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Abstract We study possible dynamical scenarios associated with a higher-order
Ginzburg–Landau-type equation. In particular, first we discuss and prove the
existence of a limit set (attractor), capturing the long-time dynamics of the system.
Then, we examine conditions for finite-time collapse of the solutions of the
model at hand, and find that the collapse dynamics is chiefly controlled by the
linear/nonlinear gain/loss strengths. Finally, considering the model as a perturbed
nonlinear Schrödinger equation, we employ perturbation theory for solitons to
analyze the influence of gain/loss and other higher-order effects on the dynamics
of bright and dark solitons.

1 Introduction

In this work, our aim is to study the dynamics of a higher-order Ginzburg–Landau
type equation. In particular, the model under consideration has the form of a higher-
order nonlinear Schrödinger (NLS) equation incorporating gain and loss. The origin
of our motivation is the following dimensionless higher-order NLS equation:

∂tu + is

2
∂2
xu − i|u|2u = β∂3

xu + μ∂x(|u|2u) + (ν − iσR) u∂x(|u|2), (1)
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where u(x, t) is a complex field, β, μ, ν and σR are real constants, while s = ±1
stands for normal (s = +1) or anomalous (s = −1) group-velocity dispersion.
Note that Equation (1) can be viewed as a perturbed NLS equation, with the
perturbation—in case of small values of relevant coefficients—appearing in the
right-hand side (see, e.g., Refs. [1–3]).

Variants of Equation (1) appear in a variety of physical contexts, where they
are derived at higher-order approximations of perturbation theory [the lowest-order
nonlinear model is simply the NLS equation in the left-hand side of Equation (1)].
The most prominent example is probably that of nonlinear optics [1–3]. In this case,
t and x denote propagation distance and retarded time (in a reference frame moving
with the group velocity), respectively, while u(x, t) is the complex electric field
envelope.

For β = μ = ν = σR = 0, Equation (1) reduces to the unperturbed equation,
i.e., the completely integrable NLS [4], which supports bright soliton solutions
(for s = −1) [5], or dark soliton solutions (for s = +1) [6]. As concerns the
origin of the higher-order terms, we mention the following. While the unperturbed
NLS equation is sufficient to describe optical pulse propagation, for ultra-short
pulses, third-order dispersion and self-steepening (characterized by coefficients β,
μ and ν, respectively) become important and have to be incorporated in the model.
Similar situations also occur in other contexts and, thus, corresponding versions
of Equation (2) have been derived and used, e.g., in the context of nonlinear
metamaterials [7–9], but also in the problem of water waves in finite depth [10–12].
Moreover, in the context of optics, and for relatively long propagation distances,
higher-order nonlinear dissipative effects, such as the stimulated Raman scattering
(SRS) effect, of strength σR > 0, are also important [1–3].

In addition to the above mentioned effects, our aim is to investigate the dynamics
in the framework of Equation (1), but also incorporating linear or nonlinear gain and
loss. This way, we are going to analyze the following model:

∂tu + is

2
∂2
xu − i|u|2u = γ u + δ|u|2u + μ∂x(|u|2u) + β∂3

xu + (ν − iσR) u∂x(|u|2),
(2)

which also incorporates dissipative effects, such as linear loss (for γ < 0) [or gain
(for γ > 0)]. These effects are physically relevant in the context of nonlinear
optics [1–3, 13]: indeed, nonlinear gain (δ > 0) [or loss (δ < 0)] may be used
to counterbalance the effects from the linear loss/gain mechanisms, which may
potentially lead to the stabilization of optical solitons—see, e.g., Refs. [14, 15].
Notice that it is the presence of gain/loss that renders Equation (2) a higher-order
cubically nonlinear Ginzburg–Landau-type equation (see recent studies [16–18] on
such models), featuring zero diffusion.

In this work, we will discuss various possible dynamical scenarios associated
with Equation (2). In particular, the organization of the presentation and main results
of this work can be described as follows.
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In Section 2, first we show that the incorporation of gain and loss terms in the
model gives rise to the existence of an attractor, capturing the long-time dynamics
of the system. A rigorous proof is provided, based on the interpretation of the
energy balance equation and properties of the functional (phase) space in which the
problem defines an infinite-dimensional flow. It will also be discussed that although
the gain/loss effects are pivotal for the dissipative nature of the infinite-dimensional
flow that will be defined below, the structure of the attractor is basically determined
by the other higher-order effects. In the same Section (Section 2), we also examine
conditions for finite-time collapse of the solutions of the model. In particular, upon
using energy arguments, we find that the collapse dynamics is chiefly controlled
by the linear/nonlinear gain/loss strengths. We also identify a critical value of the
linear gain, separating the possible decay of solutions to the trivial zero-state, from
collapse.

In addition, considering the higher-order Ginzburg–Landau-type equation as a
perturbed NLS equation, in Section 3 we study the dynamics of bright and dark
solitons under the influence of the higher-order effects. The analysis is based
on various perturbative techniques, relying on general aspects of the perturbation
theory for bright and dark solitons. Specifically, we adopt the so-called adiabatic
approximation, according to which the soliton form does not chance due to the
(small) perturbation, but its characteristics (center, amplitude, velocity, etc.) become
unknown functions of time. We derive relevant evolution equations for the soliton
characteristics and describe the pertinent soliton dynamics. We also briefly discuss
still another method to analyze soliton dynamics, namely a multiscale expansion
technique that asymptotically reduces the model to a Korteweg-de Vries–Burgers
(KdV-B) equation. This way, we discuss various other nonlinear wave structures
that can be supported by the higher-order effects, namely anti-dark solitons, as well
as shock waves and rarefaction waves.

