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Abstract In this paper, we introduce the generalized Lipschitz and BMO norms
of differential forms and establish the upper bound estimates for the generalized
Lipschitz and BMO norms of operators applied to differential forms. We also
demonstrate applications of our main results using examples.

1 Introduction

The main purpose of this paper is to establish the upper bound estimates for the
generalized Lipschitz and BMO norms of the iterated operators DkGk and Dk+1Gk

applied to differential forms u defined in Rn in terms of the Lp norms of u,
where k is a positive integer; G is Green’s operator and D = d + d� is the
Hodge-Dirac operator on differential forms. The Dirac operator D and Green’s
operator G are very well studied and widely used in many fields of mathematics and
physics. They play a critical role in the study of the nonlinear problems in PDEs
and nonlinear potential theory. For example, in the case k = 1, the composition
D2G is used to define the well-known Poisson’s equation D2G(u) = u − H(u)

(or ΔG(u) = u − H(u)), where H is the harmonic projection operator. In the
same sense as the Lp theory, the estimates for the BMO norms of differential
forms and the related operators are also decisive on the investigation of the solution
properties of PDEs, especially on the study of Harnack’s inequality for solutions
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to certain partial differential equations, see [1] for example. Some estimates for
the BMO norm and local Lipschitz norm of differential forms or related operators
can be found in [2–5]. We should notice that DkGk and Dk+1Gk are more general
operators which include the composite operator DG as a special case, see [5] where
DG has been investigated. However, there is no systematic study on the BMO
norm and local Lipschitz norm of the iterated operators DkGk and Dk+1Gk for the
case k > 1 in the literature. Hence, we are motivated to establish the upper bound
estimates for the generalized Lipschitz and BMO norms of the composite operator in
this paper. We first extend the definitions of the classical locLipα and BMO norms
into the generalized locLips

α and BMOs norms, respectively. Then, we study the
relationship between these two norms and Lp norms. The estimates for norms and
comparisons of norms are very important in the investigation of the corresponding
spaces in analysis. For example, it is well known that the BMO space, the dual of
Hardy space, is a substitute of L∞ space and has been playing a very indispensable
role in harmonic analysis and exterior differential analysis, as well as in the study
of the characterization of singular integral operators since it was set forth by John
and Nirenberg in 1961. We refer the readers to Chapter IV in [6] and [1, 7] for the
function case of the BMO space, and Chapter 9 in [2] and [8–11] for the case to
differential forms. Our main results are presented and proved in Section 3. These
results will enrich the theory of operators on differential forms.

Unless stated otherwise, we keep using the traditional notation and symbols
throughout this paper. Let Ω be a smoothly bounded domain without the boundary
in Rn, n ≥ 2, and B = B(x, ρ) be the ball in Rn with radius ρ centered at x, which
satisfies diam(σB) = σdiam(B). Let the direct sumΛ = Λ(Rn) = ⊕n

l=0Λ
l(Rn) be

a graded algebra with respect to the exterior product, and Λl = Λl(Rn) be the space
of l-covectors in Rn, which is spanned by the dual orthogonal basis dxi1 , · · · , dxil ,
where xi1 , · · · , xil are the coordinate functions on R

n. For the set Λ, we denote the
pointwise inner product by < ·, · > and the module by | · |. Then, every differential
form u(x) ∈ Λl(Rn) can be uniquely written as

u(x) =
∑

I

uI (x)dxI =
∑

ui1i2···il (x)dxi1 ∧ dxi2 ∧ · · · ∧ dxil ,

where the coefficients ui1i2···il (x) are differentiable functions and I =
(i1, i2, · · · , il), 1 ≤ i1 < i2 < · · · < il ≤ n. Actually, differential forms are
the generalizations of the functions, which include functions as their special cases
(functions are called 0-forms). The Hodge-star operator � : Λl(Rn) → Λn−l (Rn)

is defined by the rule that �1 = dxi1 ∧ dxi2 ∧ · · ·∧ dxil and α ∧ �β =< α, β > (�1)
for every α, β ∈ Λl , l = 0, 1, · · · , n. By this definition, it induces that � is an
isometric isomorphism on Λl . The linear operator d : D′(Ω,Λl) → D′(Ω,Λl+1),
0 ≤ l ≤ n − 1, is called the exterior differential and d� = (−1)nl+1 � d� :
D′(Ω,Λl+1) → D′(Ω,Λl), the formal adjoint of d, is known as Hodge
codifferential. The interested readers could see [10–13] for further introduction and
appropriate properties. Also, we use Lp(Ω,Λ) to denote the classical Lp space for
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differential forms, 1 < p < ∞, equipped with the norm ‖u‖p,Ω = (∫
Ω

|u|pdx
) 1

p =
(∫

Ω
(
∑

I |uI |2) p
2 dx

) 1
p

. W 1,p(Ω,Λ) is the classical Sobolev space for differential

forms with the norm ‖u‖W 1,p(Ω) = (diam(Ω))−1‖u‖p,Ω + ‖∇u‖p,Ω. W
p
d (Ω,Λl)

is the space of differential l-forms such that du ∈ Lp(Ω,Λl). Analogously,
W

p
d�(Ω,Λl) is the space of differential l-forms such that d�u ∈ Lp(Ω,Λl).

Inspired by these classical spaces for differential forms, we generalize the BMO
space and local Lipschitz space as follows.

Definition 1.1 For every ω ∈ Ls
loc(Ω,Λl), s ≥ 1, we say ω ∈ BMOs(Ω,Λl) with

the norm defined by

‖ω‖∗,s,Ω = sup
σQ⊂Ω

|Q|−1/s‖ω − ωQ‖s,Q, (1.1)

if ω satisfies supσQ⊂Ω |Q|−1/s‖ω − ωQ‖s,Q < ∞, where l = 0, 1, · · · , n and
σ > 1 is some expansion factor.

