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Abstract This article is dedicated to study of the initial-boundary value problem
of edge pseudo-hyperbolic system with damping term on the manifold with edge
singularity. First, we will discuss about the invariance of solution set of a class of
edge degenerate pseudo-hyperbolic equations on the edge Sobolev spaces. Then,
by using a family of modified potential wells and concavity methods, it is obtained
existence and nonexistence results of global solutions with exponential decay and is
shown the blow-up in finite time of solutions on the manifold with edge singularities.

1 Introduction

Initial-boundary value problems written for hyperbolic semilinear partial differen-
tial equations emerged in several applications to physics, mechanics and engineering
sciences [9, 24, 25]. Interesting phenomena are often connected with geometric
singularities, for instance, in mechanics or cracks in a medium are described by
hypersurfaces with a boundary. In this cases, configurations of that kind belong to
the category of spaces (manifolds) with geometric singularities, here with edges.
Also, when one asks physics to calculate the self-energy of an electron, or the
structure of space time at the center of a black hole, one encounter with mathe-
matical bad behaviour, that is the singularities from the point view of mathematics.
In recent years, from a mathematical point of view, the analysis on such (in general,
stratified) spaces has become a mathematical structure theory with many deep
relations with geometry, topology, and mathematical physics [10, 15, 23, 25].
In [21], Melrose,Vasy and Wunsch investigated the geometric propagation and
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diffraction of singularities of solutions to the wave equation on manifolds with
edge singularities. Let X be an n-dimensional manifold with boundary, where the
boundary ∂X is endowed with a fibration Z → ∂X and ∂X → Y where Y,Z are
without boundary. By an edge metric g on X, we mean a metric g on the interior of
X which is a smooth 2-cotensor up to the boundary but which degenerates there in
a way compatible with the fibration. A manifold with boundary equipped with such
an edge metric also is called an edge manifold or a manifold with edge structure. If
Z is point, then an edge metric on X is simply a metric in the usual sense, smooth up
to the boundary, while if Y is a point,X is conic manifold [4]. A simple example of a
more general edge metric is obtained by performing a real blowup on a submanifold
B of a smooth, boundaryless manifold A. The blowup operation simply introduces
polar coordinates near B, i.e., it replaces B by its spherical normal bundle, thus
yielding a manifold X with boundary. The pullback of a smooth metric on A to X

is then an edge metric [21].
Up to now, elliptic boundary value problems in domains with point singularities

have been thoroughly investigated [1–4, 7, 8, 14]. The natures of the solutions to
these equations have been investigated by several means. For instance, problems
with the Dirichlet boundary conditions were investigated in [1, 2, 7, 10, 14] in
which the unique existence, the multiplicity, the regularity and the asymptotic
behaviour near the conical points of the solutions are established. Finite time blow-
up of solutions of generalized hyperbolic equations have been studied by many
authors [1, 2, 5, 7, 18, 28]. In these references, the authors consider problems either
for negative energy or for weaker conditions than a condition of negative initial
energy. Other authors have assumed a condition of positive energy under other two
conditions on the initial functions. However, the mentioned authors have not studied
the compatibility of these conditions, which is come times hard to understand. These
authors have used the classic concavity Levine’s method [17]. In this article, we
use the edge Sobolev inequality and Poincaré inequality and modified method in
[7, 8] to prove on the global well-posedness of solutions to initial-boundary value
problems for semilinear degenerate pseudo-hyperbolic equations with dissipative
term on manifolds with edge singularities. More precisely, we study the following
initial-boundary value problem for semilinear hyperbolic equation

⎧
⎨

⎩

∂2t u − ΔEu + V (z)u + γΔE∂tu = gt (z)|u|p−1u, z ∈ intE, t > 0,
u(z, 0) = u0(z), ∂tu(z, 0) = u1(z), z ∈ intE

u(z, t) = 0, z ∈ ∂E, t ≥ 0,
(1)

where, 2 < p + 1 < 2n
n−2 = 2∗ is the critical cone Sobolev exponents, z = (r, x, y),

u = u(z, t) is unknown function and γ is a non-negative parameter. Also, u0 ∈
H

1, n+1
2

2,0 (E), u1 ∈ L
n+1
2

2 (E), N = 1+n+q ≥ 3 is a dimension of E and coordinates
z := (r, x, y) = (r, x1, . . . , xn, y1, . . . , yq) ∈ E. Here the domain E is [0, 1) × X ×
Y, X is an (n − 1)-dimensional closed compact manifold, Y ⊂ R

q is a bounded
domain, which is regarded as the local model near the edge points on manifolds
with edge singularities, and ∂E = {0} × X × Y. Moreover, the operator ΔE in 1 is
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defined by (r∂r )
2 + ∂2x1 + . . . + ∂2xn

+ (r∂y1)
2 + . . . + (r∂yq )

2, which is an elliptic
operator with totally characteristic degeneracy on the boundary r = 0, we also call
it Fuchsian type edge-Laplace operator, and the corresponding gradient operator
by ∇E := (r∂r , ∂x1 , . . . , ∂xn, r∂y1 , . . . , r∂yq ). In the Equation 1, we assume that

V (z) ∈ L
n+1
4 (intE) ∩ C(intE) is a positive potential function such that inf

z∈EV (z) >

0. For every t ≥ 0, we suppose that gt : E → R is a non-negative function which
gt (z) := g(z, t) for every z ∈ intE and g(z, t) ∈ L∞(intE) ∩ C1(intE). The
through of this paper we consider the following constants:

C∗ = inf

{‖√V (z)u(z)‖
L

n+1
2

2 (E)

‖∇Eu‖
L

n+1
2

2 (B)

; u ∈ H
1, n+1

2
2,0 (E)

}

,

C∗∗ = sup

{‖gt (z)
1

p+1 u‖
L

n+1
p+1
p+1 (E)

‖∇Eu‖
L

n+1
2

2 (E)

; u ∈ H
1, n+1

2
2,0 (E)

}

.

Our investigation is in fact provoked by the study of [20] and we shall apply a
potential method which was established by Sattinger [26]. So based on edge Sobolev
spaces [10, 27], we study the existence and non-existence global weak solutions for
semilinear pseudo-hyperbolic differential equations with respect to variable time
with a positive potential function and a non-negative weighted function. The well-
known operator (ΔE+V (x)+ΔE∂t )u and other special types of it (see [11]) appears
naturally in the nonlinear heat and wave equations [25], nonlinear Schrödinger
equation with potential function [12] and the references therein for a complete
description of the model. In the sitting of parabolic type system, the authors [6, 18]
studied global existence, exponential decay and finite time blow-up of solutions for
a class of semilinear pseudo-parabolic equations with conical degeneration. Also,
our problem can be seen as a class of degenerate hyperbolic type equations in case
that V (z) = 0 and gt (z) ≡ 1 then the problem 1 is reduced to problem 1.1 in [13]
and in the classical sense our problem include the classical problem

⎧
⎨

⎩

∂2t u − Δu + γ ∂tu = f (u), x ∈ Ω, t > 0,
u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ Ω

u(t, x) = 0, x ∈ ∂Ω, t ≥ 0,
(2)

where Ω is bounded domain of Rn with smooth boundary ∂Ω and Δ is the standard
Laplace operator and f is a suitable function [13, 17, 19]. It is well-known that
problem 2 has been studied by many authors, for example [19, 20] and the references
therein.

In Section 2, we recall the definition of the edge Sobolev space and the
corresponding properties. In Section 3, we will give some properties of potential
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wells for problem 1 on the manifold with edge singularity, which is very useful in
the process of our main results. In Section 4, we give the proofs of the results of
global existence and non-existence, exponential decay and finite time blowing-up
of problem 1.

2 Edge Sobolev Spaces

Consider X as a closed compact C∞-manifold of dimension n of the unit sphere

in R
n+1. We define an infinite cone in R

n+1 as a quotient space XΔ = R̄+×X
{0}×X

,

with base X. The cylindrical coordinates (r, θ) ∈ XΔ − {0} in R
n+1 − {0} are

the standard coordinates. This gives us the description of XΔ − {0} in the form
R+ × X. Then the stretched cone can be defined as R̄+ × X = X∧. Now, consider
B = XΔ with a conical point, then by the similar way in [8, 10, 27], one can
define the stretched manifold B with respect to B as a C∞-manifold with smooth
boundary ∂B ∼= X(0), where X(0) is the cross section of singular point zero such
that there is a diffeomorphism B − {0} ∼= B − ∂B, the restriction of which to
U − {0} ∼= V − ∂B for an open neighborhood U ⊂ B near the conic point zero
and a collar neighborhood V ⊂ B with V ∼= [0, 1) × X(0). Therefore, we can take
B = [0, 1) × X ⊂ R̄+ × X = X∧. In order to consider another type of a manifold
with singularity of order one so-called wedge manifold, we consider a bounded
domain Y in R

q . Set W = XΔ × Y = B × Y. Then W is a corresponding wedge
in R

1+n+q . Therefore, the stretched wedge manifold W to W is X∧ × Y which is
a manifold with smooth boundary {0} × X × Y. Set (r, x) ∈ X∧. In order to define
a finite wedge, it sufficient to consider the case r ∈ [0, 1). Thus, we define a finite
wedge as

E = [0, 1) × X

{0} × X
× Y ⊂ XΔ × Y = W.

