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Preface

We are excited to present the proceedings of the 22nd annual Passive and Active
Measurement (PAM) conference. After more than two decades, PAM continues to
provide an important venue for emerging and early-stage research in network mea-
surement — work that seeks to better understand complex, real-world networked sys-
tems in the wild and provide critical empirical foundations and support to network
research. In light of a still ongoing global COVID-19 pandemic, this 22nd edition of
PAM was again organized as a virtual conference from March 29 to 31st 2021. This
year’s edition benefited from experiences gathered by measuring the participant’s
experience of PAM 2020.

This year’s proceedings demonstrate the import and extent to which measurements
pervade systems — from protocols to performance to security. In total, we received 75
double-blind submissions from authors representing 132 unique institutions, of which
the Technical Program Committee (TPC) selected 33 for publication — making this
year’s PAM program the largest in its history. Particular attention was paid to ensuring
that the TPC was as broadly representative as possible, including both junior and senior
researchers. We are indebted to this hard-working TPC, which ensured that each paper
received three reviews, and carried out a lively (and in several cases spirited) online
discussion to arrive at the final program. TPC members were asked to provide con-
structive feedback, bearing in mind PAM’s focus and goals that recognize promising
early work. This year at PAM we also implemented a Review Task Force (RTF),
following the model used by USENIX Security and ACM IMC. The RTF included
senior, experienced researchers in the community who are also great mentors. The
engagement of such a group ensured that all the TPC’s feedback met high standards of
technical correctness, specific critiques, and a positive, constructive tone. To ensure the
quality of the program and equanimity of the presented results, each paper was
assigned a shepherd from the TPC who reviewed the paper. We are delighted with the
final set of 33 papers and hope the readers find them as valuable and provocative as we
do.

We would be remiss not to thank the Steering Committee for help while organizing
the conference, Georgios Smaragdakis for handling the publication process, Pedro
Casas for publicity, Taejoong “Tijay” Chung for managing the conference web site,
Sebastian Bohm for designing the logo, and the Computer Networks group at
Brandenburg University of Technology including Sebastian Bohm, Helge Reelfs,
Stefan Mehner, Joachim Paschke, and Katrin Willhoft for their support in the orga-
nization and running of PAM 2021. Last, we thank all of the researchers who make
PAM such an interesting and important conference year after year.

March 2021 Oliver Hohlfeld
Andra Lutu
Dave Levin
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Video Conferencing and Flow-Rate
Fairness: A First Look at Zoom
and the Impact of Flow-Queuing AQM

Constantin Sander®™) | Tke Kunze, Klaus Wehrle, and Jan Riith

Communication and Distributed Systems,
RWTH Aachen University, Aachen, Germany

{sander ,kunze,wehrle, rueth}@comsys .rwth-aachen.de

Abstract. Congestion control is essential for the stability of the Inter-
net and the corresponding algorithms are commonly evaluated for inter-
operability based on flow-rate fairness. In contrast, video conferencing
software such as Zoom uses custom congestion control algorithms whose
fairness behavior is mostly unknown. Aggravatingly, video conferencing
has recently seen a drastic increase in use — partly caused by the COVID-
19 pandemic — and could hence negatively affect how available Internet
resources are shared. In this paper, we thus investigate the flow-rate
fairness of video conferencing congestion control at the example of Zoom
and influences of deploying AQM. We find that Zoom is slow to react to
bandwidth changes and uses two to three times the bandwidth of TCP
in low-bandwidth scenarios. Moreover, also when competing with delay
aware congestion control such as BBR, we see high queuing delays. AQM
reduces these queuing delays and can equalize the bandwidth use when
used with flow-queuing. However, it then introduces high packet loss for
Zoom, leaving the question how delay and loss affect Zoom’s QoE. We
hence show a preliminary user study in the appendix which indicates
that the QoE is at least not improved and should be studied further.

1 Introduction

The stability of the Internet relies on distributed congestion control to avoid a
systematic overload of the infrastructure and to share bandwidth. Consequently,
protocols that make up large shares of Internet traffic, such as TCP and QUIC,
feature such congestion control mechanisms.

The COVID-19 pandemic and subsequent actions to limit its spread have now
caused a drastic increase in traffic related to remote-working [16]. Of particu-
lar interest is the increasing share of video conferencing software which typically
bases on UDP to conform to the inherent low-latency and real-time requirements
which cannot be provided by TCP [8,14]. Yet, UDP features no congestion con-
trol, meaning that the video conferencing software has to implement it on the
application layer. While this allows for adapting the video conference to the spe-
cific network conditions [11,14], such implementations can introduce unknown
effects and undesired behavior when interacting with “traditional” congestion
© Springer Nature Switzerland AG 2021

O. Hohlfeld et al. (Eds.): PAM 2021, LNCS 12671, pp. 3-19, 2021.
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control. Especially in light of the now increased share of the overall traffic, these
tailored implementations can potentially pose a threat to Internet stability.

Thus, we investigate the interaction of real-world video conferencing software
and traditional congestion control. For our study, we choose Zoom as it has seen
an enormous increase in traffic share by at least one order of magnitude from
being marginally visible up to surpassing Skype and Microsoft Teams at certain
vantage points [16]. We focus on how Zoom reacts to loss and how it yields traffic
to competing TCP-based applications. We also study the impact of Active Queue
Management (AQM) on the bandwidth sharing as it is of growing importance.
Specifically, our work contributes the following:

— We present a testbed-based measurement setup to study Zoom’s flow-rate
when competing against TCP CUBIC and BBRv1.

— Comparing different bandwidths, delays, and queue sizes, we find that Zoom
uses a high share on low-bandwidth links and that there are high queuing
delays, even despite TCP congestion control trying to reduce it (e.g., BBR).

— We show that flow-queuing AQM reduces queuing delay and establishes flow-
rate equality to a certain degree reducing Zoom’s and increasing TCP’s rate
by dropping Zoom’s packets, where the former is probably beneficial but the
latter is probably detrimental for Zoom’s QoE. Our preliminary user study
shows that users do not see QoE improvements with flow-queuing AQM.

Structure. Section 2 discusses the definition of fairness, as well as related work
on general and video conferencing specific congestion control fairness analyses.
Section 3 describes the testbed for our flow-rate equality measurements. Section 4
shows our general results on Zoom and the impact of AQM on flow-rate equality,
packet loss, and delay. A preliminary user study evaluating the impact of AQM on
the QoE can be found in the appendix. Finally, Sect. 5 concludes this paper.

2 Background and Related Work

The interaction of congestion control algorithms, especially regarding fairness,
is a frequent focus of research. It has been thoroughly investigated for common
TCP congestion control algorithms. However, the definition of fairness itself has
also been investigated and discussed.

Fairness Definition. Most work relies on the conventional flow-rate definition
of fairness: competing flows should get an equal share of the available band-
width [19]. However, there are compelling arguments that flow-rate fairness is
not an optimal metric [7,27] and new metrics such as harm [27] propose to also
consider the demands of applications and their flows. We agree that flow-rate
equality is no optimal metric for fairness as it ignores specific demands and the
impact of delay, thus making it an outdated fairness estimate.

On the other hand, the notion of harm is hard to grasp as it requires (poten-
tially wrong) demand estimates. Further, techniques such as AQM are demand
unaware and flow-queuing even specifically aims at optimizing flow-rate equality,
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ignoring any actual application demands. Hence, given the prevalence of flow-
rate equality in related work and AQM techniques, we explicitly use flow-rate
equality as our fairness metric to evaluate the precise impact of this metric on
the application performance. That is, we want to, e.g., see the impact on video
conferencing when flow-queuing is used. This naturally also means that results
depicting an “unfair” flow-rate distribution are not necessarily bad.

TCP Congestion Control. Many of the congestion control studies have espe-
cially looked at CUBIC [17] and BBR [10] and found that BBR dominates in
under-buffered scenarios causing packet loss and making CUBIC back off, while
it is disadvantaged in over-buffered scenarios [18,23,26,28]. Here, CUBIC, as
a loss-based algorithm, fills the buffer and increases the queuing delay which
makes BBR back off. Introducing AQM, these behavior differences vanish.

Impact of AQM. AQM mechanisms come with the potential of giving end-
hosts earlier feedback on congestion, thus helping to reduce queuing delays, and
there have been extended studies regarding their fairness (for a survey see [6]).
While some AQM algorithms are specifically designed to enable a fair bandwidth
sharing (see [13] for an overview and evaluation), generally, any AQM can be
made to fairly share bandwidth with the help of fair queuing [15]. Today, this idea
is most commonly implemented through a stochastic fair queuing (SFQ) which
performs similar to a true fair queuing when the number of flows is limited. In
fact, several works (e.g., [22,23]) show that AQM using this SFQ (often called
flow-queuing) can create flow-rate fairness while effectively limiting congestion,
even though there are no comprehensive studies available in literature.

2.1 Congestion Control for Video Conferencing

Loss-based congestion control, such as CUBIC, is not favorable to delay-sensitive
real-time applications. Hence, research has proposed several congestion control
algorithms tailored to the needs of video conferencing. However, in contrast to
general-purpose congestion control, there is only limited research on its interac-
tion mostly focusing on proposed algorithms with known intrinsics.

Known Algorithms. For example, the Google Congestion Control (GCC) [11],
used in Google Chrome for WebRTC, was tested for flow-rate fairness [11,12].
The results indicate that GCC shares bandwidth equally with CUBIC when
using a tail-drop queue and also subject to the CoDel and PIE AQM algorithms.
There are similar findings for the Self-Clocked Rate Adaptation for Multime-
dia (SCReAM) [20] congestion control algorithm. It achieves an approximately
equal share with a long-lived TCP flow on a tail-drop queue and yields bandwidth
when using CoDel [21]. Contrasting, the Network-Assisted Dynamic Adaptation
(NADA) congestion control [32] shares bandwidth equally when using a tail-drop
queue, but uses bigger amounts when being governed by an AQM algorithm.

Unknown Algorithms in Video Conferencing Software. However, many
actually deployed real-world congestion control algorithms in video conferencing
software are unknown and closed-source. Thus, similar to our work, research also
studies the externally visible behavior of video conferencing software.
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De Cicco et al. [14] investigate the behavior of Skype’s congestion control and
find that it is generally not TCP-friendly and claims more than its equal share.
Interestingly, Zhang et al. [29] found that Skype yields a bigger share to com-
peting TCP flows, but only after exceeding a certain loss threshold. However, in
contrast to work on TCP congestion control, these studies only consider limited
scenarios and generally do not provide extensive evaluations (e.g., no AQM).

Other works focus even more only on aspects impacting the video conference,

e.g., how the audio and video quality evolve subject to packet loss with unlimited
rates [24,30] or very specific wireless settings [31].
Takeaway. Studies on general congestion control are mot applicable to video
conferencing. Research on video conferencing software, on the other hand, mostly
focuses on the concrete impact on its quality while the number of evaluation
scenarios and the context to the general congestion control landscape is scarce.

We thus identify a need for a more thorough evaluation of real-world video
conferencing congestion control that also considers the impact of different band-
widths, buffer sizes, or AQM on fairness. For this purpose, we devise a method-
ology that centers around a configurable testbed which allows us to evaluate the
behavior of the congestion control of Zoom.

3 Measurement Design

Research on congestion control fairness is often done using simulations or isolated
testbeds to focus on the intrinsics of the algorithms. In contrast, our work on
Zoom forbids such an approach as the Zoom clients interact with a cloud-based
backend that is responsible for distributing audio and video traffic. Thus, to fully
grasp the real-world performance of Zoom, we devise a testbed that connects to
this backend while still letting Zoom’s traffic compete with a TCP flow over
a variety of network settings. While we consequently have to take potential
external effects into account, our testbed still allows us to control parameters,
such as bottleneck bandwidth, queuing, and delay.

3.1 Preliminaries

For our investigations, we set up two Zoom clients which then connect to a joint
Zoom conference via the Zoom backend running in a data center. We find that
free Zoom licenses use data centers operated by Oracle in the US, while our
University license mostly connects to data centers operated by AWS in Europe.
We generally see that connections are established to at least two different AWS
data centers, one in Frankfurt (Germany) and one in Dublin (Ireland). As our
upstream provider peers at DE-CIX in Frankfurt, we choose to focus on these
connections to reduce the number of traversed links, thus minimizing the prob-
ability of external effects, such as changing routes or congestion.

3.2 Testbed Setup

As shown in Fig. 1, our testbed uses a dumbbell topology and consists of five
dedicated machines. In the center, one machine serves as the configurable bot-
tleneck link over which Zoom Client 1 (ZC 1) connects to the Zoom backend to
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Zoom Client 2

Zoom Client 1 5
(zC1)

= =
f;::»H Bottleneck Hjj::o

TCP Client é 5 TCP Server

Fig. 1. Testbed setup representing a dumbbell topology

join a conference with Zoom Client 2 (ZC 2). Our two remaining machines (TCP
Client, TCP Server) operate a concurrent TCP flow to assess competition.

Testbed Interconnection. All our machines are interconnected using 1 Gbps
Ethernet links. The uplink to our university’s network is 10 Gbps which in turn
connects to the German Research Network (DFN) via two 100 Gbps links. The
DFN then peers at DE-CIX with, e.g., AWS. We can thus be reasonably sure
that our configurable bottleneck machine represents the overall bottleneck.

Shaping the Bottleneck. We configure our bottleneck using Linux’s traffic
control (TC) subsystem similar to [25] to create network settings with different
bandwidths, delays, queue sizes, and queue management mechanisms. For rate-
limiting, we use token bucket filters with a bucket size of one MTU (to minimize
bursts) on the egress queues in both directions. Similarly, we also configure
the AQM on the egress queues. Delay is modeled on the ingress queues using
intermediate function blocks (ifbs) and netem. We first create an additional
ingress qdisc via ifb and add the delay to the egress of this ifb via netem. This
technique is necessary as netem is not directly compatible with AQM qdiscs [1]
and usage of netem on the end-hosts would cause issues due to TCP small
queues [9]. Further, we add no artificial jitter, as this causes packet reorderings,
as such, jitter is only introduced through the flows filling the queue itself.

Balancing RTTs. Our testbed compensates for differing RTTs and ensures
that the Zoom and the TCP flow have the same RTT, a requirement for the
common flow-rate equality definition. For this, we first measured the average
delay between different AWS hosts and ZC 1 as well as between TCP Client
and TCP Server prior to our experiments. We then adapted the netem delay
accordingly such that the TCP flow and the flow between ZC 1 and AWS have
about the same RTT when the queue is empty. By adapting the delay prior to
our experiments, we avoid skewing the initial RT'T of flows which we presume to
be important for Zoom’s congestion control, but accept a potential bias due to
changing hosts at AWS which we cannot predict prior to establishing our video
conferences. However, the relative error of this bias should be insignificant as we
emulate rather large artificial RTTs.

3.3 Fairness Measurement Scenarios and Procedure

With our measurements, we aim to represent video conferences from a low-
speed residential access where Zoom’s video flow and a TCP flow (e.g., a movie
download) compete. The used parameters are shown in Table 1.
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Table 1. Parameter configuration for our testbed

BW [Mbps] RTT [ms| QSize [BDP] AQM CcC Order  Direction
0.5,1,2,4 30,50 0.5, 2, 10 Tail-Drop CUBIC Zoom first Downlink
(FQ-)CoDel BBRvl TCP first Uplink

The lowest bandwidth (0.5 Mbps) falls slightly below Zoom’s requirements of
0.6 Mbps [2]. Yet, we argue that it also has to behave sound in out-of-spec cases.

We shape the bandwidth symmetrically, which is atypical for a residential
connection, but study the up- and downlink separately. We also adjust and
balance the minimum RTT (min-RTT) symmetrically as described before. As
queue sizes, we use multiples of the BDP, i.e., 0.5, 2, and 10x the BDP. When
investigating AQM, we use 2xBDP as AQM algorithms require headroom to
operate, and adopt the TC Linux defaults for CoDel (target 5ms and interval
100 ms). Further, we vary which flow starts first to investigate late-comer effects.

Overcoming Transient States. For our measurements, we want to avoid tran-
sient phases. As such, we usually wait in the order of half a minute after acti-
vating each flow to stabilize. We then start a 60 s measurement period in which
we capture all exchanged packets, measure the queuing delay, and also observe
the queue sizes at the bottleneck using a small eBPF program.

Video Conference. The Zoom video conference itself is established between
ZC 2 and ZC 1 (ensuring connectivity via AWS in Frankfurt). As their video
feeds, both clients simulate a webcam via v412loopback [3]. To rule out effects
of video compression on the congestion control behavior of Zoom, we ensure a
constant video data rate by using uniform noise as our video input.

Every scenario is repeated 30 times and retried where, e.g., Zoom restarts
due to high loss. The measurements were made from July 2020 to October 2020
on Linux 5.4.0-31 with Zoom version 5.0.408598.0517. To observe variations,
we sort the points in the following scatterplots chronologically from left to right.

Equality Metric. We measure flow-rate equality using the metric of our prior
work [25]. In contrast to, e.g., Jain’s fairness index [19], this metric shows which
flow over-utilizes the bottleneck by how much. The metric is defined as:

— e Ors, if bytes(Zoom) > bytes(TCP)

1 bytes(Zoom)

bytes(TCP)

flow-rate equality = { therwi
otherwise

flow-rate equality lies in the interval of [—1, 1]. With 0 both flows share the band-
width equally, while 1/—1 means that Zoom/TCP monopolizes the link.

Please note that flow-rate equality is likely not the desired metric to depict
a fair service enablement. For example, Zoom simply needs a certain data-rate
to deliver its service, as such flow-rate equality should likely not be used to
establish fairness, e.g., in an AQM. Nevertheless, we still opted for this metric
to i) judge what happens when an AQM tries to utilize this metric, and ii)
investigate the bandwidth demand and the ability of the congestion controller
to seize the required bandwidth as well as the side effects in doing so.
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Fig. 2. Zoom video flow behavior for a 50ms RTT and a 10xBDP tail-drop queue.
Bandwidth (dashed) is varied from 4 Mbps to 0.5 Mbps and back to 4 Mbps.

4 Zoom Inter-Protocol Fairness Results

In the following we present our findings on the behavior of Zoom by first ana-
lyzing its general congestion reaction (Sect.4.1). We then discuss how ZC 1
competes with a TCP flow in scenarios without AQM at low bandwidths sub-
ject to different queue sizes (Sect.4.2). We further evaluate the effects of using
CoDel (Sect.4.3) and FQ_CoDel (Sect.4.4) AQM. Lastly, we show results of a
small-scale user study that investigates the effects of FQ_CoDel on the actual
QoE, which can be found in the appendix to this work (Appendix A).

Before conducting our experiments, we first verify the standalone throughput
of TCP and Zoom in our scenarios. We find that TCP achieves a utilization above
80% in almost all cases except for 3 outliers out of 4800 runs. Similarly, Zoom’s
throughput for the AQM scenarios only changes by at most 10%. The following
differences in flow-rate equality are thus mainly due to the interaction of the
congestion control algorithms and not rooted in our settings.

4.1 General Observations on Zoom’s Behavior

We first observe the behavior of a single Zoom flow without competition in
a scenario with a 50ms RTT and a 10xBDP tail-drop queue. Figure2 shows
Zoom’s video send rate when varying the bandwidth (dashed) from 4 Mbps to
0.5Mbps and back. At first, Zoom’s backend (left) sends at slightly less than
4 Mbps while the Zoom client (right) sends at ~2.5Mbps. In both cases, the
queue is empty. Similar to BBR [10], Zoom seems to repeatedly probe i) the
bandwidth by increasing its rate and ii) the min-RTT by reducing its rate.

Once we reduce the bandwidth to 0.5 Mbps, both Zoom entities keep sending
at ~3.5 Mbps, thus losing many packets and filling the queue. After ~30s, Zoom
reduces its rate to 0.5 Mbps. Surprisingly, the backend again increases the rate
by a factor of 4 shortly thereafter. After resetting the bandwidth to 4 Mbps,
Zoom slowly increases its rate on the uplink and faster on the downlink.

Packet loss and increased queuing delays do not seem to directly influence
Zoom’s sending behavior. However, Zoom occasionally restarted the video con-
ference completely, stopping sending and reconnecting to the backend with a
new bandwidth estimate not overshooting the bottleneck link. We filtered these
occurrences from the following results as the time of reconnecting would influence
our metric and also the meaning of our “Zoom first” scenario.
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Fig. 3. Flow-rate equality for Zoom competing at a 0.5 x BDP queue with TCP.

We also changed the min-RTT from 50 ms to 500 ms instead of the bandwidth.
We did not see any obvious reaction, although we expected that Zoom backs off
to wait for now delayed signaling information or to reduce potential queuing.

To summarize, Zoom handles up- and downlink differently and does not seem
to directly react on increased queuing or loss, instead reacting slowly which leads
to big spikes of loss. We next investigate how this impacts competing flows.

4.2 Competition at Tail-Drop Queues

Undersized Tail-Drop Queue. We first examine Zoom’s behavior when com-
peting at a 0.5xBDP tail-drop queue against TCP CUBIC and BBR. The scat-
terplots in Fig. 3 show our flow-rate equality for downlink (a) and uplink (b).

Downlink. Zoom uses a disproportionate bandwidth share on the downlink
with bottleneck bandwidths < 1Mbps. The flow-rate equality is mostly above
0.5, i.e., Zoom’s rate is more than twice the rate of the TCP flow. For higher
bandwidths, Zoom yields more bandwidth. Additionally, we can see that TCP
flows starting first result in slightly better flow-rate equality. For CUBIC, equal-
ity values of around 0 can be first seen at 4 Mbps. For BBR, equality values of
around 0 can already be seen at 2 Mbps. However, when being started first and
at 4 Mbps, BBR disadvantages Zoom significantly.

Uplink. For the uplink, the equality values are comparable, but in total
lower. This means that the TCP flows claim more bandwidth (especially with
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Fig. 4. Flow-rate equality for Zoom competing at a 10 x BDP queue with TCP.

BBR) and Zoom seems to act less aggressive. We posit that Zoom’s congestion
control might be adapted to the asymmetric nature of residential access links.
The queuing delays on the down- and uplink mostly exceed 50% of the max-
imum (not shown). We attribute this to the TCP flows as i) CUBIC always
fills queues, and ii) BBR overestimates the available bandwidth when competing
with other flows [28] and then also fills the queue plus iii) Zoom reacting slowly.

Slightly Oversized Tail-Drop Queues. When increasing the buffer size to
2xBDP, the results are surprisingly similar (and thus not visualized). CUBIC
can gather a slightly larger bandwidth share, which we attribute to its queue-
filling behavior. However, Zoom still holds twice the bandwidth of the TCP flows
at links with <1 Mbps, i.e. the equality values mostly exceed 0.5. Only on faster
links, CUBIC can gain an equal or higher bandwidth share. For BBR, equality
values are closer to 0 for bandwidths below 2 Mbps, i.e., Zoom as well as BBR
dominate less. For higher bandwidths, the results are equivalent to before. Also
the avg. queuing delay rises to about 75% due to filled queues as before.

Overlarge Tail-Drop Queues. Next, we study the flow-rates for large queues
of 10xBDP. Figure 4 shows the results for downlink (a) and uplink (b).
Downlink. Contrary to our expectation, there is no significant improvement
in flow-rate equality for the downlink. Zoom still uses a high bandwidth share and
CUBIC’s queue-filling behavior does not result in a larger share. Compared to
the previous scenarios, the equality values are not decreasing significantly when
Zoom starts first and it even uses more bandwidth than before for the 4 Mbps
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Fig. 5. Queuing delay for Zoom competing at a 10 x BDP queue on the uplink.
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Fig. 6. Queuing delay for Zoom+CUBIC competing at a tail-drop/CoDel queue.

setting. For TCP CUBIC starting first, equality values now spread around 0.5,
regardless of the bandwidth. For Zoom starting first, BBR barely reaches values
below zero.

Uplink. The scenario looks completely different for the uplink. Zoom yields
bigger parts of the bandwidth to CUBIC and even reduces on one third of
the bandwidth when BBR starts first. This is surprising, as BBR is known to
be disadvantaged in this overbuffered scenario [18]. We also checked if changes
between the BBR code used in [18] and our Linux Kernel 5.4 could explain this
difference, but the basic principle seems to be unaltered. Still, we remark that
the BBR codebase has seen significant changes since [18] and we are not aware
of any investigations how these changes affect BBR’s properties.

The queuing delay, shown in Fig. 5 for the uplink, still reaches about 75% of
the maximum queuing delay for CUBIC and BBR in low-bandwidth scenarios
where delay is slightly smaller on the uplink than on the downlink. BBR seems to
be able to reduce queuing delay in the higher bandwidth region, but we expected
that BBR would reduce the queuing delay more strongly in all scenarios.

Takeaway. We can see that Zoom is unfair w.r.t. flow-rate to CUBIC in
low-bandwidth scenarios with 1.0 Mbps and less, although Zoom is less aggressive
on the uplink. As BBR is more aggressive, it gains higher rates in these situa-
tions — also on the downlink. However, all scenarios have in common that the
queuing delay is significantly increased being detrimental to video conferencing.
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Fig. 7. Flow-rate equality for Zoom competing with TCP at an FQ_CoDel queue

4.3 Competition at CoDel Queues

Using AQM might be beneficial, given the increased queuing delays. Hence, we
study Zoom and TCP flows competing at CoDel queues. We expect significant
changes in flow-rate equality as CoDel drops packets early to signal congestion.
Yet, our results are very similar to the 2xBDP tail-drop queue, thus we do
not show them here. They only slightly shift towards CUBIC. However, CoDel
keeps its promise of reduced queuing delays, as shown in Fig.6: The queuing
delay of Zoom competing with CUBIC (BBR looks similar) at 2xBDP queues
roughly halves when CoDel is used at 0.5 Mbps. For higher bandwidths, the
effect is even stronger. This is potentially beneficial for real-time applications.

Takeaway. All in all, CoDel does not significantly alter the flow-rate distribu-
tion. However, it keeps its promise of reducing the experienced queuing delays.

4.4 Competition at FQ_CoDel Queues

To enforce flow-rate equality, we next apply FQ_CoDel to the queue. FQ_CoDel
adds stochastic fair-queueing to CoDel, i.e., it isolates flows into subqueues,
applies CoDel individually, and then serves the queues in a fair manner.

While the queuing delays are equivalent to CoDel and thus not shown, our
flow-rate equality metric significantly shifts towards TCP in most conditions as
shown in Fig. 7 for uplink (a) and downlink (b). For example, the downlink results
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Table 2. Median number of packets received and dropped for CUBIC and Zoom at a
0.5 Mbps, 50 ms, 2xBDP bottleneck on the downlink (Zoom started first).

Tail-Drop CoDel FQ_-CoDel
Dropped Received Dropped Received Dropped Received
TCP CUBIC  188.0 816.5 190.0 935.5 250.5 1260.5
Zoom 331.0 2824.0 515.5 2852.5 903.5 2880.5

mostly range from 0.3 to —0.3 compared to prior findings of Zoom dominating.
The biggest advance for Zoom remains in the 0.5 Mbps setting.

On the uplink, equality differs. Zoom yields bandwidth when using BBR in
mostly all cases except for bandwidths < 1.0 Mbps. For CUBIC, also no perfect
equalization can be seen. For bandwidths above 2.0 Mbps CUBIC gets bigger
shares, below this threshold, vice versa. We deduct this to Zoom being more
careful on the uplink and not using the whole probed bandwidth, leaving a gap.

Zoom’s Reaction to Targeted Throttling. As we could see, FQ_CoDel
allows to share bandwidth between Zoom and competing TCP flows after a
bottleneck more equally. However, it is unclear whether Zoom reduces its rate
or whether the AQM is persistently dropping packets, specifically in the low-
bandwidth scenarios. We hence show the dropped and sent packets for CUBIC
and Zoom over 60s in Table2 for the 0.5 Mbps bottleneck with 2xBDP queue
and 50ms RTT. We can see that Zoom does not reduce its packet-rate from a
tail-drop queue up to FQ_CoDel. Instead, the AQM drops packets increasingly.
Takeaway. In combination with flow-queuing, CoDel can reduce the experienced
queuing delay, which is probably beneficial for Zoom’s QoE, while equalizing the
bandwidth share with TCP. However, in low-bandwidth scenarios this share is
still not perfectly equal. Zoom does not reduce its rate but CoDel and FQ_CoDel
increasingly drop Zoom’s packets which might affect Zoom’s QoFE negatively. A
preliminary user study shows that FQ_CoDel does, indeed, not improve QoFE and
can be found in the appendix.

5 Conclusion

In this work, we recognize the impact of video conferencing on Internet stability
and investigate congestion control fairness in combination with Zoom. Flow-rate
equality as fairness measure is well researched for TCP’s congestion control and
for real-world TCP flows in the Internet. However, for congestion control of video
conferencing software it is not — specifically regarding different scenarios. Hence,
we investigate Zoom as increasingly popular real-world deployment of video con-
ferencing. We find that Zoom uses high shares of bandwidth in low-bandwidth
scenarios yielding it when more bandwidth is available. Adding AQM, such as
CoDel, alone does not improve the bandwidth sharing, but reduces latency which
is probably beneficial for Zoom. Only when also using flow-queuing, more equal
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bandwidth sharing can be achieved with FQ_CoDel. However, this fair sharing
comes at the price of reduced bandwidth and packet loss for Zoom, potentially
reducing its QoE. Our small-scale user study found that FQ_CoDel did not
improve the QoE. For future work, we imagine a more thorough user study to
evaluate Zoom’s QoE with AQM such as FQ_CoDel in more detail. Further,
testing Zoom'’s reaction on ECN and multiple Zoom flows competing could give
interesting information on its behavior on backbone congestion.
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Appendix

In the following, we present results of a small-scale user study which we con-
ducted to analyze whether our findings regarding packet loss but also improve-
ments regarding delay have positive or negative impact on Zoom’s subjective
quality. However, as our study was performed with a limited number of partici-
pants due to COVID-19 restrictions, we had to restrict the number of scenarios
that we could investigate. Thus, the results and their generalizability are limited
and this study should be regarded as an initial step in understanding how QoE,
queuing and Zoom interact.

A QoE Impact of Flow-Queuing AQM

As we have shown in Sect. 4.4, flow-queuing AQM can achieve more equal flow-
rates and reduce latency when Zoom and TCP share a bottleneck. However, this
means lower bandwidths for Zoom, so likely worse video quality. In contrast,
lower latencies should probably mean better interactivity. As the exact correla-
tion w.r.t. perceived experience is hard to grasp, we perform a small-scale user
study to capture the influence of flow-rate equality and AQM reduced latency
on Zoom’s QoE.

Limitations of this Study. However, our study is limited, as we had to limit
the number of participants (n=10) due to COVID-19 restrictions. As such, we
also restricted the number of scenarios to keep the individual study duration
to roughly 25 min. Additionally, we had to switch from synthetically generated
videos (noise to maximize bandwidth utilization) that we used throughout Sect. 4
to real video-conferences. This makes it difficult to compare the video-flows’
demands from our synthetic evaluation to this user study as the bandwidth
demand varies with the compression rate (higher compression for actual webcam
video). In summary, our study should only be regarded as an initial step.

In the following, we introduce the design and stimuli of our study and which
metrics we are interested in. Subsequently, we present the results.
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A.1 User Study Design

We perform a video conference where the subject interacts with an experiment
assistant via Zoom focusing on interactivity and understandability to rate the
quality and whether potentially degraded quality is acceptable when a concurrent
download is active. The assistant reads short paragraphs of texts and the subject
shortly summarizes them once the paragraph ended. This way, we test whether
the video conference allowed for easy understanding but also represent the typical
condition where conference attendees interrupt each other unintentionally. After
5 repetitions of summarizing, the subject and assistant alternately count to 10
to get a feeling for the delay, as proposed by the ITU [4]. Lastly, the assistant
reads random numbers and the subject stops the assistant at a given number
(unknown to the assistant) for the same reasons.

Quality Rating. After every run, the subject rates the overall, audio, video, and
interactivity quality on a seven-point linear scale [5] (c.f., y-axis in Fig. 8). More-
over, the subject decides (yes/no) if communicating was challenging, whether the
connection was acceptable at all, whether the quality was acceptable if they were
downloading a file during a business or private call or when someone else was
downloading documents or watching movies in parallel.

Test Conditions. We test 3 different scenarios using our previously described
testbed; for all conditions, we shape the subject’s link to 0.5 Mbps, adjust the
min. RTTs to 50ms and use a queue size of 10xBDP. The scenarios differ in
whether an extra flow competes on the downlink and whether the queue is man-
aged. In detail, in Scenario 1 (Tail-Drop) only Zoom is active using a tail-drop
queue. Scenario 2 (Tail-Drop + Flow) adds a TCP CUBIC flow on the downlink,
representing, e.g., a movie download. Scenario 3 (FQ-CoDel + Flow) adopts the
TCP flow, but switches to the flow-queuing variant of CoDel.

Study Details. We perform a “within subject” lab study: each subject rates
every test condition selected from a latin square to randomize the order. Each
experiment takes about 5min and is repeated for the 3 scenarios plus a training
phase at the start using Scenario 1. In total, the 4 experiments plus rating take
about 25 min. Although conducting studies with members familiar to the study
is discouraged [4], we stick to the same experiment assistant to reduce variations.

Subject Recruitment. Our subjects are 10 colleagues from our institute which
volunteered to take part and are strongly familiar with Zoom. We limited our
study to these participants to reduce contacts during the pandemic. As such we
were able to hold the conferences in the participant’s first language.

A.2 Results

Figure 8a shows the mean opinion score and 95% confidence intervals of the
quality rating (distributions checked for normality via a Shapiro-Wilk test). The
confidence intervals are computed via the t-distribution due to our small sample
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size. Further, Fig. 8b shows the distributions of “Yes” (positive, to the right) and
“No” (negative, to the left) answers for the different questions.

Generally looking at the plots we can see that the worst results stem from
using FQ_CoDel, while using a tail-drop queue with no concurrent flow results in
the best quality ratings. For the overall quality of the video conference and the
video quality this difference is statistically significant as the confidence intervals
do not overlap. However, for the scenarios where Zoom competes with TCP flows,
the results are statistically insignificant and allow no statement. Similar, all audio
quality and interactivity votes allow no statistically significant statement.

Flow-Queuing AQM Induced QoE Changes. Hence, interpreting these
results is complex. What can be said is that CoDel’s positive effect of reduc-
ing the queuing delay was not perceived by the users. On the other hand, also
the reduction in bandwidth did not yield any statistically significant quality
reduction. However, a trend against using FQ_CoDel is visible, but it cannot
be statistically reasoned. Only following the trend, it might be not worth using
FQ_CoDel due to its potentially worse QoE. Otherwise, only few users considered
the connection unacceptable (c.f. Fig. 8b), surprisingly uncorrelated to whether
FQ-CoDel was used or whether a concurrent flow was actually started. L.e., some
users considered our scenarios generally as unacceptable regardless of FQ_CoDel.

Influence of Concurrent Downloads on Acceptability. Surprisingly, users
also consider the quality unacceptable when imagining a concurrent download of
documents in business or private conversations. We expected that users accept
deteriorations, as they would not pay attention to the video conference, but want
their download to complete. However, specifically in the business case, our users
did not. Also quality deteriorations induced by other users downloading movies
or documents were not seen more disturbing. I.e., independent of self-inflicted
or not, some users do not accept quality deteriorations at all, while others do.

Takeaway. Unfortunately, our study did not yield statistically conclusive results
with respect to how participants perceive the difference in Zoom quality between
using a tail-drop queue and FQ_CoDel when a flow competes. Also regarding
acceptance, users did mot see strong differences and either disliked the quality
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regardless of possible concurrent downloads as reasons or just accepted it, dis-
agreeing on a generally applicable statement. Looking at the general trend of our
study, FQ-CoDel could decrease QoE.
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Abstract. The COVID-19 pandemic has resulted in dramatic changes
to the daily habits of billions of people. Users increasingly have to rely on
home broadband Internet access for work, education, and other activities.
These changes have resulted in corresponding changes to Internet traffic
patterns. This paper aims to characterize the effects of these changes with
respect to Internet service providers in the United States. We study three
questions: (1) How did traffic demands change in the United States as a
result of the COVID-19 pandemic?; (2) What effects have these changes
had on Internet performance?; (3) How did service providers respond
to these changes? We study these questions using data from a diverse
collection of sources. Our analysis of interconnection data for two large
ISPs in the United States shows a 30-60% increase in peak traffic rates
in the first quarter of 2020. In particular, we observe traffic downstream
peak volumes for a major ISP increase of 13-20% while upstream peaks
increased by more than 30%. Further, we observe significant variation
in performance across ISPs in conjunction with the traffic volume shifts,
with evident latency increases after stay-at-home orders were issued, fol-
lowed by a stabilization of traffic after April. Finally, we observe that in
response to changes in usage, ISPs have aggressively augmented capac-
ity at interconnects, at more than twice the rate of normal capacity
augmentation. Similarly, video conferencing applications have increased
their network footprint, more than doubling their advertised IP address
space.

1 Introduction

The COVID-19 pandemic has resulted in dramatic shifts in the behavioral pat-
terns of billions of people. These shifts have resulted in corresponding changes
in how people use the Internet. Notably, people are increasingly reliant on home
broadband Internet access for work, education, and other activities. The changes
in usage patterns have resulted in corresponding changes in network traffic
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demands observed by Internet service providers. Many reports have noted some
of the effects of these changes from service provider networks [1,5], application
providers [19,23], and Internet exchange points [20]. Generally, previous findings
and conventional wisdom suggest that while overall traffic demands increased,
the Internet responded well in response to these changing demands.

Previous work has shed light on the nature of the resulting changes in traffic
patterns. In Europe, Internet exchange points saw a 15-20% increase in overall
traffic volumes [3], in some cases resulting in peaks in round trip latency in some
countries (e.g., Italy) that were approximately 30% higher than normal [12]. For
cellular networks in the UK [16], because users were less mobile, downlink traffic
volume decreased by up to 25%. While some of the characteristics of shifting
traffic demands are known, and certain aspects of the Internet’s resilience in
the face of the traffic shifts are undoubtedly a result of robust design of the
network and protocols, some aspects of the Internet’s resilience are a direct
result of providers’ swift responses to these changing traffic patterns. This paper
explores these traffic effects from a longitudinal perspective—exploring traffic
characteristics during the first half of 2020 to previous years—and also explores
how service providers responded to the changes in traffic patterns.

Service providers and regulatory agencies implemented various responses to
the traffic shifts resulting from COVID-19. AT&T and Comcast have made pub-
lic announcements about capacity increases in response to increases in network
load [1,5]. The Federal Communications Commission (FCC) also announced
the “Keep Americans Connected” initiative to grant providers (such as AT&T,
Sprint, T-Mobile, U.S. Cellular, Verizon, and others) additional spectrum to sup-
port increased broadband usage [9]. Web conferencing applications Zoom and
WebEx were also granted temporary relief from regulatory actions [9]. These
public documents provide some perspectives on responses, but to date, there are
few independent reports and studies of provider responses. This paper provides
an initial view into how some providers responded in the United States.

We study the effects of the shifts in Internet traffic resulting from the COVID-
19 pandemic response on Internet infrastructure. We study three questions:

— How did traffic patterns change as a result of COVID-19% Traffic volumes and
network utilization are changing as a reaction to changes in user behaviors.
It is critical to measure the exact alterations in a long time span.

— What were the resulting effects on performance? Considering an expected
surge around the dates when states issued stay-at-home orders or declared
states of emergency, we seek to observe possible changes in the latency and
throughput of network traffic across locations. Further, different ISPs also
have different capacity and provisioning strategies, which provides us a finer
granularity based on these differences.
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— How did ISPs and service providers respond? Finally, to deal with the usage
boosts and performance degradations during the COVID-19 response, oper-
ations and reactions of ISPs and service providers were taken which may
explain the changes in network performance. The answer to this question
informs us of the networks robustness and their effective disaster provi-
sioning strategies. These questions have become increasingly critical during
the COVID-19 pandemic, as large fractions of the population have come to
depend on reliable Internet access that performs well for a variety of applica-
tions, from video conferencing to remote learning and healthcare.

To answer these questions, we study a diverse collection of datasets about net-
work traffic load, through granular measurements, proprietary data sharing
agreements, and user experiences, as well as extensive baseline data spanning
over two years.

Summary of Findings. First, we study the traffic pattern changes in the United
States (Sect. 4) and find that, similar to the changes previously explored for Euro-
pean networks, our analysis reveals a 30-60% increase in peak traffic volumes.
In the Comcast network in particular, we find that downstream peak traffic vol-
ume increased 13-20%, while upstream peak traffic volume increases by more than
30%. Certain interconnect peers exhibit significant changes in the magnitude of
traffic during the lockdown. Second, we observe a temporary, statistically signifi-
cant increase in latency lasting approximately two months (Sect. 5). We observe a
temporary increase of about 10% in average latency around the time that stay-at-
home orders were issued. Typical latency values returned to normal a few months
after these orders were put in place. We also find heterogeneity between differ-
ent ISPs. Finally, we explore how service providers responded to this increase in
traffic demands by adding capacity (Sect. 6). ISPs aggressively added capacity at
interconnects, more than 2x the usual rates. On a similar note, application service
providers (e.g., video conferencing apps) increased the advertised IP address space
by 2.5-5x to cope with the corresponding 2-3x increase in traffic demand.

2 Related Work

The pandemic response has modified people’s habits, causing them to rely heav-
ily on the Internet for remote work, e-learning, video streaming, etc. In this
section, we present some previous efforts in measuring the effects of COVID-19
and past disaster responses on networks and applications.

Network Measurements During COVID-19. Previous work has largely
focused on aggregate traffic statistics surrounding the initial COVID-19 lock-
downs. Traffic surged about 20% in Europe for broadband networks [12]. In the
United States, a blog post [18] reveals that the national downstream peak traf-
fic has recently stabilized, but in the early weeks of the pandemic, it showed
a growth of 20.1%. For wireless networks in the US, volume increases of up to
12.2% for voice and 28.4% for data by the top four providers were shown in an
industry report [6]. Mobile networks in the UK reported roughly 25% drops in
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downlink data traffic volume [16]. Industry operators have self-reported on their
network responses largely through blog posts [1,5,14,17].

For traffic performance changes, different patterns appear in different regions.
Facebook shows that less-developed regions exhibited larger performance degra-
dations through their analysis of edge networks [2]. Network latencies were
approximately 30% higher during the lockdown in Italy [12]. According to an
NCTA report, networks in the United States saw less congestion [18]. Due to
decreased user mobility, cellular network patterns have shifted [16]: The authors
found a decrease in the average user throughput as well as decreased handoffs.
Feldmann et al. [12] observed that the fixed-line Internet infrastructure was able
to sustain the 15-20% increase in traffic that happened rapidly during a short
window of one week.

Our work differs from and builds on these previous studies in several ways:
First, this study extends over a longer time frame, and it also uses longitudinal
data to compare traffic patterns during the past six months to traffic patterns in
previous years. Due to the nascent and evolving nature of COVID-19 and cor-
responding ISP responses, previous studies have been limited to relatively short
time frames, and have mainly focused on Europe. Second, this work explores the
ISP response to the shifting demands and traffic patterns; to our knowledge, this
work is the first to begin to explore ISP and service provider responses.

Application Measurements During COVID-19. Previous work has also
studied application usage and performance, such as increases in web conferenc-
ing traffic, VPN, gaming, and messaging [12]. Favale et al. studied ingress and
egress traffic from the perspective of a university network and found that the
Internet proved capable of coping with the sudden spike in demand in Italy [8].
Another paper used network traffic to determine campus occupancy at the effect
of COVID-19 related policies on three campus populations across Singapore and
the United States [25]. The cybercrime market was also statistically modeled
during the COVID-19 era to characterize its economic and social changes [24].

Network Measurements of Other Disasters. While COVID-19 responses
are ongoing and evolving, making measurement efforts incomplete, network
responses under other disastrous events can be informative. In 2011, the Japan
earthquake of Magnitude 9.0 caused circuit failures and subsequent repairs
within a major ISP. Nationwide, traffic fell by roughly 20% immediately after
the earthquake. However, surprisingly little disruption was observed from out-
side [4]. In 2012, Hurricane Sandy hit the Eastern seaboard of the United States
and caused regional outages and variances over the network [15]. For human-
caused disasters such as the September 11th attacks, routing, and protocol data
were analyzed to demonstrate the resilience of the Internet under stress. Their
findings showed that although unexpected blackouts did happen, they only had
a local effect [21]. Oppressive regimes have also caused Internet outages, such as
a complete Internet shutdown due to censorship actions during the Egypt and
Libya revolts [7], where packet drops and BGP route withdrawals were triggered
intentionally.
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Although there have been several preliminary measurements of the effects
of the COVID-19 response, none have holistically studied traffic data, perfor-
mance analysis, routing data, and ISP capacity information together, as we do
in this paper. It is crucial to collect and correlate such information to better
understand the nature of both traffic demands, the effects of these changes on
performance, and the corresponding responses. This paper does so, illuminating
the collaborative view of responses of service providers in the United States.

3 Data

We leverage multiple network traffic datasets to facilitate our study:

Traffic Demands and Interconnect Capacity: Internet Connection
Measurement Project. We leverage a dataset that includes network intercon-
nection statistics for links between 7 anonymized access ISPs and their neighbor-
ing partner networks in the United States [11]. These access networks contain
about 50% of broadband subscribers across all states within America. At each
interconnect interface connecting a neighboring partner network, the access ISP
collects IPFIX data. The dataset contains roughly 97% of links (paid peering,
settlement-free peering, and ISP-paid transit links) from all participating ISPs.
All of the links represented in the dataset are private (i.e., they do not involve
public IXP switch fabrics). The dataset consists of flow-level statistics over five-
minute intervals, including: timestamp, region (as access ISPs may connect to a
partner network in multiple geographic regions), anonymized partner network,
access ISP, ingress bytes, egress bytes, and link capacity. In terms of either bytes
or packets over a period of time, each five-minute interval provides the sum of the
utilization of traffic flows that were active during that interval. We also calculate
secondary statistics from the dataset, including: timestamp for the peak ingress
and egress hour for each day on each link in terms of usage, ingress/egress peak
hour bytes, and daily 95th and 99th percentile usage.