2 Limit Set and Collapse

2.1 Existence of the Limit Set

Let us consider the case s = −1, and supplement Equation (2) with periodic
boundary conditions for u and its spatial derivatives up to the-second order, namely:

u(x + 2L, t) = u(x, t), and
∂

j
x (x + 2L, t) = ∂

j
x (x, t), j = 1, 2,

(3)

∀ (x, t) ∈ R× [0, T ], for some T > 0, where L > 0 is given. The initial condition

u(x, 0) = u0(x), ∀ x ∈ R, (4)
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also satisfies the periodicity conditions (3).
As shown in Ref. [19], all possible regimes except γ > 0, δ < 0, are associated

with finite-time collapse or decay. Furthermore, a critical value γ ∗ can be identified
in the regime γ < 0, δ > 0, which separates finite-time collapse from the decay of
solutions. On the other hand, for γ > 0, δ < 0, below we prove the existence of
a limit set (attractor) ω(B), attracting all bounded orbits initiating from arbitrary,
appropriately smooth initial data u0 (considered elements of a bounded set B in
a suitable Sobolev space). Notice that, as shown numerically in Ref. [20], the
attractor ω(B) captures the full route, ranging from Poincaré–Bendixson limit-
cycle dynamics to quasiperiodic or chaotic dynamics.

The starting point of our proof is the power balance equation:

d

dt

∫ L

−L

|u|2dx = 2γ

∫ L

−L

|u|2dx + 2δ

∫ L

−L

|u|4dx, (5)

satisfied by any local solution u ∈ C([0, T ],Hk
per (Ω)), which initiates from

sufficiently smooth initial data u0 ∈ Hk
per(Ω), for fixed k ≥ 3. Here, Hk

per (Ω)

denotes the Sobolev spaces of periodic functions Hk
per [21], in the fundamental

interval Ω = [−L,L]. Analysis of (5), results in the asymptotic estimate:

lim sup
t→∞

1

2L

∫ L

−L

|u(x, t)|2dx ≤ −γ

δ
, (6)

implying that local in time solutions u ∈ C([0, T ],Hk
per (Ω)) are uniformly

bounded in L2(Ω). This allows for the definition of the extended dynamical system:

ϕ(t, u0) : Hk
per (Ω)) → L2(Ω), ϕ(t, u0) = u,

whose orbits are bounded ∀t ≥ 0. Moreover, from the above asymptotic estimate,
we derive the following: if L2(Ω) is endowed with the equivalent averaged norm

||u||2α = 1

2L

∫ L

−L

|u|2dx,

then its ball:

Bα(0, ρ) =
{
u ∈ L2(Ω) : ||u||2α ≤ ρ2, ρ2 > −γ

δ

}
,

attracts all bounded sets B ∈ Hk
per (Ω). That is, there exists T ∗ > 0, such that

ϕ(t,B) ⊂ Bα , for all t ≥ T ∗. Thus, we may define for any bounded set B ∈
Hk

per (Ω)), k ≥ 3, its ω-limit set in L2(Ω),
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ω(B) =
⋂
s≥0

⋃
t≥s

ϕ(t,B).

The closures are taken with respect to the weak topology of L2(Ω). Then, the
standard (embedding) properties of Sobolev spaces imply that the attractor ω(B) is
at least weakly compact in L2(Ω), or relatively compact in the dual space H−1

per (Ω).
In the direct numerical simulations of Ref. [20], it was found that apart from the

gain/loss parameters γ and δ, the other higher-order effects play also important role
on the dynamics. In particular, the competition between the third-order dispersion
(characterized by the coefficient β) and SRS effect (characterized by the coefficient
σR gives rise to rich dynamics (briefly mentioned above): indeed, the dynamics
ranges from Poincaré–Bendixson-type scenarios, in the sense that bounded solutions
may converge either to distinct equilibria via orbital connections or to space-time
periodic solutions, to the emergence of almost periodic and chaotic behavior. A
main result is that third-order dispersion has a dominant role in the development of
such complex dynamics, since it can be chiefly responsible (even in the absence of
other higher-order effects) for the existence of periodic, quasiperiodic, and chaotic
spatiotemporal structures.

We conclude by illustrating some representative results illustrating the richness
of these dynamics.