The stretched wedge manifold with respect to E is

E = [0, 1) × X × Y = B × Y ⊂ X∧ × Y = W∧,

with smooth boundary ∂E = {0} × X × Y.

Definition 1 For (r, x, y) ∈ R
N+ with N = 1 + n + q, assume that u(r, x, y) ∈

D ′(RN+). We say that u(r, x, y) ∈ Lp(RN+; dμ) if

‖u‖Lp =
(∫

R
N+

rN |u(r, x, y)|pdμ

) 1
p

< +∞,

where dμ = dr
r

dx1 . . . .dxn
dy1
r

. . .
dyq

r
and for 1 ≤ p < ∞.
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Moreover, the weighted Lp spaces with wight γ ∈ R is denoted byL
γ
p(RN+; dμ),

which consists of function u(r, , y) such that

‖u‖L
γ
p

=
( ∫

R
N+

rN |r−γ u(r, x, y)|pdμ

) 1
p

< +∞.

Now, we can define the weighted p-Sobolev spaces with natural scale for all 1 ≤
p < ∞ on RN=1+n+q

+ .

Definition 2 For m ∈ N, γ ∈ R and N = 1 + n + q, the spaces

H
m,γ

p (RN+) =
{

u ∈ D
′
(RN+) | r

N
p

−γ
(r∂r )

k∂α
x (r∂y)

βu ∈ Lp(RN+; dμ)

}

for k ∈ N, multi-indices α ∈ N
n and β ∈ N

q with k + |α| + |β| ≤ m. In
other words, if u(r, x, y) ∈ H

m,γ
p (RN+) then (r∂r )

k∂α
x (r∂y)

βu ∈ L
γ
p(RN+; dμ).

Therefore, H m,γ
p (RN+) is a Banach space with the following norm

‖u‖H m,γ
p (RN+ ) =

∑

k+|α|+|β|≤m

(∫

R
N+

rN |r−γ (r∂r )
k∂α

x (r∂y)
βu|pdμ

) 1
p

.

Moreover, the subspace H
m,γ

p,0 (RN+) of H
m,γ

p (RN+) denotes the closure of

C∞
0 (RN+) in H

m,γ
p (RN+). Now, similarly to the definitions above, we can introduce

the following weighted p-Sobolev spaces on X∧ × Y, where X∧ = R+ × X and
X∧ × Y is an open stretched wedge.

H
m,γ

p (X∧ × Y ) :=
{

u ∈ D
′
(X∧ × Y ) | r

N
p

−γ
(r∂r )

k∂α
x (r∂y)βu ∈ Lp(X∧ × Y ; dμ)

}

for k ∈ N, multi-indices α ∈ N
n and β ∈ N

q with k + |α| + |β| ≤ m.

Then H
m,γ

p (X∧ × Y ) is a Banach space with the following norm

‖u‖H m,γ
p (X∧×Y ) =

∑

k+|α|+|β|≤m

(∫

X∧×Y

rN |r−γ (r∂r )
k∂α

x (r∂y)
βu|pdμ

) 1
p

.

The subspace H
m,γ

p,0 (X∧ × Y ) of H m,γ
p (X∧ × Y ) is defined as the closure of

C∞
0 (X∧ × Y ).

Definition 3 Let E be the stretched wedge to the finite wedge E, then H
m,γ

p (E)

for m ∈ N, γ ∈ R denotes the subset of all u ∈ W
m,p
loc (intE) such that ωu ∈
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H
m,γ

p (X∧ × Y ) for any cut-off function ω, supported by a collar neighborhood of
(0, 1) × ∂E. Moreover, the subspace H m,γ

p,0 (E) of H m,γ
p (E) is defined as follows

H
m,γ

p,0 (E) := [ω]H m,γ

p,0 (X∧ × Y ) + [1 − ω]Wm,p

0 (intE)

where the classical Sobolev space W
m,p

0 (intE) denotes the closure of C∞
0 (intE) in

Wm,p(Ẽ) for Ẽ that is a closed compact C∞ manifold with boundary.

If u ∈ L
n+1
p

p (E) and v ∈ L

n+1
p
′

p
′ (E) with p, p

′ ∈ (1,∞) and 1
p

+ 1
p

′ = 1, then one

can obtain the following edge type Hölder inequality

∫

E

rq |uv|dμ ≤
( ∫

E

rq |u|pdμ

) 1
p
( ∫

E

rq |v|p′
dμ

) 1
p
′
.

In the case p = 2, we have the corresponding edge type Schwartz inequality

∫

E

rq |uv|dμ ≤
(∫

E

rq |u|2dμ

) 1
2
(

rq |v|2dμ

) 1
2

.

In the sequel, for convenience we denote

(u, v)2 =
∫

E

rquvdμ, ‖u‖
L

n+1
p

p (E)

=
( ∫

E

rq |u|pdμ

) 1
p

.

Proposition 1 (Poincaré Inequality [7]) Let E = [0, 1) × X × Y be a stretched
edge manifold, γ ∈ R and p ∈ (1,∞). If u ∈ H

1,γ
p (E) then

‖u(z)‖L
γ
p(E) ≤ c‖∇Eu(z)‖L

γ
p(E) (3)

where ∇E := (r∂r , ∂x1 , . . . , ∂xn, r∂y1 , . . . , r∂yq ) and the constant c depending only
on E.

Proposition 2 ([7]) For 1 < p < 2∗ the embedding H
1, n+1

2
2,0 (E) ↪→ H

0, n+1
p

p,0 (E) is
continuous.

Proposition 3 ([7]) There exist 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λj ≤ . . . , and
λj → ∞ such that for all j ≥ 1, the following Dirichlet problem

{−ΔEφj = λjφj , x ∈ intE,

φj = 0, x ∈ ∂E,
(4)
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admits non-trivial solution in H
1, n+1

2
2,0 (E). Moreover, we can choose positive

{φj }j≥1 which constitute an orthonormal basis of Hilbert space H
1, n+1

2
2,0 (E), and

the inequality

λ
1
2
1 ‖u(z)‖

L
n
2
2

(E) ≤ ‖∇Eu‖
L

n+1
2

2

(E),

holds.

3 Some Auxiliary Results

In this section we give some results about the potential wells for problem 1 and
we obtain some properties of energy functional that we will use to prove the main
results in Section 4.

Similar to the classical case, we introduce the following functionals on the cone

Sobolev space H
1, n+1

2
2,0 (E):

J (u) = 1

2

∫

E

rq |∇Eu|2dμ + 1

2

∫

E

rqV (z)|u|2dμ − 1

p + 1

∫

E

rqgt (z)|u|p+1dμ,

K(u) =
∫

E

rq |∇Eu|2dμ +
∫

E

rqV (x)|u|2dμ −
∫

E

rqgt (z)|u|p+1dμ.

Then J (u) and K(u) are well-defined and belong to space C1
(
H

1, n+1
2

2,0 (E),R
)
.

Now we define

N =
{

u ∈ H
1, n+1

2
2,0 (E) ; K(u) = 0,

∫

E

rq |∇Eu|2dμ �= 0

}

,

d = inf

{

sup
λ≥0

J (λu) ; u ∈ H
1, n+1

2
2,0 (E),

∫

E

rq |∇Eu|2dμ �= 0

}

.

Thus, similar to the results in [20] we obtain that 0 < d = inf
u∈N

J (u). For 0 < δ we

define

Kδ(u) = δ

[ ∫

E

rq |∇Eu|2dμ +
∫

E

rqV (z)|u|2dμ

]

−
∫

E

rqgt (z)|u|p+1dμ,
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Nδ =
{

u ∈ H
1, n+1

2
2,0 (B) ; Kδ(u) = 0,

∫

E

rq |∇E|2dμ �= 0

}

,

d(δ) = inf
u∈Nδ

J (u).

Proposition 4 If 0 < ‖∇Eu‖
L

n+1
2

2 (E)

< r(δ) where r(δ) = ( (C2∗ + 1)δ

C
p+1∗∗

) 1
p−1 , then

Kδ(u) > 0. In particular, if

0 < ‖∇Eu‖
L

n+1
2

2 (E)

< r(1)

then K(u) > 0.

