary purpose of each CVE entry is to determine which soft-
ware is affected by a vulnerability and helps to estimate its consequences. Each
entry in the NVD database is composed of several data fields, of which we
now describe the one most important for our work. In the NVD database,
the field ID of a CVE entry uniquely identifies the entry and also states the
year when the vulnerability was made public, followed by a sequence num-
ber (e.g., CVE-2020-2883), the field CVE data timestamp indicates when the
CVE entry was created. Furthermore, each CVE entry also includes a list
of known software configurations that are affected by the vulnerability (field
configurations), formally known as Common Platform Enumeration (CPE).
CPE defines a naming scheme to identify products by combining, amongst
other values, the vendor, product name, and version. For example the CPE
(in version 2.3) cpe:2.3:a:nodejs:node.js:4.0.0:[...] identifies the prod-
uct node.js provided by the vendor nodejs in version 4.0.0. Furthermore, the
configurations field lists all conditions under which the given vulnerability
can be exploited (e.g., combination of used products). Finally, the field impact
describes the practical implications of the vulnerability (e.g., a description of
the attack vector) and holds a score, the Common Vulnerability Scoring System
(CVSS), ranging from 0 to 10, which indicates the severity of the CVE (with ten
being the most severe). Again, it is worth noting that it not definite that if one
uses a software product – for which a vulnerability exists – that it is exploitable
by an attacker. For example, if an SQL-Injection is possible via the comment
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function of a blog, it can only be exploited if the comment function is enabled.
Thus, our results can be seen as an upper bound.

3 Method

In this work, we want to assess the update behavior of web applications, measure
if they use outdated software, and test the security implications of using the
vulnerable software. To accomplish that, we collect the used modules (software
and version) of the websites present in the HTTPArchive [4] over a period of 18
month, extract known vulnerabilities from the National Vulnerability Database
database, and map them against the used software versions of the analyzed sites.

Identifying Used Software. To assess the update behavior of websites, we need
to identify the software versions of the software in use. To do so, we utilized data
provided by HTTPArchive [6], which includes all identified technologies used by
a website. HTTPArchive crawls the landing page of millions of popular origins
(mobile and desktop) based on the Chrome User Experience Report (CrUX) [3]
every month, since January 2019. In CrUX, Google provides publicly metrics like
load, interaction, layout stability of the websites that are visited by the Chrome
web browser users on a monthly basis. This real-world dataset includes popular
and unpopular websites [5]. In our study, we analyze all websites provided in
HTTPArchive. Hence, we can use 18 data points in our measurement (M#1 –
M#18). The data provided by HTTPArchive includes, among other data: (1)
the date of the crawl, (2) the visited origins, and (3) identified technologies
(software including its version). HTTPArchive uses Wappalyzer [24] to identify
the used software, which uses different information provided by a site to infer the
user version and technology stack. In order to make version changes comparable,
we converted the provided data to the semantic versioning (SemVer) standard
(i.e., MAJOR.MINOR.PATCH) [14] and validate also the version information from
HTTPArchive as well as from NVD and check if provided versions are in a valid
SemVer format. This unification allows us to map the observed versions of the
known vulnerabilities. If we find an incomplete SemVer string, we extended it
with “.0” until it fits the format.

Identifying Vulnerable Software. To better understand the security impact of
updates, we map the software used by an origin to publicly known vulnerabilities.
We collect the vulnerabilities from the National Vulnerability Database (NVD)1.
Each entry in the NVD holds various information, but only three are essential
to our study: (1) the date on which it was published, (2) a list of systems that
are affected by it, and (3) the impact metrics how it can be exploited and its
severity. In this work, we only focus on vectors that can be exploited by a remote
network adversary.

1 We used the database published on 04/07/20.
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3.1 Dataset Preparation and Enrichment

Here, we describe the steps taken to enrich our dataset to make it more reliable.

Release History. To get a firm understanding of the update behaviour of web-
sites, it is inevitable to know the dates on which different versions of a software
were released (“release history”). To construct the list of release dates of each
software product, we used GitHub-API for the official repositories, on GitHub,
of the products and extracted the date on which a new version was pushed to
it and store the corresponding SemVer. If a product did not provide an open
repository on GitHub, we manually collected the official release dates from the
product’s official project webpages, if it’s published.

Dataset Preparation. Since the Web is constantly evolving and Web measure-
ments tend to be (strongly) impacted by noise, we only analyzed software prod-
ucts on a site for which we found version numbers in at least four consecu-
tive measurements. Furthermore, we dropped all records with polluted data
(e.g., blank, invalid versions, duplicates, dummy data) from our dataset. Finally,
in order to make a valid match between CVE entries and software in our dataset,
we manually assigned each software in our dataset their CPE (naming scheme)
using the CPE Dictionary [12] provided by NVD.

3.2 Analyzing Updating Behavior and Security Implications

In this section, we describe how we measure update behavior and identify vul-
nerable websites.

Updating Behavior. To understand update behavior in our dataset, one needs to
measure the deployed software’s version changes over time. Utilizing the release
dates of each software product, we know, at each measurement point in our
dataset, whether a site/origin deploys the latest software version of a product or
if it should be updated. If we found that an outdated product is used, we check
if it was updated in the subsequent measurements (i.e., if the SemVer increases).
This approach allows us to test if a product is updated after all and to check how
long this process took. In our analysis, we call an increasing SemVer an update
and decreasing version number a downgrade. In this analysis, we compare the
MINOR and PATCH part of a product’s SemVer, utilizing the release dates of each
version, and not the MAJOR section because service providers might not use the
latest major release due to significant migration overhead. For example, we would
consider that an origin is “up to date” if it runs version 1.1.0 of a product even if
version 2.1.0 (major release change) is available. However, if version 1.1.1 would
be available, we consider it “out of date”.

Identifying Vulnerable Websites. One way to measure the impact of an update
on the security of a site is to test if more or less vulnerabilities exists for the
new version, in contrast to the old version. To identify vulnerable software on



Our (in)Secure Web: Understanding Update Behavior of Websites 81

a website, we retrieve the relevant CVEs for the identified software and then
check if it is defined in these CVE entries – with consideration of version-
Start[Excluding/Including] and versionEnd[Excluding/Including] settings. We
map a vulnerability to a crawled origin if and only if (1) it uses a software
for which a vulnerability exists and (2) if it was published before the crawl was
conducted. Utilizing the Common Vulnerability Scoring System (CVSS) of each
vulnerability, we can also assess the theoretical gain in security.

4 Results

After describing our approach to analyze the update behavior of websites and
its possible security impact on websites, this section introduces the large-scale
measurement results. Overall, we observed 8.315.260 origins on 5.655.939 distinct
domains using 342 distinct software products. After filtering, we were left with
8.205.923 origins (99%) on 5.604.657 domains (99%) using 246 (72%) software
products. We collected 31.909 releases for 246 software products. Furthermore,
we collected 147.312 vulnerabilities of which 2.793 (2%) match to at least one
identified product. Overall, we found an exploitable vulnerability for 148 (60%) of
the analyzed software products. Note that products with no public release history
are excluded from analyzing update behavior and security analysis if they don’t
have a known vulnerability. Note also we have full access to all the segments of
the MAJOR.MINOR.PATCH for 98.5% of our data. In total, we identified 12.062.618
software updates across all measurements. Table 1 provides an overview of all
evaluated records of each measurement run.

4.1 Update Behavior on the Web

In the following, we analyze the impact of adoption of releases on the Web on
website level and from software perspective.

Update Behavior of Websites. The first step to understand the update
behavior of websites is to analyze the fraction of used software products that
are fully patched, according to our definitions. Remember that we assume that a
software product should be updated if a newer minor version or patch is available
(i.e., we exclude the major version (see Sect. 3.2)). In our dataset, we identified
a median of 3 (min: 1, max: 17, avg: 3.37) evaluable software products for each
website. Overall, we identified that across all measurement points, on average,
94 % of all observed websites were not fully updated (i.e., at least for one soft-
ware product exists a newer version). Only 6 % of the observed sites used only
up to date software while 47 % entirely relied on outdated software types. The
mean fraction of out of date software products is 74 % for each observed website
across our measurement points. These numbers show that websites often uti-
lize outdated software. While at domain granularity, almost all analyzed sites
use outdated software, it is interesting to analyze if subdomains show different
update behavior. Figure 1 compares the fraction of up to date software utilized
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Table 1. Overview of all measurement points.

M. Date #Sites #Origins #Products #dist. Ver. #Updates #Vuln.

M#1 01/19 2.5M 3.4M 208 15,436 — 2,201

M#2 02/19 2.3M 3.1M 204 15,178 0.4M 2,224

M#3 03/19 2.3M 3.1M 205 15,390 0.5M 2,235

M#4 04/19 2.7M 3.5M 205 16,145 0.6M 2,291

M#5 05/19 2.8M 3.6M 216 16,741 0.4M 2,298

M#6 06/19 2.8M 3.6M 217 17,013 0.7M 2,310

M#7 07/19 3.0M 3.9M 215 17,438 0.6M 2,286

M#8 08/19 3.0M 3.9M 215 17,474 0.5M 2,316

M#9 09/19 3.0M 3.9M 215 17,682 1.0M 2,390

M#10 10/19 3.0M 3.8M 217 17,873 0.8M 2,424

M#11 11/19 3.0M 3.8M 217 17,958 1.0M 2,468

M#12 12/19 3.0M 3.8M 216 18,122 1.0M 2,478

M#13 01/20 2.9M 3.8M 217 18,173 0.8M 2,502

M#14 02/20 2.7M 3.4M 211 17,558 0.4M 2,526

M#15 03/20 3.1M 3.9M 217 18,558 0.4M 2,412

M#16 04/20 3.3M 4.2M 217 19,321 0.6M 2,467

M#17 05/20 3.1M 4.0M 220 19,353 0.8M 2,460

M#18 06/20 3.4M 4.4M 218 20,118 0.6M 2,475

on subdomains (e.g., bar.foo.com) against the root domains (e.g., foo.com), along
our measurement points. In the figure, zero means that all software is up to date
and one means that all software is outdated. Our data shows that most software
products are not updated to the newest release, but it is still interesting to ana-
lyze the update cycles websites use in the field. On average, we observed 0.7M
version changes between two measurement runs. 97 % of them were upgrades
(i.e., the SemVer increased) and consequently 3 % were downgrades.

Update Behavior from a Software Perspective. Previously, we have shown
that websites tend to use outdated software. In the following, we take a closer look
at the used software to get a better understanding if the type of used software has an
impact on its update frequency. Across all measurements, the software used on the
live systems is 44 months old (M#1: 40, M#18: 48), and the trend during the mea-
surement is that it gets even older (18 days each month on average). To determine
how the average age changes by software types, we measured the average age of the
top ten used software types for all measurement points. These top ten account for
65 % of all analyzed software types. In Fig. 2 we show the corresponding results.
Our finding clarifies that client-side software (e.g., JavaScript Libraries) is older
than server-side software (e.g., Web Servers). A closer observation of the releases
SW shows that the server-side software has shorter release cycles than client-side
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Fig. 1. Fractions of utilized outdated software products on the analyzed domains in
comparison to their subdomains (1 = no product is up-to-date).

software in the measured period (e.g., nginx has 18 and jQuery only has 6 releases).
While the age of the software itself is not necessarily a problem per se, it is notable
that the average number of months a utilized software is behind the latest patch is
48. The ANOVA test (α = 0.05) showed no statistical evidence that the popular-
ity of a website, according to the Tranco list [11], has an impact on the age of the
used software (i.e., popular and less popular websites use outdated software alike).
Using software that is four years old might be troubling, given that on average 41
newer version exists, because the software might have severe security issues. We
have shown that overall mostly outdated software is used. However, it is interest-
ing to understand if this applies to all types of software alike or if specific products
are updated more frequently.

Adoption of Software Releases. To get a better understanding of the update
behavior of websites, we observe the adoption of releases. We find that every
month, on average, 67 % of the software used has a new release. However, our
observations show that only a few service providers install the release promptly.
We record that on average, only 7 % of available updates are processed (min: 4 %,
max: 11 %). The mean time between two updates for any of the used software
on one website is 3.5 months (SD: 5.4). To get a more in-depth understanding
of the adoption of software releases, we measure it in a time span of 30 days
after the release. Figure 3 shows the fraction of processed updates by websites
in that time span for the top eight software types. The top eight types account
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Fig. 2. Average age (in month) of top utilized 10 software types for all measurement
points.

for 60 % of all used software. In general, we see that PATCH level releases are
processed most frequently. Furthermore, we observe that the adoption of release
types differ based on the software types. E-Commerce software process PATCH
releases most frequently and search engine optimization software (SEO) MAJOR
releases respectively. We assume that integrated automatic background updates
play an important role why specific software types are updated. For example
WordPress and Shopware, two popular content management systems, provide
an auto update functionality [17,25].

Summary. Based on our dataset, we have shown that the used software on the
Web is often very old and not updated frequently. While differences in the update
behavior between different types of software exist, the majority of all times is
still not updated. However, the impact of this not-updating is not clear and
needs more investigation.

4.2 Security Impact of Not Updating

Experts agree that updating is one of the most critical tasks one should do to
harden a system or to avoid data leaks [15]. Therefore, we are interested in the
security impact of the identified tend to use outdated software.
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Fig. 3. Fraction of processing a new release for top used eight software types.

Vulnerability of Websites. Towards understanding the threats that result
from the usage of outdated software, we first analyze the scope of affected web-
sites. On average, 94 % of the analyzed websites contain at least one potential
vulnerable software, which was slightly increasing over the course of our measure-
ments (M#1: 92 % to M#18: 95 %). We also record that each analyzed software
has on average 8 vulnerabilities and that websites are affected, on average, by 29
(min: 0, max: 963). Our data shows that the number of exploitable vulnerabilities
is decreasing over time for both per software (0.4 per month) and per websites
(0.14 per month). Hence, overall the number of websites that have at least one
vulnerability increases but the amount of vulnerabilities per site decreases.

Each vulnerability has a different security impact on a website, and, therefore,
the number of identified vulnerabilities does not directly imply the severeness of
them. The NVD assigns a score to each vulnerability to highlight its severeness
(i.e., the CVSS score). Figure 4 shows the mean CVSS scores for the analyzes
websites their rank. By inspecting the figure, one can see that less popular sites
(the rank is higher) are affected by more severe vulnerabilities. The Spearman
test (α = 0.05) showed a statistical significant correlation between the rank and
the mean CVSS score of the identified vulnerabilities (p-value < 0.007). Table 2,
in Appendix A lists the most common vulnerabilities in our last measurement
point (M#18). A stunning majority of websites (92 %) is theoretically vulnerable
to Cross-site Scripting (XSS) attacks. In our dataset, jQuery is the software that
is most often affected by a CVE (92 %). A list of the most prominent CVEs is
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given in Appendix C. Given the wide occurrence of vulnerabilities in our dataset,
the question arises which threats websites and users actually face.

Fig. 4. AVG CVSS by popularity of websites. Vulnerability severity is significantly
lower for high-ranked websites.

Analysis of Available Vulnerabilities. Figure 5, shows the distribution of
severity of identified vulnerabilities on websites based on the Common Vulner-
ability Scoring System (CVSS). Our results show that the number of websites
with the most severe vulnerability (CVSS: 10) steadily decreases. The average
number of vulnerable websites with a severity “HIGH” (CVSS: 7–10) is decreas-
ing (M#1: 43 %, M#18: 39 %), while the number of vulnerable websites with
“MEDIUM” (CVSS: 4–7) remains almost constant (M#1: 47 %, M#18: 49 %).
For this analysis, we only used the most severe vulnerability for each website.

Given the result that the average age of used software depends on its type
(see Fig. 2), we find that older software has more dangerous vulnerabilities. For
example, the average CVSS/age of JavaScript-Frameworks was 4/50 in M#1
and 6/62 in M#18, while the score and age for programming languages go from
9/34 to 8/33. This confirms that older software does have more vulnerabilities
and highlights the need for better update processes of websites. Furthermore, our
analysis shows that performing updates has a significant impact on the security
of software. The average value of CVSS for software for which an update is
available is 6.4 (“MEDIUM”). However, after applying the update(s), the CVSS
is lowered to 2.4 (“LOW”).
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Fig. 5. Fraction of CVSS score distribution on websites for all measurement points (10
= Critical, 0 = No Vulnerability).

5 Limitations

Although we have put a great effort while preparing our dataset, our study is
impacted by certain limitations. Our approach comes with the limitation that,
on the one hand, HTTPArchive only crawls landing pages and does not interact
with the website, which might hide the complexity of an origin [21], and, on
the other hand, Wappalyzer might not detect all used software for the website.
Although NVD is one of the most popular vulnerability databases, there are some
discussions around the accuracy of the data provided by NVD e.g., [13,16]. In
our study, we assume that software utilized by a website is vulnerable if the NVD
provides a CVE entry for it. For ethical reasons, we did not validate if successful
exploitation of the CVE requires any interaction or enabled functions. We also
don’t examine any mechanism for the validity of CVE entries.

6 Related Work

To the best of our knowledge, our study is the first one that measures update
behavior and security implications by evaluating all utilized server and client-
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side software on a website and by conducting multiple measurements. In the
following, we discuss studies related to our research.

Update Behavior. Update behavior of software has been previously studied.
Tajalizadehkhoob et al. [19] measure the security state of software provided by
hosting providers to understand the role of hosting providers for securing web-
sites. Vaniea et al. [23] conduct a survey to understand the update behaviour
of software. They ask 307 survey respondents to provide software update sto-
ries and analyze these stories to determine the possible motivations for software
updates. Stock et al. [18] examine the top 500 websites per year between 1997 and
2016 utilizing archive.org dataset. In their measurement, they mainly evaluate
security headers and analyse usage of outdated jQuery libraries.

Security Implications. Prior literature has proposed various techniques to mea-
sure websites’ security in terms of different metrics. Lauinger et al. [10] study
widely used 72 client-side JavaScript libraries usage and measure security across
Alexa Top 75k. Van Goethem et al. [2] report the state of security for 22,000
websites that originate in 28 European countries. Their analysis is based on dif-
ferent metrics (e.g., security headers, information leakage, outdated software).
However, they use only a few popular software products for their measurement.
Huang et al. [7] measure the security mechanisms of 57,112 chinese websites based
on vulnerabilities published on Chinese bug bounty platforms between 2012 and
2015. Van Acker et al. [22] scrutinize the security state of login webpages by
attacking login pages of websites in the Alexa top 100k.

7 Discussion and Conclusion

In this work, we measured the update behavior and possible security implica-
tions of software products utilized on more than 5.6M websites. Our measure-
ment highlights the current state of the Web and shows the update behavior
of websites over the course of 18 month. We show that most of the Web’s uti-
lized software is outdated, often by more than four years. Running outdated
software is not a security problem per se because the old software might not be
vulnerable. However, we found several sites that use software products for which
vulnerabilities have been reported. Furthermore, we show that the number of
vulnerable websites increases over time while the average severity of identified
vulnerabilities decreases. For instance, we record that 95 % of websites potentially
contain at least one vulnerable software. It has to be noted that the identified
vulnerabilities in our work must be seen as an upper bound because utilizing a
product for which vulnerabilities exist does not automatically mean that it can
be exploited (e.g., the vulnerable module of the product is deactivated or not
used). Our results still highlight that website providers need to take more care
about their update processes, even if this comes with a potential overhead, to
protect their users and services.
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A Overview of the Top Identified CWEs

In this appendix, we show our findings related to identified CWEs. Table 2 lists
the most common CWEs on websites that we identified in the last measurement
run (June 2020). While the vulnerability Cross-site Scripting (XSS) occurs in
almost all websites, a closer analysis of the same measurement point (M#18)
shows that only 28% of software is vulnerable to this vulnerability.

Table 2. Top 10 vulnerabilities in our last measurement point (M#18) by relative
frequency on websites.

Vulnerability type (CWE) Relative frequency

CWE-79 Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’) 0.92

CWE-20 Improper Input Validation 0.32

CWE-400 Uncontrolled Resource Consumption 0.27

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor 0.24

CWE-476 NULL Pointer Dereference 0.24

CWE-601 URL Redirection to Untrusted Site (‘Open Redirect’) 0.22

CWE-125 Out-of-bounds Read 0.22

CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer 0.20

CWE-787 Out-of-bounds Write 0.19

CWE-190 Integer Overflow or Wraparound 0.17

CWE-284 Improper Access Control 0.17

Table 3. Some examples of vulnerabilities identified on analyzed websites that run
outdated software.

Software CVE CVE
Publication

CWE CVSS Public
exploit

Vuln.
Websites

Total usage

jQuery CVE-2020-11023 04.2020 XSS 4.3 ✗ 3.98M 4M

Apache CVE-2017-7679 06.2017 Buffer
Over-read

7.5 ✓ 0.26M 0.46M

PHP CVE-2015-8880 05.2016 Double free 10 ✓ 0.45M 0.46M

PHP CVE-2016-2554 03.2016 Buffer
Over-read

10 ✓ 0.23M 0.46M

WordPress CVE-2018-20148 12.2018 Deserialization
of Untrusted
Data

7.3 ✓ 0.18M 0.46M

WordPress CVE-2019-20041 12.2019 Improper Input
Validation

7.3 ✗ 0.31M 0.46M
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B Average age of the 20 used software by website-ranking

Figure 6 shows the most popular software types, their average age (in month),
and the rank of the websites on which they are used. We record that most of the
widely used software on the web is often very old. We also found that the average
age of utilized software on a website is unrelated to its popularity, according to
the Tranco list [11].

C Case Studies

Table 3 illustrates the most common CVE entries identified in our study. CVE-
2020-11023 is the most common vulnerability with the severity “MEDIUM” –
based on our last measurement. Some of the vulnerabilities require certain func-
tions or enabled functions (e.g., CVE-2017-7679 for Apache requires mod mime

Fig. 6. Average age (in month) of the top 20 used software by website ranking. The
share of software in our dataset is shown in brackets – Blank cells: no website identified
in the corresponding ranking.
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and CVE-2016-2554 for PHP requires file uploading functionality) In some cases,
the running software requires interaction between more than one component
to abuse an exploit. The listed vulnerabilities for WordPress and vulnerability
CVE-2015-8880 for PHP do not require any interaction or enabled features and
can be exploited directly.
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Abstract. An increasing number of adversaries tend to cover up their
malicious sites by leveraging the elaborate redirection chains. Prior works
mostly focused on the specific attacks that users suffered, and seldom
considered how users were exposed to such attacks. In this paper, we con-
duct a comprehensive measurement study on the malicious redirections
that leverage squatting domain names as the start point. To this end, we
collected 101,186 resolved squatting domain names that targeted 2,302
top brands from the ISP-level DNS traffic. After dynamically crawling
these squatting domain names, we pioneered the application of perfor-
mance log to mine the redirection chains they involved. Afterward, we
analyzed the nodes that acted as intermediaries in malicious redirec-
tions and found that adversaries preferred to conduct URL redirection
via imported JavaScript codes and iframes. Our further investigation
indicates that such intermediaries have obvious aggregation, both in the
domain name and the Internet infrastructure supporting them.

Keywords: Domain squatting · URL redirection

1 Introduction

URL redirection has been widely used since its inception. With this technique,
website administrators are able to provide more customized navigation services
for visitors by specifying certain parameters in the URL (e.g., language). Instead
of directly typing the lengthy URL into the browser’s address bar, users can
walk through diverse web resources easily with the help of URL redirection.
However, this technique is now being abused by adversaries to circumvent static
web security checks [18]. Compared with directly delivering malicious content
to any visitor, this method is able to ensure the targeted delivery of malicious
content by conducting multi-layer verification during the process of visitors being
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Fig. 1. An example of malicious redirection. The domain name of the start URL is a
combo squatting of ‘nike.com’.

redirected [13,25]. For instance, the adversary checks whether the current visitor
is a static crawler by inspecting the ‘User-Agent’ field of HTTP request header.

Although an elaborate redirection chain can boost the stealth of the malicious
site to some extent, it lowers the accessibility of that site as well. Therefore, in
order to get more traffic, some adversaries have targeted the squatting domain
names [23]. Domain squatting refers to the impersonation of particular brands at
the domain level, so as to confuse visitors. For instance, ‘bauidu.com’ is a typo
squatting of ‘baidu.com’, which targets the user who extra types a character ‘u’
while entering ‘baidu.com’. By exploiting these squatting domain names as the
start node of redirection chains, adversaries can arbitrarily control the direction
of careless visitors, and even determine the malicious behavior to be performed
based on the profile of visitors.

To facilitate the understanding of such malicious redirections, we present a
real-world example in Fig. 1, which abuses a combo squatting domain name of
‘nike.com’ as the start node. To prevent the relevant malicious domain names from
being further spread, we have hidden some characters in Fig. 1. This example con-
tains 7 URLs and 6 hops, of which the first hop uses the HTTP-based redirection
with 302 status code, while the remaining five hops are all performed via certain
JavaScript codes. Before reaching the fifth URL, there is nothing displayed on the
page. After rendering the HTML content returned by the fifth URL, a loading bar
and a button appear on the page (Page A). If the user does not click the button
within a given time, this page will auto-redirect the user to the next page (Page
B), which lists several links to illegal gambling sites. Similarly, if the user does not
interact with this page within a given time, he will be redirected to the final URL,
which serves an illegal pornographic site (Page C).

Prior works have analyzed various types of squatting domain names. How-
ever, all of these works focus on the specific malicious behaviors involved in
such domain names (e.g., phishing) [14,23]. So far, nobody has paid attention
to how visitors are transferred from the squatting domain names to the sites
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that actually conduct malicious activities. In this paper, we first lift the veil of
such malicious intermediaries in malicious activities, namely the relay nodes in
malicious redirections. To this end, we make the following contributions: First,
we measure the typical squatting domain names in Chinese DNS traffic; Second,
we pioneered the application of performance log to mine malicious redirection
chains; Third, we accurately analyze the redirection method abused by malicious
intermediaries; Fourth, we profile the sharing of such intermediaries in malicious
redirections.

2 Background

2.1 Domain Squatting Abuse

Domain squatting abuse refers to the malicious preemptive registration of
domain names that are similar to well-known brands. According to prior works,
there are six types of commonly-seen domain squatting abuse in the Internet
today, comprising typo [7,22], bit [20], homograph [11], combo [15], level [10],
and wrong-TLD [23]. Here, we use the real-world examples listed in Table 1 to
explain the definition of each squatting type.

Table 1. Examples of different squatting types.

# Domain Target Type

1 bauidu.com baidu.com typo

2 taocao.com taobao.com bit

3 xvide0s.com xvideos.com homograph

4 nikeav.com nike.com combo

5 weixin.qq.com.powlau.kunxiangrunhe.com.cn qq.com level

6 cnki.xyz cnki.net wrong-TLD

– Typo: Users may request incorrect domain names due to the careless typing.
Typo squatting leverages this “fat finger” phenomenon of users when they are
typing the domain names, which involves the following four typo scenarios:
insertion, omission, permutation, and replacement. The first sample in Table 1
is a typo squatting of ‘baidu.com’, which additionally inserts a character ‘u’
between ‘a’ and ‘i’ (‘u’ is adjacent to ‘i’ on the keyboard).

– Bit: The bit may be flipped during the transmission due to some external
reasons. Bit squatting leverages such bit-flip phenomenon occurring in domain
names. As the second sample in Table 1, which flips the lowest bit of ‘b’
(01100010) from 0 to 1 to get the character ‘c’ (01100011).

– Homograph: Homograph squatting refers to the replacement of characters
in target brands with other visually indistinguishable ones. Take the third
sample in Table 1, the squatter uses the digit ‘0’ to imitate the character ‘o’.
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– Combo: Combo squatting is to combine the target brand with other words to
form a new domain name. Compared with the other five types, combo squat-
ting is capable of maintaining the integrity of target brands to the greatest
extent, so as to resort to their reputations to attract users. For example, the
fourth sample attaches the word ‘av’ to the tail of ‘nike’ to form an easy-to-
remember domain name of an adult site.

– Level: As opposed to the above four squatting types that tampering with the
2LD, level squatting focuses on its own subdomain. That is, adversary uses the
intact target domain name as its subdomain. For example, the fifth sample in
Table 1 directly uses ‘weixin.qq.com’ as its subdomain. In certain cases where
the complete domain name cannot be displayed because of space limitation,
users can only see the prefix part of the domain name, thus mistaking it for
Tencent’s authoritative domain name.

– Wrong-TLD: Wrong-TLD squatting refers to replacing the TLD of tar-
get domain name while maintaining the remainder of this domain name
unchanged. As the last sample shown in Table 1, it impersonates the tar-
get domain name by replacing the TLD ‘.net’ with ‘.xyz’. Compared with the
above five squatting types, this type is the most confusing to users.

2.2 URL Redirection

URL redirection technique has been widely used in a variety of web activities,
making the Internet users navigate between various web resources without man-
ually typing the lengthy target URL into the address bar. There are three main
types of redirection approaches at present, namely HTTP-based, JavaScript-
based, and HTML-based. Table 2 lists some examples to illustrate these redirec-
tion approaches.

Table 2. Illustration of the URL redirection approaches.

Redirection Example

HTTP Status Code: 30X Location: http://domain.com/

Refresh: 2; url = http://domain.com/

JavaScript document.location = ‘http://domain.com/’

window.location = ‘http://domain.com’

HTML <meta http-equiv=“refresh” content=“2; url = http://domain.com/”>

<a href=“http://domain.com/”>

– HTTP-based: HTTP-based redirection has two forms: 1). When the requested
resource is migrated to a brand new URL, to ensure the old URL is still
available, the server will write the current URL of the requested resource in
the ‘Location’ field of corresponding HTTP response message, and set the
status code to 30X; 2). The server fills in the ‘Refresh’ field of the HTTP

http://domain.com/
http://domain.com/
http://domain.com/
http://domain.com
http://domain.com/
http://domain.com/
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Response Header to command the client to request the given URL after a
given time. For example, the second sample in Table 2 indicates that the
current page will be navigated to “http://domain.com” right after 2 s.

– JavaScript-based: This approach refers to rewriting the ‘location’ attribute
of current document (or window) object to target URL through JavaScript
scripts, and then redirecting the current page to the target URL. Compared
with HTTP-based redirection, this approach gives developers more autonomy,
enabling the redirection to be triggered only when certain conditions are met.

– HTML-based: HTML-based redirection mainly refers to the user’s active click
on the <a> tag on current page to perform the page jump. The ‘href’ field of
<a> tag indicates the destination of the page jump. Besides, there is another
case of HTML-based redirection, that is, by adding a <meta>-refresh tag
below the <head> tag. In specific, by setting the ‘http-equiv’ attribute of
<meta> to ‘refresh’, and specifying the waiting time and target URL in its
‘content’ attribute. The browser will automatically jump to the specified URL
after parsing the <head> tag.

3 Measurement Methodology

This section first introduces the approach we employ to collect resolved squatting
domains from real DNS traffic. Then, we describe the dynamic crawling strategy
we use to get the redirection chain behind these domains.

3.1 Measuring Squatting Domains

Intuitively speaking, the higher the popularity of target domain names, the
greater the probability of relevant squatting domains being visited. Therefore,
we first collected the domain name of target brands from three authoritative
data sources:

– Alexa Category List: Alexa provides 17 category lists, such as arts, business,
and computers. Each of them lists the 50 most visited domain names in the
category [3]. We crawled this site and finally obtained a total of 850 candidate
brand domain names.

– Alexa Top List: Alexa maintains a domain popularity ranking based on the
daily traffic of each domain name [1]. We extracted the Top-1000 from this
list as candidates.

– CN Top List: Since our experiment was conducted on a Chinese network envi-
ronment, it is clear that we can observe more squatting domains specifically
targeting Chinese brands. Therefore, we got domain names of the Top-1000
Chinese sites from an authoritative organization [4].

Due to the day-to-day fluctuation of the domain top List [21], here we
obtained the Alexa Lists for 8 consecutive days from [2] (the dates of these
lists are consistent with the dates of DNS traffic we use), and extracted the

http://domain.com
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Fig. 2. Breakdown of different squatting
types.

Fig. 3. Breakdown of the labeling results.

1000 domains with the highest overall ranking. We aggregated the above list
and merged the domain names that had the same 2LD (e.g., ‘tmall.com’ and
‘login.tmall.com’). Finally, we got a total of 2,302 distinct brand domain names.
Next, we asked for the resolver-to-client DNS traffic from a local Internet service
provider (ISP) for 8 consecutive days, ranging from 04/27/2019 to 05/04/2019.
These traffic records all DNS packets returned from local recursive DNS servers
to clients. We used these data to build a passive DNS (pDNS) database. Due
to the tremendous volume of data, we only reserved the A-type resource records
and filtered the resource records with no resolved values (NXDomain) to allevi-
ate the storage overhead. Each entry in the database consists of four columns,
namely the client’s IP address, the queried domain name, the timestamp, and
the resolved IP addresses. In addition, to protect the privacy of users, we have
hashed the IP addresses of all clients. Eventually, we got a pDNS database with
more than fourteen billion entries, averaging about seventy million entries per
hour.

After the above preparations, according to the definition introduced in
Sect. 2.1, we generated a large number of squatting domains based on the 2,302
brand domain names and verified their survival in the DNS traffic. Due to space
limitation, we omit the description of generating candidate squatting domain
names here. The specific generation steps can refer to the references mentioned
in Sect. 2.1. In the end, we found 101,186 successfully resolved squatting domain
names from the pDNS database. Figure 2 shows a breakdown of the six squatting
types. Due to space limitation, ‘wrong-TLD’ and ‘homograph’ are abbreviated as
‘w-TLD’ and ‘h-graph’, respectively. The bars in this figure have been arranged
in the ascending order of domain amount. We can see that combo squatting
is absolutely dominant, accounting for more than 50.1% of all our collected
squatting domain names. Followed by typo and level squatting, accounting for
20.1% and 15.8% of the total, respectively. While the remaining three types add
up to only 14%. The above measurement results are basically consistent with
the description in [23,27], reflecting the representativeness of the DNS traffic we
use.
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3.2 Crawling Strategy

In order to understand the abuse intention of these squatting domain names,
we need to further analyze the specific behaviors they conduct. To this end,
we crafted a dynamic crawler to automatically query these domain names and
accurately record all events triggered during each querying. Specifically, we use
Selenium [5], a Chrome-based tool, to build this crawler. Compared with the
traditional static crawlers that can only return the HTML content of the web-
site, Selenium is able to simulate all the operations that a user performs in the
browser, such as mouse clicks.

Here, we employed the headless mode of Selenium, which allows us to run it in
bulk on the backend of the server, and set its User-Agent to ‘iPhone 6/7/8 Plus’
to disguise as a mobile user. To prevent Selenium from crashing at runtime, we
performed the crawler task in groups of five samples. We restarted the tool and
cleared the cache right after each crawling (5 samples). In order to successfully
capture all events triggered during the page loading, we waited 30 s for each
sample. For each sample, we saved the HTML content, the screenshot, and the
performance log.

Table 3. Explanation of typical methods in the performance log.

Method Explanation

requestWillBeSent Initiate an HTTP request for a specific URL

responseReceived HTTP response about a specific URL

frameScheduledNavigation Navigate to another document for certain reasons

frameAttached Load the ‘iframe’ (or ‘frame’) in current document

navigatedWithinDocument Navigate to an anchor within current document

The performance log of Chrome is absolutely the treasure we found in this
work, which records all the events during the page loading with the dictionary
form, including the requests for page resources and the operations performed
by users. Compared with previous methods relying on the analysis of network
traffic and HTML content, directly analyzing the entries in performance log is
obviously much more efficient. There are mainly five methods in the perfor-
mance log involving the request and receive of page resources, which are shown
in Table 3. Among them, ‘requestWillBeSent’ and ‘responseReceived’ appear in
pair, representing the request and response for specific page resources. The fol-
lowed two methods, ‘frameScheduledNavigation’ and ‘frameAttached’, are used
to reflect the request type of new document, where the former indicates the rea-
son of certain navigation, and the latter indicates that the requested URL is the
‘src’ of certain <iframe> tag. The last method does not involve any requests
for new resources, and it is only used to indicate the navigation to the target
anchor within current document. In most cases, the requested URLs are derived
from the ‘src’ field of HTML tags. While there are some exceptions, such as
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the requests initiated via embedded JavaScript snippets. Fortunately, in addi-
tion to completely recording the browser events, the performance log provides
many assistant fields in each entry, which can precisely indicate the cause of this
request (e.g., script initiated), the type of the requested resource (e.g., Docu-
ment), and the most important, the initiator of this request (namely the parent
URL).

Moreover, we also maintained a dataset to record the start time, the end
time, the start URL, the end URL, and the title of final page of each crawling.
After completing the crawling task, we extracted the entries involving resource
requests from the performance log of each sample and rebuilt the URL request
tree. Finally, we extracted the redirection chain from the rebuilt tree, that is, a
path between the root node (i.e., start URL) and the end node (i.e., end URL).
Note that, if an ‘iframe’ (or ‘frame’) occupies more than 80% of the current
screen area, we consider it as an additional redirection. The reason lies in the
fact that even though the URL in the address bar has not changed, ‘iframe’ is
essentially another document. Any interaction a user makes in an ‘iframe’ is not
restricted by the current document.

Next, we divided these samples into three equal parts and employed three
well-trained volunteers to label them. To ensure the objectivity of the labeling
results, each volunteer was responsible for two parts of the samples. They mainly
resorted to the following six features during the labeling, namely the start URL,
end URL, hop counts, and the title, screenshot, and HTML content of the final
page. Due to the large number of samples, our labeling process lasted for more
than two weeks. The samples were classified into four categories, namely benign,
malicious, invalid, and other. Specifically, if a sample is ultimately navigated to
a malicious site, distributes illegal contents or involves the drive-by download,
we consider it to be malicious. Because pornography, gambling, lottery, and
surrogacy are all illegal in China, we also regard the relevant sites as malicious
sites here. If a sample returns an invalid page (e.g., 404 status code), we label
it as invalid. If three volunteers disagree on the labeling result of one sample,
we consider that sample as ‘other’. Additionally, we found that a large number
of samples were redirected to parked domain names. Even though we have not
found that these samples involve malicious activities, some prior works have
pointed out the potential threat of parked domain names [8,24]. Accordingly, in
a comprehensive consideration, we classified all such samples as ‘other’. Figure 3
shows the breakdown of labeling results, where the bars have been sorted based
on the domain amount. Unsurprisingly, the proportion of benign samples is the
least here. Some benign samples directly navigated users to the original task
domain names. The remaining benign samples were used to support their own
legitimate web services, which did not involve any illegal content. Besides, we can
clearly see that the ‘other’ type occupies the most share of samples, accounting
for about 36.4%. The vast majority of these ‘other’ samples were labeled due to
being navigated to parked domain names, while only a few were labeled for the
disagreements among volunteers. The ‘malicious’ type makes up 26.8% of the
total. According to our investigations, which will be expounded in Sect. 4, most
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malicious samples participated in the distribution of pornographic or gambling
services. Moreover, these samples tend to embed illegal content into the ‘iframe’
to evade the general static analysis [12,17,26].

4 Malicious Redirection Analysis

After the collection and labeling of malicious squatting domain names, we need
to understand how these domains are leveraged to conduct malicious activities.
In this section, we shed light on the redirection behavior involved in our collected
squatting domain names. First, we compared the differences of URL redirection
in malicious samples and benign samples. Next, we investigated the URLs act-
ing as intermediaries in redirection chains. Finally, we analyzed the Internet
infrastructures that held these intermediaries.

4.1 Benign Redirection vs. Malicious Redirection

Based on the discussion in Sect. 3.2, we know that most malicious squatting
domain names will navigate users to illegal websites, while the benign ones tend
to redirect users back to original domain names. Thus, it is necessary to figure out
whether the redirection mode will change significantly for different destinations.

Table 4. Statistics of the samples conducting URL redirections.

Category Domain amount Redirection Oversize iframe

Benign 13,278 7,071 (53.3%) 36 (0.3%)

Malicious 27,128 20,079 (74.0%) 11,158 (41.1%)

To this end, we extracted all the samples conducting URL redirections. Note
again that if an ‘iframe’ occupies more than 80% of the current window, we treat
it as one redirection. Table 4 lists the statistics of the samples. Obviously, URL
redirection is a widely abused technique in malicious squatting domain names,
accounting for up to 74%. Moreover, 41.1% of the malicious samples employ the
oversize ‘iframe’s to display illicit information. It is worth noting that more than
half of the benign samples performed redirections as well, which is absolutely a
high proportion, but only 0.3% of them employed the oversize ‘iframe’s. These
statistics are somewhat unexpected, that is, the disparity in the proportion of
redirection between benign samples and malicious samples, although 20.7% is
not a small gap, is not as significant as supposed.

In order to mine more useful characteristics, we extracted the redirection
chain from each sample and further characterized the malicious redirection from
two aspects, namely the distribution of both hop counts and redirection method.
Table 5 shows the hop counts distribution of chains. Interestingly, even though
53.3% of the benign samples applied URL redirections, 87.5% of which had
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Table 5. Hop counts distribution of the samples conducting URL redirection.

Category Hop counts distribution

1 2 3 4 5 6 7 8 9 10 >10

Benign 87.5% 9.4% 2.5% 0.4% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Malicious 31.1% 35.3% 13.7% 8.4% 4.5% 1.3% 0.7% 0.3% 0.2% 0.2% 4.3%

only one hop. However, some benign samples also reached five hops, which is
already a relatively high hop counts. We investigated the samples that suffered
five hops and found that these samples had a common characteristic, namely
verifying the identity of visitors. In this case, visitors will be redirected to the
login page or guest page if they are found to have no login account. In contrast,
the hop counts distribution of malicious samples is relatively flat. Most malicious
samples experienced two hops, while the corresponding proportion is only 35.3%.
As shown in the last column of Table 5, 4.3% of the malicious samples were
redirected more than 10 times. It is worth noting that, several malicious samples
performed an astonishing 26 times of URL redirection and eventually landed on
the same illegal fundraising site.

Fig. 4. Distribution of different redirection types.

Then, we measured the specific redirection methods used in the collected
chains. According to the introduction in Sect. 2.2, URL redirection can be
divided into three types based on the source of redirection command, namely
HTTP-based, JavaScript-based, and HTML-based. More specifically, the HTTP-
based redirection can be further subdivided into two cases: 30X-status-code-
based and refresh-field-based (denoted as ‘30X-HTTP’ and ‘ref-HTTP’, respec-
tively). In addition, JavaScript-based redirection can also be subdivided into two
cases, inner and outer, in the light of the source of snippets. In particular, the
inner type (denoted as ‘i-script’) refers to the JavaScript codes that are hard-
coded inside the <script> tags, while the outer type (denoted as ‘o-script’) refers
to the JavaScript codes imported by assigning the ‘src’ field of <script> tags.
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Figure 4 exhibits the distribution of redirection types. One can find that almost
all benign samples employed ‘30X-HTTP’ to perform URL redirection, account-
ing for 96.48% of the total. It is reasonable that legitimate web services tend
to solve problems on the server-side. Compared with other redirection methods,
‘30X-HTTP’ is able to minimize the computational overhead on the client. Here,
we once again examined the benign samples mentioned in the previous paragraph
that experienced five hops, and found that all the hops were performed based
on the 30X status code of HTTP response message. However, ‘30X-HTTP’ only
accounted for 31.07% of the malicious samples. Besides, as we can see from
Fig. 4, the redirection methods leveraged by adversaries are much more diverse.
There is almost no difference among the utilization frequency of ‘30X-HTTP’,
‘iframe’, and ‘o-script’ in malicious samples. Nevertheless, Fig. 4 still reveals the
adversary’s preference for JavaScript-based redirection [16,19,28]. Combining
the proportions of ‘o-script’ and ‘i-script’, we can find that the JavaScript-based
method accounts for 35.3% of the total. Moreover, in terms of the usage of
redirection snippets, adversaries are obviously more inclined to import them
from external files (i.e., o-script), rather than directly hard-coding them into the
HTML content (i.e., i-script). In this way, adversaries can circumvent the static
analysis of HTML content by security personnel to some extent.

4.2 Intermediary Sharing

We have presented in the previous subsection that there are some malicious
samples that end up pointing to the same URL. That is, some samples start at
different points but end at the same point. For instance, an adversary manages
multiple squatting domain names, and forces them to navigate the visitors to an
illegal gambling site under his control. Inspired by this, we speculated that there
were certain samples that not only had the same destination, but also shared the
same intermediary. To verify this conjecture, we aggregated all redirection chains
in malicious samples to investigate whether there were common relay nodes.

Table 6. Measurements of the commonly used URL, domain names, and effective 2LDs
in the malicious redirection chains.

Total Commonly used Involved sample

# % # %

URL 72,538 4,117 5.68% 15,593 57.48%

Domain name 40,525 3,634 8.97% 16,899 62.29%

effective 2LD 33,532 3,558 10.61% 17,060 62.89%

We first measured the URLs that appeared in multiple redirection chains.
It should be noted that what we did here was an exact match of URL, includ-
ing complete parameters and fragments. The second row in Table 6 shows the
statistics of the commonly used URLs. In this case, we got a total of 72,538
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distinct URLs, where 4,117 URLs appeared in at least two redirection chains,
accounting for about 5.68% of the total. In addition, these commonly used URLs
involved 15,593 malicious samples. That is to say, 57.48% of the malicious squat-
ting domain names have business sharing among them, which is indeed a large
proportion.

Next, we turn our attention to the commonly used domain names in malicious
redirections. Compared with the commonly used URLs, commonly used domain
names obviously own much higher coverage. Because in this case, we no longer
need to match various URL parameters and URL fragments as before. Also, we
ignored the port field when extracting domain names from URLs. Table 6 lists
the corresponding measurement results in the third row. We obtained 40,525
distinct domain names from the redirection chain of malicious samples, of which
3,634 domain names were leveraged by more than one sample, accounting for
8.97% of the total. Moreover, there were about 62.29% of the malicious samples
shared these intermediary domain names in common.

However, we found during the measurement process that although some relay
nodes have different domain names, the difference only exists in their subdo-
main names. In other words, these relay nodes have the same effective 2LD
(e2LD). Based on this, we further digged deep into the e2LD level and found
that 10.61% of e2LDs appeared in multiple malicious redirection chains. How-
ever, compared with the commonly used domain names, the coverage of the
commonly used e2LDs has not increased significantly. In general, there were
only 161 more involved samples in this case.

4.3 Infrastructure Sharing

This part focuses on our investigation on the Internet infrastructures holding
such intermediary domain names. Concretely, we will discuss the abuse of Inter-
net infrastructures by malicious redirections from the bottom up in terms of
three aspects, namely IP, BGP, and AS.

We have introduced the sharing of e2LDs in malicious redirections in
Sect. 4.2. Here, we matched the associated IP addresses of those 33,532 e2LDs
from the built pDNS database, which yielded 27,396 distinct IP addresses. This
result indicates that numerous e2LDs are being resolved to the same IP address.
We then found out these IP addresses that supported multiple e2LDs from the
pDNS database. The second row of Table 7 lists the relevant statistics, from
which we can see that 8.38% of these IP addresses are responsible for the resolu-
tion of multiple malicious intermediaries at the same time. Furthermore, 41.93%
of the malicious samples involved the sharing of IP addresses during their redi-
rections.

With these matched IP addresses, we moved our attention to their BGP
prefixes. Here, we resorted to a third-party Python extension module, called
‘pyasn’ [9], to lookup the BGP prefix of an IP address based on a daily updated
public BGP archive [6]. Ultimately, we got a total of 8,932 BGP prefixes, of
which 4,817 were abused by at least two malicious intermediaries. Moreover,
it is shocking that these BGPs have provided resolution services for 92.54% of
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Table 7. Measurements of the commonly used IP addresses, BGP prefixes, and ASes
in the malicious redirection chains.

Total Commonly used Involved sample

# % # %

IP 27,396 2,296 8.38% 11,375 41.93%

BGP 8,932 4,817 53.93% 25,104 92.54%

AS 754 424 56.23% 26,608 98.08%

the malicious squatting domain names, directly or indirectly. In addition to the
lookup of BGP prefix, ‘pyasn’ also provides the lookup of AS number. In this
way, we further measured the AS that claimed the ownership of those abused
BGPs. The fourth row of Table 7 shows the statistics of AS. We can see that the
8,932 BGPs are eventually aggregated into 754 ASes, and 424 of them have been
exploited by more than one malicious intermediaries, accounting for 56.23% of
the total. More importantly, 98.08% of the malicious samples involved the abuse
of these 424 ASes during their redirections.

The above measurements reveal an important role that the Internet Infras-
tructure playing in malicious redirection activities. Because different countries
(or regions) have different attitudes towards the grey Internet services, adver-
saries tend to select such ISP with weaker Internet supervision to set up their
network services. This leads to the measurement results in this subsection, that
is, the vast majority of malicious intermediary domain names aggregate in the
same Internet infrastructure.

5 Limitation

This paper focuses on the malicious redirections that stem from squatting
domain names, but the domain types employing such malicious services in the
wild are far more than just squatting domain names. Besides, we only considered
the domain rankings when selecting target brands, but missed some hot terms
at that time, making the squatting domain names we generated lack timeli-
ness to some extent. For example, a large number of pandemic-related squatting
domain names have emerged in early 2020. In addition to the sharing of Inter-
net infrastructures, we found that many malicious domain names also exhibit
obvious aggregation in the requested web resources. That is, we can leverage
this sharing phenomenon to mine more suspicious domain names involving such
malicious sharing resources. Moreover, we have not shed much light on the spe-
cific working mechanism of the malicious redirection in this paper, especially the
JavaScript-based method. In terms of the experiment background, our measure-
ments are all conducted in the Chinese network environment, which makes us
unclear about the abuse URL redirections in other regions. Solving the above
problems plays an important role in understanding the target victims, working
mechanism, and monetization of malicious redirection, and we will leave them
for future work.
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6 Conclusion

In this paper, we give the first insight into the malicious redirections which start
with squatting domain names. By crawling these domain names and analyzing
their performance logs, we identified 20,079 squatting domain names leveraged
URL redirection to navigate visitors to malicious sites. The investigation of cor-
responding redirection chains shows that adversaries prefer to perform malicious
redirections via imported JavaScript codes or iframes. More importantly, our fur-
ther measurements reveal that there is a very common phenomenon of resource
sharing among various malicious redirection chains.
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Abstract. Live streaming is one of the most popular Internet activi-
ties. Nowadays, there has been an increase in free live streaming (FLS)
services that provide unauthorized broadcasting of live events, attract-
ing millions of viewers. These opportunistic providers often have modest
network infrastructures, and monetize their services through advertising
and data analytics, which raises concerns about the performance, qual-
ity of experience, and user privacy when using these services. In this
paper, we measure and analyze the behaviour of 20 FLS sports sites on
Android smartphones, focusing on packet-level, video player, and pri-
vacy aspects. In addition, we compare FLS services with two legitimate
online sports networks. Our measurement results show that FLS sites
suffer from scalability issues during highly-popular events, deliver lower
QoE than legitimate providers, and often use obscure and/or suspicious
tracking services. Caution is thus advised when using FLS services.

Keywords: Network traffic measurement · Free live streaming ·
Quality of Service (QoS) · Quality of Experience (QoE) · Privacy.

1 Introduction

In 1995, a company called Progressive Networks1 broadcast the first live sports
streaming event on the Internet, featuring a baseball game between the Seat-
tle Mariners and the New York Yankees [26]. Since then, the growing adoption
of smartphones and the emerging mobile Internet (i.e., 4G, 5G, and LTE tech-
nologies) have enabled users to watch live events from anywhere without much
difficulty. Mobile video streaming, including live streaming, currently accounts
for 75% of total mobile data traffic [6]. This high demand for video streaming is
both an opportunity and a challenge for network service providers.

For users, the Quality of Experience (QoE) for video streaming is impor-
tant [10]. Measuring QoE can be done either with a subjective approach in
which human viewers rate video sessions on a Mean Opinion Score (MOS) scale,
or an objective approach that collects information from different protocol layers
and uses mathematical models to estimate QoE for the video content [27]. Since

1 https://www.realnetworks.com.
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measuring QoE is challenging, there are several studies that map network-level
Quality of Service (QoS) parameters to user QoE [23]. This paper focuses on
network-level and video QoS parameters that impact QoE.

The growth in popularity for live sports streaming has led to the emergence
of many free live streaming (FLS) sites. However, using these unauthorized and
unregulated providers raises concerns about QoS, QoE, and user privacy. For
instance, these FLS sites may not have adequate network infrastructure to deliver
scalable services, and as a consequence, both QoS and QoE may suffer. Further-
more, many of these FLS sites recoup their operational costs through advertising
and data analytics, which raises concerns about what user-level information is
collected by these sites, and where such information is sent.

Prior research efforts have focused on blocking live broadcasting sites [21,29],
or detecting security leaks in FLS sites [25]. However, many Internet users still
seek out these free sites despite their awareness of security concerns, and the
number of FLS sites and users continues to proliferate [1].

In this paper, our basic premise is that users should be aware of the many
tradeoffs associated with video streaming sites, including performance (i.e., QoS
and QoE) as well as security and privacy. We study live sports streaming from
both free and legitimate sites, doing so from these different viewpoints. The
purpose of our study is to provide better insight into how video providers deliver
their services, and what QoS is provided. Based on these insights, users can make
better-informed decisions about using these services or not.

The research questions in our work are the following:

– What are the performance characteristics of FLS providers?
– What is the network and video QoS provided by FLS services?
– Are these services scalable for popular events?
– What privacy risks are associated with these services?

To study live sports streaming, we collected network traffic measurement
datasets from several FLS sports sites during NHL, NBA, NFL, and UEFA
(soccer) games in the 2019–2020 season. To capture video streaming sessions, we
customized an existing mobile video streaming measurement tool [18] to study
these services from different viewpoints. Also, we compared the FLS results with
streaming from two popular monthly-paid service providers (TSN and DAZN).
This comparison is motivated in part by the well-known adage: “If you are not
paying for the service, then YOU are the product being sold”.

The main contributions of this paper are as follows:

– We conduct a network traffic measurement study of FLS sports sites during
selected NHL, NBA, NFL, and UEFA games in the 2019–2020 season.

– We measure and analyze the delivered network and video QoS for FLS services
on a smartphone.

– We compare the live video streaming from FLS Web sites with two well-known
monthly paid online sports networks.

– We investigate privacy concerns when using FLS services on smartphones.
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The rest of this paper is organized as follows. Section 2 provides back-
ground on FLS. Section 3 describes our experimental methodology, measurement
environment, and data collection process. Section 4 presents our measurement
results. Section 5 summarizes prior related work. Section 6 concludes the paper.

2 Free Live Streaming

FLS services provide an infrastructure that allows Internet users to watch live
events for free. Users can access live streams (usually without the owner’s permis-
sion) even without registration [13]. In these services, the channels are neither
catalogued nor listed in directories, and are not searchable via the Web site.
Instead, the channel owner usually shares the channel links in online social net-
work communities in order to reach viewers. One example is Reddit, a popular
online social network on which users discuss, share, and rate Web content.

There are five major players in the FLS ecosystem: Media Providers that pro-
vide and stream the media content; Channel Providers that receive live streams
from media providers and serve them to users; Aggregators that provide a list
of available streams for users to browse; Advertisers that support the foregoing
three entities through ads and overlays; and Users that watch their favourite
live stream events found via the aggregators [1].

Sports streaming services are popular and constantly evolving [25,30]. In this
paper, we study Web-based sports FLS services from a vantage point in Canada.

3 Measurement Methodology

Analyzing live video streaming on smartphone devices faces many challenges [8].
Video streaming characteristics such as QoE have to be observed to see how
the user might react. Also, a multimedia stream may be encoded using different
video codecs, devices may receive different resolutions and bitrates, depending
on their screen size, location, end-to-end network status, membership type, etc.
Processing and analyzing the captured traffic is another challenge, because of
the voluminous network traffic involved. Furthermore, encryption makes mea-
surement and analysis more difficult.

We used MoVIE [18], an open-source mobile video streaming analyzer, to cap-
ture and analyze live video sessions on an Android smartphone. MoVIE provides
a multi-level view of video streaming by intercepting and analyzing all incom-
ing/outgoing network traffic of a smartphone. MoVIE analyzes video streaming
at the packet-level, flow-level, and video player level. We extended the existing
MoVIE tool by adding a Privacy View component to its Traffic Interceptor com-
ponent. We leveraged EasyList2 from the ad-blocker community to investigate
the generated flows to find potential ads, trackers, and malicious connections.

Figure 1 illustrates the architecture of MoVIE, which consists of seven com-
ponents: Traffic Interceptor, Packet Tracer, Player View, Privacy View, Mapper,
Main, and Graphical User Interface. For more details about MoVIE, see [18].
2 https://www.easylist.to.

https://www.easylist.to
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Fig. 1. System structure of MoVIE tool for Mobile Video Information Extraction

3.1 Experimental Setup

We set up a controlled measurement environment similar to Fig. 1 to capture
the transmitted packets, flows, and video player activities during live streaming
events. Table 1 shows our system specifications. The mobile device and the PC
were set up to use the same WiFi access point. We ran MoVIE on a Linux PC
running MITMproxy [7] to intercept the network traffic, and Wireshark to cap-
ture traces of the Internet traffic generated by the smartphone. MoVIE captured
all video player activities using an Android application that exploits the Google
Chrome media feature.

Table 1. Experimental setup for measurements

Device OS CPU Cores RAM Video Player

Smartphone Android 8.1.0 2.15 GHz 4 4 GB Google Chrome v 71

PC Ubuntu 18.4 3.6 GHz 8 8 GB Google Chrome v 79.0.3945

All video streaming sessions were streamed using the Google Chrome browser.
We performed a factory reset to ensure that other software or previous exper-
iments do not impact our experiments. In addition, we updated the OS and
pre-installed apps to the latest versions. We cleared the browser history and
cache before each streaming session. During each session, the Chrome browser
played video streams on the smartphone, while Wireshark and MoVIE were run-
ning on the PC to capture network traffic at the packet level. For each FLS Web
site, we captured a video streaming session of 1–5 min in duration.

Since MITMproxy v4.0 is not able to decrypt HTTPS traffic from an updated
Android device, we designed our setup to decrypt Android traffic on a single
smartphone under test. To do this, we rooted the Android mobile device by
using the Magisk tool. Rooting allows a user to have root access to the Android
operating system with privileged access to modify code or install software that
the vendor would not normally allow. Then we installed Xposed version 90-beta3
to install the Charles proxy certificate in system mode. Finally, we installed a CA
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Certificate on the mobile device. Charles proxy3 version 4.2.8 was installed on the
PC to capture and decrypt all SSL connections generated from the smartphone.
We used this setup to provide more data for privacy analysis.

Once the measurement environment was set up, we started the data collection
tools on the PC and the video streaming on the mobile device. After capturing
all network traffic, we used MoVIE to analyze the data.

3.2 Data Collection

To collect our dataset, we focused on FLS Web sites that are shared in sports-
themed sections on Reddit. We monitored these forums during the NHL, NBA,
NFL, and UEFA Champions League 2019–2020 season to find popular FLS
providers.

Reddit has subreddits, which are like a Web forum in which users discuss and
share content. Reddit differs from other social networks like Twitter, Instagram,
or Facebook in that subreddits are openly accessible. The shared content is not
limited to registered users, members, or friends. Users can access shared content
and links without logging in. Ayers et al. [1] analyzed the data gathered from
Alexa and SimilarWeb4 and observed that the Reddit community receives up to
86 million visits a month from users looking for sports streams.

We observed that free sports streams are usually aggregated and shared in a
few popular subreddits. In these subreddits, users can like or dislike shared FLS
Web sites. Web sites with more likes increase in popularity and rise to the top of
the Web page, and have a higher chance to attract even more visitors. Although
there are approaches to automatically crawl and discover aggregator Web sites
using online search engines [1], we found that most FLS pages are not reachable
via search engines. Furthermore, service providers delete pages after the events.
For these reasons, we manually selected the top-5 most popular FLS Web sites
based on user votes for each of NHL, NBA, NFL, and UEFA events.

To compare the performance of FLS services with legitimate providers, we
considered several features from the packet-level to the application-level. Since
streaming sports events are geo-restricted and specific sports events are available
only through specific online sports channels within each region, we subscribed to
two Canadian online sports channels. The main sports provider in Canada is TSN
(The Sports Network), which holds the Canadian rights to the top sports events.
We also study DAZN, a relatively new sports streaming service in Canada.

Our collected dataset is composed of the top-5 popular (according to the likes
from users) FLS Web sites in four popular sports, as gathered from the Red-
dit community, along with the two subscription-based sports streaming services.
All videos are captured with the experimental setup mentioned in the previ-
ous subsection. We analyzed the captured data of an NBA game in December
2019, the NFL SuperBowl in February 2020, a UEFA playoff game in Febru-
ary 2020, and an NHL game in March 2020. All captured events are before the

3 https://www.charlesproxy.com.
4 https://www.similarweb.com.

https://www.charlesproxy.com
https://www.similarweb.com
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global shutdown of sports events due to the COVID-19 pandemic in 2020. All
captured network data, video streaming log, and player activities are available
online [17]. We used the traceroute command to determine the geographic
locations of streaming sessions. In general, UEFA events were streaming from
European countries, while the NBA, NHL, and NFL events were streaming from
North America. However, some of the FLS sites use CDNs, and we could not
find their originating locations.

4 Measurement Results

To gain a comprehensive view of FLS, we evaluated video streaming from four
different viewpoints, namely Network QoS, Video QoS, QUIC, and privacy.

4.1 Network Quality of Service (QoS) Analysis

Since most FLS providers record live events from a legitimate streaming service
and broadcast them simultaneously [1], the quality of these services is unknown.
In order to evaluate the network QoS provided by FLS Web sites, we analyze
the packet-level traffic transferred during the streaming sessions.

Throughput. Several studies have proposed intelligent throughput-aware
bitrate selection and adaptation algorithms for video players to improve the QoE
in adaptive streaming techniques [32]. These algorithms predict the throughput
and determine the bitrate for the next chunk of the video. High throughput vari-
ation could result in quality switches or stalls during the video playback [15].
Figure 2(a) shows boxplots of the average throughput for the FLS and legitimate
providers. The legitimate sites had throughputs of 4–9 Mbps, compared to 1–6
Mbps for the FLS sites. The FLS throughputs were higher for the NFL and NHL
sites, and lower for the UEFA and NBA sites. The FLS sites had problems during
popular games, such as the 2019 NBA Finals, in which a Canadian team won
the championship for the first time in NBA history. During this event, the FLS
Web sites were not always able to deliver video, and some rejected new users
with the message “Viewer limit reached”. Table 2 in the Appendix provides fur-
ther details for each service provider, and time-series graphs of throughput are
available on our project Web site [17].

yaledkrowteN)b(tuphguorhT)a(

Fig. 2. Quality of Service (QoS) measurement results for live sports streaming sites
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Delay. Network packet delay is an important performance characteristic of a
computer network [3,28]. We used ping to estimate the average delay of service
providers. We set the ping packet size based on the average packet size of a
video streaming session. We conducted the ping test during the games when the
server was broadcasting and users were streaming. As shown in Fig. 2(b), the
average network delay for FLS sites tends to be much higher than the legitimate
sites, and vary much more widely, though it does depend on their geographic
location (e.g., some NHL streaming sites are in Calgary). Table 2 in the Appendix
presents more detailed results for each service provider.

Packet Loss. We used the ping flood technique to study the packet loss. We
observed that packet loss for the legitimate Web sites is about 0%, while it is
between 1% and 4% for FLS providers. The higher loss can indicate problems
in the network. Zennaro et al. [33] observed that packet loss below 1% is good,
1%–2.5% is acceptable, 2.5%–5% is poor, 5%–12% is very poor, and packet loss
in excess of 12% is bad. Their observations showed that above 5% of packet
loss, video conferencing becomes irritating and incomprehensible. The number
of packet losses for each streaming site is shown in Table 2 in the Appendix.

4.2 Video Quality of Service (QoS) Analysis

In this section, we analyze the video QoS for our sports streaming Web sites.

Startup Time. Startup time is the elapsed time between when the user requests
a video stream and the start of playback. This metric includes network delays
(e.g., RTT, DNS, CDN) and the initial buffering delay [9]. Previous studies have
shown that startup time is important, though it has only a small impact on
QoE [20,34]. As shown in Fig. 3(a), the legitimate Web sites start playing a
video about 1 to 2 s faster than the FLS sites. We observed 8 to 16 s of startup
delay when streaming from NBA FLS providers.

(a) Startup delay (b) Broadcast delay

Fig. 3. Quality of Experience (QoE) measurement results for live sports streaming sites

Broadcast Delay. Broadcast delay is an intentional delay (often 7 s) inserted
by live broadcasters to prevent mistakes or unacceptable content during live
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events. To calculate the real-time broadcast delay, we used information from
two auxiliary Web sites to determine the actual time elapsed in a sports game:
FlashScore.com and Bet365.com. FlashScore.com provides the fastest live and
detailed stats of thousands of competitions in more than 30 sports, and Bet365
is one of the world’s leading online gambling companies worldwide that covers
over 30 different sports. As shown in Fig. 3(b), DAZN had a broadcast delay of
around 12 s for UEFA competitions. The FLS services that deliver UEFA games
had between 1 and 4 min of broadcasting delay. This delay could be due to the
time for recording and broadcasting the video. Due to the nature of live sports
events, immediacy is extremely valuable. In general, live events streamed from
FLS Web sites are not always truly “live” streams.

Some of the FLS Web sites, and in particular NHL aggregators, have a broad-
casting delay around 30–35 s. By reviewing video player activities, we observed
that these FLS services use channel providers like Wstream or Vimeo to deliver
live streaming while recording videos. We also used the traceroute tool to locate
the source of streaming, but found that these channel providers use CDNs like
Akamai to deliver videos to users. Pandey et al. [24] also noted the use of Akamai
CDNs by 4 of 12 illegal sports and news streaming providers studied. The most
likely reason for using CDNs is to reduce latency for users.

Visual Quality. This metric indicates the average video resolution received
by the video player, particularly when the streaming rate and quality level are
dynamically adapted to the available bandwidth, such as in DASH (Dynamic
Adaptive Streaming over HTTP) [31]. In our experiment, the two legitimate
Web sites and several FLS Web sites (except NBA providers) provide HD video
quality. However, we observed that the transferred data for the same duration of
the same video streaming on a legitimate Web site is higher than the FLS Web
sites.

Quality Switches. The number of quality changes is another video QoS factor
that affects QoE [23]. The number of quality switches is calculated by counting
the number of video resolution changes over the duration of the video session. We
observed that 11 out of 20 FLS sites experienced two or more quality switches.
We also found that a few FLS providers did not switch to lower resolution when
video stalls occurred. We did not observe any quality switches in streaming from
legitimate Web sites.

Stalls. Rebuffering is the most noticable streaming artifact for users [9]. If the
player does not find sufficient new data in the buffer, it causes a pause during
the playback that is called a stall. Studies show that the number of stalls has
the highest impact on QoE [9]. From our (fast) campus network, our measure-
ment tool never showed any stalls with legitimate sports streaming Web sites.
Although all NHL FLS providers experienced quality switches, none of them
stalled during video playback. However, the vast majority of the other FLS ser-
vice providers suffered from several stalls. Table 3 in the Appendix shows the
number of rebuffering events observed for each streaming site studied.
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4.3 QUIC

TCP is the prevailing transport-layer protocol used by FLS services. TCP is
amenable to video streaming, and is widely used for Web and mobile applica-
tions. For example, MPEG-DASH is an HTTP-based adaptive bitrate streaming
technique to deliver high-quality streaming of media content over the Internet.

We observed that 18 out of 20 FLS Web sites deliver their services over
TCP. One of the FLS providers used UDP and another one used the Datagram
Transport Layer Security (DTLS) protocol to deliver video streaming. DTLS is
similar to the TLS protocol that provides security guarantees over UDP. Inter-
estingly, the two legitimate providers both deliver live streaming via UDP-based
solutions. We observed that TSN delivers live video streams using QUIC [19].

Experimental Setup. In this section, we describe our tests to evaluate the
impact of QUIC on the performance of live streaming in different network set-
tings. Google by default enables support for the QUIC protocol in the Chrome
browser. To compare QUIC with TCP, we disable this feature in Chrome to
stream live video over TCP. Although TCP Cubic is the default congestion con-
trol algorithm in QUIC [14], the congestion control algorithm used by QUIC
version 50 on the TSN site was unknown to us. To test different network set-
tings, we introduce delay, packet loss, and bandwidth limits by using the network
emulation (netem) functionality of the traffic control (tc) Linux command. Met-
rics of interest are the startup delay, the average received throughput, and the
number of quality switches.

We conducted all measurements on the described Linux PC with the Google
Chrome browser for live streaming in both Wired and WiFi settings. Figure 4
shows selected results from our experiments, while the full results appear in
Table 4 in the Appendix. The results report the averages from 10 video stream-
ing sessions, from TSN provider, each lasting 100 s, with the browser’s cache
and history cleared before each session. We observed that all video streaming
were streamed from the same IP address. Since recent studies show that QUIC
provides minimal improvements for video streaming in networks with low delay
and loss [2], we set high latency and loss to highlight the impacts of using QUIC.

Network Type. Here we study the behavior of QUIC/TCP live video streaming
in wired and WiFi networks. When the device is connected to a stable wired
connection, enabling QUIC does not have an impact on startup time, but the
average received throughput is slightly better than with TCP. When using the
WiFi network, the QUIC protocol had a lower average startup time than TCP.
However, the received throughput of video sessions using TCP was slightly higher
than with the QUIC protocol.

Delay. We applied 500 ms of delay to both wired and WiFi network connections.
In this scenario, QUIC started playing the video with a lower startup delay than
TCP over both wired and WiFi connections. The behavior of live streaming over
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TCP in the WiFi network was significantly worse than QUIC, with higher startup
time, much lower throughput, and more quality switches. This experiment shows
that QUIC works better than TCP over the WiFi network with high delay.

(a) Startup delay (b) Throughput

Fig. 4. QUIC vs TCP measurement results for live sports streaming sites

Loss. We added 25% random packet loss to both wired and WiFi connections.
The packet loss drastically reduces the throughput in both QUIC and TCP live
streaming. However, QUIC achieved a higher throughput. That is, QUIC was
able to receive videos with higher resolution while TCP streamed with lower
quality. This could be a key advantage of streaming via QUIC during popular
games that induce network congestion and packet loss.

Bandwidth. We reduced the available network bandwidth to 8 Mbps. In this
condition, the received throughput over TCP connections in both wired and WiFi
networks are higher than the QUIC-based video streaming. The captured traces
show that the server sends the data using three concurrent TCP connections on
different ports, with the transferred data almost balanced over each connection.
On the other hand, QUIC experienced worse performance in comparison to TCP.
In the WiFi network with limited bandwidth, QUIC’s startup time is higher, with
lower received throughput, and more quality switches.

4.4 Privacy Analysis

The results from the Privacy View of FLS sports Web sites are summarized in
Fig. 5, as well as Table 5 in the Appendix. We discuss selected results next.

HTTP vs. HTTPS. While the two legitimate sports streaming sites deliver
their services over HTTPS, most of the FLS sites use HTTP rather than HTTPS.
There may be several reasons why FLS providers do not upgrade to HTTPS on
their Web site, such as the costs to purchase and install SSL certificates on the
server, the extra CPU processing required for encryption, and the fact that some
FLS providers frequently change their Web domains. For these reasons, they may
just simply opt to deliver their services over HTTP.

Ad and Tracking Services. To recognize advertisement and tracking services,
we leveraged the EasyList and EasyPrivacy filter lists provided by the ad-blocker
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community. We used Privacy Badger5 to distinguish malicious ads from other
ads. By investigating the generated HTTP(S) requests/responses, we observed
that both FLS and legitimate Web sites connect users to advertising and tracking
services (see Fig. 5(a)). However, the legitimate Web sites mostly connect to
known tracking domains, such as Facebook and Google analytics, while the FLS
sites expose users to malicious trackers like onclicksuper.com, which is known to
redirect browsers to many unwanted advertisements. In addition, we observed
that some tracking services like google-analytics.com appear in both FLS and
legitimate sports streaming Web sites.

Overlay Ads and Offered Applications. During the data collection phase, we
observed that FLS Web sites use different techniques to show overlay and pop-up
ads. Some of these overlay ads cover part of the video player, and trick users into
pushing a fake close button, which then pops up multiple overlay ads. These ads
violate the online advertising standards [12], degrade the video streaming QoE,
and also lure users to numerous potentially malicious ads. Clicking on misleading
ads can lead to computer viruses such as ransomware, trojans, crypto-mining,
etc. In addition, we observed that some FLS Web sites offer a complimentary
application to watch free live sport streams on the mobile device. Prior work
has shown that these applications contain an advertising package, display ads
without user consent, and trigger potential ad fraud [25].

seikooC)b(stnemesitrevdA)a(

Fig. 5. Privacy and security measurement results for live sports streaming sites

Browser Security. Sandboxing is often used to run a Web browser in a low-
permission mode that limits malware access to vulnerable aspects of the operat-
ing system. However, some users bypass these security warnings when accessing
FLS sites [1]. Also, tools like ad-blockers can protect the user from deceptive ads
linked to scams and malware [22]. However, some FLS providers use anti-ad-
blocking techniques, or simply refuse to serve users with ad-blockers installed.

Cookies. We observed that both FLS and legitimate Web sites install third-
party advertising and tracking cookies on user systems. Since cookies contain
a history of the user’s actions, they may be exploited or misused to track the
user’s behavior. Figure 5(b) shows the number of third-party cookies observed
for each Web site in our dataset. For instance, we observed that visiting the
5 https://www.privacybadger.org.

https://www.privacybadger.org
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TSN site results in 76 cookies from 38 different third-party Web sites, 18 of
which are third-party tracking sites. Unlike TSN, DAZN alerts users about the
use of cookies on its Web site, and installs a few cookies on user systems. In
general, FLS Web sites trigger more advertising and tracking on user systems.
In addition, some FLS Web sites set zombie cookies, which can automatically
re-create themselves from stored data even after being deleted.

Data Leaks. By investigating POST requests, we observed that some FLS sites
send user information such as IP address, ISP, city, area, device name, OS,
browser version, and graphic card model to tracking Web sites. In addition,
we discovered TSN uses a new approach, wherein a single POST method was
used to perform multiple GET and POST requests. To do this, it inserts several
GET and POST requests in a JSON-like format, and then sends all of these
using one GET request to its server. One of the POST requests was 16,029
bytes long, and contained 18 GET and 3 POST requests, each addressing a
tracking/advertisement service. This approach can hide requests from browsers,
ad-blockers, and other security tools. An example of these POST requests is
available on our project Web site [17].

5 Related Work

One early work that mentioned free live sports streaming was the epilogue of the
Globalization and Football book [11], in which the authors discussed the impact
of emerging FLS platforms on ‘the global game’. Later, Birmingham et al. [4]
studied FLS for England’s Premier League of soccer, and noted parallels to the
music industry, which faced similar piracy issues in the 1990s.

FLS services have grown tremendously over the past decade. Rafique
et al. [25] explored the FLS ecosystem by investigating those infringing upon
sports streaming Web sites. In addition, they analyzed the advertising content
that the FLS Web sites expose during the live broadcasts.

Ayers et al. [1] offered a solution to automatically crawl and discover aggre-
gator Web pages through the Google search engine. Then they studied FLS
services by collecting and investigating 500 illegal live streaming domains. They
observed that despite the improvement in the privacy mechanisms by ad-blockers
and browsers, users are still using illegal streaming and exposing themselves to
scams and deceptive ads. Kariyawasam et al. [16] studied the copyright concerns
in the FLS ecosystem by analyzing the legal landscape for live sports streaming.

Bronzino et al. [5] developed models that derive video quality metrics from
encrypted video streaming services. Biernacki et al. [3] conducted a thorough
video streaming simulation study with different network conditions and video
bitrates. Their study showed that QoS metrics significantly impact the QoE
metrics for video streaming. In many cases, however, the buffering strategies
implemented by a player client are able to mitigate unfavourable network con-
ditions and further improve QoE.

The main novelty of our own work is the focus on performance tradeoffs in
live sports streaming (i.e., QoS and QoE), as well as on user privacy and security.
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Furthermore, we provide multiple observational viewpoints at different layers of
the protocol stack, using a customized version of the MoVIE tool.

6 Conclusion

In this paper, we presented a measurement study of FLS sites to identify tradeoffs
in performance (i.e., network QoS and video QoS) as well as privacy and security.
Our measurements were made using an extended version of an open-source video
measurement tool called MoVIE [18]. We also conducted measurements of two
legitimate sports streaming Web sites to provide a basis for comparison.

Our main results can be summarized as follows. We observed a long broad-
casting delay in free live streams. The throughput, streaming quality, and packet
loss rate differ greatly across FLS sites. TSN delivers live video streaming using
QUIC. We observed that QUIC’s benefits are larger in WiFi networks with
higher delay and loss. Similar to previous studies, we also noted that the FLS
ecosystem continues to flourish. Although FLS is free, you always “get what you
pay for”: the user pays the cost of FLS by dealing with the uncertainty of the
streaming services, and the inherent privacy/security risks.

Ethical Considerations
There are several ethical issues associated with studying illegal FLS services.
First, many countries have Fair Dealing exceptions that authorize the use of
copyrighted materials for specific purposes. In Canada, these purposes include
“research, private study, education, parody, satire, criticism, review, or news
reporting”. Second, we studied Web sites that millions of users visit monthly,
despite the copyright law and potential malicious behaviours. We do not crawl
automatically through the FLS providers, and our study has minimal impact on
visit numbers. In addition, there is a chance that any increased views triggered
by our study will be suitably moderated by the increased awareness of FLS users.
Finally, to study privacy issues, it was necessary to decrypt the device’s network
traffic to see the incoming and outgoing flows. However, our measurements and
experiments were conducted on a single device in a controlled lab environment.
We collected neither personal data nor the device traffic from other users. All
captured data are publicly available for future studies [17].
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Appendix

The following four tables provide the detailed results from our active and passive
measurement experiments with live sports streaming sites. In Table 2, Table 3,
and Table 5, the rows correspond to the different legitimate and FLS providers
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Table 2. Network Quality of Service (QoS) metrics for live sports streaming Web sites.

Type Provider HTTP(S) Protocol Avg

Throughput

Trace SYN

RTT

Trace Loss TCP

Retrans

Ping Avg

RTT

Ping SD

Delay

Ping

Loss

% pkts

Paid UEFA NFL DAZN HTTPS UDP 8,899 kbps - - - - 1.046 ms 0.975 ms 0%

NHL NBA TSN HTTPS QUIC 4,021 kbps - - - - 1.252 ms 1.119 ms 0%

FLS UEFA P1 HTTP TCP 1,676 kbps 59.061 ms 0.8% 114 69 pkts 65.544 ms 7.439 ms 2%

P2 HTTP TCP 1,212 kbps 137.900 ms 0.8% 75 24 pkts 141.688 ms 12.368 ms 3%

P3 HTTP TCP 918 kbps 135.949 ms 0.7% 49 29 pkts 141.759 ms 31.675 ms 2%

P4 HTTP UDP 1,413 kbps - - - - 74.548 ms 16.54 ms 2%

P5 HTTP TCP 766 kbps 155.932 ms 0.9% 74 40 pkts 147.422 ms 46.860 ms 4%

NFL P6 HTTP TCP 4,833 kbps 53.793 ms 0.0% 11 11 pkts 66.500 ms 12.062 ms 7%

P7 HTTP TCP 1,763 kbps 145.940 ms 0.1% 16 12 pkts 164.126 ms 38.925 ms 0%

P8 HTTP TCP 4,990 kbps 150.393 ms 0.1% 105 43 pkts 62.496 ms 7.896 ms 0%

P9 HTTP TCP 4,428 kbps 179.007 ms 0.1% 53 46 pkts 67.876 ms 12.212 ms 4%

P10 HTTP TCP 4,877 kbps 7.248 ms 0.0% 23 26 pkts 7.351 ms 7.440 ms 0%

NHL P11 HTTP UDP 2,412 kbps - - - - 1.359 ms 1.476 ms 0%

P12 HTTP TCP 2,888 kbps - 0.0% 12 26 pkts 1.570 ms 1.612 ms 0%

P13 HTTP TCP 6,195 kbps 15.331 ms 0.0% 3 10 pkts 2.597 ms 2.661 ms 0%

P14 HTTP TCP 6,168 kbps - 0.0% 17 10 pkts 0.943 ms 0.845 ms 0%

P15 HTTP TCP 6,073 kbps 7.923 ms 0.0% 11 18 pkts 1.160 ms 1.256 ms 0%

NBA P16 HTTP TCP 1,380 kbps 47.015 ms 0.1% 25 21 pkts 19.739 ms 1.195 ms 0%

P17 HTTP TCP 1,481 kbps 10.748 ms 0.1% 50 60 pkts 19.495 ms 0.557 ms 0%

P18 HTTP TCP 1,332 kbps 21.159 ms 0.0% 16 18 pkts 20.216 ms 0.748 ms 0%

P19 HTTPS TCP 1,050 kbps 311.496 ms 0.0% 11 25 pkts 146.680 ms 3.192 ms 0%

P20 HTTP TCP 960 kbps 28.848 ms 0.1% 17 22 pkts 16.482 ms 2.164 ms 0%

Table 3. Video QoS metrics for live sports streaming Web sites.

Type Sports Provider Startup

Time

Resolution Rebuffering Quality

Switches

Broadcast

Delay

Paid UEFA NFL DAZN 0.62 s 1280 × 720 0 0 12 s

NHL NBA TSN 0.64 s 1280 × 720 0 0 10 s

FLS UEFA P1 2.21 s 1280 × 720 2 0 87 s

P2 2.17 s 1280 × 720 1 0 189 s

P3 1.02 s 1280 × 720 4 0 90 s

P4 1.83 s 960 × 540 0 0 226 s

P5 2.18 s 1280 × 720 4 0 240 s

NFL P6 2.11 s 1024 × 576 5 0 93 s

P7 4.24 s 1280 × 720 0 0 78 s

P8 6.97 s 1024 × 576 3 0 80 s

P9 5.91 s 1024 × 576 3 0 78 s

P10 5.97 s 896 × 504 0 3 68 s

NHL P11 2.75 s 1280 × 720 0 2 32 s

P12 1.44 s 1280 × 720 0 2 30 s

P13 1.40 s 1280 × 720 0 2 32 s

P14 1.43 s 1280 × 720 0 3 33 s

P15 1.83 s 1280 × 720 0 2 35 s

NBA P16 8.39 s 640 × 360 6 5 74 s

P17 16.82 s 986 × 504 4 4 80 s

P18 9.81 s 640 × 360 8 4 75 s

P19 11.21 s 512 × 288 6 2 72 s

P20 13.40 s 512 × 288 7 2 61 s
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Table 4. Comparison of QUIC and TCP in network emulation experiments.

Network Setting QUIC TCP

Limitation Type Startup
time (s)

Throughput Quality
Switch

Startup
time (s)

Throughput Quality
Switch

None Wired 0.169 3925 kbps 0 0.161 3720 kbps 0

WiFi 3.233 4239 kbps 0 3.4054 4475 kbps 0

Delay=500 ms Wired 3.8624 3982 kbps 1 4.4692 4018 kbps 1

WiFi 4.800 3978 kbps 3 8.755 2026 kbps 5

Loss Rate=25% Wired 2.189 4058 kbps 1 6.082 3928 kbps 2

WiFi 7.514 2892 kbps 1 3.324 1095 kbps 0

Bandwidth=8 Mbps Wired 5.545 2734 kbps 2 7.686 3789 kbps 1

WiFi 10.213 970 kbps 2 3.939 4789 kbps 0

Table 5. Privacy view of live sports streaming Web sites.

Type Sports Provider Tracking
ad

Malicious
ad

Offering
apps

Encryption
Scheme

Anti ad-
blocker

Cookie
Consent

# 3rd-party
cookies

# 3rd-party
Web sites set
cookies

# 3rd-party
tracker sites
set cookies

Paid UEFA NFL DAZN 12 0 No CENC No Yes 10 6 1

NHL NBA TSN 34 0 No CENC No No 76 36 18

FLS UEFA P1 7 5 Yes N/A No No 8 5 1

P2 7 2 No N/A No No 12 7 5

P3 19 8 Yes N/A No No 97 50 38

P4 22 7 No N/A No No 88 62 47

P5 14 5 No N/A No No 74 44 21

NFL P6 10 5 No N/A No No 118 58 47

P7 29 17 Yes N/A No Yes 148 82 59

P8 13 5 No N/A No Yes 121 49 37

P9 10 5 No N/A No No 27 12 5

P10 13 5 No N/A No No 12 7 1

NHL P11 13 5 No N/A No No 111 67 28

P12 10 5 No N/A No No 7 5 0

P13 19 7 Yes N/A Yes Yes 162 67 36

P14 5 2 No N/A No No 123 74 35

P15 38 18 Yes N/A No No 5 5 2

NBA P16 26 8 Yes N/A No No 7 5 1

P17 14 5 Yes N/A Yes No 61 27 14

P18 38 12 Yes N/A No Yes 103 52 37

P19 23 8 Yes N/A No No 47 28 11

P20 24 8 Yes N/A No No 64 24 11

studied, while the columns represent different performance metrics for network
QoS, video QoS, and privacy, respectively. Table 4 provides results for the QUIC
experiments, which structurally differ from the other measurement results.
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Abstract. Video live streaming now represents over 34.97% of the Inter-
net traffic. Typical distribution architectures for this type of service heav-
ily rely on CDNs that enable to meet the stringent QoS requirements of
live video applications. As CDN-based solutions are costly to operate, a
number of solutions that complement CDN servers with WebRTC have
emerged. WebRTC enables direct communications between browsers
(viewers). The key idea is to enable viewer to viewer (V2V) video chunks
exchanges as far as possible and revert to the CDN servers only if the
video chunk has not been received before the timeout. In this work, we
present the study we performed on an operational hybrid live video sys-
tem. Relying on the per exchange statistics that the platform collects,
we first present an high level overview of the performance of the system
in the wild. A key performance indicator is the fraction of V2V traffic of
the system. We demonstrate that the overall performance is driven by
a small fraction of users. By further profiling individual clients upload
and download performance, we demonstrate that the clients responsible
for the chunk losses, i.e. chunks that are not fully uploaded before the
deadline, have a poor uplink access. We devised a work-round strategy,
where each client evaluates its uplink capacity and refrains from sending
to other clients if its past performance is too low. We assess the effec-
tiveness of the approach on the Grid5000 testbed and present live results
that confirm the good results achieved in a controlled environment. We
are indeed able to reduce the chunk loss rate by almost a factor of two
with a negligible impact on the amount of V2V traffic.

1 Introduction

By 2022, the global video traffic in the Internet is expected to grow at a com-
pound annual growth rate of 29%, reaching an 82% share of all IP traffic [2].
The video content is usually delivered to the viewers using a content delivery
network (CDN). The huge amount of users puts a high pressure on the CDN
networks to ensure a good Quality of Experience (QoE) to the users. It also leads
to huge cost for the content owner. This is where a hybrid CDN/V2V (viewer-
to-viewer) architecture plays an important role. It allows sharing of the data
between different viewers (browsers) while maintaining the QoE for the users.
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This paper focuses on a commercial hybrid V2V-CDN system that offers
video live streaming channels, where each channel is encoded in different quality
levels. More precisely, we focus on the operations of the library that acts as a
proxy for fetching the video chunks for the video player. The library strives to
fetch the video chunks from other viewers watching the same content and reverts
to the CDN in case the chunk is not received fast enough. This operation is fully
transparent to the player, which is independent from the library and decides
the actual quality level based on the adaptive bitrate algorithm it implements,
according to the network conditions and/or the buffer level occupancy.

Our hybrid V2V-CDN architecture uses Web-RTC [3] for direct browser com-
munication and a central manager, see Fig. 1. The library is downloaded when the
user lands on the Web page of the TV channel. It first uses the Internet Commu-
nication Exchange (ICE) protocol along with the STUN and TURN protocols
to find its public IP address and port. The library then contacts the central
manager using the session description protocol (SDP) to provide its unique ID,
ICE data which includes reflexive address (public IP and port), and its playing
quality.

Fig. 1. Overall hybrid V2V-CDN architec-
ture

The manager sends to the library a
list of viewers watching the same con-
tent at the same quality level. Those
candidate neighbors, called a swarm,
are chosen in the same Internet Ser-
vice Provider (ISP) and/or in the
same geographic area as far as pos-
sible. The viewer will establish Web-
RTC [3] channels with up to 10 neigh-
bors. This maximum swarm size value
of 10 in our production system offers
a good trade-off between the diversity of video chunks it offers and the efforts
needed to maintain those channels active.

When the video player asks for a new video chunk, the library selects the
source from which the chunk will be downloaded, either another viewer or a CDN
server if the chunk is not available in the swarm. We allow viewers to download
data from other viewers within a specified time period which is generally in the
order of the size of one video chunk. For example, in the channel used in this
paper, the size of one chunk is 6 s for the three different encoding rates.

In terms of global synchronization of the live stream, there is no mechanism
to enforce that clients stay synchronized within a given time frame, but a new
video client, upon arrival, always asks for the latest available chunk whose id
is in the so-called manifest file (list of available chunks, materialized as URLs)
that the viewer downloads from the CDN server. Users have the possibility to
roll back in time. For the channel we profile, the last 5 h of content is available
from the CDN servers. The library maintains a history of the last 30 chunks,
corresponding to about 3 min of content.
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Although hybrid V2V-CDN systems offer a cost effective alternative to a
pure CDN architecture, they need to achieve a trade-off between maintaining
video quality and a high fraction of video chunks delivered in V2V mode. Those
requirements are somehow contradicting as the V2V content delivery is easier
when the content (video chunks) is smaller in size, i.e. for lower video quality.

The contributions of this paper are as follows:

(i) We present detailed statistics of a 3-day period – with over 34,000 clients
and 6.TB of data exchanged – for a popular channel serviced by our com-
mercial live video distribution. We follow an event-based rather than a
time-based approach to select those days. Indeed, as the audience of a TV
channel varies greatly over time depending on the popularity of the content
that is broadcasted, we choose this 3-day period to offer a variety of events,
in terms of connected viewers.

(ii) We question the efficiency of the system using three metrics: V2V Effi-
ciency, which is the fraction of content sent in V2V mode, (application
level) Throughput and Chunk Loss Rate (CLR) which is the number of
chunks not received before the deadline. These metrics allow to evaluate
the efficiency of the library operations. They are specific to the evaluation
of the library and differ from classical metrics used at the video player like
the number of stalled events and quality level fluctuations.

(iii) We demonstrate that the root cause of the high observed CLR rate lies at
the uplink of some clients, rather than the actual network conditions. This
allows us to devise a mitigation strategy that we evaluate in a controlled
environment, to prove its effectiveness and then deploy on the same channel
that we initially analyzed. We demonstrate that we are able to reduce the
observed chunk loss rate by almost 50% with a negligible impact on the
fraction of V2V traffic.

2 State of the Art

Several studies have demonstrated that Web-RTC can be successfully used for
live video streaming, e.g. [5,6]. The V2V protocol used in this work relies on
a mesh architecture to connect different viewers together [4]. The V2V content
delivery protocol used applies a proactive approach, which means that the infor-
mation is disseminated in the V2V network as soon as a single viewer downloads
the information. The information is sent to other viewers by using the same
Web-RTC channel with a message called downloaded. So even if a viewer has not
yet requested the resource, it still has the information about all the resources
present in its V2V network.

There have been some large scale measurement studies on live video systems
done in the past. One of the most popular studies done on a P2P IPTV system is
[7] dates back to 2008. In this paper, the authors demonstrate that the current
Internet infrastructure was already able to support large P2P networks used
to distribute live video streams. They analysed the downloading and uploading
bitrate of the peers. They show that there is a lot of fluctuation in the upload
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and download bitrate. They also found that the popularity of the content does
affect the number of viewers and how easy or difficult it is to find other viewers.

In [8], the authors focused on the problems caused by P2P traffic to ISP
networks. This concern is in general addressed in hybrid V2V-CDN architectures
through a central manager that can apply simple strategies like offering to a
viewer neighbors in the same ISP or geographic location.

3 Overall Channel Profiling

The TV channel we profile in this study is a popular Moroccan channel serviced
by our hybrid V2V-CDN system, that offers regular programs like TV series
and extraordinary events like football matches. Almost 50% of the clients are in
Morocco. The second most popular country is France which represents 15% of
the viewers. Italy, Spain, Netherlands, Canada, United States, Germany, Belgium
each hosts approximately 4% of the viewers, for a total of about 28% of users.
Watching the channel is free of charge. It is accessible using a Web browser only
(all browsers now support WebRTC), and not through a dedicated application
as can be the case of other channels. On average, 60% of the users use mobile
devices to view this channel, whereas 40% of the users use fixed devices.

3.1 Data Set

Our reference data set aggregates three days (from Oct. 2020) of data. Two
days have no special events thus the distribution and size of the clients through-
out the day remains the same whereas on the third day there is an important
event which changes the distribution and size of the clients throughout the day.
The channel can be watched at three different quality levels corresponding to
3.5 Mb/s for the smallest quality, 7 Mb/s for the intermediate quality and around
10 Mb/s for the highest quality. These quality levels are selected by the content
owner, not the library. Over these three days, we collected information on 34,816
client sessions. On a standard day, the total amount of data downloaded (in
CDN or V2V mode) varies between 1.5 and 2 TB whereas in case of big events,
the amount of data downloaded is between 6 and 6.5 TB. Figure 2 reports the
instantaneous aggregate bit rate over all the clients connected to the channel.
The average is at 34 MB/s (372 Mb/s) while for the peak event (a football
match), the aggregate throughput reaches 479 MB/s (3,8 Gb/s).

The V2V library reports to the manager detailed logs for all the resource
exchanges made by each viewer every 10 s. Over the 3 days, 4,615,045 chunks
have been exchanged. The manager later stores those records in a back-end
database. Each exchange is labelled with the mode (V2V or CDN) and in case
of V2V, the id of the remote viewer. We also have precise information about
the time it took to download the chunk or alternatively if a chunk loss event
occurred. In addition to per chunk exchange record, we also collect various player
level information as well like watching time, video quality level, operating system
(OS), browser, city, country, Internet service provider (ISP), etc. We also collect
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Fig. 2. Initial 3-day period Fig. 3. V2V size bytes distribution

various other viewer information as well like to how many viewers a viewer is
connected to simultaneously (swarm size), how many consecutive uploads to the
other viewer has been done, rebuffering time, rebuffering count etc.

3.2 Clients Profiling and V2V Efficiency

The V2V paradigm directly inherits from the P2P paradigm where a significant
problem was the selfishness of users [1]. We are not in this situation here as on one
side, the V2V library is under our control and second, the choice of a viewer to
request a chunk from, is done at random among the peers possessing this chunk.
Still, we observe a clearly biased distribution of viewers contribution with 1% of
the viewers responsible for over 90% of the bytes exchanged, as can be seen from
Fig. 3. This bias in the contribution is in fact related to the time actually spent
by the user watching the channel. We report session times in Fig. 4. Since most
of the V2V data is sent by only 1% of the viewers, we compare the session time
of all the viewers with these 1% of most active viewers. We can readily observe
in Fig. 4 that the top 1% active viewers feature a bimodal distribution of session
time with around 25% of clients staying less than 1 min and the rest staying in
general between 30 min and a few hours. In contrast, the overall distribution (all
users) is dominated by short session times with 60% of users staying less than
10 min.

Another factor that is likely to heavily affect the viewer ability to perform
effective V2V exchanges is its network access characteristics. As part of the
content is downloaded from the CDN servers which are likely to be close to the
client and feature good network performance, the average throughput achieved
during chunks downloads from the CDN provides a good hint on the network
access capacity of the user. Note that as a chunk is several MB large, the resulting
throughput should be statistically meaningful.

As we see from Fig. 6, there is a significant difference between the CDN
bitrates of the overall viewers and most active 1% viewers, which experience
way higher throughputs. The correlation coefficients between CDN bitrate and
chunk loss rate (CLR) for overall viewers is −0.47 and for most active top 1%
viewers, it is −0.7. Ideally, one expects this value to be indeed negative as the
better the access link of the user is, the less likely it is to miss the deadline when
sending or receiving a chunk. From this perspective, the CLR is highly correlated
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with the CDN throuhgput performance for the top 1% of users, hinting that this
metric is a good estimator of the reception quality.

The actual chunk lost rate (CLR) of the overall viewers and most active
viewers are reported in Fig. 5. We can clearly observe that for the most active
1% of users, the distribution is skewed to the left. Indeed, over 50% of these
users experience less than 20% CLR, while the others experience a CLR roughly
uniformly distributed between 20 and 75%.

To further understand the observed CLR, and how to reduce it, we carry a
detailed study the CLR in the next section.

Fig. 4. Watching time distribution Fig. 5. Lost chunk rate distribution

Fig. 6. CDN bandwidth distribution Fig. 7. Viewer’s neighbour set size

4 Detailed Analysis of Chunk Loss Rate (CLR)

We focus in this section on the 1% most active users viewers with more than
1 min session time. We formulated hypotheses to identify the root causes behind
the observed lost data chunks:

– H1: The swarm size affects the lost chunk rate of a viewer, because the bigger
the swarm size, the more control messages you receive, thus more network
traffic resulting in a higher CLR.

– H2: The type of client access affects the lost chunk rate. Ideally, we would like
to know the exact type of network access the client is using: Mobile, ADLS,
FTTH. The library is not able (allowed) to collect such information. We can
however classify clients as mobile or fixed lines clients based on the user-agent
HTTP string.
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– H3: The network access link characteristics directly affects the CLR. We
already studied the download rate of the users using the transfers made with
the CDN servers. The download and especially the upload rates achieved
during V2V exchanges can also be used to understand the characteristics of
the client access link.

Based on the observation we made on Fig. 5, we form two groups of users
(for the top 1%) that we term good or bad. The viewers with less than 20%
CLR are categorised as good viewers while viewers with more than 60% CLR
values are categorised as bad viewers. The rationale behind this approach is to
uncover key features of clients that can lead to small and large CLR so as to
isolate ill-behaving clients and improve the V2C efficiency.

H1 Hypothesis. The first hypothesis states that the neighbour set size of the
viewers should affect the CLR. Figure 7 presents the CDF of the peer set size
of good and bad viewers. We can observe that bad peers tend to have smaller
peer set size than good peers. While this could hint towards the fact that bad
peers have more difficulties to establish links with other viewers, we believe that
the actual session times play a key role, as the longer the session, the more
likely a peer is to establish more connections. This is indeed the case here as
bad peers have an average session time of 22 min while it is 160 min for the good
peers. We however also found that the correlation coefficient between neighbour
set size and CLR is only 0.05 and 0.07 for good and bad peers respectively.
Thus although we observe distinct distributions for good and bad viewers, the
neighbour set size does not seem to have any direct correlation with the CLR.

H2 Hypothesis. The second hypothesis is to check if the type of device affects the
CLR. We have two families of devices: desktop devices and mobile devices. As a
mobile (resp. desktop) device can send to a desktop or mobile device, we have 4
possible combinations to consider. We plotted the distributions of CLR for the
good and bad viewers for all the four combinations in Figs. 8 and 9 respectively.
For the good users, the type of device does not seem to play a significant role1.
For the bad viewers, we have very few cases of desktop senders, which is under-
standable as the worse network conditions are likely to be experienced on mobile
devices. This hints towards putting the blame on the user access link that we
investigate further with hypothesis H3.

H3 Hypothesis. We now investigate the impact on the CLR of the access link
characteristics of the users that we indirectly estimate based on the bandwidth
achieved during transfers with CDN servers and other viewers. From Fig. 10,
we observe that 50% of the bad viewers have just 10Mbps of CDN bandwidth
whereas 50% of the good viewers have about 25Mbps of CDN bandwidth. The
coefficients of correlation between CLR and CDN bandwidth for the good viewers
and bad viewers are −0.45 and −0.4 respectively.

1 Note that the good users in Fig. 8 can experience CLR higher than 20% for some
categories, as the threshold of 20% applies to the average CLR and not per category.
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Looking at the V2V download rates should enable to estimate the uplink of
the users as it is likely to be the bottleneck of the path. From Fig. 11, we clearly
see that the V2V downloading rate of good viewers is far better than the one of
bad viewers. It thus appears that a key factor that explains the observed CLR is
the uplink capacity of the peers. In the next section, we leverage this information
to devise a simple algorithm, that can be applied independently at each viewer
and helps reducing the CLR.

Fig. 8. CLR of good viewers Fig. 9. CLR of bad viewers

Fig. 10. CDN bandwidth distribution Fig. 11. V2V bandwidth distribution

5 CLR Mitigation Algorithm

Our objective is to achieve a trade-off between CLR reduction and a decrease
of V2V traffic. Indeed, a simple but not cost effective way to reduce the CLR is
to favor CDN transfers at the expense of V2V transfers. Results of the previous
section have uncovered that a key (even though probably not the only one)
explanation behind high CLRs is the weakness of the uplink capacity of peers.
We thus devised a simple approach that allows viewers to identify themselves
as good or bad viewers by monitoring their chunk upload success rate. The
algorithm checks every second the CLR, and if it goes above a threshold of
th%, the viewer stops sending the so-called downloaded control messages, which
indicate to its neighbors that it has a new available chunk. As the viewers won’t
send a downloaded message, they will not receive a request for that resource,
which will reduce their lost data rate. Note that viewers can still request and
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Fig. 12. Algorithm Fig. 13. Second 3-day period

receive chunks in V2V mode from other viewers. This is motivated by the fact
that the access links tend to be asymmetric with more download than upload
capacity.

The algorithm (Fig. 12) implements a backoff strategy where the viewer alter-
nates between full V2V (receiving and sending) and partial V2V (only receiv-
ing) mode to account for possible channel variations or varying congestion in
the network. The first time the threshold th is reached, the viewer stops sending
downloaded messages for 100 min and then starts again monitoring the CLR
every second for one minute afterwards. If a second consecutive period of CLR
over the threshold is observed, the viewer stops sending downloaded messages
for 101 min and so on (i consecutive events lead to a period of 10i minutes long
silence period). In between silence periods, the test periods, where the viewer is
allowed again to upload, last one minute.

In the next section, we report on tests performed with our CLR mitigation
algorithm on a test-bed and in production in the live channel used in Sect. 3.

6 Evaluation

We evaluate our CLR mitigation algorithm first in a controlled environment
which features 60 viewers and second in our production environment. While
modest in size, the controlled environment is useful as it enables to : (i) perform
functional tests as the client code in the same as the one in production, (ii)
emulate a variety of client network conditions by tuning the upload and download
rate of clients, even though we cannot reproduce the full diversity of network
conditions observed in the wild and (iii) perform reproducible tests, which is
unfeasible in the wild.



A Data-Driven Analysis and Tuning 137

6.1 Test-Bed Results

Our test-bed was deployed on 4 physical servers on the Grid’5000 experimental
platform [9] which uses KVM virtualisation. Each server hosts 4 virtual machines
with 15 viewers per VM, for a total of 60 unique viewers. The viewers are con-
nected to a forked version of the channel presented in Sect. 3, where they operate
in isolation, i.e. they can only contact the CDN server and the local viewers.

We relied on Linux namespaces to create isolated viewers. The download
capacity of each virtual node is around 325 Mb/s. Each experiment lasts 40 min.
To emulate bad viewers, we capped their upload capacity, using the Netem mod-
ule of Linux, to 3 Mb/s, a value smaller than the smallest bitrate, corresponding
to smallest video quality of the channel. In contrast, we impose no constraints
on their uplink. We created three different scenarios: (i) Scen. 1: 15 bad viewers
and 45 good viewers, (ii) Scen. 2: 30 bad viewers and 30 good viewers and (iii)
Scen. 3: 45 bad viewers and 15 good viewers.

Table 1 reports the fraction of chunks downloaded from the CDN or in V2V
mode as well as the CLR for the three scenarios with the CLR mitigation algo-
rithm on and off. Clearly, the V2V efficiency is not affected (it even increases)
when the algorithm is turned on while the CLR significantly decreases. The CLR
does not reach 0 as when the bad peers are in their test periods (in between
silence periods) they can be picked as candidates by the good peers.

Table 1. CDN V2V and LCR rate For V2V protocol with and without algorithm

No Algorithm Algorithm

CDN% V2V% LCR CDN% V2V% LCR

Scen. 1 36.7 63.3 7.85 36.37 63.3 3.38

Scen. 2 46.72 53.28 13.52 55.78 64.21 5.58

Scen. 3 66.4 33.6 38.7 53.51 46.49 7.75

6.2 Results in the Wild

We now present the result of a 3-day evaluation for the same channel as in
Sect. 3 where the CLR mitigation algorithm is deployed. Figure 13 represents
the evolution of aggregated traffic over the three days. We used a conservative
approach and used a threshold th= 80% for this experiment, as we test on an
operational channel.

The three days picked for the initial analysis in Sect. 3 were in fact chosen so
as to offer a similar profile (with at least one major event) as the period where
the algorithm was deployed. This enables to compare the two sets of days, even
if we can not guarantee reproducibility due to the nature of the experiment.

We first focus on the V2V efficiency which is the most important factor
for the broadcaster. We want the algorithm to reduce the CLR but not the
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V2V efficiency as far as possible. The aggregated V2V efficiency for the days
without the CLR mitigation algorithm is 28.98% whereas it is 30.61% when
it is turned on. The scale of the events does affect the V2V % for both the
algorithms. For a small (resp. large) scale event where the total data download
remains less than 1.5 TB (over 6TB), the V2V protocol without mitigation
algorithm has 32.5% (resp. 27.47%) of V2V efficiency whereas the V2V protocol
with algorithm features an efficiency of 28.9% (resp. 32.55%). This suggests that
when the protocol has enough viewers with good download capacity, there is no
big performance impact on V2V efficiency. Even in the case of less viewers, the
V2V efficiency percentage is reduced by only 4%.

The second metric we consider is the CLR. The overall (over the three days)
CLR without the algorithm was 24.7% whereas it fell to 13.0% when the algo-
rithm was turned on. Thus overall, the algorithm reduced the CLR by almost a
factor of 2.

We further compared the distributions of the CLR for good viewers and bad
viewers, using the same definition as in Sect. 3, for the two periods of 3 days in
Figs. 14 and 15 respectively. We clearly observe the positive impact of the CLR
mitigation algorithm on both the good and bad peers with more mass on the
smaller CLR values, e.g. almost 22% of the good viewers do not loose any data
at all.

As explained in the introduction, the library operations are transparent to
the video player. One can however question if our CLR mitigation algorithm can
adversely impact the video player by indirectly influencing the video quality level
it picks. As a preliminary assessment of the interplay between the library and the
player, we report in Table 2 the fraction of sessions at each quality level observed,
per day, for the two periods of interest for the top 1% of viewers. We observe no
noticeable difference in the distributions of client sessions at each quality level
for the two periods, which suggests that the CLR mitigation algorithm has no
collateral effect.

Table 2. Video quality levels distribution (top 1% viewers)

Period 1 (no algo.) Period 2 (algo.)

Low Q. % Medium Q. % High Q. % Low Q. % Medium Q. % High Q. %

Day 1 27 30 44 33 29 38

Day 2 33 25 42 30 25 45

Day 3 30 35 35 28 34 38
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Fig. 14. CLR No mitigation alg. Fig. 15. CLR With mitigation alg.

7 Conclusion and Future Work

In this work, we have presented an in-depth study of a live video channel operated
over the Internet using a hybrid CDN-V2V architecture. For such an architec-
ture, the main KPI is the fraction of chunks delivered in V2V mode. The chunk
loss rate (CLR) metric is another key factor. It indicates, when it reaches high
values, that some inefficiencies exist in the system design since some chunks are
sent but not delivered (before the deadline) to the viewers that requested them.

We have followed a data driven approach to profile the clients and relate the
observed CLRs to other parameters related to the neighborhood characteristics,
the type of clients (mobile or fixed) or the access link characteristics. The latter
is inferred indirectly using the throughput samples obtained when downloading
from the CDN or uploading to other peers. We demonstrated that, in a number
of cases, the blame was to put on the access links of some of the viewers. We
devised a mitigation algorithm that requires no cooperation between clients as
each client individually assesses its uplink capacity and decides if it acts as
server for the other peers or simply downloads in V2V mode. We demonstrated
the effectiveness of the approach in a controlled testbed and then in the wild,
with observed gains close to 50% with a negligible impact on the V2V efficiency.
As our library is independent from the actual viewer, and simply acts as a proxy
between the CDN server and the video player by re-routing requests for the
content to other viewers if possible, our study provides a way to optimise any
similar hybrid V2V architecture.

The next steps for us will be to devise an adaptive version of our CLR
mitigation algorithm and test at a larger scale on the set of channels operated
by our hybrid CDN-P2P live delivery system. We also want to study in more
detail the relation between our QoS metrics at the library level and the classical
QoE metrics used at the video player level.
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Abstract. The explosion of mobile broadband as an essential means of
Internet connectivity has made the scalable evaluation and inference of
quality of experience (QoE) for applications delivered over LTE networks
critical. However, direct QoE measurement can be time and resource
intensive. Further, the wireless nature of LTE networks necessitates that
QoE be evaluated in multiple locations per base station as factors such
as signal availability may have significant spatial variation. Based on
our observations that quality of service (QoS) metrics are less time and
resource-intensive to collect, we investigate how QoS can be used to infer
QoE in LTE networks. Using an extensive, novel dataset representing a
variety of network conditions, we design several state-of-the-art predic-
tive models for scalable video QoE inference. We demonstrate that our
models can accurately predict rebuffering events and resolution switch-
ing more than 80% of the time, despite the dataset exhibiting vastly
different QoS and QoE profiles for the location types. We also illustrate
that our classifiers have a high degree of generalizability across multiple
videos from a vast array of genres. Finally, we highlight the importance
of low-cost QoS measurements such as reference signal received power
(RSRP) and throughput in QoE inference through an ablation study.

Keywords: QoE · Video streaming · Network measurement · LTE ·
Digital divide

1 Introduction

More than 60 million people reside in rural regions in the United States [18].
However, cellular deployment is often guided by economic demand, concentrating
deployment in urban areas and leaving economically marginalized and sparsely
populated areas under-served [27]. Few prior studies have focused on assessing
mobile broadband in rural areas of the U.S.; there is a lack of accessible datasets
that are not only comprehensive (include network-level and application-level
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traces) but also representative and inclusive of rural demographics. As a result
of the COVID-19 pandemic, the assessment of the quality of experience (QoE)
for applications delivered over mobile broadband has become urgent as stay-
at-home orders and rapid movement to online schooling and work-from-home
protocols increase the demand for applications that are known to be sensitive
to network quality, such as video streaming and interactive video chat [50]. As
a result, communities without access to usable, high speed broadband, such as
many rural communities, are particularly disadvantaged [8,32].

Unfortunately, the evaluation of user quality of experience for video stream-
ing applications accessed over LTE in regions where people are most likely to be
smartphone dependent [27,28,34] poses a significant scalability challenge. QoE
metric collection over LTE networks in a geographic area requires time and
resource intensive measurements for each network provider. As a result, exper-
iments at a single geographic point can be quite lengthy. Moreover, in rural
areas, obtaining LTE Internet measurements in places where people are likely to
use mobile broadband (e.g., at their homes or along local transportation corri-
dors) can be challenging [49], as places of interest are far apart (requiring more
resource intensive targeted measurement campaigns) and less densely populated
(prohibiting representative crowd-sourcing measurement efforts). It is in this con-
text that we ask the following research question: How can we infer the QoE for
video streaming applications over LTE at scale?

While there are few to no existing datasets that measure QoE in rural com-
munities, there are many public and proprietary datasets that report quality
of service (QoS) metrics, such as reference signal received power (RSRP) or
throughput. These metrics are typically reported independently and are mea-
sured over LTE networks in a wide range of locations throughout the U.S. and
globally [46,51–53,59,63]. We argue that the wealth of LTE-QoS data points
across the U.S. represents a key resource that can be leveraged to broadly assess
QoE: while measuring QoE at scale in LTE networks presents significant chal-
lenges, measuring QoS at scale in LTE networks has already been demonstrated
to be feasible. Hence, our goal, and key contribution, is a methodology that can
leverage low-cost QoS measurements to predict QoE.