Definition 1.2 For every ω ∈ Ls
loc(Ω,Λl), s ≥ 1, l = 0, 1, · · · , n and 0 < α ≤ 1,

we call ω ∈ locLips
α(Ω,Λl) with the norm denoted by

‖ω‖locLips
α(Ω) = sup

σQ⊂Ω

|Q|−(n+αs)/sn‖ω − ωQ‖s,Q, (1.2)

if ω satisfies supσQ⊂Ω |Q|−(n+αs)/sn‖ω − ωQ‖s,Q < ∞, where σ > 1 is some
expansion factor.

Especially, for the case s = 1, the BMOs norm and locLips
α norm just reduce to

the following classical BMO norm and locLipα norm given in [10] by C. Nolder,
respectively.

‖ω‖∗,1,Ω = ‖ω‖∗,Ω = sup
σQ⊂Ω

|Q|−1‖ω − ωQ‖1,Q (1.3)

and

‖ω‖locLip1
α(Ω) = ‖ω‖locLipα(Ω) = sup

σQ⊂Ω

|Q|−(n+α)/n‖ω − ωQ‖1,Q (1.4)

Furthermore, notice that |Q|α/n ≤ |Ω|1/n since 0 < α ≤ 1 and n ≥ 1, which results
in that

|Q|−1/s = |Q|α/n|Q|−1/s−α/n ≤ |Ω|1/n|Q|−1/s−α/n

So, similarly as the result in [14], we have that there is a constant C > 0,
independent of ω, such that
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‖ω‖∗,s,Ω ≤ C‖ω‖locLips
α(Ω) (1.5)

for every ω ∈ W 1,s(Ω,Λl), which enables us to compare the locLips
α norm and the

BMOs norm for DkGk and Dk+1Gk simply. In addition, from now on, we point out
that the constants C and Ci employed in this paper, i = 1, 2, · · · , may differ from
one line to the next.

2 Local Poincaré-Type Inequalities

In this section, as preparation for the principle assertion, we show the explicit
formulas of DkGk and Dk+1Gk and the Poincaré-type inequalities of DkGk and
Dk+1Gk by applying the explicit representation in Lemma 2.4 and Lemma 2.5.
First, let us start with the brief review of Green’s operator G. For any fixed integer
l = 0, 1, · · · , n, let H be the harmonic l-field denoted by

H = {u ∈ W(Ω,Λ) : du = d�u = 0, u ∈ Lp, for some 1 < p < ∞}.

In the meantime, we take the operator δ : Lp(Ω,Λ)
⋂

H⊥ → W 1,p(Ω,Λ)
⋂

H⊥
defined by Morrey in [15], which satisfies that for every u ∈ Lp(Ω,Λ)

⋂
H⊥, δ(u)

is the unique form in W 1,p(Ω,Λ)
⋂

H⊥ such that Δδ(u) = u, where � = D2 =
dd� + d�d is the Laplace operator, and H⊥ is the complement space of harmonic
field H. Therefore, we are given the definition as follows.

Definition 2.1 ([16]) Green’s operator G : Lp(Ω,Λ) → W 1,p(Ω,Λ) ∩ H⊥, 1 <

p < ∞, is defined by

G(u) = δ(u − H(u))

for every u ∈ Lp(Ω,Λ), where H : Lp(Ω,Λ) → H is the projection operator.
Moreover, observe that Δδ(u) = u, so we have that

ΔG(u) = u − H(u). (2.1)

By employing the classical dominated convergence theorem, C. Scott in [16]
further gave the upper bound estimate of Green’s operator G.

Lemma 2.2 Let u ∈ Ls(Ω,Λ), 1 < s < ∞, be a differential form defined in the
domain Ω . Then, there exists a positive constant C, independent of u, such that

‖dd�G(u)‖s,B+‖d�dG(u)‖s,B+‖dG(u)‖s,B+‖d�G(u)‖s,B+‖G(u)‖s,B ≤ C(s)‖u‖s,σB

(2.2)

for any ball B ⊂ σB ⊂ Ω with some constant σ > 1, where Ω is a smoothly
bounded domain without boundary.
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Remark 1 For any v ∈ Lp(Ω,Λ)
⋂

H⊥, by the definition of the projection
operator H , it is easy to obtain that H(v) = 0. Since G(u) ∈ W 1,p(Ω,Λ) ∩ H⊥
for every u ∈ Lp(Ω,Λ), replacing v with G(u) yields that H(v) = HG(u) = 0. In
other words, the harmonic projection of Green’s operator G on Lp(Ω,Λ) is always
equal to zero.

Remark 2 Also, applying Lemma 2.2 repeatedly, it is obvious to achieve that there
is a constant C > 0, independent of u, such that

‖Gm(u)‖p,B ≤ C‖u‖p,σB. (2.3)

In particular, if u ∈ W
p
d (Ω,Λ) (or u ∈ W

p
d�(Ω,Λ)), we know that Green’s operator

G can commute with d (or d�), which implies that

dG(u) = G(du) or d�G(u) = G(d�u).

Similarly to the method employed in (2.3), we have that

‖dGm(u)‖p,B ≤ C‖du‖p,σB or ‖d�Gm(u)‖p,B ≤ C‖d�u‖p,σB (2.4)

for any integer m ≥ 1, where σ > 1 is some constant.

Meanwhile, to facilitate the upcoming argument about the Poincaré-type esti-
mates in Theorem 2.6 and Theorem 2.7, we need the following results as well.

