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Abstract We examine the dynamical effects of Poynting–Robertson (P–R) drag
and oblateness together with small perturbations in the Coriolis and centrifugal
forces on the existence, location and stability of equilibrium points in the pho-
togravitational restricted three-body problem. It is found that under constant P–R
drag effect, collinear equilibrium points cease to exist numerically and of course
analytically. The problem admits five non-collinear equilibrium points and it is
found that the positions of these points depend on all the system parameters except
small perturbation in the Coriolis force. Finally, we justify the relevance of the
model in astronomy by applying it to Cen X-4 binary system, for which all the
equilibrium points have been seen to be unstable.
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1 Introduction

The restricted three-body problem (R3BP) consists of two finite bodies, known as
primaries which rotate in circular orbits around their common center of mass and
a massless body which moves in the plane of motion of the primaries under their
gravitational attraction and does not affect their motion. The study of the R3BP
is still an active field of research because of its applications in dynamics of the
solar and stellar systems, artificial satellites and lunar theory. The circular restricted
three-body problem (CR3BP) has been the well known studied problem in celestial
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mechanics. In this problem there are five equilibrium points; three of them lie on
the x-axis and are called collinear while the other two are away from the x-axis
and are called triangular equilibrium points. The three collinear points are generally
unstable while the triangular points are generally stable for the mass ratio μ �
0.03850 . . . [30]. These equilibrium points are extensively used in space mission
(see [1, 3, 12, 31] and references therein).

In celestial mechanics, many scientists and astronomers over the years have made
modifications to the classical CR3BP (e.g. [6, 8, 13, 17–19, 22, 23, 29, 32–34]).
Some of the modifications made, include the consideration of one or both primaries
as oblate spheroids and/or radiation sources with small change in Coriolis and
centrifugal forces and/or under the effect of different kinds of dissipation (Stokes
and/or Poynting–Robertson drags). The studying of these issues enable us to get real
and accurate data about the dynamical features of the system. For example, Oberti
and Vienne [15] showed that the addition of oblateness effects leads to improved
approximations of real orbits of certain satellites in the Solar System. Singh [28]
examined out-of-plane equilibria by considering effect of a small change in Coriolis
and centrifugal forces, when the primaries are both radiating and oblate spheroids.
Chernikov [4] studied the existence and stability of equilibrium points under the
influence of radiation and Poynting–Robertson drag. He found that six equilibrium
points exist at most and pointed out that the collinear points are not positioned
on the axis connecting the primaries any more while the triangular points are not
symmetrical with respect to this axis. It was found that the triangular points are
unstable for P–R effect. Schuerman [21] studied the triangular points of the problem
and found that the points are unstable due to P–R effect. Furthermore, Ragos and
Zafiropoulos [20] extended the problem to the case that both main bodies are
radiation sources and studied the existence and stability of the equilibrium points.
The P–R effect renders unstable those equilibrium points which are conditionally
stable in the classical case. Murray [14] discussed the dynamical effect of different
kinds of dissipation (nebular drag, gas drag, and P–R drag) in the circular restricted
three body problem and found the collinear points are not positioned on the
axis joining the two masses while the displaced triangular points L4 and L5 are
asymptotically stable for certain classes of drag forces.