To study the correlation between mobile QoS and QoE performance, a diverse
set of network measurements that are representative of a wide-range of conditions
is needed. As such, we undertook an extensive measurement campaign to collect
16 datasets comprised of network traces from the Southwestern U.S. for four
major telecom operators: AT&T, Sprint, T-Mobile and Verizon. Our datasets
vary along two primary axes: population density, and network load. To obtain
data from varied population densities, we collected LTE network measurements
within multiple rural and urban communities. For variable network load, we col-
lected LTE network traces from crowded events in urban locations that resulted
in atypically high volumes of network utilization [5] and, as a result, congestion.
We also collected traces from the same urban locations during typical operating
conditions as a baseline. Our datasets have broad spatial and temporal variabil-
ity, but can be classified into three primary categories: under-provisioned (rural),
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congested (congested urban), and well-provisioned (baseline urban).1 We lever-
age these varied datasets to demonstrate the generality of the inference method.
Based on our analysis, we show that predictive models can be used to infer video
QoE metrics using low-cost QoS measurements, so that QoE can be more easily
and scalably determined within difficult to assess regions.

Our key contributions and findings include:

– We collected sixteen measurement datasets2 from twelve locations through an
extensive ; ground measurement campaign within the Southwestern U.S. Our
data points are representative of three different network conditions: under-
provisioned (rural), congested urban and well-provisioned urban, and include
over 32 Million LTE packets. (Sect. 2);

– We develop and evaluate a comprehensive set of predictive models that infer
video QoE from low-cost QoS measurements such as RSRP and throughput.
Our analysis reveals that predictive models can infer video QoE with an
accuracy of at least 80% across all locations and network types (Sect. 3);

– We validate our models across multiple video types from a wide variety of
genres. Further, we demonstrate the utility of low-cost RSRP measurements
for inferring video QoE (Sect. 3).

2 Methodology and Datasets Overview

QoS metrics, such as received signal strength, latency, throughput, and packet
loss, capture the state of network connectivity. However, while QoS provides an
indication of network state, there can be a disconnect between QoS and user
experience. QoS network metrics are not Pareto-optimal; one element can get
better or worse without affecting the other. Consequently, estimation of user
experience requires the incorporation of multiple network measures, which may
be unique to time, space and application. Note that while the definition of QoE
can vary depending on the vantage point from which measurements are taken,
we only focus on application-level QoE. Our measurements are active end-user
device/passive user as defined in [61].

2.1 QoS and QoE Metrics

In this section, we describe the QoS and QoE metrics we collected (and esti-
mated) for this measurement study, as summarized in Table 1.

Quality of Service Metrics: We collect reference signal received power (RSRP)
and throughput synchronously on the same user equipment (UE). RSRP is
defined as the linear average over the power contributions (in Watts) of the

1 Through extensive analysis, we verified that our datasets are representative of the
network characteristics we anticipated: well-provisioned, congested, and/or under-
provisioned. We omit that analysis from this paper due to space constraints.

2 The subset of our dataset that we have permission to release is available at [4].
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Table 1. Overview of QoS and QoE metrics at each location, aggregated across avail-
able providers.

Type Metric Test Interval Number of Datapoints Tools

QoS RSRP 1 second 2160 Network Monitor
Throughput 1 second 2160 iPerf

QoE Video resolution 1 second 2160 Selenium, iframe API
Resolution switches 1 second 2160 Selenium, iframe API
Rebuffering events 1 second 2160 Selenium, iframe API

resource elements that carry cell-specific reference signals within the measure-
ment frequency bandwidth [2] and, as illustrated by [7], is widely accessible
through mobile operating systems. We record instantaneous RSRP readings from
the UEs every one second through the Network Monitor application [43]. We mea-
sure throughput by fetching a pre-specified 500 MB file from an AWS instance in
Virginia using iPerf over TCP to download the file. The large file size allows the
data traffic to fill the pipe and to minimize the effect of slow start. We log the
packet traces at the client during the iPerf tests in order to sample throughput
at 1 s intervals.

Quality of Experience Metrics: We focus on streaming video, currently
the most heavily used QoE-centric service in mobile networks [36]. Internet
video streaming services typically use Dynamic Adaptive Streaming over HTTP
(DASH) [60] to deliver a video stream. DASH divides each video into time inter-
vals known as segments or chunks, which are then encoded at multiple bit rates
and resolutions. To analyze video stream quality, we gather two QoE metrics:
resolution switches and rebuffering events. For resolution switches, we compute
the number of consecutive samples that had a different resolution as a percent-
age of the total number of samples collected during the video. We measure at
one-second granularity, which captures resolution switches that happen between
video chunks that are typically 4–5 s long [15]. Finally, a rebuffering event occurs
when video pauses while the application buffer waits to accumulate enough con-
tent to resume playback. We record the video state (rebuffering event or normal
playback) every second.

2.2 Measurement Suite

We run our measurement suite on Lenovo ThinkPad W550s laptops, each of
which are tethered to their own Motorola G7 Power (Android 9) via USB in
order to measure cellular performance. The cellular plans on all our cellular user
equipment (UE) have unlimited data and are hot-spot enabled to effectively
achieve the same level of performance as we would on the mobile device. We run
our measurement suite on laptops tethered to phones; this configuration gives us
the same application performance while facilitating ease of programming, data
extraction, and unification of application-level measurements.
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We choose YouTube as the streaming platform because of its popularity in
the U.S., capturing over 88% of the mobile market [62]. To collect video QoE
metrics, we run a 3-min clip of a Looney Tunes video [64], three times across
each of the four LTE providers at each location; we exclude from our results
the sessions that experienced playback errors during execution. We chose this
particular video due its mix of high and low action scenes, which result in vari-
able bitrates throughout the video (typically, high action scenes have a higher
bitrate than low action scenes). After testing multiple playback duration, we
observed that a 3-min window was adequate for the playback to reach steady
state, while long enough to capture rebuffering and/or resolution switches that
occur. To infer video QoE, we collect the input features (RSRP and throughput)
synchronously, on a separate device so as not to bias the video streaming mea-
surements. Synchronous measurements of throughput, RSRP and QoE metrics
are required to train learning algorithms to infer video QoE for a future time
instance. We use different servers for throughput and YouTube tests so that we
can obtain concurrent QoS and QoE measurements. Our setup reflects the real
world scenario where throughput test servers and YouTube servers are separate
while simultaneously affected by varying conditions from within the cellular net-
work [6]. In LTE, each bearer (connection from a UE) enjoys a relatively isolated
data tunnel before the egress from the packet gateway, located inside the core [1].
This reduces contention among UEs competing for resources at a single eNodeB,
and as a result we can accurately record QoS and QoE metrics on two separate
devices.

To execute this experiment, we first automate the loading and playback of
the YouTube video on the Chrome browser using Selenium [58]. The video reso-
lution is set to auto. Then we use YouTube’s iframe API [65] to capture playback
events reported by the video player. The API outputs a set of values that indi-
cate player state (not started, paused, playing, completed, buffering) using the
getPlayerState() function. The API also provides functions for accessing infor-
mation about play time and the remaining buffer size.

2.3 Description of Datasets

We collect 16 datasets from 12 locations across the Southwestern U.S. Eight of
the datasets were collected from rural locations that had sparse cellular deploy-
ment.

An additional eight datasets were collected from four urban locations. In each
urban location, we collect two datasets: one during a large event or gathering, in
which we expect cellular network congestion to occur (these datasets are marked
with Cong); and a second during typical operating conditions. We call the latter
dataset the baseline for that location (these datasets are marked with Base).
Hence, our 16 traces are broadly classified into three categories: rural, congested
urban, and baseline urban. The details of each dataset are summarized in Table 2.
The designation of each location as rural or urban is based on Census Bureau
data [57]. Through these measurement campaigns, we collect and analyze over
32.7 Million LTE packets. Note that the “Number of Datapoints” column shown
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in Table 1 indicates the QoS/QoE datapoints gathered by the application, while
the “# LTE Packets” column in Table 2 refers to the number of packets collected
in the trace files.

Table 2. Summary of datasets

Location Date # LTE Packets Type Carriers∗

Rural 1 May 28 2019 3.18 Million Rural V,A,T,S
Rural 2 May 29 2019 1.38 Million Rural V,T
Rural 3 May 28 2019 2.03 Million Rural V,A,T,S
Rural 4 May 30 2019 2.16 Million Rural V,A,T,S
Rural 5 May 30 2019 2.27 Million Rural V,A,T,S
Rural 6 May 31 2019 2.33 Million Rural V,A,T,S
Rural 7 May 31 2019 1.26 Million Rural V,T
Rural 8 Jun 01 2019 2.83 Million Rural V,A,T,S

Urban 1 Cong Sep 22 2019 2.25 Million Urban, Congested V,A,T,S
Urban 1 Base Sep 28 2019 1.92 Million Urban, Baseline V,A,T,S
Urban 2 Cong Sep 29 2019 2.51 Million Urban, Congested V,A,T,S
Urban 2 Base Sep 30 2019 1.97 Million Urban, Baseline V,A,T,S
Urban 3 Cong Sep 21 2019 2.65 Million Urban, Congested V,A,T,S
Urban 3 Base Sep 30 2019 2.13 Million Urban, Baseline V,A,T,S
Urban 4 Cong Sep 25 2019 2.18 Million Urban, Congested V,A,T,S
Urban 4 Base Sep 26 2019 2.08 Million Urban, Baseline V,A,T,S
∗This column lists mobile carriers in each data set (some areas had no coverage for particular
network operators). V: Verizon, A:AT&T, T:T-Mobile, S: Sprint.

2.4 Video QoE Measurement Scalability Challenges

Collection of ground-truth cellular network measurements, as we explore further
in Sect. 4, is a challenging task for multiple reasons. First, it requires physical
placement of measurement device at the location to be studied. While there
are many large, publicly accessible datasets that incorporate some QoS mea-
surements, QoE measurements, particularly in remote regions, are much more
difficult. Second, gathering ground truth data to assess video QoE requires an
active connection to stream a large encoded video file. This consumes a substan-
tial amount of bandwidth, computational power, memory, and battery, due to
the simultaneous use of LTE modems, display, CPU, and GPU [21] on the user
device. For instance, streaming applications consume memory to load the video
and require accelerated processing to decode and display the stream from the
video server. Unlike QoS metrics, which can often be collected in the background
through execution by back-end scripts, the high resource cost of QoE measure-
ments for the end user makes this data difficult to crowd-source. In Fig. 1 we
show the resource consumption during one hour of RSRP and throughput (QoS)
measurements, compared to one hour of video streaming (QoE), on our data
collection phones. As can be seen in the figure, the resources consumed by the
QoE measurements were significantly higher, both preventing background data
collection and more rapidly draining the device battery.
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a. CPU Load b. Memory utilization c. System temperature

Fig. 1. Device resource consumption during either RSRP and throughput measure-
ments only, or during video streaming.

Rural regions span large geographic areas with terrain that is often hard to
access. QoS data from public sources already struggles to cover these areas. In
particular, crowd-sourced datasets are data-rich in regions where there are higher
density populations. These regions tend to be either urban areas, or other areas
frequented by travelers (i.e. highways, national parks, etc.). Rural communities,
by contrast, with their lower population densities, are often under-represented in
crowd-sourced datasets. Yet it is exactly these regions where under-provisioned
networks typically exist and hence where data is urgently needed. In order to
effectively assess QoE in these remote areas, we need a method to improve QoE
measurement scalability. We address this challenge in the next section, where
we show how predictive models can use the less resource expensive QoS mea-
surements to infer QoE for streaming video on mobile broadband networks in a
variety of environments.

3 Inferring QoE Metrics for Video

As discussed in Sect. 2.4, the collection of QoS measurements is less resource
consumptive, and hence more scalable, than video QoE measurements. We now
describe our approach to infer QoE metrics for video streaming sessions using
low-cost QoS metrics.

3.1 Learning Problem

Our learning problem’s goal is to infer QoE metrics using a sequence of through-
put and RSRP (QoS metrics) data input. The objective is to build models with
appreciable performance that would work in a wide variety of network conditions
and different region types (e.g., rural and urban locations). These models could
be used to predict application QoE (in our case, video streaming) at a particular
location. We use supervised learning to train two different binary classifiers. The
first classifier infers whether the video’s state is stalled or normal; the second
infers whether there is any change in video resolution. Both models perform the
classification task every one second.
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Input: The learning model takes a sequence of RSRP and throughput values
as input. Both of these metrics are low-cost measurements and easily accessible.
Given how adaptive bitrate (ABR) video streaming players operate, the changes
in throughput and RSRP values have a delayed impact on QoE metrics. For
example, a decrease in available throughput will force the video streaming player
to use the buffered data before stalling.

As part of feature engineering, we had to determine how many RSRP and
throughput values to use as input for the learning model. Intuitively, the use of
longer sequences will improve accuracy. However, longer sequences also increases
the complexity of the learning model, which requires more training data to avoid
over-fitting. After varying n = 0 → 180 (total playback time of a session), we
found that using a sequence of three throughput/RSRP values enabled us to
strike a balance between model complexity and accuracy. A typical approach to
assessing throughput would be to log continuous measurements for a long dura-
tion of time and analyze the resulting mean/mode of the distribution. However,
our results (Sect. 3.3) indicate that we can infer the video quality from only a
3-s sample. This has the added benefit of reducing the resource utilization at the
client device, such as data consumption and battery drainage, while accurately
inferring the video stream quality.

Output: We train two separate binary classifiers to predict the video state and
change in resolution at the granularity of one second. Predicting QoE metrics
at such fine granularity enables opportunities to infer QoE with limited training
data. Given the input features, our models infer how likely it is for the video
stream to experience either a video stall or a resolution change in the next
instant.

Training Data: Our dataset consists of 32,596 data points. Each data point
has input values: a sequence of three RSRP and throughput values, as well
as two boolean labels: video state (playing or stalled) and resolution switches
(yes–resolution will change; no–resolution will not change). We collected this
dataset through our measurement campaign by conducting a total of 181 video
streaming sessions across multiple locations (Sect. 2.3). For each classifier, we
label the output training samples into either of the two classes: class 0 is when
playback is normal and devoid of any event (rebuffering or resolution switch),
and class 1 is when there is an event. We carried out the classification task by
splitting the entire dataset into a ratio of 70:30 training to test sets, as described
in Table 3. We split the overall training dataset into training and validation
sets (80:20). We chose the samples proportionate to the size of each dataset
category (rural, congested urban, and baseline urban). We present the models’
performance per location, where we train the models on specific locations and
then test on others not included in the training. We do not make any distinctions
between operators since an operator-agnostic evaluation is a more comprehensive
reflection of coverage and QoE at a particular location.
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Table 3. Breakdown of training and test set samples for both classifiers.

Training Set Test Set
Classifier Type Target Metric Class 0 Class 1 Class 0 Class 1

Classifier 1 Rebuffering Event 22,175 642 9,504 275
Classifier 2 Resolution Switching 22,490 327 9,639 140

3.2 Learning Algorithm

We now present the learning models we used for the learning problem, our model
training approach, and the method for addressing the inherent class-imbalance.

Learning Models: We trained a wide range of off-the-shelf classifiers for this
learning problem in order to identify the classifier that strikes the best bal-
ance between performance (precision, recall, etc.) and generalizability. First, we
trained simpler classifiers, such as gradient boosting [29], bagging [13], random
forest [14], ARIMA [12], AdaBoost [30], etc. These classifiers offer better general-
izability at the cost of performance. We also trained neural-network (NN)-based
classifiers, such as a convolutional neural network (CNN) [41] and recurrent neu-
ral network (RNN) [37] (in particular, LSTMs [35] and GRUs [23]), that offer
higher accuracy but require considerable training data to avoid over-fitting.

Setup: We ran all the classifiers on a local machine that runs Ubuntu 18.04, pow-
ered by a 4-core i7-7700 CPU (3.60 GHz) with 64,GB RAM and 8 GB NVIDIA
RTX 2080 GPU. We implemented the simpler classifiers using the scikit-learn
0.21 [56] library of Python, and NN-based models using Keras with Tensorflow
backend [24]. We used four fully-connected layers for the NN-based classifiers.
For RNN-LSTM-Focal (see Table 4), the network utilized 64, 32, and then 16
hidden neurons, in addition to a final output layer with hyperbolic tangent activa-
tion function. We used Grid Search [25] to determine the ideal hyper-parameter
configuration for each neural network. To avoid over-fitting, we use a dropout
of 0.4 while training with the Adam gradient descent optimizer [39]. We ran the
RNN-LSTM model for 120 iterations with a batch size of 64.

Class-Imbalance Problem: As rebuffering and changes in the resolution are
rare, most of our data points are normal, i.e., they do not have any rebuffering
or resolution switching events. As a result, our dataset has the class-imbalance
problem, typical for most anomaly detection problems. To address this issue, we
applied the sampling technique SMOTE [19] to balance the classes artificially.
However, such an approach reduces the number of data points that we can use
for training the classifier, which in turn affects the accuracy. With SMOTE, we
observed no improvements in accuracy with simpler learning models (e.g., SVM,
random forest, etc.), and lower accuracy for NN-based classifiers. Therefore, for
the NN-based classifiers, we adapted a new technique that has proven to increase
classification accuracy in datasets that suffer from the class-imbalance issue for
the object detection problem [42]. This technique addresses the class-imbalance
problem by reshaping the standard cross entropy loss in such a way that it lowers
the weights for the majority class [42]. It also introduces the concept of focal loss
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that prevents the majority class from overwhelming the classifier during training.
The focal loss can be represented as:

FL(pj) = α(1 − pj)γ log(pj) (1)

Here, FL is the focal loss function, and pj is the softmax probability of the jth

class for a particular observation. α and γ are two regularizing parameters. This
loss function adds more importance when the network predicts a minority sample
as opposed to the overly represented sample—making it ideal for performing
classification on an imbalanced dataset.

3.3 Results

We now present the performance of the different classifiers we used for this learn-
ing problem. For those that performed well, we also quantify their performance
across different locations and video types. Finally, we quantify the contribution
of an LTE-specific QoS metric, RSRP, in improving the accuracy of our learning
models.

Table 4. Performance metrics of the classification models.

Rebuffering Events Resolution Switching
Models Accuracy Precision Recall Accuracy Precision Recall

Boosting 0.87 0.88 0.88 0.84 0.85 0.84
Bagging 0.80 0.82 0.82 0.71 0.73 0.72
Random Forest 0.85 0.87 0.86 0.79 0.80 0.80
ARIMA 0.81 0.81 0.81 0.77 0.78 0.78
Decision Trees 0.80 0.80 0.98 0.75 0.75 0.75
Extra Randomized Tree 0.77 0.78 0.77 0.72 0.73 0.72
AdaBoost 0.62 0.60 0.63 0.51 0.55 0.53
Support Vector Machine 0.72 0.72 0.73 0.70 0.71 0.70
K-nearest neighbors 0.60 0.56 0.62 0.58 0.57 0.49
CNN 0.72 0.73 0.73 0.68 0.69 0.69
CNN - Focal 0.84 0.85 0.84 0.81 0.81 0.81
RNN - LSTM 0.82 0.83 0.83 0.80 0.79 0.80
RNN - LSTM - Focal 0.89 0.89 0.89 0.86 0.86 0.87
RNN - GRU 0.82 0.82 0.84 0.80 0.82 0.82
RNN - GRU - Focal 0.86 0.86 0.85 0.83 0.84 0.84

Performance: We analyze the performance of learning models in terms of accu-
racy, precision, recall, and training time. Table 4 summarizes the performance of
all classifiers we explored. We observe that the accuracy of the rebuffering-event
classifier is better than the resolution-switching one, as depicted in Fig. 2. This
difference is attributable to the smaller number of anomalous data points (resolu-
tion switches) in the data (see Table 3). In terms of accuracy, RNN-LSTM-Focal
performs best. This is expected as this model makes the best use of the sequence
of throughput and RSRP values and is best suited to handle the class imbal-
ance problem. On the other hand, though RNN-LSTM-Focal has the highest
accuracy, the accuracy gains are marginal when compared to simpler learning
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models, especially Boosting. Given these marginal gains and the complexity of
training NN-based classifiers (5 vs. 214 s), we use the Boosting classifier to char-
acterize the performance across different network and video types.

a. Rebuffering events b. Resolution switching

Fig. 2. Performance of Boosting across different locations.

Generalizability: We now quantify the generalizability of the Boosting classi-
fier. First, we show how its performance varies across different network types.
Figure 2 depicts the performance of inferring video rebuffering using Boosting
at each location. We observe that the performance differences across different
network types are marginal (<2% deviation between categories). We saw similar
trends for the Boosting-based classifier when inferring resolution switching.

Our initial measurements only collected the QoE metrics for the Looney
Tunes video. To verify that our results generalize for other video types, we col-
lected the QoS/QoE data for 108 additional video streaming sessions (a total
of 48,825 new data points) at our research facility (baseline-urban). We selected
18 different videos from seven genres: action (trailers/movie clips), music videos,
sports, online learning content, news, documentary, and animation (including the
original Looney Tunes video) [16]. We selected top trending videos for each genre.
Given that the videos were of varying duration, we capped each measurement to
a maximum of ten minutes. We streamed each video over three different telecom
providers (AT&T, T-Mobile, and Verizon); we were not able to obtain Sprint
measurements because of closures of Sprint retail outlets due to the COVID-19
pandemic. Figure 3 shows the performance of Boosting for both video rebuffering
and resolution switching. We observe marginal variations (<1.5% and <3% devi-
ation for rebuffering and resolution switching, respectively) in accuracy across
different video genres, implying that our learning model generalizes reasonably
well to different video types. Note that we do not claim that these results gen-
eralize for other video players (e.g., Hulu, Netflix), client platforms or devices;
we plan to quantify the performance of our learning models for other platforms,
devices and non-YouTube videos in the future. Finally, we do not claim to have
developed models that generalize across other locations or network conditions –
rather we use this study to demonstrate the feasibility of inferring video QoE at
scale within a limited, but diverse, dataset.
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a. Rebuffering events b. Resolution switching

Fig. 3. Performance of Boosting across different video genres.

Fig. 4. Inferring video rebuffering using Boosting with and without RSRP as an input
feature.

Ablation Study: To better understand the impact of an LTE-specific metric
(i.e., RSRP) in inferring QoE metrics, we performed an ablation study. Figure 4
compares the accuracy of the Boosting classifier in inferring rebuffer events with
and without the RSRP values. We observe that the average increase in accuracy,
with RSRP as an input, is 9.28%, while the maximum gain is 18.61%. This result
could be attributed to the exposition of the relationship, by the non-linear mod-
els, between RSRP and throughput to identify the target metrics at any given
location successfully. This study highlights the importance of LTE-specific RSRP
measurements in accurate prediction of rebuffering and resolution switching.

4 Related Work

Prior work most similar to ours, which focuses on quantifying the user experience,
typically infers the QoE of video streaming from QoS of fixed broadband net-
works [22,31,38]. In contrast, our work focuses on mobile broadband, which often
exhibits a wide variation in performance over time and space. Some past work
on mobile broadband, such as [3,11,20,54], has examined metrics solely from
the application and network layers. [15,26,33,40,44,45] require direct access to
(encrypted or unencrypted) network traffic to infer video QoE. In contrast, our
approach is independent of network traces and incorporates low-cost signal and
throughput measurements for rapid QoE prediction. Few publicly available QoS
datasets include synchronous RSRP measurements. [17,48,63] analyze network
traces that contain performance indicators captured during streaming sessions,
and experiment metadata from mobile broadband networks. All of these datasets,
however, have limited types of datapoints (primarily from dense, urban loca-
tions); the datasets have minimal to no measurements from networks that are
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under-provisioned or located in remote regions. We believe it is challenging to uti-
lize existing prior datasets (from primarily urban scenarios) to evaluate diverse
network conditions in the context of the measurements examined in this work,
either due to non-overlapping and non-scalable nature of prior measurements
or lack of a comprehensive and representative dataset. Further, the accuracy of
our models, given the inexpensive measurements, indicates the feasibility and
scalability of our approach.

Prior work that has focused on charting the relationship between RSRP and
QoE has important limitations. For instance, [10] presents a mapping of RSRP
and video QoE that is derived using only simulated experiments. The authors
of [47] explore the effect of radio link quality, such as RSRP, on streaming video
QoE. The presented results are limited in scope as their setup streams a custom
video hosted on their own server; by omitting evaluation of a popular streaming
service, such as YouTube or Netflix, the work does not accurately capture the
application and network performance experienced by actual users. [9] undertakes
a study similar to ours, however, with a modest dataset that is limited to a small
portion of a local transit route and is thus difficult to generalize.

5 Conclusion

Through an extensive measurement campaign, we collect 16 datasets with widely
varying performance profiles. Our dataset includes representation of: i) the vari-
ability of mobile broadband performance as a consequence of either sparse deploy-
ments or network congestion, and ii) the communities most likely to be dependent
on mobile broadband (rural areas). Through our analysis, we highlight the chal-
lenges of quantifying QoE metrics at scale, particularly in remote locations. To
address this challenge, we develop learning models that use low-cost and easily
accessible QoS data (LTE-specific RSRP and throughput) to predict QoE metrics.
Our models can be generalized to video content from different genres, as well as to
other locations that share network characteristics similar to those of our dataset.
The observed efficacy of the models indicates that video QoE can be more easily
and scalably determined within difficult to assess regions, using low-cost QoS mea-
surements. For instance, given the increased load on video streaming platforms
during COVID-19 [50], cellular operators could employ our approach to detect
sectors with possible bottlenecks without having to rely on user feedback/com-
plaints, particularly in remote locations. This has the potential to lead to faster
turnaround times for network troubleshooting [55], and therefore may lower out-
age periods for users heavily dependent on video streaming.
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Abstract. The Transport Layer Security (TLS) Public Key Infrastruc-
ture (PKI) is essential to the security and privacy of users on the Inter-
net. Despite its importance, prior work from the mid-2010s has shown
that mismanagement of the TLS PKI often led to weakened security
guarantees, such as compromised certificates going unrevoked and many
internet devices generating self-signed certificates. Many of these prob-
lems can be traced to manual processes that were the only option at
the time. However, in the intervening years, the TLS PKI has undergone
several changes: once-expensive TLS certificates are now freely available,
and they can be obtained and reissued via automated programs.

In this paper, we examine whether these changes to the TLS PKI have
led to improvements in the PKI’s management. We collect data on all
certificates issued by Let’s Encrypt (now the largest certificate author-
ity by far) over the past four years. Our analysis focuses on two key
questions: First, are administrators making proper use of the automation
that modern CAs provide for certificate reissuance? We find that for cer-
tificates with a sufficiently long history of being reissued, 80% of them
did reissue their certificates on a predictable schedule, suggesting that
the remaining 20% may use manual processes to reissue, despite numer-
ous automated tools for doing so. Second, do administrators that use
automated CAs react to large-scale compromises more responsibly? To
answer this, we use a recent Let’s Encrypt misissuance bug as a natural
experiment, and find that a significantly larger fraction of administrators
reissued their certificates in a timely fashion compared to previous bugs.

1 Introduction

The Transport Layer Security (TLS) public key infrastructure (PKI) is an
essential component of the modern Internet: it allows users to communicate
over the Internet in a trusted and confidential manner. However, previous
work [2,3,8,13,21] has demonstrated that despite its importance, the manage-
ment of the TLS PKI is often not compliant with recommended security prac-
tices. For example, systems administrators often fail to revoke or even reissue cer-
tificates when private keys are compromised [20], many internet-of-things devices
c© Springer Nature Switzerland AG 2021
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generate self-signed certificates (sometimes even with identical keys) [13], and
domains sometimes share private keys with third parties due to limitations in
the PKI itself [2].

Many of these management issues can be traced to inadequate tools for sys-
tem administrators. For example, in the wake of the Heartbleed [11] bug in 2014,
a significant fraction of web servers potentially had their private keys exposed;
as a result, administrators should have revoked their old certificates and reissue
new ones. At the time, doing so was a largely manual process: because certificates
were typically valid for up to 5 years, many administrators presumably eschewed
automating the infrequent process of obtaining and installing new certificates.
As a result, it took over a week before even 10% of the vulnerable web servers
had reissued their certificates [21]. Similarly, in the DNSSEC PKI, it has been
observed that inadequate tools—in the case of DNSSEC, a manual process of
uploading DS records—has lead to poor adoption of secure protocols [4].

However, the TLS PKI has changed dramatically since 2014. While previously
expensive, TLS certificates are now free with the advent of certificate authori-
ties such as Let’s Encrypt [14] (which is now, by far, the most popular CA [16]).
More importantly, these free CAs often have much shorter certificate lifetimes
(90 days for Let’s Encrypt), encouraging the automation of the process of certifi-
cate reissuance and installation (as it happens every three months, rather than
every five years). Open-source protocols (e.g., ACME) and tools (e.g., certbot,
acme.sh, cPanel) now allow administrators to automate the entire process.

In this paper, we examine whether the presence of these tools and services has
led to better TLS certificate reissuance. To understand the effects of automated
tools in certificate reissuance, we focus on certificates issued by Let’s Encrypt.
We chose Let’s Encrypt as it is by far the largest ACME-based CA [16], and it
has the longest history of operation (and hence, the highest likelihood of having
domain sets that have a long history of reissues). We use Certificate Transparency
(CT) [12] logs to obtain a list of all 1.03B certificates Let’s Encrypt issued over
the past four years. We group certificates in this list by the set of domains they
contain (similar to prior work [21], we refer to this as a domain set), enabling us
to measure how often certificates are reissued.

We also use a recent bug discovered by Let’s Encrypt as a natural experiment.
In brief, in early 2020, Let’s Encrypt discovered that over 3M certificates had
been issued improperly, as they had failed to check for Certificate Authority
Authorization (CAA) [19] records properly before issuance [5]. Because they
were improperly issued, Let’s Encrypt announced that they planned to revoke
the certificates one week later, informing all system administrators that they
needed to reissue their certificates. This serves as a natural experiment, as we can
examine whether administrators took the necessarily manual action of reissuing
their certificates, rather than simply relying on their automated reissuance.

Our paper makes two contributions: First, we examine the behavior of sys-
tem administrators reissuing TLS certificates with the advent of free CAs such
as Let’s Encrypt. We find that approximately 80% of domain sets with a suf-
ficiently long history of being reissued, did reissue their certificates on a pre-
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dictable schedule. In addition, 60% of all domain sets show a median reissuance
period of 60 days (the default recommended by Let’s Encrypt [14] and used by
many ACME tools [6,23] for automated certificate reissuance).

Second, we use the Let’s Encrypt bug mentioned above to explore whether
system administrators now respond more quickly and completely when manual
intervention is required. We focus on the subset of the 2M domain sets with a
misissued certificate, and identify 98,652 domain sets that show a regular period
of reissuance with at least one new certificate issued after the bug was discovered
on February 29, 2020.1 We demonstrate that, of these domain sets, at least 28%
appear to have taken the manual steps necessary to reissue their certificates
within a week, suggesting that, indeed, system administrators are better able to
reissue certificates securely today when compared to previous incidents requiring
certificate reissuance.

2 Background

We begin with an overview of the TLS certificate ecosystem and related work.

2.1 Certificates

TLS is based on certificates, which are bindings between identities (typically
domain names) and public keys. Certificates are signed by certificate authorities
(CAs), who verify the identity of the requestor. Certificates have a well-defined
validity period, which is expressed as NotBefore and NotAfter fields in the
certificate; clients will refuse to accept certificates outside of their validity period.
As a result, certificate owners have to periodically reissue their certificate by
contacting their CA (or another CA) and obtaining a new certificate.

While certificates originally only contained a single identity (domain name),
this often made the administration difficult for web servers that served multiple
domains. Today, certificates can carry multiple identities (domain names) via a
Subject Alternate Names list. In essence, the owner of the certificate’s public
key has been verified by the CA to control all of the identities (domains).

Finally, domain owners may wish to limit the set of CAs who are authorized to
issue certificates for a given domain. They can now do so by publishing Certificate
Authority Authorization (CAA) records, which are DNS records that specify a
list of CAs that are/are not allowed to issue certificates (if no such record exist,
all CAs are implicitly authorized). CAs today are required to check for the CAA
records for domains before issuing certificates.

2.2 Let’s Encrypt

For a long time, TLS certificates were relatively expensive to obtain (typically
$50 or more) and were valid for multiple years (typically 3–5) [13]. The cost and
1 Because of the way the bug manifested itself, the misissued certificates are not a

random sample of all certificates. We explore this in Sect. 3.
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extended validity ended up having two effects: the overall adoption of HTTPS
was relatively low (as administrators had to spend significant money to obtain
the necessary certificates), and the system administrators who did purchase cer-
tificates were not incentivized to automate the infrequent reissuance process.
Additionally, the certificate issuance and renewal processes were manual, admin-
istratively burdensome, and technically cumbersome.

In 2015, Let’s Encrypt disrupted the TLS certificate business model by offer-
ing free certificates that were valid for 90 days. Other free CAs have also been cre-
ated such as ZeroSSL2 and Buypass3, and the TLS ecosystem has since changed
dramatically: the fraction of web connections using HTTPS has increased from
∼27% in early 2014 to ∼85% in 2020 [16], and Let’s Encrypt is now the largest
CA, with over 1B certificates issued and over 35% of the Alexa top 1M sites
using Let’s Encrypt certificates [1]. Importantly, while prior CAs often required
certificates to be requested/reissued via web forms, Let’s Encrypt is entirely
automated via the ACME protocol; several popular ACME clients exist, includ-
ing certbot, acme4j, and acme.sh.

In February 2020, Let’s Encrypt announced that they discovered a bug in
the Boulder software they used to issue certificates [5]. Specifically, the software
failed to properly check for CAA records in requested certificates if (a) a certifi-
cate was requested for multiple domains, and (b) Let’s Encrypt had previously
checked the domain control validations (DCV) for these domains in the preceed-
ing 30 days. While Let’s Encrypt was supposed to re-check the CAA record for
all domain names included in the certificate within 8 h of issuing the certificate,
under these circumstances, it only picked one domain name among the multiple
domains in the certificate and ran the CAA check n times (equivalent to the
number of domains in the certificate). Let’s Encrypt originally announced on
February 29, 2020 that it planned to revoke all these certificates on March 5,
2020, and it emailed all affected domain administrators. On March 5, 2020, Let’s
Encrypt reversed their decision and decided to not revoke en-masse [15].

2.3 Related Work

Improvements in the ability to scan the Internet [10] in 2013 have led to a better
understanding of the entire TLS ecosystem [9]. Researchers have unfortunately
found that TLS clients and servers are often incorrectly managed [13], leading
to reduced security for internet users. In the aftermath of the Heartbleed bug, it
became evident that manual revocation and reissuance of certificates is a major
security problem: most administrators failed to revoke or even reissue, and those
that did sometimes reissued using the same key pair [8,21]. Similar behavior had
been observed years prior when a bug in Debian caused many domains the need
to reissue certificates [20]. Some domains have chosen to outsource certificate
management to third-parties such as content delivery networks (CDNs); while
this improves certificate management, it often requires sharing private keys [2].

2 https://zerossl.com/features/certificates/.
3 https://www.buypass.com/ssl/products/acme.

https://zerossl.com/features/certificates/
https://www.buypass.com/ssl/products/acme
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To the best of our knowledge, there has not been significant study of auto-
mated certificate reissuance in the TLS PKI. Previous work by Matsumoto et
al. proposed a decentralized audit-based system: Instant Karma PKI (IPK) to
promote automation among HTTPS domains [18]. The recent development of
CAA records also provides a useful tool for automation as the domain name
holders or DNS operators can use CAA records to control which CAs that they
would like to get a certificate from [19].

3 Methodology

We now describe the datasets we collected and our methodology to determine a
set of certificates that have been reissued.

3.1 Certificates

Our goal is to see how certificates have been (re)issued by the system adminis-
trators. We focus on Let’s Encrypt as it is the largest free CA, and it has the
longest history of operation. To this end, we obtain all certificates issued by Let’s
Encrypt by leveraging the Certificate Transparency (CT) logs; when issuing a
certificate, Let’s Encrypt publishes the certificate to one of the CT logs managed
by Google.4 Thus, to obtain a nearly complete view of the certificates issued by
Let’s Encrypt, we first fetch all certificates from all of the CT log servers man-
aged by Google,5 obtaining 5.3B certificates in total from September 9, 2014 to
May 18, 2020. We then identify the certificates issued by Let’s Encrypt according
to their Issuer field, which leaves us with 1.03B certificates.6

3.2 Let’s Encrypt CAA Bug List

On February 29th, 2020, Let’s Encrypt announced the CAA issuance bug in
their certificate issuance process (see Sect. 2.2). Let’s Encrypt publicly released
a list of the certificates impacted by this bug [5] containing serial numbers of
3,048,289 certificates, some of which were potentially misissued (i.e., the CAA
records for some of domains in the certificate may have not permitted Let’s
Encrypt to issue a certificate, even though they did). We use this list to study
how the impacted certificates have been reissued by administrators.

4 In order for a certificate to be “CT qualified” in modern browsers such as Chrome,
it has to be logged on multiple CT log servers and one of them has to be from a
Google log [7].

5 aviator, icarus, argon2018∼2023, xenon2019∼2023, pilot, rocketeer, skydiver.
6 We intentionally exclude pre-certificates from the analysis (which Let’s Encrypt has

published as well since 2018 [17]) as they do not guarantee the issuance of their
actual (final) certificates.
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3.3 Defining Certificate Reissuances

While it is easy to identify when certificates are issued, there is a bit of subtlety
to determining when they are reissued. In particular, we face two challenges:
First, CT logs do not contain any identifier of the client such as IP address
that sent a Certificate Signing Request (CSR), thus making it hard to identify
if the certificate has been reissued from the same client; thus, we first link the
certificates that share the same Subject Alternate Name (SAN) list.7 We refer
to this set of domains in the SAN list as the domain set. Second, we do not know
when the client has replaced the old certificate with the new one; thus, we use
the logging timestamp on the CT log server as a proxy.

In summary, we group certificates by their domain set and order them based
on their timestamp on the CT logs; we refer to any certificates other than the
first as reissued certificates. Using this, methodology we obtain 188M unique
domain sets and 1.03B corresponding certificates issued during our measurement
period. Out of the 188M domain sets, we find that 67M (35.7%) domain sets have
no reissued certificates, 23M (12.2%) domain sets have reissued once and, 14M
(7.8%) domain sets have reissued twice. One limitation of relying on CT logs
alone worth noting is that we are unable to quantify how domain sets change,
as we would need a way to “link” domain sets which is unavailable to us [2]. In
these cases, the modified domain set would be considered a separate domain set
in our analysis.

4 Results

We analyze the reissuance behaviors of certificates issued by Let’s Encrypt. We
aim to understand reissuance behavior of two types: reissuance that is likely done
automatically (e.g., via a cron job) and reissuance that is likely done manually
(e.g., directly invoked by a system administrator). We begin by describing how
we distinguish these two cases.

4.1 Automated Reissuance

One of Let’s Encrypt’s key principles is that it makes it possible to automate
obtaining and reissuing certificates. A new user of Let’s Encrypt need only set
up the first certificate issuing process with any ACME client of choice, then
they can create a cron job to continually check if the certificate is still valid and
request a new certificate once the current certificate nears expiry.

We first need to identify when we believe a certificate has been reissued via an
automated process. As discussed previously we are not privy to Let’s Encrypt’s
internal logs, so we can only rely on publicly available data from the CT logs.
To do so, we group all Let’s Encrypt certificates by the domain set present in
them, and then sort these lists by the time in the CT log timestamp. We then
examine the amount of time that passes between each pair of successive reissues.
7 Thus, if the same client adds or removes one domain, it changes the SAN list.

Therefore, ACME processes it as a separate certificate request, not a reissuance,
thereby supporting our methodology of grouping by domain sets.
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Fig. 1. Distribution of median reissuance period per domain set for all Let’s Encrypt
certificates with or without lifetimes and misissued certificates. For comparison, we
also include the median reissuance period per domain set for a few other CAs: Sectigo,
cPanel, and other top 10 CAs (we plot cPanel and Sectigo separately as they show
different behavior than the others).

In Fig. 1, we plot the cumulative distribution of the median of these reissue
time lists in the line labeled “all LE certs.” We immediately observe a large
“spike” around 60 days, and observe that over 55% of domain sets have a median
reissue time between 55 and 65 days. This lines up with the reissuance policy
recommended by Let’s Encrypt, which recommends reissuing certificates that are
within 30 days of their expiry (i.e., are at least 60 days old) [14]. Moreover, this
timing lines up well as the default policies of many ACME clients: cerbot [6]
and acme.sh [23] both default to renewing within 30 days of expiry. We also
observe that the “spike” does not happen entirely at the 60 day mark; this is
likely because the renewal occurs the first time the cron job runs after reaching
the mark. Finally, we observe a much smaller spike around 30 days, which is
likely the behavior of a different ACME client or a system administrator who
manually changed their client’s behavior.

Next, we examine whether this median reissue period of 60 days is only
present in domain sets that have a long history of being reissued (i.e., that
have been around a long time) or if it is also present in newer domain sets. To
do so, we divide the “all LE certs” line into those first issued greater than two
years ago, and those first issued within the past two years; these are both plotted
in Fig. 1. We can observe the shapes of these curves are quite similar, suggesting
that the behavior is relatively consistent between these two groups.

We also discover that roughly 10% of Let’s Encrypt domain sets in all cat-
egories had a median re-issuance period of greater than 90 days, meaning the
certificates were more often than not renewed after expiry. This behavior could
occur if the administrator did not set up a cron job, incorrectly set up a cron
job to run very infrequently, or if the system was not always online. We leave a
deeper exploration of these domain sets to future work.

Finally, we also briefly compare the Let’s Encrypt domain set behavior to
that of other CAs. To do so, we extract the domain sets in the same manner
from the CT logs for the top 10 CAs (other than Let’s Encrypt), and compute
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Fig. 2. Distribution of coefficient of variation (CoV) for all Let’s Encrypt domain sets,
second level domains, and the misissued certificates.

the median reissuance periods in the same manner per CA. We plot these as well
in Fig. 1 under the lines “cPanel”, “Sectigo”, and “Other CAs”; we separate out
cPanel and Sectigo as they show different behavior than the others. In brief, we
see that most of the other top CAs show very long median reissuance periods,
while cPanel shows a “spike” at 75 days and Sectigo at 60, 90, and 120 days.

Coefficient of Variation (CoV). While the median of the reissue time periods
being so clearly at 60 days is suggestive that the administrators use automated
software to reissue their certificates, it is not entirely definitive. Thus, we look for
further evidence of automation by looking at how similar the reissuance periods
of a given domain set are to each other. In other words, if a given domain set
was using an automated process to reissue certificates, we would expect that the
period between reissues would be highly consistent.

To do so, we calculate the coefficient of variation (CoV)—which is simply
the standard deviation of a distribution over its mean—of the amounts of time
between each successive reissuance. Automated reissuance would often lead to a
consistent period between reissues, meaning that the CoV would be low i.e., 0.1
or smaller. We choose the CoV threshold of 0.1 as a cut-off as would allow, for
example, a domain set with a mean reissuance time of 60 days to be classified
as automated if the variance is less than 6 days (roughly one week). For this
analysis, we only keep the domain sets where we have a sufficient reissue history
of at least five reissues. Figure 2 plots the distribution of CoVs for the reissue
time periods for each domain set under the “all LE certs” line. We can observe
that many domain sets do show evidence of automation: 30.3% of domain sets
have a CoV of less than 0.1.

We were concerned that particular domains with unusual patterns of reis-
suance may end up artificially shaping this curve, as our analysis is at the domain
set level, rather than at the system administrator level. Thus, we additionally
perform an aggregation to the second-level domain to see whether particular
domains are skewing the results.

We aggregate domain sets into second-level domain through a weighted aver-
age: for each second-level domain S, we compute the average CoV for all domain
sets that have at least one domain name from S. For domain sets that include
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domains from multiple second-level domains, we simply weigh the domain set’s
CoV by the fraction of domains that belong to S. The resulting cumulative dis-
tribution is also shown in Fig. 2, and we can observe that the distribution is quite
similar to the analysis at the domain set level. Thus, we have some confidence
that the (potentially odd) behavior of a small number of second-level domain
sets is not dramatically altering the results.

Noticing that many domain sets tend to have a high CoVs, we next examine
how well the CoV methodology identifies domain sets with regular reissuance
patterns. We do so by dividing up domain sets by their CoV, and plotting the
cumulative distribution of their median reissuance time in Fig. 3. We can immedi-
ately observed that the median reissuance time of certificates varies dramatically
by CoV: we find that the median reissuance period of domain sets with a very
low CoV (0.1 or smaller) is 60 days, while domain sets with a CoV greater than
1 are much less predictable. Further, Fig. 3 reveals that over 88% of domain sets
with highly automated reissuance (CoV < 0.001) have a median reissue period
of between 59 and 61 days (consistent with the reissue occurring during the first
cron job to run after the 60 day period).

Initial Renewal Setup. Moving on, we hypothesize that the initial setup and use
of ACME clients may result in multiple, irregular requests, which would affect
our CoV calculation. To understand the effects, we focus on certificates that have
at least five reissues, and make the assumption that most administrators would
be comfortable with operating ACME clients after a year. Out of 188M unique
domain sets, only 60M unique domain certificates have at least five reissues;
these form the basis of the following analysis.

Roughly 48.2% of domain sets with at least five reissues have a CoV less than
0.1. However, if we also look at subsequences of reissues, ignoring the first set
of reissues as long as at least five reissues remain, we can identify an additional
29.9% domain sets that have a subsequence of reissues with a CoV less than 0.1.
In other words, 78% of domain sets with a subsequence of at least five reissues
have a regular reissue cycle that begins at some point in their lifetimes. Thus, we
have identified a limitation of the CoV metric, as it may be too conservative in
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cases where administrators have an irregular initial reissunce cycle before fully
debugging their ACME client setup.

4.2 Manual Reissuance

Having a good understanding on domain sets with likely automated reissuance
infrastructure, we now turn to examine what happens for these domains when
manual intervention is required. To do so, we use the Let’s Encrypt misissuance
bug as a natural experiment: because all of these certificates need to be reissued,
we have a collection of domain sets where we can study whether the system
administrator did, in fact, reissue their certificate.

We first need to examine the set of certificates affected by the bug, which was
announced on February 29, 2020. Let’s Encrypt reported that over 3M certifi-
cates were affected; we collected all of these certificates and plotted their issue
time in Fig. 4. We can see that these certificates went as far back as December
2, 2019, which would be expected given Let’s Encrypt 90-day certificate lifetime.
Importantly, the certificates appear to have been issued uniformly throughout
the prior 90 days.

However, there are multiple reasons why these misissued certificates are not
a random sample of all Let’s Encrypt certificates. First, the bug only affected
certificates with multiple domains in them, meaning any certificates with a sin-
gle domain were not misissued. Second, and more importantly, it only affected
domains where the CAA record had been verified within the past 30 days. As
we observed previously, most certificates are reissued after 60 days, this means
that the only certificates that were affected were ones that were either (a) not
on a regular schedule to begin with, or (b) were on a regular schedule, but
happened to be reissued in late 2019/early 2020 for another reason. This obser-
vation explains why the misissued certificates behave quite differently from all
Let’s Encrypt certificates in Figs. 1 and 2: due to the nature of the bug, domain
sets that had regular, 60-day reissue periods were much less likely affected. In
fact, such domain sets would only have been affected if one of the domains in the
domain set happened to be in another domain set whose certificate was reissued
in the previous 30-day time period, or where the administrator had manually
reissued that domain set during that period.

Nevertheless, we need to identify when we believe a certificate was manually
reissued from among the misissued certificates. Recall that we do not have access
to Let’s Encrypt’s logs, so we can only rely on the timestamps public CT logs.
We want to see how certificates affected by the bug were automatically reissued
before the bug, but manually issued a new certificate in response to the bug.
We therefore focus on those domain sets that (a) were affected by the Let’s
Encrypt bug, (b) were on a regular cycle prior to February 29, 2020, and (c) had
at least one new certificate issued after February 29, 2020 (to see if the regular
cycle continued). To see if a domain set was on a regular reissue cycle prior to
February 29, 2020, we see if the five certificate reissues prior to the bug date had
a CoV less than 0.1. In total, 98,652 domain sets satisfy these three criteria.
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Fig. 5. Graph showing how long certificates “survived” after Let’s Encrypt bug was
announced. We plot (a) the 33,099 certificates that we inferred were manually reis-
sued, and (b) the 66,553 certificates that we inferred were automatically reissued. We
can see the manually reissued certificates we largely reissued quickly after the bug
announcement.

Next, we calculate the CoV of the five reissues before the bug date and
the first reissue after the bug date. If the CoV including the new certificate is
high, then the first certificate after the Let’s Encrypt bug could not have been
automatically reissued; some form of manual intervention disrupted the issue
cycle and caused the previously low CoV to increase. If the CoV including the
new certificate remains low (<0.1), then the new certificate was likely issued
on its expected regular schedule. It is also possible, though unlikely, that a new
certificate was manually issued at the same time we would expect the next auto-
matically reissued certificate. Of the 98,652 domain sets, 33,099 saw a significant
CoV increase (i.e., likely had manual intervention) in the first reissue after the
Let’s Encrypt bug, and 65,553 likely did not.

We therefore focus on those domain sets with a low CoV (less than 0.1),
which means the domain set has issued certificates previously on a very regular
schedule. We refer to these domain sets as misissued regular domain sets, and
we can identify 1,906 of them prior to February 29, 2020.

However, when examining the data, we observe a number of domain sets that
appeared to have an irregular pattern initially, but then settled into a regular
patter of reissuance as time went on. Presumably, these are cases where the
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system administrator needed to debug their reissuance cron job, but eventually
got it working. To be able to study these domain sets as well, we also consider
domain sets to be regular if there is any cut-off between the beginning of the
domain set’s reissuance history where the CoV is less than 0.001 for all reissues
after the cut-off (with a minimum of 5 reissues). Using this methodology, we
identify a further 10,905 domain sets that are misissued regular prior to the
announcement of the Let’s Encrypt bug.

We aim to use these 12,811 regular domain sets to see whether the system
administrator promptly reissued their certificate after February 29, 2020. 2,068
domain sets had no reissues after Feb. 29, leaving us with 10,743. However, there
is one final wrinkle: we need to be able to distinguish a manual reissue from a
reissue that would have happened anyway on the domain set’s regular schedule.
Recall that all of these domain sets were on a regular schedule for at least 5
reissues prior to February 29, 2020; the 5 reissues preceding that date have a CoV
<0.001. To determine if the first post-bug reissue would have fallen on-schedule,
we compute the CoV for the 5 pre-bug reissues and the first post-bug reissue. If
the CoV of all 6 reissues is above 0.001, then the post-bug reissue disrupted the
schedule, and we can conclude that it was manually reissued. In other words, we
only consider those domain sets that are on an extremely regular schedule who
reissued well before when their next reissue was expected. This final grouping
represents 4,873 domain sets that were manually reissued. The remaining 5,870
domain sets were reissued very close to their next scheduled time. It appears as
though they were automatically reissued, though we cannot definitively say they
were not manually reissued (it is possible they were manually reissued very close
to when they were expected to automatically reissue anyway).

We now examine how quickly these 33,099 certificates were manually reis-
sued after Let’s Encrypt announced the bug, and emailed all administrators
to tell them to reissue their certificates manually. Figure 5 plots the number
of these certificates that survive in the line labeled “bug, manual reissue”. We
can observe that most certificates that are manually reissued are reissued quite
quickly: within a week, over 84% of all certificates that we believe are manu-
ally reissued have been reissued. For comparison, we plot the same graph for
the 66,553 certificates that were reissued close to their next reissue in the line
labeled “bug, auto reissue”. This group shows less-prompt reissuing than the
manual reissues, as only 42% of likely-automatic reissues occurred in the 7 days
following the bug announcement.

Recall from Sect. 2 that Let’s Encrypt rescinded its decision to revoke cer-
tificates on March 5, 2020 (five days after the initial email stating they would
be revoking certificates on March 5, 2020). Thus, there may be system admin-
istrators who intended to reissue but who delayed reissuing their certificates,
only to decide it was no longer necessary after receiving the second message.
While we cannot measure how large this group is, we believe it is likely small as
Let’s Encrypt decided sent out the second message on the day they originally
announced as the deadline to reissue. Regardless, our results still serve as a lower
bound on the number of system administrators who did take action.
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Finally, we plot the same data as in Fig. 5, but do so as a fraction of all
misissued domain sets with a CoV less than 0.1 before the bug date. This graph
is presented in Fig. 6, and it shows that among all the domain sets with a CoV
less than 0.1 (those on a regular schedule before Feb. 29, 2020), at least 28%
had reissued their certificate manually within a week of the bug announcement.
This result is a significant improvement over prior incidents; with the Heartbleed
bug, after a week, barely 10% of affected certificates had been reissued (and even
fewer revoked) [22]. Even though circumstances between the two bugs differ sig-
nificantly (such as notification of revocation), they both provide opportunities
for natural experiments to see how the PKI is evolving over time, and the com-
parison suggests that system administrators may now be better managing the
PKI.

5 Concluding Discussion

Over the past five years, the TLS PKI ecosystem has changed dramatically:
largely due to new CAs such as Let’s Encrypt, we have moved from primarily
expensive, long-lived certificates to primarily free, short-lived certificates. In this
paper, we examined whether this change in the nature of the certificate ecosys-
tem has also improved the management of the TLS PKI, as it has been previously
been observed that system administrators often fail to properly manage their cer-
tificates. Though we find significant evidence that most clients of Let’s Encrypt
have indeed set up automated processes for reissuing and installing their certifi-
cates using over four years of CT logs, a surprising fraction (20%) of clients with
a sufficiently long history of being reissued still appear to use manual processes.
Moreover, we find evidence that even when manual intervention is required, sys-
tem administrators are more prompt in doing so when compared to studies from
the 2014 Heartbleed bug and the 2009 Debian PRNG bug. Taken together, our
results underscore the importance of reducing the burden of management of the
TLS PKI, and how changes in the infrastructure and tools available to system
administrators can lead to significant management improvements.
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Abstract. The modern Internet is highly dependent on the trust com-
municated via X.509 certificates. However, in some cases certificates
become untrusted and it is necessary to revoke them. In practice,
the problem of secure certificate revocation has not yet been solved,
and today no revocation procedure (similar to Certificate Transparency
w.r.t. certificate issuance) has been adopted to provide transparent and
immutable history of all revocations. Instead, the status of most cer-
tificates can only be checked with Online Certificate Status Protocol
(OCSP) and/or Certificate Revocation Lists (CRLs). In this paper, we
present the first longitudinal characterization of the revocation statuses
delivered by CRLs and OCSP servers from the time of certificate expi-
ration to status disappearance. The analysis captures the status his-
tory of over 1 million revoked certificates, including 773K certificates
mass-revoked by Let’s Encrypt. Our characterization provides a new
perspective on the Internet’s revocation rates, quantifies how short-lived
the revocation statuses are, highlights differences in revocation practices
within and between different CAs, and captures biases and oddities in
the handling of revoked certificates. Combined, the findings motivate the
development and adoption of a revocation transparency standard.

1 Introduction

The modern Internet uses the Web Public-Key Infrastructure (WebPKI) as a
foundation to establish trust between clients and servers. In WebPKI, Certifi-
cate Authorities (CAs) issue signed X.509 certificates that verify the mapping
between public keys and public distinguished names, such as domain names.

In certain cases (e.g., a private key compromise, owner’s request, or misis-
suance by a CA), certificates must be revoked; i.e., rendered invalid. To protect
clients and servers from the use of revoked certificates, WebPKI supports several
revocation protocols. Currently, revocation statuses of most certificates can be
obtained via Online Certificate Status Protocol (OCSP) servers [28], but some
CAs continue to support the traditional Certificate Revocation Lists (CRLs) [6]
as a complementary option. However, these pull-based protocols raise many secu-
rity, privacy, and performance issues. Therefore, many browser vendors do not
utilize the protocols [23], but instead, they push a proprietary set of revocations
to the users [2,11]. Yet, these push-based revocation mechanisms have their own
limitations, which leave secure certificate revocation an open problem [4].

Furthermore, as of today, there does not exist any standardized mechanism
in place (similar to Certificate Transparency (CT) [14,20,30] w.r.t. certificate
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issuance) to provide an immutable history of all revocations and correspond-
ing revocation reasons. Consequently, there is no ability to easily study and
detect revocation-related misbehavior by CAs (e.g., advertisement of wrong, or
contradictory revocation statuses). While many novel WebPKI extensions, revo-
cation protocols, architectures, and transparency schemes have been proposed
to address this issue, none have been adopted so far [4]. Instead, we observe
that the information about revocations is sparse and most revocation statuses
disappear soon after certificate expiration.

In this paper, we make a case for revocation transparency by presenting a
novel characterization study of the revocation rates on the Internet, the post-
expiry life of revocation statuses, and the status-handling practices across CAs.
First, we present a measurement methodology that allows us (i) to obtain nearly
all revocations performed for the set of certificates expiring during a time win-
dow, and (ii) to track the certificate status (using both OCSP and CRL) of such
sample sets over 100-day periods, starting at their respective expiration dates1.

Second, we track all certificates from the Censys dataset [10] that expired
between Mar. 2, 2020, and Apr. 1, 2020, and that were valid with respect to
Apple’s, Microsoft’s, or Mozilla’s root stores. This time period (see Fig. 1) is
particularly interesting since the measurement was done prior to and during the
mass-revocation event in which Let’s Encrypt (LE), the largest CA, initially
announced to revoke over 3 million certificates [22] due to a CAA-rechecking
bug, but in the end, they revoked only 1.7 million certificates [21].

Third, and most importantly, we characterize the revocation-status-handling
practices across CAs, including status lifetimes beyond the expiration date and
handling differences across CAs and certificate types. We identify classes of
behaviors, compare and contrast practices of different CAs, find revocation biases
among different sets of certificates, and look closer at some odd CA behaviors
(e.g., certificates that switch back to a “Good” status after being advertised as
“Revoked”). Across our analysis, we observed highly heterogeneous behaviors
among CAs and quick disappearance of revocation statuses. This highlights the
lack of a global revocation transparency standard that would otherwise help to
identify and improve odd revocation behaviors, similarly to CT, with its effect
on the issuance process. Finally, we share our dataset [19].

Outline: After a brief overview of revocation protocols (Sect. 2), we present
our methodology (Sect. 3) and characterization results (Sect. 4). Finally, related
work (Sect. 5) and conclusions (Sect. 6) are presented.

2 Revocation Protocols

The two primary revocation protocols that CAs typically use are the following.

– Online Certificate Status Protocol (OCSP): Using OCSP, a client can
request the status of a certificate by providing a serial number and the hashes
of the issuer’s name and key. The CA-Browser forum requires signed responses

1 Currently, CAs must maintain revocation statuses only until certificate expiration [1].
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Fig. 1. Timeline of the measurement.

to be valid for at least 8 hours, and at most 10 days [1]. OCSP can be used
in different ways. For example, OCSP stapling allows statuses to be delivered
by a web-server, and the OCSP Must-staple extension prevents a client from
making OCSP requests on their own and enforces a hard-fail policy if the
status was not delivered by the web-server. The Must-staple extension is not
widely adopted yet [5]. Instead, most browsers typically accept a certificate
if they are unable to obtain revocation information [23].

– Certificate Revocation List (CRL): CAs maintain signed lists with the
serial numbers of revoked certificates, and optionally, corresponding invalida-
tion dates and reason codes for the revocations. CRLs can also be augmented
using several extensions (e.g., CRL number, Authority Key Identifier, etc.) [6].
CRLs are required to be reissued at least once every 7 days [1].

Due to the security, privacy, and performance issues with OCSP and CRL,
many browser vendors have disabled the above pull-based revocation protocols;
instead, they periodically push limited sets of revocations to the clients (e.g.,
via software updates) [2,11]. However, this approach has some limitations; e.g.,
a delay introduced by scheduled updates, and a small coverage of all existing
revocations.

WebPKI lacks revocation transparency, and no mechanism similar to CT has
been adopted yet. In fact, CAs are not required to maintain revocation statuses
for certificates beyond their expiration date [1], and as we show in this paper,
most of the time, revocation statuses stop being advertised shortly after certifi-
cate expiration. The lack of a transparent and immutable history of revocations
complicates keeping CAs accountable for their revocation mishandling.

3 Measurement Methodology

We conducted a four-phase measurement campaign (see Fig. 1).
1. Preparation: In the first phase, we collect all X.509 certificates (with

their parent certificates) found in CT logs [20] and active scans that expire
within a period starting from Mar. 2, 2020, to Apr. 1, 2020, using Censys [10].
For the analysis, we only select certificates that are valid with respect to Apple’s,
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Table 1. Summary of the studied certificates. (LE – Let’s Encrypt).

Certificates Event LE Rest LE Other CAs All

Non-revoked – 36,755,317 11,496,607 48,251,924

Revoked 773,128 129,552 174,712 1,077,390

Revocation rate 100% 0.35% 1.50% 2.18%

Microsoft’s, or Mozilla’s root stores [18]. From these certificates, we extract all
OCSP responder URLs (used in phases 3 + 4) and CRL URLs (used in phase
2). For every remaining certificate, we then schedule an OCSP first pass (phase
3) 22 h before its expiration2, and for every observed CRL, we schedule periodic
CRL requests (phase 2).

2. CRL follow-up: During the second phase, we regularly (every 12 h) fetch
all CRL lists using the URLs extracted in the first phase.

3. OCSP first pass: In the third phase, we perform an OCSP status lookup
for each certificate 22 h before it expires. If a certificate is found to be revoked
during its first pass, it gets scheduled for follow-up checks every 12 h (phase 4).
In the case of an OCSP timeout or an error, the first pass is retried every minute
until a revocation status is obtained or the certificate is expired.

4. OCSP follow-up: In the fourth phase, the revocation status of every
revoked expired certificate is fetched every 12 h for 100 days (since the first pass
of each individual certificate). We separate OCSP responses into four types:
“Good”, “Revoked”, “Unauthorized”, and “Unknown”. The first two types
(“Good” and “Revoked”) are cryptographically-signed responses that defini-
tively specify the status of a certificate. The third type (“Unauthorized”) is an
unsigned plaintext response. The final category (“Unknown”) contains signed
“Unknown” statuses (that some CAs deliver) and other unsigned responses.

External Effects on the Sampling Rate: Between May 12, 2020, and May
19, 2020, parallel processes running at our server have temporarily increased
the average OCSP inter-request time from 12 h up to 21.7 h. Except for this
short period, the average OCSP inter-request time was consistently 12 h ± a
few minutes, up until June 21, 2020. Between June 21, 2020, and the end of our
measurement period on July 20, 2020, the average inter-request time was roughly
24 h. Neither of the periods with increased OCSP inter-request times took place
during the first month after the expiration date of any of the certificates; hence,
the effects do not impact our conclusions.

2 The interval of 22 h (slightly less than 24 h) was selected for performance reasons,
after the initial evaluation of our measurement framework.
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4 Characterization Results

4.1 High-Level Breakdown

In total, we collected OCSP status information for 49 million certificates. Table 1
provides a breakdown based on whether a certificate was revoked or not, whether
the certificate was issued by Let’s Encrypt (76.3% of the certificates) or a dif-
ferent CA (23.7%), and whether a Let’s Encrypt certificate was part of the
above-mentioned mass-revocation event (1.57%). For us to consider a certificate
mass-revoked it needed to be (i) on the list of 3M certificates that Let’s Encrypt
publicized for the event [22] and (ii) to be revoked at the time it expired. We
also found that 297,242 certificates from the list, with expiration dates falling
on our first pass period, have never been revoked.

The timing of the mass-revocation event is particularly interesting since it
provides a concrete example of the impact that such events can have on the
revocation rate and the lifetime of revocation statuses. Finally, we note that
the certificates affected by recent mass-revocation events have been disclosed
through website postings of arbitrarily formatted datasets [8,9,22].

While the non-mass-revocation-rate of Let’s Encrypt was much smaller than
for the other CAs (0.35% vs 1.50%), the mass-revocation event increased Let’s
Encrypt’s revocation rate for this period up to 2.40%. The effect is perhaps most
noticeable when looking at the number of revoked certificates per day, based on
their day of expiry, as shown in Fig. 2. Here, starting from Mar. 5, 2020, we
can see the impact of the certificates associated with the mass-revocation event
(gray in the figure). The other two classes of revocations (blue, orange) remained
relatively stable throughout the measurement period.

Fig. 2. Revoked certificates with a given expiration date.

We found large variations in the revocation rates of different CAs. Figure 3
shows the number of revoked (blue) and non-revoked (gray) certificates, bro-
ken down per CA. The orange markers show the number of revoked certificates
listed in the CRLs, in addition to OCSP servers (discussed in Sect. 4.4). Here, we
show all CAs with at least 100 revoked certificates in our dataset, ranked from
the one with the most revocations to the one with the least. We also include
the “other’ category that combines the results for all other CAs. While most
CAs have much fewer revoked certificates than non-revoked certificates, there



180 N. Korzhitskii and N. Carlsson

are notable exceptions. Five CAs even had more revoked than non-revoked cer-
tificates: Actalis (92.5%), nazwa.pl (66.4%), SwissSign (59.9%), Plex (73.7%),
Digidentify (100%). Among the most popular CAs (i.e., CAs with the high-
est gray/blue bars), GoDaddy also stands out with 34.5% being revoked before
expiry.

4.2 Revocation Status Changes

The revocation statuses provided by OCSP servers often change from “Revoked”
to some other status soon after certificate expiry. Figure 4 shows the time that
the status remained “Revoked” after the revoked certificates had expired. Here,
we filter out any temporary OCSP responses (e.g., unauthorized, unknown) and
timeouts whenever we obtained at least one more “Revoked” response.

Fig. 3. Per-CA breakdown of the number of revoked (blue) and non-revoked (gray)
certificates in the dataset. Revoked certificates found in CRLs are shown with ×. CAs
are ordered by the number of revoked certificates, in descending order from left to
right. In the following figures, the order is preserved. (Color figure online)

Fig. 4. Time that the revoked certificates remained revoked after the expiration. (Color
figure online)
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Quickly Disappearing Revocation Statuses: Figure 4(a) shows the empiri-
cal Cumulative Distribution Functions (CDFs) for four classes of revoked certifi-
cates: 2 for Let’s Encrypt certificates (mass-revoked and non-mass-revoked) and
2 for certificates by other CAs (with and without Extended Validation (EV)). All
certificates by Let’s Encrypt changed status within 3 days of expiration. Their
mass-revoked certificates (gray) had longer status change times than the non-
mass-revoked certificates (orange). The CDFs for the other CAs are relatively
flat from about two weeks to 100 days. (Note the logarithmic y-axis.) On an
encouraging note, the certificate class with the most long-lived revocation sta-
tuses is Extended Validation (EV) certificates (black). This class of certificates
should typically endure the most scrutiny.

Some CAs Keep the State Longer: Figure 4(b) shows the fraction of the
certificates issued by different CAs that maintained the revoked status for at
least 1 week or 30 days. While many CAs maintained “Revoked” state for very
short time periods after certificate expiry (e.g., blue CDF in Fig. 4(a) and CAs
without any bars in Fig. 4(b)), most of the CAs that did keep the “Revoked”
state beyond a week also kept this state beyond 30 days (brown bar).

Status Response Overview: For the revoked certificates, we performed more
than 207 million OCSP status requests. Table 2 provides a per-category break-
down of the individual responses (“Resp.” in the table) and the fraction of cer-
tificates (“Certs”) with at least one such response.

All certificates started as “Revoked” and most eventually changed to an unau-
thorized response (100% of Let’s Encrypt certificates and 76.43% of other CAs’
certificates). While we only had timeouts for 0.04% of the status requests, the
differences between the number of affected certificates were substantial between
CAs: only 0.07% of the Let’s Encrypt certificates had at least one timeout, com-
pared to 13.98% of the other CAs’ certificates. These fractions are non-negligible,
since most browsers soft-fail on an OCSP timeout and continue to establish a
potentially-insecure connection. A concerning observation is that 589 certificates
issued by 13 CAs (0.34% in the other CA category) switched from “Revoked”
status to “Good” (65,791 responses in total).

Table 2. Summary of different types of OCSP status responses.

Revoked Unauthorized Unknown Timeout Good

Certs Resp. Certs Resp. Certs Resp. Certs Resp. Certs Resp.

Mass rev. (LE) 100.00 2.83 100.00 97.10 12.37 0.07 1.43 0.01 – –

Non-mass. LE 100.00 2.17 100.00 97.76 11.95 0.07 1.54 0.01 – –

Other CAs 100.00 13.19 76.43 74.06 13.51 12.35 13.98 0.22 0.34 0.19

Total 100.00 4.43 96.18 93.43 12.50 2.07 3.48 0.04 0.05 0.03
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Fig. 5. Dominating status change behavior of different CAs.

Most Frequent Behaviors: Usually, public certification practice statements of
CAs guarantee revocation status preservation for non-expired certificates, but do
not specify the CAs’ actions after that [13,15,33]. We next look at the most fre-
quent CA behaviors. For this analysis, we filtered out temporary status changes
whenever we observed the original state again. With this filtering, we observed
the following dominating behaviors.

– Let’s Encrypt almost always transition statuses from “Revoked” to “Unau-
thorized”. This behavior was observed for 772,042 (99.86%) of the mass-
revoked certificates and 129,400 (99.88%) of the other certificates revoked by
Let’s Encrypt. A possible explanation for this behavior is that they respond
with code “Unauthorized” as soon as the status record has been removed [7].
Let’s Encrypt’s current certification practice statement only guarantees that
“OCSP responses will be made available for all unexpired certificates” [15].

– Among the other CAs, we observed three dominating behaviors: 133,276
(76.28%) cases where the CA simply transitioned to “Unauthorized” (like
Let’s Encrypt), 21,816 (12.49%) cases where the status always changed to
“Unknown”, and 18,660 (10.68%) cases where the “Revoked” status remained
for the duration of our measurement period.

Figure 5 breaks down the use of the dominating status change behaviors
employed by the different CAs. In addition to the three behaviors mentioned
above, we include the “other” behavior category. Most CAs have a dominating
behavior that they employ for almost all of their certificates: 15 (out of 26) CAs
almost always switch from “Revoked” to “Unauthorized” (pink bars), 9 (out of
26) CAs almost always keep the “Revoked” status for the full 100 day period,
Actalis mainly switch certificates from “Revoked” status to “Unknown” (except
for 91 cases, when the statuses were switched to “Good”, following the intermedi-
ate “Unknown” status), Digidentify (who revoke all certificates) always start to
timeout, and Japan Registry always switches statuses to “Good”. As expected,
the “other CA” category (not explicitly listed), contains a mix of behaviors.
These results demonstrate the lack of a standard practice w.r.t. revocation sta-
tuses after certificate expiration. We have also observed some small differences
in the weekly status-change patterns between CAs; however, compared to the
differences in issuance timing, these differences are very small. See Appendix A.
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Special Cases with the “Good” Status: 589 revoked certificates switched
to status “Good”. In almost all cases the servers kept the “Good” status until
the end of the measurement period. In 349 of these cases, the status changed
directly from “Revoked” to “Good” and in 91 cases an intermediate “Unknown”
status was observed. All these cases provide strong motivation for transparent
long-term recording of revocation information.

We note that Let’s Encrypt and most of the other big CAs did not have
any cases with the above strange behavior. Of the CAs with at least 100 revoca-
tions, only the following CAs had such cases: GoDaddy (117 cases), Actalis (91),
Starfield (9), Entrust (5), and Japan Registry (135). Other CAs (not listed in
our figures) with many cases include: “National Institute of Informatics” (91),
“SECOM Trust Systems” (70), “ACCV” (54). (The rest of the non-listed CAs
had five or fewer revoked certificates changing to status “Good”.) Finally, a few
certificates in this category stood out more than the others. For example, the
list included three EV certificates: one by Entrust for “JPMorgan Chase and
Co” (“Revoked” → “Good” → “Revoked”), one by GoDaddy for “Delmarva
Broadcasting Company” (“Revoked” → “Unauthorized” → “Good”), and one
by Actalis for “Pratiche.it” (“Revoked” → “Unknown” → “Good”). Otherwise,
all the certificates in this class include RSA keys with the following key lengths:
1024 (9), 2048 (579), and 4096 (1). Furthermore, only 123 (out of 589) had
Signed Certificate Timestamps (SCTs) embedded. We contacted all CAs with
the above behavior. A summary of the responses is provided in Appendix B.

4.3 Biases in the Revocation Sets

Validity Period: We have found that the revoked certificates typically have
longer validity periods. Figure 6(a) shows CDFs of the validity periods for both
revoked (blue) and non-revoked (gray) certificates for all CAs other than Let’s
Encrypt. (Since Let’s Encrypt always use a 90-day validity period, we kept these
certificates separately.) Here, we note a clear shift between the two curves.

Figures 6(b) and (c) provide a similar comparison of the (b) revoked and
(c) non-revoked certificates on a per-CA basis. Here, we plot the fraction of cer-
tificates with validity periods longer than 89 days, 90 days, 1 year (365 days),
and 2 years (720 days), respectively. These choices are based on the observation
that many CAs use validity periods of either 90 days or 398 days (e.g., steps
in the CDFs in Fig. 6(a)). For almost all CAs, the fraction of certificates with
long validity periods (darker colored bars) is larger among the revoked certifi-
cates (Fig. 6(b)) than among the corresponding CA’s non-revoked certificates
(Fig. 6(c)). This is in part an effect of CA/Browser Forum conventions [1] and
decisions by individual browsers [3,12,24] forcing CAs to use shorter certificate
validity periods. Another reason is that older certificates have had more time to
become compromised. It could also be an indication that CAs apply increasingly
stricter security policies (e.g., to comply with CT [20]).
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Fig. 6. Validity periods for different categories of revoked and non-revoked certificates.
(Color figure online)

Public Key Types: The modern WebPKI relies on EC (Elliptic Curve) [17]
and RSA (Rivest–Shamir–Adleman) [26] public-key cryptography. Here, we com-
pare the use of different key types and key lengths. While RSA 2048 is the
dominating public key among both revoked (90.44%) and non-revoked (80.81%)
certificates, there are significant differences in the revocation rates of certificates
including different key types. For example, certificates with RSA 3072 (4.55%
revocation rate), EC 521 (80.49%) and RSA with key lengths other than the
three most common lengths (6.67%) all have revocation rates well above aver-
age. In contrast, EC 256 (0.14%), EC 384 (0.62%) and RSA 4096 (1.48%) all
have revocation rates below average. These differences are also present when
looking at certificates of Let’s Encrypt and other CAs separately. Table 3 sum-
marizes the overall revocation rates (column 4) for each key type (column 1) and
the key usage distributions seen for each of the three certificate groups: Let’s
Encrypt (columns 5 vs 6 vs 7), other CAs (columns 8 vs 9), and the aggregate
over all certificates (columns 2 vs 3). Above/below average revocation rates are
shown with italic/regular (column 4) and bold text indicates the sub-group with
the highest relative representation (on a per-group basis). With this annotation,
higher revocation numbers (bold) reflect revocation rate above average (italic).

SCT and EV Usage: To measure the CT compliance we looked at the use
of Signed Certificate Timestamps (SCTs). While all certificates issued by Let’s
Encrypt have embedded SCTs, other CAs do not always embed the timestamps.
Furthermore, among the certificates issued by other CAs, the fraction of certifi-
cates that do not contain SCTs was much greater among the revoked (10.04%)
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Table 3. Key usage comparisons based on revocation vs non-revocation sets.

All certificates Let’s Encrypt (%) Others (%)

Key type Revoked Non-revoked Revoked M-rev. Rev. Non. Rev. Non.

RSA 2048 974,405 (90.44%) 38,996,600 (80.82%) 2.44% 88.75 89.93 80.79 98.33 80.91

RSA 3072 13,616 (1.26%) 285,636 (0.59%) 4.55% 1.69 0.43 0.78 0.01 0.00

RSA 4096 80,711 (7.49%) 5,382,669 (11.16%) 1.48% 8.70 8.85 14.50 1.15 0.47

RSA other 29 (0.00%) 406 (0.00%) 6.67% – – 0.00 0.02 0.00

EC 256 4,126 (0.38%) 2,873,827 (5.96%) 0.14% 0.36 0.45 2.00 0.45 18.61

EC 384 4,436 (0.41%) 712,770 (1.48%) 0.62% 0.52 0.34 1.94 0.01 0.00

EC 521 66 (0.01%) 16 (0.00%) 80.49% – – – 0.04 0.00

than non-revoked certificates (1.91%). In addition to having longer validity peri-
ods, some of the older non-expired certificates lack embedded SCTs. Owners and
issuers of these certificates may be replacing them with certificates that better
meet recent browser requirements [3,25]. We have also observed significantly
higher revocation rates among EV certificates. For example, 1,890 (10.77%) out
of the 17,544 observed EV certificates were revoked. Furthermore, for CAs other
than Let’s Encrypt, 1.08% of the revoked certificates are EV certificates and
0.14% of the non-revoked certificates are EV certificates.

4.4 CRL-Based Analysis

For the 2,190 CRL URLs extracted from the certificates of interest, we collected
643,860 CRL snapshots. Combined, these snapshots included CRL entries for
169,911 (15.8%) of the revoked certificates found using OCSP. Let’s Encrypt’s
decision not to implement CRL contributes to the small fraction. Here, we focus
on the certificates with at least one CRL entry and one OCSP “Revoked” status.

(a) Revocation timing

 

(b) Entries per CRL measurement

Fig. 7. Distributions for measured CRLs.

Timing Analysis: On average, revocation statuses disappear even faster from
CRL lists than from OCSP responders. For example, only in 26.5% of the cases
did we observe the revocation status in the CRLs after the expiration date of the
certificates, and only for 2.9% did we observe the status being preserved longer
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than a week after expiration. This may be an attempt to reduce the size of the
CRLs. However, since the majority of the revocations happen early in the lifetime
of the certificates (e.g., the median normalized lifetime is 13.8%) there is still
a significant time period over which certificates are included in the CRLs. This
is illustrated in Fig. 7(a), which shows the normalized timing of revocations
and when the CRL entries are last observed in our dataset. Here, all values
are normalized relative to the total intended validity period (i.e., “NotBefore”
and “NotAfter” corresponds to the values 0 and 1, respectively). As implied by
Little’s law, the average size of a CRL (e.g., measured as entries per CRL) is
equal to the average time that the entries remain in the CRL (e.g., measured in
days) times the average rate that certificates are being added to the CRL (e.g.,
revocations per day), CRL sizes therefore easily become very large. Indeed, the
average CRL size was 7,362 entries and the largest CRL contained 1,139,538
entries at its peak. Figure 7(b) shows CDFs and CCDFs for both individual
measurements (all) and when using the observed peak size (maxt). We also
observed some CRLs that did not appear to delete entries and roughly 0.94% of
the certificates remained in the CRLs for the full duration of our measurement.

Fig. 8. Per-CA breakdown of CRL-listed reasons for revocation. (Color figure online)

Revocation Reasons: Figure 8 breaks down the percentage of certificates for
which (i) we did not find any CRL entry (blue), (ii) we found CRL entries with-
out revocation reason (gray), or (iii) we found a revocation reason for (orange,
brown, black) on a per-CA basis. For simplicity, we only show the dominating
reasons using colors (orange, brown) but provide the overall percentages (over all
certificates with CRL entries) in the figure key. The four dominating CRL behav-
iors that we observed were: (i) some CAs did not use CRLs (Let’s Encrypt, Plex)
or only used it to a limited degree (e.g., Sectigo, FNMT-RCM), (ii) 17 CAs used
CRLs for the majority of their revocations but did not provide any revocation
reason, (iii) three CAs almost always used “Cessation Of Operation” as revo-
cation reason (GoDaddy, Google, Starfield), and (iv) three CAs almost always
specified “Superseded” as the revocation reason.

Overall, most revoked certificates are not included in CRLs and 19.6% of CRL
entries contain no revocation reason. Our results show that the practices of CAs
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are highly heterogeneous and revocation statuses are not persistent; thus, we
argue that the Internet would benefit from a revocation transparency standard.

5 Related Work

A number of studies have measured the revocation rates on the Internet. Liu
et al. [23] performed several IPv4 HTTPS scans and found that a large fraction
of served certificates was revoked (8%), while CRLSets [11] by Google was only
covering 0.35% of all revocations. Chung et al. [5] evaluated the performance
of OCSP responders by sending OCSP requests from geographically separated
locations. They concluded that OCSP responders were not sufficiently reliable
to support OCSP Must-staple extension. Zhu et al. [34] found OCSP latency
to be “quite good”, and showed that 94% of OCSP responses are served using
CDNs. Moreover, only 0.3% of certificates were found to be revoked at that time
(2015). Smith et al. [32] propose an efficient scheme to disseminate revocations.
In the process, they measured revocation rates and found that in the absence
of a mass-revocation event, the revocation rate on the Internet was 1.29%. This
is similar to what we observed. The above works perform OCSP status checks
before certificate expiration, while we check the certificates the day before their
expiration and onward. Revocation effectiveness at the code-signing PKI was
measured in [16], and a number of security problems related to revocations were
identified. A recent survey and a comprehensive framework for comparison of
implemented and proposed revocation/delegation schemes are provided in [4].

Other Community Efforts and Data Sources: The CA/Browser forum
specifies some requirements that motivated our measurement design, including
the requirement that “revocation entries on a CRL or OCSP Response MUST
NOT be removed until after the Expiry Date of the revoked Certificate” [1]. We
used the Censys search engine, backed by Internet-wide scanning [10], to obtain
all certificates for our study. Some other online services also provide revocation
statuses. For example, crt.sh [31] attempts to fetch and process every known CRL
regularly (currently every 4 hours), while the OCSP requests are performed on-
demand. Until late Aug. 2020, Internet Storm Center [27] was regularly fetching
several CRLs; however, they did not monitor all CRLs present in our dataset
and did not capture the mass-revocation by Let’s Encrypt.

6 Conclusion

In this paper, we have presented the first characterization of the revocation
status responses provided by OCSP and CRL responders from the time of cer-
tificate expiration and beyond. We described a measurement methodology, which
allowed us to look at the revocation rates on the Internet from a new perspec-
tive; we quantified how short-lived the revocation statuses are, and highlighted
differences in status handling practices of different CAs. We found that most
CAs remove revocation statuses very soon after certificate expiration. Some
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CAs do not provide CRL entries for all revoked certificates and/or remove entries
from the CRLs before certificate expiration. The CA-dependent differences high-
lighted throughout the paper (e.g., revocation status lifetimes, usage of rea-
son codes, and abnormal behavior of switching certificates from “Revoked” to
“Good” status) capture a highly heterogeneous landscape that lacks a revocation
transparency standard. Finally, we argue for the deployment of such a standard
and demonstrate the global impact of the mass revocation event, which took
place during our measurement campaign. We compared the characteristics of
the mass-revoked certificates with the characteristics of other revoked and non-
revoked certificates issued by Let’s Encrypt and the rest of the CAs, and found
a limited number of biases, e.g., the biggest differences in the revocation rates
depend on the origin CA, key type, EV policy, and presence of embedded SCTs.

Acknowledgment. This work was supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg
Foundation.

Appendix A. Other CA-Based Behavior Comparisons

We have already seen that different CAs have different revocation-status-
handling practices. To provide some additional insights, we obtained day-of-week
distributions that capture when CAs change the “Revoked” status to something
else (Fig. 9(a)); compare this to the distribution of the first certificate validity day
(Fig. 9(b)). Perhaps, the most noticeable are the weaker weekly patterns. While
more than half of the CAs issue significantly fewer certificates with start dates
during weekends (dark areas for Sat/Sun in Fig. 9(b)), we did not observe such
weekly patterns for the revocation status changes. Instead, only a few CAs have
spikes of revocation status changes on a certain day (white squares in Fig. 9(a)).
For example, Starfield, GoDaddy (part of Starfield), and Digidentify update most
of their statuses on Friday, and Japanese Registry on Sunday (Monday Japanese
time). The distributions suggest that the relation between last-status-change
and certificate-validity-start days is not straightforward. Having said that, some
of the CAs have even weekly distributions for both processes, which may sug-
gest higher levels of automation (e.g., Let’s Encrypt, Google, Actalis, cPanel,
Gandi, Herndon). Among the large CAs, DigiCert stands out with their pro-
nounced weekly patterns for both processes. Similarly, there are some differ-
ences in the daily (Fig. 10(a)) and hourly (Fig. 10(b)) distributions of the expiry
times selected for certificates. Here, some of the large CAs (e.g., Let’s Encrypt,
GoDaddy, Google, GlobalSign) spread expiry times both across the week and
the hours of the days, whereas other large CAs (e.g., DigiCert, Comodo, cPanel,
Sectigo) always set certificates to expire at the same time of day. Although these
differences may not have major security implications, perhaps, they demonstrate
the lack of a standardized policy for managing the revocation status of expired
certificates.
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(b) Start of certificate validity period

Fig. 9. Weekly distribution of certificate-validity-start day for the revoked certificates
and last-status-change day (from “Revoked” to something else).

Fig. 10. Per-CA breakdown of expiry time of revoked certificates.

Appendix B: Responses by CAs

We contacted 8 organizations that operate the CAs for which we observed at
least one status change from “Revoked” to “Good”. However, we did not find
a contact email for one CA that no longer operates: AT&T Wi-Fi Services. We
received responses from 5 organizations: Starfield (GoDaddy), Japan Registry,
Entrust, ACCV, and Atos. The CAs that responded confirmed that they had
issued the certificates in question and provided varying explanations for their
behavior. Two CAs argued that their use of “Good” statuses was motivated by
RFC 6960 [29], which states that “at a minimum, this positive response [i.e.,
a “Good” response] indicates that no certificate with the requested certificate
serial number currently within its validity interval is revoked.” One of these two
CAs also stated that they “are going to consult with the community to clarify
the requirements, and then, [they will] follow it.” We believe that CAs should
avoid changing the status of revoked certificates to “Good” at any time.
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Abstract. The Domain Name System (DNS) is a cornerstone of com-
munication on the Internet. DNS over TLS (DoT) has been standardized
in 2016 as an extension to the DNS protocol, however, its performance
has not been extensively studied yet. In the first study that measures
DoT from the edge, we leverage 3.2k RIPE Atlas probes deployed in
home networks to assess the adoption, reliability, and response times of
DoT in comparison with DNS over UDP/53 (Do53). Each probe issues
200 domain name lookups to 15 public resolvers, five of which support
DoT, and to the probes’ local resolvers over a period of one week, result-
ing in 90M DNS measurements in total. We find that the support for
DoT among open resolvers has increased by 23.1% after nine months in
comparison with previous studies. However, we observe that DoT is still
only supported by local resolvers for 0.4% of the RIPE Atlas probes. In
terms of reliability, we find failure rates for DoT to be inflated by 0.4–
32.2% points (p.p.) when compared to Do53. While Do53 failure rates
for most resolvers individually are consistent across continents, DoT fail-
ure rates have much higher variation. As for response times, we see high
regional differences for DoT and find that nearly all DoT requests take at
least 100 ms to return a response (in a large part due to connection and
session establishment), showing an inflation in response times of more
than 100 ms compared to Do53. Despite the low adoption of DoT among
local resolvers, they achieve DoT response times of around 140–150 ms
similar to public resolvers (130–230 ms), although local resolvers also
exhibit higher failure rates in comparison.

1 Introduction

The Domain Name System (DNS) faces various privacy-related issues such as
fingerprinting or tracking [10,11,22,23,36] that affect DNS over UDP/53 (Do53).
Consequently, DNS over TLS (DoT) was standardized in 2016 [19] to upgrade
the communication [35]: The protocol establishes a TCP connection and TLS
session on port 853, so that DNS messages are transmitted over an encrypted
channel to circumvent eavesdropping and information exposure. DoT has gained
increasing support since its standardization; e.g., it is supported on Android
devices as “Private DNS” since Android 9 (August 2018) [24]. Similarly, Apple
supports DoT and DNS over HTTPS (DoH) on their devices and services with
the recent iOS 14 (September 2020) and MacOS Big Sur (November 2020) [38].
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Previous work [8,17,26] has studied the support and response times of DoT
(and DoH). However, the studies performed response time measurements from
proxynetworks anddata centers,whichmeans that resultsmight not appropriately
reflect the latency of regular home users: The measured response times are likely
overestimated due to the incurred latency overhead of proxy networks or under-
estimated due to the usage of well-provisioned data centers. We close this gap by
measuring DoT from the end user [28] perspective for multiple DoT resolvers as the
first study to do so, using 3.2k RIPE Atlas home probes deployed at the edge across
more than 125 countries (Sect. 3). We issue DNS queries to 15 public resolvers, five
of which support DoT, to analyze and compare the reliability and response times
of Do53 and DoT resolvers. Our main findings are:

DoT Support (Sect. 2): We find DoT support among open resolvers to have inc-
reased by 23.1% compared to previous studies [8,26]. TLS 1.3 support [15,31]
among these resolvers has increased by 15% points (p.p.), while support for
TLS 1.0 and 1.1 is increasingly dropped. For RIPE Atlas (Sect. 4), we only find
13 (0.4%) of 3.2k home probes to receive responses over DoT from their local
resolvers.

DoT Failure Rates (Sect. 4): While overall failure rates for Do53 are between
0.8–1.5% for most resolvers, failure rates for DoT are higher with 1.3–39.4%,
i.e., higher by 0.4–32.2% points (p.p.) for individual resolvers. Failure rates are
more varying across the continents for DoT, ranging from ≤1% up to >10%,
with higher values primarily seen in Africa (AF) and South America (SA). On
the other hand, Do53 failure rates are more consistent across most resolvers and
continents (roughly 0.3–3%). Most failures occur due to timeouts (no response
within 5 s), which we suspect is due to intervening middleboxes on the path that
blackhole the connections by dropping packets destined for port 853.

DoT Response Times (Sect. 5): Comparing response times between Do53
and DoT, we find that most DoT response times are within roughly 130–230 ms,
and are, therefore, slower by more than 100 ms, largely due to additional TCP
and TLS handshakes. For most samples of well-known DNS services (such as
Google, Quad9, or Cloudflare), response times of for Do53 are consistent across
the continents, while other resolvers show larger regional differences. For DoT,
only Cloudflare exhibits consistent response times across regions, whereas the
remaining resolvers have highly varying response times. In cases where the local
resolver does support DoT, response times are comparable to those of the faster
public resolvers (140–150 ms) and similarly inflated compared to Do53.

We discuss limitations (Sect. 7) and compare our findings to previous
work (Sect. 6) before concluding the study (Sect. 8). To facilitate reproducibility
of our results [1], we share the created RIPE Atlas measurement IDs, analysis
scripts, and auxiliary/supplementary files1. The measurements do not raise any
ethical concerns.
1 Repository: https://github.com/tv-doan/pam-2021-ripe-atlas-dot.

https://github.com/tv-doan/pam-2021-ripe-atlas-dot
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2 DoT Background: Adoption and Traffic Share

DoT Adoption Among Open Resolvers. Deccio and Davis [8] study and
quantify the deployment of public DoT resolvers as of April 2019. Note that in the
context of their study, a resolver refers to an IP endpoint, which may, therefore,
include a replicated or anycasted service. They identify 1.2M open DNS resolvers
in the public IPv4 address space, out of which 0.15% (1,747) support DoT. Of
the DoT resolvers, 97% (1,701) support TLS 1.2 and 4.5% (79) support TLS
1.3, whereas older TLS versions (TLS 1.0 and 1.1) are not supported by 4.6%
(80) of the resolvers. A similar number of open DoT resolvers (1.5k) was found
by Lu et al. [26] (2019).

We repeat this scan from a research network at Technical University of
Munich (TUM) in January 2020 (i.e., nine months after Deccio and Davis [8]) for
the same set of open DNS resolvers. We find that the number of open resolvers
supporting DoT has increased to 2,151, i.e., an increase by 23.1%. The share
of resolvers supporting TLS 1.2 has increased to 99.9% (2,149 resolvers), while
the percentage of TLS 1.3-supporting resolvers has increased to 20% even (433).
Older versions of TLS are not supported anymore by 508 resolvers (24%), which
altogether indicates that the adoption of DoT and newer TLS implementations
is increasing.

DoT Traffic Share. To assess the usage of DoT in terms of traffic, we analyze
public traffic traces collected from samplepoint-F of the WIDE backbone [7],
which monitors a research network link in Japan. We aggregate the daily traffic
traces of 2019 by month and inspect the traffic share of DoT, i.e., traffic on
TCP/853. We observe that DoT accounts for roughly 2M out of 11.8B flows in
the dataset, which means that DoT accounts for around 0.017% of all flows. On
the other hand, the traffic share of Do53 is more than 135 times as much with
271.5M flows (2.3%), which indicates that DoT only contributes a very negligible
amount of traffic overall.

3 Methodology

Measurement Platform and Probes. We use RIPE Atlas [32] to measure
reliability and response times of Do53 and DoT from distributed vantage points;
DoT measurements are performed over TLS 1.2, as RIPE Atlas probes do not
fully support TLS 1.3 yet. For our experiment, we first select probes that are
IPv4-capable and resolve A records correctly through the RIPE Atlas API. We
exclude anchor probes to capture the Do53 and DoT behavior for end users
more accurately. As older versions of RIPE Atlas probes (V1 and V2) exhibit
load issues [2,14], we only consider V3 probes, ultimately finding 5,229 probes
in total. For the analysis, however, we only take residential probes into account:
We use RIPE Atlas user tags [3] for the identification of residential networks.
Additionally, we issue traceroute measurements to an arbitrary public endpoint
from all probes over IPv4: If the IP address of first hop on the path is private [30]
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and the IP address of the second hop is in the public address space (i.e., the probe
is directly connected to the home gateway), we also identify the probe as resi-
dential. Combining the set of probe IDs determined from both these approaches,
we identify 3,231 home probes overall. As the number of dual-stacked residential
probes is significantly lower (roughly 700 globally), we decide to not perform
measurements over IPv6: The low number of IPv6-capable probes overall limits
the regional analysis, since such probes are primarily deployed in Europe (EU)
and North America (NA), which would leave other continents largely underrepre-
sented. Thus, we focus on IPv4 measurements exclusively in our study, although
we suggest to repeat the measurements over IPv6 with increased deployment of
probes having native IPv6 connectivity.

DNS Resolvers. We issue the resolution of 200 domains (A records) to 15
selected IP endpoints of different public DNS services once a day, repeated over
a period of one week (July 03–09, 2019). Out of the 15 public DNS services,
listed in Table 1, five support DoT: CleanBrowsing, Cloudflare, Google, Quad9,
and UncensoredDNS. For these services, we additionally issue the same DNS
lookups to the same IP endpoints using DoT for comparison. Moreover, we query
the same 200 domains using the DNS resolvers provided by a probe’s network
configuration, which we will refer to as local resolver (typically operated by the
ISP and assigned via DHCP) in the following; this allows us to study the support
of DoT among ISPs. Note that probes may use multiple IP endpoints when
resolving domains locally. In particular, probe hosts may use public resolvers as
their local resolvers; thus, we exclude all occurrences of these public resolvers
from the local resolver measurements, including alternative IP endpoints which
these public DNS services may use. Among the 2,718 probes that receive at
least one successful Do53 response from a local resolver, we find 2,257 probes
to use an endpoint in their private network as local resolver (e.g., a CPE) and
572 probes to use an ISP resolver (public IP address) for local name resolution.
However, as we do not see significant differences in terms of response times at
the 5th percentiles of each probe (9.5 ms for CPE, 9.8 ms for ISP resolver), we
do not further distinguish between both groups.

Domains. The 200 queried domains consist of 150 websites from Alexa Top
1M [33]: We split the Top 1M list into 10 equally-sized bins of 100k each (by rank
order) and select the 15 first domains of each bin, resulting in 150 popularity-
focused domains. The remaining 50 domains are selected from the country-based
Alexa Toplists, for which we determine 10 countries across the continents with
high numbers of probes (US, DE, GB, RU, NL, IT, JP, NZ, ZA, BR). We then
pick 5 website domains from each Alexa Toplist of the associated Top-Level
Domain (.us, .de, .co.uk, etc.), resulting in 50 region-focused domains. Note
that sampling the entire 1M domains does not improve representativeness, since
we repeat the measurements over a period of one week and expect records to be
cached. Also, the known instability of the Alexa Toplist [33] does not substan-
tially influence our measurements: We construct the list of overall 200 domains
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Table 1. Overview of measured resolvers together with the number of failed requests,
total requests, and failure rates for both Do53 and DoT. Failure rates for DoT are higher
compared to Do53 for each resolver, with failure rates also being lower for public DNS
services than local resolvers. Highlighted cells are referred to in Sect. 4.

(from July 01, 2019) to investigate whether there are larger differences between
bins of more popular and less popular domains, or in terms of Top-Level Domain
(TLD) and probe location. However, we do not find any significant deviations in
terms of response times, neither regarding popularity rank nor TLD. Thus, we
do not further distinguish between individual domains in the analysis.

With this experiment setup, we collect measurements for around 90M DNS
requests from home probes in total (see Table 1).

4 Reliability

We investigate the reliability of Do53 and DoT by analyzing the failure rate,
which we define as the relative number of failed queries to the total number of
queries. A query is defined as failed if the domain lookup could not be sent to the
resolver or the probe did not receive a response; in both cases, the RIPE Atlas
API will return an error. Table 1 shows the overall failure rate, as well as the
failure rate by resolver, for both Do53 and DoT. Note that we exclude 33 probes
which failed nearly all of their DoT measurements (see error analysis below)
from all following analyses. Further, only 2,718 probes of the 3.2k home probes
successfully receive a Do53 response from local resolvers, i.e., the remaining
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probes cannot resolve a domain using a local resolver (but can with a public
resolver). Considering DoT, we find that only 13 probes receive responses from
their local resolver via DoT, which means that DoT is only supported by 0.4%
of the local resolvers. We exclusively see these DoT-supporting local resolvers
(discussed in more detail in Sect. 5) in EU (11 probes) and NA (2 probes). As
such, we separate the queries to local resolvers (by probes with and without
DoT-supported local resolvers) in Table 1 and this subsection.

Overall Failure Rates. The overall failure rate for Do53 is 7.9%, with individ-
ual failure rates of 0.8–1.5% for most resolvers, whereas the overall failure rate
for DoT is much higher at 22.9%, i.e., a difference of 15.0% points (p.p.). How-
ever, the total failure rates are heavily influenced by a few resolvers exhibiting
particularly high failure rates of close to 100%: For instance, 98.2% of the Do53
requests to Neustar UltraRecursive fail, accounting for 76.4% of the Do53 failure
rate in total. For DoT, UncensoredDNS accounts for 84.7% of all DoT failures
with an individual failure rate of 97.2%; local resolvers with DoT support have
an overall DoT failure rate of 39.4%.

Individually, the Do53 failure rate is between 0.8% and 2.5% for all public
resolvers when disregarding Neustar. Local resolvers encounter failures in 11.2%
of the cases instead (7.2% for probes with DoT-supported local resolvers).

We observe an inflation of failure rates when moving from Do53 to DoT
for all DoT resolvers: Inflations range from 0.4 and 0.5 p.p. for Google and
Cloudflare, over 1.5 p.p. for Quad9 and 9.4 p.p. for CleanBrowsing, to 95.7 p.p.
for UncensoredDNS; local resolvers with DoT support show an inflation toward
the higher end with 32.2 p.p. Overall, these numbers suggest that DoT support
on the paths is still experimental and, therefore, varying concerning reliability.

Error Analysis. Regarding the respective error messages, we find that most
failures are attributed to timeouts (5 s), socket errors, and connect() errors (con-
nection refused/reset, network unreachable). For Do53, nearly all failed requests
toward Neustar (>99.9%) are due to timeouts. DoT measurements show a sig-
nificant amount of TUCONNECT errors, which are exclusive to DoT and suggest
TLS negotiation errors. To further investigate this, we count the number of
TUCONNECT errors for each combination of probe and public resolver; we exclude
UncensoredDNS from this analysis due to its high failure rate overall (which
indicates server-side issues). For all combinations of 3.2k probes × 4 resolvers,
we find repeated TUCONNECT errors for 33 probes across all resolvers where the
probes fail nearly all scheduled 1.4k DoT measurements (200 domains × 7 days).
This indicates blackholing of DoT packets closer to these probe (home router
or in the ISP network). Although the number of affected probes is negligible
(≈1%), we have excluded the affected 33 probes from the previous and following
analyses. We further investigate TUCONNECT errors and find a higher number of
probes failing nearly all DoT measurements for Cloudflare in particular, which
affects 99 probes. The differential of 66 probes between these two groups show
no errors for the other resolvers, suggesting DoT blackholing closer to Cloudflare
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Fig. 1. Failure rates of resolvers by continent for Do53 (top) and DoT (bottom). Each
cell represents the failure rate based on all failures relative to all queries for the specific
resolver and continent. Most failure rates for Do53 are between 0.3–3%, whereas DoT
failure rates are generally higher and more varying.

anycast instances that serve these probes, which in return causes a higher failure
rate compared to other resolvers. CleanBrowsing, on the other hand, shows a
similar failure rate regarding TUCONNECT errors as Google or Quad9; the majority
of CleanBrowsing’s overall DoT failures (10.3%) stem from timeouts instead.

The inflated failure rates for DoT in comparison with Do53 are less surprising,
as DoT was only standardized in 2016 [19]: As such, DoT likely still faces issues
with middleboxes along the path [16,29], which intervene with DoT packets
(TCP/853) and result in timeouts.

Regional Comparison. To identify regional differences, Fig. 1 depicts the
failure rates of Do53 (top) and DoT (bottom) by resolver and continent. Most
resolvers exhibit similar Do53 failure rates across all continents, in the range
of roughly 0.3–3%. Local resolvers show significantly higher failure rates (5.7–
13.6%), which means that RIPE Atlas probes have less success in resolving
domain names when using their local resolver (regardless of DoT support). Thus,
Do53 resolutions are more reliable with public resolvers compared to local ones
concerning RIPE Atlas measurements. Nevertheless, we find similarly high values
for OpenNIC in SA (11.3%), and Cloudflare in AF (6.8%) and SA (10.3%). As
mentioned, Neustar represents an outlier, as measurements fail in nearly all
cases (95.6–98.9%). Probes in Oceania (OC) have the lowest failure rates for all
resolvers when comparing different continents, with most resolvers having failure
rates of at most 0.5%.
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Fig. 2. Histograms of response time ratios (DoT to Do53) per probe for each resolver.
The vertical dashed line represents the ratio of 4 RTTs for DoT (TCP handshake +
TLS handshake + DNS lookup) to 1 RTT of Do53 (DNS lookup).

Regarding DoT, Google and Quad9 exhibit the lowest failure rates across
all continents (<5% in most continents), although still higher than their respec-
tive Do53 failure rates. On the other hand, Cloudflare and CleanBrowsing show
higher failure rates, especially in AF (9.8% and 31.1%) and SA (11.6% and 7.4%),
with CleanBrowsing having a high failure rate in EU (12.8%) as well. Queries
to UncensoredDNS fail in nearly all cases (92.7–99.1%). As multiple public DoT
resolvers (even those with otherwise reliable services in other continents) have
higher failure rates in AF and SA, these regions may be affected more heavily by
ossification in terms of middleboxes. Local resolvers with DoT support also show
high failure rates, with 40.3% in EU, and 33.3% in NA. In total, this indicates
that the DoT reliability is highly dependent on the geographical location as well
as the chosen DNS service.

5 Response Times

We aggregate the measurements by grouping distinct tuples of probe and resolver
and, for each group, determine the 5th percentile in terms of response time (i.e.,
one value for each probe-resolver tuple across all measurements). We choose
5th percentiles to limit the analysis to responses for cached records, as those
accumulate at the lower end of the distribution and represent best-case scenarios.

Background. Before discussing response times of the measurements, we elab-
orate on a technical limitation regarding DoT: By design, a DoT client would
first establish a TCP connection and TLS session with the recursive resolver,
then keep this session alive to reuse it for resolutions of multiple domains. Thus,
the added delay due to the TCP and TLS handshake RTTs only apply once for
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Fig. 3. CDF of resolver response time for successful Do53 (left) and DoT (right)
requests (5th percentiles per probe). While most Do53 responses arrive within roughly
100 ms, the majority of DoT responses require more than 100 ms to return.

as long as the connection and session stay alive. For RIPE Atlas probes, how-
ever, DoT measurements do not keep the connection/session alive in between
different measurements, which means that the additional RTTs required for the
TCP and TLS handshakes apply to every DoT measurement. We contacted the
RIPE Atlas support regarding specific protocol details: RIPE Atlas probes do
not use TCP Fast Open or other extensions, so establishing the TCP connec-
tion will add 1 RTT to the response time. Further, probes typically use TLS 1.2
(2 additional RTTs), though some probes may use TLS 1.3 (1 additional RTT);
however, the DoT measurement results do unfortunately not provide any infor-
mation about the used TLS version for validation. As such, DoT measurements
include 3 additional RTTs (2 in the best case) on top of the DNS lookup (1
RTT).

Considering we focus on cached responses (5th percentiles, see above) exclu-
sively in this section, we argue that the lookup times are negligibly small (since
results are simply returned from the cache). Thus, the response times largely con-
sist of the RTTs between probe and resolver. Consequently, Do53 measurements
resemble roughly 1 RTT, which we consider as the baseline RTT (cf. overall
response times below), whereas DoT measurements resemble roughly 4 RTTs
in total, plus time for connection/session management and processing on both
probe and resolver. For approximation, we calculate the ratio between the 5th

percentiles of the DoT and Do53 response times per probe for each resolver,
shown in Fig. 2; the vertical dashed lines represent the outlined ratio of 4 RTTs
to 1 RTT (i.e., DoT to Do53).

The minimum ratio across all resolvers is 3.11, which suggests usage of
TLS 1.3 in these cases (1 RTT less than with TLS 1.2). Yet, these cases are rare
(only four probe-resolver pairs), as the median ratio among the public resolvers is
10.5 (25th percentile 7.5); this suggests that besides the approx. 4 RTTs required
for the handshakes, most samples require at least around 4 more RTTs for pro-
cessing of the DoT request on probe and resolver side. However, this processing
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Fig. 4. Medians of the 5th percentile response times by continent and resolver for Do53
(top) and DoT (bottom). Do53 response times are mostly below 20–40 ms for most
resolvers, whereas DoT response times are between roughly 120–180 ms instead.

overhead for DoT measurements cannot be accurately determined, as probes
record the total response time only and, therefore, do not allow separation of
different steps during the DoT lookup. Nevertheless, note that the handshake
RTTs still account for a large fraction of the measured DoT response times over-
all. Recall that only 13 probes leverage DoT-supporting local resolvers, most of
which have ratios toward the higher end (see Fig. 2, bottom right) due to very
low Do53 response times (<10 ms) and likely early-stage DoT implementations.

Due to these limitations (also see Sect. 7), the following analyses describe
the DoT response times as measured by RIPE Atlas, i.e., incl. TCP/TLS hand-
shakes; observed inflations will only apply when initiating connections to DoT
resolvers and, thus, represent upper bounds of response times for cached records.

Overall Response Times. The distributions of the 5th percentile response
times for Do53 are shown in Fig. 3 (left). The fastest resolvers with medians of
less than 15 ms are Neustar (median 2.4 ms), local resolvers (9.3 ms), Cloudflare
(10.8 ms), and Google (12.6 ms). However, note that the sample size of Neustar
measurements is much lower due to its high failure rate (see Sect. 4). Public
resolvers that primarily serve clients of a specific country such as CZ.NIC (CZ,
41.2 ms) and Yandex (RU, 51.8 ms), as well as UncensoredDNS (44.9 ms) show
response times toward the higher end. The remaining resolvers have response
times in between (16–31.3 ms) over Do53.
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On the other hand, response times for DoT (see Fig. 3, right) are much
higher in comparison with Do53, as expected considering the additional RTTs.
The medians for Google (129.3 ms), Cloudflare (131.9 ms), and local resolvers
(147 ms) are in the same range of roughly 130–150 ms, whereas Quad9 (170.4 ms)
and CleanBrowsing (227 ms) show higher response times, which indicates
response time inflations of 150–200 ms when compared to Do53. The median
for UncensoredDNS is an outlier at 1.06 s; coupled with its high DoT failure
rate, the measurements suggest that UncensoredDNS is less suitable as a DoT
resolver at this stage. Despite the low support of DoT by local resolvers, the
response times are comparable to (and in some cases even better than) well-
known public resolvers such as Google, Cloudflare, and Quad9.

Regional Comparison. Figure 4 shows response times for each resolver and
continent for Do53 (top) and DoT (bottom); each cell represents the median
value for the respective continent-resolver pair, with the sample values being the
5th percentiles of the response times from Fig. 3.

For Do53, we observe that the lowest delays are measured in EU, where the
responses arrive within 43.4 ms for all resolvers. For other continents, we see
occasionally higher response times, especially in AF, Asia (AS), OC, and SA,
where some resolvers take more than 100 ms (up to 339.2 ms) to respond to
a Do53 request. Local resolvers exhibit the lowest response times by far, with
values ranging between 7.1–12.4 ms, similar to Google (10.2–23.4 ms); again,
note that Neustar shows very low response times but is not fully compara-
ble due to its lower sample size. Overall, we observe that the performance of
well-known resolvers (Google, Quad9, Cloudflare) is consistent when comparing
response times between different continents, i.e., regional differences for resolvers
are marginal, while for other resolvers (with fewer points of presence around the
globe) regional differences are higher.

Considering DoT (Fig. 4 bottom), we again find response times to be sub-
stantially higher than their Do53 counterparts for all cells. However, differences
between the continents are much more varying compared to Do53, with the
exception of Cloudflare which shows the least varying median response times
(128.1–147.7 ms) across all continents. On the other hand, samples for Google
are in between 122.9–315.1 ms (showing high response times in AF and OC),
which is comparable to DoT-supported local resolvers in EU and NA (148.1 and
243.9 ms). Quad9 (114.3–622.6 ms) and CleanBrowsing (175.4–1,171.4 ms) show
higher variance across the regions; responses from UncensoredDNS even require
more than 1 s in most cases. Overall, response times for DoT are much more
varying across different continents when compared to Do53.

Response Time Inflations by Individual Probes. To further investigate
the actual difference between Do53 and DoT in terms of response time, we only
consider resolvers that offer both protocols in the following. We calculate the
individual deltas between Do53 and DoT for each probe-resolver tuple (i.e., the
probe’s inflation in response time to a specific resolver) by subtracting the 5th
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percentile of a probe’s DoT response times from the 5th percentile of its Do53
response times.

We find all deltas to be negative, which means that DoT is slower than
Do53 in all cases. We observe the lowest inflations regarding response times
to be around 66 ms (i.e., delta of −66 ms), although the interquartile range
across all samples is [−285.6; −114.8] ms. The medians of the deltas are highly
varying across the continents (EU −145 ms, NA −164.9 ms, OC −188.4 ms,
AS −234.4 ms, SA −330.5 ms, AF −367.3 ms). Regarding resolvers, Google
(median −115.9 ms), Cloudflare (−121 ms), local resolvers (−143.8 ms),
and Quad9 (−149.8 ms) show similar inflations in the range of roughly
120–150 ms; on the other hand, CleanBrowsing (−202.8 ms) and UncensoredDNS
(−910.3 ms) exhibit much higher response time differences between Do53 and
DoT.

Overall, while the observed overheads of DoT differ depending on continent
and resolver, we still see differences of more than 100 ms for almost all samples
in favor of Do53.