Lemma 2.3 ([17]) Let v ∈ L
p
loc(Ω,Λl), 1 < p < ∞, be a differential form

defined in Ω and T : Lp(Ω,Λl) → W 1,p(Ω,Λl−1) be the homotopy operator,
l = 1, 2, · · · , n. Then, we have

v = d(T v) + T (dv), (2.5)

‖∇(T v)‖p,Ω ≤ C|Ω|‖v‖p,Ω and ‖T v‖p,Ω ≤ C|Ω|diam(Ω)‖v‖p,Ω (2.6)

hold for any bounded and convex domain Ω .

Before starting the primary argument in this section, it is worth to note that the
explicit representations in Lemma 2.4 and Lemma 2.5 are the essential steps for
the argument of the Poincaé-type inequalities. In precise, if our attention is only to
estimate ‖DkGk(u)‖locLips

α
(or ‖Dk+1Gk(u)‖locLips

α(Ω)) in terms of the Lp norm
‖u‖p,Ω , we can prove it directly with the aid of the higher imbedding inequality
given in [18]. Otherwise, while we are concerned on the upper boundedness of
‖DkGk(u)‖locLips

α(Ω) (or ‖Dk+1Gk(u)‖locLips
α(Ω)) in terms of the BMOs norm

‖u‖∗,s,Ω , the higher imbedding result is not valid for this case any more. Thus,
to overcome this difficulty, the key tools in our approach are Lemma 2.4 and
Lemma 2.5, which are established by adapting the technique developed in [19] with
the inductive method.
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Lemma 2.4 Let u ∈ L
p
loc(Ω,Λ), 1 < p < ∞, be a differential form in the domain

Ω , D be the Hodge-Dirac operator and G be Green’s operator. Then, we have that

DkGk(u) = Gm(u), (2.7)

Dk+1Gk(u) = dGm(u) + d�Gm(u), (2.8)

for every even integer k = 2m and m = 1, 2, · · · .
Proof First, since Δ = D2 = (d + d�)2 = dd� + d�d, we know that it holds

u = ΔG(u) + H(u) = dd�G(u) + d�dG(u) + H(u) (2.9)

for every u ∈ L
p
loc(Ω,Λ), which also implies that

dd�G(u) + d�dG(u) = u − H(u). (2.10)

Due to the fact that HG(u) = 0 always holds by Remark 1, replacing u with Gm(u)

in (2.10) gives that

dd�G(Gm(u)) + d�dG(Gm(u)) = Gm(u) (2.11)

whenever the positive integer m ≥ 1.
Now, we will assert the representation (2.7) by using the inductive method. In the

case of k = 2 and m = 1, we have

D2G2(u) = (d + d�)2G2(u) = dd�G(G(u)) + d�dG(G(u)). (2.12)

Substituting 2.11 with m = 1 into (2.12) yields that D2G2(u) = G(u). Assume that
the desired result holds for any k = 2(m − 1), m = 2, 3, · · · , that is,

DkGk(u) = D2(m−1)G2(m−1)(u) = Gm−1(u). (2.13)

Then, when k is taken as 2m, it continues with (2.13) and (2.11) that

DkGk(u) = D2D2(m−1)G2(m−1)(G2(u)) = D2Gm+1(u)

= dd�G(Gm(u)) + d�dG(Gm(u)) = Gm(u). (2.14)

So, the desired result (2.7) holds. Moreover, for the operatorDk+1Gk(u), making
use of (2.7) and the fact D = d + d�, we obtain that

Dk+1Gk(u) = D(DkGk(u)) = D(Gm(u)) = dGm(u) + d�Gm(u).

Therefore, we finish the proof of Lemma 2.4. ��
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In analogue to the method developed in Lemma 2.4, we also derive the following
results for the case k = 2m + 1.

Lemma 2.5 Let u ∈ L
p
loc(Ω,Λ), 1 < p < ∞, be a differential form defined in the

domain Ω , D be the Hodge-Dirac operator and G be Green’s operator. Then, we
derive that

DkGk(u) = dGm+1(u) + d�Gm+1(u), (2.15)

Dk+1Gk(u) = Gm(u) (2.16)

for every odd integer k = 2m + 1 and m = 1, 2, · · · .
Now, we are ready to give the local Poincaré-type estimates of the iterated

operator DkGk and Dk+1Gk in terms of the Lp norms of du and d�u, respectively.

Theorem 2.6 Assume that the differential form u is of the Sobolev class
W

1,p
loc (Ω,Λ), 1 < p < ∞, D is the Hodge-Dirac operator and G is Green’s

operator. Then, for any even integer k = 2m, m = 1, 2, · · · , there exists a constant
C > 0, independent of u, such that

‖DkGk(u) − (DkGk(u))B‖p,B ≤ C|B|1+1/n‖du‖p,σB, (2.17)

‖Dk+1Gk(u) − (Dk+1Gk(u))B‖p,B ≤ C|B|1+1/n‖d�u‖p,σB (2.18)

for all balls B ⊂ σB ⊂ Ω with some constant σ > 1.

Proof Initially, to prove (2.17), applying the decomposition (2.5) to DkGk(u), we
have

DkGk(u) = dT (DkGk(u)) + T d(DkGk(u)). (2.19)

Since dT (DkGk(u)) = (DkGk(u))B , for every p > 1, using (2.19), (2.7) and (2.6),
it follows that

‖DkGk(u) − (DkGk(u))B‖p,B = ‖T d(DkGk(u))‖p,B

≤ C1|B|diam(B)‖d(DkGk(u))‖p,B

= C1|B|diam(B)‖d(Gm(u))‖p,B

≤ C2|B|1+1/n‖d(Gm(u))‖p,B. (2.20)

Due to the definition of the Sobolev space and the facts that ‖du‖p,Ω ′ ≤
‖∇u‖p,Ω ′ < ∞ and ‖d�u‖p,Ω ′ ≤ ‖∇u‖p,Ω ′ < ∞ for any Ω ′ ⊂⊂ Ω , one
may readily see that Green’s operator G can commute with d and d�. Then,
combining (2.20) with (2.4) follows that
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‖DkGk(u) − (DkGk(u))B‖p,B ≤ C3|B|1+1/n‖du‖p,σ1B

for any even integer k > 0. Thus, we have (2.17) always holds for all balls B ⊂
σB ⊂ Ω with some constant σ1 > 1.