Proof We conclude the following

‖gt (z)
1

p+1 u‖p+1

L

n+1
p+1
p+1 (E)

=
∫

E

rq |gt (z)
1

p+1 u(z)|p+1dμ =
∫

E

rq |gt (z)||u(z)|p+1dμ ≤

‖gt‖L∞
∫

E

rq |u|p+1dμ ⇒

‖gt (z)
1

p+1 u‖p+1

L

n+1
p+1
p+1 (E)

≤ Cg‖u‖p+1

L

n+1
p+1
p+1 (E)

. (5)

Also from definition of C∗:

‖V (z)
1
2 u‖2

L
n+1
2

2 (E)

≥ C2∗‖∇Eu‖2
L

n+1
2

2 (E)

. (6)

Then by definition of Kδ and using the assumption we get that

Kδ(u) = δ

[ ∫

E

rq |∇Eu|2dμ +
∫

E

rqV (z)|u|2dμ

]

−
∫

E

rqgt (z)|u|p+1dμ

≥ δ(1 + C2∗)‖∇Eu‖
L

n+1
2

2 (E)

− C
p+1∗∗ ‖∇Eu‖p+1

L
n+1
2

2 (E)

=
(

δ(1 + C2∗) − C
p+1∗∗ ‖∇Eu‖p−1

L
n+1
2

2 (E)

)

‖∇Eu‖2
L

n+1
2

2 (E)

> 0.

In case that δ = 1 then by definition of functional K we obtain that K(u) > 0.
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Proposition 5 If Kδ(u) < 0, then ‖∇Eu‖
L

n+1
2

2 (E)

> r(δ). In particular, if K(u) <

0, then ‖∇Eu‖
L

n+1
2

2 (E)

> r(1).

Proof Since Kδ(u) < 0, then by definition of Kδ(u), we get that ‖∇Eu‖2
L

n+1
2

2 (E)

�=
0. Now, we have

δ‖∇Eu‖2
L

n+1
2

2 (E)

<

∫

E

rqgt (z)|u(z)|p+1dμ − δ

∫

E

rqV (z)|u(z)|2dμ

≤ ‖gt (x)
1

p+1 u‖p+1

L

n+1
p+1
p+1 (E)

− δ‖V (z)
1
2 u‖2

L
n+1
2

2 (E)

< C
p+1∗∗ ‖∇Eu‖p−1

L
n+1
2

2 (E)

‖∇Eu‖2
L

n+1
2

2 (E)

− δC2∗‖∇Eu‖2
L

n+1
2

2 (E)

.

Therefore,

‖∇Eu‖p−1

L
n+1
2

2 (E)

>

(
δ(1 + C2∗)

C
p+1∗∗

)

= rp−1(δ).

Corollary 1 Let u ∈ H
1, n+1

2
2,0 (E), Kδ(u) = 0 and ‖∇Eu‖

L
n+1
2

2 (E)

�= 0. Then

‖∇Eu‖
L

n+1
2

2 (E)

≥ r(δ). In particular, if K(u) = 0 and ‖∇Eu‖
L

n+1
2

2 (E)

�= 0, then

‖∇Eu‖
L

n+1
2

2 (E)

≥ r(1).

Lemma 1 (i) The functional J (λu) admits its maximum for λ = λ∗ where

λ∗ =
(‖∇Eu‖2

L
n+1
2

2 (E)

+ ∫

E

rqV (z)|u(z)|2dμ

∫

E

rqgt (z)|u(z)|p+1dμ

) 1
p−1

.

Also for 0 ≤ λ < λ∗, J (λu) is strictly increasing and for λ∗ < λ, it is strictly
decreasing.

(ii) K(λ∗u) = 0 and K(λu) > 0 if 0 < λ < λ∗. Also if λ∗ < λ then K(λu) < 0.
(iii) By results in i and ii we obtain that

d = inf

{

sup
λ≥0

J (λu) ; u ∈ H
1, n+1

2
2,0 (E),

∫

E

|∇Eu|2dμ �= 0

}

= p − 1

2(p + 1)
(1 + C2∗)

p+1
p−1 C

−2 p+1
1−p∗∗ ‖∇Eu‖2

L
n+1
2

2 (E)

.
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Proof For proof of i and ii we obtain the following conclusions. Let u ∈
H

1, n+1
2

2,0 (E) and
∫

E

|∇Eu|2dμ �= 0. Then by definition of J we obtain that

lim
λ→+∞ J (λu) = lim

λ→+∞

[
1

2

∫

E

rq |∇Eλu|2dμ + 1

2

∫

E

rqV (z)|λu(z)|2dμ

− 1

p + 1

∫

E

rqgt (z)|λu(x)|p+1dμ

]

= lim
λ→+∞

[
1

2
‖∇Eλu‖2

L
n+1
2

2 (E)

+ 1

2
‖V (z)

1
2 λu(z)‖2

L
n+1
2

2 (E)

− 1

p + 1
‖gt (z)

1
p+1 λu(z)‖p+1

L

n+1
p+1
p+1 (E)

]

= lim
λ→+∞

[
λ2

2
‖∇Eu‖2

L
n+1
2

2 (E)

+ λ2

2
‖V (z)

1
2 u(z)‖2

L
n+1
2

2 (E)

− λp+1

p + 1
‖gt (z)

1
p+1 u(z)‖p+1

L

n+1
p+1
p+1 (E)

]

≥ lim
λ→+∞

[
λ2

2
‖∇Eu‖2

L
n+1
2

2 (E)

+ λ2

2
C2∗‖∇Eu‖2

L
n+1
2

2 (E)

− λp+1

p + 1
C

p+1∗∗ ‖∇Eu‖p+1

L
n+1
2

2 (E)

]

= lim
λ→+∞

[
λ2

2
+ λ2

2
C2∗ − λp+1

p + 1
C

p+1∗∗ ‖∇Eu‖p−1

L
n+1
2

2 (E)

]

‖∇Eu‖2
L

n+1
2

2 (E)

= −∞.

Also we have

J (λu) = 1

2

∫

E

|∇Eλu|2dμ + 1

2

∫

E

rqV (z)|λu(z)|2dμ − 1

p + 1

∫

E

rqgt (z)|λu(z)|p+1

= λ2

2

∫

E

|∇Eu|2dμ + λ2

2

∫

E

V (z)|u(z)|2dμ − λp+1

p + 1

∫

E

gt (z)|u(z)|p+1dμ.

Then

∂J (λu)

∂λ
= λ

∫

E

|∇Eu|2dμ + λ

∫

E

rqV (z)|u(z)|2dμ − λp

∫

E

rqgt (z)|u(z)|p+1dμ

= λ‖∇Eu‖2
L

n+1
2

2 (E)

+ λ‖V (z)
1
2 u(z)‖2

L
n+1
2

2 (E)

− λp‖gt (z)
1

p+1 u(z)‖p+1

L

n+1
p+1
p+1 (E)

.

Now, ∂J (λu)
∂λ

= 0, it follows that

λ∗ := (

‖∇Eu‖2
L

n+1
2

2 (E)

+ ∫

E

rqV (z)|u(z)|2dμ

∫

E

rqgt (z)|u(z)|p+1dμ
)

1
p−1

is a maximum of J (λu) since ∂2(J (λu))

∂λ2
|λ=λ∗ < 0.
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(iii) Using of i and ii sup
λ≥0

J (λu) = J (λ∗u). Thus,

J (λ∗u) = 1

2

∫

E

rq |∇Eλ∗u|2dμ + 1

2

∫

E

rqV (z)|λ∗u(z)|2dμ

− 1

p + 1

∫

E

rqgt (z)|λ∗u|p+1dμ

= λ2∗
[
1

2
‖∇Eu‖2

L
n+1
2

2 (E)

+ 1

2

∫

E

rqV (z)|u(z)|2dμ − λ
p−1∗

p + 1

∫

E

rqgt (z)|u|p+1dμ

]

= λ2∗
[
1

2
‖∇Eu‖2

L
n+1
2

2 (E)

+ 1

2

∫

E

rqV (z)|u(z)|2dμ

− 1

p + 1

(‖∇Eu‖2
L

n+1
2

2 (E)

+ ∫

E

rqV (z)|u(z)|2dμ

∫

E

r6qgt (z)|u(z)|p+1dμ

) p−1
p−1

(

∫

E

rqgt (z)|u|p+1dμ)

]

= λ2∗
[
1

2
‖∇Eu‖2

L
n+1
2

2 (E)

+ 1

2

∫

E

rqV (z)|u(z)|2dμ − 1

p + 1
‖∇Eu‖2

L
n+1
2

2 (E)

− 1

p + 1

∫

E

rqV (z)|u(z)|2dμ

]

= λ2∗
[

(
1

2
− 1

p + 1
) ‖∇u‖2

L
n+1
2

2 (E)

+ (
1

2
− 1

p + 1
)

∫

E

rqV (z)|u(z)|2dμ

]

=
(‖∇Eu‖2

L
n+1
2

2 (E)

+ ∫

E

rqV (z)|u(z)|2dμ

∫

E

rqgt (z)|u(z)|p+1dμ

) 2
p−1

×
(

‖∇Eu‖2
L

n+1
2

2 (E)

+
∫

E

rqV (z)|u(z)|2dμ

)

× p − 1

2(p + 1)

≥
(‖∇Eu‖2

L
n+1
2

2 (E)

+ C2∗‖∇Eu‖2
L

n+1
2

2 (E)
∫

E

rqgt |u|p+1dμ

) 2
p−1

[

‖∇Eu‖2
L

n+1
2

2 (E)

+ C2∗‖∇Eu‖2
L

n+1
2

2 (E)

]
p − 1

2(p + 1)

≥ p − 1

2(p + 1)
(1 + C2∗)

p+1
p−1 C

−2(p+1)
p−1∗∗ ‖∇Eu‖2

L
n+1
2

2 (E)

.
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Therefore,

d = inf

u∈H 1, n+1
2

2,0 (E),‖∇Eu‖2
L

n+1
2

2 (E)

�=0

J (λ∗u)

= p − 1

2(p + 1)
(1 + C2∗)

p+1
p−1 C

−2(p+1)
p−1∗∗ ‖∇Eu‖2

L
n+1
2

2 (E)

.