Kushvah [11] studied numerically the existence of equilibrium points of the
perturbed R3BP, where the bigger and smaller primaries are considered radiation
sources and oblate spheroids, respectively, and discussed the P–R effect which
is caused due to the radiation pressure. They observed that the collinear points
deviate from the axis joining the two primaries, while the triangular points are
not symmetrical due to radiation pressure. The P–R effect ruins the stability of
equilibrium points known to be conditionally stable in the gravitational case.
When the primaries are radiation sources, Singh and Aminu [24] investigated the
influences of small perturbations in the Coriolis and centrifugal forces together
with P–R drag from both primaries on the triangular points. They found that the
positions of these points are affected from the radiation pressure, P–R drag and small
perturbation in the centrifugal force. They also discovered that these perturbing
forces do not influence the nature of the stability of the points in the presence of P–R
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drag as they remain unstable for the binary systems Luyten 726–8 and Kruger 60.1.
In the same vein, Singh and Amuda [25] studied the triangular equilibrium points
when the effect of radiation pressure from the smaller primary and its Poynting
Robertson (P–R) drag are taken into account and the bigger primary as an oblate
spheroid. They found numerically that the equilibrium points of the binary RXJ
0450.1–5856 are unstable. Later, Singh and Amuda [26] investigated the three
dimensional case of the problem studied in [25] and they pointed out that the
out-of-plane equilibria of the binary Cen X-4 system are unstable. By taking into
consideration the P–R effect and Stellar wind drag, Chakraborty and Narayan [5]
investigated the photogravitational elliptic restricted three-body problem and found
that the equilibrium points are unstable due to the effect of the drag. Recently,
Kalantonis et al. [10] studied the stability of the triangular equilibrium points in
the elliptic R3BP with radiation and oblateness and showed that the positions of
the triangular equilibrium points are given by an analytical formulae in which the
parameters of the problem are only involved.

In this work, we aim to make an extension to the work of Singh and Amuda [25]
by also taking small perturbations in the Coriolis and centrifugal forces and continue
to study numerically the existence and location of the equilibrium points. As
an application in this study, we consider the Cen X-4 binary system. The paper
is organized as follows: In Section 2, the dynamical equations that involve the
parameters of the infinitesimal particle in the binary system under consideration are
obtained. In Section 3, we determine the existence and locations of the equilibrium
points numerically and verify them graphically for values of the parameters of
the problem, while their linear stability is analyzed in Section 4. A numerical
application of these results is given in Section 5 while Section 6 summarizes the
discussion and conclusion of our study.

2 Equations of Motion

The dynamical system consists of two bodies (known as the primaries) which
move on circular orbits. We consider a barycentric coordinate system Oxyz rotating
relative to an inertial reference system with angular velocity ω about a common
z-axis. The two finite bodies P1 (bigger primary) and P2 (smaller primary) have
masses m1 = 1−μ and m2 = μ (0 < μ � 1/2), respectively, with μ being the mass
ratio parameter while the test particle P is considered to have a mass m, which is
significantly smaller than the masses of the primaries and therefore it does not affect
their motion. Also, the bigger primary body is considered to be an oblate spheroid
while the smaller one is a source of radiation with its P–R drag. The equations of
motion of the test particle in the three-dimensional restricted three-body problem
with the origin resting at the center of mass, in a barycentric rotating coordinate
system take the form [25]:
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}
,
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with

r2
1 = (x+μ)2+y2+z2, r2

2 = (x+μ−1)2+y2+z2, W2 = μ(1 − q2)

cd

, (2)

where ri, i = 1, 2 are the distances of the test particle from the bigger and smaller
primaries, respectively, q2 ∈ (0, 1], W2 � 1 stand for radiation pressure and P–R
drag of the smaller body, respectively, cd is the dimensional velocity of light which
depends on the physical masses of the two bodies and the distance between them,
chosen to the value cd = 299792458 (see [25]) while the dots denote differentiation
with respect to time t . Also, A1 is the oblateness coefficient of the bigger primary
body defined by the formula A1 = (A2

E − A2
P )/5R2 � 1 where AE and AP

are the equatorial and polar radii of the said primary body, respectively, and R is
the distance between the primaries. On account of the oblateness of the primary
body m1, the mean perturbed motion n is defined by n2 = 1 + 3

2A1. Additionally,
perturbations on the Coriolis and centrifugal forces are included with the help of
the parameters α and β, respectively, such that α = 1 + ε1, β = 1 + ε2, |εi | � 1,
i = 1, 2. The unperturbed value of each is taken as unity. Restricting ourselves to the
plane Oxy and following the work of Singh and Aminu [24], the pertinent equations
of motion (1) are finally written in the form:
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Table 1 Numerical data for the binary Cen X-4 system

Dimensionless

Binary system Mass (M⊗) Radiation pressure Binary separation speed of light Mass ratio

m1 m2 q2 a cd μ

Cen X-4 1.9996 0.0801 0.993 4.31 988.323 0.038515

ẍ − 2nαẏ=n2βx− (1 − μ)(x + μ)
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while now

r2
1 = (x + μ)2 + y2, r2

2 = (x + μ − 1)2 + y2. (4)

The physical parameters of the binary Cen X-4 system are shown in Table 1 (see
[2, 25, 26]).