Local DoT Resolvers. To further examine local resolvers, we split the mea-
surement of local resolvers with DoT support by individual resolvers. The 9 local
resolvers that support DoT are operated by larger commercial ISPs, smaller asso-
ciations that offer Internet services, cloud/DNS service providers, and academic
institutions. However, note that they are only used by 13 probes (11 EU, 2 NA)
in our study; DoT is not supported by any local probe resolver in AF, AS, OC,
or SA. We find varying DoT response times for the different local resolvers in
the range of 66.4–383.8 ms overall. XS4ALL (an ISP from NL) shows consistent
response times (145.9–156.6 ms) for the five corresponding probes. Further, most
of the remaining local resolvers respond within 104–223.2 ms; as such, the DoT
response times of local resolvers are largely on par with those of public resolvers.

6 Related Work and Discussion

We contrast our results with those of recent studies: Deccio and Davis [8] find
that DoT is supported by 0.15% (1.7k) of all publicly routable IPv4 resolvers,
with most of them being assigned to CleanBrowsing (among some resolvers from
Cloudflare, Google, and Quad9); our repetition of the experiment reveals that
this number has increased by 23.1% within nine months (see Sect. 2).

Lu et al. [26] find a similar number of open DoT resolvers (1.5k) and measure
response times for DoT and DoH from two residential proxy networks, covering
123k vantage points in total (30k global, 85k in China). In terms of reachability,
99% of the global users in their study can reach a DoT resolver. In their example,
Cloudflare is reachable by 98.9% of the users due to the DoT failure rate being
1.1% only; for our results, we observe Cloudflare to fail in 3.0% for all DoT
measurements, whereas Google only fails in 1.3%, ultimately resulting in roughly
similar numbers in terms of reachability. However, they find much lower failure
rates for Quad9 (0.15%, compared to our 2.7%). To contrast this with DoH, they
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find DoH failure rates of less than 1% from their global proxy network; overall,
they observe DoH to have about equal or higher reachability than DoT.

Regarding response times, they find median response times for DoT without
connection reuse to range between 349–1,106 ms based on location for Cloudflare,
Google, and Quad9 resolvers; this includes overheads for TLS session negotia-
tion, which are in the range of 77–470 ms. These response times are higher by
as much as factors of 1.75–5.5 compared to the DoT response times (Sect. 5)
of our RIPE Atlas measurements (median of all probe-resolver response time
medians at 201 ms). This indicates that the residential proxy networks add a
significant amount of latency to the measurements, which does not reflect the
actual response times for home users. Nevertheless, the authors [26] find that
connection reuse improves the average response times substantially. This sug-
gests that our measurements represent a rough upper bound for the average
DoT response times of home users.

Hounsel et al. [17] measure Do53, DoT, and DoH from five global vantage
points through Amazon EC2 instances, using Cloudflare, Google, and Quad9.
They compare the effects of the different DNS protocols on loading times of
webpages and take advantage of the aforementioned connection reuse. For their
DoT queries from Frankfurt (FRA), they observe most responses to return within
100 ms for Google and Cloudflare, although results for Quad9 are much more
varying (only around 20% within 100 ms). These numbers are much lower com-
pared to the RIPE Atlas 5th percentiles of roughly 130–150 ms that we dis-
cuss (Sect. 5), although this difference is likely related to the connection/session
reuse as well as usage of well-provisioned data centers as vantage points (rather
than home networks). Nevertheless, while DoT and DoH response times for indi-
vidual queries are higher compared to Do53, the overall page loading times are
lower when reusing the connection and session, showing that a switch from Do53
to DoT or DoH might be beneficial in terms of response times already.

7 Limitations and Future Work

We restrict the set of probes to home and V3 probes exclusively; note that these
probes are deployed in 1.1k different ASes, with the top 10 ASes (0.9%) account-
ing for roughly 27.6% of all home probes. Although there is a potential bias
toward overrepresented ASes, we decide not to normalize by ASes since network
conditions and, hence, measurements are not guaranteed to be uniform across
an AS either: Sampling “representative” probes for each AS would, therefore,
introduce another bias into the dataset and analysis.

Furthermore, we cannot directly control the caching behavior of the measured
resolvers, though the 200 selected domains are likely cached due to being highly
ranked in Alexa Toplists and repeated measurements. Regarding response times,
we further limit the analysis to the 5th percentiles for each probe. Note that
measurements over RIPE Atlas cannot be guaranteed to run simultaneously
or back-to-back due to scheduling and load balancing on the probe. Therefore,
we cannot (for instance) pair Do53 and DoT measurements for a head-to-head
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comparison, and instead rely on the entire distribution (reliability, Sect. 4) and
5th percentiles (response times, Sect. 5) of the measurements.

Moreover, as RIPE Atlas does not keep the TLS session alive for reuse
between different measurements, the presented response times represent the ini-
tial delays for the first DNS request. Thus, they estimate the upper bounds
for DoT response times which end users would experience since subsequent DNS
requests through the same TLS session do not require additional handshakes and
will have lower response times as a result. Further, applications typically resolve
multiple domains concurrently in real use cases, while measurements from RIPE
Atlas are performed sequentially.

In the future, we plan to study the impact of different TLS versions, or the
benefit of TLS session reuse, but also to study changes over time by repeating the
measurements, including measurements over IPv6. To further investigate issues
with middleboxes, traceroute measurements over UDP/53 and TCP/853 can
complement the failure analysis of DNS requests by comparison to see where
packets are dropped in the network. With the increasing adoption of DNSSEC
and larger DNS responses, DNS measurements over TCP/53 can provide fur-
ther insight about the adoption, reliability, and response times of DNS over TCP.
Lastly, DoH measurements (which are not yet possible with RIPE Atlas) from
home networks can contribute to ongoing research, as response times and relia-
bility of DoH from the edge have not been widely studied yet.

8 Conclusion

We present first measurement results that compare Do53 and DoT w.r.t. relia-
bility and response times in the context of residential networks, based on 90M
domain lookups over both protocols from 3.2k RIPE Atlas home probes. We
study the support of DoT among the local resolvers of the probes, finding that
only 13 probes (i.e., 0.4%) have DoT-capable local resolvers, which indicates
that the adoption of DoT is still very low. When comparing the failure rates for
resolvers that respond to both Do53 and DoT queries, we observe that the DoT
failure rate is higher by 0.4–32.2% points (p.p.) for these resolvers. In particu-
lar, the majority of failures occurs due to timeouts, which is likely seen due to
middleboxes that drop packets associated with DoT on port 853. In terms of
response times, we find that DoT is slower by more than 100 ms (in a large part
due to connection and session establishment), with response times between 130–
150 ms for the fastest resolvers and up to 230 ms when including slower ones.
Although the support of DoT among local resolvers is low, some local resolvers
achieve similar DoT response times (140–150 ms) to the faster public resolvers.
Local resolvers further have the lowest latency over Do53, however, both their
Do53 and DoT failure rates are higher compared to public resolvers.

With increasing support of DoT among mobile devices as shown by
Android [24] and Apple [38], increasing support by local resolvers is impor-
tant and necessary to avoid centralization of DNS traffic [27] to third parties
besides the ISP: Although this can be worked around by cycling through sev-
eral resolvers [12], this comes at the cost of higher resolution times (especially
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due to multiple connection and session establishments). As such, to reduce the
information leakage through DoT [18] to additional parties while also keeping
resolution times low, it is crucial for local resolvers to adopt encrypted DNS
and be discoverable within home networks [6]; as seen, DoT response times are
comparable between local and public resolvers.

Considering the issues with inflated failure rates for DoT due to ossification,
one question that arises is whether to switch the development and deployment
focus to DoH [5,13] instead: Just like HTTPS, DoH runs over TCP/443, which
will make middlebox issues along the path less likely. Further, popular Web
browsers such as Chrome [37] and Firefox [9] already support DoH. However,
studies [34] have shown that DoH is more susceptible to fingerprinting attacks
than DoT, and further drives centralization of DNS traffic [4,12,25,27]. As both
DoT and DoH bring latency overheads, DNS over QUIC [20] might be another
encrypted alternative with response times which are closer to Do53. Yet, legis-
lation may discourage and hinder the deployment of encrypted DNS and similar
protocols beyond the area of jurisdiction [21]. Thus, further advances and future
follow-up studies on encrypted DNS are required to get a better understanding.
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Abstract. The Border Gateway Protocol (BGP) is the protocol that
makes the various networks composing the Internet communicate to each
other. Routers speaking BGP exchange updates to keep the routing up-
to-date and allow such communication. This usually is done to reflect
changes in the routing configurations or as a consequence of link failures.
In the Internet as a whole it is normal that BGP updates are continuously
exchanged, but for any specific IP prefix, these updates are supposed
to be concentrated in a short time interval that is needed to react to
a network change. On the contrary, in this paper we show that there
are many IP prefixes involved in quite long sequences consisting of a
large number of BGP updates. Namely, examining ∼30 billion updates
collected by 172 observation points distributed worldwide, we estimate
that almost 30% of them belong to sequences lasting more than one week.
Such sequences involve 222 285 distinct IP prefixes, approximately one
fourth of the number of announced prefixes. We detect such sequences
using a method based on the Discrete Wavelet Transform. We publish an
online tool for the exploration and visualization of such sequences, which
is open to the scientific community for further research. We empirically
validate the sequences and report the results in the same online resource.
The analysis of the sequences shows that almost all the observation points
are able to see a large amount of sequences, and that 53% of the sequences
last at least two weeks.

Keywords: BGP instabilities · Discrete Wavelet Transform

1 Introduction

Interdomain routers exchange BGP updates [31] to adjust routing tables. This is
done to reflect changes in the network, such as link/router failures/restorations
and routing policy changes. In the Internet as a whole it is normal that BGP
updates are exchanged almost continuously, but for any specific IP prefix, these
updates are supposed to be concentrated in the short time intervals, say a couple
of minutes (e.g., [21,38]), that are needed to react to network changes.

On the contrary, looking at the updates received from a router, it is quite com-
mon to observe long-lasting sequences of updates involving the same prefix. This
is well known from the very beginning of the Internet, and several researchers
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discussed the reasons for that. E.g., [25] estimates that many BGP updates are
“pathological” and not needed for the correct behaviour of the protocol.

In this paper we focus on the problem of finding and studying long-lasting
sequences of updates, independently of their cause. This problem is, in our opin-
ion, important from several perspectives: (1) Any study on long-lasting sequences
of updates has to be well-founded on large sets of sequences detected with a rigor-
ous method; this is true either to perform a root-cause analysis of such sequences
or to analyse them to deepen the understanding of BGP dynamics. (2) Only a
clear understanding of the quantity and of the features of long-lasting sequences
can allow to state if such sequences can be a challenge for the scalability of inter-
domain routing. However, the matter is complicated: (1) Giving a definition of
long-lasting sequence is elusive. For example it can be arbitrarily said that a
sequence is such if it contains a certain amount of updates for each consecutive
day, hour, or minute. But all these pragmatic alternatives are questionable. (2)
Currently, about 1 million prefixes (IPv4 + IPv6) are announced in the Inter-
net. Studying from several observation points and within a large time-span the
generated BGP updates, raises substantial computational issues.

We examine the updates collected by 172 observation points (Collector Peers
or CPs) distributed around the world, for the entire Year 2019. The CPs are
those of RRC00 of the RIPE RIS Project [6]. Since each CP has its own timing
and its own visibility of the Internet, we process the updates received by each
one independently. We show that almost 30% of the about 30 billion updates
collected by the CPs belong to 434 790 sequences lasting more than one week
and involving 222 285 distinct IP prefixes (i.e., approximately one fourth of the
number of announced prefixes). We detect such sequences using a method based
on the Discrete Wavelet Transform, we report and visualize them in a Web
site [7] open to the scientific community for further research work. We inspect
and validate a random sample of the sequences. The results of the validation
are summarized in Sect. 4 and reported on the Web site. The analysis of the
sequences shows that almost all the CPs are able to see a large amount of
sequences, and that 53% of these sequences last at least two weeks.

The paper is organized as follows. In Sect. 2 we discuss the broad related
work. In Sect. 3 we present a definition of long-lasting sequence and a methodol-
ogy, based on the Discrete Wavelet Transform, to find such sequences. In Sect. 4
we apply the methodology to examine one year of BGP updates and discuss
how the detected sequences are visualized. We also validate and analyse the
sequences. Conclusions are in Sect. 5.

2 Related Work

In the past years various works have been published on the analysis of BGP
data for the identification of anomalies and instabilities. In [25], the authors
study BGP data exchanged between backbone service providers at US IXPs,
in 1998. It classifies instabilities in five categories, and it estimates that 99%
of the BGP data exchanged is redundant and pathologic (no topology changes).
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The work in [26], some years later, re-evaluates the situation and sets to 16% the
new rate of pathological BGP messages, most of which are redundant announce-
ments. The reduction of the rate is attributed to software improvements intro-
duced by router manufacturers. The rate of BGP messages has been analysed
again in [18]. Contrarily to the previous estimations, they report that 40% is
the amount of BGP messages redundant and not promoting topology changes
(mostly re-announcements). The authors in [15] propose a solution for identifying
BGP instabilities. Single features of the BGP updates are monitored every five
minutes, and anomalies are identified based on statistical estimations on feature
fluctuations observed by comparing different time windows of data for the same
peer. In [39] is presented a technique for the identification of network events
involving multiple prefixes. Such technique is based on the principal component
analysis of BGP updates, which is used to identify temporal correlations among
updates originated by different ASes. In [38], BGP updates involving the same
CP-prefix pair are clustered together, and different events are detected based on
changes in the frequency of the updates. The authors estimate that a normal
event lasts around 200 s, events lasting longer should be considered anomalies.
Similarly, in [29] a hard threshold of 46 updates/day for the same CP-prefix pair
is adopted to differentiate between normal updates and anomalies. Such thresh-
old is determined as the 1% of the CDF of the daily updates across all the CPs of
Route Views [36]. The authors estimate that 80% of the prefixes in their dataset
surpasses such threshold in 3 years. The paper [33] studies BGP updates in RIS
and Route Views from different origin ASes and finds that many of them contain
correlated information of events seen by many routers. The authors propose a
methodology, based on the average distance between ASes in AS paths, able to
distinguish such events in global or local ones.

Other works are based on statistical analyses. For example, in [19] the spa-
tial and temporal correlation of BGP messages is analysed. In particular, the
authors exclude long-range dependence (LRD) among BGP messages. A long-
range dependence exists when data series have a strong time correlation and their
auto-correlation function decays very slowly. This work is particularly important,
because introduces the concept of LRD on BGP data that we also use in our anal-
ysis. However, a similar analysis [24] in 2015 concluded with the opposite result:
BGP time series are long-range dependent. Additionally, BGP message rates are
characterized as highly volatile, since peak rates exceed daily averages by sev-
eral orders of magnitude. We believe the reason behind such different results is
induced by the small observation time frame of the first work compared to the
second one: they observe 3 days and 8.5 years, respectively. We also identify the
long-range dependence in our work, this will be explained in the next sections.
In [10], the authors look for a recurrent behaviour among BGP updates collected
in five days by RIS’ RRC03. They use auto-correlation, Fourier transform, and
recurrence plots to analyse the time series and observe that BGP updates often
repeat in time according to patterns. Recurrence plots [17] are drawings used to
highlight recurring patterns in time series.
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BGP data have been analysed also with the help of the Wavelet Trans-
form [11]. In [30], the authors analyse two years of BGP data collected in an
academic research network with the goal of detecting anomalies by identifying
patterns such as self-similarity, power-law, or lognormal marginals. To inves-
tigate on the self-similarity they use the Discrete Wavelet Transform (DWT).
Based on the result of the DWT, they exploit a scalogram which we also adopt
and describe in Sect. 3. An anomaly detection tool called BAlet is presented
in [27]. The tool is based on the observation that anomalies provoke abrupt
increases of BGP updates. It uses the wavelet analysis for the identification of
such anomalies. The authors confirm the property of self-similarity and LRD of
interdomain routing data. In [13], the authors propose a methodology to classify
BGP anomalies by considering the characteristic of multiple time scales. They
propose a multi-scale long short-term memory model where the DWT is used
to obtain temporal information on multiple scales. In [23] the author provide
a complete taxonomy for BGP messages based on their effect on the routing
process. Additionally, they provide a tool, named BLT, able to automatically
classify BGP messages in such taxonomy. This classifier is later applied on Route
Views data (LINX collector) to detect anomalies. The number of BGP messages
labeled with the same class, in a specific time period, is the parameter mon-
itored to detect deviation from usual rates. Finally, they apply such anomaly
detection system on five well-known Internet events. However, none of the above
papers focuses on identifying long-lasting sequences (way more than 200 s [38])
of BGP updates. Also, most of the used data is either collected inside a specific
network, or it is geographically or temporally limited. Further, while several of
the previous works identify anomalous phenomena, none of them provides a way
to visually explore and analyse the related sequences.

3 Extracting Sequences from Time Series

BGP routers exchange messages called BGP updates (for brevity, updates). An
update contains, among other information, a (possibly empty) set of announced
prefixes, and a (possibly empty) set of withdrawn prefixes. Let u be an
update, we denote by reach(u) the set of prefixes announced by u and by
unreach(u) the set of prefixes withdrawn by u. We have that, for each update u,
reach(u) ∩ unreach(u) = ∅ and |reach(u) ∪ unreach(u)| ≥ 1. A Route Collector
is a BGP router that collects the updates received by its peers (called CPs), and
that labels each received update with the second in which the update is received,
denoted by time(u), and with the CP from which the update is received, denoted
by cp(u). A Time Series of Updates is the set of all the updates received by a
Route Collector in a certain interval of time; we usually denote a time series with
a capital letter, like U . Also, we denote by U(n) the set of updates collected at
second n. Given a time series U , we denote with start(U) and end(U) respec-
tively the start and end seconds of its interval. Given a time series of updates
U , we are interested in focusing on updates collected by a specific CP cp and
containing a certain prefix ρ; we denote it Ucp,ρ.
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Transforming a Time Series of Updates into a Signal. Given the time
series Ucp,ρ, we associate to it a discrete time series ucp,ρ constructed as fol-
lows: we set ucp,ρ(n) = |Ucp,ρ(n)|. Informally, ucp,ρ(n) = a means that at time
n, collector peer cp received a updates containing ρ. As is, ucp,ρ is not suit-
able for a time-frequency analysis. In fact, the magnitude of ucp,ρ(n) at time
n cannot be interpreted as the value of the signal, but it represents a value of
frequency (number of updates) received at time n. Also, consider the maximum
value M = maxstart(ucp,ρ)≤n≤end(ucp,ρ) ucp,ρ(n), we have that the time series cor-
responds to a signal whose maximum frequency is M updates per second. Hence,
in order to analyse the signal, we need to construct a Hertzian frequency rep-
resentation of ucp,ρ. According to the Nyquist-Shannon theorem [34], such a
representation should contain samples taken with a sampling time Ts < 1

2M , in
a temporal range limited by start(ucp,ρ) and end(ucp,ρ). From the point of view
of the sampling frequency fs we have that fs > 2M .

From ucp,ρ we construct a binary code word wcp,ρ composed by a rectangular
pulse train that is the signal we are going to analyse. Each second n of wcp,ρ

contains a sub-train of at least 2 · ucp,ρ(n) pulses. The pulses in the train are
distributed in such a way to have a duty-cycle that is as much as possible equal
to 50%. This duty-cycle requirement is imposed to improve the quality of the
signal analysis in the frequency domain [35]. Formally, we have that each second
n of wcp,ρ contains the following sub-train of pulses w′

cp,ρ(n). Let fn = ucp,ρ(n)
be the temporal frequency value to represent at the second n and let ωn = 2π ·fn

be the related angular frequency of the oscillation at the same time n. We have,

w′
cp,ρ(n) =

fs−1∑

k=0

1 + sgn(sin(ωn · k · Ts))
2

where sgn(x) = −1, = 0, and = 1 if x < 0, x = 0, and x > 0, respectively. In
practice, we insert into the sequence wcp,ρ at least 2M time slots for each second
of the sequence ucp,ρ.

A Signal-Based Definition of Sequence. According to [24] when the sig-
nal obtained from a time series of updates has the burst presence of sam-
ples with a non-zero amplitude, it shows the features of a non-stationary and
extremely volatile stochastic process. More importantly, it shows long-term cor-
relation and memory effects. Similar features have been observed also by other
authors (e.g., [8,30]), together with a self-similar behaviour. For these reasons,
the sequences we are interested in can be distinguished from other sequences of
updates because they exhibit such features.

The DWT Decomposition and the Multi-resolution Analysis. It has
been observed in [9] that the Discrete Wavelet Transform or, more precisely,
the Discrete-Time Wavelet Transform [11] (in what follows DWT ) is a suitable
method for searching sequences with the requested features. Hence, we analyse
the signal wcp,ρ in the Wavelet domain performing a discrete multi-resolution
analysis. The DWT permits to obtain a local representation of the signal,
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showing it in a time-frequency plane. The DWT series decomposition of the
signal wcp,ρ (n) is defined as follows:

wcp,ρ (n) =
K∑

k=0

c�,kφ�,k(n) +
�∑

j=1

K∑

k=0

dj,kψj,k(n)

where we have that K + 1 is the number of samples of the signal. For the sake
of simplicity we assume that K = 2� − 1, with � the number of the frequency
bandwidth levels. Function φ is the father wavelet and ψ is the mother wavelet
For a complete definition of the DWT see Appendix A.

Applying the DWT. Because of our definition of wcp,ρ, we range k between
start(wcp,ρ) and end(wcp,ρ). Also, we choose fs = 2M samples per second (limit
case). Further, we select the range for j in such a way to capture the periodicities
with a certain maximum value. Namely, suppose we are interested in signals with
maximum periodicity λ we set � to log2(Mλ).

As far as the father and the mother wavelet functions are concerned, we
decided to use the Haar functions defined as follows:

φ(n) =

{
1 0 ≤ n < 2,

0 otherwise. ψ(n) =

⎧
⎪⎨

⎪⎩

1 0 ≤ n < 1,

−1 1 ≤ n < 2,

0 otherwise.

Other options are possible, e.g., we might use Gaussian kernel functions, typ-
ically modulated by several types of polynomials, Daubechies’s family functions,
the Biorthogonal family one, etc. We opt for the Haar basis function because,
even if it has slightly more uncertainty, it allows to compute the DWT faster,
and this is crucial for the large amount of data we analyse.

Looking for Sequences Using the DWT. According to the above discussion
we have to look for sequences that exhibit long term correlation and memory
effects. We search them as follows. Given a DWT, a scalogram representation
can be computed. Informally speaking (see Appendix A for more details), a
scalogram representation is a matrix P , where P [j, k] represents the percentage
of the signal power at time k in the range of frequencies Δf j defined below:

Δf j =
[
fs/2

2j
,
fs/2
2j−1

)

Given P , we compute for each second k, with k ∈ [start(wcp,ρ), . . . , end
(wcp,ρ)], the variance σ2

Xk
of the power associated with the different

frequencies of the decomposition:

σ2
Xk

=

∑�
j=1(P [j, k] − μXk

)2

�
μXk

=

∑�
j=1 P [j, k]

�

At a second k, a value of variance σ2
Xk

= 0 might indicate: (1) That in none
of the levels of the scalogram there is any amount of power. This means that
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instant k is not interesting for us since there is no signal. (2) That in all the
levels there is the same amount of power. This corresponds just to white noise,
that, again, is not interesting for us, since it is memory-less and it is completely
non-correlated in time. At a second k a value of variance σ2

Xk
> 0 indicates

that in such an instant there is some deviation with respect to the quiet state.
Hence, we consider the time series of the σ2

Xk
from start(wcp,ρ) to end(wcp,ρ)

and look for intervals of time [ks, ke] such that for all k with ks ≤ k ≤ ke we
have σ2

Xk
> 0. We say that such an interval is a sequence if the time elapsed

between ke and ks is at least one week. We consider a week a span sufficiently
large to solve temporary network outages.

An Efficiency-Accuracy Trade-Off. As described above, analysing a time
series with k updates with maximum frequency M would require to compute
the DWT on a signal with 2kM pulses. Since we analyse time series lasting one
year k = |end(ucp,ρ) − start(ucp,ρ)| = 31 536 000. Also, following a study of the
updates captured by the CPs, we estimate that the typical value for M is around
10. Hence, in order to analyse each time series we have to process a signal with
about 600 million pulses. If we consider that we have to analyse a total amount
CP-prefix pairs that is given by the multiplication of the ∼800 000 announced
prefixes by 172 CPs (see Sect. 4) and that for each pair we have to perform a
DWT of a signal with 600 million pulses, we have that this could be unfeasible.
Hence, we use a slightly different approach. Namely, we apply a low pass filter
on each wcp,ρ before performing the DWT. The filter is set to a cutoff frequency
(maximum cut frequency) of 1 Hz. Also, before computing the DWT we perform
a downsampling of the series of a 1

M factor.
This is equivalent to redefine ucp,ρ(n) as follows:

ucp,ρ(n) =

{
0 if |Ucp,ρ(n)| = 0,

1 if |Ucp,ρ(n)| > 0,

adding a zero after each sample. The effects of applying the low pass filter and
the downsampling before performing the DWT are to set M = 1 and to have
an uncertainty in the order of seconds in detecting the start and the end of a
sequence. We see later how a larger uncertainty is due to the DWT itself.

As an example, the upper part of Fig. 1 shows a time series ucp,ρ with M = 1
and the lower part shows the corresponding scalogram with 5 frequency band-
width levels. Warmer colors correspond to larger percentages of energy.

We do also another choice. We compute the DWT with 1 ≤ j ≤ 15. Setting
to 15 the lowest bandwidth level of the DWT allows us to detect sequences whose
lowest frequency is at the smallest edge of the interval Δf15 =

[
M

32 768 , M
16 384

)
.

Since M = 1, we have that our method is able to spot frequencies ranging from
one update per second to one update per 9 h. This is a reasonable choice for
detecting sequences that last at least one week.

Uncertainty in Determining Start and End Times of Sequences. A side-
effect of the joint time-frequency analysis of the DWT is that it is not possible
to define a mother wavelet function ψ that has both the following features: it has
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Fig. 1. An example of ucp,ρ and its scalogram representation. In this case M = 1 and
we have 5 bandwith levels. The colors of the scalogram represent the percentage of
energy in each second for each frequency bandwidth (wavelet coefficient).

energy that is highly localized in time, and it has a Fourier transform ψ̂ having
energy concentrated in a small frequency interval. In fact, time and frequency
energy concentrations are ruled by the Heisenberg uncertainty principle [28]
stating that if the resolution of ψ is sharp in time, then the energy of ψ̂ must
be spread over a relatively large domain and vice versa. More formally, the
uncertainty principle theorem proves the following: σ2

t · σ2
ω ≥ 1

4 .
This relationship can be represented in a time-frequency plane (t, ω) as the

area of a rectangle (called Heisenberg box ) with size σ2
t × σ2

ω, where σ2
t and

σ2
ω are the variances of ψ and ψ̂, respectively. This rectangle has a minimum

surface that limits the joint time-frequency resolution: the larger σt, the more
uncertainty there is concerning the time localization; and the larger σω, the more
uncertainty there is concerning its frequency distribution. At the equality, one
of the two measures is exactly inversely proportional to the other one. However,
this can be achieved only when the mother wavelet function ψ is chosen in the
Gaussian kernel functions set. Since we are not using this family of functions, we
are not able to match this limit case, so the uncertainty given by the Haar basis
cannot be exactly defined. In particular, the σ2

ω can be evaluated for each level of
the DWT, in order to know, for each frequency bandwidth Δfj , the related time
localization uncertainty. The highest is the frequency resolution expected, the
lower is the time localization obtained. Hence, since in our context the maximum
frequency bandwidth resolution σ2

ω is 1
2j , computed for j = 15, the related time

uncertainty is σ2
t > 8 192 s, that is ∼136 min.
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4 One Year of BGP Sequences

We exploited the techniques of Sect. 3 to process the updates collected in the
entire Year 2019 by RIPE RIS’ RRC00 from all its 172 CPs (∼1.2 TB of data).
We choose RRC00 because it is both the largest in number of updates and the
only one that has its CPs spread around the world in multihop peerings (see
Appendix B for a list with locations). Notice that the number of RRC00 CPs
reported in [5] is different from 172, for two reasons: (1) the set of the CPs
changes over time and 172 is the number of CPs that were working in 2019 (not
necessarily for the entire year); and (2) five of the CPs changed their AS number
in 2019. Hence, the number of unique IPs of the considered CPs is 167.

We isolate 434 790 sequences containing more than 8 billion updates (i.e.,
7 946 086 559 announcements and 368 546 514 withdrawals), which are a consid-
erable 28.36% of all the updates collected by the RRC00 CPs in 2019.

Visualization. We present the extracted sequences in the Web site [7], publicly
released to the research community.

First, for each sequence we show: (1) The involved prefix and the CP (IP, AS
pair) that observed the sequence. (2) The start- and end-time. (3) The number of
announcements and withdrawals. (4) The ASes that originated the prefix during
the sequence. (5) The number of observed distinct AS-paths during the sequence.
(6) The length of the longest common AS-path suffix, that gives a hint on how
distant from the origin AS is the event that caused the sequence. (7) The number
of occurrences of the most frequent announcement and its frequency, that gives
an idea of the frequency of the event that originated the sequence. (8) A flag
that says if the prefix corresponds to a known beacon. Beacons are BGP speakers
that periodically announce and withdraw prefixes (widely used in experiments).
The RIS beacons [2] and the RFD beacons [20] are well-known examples. (9) A
flag that says if one or more updates have a value in the aggregator field (e.g., to
check if all the announcements were sent from the same router of the origin AS).
(10) Links to external resources to get more information on the sequence and its
components (e.g., AsRank [1] and RIPEstat [4]).

Second, for each sequence, we display a chart that we call sequence chart,
where the x-axis represents the time, the y-axis the number of updates over
time, and vertical red lines are the start- and the end-time identified for the
sequence. The same chart can show other sequences that we spot for the same
CP-prefix pair, with gray lines. A sequence chart allows to easily understand if
the sequence has been correctly identified.

Third, for each sequence, we visualize the AS tree, an alluvial diagram [32]
showing the AS-paths involved in the sequence. The AS tree highlights the com-
mon suffix of the AS-paths. Also, each path has a thickness that is proportional
to the number of updates containing that path.

Fourth, for each CP cp we show a chart, called segment chart, whose x-
axis represents the time and each sequence detected from cp corresponds to
a horizontal segment whose initial and final x-coordinates are its start- and
end-times. The segments of sequences involving the same prefix have the same
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y-coordinate. Segment charts highlight sequences that start and end at the same
time, and that could be originated by the same event. Also, they allow to spot
reboots (white vertical lines) and outages (white vertical strips) of the CPs.

Finally, we provide the AB-BA-chart, which shows the sequences containing
updates with special types of AS-paths. Namely, in several papers (e.g., [14,22])
it has been observed that if a sequence of updates contains both AS-paths of the
form xAyBz and AS-paths of the form uBvAw (where A and B are ASes and
x, y, z, u, v, and w are, possibly empty, AS-paths), then that sequence might be
caused by a so called dispute wheel. We call such sequences AB-BA-sequences. As
an example, consider sequence with ID 5f070547a276df766c139bb3 reported in
the Web site [7]. It contains the alternation of two AS-paths. One is 3333, 12859,
2914, 1299, 7473, 4761, 17451, 17451, 58495, 58495, 58495, 138068, 38527 and
the other is 3333, 1273, 1299, 2914, 58463, 17451, 17451, 58495, 58495, 58495,
138068, 38527. In this case A is 2914 and B is 1299. Since finding dispute wheels
in the wild is well-known to be a difficult task, we offer the community a method
for visualizing the AB-BA-sequences with a temporal diagram which shows with
a certain symbol the updates with xAyBz AS-paths and with another symbol
the updates with uBvAw AS-paths.

Validation. We have given both a definition of long-lasting sequences and a
method to find them (Sect. 3). Then, we applied such method on the 2019 BGP
updates. However, in order to verify if our definition and method characterize
what we expect from a long-lasting sequence, we manually inspect a random
subset of the sequences. To do that we assign an ID to each sequence and ran-
domize a sample of 280 IDs (∼0.6‰ of the sequences). For the randomization
we use the MongoDB function called $sample [3]. For each sampled sequence
found by the method, having start time ks and end time ke, we perform the fol-
lowing checks, also exploiting the possibility of the sequence charts to be zoomed
up to 5 min updates resolution: (1) Is the sequence correctly detected? Else, is
the sequence a fragment of a longer sequence that has been incorrectly split into
sub-sequences by the algorithm? If yes, how many fragments? If yes, what is
the frequency of the updates between the fragments? (2) Does the prefix of the
sequence correspond to a beacon? (3) If the sequence is correctly detected, are
ks and ke the times of the first and of the last update of the sequence (with a
tolerance of 136 min; see discussion in Sect. 3), respectively? If not, what is the
absolute value of the time-distance between the actual starting (resp., ending)
time of the sequence and ks (resp., ke)?

The sampled sequences and the results of the check performed on them are
detailed in the Web site, what follows is a summary of the results: 91.7% of
the sequences are correctly detected while 5.7% of them are fragments of a
longer sequence that, on average, is split into 4.7 fragments. The remaining
2.6% of the sequences are just a portion of a partially detected sequence. None
of the checked sequence is classified as a false-positive. In 78.9% of the correctly
detected sequences, ks is within the 136 min with respect to the correct start
time; in the remaining cases it is on the average 189 min far from the correct
start time. In 84% of the correctly detected sequences, ke is within the 136 min
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with respect to the correct end time; in the other cases it is on the average
204 min far from the correct end time. Also, 31.2% of the fragmented sequences
correspond to beacons. Detecting sequences originated by such beacons is a
challenge for our technique. In fact all the RIPE RIS beacons have period of
4 h and a duty cycle of 50%, while the RFD beacons have a period of 4 h and
a more complex behaviour within the period. Hence, beacons have a frequency
that is in the lowest bandwidth levels of our DWT decomposition (Sect. 3). The
validation indicates that our method does not produce false positives. Instead,
we do not have an estimation of the total amount of false negatives. Our goal
is the discovery of a phenomenon, a possible underestimation induced by false
negatives does not affect our conclusions. In order to identify false negatives we
would have to manually analyse terabytes of data, which would not be feasible.
However, such analysis can be done in a known subset of unstable prefixes, the
beacons. We are able to capture sequences for 60 of the 67 available beacons (39
RIS and 28 RFD). On average we find 118 sequences per beacon. We manually
inspect the data for the undetected 7 beacons: 2 (RIS) were not active, 2 (RIS)
were not visible from RRC00, 1 (RIS) was visible from only one RRC00 CP from
Nov. 16 to Dec. and from 5 CPs from Dec. 20 to Dec. 30, and 2 (RFD) were
active only from mid Sept. We consider the last three as false negatives.

Analysis. The analysis of the sequences shows what follows.

(i) (a) 59.86% of the sequences involve an IPv4 prefix, while 40.14% involve an
IPv6 prefix. (b) Most of the sequences with an IPv4 prefix (55.3%) involve a
/24 while most of the sequences with an IPv6 prefix (45.0%) involve a /48.
Also, IPv4 /16 appear in 1.2% of all the sequences. (c) Fig. 2a shows how
the sequences are distributed among such prefixes. We have that 90% of the
222 285 prefixes involved in sequences appear in at most 3 of them. Since
our observation points are 172, the oscillation of a prefix is very often a phe-
nomenon whose visibility is quite local. (d) Fig. 2b is a CDF showing the frac-
tion of theprefixes announcedbyASes that is involved in at least one sequence.
For example, 64.7%of theASes that announced at least one prefix in the Inter-
net during year 2019 have no prefixes in any sequence, while, 85% of the ASes
have less than 40% of the announced prefixes in a sequence.

(ii) (a) A fair amount of sequences – in the (200; 2 000) range – has been found
in most CPs (see Fig. 2c), independently from their location. Two CPs
(2a02:38::2 in AS 6881 and 194.50.19.4 in AS 202365) are outliers since they
observed a large bulk of sequences. (b) On the other hand, the number of
updates involved in the sequences (see Fig. 2c) is distributed evenly with most
CPs having a number of updates in their sequences in the (1M ; 100M) range.

(iii) Fig. 2d shows the distribution of the duration of the sequences. We have
that 47% of them last at most two weeks, and that 81% last less than 85
days. Also, 170 last the whole year. Notice the steps visible between 7 and
8 days and between 87 and 95 days. The first is due to ∼100 000 sequences
of about 8 days starting at mid March. All these sequences are visible from
the above mentioned CP 194.50.19.4 of AS 202365 as it is apparent from
the segment chart of this CP. The second step is due to ∼65 000 sequences
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Fig. 2. Analysis of the sequences.

of about 90 days starting after the beginning of Oct. and ending at the end
of the Year (when our data set finishes). All these sequences are visible from
the above mentioned CP 2a02:38::2 of AS 6881 as it is apparent from the
segment chart of this CP.

(iv) (a) The announcements involved in sequences were originated by 25 494
distinct ASes. (b) Additionally, in Fig. 2e we report the longest common
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AS-path the identified instabilities have in common. We can see that 93%
of the sequences involved in instabilities have less than 3 AS-hops in com-
mon, and that 40% have at least 1 AS-hop in common. The AS-paths do
not include prepending. This may suggest that in several cases the events
originating the sequences are far from the origin AS of the prefix. See, e.g.,
Sect. 4 in [12]. (c) In Fig. 2f we show the CDF of the number of the distinct
AS-paths encountered in each sequence. We have that 80% of the sequences
have less than 16 distinct AS-paths. On the other hand, there are sequences
having an extremely high number of AS-paths.

(v) (a) We compute for each sequence the average frequency of the updates.
The distribution of such frequencies is in Fig. 2g. We have that 18% of the
sequences have an average frequency of 0.002 Hz, while 3.5% have more than
0.03 Hz. Notice the two sharp increases at around 0.02 Hz and at around
0.045 Hz. They are due to the two mentioned bulks of sequences. In each of
these two large sets of updates, the sequences have almost the same average
frequency. (b) We compute, for each sequence (Fig. 2h), the frequency of
the announcement that appears more often. This may give a hint on the
frequency of the event that caused the sequence. In fact, if the routing has
one stable state periodically interleaved with some type of instability we
may have that the most frequent announcement is the one corresponding
to the stable state.

(vi) We find that only a few sequences (7 125, around 1.64%) correspond to
beacons. Such sequences contain only 0.17% of the total sequences’ updates.

(vii) We also count the sequences with special features. First, we find 31 602
AB-BA-sequences that may constitute an interesting data set for research
on dispute wheels. Second, we find 44 302 sequences that contain at least
one announcement where the BGP path aggregator attribute is populated,
and 23 739 sequences that contain at least two announcement with different
values for the aggregator attribute. This can be interesting from several
points of view: (a) the announcements performed by beacons have such an
attribute; and (b) the availability of different values for such attributes, for
non beacons, might be used to distinguish updates exiting from different
routers of the origin AS.

5 Conclusions

We release to the scientific community [7] a large set of long lasting sequences of
BGP updates visible from the observation points of RIPE RIS during 2019. Such
sequences can be individually analysed with the several visualization tools we
developed. The sequences have been discovered with a Discrete Wavelet Trans-
form based method that we devised and empirically validated.

Reproducibility. The data used in this study is publicly available at [6]. An
indexed collection of sequences for the entire Year 2019 is available at [7]. The
source code needed to reproduce the entire analysis is available on GitLab [37].
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Appendices

A The Discrete Wavelet Transform

The DWT series decomposition of the signal wcp,ρ (n) is defined as follows:

wcp,ρ (n) =
K∑

k=0

c�,kφ�,k(n) +
�∑

j=1

K∑

k=0

dj,kψj,k(n)

Where K + 1 is the number of samples of the signal. For the sake of simplic-
ity we assume that K = 2� − 1. Functions φ and ψ are the father and mother
functions respectively. The j and k indexes represent the scaling and translation
factors respectively. Each (j, k) pair gives a wavelet coefficient, which can also
be seen as the cross-correlation at lag k between the signal function to be decom-
posed and the ψ wavelet basis function, described below, dilated by a scaling
factor of 2j . The coefficients c�,k are called approximation coefficients because
derived by a low pass filtering, while the coefficients dj,k are called detail coef-
ficients because derived by an high pass filtering. Function ψj,k is defined as:
ψj,k (n) = 2−j/2 ψ(2−jn − k), where ψ is the mother wavelet (also known as
generic wavelet basis function) and can be chosen in a set of mother wavelet
functions. For the duality principle the function φ is called father wavelet, or
scaling function, because varying the j scaling index it gives a different resolu-
tion of the signal representation, creating a multi-resolution view of it. In the
decomposition series formula above, φ�,k represents φj,k computed in j = �, that
describes the last resolution level of the signal decomposition.

Once the signal has been represented in the DWT domain, we can compute
its scalogram representation, that describes the percentage of energy for each
wavelet coefficient. The scalogram can be arranged in a matrix form, denoted
by P , with � rows and K + 1 columns. Each element of P is denoted by P [j, k].

Value P [j, k] is the normalized power of coefficient dj,k that, to further gener-
alize the DWT, we will briefly represent with the Continuous Wavelet Transform
formalism

P [j, k] =
1

2π · C · 22j
|dj,k|2 where C =

∫ π

−π

|ψ̂ (ω) |2
|ω| dω

is a normalization constant regarding the admissibility condition of a mother
wavelet ψ, with ψ̂(ω) denoting the Fourier Transform of ψ(n).

Formally, the normalization is chosen so that
∑

j

∑
k P [j, k] = 1. This means

that P [j, k] represents the percentage of the signal power at time k in the range
of frequencies Δf j defined below. According to the Nyquist-Shannon rule:

Δf j =
[
fs/2

2j
,
fs/2
2j−1

)

where fs is the sampling frequency.
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B The Collector Peers and their Locations

The locations of CPs are reported in Table 1.

Table 1. List of collector peers. Locations are retrieved from [16].

AS Peer IP Location AS Peer IP Location
47422 45.12.70.254 8758 212.25.27.44 HC,hcirüZ
202365 2a07:59c6:e89a::100 DE 49752 2a09:11c0:f1:bbf8::2
132825 43.251.115.197 210025 192.187.100.218 St. Louis, US
34800 194.50.99.254 HC,hcirüZ 37721 165.16.221.66 London, GB
49432 2a0b:5cc0:0:ffff::254 Feldkirch, AT 49134 2602:fed2:fc0:5e::1 Wichita, US
60371 94.177.122.243 HC,hcirüZ 395152 192.102.254.1 Vancouver, CA
205593 2a07:1c44:3100::1 AT 49752 141.98.136.105 Frankfurt, DE
205148 2a0d:f407:101:dead::1 202313 2a06:e881:121::4 Oxford, GB
49673 2a02:47a0:a::1 Novosibirsk, RU 34549 80.77.16.114 Frankfurt, DE
17639 2405:3200:0:23:: 202365 44.164.66.20 Dronten, NL
206313 185.197.132.7 Frankfurt, DE 202365 2a00:1ca8:2a::e0 Dronten, NL
15562 165.254.255.2 Amsterdam, NL 396503 2602:fed2:fc0:5e::1 Wichita, US
202365 2a0a:54c0:0:32::2 London, GB 34872 2a0c:b640:ffff:194:28:98:32:37 BE
26073 23.139.160.84 Fremont, US 204092 89.234.186.6 Rennes, FR
20205 2001:4950::5 34549 2a01:360:0:6::2 DE
13830 192.34.100.0 49420 91.212.242.251 LP,ksńadG
37989 2405:fc00::6 SG 35708 94.177.122.231 Wettingen, CH
852 2001:56a:8002:12::3 200334 2001:19f0:5001:53f:5400:1ff:fe9c:264e

22652 2607:fad8::1:9 Barrie, CA 64050 182.54.128.2 Tokyo, JP
34681 193.228.123.1 174 130.117.255.1 Amsterdam, NL
35619 2a09:4c0:1:8b1c::6363 209152 2a0f:a300:bb:ff::ed6e
14907 208.80.153.193 Carrollton, US 32097 2001:4858:251:b00b::3 US
34681 2a0e:46c7:1305::1 39351 193.138.216.164 Malmö, SE
60501 2a00:ae20:1:1::101 20514 217.151.205.144 Stockholm, SE
1836 2a01:2a8::3 HC,hcirüZ 35619 139.28.99.99 HC,hcirüZ

207968 2a0e:46c6::2 43607 94.177.122.244 HC,hcirüZ
3333 193.0.0.56 Amsterdam, NL 210234 2a0c:b641:60::1
7018 12.0.1.63 US 57381 193.150.22.1 Oslo, NO
29608 79.143.241.12 Paris, FR 3257 213.200.87.254 Darmstadt, DE
49673 94.247.111.254 Kemerovo, RU 34854 2a01:4f8:c010:3ad0::
38001 2406:f400:8:34::1 Singapore, SG 34927 2a0c:9a40:1030::1
48147 185.142.156.156 205148 93.159.187.1
48292 2001:19f0:5001:1cb5:5400:1ff:fed6:7f3f US 396503 23.129.32.61 San Jose, US
139589 185.215.214.30 ED,grebnrüN 37989 203.123.48.6 SG

852 154.11.12.212 204092 2a00:5884::6 Rennes, FR
64271 161.129.32.1 202365 5.255.90.109 Dronten, NL
11708 72.22.223.9 Kansas City, US 55720 45.116.179.212
263702 168.195.130.2 58057 HC,)3sierK(hcirüZef36::c1b8:0:0c4:90a2
58057 139.28.99.254 HC,)3sierK(hcirüZ 59919 2a01:9ac0:0:ffff::
29504 185.193.84.191 Prague, CZ 57199 2a0b:cbc0:2::1
209152 45.154.32.1 Offenbach, DE 202365 2a03:3f40:32::365 NL
206499 185.215.214.1 Frankfurt, DE 20205 64.246.96.5
13830 2001:506:30:: 32097 69.30.209.253 Kansas City, US
58057 45.12.69.254 HC,hcirüZ 38001 202.150.221.37 Singapore, SG
35619 139.28.99.0 HC,hcirüZ 60474 94.177.122.241 HC,hcirüZ
131477 2a09:4bc7:d021:: 204526 51.158.149.208 Stuttgart, DE
34800 2a0c:3b82:0:c232::63fe 202365 185.198.188.93 London, GB
205523 2a0c:b640:ffff:194:28:98:32:37 BE 200334 2001:19f0:5001:1cb5:5400:1ff:fed6:7f3f US
50304 2a02:20c8:1f:1::4 NO 59919 5.178.95.254 Milan, IT
35619 2a09:4c0:1:8b1c::6300 49432 185.210.224.254 Feldkirch, AT
34854 116.203.251.34 ED,grebnrüN 57381 ZC,évolárKcedarH1::1:4e42:c76:1002
1403 198.58.198.254 Montréal, CA 44794 2a09:be40:c0de::1 Frankfurt, DE
60501 185.30.64.101 61292 2a02:ed03:ffff::1
60474 2a0c:3b80:4348:5eb1::7afb HC,hcirüZ 50300 176.12.110.8 London, GB
396503 23.129.32.65 Fremont, US 131477 103.102.5.1
4608 203.119.104.1 Brisbane, AU 210025 2a09:b280:ffbf::cafe
49420 2001:67c:24c::c 49134 23.129.32.61 San Jose, US
207968 141.98.136.107 Frankfurt, DE 58057 139.28.99.251 HC,hcirüZ
48292 194.50.19.65 Frankfurt, DE 29608 2a01:678::2 FR
209263 2.58.56.62 Neuss, DE 48821 185.138.53.0 ED,frodlessüD
44794 2.56.8.1 Offenbach, DE 58057 2a09:4c0:0:8b1c::63fb HC,hcirüZ
396503 2602:fed2:fc0::1 CA 206479 185.120.22.16 Frankfurt, DE
15562 2001:728:1808::2 GB 57264 2a0d:2640:1:1::1
202409 185.215.214.6 Frankfurt, DE 50304 178.255.145.243 Oslo, NO
206499 2a06:1287:3308:cafe::1 AT 209263 2001:678:b0c:bb:49:211:1:1
205523 194.28.98.37 Dronten, NL 29504 2a0a:3640:0:d::191 CZ
7018 2001:1890:111d:1::63 Boca Raton, US 210234 185.225.205.1
57199 80.67.167.1 Saint-Denis, FR 17639 202.69.160.152
8758 2001:8e0:0:ffff::9 HC,hcirüZ 206313 2a06:e881:2000:7::1
48821 2a07:a40:: DE 45896 2001:df0:2e8:1000::1 Los Angeles, US
395766 98.159.46.1 Montréal, CA 43607 2a0c:3b80:4348:5eb1::7af4
61292 185.152.34.255 Singapore, SG 61218 185.238.190.254 Frankfurt, DE
22652 45.61.0.85 Montréal, CA 57821 2001:67c:26f4::1 Luhansk, UA
3549 208.51.134.248 57381 193.150.22.240 Oslo, NO

205593 185.215.214.10 Frankfurt, DE 39351 2a03:1b20:1:ff01::5 ES,ömlaM
50300 2a00:1c10:10::8 GB 14907 2620:0:860:ffff::2
200334 95.179.155.193 Frankfurt, DE 174 2001:978:4::b Amsterdam, NL
60474 2a0c:3b80:4348:5eb1::7af1 6881 2a02:38::2 Prague, CZ
61218 2a0c:3b80:4c49:b9ee::befe 263702 2803:3b80:1ee3:1000::1 Santiago, CL
55720 103.212.68.10 328474 102.67.56.1
1836 146.228.1.3 HC,hcirüZ 328474 2c0f:ed60::1
47422 2a0c:3b81:2d0c:46fe:: 139589 2a07:59c6:ee00:9589::1
57821 193.160.39.1 Frankfurt, DE 34872 194.28.98.37 Dronten, NL
26073 2602:fe19:1:f1cd:a1bf:0:84:1 6881 195.47.235.100 ZC,ňebiL
57381 2001:67c:24e4:240::1 Oslo, NO 57264 194.156.180.1 Corsico, IT
202409 2a07:59c6:ee00:cafe::c0de Frankfurt, DE 202365 194.50.19.4 Frankfurt, DE
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Abstract. Public clouds fundamentally changed the Internet landscape,
centralizing traffic generation in a handful of networks. Internet perfor-
mance, robustness, and public policy analyses struggle to properly reflect
this centralization, largely because public collections of BGP and tracer-
oute reveal a small portion of cloud connectivity.

This paper evaluates and improves our ability to infer cloud connec-
tivity, bootstrapping future measurements and analyses that more accu-
rately reflect the cloud-centric Internet. We also provide a technique for
identifying the interconnections that clouds use to reach destinations
around the world, allowing edge networks and enterprises to understand
how clouds reach them via their public WAN. Finally, we present two
techniques for geolocating the interconnections between cloud networks
at the city level that can inform assessments of their resilience to link
failures and help enterprises build multi-cloud applications and services.

1 Introduction

The growing deployment of low-latency and high-throughput applications, the
upfront and maintenance costs of computing resources, and constantly evolving
security threats make it increasingly complex and costly for organizations to
host services and applications themselves. Public cloud providers ease that bur-
den by allowing organizations to build and scale their applications on networks
and hardware managed by the cloud provider. At the core of cloud comput-
ing are virtual machines (VMs) and containers that run on physical hardware
in a data center [47]. Clouds locate these data centers in globally distributed
geographic regions [7,8,12]. The three major cloud providers, Amazon AWS,
Microsoft Azure, and Google Cloud Platform (GCP), interconnect their regions
using global backbones [6,9,52].

Public clouds fundamentally changed the Internet landscape from peer-to-
peer to a cloud-centric model. According to a recent estimate [49], the ten
highest-paying customers in AWS—all popular video and content generators—
combine to spend over $100 million per month, and many enterprises store opera-
tions data and host internal applications in public clouds. Existing measurement
platforms, with vantage points (VPs) located outside cloud networks, capture
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only a small fraction of the paths that connect public clouds to end users and
enterprises, and the importance of the clouds necessitates that the Internet mea-
surement community considers how to effectively capture this.

The goal of this paper is to evaluate and improve our ability to infer cloud
connectivity, in the hope that it bootstraps Internet measurements and anal-
yses that more accurately reflect the cloud-centric Internet. We also build on
those inferences, identifying the interconnections that clouds use to reach desti-
nations around the world. Such analysis enables edge networks and enterprises
to understand how clouds reach them, and potentially respond to fallout from
congestion on a cloud interconnection. Furthermore, we geolocate the intercon-
nections between cloud networks at the city level, providing techniques that can
inform assessments of their resilience to link failures and help enterprises build
multi-cloud applications and services. We make the following contributions:

1. We validate the state-of-the-art in identifying network interconnections
(bdrmapIT) on Azure, identifying path changes as a prominent source of error.

2. We demonstrate that changing the traceroute probing method to reduce the
number of simultaneous traceroutes reduces the impact of path changes on
the observed topology, and improves the accuracy of bdrmapIT’s AS operator
inferences for the interconnection addresses in our validation dataset by 8.6%.

3. We use traceroute to identify next-hop ASes for each Internet network from
AWS, Azure, and GCP, finding that clouds still rely on tier 1 and tier 2
networks, and that next-hop ASes can be region-dependent.

4. We geolocate all observed AWS-Azure and Azure-GCP interconnections, and
34.4% of the AWS-GCP interconnections, discovering that clouds intercon-
nect on every populated continent, and often interconnect in the same cities.

2 Background and Previous Work

Our work builds on prior work that inferred AS-links from BGP, identified net-
work interconnections in traceroute paths, studied cloud backbone networks with
traceroute, and geolocated network infrastructure.

BGP Route Announcements Reveal AS Connectivity. The public
BGP route announcement collectors, Routeviews [4] and RIPE RIS [3], col-
lect announcements received from the ASes that peer with the collectors (VP
ASes), and researchers infer AS connectivity from adjacent ASes in collected
AS paths [16,24]. We could infer cloud neighbors directly from the cloud net-
works through routes they propagate to public collectors, but cloud networks
share few routes with public route collectors. We can also infer cloud connec-
tivity indirectly from announcements that clouds originate into BGP, but VP
ASes are unlikely to see cloud neighbors that enter into paid or settlement-free
peering with the cloud [19,25,27,32,37,55,58]. Furthermore, VP ASes typically
only propagate their chosen best-path for each prefix to collectors, and any VP
AS that interconnects with a cloud network will likely select their direct inter-
connection as the best path to that cloud, and will not propagate alternate AS
paths to the public collectors.
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Inferring Router Ownership From Traceroute Paths. Substantial prior
work attempted to infer AS interconnections from traceroute paths. Mao et
al. [39,40] aligned traceroutes from VP ASes with BGP route announcements
seen by that same AS to better determine address space ownership. Chen et
al. [18] generalized and expanded Mao’s methodology to align AS-level links
seen in traceroute with those in BGP AS paths. Later work focused on inferring
the AS operators of routers in traceroute paths. Huffaker et al. [30] used alias
resolution to convert the IP address paths in traceroute to router graphs, and
proposed and validated four techniques to map routers to AS operators. Marder
et al. [44] and Luckie et al. [36] independently developed and validated heuristics
to extract constraints from traceroute to more accurately infer AS operators.
Marder and Luckie later integrated and extended their approaches, creating the
current state-of-the-art bdrmapIT, and validated their bdrmapIT technique [43].
Most recently, Luckie et al. [38] used the AS operator inferences from Huffaker
et al.’s technique and bdrmapIT as training data to learn regular expressions for
extracting AS operators embedded in hostnames in the form of AS numbers.

Revealing Cloud Connectivity With Traceroute. VPs outside the cloud
cannot reveal many of the paths and interconnections that clouds use to reach
the Internet. Yeganeh et al. [56] conducted traceroutes from AWS to every /24
to reveal interconnected networks, using a new unvalidated approach to infer
network interconnections. In subsequent work [57], they compared the quality
of service of default interconnections between cloud networks and third-party
transit between clouds, switching to bdrmapIT to perform interconnection IP
addresses inferences. Arnold et al. [15] inferred directly connected networks from
traceroute paths by converting traceroute IP addresses to ASes using longest-
matching prefix in BGP route announcements and IXP participant IP addresses
recorded in PeeringDB [2]. They then augmented the AS-level connectivity graph
in CAIDA’s AS Relationship dataset [1] with peer relationships between each
cloud and the newly inferred neighbors, using the graph to estimate that clouds
can avoid their transit providers listed in CAIDA’s AS Relationship dataset to
reach 76% of the Internet networks. They validated their neighbor inferences
with feedback from Azure and GCP, with 11%–15% false neighbor inferences.
Assuming nearly perfect accuracy for IXP participant addresses in PeeringDB,
these false neighbor inferences almost entirely result from false private intercon-
nection inferences.

We show that the traceroute technique used by prior studies is prone to
path change corruptions, and we validate our cloud interconnection inferences
(Sect. 4). Rather than use unvalidated AS interconnection inference techniques,
we use the previously validated bdrmapIT tool to infer private interconnections
between cloud public WANs and their neighbors, and perform additional val-
idation to understand bdrmapIT’s accuracy for cloud networks. Finally, while
Arnold et al. speculated how clouds could reach other ASes [15], we report how
clouds currently do reach other networks.

Geolocating Network Infrastructure. Commercial IP geolocation databases
focus nearly exclusively on edge hosts, with poor accuracy for network infrastruc-
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ture [22,26,48]. Some networks encode geographic information in router inter-
face DNS hostnames, but the geographic codes are difficult to automatically
extract and interpret, as they use a mix of IATA codes, CLLI codes, and com-
mon location abbreviations. Rocketfuel includes the undns tool [51] that uses
hand-crafted regular expressions to extract geolocations from hostnames. More
general approaches avoid manually constructing regular expressions. DRoP [31]
automatically learns rules to extract geolocation codes from hostnames, and
HLOC [50] searches hostnames for geolocation codes. Other approaches use RTT
to approximate distance between VPs and routers. Gueye et al. [28] and RIPE
IPMap [45] triangulate RTTs to estimate location, and Katz-Basset et al. [33]
refined RTT-based estimates using topology constraints. We use a combination
of geolocation codes extracted from Azure DNS hostnames and traceroute paths
to geolocate the interconnections between cloud providers.

3 Validating bdrmapIT With Azure Hostnames

Our analysis relies on bdrmapIT AS operator inferences to identify cloud inter-
connections and neighbors, so we first validate bdrmapIT’s inferences on Azure
to gain confidence in its efficacy and look for opportunities to improve our
techniques. bdrmapIT addresses the difficult problem of inferring the networks
that operate each router observed in traceroute, but relies on general assump-
tions of router configurations, internal traffic engineering, and network topol-
ogy that might not hold in cloud WANs. Furthermore, prior bdrmapIT evalu-
ations on transit interconnection inferences might not translate to cloud inter-
connection inferences. Initial bdrmapIT evaluations used CAIDA’s Ark tracer-
outes and ground truth from ISP operators, and later experiments also val-
idated bdrmapIT against pseudo ground truth derived from ISP DNS host-
names [38,41,42]. Traceroutes from CAIDA’s Ark VPs mostly reveal transit
interconnections—those between providers and customers—so transit intercon-
nections dominate their reported accuracy. Clouds primarily peer with other
networks, and we expect that their peering interconnections vastly outnumber
their transit interconnections. Importantly, bdrmapIT leverages the industry
convention that transit providers supply the IP subnets for interconnection with
customers, but no known convention exists for peering interconnections [35].
To date, no study has evaluated bdrmapIT’s accuracy using traceroutes that
originate in the cloud.

For this initial experiment, we created a VM in every Azure region and
used Scamper [34], the traceroute tool used in prior cloud studies [15,56,57],
to conduct traceroutes from every VM to each of the 11.5 M /24 s covered by
a prefix in a BGP route announcement collected by RouteViews or RIPE RIS
over 1–5 August 2020. Our choice of /24 granularity reflects our assumption that
clouds are unlikely to receive many prefixes longer than /24. Each traceroute to
a /24 targeted a random address to provide comprehensive coverage of Azure’s
neighboring networks, and we instructed Scamper to use Paris-style traceroute
probes to prevent load-balancing from corrupting the traceroute paths.
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To identify interconnection addresses between clouds and their neighbors, we
used a combination of bdrmapIT AS operator inferences and IXP participant
IP addresses listed in PeeringDB [2] and IXPDB [23] to map traceroute path IP
addresses to ASes. In the event of a conflict between PeeringDB and IXPDB, a
contact at both IXPDB and PeeringDB advised us to use the mapping in IXPDB,
since IXP operators update information in IXPDB while IXP members populate
information in PeeringDB, potentially causing stale entries. bdrmapIT requires
AS address spaces as input, and we supplied prefix origin ASes derived from BGP
announcements collected by RouteViews and RIPE RIS. For addresses with no
covering prefix in BGP, we relied on the potentially stale longest matching prefix
in RIR extended delegations. 0.8% of addresses did not have a covering prefix
in BGP or RIR. We used whois [20] and RADb [46] to determine ownership for
53.4% of those addresses; this was the only manual step in this process (Fig. 1).

R1i1

104.44.40.3
ae28-0.dal-96cbe-1b.ntwk.msn.net

R2i2

104.44.12.159
internet2.dal-96cbe-1b.ntwk.msn.net

Azure Internet2

VM

Fig. 1. In traceroute paths from
Azure, the internet2 tag indi-
cates that 104.44.12.159 belongs
to a router operated by Inter-
net2. We use this as validation for
bdrmapIT’s router operator infer-
ences from Azure traceroutes.

We used Azure DNS hostnames to pro-
vide pseudo ground truth for our intercon-
nection inferences, and successfully resolved
hostnames for 59.5% of the 5749 Azure
IP addresses seen in our initial traceroutes.
Azure tags many of its network interconnec-
tion address hostnames with the name of
the neighboring network, and we used the
tags visible in traceroute paths from Azure
VMs to identify Azure addresses on routers
operated by neighbors; e.g., in a tracer-
oute starting from an Azure VM, the tag
in internet2.dal-96cbe-1b.ntwk.msn.net
indicates that 104.44.12.159 belongs to an Internet2 router interconnected with
Azure. Our evaluation focused on comparing bdrmapIT inferences to the tags
extracted from Azure hostnames. We used the regular expression ([^-]*?)\..
*\.ntwk\.msn\.net to extract the interconnection tags from Azure hostnames,
finding 214 tags corresponding to 419 address hostnames. For each IP address
with a hostname containing an interconnection tag, we manually validated that
bdrmapIT’s AS operator inference aligns with the name of the inferred AS or the
organization that owns it. These tags are nearly always network names rather
than AS numbers, preventing us from using Luckie, et al.’s technique [38] to
identify the operating AS automatically.

3.1 Investigating as Operator Inference Errors

Our initial evaluation on Azure interconnections yielded 87.4% AS operator accu-
racy, with 53 errors. One source of error was that bdrmapIT occasionally filtered
out valid neighboring ASes in favor of ASes seen adjacent to Azure in BGP AS
paths. bdrmapIT relies heavily on AS connectivity inferred from BGP to con-
strain the choice of AS operator for a router, but the largely incomplete connec-
tivity constraints led to six false inferences in our validation set. We modified
bdrmapIT to remove these constraints only for the major cloud networks, but



Inferring Cloud Interconnections 235
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Reply 1

Reply 1

Probe 2

Reply 1 Probe 2
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Dest A

Dest B

Dest C

Fig. 2. Scamper increases efficiency by
parallelizing traceroute probing across
destinations, but a path change can cor-
rupt all active traceroute paths.

R1i1

104.44.13.95 
cableone.dal-96cbe-1a.ntwk.msn.net 

Azure Cable One

VM

R3i3

104.44.23.80 
ae102-0.icr02.sn6.ntwk.msn.net

R2i2

160.3.115.1 
Cable One

Fig. 3. We observed the Azure address
104.44.23.80 after the border router in
Cable One, likely indicating traceroute
path corruption. This caused bdrmapIT
to incorrectly conclude that Azure oper-
ates router R1.

this change can apply to edge networks with largely incomplete neighbor con-
straints in BGP AS paths, like other cloud and content delivery networks. This
change increased the AS operator inference accuracy to 88.8%, correcting all six
of the AS operator inferences without introducing additional error.

Using an interface graph constructed from the traceroutes to investigate the
remaining errors led us to conclude that path changes during traceroutes likely
caused most of the errors. While Paris probes avoid corruptions due to load-
balancing along a path, they cannot prevent corruptions due to path changes
in router forwarding tables. Scamper probing is especially susceptible to cor-
ruptions caused by path changes. Like UNIX traceroute, Scamper waits for the
response to the probe with Time to Live (TTL) i before sending the probe with
TTL i+1, but for efficiency it parallelizes across traceroute destinations (Fig. 2).
This concurrency enables rapid path discovery, necessary for temporally coher-
ent snapshots of cloud topologies, but a path change can corrupt any of the
traceroutes active at any given time.

To look for evidence of potential path changes, we generated a directed inter-
face graph from the 355.8 M Azure traceroutes, creating directed edges between
an address and every address that immediately followed it in a traceroute, but
not when one or more unresponsive hops separate the addresses. We found 56
(13.4%) Azure interconnection addresses in our validation dataset followed by at
least one Azure address in a traceroute. These interconnection addresses are on
routers operated by neighboring networks, so an uncorrupted traceroute path
would most likely not contain a subsequent Azure address. Figure 3 shows a
potentially corrupted traceroute path, where we observed an Azure IP address
following the interconnection with Cable One. Observing Azure addresses after
routers in neighboring ASes does not necessarily indicate that path changes cor-
rupted a traceroute, and can result from off-path addresses and load-balancing
as well, so we conduct an additional experiment to rule out alternative explana-
tions.
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3.2 Fast and Straight Traceroute (FAST) Traceroute Probing

Fig. 4. We set up VMs in every cloud
region available to us using similar
VM types in each cloud.

We developed a new traceroute tool, Fast
And Straight Traceroute (FAST), to test
our hypothesis that path changes corrupted
the cloud traceroute paths by mitigating
the impact of path changes on the observed
topology. FAST sends all probes from TTL
1 to 32 to a destination at a fixed pack-
ets per second (pps) rate, irrespective of
replies, before moving on to the next tracer-
oute destination, and uses packet capture
to record probes and replies, allowing it to construct traceroute paths with accu-
rate RTTs. Unlike similar tools such as Yarrp [17], FAST’s guaranteed sequential
probing allows it to construct traceroute paths during probing while consuming
few resources on the cloud VMs.

Fig. 5. We observed fewer tracer-
oute hops for Azure probing above
5000 pps. GCP inflates probe TTLs
(Sect. 4.1), causing relatively few
responses for all probing rates.

To efficiently reveal traceroute paths, we
determined a probing rate for FAST that
balances topology discovery with probing
speed by conducting traceroutes from a VM
in every region of AWS, Azure, and GCP
(Fig. 4) to one address in 100,000 distinct
prefixes announced into BGP. Our results
(Fig. 5) indicate that probing at 5000 pps
reveals nearly all of the hops found by
probing at slower rates, but probing faster
induced rate-limiting in Azure. At 5000 pps,
FAST can complete probing to every routed
/24 in less than 21 h.

To isolate the impact of path changes, we
changed only the traceroute tool from Scam-
per to FAST, but conducted traceroutes from
the same Azure regions to the same destina-
tions. Generating an interface-graph from the new set of traceroutes appears to
confirm our hypothesis that path changes corrupted the scamper traceroutes. In
the FAST traceroutes, we never observed an Azure address after a router known
to belong to a neighboring AS. Furthermore, path changes played a large role
in bdrmapIT’s inaccurate AS operator inferences. bdrmapIT’s inferences on the
FAST traceroutes were 97.4% accurate, compared to 88.8% with the Scamper
traceroutes.
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Fig. 6. A traceroute from GCP Los Angeles to the University of Pennsylvania (UPenn)
revealed no GCP IP addresses (a), but traceroutes from Los Angeles to JANET in the
UK (b), and Belgium to UPenn (c), each revealed GCP addresses.

4 Learning About Clouds from Interconnections

Armed with confidence in our interconnection inferences, we set up VMs in
every region available to us for AWS, Azure, and GCP, the three largest cloud
providers, and used FAST to conduct traceroutes from every VM to a random
address in every routed /24. We configured our VMs to use the WAN as much
as possible; Azure networking defaults to cold-potato routing and we selected
GCP’s premium network tier, but in AWS we used the default WAN behavior.
We did not use AWS Global Accelerator [5], and we plan to investigate the affect
of Global Accelerator in future work. These experiments derived routed address
space using collected BGP route announcements from 1–5 October 2020. We used
the same combination of bdrmapIT, PeeringDB, and IXPDB as in Sect. 3 to infer
interconnection addresses, and used these interconnection inferences to analyze
the neighboring networks that each cloud uses to reach public Internet networks,
and to geolocate the interconnections between the three cloud providers.

4.1 GCP Inflates Traceroute Probe TTLs

One challenge for our analysis is that GCP, unlike AWS and Azure, inflates the
TTL values of traceroute probes after they leave VMs such that the hop #1
traceroute address belongs to a later router in that path, rather than to the first
router hop [13]1. This behavior violates a core traceroute assumption that hop
#1 corresponds to the first router probed. While invisible Multiprotocol Label
Switching (MPLS) tunnels exhibit similar behavior, hiding router hops between
the tunnel entry and exit routers [21,53,54], MPLS tunnels do not affect hop #1
since the probe with TTL 1 could not yet enter an MPLS tunnel. This practice
of rewriting probe TTLs has likely caused researchers to incorrectly conclude
that GCP routers do not respond to traceroute [29], or that hop #1 is a router
just past the GCP border [57].

1 We observed different behavior in February, 2021 (Appendix A).
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Figure 6a shows the GCP TTL inflation with a traceroute from a VM in Los
Angeles, where hop #1 reported an address that router configurations from Inter-
net2 show belong to a University of Pennsylvania (UPenn) router [10], despite no
direct interconnection between GCP and UPenn [11]. In fact, the UPenn router
at hop #1 reported an interface address used to interconnect with Internet2 [10],
indicating that the probes traversed Internet2 to reach UPenn, but the inflated
TTL caused probes to expire only after reaching UPenn. Traceroutes from other
GCP VMs to the same UPenn destination, such as in the Belgium region, exposed
apparent GCP internal IP addresses, only reaching UPenn at hop 8 (Fig. 6c).
All of our VMs use GCP’s premium network tier, but not all revealed internal
GCP addresses, contradicting reported behavior that only GCP’s standard tier
inflates traceroute TTLs [14]. Our ability to observe internal GCP addresses
from the Belgium VM toward UPenn, and from the VM in Los Angeles toward
JANET in the UK (Fig. 6b), suggests that the opportunity to view internal and
interconnection GCP addresses depends on the combination of GCP region and
traceroute destination. We leave an analysis of the interconnection information
lost to GCP’s TTL inflation for future work.

4.2 Inferring How Clouds Reach Internet Networks

Cloud

R1

R2

AS 1

AS 2

AS 1, AS 3,
AS 4

AS 2, AS 3

i1

i2

Fig. 7. AS #1 is the next-hop
network in traceroute paths to
three ASes, so its CTD= 3. AS
#2 is the next-hop network for
two ASes, so its CTD= 2.

We define the cloud transit degree for a cloud
neighbor AS as the number of unique traceroute
destination ASes for which the neighbor is the
next-hop AS. This metric is an indication of the
relative importance of that neighbor to the cloud
network. In Fig. 7, the cloud network uses AS #1
to reach three ASes including AS #1, giving it
a CTD of 3, while AS #2 has a CTD of 2. Here,
the cloud uses both AS #1 and AS #2 to reach
AS #3, so we count AS #3 once for each AS.
This situation occurs when clouds choose differ-
ent next-hop networks depending on the VM’s
region.

We only used traceroutes with a cloud interconnection in the path to compute
the CTDs, so we discarded any traceroute where an unresponsive hop separates
the last hop inside the cloud network from the first hop outside the cloud net-
work. Figure 8a shows the fraction of included traceroutes in each cloud. For
every neighbor AS, we maintain a set of destination ASes reached through that
neighbor, so at the first hop in the neighbor AS we add the traceroute’s destina-
tion AS to that neighbor’s set. Finally, we compute the CTD for each neighbor
as the cardinality of its destination set.

Figure 8b shows the number of unique ASes for each cloud across their dif-
ferent regions. The different variances reflect the traffic engineering policies of
each cloud. AWS uses hot-potato routing, so we not only saw different neighbors
from each region, but we saw different numbers of neighboring ASes as well.
Conversely, Azure uses cold-potato routing, so Azure transits packets destined
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)c()b()a(

Fig. 8. We excluded many of the GCP traceroutes since the traceroute path often began
outside GCP (a). Unlike AWS and GCP, we observed nearly all of the same neighbor
ASes from every Azure region (b). All clouds rely on tier 1 and tier 2 networks, but
AWS relies more heavily on tier 1s in most regions (c).

for a neighboring AS across its global backbone and hands them off to the neigh-
bor directly. GCP also employs cold-potato routing, but certain regions included
more internal routers in traceroute paths than others. We only included an AS
as a neighbor when we saw a GCP interconnection address, as traceroute paths
can start in unconnected networks (Fig. 6).

Figure 8c shows the fraction of the total CTD accounted for by tier 1, tier 2, and
tier 3 networks. For the purposes of this analysis, we define tier 1 networks as the
19 ASes inferred to be at the top of the AS hierarchy in CAIDA’s AS relationship
dataset for October 1, 2020. Tier 2 networks include the 10,627 other ASes with at
least one customer in the dataset, with the remaining networks classified as tier 3.
Our analysis reveals that all three clouds rely heavily on ISPs, although we expect
that the clouds primarily peer with these ISPs, rather than interconnect with them
for Internet transit. AWS shows wide variance across regions, heavier reliance on
tier 1 networks (due to hot potato routing), and heavy tier 2 network use in certain
regions. Azure relies on tier 1 and tier 2 networks consistently across regions, and
GCP appears better connected to edge networks.

Table 1. We observed an order of
magnitude more unique cloud AS
neighbors traceroutes than in public
BGP collections.

AWS Azure GCP

Traceroute 4110 3889 8620

BGP 327 300 381

In total, we discovered an order of mag-
nitude more cloud neighbor ASes in our
traceroutes from cloud VMs than were vis-
ible in RouteViews and RIPE RIS collec-
tions of BGP route announcements from 1–
5 October, 2020 (Table 1). We also found
that GCP appears to interconnect with more
than twice as many networks as AWS and
Azure. Importantly, our results indicate that
the visible connectivity of cloud networks, and their reliance on specific neigh-
bors, is region-dependent. To properly measure and analyze the cloud requires
gathering data from each region, and considering each region separately.
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R1i1
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(a) IXP and hostname geolocation.

R1b1
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VM R3b5

104.44.24.41

b4

104.44.24.40 
ae30-0.gru-96cbe-1a.ntwk.msn.net

(b) Hostname geolocation.

Fig. 9. In (a) the interconnection address i2 and the IXP address i3 share a common
predecessor, so we infer i2 is also located in Frankfurt. The hostnames for i2 and i1
also indicate Frankfurt. In (b) we use gru in the hostname for b4 to infer that the
interconnection occurs in Sao Paulo. (Color figure online)

4.3 Geolocating Cloud Interconnections

Next, we use IXP location constraints and geolocation tags in Azure hostnames to
infer the locations of interconnections between the clouds. For IXP constraints, we
identify all addresses that preceded an interconnection address in a traceroute that
also preceded an IXP address, and infer that the interconnection is located at the
IXP location recorded inPeeringDB.Our reasoning follows fromthe fact that inter-
connected routers operated by two different networks are often located in the same
facility or city. In Fig. 9a, bdrmapIT inferred that address 198.200.130.255 inter-
connects Azure and GCP, and the prior address 104.44.232.128 also preceded
an address used for public peering at DE-CIX Frankfurt in a different traceroute,
so we conclude that the interconnection using address 198.200.130.255 occurs
in Frankfurt. Remote peering at IXPs, where a network participates at multiple
IXPs through a port at a single IXP, creates the possibility that our method could
identify multiple IXPs. We expect to more often observe local IXP peering than
remote peering, so in the event our technique identified multiple IXPs, we select
the most frequently appearing IXP city location.

We also used geographic locations embedded in Azure IP hostnames to geolo-
cate interconnections involving Azure, such as the reference to Frankfurt in the
hostname for 198.200.130.255, google.fra-96cbe-1b.ntwk.msn.net. We col-
lected hostnames for three groups of addresses most likely to reside in the same
city as the interconnection: (1) the interconnection address, (2) addresses that pre-
cede the interconnection address, and (3) the other address in the /31 subnet of
addresses subsequent to the interconnection address. For the latter group,while the
subsequent addresses might not reside in the interconnection city, we assume the
other address in the point-to-point subnet likely belongs to the same router as the
interconnection address. In Fig. 9b, we use the hostname for 104.44.24.40 which
we infer belongs to the same router as the interconnection address 99.82.177.85,
despite not appearing in the traceroutes. Using a hand-crafted regular expression,
we extracted the geolocation codes, and mapped each code to a city. This tech-
nique always inferred a single city for each interconnection address. Using both
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AWS-GCP 22 (34%) AWS-Azure 56 (100%) Azure-GCP 41 (100%)

Cloud Interconnection Locations

Fig. 10. Unique city locations for interconnections between the clouds. The clouds
often interconnect in the same cities, indicated with pie-chart markers. We could only
geolocate 22 of the 64 inferred AWS-GCP interconnections (34.4%).

techniques allowed us to infer geolocations for every Azure link, and the two tech-
niques never inferred conflicting cities.

Our two geolocation strategies yielded the city locations in Fig. 10. We found
that the clouds interconnect in all six populated continents and tend to inter-
connect in the same locations. The IXP constraints provided locations for 87.8%
and 80.4% of the Azure-GCP and Azure-AWS interconnections respectively, but
only geolocated 34.4% of the AWS–GCP interconnections, since many of their
interconnection IP addresses did not share a common predecessor with an IXP
address. Interconnections visible from AWS VMs rarely shared a predecessor
with an IXP address, and the GCP traceroutes often lacked internal hops. The
congruity between the two techniques indicates that these techniques can accu-
rately geolocate many of the cloud interconnections visible in traceroute.

5 Limitiations

Our analysis performs inferences on top of inferences, and an error at any step
can lead to false conclusions. Acknowledging the potential for compounding
error, we validated as many of our interconnection and geolocation inferences
as possible. In general, we expect our analysis to reflect the reality revealed by
our traceroutes, despite imperfect accuracy.

One limitation of our validation is that we rely on the accuracy of Azure’s
DNS hostnames, but operators might not update them when an IP address
switches from one router interface to another. While this might apply to our
case, the 97.4% congruity between bdrmapIT AS operator inferences and the
hostname tags suggests that Azure maintains its hostnames well. The coverage
of our validation is a more fundamental limitation, as our validation dataset
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covers a single cloud network and only 30.3% of the total number of bdrmapIT
inferred Azure private interconnection IP addresses. Our reported bdrmapIT AS
operator accuracy might not generalize to the other Azure interconnections that
bdrmapIT inferred, let alone to AWS and GCP interconnections.

When inferring cloud neighbors, our traceroutes might not reveal all of the
interconnections between the cloud networks, and between the clouds and neigh-
boring networks. In GCP, most traceroute paths either start outside of GCP or
the VMs do not receive a reply from the apparent interconnection router hop
(Fig. 8a). Specific to AWS, its hot-potato routing means that traffic to a con-
nected AS might leave the WAN at a different neighbor closer to the the VM. For
all three clouds, a traceroute only reveals a single active path, and our probing
might miss alternate active paths. Furthermore, our probing can only reveal net-
works interconnected with cloud public WANs, but some networks interconnect
with clouds in a more private fashion.

Yeganeh et al. [56] described cloud exchanges as multipoint-to-point inter-
connections that use address space provided by the exchange operator, and spec-
ulated that bdrmapIT cannot draw accurate AS operator inferences for routers
at cloud exchanges. We do not expect cloud exchanges to pose problems for
bdrmapIT’s AS operator inferences, since it determines AS ownership by look-
ing forward from a router to addresses seen subsequently in a traceroute. This
allows bdrmapIT to determine ownership for IXP public peering addresses, and
it should perform similarly for the cloud exchanges Yeganeh et al. described. A
potential consequence of cloud exchanges is that our methodology for inferring
next-hop networks might select the cloud exchange provider as the next-hop AS
if the exchange does not use address space belonging to a cloud or list its address
space in PeeringDB or IXPDB.

6 Conclusion

Public clouds play a central role in the modern Internet, but we know little about
how they interconnect to each other or other networks. Understanding cloud
connectivity is critical to studying the modern Internet, including for network
planning and diagnosis, and resiliency assessments. This study lays a founda-
tion for future analyses by validating and improving a technique to infer cloud
interconnection IP addresses. We analyzed next-hop ASes that the clouds use
to reach other networks and proposed techniques to geolocate interconnections
between the clouds. We found that clouds interconnect with each other on all six
populated continents, and that next-hop ASes can be region-dependent, indicat-
ing that properly analyzing cloud networks requires measurements from every
region. We will make FAST and the code for our analysis available at https://
alexmarder.github.io/cloud-pam21/.
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A Recent GCP Traceroute Behavior

Fig. 11. Unlike the traceroute in October, 2020, the traceroute from GCP Los Angeles
to UPenn in February, 2021 revealed an internal GCP IP addresses (a). The first
responsive hop in the traceroute from Virginia was an address on a UPenn router, but
the path contained unresponsive hops until that point (b).

We conducted the traceroutes in Sect. 4.1 in October, 2020. Revisiting our
examples in February, 2021, we noticed a different behavior. Many paths still
do not contain any internal GCP addresses, but the paths no longer appear to
start in neighboring networks. As seen in the traceroute path from GCP Los
Angeles to UPenn (Fig. 11a), hop #1 is an internal GCP address followed by
the interconnection with Internet2 at hop #2 [10], rather than a UPenn address.
The first responsive hop in the path from our GCP Virginia VM (Fig. 11b) is
the same UPenn address that we previously observed as hop #1 in Sect. 4.1, but
hop #1 is now an unresponsive address. This behavior makes interpreting GCP
traceroutes more intuitive, as they follow conventional traceroute semantics, but
observing GCP internal addresses still appears to depend on the combination of
VM region and traceroute destination.
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Abstract. The U.S. Pacific Northwest (PNW) is one of the largest Internet infras-
tructure hubs for several cloud and content providers, research networks, coloca-
tion facilities, and submarine cable deployments. Yet, this region is within the
Cascadia Subduction Zone and currently lacks a quantitative understanding of
the resilience of the Internet infrastructure due to seismic forces. The main goal
of this work is to assess the resilience of critical Internet infrastructure in the
PNW to shaking from earthquakes. To this end, we have developed a framework
called ShakeNet to understand the levels of risk that earthquake-induced shaking
poses to wired and wireless infrastructures in the PNW. We take a probabilis-
tic approach to categorize the infrastructures into risk groups based on historical
and predictive peak ground acceleration (PGA) data and estimate the extent of
shaking-induced damages to Internet infrastructures. Our assessments show the
following in the next 50 years: ∼65% of the fiber links and cell towers are sus-
ceptible to a very strong to a violent earthquake; the infrastructures in Seattle-
Tacoma-Bellevue and Portland-Vancouver-Hillsboro metropolitan areas have a
10% chance to incur a very strong to a severe earthquake. To mitigate the dam-
ages, we have designed a route planner capability in ShakeNet. Using this capa-
bility, we show that a dramatic reduction of PGA is possible with a moderate
increase in latencies.

1 Introduction

Internet infrastructures—composed of nodes (e.g., data centers, colocation facilities,
Internet eXchange Points or IXPs, submarine landing stations, cell towers, and points
of presence or POPs) and links (e.g., short- and long-haul fiber-optic cables, and sub-
marine cables)—play a crucial role in our day-to-day activities and public safety. For
example, earthquake early warning systems such as ShakeAlert [1] rely on resilient
Internet infrastructures to effectively detect, respond to, and recover from earthquakes.
With 47% of trans-Pacific submarine cables in the west coast arriving onshore in Pacific
Northwest (PNW)—37% in Oregon and 10% in Washington—a large presence of
hyperscale cloud providers, and thousands of miles of metro- and long-haul fiber-optic
cables [2–5], the PNW is undoubtedly a regional locus of critical Internet infrastructure.

Geographically, the PNW is the site of the Cascadia Subduction Zone (CSZ) known
to create large magnitude (M) 9 subduction (megathrust) earthquakes, as well as more
c© Springer Nature Switzerland AG 2021
O. Hohlfeld et al. (Eds.): PAM 2021, LNCS 12671, pp. 247–265, 2021.
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frequent deep earthquakes occurring within the subducting oceanic crust (“inslab”), and
shallower earthquakes in the continental crust. This tectonic setting poses a significant
hazard to the region, capable of producing several meters of rapid ground deforma-
tion, as well as strong ground accelerations from shaking. Seismic hazard describes
the expected frequency of shaking in a region and is a combination of the region’s
tectonic activity (i.e., areas with faults that release more energy from earthquakes con-
tribute to greater seismic hazard), as well as factors that affect levels of shaking (e.g.,
amplification from shallow sediment). Typically shown as the probability of exceed-
ing a particular level of shaking, seismic hazard represents a long-term average of the
maximum shaking that may be felt due to many faults (seismic sources). Shaking can
be represented by intensity measures such as peak ground acceleration or PGA (i.e., in
fractions of g, 9.81m/s/s), or the qualitative Modified Mercalli Intensity (MMI) scale
(e.g., severe, violent, etc.).

Recent global earthquakes have demonstrated that shaking and its associated hazards
can have a large impact on telecommunications infrastructure and negatively affect post-
disaster recovery (Sect. 2). For example, the 2016M7.8 Kaikōura crustal andmegathrust
earthquake caused significant damage to buried fiber-optic cables and microwave towers
on New Zealand’s South Island, leading to outages for up to five days [6]. TheM9 2011
Tohoku-Oki subduction earthquake resulted in connectivity losses for 2 days [7], and
theM6.9 1995 Kobe crustal earthquake disconnected telecommunications infrastructure
and isolated the cities of Kobe, Ashiya, and Nishinomiya [8]. In short, standard Internet
infrastructures are not designed to be resilient to strong earthquake shaking.

To date, few studies [7,9,10] have considered how to assess and mitigate the effects
of earthquake damage on Internet infrastructures, and none have investigated the poten-
tial impacts in the PNW. This is primarily due to two key issues. First is the paucity
of high-quality Internet infrastructure maps that reveal dependencies between service
providers and alerting systems, and the associated risks that are both intrinsic (e.g.,
infrastructure risks due to conduit sharing among providers [5]) as well as extrinsic
(e.g., infrastructure outages due to natural disasters [4,9–13]). Second is the inter-
disciplinary nature of the problem: that is, it is not fully known what the impacts of
shaking and seismic hazard are on Internet infrastructure, even from past earthquakes,
due to the lack of collaborative efforts between network measurements and earth sci-
ence communities.

To address these issues, we design ShakeNet: a framework to study the impacts of
earthquake-induced shaking on the Internet infrastructure. At the core of ShakeNet is
the probabilistic approach to (a) categorize Internet infrastructure of varying types into
risk groups (e.g., data centers in very strong shaking areas vs. colocation facilities in
regions that might experience violent shaking) and (b) estimate the extent of poten-
tial shaking-induced damages to Internet infrastructures. Our approach is built atop
ArcGIS [14] and their application to the following datasets: (a) probabilistic seismic
hazard analysis (PSHA) estimates of shaking in the CSZ, for the highest level of peak
ground acceleration (PGA) that may occur within the next 50 years, and (b) Internet
infrastructure datasets from diverse network measurement efforts [3–5,15].

Using ShakeNet, we seek answers to the following research questions: (a) How
much infrastructure—both nodes and links—is susceptible to earthquake shaking and
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shaking-induced damages in the PNW? (b) What are the impacts of shaking-induced
outages on society? and (c) How can we minimize the impacts of earthquakes on Inter-
net infrastructure deployments? To answer these questions, we examine >40,000 miles
of fiber, 59 colocation facilities, 422 POPs, 4 IXPs, 31 data centers, and 213,554 cell
towers in the PNW. We find that 71% of metro fiber have a 2% chance of experiencing
0.34g of PGA (severe shaking) in the next 50 years, and 27,781 miles (65%) have a
10% chance of experiencing 0.18g PGA or greater (very strong shaking). Of the nodes,
14% are in locations with a 2% chance of exceeding 0.34g PGA, and a 10% chance
of exceeding 0.18g PGA within the next 50 years. Besides these nodes, 66.5% of tow-
ers have a 2% chance of experiencing 0.34g PGA or greater, and 67% have a 10%
chance of feeling 0.18g PGA within the next 50 years. Overall, the areas with the high-
est level of potential impact are the Seattle-Tacoma-Bellevue metro in Washington and
the Portland-Vancouver-Hillsboro metro in Oregon as they contain the highest concen-
tration of wired and wireless infrastructure as well as a 10% chance to incur very strong
(0.29 average) to severe (0.39 average) shaking within the next 50 years.

Finally, we extend the ShakeNet framework with route planner capability to identify
alternate fiber deployment routes that are geographically longer but are less suscepti-
ble to shaking vs. existing routes that are more prone to earthquake-induced shaking.
While standard routing protocols employ backup paths to deal with connection inter-
ruptions e.g., due to outages, they are oblivious to this tradeoff space and are not robust
to earthquakes and shaking risks. Identifying the alternative deployment locations by
navigating this tradeoff space is the third contribution of this work. We show that route
planner can be used to maximize the safety of infrastructure deployments and fiber net-
works. For example, data transfers between nodes in Seattle and Portland metros can
be re-routed via the eastern PNW through Kennewick and Boise in the case that fiber
running across the I-5 interstate is affected by damaging shaking. While this path is
longer (i.e., ∼1200 miles), it has the benefit of being even further away from the CSZ
and less adverse to risk (PGA reduction of 0.11 g for 2% probability of exceedance in
the next 50 years).

2 Background and Related Work

Seismic Hazard in the PNW. Seismic hazard is defined as the expected frequency of
shaking, not the frequency of earthquakes; the shaking is what causes damage to infras-
tructures (e.g., power lines, fiber cables, right of ways, etc.). For any given location, seis-
mic hazard is the shaking expected over integration of all possible sources and shaking,
a combination of two factors: (1) The nearby sources of seismic energy (e.g., faults) and
how much energy they release over time; seismic sources are determined based on geo-
logic and geophysical studies of a region and are controlled by the tectonic setting [16];
and (2) The shaking expected from all these surrounding seismic sources. Larger mag-
nitude earthquakes, and closer earthquakes both cause stronger shaking.

Expected shaking is represented by intensity measures (IMs) and is estimated from
empirical ground-motion models (GMMs) [18]. IMs vary and include: the peak value of
ground motion recorded such as the peak ground acceleration (PGA) reached, the peak
spectral acceleration (peak shaking convolved with a damped oscillator of the given
period), or maybe described qualitatively, such as byModifiedMercalli Intensity (MMI)
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Table 1. PGA data (in fractions of g, 9.81m/s/s) and earthquake risk categories based on the
Modified Mercalli Index [17]. *Indicates where damage to buildings begins to occur.

PGA Value (g) MMI Intensity MMI-correlated perceived shaking

<0.0017 I Not Felt

0.0017–0.014 II–III Weak

0.14–0.039 IV Light

0.039–0.092 V Moderate

0.092–0.18* VI* Strong*

0.18–0.34 VII Very Strong

0.34–0.65 VIII Severe

0.65–1.24 IX Violent

>1.24 X Extremes

which categorizes ground-motion according to the perceived shaking experienced by an
observer (shown in Table 1). In this study, we focus on PGA and MMI.

To represent the expected frequency of shaking, seismic hazard is typically reported
for various “return periods” of interest, or for a probability of exceedance within a
specified time interval. The specified time interval is chosen based on the application
at hand—the typical life of a structure is considered to be ∼50 years—as such this is a
common time interval in which to compute probabilities for exceeding a particular level
of ground-motion [19]. Example maps produced by the US Geological Survey report
the 2% or 10% probability of exceeding a particular level of shaking in the next 50
years, respectively equivalent to the maximum shaking expected for any earthquakes
within a 2,475 and 475-year return period [15]. The reported shaking is, in fact, the
median value of a distribution; the standard deviations represent the uncertainty on the
estimate, based on unknowns in the seismic source or uncertainties in the GMMs. This
statistical distribution of reported shaking forms the basis of our approach.

In the PNW, seismic hazard is controlled almost entirely by the Cascadia Subduction
Zone (CSZ) system, where the Juan de Fuca, Gorda, and Explorer tectonic plates sink
beneath the North American plate. Here, seismic energy comes from three main types
of seismic sources or earthquakes. (1) Events that occur along the subduction zone inter-
face itself (the “megathrust”) [20]. This subduction system is very large (>1000 km long,
extending 40 km beneath the Earth’s surface). Earthquake magnitude increases with the
area of fault that breaks, which means that earthquakes that rupture even a portion of
the subducting interface can produce very large (>M8.5 or 9) earthquakes. (2) Deep
(∼30 km or more down) earthquakes that occur within the subducting slab (“inslab”
earthquakes) [21]. While these are not as large in size as megathrust events, they are
often very energetic for their magnitude and can produce strong and damaging high fre-
quency shaking. Because these happen at great depth within the downgoing plate, they
tend to occur beneath the coastline or population centers in the PNW, such as the 2001
Nisqually earthquake beneath Seattle. (3) Shallow (<35 km deep) [22] earthquakes that
occur within the overriding continental crust (“crustal” earthquakes). While these can be
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the smallest of the three types of events, because they occur much closer to the surface,
they potentially cause strong shaking.

Although megathrust earthquakes are the only events that can produce large M9
earthquakes with widespread strong shaking, inslab, and crustal earthquakes produce
smaller, but more frequent earthquakes that occur closer to population centers. Such
inslab and crustal earthquakes thus contribute significantly to seismic hazard, depending
on the return period of interest. Overall, as most of these seismic sources are associated
with the subduction zone, the greatest seismic hazard and possible ground-motions in
the PNW are near the coast, and to the west of the Cascade mountains.

Internet Infrastructures and Earthquakes. Analyzing the resilience of infrastruc-
tures [23–35], fault detection/localization [36–38], and development of resilient routing
protocols [39–43] has been the focus of many prior efforts. While studies analyzing the
impact of natural disasters (such as hurricanes, wildfires, climate change, and storms)
on the Internet are numerous [4,11,13,44–47], there are few that consider extensive
levels of infrastructure damage due to earthquake shaking [7,9,10], and none in PNW.
For example, the Kaikōura earthquake in New Zealand produced a maximum recorded
PGA of 3.0g near the epicenter, and 1.3g more than 100 km away from the fault rupture.
Two Internet eXchange Points were impacted: one sustained internal damages to equip-
ment and required new hardware to return functionality in that region, while the other
exchange was isolated due to damages to surrounding fiber connections, requiring 1km
of replacement cable. Kaikōura’s East Coast Link cable sustained 6 breakages and aerial
fiber cables sustained stretch-induced damages across riverbanks [48]. Similarly, the
Tohoku earthquake in Japan had a maximum recorded PGA of 2.99 near the epicenter,
and 2.7 g at 75 km away from the fault [49]. A study on Japan’s SINET4 R&E network
showed that even with redundancies such as dual links between core nodes, full recov-
ery of traffic volume took 5–6 weeks near the earthquake’s epicenter [7]. While these
comparisons qualitatively demonstrate the damage on infrastructure caused by strong
shaking, there are no quantitative studies that detail the direct correlations between the
two. This is a necessary avenue for future work, but one that we do not yet tackle here.

Fig. 1. PGA Values of historical earth-
quakes in the PNW.

While seismic hazard in PNW is high, the CSZ
is anomalously quiet. Seismicity here is unusu-
ally low for an active subduction zone, posing
unique challenges to the region in terms of aware-
ness to infrastructure resiliency. Internet infras-
tructure in the PNW has been installed for just a
few decades, within which few significant earth-
quakes have occurred. This increases the chal-
lenge of understanding the full possible impact of
a future earthquake. In Fig. 1), we show maps of
shaking from earthquakes since 1990 with magni-
tudes greater than 4, for which the ground-motions
do not exceed 0.34. The result is that the existing
infrastructure has not yet been subject to destruc-
tive shaking or suffered severe damages.
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There is, however, the unexplored potential that shaking from future earthquakes
can have a significant impact on this infrastructure. In particular, these may affect fiber-
optic cables, nodes, and cell towers. Terrestrial fiber-optic cables that carry Internet
traffic provide protection from a variety of physical damages (e.g., fiber cut). They are
packaged in conduits and are buried in trenches along existing right of ways [5]. We
posit the following risks due to earthquakes in the region. The first is physical dam-
age at the node level (e.g., cell towers), at link level (e.g., physical damage to fiber
conduits), and at fiber termination points (i.e., colocation facilities and data centers).
A majority of the submarine landing stations are near a seismically active region and
terminate at the nearest colocation facility [50]. Ground accelerations beyond shak-
ing thresholds published by infrastructure manufacturers will adversely impact fiber
deployments: shaking-induced stress may cause state of polarization changes of the
light traveling through cables leading to data loss. Furthermore, links may be severed at
shaking levels produced by an M9 earthquake.

3 Design and Implementation of ShakeNet Framework

3.1 Overview of ShakeNet Framework

Motivated by above-mentioned impacts of earthquake-induced shaking on critical Inter-
net infrastructures (Sect. 2), we design ShakeNet: a framework which brings probabilis-
tic seismic hazard estimates to networking to assess and mitigate the impacts of seismic
hazard on Internet infrastructure nodes and links. ShakeNet framework builds on top
of a geographic information system (GIS) called ArcGIS and consists of capabilities
to (a) categorize infrastructure of varying types (e.g., data centers, cell towers, subma-
rine cables, etc.) into risk groups (e.g., severe, violent, etc.) (Sect. 3.3), (b) assess the
extent of shaking-induced damages to those types (in Sect. 3.4), and (c) identify alter-
nate strategies to mitigate the potential risks (in Sect. 3.5). We start by explaining the
datasets used in this study, followed by each of these capabilities.

3.2 Datasets Used

Internet Infrastructure Datasets. ShakeNet uses Internet infrastructure datasets from
a wide variety of network measurement and community efforts including Internet Atlas
project [51], OpenCellID [52], and others [3–5]. The dataset is composed of nodes and
links of varying types. Node types include data centers, colocation facilities, Internet
exchange points (IXPs), submarine landing stations, wireless and microwave cell tow-
ers, and points of presence (POPs). Link types include short- and long-haul fiber cables
and submarine cables. Our study focuses on Pacific Northwest (PNW) and considers a
total of 59 colocation facilities, 422 POPs, 4 IXPs, and 31 data centers. We also examine
213,554 cell towers in the PNW area. Finally, we examine 42,516 miles of long- and
short-haul fiber, and submarine cables terminating in CA, OR, and WA. Fiber cables
are represented as polyline features and contain attributes such as provider info. and
geodesic length. Nodes are represented as point features and contain attributes such
as geographic coordinates and type (e.g., cell towers contain signal type as an attribute
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Fig. 2. Internet infrastructure overlap with mapped faults (yellow dotted lines) in PNW (Color
figure online).

LTE, GSM, CDMA, UMTS). While the cable data is accurate in terms of location, there
are instances where a cable is split into multiple polyline features; this does not impact
the accuracy of our analyses.

Along the US west coast, there is much overlap between areas of high seismic
hazard, and critical communications infrastructure. Figure 2 shows the close overlap
between fiber-optic cables, colocation facilities, Internet exchange points, long-haul,
metro, and submarine cables, cell towers, and mapped active faults. We hypothesize
that earthquakes on these faults could be devastating to Internet infrastructure in PNW;
here we apply probabilistic hazard assessment to describe that risk.

Earthquake Datasets. ShakeNet uses maps of peak ground acceleration (PGA),
derived from probabilistic seismic hazard analyses (PSHA), to quantify the possible
effects that future earthquakes may have on infrastructure deployments. We use two
sets of probabilistic PGA data which encompass the CSZ: the values of PGA which
have a 10% chance of being exceeded in the next 50 years (Fig. 5 in Appendix A.1) and
the values which have a 2% probability of being surpassed in the next 50 years (Fig. 6
in Appendix A.1). These data sets were computed using the USGS national seismic
hazard map software for the 2014 map edition [53], obtained as raster information, and
converted to concentric polygons using raster contouring capabilities [54] in ArcGIS.
They use the most up to date fault sources and expected earthquake rates in the western
US. We choose 10% and 2% in 50 years as these are typical values considered in struc-
tural engineering applications, derived from the average life expectancy of a building
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(50 years). These probabilities correspond to the average shaking that may occur within
a 475 and 2,475 year return period, respectively.

3.3 Categorization of Risk Groups

To categorize infrastructures of varying types into risk groups, we convert the PGA
datasets to Modified Mercalli Index (MMI) as shown in Table 1, and then break them up
into risk categories. MMI provides a descriptive scale of earthquake’s perceived shaking
and potential damage. Categorizing infrastructure into risk groups based on PGA and
MMI allows us to estimate the extent of shaking-induced damages by examining the
percentage of infrastructure that may experience shaking, at different probabilities in
the next 50 years.

After analyzing data using the overlap method discussed below, we consider how
node and link infrastructures could be affected. Similar to buildings, we assume an
infrastructure is potentially damaged if the expected PGA exceeds MMI VI (PGA
0.092). By marking these infrastructures, we can reason about the impact that structural
damage and a loss of connectivity in that area could have. A novel application of this
approach is the ability to view potential fiber routes from the perspective of earthquake
shaking risks. Using this perspective, we can design risk-aware deployment and/or rout-
ing strategies: maximizing the traffic carried via portions of fiber in the areas with the
lowest PGA values. Said differently, we can derive alternate ways to route traffic in the
case that the shortest path, albeit with more earthquake risk, has been damaged. Here,
we do not consider the fragility or performance of various types of infrastructure; rather,
we assume a particular level of PGA will be equally damaging to all.

3.4 Assessment of Shaking-Induced Damages to Internet Infrastructure

We assess the extent of infrastructures damages incurred by earthquake shaking in two
steps: (a) analyzing the risks of individual infrastructure types, and (b) combining these
individual analyses to determine metropolitan statistical areas (MSAs) [3] with the
greatest total risk. We explain these two steps below.

To determine earthquake risk to different infrastructure types, the PGA data is first
contoured, creating a series of polygons which delineate areas of different minimum
and maximum PGA values for the PNW area as shown in Figs. 5 and 6. The inter-
sect tool [55] in ArcGIS is then used to assign these PGA values to the overlapping
infrastructure. The tool takes two feature sets together and generates a new feature set
composed of the intersecting geometry from both features. This allows ShakeNet to
augment segments of fiber cable or individual nodes and cell towers with minimum and
maximum PGA values depending on which PGA polygon the infrastructure in question
overlaps with. Infrastructures are then placed into groups by PGA-MMI category and
counted via a Python script written in ArcPy to determine the quantity of infrastruc-
ture at a given risk category. This script iterates through a given infrastructure dataset
(which now contains a PGA value for every cable, node, or cell tower) and returns the
quantity of infrastructure within the PGA ranges shown in Table 1. This script was used
to create the tables described below. The count of infrastructure within a given group
was divided over the total count within the PNW area to calculate percentage values.
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To find the overall risk to different MSAs, we use the same overlap method
described above, and augment a data set of MSAs in the PNW area with their expe-
rienced PGA level. We define polygons based on PGA values for a given probability
map (2% or 10%). If an MSA falls on a polygon boundary, we take the average PGA
of both polygons to represent the possible shaking at this site. We then use the Summa-
rize Within tool [56] in ArcGIS to count the quantity of infrastructure per MSA. This
allows us to assign MSAs a risk ranking based on their possible exceeded PGA, infras-
tructure quantity, and population density. Subsequently, a custom script—written using
ArcPy [57]—is used to count and categorize overlap data into risk groups.

3.5 Mitigation of Infrastructure Risks

Mitigating the infrastructure risks is fraught with challenges. For one, network providers
and state governments lack capabilities to (a) holistically combine risks and infrastruc-
tures together, (b) quantify risks to infrastructures and categorize them into different
scenarios, and (c) identify alternate deployments for the identified scenarios. For exam-
ple, if connectivity between two MSAs is disrupted by earthquake-induced shaking,
how can traffic be dynamically re-routed via other alternate routes that have experienced
less damage? Second, while IP routing allows the network infrastructures to dynami-
cally detect and route around failures, shaking-related failure scenarios (like the ones
depicted in Table 9) in particular, and natural disasters (e.g., [4,11,13,47,58]) in gen-
eral, are shown to have localized effects (e.g., loss of connectivity) for extended periods
of time. The main reasons for such localized and temporal Internet outages are typically
a lack of geographic diversity in deployments and significant physical infrastructure
sharing among providers [5].

To tackle these challenges, we extend the ShakeNet framework with a route planner:
a scenario-based route planning capability to aid network providers and state govern-
ments to maintain the robustness and availability of infrastructures. Route planner is
designed to identify alternate fiber deployment routes that are geographically longer
but are less susceptible to shaking vs. existing routes that are more prone to earthquake-
induced shaking. While network providers already employ backup routes for mainte-
nance and safety purposes, unlike route planner, these backup routes may not explicitly
minimize earthquake risk. Given a source and destination, alternate routes with likely
lower shaking (PGA) levels are identified by examining the adjacent right of ways to (a)
identify existing providers with infrastructure assets (for short-term peering and rout-
ing) or (b) deploy new infrastructure deployment locations (for long-term installation).
Using route planner, network operators can enhance risk-awareness for deployments by
determining routes that minimize predicted shaking and round trip time. The predictive
nature of the probabilistic PGA data allows the route planner to be applied in the plan-
ning stages of new fiber deployments to harden the resiliency of future infrastructure.
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4 Impacts of Earthquake Shaking on Infrastructures in PNW

4.1 How Much Infrastructure is Susceptible to Earthquakes?

Fiber Infrastructure Risk Groups. Using ShakeNet, we seek an answer to this ques-
tion by analyzing the fiber infrastructure deployments in the PNW. Table 2 depicts the
miles of long-haul and metro fiber infrastructures in PNW categorized based on the
PGA-MMI mapping. The overlap of fiber miles is reported for both the expected PGA
values for 10% and 2% probability of exceedance values in 50 years. Note that these
miles of fiber represent the minimum miles that will experience, on average, the speci-
fied PGA orMMI. Because the hazard maps are derived from the average expected PGA
within that return period, it is possible that lower levels of shaking may be surpassed
within that time period (which may increase the miles of fiber affected).

Table 2.Miles of fiber categorized based on PGA-MMI mapping, for two different return periods
or probabilities of exceedance. *This does not imply that no infrastructure will feel moderate
shaking within the 2% in 50 years probability; rather, in this less likely scenario, the shaking at
these infrastructure locations will surpass this level of shaking.

PGA (g) MMI Expected PGA - 10% Expected PGA - 2%

0.039 < x <= 0.092 Moderate 681 (2%) 0*

0.092 < x <= 0.18 Strong 14054 (33%) 681 (2%)

0.18 < x <= 0.34 Very Strong 27782 (65%) 11246 (26%)

0.34 < x <= 0.65 Severe 0 27576 (65%)

0.65 < x <= 1.24 Violent 0 3015 (7%)

From Table 2, we observe that in the next 50 years, 65% of fiber infrastructures in
the PNW have a 10% chance of experiencing very strong shaking (PGA between 0.18
and 0.34g), and 2% chance of experiencing severe shaking (0.34 and 0.65g). Over 3k
miles of fiber have a 2% chance of being subjected to violent shaking in the next 50
years. This implies that there may be even greater shaking at these sites, though less
likely. Further, this analysis suggests that infrastructure providers – with fiber assets in
the very strong to violent risk groups – should consider alternate backup paths with
fewer earthquake hazards.

Next, we seek to aid network operators in finding where multiple infrastructures
are deployed and are prone to high PGA values. We convolve the probability of PGA
with number of cables, since the ground motion side already is a probability distri-
bution given by P (PGA > x|50years). Specifically, we assign—without any lab-
based tests—a qualitative “failure likelihood” (e.g., a number between 0 to 1, pfailure)
to cables based on a given PGA they experience. We make a qualitative assumption
that MMI VI, which is 10–20%g, will cause moderate damage, as this is also what
causes damage on buildings and set pfailure = 0.5. Cables that experience 1g of ground
motion will certainly be damaged/disrupted. Hence, we set pfailure = 1.0. For a given
cable, the damage probability would then be: DP = P (damage|50years, Y cable) =
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P (PGA > x|50years) ∗ P (pfailure|PGA). And then for a given region, we will use
the damage probability (DP) to obtain the probability of failure/disruption given all the
cables by multiplying the number of cables. The count of fiber cables and their failure
likelihoods are are shown in Table 3. Similarly, the counts and the damage probabilities
are shown in Table 4. The high-risk assets (e.g., 3 cables in the violent category) pro-
vide an opportunity to rethink earthquake monitoring using distributed acoustic sensing
(DAS) and, more broadly distributed fiber optic sensing (DFOS) for detecting seismic
events [59].

Table 3. Count of fiber cables categorized based on PGA-MMI mapping (and the corresponding
probability of failure for that MMI, pfailure), for two different return periods or probabilities of
exceedance. If a cable passes through multiple risk zones, it is counted for both. We assume that
a PGA of 0.092 or below will not cause structural damage to cables. *This does not imply that no
infrastructure will feel moderate shaking within the 2% in 50 years probability; rather, in this less
likely scenario, the shaking at these infrastructure locations will surpass this level of shaking.

PGA (g) MMI pfailure Count - PGA 10% Count - PGA 2%

0.039 < x <= 0.092 Moderate 0 264 0*

0.092 < x <= 0.18 Strong 0.5 7449 241

0.18 < x <= 0.34 Very Strong 0.7 23061 8007

0.34 < x <= 0.65 Severe 0.9 0 22549

0.65 < x <= 1.24 Violent 1.0 0 3

Table 4. Count of fiber cables categorized based on PGA-MMI mapping, and their respective
estimated damage probability (DP) in the next 50 years as a percentage, by convolving pfailure
with the probability of exceeding the level of PGA (2% or 0.02, or 10% or 0.1).

DP 1% 1.4% 1.8% 2% 5% 7% 9% 10%

Count 241 8007 22549 3 7449 23061 0 0

To complement Tables 2, 3, and 4, Figs. 7 and 8 (in Appendix A.2) show the
fiber miles for individual providers for PGA values with 2% and 10% probability of
exceedance within the next 50 years, respectively. From these figures, we see that Spec-
trum Business is at the highest risk as it has fiber assets in all higher PGA value bins,
followed by Zayo and Integra. In the analysis of risk, we consider affected miles rather
than percentages of a provider’s total fiber in the PNW due to the proprietary nature of
a provider’s data.
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Fig. 3. Nodes proximal to CSZ. Red circles: POPs,
green triangles: colos, yellow squares: data centers,
white crosses: IXPs. (Color figure online)

Fig. 4. Cell towers in PNW.

Node Infrastructure Risk Groups. Next, we turn our attention to assess the node
infrastructures that are susceptible to strong shaking. Unfortunately, as shown in Figs. 3
and 4, the nodes are not distributed uniformly across PNW. For example, the cell tower
locations are highly distributed (see Fig. 4) whereas the rest of the nodes (as shown in
Fig. 3) are located close to densely populated metro areas (e.g., Seattle, Portland, etc.).
Hence, in our overlap analysis, we separate the cell towers from the rest of the nodes.

Tables 5 and 6 depict the raw count of node types (with percentages) under differ-
ent risk groups with 10% and 2% probability of exceedance, respectively, in the next 50
years. From Table 5, we note that 39 colocation facilities, 371 POPs, and 29 data cen-
ters are prone to very strong shaking risk. These infrastructures are also susceptible to
severe shaking risks if we consider with 2% probability of exceedance. The count (and
percentage) of nodes falling into a given risk category in the 10% and 2% PGA is not
coincidence. Note that areas with the highest predicted PGAs are also areas with some
of the most concentrated infrastructures in the aforementioned metro areas. Meaning
that in future earthquakes, these connectivity hubs would be the highest areas of con-
cern.