Proposition 6 Let 0 < δ <
p+1
2 , then d(δ) ≥ a(δ)r2(δ) where a(δ) =

(
1
2 −

δ
p+1

)
(
1 + C2∗

)
. Moreover, we have

d(δ) = inf
u∈Nδ

J (u) = d λ(δ)2 a(δ)[1 + c2∗]−1 2(p + 1)

p − 1
.

Proof Let u ∈ Nδ, so by Proposition 5 we get that ‖∇Eu‖
L

n+1
2

2 (E)

> r(δ). Then by

definition of J and Kδ we obtain that

J (u) = 1

2
‖∇Eu‖2

L
n+1
2

2 (E)

+ 1

2

∫

E

rqV (z)|u(z)|2dμ − 1

p + 1

∫

E

rqgt (z)|u(z)|p+1dμ

= 1

2
‖∇Eu‖2

L
n+1
2

2 (E)

+ 1

2

∫

E

rqV (z)|u(z)|2rq

− 1

p + 1

(

δ‖∇Eu‖2
L

n+1
2

2 (E)

− Kδ(u) + δ

∫

E

rqV (z)|u(z)|2dμ

)

.

Since Kδ(u) = 0,

J (u) ≥ (
1

2
− δ

p + 1
)‖∇Eu‖2

L
n+1
2

2 (E)

+ δ(p − 1)

2(p + 1)
‖V (x)

1
2 u‖2

L
n+1
2

2 (E)

≥ (
1

2
− δ

p + 1
)‖∇Eu‖2

L
n+1
2

2 (E)

+ δ(p − 1)

2(p + 1)
C2∗‖∇Eu‖2

L
n+1
2

2 (E)

=
(
1

2
− δ

p + 1

)
(
1 + C2∗

)‖∇Eu‖2
L

n+1
2

2 (E)

.

Since ‖∇u‖2
L

n+1
2

2 (E)

≥ r2(δ) then,

d(δ) ≥ a(δ)r2(δ).
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Now, we prove the second part of the assertion. By definition of Nδ and N , for
ū ∈ Nδ and λū ∈ N , we obtain

λ2‖∇Eū‖2
L

n+1
2

2 (E)

+ λ2
∫

E

rqV (z)|ū|2dμ = λp+1
∫

E

rqgt (z)|ū|p+1dμ, (7)

and

δ‖∇Eū‖2
L

n+1
2

2 (E)

+ δ

∫

E

rqV (z)|ū|2dμ =
∫

E

rqgt (z)|ū|p+1dμ. (8)

Then 7 gives

λ =
(‖∇Eū‖2

L
n+1
2

2 (E)

+ ∫

E

rqV (z)|ū|2dμ

∫

E

rqgt (z)|ū|p+1dμ

) 1
p−1

, (9)

and 8 gives that

δ =

∫

E

rqgt (z)|ū|p+1dμ

‖∇Eū‖2
L

n+1
2

2 (E)

+ ∫

E

rqV (z)|ū|2dμ
. (10)

By 10 and 9, we define

λ = λ(δ) =
(
1

δ

) 1
p−1

. (11)

Moreover, for such λ, λū ∈ N , so by definition of d we get that

d ≤ J (λū) = 1

2
‖∇Eλū‖2

L
n+1
2

2 (E)

+ 1

2

∫

E

rqV (z)|λū|2dμ

− 1

p + 1

∫

E

rqgt (z)|λū|p+1dμ

= λ2

2
‖∇Eū‖2

L
n+1
2

2 (E)

+ λ2

2

∫

E

rqV (z)|ū|2dμ

− 1

p + 1

[

‖∇Eλū‖2
L

n+1
2

2 (E)

+
∫

E

rqV (z)|λū|2dμ − K(λū)

]
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= λ2
[
1

2
‖∇Eū‖2

L
n+1
2

2 (E)

+ 1

2

∫

E

rqV (z)|ū|2dμ − 1

p + 1
‖∇Eū‖2

L
n+1
2

2 (E)

− 1

p + 1

∫

E

rqV (z)|ū|2dμ

]

≤ (
1

δ
)

2
p−1

[
p − 1

2(p + 1)
‖∇Eū‖2

L
n+1
2

2 (E)

− (1 − p)C2∗
2(p + 1)

‖∇Eū‖2
L

n+1
2

2 (E)

]

.

On the other hand,

d(δ) = J (ū)=1

2
‖∇Eū‖2

L
n+1
2

2 (E)

+ 1

2

∫

E

rqV (z)|ū|2dμ− 1

p + 1

∫

E

rqgt (z)|ū|p+1dμ

= 1

2
‖∇Eū‖2

L
n+1
2

2 (E)

+ 1

2

∫

E

rqV (z)|ū|2dμ − 1

p + 1

(

δ‖∇Eū‖2
L

n+1
2

2 (E)

+ δ

∫

E

rqV (z)|ū|2dμ − Kδ(ū)

)

= (
1

2
− δ

p + 1
)‖∇Eū‖2

L
n+1
2

2 (E)

+ (
1

2
− δ

p + 1
)

∫

E

rqV (z)|ū|2dμ

≥
(
1

2
− δ

p + 1

)

(1 + C2∗)‖∇Eū‖2
L

n+1
2

2 (E)

= a(δ)‖∇Eū‖2
L

n+1
2

2 (E)

.

Indeed,

d ≤ J (λū) ≤ (1

δ

) 2
p−1

[
p − 1

2(p + 1)
(1 + C2∗)

]
d(δ)

a(δ)
.

Hence,

d(δ) ≥ a(δ)
(1

δ

)− 2
p−1 [1 + C2∗]−1 [2(p + 1)

p − 1
]d.

Now, we let 0 < δ and ũ ∈ N is minimizer of d that is

d = J (ũ) = 1

2
‖∇Eũ‖2

L
n+1
2

2 (E)

+ 1

2

∫

E

rqV (z)|ũ|2dμ − 1

p + 1

∫

E

rqgt (z)|ũ|p+1dμ.
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we define λ = λ(δ) by

δ‖∇Eλũ‖2
L

n+1
2

2 (E)

+ δ

∫

E

rqV (z)|λũ|2dμ =
∫

E

rqgt (z)|λũ|p+1dμ.

Then for any 0 < δ, there exists a unique λ which satisfies

λ = δ
1

p−1 .

Hence, for such λ, λũ ∈ Nδ by definition of d(δ) we get that

d = 1

2
‖∇Eλũ‖2

L
n+1
2

2 (E)

+ 1

2

∫

E

rqV (z)|λũ|2dμ

− 1

p + 1

(

δ‖∇Eλũ‖2
L

n+1
2

2 (E)

+ δ

∫

E

rqV (z)|λũ|2dμ − Kδ(λũ)

)

= (
1

2
− δ

p + 1
)‖∇Eλũ‖2

L
n+1
2

2 (E)

+ (
1

2
− δ

p + 1
)

∫

E

rqV (z)|λũ|2dμ

≥
[
1

2
− δ

p + 1
+ C2∗(

1

2
− δ

p + 1
)

]

‖∇Eλũ‖2
L

n+1
2

2 (E)

.

On the other hand,

d(δ) ≤ J (λũ)=1

2
‖∇Eλũ‖2

L
n+1
2

2 (E)

+1

2

∫

E

rqV (z)|λũ|2dμ− 1

p + 1

∫

E

rqgt (z)|λũ|p+1dμ

= λ2

2
‖∇Eũ‖2

L
n+1
2

2 (E)

+ λ2

2

∫

E

rqV (z)|ũ|2dμ

− 1

p + 1

(

δ‖∇Eλũ‖2
L

n+1
2

2 (E)

+ δ

∫

E

rqV (z)|λũ|2dμ − Kδ(λũ)

)

= λ2
[

(
1

2
− δ

p + 1
)‖∇Eũ‖2

L
n+1
2

2 (E)

− (
δ

p + 1
− 1

2
)

∫

E

rqV (z)|ũ|2dμ

]

≤ δ
2

p−1

[

(
1

2
− δ

p + 1
)‖∇Eũ‖2

L
n+1
2

2 (E)

− (
δ

p + 1
− 1

2
)C2∗‖∇Eũ‖2

L
n+1
2

2 (E)

]

≤ δ
2

p+1

[
1

2
− δ

p + 1
+ (

1

2
− δ

p + 1
)C2∗

]

‖∇Eũ‖2
L

n+1
2

2 (E)

=δ
2

p−1 a(δ)‖∇Eũ‖2
L

n+1
2

2 (E)

.
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Then,

d(δ) ≤ δ
2

p−1 a(δ) d [1 + C2∗]−1 2(p + 1)

p − 1
.