Performance Data: Federal Communications Commission Measuring
Broadband America (MBA). We analyze the FCC’s ongoing nationwide per-
formance measurement of broadband service in the United States [10]. The raw
data is collected from a collection of distributed measurement devices (named
Whiteboxes) placed in volunteer’s homes across all states of America and oper-
ated by SamKnows. The sample includes tiers composed by the top 80% of the
subscriber base for each ISP and is representative. Measurements are conducted
on an hourly basis. The dataset includes raw measurements of several perfor-
mance metrics, such as timestamp, unit ID, target server, round trip time, traffic
volume, etc. Each Whitebox also includes information pertaining to its ISP, tech-
nology, and state where it is located. We also define dates related to the status
of the pandemic response (e.g., stay-at-home orders, state of emergency declara-
tion, etc.). Based on these, we can compute more statistics for specified groups
(e.g., break into ISPs): average and standard deviation among Whiteboxes, daily
95th and 99th percentile latency/throughput.
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Fig. 1. 99th percentile interconnect link utilization for two ISPs.

To keep the network capacity consistent and to record eventual changes solely
based on utilization factors, we pre-process the MBA dataset with several filters.
First, we filter the non-continuous data within the dates of interest (Dec. 1st,
2019 to June, 30th 2020, and the previous year) to capture successive shifts.
Then, we eliminate the Whiteboxes which do not aggregate a statistically sig-
nificant amount of data, such as some states, ISPs, and technologies with lim-
ited data (e.g., satellite). Finally, we choose the measurements from Whiteboxes
to the top 10 most targeted servers across the United States to represent the
overall US performance. We take this decision because servers with less mea-
surements will have higher variance in sample, and introduce unexpected errors
when tracked across time. These servers are sparsely located in major cities of
the US and they have the most Whiteboxes (over 200 for each ISP) connecting
with them.

IP Prefix Advertisements: RouteViews. To gain insight into changes in
IP address space, we parse Internet-wide BGP information globally from sev-
eral locations and backbones via RouteViews. Raw RIBs (Routing Information
Bases) files were obtained from RouteViews [22] data on a weekly basis. The
average of each Tuesday is computed to represent that week. The RIBs are then
parsed to obtain IPv4 Prefix-to-Autonomous System (AS) relationships, includ-
ing mappings of IP prefix, prefix length, paths of AS numbers. In Sect. 6.2, we
compute the total advertised IPv4 spaces for AS numbers associated with two
popular video conferencing applications: Zoom and Cisco WebEx [9].

4 How Did Traffic Demands Change?

Because most previous studies [3,12,16] focus on Europe, we begin our explo-
rations by validating whether similar traffic changes are observed in the United
States. We consider peak hour link utilization from the Interconnect Measure-
ment Project as a measure of traffic demand. We pre-process the interconnect
dataset and remove anomalous data points that are caused by failures in the
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Fig. 2. Peer link utilization for ISP A between January 15 to April 15, 2020.

measurement system. In particular, we do not analyze dates that are greater
than two standard deviations outside of a 60-day rolling mean for each link. Due
to confidentiality reasons, we present the results in aggregation for the United
States as a whole.

Figure 1 shows both the absolute utilization and the utilization normalized
against the link capacity for two anonymized ISPs. For each ISP, we plot the
value corresponding to the 99th percentile link utilization for a given day. We
observe from Fig.la that ISP A saw a dramatic increase in raw utilization at
roughly the same time as the initial COVID-19 lockdowns (early March 2020),
with values tapering off slightly over the summer of 2020. ISP B, on the other
hand, saw a smaller raw increase in utilization for its 99th percentile links. To
better understand whether ISP B’s smaller increase is a byproduct of different
operating behaviors, we explore possible trends in the normalized data (Fig. 1b).
Here we see that both ISPs experienced significant increases in utilization in
March and April 2020.

We also investigated how traffic patterns changed between ISP A and each of
its peers, in both the upstream and downstream directions. For this analysis, we
focused on the dates around the utilization peaks shown in Fig. 1. We compared
the peak hour download and upload rates on all of ISP A’s interconnects on
(1) January 15, 2020, and (2) April 15, 2020 (Fig. 2). In general, we see that traffic
patterns to peers do not vary greatly between the two dates. We do see, however,
that traffic volumes to (and from) some peers change significantly—some by
several orders of magnitude. The identities of the peers are anonymous in the
dataset, but some patterns are nonetheless clear: For example, some peers show
an increase of upstream utilization by two or three orders of magnitude. Such
drastic changes may be attributable to users working from home and connecting
to services that would cause more traffic to traverse the peer link in the upstream
direction. We confirmed these results with the operators at ISP A and report
that they observed that streaming video traffic decreased from 67 to 63% of the
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total traffic, but video conferencing increased from 1% to 4% as a percentage of
overall traffic.

5 What Was the Effect on Performance?

The surge in interconnect utilization poses a challenge for service providers, as
high utilization of interconnects can potentially introduce high delays for inter-
active traffic, packet loss, or both. These effects can ultimately be observed
through changes in latency (and, potentially, short-term throughput). To exam-
ine whether we can observe these effects, we look into the latency and throughput
reported by the Measuring Broadband America (MBA) dataset [10]. We explore
these effects over the course of several years to understand whether (and how)
performance anomalies that we observe during COVID-19 lockdown differ sig-
nificantly from performance anomalies observed during other time periods.

5.1 How Performance Changed After Lockdown

To better understand how performance changed during the COVID-19 lockdown
in the United States, we explored how latency evolved over the course of 2020.
To establish a basis for comparison, we show the time period from late 2019
through mid-2020. The Appendix also contains a similar analysis for the 2018—
2019 time period. We compute the average latency per-Whitebox per-day, and
subsequently explore distributions across Whiteboxes for each ISP. (As discussed
in Sect. 3, we consider only Whiteboxes in fixed-line ISPs for which there are an
adequate number of Whiteboxes and samples.) We use March 10th!, the average
declaration of emergency date [13], to mark the beginning of the COVID-19
pandmic phase (red shaded for figures).

! Note that this is also the launch date of Call of Duty Warzone.



28 S. Liu et al.

1004 — Verizon

T Optimum

§30<—Mediacom

2 —— Charter

£ 60

m40<

0)

o —

3 I e U
] —

ﬂ>)20

<
0 I T S T T e e e i S e
FITTISI LI VS PSSP DS LD
S A i S N
g 9 9 9 93 59 59 9 98 88 S S S S S
A A | o o o o A A S A S A A
I S S I R A I AR S S S S

Dates
(a) 95th percentile of ISP latency (Group 1).

% 1004 — Comcast

2 AT&T

5 —— Cox

2 80

°

E 60

<v40

=

e

g)20<

<
0 — T T T T T T T T T T T T T T T T T T

(b) 95th percentile of ISP latency (Group 2).

Fig. 4. Latency (95th percentile) for different ISPs.

Longitudinal Evolution of Aggregate, Average Round-Trip Latency.
Figure3 shows a seven-day moving average of average round-trip latencies
between all Whiteboxes in this study. We observe an increase in average round-
trip latency by as much as 10%, this increase in mean latency is significant,
corresponding to 30x standard deviation among all Whiteboxes. At the end of
April, latencies return to early 2020 levels. It is worth noting that, although this
increase in average latency is both sizable and significant, similar deviations and
increases in latency have been observed before (see the Appendix for comparable
data from 2018-2019). Thus, although some performance effects are visible dur-
ing the COVID-19 lockdown, the event and its effect on network performance are
not significantly different from other performance aberrations. Part of the rea-
son for this, we believe, may be the providers’ rapid response to adding capacity
during the first quarter of 2020, which we explore in more detail in Sect. 6.
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Fig. 5. Latency (99th percentile) for different ISPs.

Longitudinal Evolution of Per-ISP Latencies. In addition to the overall
changes in performance, we also explored per-ISP latency and throughput effects
before and during the COVID-19 lockdown period. Figures4 and 5 show these
effects, showing (respectively) the 95th and 99th percentiles of average round-trip
latency across the Whiteboxes. These results show that, overall 95th percentile
latency across most ISPs remained stable; 99th percentile latency, on the other
hand, did show some deviations from normal levels during lockdown for certain
ISPs. Notably, however, in many cases the same ISPs experienced deviations in
latency during other periods of time, as well (e.g., during the December holidays).

5.2 Throughput-Latency Relationship

High latencies can sometimes be reflected in achieved throughput, given the
inverse relationship between TCP throughput and round-trip latency. To explore
whether latency aberrations ultimately result in throughput effects, as well as
how those effects manifest at different times of day, we explored the distribution
of latencies before COVID-19 emergency declarations (ED), after the ED but
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Fig. 6. Normalized interconnect capacity increases for two ISPs.

before the stay-at-home order (SO). Our hypothesis was that we might see higher
latencies (and lower throughputs) during “peak hours” of the day from broad-
band access networks, with the peak hours effectively expanded to the weekday
working hours, in accordance with previous descriptions of these effects [5].

We explored these metrics for a baseline period predating COVID-19, the
time between state declaration of emergency and stay at home ordered [13],
after stay-at-home declarations were ordered, and two months after stay-at-home
ordered. Because these dates differed across states, we used known dates for each
state [13] and matched the corresponding dates for each state against the known
location of the Whiteboxes.

Figure 11 shows the distribution throughput and latency distributions across
all Whiteboxes for four time intervals, plotted in four-hour intervals. From
Fig. 11a, it is clear that the quantiles, median, and maximum latencies all exhibit
effects that correlate with these time periods, which are consistent with the
latency changes in Fig. 3.

The period between ED and SO corresponds to abrupt routing changes,
and the latency data thus reflects a corresponding degradation during this time
interval, perhaps at least partially due to the fact that providers cannot immedi-
ately respond after the initial emergency declaration (we discuss the timeframes
during which capacity was added to the networks in Sect.6). As the transition
continues, SO appears to be a point in time where latency stabilizes. Figure 11b
shows that distributions of throughput measurements are more robust, although
the upper end of the distribution is clearly affected, with maximum achieved
throughputs lower. The median and minimum have negligible changes during
time periods in late April suggesting (and corresponding to) aggressive capacity
augmentation, which we discuss in more detail in Sect. 6.



Characterizing Service Provider Response to the COVID-19 Pandemic 31

6 How Did Service Providers Respond?

In this section, we study how service providers responded to the changes in
traffic demands. We focus on the capacity changes during lockdown by inspecting
two data sources: (1) to understand how ISPs responded by adding capacity
to interconnects, we study the interconnect capacity of two large ISPs in the
United States; and (2) to understand how video service providers expanded their
network footprints in response to increasing demand, we analyze IPv4 address
space from two major video conference providers—WebEx and Zoom—and find
that both providers substantially increased advertised IP address space.

6.1 Capacity Increases at Interconnect

We begin by exploring how ISPs responded to changing traffic demands by
adding network capacity at interconnect links. To do so, we use the Interconnect
Measurement Project dataset. We calculate the total interconnect capacity for
each ISP by summing the capacities for all of the links associated with the ISP.
To enable comparison between ISPs that may have more or less infrastructure
overall, we normalize the capacity values for each using min-max normalization.
We again filter out date values that are beyond two standard deviations from
a rolling 60-day window mean. To show aggregate infrastructure changes over
time, we take all of the data points in each fiscal quarter and perform a least-
squares linear regression using SciKit Learn. This regression yields a slope for
each quarter that illustrates the best-fit rate of capacity increases over that quar-
ter. We scale the slope value to show what the increase would be if the pace was
maintained for 365 days (i.e., a slope of 1 would result in a doubling of capacity
over the course of a year). Figure 6 shows the resulting capacity plots.

The overall trend shows how these two ISPs in the United States aggressively
added capacity at interconnects—at more than twice the rate at which they were
adding capacity over a comparable time period in the previous year. Second, both
ISPs significantly added capacity in the first quarter of 2020—at a far greater
rate than they were adding capacity in the first quarter of 2019. Recall from
the usage patterns shown in Fig. 1, ISP A tends to operate their links at nearly
full capacity, in contrast to ISP B, where aggregate utilization is well below
90%. Both ISPs witnessed a jump in usage around the lockdown; the response of
aggressively adding capacity appears to have mitigated possible adverse effects
of high utilization rates. The increase in capacity was necessary to cope with the
increased volume: although network performance and utilization ratios returned
to pre-COVID-19 levels, the absolute traffic volumes remain high.
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6.2 Increased Advertised IP Address Space

To cope with abrupt changes caused by COVID-19, application service providers
also took action to expand their infrastructure. Previous work has observed
shifted traffic in communication applications (such as video conferencing apps,
email, and messaging) after lockdown [12]. It has been reported informally that
many application providers expanded serving infrastructure, changed the routes
of certain application traffic flows, and even altered the bitrates of services to
cope with increased utilization.

While not all of these purported responses are directly observable in pub-
lic datasets; however, RouteViews makes available global routing information,
which can provide some hints about routes and infrastructure, and how various
characteristics of the Internet routing infrastructure change over time. This data
can provide some indication of expanding infrastructure, such as the amount of
IPv4 address space that a particular Autonomous System (AS) is advertising. In
the case of video conference providers, where some of the services may be hosted
on cloud service providers or where the video service is a part of a larger AS
that offers other services (e.g., Google Meet), such a metric is clearly imperfect,
but it can offer some indication of response.

To understand how service providers announced additional ITPv4 address
space, we parsed BGP routing tables from RouteViews [22]. For each route
that originates from ASes of certain application providers, we aggregate 1P
prefixes and translate the resulting prefixes into a single count of overall IPv4
address space. We focus on two popular video conferencing applications, Zoom
and WebEx, since they are two of the largest web conference providers in the
United States—as also recognized by the FCC in their recent order for regula-
tory relief [9]. We track the evolution of the advertised IP address space from
the beginning of 2019 through October 2020.

-
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o
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Table 1. Advertised IPv4 space.
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Fig. 7. Normalized advertised IPv4 space.
Red: COVID-19 pandemic phase.
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Figure 7 demonstrates how each provider increased the advertised IPv4
address space from before the pandemic through October 2020. After the begin-
ning of the COVID-19 pandemic, both Zoom and WebEx rapidly begin to
advertise additional TPv4 address space. Table1 enumerates the absolute val-
ues of advertised IP address space: Zoom and WebEx increased the advertised
IP address space by about 4x and 2.5x respectively, as we observe a roughly
corresponding 2-3x increase in video conferencing traffic.

7 Conclusion

This paper has explored how traffic demands changed as a result of the abrupt
daily patterns caused by the COVID-19 lockdown, how these changing traffic
patterns affected the performance of ISPs in the United States, both in aggregate
and for specific ISPs, and how service providers responded to these shifts in
demand. We observed a 30-60% increase in peak traffic rates for two major
ISPs in the US corresponding with significant increases in latency in early weeks
of lockdown, followed by a return to pre-lockdown levels, corresponding with
aggressive capacity augmentation at ISP interconnects and the addition of IPv4
address space from video conferencing providers. Although this paper presented
the first known study of interconnect utilization and service provider responses to
changes in patterns resulting from the COVID-19 pandemic, this study still offers
a somewhat limited viewpoint into these effects and characteristics. Future work
could potentially confirm or extend these findings by exploring these trends for
other ISPs, over the continued lockdown period, and for other service providers.

Acknowledgements. This research was funded in part by NSF Award CNS-2028145
and a Comcast Innovation Fund grant. We also thank CableLabs for their help with
acquisition of data from ISP interconnects.

Appendix A  Longitudinal Latency Evolution
for 2018-2019 (Previous Year)

This section provides a basis for performance comparison in Sect. 5. Following
the same analysis, we choose the exact same time period in the previous year (i.e.,
late 2018 to mid-2019) in the United States. We compute the average latency per-
Whitebox per-day, and subsequently explore distributions across Whiteboxes for
each ISP.
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Fig. 8. Daily changes of latency from Dec. 2018 to June 2019. (Note: y-axis does not
start at zero.)

Longitudinal Evolution of Aggregate, Average Round-Trip Latency.
Figure 8 shows the aggregate average latency per-Whitebox per-day. The previ-
ous year has an overall latency of about 6ms lower than 2020. We observe that
the latency keeps stable until the end of April, where a deviation of about 2ms
is shown. The rate of increase is of about 10%, echoing similar effects around
lockdown.

Longitudinal Evolution of per-ISP Latencies. We further break the aggre-
gate results into the granularity of ISPs. We report both 95th and 99th percentile
latencies here. Note that in the 95th percentile plot, we show the groups differ-
ently, mainly because of major differences of latency for Mediacom and AT&T
compared to other ISPs. From Fig.9, we find that the majority of ISPs per-
formed stably, while Mediacom has a large variance in the average RTT. They
both have a tail that contributes to what we observed in Fig.8. Figure10 is
grouped the same as Fig. 5, which shows that for certain ISPs, they experience
similar deviations in latency during similar periods of different years.

Appendix B Throughput-Latency Relationship

We put a supplementary figure referred to in Sect.5 in this appendix. It shows
the distributional changes in latency and throughput on a 4-h basis. Detailed
explanations are in the main text.
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Abstract. This work takes a first look at domain names related to
COVID-19 (Cov19doms in short), using a large-scale registered Inter-
net domain name database, which accounts for 260 M of distinct domain
names registered for 1.6 K of distinct top-level domains. We extracted
167 K of Cov19doms that have been registered between the end of Decem-
ber 2019 and the end of September 2020. We attempt to answer the
following research questions through our measurement study: RQ1: Is
the number of Covl9doms registrations correlated with the COVID-19
outbreaks?, RQ2: For what purpose do people register Covl9doms? Our
chief findings are as follows: (1) Similar to the global COVID-19 pan-
demic observed around April 2020, the number of Cov19doms registra-
tions also experienced the drastic growth, which, interestingly, pre-ceded
the COVID-19 pandemic by about a month, (2) 70% of active Covl19doms
websites with visible content provided useful information such as health,
tools, or product sales related to COVID-19, and (3) non-negligible num-
ber of registered Cov19doms was used for malicious purposes. These find-
ings imply that it has become more challenging to distinguish domain
names registered for legitimate purposes from others and that it is cru-
cial to pay close attention to how Cov19doms will be used/misused in
the future.

Keywords: COVID-19 - Domain names + Phishing - Blocklist

1 Introduction

Several researchers have conducted Internet measurement studies to understand
how the COVID-19 pandemic affected the Internet and user behaviors [2,4,8,9,
15]. Favale et al. and Feldmann et al. [8,9] explored the changes in Internet traffic,
Lutu et al. [15] explored the changes in traffic and its impact on user mobility in
mobile operators, Candela et al. [4] analyzed the impact of Internet traffic changes
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on network latency, and Boettger et al. [2] analyzed the changes in social media
access patterns and the implications. The details of these studies will be discussed
in Sect. 5.

To the best of our knowledge, there has been no academic study that has
analyzed the impact of COVID-19 in terms of registered domain names. This
work takes a first look at domain names related to COVID-19 (Cov19doms in
short), using a large-scale set of registered domain names. We note that the only
literature we have been able to find on this subject is a blog article [6], which ana-
lyzed the domain names associated with COVID-19. The article reported that
the number of COVID-19 domain name registrations has spiked in mid-March
2020, with some days seeing the registration of more than 5,000 Cov19doms.
However, we found that the data used in the article contained many false posi-
tives due to the naive string match heuristics. Also, this data is no longer updated
since May 2020, so we cannot perform a longer-term analysis using the data. In
this study, we attempt to extract Covl9doms accurately and analyze how it
changes over a long period of time.

With so many of us keeping an eye on COVID-19 and spending more and
more of our time online, it is crucial to understand the origins and implications
of Covl9doms. Given these backgrounds in mind, we attempt to answer the
following research questions:

RQ1: Is the number of Covl9doms registrations correlated with the COVID-19
outbreaks?
RQ2: For what purpose do people register Covl9doms?

To address the research questions, we compiled an exhaustive list of Cov19doms
using a large-scale registered Internet domain name database [7], which accounted
for 260 M of distinct domain names registered for the 1.6 K of top-level domains.
Using the dataset, we found that at least 167 K of distinct Cov19doms containing
strings such as “covid” or “corona” have been registered from the end of Decem-
ber 2019 to the end of September 2020. We attempt to study how domain name
registration behavior changed with the emergence of COVID-19; i.e., we examine
whether or not the time-series of COVID-19 infections is correlated with the time
series of domain name registrations.

Next, from the 167K of Covl19doms, we extracted active websites that used
Cov19doms by checking DNS A record and HTTP/HTTPS response. We then
randomly sampled 10,000 of the Cov19doms websites to study how Cov19doms
are used in the wild. By applying cluster analysis to the screenshots, we systemat-
ically classified 10 K websites. For the remaining general websites, we performed
manual inspection with the aid of three evaluators. We also leveraged online
virus-testing services to check whether some Cov19doms were used for malicious
activities.

Our chief findings are as follows:

e Similar to the global COVID-19 pandemic observed around April 2020, the
number of Covl19doms registrations also experienced drastic growth, which,
surprisingly, preceded the COVID-19 pandemic by about a month.
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e 70% of active Covl9doms websites with visible content provided useful infor-
mation such as health, tools, or product sales related to COVID-19.

e Non-negligible number (roughly 4%) of registered Cov19doms have been used
for malicious purposes such as phishing or malware distribution.

These findings imply that it has become more challenging to distinguish
between domain names registered for legitimate purposes and those that are
not. It was also indicated that it is necessary for researchers who analyze domain
names, and even operators and blacklisters who take security measures based on
domain names to pay close attention to how Cov19doms currently parked or in
preparation will be used/misused in the future.

2 Data

2.1 Collecting Cov19doms

To collect registered Cov19doms, we used a large-scale commercial domain name
database, domainlist.io [7]. This database contains snapshots of approximately
260M domain names taken from 1.6K of different TLDs, and we continued
to retrieve data daily from 27 December 2019 to 20 September 2020. Of the
98,940, 555 domain names that have been newly registered since December 27,
2019, we first extracted the domain names that contained “covid” or “corona”
as a substring. As a result, we obtained a total of 170,846 Cov19doms. We
note that this approach could include false positives such as “covideo.co.uk”, for
instance. However, we can safely ignore the effect of false positives in the fol-
lowing analysis, as our manual inspection of the randomly sampled data showed
that the occurrence of such false positives was extremely rare as these words
are. We believe that these words, especially in the COVID-19 era, are mostly
used in the context of a specific purpose, i.e., “severe acute respiratory syndrome
coronavirus 2,” resulting in fewer false positives.

To study the characteristics of the Cov19doms, it is essential that we can get
information about the creation date of the domain names. Therefore, we used the
WHOIS information for the extracted Cov19doms to obtain information on the
date and time the domain name was created. If the creation date of a domain
name was older than December 27, 2019, those domain names were excluded
from the following analysis. This resulted in a total of 166,825 Cov19doms, as
shown in Table 1. To ensure that domains registered before December 27, 2019
were not related to COVID-19, we manually checked on them and found it be
correct. In fact, most of them were related to Coronado city in California, U.S.

We investigated where the specific words related to COVID-19, i.e., “covid”
and “corona”, are located in the left-most labels of Cov19doms (e.g., “covidcare”
in covidcare[.]example) and confirmed that (a) 59.6% are at the beginning,
(b) 24.2% are at the end, and (¢) 16.2% are in the middle of them. The patterns
(a) and (b) mean that the left-most labels of Cov19doms were generated by
concatenating any character at the beginning or end of the COVID-19-related
words such as “covid”. We believe that patterns (a) and (b) are less likely to cause
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Table 1. Statistics of extracted Covl19doms data.

Orig. Covl9doms | WHOIS check | DNS check | HTTP/HTTPS check
# of domain names|170,846 166,825 144,522 77,333

false positives than pattern (c). We further investigated the extent to which sim-
ilar COVID-19-related words, “covid”, “covid19”, and “covid-19”, are included
in Covl9doms and found that they are 41,718, 32,671, and 10,120 Cov19doms,
respectively. These numbers do not overlap, because we checked Cov19doms that
contain “covid19” and “covid-19” earlier. It is interesting that “covid19” is more
common in Covl19doms than its formal name of the desease, “covid-19”. Among
these, “covid” was most frequently included in Cov19doms, and as far as we
manually checked, the majority of cases (about 40%) were used in the context
of the COVID-19. One of the reasons why “covid” is included in Cov19doms in
large numbers is that there are cases where various numbers are added to the
end of “covid” (e.g., covid-2019, covid-2020, and covid-2021). We expect those
domain names to have been acquired for speculative purposes.

We looked into what country registered Cov19doms firstest by usinig
WHUOIS registrant information. Of the 165,185 Cov19doms we extracted, 153,243
domains had valid WHOIS registrant country information. Among the countries,
United States was the first to register Covl19doms. The top-5 countries registered
Cov19doms were United States (85,970), Canada (17,229), Panama (6,781), Ger-
many (4,533) and United Kingdom (4,237).

2.2 Collecting Active Websites Using Covl19doms

With the aim of studying the usage of Covl9doms, we extract the active websites
that are operating using Cov19doms. To extract active websites, we first check
the DNS A record to determine if an TP address is assigned to the extracted
Cov19doms. We then send an HTTP /HTTPS request to the domain name where
the DNS A record exists, and record the response. Specifically, we check if a
connection can be established to Port 80 and Port 443 of each host that had a
Cov19dom. Next, if a connection with either port can be established, we made an
HTTP/HTTPS request to those hosts and checked whether the content could be
retrieved from them. This step removes websites that caused connection timeouts
and/or TLS errors such as invalid certificate. These steps resulted in a total of
77,333 of active websites that use Covl9doms, as shown in Table 1.

3 Measurement Study

Figure 1 presents an overview of the measurement processes. We first study
the correlation between the number of COVID-19 infections and the number of
Cov19doms registrations (Sect.3.1). For this analysis, we used the statistics on
the number of COVID-19 infections by country, provided by WHO [22]. We then
study how Cov19doms are used for various websites (Sect. 3.2). The classification
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Fig. 2. Number of COVID-19 infections and Cov19doms registrations over time. Cases
for gTLD (left) and ccTLD (right).

of active websites operated using Covl9doms was manually performed by three
evaluators. Due to the large number of websites to be analyzed, we conducted
a random sampling study. Finally, we report the analysis of Covl9doms that
have been used for malicious activities (Sect.3.3). We used VirusTotal [1] to
investigate the presence of malicious sites using Cov19doms.

3.1 Number of New Infections and Covl19doms Registrations

We analyze the online behavior of people around the world in response to the
unprecedented event of COVID-19 through the lens of DNS. Specifically, we
examine whether or not the time series of COVID-19 infections is correlated
with the time series of domain name registrations.

First, we investigate the time series of new registrations of Covl9doms and
the number of new COVID-19 infections worldwide. We take all Covl9doms and
split them into groups of gTLDs (e.g., .com) and ccTLDs (e.g., .uk). We obtained
information on the number of COVID-19 infections from the official WHO web-
site [22]. Figure 2 shows the time series of the number of new COVID-19 infec-
tions and the number of new registrations in Covl9doms (gTLD and ccTLD).
These figures show that similar to the situation of the COVID-19 pandemic out-
break around the world around April 2020, Cov19doms saw a significant increase
in its new registrations as well. Surprisingly, the number of new domain name
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Fig. 3. Number of COVID-19 infections and Cov19doms registrations over time. Cases
for UK (left) and SE (right). In Sweden, no lockdown enforcement was taken.

registrations peaked around March 2020, about a month ahead of the peak in
the number of new COVID-19 infections. Subsequently, the number of new reg-
istrations of Cov19doms has reached a stable daily registration rate, but the
number of COVID-19 infections has still increasing as of October 2020.

Second, we focus on the Covl9doms of ccTLDs and investigate the rela-
tionship between the number of new registrations of Cov19doms per ccTLD
and the number of new COVID-19 infections in the country corresponding to
the ccTLD over time. Our Cov19doms data included only four ccTLDs: United
Kingdom (.uk), Sweden (.se), Niue (.nu), and Australia (.au). We excluded
.nu, for which no information on the number of WHO infected people existed
from there, and .au, for which we were unable to obtain the full domain name
registration date from the WHOIS data, and conducted a survey of 4,766 .uk
and 549 .se Cov19doms. Figure 3 shows the time-series change in the number
of new infections of Covl19doms and COVID-19 in the UK and Sweden, respec-
tively. Since the lockdown was implemented in the UK, the period is also shown
in .uk graph. In both cases, Cov19doms registrations tend to be more likely to
be ahead of the COVID-19 infection explosion. Furthermore, we find that reg-
istration of Covl19doms moves faster and clearer in the UK than in the Sweden
case.

Our results obtained so far above indicate two things: (1) events like COVID-
19 that affect so many people’s lives will create a massive demand for domain
names and (2) people are anticipating such demand and taking the action of
registering domain names at an amazingly early stage. In subsequent sections,
we will clarify for what purpose people are registering these Cov19doms.

3.2 Understanding the Usage of Cov19doms

In general, automatic website classification is not an easy task as the modern web
is composed of rich and complex multimedia, making it difficult to automatically
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analyze its contents using simple data processing scheme. Therefore, instead of
fully automating the website classification process, this work adopted manual
inspection to ensure the quality of the classification. However, the number of
Cov19doms we have collected is so large that it is infeasible to inspect them
all manually. Therefore, we took the approach of applying random sampling to
reduce the number of domains/websites to be analyzed. As shown in Figure 1,
we randomly sampled 10 K of websites from 77K active Cov19doms websites to
reduce the number of samples to be classified by human. For the 10K of randomly
sampled Cov19doms websites, we took the following two-stage approach.

In the first stage, we aim to systematically classify websites into the follow-
ing categories: Empty, FError, Parked, Hosted, and Has content, where Empty
represents cases in which HTTP/HTTPS requests were responded to, but the
data was empty, Error represents the websites responded with error codes such
as 404 or 501, Parked represents the domain parking websites, Hosted represents
cases where the domain name has been purchased, but the website only shows
the initial page after installation of Apache, WordPress, etc., and Has content
represents the remaining Cov19doms websites that have some content. In the
second stage, three evaluators manually classify the websites classified as “Has
content.” In the following, we present the details of the analysis to be performed
at each stage and the results obtained.

Stage 1: Systematic Classification. We classify websites into the five classes
defined above based on HTTP/HTTPS response codes and screenshot informa-
tion. Among the five classes, the classification of empty and error is simple. They
can be classified by analyzing the size of the data retrieved and the response code.
For the remaining classes parking and hosted, we use cluster analysis. For park-
ing, we could use domain name registrar information in some cases, however, our
preliminary study shows that we cannot do a comprehensive study due to the
existence of so many different domain parking companies. The key idea is that
the majority of websites that are accessed for parking and hosted are similar in
appearance. Therefore, we apply cluster analysis to the screenshot images and
classify the websites by determining whether each cluster is Parked or Hosted or
Has content. With this approach, we can streamline the classification.

To perform clustering of screenshot images, we need to calculate the distance
between images; i.e., it is necessary to compute the similarity of images. There
are several methods for computing the similarity of images, and in this paper,
we adopt the perceptual hash (pHash) [23], which computes close hash values
for two similar images. pHash is widely used to discover copyright infringement
and is known to be effective in discovering resemblances to certain images.

We first accessed 10K of randomly sampled active websites and extract
HTML, screenshots, and other metadata by navigating Google Chrome! using
Selenium [18]. The language was set to English, and the User-Agent was set to
Windows 10 Google Chrome. To not halm the websites set to be investigated,
access to the IP address corresponding to each Cov19dom is limited twice (HTTP

1 We used the version of 81.0.4044.129.
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Table 2. Result of systematic classification.

Category # of active websites | Fraction (%)
Empty 609 6.1
Error 1,663 16.6
Parked 2,138 21.4
Hosted 1,402 14.0
Has contents | 4,188 41.9
Total 10,000 100.0

and HTTPS). Next, we computed the pHash values for the 10,000 screenshots we
collected, using imageHash [3]. We then grouped the corresponding Cov19doms
with the same value of pHash and HTTP status code pairs into the same clus-
ter. Table 2 presents the classification result of the Cov19dom websites. From
the table, we can see that many of the Covl9doms websites resulted in either
domain parking or errors, and that 40% of the websites (classified as “Has con-
tent”) requires detailed manual inspection. We note that 60% of the websites
categorized as other than “Has content” do not currently provide any useful
content, however, they might start providing some content in the future, so we
need to pay attention to them. In the following, we will classify the websites
categorized as “Has content.”

Stage 2: Manual Classification. In the second stage, we will classify the
Cov19doms websites marked as “Has content” in the Stage 1. Since 4K of
websites are too many to analyze manually, further random sampling is per-
formed and 1,000 general websites will be carefully classified by three evalua-
tors. Through the Stage 1 classification, the classification categories for Stage 2
were predetermined and provided to the evaluators with detailed explanations.
Figure 4 presents a screenshot image of a tool developed by the authors to help
evaluators efficiently classify websites. Although the evaluators made a classi-
fication based on screenshot image and metadata, there are cases that cannot
necessarily be determined by screenshot or metadata. For example, if the eval-
uators could not understand the language used in the web content, they also
leveraged external resources such as a search engine.

Three evaluators used the tool to classify 1,000 of websites marked as “Gen-
eral” taking 4.8 h on average, resulting in 477 websites where the three evaluators
agreed, 423 websites where the two evaluators agreed, and 100 websites where they
all disagreed. That is, for 90% of the websites, at least two evaluators’ classification
results were consistent. The result of calculating the Fleiss’ kappa coefficient, which
is a quantitative measure of inter-rater agreement, was 0.50, which can be inter-
preted as moderate agreement [13]. The results of the interviews with the three
evaluators revealed that the primary reason for the disagreement was the differ-
ence in the decisions they made when they were unsure of their classification. One
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Fig. 4. A screenshot of the website classification tool we developed for our analysis.

Table 3. Results of manual classification.

Category Description F#sites
Health Websites providing information on health™ 405
Sales ‘Websites selling products related to COVID-19 109
Tools Websites providing apps/maps/dashboards of COVID-19 123
Activities Websites dedicated to people’s activities to address COVID-19** 72
Social security | Websites regarding to social security 2
Unrelated Websites unrelated to COVID-19 139
Login Websites showing a login page 26
Index of Websites showing the “Index of /” page 24
Unknown Websites with discrepancies between the evaluators’ classifications| 100
Total - 1,000

* hospitals, infection testing, sterilization, and other health-related topics.
**Fundraising, volunteering, business, and political movements regarding COVID-19.

of the evaluators reported that he categorized all of his confusion as “activities for
COVID-19.” Discrepancies in judgments also arose because of the existence of web-
sites that could be classified into multiple categories. For example, a website that
displays medical products (masks, face shields) may be categorized as both Health
and Sales. Apart from such discrepancies, the classifications were generally consis-
tent and the manual classification results can be considered reasonable. In the final
classification, a majority vote was adopted. Websites with discrepancies between
the three evaluators’ classification results were marked as “Unknown.”

Table 3 presents the classification results. About 70% of the websites were
related to COVID-19. Those websites were medical services, selling products,
providing COVID-19 information such as apps, maps and dashboards, support-
ing people’s activities related to COVID-19, and social security. As would be
expected from the nature of COVID-19, the majority of the websites (40%)
were medical-related. Many of these health-related websites are critical sources
of information in countering COVID-19 pandemic and should never be blocked.
The remaining 30% were completely irrelevant websites, websites with no content
displayed, and “Unknown,” which we defined earlier.
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Table 4. Breakdown of the detection results.

Detected category | # detections | fraction (%)
Phishing site 117 32.8
Malicious site 52 14.6
Malware site 17 4.7
Pending 171 47.9
Total 357 100.0

3.3 Malicious Activities Using Cov19doms

Finally, we investigate whether Covl9dom websites were involved in any mali-
cious activities. To achieve this goal, we utilize VirusTotal, a large-scale online
virus scanning service. As shown in Figure 1, we target 10K of active websites
that had Cov19doms. Of the 10 K websites, 6,362 of the websites were detected
as malicious by at least one or more scanners. This is an alarming number,
but when we analyzed the detection results, we found that one online scan-
ner detected 6,256 websites as malicious, and that the majority of them (about
98.7%) were classified as phishing sites. Although we cannot determine from our
data whether or not these detections were correct, the result does suggest that
there may be a non-negligible number of malicious sites that use Cov19doms.
On the other hand, one of the reasons why online scanners may falsely detect
Cov19doms as a phishing site is likely to be naive detection using keyword match-
ing. For example, a scheme that increases the probability of detecting a website
with a domain name containing the strings corona or covid-19 as a malicious site
could be employed. However, such an approach might have the risk of blocking
websites that provide important information about COVID-19.

To reduce the effect of false positives from individual scanners, we examined
websites that were detected as malicious by at least two online scanners. We note
that this approach is consistent with the best practice used in many papers that
make use of multiple engines/vendors of VirusTotal for the labeling task [16].
As a result, we found that the number was 357, which accounted for roughly 4%
of the active Cov19doms websites. The detection categories of those detected
by two or more online scanners are summarized in Table 4. Note that a website
may be detected as a different category (e.g., phishing site and malware site)
by several online scanners . In such cases, the category is decided by majority
vote, and if the category is not uniquely determined, the category is marked
as “pending”. It can be seen that once again, phishing sites have the highest
number of detections, but the number of other malicious sites is also very close.

4 Discussion

4.1 Limitations

This study aims to understand the Covl19doms in the wild. In order to ensure
the accuracy of the results, two heuristics were applied to extract such domain
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names, as described in Sect. 2. The first heuristic was to limit the domain search
words to “covid” and “corona.” Such limitation will miss several cases where
domain names contain other keywords such as “virus” or “mask,” which could
bring false positives as we discussed. We also limited our search to the e2LLD part;
the limitation will eliminate the cases where an FQDN contains the substrings
in its hostname. Another heuristic was to constrain the registration date for
domain names.

Our analysis also excluded websites that did not include keywords in their
domain name but were COVID-19-related in their website content. Such websites
existed on both malicious and benign sites. Another limitation that we are aware
of is that the URL path is not taken into account when creating a URL from
an FQDN. We only retrieved web content from the top directory on a website
in the web-crawling process. Exploring the URL path might reduce the errors
shown in the Table 2, however we may miss web content if a website does not
configure the setting of index file. Addressing these issues is left for future study.

4.2 Detecting Malicious Cov19doms

As we have shown in this work, simply using a list of Cov19doms as a blocklist
may result in false positives, and this introduces the risk of blocking informa-
tion that is useful for COVID-19 countermeasures. In order to determine if a
detected Cov19dom is malicious, we need to monitor a domain name when it
is being abused and examine the content in a timely manner. The Trademark
Clearinghouse (TMCH) is a global database of trademarks and provides this
information to registries and registrars during the domain name registration
process to thwart unwanted domain name registrations by third-parties. This is
effectively used by trademark owners to fight against a trademark infringement
using fake domain names. Unfortunately, this countermeasure is not effective
against domain names piggybacking on global crises including COVID-19, due
to the fact that there is no right owner of such corresponding keywords. Szurdi
and Christin proposed the anti-bulk registration policy such as dynamic pricing
to make bulk domain registrations expensive [19], which is a potential counter-
measure against bulk-registered COVID-19 domain names.

4.3 Ethical Considerations

Our study analyzed publicly available DNS records and web content correspond-
ing to the domain names without collecting personally-identifiable information.
In our web-crawling process, we sent the minimum amount of legitimate requests
to websites, i.e., two requests (HTTP and HTTPS) per site, and left them and
their users unharmed.

5 Related Work

In this section, we present several related works and clarify how our work differs.
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Internet Measurement Driven by COVID-19. Favale et al. [8] analyzed
the impact of the lockdown enforcement on a campus network in Italy. Through
analyzing Internet traffic statistics, they revealed that while incoming traffic
was reduced by a factor of 10 during the lockdown, outgoing traffic increased
by 2.5 times, driven by more than 600 daily online classes, with around 16,000
students per day. They concluded that the campus network infrastructure is
robust enough to successfully cope with the drastic changes while maintaining
the university operations. Feldmann et al. [9] conducted similar analysis using
traffic data collected at one ISP, three IXPs, and one educational network. They
reported on changes in Internet traffic in various perspectives and concluded
that the Internet infrastructure has been able to deliver the increased Internet
traffic without significant impact.

Candela et al. [4] conducted a large-scale analysis of Internet latencies, which
could be affected by the increased amount of online activities during the lock-
down. By leveraging the measurement data collected with the RIPE Atlas plat-
form [17], they analyzed Internet latencies focusing on Italy, where people expe-
rienced more than a month of lockdown. They reported that the increase in
online activity led to an increase in the variability of Internet latencies, a trend
that intensified in the evening due to the increase in the entertainment traffic.

Event-Driven Domain Name Registration. The strategy of early acqui-
sition of domain names associated with ongoing events has been a well-known
approach in the domain name business community. In fact, a patent of such a
technique was filed by an Internet domain registrar [14]. Although event-driven
domain registration is a widely known best practice in the domain name busi-
ness community, to the best of our knowledge, there has been little research on
the topic in the research community. One of the few available studies is that
Coull et al. [5] derived rules to describe topics, such as ongoing events, from
popular Google search queries with the aim of characterizing the registration of
speculative domain names and empirically evaluated the feasibility of domain
acquisition based on such a method. While they attempted to extract current
events using Google search, COVID-19 is a unique phenomenon, and researchers
have not had an opportunity to study domain names for such a case.

Tombs et al. [21] tried to determine the level of credibility of a top-level
coronavirus-related website that purport to be government websites, and find
out the purpose of non-governmental entity or company register a top-level
coronavirus-related domain name by analyzing data collected from 303 websites
which domains related to COVID-19 between April 5 and April 6, 2020. They
found that 80% of websites presented as government websites cannot be verified
the authenticity. Additionally, about 30% of websites collected had unverified
information and nearly half were squatting domains or “under construction.”
Government websites providing critical information about coronaviruses should
not be subject to ambiguous in their authenticity, and therefore should not
share the top-level domain name space with non-governmental entity or com-
pany. Their findings are important in establishing trusted communication chan-
nel between government and their citizens during this crisis.
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Malicious Domain Names and Websites. Much research has been con-
ducted on ways to observe the registration and early activity of malicious domain
names [10,12,20]. Hao et al. [10] unveiled that DNS infrastructures and early
DNS lookup patterns for a newly registered malicious domain name differ signifi-
cantly from those with a legitimate domain name. Korczynski et al. [12] collected
WHOIS information, web content, and DNS records for corresponding malicious
domain names provided from 11 distinct abuse feeds and observed a growing
number of spam domains in new gTLDs, indicating a shift from legacy gTLDs
to new gTLDs. We conducted our measurement by referring to the ways prac-
ticed in these existing studies. While these studies analyzed fake domain names
containing strings related to brand names having specific owners, our study
focuses on domain names containing strings related to generic crisis having no
specific owners, which makes it be challenging to distinguish between malicious
and legitimate domain names.

There are few academic studies so far on detection of malicious domain names
related to COVID-19. Ispahany and Islam developed a machine learning model
using lexical features to detect malicious domain names and examined registered
domain names in April 2020 [11]. The purpose of our study is not to detect
malicious Cov19doms, but to investigate the usage of Covl9doms. Furthermore,
our study utilized a long-term dataset obtained from the end of December 2019
to the end of September 2020.

6 Conclusion

Through the analysis of 167K of Cov19doms we collected, we found that a month
before the global COVID-19 pandemic hit in April 2020, there was a flood of
domain name registrations. This phenomenon can be attributed to a variety of
people registering domain names for the purpose of COVID-19 countermeasures,
speculative domain name business, or to generate phishing sites, as they pre-
dicted the high impact of COVID-19. Such a global, high-impact phenomenon
is unprecedented in the past and is a remarkable event from the perspective
of Internet measurement. In conventional measures against the registration of
unwanted domain names targeting brands, distinguishing between an original
domain name and a fake domain name has been relatively straightforward since
the brand owner has been determined. In the case of the Covl19doms, on the
other hand, there is no concept of a brand owner, and many different players
have registered Covl9doms to benefit society. Therefore, it is not feasible to
apply traditional domain name analysis methods. As this study revealed, major-
ity of Covl9doms (about 60%) are not active. Even if Covl9doms are uesd for
active websites, many of them are parked or hosted, and it is not clear how
these domain names will change in the future. Addressing these problems is a
challenge for the future. We plan to release our dataset and tools used for our
analyses at https://github.com/covl9doms/covl9doms.
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Abstract. One of the staples of network defense is blocking traffic to
and from a list of “known bad” sites on the Internet. However, few orga-
nizations are in a position to produce such a list themselves, so prag-
matically this approach depends on the existence of third-party “threat
intelligence” providers who specialize in distributing feeds of unwelcome
IP addresses. However, the choice to use such a strategy, let alone which
data feeds are trusted for this purpose, is rarely made public and thus
little is understood about the deployment of these techniques in the wild.
To explore this issue, we have designed and implemented a technique to
infer proactive traffic blocking on a remote host and, through a series of
measurements, to associate that blocking with the use of particular IP
blocklists. In a pilot study of 220K US hosts, we find as many as one
fourth of the hosts appear to blocklist based on some source of threat
intelligence data, and about 2% use one of the 9 particular third-party
blocklists that we evaluated.

1 Introduction

Over the last decade, the use of threat information sharing—commonly labeled
“threat intelligence”—has become a staple in any discussion of network defense.
Based on the premise that by broadly sharing information about known threats,
organizations can better protect themselves, a burgeoning industry has emerged
to collect, aggregate and distribute such information [6,40], largely consisting
of lists of IP addresses, domain names or URLs thought to be associated with
particular classes of threats (a.k.a., indicators of compromise).

However, despite all the promises, it is far from clear how people actually
adopt threat intelligence data, especially for proactive traffic blocking, commonly
called “blocklisting”. Proactively blocking traffic based on threat intelligence
data is uniquely attractive to a defender, since, if effective, it can foreclose threats
without requiring attention from a human analyst. However, it is also a strong
action, and recent work by Li et al. [23] has shown that threat intelligence
feeds can be far from comprehensive and may include significant numbers of
false positives that might cause an organization to inadvertently block benign
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sites. Given this, it is important to understand the extent to which network
administrators are using such data to block network traffic in practice.