Table 5. Count of nodes (with percentages) that are prone to earthquake shaking for expected
PGAs with 10% probability of exceedance.

PGA MMI Colos POPs IXPs Data centers

0.092 < x <= 0.18 Strong 20 (34.0%) 51 (12.0%) 1 (25.0%) 2 (6.0 %)

0.18 < x <= 0.34 Very Strong 39 (66.0%) 371 (88.0%) 3 (75.0%) 29 (94.0 %)
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Table 6. Count of nodes (with percentages) that have a 2% chance of exceeding a specified level
of shaking in the next 50 years.

PGA MMI Colos POPs IXPs Data centers

0.18 < x <= 0.34 Very Strong 20 (34.0%) 51 (12.0%) 1 (25.0%) 2 (6.0 %)

0.34 < x <= 0.65 Severe 39 (66.0%) 371 (88.0%) 3 (75.0%) 29 (94.0 %)

Table 7. Percentage of cell towers (with percentages) that have a 10% chance of exceeding a
specified level of shaking in the next 50 years.

PGA MMI LTE CDMA GSM UMTS

0.039 < x <= 0.092 Moderate 2142 (1.75%) 378 (2.9%) 241 (1.94%) 688 (1.04%)

0.092 < x <= 0.18 Strong 40213 (32.92%) 3986 (30.57%) 3180 (25.54%) 18810 (28.53%)

0.18 < x <= 0.34 Very Strong 79596 (65.17%) 8636 (66.23%) 8995 (72.25%) 46353 (70.31%)

0.34 < x <= 0.65 Severe 190 (0.16%) 39 (0.3%) 34 (0.27%) 73 (0.11%)

Table 8. Count of cell towers (with percentages) per type that have a 2% probability of exceeding
a particular level of shaking in the next 50 years.

PGA MMI LTE CDMA GSM UMTS

0.092 < x <= 0.18 Strong 1755 (1.44%) 314 (2.41%) 175 (1.41%) 498 (0.76%)

0.18 < x <= 0.34 Very Strong 41414 (33.91%) 4034 (30.94%) 3343 (26.85%) 19989 (30.32%)

0.34 < x <= 0.65 Severe 75977 (62.2%) 8340 (63.96%) 8723 (70.06%) 44459 (67.44%)

0.65 < x <= 1.24 Violent 2995 (2.45%) 351 (2.69%) 209 (1.68%) 978 (1.48%)

As mentioned above, the cellular towers—compared to the other node
infrastructures—are more broadly deployed across the PNW. Hence their deployment
locations have a profound impact on how the risk groups look. Tables 7 and 8 show
the raw counts and percentages of cell tower infrastructure risk categories for 10% and
2% probability of exceedance in the PNW area; the categories are shown for different
technologies (i.e., LTE, CDMA, GSM, etc.). From Table 7, we note that over 97% of
cellular infrastructures are in the strong to severe risk categories. With 2% probability
of exceedance, the risk categories shift to very strong and violent in Table 8.

4.2 What are the Impacts of Infrastructure Outages on the Society?

Having looked into the infrastructure risk groups, we next assess the impacts of infras-
tructure outages on society. To this end, we combine the risk groups with MSAs
(from [60]) using the overlap analysis capability in ShakeNet. Subsequently, for each
return period (10% or 2%), we sort the MSAs by average PGA, then population density,
then infrastructure concentration to obtain a combined risk ranking. Note that the values
of PGA are uniformly higher in all areas for 2% in 50 years in comparison to 10% in
50 years, thus sorting either by 10% or 2% produces the same ranking.
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Table 9. Top 5 MSAs with infrastructures ranked based on high earthquake risks.

Fiber cables DCs/IXPs/Colos/POPs Cell towers

Seattle-Tacoma-Bellevue Seattle-Tacoma-Bellevue Seattle-Tacoma-Bellevue

Portland-Vancouver-Hillsboro Portland-Vancouver-Hillsboro Portland-Vancouver-Hillsboro

Wenatchee Eugene Salem

Eugene Olympia-Tumwater Eugene

Klamath Falls Bellingham Olympia-Tumwater

Table 9 depicts the top 5 MSAs with the highest infrastructure risks due to shaking.
It can be seen from the table that Seattle-Tacoma-Bellevue and Portland-Vancouver-
Hillsboro MSAs are of the highest risk in all three infrastructure types. This is primarily
due to two factors. First, these MSAs are densely populated and house the majority of
fiber and node infrastructures in PNW. Second, since these two MSAs are connected
together by fiber infrastructures running along the I-5 interstate and the area between
Portland, OR and Seattle, WA has PGA values with predicted shaking ranging from
very strong to severe shaking, the combined infrastructure risks are very high.

4.3 How to Minimize the Impacts of Earthquakes on Internet Infrastructures?

To answer this question, we apply ShakeNet’s route planner capability for an “aver-
age” earthquake scenario that can potentially damage infrastructure deployments in
and between Seattle-Tacoma-Bellevue and Portland-Vancouver-HillsboroMSAs. These
two MSAs, together, contain 43 colocation facilities, 399 POPs, and 31 data centers, all
connected by 6,681 miles of fiber. This scenario is derived from the above probabilis-
tic analyses, which consider a variety of possible earthquake sources in the region. To
establish a baseline, we estimated the speed-of-light RTT based on the shortest path
(i.e., via I-5) from the centers of MSAs as ∼3ms. Further, we also noted the minimum,
maximum, and average of the PGA in the contours that the fibers pass through for both
10% and 2% probability of exceedance. These statistics are shown in Table 10.

Table 10. PGA values and latencies for the shortest vs. other alternate paths from Seattle to
Portland.

Routes Latency Avg 10% Min 10% Max 10% Avg 2% Min 2% Max 2%

Baseline (along I-5) ∼3ms 0.24 0.17 0.29 0.36 0.29 0.4

Yakima - Kennewick ∼6ms 0.2 0.11 0.29 0.32 0.24 0.4

Spokane - Boise ∼18ms 0.18 0.08 0.29 0.28 0.17 0.4

Using the route planner, we identified two alternate fiber paths with reduced PGAs.
First is a path through eastern Washington to Oregon: that is, from Seattle to Spokane,
then south to Lewiston, then west to Portland through Kennewick with ∼400 mile (i.e.,
∼6ms RTT) increase in fiber span and a PGA reduction of 0.06. The second alternate
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is through Spokane, WA, and Boise, ID. While this route is much longer (i.e., ∼1200
miles or ∼18 ms RTT) it has the benefit of being even further away from the CSZ and
less adverse to risk (PGA reduction of 0.09). These alternate paths could be deployed
in the long-term (via new deployments [61]) as well as short-term (via risk-aware rout-
ing [44]).

5 Summary and Future Work

To understand and mitigate (future) earthquake-related risks on Internet infrastructure
in the PNW, we have devised a GIS-based framework called ShakeNet. ShakeNet uses
a probabilistic approach to categorize the infrastructures into risk groups based on PGA
and MMI, and estimate the potential extent of shaking-induced damages to infrastruc-
tures. Our analysis shows that ∼65% of the fiber links and cell towers are susceptible
to violent earthquake shaking. Further, infrastructures in Seattle-Tacoma-Bellevue and
Portland-Vancouver-Hillsboro MSAs have a 10% chance to incur very strong to severe
earthquake shaking. We design a route planner capability in ShakeNet and show that it
is possible to mitigate the impacts of shaking risks by identifying longer albeit less-risky
paths.

Further development of ShakeNet will use USGS ShakeAlert earthquake early
warning messages to re-route traffic during the occurrence and growth of an earth-
quake to maintain critical Internet functionality for post-disaster responses. We also
plan to extend ShakeNet and explore multi-hazard events (i.e., a cascading sequence
of natural disasters such as aftershocks followed by a tsunami) which are expected
to severely impact the Internet infrastructures. Similarly, earthquake-related permanent
ground deformation (ground failure such as landslides and liquefaction) pose a signif-
icant threat to Internet infrastructures. For the former, we plan to consider Short-term
Inundation Forecasting for Tsunamis (SIFT) [62] from NOAA tsunami forecasting [63]
and do a multi-layer analysis of risks from shaking and tsunamis. For the latter, we
will use probabilistic estimates of ground failure from models such as [41,64,64,65].
We will expand ShakeNet’s route planner by considering individual provider networks:
with this analysis, new routes can be produced with minimized risks for each provider.

Finally, ShakeNet can be extended to a performance-based earthquake engineering
(PBEE) paradigm [66], which provides measurable assessments of the potential seis-
mic performance of a system given decision-makers’ determinations of its necessary
functional level. This requires understanding the performance of various infrastructure
components when exposed to a certain level of shaking. The resulting performance is
convolved with 2% and 10% PGA estimates like we have shown here, to determine risk,
and, finally, obtain a performance-based aspect of the infrastructure by defining various
tolerance levels (e.g., partial functionality, increased latency but full functionality, etc.).
This PBEE methodology can also be expanded with infrastructure vibration tolerances
to reason about unique failure likelihoods for cables, cell towers, and buildings (data
centers). This expansion is non-trivial and requires extensive research into tolerance
thresholds for many types of infrastructures, potentially using numerical or physical
modeling. Currently, no known solution exists.
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A Appendices

A.1 Contour of Expected PGA Values

We use two sets of probabilistic PGA data which encompass the CSZ: expected PGA
in the next 50 years at 10% (Fig. 5) and 2% (Fig. 6) for the PNW area. These data sets
were computed using the USGS national seismic hazard map software for the 2014 map
edition [53], obtained as raster information and converted to concentric polygons using
raster contouring capabilities [54] in ArcGIS.

Fig. 5. Expected PGAwith 10% chance in next
50 years.

Fig. 6. Expected PGA with 2% chance in next
50 years.

A.2 Miles of Fiber Affected Per Provider

Figures 7 and 8 show the fiber miles for individual providers for PGA values with 2%
and 10% probability of exceedance within the next 50 years, respectively. From these
figures, we see that Spectrum Business is at the highest risk as it has fiber assets in all
higher PGA value bins, followed by Zayo and Integra.



On the Resilience of Internet Infrastructures in Pacific Northwest to Earthquakes 263

Fig. 7. Miles of fiber affected for expected
PGA with 2% probability.

Fig. 8. Miles of fiber affected for expected
PGA with 10% probability.
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Abstract. Distributed reflection denial of service (DRDoS) attacks are
widespread on the Internet. DRDoS attacks exploit mostly UDP-based
protocols to achieve traffic amplification and provide an extra layer of
indirection between attackers and their victims, and a single attack can
reach hundreds of Gbps. Recent trends in DRDoS include multiprotocol
amplification attacks, which exploit several protocols at the same time,
and carpet bombing attacks, which target multiple IP addresses in the
same subnet instead of a single address, in order to evade detection. Such
attacks have been reported in the wild, but have not been discussed in
the scientific literature so far. This paper describes the first research on
the characterization of both multiprotocol and carpet bombing DRDoS
attacks. We developed MP-H, a honeypot that implements nine different
protocols commonly used in DRDoS attacks, and used it for data collec-
tion. Over a period of 731 days, our honeypot received 1.8 TB of traffic,
containing nearly 20.7 billion requests, and was involved in more than
1.4 million DRDoS attacks, including over 13.7 thousand multiprotocol
attacks. We describe several features of multiprotocol attacks and com-
pare them to monoprotocol attacks that occurred in the same period,
and characterize the carpet bombing attacks seen by our honeypot.

Keywords: Amplification attacks · Network characterization ·
Distributed reflection denial of service

1 Introduction

Distributed denial-of-service attacks (DDoS) have been seen on the Internet
for nearly 25 years [13]. In these attacks, a set of machines sends traffic to a
victim in a coordinated fashion. The volume of data leads to the exhaustion of
system and/or network resources at the victim, causing service unavailability
and hurting legitimate customers [17].

One kind of DDoS attack are Distributed Reflection Denial of Service
(DRDoS) attacks (also known as amplification DDoS attacks), in which traf-
fic is bounced off unsuspecting intermediate systems, known as reflectors [24].
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DRDoS attacks not only make attribution harder due to an extra layer of indirec-
tion, but they also provide traffic amplification, thus making it easier to generate
enough traffic to disrupt the target, especially when multiple reflectors are used
simultaneously. Moreover, DRDoS attacks can leverage several different proto-
cols, notably UDP-based ones, and there is a large number of vulnerable and/or
misconfigured Internet servers that can be used as reflectors [26]. All these bene-
fits to attackers help to explain the prevalence of DRDoS traffic on the Internet.
A study [19] has shown a 9% increase in DRDoS attacks between the second
semester of 2017 and the same period of 2018, and statistics from April 2019
indicate that nearly 70% of DDoS attacks use reflection [6]. It has also been
reported that attacks grew 15% from 2019 to 2020 (25% during the lockdown
period due to the COVID-19 pandemic) [20].

Given the relevance of DRDoS attacks, researchers have worked on the anal-
ysis and characterization of the traffic associated with such attacks. However,
there is a lack of research on multiprotocol DRDoS attacks, where a victim
is attacked using multiple amplification protocols simultaneously, which is an
emerging trend in the DDoS scene [21]. Most existing research considers either
individual protocols [1,5,7,25,27], or multiple protocols in isolation from each
other [9,10,22,26,29]. Another trend in DRDoS are carpet bombing attacks,
which target multiple IP addresses in the same subnet (instead of a single IP
address) in order to evade detection while still being able to cause disruption
by flooding access links. Such attacks have not been discussed in the literature,
although [9] presents some results when victims are aggregated by /16 CIDR
blocks.

Our research aims to bridge these gaps in knowledge by characterizing mul-
tiprotocol and carpet bombing DRDoS attacks. We have designed and imple-
mented MP-H, a honeypot that emulates reflectors for several protocols that are
exploited in DRDoS attacks: Chargen, DNS, NTP, Memcached, QOTD, SSDP,
CoAP, CLDAP, and Steam. Results from 731 days of data collected by our honey-
pot comprise nearly 20.7 billion requests and confirm that multiprotocol attacks
are found in the wild: 2.9% of the victims of DRDoS attacks carried out using
our honeypot as a reflector suffered a multiprotocol attack, with up to three
protocols being used simultaneously. More than 3.7% of all attacks employed
carpet bombing, affecting 21.8% of the victims observed.

In summary, this paper makes the following contributions: we propose a def-
inition for what constitutes a multiprotocol DRDoS attack; we describe several
characteristics of multiprotocol DRDoS attacks and compare them with mono-
protocol attacks observed on the same honeypot; and we characterize carpet
bombing attacks observed on our honeypot.

The remainder of this paper is organized as follows. Section 2 discusses related
work. Section 3 describes our honeypot MP-H. Section 4 presents our data anal-
ysis. Finally, Sect. 5 concludes the paper.
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2 Related Work

This section reviews related work on DRDoS traffic characterization, with an
emphasis on the analysis of attacks in the wild rather than in controlled envi-
ronments. Some studies are focused on a single protocol, such as DNS [1,7,25]
and NTP [5,27]. Attack characteristics examined include temporal distribution,
intensity and duration of attacks, victim locations, packet-level attributes (TTL,
size), amplification factor, and payloads.

Rossow [26] explored how 14 different protocols could be used in amplification
attacks, and estimated the amplification factor provided by each one. He also
performed traffic analysis: flow data from an European ISP were used to identify
victims and amplifiers within the network, UDP scans to darknet addresses were
used to identify potential attackers, and honeypots were used mainly to confirm
the occurrence of attacks, without deeper analysis.

Krämer et al. [9] introduced AmpPots, which are honeypots designed for
observing and collecting DRDoS traffic using nine protocols (NTP, DNS, Char-
gen, SSDP, MS-SQL, NetBIOS, QOTD, SIP, and SNMP). They analyzed data
collected from 21 AmpPots between February and May 2015, totaling more than
1.5 million attacks, and described characteristics such as attack duration, victim
geolocation, and request entropy (payload diversity). They also performed an
analysis of DDoS botnets.

Noroozian et al. [22] analyzed DRDoS traffic collected from eight AmpPots
during 2014–2015, with a total of six network protocols (NTP, DNS, Chargen,
SSDP, QOTD, and SNMP). The main thrust of their study is a characterization
of DRDoS victims, including their network type (access, hosting, enterprise) and
geolocation. They also discuss the duration of attacks per victim type.

Thomas et al. [29] analyzed DRDoS traffic collected from a large set of UDP
honeypots for eight protocols (QOTD, Chargen, DNS, NTP, SSDP, MS-SQL,
Portmap, and mDNS). They observed more than 5.8 million attacks over a period
of 1010 days, and analyzed scanning behavior and several attack characteristics
(duration, packet counts, number of attacks). NTP and DNS were the most
popular protocols, but they also noticed significant amounts of SSDP traffic.

Jonkers et al. [8] analyzed DDoS traffic using both AmpPots and backscatter
traffic from an Internet telescope. They observed more than 20 million attacks
over two years (2015–2017), affecting more than 2.2 million /24 networks. They
also describe joint attacks, which are attacks that employ both DRDoS and
regular DDoS with spoofed source addresses (mostly TCP SYN floods).

While these studies investigated DRDoS attacks involving several protocols,
they mostly ignore how these protocols are used together. In fact, Krämer et al.
[9] acknowledge the existence of attacks using multiple protocols, but do not
explore this further, while the joint attacks in [8] are combinations of DRDoS
and regular DDoS. None of the studies consider carpet bombing attacks. In
this paper we specifically address multiprotocol DRDoS and carpet bombing
attacks, aiming to understand their characteristics and how they compare to
monoprotocol ones.
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3 MP-H, a Multiprotocol Honeypot

To observe and collect DRDoS traffic, we developed MP-H, a multiprotocol hon-
eypot that supports nine different UDP-based protocols: Chargen, QOTD, DNS,
NTP, SSDP, Memcached, CoAP, CLDAP, and Steam (used in online games).
CoAP and CLDAP have been added in March and July 2020, respectively, while
the other protocols have been supported from the beginning (September 2018).
MP-H is designed to mimic a reflector: it receives requests and provides responses
that look legitimate, logging all the received traffic. A list of ongoing attacks
(with source IP address, number of requests, and the timestamps of the first and
last seen requests) is updated in real-time and kept in memory, and periodically
written to permanent storage when activity is low. Full packets are captured
using Tcpdump [28] for off-line processing (e.g., payload analysis).

Since it does not host any publicly advertised service, an MP-H instance will
become a reflector after it has been found through scanning. Once it has been
uncovered, the honeypot address can be used in DRDoS attacks and will likely be
shared among miscreants. Observing reflection attacks, however, does not require
actually taking part in them. Therefore, the honeypot should respond correctly
to scans (increasing the odds that it will be recruited for future attacks), but
not contribute significantly to DRDoS attacks. To achieve this, MP-H responds
to at most five responses per IP address per day; this should be enough to both
provide positive feedback to a scanner and severely limits the amount of attack
traffic it sends to a single victim. Every hour MP-H scans the list of banned IP
addresses and removes offenders that have been there for 24 h or more.

There are several projects that scan the Internet for open reflectors, such as
[4] and [23]. In order to avoid being reported as an open reflector, MP-H has a list
of banned IP addresses for which no responses are sent. This list was compiled
from several sources (e.g., [16], project web pages), and is updated manually
whenever we discover new scanning addresses while analyzing logs.

MP-H is similar in design to AmpPot [9], with the main differences being in
implementation specifics and in the set of supported protocols. In MP-H, DNS
and Memcached requests are proxied to actual servers (thus eliciting truthful
responses), while the other protocols are emulated by the honeypot, which syn-
thesizes legitimate-looking responses with fabricated content. The honeypot is
written in Python, and runs on Linux. The source code is not publicly available
yet, but we are open to sharing the tool with interested researchers.

4 Data Analysis

An MP-H instance has been deployed in our university network since September
2018, collecting data 24/7. It has a public IP address and is exposed to the
Internet (i.e., it is not behind a firewall or NAT box). In this section we analyze
data collected using this instance over a period of 731 days, from September
2018 to September 2020. Section 4.1 gives overall traffic statistics. Section 4.2
explores attack intensity. Section 4.3 performs per-protocol analyses. Section 4.4
describes the victims. Finally, Sect. 4.5 dissects carpet bombing attacks.
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4.1 Overview

Over a period of 731 days, our honeypot received 1.8 TB of traffic, containing
nearly 20.7 billion (B) requests, an average of 28.3 million (M) requests per
day. Only a tiny fraction (less than 7.2M, 0.034% of the total) of those requests
received a response, showing the effectiveness of the response limiting mecha-
nism.

In this work, we define a monoprotocol attack as a set of five or more requests
with source IP addresses belonging to the same CIDR block (a victim) and
the same destination UDP port, in which consecutive requests are at most 60 s
apart. Victims are defined as IP addresses within a CIDR block instead of a
single IP address due to carpet bombing attacks, as discussed in Sect. 4.5. The
thresholds (5 requests and 60 s) were established empirically: we analyzed the
traffic collected by the honeypot during the first three weeks manually, and
observed distinct behaviors from the same source IP address:

1. “Slow”: a small number (≤3) of requests, a few (1–2) seconds apart;
2. “Fast”: many (≥10) nearly identical requests, in quick succession;
3. “Bursty”: sequences of bursts of “fast” traffic, tens of seconds apart.

We classified the first as scan traffic and the others as attack traffic. We then
experimented with distinct thresholds until we reached an automatic classifica-
tion that closely matched our manual classification. We believe this approach
is reasonable on a problem without ground truth, but acknowledge that future
work may require different thresholds as we learn more about typical attacker
behavior.

By analogy, we define a multiprotocol attack as a set of five or more requests
with source IP addresses belonging to the same CIDR block and with two or more
unique destination UDP ports, in which consecutive requests are at most 60 s
apart. By this definition, two monoprotocol attacks against the same victim that
use different protocols and are spaced by at most 60 s become a multiprotocol
attack.

Table 1 shows the overall attack statistics. The honeypot observed nearly
1,4M DRDoS attacks, of which 99.05% were monoprotocol attacks and 0.95%
were multiprotocol attacks. While monoprotocol attacks are much more preva-
lent, there were 13.8k multiprotocol attacks. Multiprotocol attacks account for
2.9% of the victims and 2.5% of the requests. The average number of requests
per attack for multiprotocol attacks is 38.2k, almost twice the average for mono-
protocol attacks, which is 19.8k requests per attack.

Our data collection period covered the Brazilian presidential elections (Octo-
ber 2018) and the lockdown period of COVID-19 (from March 2020 onwards),
with some interesting results. Compared to the previous month, the packet rate
doubled during the election month, and on the day of the second round (Oct
28th) the number of attacks had a 227% increase. We compared the four-month
period with stricter lockdown (March–June) to the same period in 2019 and to
the four months before it. We observed 4× growth of the packet rate during the
lockdown period compared to the other two periods, and the emergence of new
victims in health organizations, e-commerce, and academic institutions.
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Table 1. Attack statistics

Type of attack Requests % Victims % Attacks %

Monoprotocol 20,203,393,971 97.50 1,079,210 97.08 1,432,775 99.05

Multiprotocol 518,684,765 2.50 32,369 2.91 13,798 0.95

Total 20,722,078,736 100 1,111,579 100 1,446,573 100

4.2 Attack Intensity

Figure 1 presents the empirical cumulative distribution function (CDF) for the
number of requests per attack, and Table 2 (top) shows a statistical summary.
Both types of attacks have right-skewed distributions. Multiprotocol attacks
had more requests than monoprotocol attacks up to the 99.99th percentile. This
means that a large majority of multiprotocol attacks had more requests than
the corresponding fraction of monoprotocol attacks.

Table 2. Attack intensity statistics

Monoprotocol Multiprotocol

No. of attacks w/≥ 1M requests 1,927 (0.1%) 60 (0.4%)

Attack w/most requests 221.9 M (1.0%) 7.8 M (1.5%)

Duration (median) 612.5 s 2673.9 s

No. of attacks lasting ≥ 1 h 39,886 (2.7%) 1,737 (12.5%)

Longest attack 178.6 h (7.4 days) 180.0 h (7.5 days)

Requests per day (avg/max) 27.6M/253.7M 1.3M/17.5M

Packets per second (avg) 31.7 pps 13.8 pps

Figure 2 shows the CDF for the duration of attacks. The duration is mea-
sured as the time difference between the first and last requests in an attack. The
distribution is left-skewed for both mono and multiprotocol attacks. Multiproto-
col attacks last longer than monoprotocol attacks up to the 99.99th percentile.
Table 2 (middle) presents some statistics. In [9], 62% of the attacks were shorter
that 15 min and 90% lasted up to 1 h; the corresponding fractions for MP-H were
87% and 95.9%, respectively, which means that the attacks we observed were
shorter overall.

Figure 3 depicts the daily attacks observed by the honeypot. The number of
attacks climbed quickly after the honeypot was deployed, and remained relatively
steady until June 2020. The notable exception was a 15-day period bridging July
(last 8 days) and August 2019 (first 7 days), when the average jumped from 1.9k
to 18.4k attacks per day. This period saw predominantly small attacks (80% of
attacks had up to 127 requests) that targeted unrelated victims, and we could
not find an explanation for this spike. The rise starting in July 2020 is due to
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Fig. 2. ECDF for attack duration

the deployment of the CLDAP honeypot; the average for July–September was
6,621 attacks per day. Overall, the number of attacks per day was 1,449, and
the maximum was 20.9k. Only 29 out of 731 days (4.0%) had 5,000 attacks or
more, with 15 of these days in July-August 2019. There were 33 multiprotocol
attacks per day on average, but they were observed on only 386 days (52.8%).
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Fig. 3. Evolution of the number of attacks per day

Figure 4 depicts the number of requests per month, broken down by protocol.
The number of requests varies each month, without discernible trend. The num-
ber of requests follows the number of attacks shown in Fig. 3, but imperfectly:
in 2019, June had the most requests but not too many attacks, while July and
August has the most attacks with a moderate number of requests (since most
attacks were small). The protocol breakdown shows that Memcached and Char-
gen had the most monthly requests until July 2020, when we started collecting
CLDAP traffic and this protocol became prevalent (this is further discussed in
Sect. 4.3). Table 2 (bottom) shows statistics about requests per day/second. The
number of requests per day for multiprotocol attacks is heavily skewed, and the
average considers only days with attacks. The number of requests for other pro-
tocols fluctuated, but were mostly dwarfed by the leading protocols. Putting the
two dimensions (attacks and requests) together, we find a rather low intensity
of 30.6 pps for attack traffic (considering only busy periods).
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4.3 Per-protocol Analyses

As discussed in Sect. 3, MP-H supports nine protocols: Chargen, DNS, Mem-
cached, NTP, QOTD, SSDP, CoAP, CLDAP and Steam. Table 3 shows their
relative contribution both in number of monoprotocol attacks and in number of
requests. Chargen and Memcached dominate, appearing in 52.1% of the attacks
and 84.2% of the requests. These protocols offer large amplification factors (60
for Chargen, 262 for Memcached), which helps to explain their prevalence. DNS
gained prominence in 2020, and CLDAP, which was deployed in July 2020, has
already climbed to number three in requests and number four in attacks (in
absolute numbers).

Table 3. Protocol breakdown for monoprotocol attacks and requests

Protocol Chargen CLDAP CoAP DNS Memcached NTP QOTD SSDP Steam

Attacks (%) 21.5 9.2 0.01 25.0 30.5 5.3 2.0 5.8 0.05

Requests (%) 60.9 12.6 0.0002 0.9 23.3 0.01 1.5 0.5 0.000004

Table 4 shows the average amplification factors observed for each protocol
(Steam is omitted due to low traffic), along with factors previously reported
in the literature. Memcached had the largest amplification factor, 262. Most
protocols exhibited lower amplification factors than reported before; a possible
explanation might be that our number is the average factor, while others may be
the maximum factor rather than the average one. The exceptions were CLDAP
and DNS, which remained within the reported range, and SSDP, which had a
larger amplification factor than previously reported. The latter is due to the
response synthesized by the honeypot being larger than the responses in [11,26].
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Table 4. Amplification factors observed in MP-H and in the literature

Protocol MP-H Literature Protocol MP-H Literature

Chargen 60 556.9 [26] Memcached 262 51,200 [12]

CLDAP 62 46–70 [2,15] NTP 42 556.9 [26]

CoAP 25 34–46 [3,18] QOTD 78 140.3 [26]

DNS 50 28.7–64.1 [26] SSDP 97 20–75.9 [11,26]

Table 5 presents the most popular combinations of protocols in multiprotocol
attacks, ranked both by number of attacks and by number of requests. The most
used protocols were Chargen, DNS, CLDAP, and SSDP; attacks with Chargen
and one of the other three account for 82.2% of the attacks and 64.1% of the
requests. Two noteworthy aspects are (i) Chargen being used in all top combi-
nations, and (ii) CLDAP already being used in nearly two-thirds of the attacks.
The Chargen:CLDAP attacks are less intense, however, than Chargen:DNS and
Chargen:SSDP attacks, which account for a larger fraction of requests. There
were just 230 attacks (1.66% of the multiprotocol attacks) with more than two
protocols. We can conclude that monoprotocol attacks are exploiting a wider
range of protocols, focusing on those with higher amplification factors. Multi-
protocol attacks exploit a smaller set of protocols, with varying combinations,
which explains the concentration in four protocols.

Table 5. Protocol combinations used in multiprotocol attacks (CG = Chargen)

Protocol CG:DNS CG:CLDAP CG:SSDP CG:Memcached Others

Attacks (%) 8.2 65.4 8.6 5.6 12.2

Requests (%) 27.9 16.7 19.5 9.2 26.7

For protocols where responses do not depend on request contents, such as
Chargen and QOTD, attackers can maximize the amplification factor by min-
imizing payload size. 100% of Chargen requests observed had just one byte of
payload and 98.2% of QOTD requests had two bytes or less.

When amplification depends on message contents, not just size, we can iden-
tify some prevalent patterns. SSDP had 99.9% of M-SEARCH requests, used for
service discovery, while NTP had 99.9% of MONLIST requests, used for listing
recent peers. The protocols recently added to MP-H, CoAP and CLDAP, fol-
low a similar pattern. 99.5% of the CoAP requests contained a null URI, while
99.1% of the CLDAP requests contained a searchRequest <ROOT> operation. In
all cases, the aim is to maximize amplification.

DNS requests exploit a wide variety of resource records (RRs). 115.9k distinct
RRs were observed, and the six most used, which account for 34.5% of the
queries, are listed in Table 6 (size is not available for access-board.gov because
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its name servers no longer answer ANY queries). The top two queries were also
reported in [9]. The most frequent query, isc.org ANY, yields an amplification
factor of 71.1. While there are other names that provide larger responses, a
possible reason for using this name is that ISC is responsible for the BIND
name server, and thus at the forefront of DNS developments, which suggests the
existence of many records in the zone apex and good name server availability.
The query types observed are shown in Table 7. The vast majority (91.9%) of
the queries were for ANY, which returns all records for a given name (regardless
of type), usually resulting in larger responses.

Memcached is abused for amplification in two ways. One is requesting statis-
tics from the server, which provides an amplification factor of 32 on average.
The other is using set to store large values in the in-memory database and
later repeatedly retrieving these values with get requests for the associated key.
99.99% of the requests observed in MP-H were of the second kind, mostly with
random data. The amplification factor depends on the value size.

Table 6. DNS queries observed

Resource Record % Size

isc.org ANY 22.1 2701

067.cz ANY 4.0 388

access-board.gov ANY 3.6 N/A

irs.gov ANY 2.1 4302

1x1.cz ANY 1.6 1501

pbgc.gov ANY 1.1 4223

Others 65.5 –

Table 7. DNS query types observed

QTYPE %

ANY 91.9

TXT 7.9

A 0.035

CNAME 0.014

NS 0.009

Others 0.14

4.4 Victims

Since DRDoS attacks employ IP spoofing, we consider the source IP addresses
of attack traffic as victim addresses. They are grouped by CIDR block according
to the GeoLite2 database [14], also the source for AS numbers and geolocation.

Monoprotocol attacks affected victims in 226 countries (country codes, actu-
ally), and 111 countries had victims of multiprotocol attacks. Table 8 shows the
top countries in terms of monoprotocol and multiprotocol attacks. Victims in
United States and China are targeted by 39.8% of the monoprotocol attacks and
63.6% of the multiprotocol attacks, with United Kingdom ranking third for both
types of attacks. In spite of the top 3 countries being the same, the targets of
monoprotocol and multiprotocol attacks are poorly correlated: the rank corre-
lation for countries with at least one attack of each kind is weak (Spearman’s
coefficient rs = 0.36, p < 0.01).

Table 9 shows the top six AS Numbers in terms of victims of both mono-
protocol and multiprotocol attacks. Victims are widely distributed across ASNs,
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Table 8. Top target countries in number
of attacks

Table 9. Top target ASNs in number
of victims

with the top ASNs accounting for just 16.6% of the victims. ASNs 7922 (COM-
CAST), 7018 (AT&T INTERNET), 20115 (Charter Communications), and 701
(UUNET) belong to Internet service providers, while ASNs 37963 (Hangzhou
Alibaba Advertising Co), and 16276 (OVH) belong to cloud providers.

Table 10 presents statistics about the number of attacks per victim. In gen-
eral, there were more monoprotocol than multiprotocol attacks per victim, which
was expected. Most victims received few attacks, which is similar to the findings
in [9], where 79% of the victims were attacked just once and 0.8% suffered more
than 10 attacks (our fraction of victims with more than 10 monoprotocol attacks
is higher, though).

Table 10. Attacks per victim

Monoprotocol Multiprotocol

Attacks per victim (median) 2 1

Attacks per victim (max) 3,837 229

Fraction of victims w/only one attack 60.2% 83.8%

Fraction of victims w/≤10 attacks 97.7% 99.2%

Fraction of victims w/>10 attacks 2.3% 0.8%

4.5 Carpet Bombing Attacks

A recent trend in DRDoS attacks are carpet bombing attacks, which target
multiple IP addresses within the same subnet or CIDR block in lieu of a single
IP address [19]. The goal is to flood the access links of the intended victims while
evading detection and hampering mitigation. Carpet bombing detection requires
looking for anomalous traffic across entire subnets or CIDR blocks instead of
anomalous flows involving a single IP address, while mitigation involves filtering
traffic to the entire subnets/blocks, and/or diverting it to a scrubbing service.
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A real example of carpet bombing observed on MP-H was an attack that
lasted 14 min and used two protocols, Chargen and Memcached. This attack
had 340k requests that were spread across 43 different IP addresses in the same
CIDR block, averaging 7.9k requests per address.

Two variants of carpet bombing observed in MP-H are depicted in Figs. 5
and 6. Figure 5 shows the most prevalent case, where addresses in the same
CIDR block are targeted in overlapping time intervals. The second case (Fig. 6)
presents what we called an attack with antecedents. Here, the carpet bombing
attack occurs after a few days where a single address is targeted each day. We
have considered these individual attacks to be antecedents to the carpet bombing
because they have similar characteristics – protocol (Chargen and Memcached),
duration, number of requests –, even if the addresses are different.
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Fig. 5. Carpet bombing attack
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Fig. 6. Carpet bombing with antecedents

Table 11 presents statistics for carpet bombing attacks, with percentages rel-
ative to the totals in Table 1. We define a carpet bombing attack as an attack tar-
geting multiple IP addresses from the same CIDR block. These attacks account
for a small fraction of attacks and requests (3.7% of all attacks and 5.8% of the
associated requests), but affect more than one-fifth of the victims (some victims
suffered both mono- and multiprotocol carpet bombing).

Table 11. Carpet bombing statistics

Carpet bombing Requests % Victims % Attacks %

Monoprotocol 1,117,437,837 5.39 235,244 21.16 52,689 3.64

Multiprotocol 78,018,641 0.37 22,825 2.05 949 0.07

Total 1,195,456,478 5.76 242,030 21.77 53,638 3.71

We observed a total of 1.1M victims, of which 21.8% (242k) suffered carpet
bombing attacks. Carpet bombing attacks averaged 31.2k requests overall, and
9.6k per host in a CIDR block. Considering only attacks that use more than
50% of a CIDR block, the average rises to 41.5k requests, albeit with an average
of just 185 requests per host. This shows that, when attackers target a larger



New Kids on the DRDoS Block 281

fraction of a CIDR block, the number of requests per host tends to be smaller.
On average, each attack targeted 6.2% of the addresses in a CIDR block, but
1.7% of the attacks targeted 90% or more of a single CIDR block.

Table 12 shows the most popular protocols in carpet bombing attacks. Com-
paring to Tables 3 and 5, here we have a greater presence of SSDP, but there
are still similarities with other choices of reflector protocols (90.8% of the mul-
tiprotocol attacks use just two protocols).

Table 12. Top protocols in carpet bombing attacks

Monoprotocol Multiprotocol

SSDP 29.3% Chargen:DNS 20.8%

Chargen 15.2% CLDAP:SSDP 14.8%

Memcached 12.9% DNS:SSDP 14.6%

Others 42.6% Others 49.8%

Table 13 presents statistics on the number of requests and duration of carpet
bombing attacks, for both mono and multiprotocol attacks. Both distributions
are heavily right-skewed. There were attacks with more than 1M requests (0.4%
for mono, 1.6% for multi), a significant amount from the vantage point of a
single reflector. Another notable finding is that almost 25% of multiprotocol
carpet bombing attacks lasted 1 h or more.

Table 13. Carpet bombing attack statistics

Monoprotocol Multiprotocol

Requests (avg) 29.8k 86.4k

Requests (99th percentile) 431k 1.3M

Duration (avg) 20 min 4 h

No. of attacks lasting ≥ 1 h 1637 (3.1%) 221 (23.3%)

Longest attack 7 days 7.5 days

5 Conclusion

Distributed reflection denial of service (DRDoS) attacks still plague the Inter-
net, and are constantly evolving to become more difficult to detect and mitigate.
In this paper we present the first detailed study about multiprotocol DRDoS
attacks. We used a honeypot that mimics a reflector to observe attack traf-
fic. We found evidence that multiprotocol attacks are occurring but still in the
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minority; our belief is that they will increase in the future, due to the broader
availability of reflectors and the increased difficulty of dealing with multiple
protocols when defending. We also studied the recent phenomenon of carpet
bombing attacks, describing several of their characteristics, including the potent
combination of multiprotocol and carpet bombing. For the future we are working
on a distributed honeypot platform so that we can deploy more data collection
sensors, and on expanding the set of protocols supported by MP-H.
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Abstract. DDoS attacks remain a major security threat to the contin-
uous operation of Internet edge infrastructures, web services, and cloud
platforms. While a large body of research focuses on DDoS detection and
protection, to date we ultimately failed to eradicate DDoS altogether.
Yet, the landscape of DDoS attack mechanisms is even evolving, demand-
ing an updated perspective on DDoS attacks in the wild. In this paper,
we identify up to 2608 DDoS amplification attacks at a single day by ana-
lyzing multiple Tbps of traffic flows at a major IXP with a rich ecosystem
of different networks. We observe the prevalence of well-known amplifica-
tion attack protocols (e.g., NTP, CLDAP), which should no longer exist
given the established mitigation strategies. Nevertheless, they pose the
largest fraction on DDoS amplification attacks within our observation
and we witness the emergence of DDoS attacks using recently discov-
ered amplification protocols (e.g., OpenVPN, ARMS, Ubiquity Discov-
ery Protocol). By analyzing the impact of DDoS on core Internet infras-
tructure, we show that DDoS can overload backbone-capacity and that
filtering approaches in prior work omit 97% of the attack traffic.

1 Introduction

With growing relevance for our society and in light of the commercial success of
the Internet, naturally also misconduct is increasing. A popular security threat is
to launch Distributed Denial-of-Service (DDoS) attacks [28,57,65] against appli-
cation or service providers by consuming more critical resources than available,
e.g., computing power or network bandwidth. The motivation to conduct in
criminal activities are manifold and include financial gain [14,59], political moti-
vation [6,40], and cyber warfare [27,61].

The main reason for the scale of current DDoS attacks [5,34,50,51] is the
misuse of certain protocols to amplify attack traffic [28,57,65]. Responses to
spoofed traffic [7,8,36,38,41], i.e., packets with modified source IP addresses,
are reflected towards the DDoS target and not the original sender. The reflected
traffic is not only sent to a different target but also amplified as small request can
trigger significantly larger responses (up to ×50, 000) [53,54,62]. The so-called
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amplification factor depends on the misused protocol, e.g., NTP, DNS, or more
recently Memcached [3,42,53].

To mitigate these attacks in practice, various reactive DDoS detection and
defense techniques filter unwanted traffic of ongoing attacks, e.g., scrubbing ser-
vices [2,23,29,43,63], blackholing [20,21,29,30], or ACLs and Flowspec [16,48].
In this arms race, spontaneously appearing new amplification vectors are quickly
growing to cause substantial harm to even well positioned networks and applica-
tions [42,65]. To make matters worse for mitigation service providers and network
operators, once exploited protocols for DDoS often remain a threat for decades,
despite the joint effort of the research community, operators, and policy mak-
ers. While the impact on web services [55,64] or platform service providers [55]
is well studied, only few works study DDoS attacks in the wild. These studies
largely rely on measurements taken at the edge at i) honeypots [28,58], ii) a
DDoS scrubbing service [43], or iii) by analyzing network backscatter [10,28].
Only one study analyzes DDoS attacks in Internet traffic captured at the Inter-
net core [32] and solely focuses on NTP and Memcached as attack vectors. Thus,
a more general study of DDoS attacks visible at the core of the Internet is still
missing. Also, while the impact of DDoS attacks on their victims is known, their
impact on core Internet infrastructure that forward attack traffic is unknown.

In this paper, we study properties of amplified DDoS attacks in Internet
traffic captured at the core of the Internet—at a major Internet Exchange Point.
We thereby provide an up-to-date perspective of the current threat landscape
and their effects on the IXP itself. Our major contributions are:

• Well known amplification protocols persist to be the first choice for DDoS
attacks and account for 89.9% of our observed DDoS attacks. Indeed, we
find a high number of 14,083 DNS resolvers and 3,637 NTP servers used in
attacks.

• We provide evidence for the emergence of recently discovered amplification
vectors in the wild—with a staggering increase of 500% within our measure-
ment period—with significant number of reflectors and observed attacks.

• We provide insight into the impact of DDoS on infrastructure at the core
of the Internet. In general, the IXP and the connected customers were well
equipped with sufficient spare capacity.

• From a view onto targets of DDoS attacks we find networks that received
attacks to 28% of their address space and further find temporal attack pat-
terns.

• Focusing on a single protocol is not enough: 24% of the observed victims
received DDoS attack traffic using more than one amplification protocol.

• Port 0 with DDoS attacks can be an artifact of IP fragmentation in flow-
traces.

• By comparing to a commercial world-wide honeypot network, we find largely
diverging views: only 8.18% of the observed attacks (33% of the target IPs)
were also observed by the honeypots. This provides the first comparison of a
core-centric view (here at an IXP) to an edge-centric honeypot perspective
that is often used in prior work. Our results indicate that both perspectives
(core Internet and honyepot) have a partial and diverging view.
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Structure. Section 2 describes our data set and DDoS detection approach. We
study properties of DDoS attacks using new and legacy attack vectors in Sect. 3,
their impact on IXP infrastructure in Sect. 4, and their targets in Sect. 5. Last, we
correlate this new core (IXP) with the traditional edge (honeypot) perspective
in Sect. 6.

2 Data Sets and DDoS Classification

Data Set. Anonymized and sampled IPv4 flow-based traffic traces (IPFIX) cap-
tured at a major European Internet Exchange Point (IXP) with >900 members
between Sep. 23, 2019 and Apr. 20, 2020 with 1.3T flows were made available
to us. They only contain DDoS amplification traffic filtered by our classification
scheme and do not contain payload or any further protocol or header informa-
tion. In addition, the IXP labeled when an attack was redirected to a connected
scrubbing service or if blackholing was enabled for the attacked IP.

Fig. 1. We classify traffic as DDoS reflection attack if a target IP gets UDP traffic from
at least k sources with an amplification source port and an aggregated rate > tGbps.

DDoS Classification. We use a flow-based classification approach to detect
UDP-based DDoS reflection attacks in passive measurement traces as shown
in Fig. 1. We classify traffic as DDoS reflection attack if a target IP receives
traffic from at least k = 10 (total n ≥ k) IPs with the same source port and an
aggregate traffic rate of more than t = 1 Gbps. To restrict the filter to servers
abused as amplifiers, we require the source port to be a well-known port of UDP-
based protocols (e.g., NTP, OpenVPN, DNS) or additionally port 0. When these
criteria match, we refer to the n source IPs as reflectors (i.e., servers sending to
the target IP). We show that typical attacks have a much larger number of
reflectors with n being in the order of hundreds or thousands. Here, the presence
of at least k reflectors serves as detection threshold to differentiate DDoS traffic
from traditional client-server traffic which could be induced due to legitimate
use cases. In addition, we assume that it is unlikely for a client to receive traffic
from k sources (servers) with the same source port (e.g., NTP time servers) with
a high traffic rate t.
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Validation. We validated our classification by manually inspecting 300 attack
events including all amplification protocols. With the help of the Internet
Exchange Point (IXP) we validate our samples to be plausible cases of DDoS
attacks. The inspection process performed by the IXP included i) inspecting
customer support cases ii) obtaining and examining the traffic levels towards
the victim network before, after, and during the potential DDoS attack. All
inspected cases where found to be plausible (e.g., victim port traffic levels are
atypically high during the attack as compared to other times). While false posi-
tives are still possible, they are unlikely and we did not find cases. To systemati-
cally check for false positives, we examined two widely used protocols: DNS and
QUIC. First, a false positive for DNS would require a target IP to receive more
than 1 Gbps of traffic from at least 10 different DNS server IPs. We checked for
false positives by high query volumes from authoritative DNS servers from/to
a root DNS server collocated at our vantage point and didn’t find any. Last,
no QUIC flow—where clients contact a number of web servers—matches our
filter criteria. We cross-check our classification approach for its proneness to
false-positives by using QUIC (UDP/443) and alternatively including it into our
filter. This approach did not produce any event that matched our classification.
We therefore are convinced that our classification process is very well suited for
our vantage point. We thus consider all matching flows as DDoS attacks.

No Impact of COVID-19. We remark that the start of the COVID-19 pan-
demic with global lockdowns and containments falls within our measurement
period. While increasing Internet traffic levels were observed during COVID-19
in 2020 [22], we did not observe a noticeable increase in DDoS attacks due to
COVID-19 within our measurement time frame.

The Mysterious Case of Port 0 as a Result of IP Fragmentation. While
reserved [52] but never assigned and treated as request for a system-allocated
port by socket APIs, port 0 should not be observed in Internet traffic. Prior
work [11,12,21,35,37,39] observed low volumes of port 0 Internet traffic. Its
origin can be multifold, e.g., as target port for DDoS attacks [37] or scanning [11]
and system fingerprinting [37]. We also observe traffic carrying port 0, yet with
a very different reason: IP fragmentation. In our case of analyzing IPFIX traces,
packets that do not contain a transport protocol header due to fragmentation
are assigned src and dst port 0 by the collecting switches. Similar behavior exists
for Netflow V5, V9, and IPFIX export from routers from various vendors [60].
Such traces thus falsely suggest the existence of port 0 traffic in the presence of
IP fragmentation and care must be taken in the analysis. When matching single
protocol attacks by time and destination, 43% of our dataset contains port 0
traffic. Here, we see a strong correlation of port 0 traffic to DDoS attacks using
DNS (in avg. +153% more traffic), CLDAP (avg. +140%), and Chargen (avg.
+91%). Since we cannot reassemble port 0 fragments in the obtained IPFIX data
to obtain the true port number, we decided to ignore port 0 and rather report
clearly identifiable traffic. This impacts our results as we underestimate i) the
number of attacks passing the threshold and ii) the absolute attack volume. We
remark that this only impacts the reported absolute values (the previous figures
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provide an approximation by what factor we underestimate attack volume of
DNS, CLDAP, and Chargen), not other results and conclusions.

3 DDoS in the Wild

We give a core Internet perspective on the current DDoS attack landscape,
beginning by first updating the current state of legacy amplification protocols
abused for DDoS attacks. We then study new protocols that recent DDoS attacks
leveraged. We present details of DDoS attacks we identified according to their
amplification protocols in Table 1 and the distribution of their attack volume
and frequency in Fig. 2. We observe 170,042 events of DDoS attacks which are
at least 1 Gbps with the largest one being 98 Gbps. Attacks that fall below the
1 Gbps threshold are counted as new event once they exceed 1 Gbps again. To
account for this, we group by day and protocol yielding 97,680 events. These
attacks targeted 58,180 individual IP addresses in 4,433 ASes. This is 6.5% of
all active ASes and 1.4% of all advertised prefixes of the Internet.

Fig. 2. Observed DDoS amplification attacks by protocol, with their attack size in
Mbps, the median shown as � (left), and the number of attacks per protocol (right).

3.1 The State of Legacy DDoS Protocols

There exist a set of widely studied protocols—e.g., NTP [18,32,53]. Years have
passed since the disclosure of the vulnerability to abuse NTP as amplification
vector for DDoS attacks. The attack is well understood and workarounds or
solutions are known for years—in principle, this attack vector should no longer
exist. In 2014, an extensive measurement study [18] “chronicle[s] the rapid rise
and steady decline of the NTP DDoS attack phenomenon”, concluding that the
operations communities’ “efforts have had a visible impact in diminishing the
vulnerable amplifier population and reducing attack traffic”. Yet, NTP is still a
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Table 1. Details about the discovered attacks (size in Gbps and packet rate in Mpps,
number of targets, attacks and duration) and observed amplification protocol features
(number of reflectors, average packet size (pkt) and their standard deviation in byte).

duration

Gbps Mpps max avg reflectors pkt size

protocol port max avg max avg targets attacks days min max avg avg std

CLDAP 389 98 2.1 64.84 1.36 12,086 33,354 3.85 6.4 2,040 328 1515 21

DNS 53 66 2.3 43.48 1.54 29,023 72,679 2.05 6.0 14,083 776 1474 59

SSDP 1900 53 4.8 150.4 13.9 1,036 3,618 7,49 30 11,102 1594 347 9.1

Memcached 11211 37 2.7 46.87 2.51 7,119 15,151 1,42 6.0 1,556 35.6 1285 207

NTP 123 37 2.4 77.22 5.03 21,853 42,124 3,04 6.5 3,637 164.7 481.1 10

RPC 111 33 2.3 36.27 3.5 37 73 0.02 4.7 12,217 1465 620.6 51

SNMP 161 9.9 1.6 9.32 1.21 577 885 5.52 9.0 3,541 506 1372 160

Chargen 19 7.6 1.7 6.05 1.35 105 168 0.04 7.4 577 247 1255 145

ARMS 3283 6.2 1.7 5.87 1.65 253 519 0.18 11 1,026 345 1053 1.3

WS-Dis. 3702 5.4 1.4 5.15 1.14 485 994 0.11 4.8 1,731 669 1216 199

Device Dis. 10001 5.2 1.8 24.33 8.7 10 13 0.01 6.5 7,681 2993 207.9 3.2

OpenVPN 1194 4.7 1.4 72.98 21.5 385 464 0.08 7.1 8,987 3736 64.5 0.3

popular vector for DDoS attacks [32] and by the rise of further protocols being
abused for DDoS the attack landscape continues to increase. Well known other
legacy protocols abused for amplification DDoS are DNS, Chargen, SNMP, and
SSDP, whose vulnerability have been known since 2014 [53]. For some, e.g., DNS,
no documented solution exists to generally prevent abuse for DDoS. We thus
focus first on updating the current state of DDoS attacks using legacy protocols.

State of Legacy Amplification Protocol Attacks Today. We find CLDAP,
NTP, and DNS-based DDoS attacks to still account for 89.9% of all our observed
attacks (Table 1)—despite that the relevance of CLDAP and NTP should have
declined long ago. Given the absence of a solution for DNS, we see most attacks
using DNS followed by NTP and CLDAP. Legacy protocols account for the
highest volume attacks from 33 Gbps (RPC) to 98 Gbps (CLDAP). Among
these protocols we observe attacks with significantly higher rates of packets per
second for SSDP, with a peak of 150.4 Mpps, which is 51% higher than the
next protocol in the list (NTP). This makes SSDP-based DDoS attacks more
dangerous to any packet processing device, compared to other attack vectors.
Additionally, for SSDP we experience a very high average duration of 30 min
from 3,618 attacks towards 1,036 targets, which leads to the assumption that
this protocol is used in more sophisticated attacks. Moreover, although RPC is
one of least frequent protocol that we observe, it can still generate large volumes
of DDoS attacks, similar to the group of popular DDoS protocols. SNMP and
Chargen are the least powerful of this group. Within our observation period
they account for 1,053 attacks with sufficient attack traffic to impose a threat
for most small to medium sized web services.

Despite the long time that has passed since the disclosure of these DDoS
amplification vectors, they are still the dominant protocols abused for DDoS
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attacks today. We thus posit that better approaches for closing these attack
vectors are indispensable.

3.2 New Kids on the Block

Besides the awareness of legacy protocols being exploited for DDoS attacks,
new protocols are being abused additionally. We next focus on newly abused
protocols that have received little (Memcached) to no attention in literature
so far to be observed in Internet traffic (“Ubiquiti Device Discovery”, “WS-
Discovery”, “ARMS”, and “OpenVPN”). Among them we notice a steep rise for
OpenVPN—first observed as reflection protocol end of 2019 [47]—growing by
more than 500% in the last month of our observation.

Memcached: In 2018, the widely used database caching system Memcached
was found to be vulnerable for amplification attacks with to this date unseen
high amplification factors of up to 51,200. Research confirmed the existence of
Memcached-based DDoS attacks in the wild [13,32,56], as well as white papers
by the security industry [4,17], and tech news [66]. While the existence is known,
their prevalence in Internet traffic hasn’t been studied yet. Today, we still see
8.9% of all attacks using Memcached as amplification protocol.

Beyond Memcached, we report on the prevalence of DDoS attacks leveraging
recently discovered attack vectors:

Ubiquiti Device Discovery: In early 2019, a network device discovery pro-
tocol was reported to be used as amplification protocol—with 486k potentially
vulnerable devices [25]. While the reported amplification factors are inconsistent
(between x4 and x35) [1,25] we observe an average packet size of 207.9 bytes,
which supports the statement of an amplification factor of x4 [1]. The attacks
consist of up to 7,681 reflectors which generate a volume of 5.2 Gbps.

WS-Discovery: In mid 2019, WS-Discovery—a protocol used by an increasing
number of IoT devices to discover other UPnP devices within a local network—
was reported as amplification protocols. Reports on the number of publicly
exposed systems range from 65k [47] to 630k [15] and the amplification fac-
tor from x10 to x500. We see almost 1,000 cases which misuse the WS-Discovery
service as amplification vector, with an average packet size of 1216 bytes. The
largest attack we recorded was 5.4 Gbps combined from 1,700 reflectors, with
the longest attack lasting for 2.64 h.

ARMS: In June 2019, a protocol used for remote desktop management was
reported to be used within DDoS attacks. Around 54,000 potential amplifica-
tion systems have been discovered at the time [9]. The amplification factor was
reported to be x35.5 with two packets being send, the first 32 bytes, and the
second packet with 1034 bytes. From our observation we can report an average
packet size of 1052.9 bytes. We have seen 519 DDoS attacks towards 253 victims
using the ARMS reflection vector during our measurement period.

OpenVPN: An industry report from 2020 considers OpenVPN as a new attack
vector for DDoS attacks [47]. An article describes the attack in Sep. 2019 [49] with



DDoS Never Dies? 291

different vulnerability for reflection attacks allowing for x5 or x60 amplification
by replying with multiple packets from one initial packet being send towards
the reflector. We see this attack vector being used by 464 attacks towards 385
targets and up to 2993 reflectors. We observe an average packets size of 64.5
bytes, supporting the findings of the latest vulnerability report [49]. Figure 3
shows an uprise of DDoS attacks within the last month of our study by 500%.

Fig. 3. Number of attacks using classical (upper) and new (bottom plot) amplification
protocols over time. Bar colors indicate protocol ports and are shared with Fig. 4.

Takeaway. Beyond anecdotal evidence, we confirm that recently discovered
attack vectors in the form of new protocols are being actively abused for DDoS
attacks. Our study quantifies their existence in the wild for the first time.

We shared our findings with an international cyber security technology com-
pany with CERT services. The company is aware of most of the new amplification
protocols, but didn’t expect them to be already used in the wild. They acknowl-
edged that Table 1 provides a good indication on which attack vectors to include
in their mitigation and monitoring solution.
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3.3 Multi-protocol Attacks

It is not enough to focus on just one of the most prominent or upcoming pro-
tocols. Within our dataset we observe 24% of victims received DDoS attacks by
more than one amplification protocol, whereas 4.5% targets have been attacked
with more than two amplification protocols over time. By investigating few
booter services websites (i.e., DDoS as a service platforms see e.g., [32]) and their
advertisement, we noticed that new attack methods are being added that are
called “MIXAMP” or “ALLAMP”—suggesting the use of all supported ampli-
fication protocols to launch attacks.

3.4 Attack Packet Rates vs. Volume

When the amplification factor is constant, the attack volume can be scaled by
the packet rate sent to reflectors. We thus show the relationship of packet rate
and volume for all protocols in Fig. 4. We observe 3 different characteristics:

Single Linear Relationships. For most attacks, we observe a linear relation-
ship between the packet rate and the attack volume size, hinting to a constant
amplification factor. This is visible as straight lines in Fig. 4 (e.g., OpenVPN
on the right-hand side of the figure). We confirmed this relationship for every
protocol by fitting linear regression models (not shown). There are, however, two
protocols that diverge from this simple linear relationship that we describe next.

Multiple Linear Relationships. In the case of WS-Discovery we observe mul-
tiple linear relationships. These are indicated in Fig. 4 in the lower plot at the
right. This indicates that different protocol features are exploited for the attack,
each yielding a different amplification factor.

No Observable Relationship. Memcached amplification is not linear in terms
of packets to volume output, we observe a great variance of the packet rate
to Mbps ratio. This effect can have two reasons, either Memcached behaves
unpredictably for attackers due to variable response sizes and thus amplification
factors, or the response of the Memcached server is controlled by the attacker
to insert records retrieved for the attack.

Observed Volumes. DNS and CLDAP provide the highest volumetric DDoS
attacks, OpenVPN on the other end is able to generate significant rates of pack-
ets while at the same time keeping the traffic volume low. This means that
the highest volumetric attack we observed, with 98 Gbps, had a rate of 64.84
Mpps, whereas OpenVPN recorded a higher rate of packets with 72.98 Mpps
and just 4.7 Gbps of volume. Nevertheless, the highest packet rate during our
measurement period was due to a SSDP attack with 150.4 Mpps and 53 Gbps.
Both ends of this scale (CLDAP and OpenVPN) can be favorable to attackers,
as they either might want to maximize their invest on sent packets in terms of
attack volume or they might want to be as stealth as possible regarding volume
but maximizing the impact on packet processing devices.
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Fig. 4. Correlation of packet rate to volume (color set shared with Fig. 3)

Theoretical Maximum Volume. The results presented above raise the ques-
tion on how large a combined DDoS attack can become. Assuming one could use
all reflectors observed in one week of our measurements, we estimate a DDoS
attack with at least 0.875 Tbps to be practical feasible. We use the average
output Mbps per reflector, that we calculate from Table 1 and multiply with
number of unique amplifiers that we can observe over the course of one week.

4 Infrastructure Perspective

We use the unique perspective of an IXP as infrastructure provider carrying
traffic of more than 900 different ASes, and therefore also hundreds of substan-
tial DDoS attacks. In particular, the challenge is to withstand the combined
volume of many DDoS attacks simultaneously. In this section, we provide an
infrastructure perspective on DDoS attacks.

IXP Infrastructure. At the measured IXP, the highest share of attack traffic
forwarded due to multiple parallel DDoS events is 3.16% of the highest daily
maximum traffic volume. The transported attack traffic is only a small share
compared to the legitimate traffic and we find no evidence for DDoS traffic to
impact the IXP’s infrastructure. In theory, backbone capacity of infrastructures
like IXPs cannot be overwhelmed by volumetric DDoS attacks due to the basic
nature of their topology: the ingress equals the egress capacity. In reality, core
Internet infrastructures are evolving and becoming more complex, conserving
bandwidth over connections between locations and leased fibers is of growing
economic interest [19].

IXP Ports. We study the DDoS volume in relation to the port capacity towards
the victim’s infrastructure (i.e., backbone links to other networks) for all 170k
attacks and show it in Fig. 5. The maximum port capacity is indicated by a red
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horizontal line at 100%. Notably, we find 306 cases (0.18% of all attacks towards
48 individual networks) where DDoS attack surpassed the available capacity of
the links at the IXP. We remark that traffic >100% of an egress port’s capacity
can traverse the peering platform from many other members at the IXP and
arrive at the given port leading to packet loss. Of these 48 networks, 12% had a
port capacity below 2 Gbps and 82% more than 10 Gbps. The average duration
of this group of attacks is 21 min, which shows that these cases are not short
bursts, but attacks that overwhelmed the port capacity for a notable time. We
learn that our observed DDoS attacks are rarely larger than the size of the IXP
member’s egress port capacity. This view, however, ignores the typical utilization
of the port. DDoS attack that require up to 50% of the network’s egress link are
seen for 26% of the attacked networks and this additional port utilization might
already have led to packet loss and collateral damage at the target network.

Fig. 5. Link capacity in relation to attack size.

DDoS Mitigation. To mitigate attacks, networks providers have two main
tools available. One is to contract a DDOS mitigation services to scrub DDoS
traffic and forward only legitimate traffic. Another option is to discard traffic
for specific prefixes at the IXP before reaching their target network by using so-
called blackholing (labeled in our data). The deployment of blackholing has been
studied widely by previous work [20,21,24,44–46] which focuses on analyzing
characteristics of the blackholed traffic and the activation of blackholing events.
We observe that only 3.82% of the DDoS attacks in our dataset are blackholed,
i.e., the victim asked the IXP to discard traffic to the attacked IP by a blackholing
announcement in BGP (labeled by the IXP in our data set). In as few as 145
cases we saw a redirection of traffic towards to an external scrubbing service
directly connected to the IXP. Thus, if blackholing is used as classifier to study
attacks in prior work [45], the bulk of the DDoS traffic in our data set is omitted.
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Next, we analyze DDoS amplification vectors that are mitigated by blackhol-
ing in comparison to all used DDoS amplification vectors. Whereas NTP attacks
in the wild are only the second most prominent attack vector with 24.77%, they
are mitigated the most with 58% of all blackholing events. The most prominent
attack vector we observed, DNS with 42.74%, only has a share of 16.89% within
mitigation. Memcached is mitigated with a share of 15.65% (in the wild 8.91%)
and CLDAP with 8.31% (19.62% in the wild). This reveals a shift of NTP,
and Memcached attacks being mitigated more frequently compared to DNS and
CLDAP attacks relative to their occurrence. In Fig. 5, we see that 63% of the
blackhole events correlate to DDoS traffic lower than 10% of the networks port
capacity. In only 1.1% of the events the DDoS traffic was >50% of the capacity.

Looking at the delay from the start of the attack to the deployment of a miti-
gation, we see an average delay of 1.16 min for the blackholing. 70% of blackholing
rules were installed prior to when we first detect the DDoS attack. In addition,
we see a delay of <10 min for 98.7% and a delay of >4 min in 4.2% of all black-
holing deployments. Only in 19 cases we record a delay greater than 30 min, with
the highest delay being 5 h for an 8-h long attack. These findings are similar to
prior work [30], that describes a delay of <10 min for 84.2% within their data
set. The low attack volume in relation to the port capacity of blackholing events,
in combination with the short delay, suggest an automation of the blackholing
mitigation.

Takeaway. While the share of DDoS traffic at the IXPs overall infrastructure is
insignificant, it can exceed the port capacity of individual customers and thereby
impact legitimate traffic. Blackholing as a DDoS defense technique was used in
only 3% of the attacks we observed and therefor cannot be reliably be used as the
sole criterion to report on the state of DDoS in the wild.

5 View on Targets

Last, we analyze the victims of the observed DDoS attacks. We study how the
DDoS attack landscape is distributed over different networks types and services.

Network Types. We aggregate victim networks by their infrastructure type
according to PeeringDB. While the average attack volume is mostly the same
for each class, some classes are attacked more frequently. While non-profit net-
works receive the least amount of attacks (0.06%), content hosting networks
were attacked the most with 36.97% of all DDoS attacks. Enterprise and the
remaining classes have a comparably low share on the attacks in our dataset.
Beyond content, eyeball networks (cable/DSL/ISP and NSP) also receive a large
number of attacks (34.51%) that we can attribute to residential users. This is in
line with prior work showing that booter-based DDoS attacks are often launched
by online-gamers against other players [31].

Share of Attacked Address Space. To understand if any targeted attacks
against specific organizations exist, we study the share of attacked address space
of individual networks. Most significantly, we observe a US based cloud payroll
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provider where DDoS attacks targeted 28% of the AS’s IP space. With 16% a
small network of a state bank in the south east Mediterranean region has been
the victim of DDoS attacks. Furthermore, we see attacks that account for 15%
address space of a south Korean cloud provider, and 10% of an US insurance
with 19 h combined attack time.

DNS. To better understand the attacked infrastructure, we match the vic-
tim IPs to weekly DNS resolutions for www. labels, NS, and MX records of
200M+ domain names obtained from DNS zone files (including .com/net/org
and new gTLDs) [26] during our measurement period. We can match 94.3% of
the attacked IPs to DNS records. For 58.63% we find a matching www. label,
suggesting the target to be a web server. For 27.23% we find a matching mail
exchange (MX) and for 14.14% a matching authoritative DNS server (NS).

VPN. VPN service are a relevant service that enables remote work, e.g., during
COVID-19 lockdowns. To find attacks against VPN services, we identify IPs
labeled as *vpn* but not as www. in the DNS by searching for *vpn* in any
domain label left of the public suffix (e.g., companyvpn3.example.com) in i) 2.7B
domains from TLS in CT Logs from 2015—2020, ii) 1.9B domains from Rapid7
resolutions of reverse DNS, zonefiles, TLS certificates of March, and iii) 8M
domains from the Cisco Umbrella top list in 2020. This gives us 1,2M unique VPN
IPs. However, we only observed 101 attacks against 39 IPs in 30 ASes and no
noticeable increase in the last months. This attack vector is (fortunately) not yet
widely exploited. Despite, we posit that enterprises should consider protecting
their VPNs from DDoS before widespread attacks emerge.

Temporal DDoS Attack Pattern. We report on two notably cases of DDoS
attack. Figure 6 shows the longest consecutive attack within our study. The
attack used the SSDP protocol and lasted for 7 1/2 days, with a peak at 8 Gbps
and 23.5 Mpps. The attack was targeted against a Swedish Broadband network,
whose backbone link never fully saturated. Second, we find a case of a DDoS
attack against a Ukrainian ISP (Fig. 7) using DNS as attack vector, attacking
one IP address every 1 min by consecutively traversing a /24 network range.

Fig. 6. SSDP attack over 7 days. Fig. 7. DDoS onto /24 network.
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We found other similar temporal attack patterns, where the attack changed
between two IPs every minute within an attacked network address space.

Takeaway. By focusing at the victims of amplification DDoS attacks, we find
content and eyeball networks to be the most prominent targets. Due to the impor-
tance of being able to work from home during the COVID-19 outbreak, we take
a look onto attacks towards VPN infrastructures, where we observe 101 attacks
against 39 victims. Finally, we observe an interesting attack pattern, where an
attacker changed the target IP within a victim’s networks every minute, poten-
tially to evade DDoS mitigation.

6 Honeypot Perspective

Honeypots are a widely used tool to study DDoS attacks (see e.g., [28,33,58]),
e.g., setup at universities as single vantage point. To put our measurements into
perspective, we obtained DDoS attacks observed by the world-wide distributed
honeypot network operated by CrowdStrike matching our measurement period.
The dataset contains 3.3M events. We find largely diverging views: only 8.18% of
the observed attacks (33% of the target IPs) were also observed by the honeypots.
The missing 67% of targets in the honeypot dataset can be explained by the
low likelihood of an attack choosing the honeypots as reflectors. In turn, our
dataset only represents 0.95% of the targets visible in the honeypot dataset,
this is likely due to our robust classification criterion of attacks being <1 Gbps,
which misses any attack with a lower volume at the IXP. Other factors for
the honeypot containing events and targets missing within our dataset are the
limited view of the IXP onto Internet traffic and the different location within the
Internet’s topology. In contrast the honeypot dataset also consists of low volume
and scanning events. Also the attack protocol popularity diverges, highlighted
by 58% of the honyepot captured events to be Memcached.

Takeaway. Our results put the use of honeypots (edge measurements, typically
used in the literature) into a core Internet perspective and indicate that both
perspectives (core Internet and honyepot) have a partial and diverging view. We
thus posit that future research should take multiple perspectives to obtain a more
complete view on the DDoS threat.

7 Conclusions

This paper provides an updated perspective on the state of DDoS amplification
attacks and protocols in the wild. Despite the prediction and hope that the
relevance of long-known legacy amplification protocols (e.g., NTP) will decline,
we show that opposite is true: CLDAP, NTP, and DNS-based DDoS attacks
account for 89.9% of all observed attacks. In addition, we show that recently
disclosed amplification protocols are already used to perform DDoS attacks and
can generate effective attacks, e.g., for OpenVPN we even record a 500% rise
within our measurement period. By taking a view onto the infrastructure at
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the core of the Internet, we see no severe impact due or degradation of network
quality. We further show that honeypots—typically used to study DDoS—can
provide a different picture than the one by traffic captures at the Internet core.
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10. Blenn, N., Ghiëtte, V., Doerr, C.: Quantifying the spectrum of denial-of-service
attacks through internet backscatter. In: International Conference on Availability,
Reliability and Security (2017)

11. Bou-Harb, E., Lakhdari, N.E., Binsalleeh, H., Debbabi, M.: Multidimensional
investigation of source port 0 probing. Digit. Investig. 11, 114–123 (2014)

12. Brownlee, N., Claffy, K.C., Nemeth, E.: DNS measurements at a root server. In:
IEEE GLOBECOM (2001)

13. Burke, I.D., Herbert, A., Mooi, R.: Using network flow data to analyse distributed
reflection denial of service (DRDoS) attacks, as observed on the south african
national research and education network (SANReN): a postmortem analysis of the
memcached attack on the SANReN. In: Annual Conference of the South African
Institute of Computer Scientists and Information Technologists (2018)
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Abstract. The Domain Name System (DNS) has been frequently
abused for Distributed Denial of Service (DDoS) attacks and cache poi-
soning because it relies on the User Datagram Protocol (UDP). Since
UDP is connection-less, it is trivial for an attacker to spoof the source of
a DNS query or response. DNS Cookies, a protocol standardized in 2016,
add pseudo-random values to DNS packets to provide identity manage-
ment and prevent spoofing attacks. In this paper, we present the first
study measuring the deployment of DNS Cookies in nearly all aspects of
the DNS architecture. We also provide an analysis of the current benefits
of DNS Cookies and the next steps for stricter deployment. Our findings
show that cookie use is limited to less than 30% of servers and 10% of
recursive clients. We also find several configuration issues that could lead
to substantial problems if cookies were strictly required. Overall, DNS
Cookies provide limited benefit in a majority of situations, and, given
current deployment, do not prevent DDoS or cache poisoning attacks.

Keywords: Internet measurement · DNS · DNS Cookies · DNS
security

1 Introduction

The Domain Name System (DNS) is an essential backbone of the internet used to
translate domain names to Internet Protocol (IP) addresses. Since its inception
in the 1980s, the DNS has been reliant on the User Datagram Protocol (UDP).
While UDP has a major benefit of speed, its lack of identity management is
easily exploitable. Off-path attackers can spoof UDP packets to pretend they, or
a victim, are the source of the packet.

There are two major attacks utilizing spoofing. The first is cache poisoning,
wherein an attacker sends malicious responses pretending to be a legitimate
server. If successful, the victim is unknowingly directed towards a malicious IP
address. The other attack is a DNS reflection attack. This attack is carried out
by sending many DNS queries with the victim’s IP address as the spoofed source
and results in the victim being flooded with unsolicited response traffic—a form
of distributed denial-of-service (DDoS).

c© Springer Nature Switzerland AG 2021
O. Hohlfeld et al. (Eds.): PAM 2021, LNCS 12671, pp. 302–316, 2021.
https://doi.org/10.1007/978-3-030-72582-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72582-2_18&domain=pdf
http://orcid.org/0000-0002-2372-9203
http://orcid.org/0000-0003-0938-375X
https://doi.org/10.1007/978-3-030-72582-2_18


A Peek into the DNS Cookie Jar 303

Both cache poisoning and reflection-based DDoS attacks exploit the lack of
verification inherent with UDP. In an attempt to solve this issue, and provid.e
identity management in the DNS, a new protocol, known as DNS Cookies, was
standardized through the Request for Comments (RFC) process in 2016 [11].
With DNS Cookies, both client and server include a cryptographic identifier (the
cookie) in their DNS messages which can then be verified in future messages. An
off-path attacker is unable to learn the cookie values and thus cannot feasibly
spoof them.

Since 2016, DNS Cookies have become increasingly common and are sup-
ported by many open-source DNS software vendors. However, to the best of our
knowledge, no research has been done to quantify the level of support for cookies.
The major contribution of this paper is a study of client- and server-side
support for DNS cookies—the first such measurement of its kind. Addition-
ally, we analyze DNS Cookie enforcement to see if any client or server rejects
illegitimate DNS messages based on cookies. While clients and servers may be
exchanging cookies, there is no benefit unless a missing or incorrect cookie affects
the server’s response.

In this paper, we make the following contributions:

– We measure support for DNS Cookies in high-demand authoritative DNS
servers and open resolvers Internet-wide; we find that 30% of servers fully
support cookies, and only 10% of recursive clients send cookies.

– We analyze the DNS Cookies we observed and discover several potential mis-
configurations, such as inaccurate server clocks, some of which could break
implementations.

– We examine the behavior of DNS clients and servers when encountering miss-
ing or illegitimate cookies and find that 80% of clients do not reject responses
when they should and that 99% of servers handle these situations in the least
restrictive manner by responding indifferently.

– We discuss the path forward for wider DNS Cookie adoption and possible
solutions for enforcing the use of cookies.

Overall, our work, which is the first to measure DNS Cookies in the wild,
reveals a low level of adoption and minimal enforcement of DNS Cookies. We
believe that DNS Cookies have the potential to benefit the DNS, but greater
adoption and strategies for enforcement are required.

Artifacts: The source code and datasets used to produce this paper can be found
at the following link: https://imaal.byu.edu/papers/2021 pam dns cookies/.

2 Background

The Domain Name System (DNS) is primarily used to convert domain names
(e.g. example.com) to Internet Protocol (IP) addresses (e.g. 192.0.2.1) [18,19].
There are three components in the DNS: stub resolvers, recursive resolvers, and
authoritative servers.

https://imaal.byu.edu/papers/2021_pam_dns_cookies/
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Stub resolvers are typically associated with end-devices such as a phone or
desktop. To visit a given domain, a stub sends a DNS query to its configured
recursive resolver. The recursive resolver can respond to the query immediately
if the answer is cached. Otherwise, it queries several authoritative servers sys-
tematically until it obtains the answer.

The DNS continues to utilize the User Datagram Protocol (UDP) as its pri-
mary transport protocol. UDP does not provide identity management and there-
fore does not protect against spoofing attacks, wherein an attacker impersonates
a client or server by using their IP address as the source.

One attack that utilizes spoofing to impersonate an authoritative server is
DNS cache poisoning. With cache poisoning, an attacker can respond to a client
with a malicious IP address, causing that client, and all who rely on its cache,
to be redirected to the malicious IP.

Due to the severity of a successful cache poisoning attack, several measures
have been encouraged to reduce the chance of a successful cache poisoning.
These include source port randomization [15] and 0x20 encoding (randomized
capitalization) [6]—both of which require only changes to client-side software.
Another avenue would be for a client to use DNS-over-TCP [10], DNS-over-
TLS (DoT) [14], or DNS-over-HTTPS (DoH) [13]. These three protocols all
provide the identity management inherent in the TCP handshake, and DoT and
DoH are showing increased adoption [9,17]. However, they result in increased
latency [7]. A final approach, which avoids identity management altogether, is
cryptographically authenticating DNS responses. This strategy is employed by
DNSCurve [1] and the DNS Security Extensions (DNSSEC) [3–5]. Neither of
these methods has seen widespread adoption.

Another attack that exploits the lack of identity management in UDP and the
DNS is distributed denial-of-service (DDoS) attacks. Here the attacker imper-
sonates the victim’s client and sends many DNS queries. This results in traffic
being reflected off of DNS servers and the victim being flooded with unsolicited
response traffic. Past attacks have reached traffic volumes of 300 Gbps to 1.2 Tbps
and are capable of affecting major services such as Amazon and Netflix [12,20].
Both of these attacks can have major effects but can be prevented with some
form of identity management.

DNS Cookies [11] are designed as a lightweight mechanism that provides
identity management at a strength similar to TCP, but without the latency bur-
den. They are included in DNS messages as a COOKIE option inside the Extended
DNS (EDNS) OPT resource record [8]. Both the client and server in a given com-
munication can provide a plain-text cookie in their DNS messages. The client
can then verify that the server includes the client cookie (i.e., provided by the
client) in future communications—and vice-versa—to ensure that messages have
not been spoofed by an off-path attacker. An example of this process is shown
in Fig. 1. DNS Cookies do not provide protection against on-path attackers, but
should still provide substantial benefit to securing the internet as a whole.

Client cookies are 8 bytes in length and are used to prevent cache poisoning by
enabling the client to verify the server’s identity. A stub or recursive resolver can
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Fig. 1. An example communication using DNS Cookies. Here the client starts from a
fresh state and reuses its cookie whereas the server generates a new cookie per query.

include a DNS client cookie in their queries and only accept a response containing
the cookie. The suggested implementation for generating a client cookie is to use
a cryptographic hash of the (Client IP |Server IP |Client Secret). More recent
suggestions remove the inclusion of the Client IP as it may not be known at
the time of generation [21]. Regardless, a client should use a unique cookie per
server and should not reuse a cookie across IP addresses as this would enable
tracking the client.

A server cookie ranges in size from 8 to 32 bytes and is used to confirm a
client’s identity, in turn preventing reflection-based attacks. Authoritative and
recursive servers may choose to send a server cookie when responding to a query
with a client cookie in it. Clients should then include this cookie in future queries
to verify their identity. If a server receives a query without a valid server cookie
they may enforce cookie use by responding with the BADCOOKIE response code
(rcode), a valid server cookie, and no DNS answers. The specification suggests
that a server cookie consists of a 4-byte nonce, 4-byte timestamp, and an 8-byte
cryptographic hash of the (Server Secret |Client Cookie |Nonce |Time |Client
IP). The time field results in a new cookie for every request and makes rejection
of outdated cookies easy. Additionally, the server does not need to save any state
to verify a cookie as the nonce and timestamp are provided in plain-text.

In 2019 an Internet draft was created to standardize the format for DNS
Cookies to allow interoperability between different DNS software [21]. Of note,
server cookies were visibly changed as the nonce was replaced with a version and
reserved field.

3 Support for DNS Cookies

Here we establish a baseline measurement for DNS Cookie usage from the per-
spective of both clients and servers. We analyze DNS server-side cookie behavior,
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which includes both authoritative DNS servers and recursive resolvers in their
“server” role to clients. For this analysis, we classify varying levels of support:
EDNS capability (via the inclusion of an option (OPT) record in a response),
echoing of a sent client cookie (only), and full support with a returned server
cookie. While echoing a client cookie is not a specified option in the proto-
col, it does still protect the client. We also measure cookie usage of recursive
resolvers in the “client” role in connection with queries to authoritative servers
under our control. An analysis that included all perspectives would have included
DNS Cookie use by stub resolvers in their communications with DNS recursive
resolvers. However, that data is available only to recursive server operators, so
we were unable to perform an analysis of stub resolver behavior with respect to
DNS Cookies.

3.1 Server-Side Cookie Support

We queried a set of open recursive resolvers and two sets of authoritative servers
to measure DNS Cookie support for “servers”.

To generate a set of recursive resolvers to test, we issued a DNS query (for
a domain we control) to every IPv4 address. We classified an IP address as a
recursive resolver if it 1) queried our authoritative server or 2) responded to our
query with the recursion available (RA) flag set and a response code of either
NOERROR or NXDOMAIN. This data was collected from September 24–26, 2020. In
total, we identified 1,908,397 open recursive resolvers.

For authoritative servers, we analyzed servers authoritative for the top 1
million Alexa domains [2] (actually 770,631 domains) and servers authoritative
for the 1,509 top-level domains (TLDs) [16] (including the root servers). All
data was collected on September 30, 2020, using the latest Alexa file and root
zone available. The names and IP addresses (IPv4 and IPv6) for each domain
in the collective lists were determined through 1) a lookup of type NS (name
server) for the domain and 2) a lookup of type A and AAAA (IPv4 and IPv6
address, respectively) for each name returned in the NS query response. In total,
we recorded 157,679 IP addresses for the Alexa sites and 6,615 for the TLDs.

To identify support for cookies, we issued up to 6 DNS queries to each
server—stopping early if we received a response with a server cookie. We included
the same client cookie in every query. During these queries, we experienced errors
with 48% of resolvers, likely due to high churn. In particular, queries for 32% of
resolvers timed out, and for 16% of resolvers, we received a response from a dif-
ferent IP address (often Cloudflare’s 1.1.1.1) than we had queried. Removing
these cases leaves us with 999,228 error-free resolvers. For authoritative servers,
queries to 6,724 (4.3%) of Alexa IPs resulted in an error, as did queries to 58
(0.88%) TLD IPs. The errors associated with querying authoritative servers pri-
marily consisted of time outs (98% of Alexa errors and 100% of TLD errors),
though there were a handful of malformed packets or unexpected responses. We
report all of our results as percentages of communications with error-free servers.

EDNS, which is a prerequisite for cookies, was supported (as evidenced by an
OPT record in responses) by 699,402 (70%) of recursive resolvers, 147,878 (98%)
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of Alexa IPs, and 6,557 (100%) of TLD IPs. The client cookie that we sent in our
queries was returned by 208,526 (21%) of recursive resolvers, 48,262 (32%) of
Alexa IPs, and only 1,249 (19%) of TLD IPs. The remaining servers returned a
response that either did not include a COOKIE EDNS option or included a client
cookie that did not match the one we sent. Servers that included a server cookie
in their response (this implies the inclusion of a client cookie, by specification)
include: 167,402 (17%) of open resolvers, 43,649 (29%) of Alexa IPs, and all 1,249
of the TLD IPs that returned the correct client cookie. However, 14 resolver IPs
and 5 Alexa IPs returned a COOKIE option with a server cookie of all zeroes. The
Alexa and TLD IPs that returned server cookies were collectively authoritative
for 26,629 domains and 373 zones respectively.

Of note, 93 Alexa IPs and 41 resolvers IPs responded with a client cookie that
did not match the one we sent. For 5 Alexa IPs and 22 resolvers IPs, the value of
the client cookie returned was off by only one byte—the fourth most significant
byte. An additional 5 Alexa and 14 resolver IPs replied with zeroed out client
cookies. A single TLD IP, one of three servers authoritative for the gm TLD,
returned a COOKIE option with all zeroes for both the client and server cookies.
The remaining unexpected responses did not follow a discernible pattern.

Overall we observe high EDNS support (70% of resolvers and >98% of
authoritative servers). However, cookie support is much lower. While nearly
one-third of Alexa IPs fully supported cookies, less than 20% of TLD IPs and
recursive resolvers did. As a result, there are still more than 100,000 authorita-
tive servers and 800,000 recursive resolvers that can be used for reflection attacks
because they lack a mechanism for validating client identity (Fig. 2).

Fig. 2. Incremental support for DNS Cookies across the three datasets of recursive
resolvers, TLD authoritative servers, and the top 1m Alexa authoritative servers.
Servers in the leftmost group fully support DNS Cookies.

3.2 Client-Side Cookie Support in Recursive Resolvers

During our measurements of resolvers supporting the “server” role of cookies,
we also measured their support for DNS Cookies while acting as a “client”.
Each query we issued consisted of a special domain name hosted at authoritative
servers under our control. We recorded each incoming query for the domain name
we were using and responded with NXDOMAIN and full DNS Cookie support. We
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observed queries to our authoritative servers from 93,395 unique IP addresses,
of which 8,471 (9.1%) sent at least one response that contained a COOKIE option.

During this measurement, we encoded the IP address of the recursive resolver
that we queried in the domain name. This reveals that 1,552,397 unique resolvers
queried our backend through the 90,000 IP addresses. This discrepancy may
be due to forwarding, as 56% of resolvers were represented by only 1000 IP
addresses. In particular, Google and Cloudflare handled queries for 36% and
7.0% of resolvers respectively.

In our measurement for recursive resolvers sending cookies, we found client
cookie support to be minimal. Of resolvers that queried our authoritative servers
directly, only 9.1% of over 90,000 IPs sent a cookie. This is potentially alarming
as these resolvers are not using cookies for cache poisoning protection. While
they may employ other methods, DNS Cookies offer an extra layer of defense.

4 Server Cookie Analysis

For our measurement of DNS server cookies, we expand the datasets from
Sect. 3.1. For each IP address we found to be sending server cookies, we sent
an additional 60 queries. These queries were broken into 3 subsets: the first 20
queries never included a server cookie, the next 20 included the first server cook-
ies received, and the final 20 included the latest server cookie we had received.
Each subset had a 1-min pause after the first 10 queries, before issuing the final
10 queries.

Valid server cookies may be anywhere from 8 to 32 bytes in length. Of all of
the cookies we received, >99% were 16 bytes in length.

4.1 Dynamic Cookies

Many server cookies are dynamic: changing consistently due to the inclusion
of a timestamp (representing seconds since UTC). This follows the suggested
implementation in the RFC. Additionally, the newer format of interoperable
cookies includes a timestamp in the same position.

As a result, we classify a cookie as dynamic if bytes 5–8 represent a time
within a window of 1 h in the past and 30 min in the future compared to the
current time of our querying machine (NTP synchronized).1

Over 99% of authoritative servers and 83% of recursive resolvers that sent
server cookies used at least one dynamic cookie.

Timestamps. We first consider the timestamps being used in dynamic cookies.
We are primarily interested in three unusual patterns: timestamps consistently

1 The chance of a non-dynamic cookie being classified as dynamic is extremely small.
Our window size accepts only 5,400 values out of the 4.3 billion possible values in
the 32 bit field.
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off by more than a minute, cookies that are “sticky” for short periods, and
slow-moving timestamps that update on a fixed interval of 10 or more seconds.

For each dynamic server cookie, we compared the timestamp with the current
time of the querying machine (i.e., the client), which was NTP-synchronized:
tsdiff = tscookie − tsclient. We consider a server cookie’s timestamp to be accurate
if |tsdiff| ≤ 5s. This generous window accounts for any network delays. We
consider a timestamp to be significantly out-of-sync if |tsdiff| > 60s. Finally,
we classify “sticky” and slow-moving clock servers based upon the number of
distinct values of tsdiff since this tells us that the tscookie remained static while
tsclient advanced. “Sticky” servers are defined by having 8 or more distinct values
in one of the 3 subsets of queries and less than 3 distinct values in another. Slow-
moving clocks are defined by not being sticky and having 10 or more distinct
values across all cookies.

Table 1 summarizes the major findings for each IP address. Over 95% of IPs
consistently returned server cookies with accurate timestamps. For 2.8% of IPs,
the timestamps were significantly out-of-sync, likely due to an incorrect clock.
While an incorrect clock is unexpected, it is inconsequential for cookies since the
cookie value only matters to the server itself.

A category that is perhaps more interesting is IPs for which we observed a
mix of cookie timestamp behaviors—some accurate and some significantly out-
of-sync. For example, one IP returned cookies resulting in the following values
of tsdiff: (1 1 1 1 75 1 2 1 75 1. . . ). The timestamps for approximately one-
fifth of the responses were consistently and significantly out-of-sync, while the
remainder were accurate. This behavior is representative of a DNS server with
five backend servers, one of which has a clock that is 75 s out of sync.

We additionally observe that some IPs use “sticky” cookies: cookies that
remain static for short periods (typically 10 s) depending on the context. We
observed two implementations of this. In the first implementation, cookies were
sticky when our client was not querying with a server cookie. Once our client
began sending server cookies, the server replied consistently with accurate times-
tamp cookies. We observed that 77 Alexa IPs and 775 resolver IPs followed this
pattern. The second implementation acted in the opposite manner: the server
replied with accurate timestamp cookies until our client sent one of the server
cookies in a query. The server then made that valid cookie sticky and did not
change it for a short period. We saw this pattern in only 12 Alexa IPs and 12
recursive IPs.

Our final category consists of slow-moving clocks: cookie timestamps that
update on a fixed interval of 10 or more seconds. We classified 20 Alexa IPs and
4,413 recursive resolver IPs in this category. We observed that 3,296 recursive IPs
had at least one timestamp off by more than 2 min and that 2,206 IPs displayed
strictly increasing tsdiff values across every set of 10 queries. From this, we can
gather that most recursive resolver IPs are using a slow-moving clock (possibly
intentionally) with an update period of over 2 min.

The timestamps in DNS Cookies proved to be more interesting than origi-
nally expected. We found that most servers always return a cookie with a current
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timestamp; however, some implementations purposely hold onto a cookie for a
short period. We also discovered potential configuration issues with some back-
ends of an IP having an incorrect clock. If cookies were to be enforced, clients
may be intermittently rejected if they present that backend’s server cookie to
another backend, and the cookie was too far out-of-sync to be considered valid.

Table 1. Summary of timestamps found in server cookies returned by IPs. tsdiff repre-
sents the difference between the timestamp in the cookie and the querying computer’s
current time.

Alexa TLDs RRs

All Cookies Accurate (|tsdiff| ≤ 5s) 41,639 (96%) 1,225 (98%) 131,520 (95%)

All Cookies Out-of-Sync (|tsdiff| > 60s) 1,615 (3.7%) 17 (1.4%) 3,544 (2.6%)

Mixed Accurate & Out-of-Sync 66 (0.15%) 0 (0.0%) 2,980 (2.2%)

“Sticky” Cookies 89 (0.21%) 0 (0.0%) 787 (0.67%)

Slow-Moving Clocks 20 (0.05%) 0 (0.0%) 4,413 (3.2%)

IPs Using Dynamic Cookies 43,345 1,246 138,865

Interoperable Cookie.s Interoperable Cookies are designed to standardize the
generation of cookies across varying backend implementations. We classified a
server cookie as interoperable if the cookie started with 0x01000000 as specified
in the RFC draft (a one-byte version field and three bytes reserved) and the
timestamp field met the criteria previously mentioned.

Of the 43,737 Alexa IPs that returned a server cookie, 1,778 (4.1%) used
interoperable cookies consistently. For TLDs, 92 (7.4%) of 1,249 IPs used inter-
operable cookies. No IP in either dataset sent a mix of standard and interoperable
cookies across all of our queries.

For the 167,402 recursive resolver IPs that sent a server cookie, we found that
30,078 (18%) sent at least one interoperable cookie. However, we also found that
10,948 (6.5%) of IPs sent a mix of interoperable and standard dynamic cookies2.
This behavior was unexpected as the primary purpose of interoperable cookies
is to standardize cookies across all backend servers behind a single IP address.

Overall adoption of interoperable cookies was low in authoritative servers
(under 10%), but partial support in recursive resolvers was higher at 18%.

4.2 Static Cookies

While the majority of cookies can be classified as “dynamic”, a number of servers
reused the same cookie. We classified a server as using static cookies if only a
2 It is possible that we misclassified a standard cookie with a nonce of 0x01000000

as being interoperable. 9,990 of these IPs sent at least two cookies that appeared
interoperable in response to our 60 queries.
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single cookie was used across our tests and the cookie did not contain a dynamic
timestamp. We identified 38 recursive resolvers that used a unique 32-byte cookie
for the entire duration of our test. Similarly, 33 Alexa servers always replied with
a single, unique 8-byte cookie.

We further analyzed IPs for 4 Alexa domains that sent static cookies: ibb.co,
pantip.com, postimg.cc, and wikipedia.org. For each IP address authorita-
tive for these domains we sent queries every minute for four days and additional
queries with varying client cookies and client IP addresses.

Our results show that all four domains used the client IP address and client
cookie in the creation of their server cookie because changing either of these
variables affected the cookie they returned. Each also changed their cookie at
the start of every hour, implying that they either changed their secret or that an
hourly timestamp was considered in the calculation. Of note, the authoritative
servers for two domains—wikipedia.org and pantip.com—returned the same
server cookie, regardless of which server was queried for the domain. However, the
servers authoritative for ibb.co and postimg.cc acted independently, implying
separate server secrets or some other unique value per server.

5 The State of Cookie Enforcement

In this section, we explore how clients and servers handle unexpected behav-
ior. We begin by demonstrating to clients and servers that our infrastructure
supports cookies. We then perform tests with missing cookies, missing EDNS,
or fake cookies. With this, we can see whether clients and servers will enforce
cookies if they know the other party supports them. If not, cookies provide little
value as an attacker could simply exclude cookies in their spoofed packets.

5.1 Client Handling of Unexpected Server Behavior

For this experiment, we forced the 1.5 million resolvers (with or without cookie
support) found in Sect. 3.2 to query our authoritative servers 6 times. We con-
figured our authoritative server to respond differently depending on the query
name it received. The response conditions we created are as follows (in order):

1. normal: Respond with full cookie support: Correct client cookie and a server
cookie—if the query included a client cookie.

2. no-cookie: Respond with no COOKIE option.
3. bad-answer: Respond with the correct client cookie (if any), BADCOOKIE

rcode, and an answer section.
4. bad: Respond with the correct client cookie (if any), BADCOOKIE rcode, and

no answer section.
5. no-edns: Respond with no OPT record (i.e., no EDNS support).
6. fake: Respond with incorrect client cookie.

For each query, we made up to 3 attempts, as the stub resolver, to receive an
answer. This experiment was run approximately one week after we discovered
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the 1.5 million IPs. As a result, we experienced a high churn and only saw
528,832 (34%) of IPs respond with both an answer and an rcode of NOERROR in
our normal condition.3

Responses with Missing/Invalid Client Cookies. Of those resolvers from
which we still received responses, 28,605 (5.4%) included a cookie in the normal
condition (or the intermediate IP did). For these IPs in the no-cookie scenario,
we surprisingly got a normal response from 23,979 (84%) IPs. Of those with bad
responses, 3,625 (13%) had a SERVFAIL rcode and an additional 909 (3.2%)
timed out. For the no-edns queries, we saw similar numbers compared to those
who sent cookies: 24,798 (87%) responded to our stub resolver normally, 2,495
(8.7%) responded with SERVFAIL, and 1,236 (4.3%) timed out.

Finally, in the fake category, we began to see more rejection. This test was
performed a day after no-edns and as a result, there was more churn and some
servers may have stopped sending EDNS since we appeared to not support it. We
recorded 27,079 IPs which sent a cookie in a normal query directly preceding
this test. We saw a much lower percentage of acceptance here with only 5,115
(20%) responding to the stub resolver normally. Most failure is split between
SERVFAIL with 10,059 (40%) of IPs and time outs with 9,564 (38%) of IPs.

The specification for DNS Cookies states that a client must discard a response
with an invalid client cookie or a missing cookie when one is expected. However,
we observed that 20% of recursive clients did not reject invalid cookies and that
over 80% of clients did not discard responses that were missing a cookie when
one should have been present (as demonstrated to the client in a previous query).
This means that a majority of recursive clients may still be susceptible to cache
poisoning attacks because a response without EDNS or a DNS COOKIE option is
accepted as easily as a legitimate response with a valid client cookie.

Responses with BADCOOKIE Rcode. Two of our conditions tested how
a recursive resolver responds to a BADCOOKIE rcode. In one condition we still
included the answer, but in the other, we did not. This imitates an authoritative
server strictly requiring cookies (though a correctly behaving serving would pro-
vide a valid server cookie and accept it in future queries). For these conditions,
we consider all 528,832 servers who successfully answered the normal condition
regardless of cookie use.

For the bad queries, 301,929 (57%) of IPs timed out and 206,577 (39%)
returned an rcode of SERVFAIL. We observed similar values for bad-answer:
272,041 (51%) timed out and 236,401 (45%) returned SERVFAIL. We did observe
an extra effort by recursive resolvers receiving either a bad or a bad-answer
response to get a valid response. More than half of IP addresses issued at least
19 queries in connection with either of these responses—as opposed to a median

3 We did not rerun the initial collection as the process is resource intensive and takes
multiple days. We are also less interested in servers lost due to churn as they are
unlikely to be true open resolvers as opposed to misconfigurations.
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of 1 for normal queries. Interestingly, 17,921 (3.4%) of recursive resolvers that
responded to our bad-answer query returned to us the answer that our servers
had given to them, despite the BADCOOKIE rcode in the response from our author-
itative servers. Of those that returned an answer, 14,350 (80%) also set the rcode
to SERVFAIL. The lack of enforcement is accompanied by a lack of consensus on
how unexpected responses should be handled.

5.2 Server Handling of Unexpected Client Behavior

Here we performed a short test to determine how DNS servers would respond to
unexpected client behavior, with regard to the server cookie sent by the client.
Specifically, we had our client send 5 queries that included the most recently
received server cookie, 5 queries without a server cookie, and 5 queries with
a fake server cookie. In each of these conditions, the client cookie was sent as
normal. In the latter two cases, the specification provides three options for a
server [11]. They may silently discard the request, respond with the BADCOOKIE
error code, or respond normally as if no cookie option was present. We sent
these queries to all Alexa IPs, TLD IPs, and recursive resolver IPs identified in
Sect. 3.1 that supported cookies.

For Alexa servers, we observed 41,083 IPs that responded to at least one
normal query with a valid response and rcode of NOERROR. In our two other
scenarios, nearly all of these IPs also had one or more standard responses: >99%
for queries without cookies and with fake cookies. We observed 1 IP that used
the BADCOOKIE rcode even when we sent the most recently received server cookie.
We saw only 28 IPs use BADCOOKIE when we didn’t send a cookie and 27 IPs
when we sent a fake cookie.

For TLD servers, we initially observed 1,246 IPs that responded to at least
one normal query with an rcode of NOERROR. All but 3 IPs returned an rcode
of NOERROR in both the fake and missing cookie scenarios. These 3 IPs con-
sistently returned an rcode of BADCOOKIE under these conditions, and all were
authoritative for the il (Israel) TLD.

For recursive resolvers, we saw 137,896 IPs return an rcode of NXDOMAIN (we
queried for a non-existent domain) for a normal query. Again we saw over 99%
continue to behave normally when the server cookie was missing or fake. We
measured 49 servers using BADCOOKIE for a missing cookie and 53 for a fake
cookie (though 13 IPs sent BADCOOKIE incorrectly in the normal condition).

In summary, practically no server changes its behavior if it doesn’t receive
a server cookie or if it receives a fake one (even after the client previously sent
valid cookies). While this behavior is consistent with the specification, it is the
least restrictive approach. As a result, these servers can still potentially be used
in reflection attacks because they will generate a full response regardless of the
server cookie.
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6 Discussion

We have now enumerated support for DNS Cookies and found that it is limited,
both for clients and servers. We have also seen that few clients and servers
supporting cookies enforce them. This begs the question of what contribution, if
any, DNS Cookies currently make. DNS Cookies are also in a difficult situation
because they require wide deployment for enforcement to be enabled, but there
may be little value in adopting them today. We now discuss the perceived current
benefits of cookies and the path forward to wider adoption and enforcement.

6.1 Cookie Benefits Today

DNS Cookies have minimal value in their current state. We found that cookies
are used by less than 30% of servers and 10% of recursive clients. This alone
means that 70% of servers can be abused for reflection attacks and 90% of
clients are not strongly protected from cache poisoning attacks (though other
measures exist). Also noteworthy is the fact that 90% of clients are not sending
server cookies (as a client cookie is a prerequisite).

Due to relatively low adoption rates, those that do support cookies are unable
to enforce them since doing so would break compatibility with the majority
of infrastructure. In our testing, we demonstrated our support for cookies in
preliminary queries but still observed that only 20% of clients and less than 1%
of servers changed their behavior if a cookie was missing or fake.

The only benefit we see today is that receiving a valid cookie acts as a
reassurance that the other party’s identity is correct. In real-world applications,
this reassurance provides little value since it does not change an implementation’s
behavior: it would accept the message regardless of a cookie.

In summary, we do not see any benefits from DNS cookies, as they are used
today. Cookies exist mostly in a dormant state, but if adoption significantly
improves such that they can be enforced, they can become effective.

6.2 Path Forward for Cookies

The obvious next step for cookies is to increase adoption among clients and
servers. However, there is somewhat little benefit to doing so today due to the
lack of enforcement. Additionally, servers may not be concerned with identifica-
tion (as they’re only a passive entity in reflection attacks) and clients may feel
protected from cache poisoning through other measures.

To incentivize adoption, strategies for partial enforcement should be explored.
For example, clients and servers could begin enforcing cookies use for parties
they previously observe using cookies. In our testing, we saw that 80% of clients
and 99% of servers did not do this. Another enforcement implementation could
involve a mechanism to advertise cookie support. This would allow other parties
to verify that an IP intends to use cookies and then apply strict enforcement
on a case-by-case basis. Neither of these enforcement strategies will overcome
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the lack of cookie adoption because enforcement can only ever be applied to the
small percentage of clients and servers supporting cookies.

As a result, the main step for cookies is to continue to grow adoption num-
bers. As adoption grows, opportunistic or learned enforcement will become more
viable. Given the entrenchment of the DNS in internet infrastructure, it is
unlikely that adoption will ever be universal, and as a result, strict enforce-
ment may never be possible. Here we hope that strategic enforcement can be
sufficient enough to deploy as a permanent strategy.

7 Ethical Considerations

All measurements and analyses performed in this paper were designed to be
benign. Queries were sent at a low frequency, typically one per second, and never
exceeded a volume of more than 20 queries per minute to a given IP address.
Additionally, our probes were used solely to measure cookie usage and support.
None of our probes were designed to exploit clients or servers.

8 Conclusion

In this paper, we present what is, to our knowledge, the first study of DNS
Cookie usage. We find that cookie usage is limited, despite its standardization
four years ago. We find that under 30% of IPs for the top 1 million Alexa domains
and less than 20% of IPs for the TLDs supported cookies. We also observe that
17% of recursive resolvers support cookies as a “server”, but only 9% do as a
“client”. We next analyzed a collection of server cookies and exposed potential
issues, such as inconsistent clocks, which could potentially cause issues if cookies
were enforced.

Finally, we experimented to see if any clients or servers enforced cookie usage.
We observe that only 20% of clients and less than 1% of servers behave differently
if an IP that previously supported cookies does not supply a cookie or replies
with a fake cookie. This highlights that even those supporting cookies are not
seeing any significant protection.

Overall, DNS Cookie adoption is limited, and there are few benefits for those
using cookies. For cookies to leave their dormant state, higher adoption rates
are necessary. From there, we believe that strategic enforcement may begin to
produce real-world benefits.
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and Gerald Q. Maguire Jr.

KTH Royal Institute of Technology, Stockholm, Sweden
{katsikas,barbette,mchiesa,dmk,maguire}@kth.se

Abstract. Network interface cards (NICs) are fundamental components
of modern high-speed networked systems, supporting multi-100 Gbps
speeds and increasing programmability. Offloading computation from a
server’s CPU to a NIC frees a substantial amount of the server’s CPU
resources, making NICs key to offer competitive cloud services. There-
fore, understanding the performance benefits and limitations of offload-
ing a networking application to a NIC is of paramount importance.

In this paper, we measure the performance of four different NICs
from one of the largest NIC vendors worldwide, supporting 100Gbps and
200 Gbps. We show that while today’s NICs can easily support multi-
hundred-gigabit throughputs, performing frequent update operations of
a NIC’s packet classifier—as network address translators (NATs) and
load balancers would do for each incoming connection—results in a dra-
matic throughput reduction of up to 70 Gbps or complete denial of service.
Our conclusion is that all tested NICs cannot support high-speed net-
working applications that require keeping track of a large number of
frequently arriving incoming connections. Furthermore, we show a vari-
ety of counter-intuitive performance artefacts including the performance
impact of using multiple tables to classify flows of packets.

Keywords: Network interface cards · Hardware classifier ·
Offloading · Rule operations · Performance · Benchmarking · 100 GbE

1 Introduction

With the dramatic growth of Network Interface Card (NIC) speeds, optimizing
I/O operations is essential for supporting modern-day applications. As evidenced
by recent work, handling 40 Gbps of Transmission Control Protocol (TCP)
traffic requires roughly 20%–60% of the CPU resources on a general-purpose
server [10,31,48]. These communication overheads consume CPU cycles that
could otherwise be used to run customers’ applications, ultimately resulting in
expensive deployments for network operators.

Offloading network operations to NICs is a pragmatic way to partially
relieve CPUs from the burden of managing (some of the) network-related state.
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Examples of such offloading are TCP optimizations, such as Large Receive
Offload (LRO) and TCP Segmentation Offload (TSO) [1]. Increasingly, NICs
are equipped with built-in Field-Programmable Gate Arrays (FPGAs) or net-
work processor cores that can be used to offload computation from a host’s
CPU directly into the NICs. Such NICs are referred to as SmartNICs. Sev-
eral preliminary investigations of SmartNIC technologies have demonstrated
potential benefits for offloading networking stacks [2,10,30–32], network func-
tions [3,4,18,25,43], key-value stores[7,26,28], packet schedulers [44], neural net-
works [42], and beyond [21,38]. Despite the increasing relevance of (smart) NICs
in today’s systems, very few studies have focused on dissecting the performance
of SmartNICs, comparing them with their predecessors, and providing guidelines
for deploying NIC-offloaded applications, with a focus on packet classification.

Our Goal. In this work, we study the performance of (smart) NICs for widely
deployed packet classification operations. A key challenge of packet classification
is the ability of the classifier to both quickly (i) match incoming packets to their
packet processing actions and (ii) adapt the state of the packet classifier, e.g., by
inserting new rules or updating existing ones. For example, consider a cloud load
balancer (LB) that keeps track of the mapping between incoming connections
and the back-end servers handling these connections. The LB may utilize a NIC’s
packet classifier to map TCP/IP 5-tuples of incoming connection identifiers to
their corresponding servers. As a single cluster in a large-scale datacenter may
receive over 10 million new connections per second [29], it is critical to support
fast updates for packet classifiers, thus achieving high throughput and low pre-
dictable latency. Our study of packet classifiers reveals unexpected performance
bottlenecks in today’s (smart) NICs and provides guidelines for researchers and
practitioners, who wish to offload dynamic packet classifiers to (smart) NICs.

Findings. We analyzed the performance of four different NICs with speeds in
the 100 Gbps to 200 Gbps range. Our key findings are summarized in Table 1.
In short, we show that the forwarding throughput of the tested NICs sharply
degrades when i) the forwarding plane is updated and ii) packets match multiple
forwarding tables in the NIC. Moreover, we devise an efficient in-memory update
mechanism that mitigates the impact of updating the rules on the forwarding
throughput. The code to reproduce the experiments of this paper is publicly
available along with supplementary graphs showing the experimental evaluation
of all four NICs under test [17].

Paper Outline. This paper is organized as follows: Sect. 2 outlines the exper-
imental methodology used in this work; Sect. 3 provides useful performance
insights into modern NICs; Sect. 4 discusses related efforts in the area of pro-
grammable networking hardware beyond the work mentioned inline throughout
the paper. Finally, Sect. 5 concludes this paper.

2 Measurement Methodology

This section outlines the testbed used to conduct the experiments as well as our
methodology to extract results.
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Table 1. Main findings of this paper.

Finding Implication

There are parts of the NIC table hierarchy that

do not yield the expected forwarding

performance (Sect. 3.1)

Throughput degradation from 100Gbps to

20 Mbps and multi-fold latency increase (Fig. 2a

and Fig. 2c)

Uniformly spreading rules across a chain of NIC

tables incurs performance penalty (Sect. 3.1)

Throughput degradation from 100Gbps to

13Gbps and 10x higher latency when using 16

tables (Fig. 2b and Fig. 2d)

A batch update of the NIC classifier, while

processing traffic, makes the NIC temporarily

unavailable (Sect. 3.1)

100% packet loss for up to several seconds with

an increasing number of installed rules (Fig. 3)

Frequent updates of the NIC classifier, while

processing traffic, causes substantial

performance degradation (Sect. 3.1)

Throughput degradation from 100Gbps to

30Gbps and ∼2x higher latency (Fig. 4)

Updating the NIC classifier from a separate core

does not degrade the NIC performance (Sect. 3)

No performance impact when processing traffic

on core 0 and updating rules from core 1 (Fig. 3

and Fig. 4)

The Internet protocol selection (i.e., IPv4 vs.

IPv6) affects the NIC rule installation rate

(Sect. 3.2.1)

IPv6 rule insertion rate is either 5–181 faster or

12% slower than the respective IPv4 rate,

depending on the part of the NIC table

hierarchy applied (Fig. 5a–5b)

The network slicing protocol selection affects

the NIC rule installation rate (Sect. 3.2.1)

Installing VLAN-based rules is up to 50% faster

than installing tunnel-based rules (Fig. 5c)

NIC rule update operations are non-atomic and

rely on sequential addition and deletion

(Sect. 3.2.2)

Too slow for applications that require heavy

updates. Our dedicated update API performs

up to 80% faster (Fig. 6)

2.1 Experimental Setup

Testbed. All of the experiments described in this paper used the testbed shown
in Fig. 1. Two back-to-back interconnected servers, each with a dual-socket 16-
core Intel�Xeon� Gold 6134 (SkyLake) CPU clocked at 3.2 GHz and 256 GiB of
DDR4 Random Access Memory (RAM) clocked at 2666 MHz. Each core has 2×
32 KiB L1 (instruction and data caches) and a 1 MiB L2 cache, while one 25 MiB
Last Level Cache (LLC) is shared among the cores in each socket. Following
today’s best practices, hyper-threading is disabled on all servers [47] and the
Operating System (OS) is the Ubuntu 18.04.5 distribution with Linux kernel
v4.15. One server acts as a traffic generator and receiver while the other server
is the Device Under Test (DUT).

Measurement Server

Physical link

Traffic Generator

Traffic Receiver

Device Under Test

Forwarding NF
Core 0

Trace 
Generator

Analysis

Rule Generator
Core 0/1

Core 1

Core 0

Fig. 1. Testbed setup and measurement methodology.
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Tested NICs. We focus our study on one of the most widespread NICs available
in Commercial off-the-shelf (COTS) hardware to date, as shown in Table 2. Such
NICs, manufactured by NVIDIA Mellanox, operate at 100 Gbps link speeds (or
beyond), while providing advanced processing capabilities. We also considered
existing Intel NICs, such as the 10 GbE 82599 [12] and the 40 GbE XL710 [13],
however these NICs operate at much lower link speeds and are limited to 8 K
flow rules. The upcoming 100 GbE Intel E810 series network adapter [14] provides
16 K (masked) filters based on ternary content addressable memory (TCAM),
which is still far from the range of several millions of flow rules tested with
the NVIDIA Mellanox NICs. Moreover, the hardware limits of the Intel NICs
are known, as Intel published relevant hardware datasheets [12–14]. NVIDIA
Mellanox has not disclosed such information; thus our study sheds some light
on unknown aspects of these popular NICs, while helping to understand how
performance has evolved across the same family of NICs.

Table 2. The characteristics of the NICs used for the experiments in this paper.