Now, we turn to the proof of the inequality (2.18). First, applying the commute
property between G and d� and (2.2), we have

‖dd�Gk(u)‖p,B = ‖dGk(d�(u))‖p,B ≤ C4‖d�u‖p,σ2B. (2.21)

Making use of the similar treatment as in the proof of DkGk with (2.8) and (2.21),
we attain that

‖Dk+1Gk(u) − (Dk+1Gk(u))B‖p,B = ‖T d(Dk+1Gk(u))‖p,B

≤ C5|B|diam(B)‖d(Dk+1Gk(u))‖p,B

≤ C6|B|1+1/n‖d(dGm(u) + d�Gm(u))‖p,B

= C6|B|1+1/n‖dd�Gm(u)‖p,B

≤ C7|B|1+1/n‖d�u‖p,σ2B (2.22)

for every even integer k > 0 and some constant σ2 > 1 with all ballsB ⊂ σ2B ⊂ Ω .
Therefore, the proof of Theorem 2.6 is ended. ��

Next, it is natural to take the case of the odd integer k > 1 into account. Using the
same process as the case k = 2m by Lemma 2.5 instead of Lemma 2.4, we derive
the results for the odd integer k = 2m + 1. Considering the length of the paper, we
only state the results of Theorem 2.7.

Theorem 2.7 Assume that the differential form u is of the Sobolev class
W

1,p
loc (Ω,Λ), 1 < p < ∞, D is the Hodge-Dirac operator and G is Green’s

operator. Then, for any odd integer k = 2m + 1, m = 1, 2, · · · , there exists a
constant C > 0, independent of u, such that

‖DkGk(u) − (DkGk(u))B‖p,B ≤ C|B|1+1/n‖d�u‖p,σB, (2.23)

‖Dk+1Gk(u) − (Dk+1Gk(u))B‖p,B ≤ C|B|1+1/n‖du‖p,σB (2.24)

for all balls B ⊂ σB ⊂ Ω with some constant σ > 1.

Remark 3 It should be noticed that the results in Theorem 2.6 and Theorem 2.7
will play a significant role in latter discussion. Specifically, just because of the right
terms du and d�u in Theorem 2.6 and Theorem 2.7, it provides us an effective way
to derive the upper boundedness of the iterated operators DkGk and Dk+1Gk in
terms of the BMOs norm for the conjugate A-harmonic tensors u and v.
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3 Estimates for BMOs and locLipsα Norms

In this section, we present our principal results about the estimates for BMOs norm
and locLips

α norm for DkGk and Dk+1Gk applied to differential forms u and v

associated with some conjugate A-harmonic equation.
During the recent years, the study in the conjugate A-harmonic tensors is of

growing interest and has made much progress, see [2, 10, 20, 21] for examples.
Here, we consider the conjugate A-harmonic tensors of the form as follows.

Definition 3.1 ([10]) Differential forms u ∈ W 1,p(Ω,Λ) and v ∈ W 1,q (Ω,Λ) are
called the conjugateA-harmonic tensors if u and v satisfy the conjugateA-harmonic
equation of the form

A(du) = d�v, (3.1)

where the operator A : Λ(Ω) → Λ(Ω) is restricted by the following structural
assumptions:

(i) the mapping ξ → A(ξ) is continuous;
(ii) |A(ξ)| ≤ a1|ξ |p−1, < A(ξ), ξ >≥ b1|ξ |p;
(iii) A(λξ) = λ|λ|p−2A(ξ) whenever λ ∈ R, λ �= 0;
(iv) the monotonicity inequality: | < A(ξ) − A(η), ξ − η > | ≥ L1(|ξ |2 +

|η|2) p−2
2 |ξ − η|2.

for all ξ ∈ Λ(Rn). Here, a1, b1 and L1 > 0 are the positive constants and 1 <

p, q < ∞ are the conjugate exponents with 1/p + 1/q = 1.

According to Definition 3.1, together with the facts dd = 0 and d�d� = 0, it
is obvious to see that such a differential form u in (3.1) is also a solution to the
A-harmonic equation

d�A(du) = 0. (3.2)

Moreover, if the operator A is invertible, in view of the isometric property of the
Hodge-star operator �, there exists an operator B such that the differential form v

in (3.1) meanwhile satisfies

d�B(d(�v)) = 0, (3.3)

where the operator B : Λ(Ω) → Λ(Ω) is given the similar conditions i)–iv) that

(b-i) the mapping ξ → B(ξ) is continuous on Λ(Rn);
(b-ii) |B(ξ)| ≤ a2|ξ |q−1, < B(ξ), ξ >≥ b2|ξ |q ;
(b-iii) B(κξ) = κ|κ|q−2B(ξ) whenever κ ∈ R, κ �= 0;
(b-iv) the monotonicity inequality: | < B(ξ) − B(η), ξ − η > | ≥ L2(|ξ |2 +

|η|2) q−2
2 |ξ − η|2.
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for almost every x ∈ Ω and all ξ ∈ ∧l (Rn). Here, a2, b2 and L2 are the positive
constants and 1 < q < ∞ is associated with (3.3).

Observe that A-harmonic equation is a special case of Dirac-harmonic equation,
so we derive the Caccippoli inequality and the weak reverse Hölder inequality,
respectively, by Corollary 2.3 and Theorem 4.3 in [22].