3 Existence and Positions of Equilibrium Points

The equilibrium (or Lagrangian) points are obtained when the acceleration (ẍ, ÿ)

and velocity (ẋ, ẏ) components of the test particle are zero. So, we obtain the
coordinates (x0, y0) of equilibrium points as solutions of the equations:
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(5)
It is interesting to note that for A1 = 0, q2 = β = 1, the classical case of the
R3BP is recovered while the case β = 1 leads to the equations of motion presented
in [25]. It is well known that in the classical R3BP there are two types of equilibria
or solutions, depending on whether y = 0 or y �= 0. Points for which y = 0 are
called collinear equilibrium points and they lie on the line connecting the primaries,
the x-axis of the synodic system, while points for which y �= 0 are called triangular
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(non-collinear) equilibrium points and they lie away from the x-axis of the synodic
system.

In the perturbed R3BP where the radiation pressure coupled with P–R drag
terms appear, the existence of collinear equilibria as well as the total number of
the equilibrium points depend on the particular values of the radiation pressure (see,
for example, [4, 14]). Ragos and Zafiropoulos [20] have shown numerically that
in the photogravitational CR3BP including the P–R effect there are at most five
equilibrium points (with no collinear points), depending on the values of radiation
factors q1 and q2. Following the lead of above paper, we resort to a numerical
study in this case of the problem since the system of Equations (5) which provides
the (x0, y0) coordinates of the points of equilibrium cannot be solved analytically.
In this premise, the equilibrium points are obtained by solving Equations (5)
simultaneously using any well-known iterative method for finding roots of non-
linear algebraic equations. The aforementioned method has been successfully
applied in [16, 27] and [7] (see also references therein) for the determination of
equilibrium points in a different model problem of Celestial Mechanics. We observe
that our problem admits five non-collinear equilibrium points, Li, i = 1, 2, . . . , 5,

which positions are independent of the Coriolis force but dependent upon the
centrifugal force and the remaining involved parameters.

Generally, to obtain the positions for the collinear equilibrium points we solve
Equations (5) for y = 0 but due to the existence of the dissipative term defined
by the P–R drag, it is obvious that collinear equilibrium solution does not exist
anymore. This is also easy to show geometrically by plotting the contours of the
two implicit functions presented in system (5) (see Figure 1). We observe from
this figure that the y components of the equilibrium points L1,2,3 are close to zero
but not zero. Moreover, this can be easily seen from bottom-left and right frames
in Figure 1 where we enlarge the area close to L1,2 and L3, respectively. Therefore,
we can conclude that under the effect of P–R drag, induced by the radiation pressure
of the smaller primary, there are no equilibrium points that lie exactly on the x-axis,
called collinear equilibrium points. This result agrees with [14, 20] and [11].