Vendor Model Speed
(Gbps)

# of
Ports

Firmware
Version

Driver

Name Version

NVIDIA Mellanox ConnectX-4 [35] 100 2 12.28.2006 mlx5 core 5.2–1.0.4

ConnectX-5 [36] 16.29.1016

BlueField [34] 18.29.1016

ConnectX-6 [37] 200 20.29.1016

All NICs except for the NVIDIA Mellanox ConnectX-6 use a PCIe 3.0 x16 bus
to connect with a server’s CPU. The ConnectX-6 adapter uses two PCIe 3.0 x16
slots. The BlueField NIC is a SmartNIC based on the ConnectX-5 adapter, also
equipped with a 16-core ARM processor for additional in-NIC traffic process-
ing. We briefly describe the general architecture and differences of the NVIDIA
Mellanox NICs. All NICs have a first table, called Table 0 or “root” table with
space for 65 536 rule entries. All the NICs, except for the ConnectX-4, provide an
additional sequence of high-performance exact-match tables (supporting a per-
table mask) that can be used to massively offload packet classification from the
CPUs to the NIC. Note that these NICs do not support Longest Prefix Match
(LPM); instead the user should implement LPM with a combination of multiple
tables with different masks. The capacity of these tables is only bounded by the
host’s available memory, thus they can accommodate a much larger number of
rules, given the ample amount of RAM in modern servers. We refer to the first
of those extra tables as Table 1 and note that any subsequent table (i.e., Table
2, 3, etc..) appears to have similar properties with Table 1.

Traffic Characteristics. A multi-core traffic generator and receiver, based on
the Data Plane Development Kit (DPDK) v20.11 [46], is deployed on the mea-
surement server as shown in Fig. 1. Four cores are allocated to the traffic generator,
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which inject a trace of 10KUDPflows at 100 Gbps.Eachflowconsists ofMTU-sized
(i.e., 1500-bytes) packets. This traffic first traverses the DUT and, if not dropped,
then returns to the measurement server, this time reaching four different cores on
the same CPU socket of the traffic generator.

Note that the measurement server injects traffic towards the DUT using the
same 100 GbE ConnectX-5 NIC for all the experiments. This ensures that only
the DUT’s NIC hardware may vary across all of the experiments, thus potential
differences among the experimental results solely depend on the performance of
the underlying NIC in the DUT.

Measurements. Each experiment is executed 5 times; the collected measure-
ments are plotted using either errorbars or boxplots, which visualize the 1st,
25th, 50th (i.e., median), 75th, and 99th values obtained across these 5 itera-
tions, unless stated otherwise. The traffic receiver of the measurement server
reports measurements related to end-to-end throughput, latency variance per-
centiles, per-queue packet & byte counters both at the measurement server and
the DUT, packet loss, and the duration of each experiment. When reporting
latency, we repeated experiments at 5Mpps (∼60 Gbps), avoiding link speed to
be a bottleneck on both the DUT and the traffic generator, thus ensuring latency
changes are due to the NIC and not packets buffering in queues.

3 Analysis of Flow Tables

This section benchmarks the selected NICs focusing on three different aspects
related to packet classifiers.

First, we quantify the performance impact of the NICs’ hardware classifiers
with (i) an increasing number of rules, (ii) an increasing number of tables hosting
these rules, and (iii) increasingly larger or more frequent updates being installed
by the control plane (see Sect. 3.1). Second, we analyse the performance of flow
rule insertion/deletion operations in terms of latency for rule insertions and
throughput (see Sect. 3.2.1). Finally, after discovering flow rule modifications are
not supported by these NICs, we evaluate a different strategy to realize fast and
atomic rule updates in the packet classifier of the analyzed NICs (see Sect. 3.2.2).

3.1 Hardware Classification Performance

Overview. In this section we measure packet classification performance of mod-
ern NICs under a variety of conditions. First, we show that the first table of these
NICs drops almost all traffic when memory utilization exceeds ∼85%. We also
show that the packet processing latency of the analyzed NICs exhibits a long tail
in this situation (up to 120 ms). Moreover, spreading an increasing number of
rules across four or more tables in these NICs results in substantial throughput
degradation (23–88% when using 4–16 tables). Finally, we show that runtime
modifications to the packet classifier’s rules have a detrimental effect on the
NIC’s throughput: we observe a reduction of 70 Gbps of throughput (out of
100 Gbps).
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Scenario. In the following experiments the DUT runs a single-core forwarding
Network Function (NF) using the testbed described in Sect. 2.1. The NIC of the
DUT dispatches input frames to this NF according to the flow rules installed in
the NIC. These rules are stored either in the default “root” flow table of the NIC
(i.e., Table 0) or in non-root tables (i.e., Tables 1–16). We differentiate between
these two table categories as NVIDIA Mellanox explicitly mentions that Table 0
has a limited number of supported flow entries (i.e., 216 rules) and the latter
support a faster API based on shared memory between the NIC and the driver
running in userlevel. We only show results for the ConnectX-5 NIC as we observe
qualitatively similar trends for all the other NICs.

The rest of this section provides experimental evidence to address the follow-
ing questions:

Q1 Does the number of rules and/or tables affect the performance

of the NIC?
Figure 2 shows the performance of the packet classifier with an increasing number
of rules (x-axis) for all types of tables of the NVIDIA Mellanox ConnectX-5 NIC.
We denote by Table 1-X the case where we uniformly install forwarding rules
on the first X non-root tables, i.e., Table 1, . . . , Table X. The rules installed in
the NIC are simple exact matches and the generated traffic matches exactly one
default rule installed in the NIC. We generate 8 Mpps of 1.5 KB packets towards
the DUT, equivalent to 100 Gbps. Figure 2a and Fig. 2c show that the perfor-
mance (i.e., throughput and packet processing latency) for Table 0 decreases

Fig. 2. Throughput and latency (on a logarithmic scale) of a hardware-based 100 GbE
NVIDIA Mellanox ConnectX-5 NIC classifier with different number of pre-installed
rules across Table 0 (left) and Tables 1–16 (right).
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dramatically as soon as the occupancy of the table goes above 85%, hence the
last 15% of memory is in practice unusable. Specifically, the throughput decreases
from 100 Gbps down to 20 Mbps, while the latency increases by several orders of
magnitude, from tens of µs to more than a hundred of ms. We observe a similar
decrease in throughput for small packets (i.e., 64B), even when the input load
is 3.5 Gbps, which is 30x lower than the maximum attainable throughput of the
NIC under test. This confirms that the performance degradation issue is not a
result of excessive input load, but rather a design artifact of the root table.

Figure 2b and Fig. 2d show that non-root tables (i.e., Tables 1–16) are much
faster than the root table. Specifically, using a non-root table the NIC achieves
line-rate throughput and low predictable latency even with 2M entries in Table 1.
However, spreading rules across an increasing number of non-root tables results
in substantial performance degradation. As shown in Fig. 2b, for most of the
tested ruleset sizes, the NIC cannot achieve more than 20 Gbps throughput when
using 16 tables, while the respective latency to access these tables exhibits a ten-
fold increase compared to the single-table case, as shown in Fig. 2d.

Q2 Do updates to the classifier affect the performance of the NIC?

The objective of this experiment is to understand how runtime modifications of
the packet classifier’s ruleset impact the throughput of the forwarded traffic. We
envision two types of experiments motivated by two different use cases. In the
first experiment, we generate a single batch of rule insertions to be installed into
the NIC. This is reminiscent of scenarios in which a network suddenly reacts to a
failure event that triggers many rule updates. For instance, Internet link failures
may generate a burst of BGP updates for possibly 10 s of 100 s of thousands of IP
prefixes received from a neighboring network [11]. In the second experiment, we
generate periodic rule insertions in the packet classifier at a given frequency. This
setting is reminiscent of cloud datacenter Layer 4 load balancers (LBs), where
LBs insert a new rule into a packet classifier each time a new connection arrives.
We note that, based on realistic connection size distributions taken from cloud
datacenter workloads, the number of new rules to be installed ranges between
4K per second for “Hadoop’ workloads to 36K and 338K per second for “cache
follower” and “web server” workloads, respectively [41]. In both experiments, we
generate a workload with packet sizes of 1.5 KB. To avoid external bias from the
system’s CPU, we measure two different cases for each experiment: In the first
case (labeled as “Same Core” below), we use the same CPU core that performs
traffic forwarding to install the rules in the NIC. In the second case (labeled
as “Distinct Cores” below), we use one CPU core for traffic forwarding and
another CPU core for rule installation. All the traffic matches a single rule in
the classifier. As in the previous experiment, we obtain similar qualitative results
for all the NICs and only show the NVIDIA ConnectX-5 ones.

Batch-Based Updates Have Detrimental Effects on Performance.
Figure 3 shows the packet processing throughput (y-axis) achieved by the NIC’s
packet classifier over time (x-axis) for Tables 0 and 1, while the NIC simulta-
neously (i) receives a workload of 100 Gbps of 1500 B packets and (ii) inserts a
number of new rules (see the legends) ranging between 1 and 100 K.
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Fig. 3. Impact of batch-based updates on the performance of a 100 GbE NVIDIA
Mellanox ConnectX-5 NIC classifier.

As shown in Fig. 3a even with a batch of 1K rules (see the green circles), the
NIC fails to process any traffic for about 300 ms. For a 100 Gbps link with MTU-
sized frames, this translates to a packet loss of around 2.5 M frames, while more
than 40 M frames could have been lost from a 100 Gbps link with 64 B frames.
Increasing the rules’ batch size to 10K results in a longer failure of around 2 s
(see the red squares), while in the case of 100K rules (blue triangles) the NIC
does not recover even after 6 s. The down-time of Table 1 is 500 ms, but the
problem manifests itself only in the case of 100 K rules as shown in Fig. 3b. On
the other hand, installing the batch updates from a dedicated core does not
affect the forwarding performance of the NF as shown in Fig. 3c and Fig. 3d.

We believe that these results have far-reaching implications on both (i) the
security of the network functions, as batch-based updates could become a vec-
tor of denial-of-service attacks and (ii) the design of highly-reactive network
controllers, e.g., to enable large data-plane updates for fast failover recovery [6].

Rate-Based Updates Reduce NIC Forwarding Capacities. Installing
periodic batches of rules from the same core is a typical operation of NATs
and Layer 4 load balancers, which need to reactively install rules matching new
incoming connections. Installing rules from a different core allows us to dissect
just the performance degradation due to interference in the NIC data-plane.

Figure 4a and 4b show the throughput of the forwarding NF when we simul-
taneously insert rules into the NIC classifier at a specific rate. The insertion rate
ranges between 1 K to 10 K rules per second for Table 0 and 10 K to 500 K rules
per second for Table 1. The inserted rules are not generated in response to a
new incoming connection but pre-computed and inserted regardless of when new
connections arrive. The results show that when inserting rules from a different
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Fig. 4. Impact of rate-based updates on the performance of a 100 GbE NVIDIA Mel-
lanox ConnectX-5 NIC classifier.

core, the throughput and average latencies (see also Fig. 4c and 4d) are mostly
unaffected by the parallel insertion. However, when the insertions are generated
from the same core running the forwarding NF, we observe a significant perfor-
mance drop. Specifically, Fig. 4a and 4b show that the throughput decreases by
roughly 70 Gbps for 10K and 500K rule insertions per second in Table 0 and
Table 1, respectively. As shown in Fig. 4c and 4d, the respective latency increase
is up to more than 2x for Table 0 and 82% for Table 1. This result demonstrates
that the bottleneck of the update operation is the standard API provided by
the NIC vendor for updating the forwarding table (which requires long time and
interrupts the normal forwarding for prolonged period of times).

We note that installing rules from a different core is not a panacea. One would
need expensive inter-core communication to install a rule as well as reserve extra
CPU resources to handle the rule installation. For instance, to install i.e., 500K
rules consumes 100% of a CPU core for several hundreds of milliseconds.

Summary. Our results show that it is possible to introduce a denial of service
attack to the packet classifier of the NICs under test or dramatically reduce its
throughput by up to 70 Gbps, by updating the classifier’s rules using the same
CPU core that performs traffic processing. This technique is commonly used by
sharded high-speed data planes [4], as it would be the case for per-connection
NFs. We note that realistic datacenter workloads generate new connections in
the range of 4K-400K new connections per second. Our results indicate that one
would not gain any benefit from offloading applications, such as cloud NATs and
load balancers, with highly dynamic tables, to the analyzed NICs. Moreover, all
NICs under test achieve similar performance across all the experiments in this
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section; with the only difference being the NVIDIA ConnectX-6 NIC, which
exhibits slightly lower throughput degradation than the rest of the NICs in the
experiment shown in Fig. 2a and Fig. 2b [17].

In the next subsection, we investigate how rule modifications are performed
and explore performance limitations of these rule modifications. In response
to this, we provide alternative workarounds that mitigate some of the issues
described in this section.

3.2 Rule Operations Analysis

We now focus solely on the performance of rule update operations (i.e., inser-
tions, deletions, and modifications’ completion times). Clearly, the shorter the
update completion time, the lower the performance disruption on the forwarded
traffic. Our analysis reveals three main findings. First, while modern NICs handle
almost 500K insertions per second, there is a significant and sometimes counter-
intuitive performance difference depending on the type and number of fields that
are matched by the packet classifier, as well as the type and number of actions
that are applied by a rule. Surprisingly, installing rules matching IPv4 in Table 0
is a much slower process than installing IPv6 rules. Our second finding is that
the cost of installing VLAN-based rules for network slicing is substantially lower
than the respective cost of installing GRE/VXLAN/GENEVE-based rules. Our
third and final finding relates to the fact that rule modification operations are
not atomically supported by the analyzed NICs: one has to delete the old rule
and insert a new one. Our analysis shows that rule modification time can be
decreased by 80% compared to the insertion/deletion operations supported by
the standard API of the vendors, by directly modifying the content of the exact
match tables in the NIC memory.

3.2.1 Insertion/Deletion of Rules
We now compute the rule insertion rate supported by an NVIDIA Mellanox
ConnectX-5 NIC in Tables 0 and 1. We use a single CPU core to insert a number
of rules in the range between 1 and 65536 and measure the time that it takes to
insert them. From this value, we compute the rule insertion rate.

Figure 5a shows that the rules insertion rate for Table 0 for five types of rules
matching different combinations of fields, such as Ethernet, IPv4, IPv6, and
TCP. A single action is applied to a packet matching any of these rules. Sur-
prisingly, our measurements show a striking difference between IPv4 and IPv6.
Specifically, inserting rules matching IPv4 results in a sharp slow-down in the
insertion rate compared to IPv6 rules, which is already 5x slower with just 16K
entries. We profiled both operations to unveil the reasons of this performance
diversity and found that IPv4 rules are directly installed by the kernel in hard-
ware, using the firmware API, while the IPv6 rules are managed by the userlevel
DPDK driver similarly to the rules of non-root tables. On the contrary, Fig. 5b
shows the same experiment for Table 1. We note that in this case matching on
IPv4 results in a 12% higher insertion rate compared to IPv6, the opposite of
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Fig. 5. Rule insertion performance (in kRules/sec) of a hardware-based 100 GbE
NVIDIA Mellanox ConnectX-5 NIC classifier with various rule sets in [1, 65536] stored
in two different tables.

what we observed for Table 0. This is because Table 1 is managed in software,
thus both IPv4 and IPv6 are managed by the respective DPDK driver.

We then investigate how different extensively adopted network slicing proto-
cols affect the insertion rate into the NIC’s most performant Table 1. We consider
VLAN, GRE, VXLAN, and GENEVE virtualization headers, which are widely
used in datacenter and wide-area network deployments. Figure 5c shows that
rules matching VLAN tags can be installed up to 50% more rapidly than those
relying on the other virtualization schemes.

We now verify whether the extent to which the actions associated to the rules
impact the rules’ insertion rate. Figure 5d shows that increasing the number of
actions performed on a packet may result in 32% slower insertion rate. We believe
these results are inline with the natural intuition of slower insertions for more
complex actions.

We finally repeat all the previous experiments but in this case we remove
entries from the NIC’s packet classifier. To our biggest surprise, when we add a
TCP match on a set of rules in Table 0, the deletion becomes faster than without
having the TCP header. This counter-intuitive result demonstrates once more
that any deployment on Table 0 should be accompanied by a comprehensive
testing of the classifier’s structure to avoid unexpected performance slowdown.

3.2.2 Modification of Rules
We now investigate the problem of updating a set of rules on the analyzed NICs.
We first observe that none of the evaluated NICs support direct flow modifications
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through their APIs. One has to first delete and then insert an entry, which results in
two major issues: (i) there are periods when the network configuration is incorrect
and (ii) as observed in the previous subsection, rule modifications are extremely
slow for the needs of real platforms. We therefore show how one can carefully engi-
neer flow modifications for simple 5-tuple matching rules to speed up rule modifi-
cations in the NIC. We refer to our technique as enhanced in-memory update. Our
technique does not rely on the standard API provided by the NIC vendor in DPDK
and the rdma-core library tomodify rules, but insteaddirectly accesses thememory
of the exact-match stages in the pipeline and modifies them in a less disruptive way.
We defer the reader later in this section for more details on our improved update
technique.

Enhanced In-Memory Updates Are Up to 80% Faster. We employed
DPDK’s flow-perf tool to measure the NICs update rate, using the standard
sequential deletion and insertion process. Then, we modified this tool to update
all installed rules by using our in-memory update. Figure 6 shows the update rate
(y-axis) in krules/sec achieved by both (i) the standard API deletion/insertion
(black squares) and (ii) our enhanced in-memory update scheme (blue stars)
with an increasing number of rules (x-axis) in the NIC classifier.

Fig. 6. Evaluation of the enhanced in-memory update mechanism.

We note that the standard API achieves 300K TCP/IP flow updates per sec-
ond1 on average, possibly disrupting all the forwarded traffic as shown in Sect. 3.1
in Q2. Our enhanced in-memory updates of the NIC classifier increases the
insertion rate for TCP/IP rules by up to 80%. We observe the CPU stalls dur-
ing the experiment, waiting for the NIC to complete memory synchronization
commands, hence reaching the limit of the NIC Direct Memory Access (DMA)
engine. We leave the problem of making the update mechanism more generic,
possibly in collaboration with NVIDIA Mellanox, as future work.

Enhanced In-Memory Updates Explained. We now explain more in detail
how one can realize faster rule insertions/deletions/modifications on the analyzed

1 The employed DPDK v20.11 flow API is single-threaded. Higher performance could
be achieved using multi-threaded rule insertion/deletion added in DPDK v21.02 [15].
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NICs. While NIC vendors provide their own standard API for rule modifications,
we added our own API for rule updates in DPDK and implemented support for
the API in the mlx5 driver (supporting ConnectX-4 and higher NVIDIA Mel-
lanox NICs), and the backing rdma-core library that handles messaging between
the NIC driver and the NIC itself. Instead of inserting and then removing a rule,
our new API is based on efficient in-memory updates to avoid as many memory
allocations in the driver as possible, while reusing the data-structure and only
changing the match/action field values. In the ConnectX-5 and above NICs,
a rule in a non-root table is implemented using a series of exact match hash-
tables. Each hash-table only supports a unique mask, i.e., it is left to the user
to implement techniques, such as tuple-space search, to implement an efficient
LPM strategy by using a series of various exact-match masked prefixes.

In the case of standard TCP 5-tuple, one needs two hash tables. The first
table matches the IP version, and the second one matches the 5-tuple itself. As
far as our reverse-engineering of this undocumented mechanism can tell, this sep-
aration of the header fields into multiple hash-tables is dictated by the firmware,
which supports a certain set of groups of fields per hash-table. Each of these
two hash-tables work on one of those group of fields, eventually masked. Adding
more fields from the application layer, or diverse tunnel types (VXLAN, GRE,
etc.) will add more hash-tables in the chain. We note that the NIC handles hash-
table collisions using a per-bucket linked-list of colliding entries. When inserting
a new TCP/IP 5-tuple, the standard API would take an atomic reference on the
entry for the IP-version and insert an entry into the 5-tuple hash-tables, and
then remove the old rule from both hash-tables. Our update mechanism tries to
minimize the number of modifications by following the existing rule, leaving it
in the same place when the bucket does not change, not changing atomic refer-
ence (as it is the case for the IP-version hash-table), and then we either rewrite
in-place the bucket of the hash-table if the bucket index (i.e., a CRC32 hash of
the masked fields value) did not change (it is probable as all hash-tables start
with a very small size and grow as needed), or move the entry in the pointed
bucket to a new bucket if the index changes. This also avoids multiple calls to
the DMA engine to insert and remove the rule, by only selectively updating
the memory zone of the field that changed, as well as limiting the number of
memory accesses. As far as consistency matters, our approach tries to guarantee
atomicity of the update in the NIC. There exists a small amount of time during
which, when the bucket entry is moved, the old and the new entries co-exist
before the old entry is marked as invalid. We believe this co-existence does not
open a security vulnerability since both entries are valid. Operators should fall
back to the standard API if this is a concern.

For now, we only support updates on match operations’ values; to implement
action operations’ value updates, such as redirecting packets to a different queue,
would be fairly similar. This is particularly suitable for connection tracking, such
as NAT and load balancers. Updating the masks of a rule is another complex
operation that we currently do not support. This is challenging because different
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hash-tables implement different masked elements, possibly defeating the benefits
of re-using some pre-installed elements.

4 Related Work

Measuring the performance of emerging network technologies has brought enor-
mous benefits in our understanding of where the critical bottlenecks reside
in today’s deployed network systems. Neugebauer et al. [33] have investigated
the performance of the PCIe device interconnecting modern NICs to the CPUs
and memories showing surprisingly low performance with small packets. Farshin
et al. (i) quantified the impact of direct cache access in Intel processors [9] and
(ii) proposed software stack optimizations to achieve per-core hundred-gigabit
networking [8]. Kuzniar et al. [23,24] have unveiled a variety of issues with the
initial OpenFlow-based switches, such as the lack of consistency during updates.
In contrast, we focus on NIC performance. Liu et al. [28] analyzed the memory
characteristics, number of cores required to forward a certain amount of traffic,
and Remote Direct Memory Access (RDMA) capabilities of five different Smart-
NICs. In our work, we focus on the packet classifier component of a NIC and the
impact of memory occupancy and runtime modifications on its performance.

A variety of efforts have been devoted to the orthogonal problem of scheduling
updates in a network [16,19,20,22,27,39,40] or designing faster data structures
at the data-plane level that are amenable to quick modifications [5,6,45].

5 Conclusions

Motivated by the ever-growing increase of networking speeds and offloading
trends, this paper investigates the performance bottlenecks of today’s NIC packet
classifiers. We focused on several evolving models of one of the largest NIC ven-
dors worldwide, showing a variety of critical performance limitations depending
of the memory occupancy, the pipeline length, runtime rule modifications, and
rule modification speed. We explored the idea of performing gradual updates
directly in the NIC, improving the unveiled bottlenecks as well as many obsta-
cles towards building a more efficient and generic API.
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Abstract. To keep up with demand, servers will scale up to handle
hundreds of thousands of clients simultaneously. Much of the focus of
the community has been on scaling servers in terms of aggregate traffic
intensity (packets transmitted per second). However, bottlenecks caused
by the increasing number of concurrent clients, resulting in a large num-
ber of concurrent flows, have received little attention. In this work, we
focus on identifying such bottlenecks. In particular, we define two broad
categories of problems; namely, admitting more packets into the network
stack than can be handled efficiently, and increasing per-packet over-
head within the stack. We show that these problems contribute to high
CPU usage and network performance degradation in terms of aggregate
throughput and RTT. Our measurement and analysis are performed in
the context of the Linux networking stack, the most widely used pub-
licly available networking stack. Further, we discuss the relevance of our
findings to other network stacks. The goal of our work is to highlight con-
siderations required in the design of future networking stacks to enable
efficient handling of large numbers of clients and flows.

1 Introduction

Modern servers at large scale operators handle tens of thousands of clients simul-
taneously [33,38,45]. This scale will only grow as NIC speeds increase [1,3,5] and
servers get more CPU cores [4,23]. For example, a server with a 400 Gbps NIC
[3] can serve around 80k HD video clients and 133k SD video clients.1 This scale
is critical not only for video on demand but also for teleconferencing and AR/VR
applications. The focus of the community has been on scaling servers in terms of
packets transmitted per second [13,25,27,28,34,36], with little attention paid to
developing complete stacks that can handle large numbers of flows well [26,29].

We envisage servers delivering large volumes of data to millions of clients
simultaneously. Our goal is to identify bottlenecks that arise when servers reach
that scale. In particular, we take a close look at network stack components that
become the bottleneck as the number of flows increases. We find that competition
between flows can lead to overall performance degradation, requiring fine-grain
scheduling. Further, the increase in flow numbers leads to higher overhead of

1 HD and SD videos consume up to 5 Mbps and 3 Mbps, respectively [9].
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Table 1. Summary of findings with results reported at 100k flows compared to more
efficient baselines for admission control or performance with lower number of flows for
per-packet overhead.

Category Identified Issue Impact Existing systems
mitigating it

A
d
m

is
si

o
n

C
o
n
tr

o
l

Overpacing 5% increase in CPU utilization –

Inefficient

backpressure

Throughput unfairness and

hundreds of milliseconds in

latency

Per-flow scheduling [31,46]

Oblivious
hardware offloads

2× increase in interrupts –

P
er

-p
a
ck

et
O

v
er

h
ea

d Data structure
inefficiency

2× increase in CPU utilization
and 2× increase in latency

Low-overhead data
structures [38,39]

Lock contention 2× increase in latency Distributed scheduling
[24,38,42]

Cache pressure 1.8× increase in latency –

per-flow bookkeeping and flow coordination. Thus, we categorize problems that
arise due to an increase in the number of concurrent flows into two categories:
1) Admission Control to the Stack: The admission policy determines the
frequency at which a flow can access the stack and how many packets it can
send per access. The frequency of a flow accessing network resources and the
duration of each access determine the throughput it can achieve. As the number
of flows increases, admission control becomes critical for the efficiency of the
stack. For example, admitting and alternating between flows at a high frequency
can reduce Head-of-Line (HoL) blocking and improve fairness but at the expense
of CPU overhead, which can become a bottleneck, leading to throughput loss.
We consider backpressure mechanism as a critical part of the admission control
as it determines how a flow is paused (e.g., denied admission) and resumed (i.e.,
granted admission).
2) Per-packet Overhead within the Stack: The overhead of most per-packet
operations is almost constant or a function of packet size (e.g., checksum, rout-
ing, and copying). However, the overhead of some operations depends entirely
on the number of flows serviced by the system. For example, the overhead of
matching an incoming packet to its flow (i.e., demultiplexing), and the overhead
of scheduling, for some scheduling policies (e.g., fair queueing), are tied to the
number of flows in the system.

We focus our attention on Linux servers. Despite its well documented ineffi-
ciencies (e.g., the overhead of system calls, interrupts, and per-packet memory
allocation [15,26]), the Linux networking stack remains the most widely used
publicly available networking stack. Further, even when new userspace stacks
are deployed, they still rely, at least partially, on the Linux stack to make use
of its comprehensive Linux functionality and wide use [31]. Hence, our focus on
Linux is critical for two reasons: 1) our results are immediately useful to a wide
range of server operators, and 2) we are able to identify all possible bottlenecks
that might not appear in other stacks because they lack the functionality.
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We focus on the overhead of long-lived flows. Long-lived flows help expose
problems related to scaling a stack in terms of the number of flows. Scheduling
long-lived flows requires the scheduler to keep track of all active flows, exposing
inefficient data structures whose overhead increases with the number of tracked
flows and highlighting issues that arise because of the interactions between the
transport layer and the scheduler. It also exposes cache inefficiencies as infor-
mation about a flow has to be retained and edited over a long period of time.
Applications with long-lived flows include video on demand and remote stor-
age. The inefficiency of short-lived flows is rooted in creation and destruction of
states, and has been studied in earlier work [33]

The contribution of this work is in evaluating the scalability of the network
stack as a whole, at hundreds of thousands of clients, leading to the definition of
broader categories of scalability concerns. Table 1 summarizes our findings and
existing systems that mitigating the problems. It should be noted that inefficient
backpressure and data structure problems are only partially addressed by the
existing solutions and we’ll discuss the remaining challenges in Sect. 4 and 5.
In earlier work there have been several proposals to improve the scalability
of different components of the network stack (e.g., transport layer [26,29,33]
and scheduling [18,38,39]). These proposals consider specific issues with little
attempt to generalize or categorize such scalability concerns. Further, the notion
of scalability considered in earlier work is still limited to tens of thousands of
flows, with a general focus on short flows.

2 Measurement Setup

Testbed: We conduct experiments on two dual-socket servers. Each server is
equippedwith two Intel E5-2680 v4@2.40 GHzprocessors. Each server has an Intel
XL710 Dual Port 40G NIC Card with multi-queue enabled. The machines belong
to the same rack. Both machines use Ubuntu Server 18.04 with Linux kernel 5.3.0.

Testbed Tuning: The affinity of the interrupts and application to CPU cores
significantly affects the network performance on a multi-core and multi-socket
machine. To reduce cache synchronization between different cores and improve
interrupt affinity, we pin each transmit/receive queue pair to the same core. We
enable Receiver Packet Steering (RPS), which sends the packet to a CPU core
based on the hash of source and destination IPs and ports. We limit all network
processing to exclusively use the local socket because we observe that the inter-
connection between different sockets leads to performance degradation at 200k
or more flows. We enabled different hardware offload functions including GSO,
GRO, and LRO to lower CPU utilization. We also enabled interrupt moderation
to generate interrupts per batch, rather than per packet. We use TCP CUBIC as
the default transport protocol, providing it with maximum buffer size, to avoid
memory bottlenecks. The entire set of parameters is shown in Appendix B.

Traffic Generation: We generate up to 300k concurrent flows with neper [8].
We bind multiple IP addresses to each server so the number of flows that can be
generated is not limited by the number of ports available for a single IP address.
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Fig. 1. Schematic of the packet transmission path with identified pain points marked
in red.

With 40 Gbps aggregate throughput, the per-flow rate can range from 133 Kbps,
which is a typical flow rate for web service [17], to 400 Mbps, which might be large
data transfer [19]. We ran experiments with different numbers of threads ranging
from 200 to 2000. In particular, we spawn N threads, create M flows that last for
100 s, and multiplex the M flows evenly over the N threads. We observed that
using more threads causes higher overhead in book-keeping and context switch,
leading to degraded throughput when the server needs to support hundreds of
thousands of flows. The results shown in this paper are with 200 threads if not
specified otherwise. We use long-lived flows for experiments because our focus is
on the scaling problem in terms of the number of concurrent flows. The scaling
problem of short-lived flows is more related to the number of connecting requests
per second rather than the number of concurrent flows. With fixed number of
flows, the short-lived flows should not have higher overhead than long-lived flows.
For the rest of the paper, we use flows and clients interchangeably.

Figure 1 visualizes our assumed stack architecture. Our focus is on the over-
head of the transport and scheduling components of the stack. We experiment
with different scheduling algorithms by installing different Queuing Disciplines
(qdiscs). We use multiqueue qdisc (mq) to avoid having a single lock for all hard-
ware queues. All scheduling algorithms are implemented by per-queue within mq.
By default, mq handles packets FIFO in its queues. However, we use Fair Queue
(fq) [21] as the default qdisc combined with mq. Compared to pfifo fast, fq
achieves better performance in terms of latency and CPU usage when handling
a large number of flows [46]. In some experiments, we limit the total flow rate to
90% of the link speed to avoid queueing in Qdiscs and show that the performance
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degradation cannot be avoided by simply lowering the total rate. We also use
fq codel [7] to reduce latency within the qdisc in some cases.

Measurement Collection: In all experiments, machines are running only the
applications mentioned here making any CPU performance measurements corre-
spond with packet processing. We track overall CPU utilization using dstat [6]
and track average flow RTT using ss [12]. We track the TCP statistics using
netstat [10]. Performance statistics of specific functions in the kernel is obtained
using perf [11].

3 Overall Stack Performance

(a) Aggregate Throughput (b) CPU Usage

(c) RTT (d) Retransmission

Fig. 2. Overall performance of the network stack as
a function of the number of flows

We start by measuring the
overall performance of the
stack with the objective of
observing how bottlenecks
arise as we increase the num-
ber of flows. In particular,
we look at aggregate through-
put, CPU utilization, aver-
age RTT, and retransmis-
sions. Figure 2 shows a sum-
mary of our results. Our setup
can maintain line rate up to
around 200k flows (Fig. 2a).
Thus, we limit our reporting
to 300k flows.

As the number of flows
increases, the CPU utiliza-
tion steadily increases until it
becomes the bottleneck. Recall that we are only using a single socket, which
means that 50% utilization means full utilization in our case (Fig. 2b). The aggre-
gate throughput shows that the number of bytes per second remains constant.
Thus, the increase in CPU utilization is primarily due to the increase in the
number of flows handled by the systems.

The most surprising observation is that the average delay introduced by the
stack can reach one second when the stack handles 300k flows, a five orders of
magnitude increase from the minimum RTT. There are several problems that
can lead to such large delays. The Linux stack is notorious for its inefficiencies
due to relying on interrupts, especially on the ingress path [2,15,26,32]. Further,
head-of-line blocking in hardware can add significant delays [42]. Our focus in
this paper is to identify problems that are caused by inefficiencies that arise due
to the growth in the number of flows. Such problems are likely to occur in the
transport and scheduling layers, the layers aware of the number of flows in the
system. Our first step is to try to understand which part of the stack is causing
these delays, to better understand the impact of the number of flows on the
performance of the stack.
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Our baseline performance, denoted in the Fig. 2 by fq, is for the case when
flows are not rate limited and scheduled following a fair queuing policy, requiring
packets to be queued for some flows so that other flows can achieve their fair
share. To quantify that delay, we compare the performance of the baseline to a
scenario in which each flow is rate limited such that the aggregate rate that is
90% of NIC capacity, denoted in Fig. 2 by per flow rate limit. Under this
scenario, no queuing should happen in the Qdisc as demand is always smaller
than the network capacity. Latency drops by an order of magnitude in that
scenario at 300k flows and by more at smaller numbers of flows, leading to the
conclusion that hundreds of milliseconds of delay are added because of queuing
delays at the Qdisc. We further validate this conclusion by employing a Qdisc
that implements the CoDel AQM algorithm, configured with a target latency
of 100µs. CoDel drops packets if their queueing delay exceeds the target delay.
At 300k flows, the delay of codel is lower than the baseline by an order of
magnitude, validating our conclusion. Note that CoDel comes at a price of higher
CPU utilization due to packet drop and retransmission (Fig. 2d). For the rest
of the paper, we attempt to better understand the causes of the observed large
delays and high CPU utilization at large numbers of flows.

4 Admission Control to the Stack

Network stacks are typically optimized to maximize the number of packets per
second they can handle, allowing applications unrestricted access to the stack in
many cases, especially in Linux. However, as the number of flows increases, appli-
cations can overwhelm the stack by generating packets at a larger rate than the
network stack can process and transmit them. This congestion, left unchecked,
can lead to hundreds of milliseconds of added delay. Admission control of pack-
ets to the stack can avoid this problem by regulating the access of applications
to stack resources. Linux already has several such mechanisms, which work well
with a relatively small number of flows (e.g., tens of thousands of flows), but fail
at large numbers of flows (e.g., hundreds of thousands). We examine admission
control mechanisms based on the knob they control. In particular, admission con-
trol mechanisms decide three values: 1) the size of each individual packet (the
larger the packets the smaller the packet rate for the same byte rate), 2) the
total number of admitted packets (i.e., limiting the number of packets through
backpressure), and 3) the size of a new batch of admitted packets.

4.1 Packet Sizing

TheLinux stack implements packet autosizing, an operation that helps improve the
pacing function for low throughput flows. Pacing is an integral function for several
modern congestion control algorithms including BBR [16,21]. In particular, pac-
ing spreads out packets over time to avoid sending them in bursts. The autosizing
algorithm is triggered if a flow is sending at a rate lower than 512 Mbps (i.e., a thou-
sand Maximum Segment Sized (MSS) segments every second, assuming an MSS
of 64KB). When triggered, it reduces the size of the segments transmitted every
1ms, where inter-packet gap is enforced through a pacer (e.g., fq [21]) and packet
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(a) Packet Rate (b) CPU Usage

Fig. 3. CUBIC v.s. BBR with 5% drop rate. The relationship between number of flows
and packet rate is similar at 0% drop but there is no difference between BBR and
CUBIC at 0% drop rate (Appendix E).

segmentation to MTU size is done in hardware. Automatic packet sizing can also
be beneficial for ensuring fairness between flows [42].

Autosizing infers the rate of a flow by dividing the number of bytes sent
during an RTT (i.e., the cwnd) over the measured RTT. This allows for main-
taining the same average sending rate while spreading packet transmission over
time. The technique provides a tradeoff between CPU utilization and network
performance by increasing the number of packets per second handled by the
server while lowering the size of bursts the network deals with. The CPU cost of
autosizing is affected by the number of flows handled by the server. In particular,
the same aggregate rate of 512 Mbps can result in a packet rate of 1k packets
per second for one flow or 1M packets per second for 1k flows in the worst case.2

This overpacing can overwhelm the stack, leading to an increase in delay
(Fig. 2c). This leads the autosizing algorithm to misbehave. In particular, the
RTT increases when the stack is overloaded, leading to underestimation of the
rates of all flows handled by the stack. This causes the autosizing mechanism
to reduce the size of bursts unnecessarily, creating more packets, increasing the
congestion at the server [46]. Another side effect of autosizing is causing dif-
ferent congestion control algorithms to have different CPU costs. In particular,
algorithms that react more severely to congestion (e.g., CUBIC which halves its
window on a packet drop) send at lower rates, forcing autosizing to create more
packets. However, algorithms that react mildly to congestion (e.g., BBR), main-
tain high rates and send lower number of packets. Figure 3 shows the difference
between CUBIC and BBR at 5% drop rate induced by a netem Qdisc at the
receiver. We set MTU size to 7000 to eliminate the CPU bottleneck.

Reducing delay introduced in the stack can help autosizing infer the rates
of flows more accurately. However, as we will show later, scheduling flows,
including delaying packets, is essential to scaling the end host. This means that

2 The number of packets is typically much smaller than the worst case scenario due
to imperfect pacing. Delays in dispatching packets, resulting from imperfect pacing,
require sending larger packets to maintain the correct average rate, leading to a
lower packet rate. However, the CPU cost of autosizing increases with the number
of flows even with imperfect pacing.
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autosizing-like algorithms need to differentiate between network congestion and
end-host congestion. This will be useful in avoiding generating extra packets
which might congest the end host but not the network.

4.2 Backpressure

When a flow has a packet to send, its thread attempts to enqueue the packet to
the packet scheduler (i.e., the Qdisc in the kernel stack). In order to avoid Head-
of-Line (HoL) blocking, flows are prevented from sending packets continuously
by TCP Small Queue (TSQ). In particular, TSQ limits the number of packets
enqueued to the Qdisc to only two packets per flow [20]. TSQ offers a rudimentary
form of admission control that is based on a per-flow threshold to control the
total number of packets in the stack.

Fig. 4. CPU usage as a func-
tion of Qdisc queue length

As the number of flows increases, TSQ
becomes ineffective because the number of pack-
ets admitted to the stack grows with the number
of flows. Consequently, the length of the queue in
the Qdisc will grow as the number of flows grows,
leading to long delays due to bufferbloat. If we
limit the queue length of the Qdisc, packets will be
dropped at the Qdisc after they are admitted by
TSQ. The current approach in Linux is to immedi-
ately retry to enqueue the dropped packets, lead-
ing to poor CPU utilization as threads keep retry-
ing to enqueue packets. Figure 4 shows the CPU usage for transmitting packets
from the TCP layer to the qdisc with different values of maximum queue length
at the qdisc. The CPU usage includes only the operation before enqueuing the
packet onto the qdisc. The shorter the queue length, the higher the drop rate,
leading to higher CPU utilization.

(a) 300 flows

(b) 30k flows

Fig. 5. CDF of flow rate

Another down side of the lack of backpres-
sure is that packet scheduling becomes reliant
on thread scheduling. In particular, when a
packet is dropped, it is the responsibility of
its thread to try to enqueue it again imme-
diately. The frequency at which a thread can
“requeue” packets depends on the frequency
at which it is scheduled. This is problematic
because the thread scheduler has no notion of
per-flow fairness, leading to severe unfairness
between flows. As explained in the previous
section, starvation at the Qdisc leads to hun-
dreds of milliseconds of delay on average. We
further investigate the effects of this unfair-
ness on per-flow throughput. Figure 5 com-
pares the CDF of rates achieved when fq is
used with a small number of 300 and 30k
flows. The two scenarios are contrasted with
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the per-flow pacing scenario which achieves best possible fairness by rate lim-
iting all flows to the same rate, with aggregate rate below NIC capacity, thus
avoiding creating a bottleneck at the scheduler. In the 30k flows scenario, the
largest rate is two orders of magnitude greater than the smallest rate. This is
caused by the batching on the NIC queue. The net tx action function calls into
the Qdisc layer and starts to dequeue skb through the dequeue skb function.
Multiple packets can be returned by some queues, and a list of skb may be sent
to NIC, blocking packets from other queues. We observe that there are many
more requeue operations in Qdisc when pacing is not used than when pacing
is used, indicating that pacing prevents the NIC from being overwhelmed by a
subset of queues.

Some previous works address the problem partially by enforcing per-flow
scheduling instead of per-packet scheduling and only allowing a flow to enqueue
a packet when there is room for it in the scheduler, avoiding unnecessary drops
and retries [31,46], however, these works do not consider the interaction between
layers that may lead to unfairness when fairness is enforced separately on each
layer as we show in this section.

4.3 Batching Ingress Packets

Fig. 6. Rates of RX Interrupts and ACKs
per second

The two previous sections discuss con-
trolling the packet rate on the egress
path. In this section, we consider con-
trolling the packet rate on the ingress
path. It should be noted that although
we focus on egress path on server side,
ingress path efficiency may also affect
the egress path efficiency because
delayed ACK caused by CPU satura-
tion can lead to performance degrada-
tion in traffic transmission.

A receiver has little control on the
number of incoming packets, aside from flow control. By coalescing packets
belonging to the same flow on the ingress path using techniques like LRO, the
receiver can improve the CPU efficiency of the receive path by generating less
interrupts. Batching algorithms deliver packets to the software stack once the
number of outstanding packets in the NIC reach a certain maximum batch size
or some timer expires. As the number of flows increases, the chances of such coa-
lescing decrease as the likelihood of two incoming packets belong to the same flow
decreases (Fig. 6). In the Linux setting, this is especially bad as increasing the
number of incoming packets results in an increase in the number of interrupts,
leading to severe degradation in CPU efficiency.

Better batching techniques that prioritize short flows, and give LRO more
time with long flows, can significantly help improve the performance of the
ingress path. Some coarse grain adaptive batching techniques have been pro-
posed [30,43]. However, we believe that better performance can be achieved
with fine-grain per-flow adaptive batching, requiring coordination between
the hardware and software components of the stack.
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5 Per-Packet Overhead

To identify the operations whose overhead increases as the number of flows
increases, we use perf [11] and observe the CPU utilization and latency of dif-
ferent kernel functions as we change the number of flows. The CPU utilization
results show the aggregated CPU usage by all flows. We keep the aggregate
data rate the same and only change the number of flows. Our goal is to find
the operations whose computational complexity is a function of the number of
flows. Operations that are bottlenecked on a different type of resource will have
higher latency as we increase the number of flows. Figures 7a and 7b show the
top four functions in each category. There is an overlap between functions with
high latency and functions with high CPU utilization; this is typical because high
CPU utilization can lead to high latency (e.g., fq dequeue and inet lookup).
However, there are functions with high latency but low CPU utilization (e.g.,
tcp ack and dev queue xmit). Through further profiling of the code of these
functions, we find that there are two types of bottlenecks that arise: cache pres-
sure and lock contention. Note that the overhead of the tg3 poll work function
is part of inefficiency of the Linux reception path [14] and is not the focus of our
work.

(a) CPU Usage (b) Function Latency (c) Cache Misses

Fig. 7. Function profiling

Data Structures: There are two operations whose complexity is a function of
the number of flows: packet scheduling and packet demultiplexing. The over-
head of packet scheduling is captured by the CPU utilization of fq enqueue
and fq dequeue. The two functions handle adding and removing packets to the
fq Qdisc, which sorts flows in a red-black tree based on the soonest transmis-
sion time of their packets. The overhead of enqueue and dequeue operations in
O(log(n)), where n is the number of flows. The overhead of packet demultiplex-
ing is captured by the CPU utilization of inet lookup which matches incoming
packets to their flows using a hashmap. In the case of collision, finding a match
requires processing information of flows whose hash collide. This increases the
cache miss ratio of the function (Fig. 7c), further increasing the latency of the
function.
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Fig. 8. Aggregate cache
misses

Some approximation scheduling algorithms
have been proposed to reduce the data struc-
ture overhead [18,38,39], but their main focus is
to improve FQ. Data structure overhead requires
reexamining all complex data structures used in
the stack, taking into account that the stack can
process millions of packets per second coming
from millions of flows.

Cache Pressure: One of the functions with the
highest cache miss ratio is tcp ack, which clears
the TCP window based on received acknowledge-
ments. The function does not use any complex data structures or wait on locks
so the high cache miss stems from the overhead of fetching flow information
and modifying it. As shown in Fig. 8, the cache miss ratio in both L2 cache and
Last Level Cache (LLC) increases as the number of flows increases. While cache
misses are not a huge bottleneck in our setting, we believe that as the number of
flows increases, with tighter requirements on latency, cache miss ratio will have
to be minimized.

Fig. 9. Time to acquire qdisc
lock

Lock Contention: Another source of increased
latency is lock contention when accessing
shared resources. Our experiment confirms that
the biggest critical section in the networking
stack is the one used to protect access to the
qdisc, done in dev queue xmit. The overhead
of acquiring the qdisc lock is well documented
[35,38], and increasing the number of flows
exacerbates the problem, even with constant
packet rate. Figure 9 shows that as the time to
acquire lock increases by 4 times as the num-
ber of flow increases from 1k to 300k. Another
factor contributing to the increase in lock acquisition time is the increase in
packet rate which we have shown to increase as the number of flows increases
(Fig. 3a). Distributed and lazy coordination between independent queues can
help alleviate the problem by reducing the need for locking [24,38].

6 Related Work

As we present throughout the paper, there has been significant work improving
different components of the stack including scheduling [18,24,38,39] and back-
pressure [46]. However, they fail to consider the interactions between different
components, and none of the existing optimized components was tested with a
load larger than 50k flows. Our work defines a broader category of limitations
and looks at the complicated interaction between different components.

Much of the focus of the previous work has been on scaling servers in terms
of aggregate traffic intensity in terms of packets transmitted per second, while
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maintaining low latency [2,13,28,34,36]. Some recent proposals address scaling
the whole stack to handle a large number of flows [26,29,33,37]. mTcp [26] is a
scalable user-space TCP/IP stack built over kernel-bypass packet I/O engines,
but the evaluation was only performed at a maximum of 16k flows. Further, it
focuses on improving connection locality and reducing system overhead without
paying much attention to scheduling and backpressure. Other systems are evalu-
ated at a few thousands flows [29] and up to twenty thousand flows [33,36,37,44].
These systems improve specific functionality (e.g., RPC performance or trans-
port layer performance) by dedicating network interfaces to individual applica-
tion or by optimizing the kernel TCP/IP stack, with typical emphasis on short
lived flows. In this paper, we are more concerned with scaling to hundreds of
thousands of long-lived flows where transport and scheduling are implemented.
To the best of our knowledge, this is the first such study.

Another observation is that hardware offload solutions [22,40,41] alone can-
not completely solve the problem. Careful hardware design can help reduce the
latency of complex operations [40]. However, data structure issues do not dis-
appear when implemented in hardware. In addition, admission control requires
careful coordination between the software part of the stack, including the appli-
cation, and the hardware part of the stack.

7 Relevance of Findings to Other Stacks

In this paper, we focus on the Linux stack because of its ubiquitous usage in
both industry and academia. However, most of our findings focus on abstract
functions that are needed in a stack in order to efficiently handle a large num-
ber of flows. For example, admission control can avoid overwhelming the stack
resources by relying on per-flow scheduling and accurate batching sizing. The
lack of similar functions in any stack can lead to performance degradation as the
number of flows grows. Further, the need for better data structures for schedul-
ing and demultiplexing can lead to significant CPU savings. Contrarily, some of
the problems we define are Linux specific, arising from components developed by
companies to handle their specific workloads. For example, autosizing was devel-
oped by Google, making problems like overpacing a Linux-specific problem.

Some stacks inherently solve some of the problems we have identified. For
instance, Snap [31] provides per-flow scheduling providing efficient backpressure.
Further, stacks that rely on lightweight threading and asynchronous messages
like Snap and Shenango might not suffer significant performance degradation
due to lock contention. However, none of them handles all problems The goal of
our work is to identify abstract functions that stacks will have to implement in
order to scale.

Some of the problems we have identified are only exposed at a very large
number of flows. To the best of our knowledge, these problems are yet to be
handled by any stack. For instance, delays introduced due to cache misses will
require innovation in speculative pre-fetching based on network behavior. Fur-
ther, network accelerators and programmable hardware components will require
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new techniques to coordinate their behavior with changes in the load generated
by the software component of the stack.

8 Conclusion

In this paper, we identify the different bottlenecks that arise when we scale the
number of flows to hundreds of thousands in a fully implemented stack. As we
present throughout the paper, there have been efforts to address some of the
individual problems in isolation. However, integrating and testing such solutions
at the scale of hundreds of thousands to millions of long-lived simultaneously-
active flows remains an open problem. We hope that this paper sheds some light
on the pain points that stack designers should pay attention to when building
next generation stacks that scale to terabits per second and millions of flows.

A Linux Stack Overview

Packet transmission in an end-host refers to the process of a packet traversing
from user space, to kernel space, and finally to NIC in packet transmission pro-
cess. The application generates a packet and copies it into the kernel space TCP
buffer. Packets from the TCP buffer are then queued into Qdisc. Then there are
two ways to a dequeue packet from the Qdisc to the driver buffer: 1)dequeue
a packet immediately, and 2) schedule a packet to be dequeued later through
softriq, which calls net tx action to retrieve packet from qdisc (Fig. 10).

Fig. 10. Packet Transmission
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(a) Throughput (b) CPU Usage

(c) RTT (d) Retransmission

Fig. 11. Overall performance of the net-
work stack as a function of the number of
flows with fixed TSO disabled and 1500
MTU size

(a) Throughput (b) CPU Usage

(c) RTT (d) Retransmission

Fig. 12. Overall performance of the net-
work stack as a function of the number of
flows with TSO enabled and 9000 MTU
size

B Parameter Configuration

Table 2 shows all the parameters we have used in our setup.

Table 2. Tuning parameters

Parameter Tuned

RX-Ring MAX [4096]

net.core.netdev max backlog 65536

net.core.tcp max syn backlog 65536

net.ipv4.tcp rmem 8192 65536 16777216

net.ipv4.tcp wmem 8192 87380 16777216

net.ipv4.tcp mem 768849 1025133 1537698

net.core.somaxconn 65535

net.netfilter.nf conntrack max 600000

TSO,GSO enabled

interrupt moderation enabled

irqbalance disabled

C Overall Stack Performance

We find that the trends shown in Fig. 2 remain the same regardless of packet
rate. In particular, we disable TSO, forcing the software stack to generate MTU
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packets. This ensures that the packet rate remains relatively constant across
experiments. Note that we perform experiments with a maximum number of
100k flows. We try two values for the MTU: 1500 Bytes and 9000 Bytes. As
expected, the performance of the server saturates at a much lower number of
flows when generating packets of 1500 Bytes (Fig. 11). This is because the packet
rate increases compared to the experiments discussed in Sect. 3. One the other
hand, the performance of the server when using 9000 Byte packets is similar to
that discussed in Sect. 3 (Fig. 12).

D FQ v.s. PFIFO

We compare the fq with pfifo fast qdiscs in terms of enqueueing latency
(Fig. 13). The time to enqueue a packet into pfifo fast queue is almost constant
while the enqueue time for fq increases with the number of flows. This is because
the FQ uses a tree structure to keep track of every flow and the complexity of
insertion operation is O(log(n)). The cache miss when fetching flow information
from the tree also contributes to the latency with large number of flows.

Fig. 13. Enqueue time Fig. 14. BBR v.s. CUBIC

E Packet Rate with Zero Drops

We verified that BBR and CUBIC has similar CPU usage when PPS is fixed
(Fig. 14). We disable TSO and GSO to fix the packet size and set MTU size to
7000 to eliminate CPU bottleneck. We also observe that with more than 200k
flows, CUBIC consumes slightly more CUBIC than BBR because CUBIC reacts
to packet drop by reducing packet size, thus generating more packets.
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Abstract. Maintaining a performant Internet service is simplified when
operators are able to develop an understanding of the path between the
service and its end users. A key piece of operational knowledge comes
from understanding when i) segments of a path contribute to a signifi-
cant portion of the path’s delay ii) when these segments occur across end
users. We propose hoplets, an abstraction for describing delay increases
between an end-user and a content provider built on traceroutes. We
present a mechanism for measuring and comparing hoplets to determine
when they describe the same underlying network features. Using this
mechanism, we construct a methodology to enable wide scale measure-
ment that requires only limited contextual data.

We demonstrate the efficacy of hoplets, showing their ability to effec-
tively describe round-trip-time increases observed from a global con-
tent delivery network. Additionally, we perform an Internet-scale mea-
surement and analysis of the hoplets observed from this infrastructure,
exploring their nature and topological features where we find that nearly
20% of bottlenecks occurred along paths with no visible alternative.
Finally, we demonstrate the generality of the system by detecting a likely
network misconfiguration using data from RIPE Atlas.

1 Introduction

Measuring the path between an Internet service and its users is one of the mech-
anisms in which operators are able to improve end-user performance. Locating
performance bottlenecks along these paths can be used to ensure accurate replica
selection for content delivery [8,18] and improve DNS performance [26].

When assessing these paths, it is frequently important to understand which
components of a path are contributing large portions of the path’s latency. For
many large-scale providers, these may be shared across many users, as the same
large transit providers, IXPs, and other shared infrastructure make up a set
of common upstream providers. However, recognizing the presence of such seg-
ments, i.e. that the communication with multiple end hosts may encounter these
common bottlenecks, can be difficult.

We propose a path measurement and analysis approach built around tracer-
outes. We present a methodology for detecting RTT-contribution outliers along
the path called hoplets. Hoplets comprise of a subset of a traceroute, i.e. a
subsequence of hops and RTT values, that exhibits notable increases in RTT,
c© Springer Nature Switzerland AG 2021
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including those cause by non-optimal routing, congestion, and long-haul links
(e.g. trans-oceanic links). With this information, operators are able to deter-
mine appropriate remediations (e.g. routing configurations) or if the presence of
such anomalies is expected. In the case of services focused on local delivery, such
as CDNs, such increases are likely to represent unwanted performance anomalies.

Hoplets are built to detect the occurrence of poor round trip time (RTT) per-
formance. While not the only important factor in performance optimization, for
many user-facing services it represents the opportunity for the greatest improve-
ments. We further provide an approach for detecting, combining, and prioritizing
hoplets, called the aggregator which builds on the foundations of hoplets, and
is designed to compare and combine hoplets across measurements. In this way,
consistent increases observed across many individual measurements can be com-
bined. This system is designed to be flexible to the types of inputs it receives,
and avoids sensitivity to both the breadth and number of input measurements.

Using a set of nearly 130, 000 traceroutes taken from a commercial CDN
network beginning in early 2020, we demonstrate the hoplet system’s ability to
detect a variety of frequent network bottlenecks that represent long-term per-
formance challenges. We use the measurements to conduct a large scale study of
the frequency and magnitude of hoplets seen across the Internet. Here we find
regional differences in the frequency and impact of measured hoplets, with South
American hoplets contributing the largest RTT increases. Next, we explore the
topological features of hoplets, demonstrating that nearly 20% of RTT increase
events occur on a path with no clearly visible alternative in public BGP data.
The geographic spread of these cases further demonstrates the challenges of
optimizing network performance in certain regions. Finally, we demonstrate the
generality of hoplets by extracting and aggregating a set of hoplets from tracer-
outes taken from the RIPE Atlas platform. Here, hoplets enable us to quickly
discover a likely misconfiguration in the anycast configuration of one of the root
letters in April of 2020.

The remainder of this paper is organized as follows. Section 2, provides details
on the definition, extraction, and comparison of hoplets. In Sect. 3 we provide a
look at some of the examples visible in the context of a CDN. Then, in Sect. 4
we take a broader look at the global patterns we observe in hoplet occurrence. In
Sect. 5 we extract hoplets from traceroutes taken from RIPE atlas. We compare
to existing systems in Sect. 6, and conclude in Sect. 7.

2 System Design

The goal of the hoplets system is to transform a collection of traceroutes and
provide a framework for extracting interesting behaviors and combining mea-
surements which describe similar underlying experiences. Once these combina-
tions are complete, the resulting hoplet abstractions can be sorted and assessed
by operators to provide new contextual insight into client delay experiences on
the Internet. However, before we begin, it is important to ensure that we are
extracting meaningful and accurate information from the traceroutes.
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2.1 Using Traceroute Data

Suppose that a traceroute begins at content provider point of presence P , then
passes through hops A, B, C before reaching a destination user U . A traceroute
from P to U would reveal the hops along the forward path from P to U , as well
as RTTs from P to each hop along the way. We consider the decomposition of
the RTT from P to the first hop A as:

RTTPA = PA + AP,

where PA denotes the one-way delay from P to A, and vice versa.
When examining a traceroute in this fashion, we may consider the difference

between the RTT of two subsequent hops, known as the differential RTT [12].
It is tempting to assume that this differential RTT reveals the delay between
the subsequent hops. However, traceroute timings provide a round trip time and
the response origins only reveal portions of the forward path. In the context of
our example, we know that PB = PA + AB, but the same cannot be said for
the return path BP : indeed the packets may skip A entirely.

Therefore, these differential RTTs do not necessarily represent the cost of
particular hops along the paths. Instead we interpret them as a reflection of
the ultimate fate of packets travelling between B and P . In other words, hop-
over-hop increases in the differential RTT between A and B indicate that for
some reason, routing between B and P comes with increased RTT, compared
to A, on either the forward path AB or the return path BP . This may be
due to sub-optimal routing, long back-haul links, trans-oceanic links or other
configurations with cause longer trip times. Regardless of the root cause, they
represent performance realities for traffic flowing along this path.

However, from the context of the performance of our user U , we must con-
sider additional factors. Such increases may not carry through: i.e. the differential
RTT may not be positive for the remainder of the hops in the traceroute. A neg-
ative differential RTT would indicate that subsequent hop C has an alternative
route to P , which avoids the bottleneck encountered by B. Therefore, users U
avoid such penalty. It’s further possible that a subsequent hop C with a positive
differential RTT also does not traverse through B, and is instead capturing a
path with a return path with comparable delay. In such cases, we still note B as
the first occurrence, and therefore the most meaningful source of focus.

We therefore consider all occurrences of positive differential RTT that feature
carry-through. We define a hoplet to be an adjacent subsequence of responses in
a traceroute that appear to be associated with a significant increase in RTT (we
provide a rigorous definition in the next section). While a hoplet is described by
its point of first detection, as seen in the above discussion of differential RTT,
this does not necessarily reveal the underlying location of this increase.

2.2 Hoplet Extraction

Alerting. The hoplet detection process begins by examining the differential
RTTs measured in the traceroute. Consider a traceroute consisting of a sequence
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of responses r1, . . . , rn, where each ri contains both a responding address Ri and
a RTT, RTTi. We annotate this list using BGP data from RouteViews [2], in
particular adding the origin AS of the prefix each Ri.

Let the differential RTT between each pair of hops i and i + 1 be Δi =
RTTi+1 − RTTi. Given a traceroute, we compute each of the Δi. To determine
the significant points of RTT increase, we use the median absolute deviation
(MAD) of all the Δi, and say that Δi has triggered our alert condition if Δi −
median(Δi) > (1.4826 ∗ MAD), i.e. that Δi varies from the median by more
than an estimate of the standard deviation [12,35]. We further require that the
Δi be greater than 10 ms, focusing our alert scenarios to cases most likely to be
perceived by users.

The above detection mechanism is not intended to be canonical, and is
instead intended only as a straightforward way of assessing RTT outliers within a
traceroute. Indeed, other mechanism for detecting outliers may also prove effec-
tive. Critical to our formulation, however, is the relative nature of outliers: a
significant contributor in one traceroute may be within normal for another. As
a result, the system do not detect high end-to-end delays from many marginal
outliers, resulting in no single large increases.

For a hoplet to be detected, we also require that the traceroute reached
the destination AS of the target, therefore that the last responsive ri came
from the same AS as the target address. Hops which provided no response, we
store as placeholders, maintaining the order and placement within the original
traceroute. We further require that any alerting differential RTT also satisfy
the carry-through condition described in the previous subsection. However, the
simple condition that all subsequent deltas must be non-negative fails to account
for much of the variations seen in Internet measurement. We therefore set a
threshold of not allowing a decrease in RTT of more than 12%, i.e. for Δi to
satisfy the alert condition RTTi+2 > .88 ∗ RTTi.1

This approach naturally enables the aggregation of additional data. If multi-
ple traceroutes are available, or traceroutes are performed with multiple probes
for each TTL, the median of all values from the same hop can be computed before
performing the above procedure. Furthermore, as hoplet detection only depends
on a single traceroute, it can be scaled simply by doing additional traceroutes
from more vantage points to a broader set of destinations.

Extraction. Next, we build a representation that captures not only the response
where delay increase is observed, but the nearby context. Once complete, this will
include information from 3 ASes: the alerting network, as well as the previous
and next ASes. Assume that Δi has triggered the above condition. We then
store the corresponding ri+1, which we take to be the center of our hoplet,
as it is the first hop exhibiting the detected RTT increase. Next, we add all
adjacent responses where the response AS matches that of ri+1, This gives us a
set ri+1−k, . . . ri+1, . . . ri+1+l where k, l are the number of responses before and
after the center within the same AS and may be 0. We further add a single
response on either end, i.e. one additional response from the prior AS and the
1 We explore the selection of this value in the Appendix.
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(a)

Delay (ms) IP (Anon) Network

0.15 ms 104.63.27.182 CDN
0.318 71.76.114.146 AS A
33.383 211.113.96.188* AS B
37.795 39.180.191.248 AS B
58.996 55.216.72.215 AS C

(b)

Fig. 1. (a) The extraction process. Each node along the path represents a hop in the
traceroute, and the pattern shows its AS. (b) A hoplet extracted from a traceroute.
The * denotes the hoplet center.

subsequent AS, if they exist. If multiple hops trigger the alert condition within
the same AS, they are combined into a single hoplet. Figure 1a shows a diagram
of this process and Fig. 1b shows a real world example of a hoplet.

Our resulting structure is a sequence of response and AS tuples from a tracer-
oute which are centered on an increase in RTT along the path. Our structure also
contains the route-contextual information on where that increase was observed,
i.e. the previous and next ASes. The key notion is that the hoplet describes
the general conditions in which the increase occurred, for example when pass-
ing through a particular transit provider, crossing a physically distant link, or
passing into a persistently congested edge network. We refer to the differential
RTT of the hoplet center as the penalty, i.e. how much the RTT increased at
that point. Note a single traceroute may result in multiple hoplets.

2.3 Hoplet Comparison

Next, we provide a mechanism by which to compare two extracted hoplets.
In particular we would like a way to describe when two hoplets, potentially
extracted from traceroutes with different sources and destinations, describe the
same underlying topological features. We therefore require our comparisons to be
permissive – allowing matches on similar, but not exact, responses, such as paths
with load balancing across routers or router aliases causing non-matching tracer-
oute responses [20,24]. However, we must further avoid the need for extensive
additional measurements. Therefore instead of performing any explicit interface
matching we instead consider the following formulation.

Given two hoplets extracted in the above fashion, call them h1 and h2, we
define a similarity function S(h1, h2) based on the edit distance between our
two hoplets [25]. We consider each input hoplet as a sequence of its constituent
response addresses. The edit distance then considers the hop-by-hop similarity,
where additions and deletions have an edit cost of 1. We however modify the
cost of a replacement: instead of a uniform cost, replacement costs proportional
to the longest-prefix match of the addresses being replaced. In particular, for an
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address length of M (32 for IPv4 and 128 for IPv6), and prefix match of P :

Cswap =
M − P

M
.

The intuition is that many paths may pass through nearly identical infrastruc-
ture, ultimately seeing similar, but not identical, responses. If we detect hoplets
at such locations, we would like to be able to identify that those may be func-
tionally the same. Therefore, the above cost function allows us to bias towards
matching similar addresses, hinting at similar underlying infrastructure. Once
we have computed the edit distance, we normalize by the length of the longer
sequence, providing a value between 0 and 1. We then take the complement,
subtracting from 1, thereby converting the distance to similarity with 0 being
entirely dissimilar and 1 being identical.

2.4 Hoplet Aggregator

Using this similarity function and matching criteria we are able to define a larger
collection known as hoplet sets. Specifically, given a group of hoplets, we perform
hierarchical clustering using single-linkage clustering [30], combining hoplets into
clusters as long as their similarity remains above a threshold t.

This clustering is performed in two phases: first we cluster hoplets detected
between the same source and destination in separate measurements. We con-
sider any addresses in the same smallest-announced prefix to represent the same
destination, as visible from RouteViews [2] at time of collection. This first phase
allows us to compute how frequently a hoplet was observed between a particular
source and destination. In the second phase, we cluster hoplets from the same
source to many destinations.

Once the extraction is complete, we have transformed a collection of tracer-
outes to a potentially large variety of sources to a list of hoplet sets that describe
similar underlying features. This list can be sorted and managed, for example by
the frequency and severity of the described hoplets. Additionally, as we explore
in the next section, these hoplets can be further considered on their geographic
and topological locations.

By design, the aggregator has no knowledge of time: all traceroute samples
are treated equally, even of samples between the same source and destination.
Doing so enables operators to treat a collection of traceroutes as a snapshot in
time. Alternatively, traceroutes can be bucketed by time, and hoplets extracted
and aggregated separately, allowing for usual time series analysis.

3 Hoplets at a CDN

We examine a 24 h sample of traceroutes taken in mid-April of 2020 from a
commercial CDN. These are taken from over 150 globally distributed points
of presence towards the most popular client prefixes. In particular, we sample
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clients from the 50 most popular prefixes at each site each hour. To accommo-
date the needs of the production network, the resource consumption of these
traceroutes is strictly limited: each consists of only a single probe at each TTL.
Traceroutes further face a hard limit of 10 s, potentially resulting in timeouts
for the worst performing settings. We note, however, that the following analysis
is generic, and can be performed on a variety of traceroutes implementations.

This scan includes 127, 812 traceroutes taken between 28, 844 aggregated
source and destination pairs. From these traceroutes 16, 694 pairs encountered
at least one hoplet, for a total 133, 256 individual hoplets, though in Sect. 4 we
will show that this number reduces significantly after aggregation and filtering.
These detected hoplets were found in 1, 107 ASes en route to 1, 859 destination
ASNs. We found these numbers to be stable over the course of the scan, and
use this output for the studies in the remainder of this section. Processing this
set can be completed in 10s of minutes on a modern laptop, making real time
processing for smaller data-sets feasible.

Parameter Trade-Offs. Next, we measure the impacts of our aggregation
threshold t. We perform the aggregation process described in Sect. 2.4 on our
extracted hoplets for a range of t values. For each t, we consider two metrics:
the relative median deviation in RTT penalty among hoplets in a set, and the
resulting number of hoplet sets. Since we aim for hoplets to describe common
path performance, we expect that among a set, hoplets experience similar delay.
Therefore an overly-aggressive combination will result in high RTT deviation.
On the other hand, overly strict combination requirements will result in too
many individual hoplet sets, making the resulting data difficult to interpret.

Fig. 2. (a) Threshold impacts: the solid line shows median penalty deviation, error bars
show the interquartile range, and the dashed line shows the total number of hoplet sets.
(b) Regional breakdown of aggregated and measured source and destination pairs and
the corresponding counts of hoplet sets.

Figure 2a shows the impacts on these features in response to the changing
threshold. Generally, decreasing the threshold introduces significant RTT varia-
tion in each group, with the median variation quickly reaching .1 below a thresh-
old of .5 As expected, stricter thresholds result in very low deviation, but a much
higher number of groups, suggesting little combination is occurring. This exper-
iment further provides information about two potential heuristic alternatives to
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our edit distance: the furthest left point of the plot, where threshold is 0, the only
criteria for combination is that the center AS matches. On the far right, with
a threshold 1 shows the impact of requiring exact matches. In order to strike
a balance between these two extremes, we select a threshold of 0.6, requiring
slightly more than half a hoplet to match to be considered the same.

4 Global Hoplet Behaviors

Next, we group each hoplet by the region of the world it’s source PoP is located:
Asia, EMEA (Europe, Middle East, and Africa), North America, and South
America. As the CDN serves content to geographically local clients, these likely
correspond with the geographic location of the hoplet and target networks.

Fig. 3. (a) The number of destinations found in each hoplet set by region. (b) The
frequency distribution for hoplet sets in each region. (c) The mean RTT penalty for
hoplet sets in each region.

Figure 2b shows the breakdown of the measurements and hoplets after per-
forming extraction and aggregation. The biases of the underlying infrastructure
are clear in the measured pairs, with North America and EMEA providing the
bulk of the measurements. Despite this bias, these measurements still provide a
view into the behaviors of networks in a broad set of regions.

Figure 3a shows the distribution of the number of destination prefixes found
in each hoplet set by region, i.e. the number of distinct clients that experienced
the same bottlenecks. First, we note that a significant fraction of sets contain
only a single destination: 43% in North America, South America, and EMEA and
38% in Asia. These represent hoplets which only occurred en route to a single
destination. We further observe slightly larger sets in South America, with a
75th percentile of 7 vs 4 in the remaining regions, suggesting the same underlying
infrastructure contributes to many South American bottlenecks. Finally, we note
that in all regions, there is a small percentage of very large sets, that contain more
than 10 and as many as 100 individual hoplets, showing the same infrastructure
likely contributing to the RTT observed by many clients.

It’s possible that a hoplet is not detected on every measurement to a desti-
nation. This is particularly likely if a hoplet is caused by ephemeral behavior,
for example congestion. In order to understand the different regional behaviors,
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we examine the fraction of measurements to a destination which observed the
hoplet. We refer to this value as the hoplet frequency.

Figure 3b shows the frequency distribution for each region. Low frequencies
are relatively rare: the lowest median frequency is .58 in North America. South
American on the other hand has a median of .74, suggesting a greater number of
bottlenecks are long-lived features. Inspection of the underlying hoplets suggests
that this is due to greater occurrences of routing and replica selection challenges
in Asia and South America, compared to less consistent congestion observed in
EMEA and North America. Furthermore, in all regions at least 18% of sets had
a frequency of 1, indicating that a hoplet was detected on every measurement,
an outcome most likely with long-lived bottlenecks, such as long-distance links.

Next, we examine the performance impact from the hoplets seen in each
region by examining the distribution of the mean RTT penalty observed in each
hoplet set. Figure 3c shows the distributions by region. North America presents
the most moderate case, with a median of just under 25 ms. South America
provides the highest penalties, with a median of over 40 ms, suggesting that more
clients must cross high-delay infrastructure. Notably, all regions encounter a full
range of increases, with each seeing a handful of outliers above with extremely
high values. Manual inspection revealed these to be extreme scenarios, generally
resulting from taking extremely long paths to reach clients, e.g. cross continent.

4.1 Topological Analysis

Table 1. Location of Hoplets. ‘meas’ indicates the fraction with measurable hegemony.
Borderline is the percent of middle networks that may be misclassified.

Region Total Origin Middle (meas.) Borderline Destination

Asia 1339 2.32 48.92 (46.87%) 26.18% 48.77

EMEA 1999 2.75 48.77 (81.33) 28.05 48.47

N. America 4381 0.46 40.81 (73.60) 17.43 58.73

S. America 1037 1.35 46.77 (63.09) 9.52 51.88

Here, we examine our detected hoplet sets from the perspective of where they
occur in each path. As noted in [15], we can consider three areas where bot-
tlenecks occur: the origin network (i.e. the CDN), the middle, or destination
networks where the hosts are located. We recall that hoplets do not provide
guarantees that a bottleneck is caused by a network. Instead, we measure where
we observe delays increase: actual root-causes may reside in other networks. This
analysis would not be possible with only end-to-end performance information,
such as RTT measurements, as it requires information on the intermediate hops.

We perform our analysis here on the per destination level, allowing us retain
all information about the context of the original measurements. This enables us
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to answer topological questions about their placement in a path. Once these are
combined into potentially multi-destination hoplet sets, this information is lost,
as a hoplet set may describe a feature observed en route to many destinations.

Table 1 shows the regional breakdown for where each hoplet occurs. The col-
umn labeled “Borderline” shows the percentage of middle hoplets which landed
directly on the border and, as a result of interface aliasing, may represent routers
which lie in the destination network [24]. We include these in our below analysis
of middle hoplets, but note that they may complicate the classification. Consis-
tent with related findings in [15], we find that the vast majority of Hoplets occur
in the middle and destination networks. Due to space constraints, we consider a
detailed analysis of only the middle networks below.

To understand the importance of each network, we consider the AS Hegemony
of each middle network that contains a hoplet to the destination networks. AS
Hegemony provides a value between 0 and 1 which indicates the weighted fraction
of paths that must pass through that network en route to a destination [13], as
measured via a number of public datasets. A higher hegemony value indicates
that more paths pass through that network, and a lower value suggests fewer. For
purposes of our measurement, we only include middle and target network pairs
for which there was detectable hegemony (the fraction of middle-hoplets that
satisfy this condition are shown in parenthesis in the middle column of Table 1),
as we are unable to distinguish between no hegemony and low visibility. While
its dependence on public data means there may be links not included in the
hegemony calculations, it provides insight into network connectivity.

Fig. 4. The hegemony distribution for hoplet sets in each region.

Figure 4 shows the distribution of measurable hegemony for each region. Here,
we see that the South American networks that contain hoplets appear to stand
out as having particular high hegemony, with a median of 0.7, compared to 0.37
in North America. This suggests that the hoplets frequently occur in upstream
networks with no alternative path, potentially making them difficult to resolve
by simply routing around troubled paths.

We further note that all regions exhibit a significant mode at 1.0, account-
ing for nearly 18% of hoplet sets in North America, and nearly 27% in South
America. In these cases, every path to the destination must cross through the
AS where the hoplet was detected. These networks are largely unavoidable. Such
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information can be critical for content providers when assessing where and how
to deploy new infrastructure: any new deployment which fails to get closer to
the destination networks than the hegemonic upstream providers may not pro-
vide improved performance. Such knowledge can influence the architecture and
design of future deployments and site selections, as seen in [7,36].

5 Other Data Sources

Fig. 5. The (a) count, (b) frequency, and (c) penalty distributions for the Atlas mea-
surements. The dashed line shows CDN hoplets with source aggregation.

Here, we examine hoplets extracted and aggregated from traceroutes performed
by the RIPE Atlas platform [1]. We consider hoplets extracted from a sample
of the built-in measurements that RIPE probes perform to the DNS root letters
over both IPv4 and IPv6. We take a sample of 90 minutes (i.e. three traceroutes
from each probe) in Mid April 2020 from all available probes, resulting in a
total of 290, 236 traceroutes. After performing our aggregation, we have a total
of 8, 731 sources, for a total of 58, 835 source and destination pairs.

Unlike the CDN context, where we generally expect the replica selection
process will result in destinations being unique across measurement sources,
it’s possible that many probes may traverse the same path to reach a common
destination. We therefore consider an additional aggregation step, in which we
compare all hoplet sets, regardless of the measurement source. This creates the
opportunity to combine hoplets that may occur on such shared paths.

Figure 5 presents the counts, frequency, and the mean RTT penalty for the
observed hoplet sets compared with the source-aggregated data from the CDN.
We note in (a) that a smaller fraction of hoplet sets impact only a single network
than in the CDN case, likely due to the increased likelihood that the probes are
crossing similar RTT constraints towards the root letters. The frequency and
impact distributions generally follow the patterns of the North American and
EMEA measurements from the CDN, though we note a slight decrease in the
median of the penalties to 20 ms, suggesting differences in the paths used by
Atlas probes and CDN users.

Unexpected Behaviors. As further analysis, we rank the hoplets by the prod-
uct of the number of destinations in a set and the frequency, balancing the
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impact and breadth. The notable contributors are eyeball networks, as well as
the destination networks, i.e. root letter operators. Such hoplets are expected,
and in line with our findings from the CDN data. However, there was a signif-
icant contribution from a European transit provider. Hoplets in this provider
frequently occurred as a pair with a hoplet in a regional ISP from Bahrain.

In the transit provider, we observed a hoplet set with frequency of .88 and
over 66 ms of penalty. The second hoplet, which appears after passing through
the ISP network has a frequency of 0.85 and a penalty of 18 ms en route to
another local ISP in the region. Inspection of the hoplets revealed that the
majority of the sources were probes in Europe, making providers in Bahrain an
unlikely portion of a path to a DNS root letter. We believe that this behavior
is the result of a misconfiguration. Hoplets readily drew attention to the odd
path and its frequent presence on paths towards this root server. Subsequent
examinations from these traceroutes show that this issue has been corrected, and
no further hoplets are seen in the regional ISP, and there has been a significant
reduction in hoplets in the transit provider.

6 Related Work

Traceroute has long been a popular tool for discovering the behavior of net-
works. Significant work has gone into developing improvements on the original
technique [5,23]. Others have examined how to improve measurement and scan-
ning, learning from global routing behaviors [6,19]. The hoplets system learns
from these findings, and incorporates many of their principles into its inferences.

Many systems measure networks based on probes from end systems. These
include systems for detecting network outages [29], routing failure [17], and per-
formance anomalies [21,27,39]. Many of these focus on large scale changes in
network behavior, including shifting paths or changes in performance compared
to a baseline. Hoplets are focused on extracting value from a collection of mea-
surements and determining bottlenecks that appear within a single traceroute
and comparing the resulting structures. In [34], the authors examined interna-
tional detours. Hoplets are designed to perform a similar qualitative assessment
of paths, but focus on the context of the traceroute itself and avoid geolocation.
In [12] the authors use existing traceroute measurements to detect when per-
formance degrades. In contrast, hoplets can be used on both large collections of
measurements and standalone snapshots. Hoplets do not directly detect changes
over time, but instead focus on outliers within a single measurement.

Other systems have used direct measurements to construct large and com-
prehensive systems. These have been used for latency prediction [20], CDN Per-
formance [8,15,18,32], general wide-area analysis [10,16,38], and in more spe-
cific settings such as data centers and IPTV networks [3,4,22,31]. Others still
build large controllers, designed to take many inputs and make decisions accord-
ingly [28,33,37]. Hoplets are complementary to such systems: taking a single,
easy to obtain input, and providing a meaningful signal about the nature of the
path as a result. This primitive can likely be incorporated into many of these,
and similar, systems, making use of relevant context.
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Notable for their focus on grouping service end-users and providing shared
root cause analysis are WhyHigh [18] and BlameIt [15]. BlameIt employs a bud-
geted active measurement system that provides granularity and specificity by
comparing to baseline measurements. Hoplets are designed for direct detection
of standout behavior in measurements, requiring less input data, but providing
no guarantees regarding root cause.

The field of network tomogoraphy seeks to develop an understanding of the
characteristics of a network based on end to end measurements [9,11,14]. In
contrast to such work, hoplets avoid many of the underlying topological ques-
tions, instead assessing the ultimate impacts of a path, acknowledging that the
underlying processes may be more complex.

7 Conclusions

In this paper, we presented a system which uses a single set of input tracer-
outes to detect significant RTT contributors along the path to a destination
we all hoplets. We further presented an aggregation system which allows for
the comparison of hoplets across many measurements, allowing for the easy
detection of common performance bottlenecks. We conducted a large scale mea-
surement study, examining the frequency and magnitude of detected hoplets in
CDN paths. Finally, we demonstrated the generality of the system, exploring the
hoplets extracted from traceroutes on the RIPE Atlas platform, demonstrating
comparable patterns to those seen on the CDN and detecting a potential mis-
configuration in a Root letter. Given their flexibility and ease of implementation,
hoplets are able to provide helpful insights on network behavior, both as a stan-
dalone system and as a component in a larger scale measurement and analysis
platform.
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8 Appendix

8.1 Parameter Selection

Here, we provide a brief examination of the parameter selection process used in
our development of the hoplets system. These parameters are ultimately a reflec-
tion of the underlying data and the desired sensitivity to processing that data.
Alternative sources of data may find it necessary to repeat these experiments.

Alert Threshold. Recall that the alert threshold determines the deviation
necessary for a differential RTT to trigger the creation of a hoplet. Here we
consider our thresholds as a multiple of the standard deviation, as estimated
using the MAD. Here we consider a range of values, from .2 to 10. Recall, that our
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Fig. 6. (a) Increasing the alert threshold reduces the total number of hoplets found in
the data. (b) For our ping measurements, 80% of measurements see variation under
12%.

minimum criteria also requires a differential RTT of at least 10 ms, a requirement
we retain here.

Figure 6a shows the number of extracted hoplets for each multiplier. Indeed,
increasing the multiplier reduces the total number of hoplets detected, nearly
linearly. Recall that hoplets do not represent a discrete event, i.e. a degradation,
but instead are a description of the observed behavior. Lower sensitivity means
the system will produce information only about the largest source of RTT, and
higher sensitivity means it will provide information on more segments with a
rider range of RTT deviations.

In order to manage this balance, we use a single standard deviation (i.e.
a multiplier of 1), building hoplets only around hops which demonstrate large
increases, but not requiring that they represent egregious outliers. Other alert-
ing functions, for example based on the deviation percentile, may also perform
well. An important constraint, however, is that the threshold be relative to the
traceroute itself, though absolute criteria may prove valuable for operators in
certain condition with tight constraints.

Carry-Through Tolerance. Next, we examine the selection of the 12% varia-
tion which is permitted in the carry-through requirement. Here, we consider all
traceroute measurements taken over a day as a series of independent ping mea-
surements. We take all destinations (i.e. intermediate hops in the traceroute) for
which we had at least 3 measurements, which leaves us with a total of 24, 916
measurements. We then compute the median measured RTT and the median
deviation observed over those measurements.

Figure 6b shows a CDF of these deviations. Here we see that 80% of our
measurements had variation under .12. This suggests that while we see some
differences over the course of our measurements, the true measurement noise is
relatively small. Therefore an allowance of 12% allows such measurements to
still be used, while still maintaining our carry-through condition.
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Abstract. Customer edge routers are the primary mode of connection
to the Internet for a large portion of non-commercial users. As these con-
sumer networks migrate from IPv4 to IPv6, stateful firewalls are needed
to protect devices in the home. However, policy details crucial to the
implementation of these inbound access controls are left to the discre-
tion of the device manufacturers. In this paper, we survey ten customer
edge routers to evaluate how manufacturers implement firewalls and user
controls in IPv6. The result is a systemic, demonstrable failure among all
parties to agree upon, implement, and communicate consistent security
policies. We conclude with future research directions and recommen-
dations for all parties to address these systemic failures and provide a
consistent model for home security.

Keywords: IPv6 · Consumer gateway · Network address translation ·
Security

1 Introduction

For over twenty years, IPv4 network address translation (NAT) dictated a com-
mon operational template for customer edge (CE) routers across a diverse set of
hardware manufacturers. Fueled by Internet growth and address scarcity rather
than intended design, the ubiquitous usage of NAT, combined with RFC 1918
addressing, provides consumers and developers with a common behavioral stan-
dard [20,21]. While unintentional, NAT meaningfully isolates devices inside the
network from those outside it. This allows device manufacturers, and consumers
by proxy, to benefit from automatic and default attack surface reduction.

In contrast, IPv6 provides enough address space that individual devices
receive their own public, globally-routable addresses. This model eliminates the
need for NAT and allows other devices on the Internet to communicate directly
with devices in the home. The IETF provides little guidance or standard for
firewall configurations [3,16], allowing router manufacturers to implement filter-
ing policies at their own discretion. With approximately two-thirds of consumer
devices maintaining default settings [6] or failing to keep up with system or
security updates [17], internal devices’ exposure to external threats becomes
dependent on the router’s design. Without a default security perimeter in place,
once “secured” devices within a home network now rely on the consumer to
c© Springer Nature Switzerland AG 2021
O. Hohlfeld et al. (Eds.): PAM 2021, LNCS 12671, pp. 373–389, 2021.
https://doi.org/10.1007/978-3-030-72582-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72582-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-72582-2_22


374 K. Olson et al.

either individually maintain each device or to implement a technical solution,
such as detailed firewall rules, on their own.

In this work, we perform the first study of IPv6 CE routers to examine how
manufacturers are implementing filtering and access control for IPv6 residential
networks. We assess ten popular CE routers to evaluate their default firewall
policies and the ability for consumers to implement custom rules. Our findings
show inconsistency in the implementation of default configurations, overexposure
of services, and an overall lack of messaging to consumers about the baseline
policy of a device. As a result, in cases where no default firewall is enabled,
consumers may be unaware of the exposure of their devices and developers may
have incorrectly assumed that a device’s services are not exposed to the Internet.

The remainder of this paper is structured as follows: In Sect. 2, we provide a
short overview of IPv6 features, operation considerations and competing security
paradigms. We then present our methodology for assessing IPv6 implementation
in CE routers across a spectrum of features and configurations in Sect. 3 before
presenting our results in Sect. 4. We discuss the necessity for a single device
baseline standard and recommend consistent messaging in Sect. 5. Finally, we
conclude in Sect. 6.

2 Background

Although functionally similar to IPv4, IPv6 provides a few small but impactful
changes to the typical consumer network. In this section, we give a brief history
of the transition from IPv4 to IPv6 before covering some key differences between
the two protocols and their potential impact on consumers.

2.1 IPv4 NAT

NAT shaped the CE routing environment for two primary reasons: First, the
scalability of NAT delayed the eventual address exhaustion of IPv4 in a period
of explosive Internet growth and provided a simple path to connect significantly
more devices to the Internet. Internet Service Providers (ISPs), who manage
public address distribution in their networks, effectively required CE routers to
support NAT by allocating exactly one public IP to each household gateway [8].

Second, the simplicity of NAT lowered the barrier for non-technical users to
operate their own network. Home networks are often unmanaged or rely heavily
on default configurations to meet the needs of non-technical users [3,4,20]. By
adopting NAT, CE routers were able to provide simple or automatic initializa-
tion that required minimal configuration beyond Service Set Identifier (SSID),
Wi-Fi Protected Access (WPA) password, and any ISP-specific settings (such as
a PPPoE username/password) [4]. Once established, a suite of protocols (UPnP,
STUN, etc.) provide an interface for connected devices to negotiate with the
router directly such that the user would rarely need to interact with the net-
work [7,16,19]. NAT also removed the need to define and manage an ingress
filtering policy, as the one public address is multiplexed for use by all inter-
nal hosts. The prevalence and ubiquity of NAT are now synonymous with the
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default-deny ingress policy that has become the de facto security model of CE
networks, a policy that is often the only ingress access control deployed.

However, the motivation for the adoption of NAT in IPv4 is negated by a core
feature in the design of IPv6: there is no longer an addressing shortage meaning
we again have the ability to assign one or more addresses to each device. With
this transition, inbound access controls are now discretionary; IPv6 allows CE
networks to operate without the network perimeters and default access control
necessitated by NAT.

While the IETF explicitly acknowledges that care should be taken in design-
ing the baseline operation of CE routers, they avoid proposing default configura-
tions due to a constructive tension between the desires for transparent end-to-end
connectivity on the one hand, and the need to detect and prevent intrusion by
unauthorized public Internet users on the other [20]. The strongest recommen-
dation provided by the IETF is for manufactures to include a toggle to allow
customers to choose between an open, unfiltered gateway where security is left
to endpoint devices, or a closed perimeter approach, similar to NAT, where traf-
fic is filtered and only allowed through careful exception [3,20]. In the absence
of efforts by manufacturers to provide standardization or documentation of the
defaults that they implement, consumers are left to assess whether the security
model that their network implements is sufficient.

2.2 IPv6 Reachability

A significant consideration in the adoption of IPv6 is the ability to uniquely
address each device that joins the Internet. No longer defined by NAT archi-
tectures and private subnets, this addressing allows for every device to be glob-
ally reachable. Devices designed for the home environment often pose a serious
risk when exposed to the open Internet [2,9,10]. However, globally reachable
does not automatically imply a device is globally accessible.

The IETF’s RFCs give router manufacturers discretion for handling unso-
licited inbound traffic in IPv6. The two basic options for default policies are:

– Default Deny: drop all unsolicited WAN-to-LAN inbound traffic. To permit
inbound traffic, users can either manually add firewall exceptions or rely on
protocols that allow exceptions to be negotiated directly with the router. This
policy resembles the existing model of IPv4 networks instrumented with NAT
and UPnP.

– Default Permit: allow unsolicited inbound WAN-to-LAN traffic. Devices are
globally accessible, offloading the responsibility for filtering unwanted traffic
to each individual device. The advantage of this model is that developers can
easily design and deploy their Internet-capable devices without consideration
for including and maintaining additional security mechanisms such as fire-
walls, hole punching mechanisms, or their associated user interface controls.

Whichever default policy is used, the mental model that a user employs must
change from that of IPv4. If a user wishes to manually configure an exception
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Fig. 1. IPv6 network layout – IPv6 represents a fundamental shift in the addressing
of local networks. In (A) NAT, computers follow a one-to-one mapping of local network
private IP with a single globally-routable IP shared by many internal devices. In (B)
IPv6, devices can have many addresses depending on operational scope. Additionally,
IP addresses are unique and can be routed globally if it has the correct scope – a direct
contrast to IPv4 NAT.

to the ingress policy that their router implements, the subtle difference between
NAT and individually globally-addressed devices is significant. For example, indi-
vidual devices in IPv6 can have more than one address assigned concurrently,
and those addresses may be link-local or transient as demonstrated in Fig. 1. In
order to administer their IPv6 network in a manner equivalent to IPv4, users
must understand technical details about IPv6 operation and firewall behavior.
This is further complicated by the fact that the control interfaces provided by
manufacturers and across devices have no common nomenclature or abstrac-
tions for configuration tasks. A study of enterprise IPv6 networks found that
enterprise operators likewise have difficulty implementing appropriate controls
in these networks [5]. These challenges should not imply that there is anything
inherently wrong with IPv6 - the same model provided by IPv4 NAT can simi-
larly be implemented in IPv6 [18] - but further demonstrate the need to provide
a common expectation for baseline operation.

The flexibility of implementation among CE routing devices combined with
globally reachable addressing creates a potential issue: unlike IPv4 networks
where the de facto model is effectively required, in IPv6 CE routers are free
to expose all internal endpoints. Furthermore, as devices transition from IPv4
to IPv6, this exposure could occur without any communication to the end user
as they attempt to administrate their network. Because inbound access control
implementation is left to the discretion of manufacturers, we suspect that there
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is variance among implementations. In the next section, we describe our method-
ology for evaluating a set of off-the-shelf CE routers to assess how IPv6 access
control is implemented in practice.

3 Methodology

Our study aims to measure the security implementation of consumer grade gate-
ways and the configuration options that they provide for IPv6. In this section,
we describe our methodology for selecting and evaluating these routers.

3.1 Router Selection and Network Configuration

In order to choose routers that are representative of those deployed in real net-
works, we rely on the work of Kumar et al., who provide insight into the most
commonly used global gateways by manufacturer and region [10]. Out of 4.8K
router vendors globally, we selected 12 routers which covered 25.2% of the most
commonly deployed global brands. Only routers that specifically mention com-
patibility with IPv6 were chosen for our comparison. We were unable to find any
routers that advertise or provide messaging about filtering policies. To evalu-
ate the potential differences within a manufacturer we include multiple Linksys
(EA3500, and EA6350) routers. Two of the selected routers (the Tenda AC18 and
the Wavlink Aerial G2) were excluded because they did not actually support
IPv6 upon arrival. The remaining ten devices used in our assessment are shown
in Sect. 4, Table 1.

Our architecture consists of four key elements marked with letters in Fig. 2.
Two vantages were established to assess traffic flows: an external host located on
a public cloud provider (A) scanning across a public ISP toward the firewall (B)
or internal host (C), and an internal vantage (D) which conducted the same
scans focused outbound (with the exception of targeting an external host due
to the ubiquitous outbound permit policy of the firewalls). All devices sending
and receiving probes associated with scans were under our control at all times
and at no time did we perform any scanning or analysis of public or private
systems outside of our controlled scope. This architecture allowed us to pass
traffic across the public internet via local consumer grade ISPs and through the
assessed routers from different vantages to analyze real-world operational modes.

3.2 Evaluation Methodology

In order to allow unsolicited inbound connections (e.g., peer-to-peer connec-
tions), IPv4 routers must provide the ability to port forward ; the router estab-
lishes a list of port numbers and destination (internal) addresses. When a packet
is received on the public interface at a port in the list, the router bypasses any
NAT lookup and immediately rewrites the destination address and forwards the
packet internally. Forwarding is common in IPv4; devices rely on the UPnP
and NAT-PMP protocols to automate the setup of forwarding rules. Without
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these protocols, users would need to manually create such rules, a technical task
requiring knowledge of IP addresses and TCP/UDP ports.

Forwarding is effectively meaningless in IPv6 without NAT as devices can be
addressed directly. Instead, routers must provide a mechanism to create firewall
exceptions if a firewall is implemented. While these rules can be as simple as
port forwarding rules (e.g., a destination IP and a port number), how they
are implemented and the options available to users may vary. We evaluate the
following basic characteristics of each router:

– Default IPv6. We first check if each router supports IPv6 and whether it
enables that support by default. When IPv6 is enabled by default, IPv6-
capable devices on the internal network automatically request addresses.
Default IPv6 support requires that the upstream ISP also supports IPv6.
It is notable that router support for IPv6 and default enable state can be
changed in a firmware update pushed remotely by the manufacturer, and ISPs
can (and do) add support for IPv6 without notifying consumers. Therefore,
devices in the home environment can transition to IPv6 overnight without the
user’s knowledge.

– Firewall Present. Next, we evaluate whether or not the device implements
a firewall. In cases where a firewall is not present, the device will pass all
traffic to internal hosts.

– Firewall Enabled. If a firewall is present, we evaluate whether or not it is
enabled (i.e., filtering) by default.

– One-Click Open. While RFC 7084 refrains from proposing a default IPv6
ingress filter policy for consumer gateways, it advises that gateways imple-
ment a single button to toggle all firewall ingress filtering [16]. We evaluate
whether or not the device includes this functionality.

– Security Warning. When the One-Click Open option is used, we evaluate
if there is any warning or communication to the user about the danger of
disabling the firewall.

– Rule Generation. We evaluate whether each device includes the ability to
create exceptions to the default firewall policy. Such rules may be necessary
for allowing specific services or applications to function in the presence of a
firewall. Because we are comparing to existing functionality in IPv4 networks,
we specifically exclude examining more expressive firewall capabilities than
IP/device/port tuples.

– IP Specification. We evaluate whether or not rule creation specifies an
individual IP as the destination.

– Device Specification. As IPv6 devices are often assigned multiple addresses
(in some cases, one per application), creating a rule may be complicated by
device/address identification. We evaluate whether rules can be created by
specifying a device (e.g., by MAC address or another identifier) rather than
a specific IP address.

– IPv6 UPnP Support. Finally, we evaluate the router’s capability to offer
automatic rule generation. Devices on the local network can use UPnP to
create firewall rules programmatically if the router offers this capability.
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Since routers do not explicitly advertise their firewall policies, we conduct a
series of black-box scans in order to establish the default filtering model, fire-
wall filtering policies, and hosted router services. We designed and built a cus-
tom traffic monitor on the internal host to ensure accurate collection of packets
arriving through the firewall. During a scan, this monitor would listen for and
record inbound IPv6 traffic with a timestamp, arrival port, protocol and scan-
ning source IP. We reconciled the packets received with packets sent from the
scanner to filter unwanted traffic and verify correct operation.

Scans were conducted using Nmap against the most common 1,000 TCP and
UDP ports (as defined by the scanner). This scope was chosen due to inter-
est in exposure of the most common ports and scan duration considerations.
A complete assessment of each CE router involved nine total scans from two
sources, each conducted with the firewall on and off as shown in Fig. 2: First,
scan (1) is conducted from the external vantage to the internal host establishing
the inbound filtering strategy of the firewall. Scan (2) probes the external router
interface from the external vantage to identify open ports and exposed services;
(3) repeats this scan on the internal interface to determine if this traditionally
concealed interface is exposed under IPv6. For each interface, we conduct a ban-
ner scan against exposed ports (4 and 5). This process is repeated from the
internal vantage first targeting the exposed services on each router interface (6
and 7) before conducting the same banner grab on exposed services (8 and 9).

Fig. 2. Scanning protocol – To fully evaluate the security policy of each router we
scan from two vantage points (A) and (D) against three targets: (C) an internal host,
and (B) the firewall internal and external interfaces. In total, we conducted 9 unique
scans for each router.

The combination of sources and targets allowed complete measurement of
IPv6 filtering policies, exposure, and default operational model of the CE router.
These results were then compared with our evaluation of basic router character-
istics to complete a holistic router assessment, presented in Sect. 4: Results.
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4 Results

In this section, we present the results of our experiments for each of the CE
routers. In general, we find CE routers with IPv6 capability have little common-
ality of security implementation across manufacturers.

4.1 Operational Defaults

Table 1 presents an overview of our findings showing a wide variance in default
operation, security, and user control. Eight of the ten routers assessed have an
enabled default firewall policy (i.e., default-deny) for IPv6 while the remaining
two devices (TP-Link AC1750 and Motorola MR26001) do not have a default
firewall (i.e., default-permit). Neither of these two devices communicates this
design decision to the consumer. At the time of writing, the TP-Link AC1750
is Amazon US’s top-selling router [1] and TP-link is the top global provider,
accounting for 15.9% of all deployed devices [10], suggesting that the default
permit model may be commonly deployed.

Five of these eight default deny devices further provide a “One-Click Open”
option for opening the network to inbound connections. This option immediately
transitions the network to a default permit model allowing all ingress traffic
through to the internal hosts. The effect that this has on ingress filtering can be
seen in Fig. 3 in the Appendix. Only one of the ten devices evaluated provides
an explicit warning to the user before allowing the firewall to be disabled using
this feature. Users with minimal technical knowledge who are accustomed to a
default closed model from IPv4 NAT may be unaware of the additional exposure
this option creates.

Two routers, the Motorola MR2600 and TP-Link AC1750, enable IPv6 rout-
ing by default with a default permit firewall. This combination of configuration
settings exposes all IPv6-capable devices to the wider Internet by default. While
the Motorola MR2600 allows consumers to optionally enable the firewall, the
user must be aware of the current state and possess the technical capability to
do so. Worse, the TP-Link router only provides the ability to disable IPv6 and
has no capability to enable any filtering.

4.2 Firewall Policies and Pinholing

We find a spectrum of firewall management options offered to the consumers
ranging from subscription model services for packet inspection and filtering,
to singular on/off toggles, to complete lack of firewall configuration for IPv6.
Depending on the router, modifying the configuration can be accomplished
through a smartphone application or a locally hosted web portal, with a few
devices supporting both.
1 Responsible Disclosure Given the severity of enabling IPv6 support by default and

a default-permit posture, we disclosed our findings to both Motorola and TP-Link
in August 2020. In November 2020, Motorola issued a public patch to correct the
issue. TP-Link did not respond to our disclosure.



382 K. Olson et al.

For routers that provide an interface to create exceptions to the default
firewall filtering policy (pinholes), we found that two out of six connect those
rules to the device MAC address. We verified that in these cases, traffic destined
for any associated address for the device is forwarded. The other four out of six
routers allow users to provide a single, static address that the rule applies to;
the rules are not updated if the device migrates or is assigned additional IPv6
addresses over time.

Of the routers that do not support IPv6 pinholing, only the TP-Link AC1750
provides no ability to configure the firewall aside from disabling IPv6 (because it
does not have such a firewall). For the remaining three routers, Cisco DPC3941T
XB3 also provides several options of choosing what kind of traffic is blocked
besides the “One-Click Open” option, while for Ubiquiti AmpliFi and Netgear
Nighthawk, One-Click Open is the only method available for users to control
the firewall. As an example, the Ubiquiti AmpliFi provides users with minimal
control over IPv4 policies through port-forwarding controls, but the management
interface lacks an equivalent ability to create pinholes in IPv6. Ubiquiti notes this
on their official FAQ: “AmpliFi does not support editing firewall configurations,
and cannot be disabled unless you place the router in bridge mode” [15]. Contrary
to this statement, they do allow automated modification of firewall rules through
the embedded UPnP WANIPv6FirewallControl:1 device template. For manual
control, the web interface instead offers an “Allow all incoming IPv6 connections”
as the only actionable solution for non-technical users.

4.3 Router Scanning

We find that when CE routers are globally accessible a majority of them expose
open services to the Internet as shown by Table 2. Whether the firewalls are
disabled manually or by default, six routers do not employ rules to restrict
access to local network services from the global Internet. We found that services
(e.g., SMTP, HTTP, and SMB) available on internal router interfaces were also
offered on the external interfaces as well as the link local address on these devices.
Interestingly, this indicates that the manufacturers are configuring their internal
services to listen on all interfaces; when the firewall is off, these services are no
longer protected. It is unclear if this is an oversight or expected operation.

We discovered two exceptional implementations: First, the Motorola MR2600
maintains a small subset of exposed open ports on its external interface even with
the firewall enabled. Second, the TP-Link AC1750 maintains an outdated version
of Dropbear SSH despite the public availability of a CVE describing a remote
code execution vulnerability [13]. It is notable that, of the routers that expose
ports in any firewall configuration, there appear to be a common set of ports that
are open, but provide no banner. We hypothesize that these ports are associated
with common services that each router provides but does not enable by default,
though the ports remain open. For example, multiple routers advertise the ability
to set up local storage sharing, likely using SMB on port 445. Though we did not
exercise this functionality, the exposure of these ports suggests that if a client
were to enable these features they would also be accessible to the wider Internet
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over IPv6. The default states and mix of services available provide enough unique
scan data to individually identify the device manufacturer; six of the ten routers
we obtain have uniquely identifying features. As a result, we believe it may be
possible to fingerprint routers through probing open IPv6 ports and services,
though we leave this to future work.

Table 2. Externally Exposed Services – This table lists the IPv6 services and open
TCP ports that are exposed by each device with the firewall either enabled or disabled
for the routers that support such an option. Ports in bold indicate that a service
responded with a banner. We document the services associated with the address from
the router’s external interface. Most routers have a separate address assigned to their
internal interface from their allocated subnet, though we find that the exposed services
are typically the same between the two.

Device Default FW FW enabled FW disabled

Amazon Eero ○ – No disable option

AmpliFi Gamer’s Edition ○ – –

Cisco DPC3941T XB3 ○ – –

Google Nest (2nd Gen) ○ – No disable option

Linksys EA3500 ○ – 25, 53, 80, 135, 139,
443, 445, 2601,
1080, 10000

Linksys EA6350 AC1200 ○ – 25, 53, 80, 135, 139,
443, 445, 2601,
1080, 10000

Motorola MR2600 ○␣ 25, 135, 139, 445, 1080 25, 135, 139, 445,
1080

Nighthawk X4 R7000 ○ – 25, 43, 80, 135, 139,
443, 445, 548, 1080,
2601

Surfboard SBG10 DOCSIS 3.0 ○ – 25, 80, 135, 139,
443, 445, 1080

TP-Link AC1750 v2 ○␣ No enable option 22, 25, 135, 139,
445,1080

To summarize, our work shows that there is little standardization among the
routers evaluated in this work around the security or operational functionality
provided for IPv6 CE networks. This is in direct contrast to IPv4 where devices
and services are not exposed. While NAT was not designed as a security frame-
work, the deny-all, permit by exception ingress policy serves as an invariant for
consumer routing devices and is noted as such within RFCs when debating the
default recommendations of CE routers [3,16,20]. We see this argument man-
ifest in the inconsistency between device implementations; the default policies
maintained by devices put real users and systems at risk.
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5 Discussion

The CE environment provides a unique challenge in balancing device capability
against user ability and need. This work demonstrates that the shift to IPv6
removes the consistency of one of its most crucial layers of defense: homogene-
ity in router operation. Without a safe default policy, consumers must rely on
the security of each of their endpoint devices, which can be difficult to ensure,
especially in CE environments where device maintenance is not guaranteed. We
recognize that many of these problems are not caused by or unique to IPv6
consumer networks, but we note that unclear IPv6 implementation strategies
exacerbate these issues by offloading responsibility for securing and configuring
the network to consumers.

We see in our assessment a struggle to shape and define what exactly is
the right amount of control without under-offering or overwhelming targeted
consumer demographics. This has left router manufacturers to determine what
are the correct abstractions and implementations, and how to communicate these
clearly to a wide demographic of users. Accordingly, we believe that addressing
the general inconsistency is the most direct path to securing CE networks in
IPv6.

5.1 Recommendations

There are multiple parties involved in CE environments each of which have
different motivations and risk factors, but it is important that the design of CE
networks prioritizes the wholesale security of consumer data and devices. We
structure our recommendations around the following principles:

– The default operation mode should be secure, and the bulk of network con-
figuration should be moved from consumers to developers.

– Configuration options should be consistent and only as permissive as neces-
sary.

– Configuration pitfalls should have confirmation warnings that ensure users
understand the risks associated with the changes they are making (e.g. making
devices globally accessible).

– Documentation should share abstractions and language across manufacturers
and be as minimally complex as feasible.

It is important to present a clear, consistent threat model to consumers
whose ability and understanding often lags that of developers, to avoid oversight
on responsibility for securing devices connected to home networks. This is the
responsibility of both standardization bodies and the CE router industry as a
whole. We strongly recommend the following defaults:
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Standardization. We recommend that CE routers universally standardize around
a default ingress filtering policy that denies incoming traffic. We further rec-
ommend manufacturers remove or restrict the “one-click open” option on CE
routers as home users are likely to unknowingly expose their whole network, vio-
lating the security principle of least privilege. If this is a required functionality,
routers should warn users (and/or suggest to use IPv6 pinholing) before allowing
them to use this option.

For manual exceptions we recommend that manufacturers implement both
device and IP based rules and develop a consistent vocabulary for describing
them. Providing users with the resources to understand when each option is
preferable will require that the language used to describe IPv6 configuration
options is consistent across manufacturers.

Documentation. It is irrelevant what standards require if manufacturers ignore
them or if parties involved fail to understand their importance or the impor-
tance of their abstractions. Fostering consumer and developer understanding of
IPv6 security can create pressure on manufacturers to adhere to standards and
promote transparency ahead of purchase. Establishing consistent language and
abstractions for describing the security mechanisms of IPv6 networks is the first
step.

Currently manufacturers of customer edge routers highlight IPv6 as an
enhanced feature in their product marketing, though we found no instance of edu-
cating users about IPv6 or describing its security implications. Instead, phrases
such as “provides infinite addresses for more devices”, “best possible experience”,
and “simplifies the router’s tasks” are offered as slogans to encourage user com-
mitment [11,12]. These approaches are problematic. This hides a transparent
shift in the security model of home networks that consumers cannot be expected
to inherently understand on their own.

Morgner et al.present one possible solution of offering device label standards
similar to nutrition labels on food [14]. Here, the authors focused on manu-
facturer guarantees for duration of product support and timeliness of updates
in a standardized label. We argue to take this concept further with a holistic
approach to additional aspects of security such as default configuration, control
mechanisms, and 3rd party certifications. Requirements for labelling standards
incentivize manufacturers to provide and document security features necessary
for consumers to have a functional understanding of their network posture at
purchase.
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5.2 Future Work

While this work discusses at length the “One-Click Open” option, we have not
conducted a formal user experience study to confirm that users will rely on
this option to achieve simple routing changes in their IPv6 networks as a first
choice. A proper study of the UX/UI design involved in home network security
would be informative and could provide developers with a better understanding
of consumer needs and approaches to IPv6 security.

While we use this work to gauge the scope of current security policies of
IPv6 CE routers, a large scale examination of router IPv6 firewall behavior is
required to better understand the breadth of the impact that the transition from
IPv4 to IPv6 has on CE routing. Specifically, a tool assisting clients to better
understand the defaults that their network implements could prove a strong
contribution towards this result. Similar large scale studies of IoT and smart
devices operating in IPv6 environments are reserved for future efforts as well.

6 Conclusion

In IPv4 networks, the use of NAT afforded a ubiquitous, de facto default-deny
security posture. The growing deployment of IPv6, which eliminates address
scarcity, no longer requires NAT. In the absence of strong guidance for how router
manufacturers should implement filtering, we examined a diverse set of routers to
measure real-world implementations. We find that the access control models and
controls implemented to manage these networks are coarse and contain unsafe
defaults that likely expose devices on the network – often without warning to
the consumer. The result is a systemic, demonstrable failure among all parties
to agree upon, implement and communicate consistent security policies. While
IPv6 brings important advances to the Internet, significant effort by academia
and industry is needed to help address and solve access control issues in the
home, including adequately communicating information about these postures to
consumers.

7 Appendix
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Abstract. IPv6 automatic transition mechanisms such as 6to4 and ISA-
TAP endure on a surprising number of Internet hosts. These mechanisms
lie in hibernation awaiting someone or something to rouse them awake.
In this paper we measure the prevalence and persistence of legacy IPv6
automatic transition mechanisms, together with an evaluation of the
potential threat they pose. We begin with a series of DNS-based experi-
ments and analyses including the registration of available domain names,
and demonstrate how attackers can conduct man-in-the-middle attacks
against all IPv6 traffic for a significant number of end systems. To val-
idate another form of traffic hijacking we then announce a control set
of special-purpose IPv6 prefixes that cannot be protected by the RPKI
to see these routes go undetected, accepted, and installed in the BGP
tables of over 30 other upstream networks. Finally, we survey the Inter-
net IPv4 address space to discover over 1.5 million addresses are open
IPv6 tunnel relays in the wild that can be abused to facilitate a variety
of unwanted activity such as IPv6 address spoofing attacks. We demon-
strate how many attacks can be conducted remotely, anonymously, and
without warning by adversaries. Behind the scenes our responsible disclo-
sure has spearheaded network vendor software updates, ISP remediation
efforts, and the deployment of new security threat monitoring services.

1 Introduction

The meteoric rise of the Internet motivated the proposal of IPv6 over two
decades ago. However, rather than decree an instantaneous conversion and face
the unavoidable disruption that would ensue, a slow migration started around
the turn of the century and is still underway [33]. Around 25 years later, reports
from Akamai [7] and Google [26] suggest that over 25% of client systems are
using IPv6 in 2020. While IPv6 adoption has been substantial, a significant
majority of users lack IPv6 connectivity. The slow migration necessitated the
design, implementation, and deployment of transition mechanisms in order to
maintain reachability between communicating hosts that lack direct connectivity
to each other using their chosen version of IP.

A handful of security-related concerns about transition mechanisms were
documented in IETF RFCs after the technology first arose [34,39]. These early
concerns mentioned the lack of authentication on endpoints, and how they can be
c© Springer Nature Switzerland AG 2021
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https://doi.org/10.1007/978-3-030-72582-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72582-2_23&domain=pdf
https://doi.org/10.1007/978-3-030-72582-2_23


Plight at the End of the Tunnel 391

used for launching distributed denial-of-service attacks or IPv4 policy avoidance.
The referenced RFCs summarize certain potential security threats, but do not
provide specific guidance on how to mitigate them. Despite the concerns, these
mechanisms were still added to commodity operating systems. More importantly,
reports had not envisioned the DNS-based attacks and the extent of implemen-
tation weaknesses we uncover in this work. Based on reports [42,44] that provide
statistics on the versions of users’ Windows operating system, ∼33% of all Win-
dows machines in the wild currently have these automatic transition mechanisms
enabled by default. Transition mechanisms are also supported by almost all other
major operating systems.