Lemma 3.2 Let u ∈ W 1,p(Ω,Λ) and v ∈ W 1,q (Ω,Λ) satisfy the conjugate A-
harmonic equation (3.1), and the operator A be invertible, where 1 < p, q < ∞
are the given conjugate exponents with 1/p+1/q = 1. Then, there exists a constant
C > 0, independent of u and v, such that

‖du‖p,B ≤ C|B|−1/n‖u − c‖p,σB, (3.4)

‖d�v‖q,B ≤ C|B|−1/n‖ � v − c�‖q,σB (3.5)

for some constant σ > 1 and any ball B ⊂ σB ⊂ Ω , where c and c� are both
closed forms.

Lemma 3.3 Let ω ∈ W 1,p(Ω,Λ) be a solution to the homogenous A-harmonic
equation, 1 < p < ∞. Then, for every 0 < s, t < ∞, there exists a constant C > 0,
independent of ω, such that

‖ω‖s,B ≤ C|B|1/s−1/t‖ω‖t,σB, (3.6)

where all balls B ⊂ σB ⊂ Ω and σ > 1 is some constant.

In addition, the local higher order inequality is also necessary for our latter
argument.

Lemma 3.4 Let u ∈ L
p
loc(Ω,Λ), 1 < p < ∞, be a differential form, D be the

Hodge-Dirac operator and G be Green’s operator. Then, for any positive integer
k ≥ 1, we have that

(i) if 1 < p < n, for any real number 0 < s < np/(n − p), there exists a constant
C > 0, independent of u, such that

‖DkGk(u) − (DkGk(u))B‖s,B ≤ C|B|1+1/n+1/s−1/p‖u‖p,σB, (3.7)

‖Dk+1Gk(u) − (Dk+1Gk(u))B‖p,B ≤ C|B|1+1/n+1/s−1/p‖u‖p,σB (3.8)

(ii) if p ≥ n, for any real number s > 0, there is a constant C > 0, independent of
u, such that

‖DkGk(u) − (DkGk(u))B‖s,B ≤ C|B|1+1/n+1/s−1/p‖u‖p,σB, (3.9)

‖Dk+1Gk(u) − (Dk+1Gk(u))B‖p,B ≤ C|B|1+1/n+1/s−1/p‖u‖p,σB (3.10)

for all balls B ⊂ σB ⊂ Ω with some constant σ > 1.
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Now, with these facts in mind, let us first prove Theorem 3.5.

Theorem 3.5 Let u ∈ Lp(Ω,Λ), 1 < p < n, be a differential form defined on the
smoothly bounded domain Ω , D be the Hodge-Dirac operator and G be Green’s
operator. Then, for any positive integer k > 1 and any real number 0 < s <

np/(n − p), there exist two constants C1, C2 > 0, independent of u, such that

‖DkGk(u)‖∗,s,Ω ≤ C1‖DkGk(u)‖locLips
α(Ω) ≤ C2‖u‖p,Ω, (3.11)

‖Dk+1Gk(u)‖∗,s,Ω ≤ C1‖Dk+1Gk(u)‖locLips
α(Ω) ≤ C2‖u‖p,Ω, (3.12)

where 0 < α ≤ 1 is some constant.

Proof First, we notice that 1 + 1
n

− 1
p

− α
n

=
(
1 − 1

p

)
+

(
1
n

− α
n

)
> 0 because

0 < α ≤ 1 and 1 < p < ∞. Then, for any ball B ⊂ Ω , we have

|B|1+1/n−1/p−α/n ≤ |Ω|1+1/n−1/p−α/n. (3.13)

In the meantime, by replacing ω with DkGk(u) and Dk+1Gk(u) in (1.5), respec-
tively, it is immediate to achieve that

‖DkGk(u)‖∗,s,Ω ≤ C1‖DkGk(u)‖locLips
α(Ω), (3.14)

‖Dk+1Gk(u)‖∗,s,Ω ≤ C1‖Dk+1Gk(u)‖locLips
α(Ω). (3.15)

Thus, to estimate (3.11), applying (3.7) and (3.13) gives

‖DkGk(u)‖locLips
α(Ω) = sup

σ2B⊂Ω

|B|− n+αs
sn ‖DkGk(u) − (DkGk(u))B‖s,B

≤ sup
σ2B⊂Ω

|B|−1/s−α/nC2|B|1+1/s+1/n−1/p‖u‖p,σ1B

= sup
σ2B⊂Ω

C2|B|1+1/n−1/p−α/n‖u‖p,σ1B

≤ sup
σ2B⊂Ω

C2|Ω|1+1/n−1/p−α/n‖u‖p,σ1B

≤ C3 sup
σ2B⊂Ω

‖u‖p,σ1B

≤ C4‖u‖p,Ω, (3.16)

where the constants σ2 > σ1 > 1 and all balls B ⊂ σ1B ⊂ σ2B ⊂ Ω . So, according
to (3.14) and (3.16), we have that (3.11) holds as desired. Moreover, using the same
treatment to the operator Dk+1Gk(u) with (3.8) and (3.15), the inequality (3.12)
holds as well. Therefore, the proof of Theorem 3.5 is finished. ��
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For the case p ≥ n, repeating the process as in Theorem 3.5 with (3.9) and (3.10),
we obtain the analogue results.

Theorem 3.6 Let u ∈ Lp(Ω,Λ), p ≥ n, be a differential form defined on the
smoothly bounded domain Ω , D be the Hodge-Dirac operator and G be Green’s
operator. Then, for any positive integer k > 1 and any real number s > 0, there
exist two constants C1, C2 > 0, independent of u, such that

‖DkGk(u)‖∗,s,Ω ≤ C1‖DkGk(u)‖locLips
α(Ω) ≤ C2‖u‖p,Ω, (3.17)

‖Dk+1Gk(u)‖∗,s,Ω ≤ C1‖Dk+1Gk(u)‖locLips
α(Ω) ≤ C2‖u‖p,Ω, (3.18)

where 0 < α ≤ 1 is some constant.