So, for the non-collinear equilibrium points, the second Equation (5) holds
and the equilibria are obtained by solving both Equations (5) simultaneously.
Figure 1 depicts the five non-collinear equilibrium points, Li, i = 1, 2, . . . , 5 of
the problem in the xy-plane, along with the associated primaries, which have been
found by solving numerically the aforementioned system for assumed values of
μ = 0.03852, β = 1.01, A1 = 0.0005, q2 = 0.9999 and cd = 299792458. We
denote here that the equilibria in the xy-plane are given by the mutual intersections
of the two coloured curves where blue and brown lines in the figure correspond
to the first and second equation of (5), respectively. Here we also note that the
intersection points of these curves show the coordinates (x0, y0) of the equilibria
on the xy-plane. It is seen that under the combined effects of the parameters, there
exist five non-collinear equilibrium points for which the ordinates of L1, L2 and L3
are close to zero but not zero. Therefore, from Figure 1, it is observed that under the
combined effects of radiating smaller primary with it P–R drag, and oblateness of
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Fig. 1 The five non-collinear equilibrium points and the position of the primary bodies for μ =
0.03852, β = 1.01, A1 = 0.0005, q2 = 0.9999 and cd = 299792458. Bottom frames depict
zoomed images of L1,2 and L3, respectively, with intersections of the curves. Black dots indicate
the positions of the bodies mi, i = 1, 2 while the positions of the equilibrium points Li, i =
1, 2, . . . , 5 are denoted by green dots

the bigger primary, the equilibria positions are different from those of the classical
R3BP. All these results tally with [20].

4 Stability of the Non-collinear Equilibrium Points

To study analytically the solutions in the neighborhood of the non-collinear
equilibrium points Li, i = 1, 2, . . . , 5, following Ragos and Zafiropoulos [20] as
well as Singh and Amuda [25], we consider small displacements ξ and η given to
the coordinates of an equilibrium point (x0, y0) such that ξ = x − x0, η = y − y0
and denote the right-hand side of equations of motion (3) by Ωx = ∂Ω/∂x and
Ωy = ∂Ω/∂y, respectively. Then the variational form of the equations of motion is
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derived as:
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where the dots are the derivatives with respect to time t and only the linear terms in
ξ and η have been taken. Now, we assume solutions of the variational equations of
the form:
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Now, for the nontrivial solution the determinant of the coefficients matrix of the
above system must be zero, namely:
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yẋ − Ω

(0)
yx λ2 − λΩ

(0)
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Simplifying Equation (9) we obtain the characteristic polynomial corresponding to
the system (6) as:
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xẋ ),

b = 4n2α2 + Ω
(0)
xẋ Ω
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(11)
and the obtained eigenvalues determine the stability or instability of the respective
equilibrium point. The second order partial derivative of Ω are denoted by subscripts
while the superscript “0” means that the corresponding derivatives have been
evaluated at the equilibrium points (x0, y0) and are given by the following analytical
formulas:
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xẏ = W2y0

r4
20

(1 − (x0 + μ)) = Ω
(0)
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An equilibrium point (x0, y0) is said to be stable in the sense of Lyapunov if and
only if all the four roots of the characteristic polynomial, given by Equation (10),
are either negative real numbers or distinct imaginary; asymptotically stable if roots
are complex with negative real parts and unstable, otherwise.

5 Numerical Application

In this section, we compute and examine graphically and numerically the positions
of the non-collinear equilibrium points for the binary Cen X-4 system using the
astrophysical parameters presented in Table 1 for some assumed oblateness and
centrifugal force parameters. As pointed out in Section 2, the adjective non-collinear
is due to the fact that L1, L2 and L3 do not lie exactly on the x-axis. In order
to visualize the evolution of the equilibria we consider region of the oblateness
coefficient A1 is [0, 0.2] (see [9]). The investigated region for the values of the
Coriolis and centrifugal forces are α, β ∈ [1, 1.2] (see, e.g. [28]) while the value
of the dimensional velocity of light is kept fixed to cd = 988.323 for all numerical
calculations.