Since transition mechanisms are intended to work around the shortcomings
of a local IPv4-only network connection, many of them were designed as host-
initiated tunneling protocols. Tunnels are the most straightforward solution to
the network protocol transition problem, but as we will show, the implemen-
tation of the IPv6 automatic transition mechanisms were designed with little
consideration for long term effects of on-by-default settings or the ease at which
man-in-the-middle (MitM) attacks can be conducted.

We present several techniques that allow a remote attacker to meet the pre-
conditions for activating the transition mechanism implementations undetected.
Activation enables attackers to perpetrate stealthy traffic hijacking on a signif-
icant population of Windows hosts where these mechanisms currently lie dor-
mant. Furthermore, with IPv6 being the generally preferred network layer pro-
tocol when given the choice between IPv6 and IPv4 [41], transition mechanism
tunnels will handle a large portion of the network traffic for hosts without native
IPv6 connectivity. The attack’s impact may be further amplified by manipulat-
ing unauthenticated DNS responses that traverse a malicious tunnel by adding
or including AAAA answers, thus “guiding” the client towards more IPv6 des-
tinations.

In this paper, we investigate the persistence of legacy transition mechanisms
by conducting a series of measurements, including a longitudinal study over the
course of 13 months using data from multiple network vantage points, detailing
the severity and feasibility of different attacks.

We consider two different attack vectors that capture adversaries with vastly
different capabilities and resources. First, we demonstrate how an attack that
requires only a domain name registration allows an adversary to hijack the IPv6
traffic for a substantial number of hosts having a domain suffix in a zone we
control or can register a name for. We can directly observe 32,156 hosts suscep-
tible to IPv6 traffic hijacking using this technique. The only additional require-
ment for this attack is the absence of network address translation (NAT). While
these vulnerabilities can be directly exploited through the registration of specific
domain names, we also explore a more sophisticated attack, where an adversary
can announce BGP routes into the Internet routing tables.

Lastly, we conduct an Internet survey of open relay tunnels in the wild and
how they can be used as a springboard for attacks, such as traffic reflection,
spoofing, or the discovery of private network infrastructure. Our Internet-wide
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scans reveal over 1.5 million IPv4 addresses that can be exploited for such
attacks, with further investigation revealing a portion of those relays consist
of a widely deployed backbone router that allows IPv6 tunneling for anyone on
the Internet by natively forwarding encapsulated IPv6 traffic arriving on an IPv4
interface. To the best of our knowledge, we are the first to report on these IPv4
hosts functioning as open IPv6 tunnel relays and the potential for misuse. Over-
all, our study sheds light on new attack vectors that pose a significant threat
to the Internet, and highlights the importance of mobilizing the networking and
operational security communities for deploying appropriate countermeasures.

In summary, our research contributions are as follows:

– We conduct a measurement of the contemporary use of legacy IPv6 automatic
transition mechanisms within end hosts, transition mechanism-providing
servers, and network infrastructure. We find multiple MitM attack vectors
which are enabled by default on millions of Internet-connected hosts including
DNS-based vectors unanticipated by the original designers or earlier reports.

– We further explore the practical implications of these MitM attacks, both in
scope and severity. Our experimental analysis, driven by data collected from
academic institutions, ISPs, and other organizations reveals the magnitude
of the threat.

– Due to the severity of these vulnerabilities, we have reported them and coor-
dinated with various trusted communities of network administrators of vul-
nerable networks, router vendors, and multiple incident response and threat
intelligence reporting organizations. We also discuss countermeasures and
mitigation strategies.

2 Background

A full accounting of all IPv6 transition mechanisms is beyond the scope of
this paper. For example, newer mechanisms such as 6rd [45], DS-Lite [21], and
464XLAT [36] are not considered here. Instead, we focus on a subset of legacy
automatic transition mechanisms. Three of the earliest and most popular are
6to4, ISATAP, and Teredo. Their peculiar use of specific address prefixes, the
DNS, or tunnel bootstrapping allows us to conduct extensive measurements and
experiments demonstrating their susceptibility to various forms of attack.

6to4. IETF RFC 3056 [9] describes one of the earliest automatic transition mech-
anisms for IPv6 in IPv4 tunneling. The Internet Assigned Numbers Authority
(IANA) designated the 2002::/16 prefix to be used by 6to4 systems [30]. Bits
17 to 48 of a 6to4 address correspond to the globally unique 32-bit IPv4 address
of the 6to4 host or site network. Systems behind a network address translator
(NAT) or using private addresses cannot use 6to4. A 6to4 system can communi-
cate with IPv6 over an intermediate IPv4 subpath by encapsulating IPv6 pack-
ets in IPv4 towards a well-known destination address from the IANA-designated
special-use anycast prefix 192.88.99.0/24. Any network announcing this prefix
must be willing to accept a 6to4 system’s encapsulated packet, remove the outer
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Fig. 1. Conceptual flowchart outlining the conditions for an IPv6 transition mechanism
to be used.

IPv4 layer, and relay the enclosed IPv6 packet towards the IPv6 destination
directly. Conversely, traffic back to a 6to4 system needs a relay that can add
the IPv4 encapsulation onto an IPv6 datagram so that it may continue on the
subpath that is IPv4-only. Like the IPv4 anycast prefix, a network advertising
2002::/16 must be willing to perform this relay service in the opposite direction.

ISATAP. Where 6to4 relies on the global routing infrastructure with well
known prefixes and addressing for host configuration and packet forwarding, the
Intra-Site Automatic Tunnel Addressing Protocol (ISATAP) is widely imple-
mented with the help of the DNS to automatically construct an IPv6 over
IPv4 tunnel [25]. A typical ISATAP client issues a DNS A query for a name
with the suffix of the locally defined zone and a label prefix of isatap (e.g.,
isatap.myzone.example.net). If an address is indeed returned for this name,
an ICMPv6 router solicitation and ICMPv6 router advertisement are exchanged
over an IPv4 tunnel. The ISATAP client uses the source of the router advertise-
ment response as the default IPv6 tunnel relay router. As with 6to4, ISATAP
only works on hosts that are not behind a NAT.

Teredo. IETF RFC 4380 [29], describes an IPv6 over UDP-based automatic
transition mechanism intended for clients behind a NAT device. Teredo clients
communicate with a configured or discovered tunnel relay like ISATAP, except
they do not need a public IPv4 address. Teredo client IPv6 addresses are derived
from a combination of server and client attributes appended to the well-known
Teredo prefix (2001::/32).

Interface and Mechanism Selection. It is possible for a system to have
multiple active IPv6 interfaces and addresses. When such an IPv6 host has traffic
to deliver, it must select an interface and source address from which to send
traffic. IETF RFC 6724 [43] outlines the default address selection algorithms
that should be used. If multiple transition mechanisms are active and available
on a host without native IPv6 connectivity, traffic delivery and reception will
tend to use only one available transition mechanism at a time. To illustrate
interface selection, Fig. 1 depicts how a Microsoft Windows system will make
it’s choice. As shown in the top left, a client commonly starts communication
with a DNS query. If an IPv6 address answer is provided, the most preferred
interface type that is available will be used, falling back to IPv4 as a last resort.
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Network Connectivity Status Indicator. When joining new networks or
activating a new network interface, Microsoft Windows machines perform a con-
nectivity test with a HTTP GET request for www.msftncsi.com/ncsi.txt. If this
test succeeds the interface is assumed functional for as long as the interface state
remains active. In order to more accurately measure IPv6 transition mechanism
usage in our tunnel relay experiments, we want to ensure this test is successful.
Microsoft systems will always attempt to use an IPv6 interface that passed the
“ncsi” test, but will fall back to IPv4 with little to no perceived interruption of
service if IPv6 communications fail.

3 Methodology and Data

In this section we provide a high-level overview of our experimental setup,
methodology, limitations and network vantage points for measuring transition
mechanism behavior, security threats, and privacy risks.

Domain Registrations. We registered dozens of isatap names in EDU-A,
EDU-B, top-level domains (TLDs) and shared domain providers. Where possi-
ble we ran our own authoritative name servers for these names with the EDNS0
client subnet option [13] and extensive logging configured. These vantage points
provide a diverse, but limited view of the global DNS name space and client
population for our experiments.

EDU-A Functional ISATAP Relay. We setup a fully functional ISATAP
relay that handed out public IPv6/64 prefixes and relayed tunneled traffic
received from any of the institution’s client population that had ISATAP enabled
by default.

EDU-B Dysfunctional ISATAP Relay. This relay was configured to receive
tunnel requests for all clients within the institution’s primary DNS domain and
the computer science domain. It was also the relay for a sample of ISATAP
domains we registered in a number of TLDs and dynamic DNS providers. This
tunnel relay system operated in the “dysfunctional” state, which would appear
as a valid IPv6 path, but would ultimately reject traffic not associated with
tunnel establishment and control.

DNS Query Logs. From EDU-A we received anonymized client query logs
from their local resolvers. A large U.S. cable modem operator also provided us
with anonymized DNS query log data for a large city service area containing
any IPv6 transition mechanism label in the query name. We also leverage the
DNS query data collected by the DNS-OARC DITL project for the two prior
two years available [20].

BGP Route Announcements. We coordinated with the EDU-A upstream
research and education network (REN) to announce five distinct IPv6 subprefixes
in the 2002::/16 6to4 block corresponding to three EDU-A IPv4 prefixes (a/16,
/18, and /20). This allowed us to measure the potential to launch a global IPv6
transition mechanism hijack without altering the path of any actual traffic.

www.msftncsi.com/ncsi.txt
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Internet-Wide Scans. We survey the entire Internet IPv4 address space for
open and accessible IPv6 tunnel relay services. We first issue a single ICMPv6
router solicitation encapsulated in IPv4 to discover any open ISATAP relays.
We then issue an ICMPv6 echo request encapsulated in IPv4. These ICMPv6
messages uncover either 6to4 or raw protocol 41 processing nodes if we receive
a corresponding ICMPv6 echo response at our control IPv6 destination.

Ethical and Privacy Considerations. Our experiments required careful plan-
ning and review to steer clear of compromising user privacy and to avoid
adversely altering Internet application functionality. We performed several inter-
nal experiments to ensure that global experiments would not negatively impact
users’ connectivity or privacy. In all but the experiments being led and con-
trolled by EDU-A, our experiments are limited to tunnel discovery and boot-
strapping traffic. To ensure that there is no violation of the privacy of users,
all data collection scripts aggregated and anonymized the results (raw data was
not retained) without human intervention and the data collection was operated
by computing support staff who verified the code’s operation and only provided
the anonymized, aggregated results to the research team. EDU-A deployed a
local, production ISATAP relay, to which we had no direct access, in order to
establish ground truth and ensure our attack scenarios could be carried out on
real application traffic in practice without user intervention. We submitted a
detailed description of our experimental protocol to our university’s IRB prior
to any experiments, and they determined that this research does not qualify as
incorporating human subjects.

4 Analysis

The various legacy automatic transition mechanisms we examine are architec-
turally similar. They each consist of two fundamental types of systems, tunnel
clients and tunnel relays. We present our analysis by examining the threats from
the perspective of each system type. The primary vulnerability tunnel clients
face is the threat of stealthy man-in-the-middle attacks on all traffic bound for
IPv6 hosts. Tunnel relays on the other hand can be impersonated and abused.
Impersonation attacks against relays can be enable MitM attacks against tun-
nel clients. Moreover, tunnel relay abuse can enable various kinds of unwanted
activities such as service theft or origination spoofing attacks.

4.1 Attacks Against Tunnel Clients

DNS Capture. Since ISATAP clients typically perform a look up based on
the client’s default zone, we focus our attention on this mechanism where an
attacker could most easily gain access to a number of zones without raising
suspicion. Other types of DNS capture attacks, such as cache poisoning could
also be used.

Our registered ISATAP domain names received approximately three million
queries per month between April 2018 and May 2019. Recall that a DNS query
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is the first step in bootstrapping an ISATAP tunnel client. Until we registered
these names, the queries likely went unanswered and the client’s ISATAP boot-
strapping process ceased until a change in interface state restarted the process.
The daily volume shown in Fig. 2 exhibits a noticeable work week oscillation,
suggesting that many of these queries originate from end user systems that tend
to go offline during the weekend. We observe a slow decline towards the end of
the monitoring period, which may correspond with the roll out of new systems
that have ISATAP disabled by default.

We also break down the queries for the six most popular domain names we
registered in Fig. 3. The fact that these domains receive thousands of ISATAP
queries per day suggests the relative frequency for more popular domains (e.g.,
ending in .comcast.net) will likely be orders-of-magnitude higher. We believe
that our top level names are a relatively small sample of the coverage that attacks
leveraging IPv6 automatic transition mechanisms can reach. When we examined
the DNS-OARC DITL data we see relatively few ISATAP queries for existing
zones, but tens of millions of queries for vendor, special-use, or names in private
domain over the course of just two days.

In our experiments almost 3K out of 163K resolvers supply EDNS0 client
subnet option data. While that is a small fraction of the total number of resolvers
observed, over 30% of all queries contain client subnet data. This is due to the
disproportionate query volume Google contributes, as their resolvers supply the
client subnet data by default if they detect it is supported at the authoritative
server. The distinct number of client subnets we see over the course of one year’s
worth of queries is 96,061. We geo-locate these client subnets to their country
of origin and find that they are located all over the world. The extensive use of
third-party DNS resolvers (e.g., Google) highlights that these entities are well
positioned to impose protections.

We also examine transition mechanism queries seen at EDU-A and a cable
modem ISP’s resolvers by Microsoft Windows clients for one day in Fig. 4. This
includes type A (IPv4 address mapping) queries for any name with the isatap
prefix label, and the fully qualified domain names 6to4.ipv6.microsoft.com or
teredo.ipv6.microsoft.com. The cable modem ISP client population is largely
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behind consumer-grade NAT devices. This is reflected in the proportionally
higher number of Teredo queries seen at the ISP than EDU-A. Nevertheless,
ISATAP queries still make up a large amount of the transition mechanism activ-
ity observed in both environments.

Relay Capture. We extend our analysis of threats against clients with the
operation of the EDU-A Functional and EDU-B Dysfunctional ISATAP tunnel
relays. Figure 5 summarizes the most popular network destinations EDU-A ISA-
TAP tunnel client users were destined for over the course of one 24-h period.
The EDU-A network operations team reviewed these traffic patterns and they
believed them to be expected client system traffic behavior that was running
over IPv6 instead of IPv4. The traffic includes various forms of email communi-
cations, social networking, e-commerce activity, and scientific research.

Client connections to the EDU-B ISATAP relay came primarily, but not
entirely, from the EDU-B user population. The ISATAP names registered in
co.uk and net.br were also a popular source of ISATAP clients. The most pop-
ular IPv6 destinations from clients were concentrated at popular web hosting
properties such as Google, Cloudflare, Microsoft, and a handful of content dis-
tribution providers. While most attempted traffic through the relay can be clas-
sified as HTTP(S), we also observed DNS, FTP, NTP, SMTP, SNMP, SSH, and
VPN tunnel attempts. Figure 6 shows the eight destination ports that received
the highest number of client connections from a random representative weekday,
and that a significant amount of unencrypted HTTP and DNS traffic would be
visible to a hypothetical attacker. Since most DNS stub resolvers do not perform
DNSSEC-based authentication of answers, attackers could filter out A responses
and leave only the valid AAAA answers, forcing all victim traffic to IPv6 capable
hosts to transit the malicious tunnel.

Route Hijacking. In April 2019 we began originating five more-specific BGP
routes within the 6to4 2002::/16 prefix from EDU-A. We wanted to evalu-
ate whether we could successfully conduct a targeted attack against 6to4 traf-
fic. The upstream REN agreed to allow these prefixes into their backbone, but
they limited the propagation to a subset of regional REN participants for safety
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reasons; they were not relayed to commercial or international peering partners.
Nonetheless, at least twelve REN participant networks installed these routes
into their routing tables, and RouteViews [3] observed the route from over 30
networks, including multiple tier 1 ISPs. This experiment demonstrates that
while customer route filtering may be common practice for ISPs, route filter-
ing between large ISPs and RENs is typically less strict and often inconsistent.
Since the IPv6 transition prefixes are not currently protected by the RPKI [35]
and may be announced by any origin network, the feasibility of traffic capture
is even easier than traditional unicast route hijacking. This experiment ran for
many months and to the best of our knowledge there were no public reports or
inquiries about the nature of these spurious announcements.

4.2 Attacks Against Tunnel Relays

Theft of Service. In November 2018 and April 2019 we surveyed the entire
IPv4 address space for ISATAP-compatible open tunnel relays on the public
Internet. The 2018 survey recorded 765 ICMPv6 router advertisement (RA)
responses while the 2019 survey recorded 628 responses, totaling 841 unique
addresses. Further examination suggests that these hosts are mostly Microsoft
IIS web servers with firewalls disabled and forwarding capability for remote hosts
activated. Their router advertisement responses typically include a number of
available routes, most commonly 6to4 prefixes, but also some Teredo and unique
local IPv6 unicast prefixes [27]. We did not find any probed hosts offering unique
global IPv6 addresses. We classify these as ISATAP-capable since our client was
able to successfully self-configure using the ISATAP address acquisition process.

Upon seeing how most open ISATAP tunnel relays would provide 6to4
addresses by default, in April 2019 we issued ICMPv6 echo request messages,
encapsulated in IPv4 protocol 41 packets, to the entire IPv4 address space. Much
to our chagrin we discovered 1,546,843 IPv4 addresses around the globe would
relay the enclosed IPv6 message to the intended destination. We were surprised
that such a large number of system configurations not only had the 6to4 mecha-
nism enabled, but were left unprotected on the public Internet, allowing anyone
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Fig. 7. Open 6to4 relays’ country of origin.

to relay traffic through them. We break down those relays according to their
geographic distribution and find that China, Hong Kong, USA, Indonesia and
Brazil have the most relays. We provide a list of the top 30 countries in Fig. 7.

We ran an nmap [24] survey on a sample of these open IPv6 tunnel relays
and discovered an alarming number of fingerprints matched backbone routers
from one of the world’s largest networking vendors, which we confirmed through
two different network operators. We estimated that approximately 7% of the
addresses discovered were from this particular vendor. This particular brand of
equipment exhibited particularly curious behavior. They process IPv4 protocol
41 datagrams by first removing the IPv4 header. Then the IPv6 destination
address is consulted and the IPv6 datagram is forwarded along its way. In other
words, this particular class of equipment acts as an IPv6 default router for any
IPv6 traffic it receives, even if encapsulated in IPv4 first. This led to additional
interesting observations, two of which we briefly describe below.

Infrastructure Abuse. These vendor backbone routers had a noteworthy pecu-
liarity. They were rarely configured to support the 6to4 mechanism. Therefore,
if the embedded IPv6 destination is the 6to4 equivalent destination of the back-
bone router’s own IPv4 address, the packet will attempt to follow whatever path
the router has to the 2002::/16 prefix. A 6to4 network service provider upon
receiving this packet will examine the IPv6 destination, put the IPv6 message
into an IPv4 packet and send it back towards the router’s IPv4 address where
the process repeats until the enclosed IPv6 hop limit field eventually expires, but
not before the packet iterates through this loop. This leads to a potential DoS
attack where sending one tunnel packet can expand to multiple packets cycling
in a loop between the 6to4 gateway and the backbone router.

Infrastructure Disclosure. Another observation from those backbone routers
appeared when we attempted to evaluate the IPv6 path of the aforementioned
loops. Output from traceroute often showed our relayed packets were able to tra-
verse IPv6 paths not accessible via the native public IPv6 Internet. Listing 1.1
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$ traceroute -n -q1 2002: c000 :0201::1
traceroute to 2002: c000 :0201::1 ,
30 hops max , 80 byte packets
1 *
2 2001:4958:300:449::b 63.779 ms
3 2001:4958:300:449::a 63.764 ms
4 ::ffff :64.230.193.173 70.472 ms
5 *
6 2001:4958:300:d::1b 64.748 ms
7 2001:470:1:802::1 64.122 ms

Listing 1.1. Traceroute traversing hidden paths.

shows the partial path through an IPv6 open relay on a North American ISP
network (the target destination address has been anonymized). In this example,
traceroute should have terminated at the first hop. However, this class of equip-
ment blindly forwards this packet along a path towards a route advertised for the
2002::/16 prefix. The fourth hop shows an IPv4-mapped address, which should
not appear on the public Internet. Access to addresses and paths intended for
internal-only use may facilitate network reconnaissance or attacks that bypass
security policies.

Origination Spoofing. Open tunnel relay systems not only allowed us to obtain
an IPv6 address and relay traffic through them, they facilitated source IP address
spoofing. Most operators of networks, where directly attached hosts emit packets,
perform a form of source address validation (SAV) on IP datagrams at the first
hop ingress router [5]. However, routers only perform this validation on the
outer IP layer, not on the IPv6 source address of encapsulated packets. We
were able to set the IPv6 source address to most any value of our choosing.
The tunnel relays re-encapsulate our original IPv6 datagrams inside a new outer
IPv4 header using the tunnel’s IPv4 source address before relaying further. By
the time a 6to4 gateway finally receives the packet, all SAV of the IPv6 address
has been bypassed. If coupled with a reflection and amplification style attack,
this behavior can significantly complicate denial-of-service attack mitigation.

5 Discussion

Susceptible Population. According to online reports, over 30% of Microsoft
Windows machines in the wild [42] run OS versions up to Windows 8.1, which
have these mechanisms enabled by default. While more recent versions of Win-
dows have begun to disable all legacy IPv6 transition mechanisms, the function-
ality still remains in the operating system. Judging by the significant volume
of DNS queries we see for ISATAP names and the vast number of open tunnel
relays on many other types of systems, we can safely conclude these mechanisms
stubbornly persist, posing risks not only to the systems and users, but to the
entire Internet.
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Countermeasures. Effective mitigation strategies require significant global
coordination as we outline below. We summarize various mitigations that can
be implemented to prevent exploitation of these transition mechanisms.

Protocol 41 is used to identify whether an IPv6 datagram is encapsulated
within an IP payload, and is at the epicenter of these transition mechanisms.
Limiting the transmission of protocol 41 packets would mitigate most attacks we
uncover. Some part of transition mechanism bootstrapping, such as DNS queries,
may continue unfettered, but would be rendered largely ineffective if protocol 41
packets cannot be relayed.

DNS. As we have shown, the most popular laptop and desktop operating system
has made extensive use of DNS to locate and prepare IPv6 links. This feature is
susceptible to attacks from off-path attackers. However, the DNS infrastructure is
also a place to apply control and policies. Operators of resolvers can exert control
over these well known transition mechanism names, either by configuring a local
authoritative zone for the names or using response policy zones (RPZ) [47],
to render them inactive. Domain name registries, registrars, and ICANN could
institute policies to declare certain special-use names as off-limits for registration.

Routing. Legacy IPv6 automatic transition mechanisms such as 6to4 and Teredo
utilize well known address prefixes. The routing system provides an operationally
centralized means of control to monitor and limit the dissemination of route
announcements covering the well known transition address space.

OS and Network Configurations. It is a positive step that Microsoft has dis-
abled these mechanisms in recent versions of their OS. However, reports of older
Windows hosts in the wild and our measurements indicate that millions of sys-
tems still have these mechanisms turned on. Furthermore, the vast number of
open tunnel relays we identified are rarely Windows systems, highlighting the
fact that automatic transition threats span a variety of operating systems and
device types. These automatic mechanisms can be disabled (or removed) from
individual systems by default.

Responsible Disclosure. We have proactively engaged the vendor and opera-
tional community for mitigating the attacks we described that can target pub-
licly vulnerable systems. After months of verification, software refactoring, and
testing the routing operating system code, a router vendor issued a “high”
alert encouraging customers to upgrade or apply configuration work-arounds
to avoid the vulnerability. Another hardware vendor verified an issue with their
equipment and sent us one to further evaluate in our lab. We also leveraged
our personal contacts in the incident response and network security commu-
nity [1,2,23,31] to coordinate the responsible disclosure of our findings to other
vendors and operators affected by the suite of threats we uncovered. Our find-
ings have also renewed discussions in the IPv6 community to officially deprecate
these transition mechanisms, encouraging their removal not only from service,
but from being made available in systems even when not enabled by default.
One of the largest 6to4 service providers has also informed us they are consider-
ing a complete shut down of their relay service. Finally, with the help of threat
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intelligence reporting organizations [4,6,14], notifications for systems identified
to be at risk can be disseminated to administrative contacts before these findings
enter the public sphere. These organizations can also use our findings to build
automated scanning and alerting reports for the Internet community at large.

6 Related Work

IPv6 Concerns. Ullrich et al. [46] provide a broad overview of security and
privacy concerns related to IPv6, and while they mention tunneling between IP
protocols, they do not mention the lack of authentication on tunnel creation that
enables the attacks we describe.

IPv6 as an Evasion Technique. Carter [11] warned of attackers setting up
proxy interfaces to relay traffic between IPv4 and IPv6 hosts. US-Cert [18] drew
attention to malware that enables IPv6 transport, including automatic transi-
tion mechanisms, to evade IPv4-only defenses. Blumbergs et al. [8] discussed the
limitations intrusion detection systems have when IPv6 transition mechanism
tunnels are used for data exfiltration. Czyz et al. [17] highlighted the discrepan-
cies in the access to specific ports. Hong et al. [28] found several vulnerabilities
in cellular networks.

Measuring of Transition Mechanisms. While IPv6 deployment has
increased in recent years [12,15,19], the underlying factors influencing its adop-
tion [38] indicate that it’s unlikely that IPv4 will disappear anytime soon. Czyz
et al. [16] deployed an IPv6 sensor on unused address space to observe unsolicited
activity. In a similar study, Karis et al. [32] conducted active measurements of
IPv6-enabled web clients. Elrich et al. [22] explored the behavior and traffic pat-
terns seen by active Teredo and 6to4 clients on a large academic network and
compared them to automatic tunneling mechanisms and native IPv4 communi-
cations. Savola compiled a number of observations in the operation of a large,
public 6to4 relay service [40] and characterized client system behavior and traffic
patterns.

Traffic Hijacking Attacks. Very similar to the MitM attacks we describe are
the Chen et al. [10] hijacking attacks enabled by the Web Proxy Auto-Discovery
(WPAD) protocol. Nakibly and Arov discussed a class of routing loop attacks
using IPv6 tunnels [37], which took advantage of inconsistency between different
transition technologies.

7 Conclusion

We presented a comprehensive exploration of legacy IPv6 transition mechanisms
on the Internet along with a series of experiments demonstrating the security
and privacy risks they continue to pose. We conducted a study using data col-
lected from multiple network vantage points and found a significant number of
hosts run operating systems with IPv6 automatic transition mechanisms enabled
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by default. These mechanisms often lie dormant, idling by until the right set of
circumstances triggers their use. If an attacker provisions the necessary resources
or successfully positions themselves in the network path, they can covertly inter-
cept all IPv6 traffic, including traffic towards critical and high-value services like
Google and Facebook. Our DNS registration and route announcement experi-
ments explored the practicality and feasibility of different attack vectors that
capture adversaries of varying sophistication and resourcefulness. Furthermore,
we found a significant number of open tunnel relays, including many on high-cost
specialized ISP backbone routers that can facilitate a wide range of attacks such
as IPv4 address spoofing and policy bypass. While we have set things in motion
by disclosing our findings to certain network administrators, hardware vendors,
ISPs, and incident reporting organizations, we hope to bring more attention to
the prevalence and risk of legacy IPv6 automatic transition mechanisms in order
to accelerate their extinction and countermeasures.
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Abstract. Initially envisioned to accelerate association of mobile devices in
wireless networks, broadcasting of Wi-Fi probe requests has opened avenues
for researchers and network practitioners to exploit information sent out in this
type of frames for observing devices’ digital footprints and for their tracking.
One of the applications for this is crowd estimation. Noticing the privacy risks
that this default mode of operation poses, device vendors have introduced MAC
address randomization—a privacy preserving technique by which mobile devices
periodically generate random hardware addresses contained in probe requests. In
this paper, we propose a method for estimating the number of wireless devices
in the environment by means of analyzing Wi-Fi probe requests sent by those
devices and in spite of MAC address randomization. Our solution extends pre-
vious work that uses Wi-Fi fingerprinting based on the timing information of
probe requests. The only additional information we extract from probe requests
is the MAC address, making our method minimally privacy-invasive. Our estima-
tion method is also nearly real-time. We conduct several experiments to collect
wireless measurements in different static environments and we use these mea-
surements to validate our method. Through an extensive analysis and parameter
tuning, we show the robustness of our method.

Keywords: Wi-Fi fingerprinting · Wi-Fi probe requests · MAC address
randomization · Wireless measurements · Crowd estimation

1 Introduction

Crowd (density) estimation refers to a set of techniques used to estimate the number
of people at a given location. Traditionally used for security purposes such as assess-
ing occupancy levels and people flows in public areas for evacuation systems planning,
crowd estimation today has found application in various domains: from monitoring and
management of large public events [22] to infrastructure design (e.g., of smart spaces
[25]) to surveillance [15], as well as in business domain [24]. Providing an accurate esti-
mation of the crowd size, also its real-time dynamics, is therefore of high importance for
the said applications.

Owing to the widespread adoption of mobile devices (e.g., smartphones), the detec-
tion of a device presence can be used as a proxy indicator for a person’s presence.
One of the ways to achieve this is through tracking Wi-Fi and Bluetooth activity of the
device [10], for instance, by capturing and analyzing Wi-Fi probe requests sent by the
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device in an unassociated state. However, the possibility to track individuals by this
type of device tracking raised serious privacy concerns and resulted in countermeasures
that device vendors are increasingly employing. One such measure is MAC address
randomization—a privacy technique whereby devices do not use their real hardware
addresses during active scanning, but instead generate and broadcast random MAC
addresses. It has been shown, however, that using randomization cannot fully obfuscate
the device activity and is therefore still susceptible to attacks and other sorts of exploita-
tion [11,13,19]. This is because devices exhibit certain (probing) patterns which can be
used for their identification and tracking.

In this paper, we seek to answer the question whether it is possible to count devices
that use randomization—in a privacy-preserving way and based on the observed char-
acteristics of their probing behavior—and furthermore, if this can be done with high
accuracy such that it can be employed in applications to accurately estimate the num-
ber of devices in the environment. To answer these questions, we develop a method for
mapping randomized MAC addresses to the same physical device (Sect. 3). We conduct
several experiments and collect wireless measurements in different static environments,
i.e., when the number of people remains constant (Sect. 4), which we use to validate our
method and verify that it can achieve reasonable accuracy (Sect. 5). Section 6 surveys
related work. As we conclude this study, we also note that our approach has several
limitations, which we will address in our future work (Sect. 7).

2 Preliminaries

Let us first briefly provide background and assumptions used in our work.

Device Fingerprinting via Probe Requests. A probe request is a type of a manage-
ment frame in wireless communication sent by stations during active scanning. Early
fingerprinting techniques used the time difference between consecutive request frames,
inter frame arrival time (IFAT) [5] to characterize the device’s unique probing pattern.
First, all frames containing the device’s unique MAC address are grouped together, to
calculate IFATs between captured frames. Then, by using the binning method, IFATs
are assigned to the equal size discrete bins, and the frequency of IFATs in each bin is
used to determine the device’s unique identifier. However, this approach was developed
before vendors started implementing randomization in devices.

MAC Address Randomization. Wi-Fi enabled devices continuously send frames for
wireless communication which can be captured by a passive observer. These frames
contain a unique identifier—the device’s MAC address. For privacy protection, device
vendors and operating system developers are currently deploying a countermeasure on
new devices: MAC address randomization, where the idea is to use, instead of the
device’s MAC address, a new, frequently changed random identifier [13]. MAC address
randomization is deployed in most operating systems, i.e., Android since version 6 [1],
iOS since version 8 [17], and Windows version 10 and later [21].

Assumptions on the Consistency of the Device’s Probing Behavior. Extending the
approach from [5], recent works [11,13] showed that the device behavior is relatively
consistent, and can be tracked even when randomization is in place. This forms the base
for our approach, detailed in the next section.
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3 Methods

In this section we describe our proposed method for mapping randomized MAC
addresses to the corresponding physical devices. The mapping method utilizes solely
the MAC addresses extracted from probe requests and the timing information from
time stamps when these probe requests were captured by our measurement kit. We first
introduce some terms that we will use throughout the paper, and then describe initial
data pre-processing steps.

3.1 Terminology and Definitions

We distinguish between randomized and globally unique (non-randomized) MAC
addresses by examining the second least significant bit of Organizationally Unique
Identifier (OUI) part of the MAC address: the MAC address is randomized if this bit is
set to 1 and globally unique otherwise [7].

A counting time window (CTW) is the time interval on which our counting algo-
rithm operates. This is the smallest time interval that allows for accurate wireless behav-
ior fingerprinting, while still performing counting in an online manner.

A burst is a set of probe requests sent within a short time interval (not longer
than 100 ms) [12]. During a burst, the device sends a number of probe requests,
actively searching for previously accessed Wi-Fi networks. Our key assumption—also
used in [13]—is that even when a device uses randomization, the randomized address
remains constant for all probe requests over at least two (entire) bursts. To assess how
the timing information of intra-burst probing activity can be used for fingerprinting, we
group all the probe request frames sent by the same randomized MAC address and cal-
culate the time difference between time stamps for each two consecutive frames. The
distribution of these time differences across all randomized MAC addresses is skewed
and shows that more than 50% of them are lower than or equal to 10 ms. This property
does not aid characterization of unique devices, thus in the following we use inter-burst
time differences, specifically the time difference between the timestamps of the first
frame in a burst and the last frame in the previous burst. With this choice, we are trad-
ing off abundant low-resolution data points for the few more characteristic ones, since
we only observe a few bursts per MAC address (the average number is 3.7 while 93%
MAC addresses appear in less than 10 bursts).

To characterize the behavior of a wireless device that uses randomization, we look at
the MAC address signature. A signature is a vector that contains information about the
number of bursts captured within a CTW, and time differences between them. To gener-
ate a signature, we first group all the frames with the same MAC address and calculate
the time difference between each two consecutive bursts, delta, then discretize these
continuous delta values using the equal-width binning method (as described in [5]), and
finally obtain the vector of delta frequencies by normalizing the count of deltas in each
bin. For instance, one vector of delta frequencies obtained with the bin size of 0.2 s can
include 20% of deltas mapped to the bin 0s (that is, shorter than 0.2 s), 30% mapped to
the bin 0.2 s (deltas are between 0.2 s and 0.4 s), 40% falling into the 0.4 s bin and 10%
into the 1.2 s bin. The average number of bursts containing randomized MAC addresses
in the datasets (Sect. 4.2) is about four, thus the average number of deltas in a vector
is three. Each signature corresponds to a MAC address, and is assigned the attributes
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lastSeen and validation. lastSeen is the time stamp of the last probe included to make
the signature, and validation attribute is a boolean parameter that indicates whether the
signature is still valid (being used by a device).

Wireless devices that use randomization occasionally generate new randomized
MAC addresses. By a device cluster we consider a set of randomized MAC address
signatures which are assumed to belong to the same physical device. Each cluster is
assigned the following attributes: a set of signatures, count, lastSeen, and validation.
The count attribute is the number of valid signatures in the cluster, lastSeen is the latest
time when a signature was mapped to the cluster, and validation is a boolean flag for the
device cluster’s validity. We will use the term database to refer to the set of all observed
clusters. In Sect. 3.2 we explain how MAC addresses are mapped to a device cluster.

A signature time window (STW), of length sigT ime, is the time interval during
which the device uses a single randomized MAC address. In our datasets, we observed
that the distribution of time lengths during which one MAC address appears in probe
bursts, the MAC address lifetime, is long-tailed with the average value of about two
minutes. Specifically, in one of the datasets 91% of MAC address lifetimes are shorter
than this, while the average is 92 s. Thus, to make a signature, we need to track each
randomized MAC address for at least two minutes. To ensure correct characterization of
the MAC address signature the chosen CTW duration, denoted as countT ime, should
be larger than the STW length, countT ime > sigT ime.

3.2 Mapping Randomized MAC Addresses to a Device Cluster

The mapping of different signatures that correspond to different randomized MAC
addresses, to the same device cluster is based on the similarity between signatures.
In order to map a new signature to a cluster, we calculate the distance between a newly
observed signature and other valid clusters already present in the database.

Let DB be the database, C be a cluster in DB, D the distance threshold, B the set
of bin values, and S a signature in C (S ∈ C). Let pSb and qb be the percentage of
burst deltas for the bin attribute b of the signature S and the new signature, respectively.
We use the method from [5] and Eqs. (1), (2) to calculate the distance between the new
signature and all signatures already assigned to the cluster C. If all distances between the
new signature and other signatures in the cluster are lower than the distance threshold,
then the new signature can be mapped to the cluster (Eq. (1)). If more than one cluster
satisfies the distance threshold for the new signature, then we assign the new signature to
a cluster which has the lowest total distance (DC), computed as the sum of all distances
between the new signature and other signatures in the cluster (Eq. (2)).

F = min(∀S ∈ C(D −
|B|∑

b=1

|pSb − qb|)) (1)

DC =

{
∞, if F < 0
∑|C|

S=1

∑|B|
b=1 |pSb − qb|), if F ≥ 0

(2)

Now we can proceed with the details of our device-counting algorithm.
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3.3 Device Counting

We now turn to our proposed online method for estimating the number of wireless
devices present in the environment, which is based on the MAC addresses extracted
from captured probe requests. Since a globally unique MAC address corresponds to a
single device, the focus of our method is on mapping of randomized MAC addresses.

Our method starts by creating the initial database of device clusters (Algorithm 1).
First, it creates signatures for all randomized MAC addresses observed in the first boot-
strapTime minutes of the experiment (Algorithm 2). Next, we use k-means clustering to
map similar signatures to a device cluster (Algorithm 3). To assess the optimal number
of clusters k, we apply silhouette coefficient analysis. This method uses the silhouette
coefficient metric, which measures how similar an object is to other objects in the same
cluster. The optimal number of clusters is chosen such that the silhouette coefficient
averaged over all samples is maximized. After the clustering step, the initial database
of device clusters contains k clusters; each cluster is assigned three attributes: lastSeen,
validation, and count (Sect. 3).

Generating signatures for online estimation requires a certain degree of caution.
Recall from Sect. 3.1 that our algorithm proceeds in time increments defined by the
CTW. Also recall that to accurately estimate a signature, we need to observe probe
requests for a time interval no shorter than the signature time window. Since devices
send bursts of probe requests in a non-deterministic manner, it can happen that one burst
is split across two consecutive CTWs, as depicted in Fig. 1. In this figure, startT ime
and endT ime are the limits of the CTW, and MAC1 and MAC2 are two observed MAC
addresses. The last burst sent by the device with MAC1 covers two CTWs. Splitting this
burst into two and generating two signatures would lead to incorrect characterization of
the device’s probing behavior. To avoid this, we delay making the complete signature
until the second CTW and ignore the burst’s appearance in the first window, or more
precisely in the interval [startT ime, endT ime − sigT ime]. Note that this can also
occur when generating the initial cluster database, and the same principle applies.

After bootstrapT ime has elapsed, the method proceeds by consuming captured
probes from the dataset in the next CTW, as well as those probe frames passed from the
previous CTW, and by generating the corresponding signatures (Algorithm 2). Then,

Fig. 1. The effect of the CTW and STW on the
device counting.

Fig. 2. Raspberry Pi equipped with four
Wi-Fi adapters and external battery.
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in order to map a new input signature to the appropriate cluster, we calculate the dis-
tance between the new signature and all the valid clusters in the database as described
in Sect. 3.2. If none of the clusters satisfies the distance threshold condition, a new clus-
ter containing the new signature is created. Next, we check if the MAC address of the
input signature is in the database and was seen in the previous CTW. If this is the case,
we compare the cluster of the old signature, C1 with that of the new signature, C2, and
if C1 = C2 we increase the cluster’s count and update its lastSeen value to the lastSeen
of the new signature. Otherwise, if C1 �= C2, either the new signature belongs to the
new device with the same randomized MAC address, or the device remained present but
changed its probing behavior. As the goal of our work is to count the number of present
devices, these reasons do not impact the counting part. Thus, in this case we map the
new signature to C2, decrement the C1’s count, and invalidate the old signature. Finally,
we map the new signature to its cluster and update the database, the cluster’s count and
lastSeen. The number of unique valid clusters, each representing a device, in a given
CTW corresponds to the number of detected devices during this time.

We have observed that some clusters in the database do not get updated for a
long time (about 30 min), which implies that neither new nor old signatures have been
observed. The reasons for this could be that the device has moved out of the range of
our testing kit or stopped probing—hence no probes have been captured recently, or that
the device changed its signature, that is, its probing behavior. The exact reason, how-
ever, cannot be easily determined. We proceed by excluding this cluster from further
consideration. We assume that a cluster is valid for clusterV alidT ime = 1 h after the
parameter lastSeen has been updated, and invalidate clusters that do not satisfy this con-
dition. A few words about the choice of clusterV alidT ime are in order: One hour is
a rather conservative bound which ensures re-identification of the device that has been
silent for a long time, after it becomes active again. On the other hand, if we needed to
choose a tighter bound (e.g., to reduce the space complexity of our algorithm) we could
set clusterV alidT ime to a value not shorter than countTime (a fixed lower bound). In
either case, the method produces correct results since we are only interested in the total
count of devices (not in tracking of individual ones), and simultaneously reducing and
increasing the number of clusters by one (for each invalidate cluster) does not change
the total count.

To summarize, having generated a database of collected signatures we can map
randomized MAC addresses to corresponding devices and subsequently, estimate the
number of devices observed in the experiment environment.

4 Experiments and Datasets

This section details the setup of the experiments where our data was collected, and the
acquired datasets used for evaluation.

4.1 Data Collection

We use a wireless sniffing kit inspired by [18]. The kit consists of a battery-powered
Raspberry Pi 3 (Model B) and four external Wi-Fi adapters (Fig. 2). We opt for a multi-
adapter setup for increased spectrum coverage, allowing the system to passively listen



412 P. Torkamandi et al.

to four different Wi-Fi channels in the 2.4 and 5 GHz bands.1 The channels are cho-
sen from a preselected set in a round-robin fashion. We choose channels 1 and 11 in
the 2.4 GHz band and channels 36 and 44 in the 5 Ghz band), thus avoiding channel
switching, relying on the mobile devices to perform scanning across all channels. We
use airodump-ng [2] for channel management and tshark(1) for packet capturing,
with the appropriate kernel filtering to only collect control frames but no data traffic.

4.2 Datasets

We seek to capture Wi-Fi probe packet traces in an environment with a static user
(and device) population and hence choose international flights of at least two hours
flight time. The aircraft were equipped with onboard Wi-Fi so that running Wi-Fi
devices throughout the flight was permissible. The three specific flights (from 2020)
during which we collected the datasets used in this paper were between European
countries, their durations being 3, 3, and 2.5 h, respectively. We denote the datasets
DatasetN,N = 1, 2, 3. We trim the recorded datasets to ensure that only packets cap-
tured during flight time are considered, resulting in 2.5 h of data (Dataset1, Dataset2)
and 2 h for Dataset3. The total number of passengers and crew on the two 3 h flights
were 148 and 157, respectively.

Ethics Considerations. Device fingerprinting and counting methods, such as those we
propose, may raise privacy concerns. As noted above, only Wi-Fi management frames
were collected and, of those, we only evaluated the (randomized) source MAC address
and frame timing. No SSIDs were inspected and no attempt is made to identify individ-
uals. By its very intent and design, our method focuses on group size estimation with
minimal information. Therefore, we believe that our method does not pose any threat to
the privacy of the individuals.

5 Evaluation

We first conduct the analysis of our method’s robustness, carried out in order to tune
the parameters used in the method’s algorithms. We then validate the proposed method,
by evaluating its performance on three datasets representing static environments.

5.1 Parameter Tuning

Wi-Fi fingerprinting techniques that use timing information of the probe requests are
based on the assumption that the device behavior is relatively stable and can be charac-
terized by a unique signature [5,11,12,19]. Therefore, an accurate representation of the
MAC address signature is essential for capturing probing behavior and mapping mul-
tiple randomized MAC addresses to a single device. This work utilizes the same app-
roach and extends these earlier techniques, using the observations obtained through our
exploratory analysis. Based on the datasets we collected, our initial analysis revealed
that the choice of parameters used for making and comparing signatures is fundamen-
tal, since it affects the method’s robustness and applicability across different datasets.

1 While, with just four adapters, we do not obtain full channel coverage and thus may miss
frames, this leaner design makes the system portable, e.g., to be carried in a backpack.
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Specifically, two key parameters with the greatest impact on the signature creation are
bin sizeB and distance thresholdD. However, the parameter values suggested in [5,13]
(B = 0.8 s, D = 0.4) could not be employed in our setup since they would render sig-
nature generation inaccurate, especially the large bin size (Sect. 3.1). First, the majority
of the inter-burst deltas in our datasets are smaller than the suggested bin size, with
about half of them shorter than 40 ms. Second, device distributions across the exam-
ined datasets differ: Notice that our datasets are fairly recent and therefore more likely
to contain higher proportion of devices that deploy randomization, which were less rep-
resented in the older datasets used for parametrization. Therefore, the first step towards
adjusting our method was parameter tunning. We performed grid search to find optimal
values for bin size and distance threshold. In the following we introduce the evalua-
tion metric we used for parameter tuning, and we elaborate on the impact of the two
examined parameters.

Evaluation Metric. Our algorithm creates a database of clusters, each cluster holding
similar signatures of different randomized MAC addresses. For the MAC addresses
belonging to the same cluster, our assumption is that there can be no time overlap
between the times when these addresses are in use, i.e., the device uses one randomized
MAC address for one or several bursts, after which it discards the address and generates
a new one. We introduce the metric MAC pair with time overlap defined as follows: two
different randomized MAC addresses, MAC1 and MAC2, which were mapped to the
same cluster and sent probe requests in time intervals T1 and T2, respectively, have a
time overlap if T1 and T2 have an overlap. We consider all clusters in the database and
count the number of these MAC pairs, labeling them with overlap-MAC.

Impact of the Bin Size. First we investigate the impact of the bin size on the proposed
metric, overlap-MAC. Note, however, that we cannot completely isolate the impact of
this parameter from the impact of the second parameter, distance threshold. This is
because large bin sizes decrease the difference between burst deltas and large distance
thresholds decrease the difference between signatures of different devices. On the one
hand, choosing larger values for both parameters can result in mapping signatures of
different devices to the same cluster, and subsequently in increasing the time overlap.
On the other hand, small distance thresholds may be too restrictive, making a distinction
between signatures of the same device and wrongly mapping them to different clusters.
Thus, to tune the two parameters, we perform an extensive search in the (B,D) space.
For this part, we use only probe frames containing randomized MAC addresses.

We assess the evaluation metric using our algorithm for mapping randomized
MAC addresses for a range of bin sizes and distance thresholds, labeled B − 0.1, ...,
B − 1 and D − 0.1, ..., D − 1. The results for two datasets are plotted in Fig. 3. As we
can see, the overlap-MAC mostly decreases with decreasing the bin size and distance
threshold. For instance, in Dataset1 (Fig. 3a) the number of MAC pairs with overlap for
bin size B = 0.1 s with distance threshold D = 0.1 and D = 0.2 is zero, for D = 0.4
it is one, for D = 0.6 four, for D = 0.8 eight, and for D = 1 the number is 149.
Notice, however, that the reduction of the bin size does not entirely eliminate overlaps
in Dataset2, (Fig. 3b): overlap-MAC for the smallest bin size is 44. Nevertheless, this
means that at most 5% of all observed MAC addresses experience overlaps. Further,
for each bin size the overlap mostly increases for larger distance thresholds because
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Fig. 3. The impact of different bin sizes and distance thresholds on overlap-MAC.

it leads to mapping the signatures with large distances, which may belong to different
devices, to one cluster as well as to increasing the time overlap. Also, for a specific
distance threshold it is expected that the overlap-MAC mostly increases for larger bin
sizes, that decrease the difference between the signatures of different devices. Further,
the overlap-MAC for the bin size 0.1 and the distance threshold lower than or equal to
0.4 does not change much. Therefore, the bin size of B = 0.1 s and distance threshold
in the range D ∈ [0.1, 0.4] appear to be good values for our method.

Impact of the Distance Threshold. For fine-tuning of this parameter, we analyze sig-
natures of the devices that use only global MAC addresses. Since those signature are
expected to be relatively stable, calculating the distance between two signatures of the
same device can give us a good estimation of the distance threshold.

For each global MAC address and each CTW in which the address was observed,
we create signatures using the same algorithm as for randomized MAC addresses,

Fig. 4. The average distance between
global MAC’s signatures for Dataset1.

Fig. 5. The number of bursts sent by global MAC
addresses, in each CTW for Dataset1.
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Algorithm 2 with bin size B = 0.1 s. Then, we calculate the distances for each pair of
signatures (of the same global MAC address), and find the average of these distances.
These average distances are shown in Fig. 4 (the distance for the MAC addresses with
one signature is zero). For each address, we also count the number of bursts in which
they are included, in each CTW and plot the results in Fig. 5. We observe that the aver-
age distances for the signatures of global MAC addresses correlate with the frequency
of the corresponding devices sending bursts—for frequently observed devices the dis-
tances are smaller than 0.5. The distances are usually larger for the addresses for which
we do not have enough observations. We also calculated distances between the signa-
tures of different devices (from the same or different vendors). Similarly to the distances
between signatures of infrequently observed devices, distances between signatures of
devices from different vendors are mostly larger than 1, which implies that the chosen
distance threshold should be in the range [0.1, 1]. According to the data analysis of ran-
domized MAC address datasets, a smaller distance threshold decreases the number of
pairs with time overlap.

To conclude, the previous analysis of probe requests with global and randomized
MAC addresses showed that choosing bin size B = 0.1 s and distance threshold
D = 0.4 minimizes the number of MAC pairs with overlap, hence we decide to use
these values in the remainder of this evaluation.

5.2 Method Validation

The last parameter whose impact on the method we need to investigate is bootstrapTime.
A sensible choice of this parameter is important because it determines the minimum
time necessary to capture probe requests before actually starting to count devices in an
online manner. We analyze several experiment setups, in which we set the bin size to
0.1 s, distance threshold to 0.4, countTime to 10 min, sigTime to 2 min, and by varying
the length of bootstrapTime we assess its impact on the method’s robustness.

In Fig. 6 we plot the number of detected devices for different values of the boot-
strap time: 10, 20, and 30 min. The top line (All MACs) gives the total number of
observed randomized MAC addresses in each CTW. The other three lines represent the
number of detected devices using our method (Sect. 3) for different bootstrapTime val-
ues. The figure shows there are no significant differences among the estimated device
counts, thus confirming that our method performs well in static environments, and,
moreover, that a relatively short bootstrapTime= 10 min suffices to make the initial
cluster database. However, we have observed that increasing the bootstrap time indeed
helps the correct cluster initialization, but only up to a certain point—in our datasets
this threshold is 30 min, and we use this value in our remaining analysis. Appendix A.1
provides a more detailed discussion and justification for this choice of the threshold.
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Fig. 6. The number of detected devices for
randomized MAC addresses (Dataset1).

Fig. 7. The number of detected devices for
global MAC addresses (all datasets).

Next, we validate our method for mapping different signatures to the same device
by looking at signatures of global MAC addresses. Since the devices with global MAC
addresses are uniquely identifiable, we can use the count of these devices as the ground
truth to assess how well our method performs in distinguishing different devices and
their signatures. Using the same setup as in the previous analysis, we compare the count
estimate obtained by our method with the device count obtained from the datasets.

In Fig. 7 lines denoted All global MACs represent the number of devices according
to the number of captured global MAC addresses (ground truth), and the lines labeled
with Our algorithm represent the number of detected devices using our algorithm. The
number of detected devices is close to the ground truth, differing in 1 to 4 devices (the
highest error is 17%), for the three datasets. However, it can be noticed that our method
underestimates device counts in some CTWs. This is because we do not include in the
count fragmented signatures for the MAC addresses split across two CTWs. The other
cause of this discrepancy is the limitation of our testing kit, which may be unable to
capture all probe requests from the device in its vicinity, either due to frequency hopping
or the distance and signal attenuation. Even with these limitations, our analysis suggests
that our method indeed is able to provide a good approximation of the device count.

5.3 Device Counting Evaluation

Finally, we show the results for the count of all devices with global and randomized
MAC addresses for the three datasets in Fig. 8. The figure depicts the number of all
captured MAC addresses ignoring the MAC randomization technique (All MACs), the
total number of devices, including those with global and randomized MAC addresses,
where the former is computed from the dataset and the latter is estimated with our
algorithm (Our algorithm (randomized)), and the total count of devices where both
numbers of devices with randomized and global MAC addresses are computed by using
our algorithm (Our algorithm). The estimated numbers are in good agreement, and
moreover, they seem to exhibit oscillations in the same CTWs. According to Fig. 5,
many devices do not send probes in every CTW, thus it is expected to see oscillations
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Fig. 8. The total number of detected devices for the three datasets.

in the number of detected devices. These oscillations happen due to periods of device
inactivity, during which the device’s presence cannot be detected, which is also another
limitation of our device counting approach.

The available data about the passenger count does not easily lend itself to com-
parison with our results since we cannot determine the ground truth for the number of
devices that remained in the normal working mode during the flight. Recall that the
total number of passengers for Dataset1 and Dataset2 is 148 and 157, respectively; we
do not have the exact count for Dataset3. However, the number of all detected devices
using our algorithm varies in the ranges: [32, 47] (Dataset1), [47, 70] (Dataset2), and
[75, 108] (Dataset3), which may be a good indicator that our results are reasonable.

6 Related Work

This paper addresses two topics: crowd estimation and analysis of Wi-Fi probing behav-
ior. Therefore, we position our work along these two axes and compare it with related
studies. Techniques for crowd estimation have received a considerable amount of inter-
est both in academia and industry. We refer the interested reader to recent surveys [8,9]
for an extensive overview, while we focus mainly on techniques that exploit wireless
activity of mobile devices carried by users. Similarly to our approach, [14,20] utilize
information extracted from Wi-Fi probes for estimating the occupancy and dynamics of
people in commercial buildings and public transportation. Our work differs from these
in that we utilize timing information of the probe requests captures. Other approaches
demonstrate how the radio signal characteristics can be exploited for similar crowd mea-
surements, namely by analyzing Received Signal Strength (RSS) [4,18] and Channel
State Information (CSI) [23].

MAC address randomization and its implications on user privacy have been inves-
tigated in [6,11,13,19]. Freudiger [6] examined how the sequence numbers and tim-
ing information can be used to map randomized MAC addresses (generated by iOS)
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to the devices. In [13] and [19], the authors investigate fingerprinting of devices that
implement randomization, while Martin et al. [11] perform an extensive study of differ-
ent randomization techniques across a range of devices, and reveal possible attacks to
expose the globally unique MAC addresses. Our study builds upon [5,13], and refines
these earlier approaches by extending the MAC address mapping method, and by tuning
the method parameters. In addition, we propose a new signature-generating algorithm
which allows for device counting in near real-time and we develop a method for error
estimation in mapping of MAC addresses to devices. Lastly, in addition to fingerprint-
ing Wi-Fi activity, Bluetooth behavior can also be analyzed [3,10,16]. In this work,
however, we focus only on the device’s Wi-Fi activity.

7 Conclusion and Future Work

In this study we proposed and validated a method for estimating the number of devices
in the given environment based on the devices’ Wi-Fi probing behavior. To that end,
we extended previously established methods for Wi-Fi fingerprinting and for mapping
randomized MAC addresses to their corresponding devices. Specifically, we introduced
a new step for clustering randomized MAC addresses, and we fine-tuned parameters
used in our method, through an extensive analysis of the Wi-Fi probe request captures,
which we obtained from three experiments. The end result is that our method is able to
accurately estimate device count in static environments, in spite of MAC randomization.

Our approach has several limitations: First, it can only detect devices that are
actively scanning the environment for nearby Wi-Fi networks, which can vary based
on the device’s usage, mode of operation, battery status and so on. Second, the method
may suffer from large packet losses—i.e., when the measurement system fails to capture
probes of distant or quickly moving devices—since it relies on good characterization
of the device’s probing behavior. Our analysis also showed that the probing behavior
can change between bursts of probe requests. Thus, in our future work, we will further
explore the limits of our approach, in attempt to address some of the previous ques-
tions and to provide a more detailed analysis of the method’s robustness. Furthermore,
our goal is to explore the feasibility of a robust crowd estimation system for dynamic
environments, i.e., the environments where the crowd size is subjected to frequent fluc-
tuations. In that respect, we will work on collecting representative experimental data
and on the further customization of our estimation method.

Finally, our algorithm, like the others characterizing mobile devices based upon
their (probing) behavior, is subject to this behavior exhibiting repetitive characteristics
across a certain period of time, which may change at any time with operating system
versions appearing. Given how well MAC address randomization has been picked up
and improved in recent years, such mechanisms—even if not designed for tracking but
just for counting—may function less well in the future than they did in the past. While
we have 10 data sets from European flights from 2019 and early 2020 (but most of them
are shorter), to be explored further, more recent real-world data samples are missing
because of lack of travel due to COVID-19.
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To assess recent trends, we carried out a small-scale experiment in an RF-shielded
environment, using the same Raspberry Pi kit as on the flight and 10 mobile phones,
running recent Android and iOS versions. The set of devices includes five LG Nexus
phones (running Android 8.1) and one of each: iPhone 6 (iOS 12.5), iPhone 7
(iOS 14.2), Google Pixel (Android 10), Samsung Galaxy S7 (Android 8), and LG G4
(Android 7). We find that MAC address randomization improved and 95% of the MAC
addresses were only seen in a single burst. At the same time, the number of probe frames
per burst grew, shifting the emphasis again back to single burst analysis. Since this is
only a small snapshot of available devices, we stipulate that future work will need to
look at a combination of intra- and inter-burst characteristics. This will also fit more
dynamic environments, when not many consecutive bursts, from numerous devices,
may be easy to capture. As our interest is in crowd size estimation in the environment
and not in individual device tracking, even approximate estimations will be beneficial
for real-life applications.

Appendix A Data Exploration for Parameter Tuning

A.1 Analysis of the Algorithm Bootstrap Time

Table A.1 lists overlap-MAC and the number of all valid created clusters, cluster-
DB, for different bootstrapTime values used when initializing the cluster database with
Algorithm 3 for two datasets. The results in the table show that overlap-MAC decreases
or remains the same whereas cluster-DB decreases as we extend bootstrapTime. Thus,
creating the initial cluster database using a larger subset of data (longer bootstrapTime)
ensures fewer errors in signature clustering. In addition, as shown in Fig. 6, the esti-
mated number of devices is almost the same for different bootstrapTime. This suggests
that smaller bootstrapTime leads to creating extra clusters. However, since our device
counting method is able to cope with ”stale” clusters the end result is that the estimates
for the number of detected devices do not differ by more than 1, as already explained
in Sect. 3.3. As our trimmed flight datasets contain approximately 2.5 h of measure-
ments, we set bootstrapTime to 30 min.

Table A.1. Cluster databases statistics for different boostrap times.

DB Properties

BootstrapTime
10 min 20 min 30 min

Dataset1
Overlap-MAC 8 1 1

cluster-DB 115 95 82

Dataset2
Overlap-MAC 44 44 44

cluster-DB 141 133 117



420 P. Torkamandi et al.

Appendix B Algorithms

Algorithm 1. MAPRANDOMIZEDMACADRESSES

1: Input:
2: inp : Input dataset
3: B : Bin size
4: D : Distance threshold
5: bootstrapT ime : Time to initialize DB (bootstrap time)
6: countT ime : Counting time window (CTW)
7: sigT ime : Signature time window (STW)
8: clusterV alidT ime : Duration of the cluster validity
9: Algorithm:

10: macListCurrentCTW ← ∅ // List of MAC addresses in the current CTW
11: macListNextCTW ← ∅ // List of MACs which pass to the next CTW
12: macListPrevCTW ← ∅ // List of MACs from previous CTW
13: timeInp ← 0 // The index of CTW
14: numDevices ← ∅ //An array of the numbers of detected devices in each CTW
15: DB,macListNextCTW ← INITIALIZECLUSTERDATABASE(inp,B,
16: bootstrapT ime, countT ime, sigT ime)
17: while startT ime < LASTTIMESTAMP(inp) do
18: timeInp ← timeInp+ 1
19: deviceList ← ∅ // The list of present devices
20: startT ime ← bootstrapT ime+(timeInp − 1) · countT ime // CTW start time
21: endT ime ← startT ime+ countT ime // CTW end time
22: macListCurrentCTW,macListNextCTW ← GETMACS(inp, startT ime,
23: endT ime,macListPrevCTW )
24: macList ← MERGELISTS(macListCurrentCTW,macListPrevCTW )
25: for mac : macList do
26: inpSig ← MAKESIGNATURE(inp,mac, startT ime, endT ime,
27: B, countT ime, sigT ime)
28: C ← FINDNEARESTCLUSTER(inpSig,D,DB)
29: if inpSig ∈ DB then
30: DB ← UpdateCluster(inpSig, C)
31: end if
32: DB ← UpdateDB(DB, InpSig, C)
33: deviceList.APPEND(C)
34: end for
35: NumDev[timeInp] ← deviceList.GETSIZE()
36: if timeInp · countT ime ≥ clusterV alidT ime then
37: DB ← UPDATECLUSTERSVALIDATION(DB, timeInp, countT ime)
38: end if
39: macListPrevCTW ← macListNextCTW // Update for the next CTW
40: end while
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Algorithm 2. MAKESIGNATURE

1: Input:
2: inp,mac, startT ime, endT ime,B, countT ime, sigT ime

3: Output:
4: sig // Return the signature object
5: Algorithm:
6: deltas ← CALCBURSTDELTA(inp,mac, startT ime, endT ime, countT ime, sigT ime)
7: sig.vector ← BINNINGMETHOD (deltas,B)
8: sig.lastSeen ← FINDLASTSEEN(sig, startT ime, endT ime)

9: sig.validation ← ISVALID(sig)
10: return sig

Algorithm 3. INITIALIZECLUSTERDATABASE

1: Input:
2: inp,B, bootstrapT ime, countT ime, sigT ime

3: Output:
4: DB,macListNextCTW // The database of clusters; list of MACs for the next CTW
5: Algorithm:
6: sig ← ∅
7: startT ime ← 0

8: endT ime ← bootstrapT ime

9: macListCurrentCTW ← ∅
10: macListNextCTW ← ∅
11: macListPrevCTW ← ∅
12: macListCurrentCTW,macListNextCTW ← GETMACS(inp, startT ime,
13: endT ime,macListPrevCTW )
14: signatures ← ∅
15: for mac : macList do
16: sig ← MAKESIGNATURE (inp,mac, startT ime, endT ime, countT ime, sigT ime)
17: signatures.APPEND(sig)

18: end for
19: K ← SilhouetteCoefficient(timeSig)
20: DB ← KMeansMethod(timeSig,K)

21: for cluster : DB.clusters do
22: cluster.lastSeen ← FINDLASTSEEN (cluster, startT ime, endT ime, countT ime)
23: cluster.validation ← ISVALID (cluster, endT ime)

24: DB.macs ← cluster.macs

25: end for
26: return DB,macListNextCTW
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Abstract. DNS cache probing infers whether users of a DNS resolver
have recently issued a query for a domain name, by determining whether
the corresponding resource record (RR) is present in the resolver’s cache.
The most common method involves performing DNS queries with the
“recursion desired” (RD) flag set to zero, which resolvers typically answer
from their caches alone. The answer’s TTL value is then used to infer
when the resolver cached the RR, and thus when the domain was last
queried. Previous work in this space assumes that DNS resolvers will
respond to researchers’ queries. However, an increasingly common pol-
icy for resolvers is to ignore queries from outside their networks. In
this paper, we demonstrate that many of these DNS resolvers can still
be queried indirectly through open DNS forwarders in their network.
We apply our technique to localize website filtering appliances sold by
Netsweeper, Inc and, tracking the global proliferation of stalkerware. We
are able to discover Netsweeper devices in ASNs where OONI and Cen-
sys fail to detect them and we observe a regionality effect in the usage
of stalkerware apps across the world.

Keywords: DNS · Internet measurement · Censorship.

1 Introduction

Many connections on the Internet rely on the DNS protocol to resolve a domain
name into a set of IP addresses. For performance reasons, DNS resolvers typi-
cally have a cache of recently resolved domain names that is shared amongst all
of the resolver’s users [21,22]. Unsurprisingly, this shared state exposes a side-
channel by which a user of a resolver can figure out if some other user has issued
a query for a specific domain name. This process is called DNS cache snooping
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(or probing) [18]. Prior work has presented various applications of this tech-
nique, including measuring the size of botnets and proliferation of malware [29],
inferring web usage patterns [37] and providing a lower-bound estimate of the
popularity of rare applications [30]. These prior studies assume that researchers
can elicit answers by directly issuing queries to resolvers. However, most DNS
resolvers nowadays do not respond to queries from outside their network. This is
partly as a countermeasure to DNS amplification attacks [28], where an attacker
can trick a resolver into sending a large response to a target of the attacker’s
choosing by spoofing the query source address.

In this paper, we instead probe the caches of ISP DNS resolvers through
DNS forwarders on ISP networks, devices that may be misconfigured customer-
premises equipment. Prior to our work, accessing these ISP DNS resolvers has
been a challenge for Internet measurement researchers. We develop and validate a
tool, dmap, that can probe resolvers through these forwarders. We demonstrate
the applicability of our technique via two case studies, (1) Netsweeper device
localization, and (2) tracking the global proliferation of stalkerware.

Case Study: Netsweeper Appliance Localization. Netsweeper, Inc., is a
company that provides Internet filtering devices that has received considerable
recent attention, because their appliances appear to be used for Internet censor-
ship of political and LGBTQ content in a number of repressive countries [12,13].
Measuring the proliferation and use of these tools can help hold companies to
account for uses of their technology that may violate the right to free expression,
and can sometimes expose cases where technology is resold or transferred to third
parties [20]. Previous work on localizing Netsweeper devices [12] typically focuses
on fingerprinting block pages that the appliances inject, and globally accessible
admin pages used to configure the system. We show that DNS cache probing
can be a complementary measurement strategy, because it indicates Netsweeper
activity that these other techniques miss.

Case Study: Tracking the Global Proliferation of Stalkerware. Stalk-
erware are a type of spyware that have powerful surveillance capabilities and
are marketed as monitoring software used for stalking [27]. Previous work has
investigated the technical aspects of stalkerware and the protections that anti-
virus and app stores can offer [27]. However, there has been little quantification
of their prevalence across the world. Only a recent work has studied the pop-
ularity of stalkerware apps in the United States by cache probing public DNS
services [30]. Since these spyware can be fingerprinted by the unique domain
names they resolve [34], we measure the global proliferation of stalkerware by
leveraging DNS cache probing.

Through our case studies, we make the following key observations:

1. Expanding our view of Netsweepr globally. We identify Netsweeper
devices in 18 ASNs which were not identified by related efforts [1,14]. We are
also able to confirm Netsweeper activity in 42% of the ASNs identified by related
efforts [1,14].
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2. Shedding light on stalkerware. We perform one of the first global char-
acterizations of stalkerware using DNS cache probing. Through this analysis, we
find 22 stalkerware apps active in 79 countries. The top countries are the United
States, Brazil, and Germany. We observe a regionality effect in the prevalence
of stalkerware apps, where apps in the Russian language are more prevalent in
Russia and Ukraine.

In ongoing work, we are examining how our method can be applied to other
devices and applications that perform DNS queries.

2 Background

In this section, we provide background on the operation of DNS caches, as well
as prior investigation of DNS cache probing.

2.1 DNS Caching and Recursion

The mapping between a domain name and some other information (such as an
IP address) is called a Resource Record (RR). The TTL field of a DNS RR is set
by its authoritative nameserver and indicates how long resolvers should cache
the RR [22]. If an RR for a DNS query is not cached, the resolver will try to
“recursively” resolve the domain name. Once the resolver obtains the RR(s), it
will send the answer to the user, and add the RR(s) to its cache for the number
of seconds specified by the TTL.

A DNS query may set the Recursion Desired (RD) bit to indicate that the
DNS server should attempt recursive resolution [21]. If the bit is unset (RD =
0), the DNS server answers the query using local information alone. In practice,
some resolvers ignore this flag and always perform recursive resolution on every
query. We discuss these “ill-behaved” resolvers in Sect. 3.1. If the resolver answers
an RD=0 query from its cache, we can use the TTL value it returns to infer the
arrival time of the query that caused the answer to be cached. This process is
known as DNS cache probing (or snooping) [18].

2.2 DNS Cache Probing

The original treatment of DNS cache probing [18] discusses various alternate
ways to infer DNS caching beyond the RD = 0 technique, including measuring
the DNS resolver’s response time. Further, they propose a set of recommenda-
tions to mitigate DNS cache snooping, such as restricting cache access to local
users, an approach that is popular today.

A popular application of DNS cache probing has been understanding the
usage and popularity of networked services. Rajab et al. [29] apply DNS cache
probing to estimate the density of clients accessing a network service. They mea-
sure the relative popularity of websites using this approach, but do not math-
ematically validate their approach. Similarly, Wills et al. [37] characterize the
relative popularity of Internet applications using cache probing of 20 Local DNS
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servers. Akcan et al. [4] takes a similar approach, but leverages geographically
distributed open DNS resolvers to extract web usage patterns.

A second popular application of DNS cache probing has been to understand
the prevalence of bots and malware that often query distinct domains via DNS.
Rajab et al. [3] perform DNS cache probing on 800K DNS resolvers to infer
the footprint of a botnet. Their study is based on the fact that the botnet in
question issued DNS queries to resolve the Internet Relay Chat (IRC) servers
used for command-and-control. They considered their result to be a lower bound
on the botnet population. Randall et al. [30] perform DNS cache probing on four
large public DNS resolvers (Google, Cloudflare Quad1, OpenDNS, and Quad9)
and infer their caching architecture. Finally, they use their tool to estimate the
number of filled caches for each resolver with a relative error of 10%–50% and
present a lower-bound estimate of 22 stalkerware apps in the U.S.

These prior approaches assume direct access to the DNS server or use open
DNS resolvers. Nowadays, these resolvers appear to be overwhelmingly config-
ured to respond to queries from only clients on their network (Sect. 3.1). Thus,
the techniques from these prior approaches are becoming increasingly less appli-
cable to today’s Internet. Our leveraging of DNS forwarders for probing resolver
(DNS backend) caches unlocks a vast trove of data missed by directly probing
resolvers alone.

Furthermore, to the extent that previous work have performed DNS cache
probing, there is no indication that they have distinguished between DNS
forwarders and DNS backends. DNS forwarders are included in consumer
NAT/gateway devices in order to respond to DNS queries within the LAN,
while DNS backends are recursive DNS resolvers. This distinction is necessary
for having a reliable measurement and preventing double counting.

3 Revisiting DNS Cache Probing

In this section, we describe how we leverage DNS forwarders to enable DNS
cache probing. DNS forwarders are necessary to probe DNS resolvers that only
respond to local clients. We first quantify the prevalence of resolvers that only
respond to local clients where we find that 75% of resolvers likely respond to
only their local clients (Sect. 3.1). Using DNS forwarders, local to the resolver of
interest, we are able to get around this limitation. DNS forwarders are hosts that
forward a DNS query to their ISP’s recursive DNS resolver [31]. This is usually
the consequence of poorly engineered or misconfigured consumer NAT/gateway
devices. We describe how we identify these DNS forwarders (Sect. 3.1) and how
we use them to perform measurements (Sect. 3.2). We validate the set of for-
warders in Sect. 3.3 and discuss the potential ethical implications of our method
in Sect. 3.4.

3.1 Locating DNS Forwarders

Consumer NAT/gateway devices include a DNS forwarder so they can provide
a DHCP lease (which requires specifying the DNS resolver’s IP address) to
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clients before the gateway itself obtains a DHCP lease. These DNS forwarders
are intended to only respond to DNS queries from within the LAN but many are
improperly firewalled, and will also forward external DNS requests to the ISP’s
recursive resolver.

The steps we take to identify DNS forwarders are as follows:

Step 1: Scanning the Internet’s IPv4 Space for DNS Resolvers. We
begin by extracting the results of the October 5 to 11, 2020 Censys [14] DNS
scans from the Censys dataset on Google’s BigQuery platform. Censys’ DNS
scans send an RD=1 DNS query to the entire IPv4 address space. The name-
server of the scan domain name included in the Censys scan’s DNS question will
always return two answers: a fixed IP address (the control answer) used to estab-
lish that the host correctly resolves DNS queries, and the source IP address from
which the nameserver received the DNS query packet (we call this the resolver
address or the backend address).

We process the Censys results as follows. First, we filter out any IPs from
the Censys results that did not respond correctly. An IP responded correctly if
it answered Censys’ DNS question with exactly two answers, where one answer
is the control answer. Second, we attempt to exclude shared DNS services, such
as Google’s 8.8.8.8 or OpenDNS, by including only those IPs that are in an AS
categorized as “Access/Transit” by CAIDA’s AS Classification dataset [6], and
who responded with a resolver address that is also in an “Access/Transit” AS.
We exclude shared DNS services because their users may be globally distributed,
making location inference challenging. In other words, since users from different
geographical locations can send queries to shared DNS services, the fidelity of the
information we get from shared DNS services will not indicate specific countries
or ISPs. Furthermore, previous work have shown that the majority of end-user
ISPs continue to operate their own LDNS services [7].

Step 2: Determining which Resolvers are Suited to Cache Probing.
We are only interested in DNS forwarders that forward to DNS resolvers that
respect the RD=0 flag, i.e., they will not perform resolution on a DNS query
containing an RD=0 flag. We are also only interested in caching DNS resolvers
that are likely to have interesting things in their caches. To find the set of DNS
forwarders that exclusively forward to caching well-behaved DNS resolvers, we
perform our own scanning to filter the list of IPs from Step 1. We run some
experiments from a single vantage point in the United States using our own scan
domain, whose nameserver is configured identically to the Censys scan domain
and is hosted from the West Coast of the United States. We use a timeout of
20 s throughout the process of our measurement. In particular, our nameserver
will return exactly two answers: a control answer, and the resolver address. We
filter the list of IPs from Step 1 to include only those IPs that:
– Respond four times to RD = 0 requests to unique subdomains of our scan

domain with zero answers.
– Respond four times to RD = 1 requests to unique subdomains of our scan

domain with a resolver address in a single “Access/transit” AS, and the
resolver address returned with approximately full TTL.



432 A. Akhavan Niaki et al.

– Respond to at least one of ten RD = 0 requests for google.com with an IP in
Google’s AS (AS15169)1.

We consider DNS forwarders that meet the criteria set out in Step 1 and Step
2 to be “well-behaved”. Table 1 shows how many forwarders passed each phase
of our filtering process on seven consecutive days in October 2020.

Table 1. Number of DNS forwarders passing each stage of our filtering process during
the week of October 5–11, 2020.

Forwarders filtered 10/5 10/6 10/7 10/8 10/9 10/10 10/11

Filtered Censys Scan 811,914 814,863 817,935 823,345 790,313 793,807 811,783

RD = 0 check 468,882 450,421 434,773 426,936 461,981 444,785 426,350

Forward check 311,140 295,560 282,458 277,183 307,889 293,075 276,150

Google check 246,710 233,441 223,014 218,417 244,032 230,042 216,049

Since google.com is regularly the number one domain name on the Alexa Top
Sites list [5], and the Cisco Umbrella 1 Million list [11], we would expect a correct
answer for this domain to typically be present in most caching DNS servers with
a significant number of users (with the notable exception of countries that inject
fake answers for google.com, such as Iran and China [24,36]). We also would
not expect our scan subdomains to be present in any caches, since we freshly
generate a unique subdomain for each measurement, thus we expect them to be
returned with approximately full TTL when queried with RD = 1. As we have
configured our scan domain’s DNS server to return answers with TTL=60, we
define approximately full TTL as either TTL=59 or TTL=60. We believe our
results are not impacted by EDNS client subnet prefix per-prefix caching, since
previous work have shown [7] that there is little adoption outside of Google’s
Public DNS and OpenDNS, which we have excluded.

We repeat the measurements to get a sense of the behavior of the universe of
resolvers that a forwarder may use for DNS resolution. During our DNS cache
probing, we continually validate the behaviors of respecting the RD=0 flag,
and forwarding to only a single “Access/transit” AS, as forwarder behavior may
change over time. We also take privacy precautions about these DNS forwarders,
as some of them might be pointing to caches of home routers. In this case, when
querying our scan domain from the DNS forwarders, the answer returned by
our nameserver will include the control answer and the DNS forwarder’s address
instead of the resolver’s address. This indicates that the request is not being
forwarded. Thus, we remove these DNS forwarders from the set of “well-behaved”
forwarders. The output of our process is a set of (forwarder, resolver) pairs.

Population of Forwarders/Resolvers. Table 2 presents the breakdown of
DNS forwarders that responded correctly to a query for our control domain and

1 We analyze Farsight Security’s Passive DNS Project data [2], and the responses they
observed for google.com since March 2, 2018, all belong to AS15169.

http://google.com
http://google.com
http://google.com
http://google.com
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Table 2. Number of DNS forwarders and the number of countries and ASes on each
continent where we have access to DNS resolvers (aggregated over a week). AF =
Africa, AS = Asia, EU = Europe, NA = North America, OC = Oceania/Australia,
SA = South America.

AF AS EU NA SA OC

All Forwarders 66,626 531,867 392,148 263,730 120,505 14,988

After filtering 7,890 63,411 87,826 137,341 17,337 4,883

Resolvers 419 2,609 7,545 5,671 2,238 475

Resolver countries 42 40 48 32 12 14

Resolver ASes 152 550 2,347 1,095 624 137

the set of DNS forwarders after our filtering process, across continents. After
obtaining the set of resolvers each forwarder talks to, we present the population
of DNS resolvers we have access to in Table 2. As shown, we have more coverage
in Europe and North America in comparison to other continents. Our dataset
allows us to access at least 3 DNS backends in 84% of the countries (188) and
at least 2 ASNs in 74% of the countries (188).

Availability of DNS Resolvers. A relevant question is to what extent the
use of DNS forwarders provides any appreciable benefit over just directly query-
ing DNS resolvers that answer external queries. We measured this by taking our
list of (forwarder, resolver) pairs, and measuring what proportion of resolvers
answered queries from our measurement machine located in the US. In the mea-
surement we ran, there were 25,665 distinct resolvers. 75% of the resolvers were
not responsive to a query for our scan domain when asked directly, but did
respond when we queried them via a forwarder.

3.2 Probing DNS Forwarders

We use Google’s gopacket library [17] to develop our DNS cache probing tool,
dmap. As input, dmap takes a list of (forwarder, resolver) pairs from our filtering
process, a list of domains to probe, an exclude-list of IP ranges of owners who
have complained and chosen to be excluded from such probing, and an interval
(which should be chosen less than the smallest authoritative TTL for any of the
domain names being probed). Alternatively, a dmap user can specify a different
TTL for each domain name, such as in the case where domain names have vastly
different TTLs.

From the (forwarder, resolver) pairs, dmap maintains a subset of active for-
warders that may change over time. At any given time, dmap tries to have two
active forwarders for each resolver. If a forwarder goes offline, or is detected
misbehaving (resolving an RD = 0 query for a random subdomain of our con-
trol domain, returning resolver addresses in two different ASes, or returning a
resolver address with a TTL that is not approximately full), then dmap removes
it from the active forwarders list. For each resolver associated with this
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forwarder, dmap activates an additional forwarder in its list that talks to the
same resolver.

dmap sends a DNS query packet for each domain name to each active for-
warder every interval seconds. dmap probes at a constant rate and iterates over
the space of (forwarder, domain) pairs in a random order using the method of
zmap [15]: generating a cyclic multiplicative group (Z/p for a prime p larger than
twice the product of the number of forwarders and domains). It is unlikely, but
should the size of the set of active forwarders increase beyond this prime, a new
random order will be chosen. At the same interval, dmap continues probing our
scan domain on each forwarder (as in Step 2 in Sect. 3.1) to determine whether
each forwarder continues to respect the RD = 0 flag, and continues to forward
only to resolvers in a single (“Access/transit”) AS. dmap remembers any new
resolvers discovered for a forwarder, and uses this information when maintaining
the set of active forwarders.

At the same time as dmap is sending DNS query packets, it is listening
for DNS responses. DNS responses are filtered to ensure their relevance. DNS
responses containing no answers, or no answers for the exact domain name in
the question are discarded. DNS responses containing error codes are discarded.
All other DNS responses are recorded in a JSON format consistent with that
generated by zmap’s DNS module, except responses to the RD=0 and forwarding
behavior validation queries. The TTL values in the DNS responses allow us to
infer the date and time when the domain name was added to the DNS cache, by
subtracting the response TTL from the record’s authoritative TTL (measured
by a direct query to the domain’s authoritative nameserver).

To ensure that new forwarders to probe are discovered in a timely fashion,
we re-process the latest Censys scan results and re-load these into dmap every
24 h. When these new (forwarder, resolver) pairs are loaded, dmap may begin
probing new forwarders as necessary to ensure that at least two forwarders are
being probed for each resolver.

3.3 Ground Truth Validation

To validate that our methodology can detect and infer timestamps for a nontriv-
ial amount of DNS lookups, we performed a two-part ground truth experiment on
March 23, 2019. We used ∼1,000 RIPE Atlas nodes across 106 countries to send
recursive queries to a single subdomain of our scan domain once per hour with
random start times (using RIPE Atlas’ random function) for 72 h. At the same
time, we used dmap to probe for the same subdomain (across approximately
16,000 DNS forwarders in 187 countries) for a period of 26 h.

In our experiment, only 1,473 unique forwarders ever returned an answer
(i.e., they contacted a resolver that had received a query for our scan subdo-
main). These forwarders used 1,247 unique resolvers in 64 countries.

Multiple Caches are Common. If a forwarder only ever uses a single resolver,
we would expect to observe our domain cached for a total of TTL seconds per
hour in a given resolver. However, we observed this in only 60 of the resolvers we



Cache Me Outside: A New Look at DNS Cache Probing 435

study, with DNS forwarders using four DNS resolvers on average, with a median
value of 2 resolvers.

Because our scan domain is specially configured to return the resolver
address, we can see which resolver’s cache answered a given probe. However,
when probing a domain with a standard nameserver, we cannot see which
resolver’s cache answered a given probe. Since many forwarders use multiple
caching resolvers (all in a single AS), we must be careful when making cache
inferences.

Timestamp Validation. We cross-checked the timestamps inferred from our
DNS cache probing results with ground truth timestamps from our DNS name-
server logs that show when a resolver actually contacted our nameserver, and
timestamps from our RIPE Atlas measurement logs.

The forwarders showing cache hits in our experiment queried 1,247 unique
resolvers, including resolvers that never handled our queries. We found 1,198
of these resolver IP addresses in our nameserver logs, and compared their log
timestamps with the timestamps inferred from DNS cache probing. We found
that our timestamp inference was accurate to 5 s for 97% of the resolvers we
probed (1,166).

RIPE Atlas Requests. The data from our RIPE Atlas measurement includes:
(1) The RIPE node’s IP address and (2) The base64 encoded DNS question and
answers; recall that a correct answer for our scan subdomain always includes the
resolver address. Thus, the RIPE Atlas data effectively tells us which resolver
contacted our nameserver at which time.

The RIPE Atlas data reflects that queries sent by the 1,000 RIPE nodes over
our 72 h experiment caused 5,451 distinct resolvers to query our DNS server. Of
these DNS resolvers, the dmap output reflects that we received responses from
forwarders talking to 1,142 of these resolvers. Again, our inferred timestamps
are accurate (per the RIPE Atlas data) to 5 s for 97% (1,100) of the resolvers.

3.4 Ethics

Since our study uses hosts on the Internet that accept queries from arbitrary
sources, care must be taken to avoid overloading (or otherwise causing trou-
ble for) the hosts. This is especially true because many DNS forwarders are in
residential networks [31].

Sending Queries at a Low Rate. In our experiments, we probe each for-
warder once per DNS TTL period for the set of domains we measure, which
results in a maximum probing of 28 times per minute.

This is less than one query per second. We estimate that this results in less
than 1 KB/sec of bandwidth usage on the forwarder, including the forwarder
receiving our query, the forwarder sending our query to the resolver, the for-
warder receiving the resolver’s response, and the forwarder sending the resolver’s
response to us.

Because of the low rate, we do not expect our queries to cause a notable
loss in performance for the host we are probing, or use a significant portion of
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the host’s bandwidth allotment, or trigger any unwanted attention from ISPs
or network administrators. We note that normal user activity, such as visiting a
website, can sometimes result in multiple DNS queries in a short period, far in
excess of our one query per second scanning rate.

Avoiding Illegal or Controversial Domains. Since we could be using res-
idential networks to forward our queries, there is a concern over the types of
domains we query. Querying a domain name containing controversial or illegal
content may invite unwanted attention from authorities who erroneously inter-
pret our query as evidence of the forwarder’s intent to participate in illegal activ-
ity. Thus, we are careful to exclude any domains that may include objectionable
or censored content, or any domains associated with products or software that
might be illegal in a given jurisdiction.

Privacy Issues. Although we are leveraging end-user systems, our probes
are typically answered from the caches of ISP resolvers. We are thus unable to
determine whether a particular end-user has looked up a particular domain.

4 Case Studies

4.1 Case Study: Netsweeper Device Localization

We applied our DNS cache probing to identify the location of Internet filter-
ing devices sold by Netsweeper. While these devices are marketed for use in
schools, libraries, and enterprise settings, previous technical work has estab-
lished that these devices are also used to block political and human rights con-
tent on major consumer-facing ISPs in several repressive countries, including
Bahrain, the UAE, Somalia, and Sudan [12]. The previous work used strategies
including scanning the Internet for administrator login pages associated with
Netsweeper deployments, and looking for Netsweeper blockpages in data col-
lected by OONI [1] to localize these devices.

While these techniques produce useful results, they may fail to detect devices
configured to drop Internet traffic rather than inject a blockpage attributable to
Netsweeper, and may not detect installations configured without a globally acces-
sible administrator login page. This may be especially true going forward, given
increasing security concerns about exposing these login pages: an April 2020
unauthenticated remote code execution vulnerability in Netsweeper’s adminis-
trator login page would have allowed an attacker to hijack a Netsweeper instal-
lation and redirect users to malicious websites [26].

Measuring the proliferation of commercial censorship tools like Netsweeper’s
product can help hold companies to account for selling these tools to abusive
customers, and can sometimes expose cases where technology is resold or trans-
ferred to third parties [20]. Finding additional strategies to localize these devices
is thus highly desirable.

In addition to blocking websites specified by operators, Netsweeper devices
can communicate with Netsweeper’s servers to download and block lists of
“objectionable” content, such as pornography and gambling sites. Netsweeper’s
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system documentation [23] mentions that Netsweeper installations run a daemon
called freshnsd that attempts to download updated versions of these URL cate-
gorization lists from update.netsweeper.com (the Netsweeper update domain).
We performed a one-week measurement looking for cache hits on the Netsweeper
update domain. We considered a backend to have a Netsweeper activity if there
were cache hits for the Netsweeper update domain on at least six of the seven
days of our scan.

Results. We compared our cache probing results to results from Censys [14]
during our scan period. We queried Censys using Netsweeper fingerprints from
a previous Citizen Lab study [12]. The Netsweeper activity was matched by IP
addresses in 70 ASNs. Of these 70 ASNs, our DNS cache probing was able to
probe at least one backend in 24 of the ASNs. We found Netsweeper activity
in 10 of these ASNs (roughly 42%). Our cache probing also found Netsweeper
activity on backends in 18 ASNs that did not show up in the Censys results. We
show our results in Table 3, locations are inferred (where possible) from PTR
records of DNS resolver addresses.

Table 3. DNS resolvers with Netsweeper activity.

Coun try ASN Coun try ASNCensys? Organization Location(s) Censys? Organization Location(s)

Australia
1221 Telstra

USA

4739 iiNet
Adelaide, SA 209 CenturyLink
Hobart, TAS 2572 × MOREnet MO

Austria 8447 A1 Telekom 2914 NTT America

Bahrain
5416 Batelco 7018 AT&T TX

35457 × Etisalcom

7022 Comcast

Beaverton, OR
Canada 852 TELUS Edmonton, AL Boston, MA
Colombia 19429 ETB Denver, CO

India
17426 × Primenet Wilmington, DE
17753 Data Ingenious Global Newark, NJ
54410 × Vodafone Idea Lancaster, PA

Ireland 25441 × Imagine

UK

702 UUNET
Kuwait 9155 QualityNet 2856 × British Telecom
New Zealand 23655 × 2degrees 5089 Virgin Media
Sudan 15706 × Sudatel 44611 × Wavenet Manchester
UAE 15802 Du 206747 NCSC
Vietnam 45543 Saigontourist Cable Yemen 30873 × Yemennet

One of the puzzling ASNs in which we found Netsweeper activity was ASN
206747, listed as “UK Ministry of Defence,” where we found 64 backends with
Netsweeper activity. On closer inspection, the IP addresses were in a range
belonging to the UK’s National Cyber Security Center (NCSC), which offers
a “Protective DNS” service [8] for national and local government agencies in the
UK. An NCSC blog post explains that the service is designed to detect and block
malware, and that as of 2017, 44 organizations were using the service [9]. Some
UK government agencies use Netsweeper, according to Censys scanning, includ-
ing the Lancashire and Essex local councils. We suspect that these councils (or
other government Netsweeper users in the UK) are using the NSCS’s Protective
DNS service.

Discussion. Of the ASNs showing Netsweeper activity in our DNS cache prob-
ing, but not matching any Netsweeper fingerprints on Censys, some are known to
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be using Netsweeper based on data from OONI. For example, OONI data shows
evidence of Netsweeper use on Bahraini ISP Batelco and UAE ISP Du, though
no Batelco or Du IPs were seen matching Netsweeper fingerprints in a previous
Citizen Lab study [12]. In Kuwait, two ISPs (FASTtelco and Zain) are known
to use Netsweeper per OONI data and previous Censys scans [12], though there
appears to be relatively little OONI testing on QualityNet, per OONI’s explorer
tool [25]. There appears to be limited (or no) OONI data for some other ISPs,
such as Saigontourist, and Data Ingenious Global Limited [25].

Of course, similar to OONI and Censys data, it is hard to conclude based
on DNS data alone whether Netsweeper installations are deployed ISP-wide, or
within an institutional or enterprise setting using the ISP’s DNS servers. Never-
theless, the fact that DNS cache probing can detect Netsweeper activity that is
not connected to known Censys or OONI results shows that it can be useful as
an additional measurement tool for studying Internet filtering and censorship.
In future work, we plan to examine the update infrastructure associated with
several additional censorship and DPI products.

4.2 Case Study: Tracking the Global Proliferation of Stalkerware

We also applied our DNS cache probing to track the global proliferation of stalk-
erware, a type of generally available spyware that allows an operator to covertly
monitor a target’s devices [19]. While stalkerware applications are often mar-
keted as “employee monitoring” or “child safety monitoring” tools, they also
enable Intimate Partner Surveillance or Violence (IPS or IPV) [10,19,27]. In the
case of IPS, an abuser first installs the stalkerware on the victim’s mobile phone.
The installation of the app may cause data from the phone to be sent to the
stalkerware company’s servers, where the abuser can log in to access it. Stalk-
erware applications are generally able to gather data including text messages,
location, and logs of phone calls.

Statista reported that around 3.5 billion people have smartphones in
2020 [33]. Mobile devices are generally acknowledged to contain a vast trea-
sure trove of information about their owners. Identifying widely used stalker-
ware tools can help focus advocacy efforts on specific companies and specific
geographic areas, and highlight the scale of the stalkerware problem.

Previous work have studied how stalkerware is used in IPS [16,32,35] and
highlighted that while these apps often are marketed for ostensibly legal pur-
poses, they can be easily employed for abusive ones [10]. One recent work esti-
mated the prevalence of stalkerware apps on four shared DNS resolver services
in the US, though none have done so globally.

We first obtained a set of domain names associated with the network activ-
ity of 46 stalkerware apps [34]. We filtered out domain names that appear to
host the stalkerware company’s website, as these are likely to experience DNS
lookups unrelated to stalkerware activity, and obtained a final list of domains
representing 22 apps. We used dmap to perform a one-week measurement look-
ing for cache hits on these stalkerware domain names. Similar to the Netsweeper
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study in Sect. 4.1, if there were cache hits at a backend resolver for a stalker-
ware domain during at least six out of the seven days of our measurement, we
hypothesize that a user behind that backend resolver has the stalkerware app
installed.

Global Proliferation. Our cache probing found stalkerware activity on back-
ends in 432 ASNs and in 79 countries. The top-five stalkerware apps are shown in
Table 4 based on their activity in the most number of countries. The complete
results can be found in Appendix A. The Cocospy app is the most prevalent
stalkerware app found in 71 countries, 239 ASNs, and 889 backend resolvers. We
have also listed the top-three countries for each of the apps that had the most
number of backends showing stalkerware activity. For instance, the Cocospy app
is observed from 200 backend resolvers in the US. We can observe that the United
States and Brazil are always among the top-three countries. Figure 1 presents the
number of stalkerware applications we see across the world. The United States
(21), Brazil (19) and Germany (18), Great Britain (17), and Russia (16) are the
top-five countries with the most number of active stalkerware apps.

Table 4. The top-five stalkerware apps prevalent in the most number of countries.

Apps Countries ASNs Backend resolvers Top countries

Cocospy 71 239 889 BR (207 ), US (20), GB (84)

XNSpy 60 207 981 BR (255), US (176), GB (85)

Hoverwatch 59 187 789 US (154), BR (136), GB (69)

Spyzie 57 222 757 BR (250), US (109), DE (70)

Snoopza 53 174 673 BR (106), US (88), GB (73)

0 2 6 10 14 21

Fig. 1. Heatmap of the number of stalkerware applications observed over the world.
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Regionality of the Apps. We observe a direct relationship between the lan-
guage of these stalkerware apps and the region where we see the app being most
active according to our measurements. For instance, two stalkerware apps, “Rep-
ticulus” and “Talklog” are both Russian products and are mostly seen in back-
ends in Russia and Ukraine. Further, “Espiao Android” and “Meuspy” which
are mostly active in Brazil, are primarily available in the Portuguese language.
Although a public ground truth dataset about stalkerware prevalence does not
exist, this finding validates our measurements to some extent.

5 Conclusion

In this paper, we revisit DNS cache probing and show that DNS forwarders can
enable DNS cache probing, even in light of resolvers only responding to local
clients. We leverage these DNS forwarders to probe DNS resolver caches that
were otherwise not feasible. We then develop a formulation that allows us to
infer the number of network devices behind a given DNS serve and validate this
technique via controlled experiments. Further, we present two case studies, (1)
we localize Netsweeper devices based on a daemon available on these devices
that attempts to download updated versions of URL categorization list from
Netsweeper’s update domain, and (2) we study the global proliferation of stalk-
erware using their known indicators. In ongoing work, we are examining how our
method can be applied to other applications that perform DNS queries.
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A Global Tracking of Stalkerware Apps

The 22 stalkerware apps are shown in Table 5 based on their activity in the most
number of countries.
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Table 5. The 22 stalkerware apps prevalent in the most number of countries.

Apps Countries ASNs Backend resolvers Top countries

Cocospy 71 239 889 BR (207 ), US (20), GB (84)

XNSpy 60 207 981 BR (255), US (176), GB (85)

Hoverwatch 59 187 789 US (154), BR (136), GB (69)

Spyzie 57 222 757 BR (250), US (109), DE (70)

Snoopza 53 174 673 BR (106), US (88), GB (73)

Free Android Spy 47 136 493 US (129), GB (59), BR (57)

HighsterMobile 34 95 417 US (161), GB (57), DE (44)

GuestSpy 28 50 144 GB (25), US (21), IT (18)

Easy Logger 29 87 290 US (118), GB (64), BR (12)

AndroidMonitor 27 96 328 US (87), DE (40), RU (31)

FoneTracker 19 44 127 BR (33), GB (30), US (16)

Catwatchful 18 32 88 MX (22), US (16), GB (14)

mobispy 17 19 35 DE (8), RU (4), US (3)

TheTruthSpy 16 25 49 IT (9), DE (8), US (7)

Repticulus 16 62 132 RU (62), UA (32), BY (13)

TalkLog 15 83 209 RU (92), DE (35), UA (32)

Copy9 15 20 43 UA (10), NL (10), CA(7)

iSpyoo 7 12 19 US (5), CH (4), BR (3)

Espiao Android 6 54 355 BR (336), US (11), DE (3)

mxspy 5 6 13 DE (6), GB (3), RU (2)

HelloSpy 4 4 6 PL (2), US (2), BR (1)

Meuspy 2 27 256 BR (249), US (3)
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Abstract. In this paper, we study the performance of encrypted DNS
protocols and conventional DNS from thousands of home networks in the
United States, over one month in 2020. We perform these measurements
from the homes of 2,693 participating panelists in the Federal Commu-
nications Commission’s (FCC) Measuring Broadband America program.
We found that clients do not have to trade DNS performance for pri-
vacy. For certain resolvers, DoT was able to perform faster than DNS
in median response times, even as latency increased. We also found sig-
nificant variation in DoH performance across recursive resolvers. Based
on these results, we recommend that DNS clients (e.g., web browsers)
should periodically conduct simple latency and response time measure-
ments to determine which protocol and resolver a client should use. No
single DNS protocol nor resolver performed the best for all clients.

Keywords: DNS · Privacy · Security · Performance

1 Introduction

The Domain Name System (DNS) is responsible for translating human-readable
domain names (e.g., nytimes.com) to IP addresses. It is a critical part of the
Internet’s infrastructure that users must interact with before almost any com-
munication can occur. For example, web browsers may require tens to hundreds
of DNS requests to be issued before a web page can be loaded. As such, many
design decisions for DNS have focused on minimizing the response times for
requests. These decisions have in turn improved the performance of almost every
application on the Internet.

In recent years, privacy has become a significant design consideration for
the DNS. Research has shown that conventional DNS traffic can be passively
observed by network eavesdroppers to infer which websites a user is visiting [2,
25]. This attack can be carried out by anyone that sits between a user and their
recursive resolver. As a result, various protocols have been developed to send
DNS queries over encrypted channels. Two prominent examples are DNS-over-
TLS (DoT) and DNS-over-HTTPS (DoH) [8,10]. DoT establishes a TLS session
c© The Author(s) 2021
O. Hohlfeld et al. (Eds.): PAM 2021, LNCS 12671, pp. 444–459, 2021.
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over port 853 between a client and a recursive resolver. DoH also establishes a
TLS session, but unlike DoT, all requests and responses are encoded in HTTP
packets, and port 443 is used. In both cases, a client sends DNS queries to a
recursive resolver over an encrypted transport protocol (TLS), which in turn
relies on the Transmission Control Protocol (TCP). Encrypted DNS protocols
prevent eavesdroppers from passively observing DNS traffic sent between users
and their recursive resolvers. From a privacy perspective, DoT and DoH are
attractive protocols, providing confidentiality guarantees that DNS lacked.

Past work has shown that typical DoT and DoH query response times are
typically marginally slower than DNS [3,9,14]. However, these measurements
were performed from university networks, proxy networks, and cloud data cen-
ters, rather than directly from homes. It is crucial to measure DNS performance
from home networks in situ, as they may be differently connected than other net-
works. An early study on encrypted DNS performance was conducted by Mozilla
at-scale with real browser users, but they did not study DoT, and they did not
explore the effects of latency to resolvers, throughput, or Internet service provider
(ISP) choice on performance [15]. Thus, the lack of controlled measurements pre-
vents the networking community from fully understanding how encrypted DNS
protocols perform for real users.

In this work, we provide a large-scale performance study of DNS, DoT, and
DoH from thousands of home networks dispersed across the United States.
We perform measurements from the homes of 2,693 participating panelists
in the Federal Communications Commission’s (FCC) Measuring Broadband
America program from April 7th, 2020 through May 8th, 2020. We measure
query response times and connection setup times using popular, open recursive
resolvers, as well as resolvers provided by local networks. We also study the
effects of latency to resolvers, throughput, and ISP choice on query response
times.

2 Method

In this section, we describe the measurement platform we used to study DNS,
DoT, and DoH performance and outline our analyses. We then describe the
experiments we conduct and their limitations.

2.1 Measurement Platform

The FCC contracts with SamKnows [20] to implement the operational and logis-
tical aspects of the Measuring Broadband America (MBA) program [6]. Sam-
Knows is a company that specializes in developing custom software and hard-
ware (also known as “Whiteboxes”) to evaluate the performance of broadband
access networks. Whiteboxes act as Ethernet bridges that connect directly to
existing modems/routers, which enables us to control for poor Wi-Fi signals
and cross-traffic. In accordance with MBA program objectives, SamKnows has
deployed Whiteboxes to thousands of volunteers’ homes across the United States.
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We were granted access to the MBA platform through the FCC’s MBA-Assisted
Research Studies program (MARS) [5], which enables researchers (generally from
the United States) to run measurements from the Whiteboxes. We utilize the
platform to evaluate how DNS, DoT, and DoH perform from home networks.

We perform measurements from each Whitebox using SamKnows’ DNS query
tool. For each query, the tool reports a success/failure status (and failure reason,
if applicable), the DNS resolution time excluding connection establishment (if
the query was successful), and the resolved record [19]. For DoT and DoH,
the tool separately reports the TCP connection setup time, the TLS session
establishment time, and the DoH resolver lookup time. For this study, we only
study queries for ‘A’ and ‘AAAA’ records. We note that queries for DNS and
DoT are sent synchronously, i.e., they must each receive a response before the
next query can be sent. On the other hand, DoH queries are sent asynchronously,
functionality that is enabled by the underlying HTTP protocol.

The query tool handles failures in several ways. First, if a response with an
error code is returned from a recursive resolver (e.g., NXDOMAIN or SERV-
FAIL), then the matching query is marked as a failure. Second, if the tool fails
to establish a DoT or DoH connection, then all queries in the current batch
(explained in Sect. 2.3) are marked as failures. Third, the query tool times out
conventional DNS queries after three seconds, at which point it re-sends them.
If three timeouts occur for a given query, the tool marks the query as a failure.
Finally, the query tool marks DoT/DoH queries as failures if either five seconds
have passed or if TCP hits the maximum number of re-transmissions allowed by
the operating system’s kernel (Linux 4.4.79). The Whiteboxes we measure use
the default TCP settings configured by the kernel (e.g., net.ipv4.tcp frto = 2,
net.ipv4.tcp retries1 = 3, and net.ipv4.tcp retries2 = 15 ).

In total, we collected measurements from 2,804 Whiteboxes, each of which
use the latest generation of hardware and software (8.0) [21]. Our measurements
were performed continuously from April 7th, 2020 through May 8th, 2020 in
collaboration with SamKnows and the FCC. We filtered out certain Whiteboxes
from our analysis in several ways. First, we filtered out 56 Whiteboxes that
we did not have any network configuration information about (e.g., ISP speed
tier, ISP name, and access technology). Second, we filtered out 25 Whiteboxes
that were connected by satellite. Third, we filtered out 30 Whiteboxes for which
we did not know the access technology or ISP speed tier. This left us with
2,693 Whiteboxes to analyze, with 96% of queries marked as successful. The
Whiteboxes were connected to 14 ISPs over cable, DSL, and fiber.

2.2 Analyses

We studied DNS, DoT, and DoH performance across several dimensions: con-
nection setup times, query response times for each resolver and protocol, and
query response times relative to latency to resolvers, throughput, and ISPs. Our
analyses are driven by choices that DNS clients are able to make (e.g., which
protocol and resolver to use) and how these choices affect DNS performance.
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Connection Setup Times. Before any query can be issued for DoT or DoH,
the client must establish a TCP connection and a TLS session. As such, we
measure the time to complete a 3-way TCP handshake and a TLS handshake.
Additionally, for DoH, we measure the time to resolve the domain name of the
resolver itself. The costs associated with connection establishment are amortized
over many DoT or DoH queries as the connections are kept alive and used
repeatedly once they are open. We study connection setup times in Sect. 3.1.

DNS Response Times. Query response times are crucial for determining the
performance of various applications. Before any resource can be downloaded
from a server, a DNS query often must be performed to learn the server’s IP
address (assuming a response is not cached). As such, we study query response
times for each resolver and protocol in Sect. 3.2. We remove TCP and TLS
connection establishment time from DoT and DoH query response times. The
DNS query tool we use closes and re-establishes connections after ten queries
(detailed in Sect. 2.3). As this behavior is unlikely to mimic that of stub resolvers
and web browsers [7,16,17], we remove connection establishment times to avoid
negatively biasing the performance of DoT and DoH.

DNS Response Times Relative to Latency and Throughput. Con-
ventional DNS performance depends on latency, as the protocol is relatively
lightweight; therefore, latency to the DNS resolver can have a significant effect
on overall performance. Furthermore, encrypted DNS protocols may perform
differently than conventional DNS in response to higher latency, as they are
connection-oriented protocols. We study the effect of latency on query response
times for each open resolver and protocol in Sect. 3.3. SamKnows also provides
us with the subscribed downstream and upstream throughput for each White-
box. We use this information to study the effect of downstream throughput on
query response times in Sect. 3.3.

DNS Response Times Relative to ISP Choice. Lastly, SamKnows provides
us with the ISP for each Whitebox. We study query response times for a selection
of ISPs in Sect. 3.4.

2.3 Experiment Design

We describe below which recursive resolvers and domain names we perform mea-
surements with and how we arrived at these choices.

DNS Resolvers. For each Whitebox, we perform measurements using three
popular open recursive DNS resolvers (anonymized as X, Y, and Z, respec-
tively1), as well as the recursive resolver automatically configured on each White-
box (the “default” resolver). Typically, the default resolver is set by the ISP that
1 We anonymize the resolvers as per our agreement with the FCC.
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Table 1. Recursive resolver latency characteristics.

Resolver Observations Latency (ms)

Minimum Median Maximum Std dev

X DNS and DoT 1,593,506 0.94 20.38 5,935.80 43.61

X DoH 1,567,337 0.14 22.75 8,929.88 43.25

Y DNS and DoT 1,596,964 2.00 20.90 9,701.82 46.79

Y DoH 1,552,595 0.14 20.50 10,516.31 40.68

Z DNS and DoT 1,579,605 2.35 31.41 516,844.73 414.26

Z DoH 1,533,380 0.14 33.00 9,537.42 41.11

Default DNS 2,009,086 0.13 0.85 8,602.39 22.93

the Whitebox is connected to. Resolvers X, Y, and Z all offer public name res-
olution for DNS, DoT, and DoH. However, the default resolver typically only
supports DNS. As such, for the default resolver, we only perform measurements
with conventional DNS. If a Whitebox has configured Resolver X, Y, or Z as
its default resolver, then we leave its default resolver measurements out of our
analysis.

In Table 1, we include the latency to each resolver across all Whiteboxes. We
measure latency by running five ICMP ping tests for each resolver at the top of
each hour and computing the average. We separate latency to DoH resolvers from
latency to DNS and DoT resolvers because the domain names of DoH resolvers
must be resolved in advance. As such, the IP addresses for the DoH resolvers
are not always the same as DNS and DoT resolvers. We note that the latencies
for the default resolvers are particularly low because these resolvers are often
DNS forwarders configured on home routers. We exclude measurements with
five failures or with an average latency of zero (0.7% of the total measurements).

We identified 41 Whiteboxes with median latencies to Resolvers X, Y, and
Z DNS of up to 100 ms, despite median query response times of less than 1
ms. We consulted with SamKnows, and based on their experience, they believed
this behavior could be attributed to DNS interception by middleboxes between
Whiteboxes and recursive resolvers. For example, customer-premises equipment
(CPE) can run DNS proxies (e.g., dnsmasq) that can cache DNS responses to
achieve such low query response times. Furthermore, previous reports from the
United Kingdom indicate that ISPs can provide customer-premises equipment
that is capable of passively observing and interfering with DNS queries [11]. We
found that 29 of these 41 Whiteboxes are connected to the same ISP. We also
identified two Whiteboxes with median latencies to X, Y, and Z DoH of less
than 1 ms. Lastly, we identified one Whitebox with median latencies to X, Y,
and Z DoT of up to 100 ms, despite median query response times of less than 1
ms. We analyze the data for these Whiteboxes for completeness.

Domain Names. Our goal was to collect DNS query response times for domain
names found in websites that users are likely to visit. We first selected the top
100 websites in the Tranco top-list, which averages the rankings of websites in the
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Alexa top-list over time [13]. For each website selected, we extracted the domain
names of all included resources found on the page. We obtained this data from
HTTP Archive Objects (or “HARs”) that we collected from a previous study [9].

Importantly, we needed to ensure that the domain names were not sensitive in
nature (e.g., pornhub.com) so as to not trigger DNS-based parental controls. As
such, after we created our initial list of domain names, we used the Webshrinker
API to filter out domains associated with adult content, illegal content, gambling,
and uncategorized content [24]. We then manually reviewed the resulting list. In
total, our list included 1,711 unique domain names.2

Measurement Protocol. The steps we take to measure query response times
from each Whitebox are as follows:

1. We randomize the input list of 1,711 domain names at the start of each hour.
2. We compute the latency to each resolver with a set of five ICMP ping tests.
3. We begin iterating over the randomized list by selecting a batch containing

ten domain names.
4. We issue queries for all 10 domain names in the batch to each

resolver/protocol combination. For DoT and DoH, we re-use the TLS connec-
tion for each query in the batch, and then close the connection. If a batch of
queries has not completed within 30 s, we pause, check for cross-traffic, and
retry if cross-traffic is present. If there is no cross traffic, we move to the next
resolver/protocol combination.

5. We select the next batch of 10 domain names. If five minutes have passed, we
stop for the hour. Otherwise, we return to step four.

Limitations. Due to bandwidth usage concerns and limited computational
capabilities on the Whiteboxes, we do not collect web page load times while
varying the underlying DNS protocol and resolver. Additionally, while we con-
ducted our measurements, the COVID-19 pandemic caused many people to work
from home. We did not want to perturb other measurements being run with the
Measuring Broadband America platform or introduce excessive strain on the
volunteers’ home networks. Due to these factors, we focus on DNS response
times.

3 Results

This section presents the results of our measurements. We organize our results
around the following questions: (1) How much connection overhead does
encrypted DNS incur, in terms of resolver lookup (in the case of DoH), TCP
connect time, and TLS setup time; (2) How does encrypted DNS perform versus
conventional DNS?; (3) How does network performance affect encrypted DNS

2 Our list of domain names that we measured is available at https://github.com/noise-
lab/dns-mba-public.git.

https://github.com/noise-lab/dns-mba-public.git
https://github.com/noise-lab/dns-mba-public.git
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(a) DoH Resolver Lookup (b) TCP Connect Time (c) TLS Setup Time

Fig. 1. Connection setup times for DoT and DoH.

performance?; and (4) How does encrypted DNS resolver performance depend on
broadband access ISP? Our results show that in the case of certain resolvers—to
our surprise—DoT had lower median response times than conventional DNS,
even as latency to the resolver increased. We also found significant variation in
DoH performance across resolvers.

3.1 How Much Connection Overhead Does Encrypted DNS Incur?

We first study the overhead incurred by encrypted DNS protocols, due to their
requirements for TCP connection setup and TLS handshakes. Before any batch
of DoT queries can be issued with the SamKnows query tool, a TCP connection
and TLS session must be established with a recursive resolver. In the case of
DoH, the resolver’s domain name is also resolved (e.g., resolverX.com). In Fig.
1, we show timings for different aspects of connection establishment for DoT
and DoH. The results show that lookup times were similar for all three resolvers
(Fig. 1(a)). This result is expected because the same default, conventional DNS
resolver is used to look up the DoH resolvers’ domain names; the largest median
DoH resolver lookup time was X with 17.1 ms. Depending on the DNS time to
live (TTL) of the DoH resolver lookup, resolution of the DoH resolver may occur
frequently or infrequently.

Next, we study the TCP connection establishment time for DoT and DoH for
each of the three recursive resolvers (Fig. 1(b)). For each of the three individual
resolvers, TCP establishment time for DoT and DoH are similar. Resolvers X and
Y are similar; Z experienced longer TCP connection times. The largest median
TCP connection establishment time across all resolvers and protocols (Resolver
Z DoH) was 30.8 ms.