Next, we begin to establish our principle relationship between BMOs norm and
locLips

α norm of the iterated operators in terms of the norms of the conjugate
harmonic tensors u and v. From Theorem 3.7 and Theorem 3.8 to Corollary 3.9
and Corollary 3.10 below, we always assume that Ω ⊂ Rn is smoothly bounded
domain without boundary, the operator A in (3.1) is invertible.

Theorem 3.7 Let u ∈ W 1,p(Ω,Λ) and v ∈ W 1,q (Ω,Λ), 1 < p, q < ∞ with
1/p + 1/q = 1, be the conjugate A-harmonic tensors satisfying the Equation (3.1),
D be the Hodge-Dirac operator and G be Green’s operator. Then, for every integer
k = 2m and any real number s > 0, m = 1, 2, · · · , there are two constants
C1, C2 > 0, independent of u and v, such that

‖DkGk(u)‖∗,s,Ω ≤ C1‖DkGk(u)‖locLips
α(Ω) ≤ C2‖u‖∗,p,Ω, (3.19)

‖Dk+1Gk(v)‖∗,s,Ω ≤ C1‖Dk+1Gk(v)‖locLips
β (Ω) ≤ C2‖ � v‖∗,p,Ω, (3.20)

where 0 < α, β ≤ 1 are the expansion factors.

Proof First, without loss of generality, we assume that the conjugate A-harmonic
tensor u is a solution to the A-harmonic equation (3.2). Then, it is natural to view
the corresponding v as a solution to Equation (3.3). Next, we will divide our proof
into two parts.

(i) For every 1 < p < ∞, applying (2.17) into Definition 1.2, we have that

‖DkGk(u)‖locLips
α(Ω) = sup

σ1B⊂Ω

|B|−1/s−α/n‖DkGk(u) − (DkGk(u))B‖s,B

≤ sup
σ1B⊂Ω

C1|B|−1/s−α/n|B|1+1/n‖du‖s,σ2B

≤ C1 sup
σ1B⊂Ω

|B|1+1/n−1/s−α/n‖du‖s,σ2B (3.21)
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Observe that du is a solution for the A-harmonic equation since du is a closed
form. Then, for any real number s > 0, using Lemma 3.3 yields that

‖du‖s,σ2B ≤ C2|B|1/s−1/p‖du‖p,σ3B. (3.22)

where σ3 > σ2 > 1. Under the assumption, we know that u satisfies the
Caccippoli inequality (3.4). Especially, choosing c = uB in (3.4) follows

‖du‖p,σ3B ≤ C3|B|−1/n‖u − uB‖p,σ4B (3.23)

for some constant σ4 > σ3 > 1 with any ball σ3B ⊂ σ4B ⊂ Ω . Moreover,
combining (3.22) and (3.23) gives

‖du‖s,σ2B ≤ C4|B|1/s−1/n−1/p‖u − uB‖p,σ4B (3.24)

So, substituting (3.24) into (3.21), together with Definition 1.1, yields that

‖DkGk(u)‖locLips
α(Ω) ≤ C5 sup

σ1B⊂Ω

|B|1+1/n−1/s−α/n|B|1/s−1/n−1/p‖u−uB‖p,σ4B

≤ C5 sup
σ1B⊂Ω

|B|1−1/p−α/n‖u − uB‖p,σ4B

≤ C5 sup
σ1B⊂Ω

|Ω|1−α/n|B|−1/p‖u − uB‖p,σ4B

≤ C6 sup
σ1B⊂Ω

|B|−1/p‖u − uB‖p,σ4B

≤ C6‖u‖∗,p,Ω, (3.25)

where the constants σ1 > σ4 > 1. Therefore, we have that (3.19) holds for any
even integer k > 1 and any real number s > 0.

The proof of (3.20) is similar to that of (3.19). Next, we only present the
different steps.

(ii) For every conjugate A-harmonic tensor v ∈ W 1,q (Ω,Λ), employing the same
treatment used in the proof of (3.19), along with (2.18), we have that

‖DkGk(v)‖locLips
β (Ω) ≤ C7 sup

η1B⊂Ω

|B|1+1/n−1/s−β/n‖d�v‖s,η2B. (3.26)

According to the isometric property of the Hodge-star operator �, we know that
|d�v| = |d�v|. Notice that d�v is a closed form satisfyingA-harmonic equation.
So, for any real number s > 0, using Lemma 3.3 again, we derive that

‖d�v‖s,η2B = ‖d � v‖s,η2B ≤ C8|B|1/s−1/q‖d � v‖q,η3B (3.27)
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Also, by the comments after Definition 3.1, it implies that �v is a solution to
the A-harmonic equation (3.3). Then, by Lemma 3.2, letting c� = (�v)B shows
that

‖d � v‖q,η3B ≤ C9|η3B|−1/n‖ � v − (�v)B‖q,η4B. (3.28)

So, combining (3.27) with (3.28) and plugging it into (3.26), we have that

‖Dk+1Gk(v)‖locLips
β (Ω) ≤ sup

η1B⊂Ω

|B|1+1/n−1/s−β/n‖d�v‖s,η2B

≤ sup
η1B⊂Ω

C10|B|1+1/n−1/s−β/n|B|1/s−1/q−1/n

‖ � v − (�v)B‖q,η4B

≤ sup
η1B⊂Ω

C10|Ω|1−β/n|B|−1/q‖ � v − (�v)B‖q,η4B

≤ C11 sup
η1B⊂Ω

|B|−1/q‖ � v − (�v)B‖q,η4B

= C11‖ � v‖∗,q,Ω (3.29)

as desired, where the constants η1 > η4 > η3 > η2 > 1.
��

Now, in the odd case k = 2m + 1, we have the similar estimates as follows. It
should be pointed out that the proof of Theorem 3.8 is the analogue of Theorem 3.7,
so we only state the results and leave the proof of the odd case k > 1 to the readers.