Motivated by this issue, our work seeks to infer if online hosts use threat intel-
ligence IP feeds (IP blocklists) to proactively block network traffic. The principal
challenge in pursuing this question is that such decisions are largely invisible: a
network choosing to block IP address A or not is indistinguishable from a third
vantage point, as this vantage point does not have access to either the network
or IP address A. Moreover, for operational security reasons, few organizations
are willing to publicly document the details of their network defenses.

In this paper, we describe an inference technique, based on the IP ID
increment side-channel (inspired by previous work focused on censorship detec-
tion [11,29]), to detect network-layer blocklisting. Our design is both specialized
to the unique characteristics of IP blocklists (e.g., dynamic, overlapping mem-
bership) and is designed to be conservative with respect to common sources of
network measurement error (hence a finding of blocking is robust). To evaluate
this technique, we test against known ground truth data and then conduct a
large-scale pilot study with over 220K U.S. hosts and against 9 popular IPv4
blocklists. In the two cases where network operators were willing to share their
blocking configuration with us, they were in perfect agreement with our findings.

Across our pilot study, we identified 4,253 hosts (roughly 2% of the hosts we
surveyed), consistently using at least one of the 9 lists that we tested against. We
also established that a larger fraction (roughly a fourth) of the hosts we surveyed
make use of some form of security-related blocking and reliably block traffic to
at least some subset of the IP addresses in our lists. This significant level of
security-related blocking is particularly surprising as our pilot study is biased
towards older machines with minimal traffic (a cohort that we would not have
associated with organizations having an aggressive network security posture).

2 Background

There is a large body of literature concerning the use of various kinds of “threat
intelligence” (not always using that term). One popular focus among these is
evaluating their effectiveness, including works that analyze coverage and accu-
racy of spam blocklists [30,37], phishing blocklists [35], and malware domain
blocklists [20]. Others have explored techniques to better populate such lists,
including Ramachandran et al.’s work on inferring botnet IP addresses from
DNSBL lookups [33], and the work of Hao et al. for predicting future domain
abuse [13,14] (among others). More recently, Thomas et al. explored the value of
sharing threat intelligence data across functional areas (e.g., mail spam, account
abuse, search abuse) and found limited overlap and significant numbers of false
positives [39]. Many of these results are echoed by Li et al. [23].

However, there is comparatively little work focused on understanding how
threat intelligence data is being used in practice. Indeed, the literature that
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exists is primary driven by surveys [31,34] and not validated by any empirical
measurement. !

There also has been significant empirical exploration of Internet connection
blocking in the setting of Internet freedom and access. Indeed, there are a range of
studies that measure connection block in the context of Internet censorship [2,4,
10,28,43], geo-blocking [1,25,27], and Tor blocking [18,36]. Most of these studies
rely on vantage points sited in the target networks being studied, and so are not
directly helpful in our work. However, recent work by Ensafi et al. [11] and Pearce
et al. [29] has removed this requirement using an indirect side channel technique
to test connectivity between pairs of remote hosts. While our approach differs
in a number of ways from theirs, it is inspired by the same idea of using IP ID
to infer if a remote host sent an IP packet.

The IP ID traffic side channel has been well-known since mid 1990s. In
particular, the Identification (ID) field of an IPv4 packet is a 16-bit value in
the IP packet header, designed to support fragmentation by providing a unique
value that can be used to group packet fragments belonging to the same IP
datagram [32]. The simplistic approach using a per-host global counter to ensure
unique IP ID values implicitly encodes the number of packets sent. Thus, by
probing a host multiple times one can use the value of the returned IP ID to
infer how many packets have been sent by the remote host between the two
probes. This side channel has been employed for a wide variety of measurement
purposes, including anonymous port scanning [3], host alias detection [38] and
enumerating hosts behind NATSs [5] among others. While most operating systems
no longer use such a simple approach, it is still reasonably common across the
Internet. For example, all versions of Windows up to version 7 used the global
increment algorithm [19].

3 Methodology

In this section, we first describe our inference technique, using the IP ID side
channel (Sect. 2), that determines if a particular host uses a known blocklist. The
intuition here is that if a reflector—a host suitable for our technique—blocks all
blocklist IPs from one particular blocklist, then it is likely that the particular
blocklist is being used for blocking traffic at the network-layer. Next, we detail
criteria of suitable reflectors (Sect. 3.2), and our criteria when sampling blocklist
IPs (Sect. 3.3). Finally, we discuss additional validation measures (Sect. 3.4) and
ethical concerns (Sect. 3.5).

3.1 Technique Overview

To measure if a reflector is blocking a particular IP from a blocklist, we send a
train of packets (here we use SYN-ACK packets) from our measurement machine

1 One exception is the recent work of Bouwman et al. [7] which has explored aspects
of this question through the interview of over a dozen security professionals.
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to the reflector. The packet train consists of packets whose source address is the
blocklist IP (spoofed), bracketed by packets whose source address is our mea-
surement machine, as illustrated in Fig. 1. If a firewall in the reflector’s network
blocks packets from the blocklist IP, the reflector will not receive packets with
the blocklisted source address. It will only receive packets with our measurement
machine’s source address. On the other hand, if there is no blocking, the reflector
will receive the entire packet train.

Reflector Measurement Reflector Measurement
Machine Machine

e @ w O

'P'D=3§‘y'\"mé IPID=SE‘y‘\\‘ACKE

.w‘i : RST

IPID = 4}
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Fig. 1. The basic method to detect network-layer blocking using the IP ID side channel.
When there is no blocking in place (left), the measurement machine will see an IP ID
gap in two RST responses: the second IP ID will increase by two. Whereas if there is
network blocking (right), then the two IP IDs will be consecutive without a gap.

In an ideal world, where there is no packet loss during transmission and no
extra traffic on the reflector, we expect the reflector to send a RST response
for each SYN-ACK packet we send, and we will receive the responses for the
SYN-ACK with our measurement machine’s source address. The IP IDs of these
received RST packets will reflect the number of packets sent by the reflector.
If the reflector did not receive the SYN-ACK packets with the blocklist IP as
source addresses (being blocked by a firewall), the IP ID sequence in the RST
responses will be an increasing sequence without gaps (the “Blocking” case in
Fig. 1). On the other hand, if the reflector did receive the SYN-ACK packets
with the blocklist IP, it would have sent a RST in response to each such packet,
incrementing the IP ID counter each time. While we will not see the RST packets
sent to the blocklist IP, we will observe the increments in the IP ID sequence.
More specifically, we would see a gap in the IP ID sequence of packets received
by our measurement machine (the “No Blocking” case in Fig. 1). These two
cases allow us to determine whether a particular blocklist IP is blocked by some
network device, such as a firewall, somewhere between the measurement host
and the reflector.

In previous works [11,29], the technique relies on sending spoofed SYN pack-
ets to the sites (equivalent to our blocklist IPs here), with the source IPs equal
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to reflector IPs. The sites then reply with SYN-ACK packets to the reflectors.
By monitoring the reflectors’ IP ID changes during this process, the authors can
determine whether the reflectors are blocking the tested sites. To use this strat-
egy, however, one requires both reflectors and sites to be active hosts that reply
to SYN/SYN-ACK probes. Unfortunately, in our case there is no guarantee that
blocklist IPs will reply to TCP probes. In fact, we found that on average only
about 24% of IPs on a blocklist reply to TCP probes. Using only blocklist IPs
that reply would dramatically reduce the candidate IPs we can sample from a
blocklist, especially for small blocklists that only have a few hundred IPs. We
already have many constraints when sampling IPs from a blocklist (Sect. 3.3),
and this extra requirement could leave us with not enough candidates for a
measurement.

Therefore, in our technique, we directly send SYN-ACK packets to reflectors,
with no involvement of hosts behind blocklist IPs. The disadvantage here is
that we cannot detect outbound blocking—wherein the spoofed packet reaches
the reflectors but the responses are blocked when going out of the network.
Based on our experience talking with several security companies, most customers
deploy inbound or bi-directional traffic blocking, so we believe missing outbound
blocking is not a major concern.

In this section, we explain how the technique works on a theoretical level. The
actual implementation needs to handle potential packet loss and other extrane-
ous traffic at reflectors. We list the full implementation of the technique and
false positive and false negative analyses in Appendix A.

3.2 Criteria for Reflectors

At a high level, our technique relies on the presence of the IP ID side channel.
Keeping that in mind, listed below are the criteria for suitable reflectors.

— RST packet generation: The reflectors must reply with a RST packet
to a TCP SYN-ACK packet without an established connection. Hosts that
drop incoming SYN-ACK packets without a corresponding SYN packet are
not suitable for our methodology. We use SYN-ACK packets instead of SYN
because it does not create an intermediate state on the reflectors and the
connection is terminated in one go.

— Shared monotonic increasing IP ID counter: The reflector should have a
monotonically increasing globally shared IP ID counter, so all network traffic
from the host uses the same IP ID counter counter and the number of packets
generated by the host between two measurements is implicit in the difference
of IP IDs.

— Low traffic: Our technique relies on a clear observable difference in IP ID.
As such, hosts must have low traffic volumes since a high traffic volume makes
it infeasible to observe the IP ID changes triggered by our probing packets.

— No ingress filtering: We send spoofed packets to reflectors to infer traffic
blocking. However, some network providers use ingress filtering techniques
and drop packets once they detect the packets are not from the networks
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they claimed to originate. This filtering would cause our spoofed packets
being dropped and give us a false signal of traffic blocking.

— No stateful firewall blocking: Some networks deploy a stateful firewall
that blocks access from a source IP after receiving too many repetitive pack-
ets. One example is to defend against SYN floods [21]. While we try to keep
the number of our probing packets as low as possible, if our spoofed packets
trigger such firewall rules and then we are blocked by the firewall, we will
incorrectly conclude that the reflector uses a blocklist to block that IP.

Our goal is to discover if online hosts are using IP blocklists to block traffic.
But when looking at the problem on a global scale, there are many policy related
reasons why a host blocks network traffic, such as censorship. These alternate
sources of blocking could disrupt our experiments. To simplify the problem, and
for ethical considerations, in this paper we only test the hosts located in the
United States.

3.3 Sampling Blocklist IPs

To determine if a reflector uses a particular IP blocklist, we use a sample of
IPs from a blocklist, as it would be infeasible for us to test all blocklist IPs.
Further, to obtain a definitive signal from our experiment, we need to adhere to
the following constraints when sampling blocklist IPs to avoid possible noise:

— Exclusive: A blocklist can share part of its contents with other blocklists.
To reasonably infer whether a reflector is using a specific blocklist, we need
to test with IPs unique to that blocklist—IPs that are only in this blocklist
but no others.

— Stable: IPs on a blocklist change over time. To reliably measure if a reflector
blocks IPs from a certain blocklist, we need the sampled IPs to stay in the
list throughout one experiment. This cannot be enforced beforehand, so we
discard the cases where a blocklist IP does not remain on the list for the
duration of the experiment.

— Routable: IP blocklists can contain unroutable IPs [23]. Sending packets
with an unroutable source address results in a large portion of packets being
dropped, as we have observed (which could potentially happen at end ISPs
or transient links). Packet drops due to unroutable IPs would create noise in
the experiment. Therefore, when sampling IPs from blocklists we ensure that
the IPs are routable.

— Geo-location diversified: Besides blocklisting, another common reason for
traffic blocking is geo-blocking, where a host blocks all traffic coming from a
certain country or region. To minimize the effect of geo-blocking, we prioritize
IPs that are from the United States when sampling IPs, assuming a host in
the US will not geo-block traffic from the US. For IPs in other countries, we
try to increase the diversity of IP locations, making sure the sampled IPs are
not concentrated in only a few countries when possible.
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— Not from reflectors’ network (AS disjoint): We observed that not many
networks have implemented ingress filtering (we saw less than 2% of the
total hosts we scanned showing this behavior). However, many networks drop
spoofed packets when the spoofed source addresses are within their own net-
work. So when selecting blocklist IPs, we make sure that these IPs are not
from the same ASes as one of our reflectors.

3.4 Control Group

To further validate our technique, every time we test a set of blocklist IPs against
each reflector, we also include a control group of 20 randomly chosen IPs that
are BGP routable, geo-located in the United States and not blocklisted (see
Sect. 4.2). The control group represents a random set of IPs that are unlikely to
be blocked in bulk by a reflector. We use US IPs to avoid the potential problem
of geo-blocking. If a reflector does block a significant fraction of control IPs, it is
probably because the reflector is not suitable for this technique (one reason can
be that our ingress-filtering step did not catch these IPs), and we should discard
all the results associated with this reflector.

3.5 Ethical Considerations

In our experiments, we send spoofed packets to reflectors impersonating traffic
from other IPs to infer the presence of network-layer blocking based on IP block-
lists. A key ethical concern with this kind of measurement is the extent to which
either receiving such packets or being seen to have received such packets would
put the recipients at undue risk. Indeed, this is particularly problematic in cen-
sorship measurements [11,29] because of the potential to inadvertently cause a
host to be associated with content that is politically dangerous in their country.
However, our work operates in a context that is substantially less risky, and we
have further designed multiple aspects of our protocol to minimize the likelihood
of risk. In particular, our methodology incorporates the following approaches to
minimize risk:

Restriction in Scope: We have specifically restricted our measurements to only
reflectors within the United States, which affords relatively robust free speech
rights and considerable transparency around criminal proceedings. Indeed, from
our conversations with both network operators and law enforcement, we are
unaware of a realistic scenario where the mere receipt of a packet has led to
criminal or civil liability.

Conventional Sources: Unlike in censorship studies, the source IP addresses
being spoofed in our measurement are those that have been used to mount
wide-spread abusive activity such as spamming, port scanning, etc. and these
represent precisely the kinds of traffic that a typical host on the Internet would
expect to receive.

Inbound, Connection-Free Probes: Our measurements are constructed to
be inbound only and connection free; that is, a network monitor could witness
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traffic consistent with an external scan of one of their hosts, but will never
witness a completed connection or any data transmission. From our discussions
with network operators and network security vendors, we could not identify a
scenario where the mere receipt of the packets we send would be sufficient to
drive an incident response team to action.

Minimal Use of End-Host Resources: Our scans are purposely constructed
with SYN-ACK packets to ensure that no state is created on the reflector. More-
over, our peak probing rate per reflector is 6 min-sized packets per second (see
appendix for more details). But even that rate only persists for two seconds in
each test, and in the following pilot study, we probe each reflector no more than
once every 3 mins.

4 Pilot Study Implementation

With the technique discussed in the previous section, one can then infer if an
online host (reflector) satisfying the selection criteria outlined above is block-
ing traffic using a specific IP blocklist. To evaluate our inference technique, we
conducted a pilot study over a large number of reflectors to infer their blocklist
usage. In this section, we explain in detail the implementation of our experiment,
including reflector selection, blocklist selection, sampling IPs from blocklists and
measurement setup.

4.1 Reflector Selection

We start our selection of reflectors using a snapshot of Censys [9] scanning data
from November 8, 2019, consisting of over 40 million IPv4 hosts with open ports
in the US. We then send multiple probes to each host targeting an open port
from different source addresses, checking the IP IDs of responses to identify the
ones with the IP ID side channel. We further run tests to make sure they meet
the criteria listed in Sect. 3.2 (see Appendix A). If one host has multiple open
ports, we randomly pick one to probe.

Table 1. The number of reflectors (IP addresses) identified in the United States, and
the corresponding count of /24 prefixes and Autonomous Systems.

Category Count

IP addresses 222,782
/24 Count 128,712
Autonomous Systems | 3,371

We identified 222,782 IP addresses in the US that meet our criteria. For
the purpose of this paper, we treat each individual IP address as a distinct
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reflector. Table 1 counts these addresses at different network aggregations. By
construction, the set of reflectors we use will necessarily have certain biases. To
understand what fraction of networks of potential interest to others this might
cover, we queried the Alexa top 100K domains as of Dec. 17th, 2019 for their
A records and MX records and obtained their corresponding IP addresses. Of
these, we identified a total of 94,846 IPs that are located in the US, covering
34,083 /24 s. While we made no attempt to find reflectors in these networks
a priori, our selection methodology identified at least one reflector in 16.9% of
these /24 s. When only looking at the top 10K domains, our data set covers
13.2% of US /24 s.

We also checked the WHOIS record of each reflector and identified all hosts
associated with education institutions. In total, our data set includes 4,370 edu-
cation IPs, ranging across 181 different institutions, and covers 40 out of the top
100 US universities based on the US News ranking [42]. Thus, while there may
be networks without a suitable reflector for one reason or another, our technique
is applicable to a large number of existing networks.

4.2 Choosing Blocklists and Sampling IPs

For the pilot study, we choose candidate blocklists from public IPv4 blocklists.
We use the FireHOL IP blocklist collection [12], which aggregates over 100 pub-
lic IP blocklists every day. However, we cannot reasonably test against all the
blocklists and so, for the purposes of this paper, we select the most popular
public IP blocklists and then do a more detailed measurement on them.

For each of the public IP blocklists, we sample five IPs (using the criteria in
Sect. 3.3) from each list and test how many reflectors block all sampled blocklist
IPs in each blocklist. The goal of this step is to roughly estimate how widely
used these blocklists might be, so that we can pick the most prevalent ones for
more detailed measurements later in Sect. 5. We repeat the measurement twice
and select the top 9 blocklists:

Spamhaus DROP: Spamhaus Don’t Route Or Peer Lists

Spamhaus EDROP: An extension of the Spamhaus DROP list

DShield Top Blocklist: DShield.org recommended top 20 /24 s to block
ET Compromised: EmergingThreats.net recorded compromised hosts
Snort IP Filter List: labs.snort.org supplied IP blocklist

BDS IP Ban List: Binary Defense System ban list

Feodo IP Blocklist: Abuse.ch Feodo tracking list

Blocklist De Blocklist: Blocklist.de blocklist IPs

Tor IP Blocklist: IPs that belong to the Tor network (not just exit nodes)

© X NSO WD

When sampling IPs from blocklists to test, we use the criteria listed in
Sect. 3.3. To find the exclusive IPs on each blocklist, we use the public IP block-
lists collected by FireHOL, as mentioned earlier, and calculate the unique part
of each target blocklist. For the stable IP requirement, we collect all the target
blocklists hourly, and ensure the sampled IPs are in the blocklist through the
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duration of the experiment. To satisfy the routable requirement, we use daily
RouteView data [41] to identify BGP routable IPs. For geo-location diversity,
we use NetAcuity [26] to make sure for each experiment the sampled IPs cover
as many different countries as the data allows.

4.3 Measurement Setup

Having selected the reflectors and blocklists, we can now conduct the experiment
to infer which reflectors use which specific blocklist.

For a particular experimental run, we randomly selected 25 IPs from each
blocklist that satisfy the requirements defined in Sect. 3: exclusive, stable,
routable, geo-diversified, and AS disjoint. Then we evaluated the blocking behav-
ior for all 220K reflectors against the 225 blocklist IPs sampled from the 9 block-
lists. To handle cases where reflectors might take time to update and start block-
ing the newest IPs on the blocklist, we ensure the sampled IPs have appeared in
the blocklist at least 2 weeks before our experiment. During post-processing, we
remove blocklist IPs from consideration that did not remain on the list for the
duration of the experiment. Furthermore, we conducted three experimental runs,
each time using a different set of 25 IPs from each blocklist. We then conclude
that a reflector is using a blocklist if and only if all experiment runs show that
it blocked all the sampled IPs from that blocklist.

We conducted our measurements from December 3-23rd, 2019. During this
period, we tested in total 96,067,051 distinct (reflector, blocklist IP) pairs.
(In the first two experiments, we tested against all reflectors. In the last exper-
iment, we only tested the ones that have shown blocking behavior in the first
two tests.) Among these pairs, 894,570 pairs display a clear signal indicating
“blocking”.

5 Pilot Study Overall Results

Use at least one blocklist (1.9%)

Block at least . 0
I one 1P (21.2%) No blocking observed (76.9%)
0 20 20 60 80 100

Fig. 2. Breakdown of reflector blocking based on three experimental runs. We identified
4,253 reflectors that use at least one blocklist (Sect. 5.1). We also found a large number
of reflectors blocking at least some IPs in blocklists (Sect. 5.2).

Figure 2 presents the overall blocking behavior of all 222,782 reflectors we tested
partitioned into four categories: those reflectors that we conclude use at least
one of the public blocklists (1.9%), reflectors that block at least one blocklist IP
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(21.2%), and reflectors that do not block any blocklist IPs (76.9%). Note that
given the attributes of hosts to be reflectors, such as running old OS versions, it
is not surprising a large percentage shows no blocking of the blocklist IPs: they
already have attributes anti-correlated with high degrees of security hygiene. The
following sections explores each of these categories of reflector blocking behavior
in more detail.

Table 2. Breakdown of reflectors we con-

100F

clude using each of the nine blocklists.

@ 80

3
Blocklist (abbr.) Reflectors | /24s | ASes T 60
Spamhaus DROP (DROP) 4,142 1,782 |50 §
Spamhaus EDROP (eDROP) |1,272 362 |25 ‘g 40
DShield Top Blocklist (DTop) | 223 69|18 g
ET Compromised (ET) 116 5815 & ol
BDS IP Ban List (BDS) 85 41| 3
Feodo IP Blocklist (Feodo) 64 26|16 0 i i
Snort IP Filter List (Snort) 52 2011 0 2 Number gf Blocklist Ssed 8
Blocklist De Blocklist (DE) 36 18| 8
Tor TP Blocklist (Tor) 24 9|8 Fig.3. CDF of the number of
Total Unique 4,253 1,827 77 blocklists used by reflectors.

5.1 Reflectors Using Blocklists

We identified 4,253 (1.9%) reflectors that use at least one of the 9 public block-
lists. Table 2 shows the number of reflectors using each of the nine different
blocklists, as well as the number of unique /24 s and ASes those reflectors appear
in. Spamhaus DROP is by far the most popular blocklist in our collection, fol-
lowed by Spamhaus EDROP. The remaining blocklists have a comparatively
small number of reflectors using them. Since many aspects of our method and
experiment make conservative choices, these results should be considered a lower
bound.

Figure 3 shows the cumulative distribution of the number of blocklists these
reflectors use. For the 9 public blocklists we studied, over 68.6% use just one
blocklist, 23.8% use two or more, and 7.6% use three or more. One reflector used
6 of the 9 blocklists.

For these reflectors, though, there are interesting patterns to the multiple
blocklists used. Figure 4 shows the use of multiple blocklists with a heatmap.
Rows and columns correspond to blocklists, and each cell of the heatmap shows
the fraction of the reflectors using the blocklist in row R that are also using the
blocklist in column C'. For example, the first cell for ET Compromised shows
that 78% of the reflectors that use ET also use the Spamhaus DROP blocklist.
Diagonal cells are 1.00 since they show blocklists compared with themselves.
Blocklists are ordered in the same order as in Table 2.
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DROP 0.31 0.05 0.02 0.02 0.01 0.00 0.01 0.00

eDROP 0.17 0.07 0.06 0.00 0.00 0.02 0.00 0
Government mmm Education
DTop [RR 1.00 | @R (GED | @e7 [UND] @07 | G40 mmm Healthcare mmm Hosting Provider
40+ = Enterprise ISP
ET 0.03 0.13 0.02 0.09 0.10
BDS 0.01 0.11 0.00 0.00 0.00

0.05 0.06 0.23 0.140.05 0.03 0.00

Feodo

Snort 0.02 0.02 0.00 0.04 0.00 0.060.04 0.00

101
DE 0.28 0.31 0.00 0.06 0.06 0.17
0

Number of Organizations

Tor 0.25 0.25 0.00 0.00 0.00 0.00 0.25 MG
DROPeDROP DTop ET BDS Feodo Snort DE  Tor
DROP eDROP DTop ET  BDS Feodo Snort DE  Tor Blocklists
Fig. 4. Pair wise intersection between Fig.5. Breakdown of the number of
reflectors that use each blocklist. organizations covered by each blocklist.

The first cell of the Spamhaus EDROP row indicates that all reflectors that
use Spamhaus EDROP also use Spamhaus DROP. Since the eDROP list is an
extension of the DROP list, the behavior is strongly consistent with expectations.
Moreover, the many significant values in the first two columns show that reflec-
tors that use any of the other blocklists very often also use Spamhaus DROP
and eDROP. At least for the hosts that we select for, these results underscore
the popularity of Spamhaus lists and indicate that, if a reflector blocks traffic
using blocklists, it very likely uses Spamhaus.

Ultimately the blocklist use and blocking behavior of the reflectors is strongly
tied to the organization to which they belong. While inferring the exact organiza-
tion behind an IP is difficult, we can still explore some high-level organizational
aspects of blocklists. We first identify the AS for every reflector, then use the
CAIDA AS-to-Organization dataset [8] to map the AS to an organization. Then,
we manually partition the organizations into six categories: ISPs (e.g., Comcast),
Hosting Providers (e.g., GoDaddy web hosting, AWS cloud computing), Educa-
tion (e.g., universities), Healthcare (e.g., hospitals), Government (e.g., state and
federal agencies), and Enterprise (individual companies owning the IPs).

Figure 5 shows the number of organizations using each blocklist, and their
breakdowns by organization category. Most blocklists are used by a wide variety
of organizations. Feodo IP Blocklist is the most diverse blocklist in our study, as
organizations from all six categories use it. From the perspective of organizations,
Educational institutions cover 8 of the 9 blocklists we selected, suggesting a
potential preference among universities on using public blocklists.

Validation: Based upon the locations of blocking reflectors, we reached out
to two universities that we concluded are using blocklists. In both cases, the
blocklists we inferred matched the blocklists they reported using, validating the
technique in these two cases. More specifically, University A confirmed our find-
ings that they use BDS IP Ban List, ET Compromised, Spamhaus DROP and
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Spamhaus EDROP. University B confirmed our findings that they use Spamhaus
DROP and Spamhaus EDROP.

5.2 Partial Blocking

Partial blocking is when a reflector blocks some of the blocklist IPs but not all
of them. There are many reasons, unrelated to the use of a blocklist, why a
reflector may block a blocklist IP. A host may have internal policies that deny
access from some network providers, or network administrators may add IPs into
their firewall on an ad-hoc basis based on an organization’s own policies. These
alternate blocking behaviors could overlap with the blocklist IPs we sampled,
leading to partial blocking behavior.

Geo-blocking is one cause of partial blocking we identified, where a reflector
drops all traffic from a particular country. DShield Top Blocklist, for example,
had over 50% of its IPs on January 25, 2020 geo-located in the Netherlands.
If a reflector blocks traffic from the Netherlands, then we would observe that
the reflector is partially blocking DShield Top Blocklist. To identify whether
a reflector uses geo-blocking, we check whether the reflector consistently blocks
IPs from a particular country. For all countries related to blocklist IPs we tested,
we sample IP addresses from those countries based on four IP location services:
MaxMind [24], IP2Location [15], IPDeny [16], and IPIP.net [17], and test against
our reflectors. Overall, we identified a small number of reflectors, 614 (0.28%),
that consistently block traffic from at least one country.

After removing the geo-blocking reflectors from partial blocking cases, we
noticed that a small percentage of reflectors consistently blocked a significant
subset of blocklist IPs, but not all, in every experiment. This consistency sug-
gests that there is a large overlap between the blocklist and the blocking policy of
the reflector. If a reflector blocks over 50% of sampled IPs from a blocklist every
time we test, we regard the reflector as exhibiting significant partial blocking
over a blocklist. In total we identified 871 (0.4%) such reflectors. These hosts are
probably using a source that is very similar to the blocklists we tested, as previ-
ous work has shown that commercial products can aggregate data from public
blocklists, and then conduct post-processing to eliminate some content [23]. It
is also possible that they are using an older version of the same list, where the
content is mostly the same.

Besides these cases, an additional fifth of reflectors demonstrate blocking
behavior, as evidenced in Fig. 2. Although we do not know the exact reason for
the blocking, the result suggests that security-related network blocking is rela-
tively prevalent even among low security hygiene hosts such as these reflectors.

Finally, we had originally hypothesized that network layer blocking would
be primarily implemented in border devices (e.g., firewalls, gateways) and thus
affect whole network blocks identically. However, when checking reflectors within
the same /24 s, we find that reflectors under the same /24 frequently do not block
the same set of IPs. We refer to this as inconsistent blocking. Our experiment
found 8,909 (/24, blocklist) pairs where multiple reflectors under that /24
block some IPs in that specific blocklist. Among them, 3,263 (36.6%) pairs show
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inconsistent blocking behavior. This result implies there is considerable intra-
network diversity in blocking policy. More analyses and details on the method-
ology can be found in Chap.4 in [22].

6 Conclusion

Our paper proposes, implements and tests a technique for inferring the deploy-
ment of network-layer blocklists and, further, for attributing the use of partic-
ular blocklists by particular hosts. While our technique depends on hosts that
are largely quiescent (not sending or receiving much traffic) and use a global
increment strategy for IP ID generation (typically those with older operating
systems), both of these limitations may be addressable to some extent. Hosts
with modest levels of traffic are likely still amenable to testing by using larger
sample sizes and more sophisticated statistical testing regimes. As well, while
many modern hosts purposely obfuscate the generation of IP ID values, recent
work by Klein and Pinkas [19] has demonstrated attacks on these algorithms (in
Windows and Linux in particular) which may provide purchase for using the IP
ID side channel with more contemporary machines. Future work could leverage
these methods to apply our technique to more blocklists with a broader set of
reflectors.

Our pilot study covered 220K US hosts, identified blocking behavior in
roughly a fourth of all reflectors, but only 2% show clear use of the blocklists
we tested against. This difference is puzzling on multiple fronts. It suggests that
even among older quiescent hosts that there are significant network security con-
trols in place. Also, it indicates that there may be far more diversity in blocklist
usage than we had initially imagined.

A Inference Technique Details

Our technique, while simple in theory, needs to handle real-world scenarios,
including packet losses, packet reordering during transition, and other traffic on
reflectors. The inference method needs to be efficient, accurate, and have low
overhead. Blocklists can change frequently, leaving a short window to infer a
stable behavior. As such, for the measurement to finish in a reasonable amount
of time requires an efficient inference method. Additionally, the method should
also have low false positive and false negative rates so that we can be confident
about the result. Finally, it should require as few packets as possible to reduce
potential impact on reflectors.

The first step is to find reflectors suitable to our measurement technique.
Recall that a suitable reflector should have minimal background traffic, and not
be part of a network doing ingress filtering for spoofed packets. To find quiescent
hosts, reflectors with low background traffic, we send 24 probes to each candidate
host, 1 per second, and repeat the experiment 5 times at different times of the
day. We then only select hosts where at least 30% of their IP ID increases are
equal to 1 per second—the host did not receive any extra traffic in that one
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second. We use the 30% threshold to select hosts that are largely “quiet”, and
thus more likely to yield a perfect signal in the experiment. Next, to identify
hosts behind ingress filtering, we acquired 7 vantage points around the world
to exercise different paths to the reflector. We sent spoofed packets from our
measurement machine to the hosts with spoofed source addresses corresponding
to the 7 vantage points, and then collected responses at each vantage point. We
only select the hosts that send responses to all 7 vantage points, meaning they
did not drop spoofed packets on any of the exercised network paths.

Next, we describe how we infer if a given reflector blocks an IP using multiple
trials. We define a trial as a single experiment that tests if a reflector blocks
one blocklist IP. Figure 6 shows the process of one trial. For each trial, the
measurement machine sends five consecutive probe packets to the reflector, with
each packet being sent one second apart. In our experiment, the probe packets
are TCP SYN-ACK packets and we get IP IDs from response RST packets.
Between the third and fourth probe packets, the measurement machine sends
five spoofed packets, also TCP SYN-ACK, with source IPs equal to the blocklist
IP. And between the fourth and the fifth probe packets, it sends another five
spoofed packets. We send the five spoofed packets 0.15 s apart consecutively
each time, spreading them across the one-second window between two probes.

5.0E-4
E —— False Negative Rate
Reflector Measurement "
Machine 4.0E-4 —&— False Positive Rate
E g P
= +————— IPID Probe ————— T r
Ixe:‘oﬂvdaparl e & 5 0E-4f
; ; 1.0E-4F
D Spoofed Packets x 5 ==============-- : [
H : Ok~ . . . :
e R : 3 4 5 6 7

Number of Packets Spoofed

Fig. 6. Blocking inference methodology. Fig. 7. Experiment design and false pos-
Solid blue lines are probe packets, dashed itive and false negative analysis

red lines are spoofed packets. (Color

figure online)

We then inspect the increases between the IP IDs in the packets received by
the measurement machine. Ideally, assuming no additional traffic and no packet
loss, the IP ID should increase by exactly one between consecutive probes. For
the last two deltas, since we send the spoofed packets in between our probe
packets, the final IP ID increases will be different based on the host’s blocking
behavior.

If the reflector does not block the blocklist IP, then we will observe an IP ID
increase sequence in our received RST responses that is: [+1, +1, +6, +6]. Here
the last two deltas are 46 since the reflector does not block the blocklist IP and
thus responds to spoofed packets, causing IP ID to increase by 5, and our probe
packet causes it to increase by another 1, which together make +6.
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On the other hand, if the reflector blocks the blocklist IP, then we will see
an IP ID increase sequence that is: [+1, +1, +1, +1]. Here the last two deltas
are +1 since the reflector blocks the blocklist IP, leading to no extra change in
1P ID.

The first three probes—corresponding to the first two IP ID deltas—act as a
control. The last two “probe and spoof” patterns perform the actual experiment.
Seeing the initial two “41” indicates this host is in a quiet period (no extra
network traffic). Therefore, we can be more confident that the following IP ID
jump (“46” in our case) is because of our experiment. While the choice of the
numbers in the experiment may seem arbitrary, there is a rationale behind the
choice which we will discuss in following sections.

A.1 Inference Criteria

We now look at the criteria to infer if a reflector blocks a blocklist IP or not. Our
limited vantage point from the measurement machine limits our information to
the IP IDs seen from the reflector. Moreover, we desire to be conservative when
inferring blocking. Thus, our approach is to try the same trial, between a reflector
and a blocklist IP, until we get a “perfect signal”—a response which matches all
the criteria below:

1. The measurement machine received exactly five RST responses from the
reflector.

2. The five responses are received one second apart consecutively.

3. The IP ID increase sequence is either [+1, +1, +6, +6], which we will conclude
as no blocking, or [+1, +1, +1, +1], which we will conclude as blocking.

4. If any of the above three criteria are not met, we repeat the same experiment
again. We repeat up to 15 trials before giving up.

The first requirement ensures no packet loss. The second requirement ensures
responses we received reflect the real IP ID changes in the reflector. The Internet
does not guarantee the order of packet arrival. Although we send one probe
packet per second, these packets might not arrive at the reflector in the same
order. Thus, the IP ID sequence from the response packets might not represent
the real order of IP ID changes at the host. Hence, by requiring that the response
packets cannot be less than 0.85 or more than 1.15s apart we can minimize the
probability of reordered packets.

The third requirement is the core of our inference logic. Since we ignore
everything other than an IP ID increase sequence of [+1, +1, +1, +1] or [+1,
+1, +6, +6], we can assure that our inference of blocking is conservative. If we
saw a sequence of [+1, +1, +1, +1] but the reflector does not block the blocklist
IP, that would mean all 10 spoofed packets were lost. On the other hand, if we
see [+1, +1, 46, +6] and the reflector actually blocks the blocklist IP, that would
mean there are exactly five extra packets generated by the reflector during each
of the last two seconds. Both cases are very unlikely, which we will demonstrate
next with an analysis of false positives and false negatives.
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A.2 False Positive and False Negative Analysis

For our experiment, a false positive is when a reflector is not blocking a blocklist
IP, but we mistakenly conclude it is blocking. On the other hand, a false negative
is when a reflector is blocking a blocklist IP, but we mistakenly conclude it is
not. To evaluate false positive and false negative rates, we conduct experiments
on all the reflectors under consideration and measure the false positive and false
negative rates.

For false positive evaluation, we first acquire a list of IPs that are verifiably
not being blocked by reflectors. Since we own these IPs, we can easily verify
by directly probing reflectors from these IPs. We acquired and tested 1,265 IPs
from five different /24s. Then we probe reflectors and send the spoofed packets
with source addresses set to these pre-selected IPs. Since these IPs are not being
blocked, if we observe an IP ID increase sequence of [+1, +1, +1, 4+1], then we
know it is a false positive.

For false negatives, we run the experiment with only probe packets, and no
spoofed packets. This scenario is equivalent to the one where the reflector blocks
the spoofed IP. If we observe an IP ID increase sequence of [+1, +1, +6, +6],
then we know it was due to the background traffic at the reflector and hence is
a false negative.

Although we present the experiment design with five spoofed packets in each
of the last two seconds, we also experimented with a range of numbers and
calculated their false positive and negative rates. We tested 15 times with spoofed
packets equal to 3, 4, 5, 6, and 7 with every reflector, and we repeated the
experiment again on a different day. The final results are shown in Fig. 7.

We need to trade off between keeping false positive and negative rates low
while generating as little traffic as possible. We choose 5 spoofed packets as a
balance. By sending 5 spoofed packets, we get a false positive rate of 2.5e-5, and
a false negative rate of 8.5e-5. Furthermore, we also experimented with strategies
where we send 4 probe packets, from which we get 3 IP ID deltas, and sending
6 probe packets, from which we get 5 IP ID deltas. With only 3 deltas we suffer
a higher false negative rate, as it is easier for the reflector to show the same IP
ID increase sequence with extra traffic. With 6 probes, on the other hand, we
prolong the experiment, making it harder to get a “perfect signal”. Thus, our
choice of 5 probe packets with 5 spoofed packets in between is a good balance
between competing factors.
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Abstract. Software updates take an essential role in keeping IT envi-
ronments secure. If service providers delay or do not install updates, it
can cause unwanted security implications for their environments. This
paper conducts a large-scale measurement study of the update behav-
ior of websites and their utilized software stacks. Across 18 months, we
analyze over 5.6M websites and 246 distinct client- and server-side soft-
ware distributions. We found that almost all analyzed sites use outdated
software. To understand the possible security implications of outdated
software, we analyze the potential vulnerabilities that affect the utilized
software. We show that software components are getting older and more
vulnerable because they are not updated. We find that 95 % of the ana-
lyzed websites use at least one product for which a vulnerability existed.

Keywords: Updates - Vulnerabilities - Security -+ Web measurement -
Web security

1 Introduction

Nowadays, we use the Web for various tasks and services (e.g., talking to our
friends, sharing ideas, to be entertained, or to work). Naturally, these services pro-
cess a lot of personal and valuable data, which needs to be protected. Therefore,
web services need to be hardened against adversaries, for example, due to imper-
fections of software. An essential role in every application’s security concept is the
updating process of the used components [9]. Not updating software might have
severe security implications. For example, the infamous Fquifaxr data breach that
affected 143 million people was possible because the company used software with
a known vulnerability that has already been fixed in a newer version [26].
However, keeping software up to date is not always easy and, from the security
perspective, not always necessary (i.e., not every update fixes a security issue).
Modern applications require a variety of different technologies (e.g., libraries, web
servers, databases, etc.) to operate. Updating one of these technologies might
have unforeseeable effects and, therefore, updates might create potentially high
overhead (e.g., if an update removes support of a used feature). More specifically,
service providers might object to install an update because they do not directly
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profit from the new features (e.g., changes in an unused module). Hence, it is
reasonable not always to install every available update (e.g., to ensure stability).

In this work, we show that this challenge can have grave implications. To
understand how up to date the utilized software on the Web is and to under-
stand its possible security implications, we conduct a large-scale measurement.
Previous work also analyzed update behavior on the Web (e.g., [19,23]) but —
to the best of our knowledge — our measurement is more comprehensive than
the previous studies. While we analyze over 5.6M sites and nearly 250 software
(SW) products, other work in this field often only analyzed one specific type
of software or a small subset. Therefore, our results are more generalizable and
provide a better overview of the scale of the problem.

To summarize, we make the following contributions:

1. We conduct a large-scale measurement that evaluates 246 software products
used on 5.6M websites over a period of 18 months, to determine update
behavior and security impact of not updating.

2. We show that 96 % of the analyzed websites run outdated software, which is
often more than four years old and is getting even older since no update is
applied.

3. We show that a vast majority of the analyzed websites (95%) use software
for which vulnerabilities have been reported, and the number of vulnerable
websites is increasing over time.

2 Background

In this section, we discuss the principles of how web applications work and how
known vulnerabilities are publicly managed, both necessary to appreciate our
work.

2.1 Preliminaries

We start by introducing key terminology. In this work, we use the term site (or
website) to describe a registerable domain, sometimes referred to as eTLD+1
(“extended Top Level Domain plus one”). Examples for sites are foo.com and
bar.co.nz. Each site may have several subdomains (e.g., news.foo.com and
sport.foo.com). Following the definition of RFC 6454 [1], we call the tuple of
protocol (e.g., HTTPS), subdomain (or hostname), and port origin. This dis-
tinction is important since the well-known security concept Same-Origin Policy
(SOP) guarantees that pages of different origins cannot access each other. We
use the term page (or webpage) to describe a single HTML file (e.g., a webpage
hosted at a specific URL).

2.2 'Web Technologies and Updating

To implement modern web applications, service providers rely on a diverse set
of server-side (e.g., PHP or MySQL) and client-side technologies (e.g., HTML
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or JavaScript). This combination of different technologies often results in a very
complex and dynamic architecture, not always under full control of the service
provider (e.g., usage of third parties [8]). Furthermore, the update frequency of
web technologies is higher compared to desktop software [20]. Web applications
are commonly composed of different modules that rely on each other to perform
a given task. Hence, one vulnerability in any of these modules might undermine
the security of the entire web app, depending on the severity of the vulnerability.
Once a vulnerability of an application is publicly known or privately reported to
the developers (see also Sect.2.3), the provider of that application (hopefully)
provides an update to fix it. Therefore, service providers need to check the avail-
ability of updates of the used components and their dependencies and transitive
dependencies regularly. However, it should be noted that not all updates fix
security issues, and, therefore, it is not necessary or desired (e.g., for stability
reasons) to install all updates right away.

2.3 Common Vulnerabilities and Exposures

Once vulnerabilities in software systems are discovered, reported to a ven-
dor, or shared with the internet community publicly, they are published in
vulnerability database platforms (e.g., in the National Vulnerability Database
(NVD)). The NVD utilizes the standardized Common Vulnerabilities and Ezpo-
sures (CVE) data format and enriches this data. Each CVE entry is provided
in a machine-readable format and contains details regarding the vulnerabil-
ity (e.g., vulnerability type, vulnerability severity, affected software, and ver-
sion(s)). The primary purpose of each CVE entry is to determine which soft-
ware is affected by a vulnerability and helps to estimate its consequences. Each
entry in the NVD database is composed of several data fields, of which we
now describe the one most important for our work. In the NVD database,
the field ID of a CVE entry uniquely identifies the entry and also states the
year when the vulnerability was made public, followed by a sequence num-
ber (e.g., CVE-2020-2883), the field CVE_data timestamp indicates when the
CVE entry was created. Furthermore, each CVE entry also includes a list
of known software configurations that are affected by the vulnerability (field
configurations), formally known as Common Platform Enumeration (CPE).
CPE defines a naming scheme to identify products by combining, amongst
other values, the vendor, product name, and version. For example the CPE
(in version 2.3) cpe:2.3:a:nodejs:node.js:4.0.0: [...] identifies the prod-
uct node. js provided by the vendor nodejs in version 4.0.0. Furthermore, the
configurations field lists all conditions under which the given vulnerability
can be exploited (e.g., combination of used products). Finally, the field impact
describes the practical implications of the vulnerability (e.g., a description of
the attack vector) and holds a score, the Common Vulnerability Scoring System
(CVSS), ranging from 0 to 10, which indicates the severity of the CVE (with ten
being the most severe). Again, it is worth noting that it not definite that if one
uses a software product — for which a vulnerability exists — that it is exploitable
by an attacker. For example, if an SQL-Injection is possible via the comment
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function of a blog, it can only be exploited if the comment function is enabled.
Thus, our results can be seen as an upper bound.

3 Method

In this work, we want to assess the update behavior of web applications, measure
if they use outdated software, and test the security implications of using the
vulnerable software. To accomplish that, we collect the used modules (software
and version) of the websites present in the HTTPArchive [4] over a period of 18
month, extract known vulnerabilities from the National Vulnerability Database
database, and map them against the used software versions of the analyzed sites.

Identifying Used Software. To assess the update behavior of websites, we need
to identify the software versions of the software in use. To do so, we utilized data
provided by HTTPArchive [6], which includes all identified technologies used by
a website. HTTPArchive crawls the landing page of millions of popular origins
(mobile and desktop) based on the Chrome User Ezperience Report (CrUX) [3]
every month, since January 2019. In CrUX, Google provides publicly metrics like
load, interaction, layout stability of the websites that are visited by the Chrome
web browser users on a monthly basis. This real-world dataset includes popular
and unpopular websites [5]. In our study, we analyze all websites provided in
HTTPArchive. Hence, we can use 18 data points in our measurement (M#1 —
M#18). The data provided by HTTPArchive includes, among other data: (1)
the date of the crawl, (2) the visited origins, and (3) identified technologies
(software including its version). HTTPArchive uses Wappalyzer [24] to identify
the used software, which uses different information provided by a site to infer the
user version and technology stack. In order to make version changes comparable,
we converted the provided data to the semantic versioning (SemVer) standard
(i.e., MAJOR.MINOR.PATCH) [14] and validate also the version information from
HTTPArchive as well as from NVD and check if provided versions are in a valid
SemVer format. This unification allows us to map the observed versions of the
known vulnerabilities. If we find an incomplete SemVer string, we extended it
with “.0” until it fits the format.

Identifying Vulnerable Software. To better understand the security impact of
updates, we map the software used by an origin to publicly known vulnerabilities.
We collect the vulnerabilities from the National Vulnerability Database (NVD)!.
Each entry in the NVD holds various information, but only three are essential
to our study: (1) the date on which it was published, (2) a list of systems that
are affected by it, and (3) the impact metrics how it can be exploited and its
severity. In this work, we only focus on vectors that can be exploited by a remote
network adversary.