Because DoT and DoH rely on TLS for encryption, a TLS session must be
established before use. Figure 1(c) shows the TLS establishment time for the
three open resolvers. Again, Resolver Z experienced higher TLS setup times
compared to X and Y. Furthermore, DoT and DoH performed similarly for
each resolver. The largest median TLS connection establishment time across
all recursive resolvers and protocols (Resolver Z DoH) was 105.2 ms. As with
resolver lookup overhead, the cost of establishing a TCP and TLS connection to
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the recursive resolver for a system would ideally occur infrequently, and should
be amortized over many queries by keeping the connection alive and reusing it
for multiple DNS queries.

Connection-oriented, secure DNS protocols will incur additional latency, but
these costs can be (and are) typically amortized by caching the DNS name of
the DoH resolver, as well as multiplexing many DNS queries over a single TLS
session to a DoH resolver. Many browser implementations of DoH implement
these practices. For example, Firefox establishes a DoH connection when the
browser launches, and it leaves the connection open [16,17]. Thus, the overhead
for DoH connection establishment in Firefox is amortized over time.

In the remainder of this paper we do not include connection establishment
overhead when studying DNS query response times. We omit connection estab-
lishment time for the rest of our analysis because the DNS query tool closes and
re-opens connections for each batch of queries. Thus, inclusion of TCP and TLS
connection overheads may negatively skew query response times.

Fig. 2. Aggregate query response times.

3.2 How Does Encrypted DNS Perform Compared with
Conventional DNS?

We next compare query response times across each protocol and recursive
resolver. Figure 2 shows box plots for DNS response times across all White-
boxes for each resolver and protocol. “Default” refers to the resolver that is
configured by default on each Whitebox (which is typically the DNS resolver
operated by the Whitebox’s upstream ISP).

DNS Performance Varies Across Resolvers. First of all, conventional DNS per-
formance varies across recursive resolvers. For the default resolvers configured
on Whiteboxes, the median query response time using conventional DNS is 24.8
ms. For Resolvers X, Y, and Z, the median query response times using DNS are



452 A. Hounsel et al.

23.2 ms, 34.8 ms, and 38.3 ms, respectively. Although X performs better than
the default resolvers, Y and Z perform at least 10 ms slower. This variability
could be attributed to differences in deployments between open resolvers.

DoT Performance Nearly Matches Conventional DNS. Interestingly DoT lookup
times are close to those of conventional DNS. For Resolvers X, Y, and Z, the
median query response times for DoT are 20.9 ms, 32.2 ms, and 45.3 ms, respec-
tively. Interestingly, for X and Y, we find that DoT performs 2.3 ms and 2.6
ms faster than conventional DNS, respectively. For both of these resolvers, the
best median DNS query performance could be attained using DoT. Z’s median
response time was 7 ms slower. The performance improvement of DoT over con-
ventional DNS in some cases is interesting because conventional wisdom suggests
that the connection overhead of TCP and TLS would be prohibitive. On the other
hand, various factors, including transport-layer optimizations in TCP, as well as
differences in infrastructure deployments, could explain these discrepancies. It
may also be the case that DoT resolvers have lower query loads than conven-
tional DNS resolvers, enabling comparable (or sometimes faster) response times.
Investigating the causes of these discrepancies is an avenue for future work.

DoH Response Times were Higher Than Those for DNS and DoT. DoH experi-
enced higher response times than conventional DNS or DoT, although this differ-
ence in performance varies significantly across DoH resolvers. For Resolvers X, Y,
and Z, the median query response times for DoH are 37.7 ms, 46.6 ms, and 60.7
ms, respectively. Resolver Z exhibited the biggest increase in response latency
between DoH and DNS (22.4 ms). Resolver Y showed the smallest difference
in performance between DoH and DNS (11.8 ms). Median DoH response times
between resolvers can differ greatly, with X DoH performing 23 ms faster than Z
DoH. The performance cost of DoH may be due to the overhead of HTTPS, as
well as the fact that DoH implementations are still relatively nascent, and thus
may not be optimized. For example, an experimental DoH recursive resolver
implementation by Facebook engineers terminates DoH connections to a reverse
web proxy before forwarding the query to a DNS resolver [4].

(a) Resolver X (b) Resolver Y (c) Resolver Z

Fig. 3. DNS response times based on median latency to resolvers.
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(a) Resolver X (b) Resolver Y (c) Resolver Z

Fig. 4. Ridge regression models comparing median latency to resolvers to median DNS
response times (alpha = 1).

Table 2. Coefficients, intercepts, and errors for ridge regression models.

Resolver Coefficient Intercept Mean absolute error Mean squared error

X DNS 0.79 6.01 3.70 62.06

X DoT 0.74 7.48 4.23 33.89

X DoH 1.41 16.39 11.82 551.74

Y DNS 0.79 15.57 8.35 109.25

Y DoT 0.71 16.67 9.20 126.43

Y DoH 1.26 25.17 12.36 289.20

Z DNS 0.93 4.82 4.46 221.03

Z DoT 0.95 8.07 5.58 221.91

Z DoH 1.59 9.75 14.29 482.44

3.3 How Does Network Performance Affect Encrypted DNS
Performance?

We next study how network latency and throughput characteristics affect the
performance of encrypted DNS.

DoT Can Meet or Beat Conventional DNS Despite High Latencies to Resolvers,
Offering Privacy Benefits for no Performance Cost. Figure 3 shows that DoT
can perform better than DNS as latency increases for Resolvers X and Y; in
the case of Resolver Z, DoT nearly matches the performance of conventional
DNS. We observe similar behavior with the linear ridge regression models shown
in Fig. 4. As discussed in Sect. 3.2, these results could be explained by transport-
layer optimizations in TCP, differences in infrastructure deployments, and lower
query loads on DoT resolvers compared to conventional DNS resolvers.
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DoH Performs Worse Than Conventional DNS and DoT as Latencies To
Resolvers Increase. Figure 3 shows that DoH performs substantially worse when
latency between the client and recursive resolver is high; Fig. 4 shows a simi-
lar result with a ridge regression model. As discussed in Sect. 3.2, this result
could be explained by either HTTPS overhead, nascent DoH implementations
and deployments, or both.

(a) Default (b) Resolver X

(c) Resolver Y (d) Resolver Z

Fig. 5. Query response times based on downstream access ISP throughput.

Subscribed Throughput Affects DNS Performance. Figure 5 shows DNS response
times across each of the open resolvers as well as the default resolver. We bin the
downstream throughput into four groups using clustering based on kernel density
estimation. The performance for all protocols tends to improve as throughput
increases, with DoH experiencing the most relative improvement. For example,
for users with throughput that is less than 25 Mbps, the median query response
times for Resolver Y DoH and Y DNS are 73.4 ms and 48.7 ms, respectively.
As throughput increases from 25 Mbs to 400 Mbps, the median query response
times for Y DoH and Y DNS are 41.2 ms and 31.4 ms, respectively. DoT performs
similarly to conventional DNS regardless of downstream throughput. Across all
groups, the absolute performance difference between Resolver X DoT and X DNS
by 0.2 ms, 1.9 ms, 0.1 ms, and 1.4 ms, respectively. For Resolver Y, DoT again
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performs faster than DNS in median query response times when throughput is
less than 800 Mbps. For the three lower throughput groups, Y DoT performs
faster than Y DNS by 1.4 ms, 2.5 ms, and 1.7 ms, respectively.

(a) Resolver X (b) Resolver Y (c) Resolver Z

Fig. 6. Per-ISP query response times.

3.4 Does Encrypted DNS Resolver Performance Vary Across ISPs?

Figure 6 shows how encrypted DNS response times vary across different resolvers
and ISPs. In short, the choice of resolver matters, and the “best” encrypted DNS
resolver also may depend on the user’s ISP. For instance, while ISP C is com-
parable to the other ISPs for queries sent to Resolver X, ISP C has significantly
lower query response times to Resolver Y, and is one of the poorest perform-
ing ISPs on Resolver Z. The difference in median query response times between
Resolver X DoH and X DNS was 20.9 ms for Whiteboxes on ISP D, and 8.9 ms
for Whiteboxes on ISP E; for Z DoH, the difference in median times was 34.5
ms for Whiteboxes on ISP D, and 47.9 ms for Whiteboxes on ISP E.

Resolver performance can also differ across ISPs. For ISP B, the median
query response time for Z DoT is 11.1 ms faster than Z DNS. However, for ISP
C, Z DoT is significantly slower than DNS, with a difference in median query
response times of 30.6 ms. We attribute this difference in performance to higher
latency to Resolver Z via ISP C. The median latency to Z DNS and DoT across
Whiteboxes on ISP C was 50 ms, compared to 18.5 ms on ISP B.

4 Related Work

Researchers have compared the performance of DNS, DoT, and DoH in various
ways. Zhu et al. proposed DoT to encrypt DNS traffic between clients and recur-
sive resolvers [25]. They modeled its performance and found that DoT’s overhead
can be largely eliminated with connection re-use. Böttger et al. measured the
effect of DoT and DoH on query response times and page load times from a uni-
versity network [3]. They find that DNS generally outperforms DoT in response
times, and DoT outperforms DoH. Hounsel et al. also measure response times
and page load times for DNS, DoT, and DoH using Amazon EC2 instances [9].
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They find that despite higher response times, page load times for DoT and DoH
can be faster than DNS on lossy networks. Lu et al. utilized residential TCP
SOCKS networks to measure response times from 166 countries and found that,
in the median case with connection re-use, DoT and DoH were slower than
conventional DNS over TCP by 9 ms and 6 ms, respectively [14].

Researchers have also studied in depth how DNS influences application per-
formance. Sundaresan et al. used an early MBA deployment of 4,200 home gate-
ways to identify performance bottlenecks for residential broadband networks [22].
This study found that page load times for users in home networks are signifi-
cantly influenced by slow DNS response times. Wang et al. introduced WProf,
a profiling system that analyzes various factors that contribute to page load
times [23]. They found that queries for uncached domain names at recursive
resolvers can account for up to 13% of the critical path delay for page loads.
Otto et al. found that CDN performance was significantly affected by clients
choosing recursive resolvers that are far away from CDN caches [18]. As a result
of these findings. Otto et al. proposed namehelp, a DNS proxy that sends queries
for CDN-hosted content to directly to authoritative servers. Allman studied con-
ventional DNS performance from 100 residences in a neighborhood and found
that only 3.6% of connections were blocked on DNS with lookup times greater
than either 20 ms or 1% of the application’s total transaction time [1].

Past work studied the performance impact of “last mile” connections to home
networks in various ways. Kreibich et al. proposed Netalyzr as a Java applet that
users run from devices in their home networks to test debug their Internet con-
nectivity. Netalyzr probes test servers outside of the home network to measure
latency, IPv6 support, DNS manipulation, and more. Their system was run from
over 99,000 public IP addresses, which enabled them to study network connec-
tivity at scale [12]. Dischinger et al. measured bandwidth, latency, and packet
loss from 1,894 hosts and 11 major commercial cable and DSL providers in North
America and Europe. This work found that the “last mile” connection between
an ISP and a home network is often a performance bottleneck, which they could
not have captured by performing measurements outside of the home network.
However, their measurements were performed from hosts located within homes,
rather than the home gateway. This introduces confounding factors between
hosts and the home gateway, such as poor Wi-Fi performance.

5 Conclusion

In this paper, we studied the performance of encrypted DNS protocols and DNS
from 2,693 Whiteboxes in the United States, between April 7th, 2020 and May
8th, 2020. We found that clients do not have to trade DNS performance for
privacy. For certain resolvers, DoT was able to perform faster than DNS in
median response times, even as latency increased. We also found significant
variation in DoH performance across recursive resolvers. Based on these results,
we recommend that DNS clients (e.g., web browsers) measure latency to resolvers
and DNS response times determine which protocol and resolver a client should
use. No single DNS protocol nor resolver performed the best for all clients.
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There were some limitations to our work that point to future research. First,
due to bandwidth restrictions, we were unable to perform page loads from White-
boxes. Future work could utilize platforms of similar scale to SamKnows to mea-
sure page loads, such as browser telemetry systems. Second, future work should
perform measurements from mobile devices. DoT was implemented in Android
10, but to our knowledge, its performance has not been studied “in the wild.”
Finally, future work could study how encrypted DNS protocols perform from net-
works that are far away from popular resolvers. This is particularly important
for browser vendors that seek to deploy DoH outside of the United States.
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Abstract. The DNS provides one of the core services of the Internet,
mapping applications and services to hosts. DNS employs both UDP
and TCP as a transport protocol, and currently most DNS queries are
sent over UDP. The problem with UDP is that large responses run the
risk of not arriving at their destinations – which can ultimately lead
to unreachability. However, it remains unclear how much of a problem
these large DNS responses over UDP are in the wild. This is the focus on
this paper: we analyze 164 billion queries/response pairs from more than
46k autonomous systems, covering three months (July 2019 and 2020,
and Oct. 2020), collected at the authoritative servers of the .nl, the
country-code top-level domain of the Netherlands. We show that frag-
mentation, and the problems that can follow fragmentation, rarely occur
at such authoritative servers. Further, we demonstrate that DNS built-in
defenses – use of truncation, EDNS0 buffer sizes, reduced responses and
TCP fall back – are effective to reduce fragmentation. Last, we measure
the uptake of the DNS flag day in 2020.

1 Introduction

The Domain Name System (DNS) [31] provides one of the core Internet services,
by mapping hosts, services and applications to IP addresses. DNS specifications
states that both UDP and TCP should be supported [4,31] as transport pro-
tocols, and nowadays most queries are UDP [48,54]. Performance wise, UDP’s
main advantage is that it can deliver faster responses, within one round-trip
time (RTT), while TCP requires an additional RTT due to its session establish-
ment handshake.

Rather common, small DNS responses fit into the 512-byte limit that the
original DNS over UDP (DNS/UDP hereafter) has, but larger responses – such
as the ones protected with DNSSEC [3,4,27] – may not fit. To overcome this 512-
byte size limit, the Extension Mechanisms for DNS 0 (EDNS0) [7,52] standard
was proposed. EDNS0 allows a DNS client to advertise its UDP buffer size, and
an EDNS0-compatible authoritative server “may send UDP packets up to that
client’s announced buffer size without truncation” [52] – up to 65,536 bytes.
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If, however, a DNS response is larger than the client’s advertised EDNS0
limit (or 512 bytes in the absence of EDNS0), the authoritative server should
then truncate the response to a size that fits within the limit and flag with the
TC bit [32]. Upon receiving a truncated response, the client should, in turn,
resend the query over TCP [4,10] (DNS/TCP hereafter), and leverage TCP’s
design to handle large messages with multiple segments.

However, the EDNS0 announced buffer size is agnostic to the path between
client and authoritative server’s maximum transmission unit (MTU), which is
the largest packet size that can be forwarded by all routers in the path. The
most common MTU on the core Internet is 1500 bytes [4], and EDNS0 buffer
sizes can easily exceed that – we show in Sect. 4 that 4096 bytes is the most
common value. If it does exceed the entire path MTU, then the packet will not
be able to be forwarded by the routers along the way, which will to packets being
either discarded or fragmented [11,39] at the IP layer.

IP fragmentation, in turn, comes with a series of problems [5] – fragmented
IP packets may be blocked by firewalls [4,5,8], leading to unreachability [51,53].
Moreover, IP fragmentation has been exploited in cache poisoning attacks on
DNS [17,50], and DNS cache poisoning can be further exploited to compromise
the trust in certificate authorities (CAs) [6]. As as result of these problems, there
is currently a consensus in the IP and DNS communities that IP fragmentation
should be avoided in DNS [5,12,58].

In this paper, we scrutinize the issue of large DNS responses using as vantage
point the .nl zone, the country-code top-level domain (ccTLD) of the Nether-
lands. Our datasets cover 3 months of data, from 2019 and 2020, with more
than 164 billion queries/responses pairs from more than 3 million resolvers from
more than 46,000 Autonomous Systems (ASes). We investigate responses sizes,
truncation, and server-side fragmentation in Sect. 3, as well as determining if
resolvers fall back to TCP. Then, in Sect. 4, we characterize resolver’s EDNS0
buffer sizes and the uptake of the DNS Flag day 2020.

2 Datasets

There are two main types of DNS server software: authoritative servers and
recursive resolvers. Authoritative servers “know the content of a DNS zone from
local knowledge” [19] (such as the Root DNS servers [46] for the Root zone [23]),
while DNS resolvers (such as the Quad{1,8,9} public resolver services [1,16,36,
40]), resolve domain names by querying authoritative servers on behalf of users.

We analyze DNS queries and responses to/from authoritative servers of .nl.
We collect data from two of the three authoritative server of .nl (NS1 and
NS3, the remaining authoritative services did not support traffic collection at
the time). The .nl zone has several million domain names in its zone, with the
majority of the domains being signed using DNSSEC [48].

The analyzed authoritative servers are run by different third-party DNS
providers (one from Europe, the other from North America). Both services are
replicated using IP anycast [29,37] – which allows the same IP address to be
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announced using BGP [41] from multiple locations across the globe, over both
IPv4 and IPv6. In total, NS1 and NS3 are announced from 61 global locations
(sites). We employ ENTRADA [47,56], an open-source DNS analysis platform
to analyze this data.

Table 1 shows the datasets we analyze in this paper. In total, we study more
than 164 billion DNS queries and responses – 157.77 billion over UDP and 6.25
billion over TCP, covering two full months (July 2019 and 2020) and October
2020 (the first month after the DNS 2020 flag day [58]).

Table 1. Evaluated datasets of .nl zone.

July 2019 July 2020 October 2020

IPv4 IPv6 IPv4 IPv6 IPv4 IPv6

Queries/responses 29.79B 7.80B 45.38B 15.87B 48.58B 16.62B

UDP 28.68B 7.54 B 43.75B 15.01B 46.94B 15.87B

UDP TC off 27.80B 7.24B 42.06B 13.88B 45.49B 14.93B

UDP TC on 0.87B 0.31B 1.69B 1.14B 1.44B 0.93B

Ratio (%) 2.93% 3.91% 3.72% 7.15% 2.96% 5.59%

TCP 1.11B 0.25B 1.63B 0.85B 0.36B 0.20B

Ratio (%) 3.72% 3.32% 3.59% 5.37% 3.17% 5.09%

Resolvers

UDP TC off 3.09M 0.35M 2.99M 0.67M 3.12M 0.62M

UDP TC on 0.61M 0.08M 0.85M 0.12M 0.87M 0.13M

TCP 0.61M 0.08M 0.83M 0.12M 0.87M 0.13M

ASes

UDP TC off 44.8k 8.3k 45.6k 8.5k 46.4k 8.8k

UDP TC on. 23.3k 4.5k 27.6k 5.4k 28.2k 5.6k

TCP 23.5k 4.3k 27.3k 5.2k 27.9k 5.4k

We see that a small fraction of all responses are truncated – 2.93% to 7.15% –
depending on the month/year and IP version. Our datasets cover more than 3
million resolvers (defined by distinct IP addresses) from more than 46k ASes,
which is far larger than previous studies on DNS issues with fragmentation
[51,53] and from active measurements platforms such as Ripe Atlas [45],
which has ∼11k active vantage points and cover 8670 /24 IPv4 network pre-
fixes [44] (May 2020).

3 Dissecting Responses from a ccTLD

3.1 How Common Are Large Responses?

Before addressing problems related to large DNS/UDP responses, we need first
to understand how often do they really occur in the wild, from our datasets.
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Figure 1 shows the CDF of the response sizes (DNS payload only) per anycast
server, transport protocol, and IP version, for both July 2019 and July 2020. We
see that most responses are smaller than 1232 bytes (right vertical line) – more
than 99.99% for all responses, for both servers, protocols/IP version.

Fig. 1. Response size CDF for .nl: July 2019 and 2020

This value is similar to what is reported by Google Public DNS [16], a public
DNS resolver service, also reports that 99.7% of responses are smaller than 1232
bytes [28]. Differently from ours, they run a resolver service, that queries multiple
TLDs and their delegations, while ours covers only one ccTLD. Still, similar
figures holds for both vantage points.

The exception for .nl was in 2019, where NS3-TCP over IPv4 had 78.6%, and
NS1-TCP over IPv6 had 94.9% of the responses smaller than 1232 bytes. Alto-
gether, for July 2019 and 2020, these large responses account for 95M queries,
out of the more than 98B queries (Table 1).

What Queries Generate Large Responses? We then proceed to determine
what queries led to large responses. DNSSEC is often blamed for causing large
responses. At .nl, DNSSEC we see that DNSSEC increases response size, but
rarely beyond 1232 bytes.

Resolvers set the DO-flag in their queries if they want to receive DNSSEC
related resource records for each signed response (e.g. DS and RRSIG).
Responses to these queries have a median response size of 594 bytes, whereas



464 G. C. M. Moura et al.

responses that do not contain DNSSEC records only have a median response
size of 153 bytes. Responses that stand out are A [32] and AAAA [49] queries
(asking for IPv4 and IPv6 records, respectively) for ns*.dns.nl – the author-
itative servers of the .nl zone, accounting for 99% of all responses larger than
1232 bytes. Without DNSSEC records, this response is merely 221 bytes long.

We further found that the responses sizes for these queries changed per
authoritative service. For NS1, the responses were 217 bytes long (median), but
responses from NS3 were 1117 bytes long.

This staggering difference is due to configuration differences between the
servers. NS1 is configured to return minimal responses [2,24], and its responses
do not include two sections with “extra” records (authority and additional
records section [31]). The NS3 operator did not enable this feature, which inflates
response sizes. These results show that response sizes are not only determine by
the DNS query types (DNSSEC, A, AAAA), but also by whether authoritative
servers configured with minimal responses or not.

3.2 How Often Does IP Fragmentation Occur for DNS/UDP?

IP fragmentation can take place either at the authoritative servers (for both
IPv4 and IPv6) and on the routers along the way only for IPv4, but only if the
IP Don’t Fragment flag (DF) in the IPv4 is not set. For IPv6, fragmentation
only occurs on the end hosts (Sect. 5 in [9]).

Server-Side Fragmentation: If a DNS/UDP response is larger than the
authoritative server’s link MTU (and the server is not limited from large
responses (max-udp-size in BIND9 [24]) the server may fragment it.

Given we do not run NS1 and NS3, we cannot know what is their
max-udp-size limits. What we can know, however, is what is the largest
DNS/UDP response they have sent and that was not fragmented. This value
provides a lower bound for their max-udp-size of the authoritative servers.
Table 2 shows the results. We see that in NS3 send far larger responses than
NS1 in 20201.

Table 2. Maximum DNS/UDP response
size (bytes) per authoritative server and
IP version.

NS1 NS3

Year IPv4 IPv6 IPv4 IPv6

July 2019 1451 1470 1484 1494

July 2020 1391 1391 2866 2866

Table 3. NS3 - ICMP error messages
caused by large packets.

IPv4 IPv6

ICMP Type3,Code4 ICMPv6 Type 2

July 2019 73 16

July 2020 641 599

Then, we proceed to analyze the number of DNS/UDP fragmented responses
per authoritative server and IP version. Figure 2 shows a timeseries of these
1 We also see that the response sizes almost doubled for NS3 from 2019 to 2020,

although the NS3 operator confirmed they have not changed minimal response sizes
or ENDS buffer sizes in the period.
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responses. We see very few occur: fewer than 10k/day, compared to a total
of 2.2B/day. Notice that NS1 has no fragmented responses in 2020, which is
probably due to the reduction on the response sizes in 2020 (Table 2).

Fig. 2. UDP fragmented queries for .nl authoritative servers.

Still, even if there are few fragmented queries, why do they occur? First, we
see most fragmented queries are from NS3 (Fig. 2), given NS3 does not return
minimal responses (Sect. 3.1), which inflates responses2.

But the resolvers have their own share of responsibility. We single out these
DNS/UDP fragmented responses, and analyzed the announced EDNS0 buffer
sizes. Figure 3 shows the results for July 2020, for both IPv4 and IPv6. We see
that most fragmented queries are smaller than 2048 bytes, but we see that most
of these resolvers announced a large EDNS0 buffer size – most equal to 4096
bytes, which is the default value on BIND (up to version 9.16.6)3,4 [24]. So while
our vantage point does not allow to tell if clients experience fragmentation on
their side, it shows that authoritative servers very rarely fragment responses.

Packets Larger Than Path MTU: Since we collect traffic only at the author-
itative servers, we cannot directly know if there was IPv4 fragmentation along
the path. However, we can still use the ICMP protocol to determine if some of
the DNS responses exceed the path MTU.

The routers along the path have a standard way of handling IP packets larger
than their MTU, both using ICMP. If it is an IPv4 packet, and the fragmented
flag (DF) is set, then the router should discard the packet and send a ICMP
Type 3, code 4 packet as a response (“Fragmentation Needed and Don’t Frag-
ment was Set” [38]) back to the authoritative server. If the DF flag is off, then
2 The advantage of having minimal responses disabled is that it can reduce the total

number of queries, given resolvers already receive extra information.
3 BIND9 uses a dynamic EDNS value: when it first contacts a server, it uses 512 bytes.

From that point on, it uses the configured value – 4096 by default. If it receives no
responses, it will lower it to 1432, 1232 and 512 bytes. See edns-udp-size in [24].

4 Unbound changed the default buffer size to 1232 on 29 sept. 2020 [55], and so did
BIND on version 9.16.8.
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Fig. 3. Fragmented Queries July 2020: response sizes and EDNS0 buffer sizes.

the router can fragment the packet – and no ICMP signaling is sent back to
the authoritative server. Last, IPv6 packets cannot be fragmented by routers,
and routers facing them should send an ICMPv6 Type 2 message (“packet too
big” [26]) back to the authoritative server.

In our setup, only the DNS provider of NS3 provides us with ICMP traffic.
We analyze the ICMP traffic and show in Table 3 distribution of ICMP error
messages associated with large packets, and see there are only few ICMP packets.

In the worst case scenario, these large DNS/UDP would be discarded by
routers and both client and servers would not know about it, which could, in
theory lead to unreachability. However, previous research has shown that, in the
wild, DNS resolvers have built-in a series of fail-tolerance features, and will retry
multiple times the same server and or switch from server/IP version, to the point
of “hammering” the authoritative severs, in order to obtain responses [33,35].
In this scenario, even if one authoritative server becomes “unresponsive” – from
the point-of-view of the resolver – having multiple authoritative servers (defined
by distinct NS records), running on dissimilar networks, should minimize the
probabilities of unreachability.

Network Issues with Large Responses: Our vantage point does not allow to
know if clients received their large DNS/UDP responses. To determine if clients
indeed receive large responses, we resort to Ripe Atlas probes and NS3, and
evaluate 1M queries from roughly 8500 probes, over a period of one day. We
show in Sect. A.1 that 2.5% of small (221 bytes) DNS/UDP responses time-
out. For large responses (1744 bytes), this value is 6.9% – only considering a
single DNS/UDP query without TCP fallback. Comparing to server-side frag-
mentation, we show that it is far more likely to happen on the network. Similar
numbers were reported by Huston [22], who measured 7% drop with a similar
response size on IPv6 and Van den Broek et al. [51] have shown that even up to
10% of all resolvers might be unable to handle fragments.

3.3 DNS Truncation: How and When?

Table 1 shows that 2.93–7.15% of all evaluated queries were truncated. Next we
investigate why this happens. For each truncated response, we fetch its response
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size and its respective query’ EDNS0 buffer size. Figure 4 shows the CDF for
these values for July 2020, for NS1 (Sect. A shows NS3 for 2020 and the 2019
results for NS1 and NS3). We see that most DNS/UDP responses are truncated
to values under 512 bytes, independently IP version (Response line).

Fig. 4. NS1: CDF of DNS/UDP TC responses for .nl: July 2020

Small or no EDNS0 values lead to truncation: we see that most EDNS buffer
sizes are equal to 512, which is rather too small for many queries (but the initial
value by BIND when it first contact a server [24]). As such, if resolvers would
advertise larger buffers, that would probably reduce truncated responses.

Oddly, we also see that only NS1 receives 13% of queries that are truncated
with no EDNS0 extension, but not the other servers or IP version (shown as
EDNS0=1 in Fig. 4). We found that this is due to an anomaly from two ASes
(AS2637 – Georgia Tech and AS61207 – Ilait AB). Resolvers from these ASes
have a “sticky” behavior [35], sending queries only to NS1 over IPv4. Both ASes
send most queries without EDNS0 UDP buffer value (1 in the graph), and that
is why Fig. 4a is skewed.

Large EDNS0 values are no insurance against truncation: We also see that
even if clients announce large EDNS0 buffers, they still receive truncated
responses. Even though 4096 bytes is enough to fit most responses (§3.1),
the authoritative server can truncate responses based on its local MTU or
max-udp-size.

3.4 Do Resolvers Fall Back to TCP?

Upon receiving a DNS/UDP truncated response, DNS resolvers should resend
the query over TCP – what is know as TCP fall back [10]. In July 2020 (Table 1),
we see 7.15% DNS/UDP TC queries over IPv6. However, we see only 5.37% of
TCP queries over IPv6 – suggesting 1.78% were not followed by DNS/TCP
queries. We next investigate this behavior.

Figure 5 shows how many UDP responses with TC flag are followed by a
TCP query, within 60 s from the same IP address. The majority, 80% in IPv4
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Fig. 5. TC replies with TCP retries Fig. 6. Time until first TCP fall back

and 75% in IPv6 of these replies are retried via TCP within this time frame per
day in July 2020 (on median). For zones where responses often are larger than
1232 bytes this means that after the Flag Day, they will see an increase in TCP
connections.

If a resolver retries a query via TCP, then this query is sent usually within
less than 100 ms. Figure 6 shows the time between the name server received the
initial UDP query and the TCP retry on July 1 2020. 80% of all retries are sent
within 100 ms and 90% within one 1 s. Retries from IPv6 addresses reach our
authoritative servers slightly faster.

Missing TCP Queries: there are multiple reasons why truncated queries may
not be followed by TCP ones. For example, queries from non-resolvers, such as
crawlers, or malware. Also, as we discuss in Sect. 2, our datasets do not include
data from NS2, the other anycast authoritative server for .nl. Given resolvers
may switch from server to server [35], our dataset misses those5. Resolver farms
may be partially to blame – the TCP query may be sent from adjacent IP
addresses6. Dual-stacked resolvers may only send a TCP query over one (the
first) IP version response arriving7. Altogether, we estimate that we miss up to
4.8% of retries in our initial measurement.

This still leaves 15–21% of TC replies without a TCP retry. We found that,
for July 1st 2020, 47% of these queries without TCP retries were from Google
(AS15169), a well-known large public resolver operator [16] that employs a com-
plex, multi-layered resolver architecture spread across different IP ranges [34].

5 We see 1.9% of TC IPv4 queries switching between NS1 and NS3 on July 1st, 2020,
and 3.2% of IPv6 TC queries.

6 For July 1 2020, we measure, how many TCP retries are first issued from a different
resolver than the resolver of the original UDP query, but located in the same subnet
(/24 subnet for IPv4 and /48 subnet for IPv6). There, 1.6% of retries via IPv4 and
0.1% via IPv6 are sent from a different resolver, likely belonging to the same farm.

7 Of a sample of 3M queries that trigger a TC response, 4% were likely issued by
those kind of resolvers. 58% then sent their TCP retry via both interfaces, leaving
42% of the TC replies without a TCP retry. Extrapolating these numbers to our
measurements we can assume that around 1.3% of TC replies are not retried via
TCP because of dual stacked resolvers.
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Given their large infrastructure, one could hypothesize that Google could use a
different resolver to send the TCP fallback query. To evaluate if that is the case,
we extend our query matching criteria for TCP fallback: for each DNS/UDP TC
reply, we evaluate if any IP address from Google (AS15169) sent a TCP query
within 60 s after the sending of the TC reply. By doing this, we find that, in
fact, Google resolvers almost always fallback to TCP, by having 99% of UDP
TC queries being followed up by a TCP query. This shows how dynamic and
complex a large DNS service can be.

4 Resolver EDNS0 Buffer Sizes

Next we analyze the EDNS0 buffer sizes for all resolvers we seen in our
datasets (Table 1). For 2020, we see in Fig. 7a that roughly 30% of all resolvers
announce 512 bytes EDNS0 buffer sizes or less, and 48.86% announce 1232 or
less. The majority announce 4096 bytes: 33%. For ASes, we have a more even
distribution: 20% announce 512 bytes or less, and 71% announce up to 1232 or
less. Taking altogether, we can conclude that most resolvers announce a 4096
ENDS0 buffer size value (which is BIND9 default value up to version 9.16.7) are
to blame partially for DNS/UDP fragmentation.

Fig. 7. EDNS0 per resolver and values: July 2020

Figure 7b shows he number of unique EDNS0 buffer sizes announced per
resolver for the month of July 2020. We can see that more than 60% of resolvers
announce only one EDNS0 value over the period. Only 5% of the resolvers showed
3 or more EDNS0 values in the period – maybe due to dynamic ENDS values [24]
or configuration changes. Finally, 7% of resolvers (not shown in the figure), have
no EDNS0 support – likely from old, non compliant clients.
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4.1 DNS Flag Day 2020: What Was the Uptake?

The DNS Flag Day 2020 was proposed by members of the DNS community in
order to avoid IP fragmentation on DNS/UDP, by not allowing UDP queries
larger than 1232 bytes. This value was chosen based on a MTU of 1280 bytes
– the minimum required by IPv6 [9] – minus 48 bytes of IPv6/UDP headers.
The chosen date (2020-10-01) was a suggestion for operators to change their
authoritative DNS servers and DNS resolvers.

To determine the Flag Day uptake, we compare the EDNS0 values from
resolvers from July 2020 to October 2020, from Table 1, for UDP queries. The
former we used it as a baseline, and the observed differences in the latter deter-
mine the uptake. Table 4a summarizes this data. We see in total 1.85M resolvers
active on both datasets, and they sent 117.5B queries in the period.

Table 4. DNS Flag day datasets and changing resolvers

July 2020 October 2020

Resolvers 3.78M 3.84M

∩ 1.85 M

UDP Queries 60.3B 62.81B

∩ 117.54 B

(a) Before and After Datasets

Resolvers 11338

from 4096 bytes 7881

from 1680 bytes 1807

from 512 bytes 1252

rest 398

ASes 958

Queries 3.01B

(b) EDNS0 1232 resolvers

Figure 8 shows the CDF of resolvers’ EDNS0 buffer sizes. We see hardly
any changes in the resolver EDNS behavior (if the resolver had multiple EDNS
values, we picked the most frequent, also to remove BIND9 512 byte at the first
try). On July 2020, we see 14.6% of the resolvers using EDNS0 buffers smaller
or equal to 1232 bytes, and on October 2020, this value went to 16.0%. For
both months, however, the most popular EDNS0 buffer value is 4096 bytes, with
roughly 53% of the resolvers using it.

Resolvers that Adopted the DNS Flag Day Value: We identified 11338 resolvers
that changed their EDNS0 value to 1232 bytes, as can be seen in Table 4. There
resolvers were responsible for 3.01B queries, out of the 117.54B. They belonged
to 958 different ASes, but most of them (6240) belonged to only two ASes – one
in Taiwan and the other in Poland.

Looking Back to 1.5 Years: The Flag Day 2020 was originally proposed in Oct.
2019. Given some operators may deploy it before the Flag Day chosen date
(Oct. 1 2020), we analyze the proportion resolvers we see over more than 1.5
years (May 2019-December 2020). Figure 9 shows the percentage of unique IP
addresses announcing different buffer sizes per day. From May 2019 to Oct. 2020,
we see that despite the increase of resolvers using EDNS0 1232, they winded up
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Fig. 8. CDF EDNS0 resolvers Fig. 9. Daily EDNS buffer distribution
by resolvers (y axis in log-2 scale).

accounting for only 4.4% of the total resolvers. 4096 byte resolvers reduced from
50% to 40%. Since November 2020 the number of resolvers announcing 1232 bytes
is growing faster and has reached 6.5% by the end of December 2020. Despite
the latest increase, these results show that a large population of resolvers still
needs to be reconfigured to use EDNS0 1232 bytes.

5 Related Work

IP Fragmentation: the problems related with IP fragmentation are well
known [5]: it has problems with “middleboxes” (such as network address transla-
tion (NAT) devices, with stateless firewalls), by being expensive and error prone
and may lead to unreachability [4,5,8,14]. It has also security vulnerabilities – it
has been used DNS for cache poisoning attacks on DNS [17,50], and to compro-
mise CAs based on it. Besides, there are several well-know attacks that exploit
fragmentation [13,25,30,57]. Given these series of problems, IP fragmentation is
considered fragile and should be avoided, also in DNS [5,12,58].

DNS and Large Responses: Large DNS/UDP responses have been previously
shown to cause unreachability [51,53]. In 2011, using active measurements,
Weaver et al. [53] have shown that 9% of clients could not receive fragmented
DNS/UDP packets. Given our vantage point are not clients, we cannot deter-
mine this rate. We showed, however, the number of ICMP messages showing
that DNS messages exceed the path MTU (Sect. 3.2). In a 2012 study [51], the
authors analyzed DNSSEC messages (8.4M) from 230k resolvers to authoritative
servers hosted SURFnet, the Dutch NREN. for 4k+ zones. They showed how
58% of resolvers received fragmented responses for DNSSEC queries.

Our results show a contrast to both of these studies: by analyzing 164B
queries from more than 3M resolvers, for one zone (.nl), we show a tiny fraction
of fragmented queries (10k/day, Sect. 3.2), but our VP allows only to measure
the server-side. Besides, we also analyze truncation, responses sizes distribution,
resolver behavior, EDNS0 distribution, from two distinct large DNS anycast
operators that provide DNS service to .nl. Another (non-academic) study from
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Google Public DNS operators in 2020 [28] showed similar rates of truncation
and fragmentation, but measure on the resolver side.

New Protocols and Features. over the last years there have been several alterna-
tives to “vanilla” DNS, such as DoH (DNS over HTTPS) [18] and DNS over TLS
(DoTLS) [20], and DNS over QUIC [21]. Also, new features are being added to
DNS, such (such as ESNI [42]). While we do not cover them here – our authorita-
tive servers only support traditional DNS – as these new protocols get deployed,
it will be necessary to evaluate how they handle truncation and/or fragmenta-
tion. For example, Google rarely truncate responses for its public DoTLS and
DoH service [15], even if both run on TCP.

6 Conclusions

DNS/UDP large messages that lead to fragmentation have been long feared and
blamed for causing unreachability. Drawing from 164B queries/responses, we
asses state of affairs of large messages on DNS. We show that large responses are
rare (for .nl), and that server-side IP fragmentation is minimal. In case of clients
experience query timeouts on DNS/UDP, we show that 75% of resolvers do fall
back to TCP – and by this way are able to retrieve large responses. Previous
research has shown that “hammering” and server switching – behaviors shown
by resolvers in the wild – are expected to be useful in avoiding unreachability.

Still, our evaluation of more than 3M resolvers show that they still have a
long way to go: many of them announce either small (512 bytes) or large (4096
bytes) EDNS0 buffer sizes, both leading to more truncation, and increasing the
chances of fragmentation/packets being lost on the network.

We also show that the initial uptake of the DNS Flag Day 2020 suggested
EDNS0 buffer size has not been very wide, however, similar to DNSSEC algo-
rithms adoption, it would be interesting to evaluate this adoption over time,
especially now that major resolver vendors have adopted this value.

Acknowledgments. We thank Klaus Darillion, the anonymous PAM reviewers and
our shepherd, Balakrishnan Chandrasekaran, for feedback and reviewing paper drafts.
This work is partially funded by the European Union’s Horizon 2020 CONCORDIA
project (Grant Agreement # 830927).

A Extra graphs

Fig. 10 shows the truncated queries for NS3 in 2020. Figure 11 shows the time-
series of truncated queries for .nl on July 2019. We see in the same figures a
close match between UDP truncated queries and TCP ones – however not quite
the same. Figure 11 shows the CDF of DNS/UDP truncated queries for 2019,
per server.
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Fig. 10. NS3: CDF of DNS/UDP TC responses for .nl: July 2020

A.1 Clients and Large DNS/UDP Responses

We evaluate if DNS messages are being lost along the way from authoritative
servers to clients. To do that, we setup two measurements using RIpe Atlas (∼10k
probes), as shown in Table 5. We configure each probe to send a query directly
to NS3, the server that returns additional records. As such, probes bypass local
resolvers, so they cannot fallback to TCP: they simply send one UDP query. We
setup two measurements: one that retrieves large DNS/UDP responses (1744
bytes, Large column) and one that retrieves small ones (221 bytes).

In total, we see 8576 probes being active on both measurements – sending
more than 1M queries (512k on the Large, 510k on the Small). For each probe, we

Fig. 11. CDF of DNS/UDP TC answers for .nl: July 2019
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Table 5. Atlas measurements for large and small responses. Datasets:[43]

Large Small

EDNS0 buffer 4096 512

Query ANY NS .nl A ns1.dns.nl
Target ns3.dns.nl
Response Size 1744 221

Protocol/IP UDP/IPv4

Active Probes 9323 9322

∩ 8576

Queries 557047 555007

∩ 512351 510575

OK 473606 497792

timeout 38745(6.9%) 12783 (2.5%)

look then into the number of failed responses (timeout), for the small and large
measurements. We see that 6.9% of queries timeout for the large measurement,
however, 2.5% of them also timeout for short responses.

Next we investigate each probe and compute the percentage of timeout
queries per dataset. We then compute the difference between the rate of failed
queries for the large and the small datasets. Out of the 8576 probes on both
datasets, 6191 have no error difference for both large and small queries (72%).
10% in fact have more errors for the small dataset query, and only 17% have
more errors for the longer answers. 325 have 100% of errors for the large datasets,
but no errors for the small datasets. Overall, this measurement show the frag-
mentation is still an issue on the client side –which justifies the flag day.
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Abstract. The Tor network estimates its relays’ bandwidths using relay
self-measurements of client traffic speeds. These estimates largely deter-
mine how existing traffic load is balanced across relays, and they are used
to evaluate the network’s capacity to handle future traffic load increases.
Thus, their accuracy is important to optimize Tor’s performance and
strategize for growth. However, their accuracy has never been measured.
We investigate the accuracy of Tor’s capacity estimation with an analy-
sis of public network data and an active experiment run over the entire
live network. Our results suggest that the bandwidth estimates under-
estimate the total network capacity by at least 50% and that the errors
are larger for high-bandwidth and low-uptime relays. Our work suggests
that improving Tor’s bandwidth measurement system could improve the
network’s performance and better inform plans to handle future growth.

1 Introduction

Tor [12] is an anonymous communication overlay network with thousands of relays
that forward over 200 Gbit/s of traffic for millions of daily clients [3,25] in order
to provide unlinkability between the source and destination of traffic flows.

In order to balance client traffic across the relays, Tor relies on TorFlow to esti-
mate of the speed at which relays can forward traffic through the network [30],
and these forwarding capacity estimates are essential to both the performance and
security of the network [5,21,22,31]. A relay’s capacity estimate is derived from
a self-measurement called the observed bandwidth: the highest throughput it has
sustained over any ten second period over the last five days (see Sect. 2). This mea-
sure is imprecise and may be inaccurate in many realistic cases: (i) a new relay will
not have forwarded any traffic and thus will be estimated to have a low capacity
regardless of its available resources; (ii) a relay that is used inconsistently may not
sustain a high throughput long enough to result in an accurate capacity estimate;
and (iii) a relay that is underutilized will underestimate its capacity. TorFlow uses
relays’ capacity estimates as the basis for its relay selection algorithm that drives
more user traffic load to higher-capacity relays [30]. Therefore, inaccurate capacity
estimates could result in sub-optimal load balancing which would degrade user-
perceived network performance and security [21].

Inaccurate capacity estimates also make it more difficult to understand how
to prioritize research and development effort in order to plan future network
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improvements [32]. For example, obtaining funding to improve Tor scalability is
more challenging without understanding the current limits of the network [27].
Improper network management also complicates relay recruitment and retention,
and may dissuade the development of incentive schemes [13,14,17–19,26,28].

In this paper, we explore the inconsistency in Tor’s estimated relay capacities
using: (i) passive measurements collected by relays and published by Tor met-
rics [3]; and (ii) an active relay speed test measurement experiment. In Sect. 3
we study variability in relay capacity estimates, which we use as an indica-
tion of inaccurate estimation. We find significant variation in relays’ advertised
bandwidths: the capacity estimates of 25% of relays vary by more than 41%,
the capacity estimates of 10% of relays vary by 71% or more, and some relays’
capacity estimates vary by more than 200%. We find that higher variation is
associated with lower capacity relays and with relays that are online less fre-
quently. In Sect. 4 we present an active speed test experiment, through which
we find that: (i) Tor underestimates its total capacity by about 50%; (ii) most
relays increased their capacity estimate following our experiment (some by a 10×
or greater factor); and (iii) larger error is associated with high-capacity relays,
exit relays, and relays with lower uptimes than with other types of relays. Our
results suggest that indeed relay underutilization is a cause of significant error
in capacity estimates.

Our work provides the first systematic exploration of the error in Tor’s capac-
ity estimation technique, and our results suggest that improvements to capacity
estimates could significantly improve load balancing and network performance.
Our research artifacts are available at https://torbwest-pam2021.github.io.

2 Background and Related Work

The Tor Network: The Tor network consists of thousands of relays forward-
ing traffic for millions of clients [3,25]. To assist in balancing client traffic load
across relays, Tor assigns a weight to each relay according to an estimate of the
relay’s available bandwidth and publishes relay information (including addresses,
weights, and various other flags) in a network consensus document [2, Sect. 3.4.1].
To use the network, a Tor client downloads the consensus and computes selection
probabilities from the weights. The client builds a circuit through a series of typi-
cally three relays, using the selection probabilities to choose a relay for each posi-
tion; relays with the Exit flag typically serve in the exit position, relays with the
Guard flag (but not the Exit flag) typically serve in the entry position, and relays
with neither flag serve in the middle position [11]. The client tunnels application
data (e.g., web requests) through the constructed circuit, rotating to new circuits
every 10 min (or when they browse to new websites). Although circuits rotate fre-
quently, clients generally use long-term entry Guard relays [9] to help prevent pre-
decessor attacks [34]. To be aGuard, Tor requires that a relaymaintain highuptime:
the percentage of hours during which it is online.

Relay Bandwidth: A relay’s forwarding capacity is the maximum sustainable
rate at which it can forward traffic through the network and is useful for balanc-

https://torbwest-pam2021.github.io
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ing traffic load across relays. Relay operators do not directly report the true for-
warding capacity of their relays, so Tor uses a heuristic to estimate it. Each relay
calculates its observed bandwidth by tracking the highest throughput that it was
able to sustain for any 10 s period during each of the last 5 days [10, Sect. 2.1.1].
To bootstrap the observed bandwidth calculation, a relay conducts a bandwidth
self-test when it starts by creating four circuits through Tor and sending 125 KiB
over each circuit; if this process completes within 10 ss, the relay will start with
an observed bandwidth of 4 · 125/10 = 50 KiB/s (≈410 Kbits/s) [8]. Additional
remote measurements are conducted by TorFlow [30] (discussed below), and the
observed bandwidth is updated over time as a relay forwards client traffic. Relay
operators may limit the amount of bandwidth a relay consumes by configuring
average bandwidth and burst bandwidth options, which control the refill rate and
size of an internal token bucket rate limiter. Every 18 h, relays publish a server
descriptor file [10, Sect. 2.1.1] which contains their latest observed, average, and
burst bandwidth values. A relay’s advertised bandwidth is the minimum of the
observed and average bandwidths published by the relay, and is used as a basis
for load balancing.

Load Balancing: Tor uses a measurement tool called TorFlow [30] to assist
in balancing client traffic across relays. TorFlow measures relay performance by
creating two-hop circuits through each relay and downloading files ranging in
size from 16 KiB to 64 MiB from a known server through the circuit. TorFlow
produces relay weights by: (i) computing the ratio of the measurement speed of
each relay to the mean measurement speed of all relays; and (ii) multiplying each
relay’s ratio by its advertised bandwidth. The relay weights are published in the
consensus and used to compute relay selection probabilities as described above.

Related Work: Previous work has established that TorFlow is insecure and
vulnerable to manipulation, in part because a relay can detect when it is being
measured [5,21,22,33]. Several alternative bandwidth measurement systems that
produce relay weights have been proposed. SmarTor [4] and Simple Bandwidth
Scanner [24] are similar in measurement design to TorFlow and suffer from simi-
lar limitations. EigenSpeed proposes that relays conduct peer measurement, and
produces per-flow throughput estimates rather than estimates of relay forward-
ing capacity [31]. PeerFlow is a passive peer measurement system that proposes a
secure aggregation inference technique to produce relay capacity estimates from
multiple peers observations [22]. TightRope proposes a centralized approach for
optimally balancing load given a set of accurate capacity weights [7], and Ting
focuses on measuring latencies between relays [6].

Dingledine outlines the lifecycle of a new relay and explains that it can take
three days for a relay to be measured by TorFlow, several weeks for a relay
to obtain the Guard flag, and even longer to reach steady state [8]. Dingledine
motivates the need for further analysis of Tor metrics data to better understand
relay operations in the real world. Using both passive and active measurements,
our work provides the first systematic exploration of the error in Tor’s capacity
estimation technique. More recently, Greubel et al. analyze load distribution in
Tor and find that relays with more forwarding capacity are associated with larger
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relay weights [15]. Although we are focused on measuring the accuracy of for-
warding capacity estimates rather than relay weights, the association established
by Greubel et al. will aid in explaining some of our results.

3 Analysis of Tor Metrics Data

To better understand the accuracy of Tor’s capacity-estimation heuristic, we ana-
lyze publicly available Tor metrics data [3]. Relays passively measure through-
put over time and publish bandwidth information in their server descriptors
[10, Sect. 2.1.1], while the load-balancing weights that TorFlow derives from the
bandwidth information are published in network consensus files [2, Sect. 3.4.1].
The Tor Project has collected these documents for over a decade [3], and we ana-
lyze the data published throughout the 52 week period starting on 2018-08-01.

Relay Capacity Variation: A relay with a perfect capacity estimation algo-
rithm would consistently report the same advertised bandwidth; thus, variation
in advertised bandwidths indicates inaccurate capacity estimation. Let A(r, w)
be the sequence of advertised bandwidths published by relay r during week w.
We quantify the variability in A(r, w) by computing the relative standard devi-
ation (RSD) as

RSD(A(r, w)) = stdev(A(r, w))/mean(A(r, w)) (1)

where stdev() and mean() compute the standard deviation and mean, respec-
tively. Higher RSDs are associated with more fluctuation of the capacity estimate
around the expected capacity and indicate error in the estimation.

We summarize the variability in the estimated relay capacity for relay r
by computing the mean of RSD(A(r, w)) over all 1 ≤ w ≤ n weeks in which r
published at least one valid server descriptor. We remove potential sources of bias
by considering a server descriptor for r valid unless: (i) it was published before
r was measured (i.e., before r appeared in a consensus without the unmeasured
flag); or (ii) it was published during a week in which a change in r’s average or
burst bandwidth options caused a reduction in the advertised bandwidth. We
call mean(RSD(A(r, 1)), . . . ,RSD(A(r, n))) the mean weekly RSD for relay r.
We compute mean weekly RSDs for only those relays that were not flagged as
unmeasured in at least one consensus (to avoid potential bias from bootstrapping
new relays). Although we suppose that the true forwarding capacity of each relay
does not often change (i.e., relays do not often upgrade to faster network access
links), computing the RSD on a weekly basis ensures that any upgrades that do
occur during one of the weeks in our analysis period are likely to only affect a
small fraction of the n total weeks that we consider (and thus have a small effect
on the mean weekly RSD summary statistic).

Analysis Results: We compute mean weekly RSDs for relays over n = 52
weeks, where w = 1 includes the seven days starting on 2018-08-01 and w = 52
includes the seven days starting on 2019-07-24. During this analysis period,
34,850 unique relays appeared across 8,736 consensus files (many more than are
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Fig. 1. The distribution of the mean weekly RSD over all valid relays. For each valid
relay r, we compute the RSD for each week that r published a valid server descriptor,
and then compute the mean over all such weeks to get the mean weekly RSD for r.

online at any given time due to churn). Of these, 11,296 (32%) were never mea-
sured (i.e., never appeared in any consensus without the unmeasured flag), and
an additional 1,503 (4.3%) were measured but did not publish a valid descriptor
(as explained above). We consider the remaining 22,051 relays (63%) as valid in
our analysis, and we compute the mean weekly RSDs for these valid relays.

Figure 1 compares the distribution of the mean weekly RSD over all such
valid relays and over distinct subsets that are separated by common relay char-
acteristics (position, uptime, advertised bandwidth, and selection probability).
Over all relays (the solid line in each subfigure), we find that the reported adver-
tised bandwidths exhibit significant variation. The mean over all relays of the
mean weekly RSD is 27%, while 25% and 10% of the relays have a mean weekly
RSD of 35% and 66% or more, respectively (and a non-trivial fraction of relays
have RSDs of 100% or greater). Such variation is larger than expected when the
true capacity does not change. We also find that the largest RSDs are associ-
ated with lower capacity relays and relays that are online less frequently, as we
explain next.

Position: A relay’s position is that in which it serves most frequently throughout
the year. We compare mean weekly RSDs across relays of different positions
in Fig. 1a. We observe that guard relays exhibited significantly lower variation
in their advertised bandwidths than did exits and middles: compared to exits,
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guards’ RSDs dropped from 16% to 7.0% at P50 and from 71% to 23% at P90.
Tor requires that relays must be stable with high uptime to receive the Guard
flag, which may help explain this result.

Uptime. A relay’s uptime is the percentage of hours during which it was online
over the entire year. We compare mean weekly RSDs across relays with different
ranges of uptime in Fig. 1b. We observe that relays with lower uptime were
correlated with larger mean weekly RSDs: 25% of the lowest uptime (≤121 days)
and highest uptime (>243 days) relays had mean weekly RSDs of 46% or more
and 6.7% or more, respectively. This result suggests that relays that are less
consistently available are underutilized by Tor clients and are thus unable to
observe enough traffic to reach their true capacity.

Advertised Bandwidth. We compare mean weekly RSDs across relays with dif-
ferent ranges of mean advertised bandwidths (here, the mean is computed over
the entire year) in Fig. 1c. We find that relays with lower mean advertised band-
widths were associated with higher variation, with the one-third of the relays
advertising less than 3.71 Mbit/s accounting for the highest variance. The same
absolute change in throughput (such as that caused by a single client) could
result in a larger relative change in advertised bandwidth (and thus the RSD)
for slower relays than for faster relays, which could help explain this result.

Selection Probability. We compare weekly RSDs across relays with different
ranges of selection probabilities (the mean normalized weight from all consen-
suses in which it appeared throughout the year) in Fig. 1d. Relays with the lowest
one-third of selection probability were correlated with higher mean weekly RSDs,
while relays with the highest one-third of selection probability were correlated
with lower variation. Since selection probability is directly associated with the
amount of traffic a relay will observe, it follows that relays that are chosen most
consistently report advertised bandwidths with the least variation.

Overall, we find significant variation in relays’ advertised bandwidth, and
that lower capacity and lower uptime relays are correlated with higher variation.
However, we are unable to deduce the true causes of the observed associations
because correlation does not imply causation. Next we conduct an active mea-
surement experiment to help us further understand error in capacity estimates.

4 Tor Relay Speed Test Experiment

Our analysis of variation in advertised bandwidths suggests that there is signif-
icant error in Tor’s system for determining relay capacities. However, without
more information, it seems difficult to tell why and to what extent these errors
are made. Based on our understanding of the TorFlow system, though, we can
hypothesize that the predominant error is to underestimate the true capacity
of Tor relays. This hypothesis seems plausible because the observed bandwidth
is a self-measurement that mostly is limited by how much client traffic is sent
through a relay, and it has been observed that there is a slow feedback process
in which some client traffic is attracted, the observed bandwidth increases and
causes the relay weight to increase, and then more client traffic is attracted [8].
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To test this hypothesis, we perform a speed test on the live Tor network
by actively attempting to send 1 Gbit/s of Tor traffic through each relay. If a
relay is not already receiving sufficient client traffic to reach its true capacity
(at least for 10 ss every 5 days), the extra traffic we add should increase its
observed bandwidth, as reported in its server descriptors. The resulting observed
bandwidths should increase our overall estimate of Tor’s capacity and give us a
more accurate estimate of how much total client traffic it could forward.

Moreover, as suggested by our capacity variation analysis, we may be able to
identify differences in the amount of underestimation depending on the relays’
positional flags (e.g. Guard and Exit), advertised bandwidth, and uptime. For
example, our previous results may lead us to hypothesize that relays with lower
uptime will have a larger increase in observed bandwidth due to the speed test
(i.e., their current observed bandwidths are larger underestimates of their for-
warding capacity). Such non-uniform errors would imply that Tor’s load balanc-
ing is suboptimal, where relays with higher degrees of capacity underestimation
receive too little traffic and relays with lower degrees receive too much.

Setup: We added 487 lines of code to Tor v0.3.5.7 in support of our speed test
experiment. Our changes include the addition of a new SPEEDTEST cell; when a
SPEEDTEST cell that was sent by a client running our version of Tor is received
by a relay running our version of Tor, the relay will simply return the cell back
to the client over the same circuit. When creating a circuit that starts and ends
with a client and relay running our version of Tor, the SPEEDTEST cell allows us
to send a burst of traffic in both directions through the circuit. We also added
Tor client controller commands to enable us to instruct a client (through the
control port) to build speed test measurement circuits through a path of relays,
to start and stop sending SPEEDTEST cells through a measurement circuit, and
to extract information about each measurement result.

We conduct our speed test experiment from a single dedicated machine with
32 GiB of RAM, 8 CPU cores, and a 1 Gbit/s symmetric network link. We set up
10 Tor clients (C1, . . . , C10) and 10 Tor relays (R1, . . . , R10) on this machine that
each run our enhanced version of Tor. We connect our relays to the Tor network
so they function as regular Tor relays; we set the MaxAdvertisedBandwidth Tor
option to the minimum allowed value (300 Kbits/s) to ensure that our relays do
not receive a large weight and are seldom used by Tor clients that we do not
control. The speed test experiment proceeds sequentially as follows:

1. We download the latest list of relays from a Tor directory mirror;
2. We randomly choose an untested target relay T from the list;
3. For i ∈ [1, 10], we command Ci to build a circuit Ci � T � Ri;
4. For i ∈ [1, 10], we command Ci to send SPEEDTEST cells to Ri through the

circuit with T for 20 s as fast as Tor (and TCP) will allow;
5. Upon receiving the SPEEDTEST cells from T , Ri sends them back to T ;
6. T simply forwards the cells in each direction as it would on any other circuit;
7. When the 20 s measurement is complete, we close the measurement circuits,

mark T as tested, and continue from 1.
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Fig. 2. The effects of the speed test on Tor relays (≈200 Gbit/s of capacity discovered).

By using 10 circuits in parallel (20 sockets in parallel on T ), we increase the
traffic rate through T while mitigating any potential rate limits imposed by Tor’s
stream and circuit flow control or by TCP congestion control. Our measurement
has the potential to send a burst of traffic at an aggregate rate of 1 Gbit/s
through each target T . The measurement effect will be reflected in the following
server descriptor that T publishes, in which it will report its observed bandwidth
(the highest throughput that it was able to sustain for any 10 s period).

Our experiment is designed to minimize Tor network relay overhead. We
add load to only one remote target relay at a time and only for a short period.
We submitted our experimental design and plans to the Tor Research Safety
Board [1] for feedback. We received encouraging feedback and a “no objections”
decision. We also explained our plans to the Tor community through a post to
the public tor-relays mailing list [16]. We gave instructions on how to opt out and
allowed one week to collect feedback. Finally, we served a web page containing
a link to the mailing list post on the IP addresses used in the experiment.

Results: Our speed test experiment ran for just over 2 days (51 h) starting on
2019-08-06. We plot in Fig. 2a the sum of the most-recently published adver-
tised bandwidths of all online relays over time. The first green region shows
the period during which the speed test was active, and the second gray region
shows the period during which the effects of the speed test expired. Note that
the delay in the increase and decrease in advertised bandwidth relative to our
experiment is caused by: (i) the 18 h server descriptor publishing interval; and
(ii) the observed bandwidth algorithm which stores history for each of the last 5
days. We successfully tested 4,867 relays, while 2,132 relays were untested due to
circuit building timeouts. On average, the tested relays represent 341/382 Gbit/s
(89%) and 525/570 Gbit/s (92%) of the total advertised bandwidth before and
after the speed test took effect, respectively, whereas the untested relays repre-
sent 41/382 Gbit/s (11%) and 45/570 Gbit/s (8%).

In the remainder of our analysis, we consider only those 4,867 relays that we
successfully tested. We take the relay capacity before the test to be the max-
imum advertised bandwidth over the period from 2019-08-01 until the speed
test starts on 2019-08-06, and we take the relay capacity afterwards to be the
maximum advertised bandwidth from the speed test start until 2019-08-12.
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Fig. 3. Rank is by the capacity after the speed test. Discovered capacity is after−before,
whereas relative discovered is (after − before)/after. Summary of relay capacities after
the speed test (in Mbit/s): min=0.262, Q1=12.4, med=53.6, Q3=135, max=998.

Relay Results. Fig. 2b shows the per-relay capacities before and after the speed
test: we observe that many relays increased their capacity estimates, some by
a 10× or greater factor. We do see some relays with slightly reduced capacity
estimates, which could be due to reasons such as reduced bandwidth rates (i.e.,
average bandwidths) or increased background traffic from other applications.

Network Results. We find that the estimated network capacity (the sum of relay
capacities) increases by about 50% after our speed tests push relays into reporting
higher observed bandwidths. Specifically, the network increases from 360 Gbit/s
before the experiment to 550 Gbit/s afterwards, which gives a 52.9% increase in
estimated total capacity. The capacity increase among exit relays (i.e., with the
Exit flag) is 30.0 Gbit/s (32.6%), the increase among guard relays (i.e., with the
Guard flag but not the Exit flag) is 91.2 Gbit/s (40.1%), and the increase among
the middle relays (i.e., those remaining) is 61.3 Gbit/s (157%). Because exit band-
width limits Tor’s overall throughput, we therefore could expect that Tor could
handle 30.0 Gbit/s (32.6%) more traffic than previously expected. We emphasize
that these results may still underestimate the true capacity of the network: our
test setup was limited by a 1 Gbit/s network link and we were unable to test many
relays, so our results should be taken as a lower bound on both Tor’s true capacity
and on the degree of error in its current capacity estimates.

Effects of Capacity. There are at least a couple of reasons to expect that the
capacity of a relay may affect the amount by which its capacity is currently
underestimated. First, the variance of client traffic is likely lower on higher-
capacity relays, as the number of clients they attract is larger, and so by the law
of large numbers we expect the variance in the sum of client traffic to decrease.
Because observed bandwidths take the maximum bandwidth over several days,
small relays are more likely by chance to attract a large amount of traffic relative
to their size. Second, large relays have fewer peers that they can be paired with
during TorFlow measurements without the other relay acting as a bottleneck
during the measurement. We therefore investigate how the capacity of a relay
affects the amount of capacity “discovered” during the speed test, that is, the
change in the advertised bandwidth after the speed test.
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Fig. 4. Capacity after and discovered by speed test by relay position.

Figure 3a shows the capacity discovered per relay ranked by the capacity
after the speed test. The capacity after the speed test should be closer to the
true capacity. We notice that at all capacity ranks, the discovered capacity ranges
from none to all of the post-speed-test capacity. To better understand the quan-
titative relationship between relay capacity and discovered capacity, Fig. 3b plots
CDFs for relative discovered capacity after ranking relays by capacity afterwards
and dividing that list into quartiles. Note that the discovered capacity is calcu-
lated relative to the capacity after the speed test, and thus is almost always a
value between 0% and 100%.

We observe that higher-capacity relays have higher discovered capacity, even
relative to their capacity. The median increase is 0.0% for the quartile with the
lowest-capacity relays, 0.0% for the second quartile, 0.9% for the third quartile,
and 32.5% for the highest quartile. This result shows that the largest Tor relays
have the most inaccurate capacity estimates, on both an absolute and relative
basis. It also suggests that the Tor weights may be too low for such relays,
reducing load-balancing and thus Tor performance overall. We do notice that for
all but the smallest relays, there is a high degree of capacity underestimation:
at P90 the relative discovered capacity is 4.74% for the first quartile, 53.8% for
the second, 72.7% for the third, and 89.4% for the fourth.

Effects of Position. We might also expect that relays in different positions have
different degrees of capacity underestimation. An exit relay, for example, carries
more traffic relative to its capacity than other relays because the exit position
has the least total bandwidth, and so we may expect that it has a better estimate
of its true capacity. Figure 4a shows the distribution of advertised bandwidths
after the speed test. We again (and throughout the paper) consider relays with
the Exit flag to be exits, relays with the Guard but not Exit flag to be guards,
and the remaining relays to be middles. There were 764 exits, 2,049 guards,
and 1,943 middles. We see that exit and guard relays have similar distributions,
with medians of 109 Mbit/s and 92.3 Mbit/s, respectively. The middle relays
have significantly smaller capacities, with a median of 10.0 Mbit/s. Figure 4b
shows the amount of discovered capacity by position. While the median values
are all at or near zero, we discovered a relatively large amount of bandwidth for
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Fig. 5. The effects of uptime on discovered capacity. (a) Relay uptime, where relays are
ranked by absolute discovered capacity (after−before). Absolute discovered capacities
summary (in Mbit/s): min = −169, Q1 = 0.00, med = 0.01, Q3 = 20.8, max = 881. (b)
Relay capacity after the speed test of exits with ≥ 75% uptime (379 such exits). Relays
are ranked by relative discovered capacity ((after − before)/after). Relative discovered
capacities summary: min = −96.6%, Q1 = 0.00%, med = 0.00%, Q3 = 10.2%, max =
91.0%.

a significant fraction of relays in each position, with third quartile (P75) values
of 39.1 Mbit/s for exits, 31.1 Mbit/s for guards, and 5.35 Mbit/s for middles.
These results show surprisingly that exit relays generally had the most discovered
capacity, despite their relatively high traffic load.

Effects of Uptime. To investigate the capacity estimation errors, we next consider
how a relay’s uptime affects its discovered capacity. We expect that increased
uptime will lead to lower discovered capacity because of the slow feedback
between increasing the observed bandwidth, which attracts additional client traf-
fic, which then further increases the observed bandwidth [8].

We compute uptime as the fraction of consensuses (i.e., hours) in which
the relay was present during the year preceding our speed test (2018-08-01 to
2019-07-30). Figure 5a shows that increased uptime is correlated with decreased
discovered capacity. The median annual uptime of the top quartile of relays (i.e.,
those with the largest discovered capacities) is 56.6%, while the median uptime
of the bottom quartile is 93.2%. We note that the bottom two quartiles each have
nearly zero discovered capacity, explaining their similar uptime distributions. If
we consider the uptimes by position, we observe the same general pattern: guards
generally have higher uptime and middles generally have lower. These results
support the observed phenomenom that relays’ observed capacities increase over
time towards the true amounts [8].

We have shown that position, capacity, and uptime separately lead to differ-
ent amounts of error in the advertised bandwidth. To somewhat disentangle these
effects, we consider now the discovered capacity for the exit position (other posi-
tions are similar and appear in the Appendix), and we only consider relays with an
uptime of at least 75% during the year preceding our experiment. By considering
only the relays that were online for many months, we expect to largely remove the
slow-increase phase of Tor’s measurement system. Moreover, by considering just
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Fig. 6. Change in selection probabilities before and after the speed test. Discovered
capacities summary (in Mbit/s): min = −169, Q1 = 0.00, med = 0.01, Q3 = 20.8, max
= 881.

the exit position, we focus on the position for which the capacity is most limited
and the effects of poor load balancing thus most impactful.

We show the results in Fig. 5b. Among the high-uptime exits (for which
we might have expected little undiscovered bandwidth), there are large relative
discovered capacities among the largest quarter by capacity after the speed test,
ranging from 10.2% in the third quartile to 91.0% at maximum. Moreover, larger
amounts of capacity are clearly still discovered among the largest exits, with a
median of 375 Mbit/s capacity among the relays in the highest quartile of relative
discovered capacity, compared to 124 Mbit/s, 34.6 Mbit/s, and 94.8 Mbit/s in the
median for the third to first quartiles, respectively. This is despite the fact that
relays are ranked by relative discovered capacity, which means that not only do
the largest exits have the largest total error in capacity measurement, they have
the largest fraction of capacity error. This is consistent with a hypothesis that
the largest Tor relays are unable to attract enough traffic to recognize their true
capacity. It shows a consistent bias in the Tor bandwidth measurement system
against large relays, which consequently is likely to cause the Tor weights to be
too low for such relays, reducing Tor performance overall. Note that these results
are shown by absolute discovered capacity in the Appendix.

Effects on Load Balancing. To understand how Tor load balancing is affected
by its biased capacity estimation, we analyze the relay selection probabilities
before and after the speed test. Our speed test is designed to investigate the
advertised bandwidths, and the resulting effects on the weights are complicated
both by any changes in the relay population and by the somewhat complex
effects of the TorFlow load balancing system. However, Greubel et al. [15] find
high correlation between the advertised bandwidths and the Tor weights that
determine the selection probabilities, and Tor’s load-balancing goal is indeed to
choose each relay proportional to its capacity. Therefore, we expect biases in the
advertised bandwidths to result in suboptimal selection probabilities.

Figure 6 shows the change in selection probabilities caused by the speed test.
Relays are divided into quartiles by the total amount of discovered capacity. We
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can clearly see that, as expected, the relays with the largest discovered capacity
experienced the largest increases in their selection probabilities. For relays ranked
in the top quartile, the change in the median selection probability is 0.002% (a
20.3% relative increase), while at P90 we observe an even more extreme weight
change of 0.021% (a 267% relative increase).

5 Discussion

Throughout the paper, we have highlighted the performance implications of Tor’s
capacity estimation errors. We note further that the bandwidth estimation errors
we have observed have security implications. A primary security mechanism Tor
uses is to make it expensive to run a large fraction of the network by requiring a
large amount of bandwidth to observe a large fraction of client traffic. It accom-
plishes this by making the selection weights highly correlated with (i.e., roughly
proportional to) the advertised bandwidths [15]. The errors we have discovered
allow an adversary to more cheaply attract and attack client connections (e.g.,
traffic correlation [23] or website fingerprinting [29]). Our results imply that an
adversary can gain an advantage by maintaining many high-uptime relays each
with low capacity. Moreover, we show that the sensitive exit and guard positions
are vulnerable to this exploitation.

Thus, an adversary could run a large number of low-bandwidth relays for
many weeks as both exits and (eventual) guards. Simply due to the bias of
Tor’s measurement system, those relays would obtain higher total weight than
the relative cost of running them. Running additional relays simply requires
additional IP addresses, due to Tor’s limit of two relays per IP address. Therefore,
assuming bandwidth is the dominant cost, the adversary would spend less to
observe and attack a given amount of client traffic than if the network bandwidth
were accurately measured. The adversary could use its relays to deanonymize
clients via known attacks.

We further observe that our speed test could be executed by a malicious
party to direct more client traffic to any subset of the Tor network, by rais-
ing the advertised bandwidths of relays in that subset and thus their weights.
Easier attacks to inflate malicious relay bandwidth are already known [5,20–
22,33]. However, in this attack the adversary need not control the relays to
which it directs traffic. For example, a malicious network adversary (e.g., an
ISP or nation-state) is able to direct more client traffic to relays on networks it
can observe, without running any of those relays. Such an ability again would
enable deanonymization attacks on the connections thus directed. This ability
also enables denial-of-service by allowing the adversary to artificially increase
the weights of a subset of the network, overloading those relays and degrading
network performance.
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6 Conclusion

Estimates of Tor relays’ forwarding capacity are used to balance client traffic
load across relays and therefore accurate estimates are vital to the performance
and security of the Tor network. We analyzed the accuracy of Tor relay capacity
estimation using passive measurements of relay bandwidth that are published by
Tor metrics [3]. We found significant variation in relays’ advertised bandwidths
which indicates inaccurate estimation; higher variation was associated with lower
capacity relays and relays that were online less frequently. We further explore
the accuracy of Tor capacity estimation techniques through an active speed test
experiment on the live Tor network. Through this experiment, we find that Tor
underestimates its total capacity by about 50%, and that most relays increased
their capacity estimate following our experiment (some by a 10× or greater
factor). We also found that higher capacity relays and exit relays discovered more
capacity than lower capacity and non-exit relays, respectively, and that relays
with lower uptimes were correlated with higher discovered capacity. Our results
suggest that improvements to capacity estimates could significantly improve load
balancing, which could lead to better network performance and security.
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Appendix

Figure 7 shows for each relay position the uptime by absolute discovered capacity
quartiles. We observe that for all positions relays with higher discovered capacity
have higher uptime, although we notice that guard relays have higher overall
uptime (due to the additional uptime and stability requirements to get the Guard
flag), and middles have a larger number of relays with low uptime.

Figure 8 shows the capacity of guard and middle relays after the speed test
by quartiles of relative discovered capacity. It includes only relays with at least
75% uptime. It shows that for high-uptime relays in both positions, most of the
discovered capacity is among the largest relays. We can especially see that for
middle relays, the low amount of discovered capacity is due to the large number
of relays with very little total or discovered capacity.

Figure 9 shows the effect of relay capacity on the discovered capacity by
position when only relays with at least 75% uptime are considered.
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Fig. 7. The effect of relay uptime, where relays are ranked by their absolute discovered
capacity. (a)Showsexit relays split into4 setsby rank.Summaryof theabsolutediscovered
capacities (in Mbit/s): min = −88.0, Q1 0.00, med = 0.0, Q3 = 39.1, max = 707. (b) Shows
guard relays split into 4 sets by rank. Summary of the absolute discovered capacities (in
Mbit/s): min = −90.3, Q1 = 0.00, med = 0.428, Q3 = 31.1, max = 881. (c) Shows middle
relays split into 4 sets by rank. Summary of the absolute discovered capacities (in Mbit/s):
min = −169, Q1 = 0.00, med = 0.00, Q3 = 5.13, max = 774.

Fig. 8. Absolute capacity of relays after the speed test, where relays are ranked by
their relative discovered capacity. Relative discovered capacity is computed as (after −
before)/after. Includes only relays with uptime of 75% (273 days) or more during
the year preceding the speed test. (a) Shows guard relays split into 4 sets by rank
(1,238 guards had at least 75% uptime). (b) Shows middle relays split into 4 sets by
rank (983 middles had at least 75% uptime).
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Fig. 9. Absolute capacity of relays after the speed test, where relays are ranked by their
absolute discovered capacity. Absolute discovered capacity is computed as after−before
Includes only relays with uptime of 75% (273 days) or more during the year preceding
the speed test. (a) Shows exit relays split into 4 sets by rank (379 exits had at least
75% uptime). (b) Shows guard relays split into 4 sets by rank (1,238 guards had at
least 75% uptime). (c) Shows middle relays split into 4 sets by rank (983 middles had
at least 75% uptime).
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Abstract. While satellite Internet bitrates have increased, latency can
still degrade TCP performance. Realistic assessment of TCP over satel-
lites is lacking, typically done by simulation or emulation, if at all. This
paper presents experiments comparing four TCP congestion control algo-
rithms – BBR, Cubic, Hybla and PCC – on a commercial satellite net-
work. Analysis shows similar steady state bitrates for all, but with sig-
nificant differences in start-up throughputs and round-trip times caused
by queuing of packets in flight. Power analysis combining throughput
and latency shows during steady state, PCC is the most powerful, due
to relatively high throughputs and consistent, relatively low round-trip
times, while for small downloads Hybla is the most powerful, due to fast
throughput ramp-ups. BBR generally fares similarly to Cubic in both
cases.

1 Introduction

Satellites are an essential part of modern networking, providing ubiquitous
connectivity even in times of disaster. There are 2100+ satellites in orbit, a
67% increase from 2014 to 2019 [2]. Improvements in satellite technology have
increased transmission capacities more than 20x with the total capacity of
planned Geosynchronous orbit satellites over 5 Tb/s.

Geosynchronous orbit satellites have about 300 milliseconds of latency to
bounce a signal up and down [8], a hurdle for TCP protocols that use round-
trip time communication to advance their data windows. TCP congestion control
algorithms play a critical role determining throughput in the presence of network
latency and loss. A better understanding of TCP congestion control algorithm
performance over satellite networks is needed in order to assess challenges and
opportunities that satellites have to better support TCP moving forward.

However, there are few published studies measuring network performance
over actual satellite networks [17], with most studies either using just simula-
tions [3] or emulations with satellite parameters [1,11,18,19].

This paper presents results from experiments that measure the performance
of TCP over a commercial satellite Internet network. We compare four TCP con-
gestion control algorithms, chosen based on their representative approaches to
c© Springer Nature Switzerland AG 2021
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congestion control: default loss-based Cubic [15], bandwidth-delay product-based
BBR [16], utility function-based PCC [11], and satellite-optimized Hybla [4]. Our
network testbed and experiments are done on the Internet, but are designed to
be comparable by interlacing runs of each protocol serially to minimize temporal
differences and by doing 80 bulk downloads for each protocol to provide for a
large sample. In addition, a custom ping application provides several days worth
of round-trip time and lost packet data for a baseline satellite network with no
other traffic.

Analysis of our “quiet” network gives baseline satellite loss and round-trip
time characteristics. Analysis comparing the four algorithms show differences
in throughput, round-trip times and retransmissions during steady state and
start-up phases, with power providing a combined measure of throughput and
delay.

The rest of this report is organized as follows: Sect. 2 presents related work,
Sect. 3 describes our methodology, Sect. 4 analyzes the data, and Sect. 5 summa-
rizes our conclusions and future work.

2 Related Work

Caini and Firrinielli [4] propose TCP Hybla to overcome the limitations TCP
NewReno flows have when running over high-latency links (e.g., a Satellite).
TCP Hybla modifies the standard congestion window increase with an extension
based on the round-trip time. In Hybla slow-start, cwnd = cwnd + 2ρ − 1 and
in congestion avoidance cwnd = cwnd + ρ2

cwnd , where ρ = RTT/RTT0. RTT0 is
fixed at a “wired” round-trip time of 0.025 s. Hybla is available for Linux as of
kernel 2.6.11 (in 2005).

Ha et al. [15] develop TCP Cubic as an incremental improvement to earlier
congestion control algorithms. Cubic is less aggressive than previous algorithms
in most steady-state cases, but can probe for more bandwidth quickly when
needed. TCP Cubic has been the default in Linux as of kernel 2.6.19 (in 2007),
Windows 10.1709 Fall Creators Update (in 2017), and Windows Server 2016
1709 update (in 2017).

Cardwell et al. [16] provide TCP Bottleneck Bandwidth and Round-trip time
(BBR) as an alternative to Cubic’s (and Hybla’s) loss-based congestion control.
BBR uses the maximum bandwidth and minimum round-trip time observed to
set the congestion window size (up to twice the bandwidth-delay product). BBR
has been deployed by Google servers since at least 2017 and is available for Linux
as of kernel 4.9 (end of 2016).

Dong et al. [11] propose TCP PCC that observes performance based on
small measurement “experiments”. The experiments assess throughput, loss, and
round-trip times with a utility function, adopting the rate that has the best
utility. PCC is not generally available for Linux, but Compira Labs1 provided
us with a Linux-based implementation.

1 https://www.compiralabs.com/.

https://www.compiralabs.com/
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Cao et al. [5] analyze measurement results of BBR and Cubic over a range
of different network conditions, showing that the relative difference between the
bottleneck buffer size and bandwidth-delay product dictates when BBR performs
well. Our work extends this work by providing evaluation of Cubic and BBR in
a satellite configuration, with round-trip times significantly beyond those tested
by Cao et al.

Obata et al. [17] evaluate TCP performance over actual (not emulated, as
is typical) satellite networks. They compare a satellite-oriented TCP conges-
tion control algorithm (STAR) with NewReno and Hybla. Experiments with
the Wideband InterNetworking Engineering test and Demonstration Satellite
(WINDS) network show throughputs around 26 Mb/s and round-trip times
around 860 milliseconds. Both TCP STAR and TCP Hybla have better through-
puts over the satellite link than TCP NewReno – we evaluate TCP Hybla, but
there is no public Linux implementation of TCP STAR available.

Wang et al. [19] provide preliminary performance evaluation of QUIC with
BBR on an emulated a satellite network (capacities 1 Mb/s and 10 Mb/s, RTTs
200, 400 and 1000 ms, and packet loss up to 20%). Their results confirm QUIC
with BBR has throughput improvements compared with TCP Cubic for their
emulated satellite network.

Utsumi et al. [18] develop an analytic model for TCP Hybla for steady state
throughput and round-trip time over satellite links. They verify the accuracy
of their model with simulated and emulated satellite links (capacity 8 Mb/s,
RTT 550 ms, and packet loss rates up to 2%). Their analysis shows substantial
improvements to throughput over that of TCP Reno for loss rates above 0.0001%

Our work extends the above with comparative performance for four TCP
congestion control algorithms on an actual, commercial satellite network.

3 Methodology

We setup a testbed, measure network baseline loss and round-trip times, serially
bulk-download data using each algorithm, and analyze the results.

3.1 Testbed

We setup a Viasat satellite Internet link so as to represent a client with a “last
mile” satellite connection. Our servers are configured to allow for repeated tests
and comparative performance by consecutive serial runs with all conditions the
same, except for the change in TCP congestion control algorithm.

Our testbed is depicted in Fig. 1. The client is a Linux PC with an Intel i7-
1065G7 CPU @ 1.30 GHz and 32 GB RAM. There are four servers, each with a
different TCP congestion control algorithm: BBR, Cubic, Hybla and PCC. Each
server has an Intel Ken E312xx CPU @ 2.5 GHz and 32 GB RAM. The servers
and client all run Ubuntu 18.04.4 LTS, Linux kernel version 4.15.0.

The servers connect to our University LAN via Gb/s Ethernet. The campus
network is connected to the Internet via several 10 Gb/s links, all throttled to 1
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Fig. 1. Satellite measurement testbed.

Gb/s. Wireshark captures all packet header data on each server and the client.
The client connects to a Viasat satellite terminal (with a modem and router)
via a Gb/s Ethernet connection. The client’s downstream Viasat service plan
provides a peak data rate of 144 Mb/s.

The terminal communicates through a Ka-band outdoor antenna (RF ampli-
fier, up/down converter, reflector and feed) through the Viasat 2 satellite2 to the
larger Ka-band gateway antenna. The terminal supports adaptive coding and
modulation using 16-APK, 8 PSK, and QPSK (forward) at 10 to 52 MSym/s
and 8PSK, QPSK and BPSK (return) at 0.625 to 20 MSym/s.

The Viasat gateway performs per-client queue management, where the queue
can grow up to 36 MBytes, allowing a maximum queuing delay of about 2 s at
the peak data rate. Queue lengths are controlled at the gateway by Active Queue
Management (AQM) that randomly drops 25% of incoming packets when the
queue is over a half of the limit (i.e., 18 MBytes).

The performance enhancing proxy (PEP) that Viasat deploys by default is
disabled for all experiments in order to assess congestion control performance
independent of the PEP implementation, and to represent cases where a PEP
could not be used (e.g., for encrypted flows).

3.2 Baseline

For the network baseline, we run UDP Ping3 from a server to the client continu-
ously for 1 week. This sends one 20-byte UDP packet every 200 ms (5 packets/s)
from the server to the client and back, recording the round-trip time for each
packet returned and the number of packets lost. Doing round-trip time mea-
surements via UDP avoids any special treatments routers may have for ICMP
packets.

3.3 Downloads

We compare the performance of four congestion control algorithms, chosen
as representatives of different congestion control approaches: loss-based Cubic,
2 https://en.wikipedia.org/wiki/ViaSat-2.
3 http://perform.wpi.edu/downloads/#udp.

https://en.wikipedia.org/wiki/ViaSat-2
http://perform.wpi.edu/downloads/#udp
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bandwidth-delay product-based BBR (version 1), satellite-optimized loss-based
Hybla and utility function-based PCC. The four servers are configured to pro-
vide for bulk-downloads via iperf34 (v3.3.1), each server hosting one of our
four congestion control algorithms. Cubic, BBR and Hybla are used without
further configuration. PCC is configured to use the Vivace-Latency utility func-
tion [12], with throughput, loss, and round-trip time coefficients set to 1, 10, and
2, respectively.

For all hosts, the default TCP buffer settings are changed on both the server
and client – setting tcp mem, tcp wmem and tcp rmem to 60 MBytes – so that flows
are not flow-controlled and instead are governed by TCP’s congestion window.

The client initiates a connection to one server via iperf, downloading 1 GByte,
then immediately proceeding to the next server. After cycling through each
server, the client pauses for 1 min. The process repeats a total of 80 times –
thus, providing 80 network traces of a 1 GByte download for each protocol over
the satellite link. Since each cycle takes about 15 min, the throughput tests run
for about a day total. We analyze results from a weekday in July 2020.

4 Analysis

4.1 Network Baseline

We start by analyzing the network baseline loss and round-trip times, obtained
on a “quiet” satellite link to our client – i.e., without any of our active bulk-
downloads. Table 3 provides summary statistics.

The vast majority (99%) of round-trip times are between 560 and 625 ms
(median 597 ms, mean 597.5 ms, std dev 16.9 ms). However, the round-trip times
have a heavy-tailed tendency, with 0.1% from 625 ms to 1500 ms and 0.001%
from 1700 to 2200 ms. These high values show multi-second round-trip times
can be observed on a satellite network even without any self-induced queuing.
There are no visual time of day patterns to the round-trip times.

In the same time period, only 604 packets are lost, or about 0.05%. Most of
these (77%) are single-packet losses, with 44 multi-packet loss events, the largest
11 packets (about 2.2 s). There is no apparent correlation between these losses
and the round-trip times (i.e., the losses do not seem to occur during the highest
round-trip times observed). Note, these loss rates are about 15x lower than the
reported WINDS satellite loss of 0.7% [17].

4.2 Representative Behavior

We begin by examining the TCP congestion control performance over time
for a single download representative of typical behavior for each algorithm for
our satellite connection. Figure 2 depicts the throughput, round-trip time and
retransmission rate where each value is computed per second from Wireshark
traces on the server.
4 https://software.es.net/iperf/.

https://software.es.net/iperf/.
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(a) CUBIC (b) BBR

(c) Hybla (d) PCC

Fig. 2. Stacked graph comparison. From top to bottom, the graphs are: through-
put (Mb/s), round-trip time (milliseconds), and retransmission rate (percent). For all
graphs, the x-axis is time (in seconds) since the flow started.

TCP Cubic illustrates typical exponential growth in throughput during start-
up, but exits slow start relatively early, about 15 s in where throughput is far
lower than the link capacity. Thus, it takes Cubic about 30 s to reach the expected
steady state throughput of about 100 Mb/s. During steady state (post 45 s) the
AQM drops enough packets to keep Cubic from persistently saturating the queue,
resulting in round-trip times of about 1 s. However, several spikes in transmission
rates yield corresponding spikes in round-trip times above 3 s and retransmission
rates above 20%.

TCP BBR ramps up to higher throughput more quickly than Cubic, but
this also causes high round-trip times and loss rates around 20 s as BBR over-
saturates the bottleneck queue. At steady state, BBR operates at a fairly steady
140 Mb/s, with relatively low loss and round-trip times about 750 ms since the
2x bandwidth-delay product BBR keeps in flight is below the AQM queue limit.
However, there are noticeable dips in throughput every 10 s when BBR enters its
PROBE RTT state. In addition, there are intermittent round-trip time spikes
and retransmissions from loss which occur when BBR enters PROBE BW and
increases its transmission rate for 1 round-trip time.
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TCP Hybla ramps up quickly, faster than does Cubic since it adjusts con-
gestion window growth based on latency, causing queuing at the bottleneck,
evidenced by the high early round-trip times. However, there are few retrans-
missions. At steady state Hybla achieves consistently high throughput, with a
slight growth in the round-trip time upon reaching about 140 Mb/s. Thereupon,
there is a slight upward trend to the round-trip time until the queue limit is
reached accompanied by some retransmissions.

TCP PCC ramps up somewhat slower than Hybla but faster than Cubic,
causing some queuing and some retransmissions, albeit fewer than BBR. At
steady state, throughput and round-trip times are consistent, near the minimum
round-trip time (around 600 ms), and the expected maximum throughput (about
140 Mb/s). The lower round-trip times are expected since round-trip time is used
by the PCC utility function.

4.3 Steady State

TCP’s overall performance includes both start-up and congestion avoidance
phases – the latter we call “steady state” in this paper. We analyze steady
state behavior based on the last half (in terms of bytes) of each trace.

Fig. 3. Steady state throughput distributions for 10%, 50%, 90% and mean.

For each algorithm, we compute steady state throughput in 1 s intervals,
extracting the 10th, 50th and 90th percentiles (and means) across all flows.
Figure 3 shows the boxplot distributions. The top left is the distribution for the
10th percentiles, the top right the 50th (or median), the bottom left the 90th
percentile and the bottom right the mean. Each box depicts quartiles and median
for the distribution. Points higher or lower than 1.4 × the inter-quartile range
are outliers, depicted by the circles. The whiskers span from the minimum to
maximum non-outlier. Table 1 shows the corresponding summary statistics.
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Table 1. Steady state throughput
summary statistics.

Algorithm Mean (Mb/s) Std Dev

BBR 112.9 12.2

Cubic 123.3 17.0

Hybla 130.1 17.2

PCC 112.6 17.9

Table 2. Steady state throughput
effect size (versus Cubic).

t(158) p Effect Size

BBR 4.44 <.0001 0.7

Hybla 2.51 0.0129 0.4

PCC 3.88 0.0002 0.6

From the graphs, at the 10th percentile BBR has lowest distribution of steady
state throughput. This is attributed to its reduced throughput during the round-
trip time probing phase, which, if there is no change to the minimum round-trip
time, triggers every 10 s and lasts for about 1 s. PCC’s throughput at the 10th
percentile is also a bit lower than Cubic’s or Hybla’s, possibly because PCC’s
reward for a low round-trip time can result in occasional under-utilization.

BBR, Cubic and Hybla all have similar median steady state throughputs,
while PCC’s is a bit lower.

BBR has the highest distribution of throughput at the 90th percentile, fol-
lowed by Cubic, Hybla and PCC. BBR’s estimation of the link bandwidth may
yield more intervals of high throughput than the other algorithms. Hybla’s 90th
percentile distribution is the most consistent (as seen by the small box), while
PCC’s is the least, maybe due to fuller queues and emptier queues, respectively
(see Table 4).

From the table, Hybla has the highest mean steady state throughput, followed
by CUBIC, and then BBR and PCC are about the same. BBR steady state
throughput varies the least, probably since the consistent link quality provides
for a steady delivery rate and round-trip time.

Since Cubic is the default TCP congestion control algorithm for Linux and
Windows servers, we compare the mean throughput for an alternate algorithm
choice – BBR, Hybla or PCC – to the mean for Cubic by independent, 2-tailed
t tests (α = 0.05) with a Bonferroni correction and compute the effect sizes.
An effect size provides a measure of the magnitude of difference – in our case,
the difference of the means for two algorithms. In short, effect size quantifies
how much the difference in congestion control algorithm matters. The Cohen’s
d effect size assesses the differences in means in relation to the pooled standard
deviation. Generally small effect sizes are anything under 0.2, medium is 0.2 to
0.5, large 0.5 to 0.8, and very large above 0.8. The t test and effect size results
are shown in Table 2. Statistical significance is highlighted in bold.

From the table, the mean steady state throughput differences compared to
Cubic are all statistically significant. BBR and PCC have lower steady state
throughputs than Cubic with large effect sizes. Hybla has a higher throughput
than Cubic with a moderate effect size.
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Figure 4 shows the round-trip times during steady state. The x-axis is the
round-trip time in seconds computed from the TCP acknowledgments in the
Wireshark traces, and the y-axis is the cumulative distribution. There is one
trendline for each algorithm. Table 4 shows the summary statistics.

Table 3. Baseline round-trip time
summary statistics.

Mean 597.5 ms

Std dev 16.9 ms

Median 597 ms

Min 564 ms

Max 2174 ms

Table 4. Steady state round-trip time
summary statistics.

Algorithm Mean (ms) Std Dev

BBR 780 125.1

Cubic 821 206.4

Hybla 958 142.1

PCC 685 73.1

During steady state, Hybla typically has round-trip times about 200 ms
higher than any other algorithm, likely because its aggressive congestion window
growth with high round-trip time yields more queuing delay. PCC has the lowest
and steadiest round-trip times, near the link minimum, likely because its util-
ity function rewards low round-trip times. BBR and Cubic are in-between, with
BBR being somewhat lower than Cubic and a bit steadier. Cubic, in particular,
has a few cases with extremely high round-trip times. Across all flows, about 5%
of the round trip times are 2 s or higher.

Fig. 4. Steady state round-trip time
distributions.

Fig. 5. Steady state retransmission dis-
tributions.

Figure 5 shows the retransmissions during steady state. The axes and data
groups are as for Fig. 4, but the y-axis is the percentage of retransmitted packets
computed over the second half of each flow.

From the figure, Cubic has the highest retransmission distribution and Hybla
the lowest. BBR and PCC are in-between, with BBR moderately higher but PCC
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having a much heavier tail. Hybla and PCC are consistently low (0%) for about
75% of all runs, compared to only about 20% for BBR and Cubic.

While higher round-trip times generally mean larger router queues and more
drops and retransmissions, the Viasat AQM does not drop packets until the
queue is above about 1 s of delay. This means if a flow’s round-trip times remain
under about 1.6 s, it can avoid retransmissions.

4.4 Start-Up

We compare the start-up behavior for each algorithm by analyzing the first 30 s
of each trace, approximately long enough to download 50 MBytes on our satellite
link. This is indicative of algorithm performance for some short-lived flows and
is about when we observed throughput growth over time “flattening” for most
flows.

The average Web page size for the top 1000 sites was around 2 MBytes as of
2018 [10], including HTML payloads and all linked resources (e.g., CSS files and
images). The Web page size distribution’s 95th percentile was about 6 MBytes
and the maximum was about 29 MBytes. Today’s average total Web page size
is probably about 5 MBytes [13], dominated by images and video.

Many TCP flows stream video content and these may be capped by the
video rate, which itself depends upon the video encoding. However, assuming
videos are downloaded completely, about 90% of YouTube videos are less than
30 MBytes [7].

Figure 6 depicts the time on the y-axis (in seconds) to download an object for
the given size on the x-axis (in MBytes). The object size increment is 1 MByte.
Each point is the average time required by a algorithm to download an object
of the indicated size, shown with a 95% confidence interval.

From the figure, for the smallest objects (1 MByte), Hybla and PCC down-
load the fastest, about 4 s, owning to the larger initial congestion windows they
both have (2.5x to 5x larger than either BBR or Cubic). In general, this larger
initial window means Hybla downloads small objects fastest followed by PCC
up to about 20 MBytes, then BBR and Cubic. After 20 MBytes, BBR down-
loads objects faster than PCC, perhaps because BBR exits its starting phase
later than does PCC – BBR exits when the delivery rate has not increased by
25% for 3 round-trip times and PCC exits when its utility function decreases.
For an average Web page download (5 MBytes), Hybla takes an average of about
4 s, PCC 7 s, BBR 10 s and Cubic 13 s. For 90% of all videos and the largest Web
pages (30 MBytes), Hybla takes about 8 s, BBR and PCC about twice that and
Cubic about thrice.

Table 5 presents the summary statistics for the first 30 s of each flow for each
algorithm. During start-up, Cubic has a low round-trip time, mostly because it
takes a long time to ramp up throughput. BBR has the highest round-trip time
despite not having the highest throughput – that is had by Hybla, despite having
a lower round-trip time than BBR. The relatively higher average round-trip time
for BBR may be because it keeps up to a bandwidth-delay product of packets
in queue. PCC has average throughputs and round-trip times, but the steadiest
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Fig. 6. Download time versus download object size.

round-trip times, possibly stabilized by the utility function rather than probing
for increased data rates (and causing variable amounts of queuing) as do the
other algorithms.

Table 5. Start-up summary statistics.

Algorithm Tput (Mb/s) RTT (ms)

Mean Std Dev Mean Std Dev

BBR 23.1 1.8 917 42.9

Cubic 16.6 0.3 757 22.3

Hybla 40.8 2.9 799 130.8

PCC 20.3 1.6 806 15.1

Table 6. Startup throughput effect
size (versus Cubic).

t(158) p Effect Size

BBR 31.9 <.0001 5

Hybla 74.2 <.0001 12

PCC 20.3 <.0001 3.2

Table 6 is like Table 2, but for start-up (the first 30 s). From the table, the
start-up throughput differences compared to Cubic are all statistically signifi-
cant. The effect sizes for comparing Cubic throughput to PCC, BBR and Hybla
throughputs are all very large.

4.5 Power

In addition to examining throughput and round-trip time separately, it has been
suggested that throughput and delay can be combined into a single “power”
metric by dividing throughput by delay [14] – the idea is that the utility of
higher throughput is offset by higher delay and vice-versa. Doing power analysis
using the mean throughput (in Mb/s) and delay (in seconds) for each algorithm
for start-up and steady state yields the numbers in Table 7 (units are MBits).
The algorithm with the most power in each phase is indicated in bold.
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Table 7. TCP Power – throughput ÷ delay

Algorithm Power (MBits)

Steady Start-up

BBR 145 25

Cubic 150 22

Hybla 136 51

PCC 164 25

During steady state, PCC is the most powerful based on high throughput
with the lowest round-trip times. Cubic is more powerful than BBR or Hybla
since it has good throughput and round-trip times, whereas BBR is deficient in
throughput and Hybla in round-trip times.

At start-up, Hybla has the most power by far, primarily due to its high
throughput. BBR, Cubic and PCC are similar at about half the power of Hybla.

5 Conclusion

Satellite Internet connections are important for providing reliable connectivity,
but to date, there are few published research papers detailing TCP congestion
control performance over actual satellite networks.

This paper presents results from experiments on a commercial satellite net-
work, comparing four TCP congestion control algorithms – the two dominant
algorithms, Cubic and BBR, a commercial implementation of PCC, and the
satellite-tuned Hybla. These algorithms have different approaches to congestion
control: loss-based (Cubic), bandwidth estimation-based (BBR), utility function-
based (PCC), and satellite-optimized (Hybla). Results from 80 downloads for
each protocol, interlaced so as to minimize temporal differences, provide for
steady state and start-up performance. Baseline satellite network results are
obtained by long-term round-trip analysis in the absence of our other traffic.

Overall, the production satellite link has consistent baseline round-trip times
near the theoretical minimum (about 600 ms) and very low (about 0.2%) loss
rates. For TCP downloads, during steady state, the four algorithms evaluated
– Cubic, BBR, Hybla and PCC – have similar median throughputs, but Hybla
and Cubic have slightly higher mean throughputs owing to BBR’s bitrate reduc-
tion when probing for minimal round-trip times (probing ∼10 s, each lasting for
∼1.5 s). During start-up, Hybla’s higher throughputs allow it to complete small
downloads (e.g., Web pages) about twice as fast as BBR (∼5 s versus ∼10),
while BBR is about 50% faster (∼10 s versus ∼15 s) than Cubic. Hybla is able to
avoid some of the high retransmission rates for Cubic and BBR, and to a lesser
extent PCC, caused by saturating the bottleneck queue. However, Hybla does
have consistently higher round-trip times, an artifact of continually having more
packets in the bottleneck queue, while PCC has the lowest. Combining through-
put and round-trip into one “power” metric shows PCC the most powerful at
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steady state, owing to high throughput and steady, low round-trip times, and
Hybla the most powerful during start-up owing to fast throughput ramp-ups.

Future work includes evaluating settings for TCP, such as the initial conges-
tion window, and algorithm-specific settings such as RTT0 for Hybla. Since BBR
does not always share equitably with Cubic [9], future work is to run multiple
flows over the satellite link. When BBR v2 is out of alpha/preview, we plan
to evaluate it, and QUIC [6], too. Other future work is to compare the algo-
rithms with a performance enhancing proxy (PEP), designed to mitigate the
high-latencies on the satellite link.

Acknowledgments. Thanks to Amit Cohen, Lev Gloukhenki and Michael Schapira
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mous reviewers and shepherd Srikanth Sundaresan for their thoughtful feedback on
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Abstract. In the near future, high quality VR and video streaming at
4K/8K resolutions will require Gigabit throughput to maintain a high
user quality of experience (QoE). IEEE 802.11ad, which standardizes
the 14GHz of unlicensed spectrum around 60 GHz, is a prime candidate
to fulfil these demands wirelessly. To maintain QoE, applications need
to adapt to the ever changing network conditions by performing quality
adaptation. A key component of quality adaptation is throughput pre-
diction. At 60GHz, due to the much higher frequency, the throughput
can vary sharply due to blockage and mobility. Hence, the problem of
predicting throughput becomes quite challenging.

In this paper, we perform an extensive measurement study of the pre-
dictability of the network throughput of an 802.11ad WLAN in down-
loading data to an 802.11ad-enabled mobile device under varying mobil-
ity patterns and orientations of the mobile device. We show that, with
carefully designed neural networks, we can predict the throughput of the
60 GHz link with good accuracy at varying timescales, from 10 ms (suit-
able for VR) up to 2 s (suitable for ABR streaming). We further identify
the most important features that affect the neural network prediction
accuracy to be past throughput and MCS.

1 Introduction

The past few years have witnessed the rise of a number of high-bandwidth,
latency-sensitive applications including virtual reality (VR), high-resolution
video streaming, live video streaming, and connected autonomous vehicles. Such
applications are characterized by stringent user-perceived quality of experience
(QoE) requirements, which in turn dictate high demand for the network perfor-
mance in terms of ultra high throughput and low latency. Further, such applica-
tions typically run on mobile devices, which require high network performance to
be supported wirelessly. For example, 8K resolution VR demands 1.2 Gbps [28] in
order to satisfy the 20 ms photon-to-motion latency, while live 4K video stream-
ing at 30 FPS demands 1.8 Gbps [16] for good user QoE.
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Such stringent demand for network performance could not be supported in
the past decade. However, the advent of mmWave technologies in recent years
has made such network performance within reach and holds the promise to
enable these demanding applications. For example, the IEEE 802.11ad WLAN
standard [20] governs the use of the unlicensed spectrum around 60 GHz and
supports 2 GHz wide channel to provide PHY data rates of up to 6.7 Gbps.

However, 60 GHz networks also come with higher dynamics due to their vastly
different propagation characteristics compared to sub-6GHz networks. In par-
ticular, due to the high attenuation loss at 60 GHz, directional communication is
needed, making the wireless link highly susceptible to human blockage and mobil-
ity [42,43]. Due to these challenges, a user watching a 360◦ video or playing a VR
game over a 60 GHz network may experience long periods of rebuffering/stalls
due to intervals of low to no connectivity [16,44,48]. For example, the user may
be moving around in such a way so as to face completely away from the AP and
thus self-block the link. For this reason, a 60 GHz WLAN often cannot be used
as a standalone technology to enable these high resolution applications, and the
legacy sub-6 GHz WiFi, which does not suffer from blockage and mobility, may
be required as a backup [16,42].

Fortunately, most of the network-demanding applications already have some
type of quality adaptation built-in, to deal with the network dynamics. For
example, adaptive bitrate (ABR) streaming has become a de facto mechanism
implemented in modern video streaming systems such as YouTube, backed by a
number of adaptive streaming standards introduced over the years [3,11,33,40].
In a nutshell, ABR streaming continuously monitors the network conditions and
adapts the content quality to optimize the QoE, which typically is a function of
the frame resolution, frame continuity, and rebuffering time. ABR streaming has
been applied in all the recent proposals for high-resolution 360◦ video stream-
ing [18,34,37] as well as live video streaming [16]. Similar adaptation techniques
have also been proposed for state-of-the-art mobile VR systems [26].

The very first task of network adaptation in such network-demanding appli-
cations is the estimation of network conditions for the next time interval. For
example, in video streaming, most ABR systems estimate the throughput in the
next time interval and choose a video quality level based on the throughput esti-
mate and playback buffer occupancy [39,41], as both can affect the QoE. More
recently, the use of deep learning (DL) to select the most appropriate quality
level has gained popularity [29,46] and ML-based ABR algorithms have been
shown to outperform traditional algorithms.

The unique characteristics of the 60 GHz links, however, make throughput
prediction in 60 GHz WLANs a much more challenging problem than in legacy
WLANs. Although throughput estimation/prediction has been studied in the
past in the context of sub-6GHz WLANs [22,23,38] and cellular networks [27],
no previous work, to our best knowledge, has studied throughput prediction at
60 GHz networks. In this work, we carry out the first measurement study of the
throughput predictability in 60 GHz WLANs using ML.
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There are two main challenges to conduct this measurement study. First,
in order to reliably train and test any ML model, we need to collect a sig-
nificant amount of data. Since 60 GHz WLANs are not widely deployed (the
first 802.11ad-enabled smartphone model was only launched in 2019), we cannot
collect data from real networks, as in previous ABR studies [29,46]. Further,
the only two phones that support 802.11ad, the ASUS ROG Phone [5] and the
ASUS ROG Phone II [6], are not VR Ready; hence, we cannot perform real
VR experiments with volunteers, as in previous VR studies [26,45]. Thus, we
need to develop a methodology to collect traces in a controlled environment
efficiently and in an automated way, in order to obtain a large amount of data
while covering a wide variety of realistic mobility patterns. To meet these con-
flicting requirements, we mounted the 802.11ad phone on a programmable 3-axis
motion controller typically used by professional photographers. Using this setup,
we collected more than 100 h of traces while running different applications under
random mobility patterns. Second, unlike in previous works, which make pre-
dictions only on coarse-grained timescales, e.g., in the order of a few seconds for
ABR video streaming [46,47], we study throughput prediction at timescales as
fine as 10 ms, which are needed by some of the demanding applications such as
VR. To support throughput prediction at such fine timescales, we need ML mod-
els that strike a good balance between being accurate as well as being lightweight
enough to run on mobile devices within such short timescales. To overcome this
challenge, we started with a neural network model previously shown to work well
at the 2-s timescale [46], and performed multiple iterations of grid search on the
two configuration dimensions (number of layers and number of nodes) to find
the smallest configuration, beyond which the performance increase is marginal,
to derive a model configuration that balances accuracy and inference latency.
We also considered a recurrent neural network (RNN) model, Long Short Term
Memory (LSTM), which is suitable for processing time series data, as is the
case with throughput prediction. We again went through configuration search to
arrive at a cost-effective LSTM model for our throughput prediction problem.
We then experimentally compared both models throughout our measurement
study.

In summary, our work makes the following contributions.

– We conducted the first measurement study of the throughput predictability
of a 60 GHz WLAN to a mobile device. The dataset is publicly available [1].

– We tuned the parameters of state-of-the-art throughput-prediction DNNs to
strike a balance between prediction accuracy and lightweightness usable for
online throughput prediction. Our two models run in 0.41 ms and 4.02 ms on
the ASUS ROG Phone II and require less than 4 MB of memory.

– We found that TCP throughput prediction in static scenarios is highly accu-
rate for 40 to 2000 ms, with 95th percentile error ranging between 10.6% for
40 ms and 5.7% for 2 s. For 10–20 ms, the accuracy drops but still remains at
satisfactory levels.
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– However, the accuracy drops in random mobility scenarios, typical of real
applications. The 95th percentile error increases to 38.1% for 10 ms and 19.4%
for 2 s timescales.

– We performed a feature selection study and found that only a few features
are important to make accurate throughput predictions. At timescales smaller
than 100 ms, past throughput is the most important, but for larger timescales,
MCS becomes more useful.

– Our study suggests that VR apps should be conservative in the use of through-
put prediction. In particular, at the 10 ms timescale the prediction error is
above 10% for 40% of the time, and the 95th percentile prediction error is
38%.

2 Experimental Methodology

Devices. We used a Netgear Nighthawk X10 Smart WiFi router [12] and an
ASUS ROG Phone II [6] for our measurements. The Netgear router has a 10-
Gigabit SFP+ Ethernet port, which we use to connect to a powerful desktop act-
ing as the server in our experiments. The ASUS ROG Phone II has an octa-core
Snapdragon 855 Plus processor with a maximum CPU frequency of 2.96 GHz,
a 6000 mAh battery, and an 8 GB RAM, and runs the Android OS 10. Both
devices support all 12 802.11ad single carrier MCSs, yielding theoretical data
rates up from 385 Mbps to 4.6 Gbps. However, similar to previous studies using
laptops as 802.11ad clients [16,35,36], the maximum TCP throughput is limited
to 1.65 Gbps in practical scenarios.

Fig. 1. Mobility experi-
ments setup

Experimental Setup and Trace Collection. In
all our experiments, except for those with real appli-
cations in Sect. 3.4, we used nuttcp [13] with the
default CUBIC congestion control to generate back-
logged TCP traffic from the server to the phone
and logged throughput every 10 ms. We devel-
oped an Android app that runs on the phone
and logs sensor and link state information. This
information is used as input in the ML models,
described in Sect. 2. Specifically, the app uses the
Android Sensor API [4] to log information from the
TYPE ROTATION VECTOR/TYPE GAME ROTATION VECTOR sensors, which report the
phone’s rotation angle in the azimuth and pitch dimensions (Fig. 1), and from
the accelerometer (TYPE ACCELEROMETER) sensor, which gives the acceleration of
the phone (in m/s2) on the x-, y-, and z-axis. Sensor data are logged every 10
ms. The app also logs 60 GHz link information reported by the wil6210 driver
on the phone every 20 ms. This includes the MCS used by the AP for data trans-
mission, link quality estimators (SQI, RSSI), the link status (OK, RETRYING,
FAILED), and the selected beamforming sectors.
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Since 60 GHz WLANs are not widely deployed, we cannot collect data from
real networks, as in previous ABR studies over the Internet [29,46]. In addi-
tion, our phone is not VR Ready and we cannot perform real VR experiments
with volunteers, as in previous VR studies [26,45]. Hence, we used the following
methodology to collect a large amount of data, while covering a wide variety
of realistic mobility patterns in a controlled environment efficiently and in an
automated way. For all our experiments, we kept the phone in a Google Card-
board [9] headset at a distance of 4 m from the AP, to emulate a realistic signal
propagation environment. For the experiments involving mobility, we mounted
the headset on a Cinetics Lynx 3-Axis Slider [7], used by professional photogra-
phers (Fig. 1). This setup enabled us to perform full 360◦ rotation in the azimuth
and pitch dimensions at a speed of up to 48◦/s and translational motion of up to
1 m. We used the Dragonframe software [8] to program custom mobility patterns
(e.g., emulating a user playing a VR game or watching a 360◦ video). Using this
methodology, we collected over 100 h of traces.

Trace Processing. Applications have diverse requirements on the timescale
of throughput prediction. For example, VR applications need to predict the
throughput in the window of the next tens of milliseconds. On the other end of
the spectrum, video streaming applications usually fetch video chunks of several
seconds in length and therefore need to predict the average throughput in the
window of the next few seconds. As such, we study the throughput predictability
over 802.11ad covering the full range of practical timescales, including timescales
of 10 ms, 20 ms, 40 ms, 100 ms, 400 ms, 1000 ms, and 2000 ms.

To support the above study of multiple timescales, we always log through-
put samples at the finest timescale, i.e., every 10 ms, and then offline convert
the logged throughput into multiple coarser timescales, by combining consecu-
tive samples using their mean value. For example, to obtain 20 ms traces, every
2 adjacent data points are combined. For all other features, which consist of
categorical values, and are not meaningful when averaged, we consider the last
data point in each window. In addition, the last value in the window can more
accurately reflect the up-to-date state of the feature. To make a consistent com-
parison of throughput predictability across different timescales, we always use
the first 15,000 data points for training, and the following 3,000 for testing.