Theorem 3.8 Let u ∈ W 1,p(Ω,Λ) and v ∈ W 1,q (Ω,Λ), 1 < p, q < ∞ with
1/p + 1/q = 1, be the conjugate A-harmonic tensors satisfying the Equation (3.1),
D be the Hodge-Dirac operator and G be Green’s operator. Then, for every odd
integer k = 2m + 1 and any real number s > 0, m = 1, 2, · · · , there are two
constants C1, C2 > 0, independent of u and v, such that

‖DkGk(v)‖∗,s,Ω ≤ C1‖DkGk(v)‖locLips
β (Ω) ≤ C2‖ � v‖∗,q,Ω, (3.30)

‖Dk+1Gk(u)‖∗,s,Ω ≤ C1‖Dk+1Gk(u)‖locLips
α(Ω) ≤ C2‖u‖∗,p,Ω, (3.31)

where 0 < α, β ≤ 1 are the expansion factors.

In particular, if p(α − 1) = q(η − 1), as a consequence of Theorem 3.7 and 3.8,
the following estimates are established simply by means of Theorem 6.6 in [10]. It
is worth to notice that the treatment applied in Corollary 3.9 and Corollary 3.10 are
very similar, so we only give the complete proof of Corollary 3.9 in details.

Corollary 3.9 Let u ∈ W 1,p(Ω,Λ) and v ∈ W 1,q (Ω,Λ), 1 < p, q < ∞ with
1/p + 1/q = 1, be the conjugate A-harmonic tensors satisfying the Equation (3.1),
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D be the Dirac operator and G be the Green’s operator. If 0 < α, β ≤ 1 satisfy
p(α −1) = q(β −1), for any real s > 0, then there exist two constants C1, C2 > 0,
independent of u and v, such that

‖DkGk(u)‖∗,s,Ω ≤ C1‖DkGk(u)‖locLips
α(Ω) ≤ C2‖ � v‖q/p

locLip
q
β(Ω)

, (3.32)

‖Dk+1Gk(v)‖∗,s,Ω ≤ C1‖Dk+1Gk(v)‖locLips
β (Ω) ≤ C2‖u‖p/q

locLip
p
α (Ω)

, (3.33)

whenever k = 2m, m = 1, 2, · · · .
Proof First, combining (1.5) and Theorem 6.6 in [10], we have

‖u‖∗,s,Ω ≤ C1‖u‖locLips
α(Ω) ≤ C2‖ � v‖q/p

locLip
q
β(Ω)

, (3.34)

‖ � v‖BMO,Ω ≤ C3‖ � v‖locLipβ(Ω) ≤ C4‖u‖p/q

locLipα(Ω). (3.35)

Then, substituting (3.34) into (3.19) and (3.35) into (3.20), respectively, it yields
that

‖DkGk(u)‖∗,s,Ω ≤ C5‖DkGk(u)‖locLips
α(Ω) ≤ C6‖ � v‖q/p

locLip
q
β(Ω)

,

‖Dk+1Gk(v)‖∗,s,Ω ≤ C7‖Dk+1Gk(v)‖locLips
β (Ω) ≤ C8‖u‖p/q

locLip
p
α (Ω)

as desired. ��
Corollary 3.10 Suppose that 0 < α, β ≤ 1 satisfy p(α − 1) = q(β − 1), for any
real number s > 0, then there exist two constants C1, C2 > 0, independent of u and
v, such that

‖DkGk(v)‖∗,s,Ω ≤ C1‖DkGk(v)‖locLips
β (Ω) ≤ C2‖u‖p/q

locLip
p
α (Ω)

, (3.36)

‖Dk+1Gk(u)‖∗,s,Ω ≤ C1‖Dk+1Gk(u)‖locLips
α(Ω) ≤ C2‖ � v‖q/p

locLip
q
β(Ω)

, (3.37)

whenever k = 2m + 1, m = 1, 2, · · · .
What is more, for each pair of conjugate A-harmonic tensors u and v, in accord

to the facts that |du|p ≤ |d�v|q ≤ a
q

1 |du|p and |d�v| = |d � v|, one may easily
establish such a useful Lp-equivalence with respect to u and v as follows:

‖du‖p,Ω ′ ≤ ‖d � v‖q/p

q,Ω ′ ≤ a
q/p

1 ‖du‖p,Ω ′ , (3.38)

whenever Ω ′ ⊂ Ω , where 1 < p, q < ∞ are the conjugate Hölder exponents. In
view of the equivalence (3.38), if u and v are the conjugate A-harmonic tensors,
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it further reveals the relations (3.39)–(3.42) below. Namely, when k is any positive
even integer, there exist two constants C1, C2 > 0, independent of u and v, such
that

‖DkGk(u)‖∗,s,Ω ≤ C1‖DkGk(u)‖locLips
α(Ω) ≤ C2‖d � v‖q/p

q,Ω, (3.39)

‖Dk+1Gk(v)‖∗,s,Ω ≤ C1‖Dk+1Gk(v)‖locLips
β (Ω) ≤ C2‖du‖p/q

p,Ω. (3.40)

for any real number s > 0. As such, when k > 1 is any odd integer, there also exist
two constants C1, C2 > 0, independent of u and v, such that

‖DkGk(v)‖∗,s,Ω ≤ C1‖DkGk(v)‖locLips
β (Ω) ≤ C2‖du‖p/q

p,Ω, (3.41)

‖Dk+1Gk(u)‖∗,s,Ω ≤ C1‖Dk+1Gk(u)‖locLips
α(Ω) ≤ C2‖d � v‖q/p

q,Ω. (3.42)

It should be pointed out that the proof of the above assertions are parallel to the
those of Theorem 3.7. Therefore, we omit the details.