Figure 1 depicts the birth of a space time periodic solution emerging from
the modulation instability of the continuous wave (cw) steady-state solution of
amplitude |φb|2 = − γ

δ
for the choice of parameters β = 0.55, σR = 0.01, γ = 1.5,

δ = −1, σR = 0.3, μ = ν = 0.01. The initial condition is a single-mode cw of the
form

u0(x) = ε e−i Kπx
L , K > 0. (7)

with K = 5 and ε = 0.01. This is one of the examples showing the Poincaré-
Bendixson type dynamics when the instability of a steady state gives rise to the
birth of a limit-cycle. The results visualise the asymptotic behavior in the 2D-finite
dimensional subspace

P2={(X, Y ) ∈ R
2 : (X(t), Y (t))=(|u(x1, t)|2, |u(x2, t)|2), x1, x2 ∈ Ω, t ≥ 0},

for some arbitrarily chosen fixed spatial coordinates x1, x2. In this subspace, the
steady-state φb is marked by the point A = (|φb|2, |φb|2) = (− γ

δ
,− γ

δ

)
. The 3D-

counterpart is defined as

P3={(X, Y,Z) ∈ R
3 : (X(t), Y (t), Z(t))=(|u(x1, t)|2, |u(x2, t)|2, |u(x3, t)|2),

x1, x2, x3 ∈ Ω, t ≥ 0}. (8)

The emergence of limit-cycles characterizing the global attractor persists up to
certain thresholds for the parameter β.
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Fig. 1 (Color Online) Upper left panel: The birth of a space-time periodic solution from the
instability of the cw-steady state of amplitude |φb|2 = −γ /δ, for cw-initial data (7) of K = 5 and
ε = 0.01. Parameters β = 0.55, σR = 0.01, γ = 1.5, δ = −1, σR = 0.3, μ = ν = 0.01. Upper
right panel: Integral curves X(t) = |u(x1, t)|2 (upper fig.-purple curve) and Y (t) = |u(x2, t)|2
(bottom fig.-red curve), for the spatial coordinates x1 = 0 and x2 = 5 respectively: Convergence
to a periodic solution, for the set of parameters of the upper left panel. Bottom left panel: The
space-time periodic solution of the left upper panel, as a limit cycle in the 2D-phase space P2 for
the spatial coordinates x1 = 0 and x2 = 5. Bottom middle panel: Convergence to the limit cycle of
the bottom left panel for the cw-initial condition of K = 5 and ε = √

3. Bottom right panel: The
space-time periodic solution of the upper right panel as a limit cycle on the 3D-phase space P3
(defined by (8)), for the choice of spatial coordinates x1 = 0, x2 = 5 and x3 = 10

On the other hand, even when the steady state φb is asymptotically stable, the
convergence may include highly non-trivial transient dynamics. Figure 2 depict an
example of the evolution of the initial condition

u0(x) = ε sechx. (9)

Such initial data correspond to the profile of a “bright soliton” as an initial state.
The example is for ε = 1 and parameters σR = μ = ν = β = 0.01. The
gain/loss strengths are γ = 1.5, δ = −1. We observe formation of a “shock-
wave” transitioning to an unstable periodic solution and then, the formation of a
decaying travelling pulse, prior to the ultimate convergence to the asymptotically
stable state φb.
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Fig. 2 (Color Online) Snapshots of the evolution of the density |u|2 for initial data (9) with ε = 1,
when σR = μ = ν = β = 0.01 and γ = 1.5, δ = −1. Formation of a decaying “bright” traveling
solitary pulse, prior to the ultimate convergence to the steady state φb. The array indicates the
direction of the travelling pulses

2.2 Conditions for Collapse

The question of collapse concerns sufficiently smooth (weak) solutions of Equa-
tion (2). The existence of such solutions, is guaranteed by a local existence
result associated with the initial-boundary value problem (2)–(4). In particular, the
methods which are used in order to prove such a local existence result in the Sobolev
spaces of periodic functions Hk

per [22, 23], are based on the lines of approach
of [24–27]. The application of these methods to establish local existence for the
problem (2)–(4), although involving lengthy computations, is now considered as
standard. Thus, we refrain from showing the details here, and we just state it in:

Theorem 1 Let u0 ∈ Hk
per (Ω) for any integer k ≥ 2, and β, γ, δ, μ, ν, σR ∈ R.

Then there exists T > 0, such that the problem (2)–(4), has a unique solution

u ∈ C([0, T ],Hk
per (Ω)) and ut ∈ C([0, T ],Hk−3

per (Ω)).

Moreover, the solution u ∈ Hk
per (Ω) depends continuously on the initial data u0 ∈

Hk
per (Ω), i.e., the solution operator

S (t) : Hk
per (Ω) �→ Hk

per(Ω), t ∈ [0, T ], (10)
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u0 �→ S (t)u0 = u,

is continuous.

Here, for the sake of completeness, let us recall the definition of Hk
per (Ω):

Hk
per (Ω) = {u : Ω → C, u and

∂ju

∂xj
∈ L2(Ω), j = 1, 2, . . . , k;

u(x), and
∂ju

∂xj
(x) for j = 1, 2, . . . , k − 1, are 2L- periodic}. (11)

Since our analytical energy arguments for examining collapse require sufficiently
smoothness of local-in-time solutions, we shall implement Theorem 1 by assuming
that k = 3, at least. As it follows from the definition of the Sobolev spaces (2.2),
this assumption means that the initial condition u0(x), x ∈ Ω , and its spatial (weak)
derivatives, at least up to the 2nd-order, are 2L-periodic. Then, it turns out from
Theorem 1, that the unique, local-in-time solution u(x, t) of (2) satisfies the periodic
boundary conditions (3) for t ≥ 0, and is sufficiently (weakly) smooth. Such
periodicity and smoothness properties of the local-in-time solutions are sufficient
for our purposes (see Theorem 2 below).