Solving Equations (5), using parameters in Table 1, we present in Figures 2
and 3 the positions of the equilibria for the binary system as the two parameters
A1 and β vary in the absence and presence of the P–R drag effect, respectively.
For better understanding the evolution of the equilibria, in both figures, we use
colour codes to indicate the set of pairs (A1, β), while green dots signify the
positions of the equilibria. So, the intersections of blue-magenta, black-magenta,
and red-magenta curves correspond to three specific pairs of values of A1 and β;
particularly to (0, 1), (0.1, 1.04) and (0.2, 1.1), respectively. It is necessary to note
that, although the curves are identical, their behaviours are different as we observe
completely different results regarding the movement of the equilibrium points. From
Figure 2 it can be observed that for varying oblateness factor and varying centrifugal
force we have five equilibrium points (as in the classical restricted problem), three
collinear L1,2,3 and two triangular L4,5, where equilibria L1 and L2 both approach
the radiating primary m2, while L3 moves toward the oblate primary m1 and point
L4 (the situation is same at the symmetric point L5) moves closer to the point
L1. For clarity purposes, the top-right, bottom-left, and bottom-right frames are
enlargements of the top-left frame of Figure 2 (first frame) close to L1,2, L3, and
L4(5) points, respectively.

In Table 2, we have evaluated numerically the coordinates of the five equilibrium
points for different values of the parameters A1 and β for the binary system. One
can observe in this table that the variational trend of the equilibria is similar to the
scenario presented in Figure 2. However, the situation is different in the presence
of P–R drag effect as we observe that for increasing values of the oblateness
and centrifugal force parameters, there exist five non-collinear equilibrium points
positioned off the Ox-axis. In addition L1,3,4 have y > 0, while points L2,5 have
y < 0. It can be observed that the equilibria L1 and L2 approach the radiating
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Fig. 2 Effect of oblateness and centrifugal force parameters on the collinear L1,2,3 and the
triangular L4,5 points of Cen X-4 system without P–R effect (i.e., q2 = 1, W2 = 0) for
A1 = 0, β = 1 (blue, magenta); A1 = 0.1, β = 1.04 (black, magenta) and A1 = 0.2, β = 1.1
(red, magenta). Top-right, bottom-left and right frames: Zoomed areas close to L1,2, L3 and L4
points, respectively. Black dots represent the primaries while green dots represent the positions of
the equilibria

primary body m2 in opposite directions while L3 approaches the oblate primary
m1, and the two non symmetric equilibria L4 and L5 approach the displaced L1 in
opposite directions. Tables 3 and 4 provide the locations of the equilibrium points
Li, i = 1, 2, . . . , 5 for varying oblateness and centrifugal force parameters in the
presence of P–R drag for same fixed values of the parameters. One can see from
these tables that the variational trend of the equilibria is similar to the behaviour
presented in Figure 3.

Next, since we have already found the coordinates (x0, y0) of the equilibrium
points (presented in Tables 2, 3, and 4), we can insert them into the characteristic
Equation (10) and thus derive their linear stability numerically. In Tables 5 and 6,
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Fig. 3 Effect of oblateness and centrifugal force parameters on the non-collinear equilibrium
points of Cen X-4 system with P–R effect (i.e., q2 = 0.993, W2 = 2.72790 × 10−7) for
A1 = 0, β = 1 (blue, magenta); A1 = 0.1, β = 1.04 (black, magenta) and A1 = 0.2, β = 1.1
(red, magenta). Top-right, bottom-left and right frames: Zoomed areas close to L1,2, L3 and L4
points, respectively. Black dots represent the primaries while green dots represent the positions of
the equilibria

Table 2 Positions of the five equilibrium points for varying oblateness and varying centrifugal
force in the absence of P–R (i.e. q2 = 1,W2 = 0) for the binary Cen X-4 system

(A1, β) L1 L2 L3 L4,5

(0, 1) (0.744951, 0) (1.21443, 0) (−1.01604, 0) (0.461485,±0.866025)

(0.025, 1.025) (0.748593, 0) (1.20566, 0) (−1.00853, 0) (0.473601,±0.849585)

(0.05, 1.05) (0.751774, 0) (1.19750, 0) (−1.00156, 0) (0.484977,±0.833890)

(0.075, 1.075) (0.754572, 0) (1.18988, 0) (−0.99508, 0) (0.495655,±0.818874)