4 Applications

In this section, we use some concrete examples to illustrate the applications of the
main results obtained in Section 3.

Let the mapping f : Ω → Rn, f = (f 1, · · · , f n), be of Sobolev class
W

1,p
loc (Ω,Λ) and J (x, f ) = det (Df (x)) be the Jacobian determinant of f . Then,

we have that

u = J (xi1 , xi2 , · · · , xil ; f j1 , f j2 , · · · , f jl )dxi1 ∧ dxi2 ∧ · · · ∧ dxil , (4.1)

is a differential l-form, where J (xi1 , xi2 , · · · , xil ; f j1 , f j2 , · · · , f jl ) is the subde-
terminant of J (x, f ) of the form:

J (xi1 , xi2 , · · · , xil ; f j1 , f j2 , · · · , f jl ) =

∣∣∣∣∣∣∣∣∣

f
j1
xi1

f
j1
xi2

· · · f
j1
xil

f
j2
xi1

f
j2
xi2

· · · f
j2
xil

· · · · · · · · · · · ·
f

jl
xi1

f
jl
xi2

· · · f
jl
xil

∣∣∣∣∣∣∣∣∣

Referring to Chapter 1 in [2], we find that Theorem 3.5 and Theorem 3.6 are
applicable to such sort of the differential form u. Here, take a special case of 2-
dimensional Euclidean space for instance.
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Example 4.1 Assume that u = J (x, y; f 1, f 2)dx ∧ dy is the differential 2-form
defined on the domain Ω = {(x, y) ∈ R2 : 0 < x2 + y2 < r2}, where the mapping
f : Ω → R2 is of the Sobolev class W

1,p
loc (Ω,Λ) denoted by

f (x, y) = (f 1(x, y), f 2(x, y)) =
(

x

(x2 + y2)1/8
,

y

(x2 + y2)1/8

)
(4.2)

for any r > 0 and p > 1. After a simple calculation, one may derive that

u = J (x, y; f 1, f 2)dx ∧ dy = 3

4
(x2 + y2)−1/4dx ∧ dy.

Thus, by the spherical coordinate transformation, it is easy to see that u ∈
Lp(Ω,Λ2) for any p < 4. For example, choosing p = 3/2, we know that
u ∈ L3/2(Ω,Λ2). However, by the direct integral calculation with Definition 1.1
and Definition 1.2, it is quite hard to infer the higher order boundedness of BMOs

norm and locLips
α norm with respect to DkGk(u) and Dk+1Gk(u). Then, applying

Theorem 3.5 to DkGk and Dk+1Gk , for any 0 < s < np/(n − p) = 2·3/2
2−3/2 = 6, we

have that DkGk(u) ∈ BMOs(Ω,Λ2) and Dk+1Gk(u) ∈ BMOs(Ω,Λ2). Moreover,
there are two constants C1, C2 > 0, independent of u, such that

‖DkGk(u)‖∗,s,Ω ≤ C1‖DkGk(u)‖locLips
α(Ω) ≤ C2r

5/4, (4.3)

‖Dk+1Gk(u)‖∗,s,Ω ≤ C1‖Dk+1Gk(u)‖locLips
α(Ω) ≤ C2r

5/4 (4.4)

for every 0 < α ≤ 1 and all positive integer k ≥ 1.

Especially, if the homeomorphism f : Ω → Rn of Sobolev class W
1,n
loc (Ω,Rn),

as mentioned above, is the K-quasiregular mapping, K ≥ 1. From [23], we know
that

u = f ldf 1 ∧ · · · ∧ df l−1 and v = �f l+1df l+2 ∧ · · · ∧ df n

are the conjugate A-harmonic tensors, whenever l = 1, 2, · · · , n−1. Here, consider
the 4-dimensional space as an example.

Example 4.2 Let f = (f 1, f 2, f 3, f 4) be the K-quasiregular mapping defined on
the domain Ω = {(x1, x2, x3, x4) : |xi | < a, i = 1, 2, 3, 4} ⊂ R4, and choose the
conjugate A-harmonic tensors as follows:

u = f 2df 1 and v = �f 3df 4.

where 0 < a < ∞ is some real number. If u ∈ BMOp(Ω,Λ) and �v ∈
BMOq(Ω,Λ), where p and q are conjugate exponents with 1/p + 1/q = 1, by
applying Theorem 3.7 and Theorem 3.8, respectively, we have that for any even
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integer k = 2m and any real number s > 0, m = 1, 2, · · · , there are two constants
C1, C2 > 0, such that

‖DkGk(u)‖∗,s,Ω ≤ C1‖DkGk(u)‖locLips
α(Ω) ≤ C2‖f 2df 1‖∗,p,Ω,

‖Dk+1Gk(v)‖∗,s,Ω ≤ C1‖Dk+1Gk(v)‖locLips
β (Ω) ≤ C2‖f 3df 4‖∗,q,Ω,

where 0 < α, β ≤ 1 are two factors. While the integer k = 2m + 1, m = 1, 2, · · · ,
it holds that

‖DkGk(v)‖∗,s,Ω ≤ C1‖DkGk(v)‖locLips
β (Ω) ≤ C2‖f 3df 4‖∗,q,Ω,

‖Dk+1Gk(u)‖∗,s,Ω ≤ C1‖Dk+1Gk(u)‖locLips
α(Ω) ≤ C2‖f 2df 1‖∗,p,Ω,

for any real number s > 0, where 0 < α, β ≤ 1 are two factors.

Remark 4 In general, all results we establish here provide us an impressive descrip-
tion about the relation between BMOs norm and locLips

α norm for the iterated
operators. Also, from the results, one may realize that locLips

α-norm estimates for
differential forms are fairly essential for the process to derive the BMOs estimate
with respect to DkGk and Dk+1Gk for differential forms.
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