Therefore,

d(δ) = inf J (u)u∈Nδ
= δ

2
p−1 a(δ) d [1 + C2∗]−1 2(p + 1)

p − 1
.

Remark 1 According to d(δ) in Proposition 6, we obtain that

(i) lim
δ→0

d(δ) = 0.

(ii) d(δ) = d
2(p+1)
p−1

[
1
2δ

2
p−1 − 1

p+1δ
p+1
p−1

]

. Then

d ′(δ) = d2(p + 1)

(p − 1)2
δ

2
p−1

[
δ−1 − 1

] = 0 ⇒ δ = 1.

Hence, if 0 < δ < 1 then d(δ) is strictly increasing function and if δ > 1 then
d(δ) is strictly decreasing function.

4 Invariance of the Solutions

Now, we introduce the following potential wells

W =
{

u ∈ H
1, n+1

2
2,0 (E) ; K(u) > 0, J (u) < d

}

∪ {0},

Wδ =
{

u ∈ H
1, n+1

2
2,0 (E) ; Kδ(u) > 0, J (u) < d(δ)

}

∪ {0},

for 0 < δ, and corresponding potentials outside of the set that defined as above

E =
{

u ∈ u ∈ H
1, n+1

2
2,0 (E) ; K(u) < 0, J (u) < d

}

,

Eδ =
{

u ∈ H
1, n+1

2
2,0 (E) ; Kδ(u) < 0, J (u) < d(δ)

}

for any 0 < δ.According to the definition of potential wellsWδ and potential outside
Eδ one can get the following inclusions:

(I) Wδ1 ⊂ Wδ2 whenever 0 < δ1 < δ2 ≤ 1,
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(II) Eδ1 ⊂ Eδ2 whenever 1 ≤ δ2 < δ1 <
p+1
2 . Furthermore, from the above results

on can define the following sets

Vδ = {
u ∈ H

1, n+1
2

2,0 (E) : ‖∇Eu‖
L

n+1
2

2 (E)

< r(δ)
}

V̄δ = Vδ ∪ ∂Vδ = {
u ∈ H

1, n+1
2

2,0 (E) : ‖∇Eu‖
L

n+1
2

2 (E)

≤ r(δ)
}

V c
δ = {

u ∈ H
1, n+1

2
2,0 (E) : ‖∇Eu‖

L
n+1
2

2 (E)

> r(δ)
}
.

Then for every 0 < δ <
p+1
2 one gets that

Vt(δ) ⊂ Wδ ⊂ Vs(δ), Eδ ⊂ V c
δ

where

Vt(δ) = {
u ∈ H

1, n+1
2

2,0 (E) : ‖∇Eu‖
L

n+1
2

2 (E)

< min{r2(δ), r20 (δ)}
}

Vs(δ) = {
u ∈ H

1, n+1
2

2,0 (E) : ‖∇Eu‖
L

n+1
2

2 (E)

<
d(δ)

a(δ)

}

where r0(δ) is the unique real root of equation r2

2 = d(δ).

Definition 4 Suppose that u(t) is a weak solution of problem 1. Tmax is called
maximal existence time of solution u(t) if one the following conditions hold:

(1) If u(t) exists for every 0 ≤ t < +∞ then Tmax = +∞. In this case, we say that
the solution is global.

(2) If there exists a t0 ∈ (0,∞) such that u(t) exists for every 0 ≤ t < t0, but does
not exist at t = t0, then Tmax = t0.

Definition 5 u = u(z, t) ∈ L∞
(
0, Tmax;H 1, n+1

2
2,0 (E)

)
with ∂tu ∈ L∞

(
0, Tmax;

L
n+1
2

2 (E)
)
is called a weak solution of the problem 1 on intE × [0, Tmax) if

(ut , v)2 + γ (∇Eu,∇Ev)2 +
∫ t

0
(∇Eu,∇Ev)2dτ +

∫ t

0
(V (x)u, v)2dτ

=
∫ t

0
(gt (z)|u|p−1u, v)2dτ

+ (γ u0, v)2 + (u1, v)2 ∀v ∈ H
1, n+1

2
2,0 (E),
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u(z, 0) = u0 inH
1, n+1

2
2,0 (E) and hold the following energy inequality

I (t) + γ

∫ t

0
‖∇E(∂τ u)‖2

L
n+1
2

2 (E)

dτ ≤ I (0), ∀t ∈ (0, Tmax),

where 0 ≤ Tmax ≤ ∞ and

I (t) = 1

2
‖∂tu‖2

L
n+1
2

2 (E)

+ 1

p + 1

∫ t

0
‖( d

dτ
gτ (z))

1
p+1 u‖p+1

L

n+1
p+1
p (E)

dτ + J (u).

We note, since u ∈ L∞
(
0, Tmax;H 1, n+1

2
2,0 (E)

)
and ∂tu ∈ L∞

(
0, Tmax;L

n+1
2

2 (E)
)

from the first equation of the problem 1 as similar in [13], one can obtain that

∂2t u ∈ L∞
(
0, Tmax;H −1, n+1

2
2,0 (E)

)
.

Now we discuss the invariance of some sets corresponding to the problem 1.

Proposition 7 Let 0 < J(u) < d for u ∈ H
1, n+1

2
2,0 (E). Suppose that δ1 < 1 < δ2

be roots of equation d(δ) = J (u). Then Kδ(u) has no change in its sign for δ ∈
(δ1, δ2).

Proof Since 0 < J(u) < d then by Propositions 1 and 2 we can assume that
‖∇Eu‖2

L
n+1
2

2 (E)

�= 0. We assume that there exists a δ0 ∈ (δ1, δ2) for which Kδ0(u) =
0. Hence, by definition of d(δ) we have J (u) ≥ d(δ). But, we have two cases the
following for δ0

{
δ1 < δ0 < 1 < δ2

δ1 < 1 < δ0 < δ2

Now, by Remark 1 We get that d(δ1) < d(δ0) or d(δ2) < d(δ0) then we obtain that
d(δ1) = d(δ2) = J (u) < d(δ0) that this is contradiction .

Theorem 1 Let u0 ∈ H
1, n+1

2
2,0 (E), 0 < e < d. Suppose that δ1 < δ2 are roots of

equations d(δ) = e then

(i) all solutions of problem 1 with 0 < J(u0) ≤ e belong to set Wδ for δ1 < δ < δ2
provided K(u0) > 0 or ‖∇Eu0‖2

L
n+1
2

2 (E)

= 0.

(ii) all solutions of problem 1 with 0 < J(u0) ≤ e belong to Eδ for δ ∈ (δ1, δ2)

provided K(u0) < 0.

Proof

(i) Let u(t) be a solution of the problem 1 with initial value u0 for which satisfies
in conditions 0 < J(u0) ≤ e < d, K(u0) > 0 or ‖∇Eu0‖2

L
n+1
2

2 (E)

= 0. Let T
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be existence time for solution u(t). If ‖∇Eu0‖2
L

n+1
2

2 (E)

= 0, then since u0 has

compact support u0 = 0, so by definition of Wδ we obtain that u0 ∈ Wδ. If
K(u0) > 0 then by assumption we have

0 < J(u0) ≤ e = d(δ1) = d(δ2) < d(δ) ≤ d

for δ1 < δ < δ2. Hence, Kδ(u0(t)) > 0 for δ1 < δ < δ2, by Proposition 7.
Therefore, by definition of Wδ, u0 ∈ Wδ for δ1 < δ < δ2. Now, we have
to show that for δ1 < δ < δ2 and 0 < t < T, u(t) ∈ Wδ. Suppose that,
there exist t0 ∈ (0, T ) such that for δ1 < δ < δ2, u(t0) ∈ ∂Wδ. Then we can
imply that, Kδ(u(t0)) = 0 and ‖∇Eu0‖2

L
n+1
2

2 (E)

�= 0, or by definition of Wδ,

J (u(t0)) = d(δ). Since u(t0) is a solution of problem 1, so it satisfies in energy
inequality i.e.

1

2
‖∂tu‖2

L
n+1
2

2 (E)

+ 1

p + 1

∫ t

0
‖( d

dτ
gτ (z))

1
p+1 u‖p+1

L

n+1
p+1
p+1 (Z)

dτ + J (u(t))

+ γ

∫ t

0
‖∇E(∂τ u)‖2

L
n+1
2

2 (E)

dτ

≤ I (0) = J (u0) ≤ e < d(δ),

for any δ ∈ (δ1, δ2) and t ∈ (0, T ). Therefore, the equality J (u(t0)) = d(δ)

for any δ ∈ (δ1, δ2) and t ∈ (0, T ) is not possible. If Kδ(u(t0)) = 0 and
‖∇Eu0‖2

L
n+1
2

2 (E)

�= 0, then by definition of d(δ) we get that d(δ) ≤ J (u0(t)),

that is in contradiction with energy inequality. Therefore, u(t) ∈ Wδ for any
δ ∈ (δ1, δ2) and t ∈ (0, T ).