Next, we adopt the method of deriving a differential inequality for the functional

M(t) = e−2γ t

2L

∫ L

−L

|u(x, t)|2dx, (12)

and then, showing that its solution diverges in finite-time under appropriate
assumptions on its initial value at time t = 0; see [22, 23, 28–30] and references
therein. Note that the choice of this functional is not arbitrary; in fact, it is a direct
consequence of the conservation laws of the NLS model. For a discrete counterpart
of this argument applied in discrete Ginzburg–Landau-type equations, we refer to
[31]. For applications of these types of arguments in the study of escape dynamics
for Klein–Gordon chains, we refer to [32].

Theorem 2 For u0 ∈ Hk
per (Ω), k ≥ 3, let S (t)u0 = u ∈ C([0, Tmax),H

k
per (Ω))

be the local- in- time solution of the problem (2)–(4), with [0, Tmax) be its maximal
interval of existence. Assume that the parameter δ > 0 and that the initial condition
u0(x) is such that M(0) > 0. Then, Tmax is finite, in the following cases:

(i) Tmax ≤ 1

2γ
log

[
1 + γ

δM (0)

]
, (13)

for γ �= 0, and γ > −δM (0) . (14)

(ii) Tmax ≤ 1

2δM (0)
, for γ = 0. (15)
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Proof For any T < Tmax, since k ≥ 3, due to the continuous embedding [22]:

C([0, T ],Hk
per (Ω)) ⊂ C([0, T ], L2(Ω)),

the solution S (t)u0 = u ∈ C([0, T ], L2(Ω)). Furthermore, it follows from
Theorem 1, that ut ∈ C([0, T ], L2(Ω)). Then, by differentiating M(t) with respect
to time, we find that:

dM(t)

dt
= −γ

e−2γ t

L

∫ L

−L

|u|2dx + e−2γ t

L
Re

∫ L

−L

utudx. (16)

In the second term on the right-hand side of (16), we substitute ut by the right-hand
side of Equation (2). Then, after some computations, Equation (16) results in:

dM(t)

dt
= δ

e−2γ t

L

∫ L

−L

|u|4dx. (17)

Next, by the Cauchy-Schwarz inequality, we have

∫ L

−L

|u|2dx ≤ √
2L

(∫ L

−L

|u|4dx

)1/2

. (18)

Therefore, for the functional M(t) defined in (12), we get the inequality

M(t) ≤ e−2γ t

√
2L

(∫ L

−L

|u|4dx

)1/2

, (19)

which in turns, implies the estimate

M(t)2 ≤ e−4γ t

2L

∫ L

−L

|u|4dx, (20)

for all t ∈ [0, Tmax). On the other hand, from (17) we have that

∫ L

−L

|u|4dx = e2γ t L

δ

dM(t)

dt
,

and hence, we may rewrite (20) as

[M (t)]2 ≤ e−2γ t

2δ

dM (t)

dt
, or

dM(t)
dt

[M (t)]2 ≥ 2δe2γ t . (21)
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Since

d

dt

[
1

M (t)

]
= −

dM(t)
dt

[M (t)]2 ,

we get from (21) the differential inequality

d

dt

[
1

M (t)

]
≤ −2δe2γ t . (22)

Integration of (22) with respect to time, implies that

1

M (t)
≤ 1

M (0)
− 2δ

∫ t

0
e2γ sds,

and since M(t) > 0, we see that M(0) > 0 satisfies the inequality

2δ

∫ t

0
e2γ sds ≤ 1

M (0)
. (23)

From (23), we shall distinguish between the following cases for the damping
parameter γ :

• We assume that the damping parameter γ �= 0. In this case, (23) implies that

2δ

2γ

(
e2γ t − 1

)
≤ 1

M (0)
, or e2γ t ≤ 1 + γ

δM (0)
.

Thus, assuming that

γ

δM (0)
> −1,

we derive that the maximal time of existence is finite, since

t ≤ 1

2γ
log

[
1 + γ

δM (0)

]
.

The inequality above, proves the estimate of the collapse time (13) under
assumption (14), that is, case (i) of the Theorem.

• Assume that the damping parameter is γ = 0. Then, Equation (23) implies that

2δt ≤ 1

M (0)
,
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or

t ≤ 1

2δM (0)
.

This inequality proves the estimate of the collapse time (15) in the absence of
damping, that is, case (ii) of the Theorem. �

From condition (14) on the definition of the analytical upper bound of the blow-up
time

Tmax[γ, δ,M(0)] = 1

2γ
log

[
1 + γ

δM (0)

]
, (24)

given in (13), we define a critical value of the linear gain/loss parameter as

γ ∗ = −δM(0). (25)

We observe that

lim
γ→γ ∗ Tmax[γ, δ,M(0)] = +∞, (26)

while Tmax[γ, δ,M(0)] is finite if

γ > γ ∗, (27)

according to the condition (14). Then, (26) suggests that when δ > 0, the critical
value γ ∗ may act as a critical point separating the two dynamical behaviors: blow-up
in finite-time for γ > γ ∗ and global existence for γ < γ ∗.