! We used the database published on 04,/07/20.
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3.1 Dataset Preparation and Enrichment

Here, we describe the steps taken to enrich our dataset to make it more reliable.

Release History. To get a firm understanding of the update behaviour of web-
sites, it is inevitable to know the dates on which different versions of a software
were released (“release history”). To construct the list of release dates of each
software product, we used GitHub-API for the official repositories, on GitHub,
of the products and extracted the date on which a new version was pushed to
it and store the corresponding SemVer. If a product did not provide an open
repository on GitHub, we manually collected the official release dates from the
product’s official project webpages, if it’s published.

Dataset Preparation. Since the Web is constantly evolving and Web measure-
ments tend to be (strongly) impacted by noise, we only analyzed software prod-
ucts on a site for which we found version numbers in at least four consecu-
tive measurements. Furthermore, we dropped all records with polluted data
(e.g., blank, invalid versions, duplicates, dummy data) from our dataset. Finally,
in order to make a valid match between CVE entries and software in our dataset,
we manually assigned each software in our dataset their CPE (naming scheme)
using the CPFE Dictionary [12] provided by NVD.

3.2 Analyzing Updating Behavior and Security Implications

In this section, we describe how we measure update behavior and identify vul-
nerable websites.

Updating Behavior. To understand update behavior in our dataset, one needs to
measure the deployed software’s version changes over time. Utilizing the release
dates of each software product, we know, at each measurement point in our
dataset, whether a site/origin deploys the latest software version of a product or
if it should be updated. If we found that an outdated product is used, we check
if it was updated in the subsequent measurements (i.e., if the SemVer increases).
This approach allows us to test if a product is updated after all and to check how
long this process took. In our analysis, we call an increasing SemVer an update
and decreasing version number a downgrade. In this analysis, we compare the
MINOR and PATCH part of a product’s SemVer, utilizing the release dates of each
version, and not the MAJOR section because service providers might not use the
latest major release due to significant migration overhead. For example, we would
consider that an origin is “up to date” if it runs version 1.1.0 of a product even if
version 2.1.0 (major release change) is available. However, if version 1.1.1 would
be available, we consider it “out of date”.

Identifying Vulnerable Websites. One way to measure the impact of an update
on the security of a site is to test if more or less vulnerabilities exists for the
new version, in contrast to the old version. To identify vulnerable software on
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a website, we retrieve the relevant CVEs for the identified software and then
check if it is defined in these CVE entries — with consideration of wversion-
Start[Excluding/Including] and versionEnd[Ezcluding/Including] settings. We
map a vulnerability to a crawled origin if and only if (1) it uses a software
for which a vulnerability exists and (2) if it was published before the crawl was
conducted. Utilizing the Common Vulnerability Scoring System (CVSS) of each
vulnerability, we can also assess the theoretical gain in security.

4 Results

After describing our approach to analyze the update behavior of websites and
its possible security impact on websites, this section introduces the large-scale
measurement results. Overall, we observed 8.315.260 origins on 5.655.939 distinct
domains using 342 distinct software products. After filtering, we were left with
8.205.923 origins (99%) on 5.604.657 domains (99%) using 246 (72%) software
products. We collected 31.909 releases for 246 software products. Furthermore,
we collected 147.312 vulnerabilities of which 2.793 (2%) match to at least one
identified product. Overall, we found an exploitable vulnerability for 148 (60%) of
the analyzed software products. Note that products with no public release history
are excluded from analyzing update behavior and security analysis if they don’t
have a known vulnerability. Note also we have full access to all the segments of
the MAJOR.MINOR.PATCH for 98.5% of our data. In total, we identified 12.062.618
software updates across all measurements. Table 1 provides an overview of all
evaluated records of each measurement run.

4.1 TUpdate Behavior on the Web

In the following, we analyze the impact of adoption of releases on the Web on
website level and from software perspective.

Update Behavior of Websites. The first step to understand the update
behavior of websites is to analyze the fraction of used software products that
are fully patched, according to our definitions. Remember that we assume that a
software product should be updated if a newer minor version or patch is available
(i.e., we exclude the major version (see Sect.3.2)). In our dataset, we identified
a median of 3 (min: 1, max: 17, avg: 3.37) evaluable software products for each
website. Overall, we identified that across all measurement points, on average,
94 % of all observed websites were not fully updated (i.e., at least for one soft-
ware product exists a newer version). Only 6 % of the observed sites used only
up to date software while 47 % entirely relied on outdated software types. The
mean fraction of out of date software products is 74 % for each observed website
across our measurement points. These numbers show that websites often uti-
lize outdated software. While at domain granularity, almost all analyzed sites
use outdated software, it is interesting to analyze if subdomains show different
update behavior. Figure 1 compares the fraction of up to date software utilized
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Table 1. Overview of all measurement points.

M. Date | #Sites | #0rigins | #Products | #dist. Ver. | #Updates | # Vuln.
M#1 |01/19|2.5M |3.4M 208 15,436 — 2,201
M#2 [02/192.3M | 3.1M 204 15,178 0.4M 2,224
M#3 |03/192.3M | 3.1M 205 15,390 0.5M 2,235
M#4 |04/19 2.7M | 3.5M 205 16,145 0.6M 2,291
M#5 |05/19 | 2.8M | 3.6M 216 16,741 0.4M 2,298
M#6 |06/19 | 2.8M | 3.6M 217 17,013 0.7M 2,310
M#7 |07/19 3.0M |3.9M 215 17,438 0.6M 2,286
M#8 |08/193.0M |3.9M 215 17,474 0.5M 2,316
M+#9 |09/19|3.0M |3.9M 215 17,682 1.0M 2,390
M#10 1 10/19 | 3.0M | 3.8M 217 17,873 0.8M 2,424
M#11|11/19 | 3.0M |3.8M 217 17,958 1.0M 2,468
M+#12|12/19 | 3.0M |3.8M 216 18,122 1.0M 2,478
M#13|01/20 2.9M | 3.8M 217 18,173 0.8M 2,502
M#1402/20 | 2.7M | 3.4M 211 17,558 0.4M 2,526
M#15 | 03/20 | 3.1M | 3.9M 217 18,558 0.4M 2,412
M#16 | 04/20 | 3.3M | 4.2M 217 19,321 0.6M 2,467
M#17/05/20 | 3.1M | 4.0M 220 19,353 0.8M 2,460
M#18|06/20 | 3.4M | 4.4M 218 20,118 0.6M 2,475

on subdomains (e.g., bar.foo.com) against the root domains (e.g., foo.com), along
our measurement points. In the figure, zero means that all software is up to date
and one means that all software is outdated. Our data shows that most software
products are not updated to the newest release, but it is still interesting to ana-
lyze the update cycles websites use in the field. On average, we observed 0.7M
version changes between two measurement runs. 97 % of them were upgrades
(i.e., the SemVer increased) and consequently 3 % were downgrades.

Update Behavior from a Software Perspective. Previously, we have shown
that websites tend to use outdated software. In the following, we take a closer look
at the used software to get a better understanding if the type of used software has an
impact on its update frequency. Across all measurements, the software used on the
live systems is 44 months old (M#1: 40, M#18: 48), and the trend during the mea-
surement is that it gets even older (18 days each month on average). To determine
how the average age changes by software types, we measured the average age of the
top ten used software types for all measurement points. These top ten account for
65 % of all analyzed software types. In Fig. 2 we show the corresponding results.
Our finding clarifies that client-side software (e.g., JavaScript Libraries) is older
than server-side software (e.g., Web Servers). A closer observation of the releases
SW shows that the server-side software has shorter release cycles than client-side
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Fig. 1. Fractions of utilized outdated software products on the analyzed domains in
comparison to their subdomains (1 = no product is up-to-date).

software in the measured period (e.g., nginz has 18 and jQuery only has 6 releases).
While the age of the software itself is not necessarily a problem per se, it is notable
that the average number of months a utilized software is behind the latest patch is
48. The ANOVA test (o« = 0.05) showed no statistical evidence that the popular-
ity of a website, according to the Tranco list [11], has an impact on the age of the
used software (i.e., popular and less popular websites use outdated software alike).
Using software that is four years old might be troubling, given that on average 41
newer version exists, because the software might have severe security issues. We
have shown that overall mostly outdated software is used. However, it is interest-
ing to understand if this applies to all types of software alike or if specific products
are updated more frequently.

Adoption of Software Releases. To get a better understanding of the update
behavior of websites, we observe the adoption of releases. We find that every
month, on average, 67 % of the software used has a new release. However, our
observations show that only a few service providers install the release promptly.
We record that on average, only 7 % of available updates are processed (min: 4 %,
max: 11 %). The mean time between two updates for any of the used software
on one website is 3.5 months (SD: 5.4). To get a more in-depth understanding
of the adoption of software releases, we measure it in a time span of 30 days
after the release. Figure 3 shows the fraction of processed updates by websites
in that time span for the top eight software types. The top eight types account
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for 60 % of all used software. In general, we see that PATCH level releases are
processed most frequently. Furthermore, we observe that the adoption of release
types differ based on the software types. E-Commerce software process PATCH
releases most frequently and search engine optimization software (SEO) MAJOR
releases respectively. We assume that integrated automatic background updates
play an important role why specific software types are updated. For example
WordPress and Shopware, two popular content management systems, provide
an auto update functionality [17,25].

Summary. Based on our dataset, we have shown that the used software on the
Web is often very old and not updated frequently. While differences in the update
behavior between different types of software exist, the majority of all times is
still not updated. However, the impact of this not-updating is not clear and
needs more investigation.

4.2 Security Impact of Not Updating

Experts agree that updating is one of the most critical tasks one should do to
harden a system or to avoid data leaks [15]. Therefore, we are interested in the
security impact of the identified tend to use outdated software.



Our (in)Secure Web: Understanding Update Behavior of Websites 85

0.30 1 Release Type
major
§ 0.254 ®mm minor
S Em patch
s
© 0.20 A
[
&
g
3 0.15 1
o
kS
E 0.10 A
5]
i
& 0.05 I I
0.00 — I j .
S ) ) "4 S & O <
o D Q' < R
\Z - 2 N o) Ie)
Na S & &
© < X W
$@% “\\\; \Q\ O
N (3‘ K\a
) W
o &
& N

Top used software types

Fig. 3. Fraction of processing a new release for top used eight software types.

Vulnerability of Websites. Towards understanding the threats that result
from the usage of outdated software, we first analyze the scope of affected web-
sites. On average, 94 % of the analyzed websites contain at least one potential
vulnerable software, which was slightly increasing over the course of our measure-
ments (M#1: 92 % to M#18: 95 %). We also record that each analyzed software
has on average 8 vulnerabilities and that websites are affected, on average, by 29
(min: 0, max: 963). Our data shows that the number of exploitable vulnerabilities
is decreasing over time for both per software (0.4 per month) and per websites
(0.14 per month). Hence, overall the number of websites that have at least one
vulnerability increases but the amount of vulnerabilities per site decreases.
Each vulnerability has a different security impact on a website, and, therefore,
the number of identified vulnerabilities does not directly imply the severeness of
them. The NVD assigns a score to each vulnerability to highlight its severeness
(i.e., the CVSS score). Figure4 shows the mean CVSS scores for the analyzes
websites their rank. By inspecting the figure, one can see that less popular sites
(the rank is higher) are affected by more severe vulnerabilities. The Spearman
test (v = 0.05) showed a statistical significant correlation between the rank and
the mean CVSS score of the identified vulnerabilities (p-value < 0.007). Table 2,
in Appendix A lists the most common vulnerabilities in our last measurement
point (M#18). A stunning majority of websites (92 %) is theoretically vulnerable
to Cross-site Scripting (XSS) attacks. In our dataset, jQuery is the software that
is most often affected by a CVE (92 %). A list of the most prominent CVEs is
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given in Appendix C. Given the wide occurrence of vulnerabilities in our dataset,
the question arises which threats websites and users actually face.
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Fig.4. AVG CVSS by popularity of websites. Vulnerability severity is significantly
lower for high-ranked websites.

Analysis of Available Vulnerabilities. Figure5, shows the distribution of
severity of identified vulnerabilities on websites based on the Common Vulner-
ability Scoring System (CVSS). Our results show that the number of websites
with the most severe vulnerability (CVSS: 10) steadily decreases. The average
number of vulnerable websites with a severity “HIGH” (CVSS: 7-10) is decreas-
ing (M#1: 43 %, M#18: 39 %), while the number of vulnerable websites with
“MEDIUM” (CVSS: 4-7) remains almost constant (M#1: 47 %, M#18: 49%).
For this analysis, we only used the most severe vulnerability for each website.

Given the result that the average age of used software depends on its type
(see Fig. 2), we find that older software has more dangerous vulnerabilities. For
example, the average CVSS/age of JavaScript-Frameworks was 4/50 in M#1
and 6/62 in M#18, while the score and age for programming languages go from
9/34 to 8/33. This confirms that older software does have more vulnerabilities
and highlights the need for better update processes of websites. Furthermore, our
analysis shows that performing updates has a significant impact on the security
of software. The average value of CVSS for software for which an update is
available is 6.4 (“MEDIUM”). However, after applying the update(s), the CVSS
is lowered to 2.4 (“LOW”).
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Fig. 5. Fraction of CVSS score distribution on websites for all measurement points (10
= Critical, 0 = No Vulnerability).

5 Limitations

Although we have put a great effort while preparing our dataset, our study is
impacted by certain limitations. Our approach comes with the limitation that,
on the one hand, HTTPArchive only crawls landing pages and does not interact
with the website, which might hide the complexity of an origin [21], and, on
the other hand, Wappalyzer might not detect all used software for the website.
Although NVD is one of the most popular vulnerability databases, there are some
discussions around the accuracy of the data provided by NVD e.g., [13,16]. In
our study, we assume that software utilized by a website is vulnerable if the NVD
provides a CVE entry for it. For ethical reasons, we did not validate if successful
exploitation of the CVE requires any interaction or enabled functions. We also
don’t examine any mechanism for the validity of CVE entries.

6 Related Work

To the best of our knowledge, our study is the first one that measures update
behavior and security implications by evaluating all utilized server and client-
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side software on a website and by conducting multiple measurements. In the
following, we discuss studies related to our research.

Update Behavior. Update behavior of software has been previously studied.
Tajalizadehkhoob et al. [19] measure the security state of software provided by
hosting providers to understand the role of hosting providers for securing web-
sites. Vaniea etal. [23] conduct a survey to understand the update behaviour
of software. They ask 307 survey respondents to provide software update sto-
ries and analyze these stories to determine the possible motivations for software
updates. Stock et al. [18] examine the top 500 websites per year between 1997 and
2016 utilizing archive.org dataset. In their measurement, they mainly evaluate
security headers and analyse usage of outdated jQuery libraries.

Security Implications. Prior literature has proposed various techniques to mea-
sure websites’ security in terms of different metrics. Lauinger etal. [10] study
widely used 72 client-side JavaScript libraries usage and measure security across
Alexa Top 75k. Van Goethem etal. [2] report the state of security for 22,000
websites that originate in 28 European countries. Their analysis is based on dif-
ferent metrics (e.g., security headers, information leakage, outdated software).
However, they use only a few popular software products for their measurement.
Huang et al. [7] measure the security mechanisms of 57,112 chinese websites based
on vulnerabilities published on Chinese bug bounty platforms between 2012 and
2015. Van Acker etal. [22] scrutinize the security state of login webpages by
attacking login pages of websites in the Alexa top 100k.

7 Discussion and Conclusion

In this work, we measured the update behavior and possible security implica-
tions of software products utilized on more than 5.6M websites. Our measure-
ment highlights the current state of the Web and shows the update behavior
of websites over the course of 18 month. We show that most of the Web’s uti-
lized software is outdated, often by more than four years. Running outdated
software is not a security problem per se because the old software might not be
vulnerable. However, we found several sites that use software products for which
vulnerabilities have been reported. Furthermore, we show that the number of
vulnerable websites increases over time while the average severity of identified
vulnerabilities decreases. For instance, we record that 95 % of websites potentially
contain at least one vulnerable software. It has to be noted that the identified
vulnerabilities in our work must be seen as an upper bound because utilizing a
product for which vulnerabilities exist does not automatically mean that it can
be exploited (e.g., the vulnerable module of the product is deactivated or not
used). Our results still highlight that website providers need to take more care
about their update processes, even if this comes with a potential overhead, to
protect their users and services.
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A Overview of the Top Identified CWEs

In this appendix, we show our findings related to identified CWEs. Table 2 lists
the most common CWEs on websites that we identified in the last measurement
run (June 2020). While the vulnerability Cross-site Scripting (XSS) occurs in
almost all websites, a closer analysis of the same measurement point (M#18)
shows that only 28% of software is vulnerable to this vulnerability.

Table 2. Top 10 vulnerabilities in our last measurement point (M#18) by relative
frequency on websites.

Vulnerability type (CWE) Relative frequency
CWE-79 Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)|0.92
CWE-20 Improper Input Validation 0.32
CWE-400 Uncontrolled Resource Consumption 0.27
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor 0.24
CWE-476 NULL Pointer Dereference 0.24
CWE-601 URL Redirection to Untrusted Site (‘Open Redirect’) 0.22
CWE-125 Out-of-bounds Read 0.22
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer 0.20
CWE-787 Out-of-bounds Write 0.19
CWE-190 Integer Overflow or Wraparound 0.17
CWE-284 Improper Access Control 0.17

Table 3. Some examples of vulnerabilities identified on analyzed websites that run
outdated software.

Software |CVE CVE CWE CVSS|Public Vuln. Total usage
Publication exploit ‘Websites

jQuery CVE-2020-11023/04.2020 XSS 4.3 X 3.98M 4aM

Apache CVE-2017-7679 |06.2017 Buffer 7.5 v 0.26M 0.46M
Over-read

PHP CVE-2015-8880 |05.2016 Double free 10 v 0.45M 0.46M

PHP CVE-2016-2554 |03.2016 Buffer 10 v 0.23M 0.46M
Over-read

WordPress|CVE-2018-20148(12.2018 Deserialization |7.3 v 0.18M 0.46M
of Untrusted
Data

WordPress|CVE-2019-20041|12.2019 Improper Input |7.3 X 0.31M 0.46M

Validation
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B Average age of the 20 used software by website-ranking

Figure 6 shows the most popular software types, their average age (in month),
and the rank of the websites on which they are used. We record that most of the
widely used software on the web is often very old. We also found that the average

age of utilized software on a website is unrelated to its popularity, according to
the Tranco list [11].

C Case Studies

Table 3 illustrates the most common CVE entries identified in our study. CVE-
2020-11023 is the most common vulnerability with the severity “MEDIUM” —
based on our last measurement. Some of the vulnerabilities require certain func-
tions or enabled functions (e.g., CVE-2017-7679 for Apache requires mod_mime
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Fig. 6. Average age (in month) of the top 20 used software by website ranking. The
share of software in our dataset is shown in brackets — Blank cells: no website identified
in the corresponding ranking.
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and CVE-2016-2554 for PHP requires file uploading functionality) In some cases,
the running software requires interaction between more than one component
to abuse an exploit. The listed vulnerabilities for WordPress and vulnerability
CVE-2015-8880 for PHP do not require any interaction or enabled features and
can be exploited directly.
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Abstract. An increasing number of adversaries tend to cover up their
malicious sites by leveraging the elaborate redirection chains. Prior works
mostly focused on the specific attacks that users suffered, and seldom
considered how users were exposed to such attacks. In this paper, we con-
duct a comprehensive measurement study on the malicious redirections
that leverage squatting domain names as the start point. To this end, we
collected 101,186 resolved squatting domain names that targeted 2,302
top brands from the ISP-level DNS traffic. After dynamically crawling
these squatting domain names, we pioneered the application of perfor-
mance log to mine the redirection chains they involved. Afterward, we
analyzed the nodes that acted as intermediaries in malicious redirec-
tions and found that adversaries preferred to conduct URL redirection
via imported JavaScript codes and iframes. Our further investigation
indicates that such intermediaries have obvious aggregation, both in the
domain name and the Internet infrastructure supporting them.

Keywords: Domain squatting - URL redirection

1 Introduction

URL redirection has been widely used since its inception. With this technique,
website administrators are able to provide more customized navigation services
for visitors by specifying certain parameters in the URL (e.g., language). Instead
of directly typing the lengthy URL into the browser’s address bar, users can
walk through diverse web resources easily with the help of URL redirection.
However, this technique is now being abused by adversaries to circumvent static
web security checks [18]. Compared with directly delivering malicious content
to any visitor, this method is able to ensure the targeted delivery of malicious
content by conducting multi-layer verification during the process of visitors being
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Fig. 1. An example of malicious redirection. The domain name of the start URL is a
combo squatting of ‘nike.com’.
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redirected [13,25]. For instance, the adversary checks whether the current visitor
is a static crawler by inspecting the ‘User-Agent’ field of HTTP request header.

Although an elaborate redirection chain can boost the stealth of the malicious
site to some extent, it lowers the accessibility of that site as well. Therefore, in
order to get more traffic, some adversaries have targeted the squatting domain
names [23]. Domain squatting refers to the impersonation of particular brands at
the domain level, so as to confuse visitors. For instance, ‘bauidu.com’ is a typo
squatting of ‘baidu.com’, which targets the user who extra types a character ‘u’
while entering ‘baidu.com’. By exploiting these squatting domain names as the
start node of redirection chains, adversaries can arbitrarily control the direction
of careless visitors, and even determine the malicious behavior to be performed
based on the profile of visitors.

To facilitate the understanding of such malicious redirections, we present a
real-world example in Fig. 1, which abuses a combo squatting domain name of
‘nike.com’ as the start node. To prevent the relevant malicious domain names from
being further spread, we have hidden some characters in Fig. 1. This example con-
tains 7 URLs and 6 hops, of which the first hop uses the HTTP-based redirection
with 302 status code, while the remaining five hops are all performed via certain
JavaScript codes. Before reaching the fifth URL, there is nothing displayed on the
page. After rendering the HTML content returned by the fifth URL, a loading bar
and a button appear on the page (Page A). If the user does not click the button
within a given time, this page will auto-redirect the user to the next page (Page
B), which lists several links to illegal gambling sites. Similarly, if the user does not
interact with this page within a given time, he will be redirected to the final URL,
which serves an illegal pornographic site (Page C).

Prior works have analyzed various types of squatting domain names. How-
ever, all of these works focus on the specific malicious behaviors involved in
such domain names (e.g., phishing) [14,23]. So far, nobody has paid attention
to how visitors are transferred from the squatting domain names to the sites
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that actually conduct malicious activities. In this paper, we first lift the veil of
such malicious intermediaries in malicious activities, namely the relay nodes in
malicious redirections. To this end, we make the following contributions: First,
we measure the typical squatting domain names in Chinese DNS traffic; Second,
we pioneered the application of performance log to mine malicious redirection
chains; Third, we accurately analyze the redirection method abused by malicious
intermediaries; Fourth, we profile the sharing of such intermediaries in malicious
redirections.

2 Background

2.1 Domain Squatting Abuse

Domain squatting abuse refers to the malicious preemptive registration of
domain names that are similar to well-known brands. According to prior works,
there are six types of commonly-seen domain squatting abuse in the Internet
today, comprising typo [7,22], bit [20], homograph [11], combo [15], level [10],
and wrong-TLD [23]. Here, we use the real-world examples listed in Table 1 to
explain the definition of each squatting type.

Table 1. Examples of different squatting types.

# | Domain Target Type

1 | bauidu.com baidu.com |typo

2 | taocao.com taobao.com | bit

3 | xvideOs.com xvideos.com | homograph
4 | nikeav.com nike.com combo

5 | weixin.qq.com.powlau.kunxiangrunhe.com.cn | qq.com level

6 | cnki.xyz cnki.net wrong-TLD

— Typo: Users may request incorrect domain names due to the careless typing.
Typo squatting leverages this “fat finger” phenomenon of users when they are
typing the domain names, which involves the following four typo scenarios:
insertion, omission, permutation, and replacement. The first sample in Table 1
is a typo squatting of ‘baidu.com’, which additionally inserts a character ‘u’
between ‘a’ and ‘I’ (‘u’ is adjacent to ‘i’ on the keyboard).

— Bit: The bit may be flipped during the transmission due to some external
reasons. Bit squatting leverages such bit-flip phenomenon occurring in domain
names. As the second sample in Table 1, which flips the lowest bit of ‘b’
(01100010) from 0 to 1 to get the character ‘c’ (01100011).

— Homograph: Homograph squatting refers to the replacement of characters
in target brands with other visually indistinguishable ones. Take the third
sample in Table 1, the squatter uses the digit ‘0’ to imitate the character ‘o’.
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— Combo: Combo squatting is to combine the target brand with other words to
form a new domain name. Compared with the other five types, combo squat-
ting is capable of maintaining the integrity of target brands to the greatest
extent, so as to resort to their reputations to attract users. For example, the
fourth sample attaches the word ‘av’ to the tail of ‘nike’ to form an easy-to-
remember domain name of an adult site.

— Level: As opposed to the above four squatting types that tampering with the
2LD, level squatting focuses on its own subdomain. That is, adversary uses the
intact target domain name as its subdomain. For example, the fifth sample in
Table 1 directly uses ‘weixin.qq.com’ as its subdomain. In certain cases where
the complete domain name cannot be displayed because of space limitation,
users can only see the prefix part of the domain name, thus mistaking it for
Tencent’s authoritative domain name.

— Wrong-TLD: Wrong-TLD squatting refers to replacing the TLD of tar-
get domain name while maintaining the remainder of this domain name
unchanged. As the last sample shown in Table 1, it impersonates the tar-
get domain name by replacing the TLD ‘.net’ with ‘.xyz’. Compared with the
above five squatting types, this type is the most confusing to users.

2.2 URL Redirection

URL redirection technique has been widely used in a variety of web activities,
making the Internet users navigate between various web resources without man-
ually typing the lengthy target URL into the address bar. There are three main
types of redirection approaches at present, namely HTTP-based, JavaScript-
based, and HTML-based. Table 2 lists some examples to illustrate these redirec-
tion approaches.

Table 2. Illustration of the URL redirection approaches.

Redirection | Example
HTTP Status Code: 30X Location: http://domain.com/
Refresh: 2; url = http://domain.com/

JavaScript | document.location = ‘http://domain.com/’

window.location = ‘http://domain.com’
HTML <meta http-equiv=*“refresh” content="*“2; url = http://domain.com/” >
<a href="*“http://domain.com/” >

— HTTP-based: HTTP-based redirection has two forms: 1). When the requested
resource is migrated to a brand new URL, to ensure the old URL is still
available, the server will write the current URL of the requested resource in
the ‘Location’ field of corresponding HTTP response message, and set the
status code to 30X; 2). The server fills in the ‘Refresh’ field of the HTTP
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http://domain.com/
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Response Header to command the client to request the given URL after a
given time. For example, the second sample in Table 2 indicates that the
current page will be navigated to “http://domain.com” right after 2s.

— JavaScript-based: This approach refers to rewriting the ‘location’ attribute
of current document (or window) object to target URL through JavaScript
scripts, and then redirecting the current page to the target URL. Compared
with HT'TP-based redirection, this approach gives developers more autonomy,
enabling the redirection to be triggered only when certain conditions are met.

— HTML-based: HTML-based redirection mainly refers to the user’s active click
on the <a> tag on current page to perform the page jump. The ‘href’ field of
<a> tag indicates the destination of the page jump. Besides, there is another
case of HTML-based redirection, that is, by adding a <meta>-refresh tag
below the <head> tag. In specific, by setting the ‘http-equiv’ attribute of
<meta> to ‘refresh’, and specifying the waiting time and target URL in its
‘content’ attribute. The browser will automatically jump to the specified URL
after parsing the <head> tag.

3 Measurement Methodology

This section first introduces the approach we employ to collect resolved squatting
domains from real DNS traffic. Then, we describe the dynamic crawling strategy
we use to get the redirection chain behind these domains.

3.1 Measuring Squatting Domains

Intuitively speaking, the higher the popularity of target domain names, the
greater the probability of relevant squatting domains being visited. Therefore,
we first collected the domain name of target brands from three authoritative
data sources:

— Alexa Category List: Alexa provides 17 category lists, such as arts, business,
and computers. Each of them lists the 50 most visited domain names in the
category [3]. We crawled this site and finally obtained a total of 850 candidate
brand domain names.

— Alexa Top List: Alexa maintains a domain popularity ranking based on the
daily traffic of each domain name [1]. We extracted the Top-1000 from this
list as candidates.

— CN Top List: Since our experiment was conducted on a Chinese network envi-
ronment, it is clear that we can observe more squatting domains specifically
targeting Chinese brands. Therefore, we got domain names of the Top-1000
Chinese sites from an authoritative organization [4].

Due to the day-to-day fluctuation of the domain top List [21], here we
obtained the Alexa Lists for 8 consecutive days from [2] (the dates of these
lists are consistent with the dates of DNS traffic we use), and extracted the
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1000 domains with the highest overall ranking. We aggregated the above list
and merged the domain names that had the same 2LD (e.g., ‘tmall.com’ and
‘login.tmall.com’). Finally, we got a total of 2,302 distinct brand domain names.
Next, we asked for the resolver-to-client DNS traffic from a local Internet service
provider (ISP) for 8 consecutive days, ranging from 04/27/2019 to 05/04/2019.
These traffic records all DNS packets returned from local recursive DNS servers
to clients. We used these data to build a passive DNS (pDNS) database. Due
to the tremendous volume of data, we only reserved the A-type resource records
and filtered the resource records with no resolved values (NXDomain) to allevi-
ate the storage overhead. Each entry in the database consists of four columns,
namely the client’s IP address, the queried domain name, the timestamp, and
the resolved IP addresses. In addition, to protect the privacy of users, we have
hashed the IP addresses of all clients. Eventually, we got a pDNS database with
more than fourteen billion entries, averaging about seventy million entries per
hour.

After the above preparations, according to the definition introduced in
Sect. 2.1, we generated a large number of squatting domains based on the 2,302
brand domain names and verified their survival in the DNS traffic. Due to space
limitation, we omit the description of generating candidate squatting domain
names here. The specific generation steps can refer to the references mentioned
in Sect. 2.1. In the end, we found 101,186 successfully resolved squatting domain
names from the pDNS database. Figure 2 shows a breakdown of the six squatting
types. Due to space limitation, ‘wrong-TLD’ and ‘homograph’ are abbreviated as
‘w-TLD’ and ‘h-graph’, respectively. The bars in this figure have been arranged
in the ascending order of domain amount. We can see that combo squatting
is absolutely dominant, accounting for more than 50.1% of all our collected
squatting domain names. Followed by typo and level squatting, accounting for
20.1% and 15.8% of the total, respectively. While the remaining three types add
up to only 14%. The above measurement results are basically consistent with
the description in [23,27], reflecting the representativeness of the DNS traffic we
use.
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3.2 Crawling Strategy

In order to understand the abuse intention of these squatting domain names,
we need to further analyze the specific behaviors they conduct. To this end,
we crafted a dynamic crawler to automatically query these domain names and
accurately record all events triggered during each querying. Specifically, we use
Selenium [5], a Chrome-based tool, to build this crawler. Compared with the
traditional static crawlers that can only return the HTML content of the web-
site, Selenium is able to simulate all the operations that a user performs in the
browser, such as mouse clicks.

Here, we employed the headless mode of Selenium, which allows us to run it in
bulk on the backend of the server, and set its User-Agent to ‘iPhone 6/7/8 Plus’
to disguise as a mobile user. To prevent Selenium from crashing at runtime, we
performed the crawler task in groups of five samples. We restarted the tool and
cleared the cache right after each crawling (5 samples). In order to successfully
capture all events triggered during the page loading, we waited 30s for each
sample. For each sample, we saved the HTML content, the screenshot, and the
performance log.

Table 3. Explanation of typical methods in the performance log.

Method Explanation
request WillBeSent Initiate an HTTP request for a specific URL
responseReceived HTTP response about a specific URL

frameScheduledNavigation | Navigate to another document for certain reasons

frameAttached Load the ‘iframe’ (or ‘frame’) in current document

navigatedWithinDocument | Navigate to an anchor within current document

The performance log of Chrome is absolutely the treasure we found in this
work, which records all the events during the page loading with the dictionary
form, including the requests for page resources and the operations performed
by users. Compared with previous methods relying on the analysis of network
traffic and HTML content, directly analyzing the entries in performance log is
obviously much more efficient. There are mainly five methods in the perfor-
mance log involving the request and receive of page resources, which are shown
in Table 3. Among them, ‘requestWillBeSent’ and ‘responseReceived’ appear in
pair, representing the request and response for specific page resources. The fol-
lowed two methods, ‘frameScheduledNavigation’ and ‘frameAttached’, are used
to reflect the request type of new document, where the former indicates the rea-
son of certain navigation, and the latter indicates that the requested URL is the
‘sr¢” of certain <iframe> tag. The last method does not involve any requests
for new resources, and it is only used to indicate the navigation to the target
anchor within current document. In most cases, the requested URLs are derived
from the ‘src’ field of HTML tags. While there are some exceptions, such as
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the requests initiated via embedded JavaScript snippets. Fortunately, in addi-
tion to completely recording the browser events, the performance log provides
many assistant fields in each entry, which can precisely indicate the cause of this
request (e.g., script initiated), the type of the requested resource (e.g., Docu-
ment), and the most important, the initiator of this request (namely the parent
URL).

Moreover, we also maintained a dataset to record the start time, the end
time, the start URL, the end URL, and the title of final page of each crawling.
After completing the crawling task, we extracted the entries involving resource
requests from the performance log of each sample and rebuilt the URL request
tree. Finally, we extracted the redirection chain from the rebuilt tree, that is, a
path between the root node (i.e., start URL) and the end node (i.e., end URL).
Note that, if an ‘iframe’ (or ‘frame’) occupies more than 80% of the current
screen area, we consider it as an additional redirection. The reason lies in the
fact that even though the URL in the address bar has not changed, ‘iframe’ is
essentially another document. Any interaction a user makes in an ‘iframe’ is not
restricted by the current document.

Next, we divided these samples into three equal parts and employed three
well-trained volunteers to label them. To ensure the objectivity of the labeling
results, each volunteer was responsible for two parts of the samples. They mainly
resorted to the following six features during the labeling, namely the start URL,
end URL, hop counts, and the title, screenshot, and HTML content of the final
page. Due to the large number of samples, our labeling process lasted for more
than two weeks. The samples were classified into four categories, namely benign,
malicious, invalid, and other. Specifically, if a sample is ultimately navigated to
a malicious site, distributes illegal contents or involves the drive-by download,
we consider it to be malicious. Because pornography, gambling, lottery, and
surrogacy are all illegal in China, we also regard the relevant sites as malicious
sites here. If a sample returns an invalid page (e.g., 404 status code), we label
it as invalid. If three volunteers disagree on the labeling result of one sample,
we consider that sample as ‘other’. Additionally, we found that a large number
of samples were redirected to parked domain names. Even though we have not
found that these samples involve malicious activities, some prior works have
pointed out the potential threat of parked domain names [8,24]. Accordingly, in
a comprehensive consideration, we classified all such samples as ‘other’. Figure 3
shows the breakdown of labeling results, where the bars have been sorted based
on the domain amount. Unsurprisingly, the proportion of benign samples is the
least here. Some benign samples directly navigated users to the original task
domain names. The remaining benign samples were used to support their own
legitimate web services, which did not involve any illegal content. Besides, we can
clearly see that the ‘other’ type occupies the most share of samples, accounting
for about 36.4%. The vast majority of these ‘other’ samples were labeled due to
being navigated to parked domain names, while only a few were labeled for the
disagreements among volunteers. The ‘malicious’ type makes up 26.8% of the
total. According to our investigations, which will be expounded in Sect. 4, most
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malicious samples participated in the distribution of pornographic or gambling
services. Moreover, these samples tend to embed illegal content into the ‘iframe’
to evade the general static analysis [12,17,26].

4 Malicious Redirection Analysis

After the collection and labeling of malicious squatting domain names, we need
to understand how these domains are leveraged to conduct malicious activities.
In this section, we shed light on the redirection behavior involved in our collected
squatting domain names. First, we compared the differences of URL redirection
in malicious samples and benign samples. Next, we investigated the URLs act-
ing as intermediaries in redirection chains. Finally, we analyzed the Internet
infrastructures that held these intermediaries.

4.1 Benign Redirection vs. Malicious Redirection

Based on the discussion in Sect. 3.2, we know that most malicious squatting
domain names will navigate users to illegal websites, while the benign ones tend
to redirect users back to original domain names. Thus, it is necessary to figure out
whether the redirection mode will change significantly for different destinations.

Table 4. Statistics of the samples conducting URL redirections.

Category | Domain amount | Redirection Oversize iframe
Benign | 13,278 7,071 (53.3%) | 36 (0.3%)
Malicious | 27,128 20,079 (74.0%) | 11,158 (41.1%)

To this end, we extracted all the samples conducting URL redirections. Note
again that if an ‘iframe’ occupies more than 80% of the current window, we treat
it as one redirection. Table 4 lists the statistics of the samples. Obviously, URL
redirection is a widely abused technique in malicious squatting domain names,
accounting for up to 74%. Moreover, 41.1% of the malicious samples employ the
oversize ‘iframe’s to display illicit information. It is worth noting that more than
half of the benign samples performed redirections as well, which is absolutely a
high proportion, but only 0.3% of them employed the oversize ‘iframe’s. These
statistics are somewhat unexpected, that is, the disparity in the proportion of
redirection between benign samples and malicious samples, although 20.7% is
not a small gap, is not as significant as supposed.

In order to mine more useful characteristics, we extracted the redirection
chain from each sample and further characterized the malicious redirection from
two aspects, namely the distribution of both hop counts and redirection method.
Table 5 shows the hop counts distribution of chains. Interestingly, even though
53.3% of the benign samples applied URL redirections, 87.5% of which had
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Table 5. Hop counts distribution of the samples conducting URL redirection.

Category | Hop counts distribution

1 2 3 4 5 6 7 8 9 10 >10
Benign | 87.5% (9.4% |2.5% |0.4%  0.1%  0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
Malicious | 31.1% | 35.3% | 13.7% | 8.4% | 4.5% | 1.3% | 0.7% | 0.3% | 0.2% | 0.2% | 4.3%

only one hop. However, some benign samples also reached five hops, which is
already a relatively high hop counts. We investigated the samples that suffered
five hops and found that these samples had a common characteristic, namely
verifying the identity of visitors. In this case, visitors will be redirected to the
login page or guest page if they are found to have no login account. In contrast,
the hop counts distribution of malicious samples is relatively flat. Most malicious
samples experienced two hops, while the corresponding proportion is only 35.3%.
As shown in the last column of Table 5, 4.3% of the malicious samples were
redirected more than 10 times. It is worth noting that, several malicious samples
performed an astonishing 26 times of URL redirection and eventually landed on
the same illegal fundraising site.

100 {96.48%
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X
404
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Fig. 4. Distribution of different redirection types.

Then, we measured the specific redirection methods used in the collected
chains. According to the introduction in Sect. 2.2, URL redirection can be
divided into three types based on the source of redirection command, namely
HTTP-based, JavaScript-based, and HTML-based. More specifically, the HT'TP-
based redirection can be further subdivided into two cases: 30X-status-code-
based and refresh-field-based (denoted as ‘30X-HTTP’ and ‘ref-HTTP’, respec-
tively). In addition, JavaScript-based redirection can also be subdivided into two
cases, inner and outer, in the light of the source of snippets. In particular, the
inner type (denoted as ‘i-script’) refers to the JavaScript codes that are hard-
coded inside the <script> tags, while the outer type (denoted as ‘o-script’) refers
to the JavaScript codes imported by assigning the ‘src’ field of <script> tags.
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Figure 4 exhibits the distribution of redirection types. One can find that almost
all benign samples employed ‘30X-HTTP’ to perform URL redirection, account-
ing for 96.48% of the total. It is reasonable that legitimate web services tend
to solve problems on the server-side. Compared with other redirection methods,
‘30X-HTTP’ is able to minimize the computational overhead on the client. Here,
we once again examined the benign samples mentioned in the previous paragraph
that experienced five hops, and found that all the hops were performed based
on the 30X status code of HTTP response message. However, ‘30X-HTTP’ only
accounted for 31.07% of the malicious samples. Besides, as we can see from
Fig. 4, the redirection methods leveraged by adversaries are much more diverse.
There is almost no difference among the utilization frequency of ‘30X-HTTP’,
‘iframe’; and ‘o-script’ in malicious samples. Nevertheless, Fig. 4 still reveals the
adversary’s preference for JavaScript-based redirection [16,19,28]. Combining
the proportions of ‘o-script’ and ‘i-script’, we can find that the JavaScript-based
method accounts for 35.3% of the total. Moreover, in terms of the usage of
redirection snippets, adversaries are obviously more inclined to import them
from external files (i.e., o-script), rather than directly hard-coding them into the
HTML content (i.e., i-script). In this way, adversaries can circumvent the static
analysis of HTML content by security personnel to some extent.

4.2 Intermediary Sharing

We have presented in the previous subsection that there are some malicious
samples that end up pointing to the same URL. That is, some samples start at
different points but end at the same point. For instance, an adversary manages
multiple squatting domain names, and forces them to navigate the visitors to an
illegal gambling site under his control. Inspired by this, we speculated that there
were certain samples that not only had the same destination, but also shared the
same intermediary. To verify this conjecture, we aggregated all redirection chains
in malicious samples to investigate whether there were common relay nodes.

Table 6. Measurements of the commonly used URL, domain names, and effective 2LDs
in the malicious redirection chains.

Total | Commonly used | Involved sample
# % # %

URL 72,538 | 4,117 | 5.68% 15,593 | 57.48%
Domain name | 40,525 | 3,634 | 8.97% 16,899 | 62.29%
effective 2LD | 33,532 |3,558 | 10.61% | 17,060 | 62.89%

We first measured the URLs that appeared in multiple redirection chains.
It should be noted that what we did here was an exact match of URL, includ-
ing complete parameters and fragments. The second row in Table 6 shows the
statistics of the commonly used URLs. In this case, we got a total of 72,538
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distinct URLs, where 4,117 URLs appeared in at least two redirection chains,
accounting for about 5.68% of the total. In addition, these commonly used URLs
involved 15,593 malicious samples. That is to say, 57.48% of the malicious squat-
ting domain names have business sharing among them, which is indeed a large
proportion.

Next, we turn our attention to the commonly used domain names in malicious
redirections. Compared with the commonly used URLs, commonly used domain
names obviously own much higher coverage. Because in this case, we no longer
need to match various URL parameters and URL fragments as before. Also, we
ignored the port field when extracting domain names from URLs. Table 6 lists
the corresponding measurement results in the third row. We obtained 40,525
distinct domain names from the redirection chain of malicious samples, of which
3,634 domain names were leveraged by more than one sample, accounting for
8.97% of the total. Moreover, there were about 62.29% of the malicious samples
shared these intermediary domain names in common.

However, we found during the measurement process that although some relay
nodes have different domain names, the difference only exists in their subdo-
main names. In other words, these relay nodes have the same effective 2LD
(e2LD). Based on this, we further digged deep into the e2LD level and found
that 10.61% of €2LDs appeared in multiple malicious redirection chains. How-
ever, compared with the commonly used domain names, the coverage of the
commonly used e2L.Ds has not increased significantly. In general, there were
only 161 more involved samples in this case.

4.3 Infrastructure Sharing

This part focuses on our investigation on the Internet infrastructures holding
such intermediary domain names. Concretely, we will discuss the abuse of Inter-
net infrastructures by malicious redirections from the bottom up in terms of
three aspects, namely IP, BGP, and AS.

We have introduced the sharing of e2LLDs in malicious redirections in
Sect. 4.2. Here, we matched the associated IP addresses of those 33,532 e2LDs
from the built pDNS database, which yielded 27,396 distinct IP addresses. This
result indicates that numerous e2LLDs are being resolved to the same IP address.
We then found out these IP addresses that supported multiple e2LDs from the
pDNS database. The second row of Table 7 lists the relevant statistics, from
which we can see that 8.38% of these IP addresses are responsible for the resolu-
tion of multiple malicious intermediaries at the same time. Furthermore, 41.93%
of the malicious samples involved the sharing of IP addresses during their redi-
rections.

With these matched IP addresses, we moved our attention to their BGP
prefixes. Here, we resorted to a third-party Python extension module, called
‘pyasn’ [9], to lookup the BGP prefix of an IP address based on a daily updated
public BGP archive [6]. Ultimately, we got a total of 8,932 BGP prefixes, of
which 4,817 were abused by at least two malicious intermediaries. Moreover,
it is shocking that these BGPs have provided resolution services for 92.54% of
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Table 7. Measurements of the commonly used IP addresses, BGP prefixes, and ASes
in the malicious redirection chains.

Total | Commonly used | Involved sample
# % # %

1P 27,396 | 2,296 | 8.38% 11,375 | 41.93%
BGP | 8,932 |4,817|53.93% | 25,104 | 92.54%
AS | 754 424 |156.23% | 26,608 | 98.08%

the malicious squatting domain names, directly or indirectly. In addition to the
lookup of BGP prefix, ‘pyasn’ also provides the lookup of AS number. In this
way, we further measured the AS that claimed the ownership of those abused
BGPs. The fourth row of Table 7 shows the statistics of AS. We can see that the
8,932 BGPs are eventually aggregated into 754 ASes, and 424 of them have been
exploited by more than one malicious intermediaries, accounting for 56.23% of
the total. More importantly, 98.08% of the malicious samples involved the abuse
of these 424 ASes during their redirections.

The above measurements reveal an important role that the Internet Infras-
tructure playing in malicious redirection activities. Because different countries
(or regions) have different attitudes towards the grey Internet services, adver-
saries tend to select such ISP with weaker Internet supervision to set up their
network services. This leads to the measurement results in this subsection, that
is, the vast majority of malicious intermediary domain names aggregate in the
same Internet infrastructure.