(ii) similar to first case it can be prove that u0 ∈ Eδ for δ ∈ (δ1, δ2) provided
Kδ(u0) < 0. Now, we should prove u(t) ∈ Eδ for any δ ∈ (δ1, δ2) and
t ∈ (0, T ). Suppose that there exist t0 ∈ (0, T ), such that for t ∈ [0 , t0),

u(t) ∈ Eδ and u(t0) ∈ ∂Eδ, that is, Kδ(u0) = 0 or J (u(t0)) = d(δ) for
δ ∈ (δ1, δ2). According to energy inequality the equality J (u(t0)) = d(δ)

is not possible similar to first case. Hence, we assume that Kδ(u(t0)) = 0,
then Kδ(u(t)) < 0 for t ∈ (0, t0), since for t ∈ [0, t0), u(t) ∈ Eδ, then
by definition of Eδ, Kδ(u(t)) < 0. Now, using the Proposition 5 we obtain
that ‖∇Eu(t)‖

L
n+1
2

2 (E)

> r(δ) and ‖∇Eu(t0)‖
L

n+1
2

2 (E)

> r(δ) �= 0. Hence

by definition of d(δ), J (u(t0)) ≥ d(δ) which is in contradiction with energy
inequality.

Remark 2 suppose that all assumptions in Theorem 1 hold. Then for any δ ∈
(δ1, δ2) both seta Wδ and Eδ are invariant. Moreover, both sets
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Wδ1δ2 =
⊔

δ1<δ<δ2

Wδ, Eδ1δ2 =
⊔

δ1<δ<δ2

Eδ

are invariant respectively under flow of the problem 1. Hence, we can get for all
weak solutions of the problem 1

u(t) �∈ Nδ1δ2 =
⊔

δ1<δ<δ2

Nδ.

To discuss about the invariant of the solutions with negative level energy, we
introduce the following results.

Proposition 8 Let u0 ∈ H
1, n+1

2
2,0 (E) and u1 ∈ L

n+1
2

2 (E). Suppose that I (0) = 0
and ‖∇Eu‖

L
n+1
2

2 (E)

�= 0. Then all weak solutions of the problem 1 satisfy

‖∇Eu‖p−1

L
n+1
2

2 (E)

≥ M = (p + 1)(1 + C2∗)

2Cp+1∗∗
.

Proof Let us consider u ∈ H
1, n+1

2
2,0 (E) as a weak solution of the problem 1.

According to the Definition 5

I (t) + γ

∫ t

0
‖∇E(∂τ u)‖2

L
n+1
2

2 (E)

dτ ≤ I (0) = 0.

Therefore, by definition of constants C∗ and C∗∗

1

2
‖∇Eu‖2

L
n+1
2

2 (E)

+ C2∗
2

‖∇Eu‖2
L

n+1
2

2 (E)

≤ 1

2
‖∂tu‖2

L
n+1
2

2 (E)

+ 1

2
‖∇Eu‖2

L
n+1
2

2 (E)

+1

2

∫

E

rqV (z)|u|2dμ

≤ C
p+1∗∗

p + 1
‖∇Eu‖p+1

L
n+1
2

2 (E)

.

Hence,

‖∇Eu‖p−1

L
n+1
2

2 (E)

≥ (p + 1)(1 + C2∗)

2Cp+1∗∗
= M.
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Theorem 2 Let u0 ∈ H
1, n+1

2
2,0 (E) and u1 ∈ L

n+1
2

2 (E). Suppose that either I (0) < 0
or I (0) = 0 and ‖∇Eu‖

L
n+1
2

2 (E)

�= 0. Then all weak solutions of the problem 1

belong to Eδ for any δ > 0.

Proof Let u(t) be an arbitrary weak solution of the problem 1 with expressed
assumptions in face of the Theorem and T be the existence time of u(t). From
Definition 5, for every δ > 0 and t ∈ [0, T ), we can obtain

1

2
‖∂tu‖2

L
n+1
2

2 (E)

+ a(δ)‖∇Eu‖2
L

n+1
2

2 (E)

+ 1

p + 1
Kδ(u)

= 1

2
‖∂tu‖2

L
n+1
2

2 (E)

+
(

(
1

2
− δ

p + 1
)(1 + C2∗)

)

‖∇Eu‖2
L

n+1
2

2 (E)

+ 1

p + 1

(

δ‖∇Eu‖2
L

n+1
2

2 (E)

+ δ

∫

E

rqV (z)|u|2dμ

−
∫

E

rqgt (z)|u|p+1dμ

)

= 1

2
‖∂tu‖2

L
n+1
2

2 (E)

+ 1

2
‖∇Eu‖2

L
n+1
2

2 (E)

− δC2∗
p + 1

‖∇Eu‖2
L

n+1
2

2 (E)

+ C2∗
2

‖∇Eu‖2
L

n+1
2

2 (E)

+ δ

p + 1

∫

E

rqV (z)|u|2dμ

− 1

p + 1

∫

E

rqgt (z)|u|p+1dμ

= 1

2
‖∂tu‖2

L
n+1
2

2 (E)

+ 1

2
‖∇Eu‖2

L
n+1
2

2 (E)

− δC2∗
p + 1

‖∇Eu‖2
L

n+1
2

2 (E)

+ C2∗
2

‖∇Eu‖2
L

n+1
2

2 (E)

− (1

2
− δ

p + 1

)
∫

E

rqV (z)|u|2dμ

+ 1

2

∫

E

rqV (z)|u|2dμ

− 1

p + 1

∫

E

rqgt (z)|u|p+1dμ ≤ 1

2
‖∂tu‖2

L
n+1
2

2 (E)

+ J (u)

+
(

C2∗
2

− δC2∗
p + 1

− C2∗
(1

2
− δ

p + 1

)
)

‖∇Eu‖2
L

n+1
2

2 (E)

+ 1

p + 1

∫ t

0
‖( d

dτ
gτ (x))

1
p+1 u‖p+1

L

n+1
p+1
p+1 (E)

+ γ

∫ t

0
‖∇E(∂τ u)‖2

L
n+1
2

2 (E)

≤ I (0). (12)
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If I (0) < 0, then 12 implies that Kδ(u) < 0 and J (u) < 0 < d(δ) for every
δ > 0 and t ∈ [0, T ). If I (0) = 0 and ‖∇Eu‖

L
n+1
2

2 (E)

�= 0, then Proposition 8 gives

‖∇Eu‖
L

n+1
2

2 (E)

≥ M for t ∈ [0, T ). Again by relation 12 we get Kδ(u) < 0 and

J (u) < 0 < d(δ) for δ > 0 and t ∈ [0, T ). Therefore, for two cases discussed
above, for every δ > 0 and t ∈ [0, T ), we have u ∈ Eδ.

5 Global Existence and Finite-Time of the Solutions

In this section, we prove the global existence and nonexistence of solutions and give
a sharp condition for global existence of solutions for problem 1 with I (0) < d.

Theorem 3 Let γ ≥ 0, u0 ∈ H
1, n+1

2
2,0 (E) and u1 ∈ L

n+1
2

2 (E). Suppose that I (0) <

d, K(u0) > 0 or ‖∇Eu0‖
L

n+1
2

2 (E)

= 0. Then problem 1 admits a global weak

solution u(t) ∈ L∞
(
0,∞;H 1, n+1

2
2,0 (E)

)
with ∂tu ∈ L

n+1
2

2 (E) and u(t) ∈ W for

t ∈ [0,∞).

Proof By Proposition 3 we can choose {wj(z)} as orthonormal basis of space

H
1, n

2
2,0 (B). Then we construct approximation solution um(z, t) similar to [20] as

following:

um(z, t) =
m∑

j=1

hjm(t)wj (z),

for m = 1, 2, . . . that satisfies in problem 1 then,

(∂2t um,wk)2 + (∇Eum,∇Ewk)2 + (V (z)um,wk)2 + γ (∇E(∂tum),∇Ewk)2

= (gt (z)um|um|p−1, wk)2, (13)

um(z, 0) =
m∑

j=1

hjm(0)wj (z) → u0(z), (14)

inH
1, n+1

2
2,0 (E) and

∂tum(z, 0) =
m∑

j=1

h′
jm(0)wj (z) → u1(z), (15)
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in L
n+1
2

2 (E). Multiplying 13, 14 and 15 by h′
km(t) and forming the crossmarklogo

sum on k = 1, 2, . . . ,

m∑

k=1

(∂2t um,wk)2h
′
km(t) + (∇Eum,∇Ewk)2h

′
km(t) + (V (z)um,wk)2h

′
km(t)

+
m∑

k=1

γ (∇E(∂tum),∇Ewk)2h
′
km(t)

=
m∑

k=1

(gt (z)um|um|p−1, wk)2h
′
km(t),

for m = 1, 2, 3, . . . . Therefore,

∫

E

rq∂2t um∂tumdμ +
∫

E

rq∇Eum∂t∇Eumdμ +
∫

E

rqV (z)um∂tumdμ

+ γ

∫

E

rq∇E(∂tum)∇E(∂tum)dμ

=
∫

E

rqgt (z)um|um|p−1∂tumdμ. (16)