(0.1, 1.1) (0.757045, 0) (1.18275, 0) (−0.98900, 0) (0.505677,±0.804479)

we show the nature of the stability of the equilibrium points for various values of
oblateness, Coriolis and centrifugal forces in the absence and presence of the P–R
effect, respectively, for the binary Cen X-4 system. Analysis of Tables 5 and 6
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Table 4 Positions of L4,5 non-collinear equilibrium points for varying oblateness and varying
centrifugal force in the presence of P–R for the binary Cen X-4 system (continuation of Table 3)

(A1, β) L4 L5

(0, 1) (0.46382, 0.864673) (0.463823,−0.864672)

(0.025, 1.025) (0.47584, 0.848230) (0.475845,−0.845228)

(0.05, 1.05) (0.48713, 0.832534) (0.487133,−0.832533)

(0.075, 1.075) (0.49773, 0.817519) (0.497729,−0.817517)

(0.1, 1.1) (0.50767, 0.803125) (0.507675,−0.803124)

Table 5 Stability of Cen X-4 system for small assumed values of oblateness and perturbations in
Coriolis and centrifugal forces in the absence of P–R drag effect (see Table 2)

Li, i = 1, 2, . . . , 5 (x0, y0) λ1,2 λ3,4

Case: A1 = 0, β = 1, α = 1

L1 (0.744951, 0) ±3.145064 ±2.469515i

L2 (1.21443, 0) ±2.002264 ±1.772113i

L3 (−1.01604, 0) ±0.314525 ±1.031797i

L4,5 (0.461485,±0.866025) ±0.711480i ±0.702705i

Case: A1 = 0.05, β = 1.05, α = 1.04

L1 (0.751774, 0) ±3.338678 ±2.591204i

L2 (1.19750, 0) ±2.224148 ±1.956125i

L3 (−1.00156, 0) ±0.351533 ±1.083626i

L4,5 (0.484977,±0.83389) −0.130094 ± 0.755847i 0.130094 ± 0.755847i

Case: A1 = 0.1, β = 1.1, α = 1.08

L1 (0.757045, 0) ±3.497120 ±2.700120i

L2 (1.182750, 0) ±2.452064 ±2.146047i

L3 (−0.989004, 0) ±0.386942 ±1.141295i

L4,5 (0.505677,±0.804479) −0.180429 ± 0.806787i 0.180429 ± 0.806787i

reveals the non existence of pure imaginary roots except in the classical case (i.e.
q2 = 1,W2 = 0, α = β = 1). In all cases for all the assumed values of oblateness
and perturbations in Coriolis and centrifugal forces with and without P–R effect,
there exists at least a positive real root and/or a complex root with positive real part.
Consequently the motion of the infinitesimal body is unbounded and thus unstable
around all these equilibrium points.

6 Discussion and Conclusion

The location and stability of the equilibrium points in the photogravitational
restricted three-body problem that accounts for Poynting–Robertson (P–R) drag
force with oblateness of the first primary together with small perturbations in
the Coriolis and centrifugal forces were studied. It was found both analytically
and numerically that in the presence of P–R drag effect the well-known collinear
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equilibrium points of the circular restricted three-body problem cease to exist while
the respective triangular equilibrium points do not form equilateral triangles.

Using the astrophysical parameters of the Cen X-4 binary system we performed
a numerical study for its equilibrium points and showed that in the case where P–R
drag was considered five non-collinear equilibrium points exist whereas in the
absence of P–R drag force there are also five equilibrium points but three of them
are located on the axis joining the primaries and the rest two form in the plane of
motion equilateral triangles with the primaries, as in the circular restricted three-
body problem. It was also found that the equilibrium points are independent of
the effect of small perturbation in the Coriolis force but are affected by the small
perturbation in centrifugal force. For the stability of the five equilibria, the four
roots of the characteristic polynomial were determined numerically and found that
are unstable due to the existence of at least one positive real root or a complex
root with positive real part. The instability of the equilibrium points agrees with
the results existing in the literature when the primaries are not oblate spheroids and
small perturbations in the Coriolis and centrifugal forces are not considered (for
details we refer to [4, 21])
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