5 Limitation

This paper focuses on the malicious redirections that stem from squatting
domain names, but the domain types employing such malicious services in the
wild are far more than just squatting domain names. Besides, we only considered
the domain rankings when selecting target brands, but missed some hot terms
at that time, making the squatting domain names we generated lack timeli-
ness to some extent. For example, a large number of pandemic-related squatting
domain names have emerged in early 2020. In addition to the sharing of Inter-
net infrastructures, we found that many malicious domain names also exhibit
obvious aggregation in the requested web resources. That is, we can leverage
this sharing phenomenon to mine more suspicious domain names involving such
malicious sharing resources. Moreover, we have not shed much light on the spe-
cific working mechanism of the malicious redirection in this paper, especially the
JavaScript-based method. In terms of the experiment background, our measure-
ments are all conducted in the Chinese network environment, which makes us
unclear about the abuse URL redirections in other regions. Solving the above
problems plays an important role in understanding the target victims, working
mechanism, and monetization of malicious redirection, and we will leave them
for future work.
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6 Conclusion

In this paper, we give the first insight into the malicious redirections which start
with squatting domain names. By crawling these domain names and analyzing
their performance logs, we identified 20,079 squatting domain names leveraged
URL redirection to navigate visitors to malicious sites. The investigation of cor-
responding redirection chains shows that adversaries prefer to perform malicious
redirections via imported JavaScript codes or iframes. More importantly, our fur-
ther measurements reveal that there is a very common phenomenon of resource
sharing among various malicious redirection chains.
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Abstract. Live streaming is one of the most popular Internet activi-
ties. Nowadays, there has been an increase in free live streaming (FLS)
services that provide unauthorized broadcasting of live events, attract-
ing millions of viewers. These opportunistic providers often have modest
network infrastructures, and monetize their services through advertising
and data analytics, which raises concerns about the performance, qual-
ity of experience, and user privacy when using these services. In this
paper, we measure and analyze the behaviour of 20 FLS sports sites on
Android smartphones, focusing on packet-level, video player, and pri-
vacy aspects. In addition, we compare FLS services with two legitimate
online sports networks. Our measurement results show that FLS sites
suffer from scalability issues during highly-popular events, deliver lower
QoE than legitimate providers, and often use obscure and/or suspicious
tracking services. Caution is thus advised when using FLS services.

Keywords: Network traffic measurement - Free live streaming -
Quality of Service (QoS) + Quality of Experience (QoE) - Privacy.

1 Introduction

In 1995, a company called Progressive Networks' broadcast the first live sports
streaming event on the Internet, featuring a baseball game between the Seat-
tle Mariners and the New York Yankees [26]. Since then, the growing adoption
of smartphones and the emerging mobile Internet (i.e., 4G, 5G, and LTE tech-
nologies) have enabled users to watch live events from anywhere without much
difficulty. Mobile video streaming, including live streaming, currently accounts
for 75% of total mobile data traffic [6]. This high demand for video streaming is
both an opportunity and a challenge for network service providers.

For users, the Quality of Experience (QoE) for video streaming is impor-
tant [10]. Measuring QoE can be done either with a subjective approach in
which human viewers rate video sessions on a Mean Opinion Score (MOS) scale,
or an objective approach that collects information from different protocol layers
and uses mathematical models to estimate QoE for the video content [27]. Since

! https://www.realnetworks.com.
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measuring QoE is challenging, there are several studies that map network-level
Quality of Service (QoS) parameters to user QoE [23]. This paper focuses on
network-level and video QoS parameters that impact QoE.

The growth in popularity for live sports streaming has led to the emergence
of many free live streaming (FLS) sites. However, using these unauthorized and
unregulated providers raises concerns about QoS, QoE, and user privacy. For
instance, these FLS sites may not have adequate network infrastructure to deliver
scalable services, and as a consequence, both QoS and QoE may suffer. Further-
more, many of these FLS sites recoup their operational costs through advertising
and data analytics, which raises concerns about what user-level information is
collected by these sites, and where such information is sent.

Prior research efforts have focused on blocking live broadcasting sites [21,29],
or detecting security leaks in FLS sites [25]. However, many Internet users still
seek out these free sites despite their awareness of security concerns, and the
number of FLS sites and users continues to proliferate [1].

In this paper, our basic premise is that users should be aware of the many
tradeoffs associated with video streaming sites, including performance (i.e., QoS
and QoE) as well as security and privacy. We study live sports streaming from
both free and legitimate sites, doing so from these different viewpoints. The
purpose of our study is to provide better insight into how video providers deliver
their services, and what QoS is provided. Based on these insights, users can make
better-informed decisions about using these services or not.

The research questions in our work are the following:

What are the performance characteristics of FLS providers?

— What is the network and video QoS provided by FLS services?
Are these services scalable for popular events?

— What privacy risks are associated with these services?

To study live sports streaming, we collected network traffic measurement
datasets from several FLS sports sites during NHL, NBA, NFL, and UEFA
(soccer) games in the 2019-2020 season. To capture video streaming sessions, we
customized an existing mobile video streaming measurement tool [18] to study
these services from different viewpoints. Also, we compared the FLS results with
streaming from two popular monthly-paid service providers (TSN and DAZN).
This comparison is motivated in part by the well-known adage: “If you are not
paying for the service, then YOU are the product being sold”.

The main contributions of this paper are as follows:

We conduct a network traffic measurement study of FLS sports sites during

selected NHL, NBA, NFL, and UEFA games in the 2019-2020 season.

We measure and analyze the delivered network and video QoS for FLS services

on a smartphone.

— We compare the live video streaming from FLS Web sites with two well-known
monthly paid online sports networks.

— We investigate privacy concerns when using FLS services on smartphones.
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The rest of this paper is organized as follows. Section2 provides back-
ground on FLS. Section 3 describes our experimental methodology, measurement
environment, and data collection process. Section4 presents our measurement
results. Section 5 summarizes prior related work. Section 6 concludes the paper.

2 Free Live Streaming

FLS services provide an infrastructure that allows Internet users to watch live
events for free. Users can access live streams (usually without the owner’s permis-
sion) even without registration [13]. In these services, the channels are neither
catalogued nor listed in directories, and are not searchable via the Web site.
Instead, the channel owner usually shares the channel links in online social net-
work communities in order to reach viewers. One example is Reddit, a popular
online social network on which users discuss, share, and rate Web content.

There are five major players in the FLS ecosystem: Media Providers that pro-
vide and stream the media content; Channel Providers that receive live streams
from media providers and serve them to users; Aggregators that provide a list
of available streams for users to browse; Advertisers that support the foregoing
three entities through ads and overlays; and Users that watch their favourite
live stream events found via the aggregators [1].

Sports streaming services are popular and constantly evolving [25,30]. In this
paper, we study Web-based sports FLS services from a vantage point in Canada.

3 Measurement Methodology

Analyzing live video streaming on smartphone devices faces many challenges [§].
Video streaming characteristics such as QoE have to be observed to see how
the user might react. Also, a multimedia stream may be encoded using different
video codecs, devices may receive different resolutions and bitrates, depending
on their screen size, location, end-to-end network status, membership type, etc.
Processing and analyzing the captured traffic is another challenge, because of
the voluminous network traffic involved. Furthermore, encryption makes mea-
surement and analysis more difficult.

We used MoVIE [18], an open-source mobile video streaming analyzer, to cap-
ture and analyze live video sessions on an Android smartphone. MoVIE provides
a multi-level view of video streaming by intercepting and analyzing all incom-
ing/outgoing network traffic of a smartphone. MoVIE analyzes video streaming
at the packet-level, flow-level, and video player level. We extended the existing
MoVIE tool by adding a Privacy View component to its Traffic Interceptor com-
ponent. We leveraged EasyList? from the ad-blocker community to investigate
the generated flows to find potential ads, trackers, and malicious connections.

Figure 1 illustrates the architecture of MoVIE, which consists of seven com-
ponents: Traffic Interceptor, Packet Tracer, Player View, Privacy View, Mapper,
Main, and Graphical User Interface. For more details about MoVIE, see [18].

2 https://www.ecasylist.to.
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Fig. 1. System structure of MoVIE tool for Mobile Video Information Extraction

3.1 Experimental Setup

We set up a controlled measurement environment similar to Fig.1 to capture
the transmitted packets, flows, and video player activities during live streaming
events. Table 1 shows our system specifications. The mobile device and the PC
were set up to use the same WiFi access point. We ran MoVIE on a Linux PC
running MITMproxy [7] to intercept the network traffic, and Wireshark to cap-
ture traces of the Internet traffic generated by the smartphone. MoVIE captured
all video player activities using an Android application that exploits the Google
Chrome media feature.

Table 1. Experimental setup for measurements

Device oS CPU Cores | RAM | Video Player
Smartphone | Android 8.1.0 | 2.15 GHz | 4 4 GB | Google Chrome v 71
PC Ubuntu 184 |3.6GHz |8 8 GB | Google Chrome v 79.0.3945

All video streaming sessions were streamed using the Google Chrome browser.
We performed a factory reset to ensure that other software or previous exper-
iments do not impact our experiments. In addition, we updated the OS and
pre-installed apps to the latest versions. We cleared the browser history and
cache before each streaming session. During each session, the Chrome browser
played video streams on the smartphone, while Wireshark and MoVIE were run-
ning on the PC to capture network traffic at the packet level. For each FLS Web
site, we captured a video streaming session of 1-5 min in duration.

Since MITMproxy v4.0 is not able to decrypt HT'TPS traffic from an updated
Android device, we designed our setup to decrypt Android traffic on a single
smartphone under test. To do this, we rooted the Android mobile device by
using the Magisk tool. Rooting allows a user to have root access to the Android
operating system with privileged access to modify code or install software that
the vendor would not normally allow. Then we installed Xposed version 90-beta3
to install the Charles proxy certificate in system mode. Finally, we installed a CA
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Certificate on the mobile device. Charles proxy® version 4.2.8 was installed on the
PC to capture and decrypt all SSL connections generated from the smartphone.
We used this setup to provide more data for privacy analysis.

Once the measurement environment was set up, we started the data collection
tools on the PC and the video streaming on the mobile device. After capturing
all network traffic, we used MoVIE to analyze the data.

3.2 Data Collection

To collect our dataset, we focused on FLS Web sites that are shared in sports-
themed sections on Reddit. We monitored these forums during the NHL, NBA,
NFL, and UEFA Champions League 2019-2020 season to find popular FLS
providers.

Reddit has subreddits, which are like a Web forum in which users discuss and
share content. Reddit differs from other social networks like Twitter, Instagram,
or Facebook in that subreddits are openly accessible. The shared content is not
limited to registered users, members, or friends. Users can access shared content
and links without logging in. Ayers et al. [1] analyzed the data gathered from
Alexa and SimilarWeb* and observed that the Reddit community receives up to
86 million visits a month from users looking for sports streams.

We observed that free sports streams are usually aggregated and shared in a
few popular subreddits. In these subreddits, users can like or dislike shared FLS
Web sites. Web sites with more likes increase in popularity and rise to the top of
the Web page, and have a higher chance to attract even more visitors. Although
there are approaches to automatically crawl and discover aggregator Web sites
using online search engines [1], we found that most FLS pages are not reachable
via search engines. Furthermore, service providers delete pages after the events.
For these reasons, we manually selected the top-5 most popular FLS Web sites
based on user votes for each of NHL, NBA, NFL, and UEFA events.

To compare the performance of FLS services with legitimate providers, we
considered several features from the packet-level to the application-level. Since
streaming sports events are geo-restricted and specific sports events are available
only through specific online sports channels within each region, we subscribed to
two Canadian online sports channels. The main sports provider in Canada is TSN
(The Sports Network), which holds the Canadian rights to the top sports events.
We also study DAZN, a relatively new sports streaming service in Canada.

Our collected dataset is composed of the top-5 popular (according to the likes
from users) FLS Web sites in four popular sports, as gathered from the Red-
dit community, along with the two subscription-based sports streaming services.
All videos are captured with the experimental setup mentioned in the previ-
ous subsection. We analyzed the captured data of an NBA game in December
2019, the NFL SuperBowl in February 2020, a UEFA playoff game in Febru-
ary 2020, and an NHL game in March 2020. All captured events are before the

3 https://www.charlesproxy.com.
4 https://www.similarweb.com.
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global shutdown of sports events due to the COVID-19 pandemic in 2020. All
captured network data, video streaming log, and player activities are available
online [17]. We used the traceroute command to determine the geographic
locations of streaming sessions. In general, UEFA events were streaming from
European countries, while the NBA, NHL, and NFL events were streaming from
North America. However, some of the FLS sites use CDNs, and we could not
find their originating locations.

4 Measurement Results

To gain a comprehensive view of FLS, we evaluated video streaming from four
different viewpoints, namely Network QoS, Video QoS, QUIC, and privacy.

4.1 Network Quality of Service (QoS) Analysis

Since most FLS providers record live events from a legitimate streaming service
and broadcast them simultaneously [1], the quality of these services is unknown.
In order to evaluate the network QoS provided by FLS Web sites, we analyze
the packet-level traffic transferred during the streaming sessions.

Throughput. Several studies have proposed intelligent throughput-aware
bitrate selection and adaptation algorithms for video players to improve the QoE
in adaptive streaming techniques [32]. These algorithms predict the throughput
and determine the bitrate for the next chunk of the video. High throughput vari-
ation could result in quality switches or stalls during the video playback [15].
Figure 2(a) shows boxplots of the average throughput for the FLS and legitimate
providers. The legitimate sites had throughputs of 4-9 Mbps, compared to 1-6
Mbps for the FLS sites. The FLS throughputs were higher for the NFL and NHL
sites, and lower for the UEFA and NBA sites. The FLS sites had problems during
popular games, such as the 2019 NBA Finals, in which a Canadian team won
the championship for the first time in NBA history. During this event, the FLS
Web sites were not always able to deliver video, and some rejected new users
with the message “Viewer limit reached”. Table 2 in the Appendix provides fur-
ther details for each service provider, and time-series graphs of throughput are
available on our project Web site [17].
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Fig. 2. Quality of Service (QoS) measurement results for live sports streaming sites
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Delay. Network packet delay is an important performance characteristic of a
computer network [3,28]. We used ping to estimate the average delay of service
providers. We set the ping packet size based on the average packet size of a
video streaming session. We conducted the ping test during the games when the
server was broadcasting and users were streaming. As shown in Fig.2(b), the
average network delay for FLS sites tends to be much higher than the legitimate
sites, and vary much more widely, though it does depend on their geographic
location (e.g., some NHL streaming sites are in Calgary). Table 2 in the Appendix
presents more detailed results for each service provider.

Packet Loss. We used the ping flood technique to study the packet loss. We
observed that packet loss for the legitimate Web sites is about 0%, while it is
between 1% and 4% for FLS providers. The higher loss can indicate problems
in the network. Zennaro et al. [33] observed that packet loss below 1% is good,
1%-2.5% is acceptable, 2.5%5% is poor, 5%-12% is very poor, and packet loss
in excess of 12% is bad. Their observations showed that above 5% of packet
loss, video conferencing becomes irritating and incomprehensible. The number
of packet losses for each streaming site is shown in Table 2 in the Appendix.

4.2 Video Quality of Service (QoS) Analysis

In this section, we analyze the video QoS for our sports streaming Web sites.

Startup Time. Startup time is the elapsed time between when the user requests
a video stream and the start of playback. This metric includes network delays
(e.g., RTT, DNS, CDN) and the initial buffering delay [9]. Previous studies have
shown that startup time is important, though it has only a small impact on
QoE [20,34]. As shown in Fig.3(a), the legitimate Web sites start playing a
video about 1 to 2s faster than the FLS sites. We observed 8 to 16s of startup
delay when streaming from NBA FLS providers.
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Fig. 3. Quality of Experience (QoE) measurement results for live sports streaming sites

Broadcast Delay. Broadcast delay is an intentional delay (often 7s) inserted
by live broadcasters to prevent mistakes or unacceptable content during live
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events. To calculate the real-time broadcast delay, we used information from
two auxiliary Web sites to determine the actual time elapsed in a sports game:
FlashScore.com and Bet365.com. FlashScore.com provides the fastest live and
detailed stats of thousands of competitions in more than 30 sports, and Bet365
is one of the world’s leading online gambling companies worldwide that covers
over 30 different sports. As shown in Fig.3(b), DAZN had a broadcast delay of
around 12s for UEFA competitions. The FLS services that deliver UEFA games
had between 1 and 4 min of broadcasting delay. This delay could be due to the
time for recording and broadcasting the video. Due to the nature of live sports
events, immediacy is extremely valuable. In general, live events streamed from
FLS Web sites are not always truly “live” streams.

Some of the FLS Web sites, and in particular NHL aggregators, have a broad-
casting delay around 30-35 s. By reviewing video player activities, we observed
that these FLS services use channel providers like Wstream or Vimeo to deliver
live streaming while recording videos. We also used the traceroute tool to locate
the source of streaming, but found that these channel providers use CDNs like
Akamai to deliver videos to users. Pandey et al. [24] also noted the use of Akamai
CDNs by 4 of 12 illegal sports and news streaming providers studied. The most
likely reason for using CDNs is to reduce latency for users.

Visual Quality. This metric indicates the average video resolution received
by the video player, particularly when the streaming rate and quality level are
dynamically adapted to the available bandwidth, such as in DASH (Dynamic
Adaptive Streaming over HTTP) [31]. In our experiment, the two legitimate
Web sites and several FLS Web sites (except NBA providers) provide HD video
quality. However, we observed that the transferred data for the same duration of
the same video streaming on a legitimate Web site is higher than the FLS Web
sites.

Quality Switches. The number of quality changes is another video QoS factor
that affects QoE [23]. The number of quality switches is calculated by counting
the number of video resolution changes over the duration of the video session. We
observed that 11 out of 20 FLS sites experienced two or more quality switches.
We also found that a few FLS providers did not switch to lower resolution when
video stalls occurred. We did not observe any quality switches in streaming from
legitimate Web sites.

Stalls. Rebuffering is the most noticable streaming artifact for users [9]. If the
player does not find sufficient new data in the buffer, it causes a pause during
the playback that is called a stall. Studies show that the number of stalls has
the highest impact on QoE [9]. From our (fast) campus network, our measure-
ment tool never showed any stalls with legitimate sports streaming Web sites.
Although all NHL FLS providers experienced quality switches, none of them
stalled during video playback. However, the vast majority of the other FLS ser-
vice providers suffered from several stalls. Table3 in the Appendix shows the
number of rebuffering events observed for each streaming site studied.
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4.3 QUIC

TCP is the prevailing transport-layer protocol used by FLS services. TCP is
amenable to video streaming, and is widely used for Web and mobile applica-
tions. For example, MPEG-DASH is an HTTP-based adaptive bitrate streaming
technique to deliver high-quality streaming of media content over the Internet.
We observed that 18 out of 20 FLS Web sites deliver their services over
TCP. One of the FLS providers used UDP and another one used the Datagram
Transport Layer Security (DTLS) protocol to deliver video streaming. DTLS is
similar to the TLS protocol that provides security guarantees over UDP. Inter-
estingly, the two legitimate providers both deliver live streaming via UDP-based
solutions. We observed that TSN delivers live video streams using QUIC [19].

Experimental Setup. In this section, we describe our tests to evaluate the
impact of QUIC on the performance of live streaming in different network set-
tings. Google by default enables support for the QUIC protocol in the Chrome
browser. To compare QUIC with TCP, we disable this feature in Chrome to
stream live video over TCP. Although TCP Cubic is the default congestion con-
trol algorithm in QUIC [14], the congestion control algorithm used by QUIC
version 50 on the TSN site was unknown to us. To test different network set-
tings, we introduce delay, packet loss, and bandwidth limits by using the network
emulation (netem) functionality of the traffic control (tc) Linux command. Met-
rics of interest are the startup delay, the average received throughput, and the
number of quality switches.

We conducted all measurements on the described Linux PC with the Google
Chrome browser for live streaming in both Wired and WiFi settings. Figure 4
shows selected results from our experiments, while the full results appear in
Table4 in the Appendix. The results report the averages from 10 video stream-
ing sessions, from TSN provider, each lasting 100s, with the browser’s cache
and history cleared before each session. We observed that all video streaming
were streamed from the same IP address. Since recent studies show that QUIC
provides minimal improvements for video streaming in networks with low delay
and loss [2], we set high latency and loss to highlight the impacts of using QUIC.

Network Type. Here we study the behavior of QUIC/TCP live video streaming
in wired and WiFi networks. When the device is connected to a stable wired
connection, enabling QUIC does not have an impact on startup time, but the
average received throughput is slightly better than with TCP. When using the
WiFi network, the QUIC protocol had a lower average startup time than TCP.
However, the received throughput of video sessions using TCP was slightly higher
than with the QUIC protocol.

Delay. We applied 500 ms of delay to both wired and WiFi network connections.
In this scenario, QUIC started playing the video with a lower startup delay than
TCP over both wired and WiFi connections. The behavior of live streaming over
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TCP in the WiFi network was significantly worse than QUIC, with higher startup
time, much lower throughput, and more quality switches. This experiment shows
that QUIC works better than TCP over the WiFi network with high delay.
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Fig. 4. QUIC vs TCP measurement results for live sports streaming sites

Loss. We added 25% random packet loss to both wired and WiFi connections.
The packet loss drastically reduces the throughput in both QUIC and TCP live
streaming. However, QUIC achieved a higher throughput. That is, QUIC was
able to receive videos with higher resolution while TCP streamed with lower
quality. This could be a key advantage of streaming via QUIC during popular
games that induce network congestion and packet loss.

Bandwidth. We reduced the available network bandwidth to 8 Mbps. In this
condition, the received throughput over TCP connections in both wired and WiFi
networks are higher than the QUIC-based video streaming. The captured traces
show that the server sends the data using three concurrent TCP connections on
different ports, with the transferred data almost balanced over each connection.
On the other hand, QUIC experienced worse performance in comparison to TCP.
In the WiFi network with limited bandwidth, QUIC’s startup time is higher, with
lower received throughput, and more quality switches.

4.4 Privacy Analysis

The results from the Privacy View of FLS sports Web sites are summarized in
Fig.5, as well as Table5 in the Appendix. We discuss selected results next.

HTTP vs. HTTPS. While the two legitimate sports streaming sites deliver
their services over HT'TPS, most of the FLS sites use HT'TP rather than HTTPS.
There may be several reasons why FLS providers do not upgrade to HT'TPS on
their Web site, such as the costs to purchase and install SSL certificates on the
server, the extra CPU processing required for encryption, and the fact that some
FLS providers frequently change their Web domains. For these reasons, they may
just simply opt to deliver their services over HTTP.

Ad and Tracking Services. To recognize advertisement and tracking services,
we leveraged the EasyList and EasyPrivacy filter lists provided by the ad-blocker
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community. We used Privacy Badger® to distinguish malicious ads from other
ads. By investigating the generated HTTP(S) requests/responses, we observed
that both FLS and legitimate Web sites connect users to advertising and tracking
services (see Fig.5(a)). However, the legitimate Web sites mostly connect to
known tracking domains, such as Facebook and Google analytics, while the FLS
sites expose users to malicious trackers like onclicksuper.com, which is known to
redirect browsers to many unwanted advertisements. In addition, we observed
that some tracking services like google-analytics.com appear in both FLS and
legitimate sports streaming Web sites.

Overlay Ads and Offered Applications. During the data collection phase, we
observed that FL.S Web sites use different techniques to show overlay and pop-up
ads. Some of these overlay ads cover part of the video player, and trick users into
pushing a fake close button, which then pops up multiple overlay ads. These ads
violate the online advertising standards [12], degrade the video streaming QoE,
and also lure users to numerous potentially malicious ads. Clicking on misleading
ads can lead to computer viruses such as ransomware, trojans, crypto-mining,
etc. In addition, we observed that some FLS Web sites offer a complimentary
application to watch free live sport streams on the mobile device. Prior work
has shown that these applications contain an advertising package, display ads
without user consent, and trigger potential ad fraud [25].
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Fig. 5. Privacy and security measurement results for live sports streaming sites

Browser Security. Sandboxing is often used to run a Web browser in a low-
permission mode that limits malware access to vulnerable aspects of the operat-
ing system. However, some users bypass these security warnings when accessing
FLS sites [1]. Also, tools like ad-blockers can protect the user from deceptive ads
linked to scams and malware [22]. However, some FLS providers use anti-ad-
blocking techniques, or simply refuse to serve users with ad-blockers installed.

Cookies. We observed that both FLS and legitimate Web sites install third-
party advertising and tracking cookies on user systems. Since cookies contain
a history of the user’s actions, they may be exploited or misused to track the
user’s behavior. Figure 5(b) shows the number of third-party cookies observed
for each Web site in our dataset. For instance, we observed that visiting the

5 https://www.privacybadger.org.
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TSN site results in 76 cookies from 38 different third-party Web sites, 18 of
which are third-party tracking sites. Unlike TSN, DAZN alerts users about the
use of cookies on its Web site, and installs a few cookies on user systems. In
general, FLLS Web sites trigger more advertising and tracking on user systems.
In addition, some FLS Web sites set zombie cookies, which can automatically
re-create themselves from stored data even after being deleted.

Data Leaks. By investigating POST requests, we observed that some FLS sites
send user information such as IP address, ISP, city, area, device name, OS,
browser version, and graphic card model to tracking Web sites. In addition,
we discovered TSN uses a new approach, wherein a single POST method was
used to perform multiple GET and POST requests. To do this, it inserts several
GET and POST requests in a JSON-like format, and then sends all of these
using one GET request to its server. One of the POST requests was 16,029
bytes long, and contained 18 GET and 3 POST requests, each addressing a
tracking /advertisement service. This approach can hide requests from browsers,
ad-blockers, and other security tools. An example of these POST requests is
available on our project Web site [17].

5 Related Work

One early work that mentioned free live sports streaming was the epilogue of the
Globalization and Football book [11], in which the authors discussed the impact
of emerging FLS platforms on ‘the global game’. Later, Birmingham et al. [4]
studied FLS for England’s Premier League of soccer, and noted parallels to the
music industry, which faced similar piracy issues in the 1990s.

FLS services have grown tremendously over the past decade. Rafique
et al. [25] explored the FLS ecosystem by investigating those infringing upon
sports streaming Web sites. In addition, they analyzed the advertising content
that the FLS Web sites expose during the live broadcasts.

Ayers et al. [1] offered a solution to automatically crawl and discover aggre-
gator Web pages through the Google search engine. Then they studied FLS
services by collecting and investigating 500 illegal live streaming domains. They
observed that despite the improvement in the privacy mechanisms by ad-blockers
and browsers, users are still using illegal streaming and exposing themselves to
scams and deceptive ads. Kariyawasam et al. [16] studied the copyright concerns
in the FLS ecosystem by analyzing the legal landscape for live sports streaming.

Bronzino et al. [5] developed models that derive video quality metrics from
encrypted video streaming services. Biernacki et al. [3] conducted a thorough
video streaming simulation study with different network conditions and video
bitrates. Their study showed that QoS metrics significantly impact the QoE
metrics for video streaming. In many cases, however, the buffering strategies
implemented by a player client are able to mitigate unfavourable network con-
ditions and further improve QoE.

The main novelty of our own work is the focus on performance tradeoffs in
live sports streaming (i.e., QoS and QoE), as well as on user privacy and security.
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Furthermore, we provide multiple observational viewpoints at different layers of
the protocol stack, using a customized version of the MoVIE tool.

6 Conclusion

In this paper, we presented a measurement study of FLS sites to identify tradeoffs
in performance (i.e., network QoS and video QoS) as well as privacy and security.
Our measurements were made using an extended version of an open-source video
measurement tool called MoVIE [18]. We also conducted measurements of two
legitimate sports streaming Web sites to provide a basis for comparison.

Our main results can be summarized as follows. We observed a long broad-
casting delay in free live streams. The throughput, streaming quality, and packet
loss rate differ greatly across FLS sites. TSN delivers live video streaming using
QUIC. We observed that QUIC’s benefits are larger in WiFi networks with
higher delay and loss. Similar to previous studies, we also noted that the FLS
ecosystem continues to flourish. Although FLS is free, you always “get what you
pay for”: the user pays the cost of FLS by dealing with the uncertainty of the
streaming services, and the inherent privacy/security risks.

Ethical Considerations

There are several ethical issues associated with studying illegal FLS services.
First, many countries have Fair Dealing exceptions that authorize the use of
copyrighted materials for specific purposes. In Canada, these purposes include
“research, private study, education, parody, satire, criticism, review, or news
reporting”. Second, we studied Web sites that millions of users visit monthly,
despite the copyright law and potential malicious behaviours. We do not crawl
automatically through the FLS providers, and our study has minimal impact on
visit numbers. In addition, there is a chance that any increased views triggered
by our study will be suitably moderated by the increased awareness of FLS users.
Finally, to study privacy issues, it was necessary to decrypt the device’s network
traffic to see the incoming and outgoing flows. However, our measurements and
experiments were conducted on a single device in a controlled lab environment.
We collected neither personal data nor the device traffic from other users. All
captured data are publicly available for future studies [17].
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Appendix

The following four tables provide the detailed results from our active and passive
measurement experiments with live sports streaming sites. In Table 2, Table 3,
and Table 5, the rows correspond to the different legitimate and FLS providers
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Table 2. Network Quality of Service (QoS) metrics for live sports streaming Web sites.

Type Provider HTTP(S) |Protocol Avg Trace SYN |Trace Loss TCP Ping Avg |Ping SD |Ping
Throughput RTT Retrans |RTT Delay Loss
% pkts
Paid UEFA NFL|DAZN |HTTPS |UDP 8,899 kbps |- - - - 1.046 ms| 0.975 ms |0%
NHL NBA |TSN HTTPS |QUIC [4,021 kbps |- - - - 1.252 ms| 1.119 ms 0%
FLS |UEFA P1 HTTP |TCP 1,676 kbps |59.061 ms |0.8% 114 |69 pkts | 65.544 ms| 7.439 ms 2%
P2 HTTP |TCP 1,212 kbps  |137.900 ms |0.8% 75 24 pkts |141.688 ms|12.368 ms 3%
P3 HTTP |TCP 918 kbps  {135.949 ms |0.7% 49 29 pkts  [141.759 ms|31.675 ms 2%
P4 HTTP UDP 1,413 kbps |- - - - 74.548 ms|16.54 ms 2%
P5 HTTP TCP 766 kbps  {155.932 ms|0.9% 74 40 pkts |147.422 ms|46.860 ms (4%
NFL P6 HTTP TCP 4,833 kbps  {53.793 ms |0.0% 11 11 pkts 66.500 ms|12.062 ms 7%
P7 HTTP TCP 1,763 kbps  [145.940 ms|0.1% 16 12 pkts  |164.126 ms|38.925 ms 0%
P8 HTTP |TCP 4,990 kbps |150.393 ms |0.1% 105 |43 pkts | 62.496 ms| 7.896 ms 0%
P9 HTTP |TCP 4,428 kbps  [179.007 ms |0.1% 53 46 pkts 67.876 ms|12.212 ms |4%
P10 HTTP |TCP 4,877 kbps  |7.248 ms  |0.0% 23 26 pkts 7.351 ms| 7.440 ms |0%
NHL P11 HTTP UDP 2,412 kbps |- - - - 1.359 ms| 1.476 ms 0%
P12 HTTP TCP 2,888 kbps |- 0.0% 12 26 pkts 1.570 ms| 1.612 ms 0%
P13 HTTP TCP 6,195 kbps  {15.331 ms (0.0% 3 10 pkts 2.597 ms| 2.661 ms|0%
P14 HTTP |TCP 6,168 kbps |- 0.0% 17 10 pkts 0.943 ms| 0.845 ms (0%
P15 HTTP |TCP 6,073 kbps {7.923 ms  [0.0% 11 18 pkts 1.160 ms| 1.256 ms |0%
NBA P16 HTTP |TCP 1,380 kbps  |47.015 ms [0.1% 25 21 pkts 19.739 ms| 1.195 ms |0%

P17 HTTP |TCP 1,481 kbps  [10.748 ms |0.1% 50 60 pkts 19.495 ms| 0.557 ms (0%

P18 HTTP |TCP 1,332 kbps  [21.159 ms |0.0% 16 18 pkts 20.216 ms| 0.748 ms |0%

P19 HTTPS |TCP 1,050 kbps  [311.496 ms|0.0% 11 25 pkts  |146.680 ms| 3.192 ms 0%

P20 HTTP |TCP 960 kbps |28.848 ms |0.1% 17 22 pkts 16.482 ms| 2.164 ms 0%

Table 3. Video QoS metrics for live sports streaming Web sites.

Type | Sports Provider | Startup Resolution | Rebuffering | Quality Broadcast
Time Switches Delay
Paid | UEFA NFL | DAZN 0.62s 1280 x 720 | 0 12s
NHL NBA | TSN 0.64s 1280 x 720 | 0 0 10s
FLS | UEFA P1 2.21s 1280 x 720 | 2 0 87s
P2 2.17s 1280 x 720 | 1 0 189s
P3 1.02s 1280 x 720 | 4 0 90's
P4 1.83s 960 x 540 | 0 0 226
P5 2.18s 1280 x 720 | 4 0 240s
NFL P6 2.11s 1024 x 576 | 5 0 93s
P7 4.24s 1280 x 720 | 0 0 78s
P8 6.97s 1024 x 576 | 3 0 80s
P9 5.91s 1024 x 576 | 3 0 78s
P10 5.97s 896 x 504 | 0 3 68s
NHL P11 2.75s 1280 x 720 | 0 2 32s
P12 1.44s 1280 x 720 | 0 2 30s
P13 1.40s 1280 x 720 | 0 2 32s
P14 1.43s 1280 x 720 | 0 3 33s
P15 1.83s 1280 x 720 | 0 2 35s
NBA P16 8.39s 640 x 360 | 6 5 T4s
P17 16.82s 986 x 504 | 4 4 80s
P18 9.81s 640 x 360 | 8 4 75s
P19 11.21s 512 x 288 | 6 2 72s
P20 13.40s 512 x 288 | 7 2 61s
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Table 4. Comparison of QUIC and TCP in network emulation experiments.

Network Setting QUIC TCP
Limitation Type |Startup | Throughput | Quality |Startup | Throughput | Quality
time (s) Switch |time (s) Switch
None Wired| 0.169 3925 kbps |0 0.161 3720 kbps |0
WiFi | 3.233 4239 kbps |0 3.4054 4475 kbps |0
Delay =500 ms Wired | 3.8624 (3982 kbps |1 4.4692 4018 kbps |1
WiFi | 4.800 (3978 kbps |3 8.755 2026 kbps |5
Loss Rate =25% Wired| 2.189 4058 kbps |1 6.082 3928 kbps |2
WiFi | 7.514 2892 kbps |1 3.324 1095 kbps |0
Bandwidth =8 Mbps | Wired| 5.545 |2734 kbps |2 7.686 3789 kbps |1
WiFi 10.213 970 kbps |2 3.939 4789 kbps |0
Table 5. Privacy view of live sports streaming Web sites.
Type | Sports Provider | Tracking | Malicious | Offering | Encryption | Anti ad- | Cookie | # 3rd-party |# 3rd-party | # 3rd-party
ad ad apps Scheme blocker | Consent | cookies ‘Web sites set | tracker sites
cookies set cookies
Paid | UEFA NFL | DAZN 12 0 No CENC No Yes 10 6 1
NHL NBA | TSN 34 0 No CENC No No 76 36 18
FLS |UEFA P1 7 5 Yes N/A No No 8 5 1
P2 7 2 No N/A No No 12 7 5
P3 19 8 Yes N/A No No 97 50 38
P4 22 7 No N/A No No 88 62 47
P5 14 5 No N/A No No 74 44 21
NFL P6 10 5 No N/A No No 118 58 47
P7 29 17 Yes N/A No Yes 148 82 59
P8 13 5 No N/A No Yes 121 49 37
P9 10 5 No N/A No No 27 12 5
P10 13 5 No N/A No No 12 7 1
NHL P11 13 5 No N/A No No 111 67 28
P12 10 5 No N/A No No 7 5 0
P13 19 7 Yes N/A Yes Yes 162 67 36
P14 5 2 No N/A No No 123 74 35
P15 38 18 Yes N/A No No 5 5
NBA P16 26 8 Yes N/A No No 7 5 1
P17 14 5 Yes N/A Yes No 61 27 14
P18 38 12 Yes N/A No Yes 103 52 37
P19 23 8 Yes N/A No No 47 28 11
P20 24 8 Yes N/A No No 64 24 11

studied, while the columns represent different performance metrics for network
QoS, video QoS, and privacy, respectively. Table 4 provides results for the QUIC
experiments, which structurally differ from the other measurement results.
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Abstract. Video live streaming now represents over 34.97% of the Inter-
net traffic. Typical distribution architectures for this type of service heav-
ily rely on CDNs that enable to meet the stringent QoS requirements of
live video applications. As CDN-based solutions are costly to operate, a
number of solutions that complement CDN servers with WebRTC have
emerged. WebRTC enables direct communications between browsers
(viewers). The key idea is to enable viewer to viewer (V2V) video chunks
exchanges as far as possible and revert to the CDN servers only if the
video chunk has not been received before the timeout. In this work, we
present the study we performed on an operational hybrid live video sys-
tem. Relying on the per exchange statistics that the platform collects,
we first present an high level overview of the performance of the system
in the wild. A key performance indicator is the fraction of V2V traffic of
the system. We demonstrate that the overall performance is driven by
a small fraction of users. By further profiling individual clients upload
and download performance, we demonstrate that the clients responsible
for the chunk losses, i.e. chunks that are not fully uploaded before the
deadline, have a poor uplink access. We devised a work-round strategy,
where each client evaluates its uplink capacity and refrains from sending
to other clients if its past performance is too low. We assess the effec-
tiveness of the approach on the Grid5000 testbed and present live results
that confirm the good results achieved in a controlled environment. We
are indeed able to reduce the chunk loss rate by almost a factor of two
with a negligible impact on the amount of V2V traffic.

1 Introduction

By 2022, the global video traffic in the Internet is expected to grow at a com-
pound annual growth rate of 29%, reaching an 82% share of all IP traffic [2].
The video content is usually delivered to the viewers using a content delivery
network (CDN). The huge amount of users puts a high pressure on the CDN
networks to ensure a good Quality of Experience (QoE) to the users. It also leads
to huge cost for the content owner. This is where a hybrid CDN/V2V (viewer-
to-viewer) architecture plays an important role. It allows sharing of the data
between different viewers (browsers) while maintaining the QoE for the users.
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This paper focuses on a commercial hybrid V2V-CDN system that offers
video live streaming channels, where each channel is encoded in different quality
levels. More precisely, we focus on the operations of the library that acts as a
proxy for fetching the video chunks for the video player. The library strives to
fetch the video chunks from other viewers watching the same content and reverts
to the CDN in case the chunk is not received fast enough. This operation is fully
transparent to the player, which is independent from the library and decides
the actual quality level based on the adaptive bitrate algorithm it implements,
according to the network conditions and/or the buffer level occupancy.

Our hybrid V2V-CDN architecture uses Web-RTC [3] for direct browser com-
munication and a central manager, see Fig. 1. The library is downloaded when the
user lands on the Web page of the TV channel. It first uses the Internet Commu-
nication Exchange (ICE) protocol along with the STUN and TURN protocols
to find its public IP address and port. The library then contacts the central
manager using the session description protocol (SDP) to provide its unique ID,
ICE data which includes reflexive address (public IP and port), and its playing
quality.

The manager sends to the library a g 1
list of viewers watching the same con-
tent at the same quality level. Those
candidate neighbors, called a swarm,

are chosen in the same Internet Ser- conifarver ! ? g
vice Provider (ISP) and/or in the o [I.9

same geographic area as far as pos- m{LI
sible. The viewer will establish Web- e

RTC [3] channels with up to 10 neigh-
bors. This maximum swarm size value
of 10 in our production system offers
a good trade-off between the diversity of video chunks it offers and the efforts
needed to maintain those channels active.

When the video player asks for a new video chunk, the library selects the
source from which the chunk will be downloaded, either another viewer or a CDN
server if the chunk is not available in the swarm. We allow viewers to download
data from other viewers within a specified time period which is generally in the
order of the size of one video chunk. For example, in the channel used in this
paper, the size of one chunk is 6s for the three different encoding rates.

In terms of global synchronization of the live stream, there is no mechanism
to enforce that clients stay synchronized within a given time frame, but a new
video client, upon arrival, always asks for the latest available chunk whose id
is in the so-called manifest file (list of available chunks, materialized as URLs)
that the viewer downloads from the CDN server. Users have the possibility to
roll back in time. For the channel we profile, the last 5h of content is available
from the CDN servers. The library maintains a history of the last 30 chunks,
corresponding to about 3 min of content.

Fig. 1. Overall hybrid V2V-CDN architec-
ture
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Although hybrid V2V-CDN systems offer a cost effective alternative to a
pure CDN architecture, they need to achieve a trade-off between maintaining
video quality and a high fraction of video chunks delivered in V2V mode. Those
requirements are somehow contradicting as the V2V content delivery is easier
when the content (video chunks) is smaller in size, i.e. for lower video quality.

The contributions of this paper are as follows:

(i) We present detailed statistics of a 3-day period — with over 34,000 clients
and 6.TB of data exchanged — for a popular channel serviced by our com-
mercial live video distribution. We follow an event-based rather than a
time-based approach to select those days. Indeed, as the audience of a TV
channel varies greatly over time depending on the popularity of the content
that is broadcasted, we choose this 3-day period to offer a variety of events,
in terms of connected viewers.

(ii) We question the efficiency of the system using three metrics: V2V Effi-
ciency, which is the fraction of content sent in V2V mode, (application
level) Throughput and Chunk Loss Rate (CLR) which is the number of
chunks not received before the deadline. These metrics allow to evaluate
the efficiency of the library operations. They are specific to the evaluation
of the library and differ from classical metrics used at the video player like
the number of stalled events and quality level fluctuations.

(iii) We demonstrate that the root cause of the high observed CLR rate lies at
the uplink of some clients, rather than the actual network conditions. This
allows us to devise a mitigation strategy that we evaluate in a controlled
environment, to prove its effectiveness and then deploy on the same channel
that we initially analyzed. We demonstrate that we are able to reduce the
observed chunk loss rate by almost 50% with a negligible impact on the
fraction of V2V traffic.

2 State of the Art

Several studies have demonstrated that Web-RTC can be successfully used for
live video streaming, e.g. [5,6]. The V2V protocol used in this work relies on
a mesh architecture to connect different viewers together [4]. The V2V content
delivery protocol used applies a proactive approach, which means that the infor-
mation is disseminated in the V2V network as soon as a single viewer downloads
the information. The information is sent to other viewers by using the same
Web-RTC channel with a message called downloaded. So even if a viewer has not
yet requested the resource, it still has the information about all the resources
present in its V2V network.

There have been some large scale measurement studies on live video systems
done in the past. One of the most popular studies done on a P2P IPTV system is
[7] dates back to 2008. In this paper, the authors demonstrate that the current
Internet infrastructure was already able to support large P2P networks used
to distribute live video streams. They analysed the downloading and uploading
bitrate of the peers. They show that there is a lot of fluctuation in the upload
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and download bitrate. They also found that the popularity of the content does
affect the number of viewers and how easy or difficult it is to find other viewers.

In [8], the authors focused on the problems caused by P2P traffic to ISP
networks. This concern is in general addressed in hybrid V2V-CDN architectures
through a central manager that can apply simple strategies like offering to a
viewer neighbors in the same ISP or geographic location.

3 Overall Channel Profiling

The TV channel we profile in this study is a popular Moroccan channel serviced
by our hybrid V2V-CDN system, that offers regular programs like TV series
and extraordinary events like football matches. Almost 50% of the clients are in
Morocco. The second most popular country is France which represents 15% of
the viewers. Italy, Spain, Netherlands, Canada, United States, Germany, Belgium
each hosts approximately 4% of the viewers, for a total of about 28% of users.
Watching the channel is free of charge. It is accessible using a Web browser only
(all browsers now support WebRTC), and not through a dedicated application
as can be the case of other channels. On average, 60% of the users use mobile
devices to view this channel, whereas 40% of the users use fixed devices.

3.1 Data Set

Our reference data set aggregates three days (from Oct. 2020) of data. Two
days have no special events thus the distribution and size of the clients through-
out the day remains the same whereas on the third day there is an important
event which changes the distribution and size of the clients throughout the day.
The channel can be watched at three different quality levels corresponding to
3.5 Mb/s for the smallest quality, 7 Mb/s for the intermediate quality and around
10 Mb/s for the highest quality. These quality levels are selected by the content
owner, not the library. Over these three days, we collected information on 34,816
client sessions. On a standard day, the total amount of data downloaded (in
CDN or V2V mode) varies between 1.5 and 2 TB whereas in case of big events,
the amount of data downloaded is between 6 and 6.5 TB. Figure 2 reports the
instantaneous aggregate bit rate over all the clients connected to the channel.
The average is at 34 MB/s (372 Mb/s) while for the peak event (a football
match), the aggregate throughput reaches 479 MB/s (3,8 Gb/s).

The V2V library reports to the manager detailed logs for all the resource
exchanges made by each viewer every 10s. Over the 3 days, 4,615,045 chunks
have been exchanged. The manager later stores those records in a back-end
database. Each exchange is labelled with the mode (V2V or CDN) and in case
of V2V, the id of the remote viewer. We also have precise information about
the time it took to download the chunk or alternatively if a chunk loss event
occurred. In addition to per chunk exchange record, we also collect various player
level information as well like watching time, video quality level, operating system
(OS), browser, city, country, Internet service provider (ISP), etc. We also collect
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various other viewer information as well like to how many viewers a viewer is
connected to simultaneously (swarm size), how many consecutive uploads to the
other viewer has been done, rebuffering time, rebuffering count etc.

3.2 Clients Profiling and V2V Efficiency

The V2V paradigm directly inherits from the P2P paradigm where a significant
problem was the selfishness of users [1]. We are not in this situation here as on one
side, the V2V library is under our control and second, the choice of a viewer to
request a chunk from, is done at random among the peers possessing this chunk.
Still, we observe a clearly biased distribution of viewers contribution with 1% of
the viewers responsible for over 90% of the bytes exchanged, as can be seen from
Fig. 3. This bias in the contribution is in fact related to the time actually spent
by the user watching the channel. We report session times in Fig. 4. Since most
of the V2V data is sent by only 1% of the viewers, we compare the session time
of all the viewers with these 1% of most active viewers. We can readily observe
in Fig. 4 that the top 1% active viewers feature a bimodal distribution of session
time with around 25% of clients staying less than 1min and the rest staying in
general between 30 min and a few hours. In contrast, the overall distribution (all
users) is dominated by short session times with 60% of users staying less than
10 min.