Machine Learning-Based Prediction. Recent work has shown that simple
DNN can predict throughput well at the 2-s timescale [46]. We therefore focus
on a number of DNNs for making throughput predictions. In addition to pre-
diction accuracy, we also need the DNN to be lightweight so that it can be
used in even the most-latency sensitive applications, such as VR, when running
on mobile devices. We experimented with three neural networks. For each net-
work, we performed multiple iterations of grid search on the two configuration
dimensions (number of layers and number of nodes) to find the smallest config-
uration, beyond which the performance increase is marginal, to derive a model
configuration that balances accuracy and inference latency.
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Fig. 2. Throughput at different azimuth
angles.

Fig. 3. Throughput timeline within the
FoV (0◦) at different timescales.

BP8 : a fully-connected neural network with 3 hidden layers, each of 40 neurons.
It takes as input the actual throughput in the past 8 windows, pose information
(azimuth and pitch) in the past 1 window, and link layer information (MCS,
transmit beamforming sector, link status, SQI, and RSSI) in the past 1 window.

RNN8 : a recurrent neural network with 3 hidden layers, each with 20 neurons.
It takes as input the actual throughput, pose information, and link layer infor-
mation in the past 8 windows.

RNN20 : same as RNN8, but takes information in the past 20 windows as input.
We also experimented with the BP8 model to take as input all information

in the past 8 windows like RNN8, but the results were very similar.
The neural network outputs the probability distribution (PD) of the through-

put in the current window Tt. The PD P1, ..., P21 is over 21 bins of throughput in
Mbps: B1 = [0, 50), ..., B21 = [1950, 2000]. We calculate the expected throughput
based on the PD as the prediction output:

Throughput = 0 × P1 +
20∑

i=2

median(Bi) × Pi + 2000 × P21 (1)

Accuracy Metrics. We evaluate the performance of the throughput prediction
models in terms of 3 metrics: (i) RMSE : The root mean squared error between
the prediction and the actual throughput; (ii) ARE95 : The absolute relative
error of the prediction at the 95% percentile; and (iii) PARE10 : The percentage
of predictions with absolute relative error below 10%. To gain insight into which
input features are the most useful for a high prediction accuracy, we also run a
feature pruning algorithm which ranks the importance of the features.

3 Results and Analysis

In this section, we present the results using our neural network models. We
consider three scenarios: (i) static scenarios, where the phone is fixed at a given
azimuth and pitch at a distance of 4 m in front of the AP, (ii) random mobility
scenarios, where the phone simultaneously moves along all three dimensions
(azimuth, pitch, slide) at different speeds, and (iii) real application scenarios,
where we use real application traces – VR and ABR video streaming – instead
of backlogged TCP traffic generate by nuttcp, under random mobility.
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3.1 Impact of the Phased Array Field of View

Practical phased arrays used by COTS devices have a limited angular coverage
area on the receiving end, called field-of-view (FoV) in [44], outside of which
throughput drops sharply. Previous studies using 802.11ad APs and laptops [35,
44] showed that the FoV is around 170◦. We begin our study by measuring the
throughput when the AP stays within/outside the phone’s FoV. We place the
phone facing the AP from a distance of 4 m, and rotate it to change its azimuth
with respect to the AP. Our results in Fig. 2 show that, when the azimuth
is within (−60◦, 60◦), the average throughput is always ∼1.5 Gbps. Once the
azimuth moves outside this region, the throughput drops below 1 Gbps and
becomes 0 for angles greater than ±90◦. Hence, the FoV is even smaller in the
case of these first generation 802.11ad smartphones. In the rest of the paper we
focus on predicting throughput when the AP is within the phone’s FoV.

Interestingly, Fig. 3 shows that throughput can vary significantly over time
even within the FoV, especially at fine timescales. At the 10 ms timescale, the
throughput varies between 1 Gbps and 1.8 Gbps and sometimes drops even
below 500 Mbps. Such large variations are caused by the 802.11ad MAC layer
mechanisms, including the periodic beaconing by the AP every 100 ms, beam-
forming between the phone and the AP (triggered periodically, every 3 s, as well
as in case of missing ACKs), and the interplay between beamforming and rate
adaptation [35], all of which make make throughput prediction quite challenging
at fine timescales. At the coarser timescales of 100 ms and 2000 ms though, the
variations are averaged out and throughput appears much smoother.

3.2 Static Scenarios

We first explore the throughput predictability when the phone is stationary. In
this section, we aim to understand how well we can predict throughput changes
caused by channel variations and MAC layer mechanisms only.

We collected 5 static traces, listed in Table 1, by placing the phone at various
azimuth and pitch angles with respect to the AP. We trained and evaluated
a separate model on each trace. Since the phone is static for the duration of
each trace, we do not use the azimuth, pitch, and link status data in training
and testing our models as these features remain constant. The results shown in
Figs. 4a–4c are averaged over the 5 traces.

Table 1. Static traces collected

Trace # Azimuth Pitch Length Average Throughput

Static 1 0◦ 0◦ 10 hr 1588 Mbps

Static 2 30◦ 0◦ 10 hr 1575 Mbps

Static 3 60◦ 0◦ 10 hr 1568 Mbps

Static 4 0◦ 40◦ 10 hr 1566 Mbps

Static 5 0◦ −40◦ 10 hr 1585 Mbps
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Fig. 4. Model performance for static traces. The input for timescales above 100 ms
does not include throughput, see Feature Selection in this section.

Figures 4a, 4b, 4c show that the accuracy with all three models and for all
three metrics generally improves as we move from finer to coarser timescales.
Overall, the accuracy is very high at timescales coarser than 40 ms, where there
are no significant throughput variations, as we saw in Fig. 3. The RMSE remains
below 100 Mbps, the ARE95 metric remains below 12%, and the PARE10 metric
above 92% at those timescales. For the fine timescales (10–20 ms) required for
VR applications, the 95th percentile of the error is higher, 14–16% at 20 ms
and 23–27% at 10 ms, due to the the large throughput variations at such short
timescales, which we observed in Fig. 3. Nonetheless, the RMSE remains at
satisfactory levels (122–175 Mbps) and 78–88% of the prediction errors are still
lower than 10%. Overall, DNN models can make accurate throughput predictions
at all timescales in static conditions.

When we compare the three DNN models, we observe that there are no
significant differences among them. The RNN models perform slightly better in
terms of the RMSE and ARE95 metrics at 10 ms, but the BP model becomes
slightly more accurate at coarser timescales. All three models perform similarly in
terms of the PARE10 metric. Between the two RNN models, RNN8 outperforms
RNN20 at all timescales except for 10 ms.

To study the impact of the different angles that the phone is kept at within
the FoV, we picked the best model for each angle at each timescale and plotted
the RMSE in Fig. 4d. For timescales up to 100 ms, the prediction is most accurate
when the phone is facing exactly towards the AP (0◦ azimuth, 0◦ pitch). At
coarser timescales, there is no clear trend. In most cases, the 60◦ azimuth trace
has the worst RMSE, which is most likely due to the fact that at 60◦ azimuth the
AP is very close to the edge of the phone’s FoV (Sect. 3.1) and hence experiences
higher throughput variations. In terms of the pitch, +40◦ has lower RMSE for
some timescales but −40◦ for other timescales. Overall, in static conditions, the
model performance is not affected significantly by the azimuth or pitch angles.
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Feature Selection. To understand which of these features are more useful in
the prediction, we perform the following iterative feature removal exercise.

We start with all N features. For each feature, we temporarily remove it from
the input, and train a model using the remaining N−1 features. We then compare
the resulting models and identify the least useful feature among the N features
as the one removing which results in the model with the least prediction accuracy
reduction. We permanently remove this feature from the input, and iteratively
perform the same procedure on the remaining N − 1, N − 2, N − 3... features,
until all but one features have been removed. Effectively, this algorithm ranks
the features by their importance to the model’s accuracy. We run this algorithm
for all the timescales. The results, averaged over all 5 datasets in Table 1, are
shown in Table 2 only for the BP8 model and 3 representative timescales (10 ms,
100 ms, and 2000 ms) due to the page limit.

At the 10 ms timescale, we observe that removing SQI, MCS, and Tx Sector
marginally improves the RMSE. However, when we remove RSSI (and hence
we only use the past throughput), the RMSE increases by ∼5 Mbps. Thus,
at the 10ms timescale, the past throughput is the most important feature that
contributes to the model’s accuracy followed by RSSI.

Surprisingly, at the coarser timescales of 100 ms and 2000 ms, we observe
that throughput actually is the least important feature. In particular, at 2000 ms,
excluding throughput from the input features improves the RMSE by 6 Mbps. On
the other hand, MCS, which was not very important at the 10 ms timescale, now
becomes the most important feature. In fact, we observed that for all timescales
less than 100 ms, throughput is the most important feature while for all coarser
timescales MCS becomes the most important feature.

Table 2. Features selection for static traces

Removal step 10 ms 100 ms 2000 ms

Removed RMSE Removed RMSE Removed RMSE

– 175.01 – 71.75 – 57.38

1 SQI 174.33 Throughput 70.26 Throughput 51.56

2 MCS 174.34 Tx Sector 69.47 RSSI 51.85

3 Tx Sector 173.79 SQI 70.46 Tx Sector 52.80

4 RSSI 178.17 RSSI 70.17 SQI 52.28

Last feature Throughput MCS MCS

3.3 Mobile Scenarios

In this section, we explore the impact of realistic smartphone motion patterns
(typical with applications like VR and 360◦ video streaming) on throughput
prediction. We collected a 10 h long trace, where the phone simultaneously moved
in the azimuth, pitch, and slide dimensions at different speeds. In the azimuth
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dimension, the phone moved in the [−60◦, 60◦] range at various speeds between
10◦/s and 40◦/s. In the pitch dimension, the phone moved in [−40◦, 40◦] range
at speeds between 6◦/s and 20◦/s. These speeds were picked as they represent
typical VR motion speeds [26,48]. In the slide dimension, the phone moved at
a speed of 0.05 m/s (the maximum speed supported by the Cinetics slider). We
found that, at such low speeds, translational motion along the 1 m slider has
no impact on throughput. Hence, we do not include the y-coordinate or the
acceleration along the y-axis in our feature set.

Fig. 5. Model performance for random motion traces. The input for timescales above
100 ms does not include throughput.

As expected, the prediction accuracy under mobility worsens (Fig. 5) with all
three models and for all three metrics compared to the static scenarios (Figs. 4a,
4b, 4c). The RMSE ranges from 92–258 Mbps (vs. 50–175 Mbps in Fig. 4a), the
ARE95 metric ranges from 12–40% (vs. 5–27% in Fig. 4b), and the PARE10 met-
ric from 59–94% (vs. 78–98% in Fig. 4c). Nonetheless, prediction at timescales of
100 ms or higher retains high accuracy. Interestingly, we observe a “sweet spot”
at 400 ms with respect to all three metrics, which was not present in the static
scenarios. This suggests that motion introduces an interesting trade-off between
the length of history as input, and the prediction window in the future.

We now look at the results at the two ends of the spectrum. At timescales of
1 and 2 s, corresponding to video streaming applications, the accuracy remains
at satisfactory levels; the 95th percentile of the error is below 20% and about
89% of the errors are lower than 10%. On the other hand, the accuracy drops
significantly at VR timescales, 10 and 20 ms. In particular, the ARE95 metric
ranages between 38–40% and 26–29%, and the PARE10 metric is below 60% and
70%, respectively.

Finally, when we compare the accuracy of the three models, we observe that
the RNN models perform slightly better for up to 40 ms and the BP model
performs better at coarser timescales. However, the difference in the performance
among the three models is even smaller compared to the results in Fig. 4.
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Feature Selection. Table 3 shows the feature selection results in random mobil-
ity scenarios. Similar to the results in Table 2, we observe that throughput is the
most important feature for only the 10 ms and 20 ms timescales, while for all
coarser timescales, MCS becomes the most important feature. At 10 ms, RSSI
remains the second most important feature, same as in Table 2, while the phone’s
pitch and azimuth interestingly do not contribute much to the accuracy. In con-
trast, at 2000 ms, azimuth and pitch are the most important features after MCS.
At 100 ms, the contribution of all features other than throughput and MCS is
marginal.

Table 3. Features selection for random motion traces

Removal step 10 ms 100 ms 2000 ms

Removed RMSE Removed RMSE Removed RMSE

– 250.98 – 117.30 – 110.39

1 MCS 258.18 Throughput 110.34 Throughput 98.56

2 Pitch 252.39 RSSI 108.50 RSSI 97.57

3 Azimuth 254.36 SQI 107.62 Link Status 97.87

4 SQI 255.01 Azimuth 108.01 Tx Sector 99.69

5 Link Status 256.10 Link Status 109.12 SQI 101.69

6 Tx Sector 261.69 Tx Sector 109.95 Pitch 105.32

7 RSSI 270.20 Pitch 112.67 Azimuth 112.81

Last feature Throughput MCS MCS

3.4 Applications

To further understand the throughput predictability using real applications,
which may not always be sending backlogged traffic, we collected throughput
traces for 2 applications: VR and video streaming. Both applications stream
video frames encoded with H.264 compression over TCP. For both traces, the
phone moved along all 3 dimensions at various speeds as described in Sect. 3.3.
In the case of VR, we pre-encoded a 60 FPS Viking Village scene at 8K and
we wrote a client app that requests frames from a local server. Assuming that
the VR application wants to make quality adaptation decisions on a per-frame
basis, it would require a throughput prediction every 16 ms at a frame rate of
60 FPS. We considered 8K VR, because 4K VR does not demand throughput
more than 300 Mbps, which can be supported even by legacy WiFi [24,30]. In
the case of streaming, we used a 4K, 50 FPS video from the Derf’s collection
under Xiph [2], encoded at a bitrate of 1.3 Gbps, and used the same app to
request video chunks of 2 s from the local server, in order to emulate ABR video
streaming applications, which generally download chunks of 2 s and would need
throughput predictions at that timescale.
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The performance of the three models is shown in Table 4. For VR, in terms
of the ARE95 and the PARE10 metrics, the performance is similar to what was
shown in Sect. 3.3 at a 20 ms timescale, while the RMSE is ∼156–164 Mbps. We
conclude that 60 FPS VR applications can benefit from throughput prediction
only if they use it conservatively and can tolerate a certain margin of error.

Table 4. Model performance for real applications

VR ABR

BP8 RNN8 RNN20 BP8 RNN8 RNN20

RMSE 156.78 163.65 163.66 114.54 115.77 113.87

ARE95 29.08% 28.82% 27.92% 18.15% 17.72% 17.58%

PARE10 72.79% 70.52% 69.24% 86.93% 86.10% 87.03%

For ABR video streaming, as expected, the models perform better due to
the much coarser timescale. With ∼86–87% of the errors being within 10% of
the actual throughput and having a prediction error of ∼17–18% at the 95th
percentile, ABR video streaming applications can use these predictions with
much more confidence to ensure a high user QoE.

3.5 Prediction Time (NN Inference Delay)

We wrote an Android application that uses the jpmml-evaluator [10] and tensor-
flow [14] modules to make predictions for BP8 and RNN(s), respectively, and ran
it on the phone’s GPU to measure the inference delay and memory consumption
for each model. We ran each model 100 times and the averaged inference delay
and memory consumption results are shown in Table 5. We observe that BP8
runs in less than 0.5 ms and thus can be used by both VR and streaming appli-
cations. In contrast, the RNN models run in 2–4 ms and can only be used for
streaming applications. The memory consumption is negligible for all 3 models.

Table 5. Inference time and memory consumption of the 3 NN models

Model Inference delay (ms) Memory consumption (MB)

BP8 0.41 3.71

RNN8 1.94 0.20

RNN20 4.02 0.29

4 Related Work

Throughput Prediction Over the Internet. Traditional ABR algorithms
were classified into two categories: rate-based [21,25,31] and buffer-based
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[19,39]. Recently, control-theoretic, data-driven approaches, using Model Pre-
dictive Control (MPC), e.g., [15,41,47], became the state-of-the-art approach to
ABR, as they combine the use of both throughput prediction and playback buffer
occupancy. More recent studies [29,46] have shown that DNN-based algorithms
outperform all previous approaches. Our work differs from [29,46] in two key
ways. First, we focus on 60 GHz throughput prediction, thus making predictions
at the Gbps scale compared to the Mbps scale in those works. Second, while
those works make predictions at timescales of a few s, we also look at timescales
as low as a few ms, for low latency applications such as VR.

Throughput Prediction Over Wireless Networks. Past works focused
on throughput prediction for sub-6GHz mobile networks at much coarser
timescales [17,27]. Lumos5G [32] is a recent work that explores using ML to
predict mmWave 5G throughput. However, since cellular networks have very
different characteristics from WLANs, the ML models developed in [32] have
completely different input features (e.g., geographic coordinates, cellular tower-
related features, handoffs, etc.) compared to our models and, similar to previous
works, target much longer timescales, from a few seconds up to a few days.
Recent works on mobile 360◦ video streaming [18,34] consider timescales of a
few seconds, similar to their Internet counterparts. Firefly [26] is a recently pro-
posed approach for mobile VR that performs adaptation at the frame level (a
few ms). However, Firefly modifies the AP firmware to obtain accurate avail-
able bandwidth statistics. In contrast, we consider client-side adaptation and
our prediction models only use features readily available in the user space.

High-Bandwidth, Latency-Sensitive Applications Over 60GHz. The
work in [44] was the first to show that performance drops drastically when the
AP falls outside the client’s FoV. Based on this observation, the authors pro-
posed a binary predictor to predict whether the AP will fall inside the client’s
FoV in the next 500 ms. Our work showed that throughput variations are non-
negligible at fine timescales, even for static clients. The work in [48] argues that
typical VR/Miracast motion is highly unpredictable and can lead to large and
sudden drops in signal quality. The work in [16] used the average throughput of
the previous 40 ms window to predict the average throughput of the next 30 ms
window and showed that it leads to prediction errors of up to 500 Mbps even in
static conditions. Based on this result, the authors concluded that throughput
cannot be predicted in 60 GHz WLANs. In contrast, our study shows that it is
feasible to use 60 GHz throughput prediction for quality adaptation, especially
for video streaming applications (the target application of [16]).
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Viewport Prediction. Several recent works have looked at viewport prediction
for 360◦ video streaming, e.g., [18,34,37]. Those works are orthogonal to our
work, as we show from our feature selection study that the user’s angular position
with respect to the AP has little to no correlation with the resulting throughput
when the AP falls within the client’s FoV.

5 Conclusion and Future Directions

We presented the first measurement study of the throughput predictability on
802.11ad-enabled mobile devices. Our study shows the throughput in general
can be predicted well in real time using carefully designed small neural net-
work models, and further has several implications to the predictor design. First,
our feature selection study shows that using scaled throughput history (keep-
ing the ratio of the history window and the prediction window constant) helps
prediction accuracy at the 10 ms timescale but hurts at the 2000 ms timescale.
This suggests that a new design that limits the length of history as the model
input can potentially achieve good accuracy for all timescales. Second, our fea-
ture selection study further shows that, for different timescales, using different
sets of features gives the best prediction accuracy. This suggests that a single
neural network for use in different applications can potentially improve its pre-
diction accuracy by adapting the set of features according to application latency
requirements. Further, in this work we performed all our experiments in a single
environment. An interesting avenue for future work is to study the impact of
different environments on throughput predictability.
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Abstract. Most desktop applications use the network, and insecure
communications can have a significant impact on the application, the
system, the user, and the enterprise. Understanding at scale whether
desktop application use the network securely is a challenge because the
application provenance of a given network packet is rarely available at
centralized collection points. In this paper, we collect flow data from
39,758 MacOS devices on an enterprise network to study the network
behaviors of individual applications. We collect flows locally on-device
and can definitively identify the application responsible for every flow.
We also develop techniques to distinguish “endogenous” flows common
to most executions of a program from “exogenous” flows likely caused
by unique inputs. We find that popular MacOS applications are in fact
using the network securely, with 95.62% of the applications we study
using HTTPS. Notably, we observe security sensitive-services (including
certificate management and mobile device management) do not use ports
associated with secure communications. Our study provides important
insights for users, device and network administrators, and researchers
interested in secure communication.

1 Introduction

Most desktop applications make connections over the network to pull content,
check for a license, or save a resource. While encrypted communications were
once rare, Google recently reported that 95% of Chrome connection on Mac
platforms use HTTPS [1]. However, studies on TLS adoption have not accounted
for non-browser applications—the vast majority of networked software. Measur-
ing per-application network use requires a vantage point that can map network
traffic to the originating application. At a small scale, tools such as personal
firewalls can let an individual determine what sorts of connections applications
on their device are making, but are limited to a single device. Network-layer
telemetry tools like middleboxes can provide a higher-level view of desktop flows
but lose definitive context of the application responsible for the flow.

In this paper, we bridge these two viewpoints, bringing the local context
of observing an application making a connection but providing visibility across
c© Springer Nature Switzerland AG 2021
O. Hohlfeld et al. (Eds.): PAM 2021, LNCS 12671, pp. 531–546, 2021.
https://doi.org/10.1007/978-3-030-72582-2_31
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Fig. 1. Telemetry collected from a population of 39,758 MacOS devices contains
application-labelled netflow that is anonymized and enriched for further analysis.

39, 758 MacOS devices in an enterprise setting. At scale, we run into challenges
when examining the traffic from even a single application across many hosts, as
some connections are made on behalf of the user, while others are part of what an
application does natively. For example, a word processor may check for updates
while simultaneously loading embedded content in a particular document. The
software developer is only responsible for one of these network uses, so differen-
tiating these two classes of behaviors is critical to properly evaluate the security
behavior of the application. Our perspective is interesting because we are able
to study a large population of hosts, with a vantage point into each host in the
population that can attribute traffic back to a specific process. Studying this as
a population of hosts allows us to reasonably and confidently make claims about
an application’s behavior, while in individual studies we could observe point data
but would be limited to describing an instance of an application. These measure-
ments and insights can provide valuable context for administrators and incident
responders to understand expected behaviors of applications on managed devices
and for application developers to better understand the holistic connections their
applications are making. Our work makes the following contributions:

– We perform the first large scale study of application network behavior on
desktop applications

– We demonstrate and evaluate a technique to differentiate user-triggered and
application-endogenous behavior

– We examine listening ports, reputation of over 282,000 domains, and over
three billion connections to evaluate the attack surface of 143 desktop appli-
cations

– We investigate popular applications such as Microsoft Office and MacOS dae-
mons that do not entirely use secure communication channels.

2 Methods

Figure 1 shows a high-level view of our phased methodology and analysis
pipeline. Our goal is to combine our data sources while maintaining the
anonymity of any users, use accurate matching techniques, and deal with the
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challenges of combining billion-row datasets. We begin in Phase 0 with a popu-
lation of around 39,000 IT-managed devices, all of which are desktops or laptops.
These devices belong to a Fortune 500 company and we consider these to be rep-
resentative of a typical enterprise managed device. We are interested in two types
of collected telemetry: application and OS configuration (1a) and application-
labelled flow data (1b). Application and OS configuration contains information
about currently installed processes on the system, OS version information, and
more. Application-labelled flow data contains metadata about connections made
on behalf of some application on the device. In their raw form, both of these
data sources contain fields that include potential human-identifying information
such as usernames, machine names, and MAC addresses. Phase 2 removes or
encrypts all human identifiers. Phase 3 consists of a data source that has pas-
sively collected DNS queries generated by all devices on the network. Phase 4
transforms and enriches the now anonymized data feeds from 1a and 1b. Flow
data is first enriched with fields indicating the OS family of the device that gener-
ated the traffic, and if the source and destination IPs are each private or public.
Then, the flow data is joined with the (domain,resolved ip) pairs observed
from the passive DNS data, recovering the domains associated with each flow.
Finally, using the recovered domain we check against blocklists, popularity, and
reputation sources and look for any matches at the second-level domain.

In Phase 5 we apply filters to the enriched flow data and configuration
data. We restrict both datasets to only MacOS devices and only consider traf-
fic from applications installed on more than 5% of the device population. We
further restrict flows to outbound connections (i.e., a device talking to some
remote server). Finally, we make a determination if a particular connection for
an application is common across installs of that application, and restrict analysis
to those that we believe to be common. We performed the data processing and
analysis on a large Spark [2] cluster. In total, our pipeline and analysis took
approximately 4,200 CPU hours and 37,000 GB memory hours.

2.1 Data Collection and Characterization

Application Labelled Flows (Phase 1b): Our primary dataset is telemetry
from Cisco AnyConnect VPN’s Network Visibility Module (NVM) [3]. This tool
records all network traffic from a host and critically, the process associated with
the traffic. The records generated by NVM include the source and destination IP
address, source and destination port, flow size and duration, as well as the name
and SHA256 hash of the process binary associated with the flow. We use one
day’s telemetry collected from NVM on a large enterprise network in September
2020, which is about 320 GB of compressed JSON. This contains records from
39,758 hosts, 143 unique applications, and 3,211,451,385 total flows. This dataset
contains only network telemetry, so an application that generates no network
traffic is not represented. There were two challenges with using this data. First,
flows are bidirectional but do not indicate if the flow originated on the laptop
or a remote server. We address this in Subsect. 2.3. Second, flows frequently do
not have a domain name associated with the destination, so we use the observed
passive DNS data to recover domains from IP addresses.
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Application and OS Configuration (Phase 1a): We use OSQuery [4] to
learn about the state of a device, its installed applications, and recent network
activity. Our dataset contains the query results from 35,678 managed endpoints
from a single day in September 2020.1

PassiveDNS (Phase 3): At each recursive DNS resolver on the network, there is
a passive collector that records logs of DNS queries and responses. Because these
collectors are internal to the network, observing a query/response means that a
device inside the network made a query for some specific domain that had a spe-
cific IP in the response. All devices in our population are configured to use these
DNS resolvers. We use logs collected from the same 24 h window as the application-
labelled flows. This consists of 9.5 billion query/response pairs, approximately
115 Gbof compressedParquet [5].Weuse this data to perform reverseDNS lookups
to recover the domains of an observed IP in the flow metadata.

Additional Sources of Enrichment (Phase 4): We use the Snort IP Block-
list [6] and a paid commercial feed of domains associated with spam campaigns
as sources of maliciousness. We use the Umbrella Top 1 Million domains list [7]
as a proxy for goodness and the Umbrella Investigate Risk Score [8] as a source
of domain reputation.

2.2 Data Preparation and Preprocessing

Anonymization (Phase 2): In raw form, the flow data, configuration data
contain human-identifying information. The datasets that the research team
had access to have had all human-identifying fields (e.g., usernames, MAC
addresses) removed with the exception of the machine name. The machine name
was encrypted with a key the research team did not have access to; this field
was pseudo anonymized so there remained a way to track flows associated with
the same device and calculate the number of unique devices in the population
that share some trait. Appendix A contains a full discussion of our data ethics.

Passive DNS (Phase 3): We used passively observed DNS data to gen-
erate “lookups” that we could use to recover a domain name from an IP
address. We use A,AAAA records and collected pairs of rdata,rrname observed
responses, these two fields contain no human identifiable data and thus bypasses
the anonymization step. From this key-value pair, we can enrich observed IP
addresses from the flow data with all observed domains that resolved to that IP.

Application and OS Configuration (Phase 1a): We used a single query [9]
to obtain a snapshot of all active listening ports on the system and the process
that owns them.
1 This is fewer hosts than are in the flows dataset, but certainly large enough to be

a representative sample. OSQuery data was not available for every host that NVM
was installed on.
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Application Labelled Flows (Phase 1b): We perform three lightweight oper-
ations on the data before it proceeds to the fusing step: remove any records that
are NULL, add a label with the OS family (Windows or MacOS), and use RFC 1918
[10] to label each source and destination address as “Private” or “Public”.

2.3 Enrichment (Phase 4)

We fuse together application-labeled flows with the observed ip:domain pairs
from pDNS to recover domains from the flow metadata. While we were not able
to match exact pDNS queries to hosts due to a lack of consistent identifiers, the
pDNS data was collected from the same network in the same 24-h period. When
we observe the same IP on the same network within a time window we have high
confidence that it resolved to that domain. In cases where a single IP resolves
to multiple domains, we report all matched domains.2 Enriching the flow data
with the DNS lookups requires a join between 3.2 billion flows and 2.9 billion
ip:domain pairs. Some IPs resolve to orders of magnitude more domains (e.g.,
AWS, CloudFlare) which causes a skewed join. Skewed joins are painful for many
distributed compute systems, including ours, it took us multiple iterations and
about 1,000 CPU hours to make this single join work.

Traffic Direction: NVM records symmetrical flow metadata, but does not
indicate if the origin of the connection was remote or local, so it is unclear if the
source IP was the local device or the remote server. We did not use ports as an
indication of which end was the remote (e.g., if destination port was HTTP/80)
because if we assumed well-known or registered ports were always the remote,
that would bias any research questions involving port usage. We did not have
access to an authoritative record of the IP address allocated to a given device,
which could have helped bypass this challenge.

We used RFC 1918 to build a simple heuristic to determine traffic direction.
We then label each flow as Internal, Outbound, Inbound or NAT, for more infor-
mation see Appendix B. We hypothesize that most traffic should be Outbound
as most applications follow a client-server pattern where an application initiates
connections to some Internet-facing service. We then looked at the distribution
of traffic and found that 81.9% of traffic was Outbound, which supports that
hypothesis. Internal consisted of 2.86% of traffic, Inbound 15.19% and NAT
0.05%. Outbound represents more than 80% of the traffic and we can best rea-
son about it, so we restrict our analysis to this type only. We revisit inbound
traffic using OSQuery in Subsect. 3.5.

2.4 Filtering (Phase 5)

We restricted our dataset in three ways. First, we restricted our analysis to only
MacOS applications, as we had more devices running MacOS in the population.
2 This overapproximates possible domains, risking misclassifying an IP as disreputable

in our analysis. Because our results do not identify any endogenous domain as dis-
reputable, this concern is moot.
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Fig. 2. Each dot represents a unique connection (port,2LD) made by an Microsoft
Word. Most connections (239 of 323 total) appear on a single device, however a small
number appear on many more. We apply our endogenous heuristic to draw a line at a
prevalence of 159 devices, which includes the most prevalent 6% flows.

Second, we only consider applications with observed traffic from more than 5%
1, 987 of devices. This excludes rare applications (e.g., Steam) as they would not
be indicative of the applications installed on a typical enterprise device. Finally,
we removed traffic associated with *.acme.TLD, the domain of the enterprise
where data was collected. In addition to this being a non-negotiable require-
ment from the data provider, this allows our results to be more generalizable.
*.acme.TLD is likely to appear endogenous when using our techniques and we
would like to isolate this from actual endogenous traffic. Many users visiting the
ACME homepage would make that domain appear to be part of endogenous
traffic for a browser. This lets us focus on application behavior in general and
less on behavior within a specific domain or IT configuration. In practice, this
removed 3.2% of flows overall, or 1.2% of flows at the 2LD.

Application Endogenous Traffic: Throughout this work, we considered that
a user can cause an application to make connections to destinations that the
developer had no knowledge of. For example, consider two connections from
Microsoft Word, the first to mastercard.com on port 443 across 97 unique
devices, and the second to office.com on port 443 across 5,498 unique devices.
Intuitively, these are two different types of connections. It is likely that Word
connects to office.com because of code that the application developer wrote,
while it’s also more likely that a user action triggered the network connection to
mastercard.com.

More generically, consider an application installed and used by thousands of
independent users and the popularity of individual network connections made by
that application. If the same connections are made by many different users, either
these users are all using the application in the same way or the application itself
has a common behavior using the network. As these connections become more
and more popular it is more likely that it is application behavior. Alternatively,
if an extremely common user behavior triggers a network request, if it is popular
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enough it may as well be owned by the application. For example, if hitting
“save” in Word triggers a network connection, that may as well be considered
application behavior because it is ubiquitous across users.

We distinguish these types of traffic into two categories, application endoge-
nous versus user triggered, or exogenous. Endogenous is a term borrowed from
biology that indicates that something grows or originates from within an organ-
ism. This differs from something exogenous that grows or originates from outside
an organism. The tie here is that such endogenous traffic originates from within
an application’s native behavior, not external influences.

Given the collected metadata, we observe that application endogenous traffic
will appear on more devices than user triggered traffic. Second, we observe that
if, for each application, we plot each flow against the number of unique hosts it
appeared on, a fairly regular pattern occurs, as seen in Fig. 2. Our intuition is
that this is following a Pareto distribution. However, different applications will
have different distribution parameters, complicating a simple decision criteria.
To solve this, we identify the point on the observed distribution where the curve
grows steeply, i.e., the “elbow” of the plot [11]. We then consider any types of
flows that fall at or higher than the elbow to be endogenous to the application
and flows that fall below to be user triggered. We acknowledge that there are
some confounds with this approach, namely if there is some extremely popular
destination, e.g. google.com, it may be indistinguishable from an endogenous
behavior due to its ubiquity. We restrict most of our analysis to these endogenous
connections, and while there are almost certainly interesting things happening
in the exogenous flows, our focus is on application native behavior which endoge-
nous traffic better represents. We further explore this approach and cases where
it succeeds and fails in Subsect. 3.1.

3 Analysis

We observed traffic from 39,758 unique MacOS hosts over a 24-h period in
September 2020. Each host in this population is a user-facing endpoint, such as
a desktop or laptop. We observed 143 unique applications installed on more than
5% of the population (≥1,987 hosts). These applications generated 3,211,451,385
total connections. After recovering domains with pDNS, we observed 282,715
unique domains, 61,607 (21.8%) of which were unique second-level domains, e.g.,
google.com. The typical endpoint in our population produces a large number of
unique flows with a median 23,642 connections, where a unique flow is defined
by tuple (application,destinationport,domain).

3.1 How Many of an Application’s Connections Are Endogenous?

We applied the “elbow” filtering techniques described in Subsect. 2.4 and exam-
ined how traffic changed before and after this filtering. First, when consid-
ering the number of flows per application, defined by tuple (application,
destinationport,domainat2LD), before filtering thereweremedian 17.50 unique
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Fig. 3. Well-known ports used as part of application’s endogenous traffic. 96% of appli-
cations use HTTPS in endogenous connections.

flows, after there were median 3.0. This reduction in types of traffic suggests that
many applications have few types of endogenous traffic. The maximum number of
unique flows before filteringwas 70,175 and after 2,309.When considering themax-
imum case, the application here is Google Chrome, and our elbow approach strug-
gles to reduce the endogenous traffic to a manageable set, although it does reduce
by 96.7%. Chrome and other browsers have orders of magnitude more apparent
endogenous connections than other applications. We explore browsers’ behavior
with elbow filtering in Subsect. 3.6. We see similar trends between number of flows
and number of second-level domains. The median number of second-level domains
connected to per application was 15.00, after filtering it was 3.0. In the maximum
case for Google Chrome, before there were 50,691 unique 2LDs, after 2,288. Lastly,
we consider the destination ports used per application. In the median case an appli-
cation used 2 ports before filtering, after there was 1. In the maximum case, there
were 9,427 ports connected to by an application, afterwards there were 9. In this
case, Google Chrome was the maximum before, but after it filtered down to 4 ports;
VMware-Nat was the maximum after filtering.

By considering only traffic that is endogenous to an application, we have
a tractable dataset to consider within each applications as most applications
do not have many types of endogenous traffic. This is not a tautologically true
statement by construction. There are cases (namely browsers) that do have many
types of endogenous traffic. Within browsers, there are types of traffic (e.g.,
email) that are common but are not endogenous behavior. This technique does
separate those types of connections from those less common, such as checking
niche websites.
Takeaway: There are few connections made by applications that are common
across hosts, so differentiating endogenous versus exogenous connections can
drastically reduce the dataset size.

3.2 What Ports Do Applications Use to Communicate?

Building on results from Subsect. 3.1, we know that in the median case, an
application uses few ports, both before and after looking only at endogenous
traffic. We find that most applications only use well-known ports (below 1024);
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Fig. 4. Distribution between secure and insecure ports for 20 most popular applica-
tions. Insecure connections made by applications are further explored in Subsect. 3.3

in endogenous traffic, there are only 4 ports used by more than 2 applications:
HTTPS, HTTP, DNS, and NTP. Figure 3 shows that 95.62% of all applica-
tions we consider use HTTPS in their endogenous traffic, while 15.33% use
HTTP. These are not mutually exclusive; an application that uses both HTTP
and HTTPS is counted in both categories. Some common ports (SMTP) are not
included here as they only had connections to *.acme.TLD which were excluded.
We acknowledge that having a connection on a port does not guarantee the
intended protocol is used, we assume that this is the case but did not have
access to PCAPs to validate this assumption.

Takeaway: Our unique perspective reinforces the common wisdom that
HTTP/S has become the main communication protocol for virtually all traf-
fic.

3.3 What Applications Are Not Using Secure Ports?

We are looking only at “well known” (<1, 024) ports. We assume that if there
is traffic on a well known port, that traffic is using the protocol expected
on that port, but we do not have ground truth for this. While there is not
an authorative list of “secure” ports, we define the following ports as secure:
SSH/22,HTTPS/443,NTTPS/563,LDAPS/636,IEEE-MMS-SSL/695,SILC/706,FT-
PS/989,FTPS/990,TELNET-SSL/992,IMAPS/993,POP3S/995. We then define an
insecure port as a port not being in that set. Some exceptions here that we did
not account for are ports designed to be secure over plaintext, such as Kerberos,
or ports where the secure component is >1, 024. In Fig. 4 we consider all traffic
for an application across all devices and plot the distribution between insecure
and secure ports. There are applications that appear to transmit sensitive data or
contain some security feature that communicate over insecure channels, such as
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trustd and jamf. Next, we explore the connections made by these applications
in more detail.

Takeaway: While most endogenous traffic is secure by default, there are notable
instances of prominent applications featuring insecure communication channels.

TrustD: trustd is a system daemon on MacOS that manages and updates the
system trust store, including checking for certificate revocation. In our study of
insecure ports we found that trustD uses HTTP/80 for all of its communications.
This gave us pause, as it is a system-level process that is responsible for a critical
security function, thus we expected it to use TLS. Upon further investigation,
we discovered that this process talks to a limited set of domains. These domains
appear to be either authenticated Apple services that we were not able to deter-
mine their exact use and purpose (pancake.apple.com and mesu.apple.com)
or OCSP checks from major CAs (ocsp.digicert.com,ocsp.apple.com, etc.).
OCSP is a certificate revocation protocol that uses a signed request and response.
Although the data is authenticated, the sender is not, which exposes a poten-
tially exploitable attack surface if an attacker could craft a malicious OCSP or
certificate that the service attempts to load. Takeaway: trustd gained some
attention in the news and our findings align with what other researchers [12]
found and further explains why OCSP must happen over HTTP.

Microsoft Office: Microsoft Excel and Outlook are the only office applica-
tions that break the “top 20” to appear on Fig. 4, but we will examine all the
Office products (Excel, Outlook, Powerpoint, Word, OneNote, AutoUpdate). Of
those, Outlook is the only product to have any endogenous traffic on an insecure
port. Outlook’s has connections to 164 unique 2LD with port HTTP/80. Mar-
keto, a marketing automation company, appears to own 153 of these domains.
These Marketo domains appeared on the same number of hosts, we suspect this
is because they are all hosted on the same IP and the pDNS domain recov-
ery matched all of them. These domains appeared on <2% of hosts that were
running Outlook so we suspect the elbow heuristic failed for this case. Of the
remaining 11 domains, 3 are additional marketing services e.g. sendgrid.net,
5 are CDNs or IaaS providers including amazonaws.com,akamaiedge.net, 1 is
office.com, and the remaining 2 are HR service providers. office.com appears
both with connections on HTTP/80 and on HTTPS/443 suggesting that not all the
connections Outlook makes back to Microsoft use TLS.

Device Management (jamf): jamf is a tool used for IT device and policy
management for MacOS and typically runs with root or sub-root privilege. jamf
has a single insecure connection, on HTTP/80 to akamaiedge.net, which largely
means that it could be connecting and pulling down anything hosted by Akamai,
a large CDN.
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CiscoSparkHelper: CiscoSparkHelper has 7 endogenous flows and uses 3
ports, 444, 5004, 33434. On both port 5004 and 33434, there are 3 connections
each, two to (wbx2.com and webex.com) which appear to be domains owned by
Cisco WebEx; the third connection is to amazonaws.com. For port 444 we see a
single connection to wbx2.com. Port 444 official use is for SNPP, while 5004 and
33434 are used for VoIP audio/video calls. 5004 and 33434 were not included in
our “secure” ports as they are not <1, 024.

3.4 Are Applications Communicating with Reputable Domains?

Next, we are interested evaluating the reputation of domains that applications
connect to using proxies for danger and safeness. We focus on 2LDs, and only
those that are part of the endogenous set of traffic for an application. We use
four proxies for danger: if a domain resolved to an IT-managed DNS blackhole,
if a domain appeared in a Snort IP blocklist [6], if a domain appeared in a
commercial domain abuse feed, or if a domain appeared as part of DGA for a
handful of well known campaigns (Mirai, Zeus, Cryptolocker). We use two proxies
for safeness, the reputation score of a domain from OpenDNS Umbrella [8], and
the position of a domain on the Umbrella Top 1M [7]. We found no domains
that matched any of our proxies for danger, and no domains that flagged as
malicious in OpenDNS Umbrella. In all 143 applications, we found that at least
50% of 2LDs per application are in the Umbrella Top 1M Popular Domains, and
15 applications had 100% of their 2LDs in the Top 1M.

Takeaway: Domain reputation services are correctly evaluating endogenous
traffic as benign, which is not surprising and would have been interesting if they
were not. “Popular” sites lists from Alexa, OpenDNS, etc. can be used by inci-
dent responders and network administrators to help determine if a particular
site is worth further investigation. However, there’s a large portion of endoge-
nous traffic in popular enterprise application that do not appear on these lists.
This could be a limitation of these popularity lists where a more focused list of
common traffic for a specific application would be useful.

3.5 What Is the Attack Surface that Applications Expose Through
Open Ports?

In this experiment, instead of using the application-labelled flow data, we
use configuration information generated through OSQuery. The query-pack for
“listening-ports” provides information about all listening ports assigned to a
process. This is a better way of identifying listening ports than using the flow
data since we have an authoritative snapshot of the ports used, and can avoid
using heuristics to determine traffic direction. We find on average an application
exposes 11.1 listening ports per host, with a median of 1. A few outliers cause
this skew, these applications are listening on many different ports: Docker (254
unique ports), dnscrypt-proxy (67), mDNSResponder (28) CiscoSparkHelper
(28), Safari (16), vmware-natd (14), Microsoft Teams Helper (11), Spotify (9)
zoom.us (4) and Dropbox (3). Docker is, by far, the application that exposes the
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most listening ports, which in retrospect is logical. Developers can run contain-
ers on their laptop using Docker, and can configure the ports that the container
listens to on the host OS. Interestingly there are also applications that are expos-
ing more ports than the median that we did not expect to have such a network
presence, such as: BetterTouchTool (2), HP Device Monitor (3), [VisualStudio]
Code Helper (Renderer) (4). We were unable to confidently attribute these con-
nections back to the domains where they originated because a lack of consistent
identifiers between OsQuery and NVM.
Takeaway: Applications that expose listening ports add exposed attack surface
that deserves further investigation. There have been cases of applications run-
ning webservers that they use to communicate with their web-clients that lead to
vulnerabilities [13–15]. We leave determining what applications are doing with
these listening ports for future work.

3.6 How Is Endogenous Traffic Represented in Browsers?

As mentioned in Subsect. 3.1, our approach for determining what traffic is
endogenous for an application struggles to narrow down traffic observed from
browsers. We suspect that this is because browsers are entirely user-triggered
applications and there are likely large similarities in browsing destinations
between users. In our dataset, we observed traffic for three browsers: Google
Chrome, Mozilla Firefox, and Apple Safari. Browsing behavior for users between
browsers is fairly similar as common tasks (email, social media, news) are not
functions exclusive to any one browser. Across all three browsers, there are 2,671
unique connections (domain at 2LD, port), 1,720 (64%) of those are common
across at least two browsers, and 1,335 (50%) are common across all three. Look-
ing at endogenous connections exclusive to a single browser, Chrome has 593
unique connections, Firefox has 187 connections, and Safari has 171. This mim-
ics the rough pattern of popularity of each of these browsers within our device
population, so we do not make any conclusions about one of these browsers
having a smaller set of endogenous behavior. Takeaway: Browsers have fun-
damentally different types of traffic from other desktop applications, but their
traffic is similar to each other.

4 Related Work

Host-based anomaly detection has been a staple of security research since the
early 2000s [26] and numerous works have explored addressing anomalous activ-
ity on a host [22,40,41]. Anomaly detection has been well explored at the network
level with tools like Snort [36] and NetFlow based techniques [29,43]. Identifying
applications and operating systems through observing network traffic and recon-
naissance has also been well explored [25,34,42], including single packet finger-
prints of operating systems [37,38]. There are also enterprise software offerings
that can identify the application generating network traffic and measure aspects
of flows [16,20,21,31]. Researchers have also used TLS fingerprints as a method
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of identifying software [17], provided techniques to impersonate common soft-
ware to circumvent censorship [27], and shown how parrot-based circumvention
can fail [30]. By contrast, we act as an omniscient passive observer of traffic and
study the connections made by applications focusing on the common connections
rather than the anomalous.

Internet-scale measurement has been conducted to look at HTTPS and TLS
implementation and weakness [24,39], building features to measure DNS [19,32],
or scraping the internet to measure the use of cryptographic libraries [35]. With
regard to work in desktop application security, in 2006 Bellissimo et al. studied
the updated mechanisms of popular desktop applications [18]. In 2012, Georgiev
et al. found that the implementation of SSL certification validation was funda-
mentally broken in many widely used libraries [28]. In contrast, our work does
not examine TLS implementation but instead measures apparent TLS usage.
In 2017 Dormann published a blog about the consequences of insecure software
updates [23], and a year later, Microsoft was still distributing software over
HTTP [33]. To the best of our knowledge, there has not been a prior large-scale,
extensive study of the security posture of desktop applications communication
channels.

A Data Ethics

While working on this project, we followed all institutional procedures from all
affiliated institutions. Our IRB reviewed our proposal and datasets and deter-
mined that this was not human subjects research. All human and machine iden-
tifiers in our dataset have been removed and replaced with encrypted versions
that are encrypted with a key that the research team does not have access to.
All telemetry was collected through existing monitoring infrastructure that has
strict ACLs. Furthermore, all telemetry was collected from corporate managed
and owned devices where users are made aware that the devices are monitored
for security and compliance. Throughout our analysis we focus on the network
behavior of applications not individual users. Any individual user’s data could be
excluded from our dataset without impact to our findings. We made no attempt
to find evidence of sensitive actions or non-work-related activity (video games,
streaming video, social media, etc.) The focus of our research is on the network
behavior of applications, not of the individuals using the applications.

B RFC 1918

RFC 1918 [10] describes and reserves 3 IP ranges for private use only, we used
this to label each source IP and destination IP as “private” or “public”. If an IP
is “private” then it is not on the Internet, and is instead on some internal/private
network. After labeling each flow, there are four possible combinations:

– Private Source to Private Destination (Internal) - Neither end is an Internet
facing IP, communication to internal services



544 M. R. McNiece et al.

– Private Source to Public Destination (Outbound) - Destination is an Internet
facing IP, likely an outbound connection

– Public Source to Private Destination (Inbound) - Destination is not an Inter-
net facing IP, so is either a connection from a NAT device to an internal
service, or an inbound connection from a public service to a device

– Public Source to Private Destination (NAT) - Both ends have an Internet
facing IP, but one must be local device with a NAT IP though we can’t tell
which.
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Abstract. Internet services leverage transport protocol port numbers
to specify the source and destination application layer protocols. While
using port 0 is not allowed in most transport protocols, we see a non-
negligible share of traffic using port 0 in the Internet.

In this study, we dissect port 0 traffic to infer its possible origins and
causes using five complementing flow-level and packet-level datasets. We
observe 73 GB of port 0 traffic in one week of IXP traffic, most of which
we identify as an artifact of packet fragmentation. In our packet-level
datasets, most traffic is originated from a small number of hosts and
while most of the packets have no payload, a major fraction of pack-
ets containing payload belong to the BitTorrent protocol. Moreover, we
find unique traffic patterns commonly seen in scanning. In addition to
analyzing passive traces, we also conduct an active measurement cam-
paign to study how different networks react to port 0 traffic. We find an
unexpectedly high response rate for TCP port 0 probes in IPv4, with
very low response rates with other protocol types. Finally, we will be
running continuous port 0 measurements and providing the results to
the measurement community.

1 Introduction

Transport protocols use port numbers to identify different Internet services.
Common port numbers are TCP/80 and TCP/443 for the Web, TCP/25 for
SMTP, or UDP/443 for QUIC. There are different categories of port numbers:
Officially registered ports at IANA [23], unofficially but well-known ports, and
dynamic ports, which cannot be registered and are free to use by anyone. In con-
trast, there are also some ports which are reserved and should not be used. One
of these reserved port numbers is port 0. It is reserved in most common transport
layer protocols, i.e., TCP [37], UDP [37], UDP-Lite [27], and SCTP [39]. When
providing a port number 0 to the bind() system call to establish a connection,
operating systems generally choose a free port from the dynamic range [28,33].
Therefore, one needs to create a raw socket in order to send port 0 packets.
However, previous work has shown that there is a non-negligible share of traffic
using port number 0 both in darknets and the Internet [9,29,30].

In this work, we shed light on port 0 traffic in the Internet, by analyzing
the traffic from real networks, rather than darknets as is done in most related
work, and by performing active measurements to survey the real-world reaction
of hosts and routers to port 0 traffic.
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To the best of our knowledge, this is the first work which conducts both
active and passive measurements on port 0 in the Internet, to better understand
port 0 traffic characteristics and origins. Specifically, this work has the following
three main contributions:

– We leverage a flow-level dataset from a large European IXP to inspect the
origins of port 0 traffic (cf. Sect. 4). We find that out of the top 10 ASes
originating port 0 traffic, the majority does not follow typical diurnal patterns
of common protocols such as TCP/80.

– We inspect four packet-level datasets to discover the actual contents and
detailed characteristics of port 0 packets (cf. Sect. 5). We show that the
majority of non-empty packets in UDP are related to BitTorrent. We find
that most TCP packets do not contain any payload and are one-way. However,
most of the two-way TCP streams are scanning artifacts.

– We perform active measurements both in IPv4 and IPv6 to gain a tangible
perspective over port 0 responsive IP addresses (cf. Sect. 6). We find that
IPv4 traffic using TCP uncovers a substantial number of responsive hosts in a
small number of ASes. We also perform traceroute-style active measurements
to better understand port 0 traffic filtering in wild, and find discrepancies
between IPv4 and IPv6. Finally, we will run periodic port 0 measurements
and make the results available to the research community.

2 Related Work

Already in 1983, Reynolds and Postel specified that port number 0 is reserved
in TCP and UDP [37]. Over the course of several years, similar provisions have
been introduced for other transport protocols as well [27,39]. Traffic sent from
or to port 0 thus violates these specifications. Fittingly, most reports on port 0
traffic are associated with DDoS attacks [25,31,41] and malformed packets [10].

Even though there is traffic on port 0 in the Internet, there is little research
on its root causes. Motivated by port 0 traffic spikes observed in November 2013
at the Internet Storm Center and reports from security researchers at Cisco
Systems, Bou-Harb et al. [9] study port 0 traffic on 30 GB of darknet data.
They filter out any misconfigured traffic and packets with non-conforming TCP
flags common in backscatter traffic [43]. Using fingerprinting techniques [8], they
argued that more than 97% of their identified port 0 traffic was related to probing
activities, some orchestrated by malware.

In 2019, Luchs and Doerr [29] revisit the case of port 0 traffic, by studying
data obtained from a /15 darknet over a period of three years. They find that
out of about 33,000 source IP addresses involved in port 0 traffic, 10% can be
attributed to DDoS attacks, 6% to OS fingerprinting, and less than 1% to scan-
ning activities. When aggregating by the number of packets instead, scanning
traffic dominates with 48% of all port 0 packets.

More recently, Maghsoudlou et al. [30] analyze port 0 traffic for a single
passive measurement source. Similarly to our results, they find that a small
number of ASes are responsible for about half of all port 0 traffic.
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In contrast to the related work [9,29,30], which all focus their efforts on
the analysis of a single passive data source, in this paper we analyze four com-
plementing passive datasets in addition to conducting an active measurement
campaign to better understand port 0 traffic in the wild.

3 Datasets Overview

We leverage two different kinds of passive datasets to study port 0 traffic charac-
teristics: Flow-level and packet-level data. Throughout the paper, port 0 traffic
refers to the subset of the traffic which has either source port or destination port
or both set to zero. Flow-level data gives us a high-level overview of Internet traf-
fic and can be used to analyze the aggregate flow of traffic. In our case, we use
one week of IPFIX flow data from a large European IXP. On the other hand, to
be able to dissect detailed traffic characteristics like fragmentation, header flags,
and different payloads, we need to inspect every single packet. Therefore, we use
four different packet-level datasets, namely long-term and short-term MAWI,
CAIDA, and Waikato. Different packet-level datasets are used to cover different
geographical and temporal vantage points.

As shown in Table 1, we use the following datasets:

IXP One week of sampled IPFIX data from the end of January 2020 captured
at a large European IXP.

MAWI These datasets [32] contain packet traces from the transit link of the
WIDE backbone [42] to the upstream ISP captured at samplepoint-F. They
include partial packet payload. To obtain a more comprehensive view, we use
two variants of MAWI datasets:

– MAWI-long This dataset captures 15-minute snapshots each month
from January 2007 to July 2020.

– MAWI-short We also use the most recent MAWI dataset being part of
the Day in the Life of the Internet project [12], which is April 8–9, 2020.

CAIDA This dataset [11] contains anonymized packet traces without payload
from CAIDA’s passive monitors. For our analysis we use the most recent
dataset available at the time of writing, which is the one-hour period from
14:00–15:00 UTC recorded on January 17, 2019.

Waikato This dataset [40] contains packet header traces including the first few
bytes of payload and is captured at the border of the University of Waikato
network in New Zealand.

We analyze port 0 traffic seen in passive data in detail in Sect. 4 and 5. In
addition to passive flow and packet data, we also conduct active measurements.
More specifically, we run two types of measurements to analyze responsiveness
on port 0 and filtering of port 0 traffic in the Internet:

Port scan. We use ZMap [16,46] and ZMapv6 [47] to find responsive addresses on
port 0. In IPv4 we conduct Internet-wide measurements, in IPv6 we leverage
an IPv6 hitlist [19–21].
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Table 1. Overview of passive port 0 datasets.

Dataset IXP MAWI-long MAWI-short Waikato CAIDA

Timespan Jan. 25–31, 2020 2006–2020 Apr. 8–9, 2020 Apr.–Nov., 2011 Jan. 17, 2019

Duration 1 week 14 years 2 days 86 days 2 hours

Format Flows Packets Packets Packets Packets

%IPv4,IPv6 (Port0) 99.8%,0.2% 100%,0% 100%,0% 100%,0% 99.7%,0.3%

%UDP,TCP (Port0) 96.8%,3.2% 22.4%,77.6% 30.2%,69.8% 15.5%,84.5% 43.8%,56.2%

Payload No Yes Yes Yes No

Sampled Packet-based Time-based No No No

# Packets 34.3 × 109 23 × 109 15.9 × 109 27.822 × 109 8.2 × 109

% Port 0 packets 0.25% 0.0008% 0.0001% 0.002% 0.0002%

# Bytes 25.5 TB 14.6 TB 6.7 TB 16.9 TB 4.3 TB

% Port 0 bytes 0.28% 0.00012% 0.0002% 0.001% 0.00002%

Traceroute. We use Yarrp [7,45] to traceroute addresses in IPv4 and IPv6
prefixes in order to analyze port 0 traffic filtering in the Internet.

We present results from our active measurement campaign in Sect. 6. By
leveraging both passive and active measurements we can analyze different aspects
of port 0 traffic in the wild.

3.1 Ethical Considerations

Before conducting active measurements, we follow an internal multi-party
approval process which incorporates proposals by Partridge and Allman [36]
and Dittrich et al. [15]. We follow scanning best practices [16] by limiting our
probing rate, maintaining a blocklist, and using dedicated servers with informing
rDNS names, websites, and abuse contacts. During our active measurements, we
received one email asking to be blocked, to which we immediately complied.

When analyzing passive flow and packet data, we fully comply with the
respective NDAs and do not share any personally identifiable information. Con-
trary to the active measurements, we will not publish any passive measurement
data.

3.2 Reproducible Research

To foster reproducibility in measurement research [1,38], we make data, source
code, and analysis tools of our active measurements publicly available [18]. Due
to privacy reasons we will not publish data from the passive datasets.

3.3 Continuous Port 0 Measurements

To allow further analysis of port 0 responsiveness and filtering over time, we peri-
odically run active port 0 measurements. The raw results of these measurements
are publicly available for fellow researchers at:

inet-port0.mpi-inf.mpg.de

https://inet-port0.mpi-inf.mpg.de/
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4 Flow-Level Analysis

Analyzing the traffic flowing between different Autonomous Systems is helpful
to detect high-level patterns. To investigate port 0 traffic patterns, we use the
IXP dataset and inspect the ASes originating or being targeted by port 0 traffic.
In one week of IXP flow data, we find 23,000 ASes contributing to port 0 traffic.
We observe that the source AS with highest number of packets in sends port 0
traffic to 4357 distinct destination ASes. Also, the destination AS with highest
number of port 0 packets being destined to, is targeted by 1245 distinct source
ASes.

We also observe that in 9 out of 10 top source ASes involved in port 0 traffic,
port number 0 is among the top-5 source and destination port numbers along
with TCP/80 (HTTP) and TCP/443 (HTTPS). We find that more than 99%
of port 0 traffic has both source and destination port set to zero. Interestingly,
more than 99% of all TCP traffic contains no TCP flags. This leads us to believe
that this is not actual port 0 traffic and is most likely an artifact of packet
fragmentation [26], which is incorrectly classified as TCP/0 traffic by the flow
exporter [35]. We also analyze the 1% of the TCP traffic with non-zero TCP flags,
composed of 867 packets. We find that 30% of this traffic sets their TCP flags to
CWR/URG/ACK, 27% to ACK only, and 25% to URG/ACK/PSH/SYN. 62%
of this traffic has an average packet size of less than 100 bytes, while 18% has
an average packet size of more than 1480 bytes. To investigate more in-depth on
how different networks react to port 0 traffic, we perform active measurements
(cf. Sect. 6).

To further investigate origins and causes of port 0 traffic, we analyze the
diurnal patterns of traffic originated by the top 10 source ASes and compare
them with the more common Web traffic on TCP/80. Figure 1 shows a heatmap
of the Spearman correlation of the diurnal patterns of these ASes and TCP/80
traffic. We see that while AS2 is the most correlated to TCP/80 traffic, AS4
and AS7 show highly similar patterns to each other and moderate correlation to
TCP/80 traffic. Moreover, AS3 shows a unique pattern with no correlation to
either other ASes or TCP/80.

AS3 is a cloud computing provider while other ASes are web hosting
providers, ISPs, or telecommunication companies. The unique traffic pattern
originated by AS3 implies irregular usage such as scanning or reset attack. For
the interested reader we provide a time series plot for the aforementioned ASes
in Appendix B.

To better understand the causes of port 0 traffic, we analyze average payload
sizes observed in the IXP dataset. For easier comparison with the packet-level
datasets (cf. Sect. 5), we choose to analyze the payload size instead of the average
packet size reported directly in the flow data. We estimate the payload size by
subtracting the IP and TCP/UDP headers without options. As shown in Fig. 2,
for TCP, we observe that nearly 88% of packets are smaller than 100 bytes, while
in UDP, more than 75% of packets are larger than 100 bytes. Having roughly 20%
full-sized packets in UDP, along with many mid-sized packets, indicates possible
fragmentation. Unfortunately, our IPFIX dataset does not include fragmentation
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Fig. 1. Correlation coefficients between port 80 traffic and the top 10 source ASes
involved in port 0 traffic in the IXP.

information for IPv4 flows. It does, however, include information about the IPv6
next header value. We find no IPv6 flows with the next header value set to
fragmentation (i.e., 44). To investigate further on the exact fragmentation header
flag, we inspect the IPFIX field containing a list of all IPv6 extension headers in
a flow. We find, however, that the content of this IPFIX field does not conform
to the IPFIX specifications as defined by the RFC. This is possibly due to
an erroneous early version of the RFC, which has since been corrected [2]. As
IPFIX datasets usually depend heavily on how their exporter is implemented,
researchers who would like to work on them should be extra cautious to make
sure that their data is flawless.

To summarize, multiple indicators lead us to believe that most of port 0 traffic
seen at the IXP is an artifact of packet fragmentation. Nevertheless, we find that
the IXP data gives valuable information on diurnal patterns. By analyzing the
correlation between diurnal patterns of different ASes and port 80 traffic, we
find one AS deviating heavily from the common diurnal patterns. This indicates
possible scanning or other irregular activities which requires a more in-depth
analysis which can only be performed on packet-level data. Therefore, we analyze
the four packet-level datasets in the upcoming section.

5 Packet-Level Analysis

Although using a flow-level dataset provides us with useful information about the
origin and targets of port 0 traffic, it cannot provide information on what the
packets actually contain. Knowing the packet content, we can infer the cause
of port 0 usage more precisely. To this end, we use the MAWI-long, MAWI-
short, CAIDA, and Waikato datasets. CAIDA contains no payload, while others
provide partial payload data. We begin our packet-level analysis by investigating
packet payload sizes, for which we use the packet length field found in UDP and
TCP headers. As Fig. 2 shows, nearly all packets in MAWI-short, MAWI-long
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and Waikato have a payload size of less than 100 bytes. In both the MAWI-
short and the CAIDA dataset, more than 99% of the TCP port 0 traffic does
not have any payload, while UDP traffic always contains payload. Note that
Fig. 2 only shows those TCP packets with payload, i.e., for CAIDA and MAWI-
short, it shows less than 1% of all TCP packets. In the CAIDA dataset, while
UDP traffic includes payload sizes smaller than 104 bytes in 99% of the packets,
TCP traffic shows more mid-sized payload sizes. Investigating further into the
CAIDA dataset shows that all packets contain zero as fragment offset and all the
fragmentation flags are set to Don’t Fragment. This suggests that port 0 traffic
in the CAIDA dataset is likely not a fragmentation artifact. However, we find
some bogus packets, e.g. with zero header length among these mid-sized TCP
packets.

Similar to our analysis in Sect. 4, we investigate port 0 traffic origins and
destinations in the MAWI dataset. We find that most of the traffic, namely more
than 60%, is destined to only 2 ASes, as shown in Fig. 3. Figure 4 shows the
cumulative distribution of IP addresses in port 0 traffic in different datasets. We
exclude the MAWI-long dataset since aggregating through 14 years would not
give us useful information. We observe that more than 75% of port 0 traffic is
originated by less than 10 IP addresses in CAIDA, IXP, and MAWI-short. Also
in all the datasets, more than 87% of port 0 traffic is destined to less than 10 IP
addresses.

In Fig. 5, we show the payload distribution classified with libprotoident [3]
for each year in the MAWI-long dataset. The red line along with the right Y-
axis show total number of packets throughout different years. The stacked bar
plots show different categories of payloads excluding No Payload and Unknown
UDP. We find that BitTorrent traffic is a constant contributor to port 0 traffic
in Waikato, MAWI-short, and in different years in MAWI-long.

In MAWI-short, we find that 70% of the payloads belong to the BitTorrent
UDP protocol. Additionally, a payload pattern covering 16% of the traffic, prob-
ably belonging to a custom application-layer protocol, DNS, OpenVPN, and
NTP, contributes to other payloads in MAWI-short port 0 traffic in our dataset.
In Waikato, BitTorrent-UDP and Skype are among the top payloads.

Fig. 2. Cumulative distribution of payload size in port 0 traffic. Note that the X-axis
is log-scaled.
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In MAWI-short, MAWI-long, and CAIDA, Malformed packets contribute less
than 2% to port 0 packets, e.g., with wrong checksums, having UDP length of
higher than IP length, etc. However, in Waikato, we find that 16.2% of the traffic
is malformed. This shows that port 0 traffic can also be caused by misconfigu-
ration, programming errors, or people sending malformed traffic on purpose.

Next, we analyze different TCP flags in packet-level datasets to better under-
stand possible causes of port 0 traffic. Attackers and scanners usually use specific
TCP control bits in their packets to achieve their goals. For instance, attackers
sending spoofed traffic set the SYN bit to try to initiate TCP connections with
their targets, which in backscatter traffic we see as SYN/ACK, RST, RST/ACK,
or ACK packets [43]. Therefore, we investigate TCP control flags in the datasets.
We observe that most of the TCP flags are only SYNs: More than 66% in MAWI-
short, and 92% in CAIDA, which might indicate that most of the TCP port 0
traffic in these two datasets is caused by scanning. We analyze TCP flags in
MAWI-long dataset per year, as shown in Fig. 6. First, we check whether all
packets in a TCP stream are one-way or two-way. We find that a large frac-
tion of the TCP streams are one-way. This also holds for all other packet-level
datasets. Then, we categorize two-way TCP streams as follows:

– Scan to closed port: Client sends SYN, receives RST or RST/ACK.
– Scan to open port: Client sends SYN, receives SYN/ACK, client then sends

RST or RST/ACK.
– No SYN: No SYN is ever sent. The stream begins with other flags, mostly

SYN/ACKs followed by RSTs from the other side.
– Not scan: None of the above, i.e., client sends SYN but receives no RST.

We find that a major fraction of two-way TCP streams are scans to closed ports
for most of the years. Among the streams in the Not scan category, we find two
long streams of ACK/PSH followed by multiple ACKs in 2015 or ACK/PSH/FIN
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Fig. 4. Cumulative distribution of IP addresses in port 0 traffic. Note that the X-axis
is log-scaled.

in 2019, respectively. We believe that these streams are related to an ACK/PSH
flood attack [22] considering the relatively high number of packets sent in these
streams. Next, we analyze specific years of the MAWI-long dataset with very
characteristic spikes more in-depth. In 2009, we see the largest number of total
packets of any year, with a TCP:UDP ratio of about 2:1. The majority of
UDP traffic is originating with source port UDP/8000 from many different IP
addresses within a Chinese ISP AS which are mostly destined to UDP/0 towards
a single IP address belonging to a Japanese university inside WIDE. For TCP,
the majority of traffic is sourced from a single IP address within a Canadian ISP
and destined to many different IP addresses. Almost all sources are TCP/0 and
the destinations are TCP/22 (SSH). As is shown in Fig. 6, these are very likely
scanning activities.

In 2012 we see the largest number of TCP streams as shown in Fig. 6. We
find a factor of 54 times more TCP traffic this year than UDP traffic. Almost
80% of all TCP/0 traffic is from a single IP address within a hosting company,
the destination addresses and ports are evenly distributed. The TCP flags of all
packets are set to RST/ACK. These indicators lead us to believe that this is
backscatter traffic from attack traffic using spoofed IP addresses [43].

Finally, we investigate the current year 2020, from January to July. During
this period we see 26 times as much TCP traffic compared to UDP. The majority
of TCP traffic originates from a single IP address at a hosting company, which
uses TCP/43573 as a source port. For the IP address in question we find many
different reports on abuse DB websites, which hint at scanning and vulnerability
probing.

To summarize, we find that a large fraction of TCP streams in port 0 traf-
fic is one-way. However, we still see some two-way streams related to scanning
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Fig. 5. Payload distribution (bar plots)
and total packet count (red line) for
MAWI-long. (Color figure online)

Fig. 6. TCP stream categorization (bar
plots) and total streams (red line) for
MAWI-long. (Color figure online)

activities. Analyzing packet payloads throughout all our datasets, we observe
that BitTorrent UDP traffic is a constant contributor to port 0 traffic.

6 Active Measurements

As discussed in the previous sections, we observed a significant number of
RST/ACKs and even some SYN/ACKs which indicate scanning activities. To
better understand how the network reacts to port 0 traffic, we stage an active
measurement campaign. We run two types of measurements: (1) Port scan mea-
surements allow us to analyze responsiveness of IP addresses to port 0 probes
and (2) traceroute measurements provide information on where port 0 packets
are being filtered.

6.1 Responsive Addresses

We run four types of port scan measurements, for each possible combination of
IPv4/IPv6 and TCP/UDP. The IPv4 measurements are run on the complete
address space minus a blocklist, the IPv6 measurements use an IPv6 hitlist [20].
For the TCP measurements we send regular SYN packets, for UDP we send the
most prominent payload found in our passive packet traces.

For the four protocol combinations, we get vastly differing results. With 2.3
M, the largest number of addresses responds to our IPv4 TCP port 0 probes.
Only 2222 unique addresses respond to IPv4 UDP probes and 120 respond to
IPv6 TCP probes. We find not a single responsive address for IPv6 UDP probes.

When mapping responsive addresses to ASes [4,13], we find that a small
number of ASes makes up the majority of responses. Figure 7 shows the AS
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Fig. 7. Cumulative distribution of responsive
IP addresses per AS. Note that the X-axis is
log-scaled.

Table 2. Top 10 ASes of non-
reachable target addresses when
comparing TCP/0 and TCP/80.

ASN AS Name Count

1 6830 Liberty Global 4822

2 6327 Shaw 3257

3 812 Rogers 2297

4 33915 Vodafone 2152

5 11492 Cable One 1095

6 30036 Mediacom 688

7 12389 Rostelecom 643

8 4134 Chinanet 575

9 3320 Deutsche Telekom 552

10 4766 Korea Telecom 498

distribution of responses for the different protocols. The top ten ASes make up
72%, 73%, and 79% of all responses for IPv4 TCP, IPv4 UDP, and IPv6 TCP,
respectively. When we look at the overlap of responding addresses in TCP and
UDP for IPv4, we find that 61% of IPv4 UDP addresses are present in IPv4
TCP results. In IPv4 TCP, where we see the most responses by far, most of the
top 10 ASes belong to ISPs. This leads us to believe that faulty or misconfigured
ISP equipment is to blame for responses to port 0 probes.

Next, we analyze the initial TTL (iTTL) value [6,24,34], UDP reply payload,
and combine these with the responding AS. For IPv4 TCP we find that the most
common iTTL values are 64 (57%), which is the default for Linux and macOS,
255 (36%), the default for many Unix devices, and 128 (7%) the default for
Windows. When combining these iTTL values with the responding AS we find
no clear patterns. In contrast, for IPv4 UDP we find a clear correlation between
iTTL, payload, and AS. The most common response payload (32%) is sent from
six different ASes with an iTTL value of 32 or 64. The second most common
response payload (14%) is identical to our request payload, i.e., the probed hosts
simply mirror the payload that they receive. Packets with this payload originate
from a single AS (AS7922, Comcast) and all of them have an iTTL of 255. The
third most common payload (8%) is made up of 16 zero bytes and originates
from AS14745 (Internap Corporation) with an iTTL of 32.

These findings suggest that only a small number of networks contain miscon-
figured devices erroneously responding to port 0 probes.

6.2 Port 0 Traceroutes

To better understand how port 0 traffic is handled inside the network, we con-
duct traceroute-style measurements using Yarrp [45]. This allows us to see if
port 0 traffic is treated differently by routers compared to standard TCP/80
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or TCP/443 traffic.1 In IPv4, we split the announced address space into 11 M
/24 prefixes and send a trace to a random address within each of these prefixes.
In IPv6, the equivalent would be sending traces to every /48 prefix. This is,
however, not feasible due to the vast address space. Therefore we decide to pick
one random address per announced IPv6 prefix, no matter the prefix length.
We ensure that random addresses for less specific prefixes do not fall into more
specific prefixes. In total, we send probes to about 88 k IPv6 prefixes.

When analyzing the reached target addresses depending on the used port
numbers, we find that in IPv4 there is a significant difference between port 0
and other ports. 91 k of IPv4 port 0 traces reach their target, whereas 118 k
traces on TCP/80 and TCP/443 reach their target IPv4 address, an increase of
almost 30%.

In IPv6, however, almost no targets are reached for either port number, as
the likelihood of a randomly generated address in a prefix actually being assigned
is quite low. Therefore, we perform additional analyses based on the reachability
of the target BGP-announced prefix.

The general picture in IPv4 does not change drastically when analyzing the
reachability of the target prefix: Port 0 probes reach fewer target prefixes com-
pared to port 80 and port 443 probes, although the difference is reduced to 14.2%
and 9.5%, respectively.

When we analyze the reached target prefixes for IPv6, however, we see a
slight difference of 3%.

As the difference of reachable addresses is most apparent in IPv4, we inves-
tigate this phenomenon in more detail. We identify on a per-target basis the
addresses which see no responses in TCP/0, but do see responses in TCP/80.
These non-responsive port 0 addresses are mapped to 4102 distinct ASes, exhibit-
ing a long-tailed distribution. Next, we check whether we find other addresses
in these 4102 ASes to be responsive to port 0 traceroutes, to exclude the pos-
sibility of missing responses due to ICMP rate limiting. We find responses to
port 0 traceroutes for only 15 of these ASes, making up only 0.4% of the total
4102 ASes. This underlines the fact that these ASes are indeed handling port
0 traceroutes differently compared to other ports. Furthermore, as is shown in
Table 2, 9 out of the top 10 ASes belong to ISPs, further indicating that these
might be ASes blocking port 0 traffic to their clients [5,17,44]. We analyzed
many additional aspects of traceroute responses, by checking for differences in
the last responsive hop, comparing the number of responsive hops per trace,
evaluating ICMP types and codes, but finding no additional differences between
traceroutes using port 0 compared to other ports. We provide these results for
the interested reader in Appendix A.

To summarize, our findings show that packets are handled differently based
on the destination port number. Port 0 is more likely to be filtered on the path

1 Note that due to the nature of traceroute measurements, missing traceroute
responses could stem either from filtered packets on the forward path, rate-limiting
of ICMP packets at the routers, as well as dropping of ICMP responses on the return
path.
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as well as at the target hosts. Interestingly, the phenomenon of fewer responses
for TCP/0 seems to be much more common in IPv4 compared to IPv6, which
could be due to inconsistent firewall rules [14].

7 Conclusion

In this work, we dissected port 0 traffic by analyzing five complementing passive
datasets and by conducting active measurements. We showed that the major-
ity of port 0 traffic in the wild flows between a small number of source and
destination ASes/IP addresses. Moreover, for some ASes we identified similar
diurnal patterns in port 0 traffic as with regular traffic, along with many TCP
packets with no TCP flags, hinting at a prevalence of fragmented traffic in the
IXP dataset. Additionally, we found that a major fraction of UDP port 0 traf-
fic contains payload, with BitTorrent being a common contributor. Moreover,
we showed that TCP port 0 traffic usually does not contain any payload and
is mostly one-way. Two-way streams were identified as mostly scanning traffic.
Finally, by staging an active measurement campaign, we showed unusually high
response rates to TCP port 0 probes in IPv4, in addition to uncovering the
presence of port 0 packet filtering.

Acknowledgments. We are thankful to the anonymous reviewers as well as our shep-
herd Ramakrishna Padmanabhan for their constructive feedback. We also thank the
large European IXP, MAWI, the University of Waikato, and CAIDA for providing the
data used in our analysis.

A Additional Traceroute Analyses

We perform additional analyses for the active traceroute measurements, which
we provide in the following.

A.1 Last Responsive Hops

We analyze the last responsive hop of each trace specifically. More concretely,
we are interested in the distance, i.e., the largest TTL value of traceroutes,
where we get an ICMP response to. This allows us to determine whether TCP/0
traceroutes are e.g., dropped earlier in the network and therefore are terminated
earlier in the Internet.

Therefore, we compare the distribution of the last responsive hop. The left
part of Fig. 8 shows the distribution of the last responsive hop for IPv4 and IPv6,
respectively. The only visible difference we see for IPv4 are the lower whiskers for
TCP/0, stemming from the fact that TCP/80 and TCP/443 has slightly more
outliers with high TTLs when it comes to the last responsive hops. For IPv6 we
see that TCP/0 has a median of 13 and TCP/80 as well as TCP/443 have a
median last responsive hop TTL of 14. Since the median is almost identical, this
is due to the median only being able to represent integer values if all elements
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(namely path lengths) are integers. TCP/0’s median is therefore “just below”
14 and the others’ median is “just above” 14. All in all, the box plots show that
there is no significant difference when analyzing last responsive hops depending
on the transport port.

Fig. 8. Box plot of last responsive hop (left) and the number of responsive hops (right)
aggregated by transport port protocol for IPv4 and IPv6 showing the median, first and
third quantiles, mean (�), and 1.5 times IQR as whiskers.

A.2 Number of Responsive Hops

Next, we try to answer the question whether fewer routers on the path send
ICMP messages for port 0 traceroute traffic or not.

In the right part of Fig. 8 we show the box plot of the number of responsive
hops. Again, we see no evidence of router sending fewer ICMP responses for
port 0 traffic. We see a slight reduction of TCP/443 ICMP responses per trace
in IPv4.

A.3 ICMP Types and Codes

Finally, we evaluate the different ICMP types and codes sent by routers.
Figure 9 shows the distribution of type and code combinations for ICMP and

ICMPv6, respectively. As expected, the vast majority are of type “Time to Live
exceeded in Transit” for IPv4 and ‘hop limit exceeded in transit” for IPv6. We
see almost identical distributions for the port 0 and other ports.
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Fig. 9. Distribution of ICMP(v6) type and code combinations for all responses split
by transport protocol for IPv4 (left) and IPv6 (right).

B Additional Passive Analysis

We analyze hourly patterns of port 0 traffic grouped by source AS, compared
with the total port 80 traffic as a reference for regular traffic. Due to space
limitations we publish the figure on our website:

inet-port0.mpi-inf.mpg.de

References

1. ACM: Artifact Review and Badging (2020). https://www.acm.org/publications/
policies/artifact-review-badging

2. Aitken, P.: RFC Erratum 1738 (2009). http://www.rfc-editor.org/errata search.
php?eid=1738

3. Alcock, S., Nelson, R.: Libprotoident: traffic classification using lightweight packet
inspection. WAND Network Research Group, Technical report (2012)

4. Asghari, H.: pyasn on Github (2018). https://github.com/hadiasghari/pyasn
5. AT&T: Broadband Information - Network Practices (2020). https://about.att.

com/sites/broadband/network
6. Backes, M., Holz, T., Rossow, C., Rytilahti, T., Simeonovski, M., Stock, B.: On the

feasibility of TTL-based filtering for DRDoS mitigation. In: Monrose, F., Dacier,
M., Blanc, G., Garcia-Alfaro, J. (eds.) RAID 2016. LNCS, vol. 9854, pp. 303–322.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45719-2 14

7. Beverly, R.: Yarrp’ing the internet: randomized high-speed active topology discov-
ery. In: Proceedings of the Internet Measurement Conference, pp. 413–420 (2016)

8. Bou-Harb, E., Debbabi, M., Assi, C.: On fingerprinting probing activities. Comput.
Secur. 43, 35–48 (2014). https://doi.org/10.1016/j.cose.2014.02.005. http://www.
sciencedirect.com/science/article/pii/S0167404814000248

9. Bou-Harb, E., Lakhdari, N.E., Binsalleeh, H., Debbabi, M.: Multidimensional
investigation of source port 0 probing. Digit. Investig. 11, S114–S123 (2014)

https://inet-port0.mpi-inf.mpg.de/
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://www.rfc-editor.org/errata_search.php?eid=1738
http://www.rfc-editor.org/errata_search.php?eid=1738
https://github.com/hadiasghari/pyasn
https://about.att.com/sites/broadband/network
https://about.att.com/sites/broadband/network
https://doi.org/10.1007/978-3-319-45719-2_14
https://doi.org/10.1016/j.cose.2014.02.005
http://www.sciencedirect.com/science/article/pii/S0167404814000248
http://www.sciencedirect.com/science/article/pii/S0167404814000248


562 A. Maghsoudlou et al.

10. Bykova, M., Ostermann, S.: Statistical analysis of malformed packets and their
origins in the modern internet. In: Proceedings of the 2nd ACM SIGCOMM Work-
shop on Internet Measurment, IMW 2002, pp. 83–88. Association for Computing
Machinery, New York (2002). https://doi.org/10.1145/637201.637211

11. CAIDA: The CAIDA Anonymized Internet Traces Data Access (2019). https://
www.caida.org/data/passive/passive dataset download.xml

12. CAIDA: A Day in the Life of the Internet (DITL) (2020). https://www.caida.org/
projects/ditl/

13. CAIDA: Routeviews Prefix-to-AS mappings (pfx2as) for IPv4 and IPv6 (2020).
http://data.caida.org/datasets/routing/routeviews-prefix2as/

14. Czyz, J., Luckie, M., Allman, M., Bailey, M., et al.: Don’t forget to lock the back
door! A characterization of IPv6 network security policy. In: Proceedings of the
Network and Distributed Systems Security Symposium (2016)

15. Dittrich, D., et al.: The Menlo Report: Ethical Principles Guiding Information and
Communication Technology Research. US DHS (2012)

16. Durumeric, Z., Wustrow, E., Halderman, J.A.: ZMap: fast internet-wide scanning
and its security applications. In: Proceedings of the 22nd USENIX Security Sym-
posium, pp. 605–620 (2013)

17. Fischer, D.: nanog mailing list: TCP and UDP Port 0 - Should an ISP or
ITP Block it? (2020). https://mailman.nanog.org/pipermail/nanog/2020-August/
209228.html

18. Gasser, O.: Analysis scripts and raw data for active port 0 measurements (2021).
https://doi.org/10.17617/3.5f

19. Gasser, O., et al.: Clusters in the expanse: understanding and unbiasing IPv6
hitlists. In: Proceedings of the Internet Measurement Conference, pp. 364–378
(2018)

20. Gasser, O., et al.: IPv6 Hitlist Service (2018). https://ipv6hitlist.github.io/
21. Gasser, O., Scheitle, Q., Gebhard, S., Carle, G.: Scanning the IPv6 internet:

towards a comprehensive hitlist. In: Proceedings of the Traffic Monitoring and
Analysis Workshop (2016)

22. Hallman, R., Bryan, J., Palavicini, G., Divita, J., Romero-Mariona, J.: Ioddos-the
internet of distributed denial of service attacks. In: 2nd International Conference
on Internet of Things, Big Data and Security, pp. 47–58. SCITEPRESS (2017)

23. IANA: Service Name and Transport Protocol Port Number Registry (2020). https://
www.iana.org/assignments/service-names-port-numbers/service-names-port-
numbers.xhtml

24. Jin, C., Wang, H., Shin, K.G.: Hop-count filtering: an effective defense against
spoofed DDoS traffic. In: Proceedings of the ACM Computer and Communications
Security Conference (2003)

25. Jones, T.: DDoS Attacks on Port 0 - Does it mean what you think it
does? (2013). https://blog.endace.com/2013/08/27/ddos-attacks-on-port-0-does-
it-mean-what-you-think-it-does/

26. Kopp, D., Dietzel, C., Hohlfeld, O.: DDoS never dies? An IXP perspective on
DDoS amplification attacks. In: Proceedings of the Passive and Active Measure-
ment Conference (2021)

27. Larzon, L.-A., Degermark, M., Pink, S., Jonsson, L.-E., Ericsson, Ed., Fairhurst,
G.: The Lightweight User Datagram Protocol (UDP-Lite). RFC 3828, RFC Editor,
July 2004. https://tools.ietf.org/html/rfc3828#section-3.1

28. Linux man-pages project: bind(2) – Linux manual page (2020). https://man7.org/
linux/man-pages/man2/bind.2.html

https://doi.org/10.1145/637201.637211
https://www.caida.org/data/passive/passive_dataset_download.xml
https://www.caida.org/data/passive/passive_dataset_download.xml
https://www.caida.org/projects/ditl/
https://www.caida.org/projects/ditl/
http://data.caida.org/datasets/routing/routeviews-prefix2as/
https://mailman.nanog.org/pipermail/nanog/2020-August/209228.html
https://mailman.nanog.org/pipermail/nanog/2020-August/209228.html
https://doi.org/10.17617/3.5f
https://ipv6hitlist.github.io/
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://blog.endace.com/2013/08/27/ddos-attacks-on-port-0-does-it-mean-what-you-think-it-does/
https://blog.endace.com/2013/08/27/ddos-attacks-on-port-0-does-it-mean-what-you-think-it-does/
https://tools.ietf.org/html/rfc3828#section-3.1
https://man7.org/linux/man-pages/man2/bind.2.html
https://man7.org/linux/man-pages/man2/bind.2.html


Zeroing in on Port 0 Traffic in the Wild 563

29. Luchs, M., Doerr, C.: The curious case of port 0. In: Proceedings of the IFIP
Networking Conference, pp. 1–9 (2019)

30. Maghsoudlou, A., Gasser, O., Feldmann, A.: Reserved: Dissecting Internet Traffic
on Port 0 (2020)

31. Majkowski, M.: Reflections on reflection (attacks) (2017). https://blog.cloudflare.
com/reflections-on-reflections/

32. MAWI project: MAWI Working Group Traffic Archive (2020). http://mawi.wide.
ad.jp/mawi/

33. Microsoft: Windows bind function (2018). https://docs.microsoft.com/en-us/
windows/win32/api/winsock/nf-winsock-bind

34. Mukaddam, A., Elhajj, I., Kayssi, A., Chehab, A.: IP spoofing detection using
modified hop count. In: Proceedings of the Advanced Information Networking and
Applications Conference (2014)

35. Nokia: Router Configuration Guide Release 16.0.R4 (2018). https://infoproducts.
nokia.com/cgi-bin/dbaccessfilename.cgi/3HE14136AAABTQZZA01 V1
7450%20ESS%207750%20SR%207950%20XRS%20and%20VSR%20Router
%20Configuration%20Guide%2016.0.R4.pdf

36. Partridge, C., Allman, M.: Ethical considerations in network measurement papers.
Commun. ACM 59(10), 58–64 (2016)

37. Reynolds, J., Postel, J.: Assigned numbers. RFC 870, RFC Editor, Fremont, CA,
USA, October 1983. 10.17487/RFC0870. https://www.rfc-editor.org/rfc/rfc870.
txt. obsoleted by RFC 900
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Abstract. Ad networks (e.g., Google Ads and Facebook Ads), adver-
tisers, publishers (websites and mobile apps), and users are the main
participants in the online advertising ecosystem. Ad networks dominate
the advertising landscape in terms of determining how to pair advertisers
with publishers and what ads are shown to a user. Previous works have
studied the issues surrounding how ad networks tailor ads to a user (i.e.,
the ad targeting mechanisms) extensively and mainly from the perspec-
tive of users. However, it is largely unknown regarding the practices of
how ad networks match between advertisers and publishers.

In this paper, we present a measurement study of the practices of how
ad networks pair advertisers with publishers as well as advertisers’ pref-
erence on ad networks from the perspective of advertisers. To do this, we
manage to harvest a unique advertising-related dataset from a leading
digital market intelligence platform. We conducted paired comparison
analysis, i.e., analyzing advertisers and publishers in pairs, to examine
whether they are significantly similar or dissimilar to each other. We also
investigate if advertisers in different categories have different preferences
on ad networks, whether an advertiser partners with only one ad net-
work for its ad campaign, and how much traffic that its ad campaign
could bring about to its site. Specifically, we found that about a third of
advertisers have their ads mostly displayed on publishers with the same
category as themselves. In addition, most advertisers partner with multi-
ple ad networks at the same time for their ad campaigns. We also found
that the Adult, Romance & Relationships, and Gambling websites rely
on advertising to attract visitors more than other advertiser categories.
Our study produces insightful findings which provide advertisers more
visibility into the complex advertising ecosystem so that they could make
better decisions when launching ad campaigns.

Keywords: Online advertising · Advertising practice · Measurement

1 Introduction

Online advertising is the primary revenue source for millions of web sites and
mobile apps, and is thus crucial to the whole Internet ecosystem. Ad networks,
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advertisers, publishers, and users are the main parties in the online advertis-
ing ecosystem. Ad networks oversee the whole advertising business in terms of
connecting advertisers to publishers and determining what ads are displayed
to a user. An ad network is involved in every workflow step, including helping
an advertiser create an ad, partnering with millions of publishers to reserve ad
placement spots, profiling users based on user behavior tracking, and finally tai-
loring ads to a user visiting a partnered publisher. To some extent, ad networks
know all other three parties better than the parties know themselves.

However, ad networks fail to provide sufficiently informative feedback reports
for other parties, especially advertisers which are ad networks’ revenue source, to
independently evaluate what could be a better advertising practice for them. For
example, ad networks usually provide ad campaign reports to inform advertisers
of post-click performance metrics about users who clicked on the ads and then
came through to the advertiser’s site. However, for an advertiser, such reports
typically fail to provide information about publishers where their own ads are
displayed and publishers where their peer advertisers operating similar business
get their ads delivered. Such information is certainly important for advertisers to
evaluate the effectiveness of their ad campaigns through a horizontal comparison.

Previous works have studied the online advertising ecosystem mainly from the
perspective of users. Some works investigate the effectiveness and transparency
of the ad targeting mechanisms leveraged by ad networks to match ads and users
[8–10,12,13,15,19,21,28,29]. Some propose mechanisms to promote user privacy
and social equality in online advertising [14,16,17,23,24,30,35,36,39]. A few
studies research on security issues caused by malicious usage of online advertising
[20,26,27,34,37,38,40,42]. However, there is still a lack of literature regarding
the advertiser-publisher pairings (i.e., what publishers display an advertiser’s
ads) and advertiser-ad network pairings (i.e., what ad networks are responsible
for distributing an advertiser’s ads) from an advertiser’s perspective.

In this paper, we present a measurement study of the practice of advertiser-
publisher pairings and advertiser-ad network pairings, for advertisers to gain a
better understanding of their own and peer advertisers’ ad campaigns. By com-
plementing feedback reports from ad networks, our study could offer advertisers
additional insights into the advertising ecosystem.

A real-world dataset containing information about both advertisers and their
paired publishers and ad networks is central to the objective of our study. With
a list of top Alexa domains, we queried each of them against a popular web ana-
lytics service provider and managed to gather ample advertising-related infor-
mation regarding the domain, such as leading publishers where the domain’s ads
are displayed, leading ad networks responsible for the domain’s ad campaigns,
and the proportion of incoming traffic contributed by advertising.

With the dataset, we are able to conduct paired comparison analysis, i.e.,
analyzing advertisers and publishers in pairs, to examine whether they are sig-
nificantly similar or dissimilar to each other, so that we may understand the
rationale why ad networks deliver an advertiser’s ads to one publisher rather
than another. We are well aware of the three primary ad targeting mechanisms,
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i.e., contextual-based, behavioral-based, and remarketing-based [28], but in this
work, we are trying to explore objectively whether the similarity/dissimilarity
between advertisers and publishers could also be a possible factor for ad net-
works to associate advertisers and publishers together by ad delivering, besides
the ad targeting mechanisms.

In addition, our dataset also allows us to investigate if advertisers in different
categories have different preferences on ad networks, whether an advertiser only
partners with one ad network for its ad campaign, and how much traffic that
its ad campaign could bring about to its site. Specifically, we found that about
60% advertisers have their ads mostly delivered to the publishers which attract a
large volume of visitor traffic, such as news websites, social networks, and video
streaming services. And typically an advertiser’s site is usually not so popular
as its associative publisher in attracting visitor traffic. In addition, most adver-
tisers are found to partner with multiple ad networks at the same time for their
ad campaigns. Finally, we found that the Adult, Romance & Relationships,
and Gambling websites rely on advertising to attract visitors more than other
advertiser categories. We report our data collection and the findings in detail in
the rest sections.

2 Our Dataset

Ad networks, advertisers, publishers, and users are the main participants in the
online advertising ecosystem. Ad networks connect advertisers to publishers and
determine what ads are displayed to a user. When a user visits a publisher, views
or clicks on an ad, the corresponding advertiser would pay to the associative ad
network, which in turn pays a share to the publisher [1,7].

A representative real-world dataset, containing information about advertis-
ers, their paired publishers, and their partnered ad networks, is essential for
our study. In this section, we describe our data collection methodology and the
dataset we obtained.

Data Collection. Starting from a list of top 30K Alexa domains [3] (the reason
for the relatively small data is explained below), we queried each domain (or site,
used exchangeably in this paper) against SimilarWeb [4], a leading website cate-
gorization and analytics service. The reason we chose SimilarWeb over Alexa [2]
is that SimilarWeb provides us ample advertising-related information regarding
a domain, which is crucial to our study, such as ad networks partnered with the
domain, top publishers where its ads are displayed, as well as the proportion of
incoming traffic contributed by advertising.

Out of consideration of budget, in our study, we use the SimilarWeb service
with a free user account, which allows individual query only and limits 5 results
per metric if the metric has a list of values. For instance, given a domain, only
the top 5 ad networks responsible for its ad distribution are available. However,
the top 5 results of a metric usually contribute a significant proportion together,
close to 100% sometimes, and thus the data is adequate for our statistical study.
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Within a time period of two weeks, we conducted data collection in a semi-
automated manner. That is, given a top Alexa domain, we manually1 launched
a query against SimilarWeb, saved the result webpage locally as an HTML file,
and later on automatically parsed the HTML file with Python scripts. We have
made our dataset publicly available2.

Data Explained. For each domain, SimilarWeb provides us the following infor-
mation.

– Leading ad networks that the domain partners with to launch ad campaigns
• Denoted as {<AdNetworki, Sharei>| i = 1..5}, i.e., the top 5 ad net-

works adopted by the domain, and the percentage of ads each ad network
is responsible for.

– Leading publishers where most of the domain’s ads are displayed
• Denoted as {Publisheri| i = 1..5}.

– Advertising traffic to the domain’s website
• Specifically, the percentage of incoming traffic due to advertising is pro-

vided, as well as the share of other traffic sources, including direct access,
referrals from other sites, search on search engines, social networks, and
emails.

– Traffic statistics of the domain, including the following information:
• Category : the site’s category, determined based upon the web content.
• Country : the country where the most visitors to the site are from, usually

consistent with the origin country of the site.
• Global rank : traffic rank of the site, as compared to all other sites in the

world.
• Visits: total number of visits in the recent 6 months.

– Audience interests of the site
• Denoted as {<AudienceInteresti, Sharei>| i = 1..5}, i.e., the top 5

online interests of the users visiting this site, and the percentage of audi-
ence in each interest category.

SimilarWeb Approach of Data Harvesting. SimilarWeb is an Israeli dig-
ital market intelligence company and is readying for an IPO on Nasdaq as of
this writing3. According to its own introduction about their data [5], Similar-
Web leverages hundreds of diverse data sources, calibrates data with real feed-
back, e.g., Google Analytics, and aggregates those mixed data sources through
machine learning algorithms into a single data set available to users. The hun-
dreds of data sources can be categorized into four groups: (i) public data points
easily obtained using crawling techniques, (ii) first-party data directly shared
by website and mobile apps owners, (iii) external partners, e.g., Internet ser-
vice providers, who usually have millions of subscribers, and (iv) panel-based
behavioral data obtained through add-ons, extensions, apps and plugins.
1 We cannot utilize the browser automation tool Selenium to crawl SimilarWeb pages

due to the latter’s web scraping prevention measures.
2 https://www.jianguoyun.com/p/Da1yvg4QuKftCBjMpNsD.
3 Online traffic intelligence co SimilarWeb eyes Nasdaq: https://bit.ly/3iAegxl.

https://www.jianguoyun.com/p/Da1yvg4QuKftCBjMpNsD
https://bit.ly/3iAegxl
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Fig. 1. Deviation of SimilarWeb and Alexa from Tranco ranking.

Data Validity. In this study, we heavily rely on the dataset obtained by query-
ing a domain against SimilarWeb. Since how SimilarWeb collects and processes
data is still largely unknown to the public, we validated the dataset as fol-
lows. First, we compare SimilarWeb to other website ranking systems. Tranco is
a research-oriented ranking system, which is claimed to create robust rankings
transparently and reproducibly [6,33]. Hence we use Tranco as a benchmark and
then examine whether SimilarWeb ranking has a significantly larger deviation
from Tranco ranking than the deviation of Alexa ranking from Tranco ranking.
We randomly selected 20,000 website domains and then obtained their rankings
in Tranco, SimilarWeb, and Alexa. We then calculated the deviation of Simi-
larWeb from Tranco ranking and the deviation of Alexa from Tranco ranking
for each domain, respectively. We plotted the cumulative distribution function
(CDF) curves in Fig. 1. It shows that (1) both SimilarWeb and Alexa rankings
could have a large deviation from Tranco ranking. Specifically, for about 70%-
75% domains, the difference of their website ranking value in SimilarWeb and
Alexa from that in Tranco could be larger than 10,000; (2) As for the deviation
from Tranco ranking, Alexa did not perform better than SimilarWeb, and the
ranking values provided by SimilarWeb are as trustworthy as those provided by
Alexa. Moreover, we compared SimilarWeb and Alexa in terms of other traffic
metrics and did not find statistically significant difference either. For example,
Table 1 lists the traffic data returned by SimilarWeb and Alexa for espn.com.
As for the advertising-related data about a domain, unfortunately, we did not
find any other web analytics services including Alexa that provide such data,
and thus we cannot perform a comparison as we do in Table 1. We assume
SimilarWeb provides trustworthy web analytics data.

Our Data Processing. Our research approach is to conduct paired comparison
analysis, i.e., analyzing advertisers and publishers in pairs, to examine whether
they are significantly similar or dissimilar to each other. Thus, starting with the
raw data {Publisheri| i = 1..5}, i.e., the top 5 publishers directing advertising
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Table 1. SimilarWeb versus Alexa in traffic statistics about espn.com.

Web analytics Global rank Pages/Visit Traffic source

Direct Referral Search Social

SimilarWeb 83 3.40 73.99% 1.01% 18.24% 3.80%

Alexa 88 3.96 78% 7.47% 13.76% 0.77%

traffic to an advertiser, we parse it into five pairs < Advertiser, Publisheri >,
i = 1..5. In this way, we managed to extract 34,229 distinct pairs of adver-
tiser and publisher. There are 26,456 distinct domains in total in those 2-tuples,
including 16,870 distinct advertisers4 and 12,142 distinct publishers. Note that a
domain could advertise itself in other websites with the help of ad networks as an
advertiser and meanwhile host the ads from other websites as a publisher. And
9.7% (2,556 out of 26,456 sites) are found to be an advertiser and a publisher at
the same time. We choose not to exclude those domains or treat them differently,
since it is very common in the practice that a domain could take both the roles.

Data Representativeness. We examined the representativeness of our dataset
in terms of domain category distribution and domain country distribution.

Dataset Distribution by Domain Category. Figure 9 (placed in Appendix due to
page limit) depicts the distribution of the domains in the dataset by category5.
It shows that all those domains in our study fall into 30 categories. The top 5
categories, including Computers and Technology, News and Media, Arts and
Entertainment, Science and Education, and Games, account for 44.0% of all
domains. None of the domains in the rest categories occupy more than 5%. Thus,
the domains in our study are quite diverse in category.

Dataset Distribution by Domain Country. The country which contributes the
most traffic to a domain is deemed as its primary country. All the domains
are found to be from 119 countries, and those primary countries contribute
57.8% traffic to a domain on average. The top 20 countries shown in Fig. 10 (in
Appendix) account for 88.5% of all domains. Nearly a half (47.7%) of domains are
from the United States. Our dataset seems biased in this metric, but actually
it makes sense, given that United States owns about 41.0% of know registered
domains based on the domain name registration’s statistics6.

4 Several hundreds of domains in our original domain list were removed, since Similar-
Web did not manage to obtain their corresponding publisher information. Actually,
it is common and normal that SimilarWeb may not return complete data for each
data field we described before.

5 As explained before, the category information is provided by SimilarWeb.
6 Domain name registration’s statistics: https://domainnamestat.com/statistics/

overview.

https://domainnamestat.com/statistics/overview
https://domainnamestat.com/statistics/overview
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3 Paired Comparison Analysis

In this section, we conduct paired comparison analysis, i.e., analyzing advertis-
ers and publishers in pairs, to examine whether they are significantly similar
or dissimilar to each other. We also check how much traffic that advertisers’
ad campaigns with ad networks could bring to their sites as well as which ad
networks are popular with advertisers. We report our analysis results on 34,229
pairs of advertisers and publishers in below.
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Top 10 categories with the most publishers

Fig. 2. Top 10 categories of publishers that are associated with the most advertisers.
Y axis denotes the percentage of all advertisers.

3.1 Similarity or Dissimilarity Between Publishers and Advertisers

What Categories of Publishers are Paired with the Most Advertis-
ers? Data analysis reveals that no matter what category of advertiser websites,
59.9% advertisers have their ads displayed on publisher websites falling under
the 5 categories, including News and Media, Computers and Technology, TV
Movies and Streaming, Social Networks & Online Communities, and Arts
and Entertainment, as shown in Fig. 2. And the publishers under the other
5 categories, including Games, E-commerce & Shopping, Adult, Coupons and
Rebates, and Sports, are also popular ad placement choices, which account for
22.2% combined.

We further examined why publishers in these 10 categories are delivered with
the most ads (assuming that the more advertisers associated with a publisher,
the more ads delivered to it), by looking into the number of visits to those
publishers in the last 6 months. We found that 7 out of the top 10 most popular
publisher categories are among the top 10 categories with the most visitors,
shown in Fig. 3. Although the rest 3 categories – Games, Coupons and Rebates,
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Fig. 3. Top 10 categories of publishers with the most visits in the last 6 months.

and Sports – did not appear in Fig. 3, actually the publishers in those three
categories also attract huge volume of user traffic. Thus, the results indicate
that visitor traffic does positively affect the number of ads that are delivered to
a publisher website.

Do Ad Networks Deliver an Advertiser’s Ads to Publishers with the
Same Category as the Advertiser? We analyzed the leading publishers that
are associated with each of advertisers in all 30 categories, and found that a
third of advertisers end up with their ads mostly shown on publishers with
the same category as them. Figure 4 shows the top 10 categories of advertisers
with their ads mostly shown on publishers with the same category. We can
see that up to 66.9% Adult advertisers have their ads mostly shown on Adult
publishers, 35.6% Games advertisers mainly showing ads on Games publishers, and
17.5% Gambling advertisers showing ads on Gambling publishers7. The results
are reasonable, since the visitors to a publisher would highly likely show interest
in the advertised products or services from advertisers of the same category as
the publisher.

For the rest 20 advertiser categories, 13 categories of advertisers dis-
play ads mostly on News and Media publishers; advertisers in the other
7 categories mainly have their ads delivered by ad networks to publish-
ers in categories: Computers and Technology, Social Networks and Online
Communities, and Adult. As depicted in Fig. 3, all those four publisher cat-
egories, i.e., News and Media, Computers and Technology, Social Networks
and Online Communities, and Adult, are among the top 10 categories with the
most visits in the last 6 months, so the ads on them could get more exposure.

7 Note that 17.5% is already a very large ratio, given the quite small ratio of Gambling
publishers among all publishers on the Internet. In our dataset, only 1.4% domains
fall into the Gambling category.
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Fig. 4. Top 10 categories of advertisers with their ads mostly shown on publishers with
the same category. Y axis denotes the percentage of advertisers in one category.

So, we conclude that ad networks deliver an advertiser’s ads either to publishers
with the same category as the advertiser or to publishers with a large volume of
visitor traffic.

Fig. 5. Percentage of advertisers in the top 20 countries whose ads are displayed mostly
on publishers from the same country.

Do Ad Networks Deliver an Advertiser’s Ads to Publishers in the
Same Country as the Advertiser? As shown in Fig. 10, the top 20 coun-
tries account for 88.5% of all websites in our dataset, and we focus on those
20 countries. For each country, we compute the proportion of advertisers which
have their ads mainly shown on publishers from the same country. The results
are illustrated in Fig. 5. It shows that in all 20 countries, a significant pro-
portion of advertisers (from 29.3% to 80.0%, 50.7% on average) have most of
their ads delivered to publishers from their own country. In the top 6 countries,
including United States, Japan, Russia, Turkey, and Poland, more than 60%
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advertisers and their corresponding leading publishers are from the same country.
One may argue that the conclusion is quite obvious and expected, but we believe
that it is still worth a quantitative measurement.

The 6 rightmost countries in Fig. 5 are the only exceptions, since in those
countries, advertisers have their ads delivered to the United States publishers
more often than to publishers in their own country. Specifically, 58.1% advertisers
from Canada, 48.6% from Korea, 45.5% from Australia, 43.2% from India, 48%
from Mexico, and 37.9% from China are scheduled by ad networks to show ads
mainly on the United States publishers. Publishers from the United States
seem very popular with worldwide advertisers. In all other 12 out of the top 20
countries (also excluding United States itself and Ukraine), United States
publishers come second in hosting their ads. This probably reflects the prefer-
ence of advertisers, since ad networks do allow advertisers to decide their target
countries.

Do Ad Networks Pair an Advertiser with Publishers with Higher-
Volume Traffic than the Advertiser? We compared between publishers and
advertisers in our dataset in traffic volume. As illustrated in Fig. 6, the boxplot
chart shows that advertisers have much fewer visits than publishers in terms of
the total visits in the recent 6 months. Specifically, on average, within a 6-month
time period, an advertiser website receives 45.3 million visits, and a publisher
website receives 3.59 billion visits, about 79 times of the traffic to advertisers.
The median visits to them are 5.18 million and 27 million, respectively. Hence,
statistically, advertisers’ ads are more likely to be displayed on publishers with
higher user traffic than that of advertisers. The result makes sense considering
that ads displayed on a publisher with high-volume traffic could get more atten-
tion of potential customers and thus bring a great return on investment (ROI)
for advertisers.

Fig. 6. Comparison between advertisers and publishers in terms of visitor traffic.

Do Ad Networks Pair Advertisers with the Right Publishers? We
explored this question by checking whether an advertiser’s audiences will highly
likely visit its leading publishers. We match an advertiser’s top audience inter-
ests against the categories of its top 5 publishers. A matching would indicate
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an advertiser’s ads are indeed delivered to the right publishers. Among 11,961
advertisers with both top audience interests and leading publishers information
available, 79.6% advertisers have their audience interests matching with the cor-
responding publishers. The result suggests that ad networks may do a good job
in pairing advertisers and publisher but still have much room for improvement.

3.2 Advertisers’ Preference on Ad Networks

Ad networks play a crucial role in online advertising ecosystem. Next, we would
like to examine which ad networks are popular with advertisers when they con-
sider launching an ad campaign.

Top 20 Most Popular Ad Networks. A total number of 199 unique ad net-
works are identified in our dataset. Figure 7 shows the top 20 most popular
ad networks and the percentage of advertisers choosing them. Google Display
Network is clearly the dominant ad network, and accounts for 23.6% of advertis-
ers’ ad network choices. Skimlinks comes second and is chosen by 9.5% adver-
tisers. All other 197 ad networks, including those not shown in the figure, only
attract a share of less than 5% advertisers.

Fig. 7. Top 20 popular ad networks with advertisers.

Number of Ad Networks Adopted by an Advertiser. It is possible that an
advertiser partners with multiple ad networks for its ad campaigns. Data analysis
reveals that (1) 41.8% advertisers only adopt one ad network, and 52.2% of those
advertisers adopt Google Display Network only and 10.2% choose Skimlinks
only, (2) 19.5% advertisers partner with two ad networks, and one of the two ad
networks takes the largest share, accounting for 81.1% ads on average, (3) 10.8%
advertisers with 3 ad networks, and one of those ad networks account for 73.0%
ads on average, (4) 6.8% with 4 ad networks, and one of them accounts for 68.1%
ads on average, and (5) 21.1% with at least 5 ad networks (since we can only
see the top 5 leading ad networks), and one ad network accounts for 61% ads
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on average. So, only 41.8% advertisers stick to only one advertiser, which has a
52.2% chance to be Google Display Network . For those advertisers partnering
with more than one ad network, one of the ad networks take the largest share,
often responsible for more than 60% ads.

Most Popular Ad Networks for Advertisers with Different Categories.
We then checked if the advertisers under different categories have different pref-
erences on ad networks. We found that Google Display Network is the number
one choice for advertisers in 29 out of the total 30 categories, with the category
Adult as the only exception. We use a pie chart8 in Fig. 8 to show the major ad
networks preferred by Adult advertisers. It shows that exoClick, PopCash, and
AdSupply are the 3 most popular ad networks with Adult advertisers, account-
ing for 15.5%, 9%, and 9%, respectively. Note that although these 3 ad networks
are among the top 20 popular ad networks with all categories of advertisers in
Fig. 7, none of them get a share of more than 2%, which implies that these ad
networks focus their business on Adult advertisers.

Fig. 8. Ad networks preferred by Adult advertisers.

How Much Traffic is Driven by Advertising to Advertisers’ Websites?
Lastly, we check how large proportion of traffic that advertising could bring
about to an advertiser’s site. Our dataset contains the traffic source information
for all 26,456 unique websites under all 30 categories. Figure 11 (in Appendix
due to page limit) shows the average proportion of the incoming traffic that
arises from advertising by category. We can see that statistically, for advertisers
in any category, the traffic due to advertising occupies less than 10%, which is
quite normal because a website could have quite diverse traffic sources, includ-
ing but not limited to search (Google, Bing, etc.), direct (bookmark, type-in),
and social (Twitter, Facebook, etc.), and also even 8.7% traffic from advertising
(i.e., for Adult advertisers) would cost advertisers a big amount of money. Specifi-
cally, advertisers in the three categories: Adult, Romance & Relationships, and
Gambling rely on advertising to attract visitors more than website in any other
categories. On average, about 5.6% to 8.7% visitors navigate to those websites
8 In here, Fig. 8 is not used to illustrate numerical proportion. We just borrow the

form of pie chart for better illustration.
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through advertising. It makes sense since after all those websites cannot attract
as much traffic as News and Media websites in the normal way.

Limitations. This study is based on a small dataset with potential bias.

4 Related Work

Our work represents a new effort towards increasing transparency into the com-
plex online advertising ecosystem. There is a large body of work studying the
other aspects of the online advertising ecosystem. Gill et al. [22] investigated the
relationship between personal information collected and its economic value for
advertising. Papadopoulos et al. [32] implemented a system to allow end users
to compute in real time the value advertisers pay to reach them. Some works
[8–10,28] studied the ad targeting mechanisms. Liu et al. [28] investigated the
prevalence of three primary ad targeting mechanisms and found that behavioral-
based targeting was the most popular one. Barford et al. [10] characterized a large
corpus of ads and studied the ad targeting mechanisms from various perspectives.
Andreou et al. [8] reported that some advertisers target users with ads of poten-
tially sensitive categories such as politics and religion. Some other works studied
new forms of advertising. Chalermsook et al. [18] studied a new form of advertis-
ing, i.e., sponsored viral marketing. Yu et al. [41] studied in-vehicle advertising
and its economic impact. A couple of works studied the newly introduced mech-
anisms or standards. Pachilakis et al. [31] conducted a measurement study of
Header Bidding (HB), an advanced method of programmatic ad buying. Bashir
et al. [11] presented a 15-month observational study of the ads.txt standard. A
few works [24,25] studied the impact of the usage of ad-block and anti-adblock
tools on the advertising ecosystem. Compared to the above-mentioned works,
we study the online advertising ecosystem with a unique dataset and from the
perspective of advertisers.

5 Conclusion

In this paper, we study the practice of pairing between advertisers and publishers
as well as advertisers’ preference on ad networks from the perspective of adver-
tisers, with a unique dataset collected from a leading website analytics service.
Our study produces ample findings which offer advertisers additional insights
into the complex advertising ecosystem and help guide their ad campaigns.

Acknowledgment. We would like to thank our shepherd Patricia Callejo and
anonymous reviewers for their insightful and detailed comments. The co-author Haitao
Xu is the contact author of this paper.
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6 Appendix

Figure 9 depicts the distribution of the domains in the dataset by category.
Figure 10 shows the top 20 origin countries of the domains. Figure 11 shows
the average proportion of the incoming traffic that arises from advertising by
category.
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