Using The Leibniz rule one can get

1

2

d

dt

∫

E

rq |∂2t um|2dμ + 1

2

d

dt

∫

E

rq |∇Eum|2dμ + 1

2

d

dt

∫

E

rqV (z)|um|2dμ

+ γ

∫

E

rq |∇E(∂tum)|2dμ = 1

p + 1

d

dt

∫

E

rqgt (z)|um|p+1dμ

− 1

p + 1

∫

E

rq(
d

dt
gt (z))|um|p+1dμ. (17)

By integration of the relation 17 with respect to t

1

2
‖∂tum‖2

L
n+1
2

2 (E)

+ 1

2
‖∇Eum‖2

L
n+1
2

2 (E)

+ 1

2

∫

rqV (z)|um|2dμ + γ

∫ t

0
‖∇E(∂τ um)‖2

L
n+1
2

2 (E)

dτ

− 1

p + 1

∫

E

rqgt (z)|um|p+1dμ + 1

p + 1

∫ t

0
‖( d

dτ
gτ (z))

p+1um‖ 1
p+1 dτ

= I (t) + γ

∫ t

0
‖∇E(∂τ um)‖2

L
n+1
2

2 (E)

dτ ≤ I (0) < d, (18)

where the last equal is upon Definition 5. Hence, for sufficiently large m and
0 ≤ t < ∞ we obtain that um ∈ W by Proposition 1. Using 18 and definition
of functional K,
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J (um) = 1

2
‖∇Eum‖2

L
n+1
2

2 (E)

+ 1

2

∫

E

rqV (z)|um|2dμ − 1

p + 1

∫

E

rqgt (z)|um|p+1dμ

= 1

2
‖∇Eum‖2

L
n+1
2

2 (E)

+ 1

2

∫

E

rqV (z)|um|2dμ

− 1

p + 1

(

‖∇Eum‖2
L

n+1
2

2 (E)

+
∫

E

rqV (z)|um|2dμ − K(um)

)

≥ (
p − 1

2(p + 1)

[

‖∇Eum‖2
L

n+1
2

2 (E)

+
∫

E

rqV (z)|um|2dμ

]

≥ p − 1

2(p + 1)
(1 + C2∗)‖∇Eum‖2

L
n+1
2

2 (E)

.

Then

∫ t

0

1

2
‖∂τum‖2

L
n+1
2

2 (E)

dτ + 1

p + 1

∫ t

0
‖( d

dτ
gτ )

1
p+1 um‖p+1

L

n+1
p+1
p+1 (E)

dτ

+ p − 1

2(p + 1)
(1 + C2∗)‖∇Eum‖2

L
n+1
2

2 (E)

≤ I (t) + γ

∫ t

0
‖∇E(∂τ um)‖2

L
n+1
2

2 (E)

dτ ≤ I (0) < d.(19)

for t ∈ [0,∞) and sufficiently large m. Now, by relation 19 we can get that

‖∇Eum‖2
L

n+1
2

2 (E)

<
2(p + 1)

p − 1
(1 + C2∗)−1 d, (20)

for t ∈ [0,∞) and

1

2

∫ t

0
‖∂τum‖2

L
n+1
2

2 (E)

dτ + 1

p + 1

∫ t

0
‖( d

dτ
gτ )

1
p+1 um‖p+1

L

n+1
p+1
p+1 (E)

dτ < d, (21)

for t ∈ [0,∞). Also we obtain that

∫

E

rq |gt (z)
p

p+1 um|um|p−1| p+1
p dμ =

∫

E

rqgt (z)|um|p+1dμ ≤ C
p+1∗∗ ‖∇Eum‖p+1

L
n+1
2

2 (E)

< C
p+1∗∗ (

2(p + 1)

p − 1
(1 + C2∗)−1 d)

p+1
2 (22)

and
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∫

E

rq |V (z)
1
2 um|2dμ =

∫

E

rqV (z)|um|2dμ ≤ C2∗‖∇Eum‖2
L

n+1
2

2 (E)

< C2∗(
2(p + 1)

p − 1
(1 + C2∗)−1 d )2. (23)

From 20, 21, 22 and 23, it follows that there exists u and a subsequence still denotes

{um} for which as m → ∞, um → u in L∞
(
0,∞ ;H 1, n+1

2
2,0 (E)

)
weakly star and

a.e. in intE × [0,∞), ∂tum → ∂tu in L2
(
0,∞ ;L

n+1
2

2 (E)
)
, weakly star. Also we

have V (z)|um|2 → V (z)|u|2 in L∞
(
0,∞ ;H 1, n+1

2
2,0 (E)

)
weakly star and a.e. in

intE × [0,∞), and gt (z)um|um|p−1 → gt (z)u|u|p−1 in L∞
(
0,∞ ;H 1, n+1

2
2,0 (E)

)

weakly star and a.e. in intE × [0,∞). Therefore, in 13 for k fixed and m → ∞ we
get that

(γ u,wk)2 + (ut , wk)2 +
∫ t

0
(∇Eu,∇Ewk)2dτ +

∫ t

0
(V (z)u,wk)2dτ

=
∫ t

0
(gt (z)u|u|p−1, wk)2dτ

+ (γ u0, wk)2 + (u1, wk)2.

On the other hand, from the relation 14, u(z, 0) = u0(z) in H
1, n+1

2
2,0 (E) and from

15 ∂tu(z, 0) = u1 in L
n+1
2

2 (E). By density we obtain u ∈ L∞
(
0,∞ ;H 1, n+1

2
2,0 (E)

)

with ∂tu ∈ L2
(
0,∞ ;L

n+1
2

2 (E)
)
is global weak solution of problem 1. Since u

satisfies problem 1, so by definition of K we have K(u) = 0. Hence, u(t) ∈ W for
0 ≤ t < ∞.

Corollary 2 If we replace the assumption I (0) < d, K(u0) > 0 by 0 < I (0) < d,

Kδ2(u0) > 0 where (δ1, δ2) is the maximal interval including δ = 1, (see Remark 1)
such that I (0) < d(δ) for δ ∈ (δ1, δ2). Then problem 1 admits a global weak

solution u(t) ∈ L∞
(
0,∞;H 1, n+1

2
2,0 (E)

)
with ∂tu ∈ L∞

(
0,∞, L

n+1
2

2 (E)
)
and

u(t) ∈ Wδ for δ ∈ (δ1, δ2), t ∈ [0,∞).

Proof It is immediately implied form Theorems 1 and 3.

Corollary 3 If we replace the assumption Kδ2(u0) > 0 or ‖∇Eu0‖
L

n+1
2

2 (E)

= 0,

by ‖∇Eu0‖
L

n+1
2

2 (E)

< r(δ2), then problem 1 admits a global weak solution u(t) ∈

L∞
(
0,∞;H 1, n+1

2
2,0 (E)

)
with ∂tu(t) ∈ L∞

(
0,∞;L

n+1
2

2 (E)
)
satisfying
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‖∇Eu‖2
L

n+1
2

2 (E)

≤ I (0)

a(δ1)
, ‖∂tu‖2

L
n+1
2

2 (E)

≤ 2I (0), 0 ≤ t ≤ ∞ (24)

Proof From assumption ‖∇Eu0‖
L

n+1
2

2 (E)

< r(δ2), we can get that Kδ2(u0) > 0

or ‖∇Eu0‖
L

n+1
2

2 (E)

= 0. Then it follows from Corollary 2 that problem 1 admits

a global weak solution such that for any δ1 < δ < δ2, 0 ≤ t < ∞,

u(t) ∈ L∞
(
0,∞;H 1, n+1

2
2,0 (E)

)
with ∂tu ∈ L∞

(
0,∞;L

n+1
2

2 (E)
)
and u(t) ∈ Wδ.

Moreover, similar of the proof Theorem 2 for every δ1 < δ < δ2, 0 ≤ t < ∞,

1

2
‖∂tu‖2

L
n+1
2

2 (E)

+ a(δ)‖∇Eu‖2
L

n+1
2

2 (E)

+ 1

p + 1
Kδ(u) ≤ I (0).

If we tend δ to δ1 then we achieve 24.

Now we discuss the global non-existence of solutions of the problem 1.

Theorem 4 Let 0 ≤ γ ≤ (p − 1)
√
1 + C2∗λ

1
2
1 , u0 ∈ H

1, n+1
2

2,0 (E), u1 ∈ L
n+1
2

2 (E).

Suppose that I (0) < d and K(u0) < 0. Then the existence time of solution for
problem 1 is finite, where λ1 is the first eigenvalue in Proposition 3 i.e.

λ
1
2
1 = inf

u∈H 1, n+1
2

2,0 (E),‖∇Eu‖
L

n+1
2

2 (E)

�=0

‖∇Eu‖
L

n+1
2

2 (E)

‖u‖
L

n+1
2

2 (E)

.