Another factor that is likely to heavily affect the viewer ability to perform
effective V2V exchanges is its network access characteristics. As part of the
content is downloaded from the CDN servers which are likely to be close to the
client and feature good network performance, the average throughput achieved
during chunks downloads from the CDN provides a good hint on the network
access capacity of the user. Note that as a chunk is several MB large, the resulting
throughput should be statistically meaningful.

As we see from Fig.6, there is a significant difference between the CDN
bitrates of the overall viewers and most active 1% viewers, which experience
way higher throughputs. The correlation coefficients between CDN bitrate and
chunk loss rate (CLR) for overall viewers is —0.47 and for most active top 1%
viewers, it is —0.7. Ideally, one expects this value to be indeed negative as the
better the access link of the user is, the less likely it is to miss the deadline when
sending or receiving a chunk. From this perspective, the CLR is highly correlated
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with the CDN throuhgput performance for the top 1% of users, hinting that this
metric is a good estimator of the reception quality.

The actual chunk lost rate (CLR) of the overall viewers and most active
viewers are reported in Fig.5. We can clearly observe that for the most active
1% of users, the distribution is skewed to the left. Indeed, over 50% of these
users experience less than 20% CLR, while the others experience a CLR, roughly
uniformly distributed between 20 and 75%.

To further understand the observed CLR, and how to reduce it, we carry a
detailed study the CLR in the next section.
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4 Detailed Analysis of Chunk Loss Rate (CLR)

We focus in this section on the 1% most active users viewers with more than
1 min session time. We formulated hypotheses to identify the root causes behind
the observed lost data chunks:

— Hyp: The swarm size affects the lost chunk rate of a viewer, because the bigger
the swarm size, the more control messages you receive, thus more network
traffic resulting in a higher CLR.

— Hy: The type of client access affects the lost chunk rate. Ideally, we would like
to know the exact type of network access the client is using: Mobile, ADLS,
FTTH. The library is not able (allowed) to collect such information. We can
however classify clients as mobile or fixed lines clients based on the user-agent
HTTP string.
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— Hj3: The network access link characteristics directly affects the CLR. We
already studied the download rate of the users using the transfers made with
the CDN servers. The download and especially the upload rates achieved
during V2V exchanges can also be used to understand the characteristics of
the client access link.

Based on the observation we made on Fig.5, we form two groups of users
(for the top 1%) that we term good or bad. The viewers with less than 20%
CLR are categorised as good viewers while viewers with more than 60% CLR
values are categorised as bad viewers. The rationale behind this approach is to
uncover key features of clients that can lead to small and large CLR so as to
isolate ill-behaving clients and improve the V2C efficiency.

H, Hypothesis. The first hypothesis states that the neighbour set size of the
viewers should affect the CLR. Figure7 presents the CDF of the peer set size
of good and bad viewers. We can observe that bad peers tend to have smaller
peer set size than good peers. While this could hint towards the fact that bad
peers have more difficulties to establish links with other viewers, we believe that
the actual session times play a key role, as the longer the session, the more
likely a peer is to establish more connections. This is indeed the case here as
bad peers have an average session time of 22 min while it is 160 min for the good
peers. We however also found that the correlation coefficient between neighbour
set size and CLR is only 0.05 and 0.07 for good and bad peers respectively.
Thus although we observe distinct distributions for good and bad viewers, the
neighbour set size does not seem to have any direct correlation with the CLR.

H> Hypothesis. The second hypothesis is to check if the type of device affects the
CLR. We have two families of devices: desktop devices and mobile devices. As a
mobile (resp. desktop) device can send to a desktop or mobile device, we have 4
possible combinations to consider. We plotted the distributions of CLR for the
good and bad viewers for all the four combinations in Figs. 8 and 9 respectively.
For the good users, the type of device does not seem to play a significant role'.
For the bad viewers, we have very few cases of desktop senders, which is under-
standable as the worse network conditions are likely to be experienced on mobile
devices. This hints towards putting the blame on the user access link that we
investigate further with hypothesis Hs.

Hj3 Hypothesis. We now investigate the impact on the CLR of the access link
characteristics of the users that we indirectly estimate based on the bandwidth
achieved during transfers with CDN servers and other viewers. From Fig. 10,
we observe that 50% of the bad viewers have just 10Mbps of CDN bandwidth
whereas 50% of the good viewers have about 25Mbps of CDN bandwidth. The
coeflicients of correlation between CLR and CDN bandwidth for the good viewers
and bad viewers are —0.45 and —0.4 respectively.

! Note that the good users in Fig.8 can experience CLR higher than 20% for some
categories, as the threshold of 20% applies to the average CLR and not per category.
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Looking at the V2V download rates should enable to estimate the uplink of
the users as it is likely to be the bottleneck of the path. From Fig. 11, we clearly
see that the V2V downloading rate of good viewers is far better than the one of
bad viewers. It thus appears that a key factor that explains the observed CLR is
the uplink capacity of the peers. In the next section, we leverage this information
to devise a simple algorithm, that can be applied independently at each viewer
and helps reducing the CLR.
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5 CLR Mitigation Algorithm

Our objective is to achieve a trade-off between CLR reduction and a decrease
of V2V traffic. Indeed, a simple but not cost effective way to reduce the CLR is
to favor CDN transfers at the expense of V2V transfers. Results of the previous
section have uncovered that a key (even though probably not the only one)
explanation behind high CLRs is the weakness of the uplink capacity of peers.
We thus devised a simple approach that allows viewers to identify themselves
as good or bad viewers by monitoring their chunk upload success rate. The
algorithm checks every second the CLR, and if it goes above a threshold of
th%, the viewer stops sending the so-called downloaded control messages, which
indicate to its neighbors that it has a new available chunk. As the viewers won’t
send a downloaded message, they will not receive a request for that resource,
which will reduce their lost data rate. Note that viewers can still request and
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receive chunks in V2V mode from other viewers. This is motivated by the fact
that the access links tend to be asymmetric with more download than upload
capacity.

The algorithm (Fig. 12) implements a backoff strategy where the viewer alter-
nates between full V2V (receiving and sending) and partial V2V (only receiv-
ing) mode to account for possible channel variations or varying congestion in
the network. The first time the threshold th is reached, the viewer stops sending
downloaded messages for 10° min and then starts again monitoring the CLR
every second for one minute afterwards. If a second consecutive period of CLR
over the threshold is observed, the viewer stops sending downloaded messages
for 10 min and so on (i consecutive events lead to a period of 10° minutes long
silence period). In between silence periods, the test periods, where the viewer is
allowed again to upload, last one minute.

In the next section, we report on tests performed with our CLR mitigation
algorithm on a test-bed and in production in the live channel used in Sect. 3.

6 Evaluation

We evaluate our CLR mitigation algorithm first in a controlled environment
which features 60 viewers and second in our production environment. While
modest in size, the controlled environment is useful as it enables to : (i) perform
functional tests as the client code in the same as the one in production, (ii)
emulate a variety of client network conditions by tuning the upload and download
rate of clients, even though we cannot reproduce the full diversity of network
conditions observed in the wild and (iii) perform reproducible tests, which is
unfeasible in the wild.
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6.1 Test-Bed Results

Our test-bed was deployed on 4 physical servers on the Grid’5000 experimental
platform [9] which uses KVM virtualisation. Each server hosts 4 virtual machines
with 15 viewers per VM, for a total of 60 unique viewers. The viewers are con-
nected to a forked version of the channel presented in Sect. 3, where they operate
in isolation, i.e. they can only contact the CDN server and the local viewers.

We relied on Linux namespaces to create isolated viewers. The download
capacity of each virtual node is around 325 Mb/s. Each experiment lasts 40 min.
To emulate bad viewers, we capped their upload capacity, using the Netem mod-
ule of Linux, to 3 Mb/s, a value smaller than the smallest bitrate, corresponding
to smallest video quality of the channel. In contrast, we impose no constraints
on their uplink. We created three different scenarios: (i) Scen. 1: 15 bad viewers
and 45 good viewers, (ii) Scen. 2: 30 bad viewers and 30 good viewers and (iii)
Scen. 3: 45 bad viewers and 15 good viewers.

Table 1 reports the fraction of chunks downloaded from the CDN or in V2V
mode as well as the CLR for the three scenarios with the CLR mitigation algo-
rithm on and off. Clearly, the V2V efficiency is not affected (it even increases)
when the algorithm is turned on while the CLR significantly decreases. The CLR
does not reach 0 as when the bad peers are in their test periods (in between
silence periods) they can be picked as candidates by the good peers.

Table 1. CDN V2V and LCR rate For V2V protocol with and without algorithm

No Algorithm Algorithm

CDN% | V2V% LCR | CDN% | V2V% | LCR
Scen. 1|36.7 63.3 7.85|36.37 163.3 |3.38
Scen. 2|46.72 | 53.28 |13.52|55.78 |64.21 |5.58
Scen. 3| 66.4 33.6 | 38.7 |53.51 |46.49 |7.75

6.2 Results in the Wild

We now present the result of a 3-day evaluation for the same channel as in
Sect. 3 where the CLR mitigation algorithm is deployed. Figure 13 represents
the evolution of aggregated traffic over the three days. We used a conservative
approach and used a threshold th =80% for this experiment, as we test on an
operational channel.

The three days picked for the initial analysis in Sect. 3 were in fact chosen so
as to offer a similar profile (with at least one major event) as the period where
the algorithm was deployed. This enables to compare the two sets of days, even
if we can not guarantee reproducibility due to the nature of the experiment.

We first focus on the V2V efficiency which is the most important factor
for the broadcaster. We want the algorithm to reduce the CLR but not the
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V2V efficiency as far as possible. The aggregated V2V efficiency for the days
without the CLR mitigation algorithm is 28.98% whereas it is 30.61% when
it is turned on. The scale of the events does affect the V2V % for both the
algorithms. For a small (resp. large) scale event where the total data download
remains less than 1.5 TB (over 6TB), the V2V protocol without mitigation
algorithm has 32.5% (resp. 27.47%) of V2V efficiency whereas the V2V protocol
with algorithm features an efficiency of 28.9% (resp. 32.55%). This suggests that
when the protocol has enough viewers with good download capacity, there is no
big performance impact on V2V efficiency. Even in the case of less viewers, the
V2V efficiency percentage is reduced by only 4%.

The second metric we consider is the CLR. The overall (over the three days)
CLR without the algorithm was 24.7% whereas it fell to 13.0% when the algo-
rithm was turned on. Thus overall, the algorithm reduced the CLR by almost a
factor of 2.

We further compared the distributions of the CLR for good viewers and bad
viewers, using the same definition as in Sect. 3, for the two periods of 3 days in
Figs. 14 and 15 respectively. We clearly observe the positive impact of the CLR
mitigation algorithm on both the good and bad peers with more mass on the
smaller CLR values, e.g. almost 22% of the good viewers do not loose any data
at all.

As explained in the introduction, the library operations are transparent to
the video player. One can however question if our CLR mitigation algorithm can
adversely impact the video player by indirectly influencing the video quality level
it picks. As a preliminary assessment of the interplay between the library and the
player, we report in Table 2 the fraction of sessions at each quality level observed,
per day, for the two periods of interest for the top 1% of viewers. We observe no
noticeable difference in the distributions of client sessions at each quality level
for the two periods, which suggests that the CLR mitigation algorithm has no
collateral effect.

Table 2. Video quality levels distribution (top 1% viewers)

Period 1 (no algo.) Period 2 (algo.)

Low Q. % |Medium Q. % |High Q. % |Low Q. % | Medium Q. % |High Q. %
Day 1|27 30 44 33 29 38
Day 2|33 25 42 30 25 45
Day 3|30 35 35 28 34 38
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7 Conclusion and Future Work

In this work, we have presented an in-depth study of a live video channel operated
over the Internet using a hybrid CDN-V2V architecture. For such an architec-
ture, the main KPI is the fraction of chunks delivered in V2V mode. The chunk
loss rate (CLR) metric is another key factor. It indicates, when it reaches high
values, that some inefficiencies exist in the system design since some chunks are
sent but not delivered (before the deadline) to the viewers that requested them.

We have followed a data driven approach to profile the clients and relate the
observed CLRs to other parameters related to the neighborhood characteristics,
the type of clients (mobile or fixed) or the access link characteristics. The latter
is inferred indirectly using the throughput samples obtained when downloading
from the CDN or uploading to other peers. We demonstrated that, in a number
of cases, the blame was to put on the access links of some of the viewers. We
devised a mitigation algorithm that requires no cooperation between clients as
each client individually assesses its uplink capacity and decides if it acts as
server for the other peers or simply downloads in V2V mode. We demonstrated
the effectiveness of the approach in a controlled testbed and then in the wild,
with observed gains close to 50% with a negligible impact on the V2V efficiency.
As our library is independent from the actual viewer, and simply acts as a proxy
between the CDN server and the video player by re-routing requests for the
content to other viewers if possible, our study provides a way to optimise any
similar hybrid V2V architecture.

The next steps for us will be to devise an adaptive version of our CLR
mitigation algorithm and test at a larger scale on the set of channels operated
by our hybrid CDN-P2P live delivery system. We also want to study in more
detail the relation between our QoS metrics at the library level and the classical
QoE metrics used at the video player level.
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Abstract. The explosion of mobile broadband as an essential means of
Internet connectivity has made the scalable evaluation and inference of
quality of experience (QoE) for applications delivered over LTE networks
critical. However, direct QoE measurement can be time and resource
intensive. Further, the wireless nature of LTE networks necessitates that
QoE be evaluated in multiple locations per base station as factors such
as signal availability may have significant spatial variation. Based on
our observations that quality of service (QoS) metrics are less time and
resource-intensive to collect, we investigate how QoS can be used to infer
QoE in LTE networks. Using an extensive, novel dataset representing a
variety of network conditions, we design several state-of-the-art predic-
tive models for scalable video QoE inference. We demonstrate that our
models can accurately predict rebuffering events and resolution switch-
ing more than 80% of the time, despite the dataset exhibiting vastly
different QoS and QoE profiles for the location types. We also illustrate
that our classifiers have a high degree of generalizability across multiple
videos from a vast array of genres. Finally, we highlight the importance
of low-cost QoS measurements such as reference signal received power
(RSRP) and throughput in QoE inference through an ablation study.

Keywords: QoE - Video streaming - Network measurement - LTE -
Digital divide

1 Introduction

More than 60 million people reside in rural regions in the United States [18].
However, cellular deployment is often guided by economic demand, concentrating
deployment in urban areas and leaving economically marginalized and sparsely
populated areas under-served [27]. Few prior studies have focused on assessing
mobile broadband in rural areas of the U.S.; there is a lack of accessible datasets
that are not only comprehensive (include network-level and application-level
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traces) but also representative and inclusive of rural demographics. As a result
of the COVID-19 pandemic, the assessment of the quality of experience (QoE)
for applications delivered over mobile broadband has become urgent as stay-
at-home orders and rapid movement to online schooling and work-from-home
protocols increase the demand for applications that are known to be sensitive
to network quality, such as video streaming and interactive video chat [50]. As
a result, communities without access to usable, high speed broadband, such as
many rural communities, are particularly disadvantaged [8,32].

Unfortunately, the evaluation of user quality of experience for video stream-
ing applications accessed over LTE in regions where people are most likely to be
smartphone dependent [27,28,34] poses a significant scalability challenge. QoE
metric collection over LTE networks in a geographic area requires time and
resource intensive measurements for each network provider. As a result, exper-
iments at a single geographic point can be quite lengthy. Moreover, in rural
areas, obtaining LTE Internet measurements in places where people are likely to
use mobile broadband (e.g., at their homes or along local transportation corri-
dors) can be challenging [49], as places of interest are far apart (requiring more
resource intensive targeted measurement campaigns) and less densely populated
(prohibiting representative crowd-sourcing measurement efforts). It is in this con-
text that we ask the following research question: How can we infer the QoE for
video streaming applications over LTE at scale?

While there are few to no existing datasets that measure QoE in rural com-
munities, there are many public and proprietary datasets that report quality
of service (QoS) metrics, such as reference signal received power (RSRP) or
throughput. These metrics are typically reported independently and are mea-
sured over LTE networks in a wide range of locations throughout the U.S. and
globally [46,51-53,59,63]. We argue that the wealth of LTE-QoS data points
across the U.S. represents a key resource that can be leveraged to broadly assess
QoE: while measuring QoE at scale in LTE networks presents significant chal-
lenges, measuring QoS at scale in LTE networks has already been demonstrated
to be feasible. Hence, our goal, and key contribution, is a methodology that can
leverage low-cost QoS measurements to predict QoE.

To study the correlation between mobile QoS and QoE performance, a diverse
set of network measurements that are representative of a wide-range of conditions
is needed. As such, we undertook an extensive measurement campaign to collect
16 datasets comprised of network traces from the Southwestern U.S. for four
major telecom operators: AT&T, Sprint, T-Mobile and Verizon. Our datasets
vary along two primary axes: population density, and network load. To obtain
data from varied population densities, we collected LTE network measurements
within multiple rural and urban communities. For variable network load, we col-
lected LTE network traces from crowded events in urban locations that resulted
in atypically high volumes of network utilization [5] and, as a result, congestion.
We also collected traces from the same urban locations during typical operating
conditions as a baseline. Our datasets have broad spatial and temporal variabil-
ity, but can be classified into three primary categories: under-provisioned (rural),
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congested (congested urban), and well-provisioned (baseline urban).! We lever-
age these varied datasets to demonstrate the generality of the inference method.
Based on our analysis, we show that predictive models can be used to infer video
QoE metrics using low-cost QoS measurements, so that QoE can be more easily
and scalably determined within difficult to assess regions.

Our key contributions and findings include:

— We collected sixteen measurement datasets® from twelve locations through an
extensive ; ground measurement campaign within the Southwestern U.S. Our
data points are representative of three different network conditions: under-
provisioned (rural), congested urban and well-provisioned urban, and include
over 32 Million LTE packets. (Sect. 2);

— We develop and evaluate a comprehensive set of predictive models that infer
video QoE from low-cost QoS measurements such as RSRP and throughput.
Our analysis reveals that predictive models can infer video QoE with an
accuracy of at least 80% across all locations and network types (Sect. 3);

— We validate our models across multiple video types from a wide variety of
genres. Further, we demonstrate the utility of low-cost RSRP measurements
for inferring video QoE (Sect. 3).

2 Methodology and Datasets Overview

QoS metrics, such as received signal strength, latency, throughput, and packet
loss, capture the state of network connectivity. However, while QoS provides an
indication of network state, there can be a disconnect between QoS and user
experience. QoS network metrics are not Pareto-optimal; one element can get
better or worse without affecting the other. Consequently, estimation of user
experience requires the incorporation of multiple network measures, which may
be unique to time, space and application. Note that while the definition of QoE
can vary depending on the vantage point from which measurements are taken,
we only focus on application-level QoE. Our measurements are active end-user
device/passive user as defined in [61].

2.1 QoS and QoE Metrics

In this section, we describe the QoS and QoE metrics we collected (and esti-
mated) for this measurement study, as summarized in Table 1.

Quality of Service Metrics: We collect reference signal received power (RSRP)
and throughput synchronously on the same user equipment (UE). RSRP is
defined as the linear average over the power contributions (in Watts) of the

! Through extensive analysis, we verified that our datasets are representative of the
network characteristics we anticipated: well-provisioned, congested, and/or under-
provisioned. We omit that analysis from this paper due to space constraints.

2 The subset of our dataset that we have permission to release is available at [4].
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Table 1. Overview of QoS and QoE metrics at each location, aggregated across avail-
able providers.

Type Metric Test Interval Number of Datapoints Tools

QoS RSRP 1 second 2160 Network Monitor
Throughput 1 second 2160 iPerf

QoE Video resolution 1 second 2160 Selenium, iframe API
Resolution switches 1 second 2160 Selenium, iframe API
Rebuffering events 1 second 2160 Selenium, iframe API

resource elements that carry cell-specific reference signals within the measure-
ment frequency bandwidth [2] and, as illustrated by [7], is widely accessible
through mobile operating systems. We record instantaneous RSRP readings from
the UEs every one second through the Network Monitor application [43]. We mea-
sure throughput by fetching a pre-specified 500 MB file from an AWS instance in
Virginia using iPerf over TCP to download the file. The large file size allows the
data traffic to fill the pipe and to minimize the effect of slow start. We log the
packet traces at the client during the iPerf tests in order to sample throughput
at 1s intervals.

Quality of Experience Metrics: We focus on streaming video, currently
the most heavily used QoE-centric service in mobile networks [36]. Internet
video streaming services typically use Dynamic Adaptive Streaming over HT TP
(DASH) [60] to deliver a video stream. DASH divides each video into time inter-
vals known as segments or chunks, which are then encoded at multiple bit rates
and resolutions. To analyze video stream quality, we gather two QoE metrics:
resolution switches and rebuffering events. For resolution switches, we compute
the number of consecutive samples that had a different resolution as a percent-
age of the total number of samples collected during the video. We measure at
one-second granularity, which captures resolution switches that happen between
video chunks that are typically 4-5s long [15]. Finally, a rebuffering event occurs
when video pauses while the application buffer waits to accumulate enough con-
tent to resume playback. We record the video state (rebuffering event or normal
playback) every second.

2.2 Measurement Suite

We run our measurement suite on Lenovo ThinkPad W550s laptops, each of
which are tethered to their own Motorola G7 Power (Android 9) via USB in
order to measure cellular performance. The cellular plans on all our cellular user
equipment (UE) have unlimited data and are hot-spot enabled to effectively
achieve the same level of performance as we would on the mobile device. We run
our measurement suite on laptops tethered to phones; this configuration gives us
the same application performance while facilitating ease of programming, data
extraction, and unification of application-level measurements.
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We choose YouTube as the streaming platform because of its popularity in
the U.S., capturing over 88% of the mobile market [62]. To collect video QoE
metrics, we run a 3-min clip of a Looney Tunes video [64], three times across
each of the four LTE providers at each location; we exclude from our results
the sessions that experienced playback errors during execution. We chose this
particular video due its mix of high and low action scenes, which result in vari-
able bitrates throughout the video (typically, high action scenes have a higher
bitrate than low action scenes). After testing multiple playback duration, we
observed that a 3-min window was adequate for the playback to reach steady
state, while long enough to capture rebuffering and/or resolution switches that
occur. To infer video QoE, we collect the input features (RSRP and throughput)
synchronously, on a separate device so as not to bias the video streaming mea-
surements. Synchronous measurements of throughput, RSRP and QoE metrics
are required to train learning algorithms to infer video QoE for a future time
instance. We use different servers for throughput and YouTube tests so that we
can obtain concurrent QoS and QoE measurements. Our setup reflects the real
world scenario where throughput test servers and YouTube servers are separate
while simultaneously affected by varying conditions from within the cellular net-
work [6]. In LTE, each bearer (connection from a UE) enjoys a relatively isolated
data tunnel before the egress from the packet gateway, located inside the core [1].
This reduces contention among UEs competing for resources at a single eNodeB,
and as a result we can accurately record QoS and QoE metrics on two separate
devices.

To execute this experiment, we first automate the loading and playback of
the YouTube video on the Chrome browser using Selenium [58]. The video reso-
lution is set to auto. Then we use YouTube’s iframe API [65] to capture playback
events reported by the video player. The API outputs a set of values that indi-
cate player state (not started, paused, playing, completed, buffering) using the
getPlayerState() function. The APT also provides functions for accessing infor-
mation about play time and the remaining buffer size.

2.3 Description of Datasets

We collect 16 datasets from 12 locations across the Southwestern U.S. Eight of
the datasets were collected from rural locations that had sparse cellular deploy-
ment.

An additional eight datasets were collected from four urban locations. In each
urban location, we collect two datasets: one during a large event or gathering, in
which we expect cellular network congestion to occur (these datasets are marked
with _Cong); and a second during typical operating conditions. We call the latter
dataset the baseline for that location (these datasets are marked with _Base).
Hence, our 16 traces are broadly classified into three categories: rural, congested
urban, and baseline urban. The details of each dataset are summarized in Table 2.
The designation of each location as rural or urban is based on Census Bureau
data [57]. Through these measurement campaigns, we collect and analyze over
32.7 Million LTE packets. Note that the “Number of Datapoints” column shown
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in Table 1 indicates the QoS/QoE datapoints gathered by the application, while
the “# LTE Packets” column in Table 2 refers to the number of packets collected
in the trace files.

Table 2. Summary of datasets

Location Date # LTE Packets Type Carriers™
Rural_1 May 28 2019 3.18 Million Rural V,A,T,S
Rural_2 May 29 2019 1.38 Million Rural Vv, T
Rural_3 May 28 2019 2.03 Million Rural V,A,T,S
Rural_4 May 30 2019 2.16 Million Rural V,A,T,S
Rural_5 May 30 2019 2.27 Million Rural V,A,T,S
Rural_6 May 31 2019 2.33 Million Rural V,A,T,S
Rural_7 May 31 2019 1.26 Million Rural s
Rural_8 Jun 01 2019 2.83 Million Rural V,A,T,S
Urban_1_Cong Sep 22 2019 2.25 Million Urban, Congested V,A,T,S
Urban_1_Base Sep 28 2019 1.92 Million Urban, Baseline V,A,T,S
Urban_2_Cong Sep 29 2019 2.51 Million Urban, Congested V,A,T,S
Urban_2_Base Sep 30 2019 1.97 Million Urban, Baseline V,AT,S
Urban_3_Cong Sep 21 2019 2.65 Million Urban, Congested V,A,T,S
Urban_3_Base Sep 30 2019 2.13 Million Urban, Baseline V,A,T,S
Urban_4_Cong Sep 25 2019 2.18 Million Urban, Congested V,A,T,S
Urban_4_Base Sep 26 2019 2.08 Million Urban, Baseline V,A,T,S

*This column lists mobile carriers in each data set (some areas had no coverage for particular
network operators). V: Verizon, A:AT&T, T:T-Mobile, S: Sprint.

2.4 Video QoE Measurement Scalability Challenges

Collection of ground-truth cellular network measurements, as we explore further
in Sect.4, is a challenging task for multiple reasons. First, it requires physical
placement of measurement device at the location to be studied. While there
are many large, publicly accessible datasets that incorporate some QoS mea-
surements, QoE measurements, particularly in remote regions, are much more
difficult. Second, gathering ground truth data to assess video QoE requires an
active connection to stream a large encoded video file. This consumes a substan-
tial amount of bandwidth, computational power, memory, and battery, due to
the simultaneous use of LTE modems, display, CPU, and GPU [21] on the user
device. For instance, streaming applications consume memory to load the video
and require accelerated processing to decode and display the stream from the
video server. Unlike QoS metrics, which can often be collected in the background
through execution by back-end scripts, the high resource cost of QoE measure-
ments for the end user makes this data difficult to crowd-source. In Fig.1 we
show the resource consumption during one hour of RSRP and throughput (QoS)
measurements, compared to one hour of video streaming (QoE), on our data
collection phones. As can be seen in the figure, the resources consumed by the
QoE measurements were significantly higher, both preventing background data
collection and more rapidly draining the device battery.
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Fig. 1. Device resource consumption during either RSRP and throughput measure-
ments only, or during video streaming.

Rural regions span large geographic areas with terrain that is often hard to
access. QoS data from public sources already struggles to cover these areas. In
particular, crowd-sourced datasets are data-rich in regions where there are higher
density populations. These regions tend to be either urban areas, or other areas
frequented by travelers (i.e. highways, national parks, etc.). Rural communities,
by contrast, with their lower population densities, are often under-represented in
crowd-sourced datasets. Yet it is exactly these regions where under-provisioned
networks typically exist and hence where data is urgently needed. In order to
effectively assess QoE in these remote areas, we need a method to improve QoE
measurement scalability. We address this challenge in the next section, where
we show how predictive models can use the less resource expensive QoS mea-
surements to infer QoE for streaming video on mobile broadband networks in a
variety of environments.

3 Inferring QoE Metrics for Video

As discussed in Sect. 2.4, the collection of QoS measurements is less resource
consumptive, and hence more scalable, than video QoE measurements. We now
describe our approach to infer QoE metrics for video streaming sessions using
low-cost QoS metrics.

3.1 Learning Problem

Our learning problem’s goal is to infer QoE metrics using a sequence of through-
put and RSRP (QoS metrics) data input. The objective is to build models with
appreciable performance that would work in a wide variety of network conditions
and different region types (e.g., rural and urban locations). These models could
be used to predict application QoE (in our case, video streaming) at a particular
location. We use supervised learning to train two different binary classifiers. The
first classifier infers whether the video’s state is stalled or normal; the second
infers whether there is any change in video resolution. Both models perform the
classification task every one second.
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Input: The learning model takes a sequence of RSRP and throughput values
as input. Both of these metrics are low-cost measurements and easily accessible.
Given how adaptive bitrate (ABR) video streaming players operate, the changes
in throughput and RSRP values have a delayed impact on QoE metrics. For
example, a decrease in available throughput will force the video streaming player
to use the buffered data before stalling.

As part of feature engineering, we had to determine how many RSRP and
throughput values to use as input for the learning model. Intuitively, the use of
longer sequences will improve accuracy. However, longer sequences also increases
the complexity of the learning model, which requires more training data to avoid
over-fitting. After varying n = 0 — 180 (total playback time of a session), we
found that using a sequence of three throughput/RSRP values enabled us to
strike a balance between model complexity and accuracy. A typical approach to
assessing throughput would be to log continuous measurements for a long dura-
tion of time and analyze the resulting mean/mode of the distribution. However,
our results (Sect. 3.3) indicate that we can infer the video quality from only a
3-s sample. This has the added benefit of reducing the resource utilization at the
client device, such as data consumption and battery drainage, while accurately
inferring the video stream quality.

Output: We train two separate binary classifiers to predict the video state and
change in resolution at the granularity of one second. Predicting QoE metrics
at such fine granularity enables opportunities to infer QoE with limited training
data. Given the input features, our models infer how likely it is for the video
stream to experience either a video stall or a resolution change in the next
instant.

Training Data: Our dataset consists of 32,596 data points. Each data point
has input values: a sequence of three RSRP and throughput values, as well
as two boolean labels: video state (playing or stalled) and resolution switches
(yes—resolution will change; no—resolution will not change). We collected this
dataset through our measurement campaign by conducting a total of 181 video
streaming sessions across multiple locations (Sect.2.3). For each classifier, we
label the output training samples into either of the two classes: class 0 is when
playback is normal and devoid of any event (rebuffering or resolution switch),
and class 1 is when there is an event. We carried out the classification task by
splitting the entire dataset into a ratio of 70:30 training to test sets, as described
in Table 3. We split the overall training dataset into training and validation
sets (80:20). We chose the samples proportionate to the size of each dataset
category (rural, congested urban, and baseline urban). We present the models’
performance per location, where we train the models on specific locations and
then test on others not included in the training. We do not make any distinctions
between operators since an operator-agnostic evaluation is a more comprehensive
reflection of coverage and QoE at a particular location.
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Table 3. Breakdown of training and test set samples for both classifiers.

Training Set Test Set
Classifier Type Target Metric Class 0 Class 1 Class 0 Class 1
Classifier 1 Rebuffering Event 22,175 642 9,504 275
Classifier 2 Resolution Switching 22,490 327 9,639 140

3.2 Learning Algorithm

We now present the learning models we used for the learning problem, our model
training approach, and the method for addressing the inherent class-imbalance.

Learning Models: We trained a wide range of off-the-shelf classifiers for this
learning problem in order to identify the classifier that strikes the best bal-
ance between performance (precision, recall, etc.) and generalizability. First, we
trained simpler classifiers, such as gradient boosting [29], bagging [13], random
forest [14], ARIMA [12], AdaBoost [30], etc. These classifiers offer better general-
izability at the cost of performance. We also trained neural-network (NN)-based
classifiers, such as a convolutional neural network (CNN) [41] and recurrent neu-
ral network (RNN) [37] (in particular, LSTMs [35] and GRUs [23]), that offer
higher accuracy but require considerable training data to avoid over-fitting.

Setup: We ran all the classifiers on a local machine that runs Ubuntu 18.04, pow-
ered by a 4-core i7-7700 CPU (3.60 GHz) with 64,GB RAM and 8 GB NVIDIA
RTX 2080 GPU. We implemented the simpler classifiers using the scikit-learn
0.21 [56] library of Python, and NN-based models using Keras with Tensorflow
backend [24]. We used four fully-connected layers for the NN-based classifiers.
For RNN-LSTM-Focal (see Table 4), the network utilized 64, 32, and then 16
hidden neurons, in addition to a final output layer with hyperbolic tangent activa-
tion function. We used Grid Search [25] to determine the ideal hyper-parameter
configuration for each neural network. To avoid over-fitting, we use a dropout
of 0.4 while training with the Adam gradient descent optimizer [39]. We ran the
RNN-LSTM model for 120 iterations with a batch size of 64.

Class-Imbalance Problem: As rebuffering and changes in the resolution are
rare, most of our data points are normal, i.e., they do not have any rebuffering
or resolution switching events. As a result, our dataset has the class-imbalance
problem, typical for most anomaly detection problems. To address this issue, we
applied the sampling technique SMOTE [19] to balance the classes artificially.
However, such an approach reduces the number of data points that we can use
for training the classifier, which in turn affects the accuracy. With SMOTE, we
observed no improvements in accuracy with simpler learning models (e.g., SVM,
random forest, etc.), and lower accuracy for NN-based classifiers. Therefore, for
the NN-based classifiers, we adapted a new technique that has proven to increase
classification accuracy in datasets that suffer from the class-imbalance issue for
the object detection problem [42]. This technique addresses the class-imbalance
problem by reshaping the standard cross entropy loss in such a way that it lowers
the weights for the majority class [42]. It also introduces the concept of focal loss
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that prevents the majority class from overwhelming the classifier during training.
The focal loss can be represented as:

FL(pj) = (1 — p;)"log(p) (1)

Here, FL is the focal loss function, and p; is the softmax probability of the ;"
class for a particular observation. a and y are two regularizing parameters. This
loss function adds more importance when the network predicts a minority sample
as opposed to the overly represented sample—making it ideal for performing
classification on an imbalanced dataset.

3.3 Results

We now present the performance of the different classifiers we used for this learn-
ing problem. For those that performed well, we also quantify their performance
across different locations and video types. Finally, we quantify the contribution
of an LTE-specific QoS metric, RSRP, in improving the accuracy of our learning
models.

Table 4. Performance metrics of the classification models.

Rebuffering Events Resolution Switching
Models Accuracy Precision Recall Accuracy Precision Recall
Boosting 0.87 0.88 0.88 0.84 0.85 0.84
Bagging 0.80 0.82 0.82 0.71 0.73 0.72
Random Forest 0.85 0.87 0.86 0.79 0.80 0.80
ARIMA 0.81 0.81 0.81 0.77 0.78 0.78
Decision Trees 0.80 0.80 0.98 0.75 0.75 0.75
Extra Randomized Tree 0.77 0.78 0.77 0.72 0.73 0.72
AdaBoost 0.62 0.60 0.63 0.51 0.55 0.53
Support Vector Machine 0.72 0.72 0.73 0.70 0.71 0.70
K-nearest neighbors 0.60 0.56 0.62 0.58 0.57 0.49
CNN 0.72 0.73 0.73 0.68 0.69 0.69
CNN - Focal 0.84 0.85 0.84 0.81 0.81 0.81
RNN - LSTM 0.82 0.83 0.83 0.80 0.79 0.80
RNN - LSTM - Focal 0.89 0.89 0.89 0.86 0.86 0.87
RNN - GRU 0.82 0.82 0.84 0.80 0.82 0.82
RNN - GRU - Focal 0.86 0.86 0.85 0.83 0.84 0.84

Performance: We analyze the performance of learning models in terms of accu-
racy, precision, recall, and training time. Table 4 summarizes the performance of
all classifiers we explored. We observe that the accuracy of the rebuffering-event
classifier is better than the resolution-switching one, as depicted in Fig. 2. This
difference is attributable to the smaller number of anomalous data points (resolu-
tion switches) in the data (see Table 3). In terms of accuracy, RNN-LSTM-Focal
performs best. This is expected as this model makes the best use of the sequence
of throughput and RSRP values and is best suited to handle the class imbal-
ance problem. On the other hand, though RNN-LSTM-Focal has the highest
accuracy, the accuracy gains are marginal when compared to simpler learning
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models, especially Boosting. Given these marginal gains and the complexity of
training NN-based classifiers (5 vs. 214s), we use the Boosting classifier to char-
acterize the performance across different network and video types.
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Fig. 2. Performance of Boosting across different locations.

Generalizability: We now quantify the generalizability of the Boosting classi-
fier. First, we show how its performance varies across different network types.
Figure 2 depicts the performance of inferring video rebuffering using Boosting
at each location. We observe that the performance differences across different
network types are marginal (<2% deviation between categories). We saw similar
trends for the Boosting-based classifier when inferring resolution switching.

Our initial measurements only collected the QoE metrics for the Looney
Tunes video. To verify that our results generalize for other video types, we col-
lected the QoS/QoE data for 108 additional video streaming sessions (a total
of 48,825 new data points) at our research facility (baseline-urban). We selected
18 different videos from seven genres: action (trailers/movie clips), music videos,
sports, online learning content, news, documentary, and animation (including the
original Looney Tunes video) [16]. We selected top trending videos for each genre.
Given that the videos were of varying duration, we capped each measurement to
a maximum of ten minutes. We streamed each video over three different telecom
providers (AT&T, T-Mobile, and Verizon); we were not able to obtain Sprint
measurements because of closures of Sprint retail outlets due to the COVID-19
pandemic. Figure 3 shows the performance of Boosting for both video rebuffering
and resolution switching. We observe marginal variations (<1.5% and <3% devi-
ation for rebuffering and resolution switching, respectively) in accuracy across
different video genres, implying that our learning model generalizes reasonably
well to different video types. Note that we do not claim that these results gen-
eralize for other video players (e.g., Hulu, Netflix), client platforms or devices;
we plan to quantify the performance of our learning models for other platforms,
devices and non-YouTube videos in the future. Finally, we do not claim to have
developed models that generalize across other locations or network conditions —
rather we use this study to demonstrate the feasibility of inferring video QoE at
scale within a limited, but diverse, dataset.
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Ablation Study: To better understand the impact of an LTE-specific metric
(i.e., RSRP) in inferring QoE metrics, we performed an ablation study. Figure 4
compares the accuracy of the Boosting classifier in inferring rebuffer events with
and without the RSRP values. We observe that the average increase in accuracy,
with RSRP as an input, is 9.28%, while the maximum gain is 18.61%. This result
could be attributed to the exposition of the relationship, by the non-linear mod-
els, between RSRP and throughput to identify the target metrics at any given
location successfully. This study highlights the importance of LTE-specific RSRP
measurements in accurate prediction of rebuffering and resolution switching.

4 Related Work

Prior work most similar to ours, which focuses on quantifying the user experience,
typically infers the QoE of video streaming from QoS of fixed broadband net-
works [22,31,38]. In contrast, our work focuses on mobile broadband, which often
exhibits a wide variation in performance over time and space. Some past work
on mobile broadband, such as [3,11,20,54], has examined metrics solely from
the application and network layers. [15,26,33,40,44,45] require direct access to
(encrypted or unencrypted) network traffic to infer video QoE. In contrast, our
approach is independent of network traces and incorporates low-cost signal and
throughput measurements for rapid QoE prediction. Few publicly available QoS
datasets include synchronous RSRP measurements. [17,48,63] analyze network
traces that contain performance indicators captured during streaming sessions,
and experiment metadata from mobile broadband networks. All of these datasets,
however, have limited types of datapoints (primarily from dense, urban loca-
tions); the datasets have minimal to no measurements from networks that are
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under-provisioned or located in remote regions. We believe it is challenging to uti-
lize existing prior datasets (from primarily urban scenarios) to evaluate diverse
network conditions in the context of the measurements examined in this work,
either due to non-overlapping and non-scalable nature of prior measurements
or lack of a comprehensive and representative dataset. Further, the accuracy of
our models, given the inexpensive measurements, indicates the feasibility and
scalability of our approach.

Prior work that has focused on charting the relationship between RSRP and
QoE has important limitations. For instance, [10] presents a mapping of RSRP
and video QoE that is derived using only simulated experiments. The authors
of [47] explore the effect of radio link quality, such as RSRP, on streaming video
QoE. The presented results are limited in scope as their setup streams a custom
video hosted on their own server; by omitting evaluation of a popular streaming
service, such as YouTube or Netflix, the work does not accurately capture the
application and network performance experienced by actual users. [9] undertakes
a study similar to ours, however, with a modest dataset that is limited to a small
portion of a local transit route and is thus difficult to generalize.

5 Conclusion

Through an extensive measurement campaign, we collect 16 datasets with widely
varying performance profiles. Our dataset includes representation of: i) the vari-
ability of mobile broadband performance as a consequence of either sparse deploy-
ments or network congestion, and ii) the communities most likely to be dependent
on mobile broadband (rural areas). Through our analysis, we highlight the chal-
lenges of quantifying QoE metrics at scale, particularly in remote locations. To
address this challenge, we develop learning models that use low-cost and easily
accessible QoS data (LTE-specific RSRP and throughput) to predict QoE metrics.
Our models can be generalized to video content from different genres, as well as to
other locations that share network characteristics similar to those of our dataset.
The observed efficacy of the models indicates that video QoE can be more easily
and scalably determined within difficult to assess regions, using low-cost QoS mea-
surements. For instance, given the increased load on video streaming platforms
during COVID-19 [50], cellular operators could employ our approach to detect
sectors with possible bottlenecks without having to rely on user feedback/com-
plaints, particularly in remote locations. This has the potential to lead to faster
turnaround times for network troubleshooting [55], and therefore may lower out-
age periods for users heavily dependent on video streaming.
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Abstract. The Transport Layer Security (TLS) Public Key Infrastruc-
ture (PKI) is essential to the security and privacy of users on the Inter-
net. Despite its importance, prior work from the mid-2010s has shown
that mismanagement of the TLS PKI often led to weakened security
guarantees, such as compromised certificates going unrevoked and many
internet devices generating self-signed certificates. Many of these prob-
lems can be traced to manual processes that were the only option at
the time. However, in the intervening years, the TLS PKI has undergone
several changes: once-expensive TLS certificates are now freely available,
and they can be obtained and reissued via automated programs.

In this paper, we examine whether these changes to the TLS PKI have
led to improvements in the PKI’s management. We collect data on all
certificates issued by Let’s Encrypt (now the largest certificate author-
ity by far) over the past four years. Our analysis focuses on two key
questions: First, are administrators making proper use of the automation
that modern CAs provide for certificate reissuance? We find that for cer-
tificates with a sufficiently long history of being reissued, 80% of them
did reissue their certificates on a predictable schedule, suggesting that
the remaining 20% may use manual processes to reissue, despite numer-
ous automated tools for doing so. Second, do administrators that use
automated CAs react to large-scale compromises more responsibly? To
answer this, we use a recent Let’s Encrypt misissuance bug as a natural
experiment, and find that a significantly larger fraction of administrators
reissued their certificates in a timely fashion compared to previous bugs.

1 Introduction

The Transport Layer Security (TLS) public key infrastructure (PKI) is an
essential component of the modern Internet: it allows users to communicate
over the Internet in a trusted and confidential manner. However, previous
work [2,3,8,13,21] has demonstrated that despite its importance, the manage-
ment of the TLS PKI is often not compliant with recommended security prac-
tices. For example, systems administrators often fail to revoke or even reissue cer-
tificates when private keys are compromised [20], many internet-of-things devices
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generate self-signed certificates (sometimes even with identical keys) [13], and
domains sometimes share private keys with third parties due to limitations in
the PKI itself [2].

Many of these management issues can be traced to inadequate tools for sys-
tem administrators. For example, in the wake of the Heartbleed [11] bug in 2014,
a significant fraction of web servers potentially had their private keys exposed;
as a result, administrators should have revoked their old certificates and reissue
new ones. At the time, doing so was a largely manual process: because certificates
were typically valid for up to 5 years, many administrators presumably eschewed
automating the infrequent process of obtaining and installing new certificates.
As a result, it took over a week before even 10% of the vulnerable web servers
had reissued their certificates [21]. Similarly, in the DNSSEC PKI, it has been
observed that inadequate tools—in the case of DNSSEC, a manual process of
uploading DS records—has lead to poor adoption of secure protocols [4].

However, the TLS PKI has changed dramatically since 2014. While previously
expensive, TLS certificates are now free with the advent of certificate authori-
ties such as Let’s Encrypt [14] (which is now, by far, the most popular CA [16]).
More importantly, these free CAs often have much shorter certificate lifetimes
(90 days for Let’s Encrypt), encouraging the automation of the process of certifi-
cate reissuance and installation (as it happens every three months, rather than
every five years). Open-source protocols (e.g., ACME) and tools (e.g., certbot,
acme.sh, cPanel) now allow administrators to automate the entire process.

In this paper, we examine whether the presence of these tools and services has
led to better TLS certificate reissuance. To understand the effects of automated
tools in certificate reissuance, we focus on certificates issued by Let’s Encrypt.
We chose Let’s Encrypt as it is by far the largest ACME-based CA [16], and it
has the longest history of operation (and hence, the highest likelihood of having
domain sets that have a long history of reissues). We use Certificate Transparency
(CT) [12] logs to obtain a list of all 1.03B certificates Let’s Encrypt issued over
the past four years. We group certificates in this list by the set of domains they
contain (similar to prior work [21], we refer to this as a domain set), enabling us
to measure how often certificates are reissued.

We also use a recent bug discovered by Let’s Encrypt as a natural experiment.
In brief, in early 2020, Let’s Encrypt discovered that over 3M certificates had
been issued improperly, as they had failed to check for Certificate Authority
Authorization (CAA) [19] records properly before issuance [5]. Because they
were improperly issued, Let’s Encrypt announced that they planned to revoke
the certificates one week later, informing all system administrators that they
needed to reissue their certificates. This serves as a natural experiment, as we can
examine whether administrators took the necessarily manual action of reissuing
their certificates, rather than simply relying on their automated reissuance.