We also remark that the analytical upper bound for the blow-up time (15) in the
case γ = 0,

Tmax[δ,M(0)] = 1

2δM (0)
, (28)

is actually the limit of the analytical upper bound (24) for γ > 0 as γ → 0, e.g.,

lim
γ→0

Tmax[γ, δ,M(0)] = Tmax[δ,M(0)]. (29)

The analytical estimates for the blow-up time have been proved sharp with respect
to their dependence on the several parameters as it was illustrated by the relevant
numerical simulations [19].
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3 Soliton Dynamics: Perturbative Approach

Below, our aim is to consider the higher-order Ginzburg–Landau equation (2) as
a perturbed NLS equation. This can be done, upon rewriting Equation (2) in the
following form,

iut − s

2
uxx + |u|2u = εF [u], (30)

where subscripts denote partial derivatives, and the functional perturbation F [u] is
given by:

F [u] = iγ u + iδ|u|2u + iβuxxx + iμ(|u|2u)x + (iν + σR)u(|u|2)x. (31)

In other, words, we consider the situation where the coefficients of the gain/loss
and higher-order terms are small, i.e., of the order of a formal small parameter
ε (with 0 < ε  1). This problem finds applications in long-haul optical fiber
communications, where the terms involved in F [u] can indeed be considered as
small perturbations [1].

Based on the fact that, for ε = 0, Equation (30) becomes the traditional NLS
model that possesses bright or dark solitons for s = −1 and s = +1 respectively,
we will study separately these two cases, and investigate how the perturbation (31)
alters the soliton dynamics. Our analysis relies on various perturbation techniques
that have been developed in the past, both for bright [33–35] and dark [36–38],
including the perturbed inverse scattering method, the variational approach (or
Lagrangian method), the Lie transform method, and others (see also [1–3] and
references therein). Among these techniques, a particularly convenient method to
study the soliton dynamics is the so-called adiabatic approach. According to this,
an adiabatic relation is the balance between nonlinearity and dispersion, so that
(amplitude)×(width)=const. In other words, it is assumed that—in the presence
of the perturbations—the functional form of the soliton remains unchanged, but
the soliton parameters change (slowly) as the soliton evolves. Thus, the soliton
parameters are treated as unknown functions of t , and their evolution is determined
by the evolution of the conserved quantities (integrals of motion) of the unperturbed
NLS. Particularly relevant such conserved quantities include the energy:

E =
∫ −∞

−∞
|u|2dx, (32)

the momentum,

P = i

2

∫ −∞

−∞
(uūx − ūux) dx, (33)

where overbar denotes complex conjugate, and the Hamiltonian:
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H = 1

2

∫ −∞

−∞

(
s|ux |2 + |u|4

)
dx. (34)

In addition, for our considerations below, it is also useful to introduce still another
conserved quantity, namely the central position of the soliton(s)–alias “soliton
center”—given by:

Rbs =
∫ +∞

−∞
x|u|2dx, Rds =

∫ +∞

−∞
x

(
u2∞ − |u|2

)
dx, (35)

for the bright and dark solitons respectively.

3.1 Perturbation Theory for Bright Solitons (s = −1)

We start with the case of s = −1, i.e., the case of bright solitons. First, using
Equation (30) and its complex conjugate, it is straightforward to derive the following
equations for the evolution of the NLS conserved quantities under the action of the
perturbation:

dE

dt
= ε

∫ +∞

−∞
(
ūF + uF̄

)
dx, (36)

dP

dt
= εi

∫ +∞

−∞
(
ūxF − uxF̄

)
dx, (37)

dH

dt
= 2ε

∫ +∞

−∞

[(
1

2
ūxx + |u|2ū

)
F +

(
1

2
uxx + |u|2u

)
F̄

]
dx. (38)

For sufficiently small perturbation, the form of the bright soliton solution ubs(x, t)

may be assumed to have the following rather general form, where all its parameters
are allowed to vary in t as

ubs(x, t) = η(t) sech[η(t)(x − x0(t))] exp [−iκ(t)x + iφ(t)] , (39)

where the soliton’s amplitude (and inverse width) η, its central position x0, the
wavenumber κ , and phase φ are unknown functions of t that have to be determined.
Notice that, in the absence of the perturbation, x0 and φ are constants, given by:

dx0

dt
= −κ,

dφ

dt
= 1

2

(
η2 − κ2

)
. (40)

Substituting the soliton (39) into Equations (37)–(38) [and (35)], we obtain a
set of four ordinary differential equations (ODEs) for the four unknown soliton
parameters:
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dη

dt
= −Im

{∫ ∞

−∞
F [u]ūdx

}
, (41)

dκ

dt
= Re

{∫ ∞

−∞
F [u] tanh[η(x − x0)]ūdx

}
, (42)

dt0

dt
= −κ − 1

η2
Im

{∫ ∞

−∞
F [u](x − x0)ūdx

}
, (43)

dφ

dt
= 1

2
(η2 − κ2) + x0

dκ

dt

− Re

{∫ ∞

−∞
F [u]

[
1

η
− (x − x0) tanh[η(x − x0)]

]
ūdx

}
, (44)

where Re and Im stand for the real and imaginary parts, respectively.
Before analyzing the full problem, where the perturbation F [u] is given by

Equation (31), it is relevant to consider at first a simple example. In particular, let
the linear loss/gain term be a small perturbation, i.e., F [u] = iγ u, with γ  1,
and assume that δ = β = ν = σR = 0. Then, substituting this form of F [u] into
Equations (41)–(44), and performing the integrations, it is found that the soliton
wavenumber κ and the central position x0 remain unaffected of the perturbation,
while the soliton amplitude η and phase φ evolve, due to the presence of the
loss/gain, as follows:

η(t) = exp(2γ t), φ(t) = φ(0) − 1

8γ

[
1 − exp(4γ t)

]
. (45)

To obtain the above result, it was assumed that η(0) = 1 and κ(0) = x0(0) =
0 (hence κ(t) = x0(t) = 0 ∀t). Thus, in the presence of loss, γ < 0 (or gain,
γ > 0) the soliton amplitude decreases (or increases), while its width increases (or
decreases), i.e., the soliton broadens (or is compressed) during its evolution.