Proof Let u(t) be any weak solution of problem 1 with I (0) < d and K(u0) < 0,
T be the maximal existence time of u(t). We will prove T < ∞ by contradiction.
Let M(t) := ‖u‖2

L
n+1
2

2 (E)

, then

Ṁ(t) = d

dt

∫

E

rq |u(z, t)|2dμ = 2(∂tu, u)2,

from definition of functional K,

M̈(t)=2‖∂tu‖2
L

n+1
2

2 (E)

+2(∂2t u, u)2 = 2‖∂tu‖2
L

+1
2

2 (E)

−2γ (∇E(∂tu),∇Eu)2−2K(u). (25)

Using proof of Theorem 2 we can get,

1

2
‖∂tu‖2

L
n+1
2

2 (E)

+ a(1)‖∇Eu‖2
L

n+1
2

2 (E)

+ 1

p + 1
K(u)
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= 1

2
‖∂tu‖2

L
n+1
2

2 (E)

+
(

(
1

2
− 1

p + 1
)(1 + C2∗)

)

‖∇Eu‖2
L

n+1
2

2 (E)

+ 1

p+1

(

‖∇Eu‖2
L

n+1
2

2 (E)

+
∫

E

rqV (z)|u|2dμ−
∫

E

rqgt (z)|u|p+1dμ

)

≤ 1

2
‖∂tu‖2

L
n+1
2

2 (E)

1

2
‖∇Eu‖2

L
n+1
2

2 (E)

+ +
[

(
1

2
− 1

p + 1
) + 1

p + 1

] ∫

E

rqV (x)|u|2dμ

− 1

p + 1

∫

E

rqgt (z)|u|p+1dμ ≤ 1

2
‖∂tu‖2

L
n+1
2

2 (E)

+ 1

p + 1

∫ t

0
‖( d

dτ
gτ (z))

1
p+1 u‖p+1

L

n+1
p+1
p+1 (E)

+ J (u) + γ

∫ t

0
‖∇E(∂τ u)‖2

L
n+1
2

2 (E)

= I (t) + γ

∫ t

0
‖∇E(∂tu)‖2

L
n+1
2

2 (E)

≤ I (0). (26)

Thus inequality 26 implies that

M̈(t) ≥ 2‖∂tu‖2
L

n+1
2

2 (E)

− 2γ (∂tu, u)2 − 2(p + 1)

[

I (0) − 1

2
‖∂tu‖2

L
n+1
2

2 (E)

− p − 1

2(p + 1)
(1 + C2∗)‖∇Eu‖2

L
n+1
2

2 (E)

]

= (p + 3)‖∂tu‖2
L

n+1
2

2 (E)

+ (p − 1)(1 + C2∗)‖∇Eu‖2
L

n+1
2

2 (E)

− 2γ (∇E(∂tu),∇Eu)2 − 2(p + 1)I (0). (27)

In first, let us consider I (0) ≤ 0. Then,

M̈(t) ≥ (p+3)‖∂tu‖2
L

n+1
2

2 (E)

+(p−1)(1+C2∗)λ1‖u‖2
L

n+1
2

2 (E)

−2γ (∇E(∂tu),∇Eu)2.
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condition γ < (p − 1)(1 + C2∗)λ1 implies that, there exists a constant ε ∈(

0 , (p − 1)(1 + C2∗)

)

such that

γ 2 < (p − 1 − ε)(1 + C2∗)λ1.

Therefore,

M̈(t) ≥ (4 + ε)‖∂tu‖2
L

n+1
2

2 (E)

+ (p − 1 − ε)‖∂tu‖2
L

n+1
2

2 (E)

− 2γ (∇E(∂tu),∇Eu)2

+ (p − 1)(1 + C2∗)λ21‖u‖2
L

n+1
2

2 (E)

. (28)

On the other hand,

2γ (∇E(∂tu),∇Eu)2 ≤ (p − 1 − ε)‖∂tu‖2
L

n+1
2

2 (E)

+ γ 2

p − 1 − ε
‖u‖2

L
n+1
2

2 (E)

≤ (p−1−ε)‖∂tu‖2
L

n+1
2

2 (E)

+ (p − 1)(1+C2∗)λ21‖u‖2
L

n+1
2

2 (E)

.

(29)

From 28 and 29, we can get that

M̈(t) ≥ (4 + ε)‖∂tu‖2
L

n+1
2

2 (E)

. (30)

By Edge Hölder inequality we get

M(t)M̈(t)−4+ε

4
Ṁ(t) ≥ (4+ε)

(

‖∂tu‖2
L

n+1
2

2 (E)

‖u‖2
L

n+1
2

2 (E)

−(∇E(∂tu),∇Eu)2

)

≥ 0,

(M−α)′′ = −α

Mα+2(t)

(

M(t)M̈(t) − (α + 1)Ṁ(t)2
)

≤ 0,

for α = ε
4 and 0 ≤ t < ∞. Hence, there exists a T1 > 0 such that

lim
t→T1

M−α(t) = 0

and limt→T1 M(t) = +∞, which is contradicts Tmax = +∞.

In second case, we consider 0 < I (0) < d. In this case from Theorem 1 we have
u ∈ Eδ for 0 ≤ t < ∞ and δ ∈ (1 , δ2) (see Remark 1) where (δ1 , δ2) is
the maximal interval including δ = 1 such that d(δ) > I (0) for δ ∈ (δ1 , δ2).
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Therefore, Kδ(u) < 0 and ‖∇Eu‖
L

n+1
2

2 (E)

> r(δ) for 1 < δ < δ2, 0 ≤ t < ∞.

Consequent, Kδ(u) ≤ 0 and ‖∇Eu‖ ≥ r(δ) for 0 ≤ t < ∞. From 25,

d

dt
(eγ t Ṁ(t)) = eγ t

(

γ Ṁ(t) + M̈(t)

)

= 2eγ t

(

‖∂tu‖2
L

n
2
2 (E)

‖ − K(u)

)

= 2eγ t

(

‖∂tu‖2
L

n+1
2

2 (E)

‖ + (δ2 − 1)‖∇Eu‖2
L

n+1
2

2 (E)

− Kδ2(u)

)

≥ 2eγ t (δ2 − 1)r2δ2 = C δ2e
γ t .

Hence,

eγ t Ṁ(t) ≥ C δ2

∫ t

0
eγ τ dτ + Ṁ(0) = C δ2

γ
(eγ t − 1) + Ṁ(0),

Ṁ(t) ≥ C δ2

γ
(1 − e−γ t ) + e−γ t Ṁ(0).

Hence there exists t0 > 0 for which

Ṁ(t) ≥ C δ2

2γ
∀t ≥ t0

and

M(t) ≥ C δ2

2γ
(t − t0) + M(t0) ≥ C δ2

2γ
(t − t0), t ≥ t0. (31)

From assumption γ < (p − 1)(1 + C2∗)λ1, it follows there exists a constant

ε ∈
(

0 , (p − 1)(1 + C2∗)

)

such that

γ 2 < (p − 1 − ε)

[

(p − 1)(1 + C2∗)λ1 − ε

]

.

From 27,

M̈(t) ≥ (p + 3)‖∂tu‖2
L

n+1
2

2 (E)

− 2γ (∇E(∂tu), ∇Eu)2 + (p − 1)(1 + C2∗)λ21‖u‖2
L

n
2
2 (E)

−2(p + 1)I (0)
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= ‖(4 + ε)‖∂tu‖2
L

n
2
2 (E)

+ (p − 1 − ε)‖∂tu‖2
L

n+1
2

2 (E)

− 2γ (∇E(∂tu), ∇Eu)2

+ [(p − 1)(1 + C2∗)λ21 − ε]‖∂tu‖2
L

n
2
2 (E)

+ εM(t) − 2(p + 1)I (0). (32)

Also we can obtain

2γ (∇E(∂tu),∇Eu)2 ≤ (p − 1 − ε)‖∂tu‖2
L

n+1
2

2 (E)

+ γ 2

p − 1 − ε
‖u‖2

L
n+1
2

2 (E)

≤ (p − 1 − ε)‖∂tu‖2
L

n+1
2

2 (E)

+[(p − 1)(1 + C2∗)λ21 − ε]‖u‖2
L

n+1
2

2 (E)

. (33)

From 32 and 33 we get

M̈(t) ≥ (4 + ε)‖∂tu‖2
L

n+1
2

2 (E)

+ εM(t) − 2(p + 1)I (0). (34)

From 31, it follows that there exists a t1 > 0 such that

εM(t) > 2(p + 1)I (0) ∀t > t1,

and then

M̈(t) > (4 + ε)‖∂tu‖2
L

n+1
2

2 (E)

, ∀t > t1.

Now, similar to first case we can obtain a contradiction. Hence we always have
Tmax < ∞.

From Theorems 13 and 4 we can obtain the following theorem for global
existence and non-existence of solutions for problem 1.

Theorem 5 Let 0 ≤ γ ≤ (p−1)
√
1 + C2∗λ

1
2
1 , u0 ∈ H

1, n+1
2

2,0 (E) and u1 ∈ L
n+1
2

2 (E).

Suppose that I (0) < 0. Then, when K(u0) > 0, problem 1 admits a global weak
solution and when K(u0) < 0, problem 1 does not admits any global weak solution.
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