Our paper makes two contributions: First, we examine the behavior of sys-
tem administrators reissuing TLS certificates with the advent of free CAs such
as Let’s Encrypt. We find that approximately 80% of domain sets with a suf-
ficiently long history of being reissued, did reissue their certificates on a pre-
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dictable schedule. In addition, 60% of all domain sets show a median reissuance
period of 60 days (the default recommended by Let’s Encrypt [14] and used by
many ACME tools [6,23] for automated certificate reissuance).

Second, we use the Let’s Encrypt bug mentioned above to explore whether
system administrators now respond more quickly and completely when manual
intervention is required. We focus on the subset of the 2M domain sets with a
misissued certificate, and identify 98,652 domain sets that show a regular period
of reissuance with at least one new certificate issued after the bug was discovered
on February 29, 2020.! We demonstrate that, of these domain sets, at least 28%
appear to have taken the manual steps necessary to reissue their certificates
within a week, suggesting that, indeed, system administrators are better able to
reissue certificates securely today when compared to previous incidents requiring
certificate reissuance.

2 Background

We begin with an overview of the TLS certificate ecosystem and related work.

2.1 Certificates

TLS is based on certificates, which are bindings between identities (typically
domain names) and public keys. Certificates are signed by certificate authorities
(CAs), who verify the identity of the requestor. Certificates have a well-defined
validity period, which is expressed as NotBefore and NotAfter fields in the
certificate; clients will refuse to accept certificates outside of their validity period.
As a result, certificate owners have to periodically reissue their certificate by
contacting their CA (or another CA) and obtaining a new certificate.

While certificates originally only contained a single identity (domain name),
this often made the administration difficult for web servers that served multiple
domains. Today, certificates can carry multiple identities (domain names) via a
Subject Alternate Names list. In essence, the owner of the certificate’s public
key has been verified by the CA to control all of the identities (domains).

Finally, domain owners may wish to limit the set of CAs who are authorized to
issue certificates for a given domain. They can now do so by publishing Certificate
Authority Authorization (CAA) records, which are DNS records that specify a
list of CAs that are/are not allowed to issue certificates (if no such record exist,
all CAs are implicitly authorized). CAs today are required to check for the CAA
records for domains before issuing certificates.

2.2 Let’s Encrypt

For a long time, TLS certificates were relatively expensive to obtain (typically
$50 or more) and were valid for multiple years (typically 3-5) [13]. The cost and

! Because of the way the bug manifested itself, the misissued certificates are not a
random sample of all certificates. We explore this in Sect. 3.
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extended validity ended up having two effects: the overall adoption of HTTPS
was relatively low (as administrators had to spend significant money to obtain
the necessary certificates), and the system administrators who did purchase cer-
tificates were not incentivized to automate the infrequent reissuance process.
Additionally, the certificate issuance and renewal processes were manual, admin-
istratively burdensome, and technically cumbersome.

In 2015, Let’s Encrypt disrupted the TLS certificate business model by offer-
ing free certificates that were valid for 90 days. Other free CAs have also been cre-
ated such as ZeroSSL? and Buypass®, and the TLS ecosystem has since changed
dramatically: the fraction of web connections using HTTPS has increased from
~27% in early 2014 to ~85% in 2020 [16], and Let’s Encrypt is now the largest
CA, with over 1B certificates issued and over 35% of the Alexa top 1M sites
using Let’s Encrypt certificates [1]. Importantly, while prior CAs often required
certificates to be requested/reissued via web forms, Let’s Encrypt is entirely
automated via the ACME protocol; several popular ACME clients exist, includ-
ing certbot, acme4j, and acme. sh.

In February 2020, Let’s Encrypt announced that they discovered a bug in
the Boulder software they used to issue certificates [5]. Specifically, the software
failed to properly check for CAA records in requested certificates if (a) a certifi-
cate was requested for multiple domains, and (b) Let’s Encrypt had previously
checked the domain control validations (DCV) for these domains in the preceed-
ing 30 days. While Let’s Encrypt was supposed to re-check the CAA record for
all domain names included in the certificate within 8 h of issuing the certificate,
under these circumstances, it only picked one domain name among the multiple
domains in the certificate and ran the CAA check n times (equivalent to the
number of domains in the certificate). Let’s Encrypt originally announced on
February 29, 2020 that it planned to revoke all these certificates on March 5,
2020, and it emailed all affected domain administrators. On March 5, 2020, Let’s
Encrypt reversed their decision and decided to not revoke en-masse [15].

2.3 Related Work

Improvements in the ability to scan the Internet [10] in 2013 have led to a better
understanding of the entire TLS ecosystem [9]. Researchers have unfortunately
found that TLS clients and servers are often incorrectly managed [13], leading
to reduced security for internet users. In the aftermath of the Heartbleed bug, it
became evident that manual revocation and reissuance of certificates is a major
security problem: most administrators failed to revoke or even reissue, and those
that did sometimes reissued using the same key pair [8,21]. Similar behavior had
been observed years prior when a bug in Debian caused many domains the need
to reissue certificates [20]. Some domains have chosen to outsource certificate
management to third-parties such as content delivery networks (CDNs); while
this improves certificate management, it often requires sharing private keys [2].

2 https://zerossl.com /features/certificates/.
3 https://www.buypass.com/ssl/products/acme.
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To the best of our knowledge, there has not been significant study of auto-
mated certificate reissuance in the TLS PKI. Previous work by Matsumoto et
al. proposed a decentralized audit-based system: Instant Karma PKI (IPK) to
promote automation among HTTPS domains [18]. The recent development of
CAA records also provides a useful tool for automation as the domain name
holders or DNS operators can use CAA records to control which CAs that they
would like to get a certificate from [19].

3 Methodology

We now describe the datasets we collected and our methodology to determine a
set of certificates that have been reissued.

3.1 Certificates

Our goal is to see how certificates have been (re)issued by the system adminis-
trators. We focus on Let’s Encrypt as it is the largest free CA, and it has the
longest history of operation. To this end, we obtain all certificates issued by Let’s
Encrypt by leveraging the Certificate Transparency (CT) logs; when issuing a
certificate, Let’s Encrypt publishes the certificate to one of the CT logs managed
by Google.* Thus, to obtain a nearly complete view of the certificates issued by
Let’s Encrypt, we first fetch all certificates from all of the CT log servers man-
aged by Google,? obtaining 5.3B certificates in total from September 9, 2014 to
May 18, 2020. We then identify the certificates issued by Let’s Encrypt according
to their Issuer field, which leaves us with 1.03B certificates.®

3.2 Let’s Encrypt CAA Bug List

On February 29th, 2020, Let’s Encrypt announced the CAA issuance bug in
their certificate issuance process (see Sect. 2.2). Let’s Encrypt publicly released
a list of the certificates impacted by this bug [5] containing serial numbers of
3,048,289 certificates, some of which were potentially misissued (i.e., the CAA
records for some of domains in the certificate may have not permitted Let’s
Encrypt to issue a certificate, even though they did). We use this list to study
how the impacted certificates have been reissued by administrators.

4 In order for a certificate to be “CT qualified” in modern browsers such as Chrome,
it has to be logged on multiple CT log servers and one of them has to be from a
Google log [7].

5 aviator, icarus, argon2018~2023, xenon2019~2023, pilot, rocketeer, skydiver.

5 We intentionally exclude pre-certificates from the analysis (which Let’s Encrypt has
published as well since 2018 [17]) as they do not guarantee the issuance of their
actual (final) certificates.
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3.3 Defining Certificate Reissuances

While it is easy to identify when certificates are issued, there is a bit of subtlety
to determining when they are reissued. In particular, we face two challenges:
First, CT logs do not contain any identifier of the client such as IP address
that sent a Certificate Signing Request (CSR), thus making it hard to identify
if the certificate has been reissued from the same client; thus, we first link the
certificates that share the same Subject Alternate Name (SAN) list.” We refer
to this set of domains in the SAN list as the domain set. Second, we do not know
when the client has replaced the old certificate with the new one; thus, we use
the logging timestamp on the CT log server as a proxy.

In summary, we group certificates by their domain set and order them based
on their timestamp on the CT logs; we refer to any certificates other than the
first as reissued certificates. Using this, methodology we obtain 188M unique
domain sets and 1.03B corresponding certificates issued during our measurement
period. Out of the 188M domain sets, we find that 67M (35.7%) domain sets have
no reissued certificates, 23M (12.2%) domain sets have reissued once and, 14M
(7.8%) domain sets have reissued twice. One limitation of relying on CT logs
alone worth noting is that we are unable to quantify how domain sets change,
as we would need a way to “link” domain sets which is unavailable to us [2]. In
these cases, the modified domain set would be considered a separate domain set
in our analysis.

4 Results

We analyze the reissuance behaviors of certificates issued by Let’s Encrypt. We
aim to understand reissuance behavior of two types: reissuance that is likely done
automatically (e.g., via a cron job) and reissuance that is likely done manually
(e.g., directly invoked by a system administrator). We begin by describing how
we distinguish these two cases.

4.1 Automated Reissuance

One of Let’s Encrypt’s key principles is that it makes it possible to automate
obtaining and reissuing certificates. A new user of Let’s Encrypt need only set
up the first certificate issuing process with any ACME client of choice, then
they can create a cron job to continually check if the certificate is still valid and
request a new certificate once the current certificate nears expiry.

We first need to identify when we believe a certificate has been reissued via an
automated process. As discussed previously we are not privy to Let’s Encrypt’s
internal logs, so we can only rely on publicly available data from the CT logs.
To do so, we group all Let’s Encrypt certificates by the domain set present in
them, and then sort these lists by the time in the CT log timestamp. We then
examine the amount of time that passes between each pair of successive reissues.

" Thus, if the same client adds or removes one domain, it changes the SAN list.
Therefore, ACME processes it as a separate certificate request, not a reissuance,
thereby supporting our methodology of grouping by domain sets.
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Fig. 1. Distribution of median reissuance period per domain set for all Let’s Encrypt
certificates with or without lifetimes and misissued certificates. For comparison, we
also include the median reissuance period per domain set for a few other CAs: Sectigo,
cPanel, and other top 10 CAs (we plot cPanel and Sectigo separately as they show
different behavior than the others).

In Fig. 1, we plot the cumulative distribution of the median of these reissue
time lists in the line labeled “all LE certs.” We immediately observe a large
“spike” around 60 days, and observe that over 55% of domain sets have a median
reissue time between 55 and 65 days. This lines up with the reissuance policy
recommended by Let’s Encrypt, which recommends reissuing certificates that are
within 30 days of their expiry (i.e., are at least 60 days old) [14]. Moreover, this
timing lines up well as the default policies of many ACME clients: cerbot [6]
and acme.sh [23] both default to renewing within 30 days of expiry. We also
observe that the “spike” does not happen entirely at the 60 day mark; this is
likely because the renewal occurs the first time the cron job runs after reaching
the mark. Finally, we observe a much smaller spike around 30 days, which is
likely the behavior of a different ACME client or a system administrator who
manually changed their client’s behavior.

Next, we examine whether this median reissue period of 60days is only
present in domain sets that have a long history of being reissued (i.e., that
have been around a long time) or if it is also present in newer domain sets. To
do so, we divide the “all LE certs” line into those first issued greater than two
years ago, and those first issued within the past two years; these are both plotted
in Fig. 1. We can observe the shapes of these curves are quite similar, suggesting
that the behavior is relatively consistent between these two groups.

We also discover that roughly 10% of Let’s Encrypt domain sets in all cat-
egories had a median re-issuance period of greater than 90 days, meaning the
certificates were more often than not renewed after expiry. This behavior could
occur if the administrator did not set up a cron job, incorrectly set up a cron
job to run very infrequently, or if the system was not always online. We leave a
deeper exploration of these domain sets to future work.

Finally, we also briefly compare the Let’s Encrypt domain set behavior to
that of other CAs. To do so, we extract the domain sets in the same manner
from the CT logs for the top 10 CAs (other than Let’s Encrypt), and compute
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Fig. 2. Distribution of coefficient of variation (CoV) for all Let’s Encrypt domain sets,
second level domains, and the misissued certificates.

the median reissuance periods in the same manner per CA. We plot these as well
in Fig. 1 under the lines “cPanel”, “Sectigo”, and “Other CAs”; we separate out
cPanel and Sectigo as they show different behavior than the others. In brief, we
see that most of the other top CAs show very long median reissuance periods,
while cPanel shows a “spike” at 75 days and Sectigo at 60, 90, and 120 days.

Coefficient of Variation (CoV). While the median of the reissue time periods
being so clearly at 60 days is suggestive that the administrators use automated
software to reissue their certificates, it is not entirely definitive. Thus, we look for
further evidence of automation by looking at how similar the reissuance periods
of a given domain set are to each other. In other words, if a given domain set
was using an automated process to reissue certificates, we would expect that the
period between reissues would be highly consistent.

To do so, we calculate the coefficient of variation (CoV)—which is simply
the standard deviation of a distribution over its mean—of the amounts of time
between each successive reissuance. Automated reissuance would often lead to a
consistent period between reissues, meaning that the CoV would be low i.e., 0.1
or smaller. We choose the CoV threshold of 0.1 as a cut-off as would allow, for
example, a domain set with a mean reissuance time of 60days to be classified
as automated if the variance is less than 6 days (roughly one week). For this
analysis, we only keep the domain sets where we have a sufficient reissue history
of at least five reissues. Figure 2 plots the distribution of CoVs for the reissue
time periods for each domain set under the “all LE certs” line. We can observe
that many domain sets do show evidence of automation: 30.3% of domain sets
have a CoV of less than 0.1.

We were concerned that particular domains with unusual patterns of reis-
suance may end up artificially shaping this curve, as our analysis is at the domain
set level, rather than at the system administrator level. Thus, we additionally
perform an aggregation to the second-level domain to see whether particular
domains are skewing the results.

We aggregate domain sets into second-level domain through a weighted aver-
age: for each second-level domain S, we compute the average CoV for all domain
sets that have at least one domain name from S. For domain sets that include
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Fig. 3. Distribution of all Let’s Encrypt domain set reissuances, divided across different
CoV groups. We can see the groups with lower CoV tend to have a median reissuance
period of 60 days.

domains from multiple second-level domains, we simply weigh the domain set’s
CoV by the fraction of domains that belong to S. The resulting cumulative dis-
tribution is also shown in Fig. 2, and we can observe that the distribution is quite
similar to the analysis at the domain set level. Thus, we have some confidence
that the (potentially odd) behavior of a small number of second-level domain
sets is not dramatically altering the results.

Noticing that many domain sets tend to have a high CoVs, we next examine
how well the CoV methodology identifies domain sets with regular reissuance
patterns. We do so by dividing up domain sets by their CoV, and plotting the
cumulative distribution of their median reissuance time in Fig. 3. We can immedi-
ately observed that the median reissuance time of certificates varies dramatically
by CoV: we find that the median reissuance period of domain sets with a very
low CoV (0.1 or smaller) is 60 days, while domain sets with a CoV greater than
1 are much less predictable. Further, Fig. 3 reveals that over 88% of domain sets
with highly automated reissuance (CoV < 0.001) have a median reissue period
of between 59 and 61 days (consistent with the reissue occurring during the first
cron job to run after the 60 day period).

Initial Renewal Setup. Moving on, we hypothesize that the initial setup and use
of ACME clients may result in multiple, irregular requests, which would affect
our CoV calculation. To understand the effects, we focus on certificates that have
at least five reissues, and make the assumption that most administrators would
be comfortable with operating ACME clients after a year. Out of 188M unique
domain sets, only 60M unique domain certificates have at least five reissues;
these form the basis of the following analysis.

Roughly 48.2% of domain sets with at least five reissues have a CoV less than
0.1. However, if we also look at subsequences of reissues, ignoring the first set
of reissues as long as at least five reissues remain, we can identify an additional
29.9% domain sets that have a subsequence of reissues with a CoV less than 0.1.
In other words, 78% of domain sets with a subsequence of at least five reissues
have a regular reissue cycle that begins at some point in their lifetimes. Thus, we
have identified a limitation of the CoV metric, as it may be too conservative in
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cases where administrators have an irregular initial reissunce cycle before fully
debugging their ACME client setup.

4.2 Manual Reissuance

Having a good understanding on domain sets with likely automated reissuance
infrastructure, we now turn to examine what happens for these domains when
manual intervention is required. To do so, we use the Let’s Encrypt misissuance
bug as a natural experiment: because all of these certificates need to be reissued,
we have a collection of domain sets where we can study whether the system
administrator did, in fact, reissue their certificate.

We first need to examine the set of certificates affected by the bug, which was
announced on February 29, 2020. Let’s Encrypt reported that over 3M certifi-
cates were affected; we collected all of these certificates and plotted their issue
time in Fig. 4. We can see that these certificates went as far back as December
2, 2019, which would be expected given Let’s Encrypt 90-day certificate lifetime.
Importantly, the certificates appear to have been issued uniformly throughout
the prior 90 days.

However, there are multiple reasons why these misissued certificates are not
a random sample of all Let’s Encrypt certificates. First, the bug only affected
certificates with multiple domains in them, meaning any certificates with a sin-
gle domain were not misissued. Second, and more importantly, it only affected
domains where the CAA record had been verified within the past 30 days. As
we observed previously, most certificates are reissued after 60 days, this means
that the only certificates that were affected were ones that were either (a) not
on a regular schedule to begin with, or (b) were on a regular schedule, but
happened to be reissued in late 2019/early 2020 for another reason. This obser-
vation explains why the misissued certificates behave quite differently from all
Let’s Encrypt certificates in Figs. 1 and 2: due to the nature of the bug, domain
sets that had regular, 60-day reissue periods were much less likely affected. In
fact, such domain sets would only have been affected if one of the domains in the
domain set happened to be in another domain set whose certificate was reissued
in the previous 30-day time period, or where the administrator had manually
reissued that domain set during that period.

Nevertheless, we need to identify when we believe a certificate was manually
reissued from among the misissued certificates. Recall that we do not have access
to Let’s Encrypt’s logs, so we can only rely on the timestamps public CT logs.
We want to see how certificates affected by the bug were automatically reissued
before the bug, but manually issued a new certificate in response to the bug.
We therefore focus on those domain sets that (a) were affected by the Let’s
Encrypt bug, (b) were on a regular cycle prior to February 29, 2020, and (c¢) had
at least one new certificate issued after February 29, 2020 (to see if the regular
cycle continued). To see if a domain set was on a regular reissue cycle prior to
February 29, 2020, we see if the five certificate reissues prior to the bug date had
a CoV less than 0.1. In total, 98,652 domain sets satisfy these three criteria.
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Fig. 5. Graph showing how long certificates “survived” after Let’s Encrypt bug was
announced. We plot (a) the 33,099 certificates that we inferred were manually reis-
sued, and (b) the 66,553 certificates that we inferred were automatically reissued. We
can see the manually reissued certificates we largely reissued quickly after the bug
announcement.

Next, we calculate the CoV of the five reissues before the bug date and
the first reissue after the bug date. If the CoV including the new certificate is
high, then the first certificate after the Let’s Encrypt bug could not have been
automatically reissued; some form of manual intervention disrupted the issue
cycle and caused the previously low CoV to increase. If the CoV including the
new certificate remains low (<0.1), then the new certificate was likely issued
on its expected regular schedule. It is also possible, though unlikely, that a new
certificate was manually issued at the same time we would expect the next auto-
matically reissued certificate. Of the 98,652 domain sets, 33,099 saw a significant
CoV increase (i.e., likely had manual intervention) in the first reissue after the
Let’s Encrypt bug, and 65,553 likely did not.

We therefore focus on those domain sets with a low CoV (less than 0.1),
which means the domain set has issued certificates previously on a very regular
schedule. We refer to these domain sets as misissued reqular domain sets, and
we can identify 1,906 of them prior to February 29, 2020.

However, when examining the data, we observe a number of domain sets that
appeared to have an irregular pattern initially, but then settled into a regular
patter of reissuance as time went on. Presumably, these are cases where the
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system administrator needed to debug their reissuance cron job, but eventually
got it working. To be able to study these domain sets as well, we also consider
domain sets to be regular if there is any cut-off between the beginning of the
domain set’s reissuance history where the CoV is less than 0.001 for all reissues
after the cut-off (with a minimum of 5 reissues). Using this methodology, we
identify a further 10,905 domain sets that are misissued regular prior to the
announcement of the Let’s Encrypt bug.

We aim to use these 12,811 regular domain sets to see whether the system
administrator promptly reissued their certificate after February 29, 2020. 2,068
domain sets had no reissues after Feb. 29, leaving us with 10,743. However, there
is one final wrinkle: we need to be able to distinguish a manual reissue from a
reissue that would have happened anyway on the domain set’s regular schedule.
Recall that all of these domain sets were on a regular schedule for at least 5
reissues prior to February 29, 2020; the 5 reissues preceding that date have a CoV
<0.001. To determine if the first post-bug reissue would have fallen on-schedule,
we compute the CoV for the 5 pre-bug reissues and the first post-bug reissue. If
the CoV of all 6 reissues is above 0.001, then the post-bug reissue disrupted the
schedule, and we can conclude that it was manually reissued. In other words, we
only consider those domain sets that are on an extremely regular schedule who
reissued well before when their next reissue was expected. This final grouping
represents 4,873 domain sets that were manually reissued. The remaining 5,870
domain sets were reissued very close to their next scheduled time. It appears as
though they were automatically reissued, though we cannot definitively say they
were not manually reissued (it is possible they were manually reissued very close
to when they were expected to automatically reissue anyway).

We now examine how quickly these 33,099 certificates were manually reis-
sued after Let’s Encrypt announced the bug, and emailed all administrators
to tell them to reissue their certificates manually. Figure 5 plots the number
of these certificates that survive in the line labeled “bug, manual reissue”. We
can observe that most certificates that are manually reissued are reissued quite
quickly: within a week, over 84% of all certificates that we believe are manu-
ally reissued have been reissued. For comparison, we plot the same graph for
the 66,553 certificates that were reissued close to their next reissue in the line
labeled “bug, auto reissue”. This group shows less-prompt reissuing than the
manual reissues, as only 42% of likely-automatic reissues occurred in the 7 days
following the bug announcement.

Recall from Sect. 2 that Let’s Encrypt rescinded its decision to revoke cer-
tificates on March 5, 2020 (five days after the initial email stating they would
be revoking certificates on March 5, 2020). Thus, there may be system admin-
istrators who intended to reissue but who delayed reissuing their certificates,
only to decide it was no longer necessary after receiving the second message.
While we cannot measure how large this group is, we believe it is likely small as
Let’s Encrypt decided sent out the second message on the day they originally
announced as the deadline to reissue. Regardless, our results still serve as a lower
bound on the number of system administrators who did take action.
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Fig. 6. Cumulative distribution of the manual reissues (CoV less than 0.1) after the
announcement of the Let’s Encrypt bug.

Finally, we plot the same data as in Fig. 5, but do so as a fraction of all
misissued domain sets with a CoV less than 0.1 before the bug date. This graph
is presented in Fig. 6, and it shows that among all the domain sets with a CoV
less than 0.1 (those on a regular schedule before Feb. 29, 2020), at least 28%
had reissued their certificate manually within a week of the bug announcement.
This result is a significant improvement over prior incidents; with the Heartbleed
bug, after a week, barely 10% of affected certificates had been reissued (and even
fewer revoked) [22]. Even though circumstances between the two bugs differ sig-
nificantly (such as notification of revocation), they both provide opportunities
for natural experiments to see how the PKI is evolving over time, and the com-
parison suggests that system administrators may now be better managing the
PKI.

5 Concluding Discussion

Over the past five years, the TLS PKI ecosystem has changed dramatically:
largely due to new CAs such as Let’s Encrypt, we have moved from primarily
expensive, long-lived certificates to primarily free, short-lived certificates. In this
paper, we examined whether this change in the nature of the certificate ecosys-
tem has also improved the management of the TLS PKI, as it has been previously
been observed that system administrators often fail to properly manage their cer-
tificates. Though we find significant evidence that most clients of Let’s Encrypt
have indeed set up automated processes for reissuing and installing their certifi-
cates using over four years of CT logs, a surprising fraction (20%) of clients with
a sufficiently long history of being reissued still appear to use manual processes.
Moreover, we find evidence that even when manual intervention is required, sys-
tem administrators are more prompt in doing so when compared to studies from
the 2014 Heartbleed bug and the 2009 Debian PRNG bug. Taken together, our
results underscore the importance of reducing the burden of management of the
TLS PKI, and how changes in the infrastructure and tools available to system
administrators can lead to significant management improvements.
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Abstract. The modern Internet is highly dependent on the trust com-
municated via X.509 certificates. However, in some cases certificates
become untrusted and it is necessary to revoke them. In practice,
the problem of secure certificate revocation has not yet been solved,
and today no revocation procedure (similar to Certificate Transparency
w.r.t. certificate issuance) has been adopted to provide transparent and
immutable history of all revocations. Instead, the status of most cer-
tificates can only be checked with Online Certificate Status Protocol
(OCSP) and/or Certificate Revocation Lists (CRLs). In this paper, we
present the first longitudinal characterization of the revocation statuses
delivered by CRLs and OCSP servers from the time of certificate expi-
ration to status disappearance. The analysis captures the status his-
tory of over 1 million revoked certificates, including 773K certificates
mass-revoked by Let’s Encrypt. Our characterization provides a new
perspective on the Internet’s revocation rates, quantifies how short-lived
the revocation statuses are, highlights differences in revocation practices
within and between different CAs, and captures biases and oddities in
the handling of revoked certificates. Combined, the findings motivate the
development and adoption of a revocation transparency standard.

1 Introduction

The modern Internet uses the Web Public-Key Infrastructure (WebPKI) as a
foundation to establish trust between clients and servers. In WebPKI, Certifi-
cate Authorities (CAs) issue signed X.509 certificates that verify the mapping
between public keys and public distinguished names, such as domain names.

In certain cases (e.g., a private key compromise, owner’s request, or misis-
suance by a CA), certificates must be revoked; i.e., rendered invalid. To protect
clients and servers from the use of revoked certificates, WebPKI supports several
revocation protocols. Currently, revocation statuses of most certificates can be
obtained via Online Certificate Status Protocol (OCSP) servers [28], but some
CAs continue to support the traditional Certificate Revocation Lists (CRLs) [6]
as a complementary option. However, these pull-based protocols raise many secu-
rity, privacy, and performance issues. Therefore, many browser vendors do not
utilize the protocols [23], but instead, they push a proprietary set of revocations
to the users [2,11]. Yet, these push-based revocation mechanisms have their own
limitations, which leave secure certificate revocation an open problem [4].

Furthermore, as of today, there does not exist any standardized mechanism
in place (similar to Certificate Transparency (CT) [14,20,30] w.r.t. certificate
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issuance) to provide an immutable history of all revocations and correspond-
ing revocation reasons. Consequently, there is no ability to easily study and
detect revocation-related misbehavior by CAs (e.g., advertisement of wrong, or
contradictory revocation statuses). While many novel WebPKI extensions, revo-
cation protocols, architectures, and transparency schemes have been proposed
to address this issue, none have been adopted so far [4]. Instead, we observe
that the information about revocations is sparse and most revocation statuses
disappear soon after certificate expiration.

In this paper, we make a case for revocation transparency by presenting a
novel characterization study of the revocation rates on the Internet, the post-
expiry life of revocation statuses, and the status-handling practices across CAs.
First, we present a measurement methodology that allows us (i) to obtain nearly
all revocations performed for the set of certificates expiring during a time win-
dow, and (ii) to track the certificate status (using both OCSP and CRL) of such
sample sets over 100-day periods, starting at their respective expiration dates!.

Second, we track all certificates from the Censys dataset [10] that expired
between Mar. 2, 2020, and Apr. 1, 2020, and that were valid with respect to
Apple’s, Microsoft’s, or Mozilla’s root stores. This time period (see Fig. 1) is
particularly interesting since the measurement was done prior to and during the
mass-revocation event in which Let’s Encrypt (LE), the largest CA, initially
announced to revoke over 3 million certificates [22] due to a CAA-rechecking
bug, but in the end, they revoked only 1.7 million certificates [21].

Third, and most importantly, we characterize the revocation-status-handling
practices across CAs, including status lifetimes beyond the expiration date and
handling differences across CAs and certificate types. We identify classes of
behaviors, compare and contrast practices of different CAs, find revocation biases
among different sets of certificates, and look closer at some odd CA behaviors
(e.g., certificates that switch back to a “Good” status after being advertised as
“Revoked”). Across our analysis, we observed highly heterogeneous behaviors
among CAs and quick disappearance of revocation statuses. This highlights the
lack of a global revocation transparency standard that would otherwise help to
identify and improve odd revocation behaviors, similarly to CT, with its effect
on the issuance process. Finally, we share our dataset [19].

Outline: After a brief overview of revocation protocols (Sect.2), we present
our methodology (Sect. 3) and characterization results (Sect.4). Finally, related
work (Sect.5) and conclusions (Sect. 6) are presented.

2 Revocation Protocols

The two primary revocation protocols that CAs typically use are the following.

— Online Certificate Status Protocol (OCSP): Using OCSP, a client can
request the status of a certificate by providing a serial number and the hashes
of the issuer’s name and key. The CA-Browser forum requires signed responses

! Currently, CAs must maintain revocation statuses only until certificate expiration [1].
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Fig. 1. Timeline of the measurement.

to be valid for at least 8 hours, and at most 10 days [1]. OCSP can be used
in different ways. For example, OCSP stapling allows statuses to be delivered
by a web-server, and the OCSP Must-staple extension prevents a client from
making OCSP requests on their own and enforces a hard-fail policy if the
status was not delivered by the web-server. The Must-staple extension is not
widely adopted yet [5]. Instead, most browsers typically accept a certificate
if they are unable to obtain revocation information [23].

— Certificate Revocation List (CRL): CAs maintain signed lists with the
serial numbers of revoked certificates, and optionally, corresponding invalida-
tion dates and reason codes for the revocations. CRLs can also be augmented
using several extensions (e.g., CRL number, Authority Key Identifier, etc.) [6].
CRLs are required to be reissued at least once every 7 days [1].

Due to the security, privacy, and performance issues with OCSP and CRL,
many browser vendors have disabled the above pull-based revocation protocols;
instead, they periodically push limited sets of revocations to the clients (e.g.,
via software updates) [2,11]. However, this approach has some limitations; e.g.,
a delay introduced by scheduled updates, and a small coverage of all existing
revocations.

WebPKI lacks revocation transparency, and no mechanism similar to CT has
been adopted yet. In fact, CAs are not required to maintain revocation statuses
for certificates beyond their expiration date [1], and as we show in this paper,
most of the time, revocation statuses stop being advertised shortly after certifi-
cate expiration. The lack of a transparent and immutable history of revocations
complicates keeping CAs accountable for their revocation mishandling.

3 Measurement Methodology

We conducted a four-phase measurement campaign (see Fig. 1).

1. Preparation: In the first phase, we collect all X.509 certificates (with
their parent certificates) found in CT logs [20] and active scans that expire
within a period starting from Mar. 2, 2020, to Apr. 1, 2020, using Censys [10].
For the analysis, we only select certificates that are valid with respect to Apple’s,
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Table 1. Summary of the studied certificates. (LE — Let’s Encrypt).

Certificates Event LE | Rest LE | Other CAs | All
Non-revoked | — 36,755,317 | 11,496,607 | 48,251,924
Revoked 773,128 | 129,552 174,712 1,077,390
Revocation rate | 100% 0.35% 1.50% 2.18%

Microsoft’s, or Mozilla’s root stores [18]. From these certificates, we extract all
OCSP responder URLs (used in phases 3 4+ 4) and CRL URLs (used in phase
2). For every remaining certificate, we then schedule an OCSP first pass (phase
3) 22 h before its expiration?, and for every observed CRL, we schedule periodic
CRL requests (phase 2).

2. CRL follow-up: During the second phase, we regularly (every 12h) fetch
all CRL lists using the URLs extracted in the first phase.

3. OCSP first pass: In the third phase, we perform an OCSP status lookup
for each certificate 22 h before it expires. If a certificate is found to be revoked
during its first pass, it gets scheduled for follow-up checks every 12h (phase 4).
In the case of an OCSP timeout or an error, the first pass is retried every minute
until a revocation status is obtained or the certificate is expired.

4. OCSP follow-up: In the fourth phase, the revocation status of every
revoked expired certificate is fetched every 12h for 100 days (since the first pass
of each individual certificate). We separate OCSP responses into four types:
“Good”, “Revoked”, “Unauthorized”, and “Unknown”. The first two types
(“Good” and “Revoked”) are cryptographically-signed responses that defini-
tively specify the status of a certificate. The third type (“Unauthorized”) is an
unsigned plaintext response. The final category (“Unknown”) contains signed
“Unknown” statuses (that some CAs deliver) and other unsigned responses.

External Effects on the Sampling Rate: Between May 12, 2020, and May
19, 2020, parallel processes running at our server have temporarily increased
the average OCSP inter-request time from 12h up to 21.7h. Except for this
short period, the average OCSP inter-request time was consistently 12h + a
few minutes, up until June 21, 2020. Between June 21, 2020, and the end of our
measurement period on July 20, 2020, the average inter-request time was roughly
24 h. Neither of the periods with increased OCSP inter-request times took place
during the first month after the expiration date of any of the certificates; hence,
the effects do not impact our conclusions.

2 The interval of 22h (slightly less than 24 h) was selected for performance reasons,
after the initial evaluation of our measurement framework.
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4 Characterization Results

4.1 High-Level Breakdown

In total, we collected OCSP status information for 49 million certificates. Table 1
provides a breakdown based on whether a certificate was revoked or not, whether
the certificate was issued by Let’s Encrypt (76.3% of the certificates) or a dif-
ferent CA (23.7%), and whether a Let’s Encrypt certificate was part of the
above-mentioned mass-revocation event (1.57%). For us to consider a certificate
mass-revoked it needed to be (i) on the list of 3M certificates that Let’s Encrypt
publicized for the event [22] and (ii) to be revoked at the time it expired. We
also found that 297,242 certificates from the list, with expiration dates falling
on our first pass period, have never been revoked.

The timing of the mass-revocation event is particularly interesting since it
provides a concrete example of the impact that such events can have on the
revocation rate and the lifetime of revocation statuses. Finally, we note that
the certificates affected by recent mass-revocation events have been disclosed
through website postings of arbitrarily formatted datasets [8,9,22].

While the non-mass-revocation-rate of Let’s Encrypt was much smaller than
for the other CAs (0.35% vs 1.50%), the mass-revocation event increased Let’s
Encrypt’s revocation rate for this period up to 2.40%. The effect is perhaps most
noticeable when looking at the number of revoked certificates per day, based on
their day of expiry, as shown in Fig. 2. Here, starting from Mar. 5, 2020, we
can see the impact of the certificates associated with the mass-revocation event
(gray in the figure). The other two classes of revocations (blue, orange) remained
relatively stable throughout the measurement period.

1 1 1 1
70000 ~| === Let's Encrypt (non-mass-revoked)
60000 —| == Let's Encrypt (mass-revoked)
50000 mmmm Other CAs
40000
30000
20000

Certificates/day

Fig. 2. Revoked certificates with a given expiration date.

We found large variations in the revocation rates of different CAs. Figure 3
shows the number of revoked (blue) and non-revoked (gray) certificates, bro-
ken down per CA. The orange markers show the number of revoked certificates
listed in the CRLs, in addition to OCSP servers (discussed in Sect. 4.4). Here, we
show all CAs with at least 100 revoked certificates in our dataset, ranked from
the one with the most revocations to the one with the least. We also include
the “other’ category that combines the results for all other CAs. While most
CAs have much fewer revoked certificates than non-revoked certificates, there
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are notable exceptions. Five CAs even had more revoked than non-revoked cer-
tificates: Actalis (92.5%), nazwa.pl (66.4%), SwissSign (59.9%), Plex (73.7%),
Digidentify (100%). Among the most popular CAs (i.e., CAs with the high-
est gray/blue bars), GoDaddy also stands out with 34.5% being revoked before

expiry.

4.2 Revocation Status Changes

The revocation statuses provided by OCSP servers often change from “Revoked”
to some other status soon after certificate expiry. Figure 4 shows the time that
the status remained “Revoked” after the revoked certificates had expired. Here,
we filter out any temporary OCSP responses (e.g., unauthorized, unknown) and

timeouts whenever we obtained at least one more “Revoked” response.
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Fig. 3. Per-CA breakdown of the number of revoked (blue) and non-revoked

right. In the following figures, the order is preserved. (Color figure online)
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Quickly Disappearing Revocation Statuses: Figure 4(a) shows the empiri-
cal Cumulative Distribution Functions (CDF's) for four classes of revoked certifi-
cates: 2 for Let’s Encrypt certificates (mass-revoked and non-mass-revoked) and
2 for certificates by other CAs (with and without Extended Validation (EV)). All
certificates by Let’s Encrypt changed status within 3 days of expiration. Their
mass-revoked certificates (gray) had longer status change times than the non-
mass-revoked certificates (orange). The CDF's for the other CAs are relatively
flat from about two weeks to 100days. (Note the logarithmic y-axis.) On an
encouraging note, the certificate class with the most long-lived revocation sta-
tuses is Extended Validation (EV) certificates (black). This class of certificates
should typically endure the most scrutiny.

Some CAs Keep the State Longer: Figure 4(b) shows the fraction of the
certificates issued by different CAs that maintained the revoked status for at
least 1week or 30 days. While many CAs maintained “Revoked” state for very
short time periods after certificate expiry (e.g., blue CDF in Fig. 4(a) and CAs
without any bars in Fig. 4(b)), most of the CAs that did keep the “Revoked”
state beyond a week also kept this state beyond 30 days (brown bar).

Status Response Overview: For the revoked certificates, we performed more
than 207 million OCSP status requests. Table 2 provides a per-category break-
down of the individual responses (“Resp.” in the table) and the fraction of cer-
tificates (“Certs”) with at least one such response.

All certificates started as “Revoked” and most eventually changed to an unau-
thorized response (100% of Let’s Encrypt certificates and 76.43% of other CAs’
certificates). While we only had timeouts for 0.04% of the status requests, the
differences between the number of affected certificates were substantial between
CAs: only 0.07% of the Let’s Encrypt certificates had at least one timeout, com-
pared to 13.98% of the other CAs’ certificates. These fractions are non-negligible,
since most browsers soft-fail on an OCSP timeout and continue to establish a
potentially-insecure connection. A concerning observation is that 589 certificates
issued by 13 CAs (0.34% in the other CA category) switched from “Revoked”
status to “Good” (65,791 responses in total).

Table 2. Summary of different types of OCSP status responses.

Revoked Unauthorized Unknown Timeout Good

Certs | Resp. | Certs Resp. | Certs | Resp. | Certs | Resp. | Certs | Resp.
Mass rev. (LE) | 100.00 | 2.83 100.00 | 97.10 | 12.37| 0.07 1.43 0.01 - -
Non-mass. LE | 100.00 | 2.17 100.00 | 97.76 | 11.95| 0.07 1.54 0.01 - -
Other CAs 100.00 | 13.19 76.43 | 74.06 | 13.51|12.35 | 13.98 0.22 0.34 0.19
Total 100.00 | 4.43 96.18 | 93.43 | 12.50| 2.07 3.48 0.04 0.05 0.03
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Fig. 5. Dominating status change behavior of different CAs.

Most Frequent Behaviors: Usually, public certification practice statements of
CAs guarantee revocation status preservation for non-expired certificates, but do
not specify the CAs’ actions after that [13,15,33]. We next look at the most fre-
quent CA behaviors. For this analysis, we filtered out temporary status changes
whenever we observed the original state again. With this filtering, we observed
the following dominating behaviors.

— Let’s Encrypt almost always transition statuses from “Revoked” to “Unau-
thorized”. This behavior was observed for 772,042 (99.86%) of the mass-
revoked certificates and 129,400 (99.88%) of the other certificates revoked by
Let’s Encrypt. A possible explanation for this behavior is that they respond
with code “Unauthorized” as soon as the status record has been removed [7].
Let’s Encrypt’s current certification practice statement only guarantees that
“OCSP responses will be made available for all unexpired certificates” [15].

— Among the other CAs, we observed three dominating behaviors: 133,276
(76.28%) cases where the CA simply transitioned to “Unauthorized” (like
Let’s Encrypt), 21,816 (12.49%) cases where the status always changed to
“Unknown”, and 18,660 (10.68%) cases where the “Revoked” status remained
for the duration of our measurement period.

Figure 5 breaks down the use of the dominating status change behaviors
employed by the different CAs. In addition to the three behaviors mentioned
above, we include the “other” behavior category. Most CAs have a dominating
behavior that they employ for almost all of their certificates: 15 (out of 26) CAs
almost always switch from “Revoked” to “Unauthorized” (pink bars), 9 (out of
26) CAs almost always keep the “Revoked” status for the full 100 day period,
Actalis mainly switch certificates from “Revoked” status to “Unknown” (except
for 91 cases, when the statuses were switched to “Good”, following the intermedi-
ate “Unknown” status), Digidentify (who revoke all certificates) always start to
timeout, and Japan Registry always switches statuses to “Good”. As expected,
the “other CA” category (not explicitly listed), contains a mix of behaviors.
These results demonstrate the lack of a standard practice w.r.t. revocation sta-
tuses after certificate expiration. We have also observed some small differences
in the weekly status-change patterns between CAs; however, compared to the
differences in issuance timing, these differences are very small. See Appendix A.
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Special Cases with the “Good” Status: 589 revoked certificates switched
to status “Good”. In almost all cases the servers kept the “Good” status until
the end of the measurement period. In 349 of these cases, the status changed
directly from “Revoked” to “Good” and in 91 cases an intermediate “Unknown”
status was observed. All these cases provide strong motivation for transparent
long-term recording of revocation information.

We note that Let’s Encrypt and most of the other big CAs did not have
any cases with the above strange behavior. Of the CAs with at least 100 revoca-
tions, only the following CAs had such cases: GoDaddy (117 cases), Actalis (91),
Starfield (9), Entrust (5), and Japan Registry (135). Other CAs (not listed in
our figures) with many cases include: “National Institute of Informatics” (91),
“SECOM Trust Systems” (70), “ACCV” (54). (The rest of the non-listed CAs
had five or fewer revoked certificates changing to status “Good”.) Finally, a few
certificates in this category stood out more than the others. For example, the
list included three EV certificates: one by Entrust for “JPMorgan Chase and
Co” (“Revoked” — “Good” — “Revoked”), one by GoDaddy for “Delmarva
Broadcasting Company” (“Revoked” — “Unauthorized” — “Good”), and one
by Actalis for “Pratiche.it” (“Revoked” — “Unknown” — “Good”). Otherwise,
all the certificates in this class include RSA keys with the following key lengths:
1024 (9), 2048 (579), and 4096 (1). Furthermore, only 123 (out of 589) had
Signed Certificate Timestamps (SCTs) embedded. We contacted all CAs with
the above behavior. A summary of the responses is provided in Appendix B.

4.3 Biases in the Revocation Sets

Validity Period: We have found that the revoked certificates typically have
longer validity periods. Figure 6(a) shows CDF's of the validity periods for both
revoked (blue) and non-revoked (gray) certificates for all CAs other than Let’s
Encrypt. (Since Let’s Encrypt always use a 90-day validity period, we kept these
certificates separately.) Here, we note a clear shift between the two curves.

Figures 6(b) and (c) provide a similar comparison of the (b) revoked and
(¢) non-revoked certificates on a per-CA basis. Here, we plot the fraction of cer-
tificates with validity periods longer than 89 days, 90 days, 1year (365 days),
and 2 years (720 days), respectively. These choices are based on the observation
that many CAs use validity periods of either 90 days or 398 days (e.g., steps
in the CDFs in Fig. 6(a)). For almost all CAs, the fraction of certificates with
long validity periods (darker colored bars) is larger among the revoked certifi-
cates (Fig. 6(b)) than among the corresponding CA’s non-revoked certificates
(Fig. 6(c)). This is in part an effect of CA/Browser Forum conventions [1] and
decisions by individual browsers [3,12,24] forcing CAs to use shorter certificate
validity periods. Another reason is that older certificates have had more time to
become compromised. It could also be an indication that CAs apply increasingly
stricter security policies (e.g., to comply with CT [20]).
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Fig. 6. Validity periods for different categories of revoked and non-revoked certificates.
(Color figure online)

Public Key Types: The modern WebPKI relies on EC (Elliptic Curve) [17]
and RSA (Rivest—Shamir—Adleman) [26] public-key cryptography. Here, we com-
pare the use of different key types and key lengths. While RSA 2048 is the
dominating public key among both revoked (90.44%) and non-revoked (80.81%)
certificates, there are significant differences in the revocation rates of certificates
including different key types. For example, certificates with RSA 3072 (4.55%
revocation rate), EC 521 (80.49%) and RSA with key lengths other than the
three most common lengths (6.67%) all have revocation rates well above aver-
age. In contrast, EC 256 (0.14%), EC 384 (0.62%) and RSA 4096 (1.48%) all
have revocation rates below average. These differences are also present when
looking at certificates of Let’s Encrypt and other CAs separately. Table 3 sum-
marizes the overall revocation rates (column 4) for each key type (column 1) and
the key usage distributions seen for each of the three certificate groups: Let’s
Encrypt (columns 5 vs 6 vs 7), other CAs (columns 8 vs 9), and the aggregate
over all certificates (columns 2 vs 3). Above/below average revocation rates are
shown with italic/regular (column 4) and bold text indicates the sub-group with
the highest relative representation (on a per-group basis). With this annotation,
higher revocation numbers (bold) reflect revocation rate above average (italic).

SCT and EV Usage: To measure the CT compliance we looked at the use
of Signed Certificate Timestamps (SCTs). While all certificates issued by Let’s
Encrypt have embedded SCTs, other CAs do not always embed the timestamps.
Furthermore, among the certificates issued by other CAs, the fraction of certifi-
cates that do not contain SCTs was much greater among the revoked (10.04%)
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Table 3. Key usage comparisons based on revocation vs non-revocation sets.

All certificates Let’s Encrypt (%) Others (%)

Key type |Revoked Non-revoked Revoked | M-rev. | Rev. |Non. |Rev. |Non.