We now return to the full problem, and study the effect of the perturbation (31)
on the dynamics of bright solitons. Following the same procedure, i.e., substituting
Equation (31) into Equations (41)–(44), and performing the integrations, we find
that the soliton parameters evolve according to the following system:

dη

dt
= 2

3
η(3γ + 2δη2), (46)

dκ

dt
= − 8

15
σRη4, (47)

dt0

dt
= −κ + 1

3
(3β − 3μ − 2ν)η + 3βκ2η2, (48)

dφ

dt
= −κ

[
(μ − 3β)η2 + β(η2 − 2)q2

]
+ 1

2
(η2 − κ2) − 8

15
σRt0η

4. (49)
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Although the result in this case is more complicated, it is still possible to arrive
at a simple analytical result. Indeed, first observe that Equation (46) can be solved
analytically to provide the functional form of η(z), which is found to be:

η2(t) = 3Cγ e4γ t

1 − 2Cδe4γ t
, C = η2(0)

3γ + 2δη2(0)
. (50)

Then, the wavenumber κ(t) can be obtained from Equation (47) by simply integrat-
ing the above expression for η. Finally, having found η(t) and κ(t), integration of
Equations (48) and (49) yield, respectively, the functional forms of x0(z) and φ(t).

3.2 Perturbation Theory for Dark Solitons (s = +1)

In this section, we consider the case s = +1, and provide analytical results based on
the perturbation theory for dark solitons devised in Ref. [38]. We start by noting that,
for ε = 0, the unperturbed defocusing NLS Equation (30) possesses the following
single dark soliton solution:

uds(x, t) = [A + iB tanh(BX)]]eiσ0 , (51)

where X = x − X0, with X0 = x − ∫ t

0 A(s)ds − x0 being the dark soliton center,
A2 +B2 = u2∞, and Δφ0 = 2 tan−1(B/A) is the phase jump across the soliton. The
latter, is equal to π for stationary, so-called “black” solitons with A = 0 (moving
solitons with A �= 0 are termed “grey”) [39, 40]; finally, A and B depict the velocity
and depth of the dark soliton, respectively, while x0 and σ0 are real parameters.
Notice that u∞ represents the boundary condition at infinity, i.e., u∞ = u(x → ∞),
and sets the amplitude of the soliton background. The dark soliton (51) is, therefore,
comprised of a background of constant density, and a density dip that propagates on
top, accompanied by a phase jump across the minimum density.

The effect of the perturbation of Equation (31) on the dark soliton dynamics
will now be studied upon assuming that the soliton parameters are slowly varying
functions of t . As shown in Ref. [38], dissipative terms—similar to the ones
considered here—give rise to a shelf, which develops around the soliton; the shelf
has a non-trivial contribution to the integrals employed in order to find expressions
for the soliton parameters. Thus, this perturbative approach is better suited here,
compared to ones merely relying on the adiabatic approximation [36, 37], as they
do not take into account this important contribution.

Our analysis starts with the dynamics of the soliton background. Assuming that
u(x → ∞) = u0(t), we derive from Equation (30 the equation:

iu0t − |u0|2u0 = iγ u0 + iδ|u0|2u0. (52)

Then, employing the polar decomposition u0 = u∞(t) exp(iθ(t)), we obtain:



202 T. P. Horikis et al.

u′∞ = (γ + δu2∞)u∞, θ ′ = u2∞, (53)

where primes denote differentiation with respect to t . The role of the term of strength
δ is now more obvious: a nontrivial equilibrium (constant solution), exists iff γ δ < 0
which is u2∞ = −γ /δ. Note the relevance of the solution u2∞ with the upper bound
in the estimate (6). It is also the density of the cw steady-state solution φb (see
Fig. 1). We focus here on these solutions, i.e., solutions that tend to stabilize the
soliton, by keeping its parameters constant. The evolution of the rest of the soliton
parameters [see (51)] can be found by means of a multiscale boundary layer theory
[38]; the resulting evolution equations are:

2BAt = Re

{∫ ∞

−∞
F [uds](ūds)t dx

}
, (54)

Bx0t = Im

{∫ ∞

−∞
x(F [u∞]u∞ − F [uds]ūds) dx

}
, (55)

u∞σ0t = Im

{∫ ∞

−∞
(F [u∞]u∞ − F [uds]ūds) dx

}
+ Re {F [u∞]} , (56)

BBt = u∞u∞t − AAt, (57)

u2∞Δφ0t = 2ABt − 2BAt , (58)

q±
1 = 1

2

σ0t ± Δφ0t

u∞ ∓ A
, φ±

1t = ∓2q±
1 . (59)

Here, we should mention that q±
1 and φ±

1 in Equations (59) represent the asympotics
of the shelf, induced by the perturbation F [u], as x → ±∞ respectively; in fact,
they are higher-order corrections to the soliton, so that the shelf amplitude is u∞ +
q±

1 and its speed u∞. Integrating the above equations, and using Equation (53),
finally yields:

u′∞ = (γ + δu2∞)u∞, (60)

A′ = 4

15
σRA4 + 2

3
δA3 − 8

15
σRu2∞A2 +

(
γ + δ

3
u2∞

)
A + 4

15
σRu4∞, (61)

x′
0 =

(
2β − μ − 2ν

3

)
A2 −

(
2β + 2μ + 4ν

3

)
u2∞, (62)

σ ′
0 = Bz

u∞
− 2B

3u∞

(
3γ + 4u2∞δ + 2δA2

)
. (63)

These equations show that the evolution of the soliton center, described by the
equation X′

0 = A + x′
0, is affected by all parameters of Equation (30) [directly

or indirectly from A(t)]. On the other hand, the rest of the soliton characteristics,
i.e., the background, the dip and the shelf, only depend on γ , δ and σR . This implies
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that soliton stabilization can be targeted accordingly. Indeed, stable fixed points of
this system correspond to stable solitons traveling on top of a constant background
with a constant speed. It is possible to identify two such solitons, namely a grey and
a black one, supported in the presence (σR �= 0) and in the absence (σR = 0) of the
SRS effect, respectively. In both cases, the background assumes the same form: this
can be obtained by means of Equation (60), which depicts the nontrivial stationary
solution u2∞ = −γ /δ for γ δ < 0, i.e., for linear loss and nonlinear gain, or vice
versa.

We start with the case σR �= 0. Substituting the above mentioned constant back-
ground in Equation (61), and seeking stationary solutions for the soliton velocity,
we arrive at a 4th-order algebraic equation for A. Solving this equation, we find

that there exists only one root, namely A = (4δσR)−1(−5δ2 +
√

25δ4 − 16γ δσ 2
R),

which does not violate the relationship A2 + B2 = u2∞. Thus, a stable soliton exists
for:

u2∞ = −γ

δ
, A =

−5δ2 +
√

25δ4 − 16γ δσ 2
R

4δσR

. (64)

Note that since γ δ < 0 the quantity under the square root is always positive.
In general, the solution of Equation (60) with u∞(0) = u0 is:

u2∞(t) = γ u2
0e

2γ t

γ + δu2
0 − δu2

0e
2γ t

, (65)

which suggests that there is a (finite) time for which the background exhibits blow-
up, as it was discussed in Theorem 2. Indeed, the denominator becomes zero when

t = t∗ ≡ 1

2γ
ln

(
1 + γ

δu2
0

)
. (66)

The unexpected feature here is that the addition of the term iδ|u|2u which
compensates the effect of the linear loss term iγ u may result in blow-up of the
background in finite time, even when the other soliton parameters remain finite. In
addition, Equation (65) indicates that an equilibrium can also be reached in finite
time when the denominator is a multiple of the numerator. Nevertheless, while
under this requirement the background will be stabilized, this does not necessarily
guarantees the stabilization of the other soliton parameters.

Next, we consider the case of σR = 0. In this case, Equations (60) and (61) lead
to the following equations for the background and soliton velocity:

u2∞ = −γ

δ
, A′ = 2

3
(δA2 − γ )A, (67)
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Obviously, the above equation for the velocity depicts a stationary solution A = 0
(recall that γ δ < 0), that corresponds to a black soliton. Hence, when SRS is absent
(which would give a frequency downshift causing the soliton to move), a stable
black soliton can exist.

An important comment is in order here. While for these specific choice of u∞ and
A the soliton gets stabilized, this does not mean that the shelf is no longer present.
In fact, the shelf is always present in the perturbed NLS, even though its amplitude
is small, since it appears as a higher-order correction in the perturbation theory
[38]. Thus, the shelf does not affect the soliton propagation but it does, however,
affect soliton interactions (see Ref. [41] for a relevant study, but in the framework of
another dissipative NLS model). Notice, also, that the shelf can be suppressed with
counter effect the destabilization of the soliton.

Finally, we briefly consider the case where gain/loss terms are absent, i.e., γ =
δ = 0. In this particular case, the dark soliton dynamics is merely driven by the SRS
effect. Indeed, now the evolution of the background and soliton velocity is described
by the following equations:

u′∞ = 0, A′ = 4

15
σR(A2 − u2∞)2, (68)

which recover the results obtained in Refs. [36, 37]. The soliton dynamics in this
case can be understood as follows. Since A2 �= u2∞, the right-hand-side of the
second equation is always positive and, thus, the soliton becomes shallower and
faster, i.e., B → 0 and A → u∞, so that the condition A2 + B2 = u2∞ is satisfied.
Thus, the dark soliton eventually decays to the stationary background. It is therefore
clear that no stable dark soliton (in the sense of the existence of stationary soliton
parameters) exists in this case.