RSA 2048 974,405 (90.44%) | 38,996,600 (80.82%) 2.44% |88.75 |89.93|80.79 |98.33|80.91
RSA 3072 13,616 (1.26%) |285,636 (0.59%) 4.55% |1.69 0.43 |0.78 0.01| 0.00
RSA 4096 80,711 (7.49%) 5,382,669 (11.16%)| 1.48% |8.70 8.85 |14.50| 1.15| 0.47
RSA other |29 (0.00%) |406 (0.00%) 6.67% |- - 0.00 0.02 | 0.00
EC 256 4,126 (0.38%) 2,873,827 (5.96%) 0.14% |0.36 0.45 |2.00 0.45 |18.61
EC 384 4,436 (0.41%) 712,770 (1.48%) 0.62% |0.52 0.34 [1.94 0.01 | 0.00
EC 521 66 (0.01%) |16 (0.00%) 80.49% |- - - 0.04 | 0.00

than non-revoked certificates (1.91%). In addition to having longer validity peri-
ods, some of the older non-expired certificates lack embedded SCTs. Owners and
issuers of these certificates may be replacing them with certificates that better
meet recent browser requirements [3,25]. We have also observed significantly
higher revocation rates among EV certificates. For example, 1,890 (10.77%) out
of the 17,544 observed EV certificates were revoked. Furthermore, for CAs other
than Let’s Encrypt, 1.08% of the revoked certificates are EV certificates and
0.14% of the non-revoked certificates are EV certificates.

4.4 CRL-Based Analysis

For the 2,190 CRL URLs extracted from the certificates of interest, we collected
643,860 CRL snapshots. Combined, these snapshots included CRL entries for
169,911 (15.8%) of the revoked certificates found using OCSP. Let’s Encrypt’s
decision not to implement CRL contributes to the small fraction. Here, we focus
on the certificates with at least one CRL entry and one OCSP “Revoked” status.
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Fig. 7. Distributions for measured CRLs.

Timing Analysis: On average, revocation statuses disappear even faster from
CRL lists than from OCSP responders. For example, only in 26.5% of the cases
did we observe the revocation status in the CRLs after the expiration date of the
certificates, and only for 2.9% did we observe the status being preserved longer
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than a week after expiration. This may be an attempt to reduce the size of the
CRLs. However, since the majority of the revocations happen early in the lifetime
of the certificates (e.g., the median normalized lifetime is 13.8%) there is still
a significant time period over which certificates are included in the CRLs. This
is illustrated in Fig. 7(a), which shows the normalized timing of revocations
and when the CRL entries are last observed in our dataset. Here, all values
are normalized relative to the total intended validity period (i.e., “NotBefore”
and “NotAfter” corresponds to the values 0 and 1, respectively). As implied by
Little’s law, the average size of a CRL (e.g., measured as entries per CRL) is
equal to the average time that the entries remain in the CRL (e.g., measured in
days) times the average rate that certificates are being added to the CRL (e.g.,
revocations per day), CRL sizes therefore easily become very large. Indeed, the
average CRL size was 7,362 entries and the largest CRL contained 1,139,538
entries at its peak. Figure 7(b) shows CDFs and CCDFs for both individual
measurements (all) and when using the observed peak size (max;). We also
observed some CRLs that did not appear to delete entries and roughly 0.94% of
the certificates remained in the CRLs for the full duration of our measurement.
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Fig. 8. Per-CA breakdown of CRL-listed reasons for revocation. (Color figure online)

Revocation Reasons: Figure 8 breaks down the percentage of certificates for
which (i) we did not find any CRL entry (blue), (ii) we found CRL entries with-
out revocation reason (gray), or (iii) we found a revocation reason for (orange,
brown, black) on a per-CA basis. For simplicity, we only show the dominating
reasons using colors (orange, brown) but provide the overall percentages (over all
certificates with CRL entries) in the figure key. The four dominating CRL behav-
iors that we observed were: (i) some CAs did not use CRLs (Let’s Encrypt, Plex)
or only used it to a limited degree (e.g., Sectigo, FNMT-RCM), (ii) 17 CAs used
CRLs for the majority of their revocations but did not provide any revocation
reason, (iii) three CAs almost always used “Cessation Of Operation” as revo-
cation reason (GoDaddy, Google, Starfield), and (iv) three CAs almost always
specified “Superseded” as the revocation reason.

Overall, most revoked certificates are not included in CRLs and 19.6% of CRL
entries contain no revocation reason. Our results show that the practices of CAs
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are highly heterogeneous and revocation statuses are not persistent; thus, we
argue that the Internet would benefit from a revocation transparency standard.

5 Related Work

A number of studies have measured the revocation rates on the Internet. Liu
et al. [23] performed several IPv4 HTTPS scans and found that a large fraction
of served certificates was revoked (8%), while CRLSets [11] by Google was only
covering 0.35% of all revocations. Chung et al. [5] evaluated the performance
of OCSP responders by sending OCSP requests from geographically separated
locations. They concluded that OCSP responders were not sufficiently reliable
to support OCSP Must-staple extension. Zhu et al. [34] found OCSP latency
to be “quite good”, and showed that 94% of OCSP responses are served using
CDNs. Moreover, only 0.3% of certificates were found to be revoked at that time
(2015). Smith et al. [32] propose an efficient scheme to disseminate revocations.
In the process, they measured revocation rates and found that in the absence
of a mass-revocation event, the revocation rate on the Internet was 1.29%. This
is similar to what we observed. The above works perform OCSP status checks
before certificate expiration, while we check the certificates the day before their
expiration and onward. Revocation effectiveness at the code-signing PKI was
measured in [16], and a number of security problems related to revocations were
identified. A recent survey and a comprehensive framework for comparison of
implemented and proposed revocation/delegation schemes are provided in [4].

Other Community Efforts and Data Sources: The CA/Browser forum
specifies some requirements that motivated our measurement design, including
the requirement that “revocation entries on a CRL or OCSP Response MUST
NOT be removed until after the Expiry Date of the revoked Certificate” [1]. We
used the Censys search engine, backed by Internet-wide scanning [10], to obtain
all certificates for our study. Some other online services also provide revocation
statuses. For example, crt.sh [31] attempts to fetch and process every known CRL
regularly (currently every 4 hours), while the OCSP requests are performed on-
demand. Until late Aug. 2020, Internet Storm Center [27] was regularly fetching
several CRLs; however, they did not monitor all CRLs present in our dataset
and did not capture the mass-revocation by Let’s Encrypt.

6 Conclusion

In this paper, we have presented the first characterization of the revocation
status responses provided by OCSP and CRL responders from the time of cer-
tificate expiration and beyond. We described a measurement methodology, which
allowed us to look at the revocation rates on the Internet from a new perspec-
tive; we quantified how short-lived the revocation statuses are, and highlighted
differences in status handling practices of different CAs. We found that most
CAs remove revocation statuses very soon after certificate expiration. Some
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CAs do not provide CRL entries for all revoked certificates and /or remove entries
from the CRLs before certificate expiration. The CA-dependent differences high-
lighted throughout the paper (e.g., revocation status lifetimes, usage of rea-
son codes, and abnormal behavior of switching certificates from “Revoked” to
“Good” status) capture a highly heterogeneous landscape that lacks a revocation
transparency standard. Finally, we argue for the deployment of such a standard
and demonstrate the global impact of the mass revocation event, which took
place during our measurement campaign. We compared the characteristics of
the mass-revoked certificates with the characteristics of other revoked and non-
revoked certificates issued by Let’s Encrypt and the rest of the CAs, and found
a limited number of biases, e.g., the biggest differences in the revocation rates
depend on the origin CA, key type, EV policy, and presence of embedded SCTs.

Acknowledgment. This work was supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg
Foundation.

Appendix A. Other CA-Based Behavior Comparisons

We have already seen that different CAs have different revocation-status-
handling practices. To provide some additional insights, we obtained day-of-week
distributions that capture when CAs change the “Revoked” status to something
else (Fig. 9(a)); compare this to the distribution of the first certificate validity day
(Fig. 9(b)). Perhaps, the most noticeable are the weaker weekly patterns. While
more than half of the CAs issue significantly fewer certificates with start dates
during weekends (dark areas for Sat/Sun in Fig. 9(b)), we did not observe such
weekly patterns for the revocation status changes. Instead, only a few CAs have
spikes of revocation status changes on a certain day (white squares in Fig. 9(a)).
For example, Starfield, GoDaddy (part of Starfield), and Digidentify update most
of their statuses on Friday, and Japanese Registry on Sunday (Monday Japanese
time). The distributions suggest that the relation between last-status-change
and certificate-validity-start days is not straightforward. Having said that, some
of the CAs have even weekly distributions for both processes, which may sug-
gest higher levels of automation (e.g., Let’s Encrypt, Google, Actalis, cPanel,
Gandi, Herndon). Among the large CAs, DigiCert stands out with their pro-
nounced weekly patterns for both processes. Similarly, there are some differ-
ences in the daily (Fig. 10(a)) and hourly (Fig. 10(b)) distributions of the expiry
times selected for certificates. Here, some of the large CAs (e.g., Let’s Encrypt,
GoDaddy, Google, GlobalSign) spread expiry times both across the week and
the hours of the days, whereas other large CAs (e.g., DigiCert, Comodo, cPanel,
Sectigo) always set certificates to expire at the same time of day. Although these
differences may not have major security implications, perhaps, they demonstrate
the lack of a standardized policy for managing the revocation status of expired
certificates.
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Fig. 10. Per-CA breakdown of expiry time of revoked certificates.

Appendix B: Responses by CAs

We contacted 8 organizations that operate the CAs for which we observed at
least one status change from “Revoked” to “Good”. However, we did not find
a contact email for one CA that no longer operates: AT&T Wi-Fi Services. We
received responses from 5 organizations: Starfield (GoDaddy), Japan Registry,
Entrust, ACCV, and Atos. The CAs that responded confirmed that they had
issued the certificates in question and provided varying explanations for their
behavior. Two CAs argued that their use of “Good” statuses was motivated by
RFC 6960 [29], which states that “at a minimum, this positive response [i.e.,
a “Good” response] indicates that no certificate with the requested certificate
serial number currently within its validity interval is revoked.” One of these two
CAs also stated that they “are going to consult with the community to clarify
the requirements, and then, [they will] follow it.” We believe that CAs should
avoid changing the status of revoked certificates to “Good” at any time.
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Abstract. The Domain Name System (DNS) is a cornerstone of com-
munication on the Internet. DNS over TLS (DoT) has been standardized
in 2016 as an extension to the DNS protocol, however, its performance
has not been extensively studied yet. In the first study that measures
DoT from the edge, we leverage 3.2k RIPE Atlas probes deployed in
home networks to assess the adoption, reliability, and response times of
DoT in comparison with DNS over UDP/53 (Do53). Each probe issues
200 domain name lookups to 15 public resolvers, five of which support
DoT, and to the probes’ local resolvers over a period of one week, result-
ing in 90M DNS measurements in total. We find that the support for
DoT among open resolvers has increased by 23.1% after nine months in
comparison with previous studies. However, we observe that DoT is still
only supported by local resolvers for 0.4% of the RIPE Atlas probes. In
terms of reliability, we find failure rates for DoT to be inflated by 0.4-
32.2% points (p.p.) when compared to Do53. While Do53 failure rates
for most resolvers individually are consistent across continents, DoT fail-
ure rates have much higher variation. As for response times, we see high
regional differences for DoT and find that nearly all DoT requests take at
least 100 ms to return a response (in a large part due to connection and
session establishment), showing an inflation in response times of more
than 100 ms compared to Do53. Despite the low adoption of DoT among
local resolvers, they achieve DoT response times of around 140-150 ms
similar to public resolvers (130-230 ms), although local resolvers also
exhibit higher failure rates in comparison.

1 Introduction

The Domain Name System (DNS) faces various privacy-related issues such as
fingerprinting or tracking [10,11,22,23,36] that affect DNS over UDP /53 (D053).
Consequently, DNS over TLS (DoT) was standardized in 2016 [19] to upgrade
the communication [35]: The protocol establishes a TCP connection and TLS
session on port 853, so that DNS messages are transmitted over an encrypted
channel to circumvent eavesdropping and information exposure. DoT has gained
increasing support since its standardization; e.g., it is supported on Android
devices as “Private DNS” since Android 9 (August 2018) [24]. Similarly, Apple
supports DoT and DNS over HTTPS (DoH) on their devices and services with
the recent i0S 14 (September 2020) and MacOS Big Sur (November 2020) [38].
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Previous work [8,17,26] has studied the support and response times of DoT
(and DoH). However, the studies performed response time measurements from
proxy networks and data centers, which means that results might not appropriately
reflect the latency of regular home users: The measured response times are likely
overestimated due to the incurred latency overhead of proxy networks or under-
estimated due to the usage of well-provisioned data centers. We close this gap by
measuring DoT from the end user [28] perspective for multiple DoT resolvers as the
first study to do so, using 3.2k RIPE Atlas home probes deployed at the edge across
more than 125 countries (Sect. 3). We issue DNS queries to 15 public resolvers, five
of which support DoT, to analyze and compare the reliability and response times
of Do53 and DoT resolvers. Our main findings are:

DoT Support (Sect.2): We find DoT support among open resolvers to have inc-
reased by 23.1% compared to previous studies [8,26]. TLS 1.3 support [15,31]
among these resolvers has increased by 15% points (p.p.), while support for
TLS 1.0 and 1.1 is increasingly dropped. For RIPE Atlas (Sect. 4), we only find
13 (0.4%) of 3.2k home probes to receive responses over DoT from their local
resolvers.

DoT Failure Rates (Sect.4): While overall failure rates for Do53 are between
0.8-1.5% for most resolvers, failure rates for DoT are higher with 1.3-39.4%,
i.e., higher by 0.4-32.2% points (p.p.) for individual resolvers. Failure rates are
more varying across the continents for DoT, ranging from <1% up to >10%,
with higher values primarily seen in Africa (AF) and South America (SA). On
the other hand, Dob53 failure rates are more consistent across most resolvers and
continents (roughly 0.3-3%). Most failures occur due to timeouts (no response
within 55s), which we suspect is due to intervening middleboxes on the path that
blackhole the connections by dropping packets destined for port 853.

DoT Response Times (Sect.5): Comparing response times between Dob53
and DoT, we find that most DoT response times are within roughly 130-230 ms,
and are, therefore, slower by more than 100 ms, largely due to additional TCP
and TLS handshakes. For most samples of well-known DNS services (such as
Google, Quad9, or Cloudflare), response times of for Do53 are consistent across
the continents, while other resolvers show larger regional differences. For DoT,
only Cloudflare exhibits consistent response times across regions, whereas the
remaining resolvers have highly varying response times. In cases where the local
resolver does support DoT, response times are comparable to those of the faster
public resolvers (140-150 ms) and similarly inflated compared to Do53.

We discuss limitations (Sect.7) and compare our findings to previous
work (Sect. 6) before concluding the study (Sect.8). To facilitate reproducibility
of our results [1], we share the created RIPE Atlas measurement IDs, analysis
scripts, and auxiliary/supplementary files!. The measurements do not raise any
ethical concerns.

! Repository: https://github.com/tv-doan/pam-2021-ripe-atlas-dot.
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2 DoT Background: Adoption and Traffic Share

DoT Adoption Among Open Resolvers. Deccio and Davis [8] study and
quantify the deployment of public DoT resolvers as of April 2019. Note that in the
context of their study, a resolver refers to an IP endpoint, which may, therefore,
include a replicated or anycasted service. They identify 1.2M open DNS resolvers
in the public IPv4 address space, out of which 0.15% (1,747) support DoT. Of
the DoT resolvers, 97% (1,701) support TLS 1.2 and 4.5% (79) support TLS
1.3, whereas older TLS versions (TLS 1.0 and 1.1) are not supported by 4.6%
(80) of the resolvers. A similar number of open DoT resolvers (1.5k) was found
by Lu et al. [26] (2019).

We repeat this scan from a research network at Technical University of
Munich (TUM) in January 2020 (i.e., nine months after Deccio and Davis [8]) for
the same set of open DNS resolvers. We find that the number of open resolvers
supporting DoT has increased to 2,151, i.e., an increase by 23.1%. The share
of resolvers supporting TLS 1.2 has increased to 99.9% (2,149 resolvers), while
the percentage of TLS 1.3-supporting resolvers has increased to 20% even (433).
Older versions of TLS are not supported anymore by 508 resolvers (24%), which
altogether indicates that the adoption of DoT and newer TLS implementations
is increasing.

DoT Traffic Share. To assess the usage of DoT in terms of traffic, we analyze
public traffic traces collected from samplepoint-F of the WIDE backbone [7],
which monitors a research network link in Japan. We aggregate the daily traffic
traces of 2019 by month and inspect the traffic share of DoT, i.e., traffic on
TCP/853. We observe that DoT accounts for roughly 2M out of 11.8B flows in
the dataset, which means that DoT accounts for around 0.017% of all flows. On
the other hand, the traffic share of Do53 is more than 135 times as much with
271.5M flows (2.3%), which indicates that DoT only contributes a very negligible
amount of traffic overall.

3 Methodology

Measurement Platform and Probes. We use RIPE Atlas [32] to measure
reliability and response times of Do53 and DoT from distributed vantage points;
DoT measurements are performed over TLS 1.2, as RIPE Atlas probes do not
fully support TLS 1.3 yet. For our experiment, we first select probes that are
IPv4-capable and resolve A records correctly through the RIPE Atlas API. We
exclude anchor probes to capture the Dob53 and DoT behavior for end users
more accurately. As older versions of RIPE Atlas probes (V1 and V2) exhibit
load issues [2,14], we only consider V3 probes, ultimately finding 5,229 probes
in total. For the analysis, however, we only take residential probes into account:
We use RIPE Atlas user tags [3] for the identification of residential networks.
Additionally, we issue traceroute measurements to an arbitrary public endpoint
from all probes over IPv4: If the IP address of first hop on the path is private [30]



Measuring DNS over TLS from the Edge 195

and the IP address of the second hop is in the public address space (i.e., the probe
is directly connected to the home gateway), we also identify the probe as resi-
dential. Combining the set of probe IDs determined from both these approaches,
we identify 3,231 home probes overall. As the number of dual-stacked residential
probes is significantly lower (roughly 700 globally), we decide to not perform
measurements over IPv6: The low number of IPv6-capable probes overall limits
the regional analysis, since such probes are primarily deployed in Europe (EU)
and North America (NA), which would leave other continents largely underrepre-
sented. Thus, we focus on IPv4 measurements exclusively in our study, although
we suggest to repeat the measurements over IPv6 with increased deployment of
probes having native IPv6 connectivity.

DNS Resolvers. We issue the resolution of 200 domains (A records) to 15
selected TP endpoints of different public DNS services once a day, repeated over
a period of one week (July 03-09, 2019). Out of the 15 public DNS services,
listed in Table 1, five support DoT: CleanBrowsing, Cloudflare, Google, Quad9,
and UncensoredDNS. For these services, we additionally issue the same DNS
lookups to the same IP endpoints using DoT for comparison. Moreover, we query
the same 200 domains using the DNS resolvers provided by a probe’s network
configuration, which we will refer to as local resolver (typically operated by the
ISP and assigned via DHCP) in the following; this allows us to study the support
of DoT among ISPs. Note that probes may use multiple IP endpoints when
resolving domains locally. In particular, probe hosts may use public resolvers as
their local resolvers; thus, we exclude all occurrences of these public resolvers
from the local resolver measurements, including alternative IP endpoints which
these public DNS services may use. Among the 2,718 probes that receive at
least one successful Dob3 response from a local resolver, we find 2,257 probes
to use an endpoint in their private network as local resolver (e.g., a CPE) and
572 probes to use an ISP resolver (public IP address) for local name resolution.
However, as we do not see significant differences in terms of response times at
the 5" percentiles of each probe (9.5 ms for CPE, 9.8 ms for ISP resolver), we
do not further distinguish between both groups.

Domains. The 200 queried domains consist of 150 websites from Alexa Top
1M [33]: We split the Top 1M list into 10 equally-sized bins of 100k each (by rank
order) and select the 15 first domains of each bin, resulting in 150 popularity-
focused domains. The remaining 50 domains are selected from the country-based
Alexa Toplists, for which we determine 10 countries across the continents with
high numbers of probes (US, DE, GB, RU, NL, IT, JP, NZ, ZA, BR). We then
pick 5 website domains from each Alexa Toplist of the associated Top-Level
Domain (.us, .de, .co.uk, etc.), resulting in 50 region-focused domains. Note
that sampling the entire 1M domains does not improve representativeness, since
we repeat the measurements over a period of one week and expect records to be
cached. Also, the known instability of the Alexa Toplist [33] does not substan-
tially influence our measurements: We construct the list of overall 200 domains
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Table 1. Overview of measured resolvers together with the number of failed requests,
total requests, and failure rates for both Do53 and DoT. Failure rates for DoT are higher
compared to Do53 for each resolver, with failure rates also being lower for public DNS
services than local resolvers. Highlighted cells are referred to in Sect. 4.

Resolver Name Do53 DNS over TLS
# Failures +# Total F];l:::;e # Failures # Total F;{l:tlze
1) CZ.NIC ODVR 44,942 4,269,957  1.1% — — —
2) CleanBrowsing 37,681 4,273,000 0.9% 430,401 4,163,095 10.3%
3) Cloudflare 1.1.1.1 107,841 4,273,000  2.5% 122,932 4,157,033 3.0%
4) Comodo Secure DNS 65,849 4,272,976 1.5% — — —
5) DNS.WATCH 43,349 4,272,960 1.0% — — —
6) Google Public DNS 38,670 4,272,587  0.9% 53,059 4,157,354 1.3%
7) Neustar UltraRecursive 4,190,474 4,269,365 98.2%
8) OpenDNS 34,826 4,273,061  0.8% — — —
9) OpenNIC 61,077 4,266,712  1.4% — — —
0) Oracle + Dyn 46,247 4,272,609  1.1% — — —
11) Quad9 51,292 4,272979  1.2% 110,404 4,157,340 2.7%
12) SafeDNS 37,291 4,269,648  0.9% — — —
13) UncensoredDNS 62,175 4,269,656  1.5% 4,039,111 4,157,277  97.2%
14) VeriSign Public DNS 36,644 4,269,638  0.9% — — —
15) Yandex.DNS 53,581 4,269,591  1.3% — — —

Local Resolver
16a) without DoT support 573,514 5,108,671 11.2% — — —

16b) Local Resolver 2,356 32,649 7.2% 13,737 34,839 39.4%
with DoT support

Total 5,487,809 69,209,049 7.9% 4,769,644 20,826,938 22.9%

(from July 01, 2019) to investigate whether there are larger differences between
bins of more popular and less popular domains, or in terms of Top-Level Domain
(TLD) and probe location. However, we do not find any significant deviations in
terms of response times, neither regarding popularity rank nor TLD. Thus, we
do not further distinguish between individual domains in the analysis.

With this experiment setup, we collect measurements for around 90M DNS
requests from home probes in total (see Table 1).

4 Reliability

We investigate the reliability of Do53 and DoT by analyzing the failure rate,
which we define as the relative number of failed queries to the total number of
queries. A query is defined as failed if the domain lookup could not be sent to the
resolver or the probe did not receive a response; in both cases, the RIPE Atlas
API will return an error. Table 1 shows the overall failure rate, as well as the
failure rate by resolver, for both Do53 and DoT. Note that we exclude 33 probes
which failed nearly all of their DoT measurements (see error analysis below)
from all following analyses. Further, only 2,718 probes of the 3.2k home probes
successfully receive a Dob3 response from local resolvers, i.e., the remaining
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probes cannot resolve a domain using a local resolver (but can with a public
resolver). Considering DoT, we find that only 13 probes receive responses from
their local resolver via DoT, which means that DoT is only supported by 0.4%
of the local resolvers. We exclusively see these DoT-supporting local resolvers
(discussed in more detail in Sect.5) in EU (11 probes) and NA (2 probes). As
such, we separate the queries to local resolvers (by probes with and without
DoT-supported local resolvers) in Table 1 and this subsection.

Overall Failure Rates. The overall failure rate for Do53 is 7.9%, with individ-
ual failure rates of 0.8-1.5% for most resolvers, whereas the overall failure rate
for DoT is much higher at 22.9%, i.e., a difference of 15.0% points (p.p.). How-
ever, the total failure rates are heavily influenced by a few resolvers exhibiting
particularly high failure rates of close to 100%: For instance, 98.2% of the Do53
requests to Neustar UltraRecursive fail, accounting for 76.4% of the Do53 failure
rate in total. For DoT, UncensoredDNS accounts for 84.7% of all DoT failures
with an individual failure rate of 97.2%; local resolvers with DoT support have
an overall DoT failure rate of 39.4%.

Individually, the D053 failure rate is between 0.8% and 2.5% for all public
resolvers when disregarding Neustar. Local resolvers encounter failures in 11.2%
of the cases instead (7.2% for probes with DoT-supported local resolvers).

We observe an inflation of failure rates when moving from Dob53 to DoT
for all DoT resolvers: Inflations range from 0.4 and 0.5 p.p. for Google and
Cloudflare, over 1.5 p.p. for Quad9 and 9.4 p.p. for CleanBrowsing, to 95.7 p.p.
for UncensoredDNS; local resolvers with DoT support show an inflation toward
the higher end with 32.2 p.p. Overall, these numbers suggest that DoT support
on the paths is still experimental and, therefore, varying concerning reliability.

Error Analysis. Regarding the respective error messages, we find that most
failures are attributed to timeouts (5 s), socket errors, and connect () errors (con-
nection refused/reset, network unreachable). For Do53, nearly all failed requests
toward Neustar (>99.9%) are due to timeouts. DoT measurements show a sig-
nificant amount of TUCONNECT errors, which are exclusive to DoT and suggest
TLS negotiation errors. To further investigate this, we count the number of
TUCONNECT errors for each combination of probe and public resolver; we exclude
UncensoredDNS from this analysis due to its high failure rate overall (which
indicates server-side issues). For all combinations of 3.2k probes X 4 resolvers,
we find repeated TUCONNECT errors for 33 probes across all resolvers where the
probes fail nearly all scheduled 1.4k DoT measurements (200 domains x 7 days).
This indicates blackholing of DoT packets closer to these probe (home router
or in the ISP network). Although the number of affected probes is negligible
(=1%), we have excluded the affected 33 probes from the previous and following
analyses. We further investigate TUCONNECT errors and find a higher number of
probes failing nearly all DoT measurements for Cloudflare in particular, which
affects 99 probes. The differential of 66 probes between these two groups show
no errors for the other resolvers, suggesting DoT blackholing closer to Cloudflare
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Fig. 1. Failure rates of resolvers by continent for Do53 (top) and DoT (bottom). Each
cell represents the failure rate based on all failures relative to all queries for the specific
resolver and continent. Most failure rates for Do53 are between 0.3-3%, whereas DoT
failure rates are generally higher and more varying.

anycast instances that serve these probes, which in return causes a higher failure
rate compared to other resolvers. CleanBrowsing, on the other hand, shows a
similar failure rate regarding TUCONNECT errors as Google or Quad9; the majority
of CleanBrowsing’s overall DoT failures (10.3%) stem from timeouts instead.

The inflated failure rates for DoT in comparison with Do53 are less surprising,
as DoT was only standardized in 2016 [19]: As such, DoT likely still faces issues
with middleboxes along the path [16,29], which intervene with DoT packets
(TCP/853) and result in timeouts.

Regional Comparison. To identify regional differences, Fig. 1 depicts the
failure rates of Do53 (top) and DoT (bottom) by resolver and continent. Most
resolvers exhibit similar Dob3 failure rates across all continents, in the range
of roughly 0.3-3%. Local resolvers show significantly higher failure rates (5.7—
13.6%), which means that RIPE Atlas probes have less success in resolving
domain names when using their local resolver (regardless of DoT support). Thus,
Do53 resolutions are more reliable with public resolvers compared to local ones
concerning RIPE Atlas measurements. Nevertheless, we find similarly high values
for OpenNIC in SA (11.3%), and Cloudflare in AF (6.8%) and SA (10.3%). As
mentioned, Neustar represents an outlier, as measurements fail in nearly all
cases (95.6-98.9%). Probes in Oceania (OC) have the lowest failure rates for all
resolvers when comparing different continents, with most resolvers having failure
rates of at most 0.5%.
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Fig. 2. Histograms of response time ratios (DoT to Do53) per probe for each resolver.
The vertical dashed line represents the ratio of 4 RT'Ts for DoT (TCP handshake +
TLS handshake + DNS lookup) to 1 RTT of Do53 (DNS lookup).

Regarding DoT, Google and Quad9 exhibit the lowest failure rates across
all continents (<5% in most continents), although still higher than their respec-
tive Dob3 failure rates. On the other hand, Cloudflare and CleanBrowsing show
higher failure rates, especially in AF (9.8% and 31.1%) and SA (11.6% and 7.4%),
with CleanBrowsing having a high failure rate in EU (12.8%) as well. Queries
to UncensoredDNS fail in nearly all cases (92.7-99.1%). As multiple public DoT
resolvers (even those with otherwise reliable services in other continents) have
higher failure rates in AF and SA, these regions may be affected more heavily by
ossification in terms of middleboxes. Local resolvers with DoT support also show
high failure rates, with 40.3% in EU, and 33.3% in NA. In total, this indicates
that the DoT reliability is highly dependent on the geographical location as well
as the chosen DNS service.

5 Response Times

We aggregate the measurements by grouping distinct tuples of probe and resolver
and, for each group, determine the 5" percentile in terms of response time (i.e.,
one value for each probe-resolver tuple across all measurements). We choose
5t percentiles to limit the analysis to responses for cached records, as those
accumulate at the lower end of the distribution and represent best-case scenarios.

Background. Before discussing response times of the measurements, we elab-
orate on a technical limitation regarding DoT: By design, a DoT client would
first establish a TCP connection and TLS session with the recursive resolver,
then keep this session alive to reuse it for resolutions of multiple domains. Thus,
the added delay due to the TCP and TLS handshake RTTs only apply once for



200 T. V. Doan et al.

DNS over TLS

1.0 1.0
.
0.8 0.8 4
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0
T T T T T T T T T T
10° 10t 102 103 104 10° 10t 102 103 104
Response Time [ms] Response Time [ms]
—&— Local Resolver —#— Comodo Secure DNS —=— OpenNIC UncensoredDNS

CZ.NIC ODVR DNS.WATCH Oracle + Dyn VeriSign Public DNS

CleanBrowsing —e— Google Public DNS —— Quad9 —=— Yandex.DNS

Cloudflare 1.1.1.1 OpenDNS SafeDNS Neustar UltraRecursive

Fig.3. CDF of resolver response time for successful Do53 (left) and DoT (right)
requests (5th percentiles per probe). While most Do53 responses arrive within roughly
100 ms, the majority of DoT responses require more than 100 ms to return.

as long as the connection and session stay alive. For RIPE Atlas probes, how-
ever, DoT measurements do not keep the connection/session alive in between
different measurements, which means that the additional RTTs required for the
TCP and TLS handshakes apply to every DoT measurement. We contacted the
RIPE Atlas support regarding specific protocol details: RIPE Atlas probes do
not use TCP Fast Open or other extensions, so establishing the TCP connec-
tion will add 1 RTT to the response time. Further, probes typically use TLS 1.2
(2 additional RTTs), though some probes may use TLS 1.3 (1 additional RTT);
however, the DoT measurement results do unfortunately not provide any infor-
mation about the used TLS version for validation. As such, DoT measurements
include 3 additional RTTs (2 in the best case) on top of the DNS lookup (1
RTT).

Considering we focus on cached responses (5" percentiles, see above) exclu-
sively in this section, we argue that the lookup times are negligibly small (since
results are simply returned from the cache). Thus, the response times largely con-
sist of the RTTs between probe and resolver. Consequently, Do53 measurements
resemble roughly 1 RTT, which we consider as the baseline RTT (cf. overall
response times below), whereas DoT measurements resemble roughly 4 RTTs
in total, plus time for connection/session management and processing on both
probe and resolver. For approximation, we calculate the ratio between the 5"
percentiles of the DoT and Dob53 response times per probe for each resolver,
shown in Fig. 2; the vertical dashed lines represent the outlined ratio of 4 RTTs
to 1 RTT (i.e., DoT to Do53).

The minimum ratio across all resolvers is 3.11, which suggests usage of
TLS 1.3 in these cases (1 RTT less than with TLS 1.2). Yet, these cases are rare
(only four probe-resolver pairs), as the median ratio among the public resolvers is
10.5 (25" percentile 7.5); this suggests that besides the approx. 4 RT'Ts required
for the handshakes, most samples require at least around 4 more RTTs for pro-
cessing of the DoT request on probe and resolver side. However, this processing
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Fig. 4. Medians of the 5" percentile response times by continent and resolver for Do53
(top) and DoT (bottom). Do53 response times are mostly below 20-40 ms for most
resolvers, whereas DoT response times are between roughly 120-180 ms instead.

overhead for DoT measurements cannot be accurately determined, as probes
record the total response time only and, therefore, do not allow separation of
different steps during the DoT lookup. Nevertheless, note that the handshake
RTTs still account for a large fraction of the measured DoT response times over-
all. Recall that only 13 probes leverage DoT-supporting local resolvers, most of
which have ratios toward the higher end (see Fig. 2, bottom right) due to very
low D053 response times (<10 ms) and likely early-stage DoT implementations.

Due to these limitations (also see Sect.T7), the following analyses describe
the DoT response times as measured by RIPE Atlas, i.e., incl. TCP/TLS hand-
shakes; observed inflations will only apply when initiating connections to DoT
resolvers and, thus, represent upper bounds of response times for cached records.

Overall Response Times. The distributions of the 5™ percentile response
times for Do53 are shown in Fig. 3 (left). The fastest resolvers with medians of
less than 15 ms are Neustar (median 2.4 ms), local resolvers (9.3 ms), Cloudflare
(10.8 ms), and Google (12.6 ms). However, note that the sample size of Neustar
measurements is much lower due to its high failure rate (see Sect.4). Public
resolvers that primarily serve clients of a specific country such as CZ.NIC (CZ,
41.2 ms) and Yandex (RU, 51.8 ms), as well as UncensoredDNS (44.9 ms) show
response times toward the higher end. The remaining resolvers have response
times in between (16-31.3 ms) over Do53.
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On the other hand, response times for DoT (see Fig. 3, right) are much
higher in comparison with Do53, as expected considering the additional RTTs.
The medians for Google (129.3 ms), Cloudflare (131.9 ms), and local resolvers
(147 ms) are in the same range of roughly 130-150 ms, whereas Quad9 (170.4 ms)
and CleanBrowsing (227 ms) show higher response times, which indicates
response time inflations of 150-200 ms when compared to Do53. The median
for UncensoredDNS is an outlier at 1.06s; coupled with its high DoT failure
rate, the measurements suggest that UncensoredDNS is less suitable as a DoT
resolver at this stage. Despite the low support of DoT by local resolvers, the
response times are comparable to (and in some cases even better than) well-
known public resolvers such as Google, Cloudflare, and Quad9.

Regional Comparison. Figure 4 shows response times for each resolver and
continent for Do53 (top) and DoT (bottom); each cell represents the median
value for the respective continent-resolver pair, with the sample values being the
5" percentiles of the response times from Fig. 3.

For Do53, we observe that the lowest delays are measured in EU, where the
responses arrive within 43.4 ms for all resolvers. For other continents, we see
occasionally higher response times, especially in AF, Asia (AS), OC, and SA,
where some resolvers take more than 100 ms (up to 339.2 ms) to respond to
a Dob3 request. Local resolvers exhibit the lowest response times by far, with
values ranging between 7.1-12.4 ms, similar to Google (10.2-23.4 ms); again,
note that Neustar shows very low response times but is not fully compara-
ble due to its lower sample size. Overall, we observe that the performance of
well-known resolvers (Google, Quad9, Cloudflare) is consistent when comparing
response times between different continents, i.e., regional differences for resolvers
are marginal, while for other resolvers (with fewer points of presence around the
globe) regional differences are higher.

Considering DoT (Fig. 4 bottom), we again find response times to be sub-
stantially higher than their Dob3 counterparts for all cells. However, differences
between the continents are much more varying compared to Dob3, with the
exception of Cloudflare which shows the least varying median response times
(128.1-147.7 ms) across all continents. On the other hand, samples for Google
are in between 122.9-315.1 ms (showing high response times in AF and OC),
which is comparable to DoT-supported local resolvers in EU and NA (148.1 and
243.9 ms). Quad9 (114.3-622.6 ms) and CleanBrowsing (175.4-1,171.4 ms) show
higher variance across the regions; responses from UncensoredDNS even require
more than 1s in most cases. Overall, response times for DoT are much more
varying across different continents when compared to Do53.

Response Time Inflations by Individual Probes. To further investigate
the actual difference between D053 and DoT in terms of response time, we only
consider resolvers that offer both protocols in the following. We calculate the
individual deltas between D053 and DoT for each probe-resolver tuple (i.e., the
probe’s inflation in response time to a specific resolver) by subtracting the 5%
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5t percentile of its Do53

percentile of a probe’s DoT response times from the
response times.

We find all deltas to be negative, which means that DoT is slower than
Do53 in all cases. We observe the lowest inflations regarding response times
to be around 66 ms (i.e., delta of —66 ms), although the interquartile range
across all samples is [—285.6; —114.8] ms. The medians of the deltas are highly
varying across the continents (EU —145 ms, NA —164.9 ms, OC —188.4 ms,
AS —234.4 ms, SA —330.5 ms, AF —367.3 ms). Regarding resolvers, Google
(median —115.9 ms), Cloudflare (—121 ms), local resolvers (—143.8 ms),
and Quad9 (—149.8 ms) show similar inflations in the range of roughly
120-150 ms; on the other hand, CleanBrowsing (—202.8 ms) and UncensoredDNS
(—910.3 ms) exhibit much higher response time differences between Do53 and
DoT.

Overall, while the observed overheads of DoT differ depending on continent
and resolver, we still see differences of more than 100 ms for almost all samples
in favor of Dob3.

Local DoT Resolvers. To further examine local resolvers, we split the mea-
surement of local resolvers with DoT support by individual resolvers. The 9 local
resolvers that support DoT are operated by larger commercial ISPs, smaller asso-
ciations that offer Internet services, cloud/DNS service providers, and academic
institutions. However, note that they are only used by 13 probes (11 EU, 2 NA)
in our study; DoT is not supported by any local probe resolver in AF, AS, OC,
or SA. We find varying DoT response times for the different local resolvers in
the range of 66.4-383.8 ms overall. XS4ALL (an ISP from NL) shows consistent
response times (145.9-156.6 ms) for the five corresponding probes. Further, most
of the remaining local resolvers respond within 104-223.2 ms; as such, the DoT
response times of local resolvers are largely on par with those of public resolvers.

6 Related Work and Discussion

We contrast our results with those of recent studies: Deccio and Davis [8] find
that DoT is supported by 0.15% (1.7k) of all publicly routable IPv4 resolvers,
with most of them being assigned to CleanBrowsing (among some resolvers from
Cloudflare, Google, and Quad9); our repetition of the experiment reveals that
this number has increased by 23.1% within nine months (see Sect. 2).

Lu et al. [26] find a similar number of open DoT resolvers (1.5k) and measure
response times for DoT and DoH from two residential proxy networks, covering
123k vantage points in total (30k global, 85k in China). In terms of reachability,
99% of the global users in their study can reach a DoT resolver. In their example,
Cloudflare is reachable by 98.9% of the users due to the DoT failure rate being
1.1% only; for our results, we observe Cloudflare to fail in 3.0% for all DoT
measurements, whereas Google only fails in 1.3%, ultimately resulting in roughly
similar numbers in terms of reachability. However, they find much lower failure
rates for Quad9 (0.15%, compared to our 2.7%). To contrast this with DoH, they



204 T. V. Doan et al.

find DoH failure rates of less than 1% from their global proxy network; overall,
they observe DoH to have about equal or higher reachability than DoT.

Regarding response times, they find median response times for DoT without
connection reuse to range between 349-1,106 ms based on location for Cloudflare,
Google, and Quad9 resolvers; this includes overheads for TLS session negotia-
tion, which are in the range of 77-470 ms. These response times are higher by
as much as factors of 1.75-5.5 compared to the DoT response times (Sect.5)
of our RIPE Atlas measurements (median of all probe-resolver response time
medians at 201 ms). This indicates that the residential proxy networks add a
significant amount of latency to the measurements, which does not reflect the
actual response times for home users. Nevertheless, the authors [26] find that
connection reuse improves the average response times substantially. This sug-
gests that our measurements represent a rough upper bound for the average
DoT response times of home users.

Hounsel et al. [17] measure Do53, DoT, and DoH from five global vantage
points through Amazon EC2 instances, using Cloudflare, Google, and Quad9.
They compare the effects of the different DNS protocols on loading times of
webpages and take advantage of the aforementioned connection reuse. For their
DoT queries from Frankfurt (FRA), they observe most responses to return within
100 ms for Google and Cloudflare, although results for Quad9 are much more
varying (only around 20% within 100 ms). These numbers are much lower com-
pared to the RIPE Atlas 5*" percentiles of roughly 130-150 ms that we dis-
cuss (Sect. 5), although this difference is likely related to the connection/session
reuse as well as usage of well-provisioned data centers as vantage points (rather
than home networks). Nevertheless, while DoT and DoH response times for indi-
vidual queries are higher compared to Dob3, the overall page loading times are
lower when reusing the connection and session, showing that a switch from Dob3
to DoT or DoH might be beneficial in terms of response times already.

7 Limitations and Future Work

We restrict the set of probes to home and V3 probes exclusively; note that these
probes are deployed in 1.1k different ASes, with the top 10 ASes (0.9%) account-
ing for roughly 27.6% of all home probes. Although there is a potential bias
toward overrepresented ASes, we decide not to normalize by ASes since network
conditions and, hence, measurements are not guaranteed to be uniform across
an AS either: Sampling “representative” probes for each AS would, therefore,
introduce another bias into the dataset and analysis.

Furthermore, we cannot directly control the caching behavior of the measured
resolvers, though the 200 selected domains are likely cached due to being highly
ranked in Alexa Toplists and repeated measurements. Regarding response times,
we further limit the analysis to the 5" percentiles for each probe. Note that
measurements over RIPE Atlas cannot be guaranteed to run simultaneously
or back-to-back due to scheduling and load balancing on the probe. Therefore,
we cannot (for instance) pair Dob53 and DoT measurements for a head-to-head
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comparison, and instead rely on the entire distribution (reliability, Sect.4) and
5" percentiles (response times, Sect. 5) of the measurements.

Moreover, as RIPE Atlas does not keep the TLS session alive for reuse
between different measurements, the presented response times represent the ini-
tial delays for the first DNS request. Thus, they estimate the upper bounds
for DoT response times which end users would experience since subsequent DNS
requests through the same TLS session do not require additional handshakes and
will have lower response times as a result. Further, applications typically resolve
multiple domains concurrently in real use cases, while measurements from RIPE
Atlas are performed sequentially.

In the future, we plan to study the impact of different TLS versions, or the
benefit of TLS session reuse, but also to study changes over time by repeating the
measurements, including measurements over IPv6. To further investigate issues
with middleboxes, traceroute measurements over UDP /63 and TCP/853 can
complement the failure analysis of DNS requests by comparison to see where
packets are dropped in the network. With the increasing adoption of DNSSEC
and larger DNS responses, DNS measurements over TCP/53 can provide fur-
ther insight about the adoption, reliability, and response times of DNS over TCP.
Lastly, DoH measurements (which are not yet possible with RIPE Atlas) from
home networks can contribute to ongoing research, as response times and relia-
bility of DoH from the edge have not been widely studied yet.

8 Conclusion

We present first measurement results that compare Dob53 and DoT w.r.t. relia-
bility and response times in the context of residential networks, based on 90M
domain lookups over both protocols from 3.2k RIPE Atlas home probes. We
study the support of DoT among the local resolvers of the probes, finding that
only 13 probes (i.e., 0.4%) have DoT-capable local resolvers, which indicates
that the adoption of DoT is still very low. When comparing the failure rates for
resolvers that respond to both Do53 and DoT queries, we observe that the DoT
failure rate is higher by 0.4-32.2% points (p.p.) for these resolvers. In particu-
lar, the majority of failures occurs due to timeouts, which is likely seen due to
middleboxes that drop packets associated with DoT on port 853. In terms of
response times, we find that DoT is slower by more than 100 ms (in a large part
due to connection and session establishment), with response times between 130-
150 ms for the fastest resolvers and up to 230 ms when including slower ones.
Although the support of DoT among local resolvers is low, some local resolvers
achieve similar DoT response times (140-150 ms) to the faster public resolvers.
Local resolvers further have the lowest latency over Do53, however, both their
D053 and DoT failure rates are higher compared to public resolvers.

With increasing support of DoT among mobile devices as shown by
Android [24] and Apple [38], increasing support by local resolvers is impor-
tant and necessary to avoid centralization of DNS traffic [27] to third parties
besides the ISP: Although this can be worked around by cycling through sev-
eral resolvers [12], this comes at the cost of higher resolution times (especially
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due to multiple connection and session establishments). As such, to reduce the
information leakage through DoT [18] to additional parties while also keeping
resolution times low, it is crucial for local resolvers to adopt encrypted DNS
and be discoverable within home networks [6]; as seen, DoT response times are
comparable between local and public resolvers.

Considering the issues with inflated failure rates for DoT due to ossification,
one question that arises is whether to switch the development and deployment
focus to DoH [5,13] instead: Just like HTTPS, DoH runs over TCP /443, which
will make middlebox issues along the path less likely. Further, popular Web
browsers such as Chrome [37] and Firefox [9] already support DoH. However,
studies [34] have shown that DoH is more susceptible to fingerprinting attacks
than DoT, and further drives centralization of DNS traffic [4,12,25,27]. As both
DoT and DoH bring latency overheads, DNS over QUIC [20] might be another
encrypted alternative with response times which are closer to Dob3. Yet, legis-
lation may discourage and hinder the deployment of encrypted DNS and similar
protocols beyond the area of jurisdiction [21]. Thus, further advances and future
follow-up studies on encrypted DNS are required to get a better understanding.
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