3.3 Solitons and Shock Waves in an Effective KdV-Burgers
Picture

Finally, for completeness, it is relevant to briefly mention the following. Apart
from the direct perturbation theory for solitons, there exists still another method to
analyze the dynamics of dark solitons in the framework of Equation (30). Indeed, as
shown in Ref. [42] for the special case of γ = δ = 0, it is possible to employ
a multiscale expansion method and asymptotically reduce the higher-order NLS
equation to a Korteweg-de Vries–Burgers (KdV-B) equation. This can be done upon
seeking solutions of the form:

u(x, t) = [u∞ + U(x, t)] exp[iu2∞t + iφ(x, t)], (69)

where U(x, t) and φ(x, t) are unknown real functions (to be determined) rep-
resenting an amplitude and a phase modulation of the background wave ub =
u∞ exp(iu2∞t). Then, it is assumed that these functions are presented in the form
of formal asymptotic series,
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U = ε2U1 + ε4U2 + · · · , φ = εφ1 + ε3φ2 + · · · , (70)

where the unknown functions Uj and φj (j = 1, 2, . . .) depend on the slow variables
X = ε(x − υt) and T = ε3t , with υ being an unknown velocity, and ε being
a formal small parameter. Substituting Equations (69)–(70) into Equation (30),
we obtain the following results. First, to the lowest-order of approximation in ε

of the perturbation technique, we derive the unknown velocity υ and an equation
connecting the functions φ1T and U1. Second, to the next order of approximation,
we derive the following KdV-B equation:

U1T + c1U1U1X + c2U1XXX = c3U1XX, (71)

where, U1 obviously represents the soliton amplitude. The coefficients of the
underlying KdV equation, c1 and c2, depend on the coefficients of the pNLS, β

and ν, as well as on the background amplitude u∞, while the diffusion coefficient
c3 depends on the SRS parameter, σR .

Importantly, the relevant asymptotic reduction to the KdV-B equation can be
performed for both normal and anomalous dispersion cases, i.e., for both s = ±1.
Of course, in the case s = −1 it is known [1–3] that the soliton’s background
plane wave is prone to the modulational instability (MI), but this long-wavelength
instability may be suppressed: indeed, in applications, one expects periodic or other
boundary conditions in the x-direction, meaning that the admitted wavenumbers are
quantized, hence they are limited from below by a minimum wavenumber, kmin,
which corresponds to the transverse size of the system. In such a case, if kmin >

Kmax (where K is the perturbation wavenumber characterizing the MI, and Kmax
defines the width of the instability band, 0 ≤ K ≤ Kmax), no quantized wavenumber
can get into the instability band and, hence, the MI is eliminated.

The effective KdV-B description of the soliton dynamics offers a number of
interesting results. First, in the absence of the SRS effect (σR = 0), dark solitons
small-amplitude dark solitary wave solutions can exist for both the normal and
anomalous dispersion regimes. This result is in sharp contrast with the conventional
form and certain perturbed versions of the NLS equation, where dark solitons solely
exist for the normal dispersion regime (s = +1). In addition, in this latter regime,
there exists another type of solution, namely an anti-dark soliton, having the form
of a hump, rather than a dip, on top of the background plane wave. Notice that
the transformation from the dark to the anti-dark soliton is possible (see details in
Ref. [42]).

When the SRS effect is present (σR �= 0), the soliton dynamics is governed by a
KdV–B equation. In this case, the evolution of solitons can be studied by means of
the perturbation theory for solitons [33, 35]. The results that can been obtained in
this case show that the solitons experience a decrease in their amplitudes and/or their
velocities, depending on the direction of propagation and the dispersion region (s =
−1 or s = +1). In particular, right-going solitons experience a decrease in both their
amplitudes and their velocities, while the evolution of left-going solitons depends on
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s: for s = −1, they increase their amplitudes and decrease their velocities, while for
s = +1, they decrease their amplitudes and increase their velocities—in accordance
with the results presented in the previous section.

Still another nonlinear wave structure that can be predicted to occur in this
setting, is the one of a traveling shock wave [43]. In the effective KdV-B picture,
the existence of such a structure is not surprising, because the KdV-B equation
possesses stable traveling shock wave solutions. The latter, are obviously supported
by the SRS effect (recall that if σR = 0 then c3 = 0 and the diffusion term in
Equation (71) vanishes, as was also found by means of other methods in other
studies [44–46]. Notice that, as before, shock wave type structures are possible for
both normal and anomalous dispersion cases. In particular, in the case of the normal
dispersion (s = +1), the structure has the usual shock wave profile, while in the
case of the anomalous dispersion (s = −1 it has the form of a rarefaction wave.

Finally, based on the analysis of the shock wave structure of the KdV-B equation,
one may deduce the relevant profiles in the context of the perturbed NLS equation.
Thus, the structure of the front of the shock solutions may be monotonic, in the
nonlinearity-dominated regime, or oscillatory in the dispersion-dominated regime.
In fact, since the former regime is only accessible for s = −1 [43] the front
of the rarefaction wave is monotonic. On the other hand, the profile of the front
of the shock wave supported for s = +1, may be either monotonic in the
nonlinearity-dominated regime (resembling the regular stationary solutions of the
Burgers equation), or oscillating. It is interesting to mention that the oscillations
in the kink front can be studied in the framework of the perturbation theory for
solitons of the KdV equation, treating the diffusion term as a small perturbation
[33, 35]. This way, it can be deduced that the oscillations of the shock front can be
considered as a succession of KdV solitons, a fact that completes the connection
between the soliton and shock wave solutions of the perturbed NLS model.
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