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Abstract In recent years there is an incremental degree of bridging open questions
in biomechanics with the help of applied mathematics and nonlinear analysis.
Recent advancements concerning the cardiac dynamics pose important questions
about the cardiac waveform. A governing equation, namely the KdV-B equation
(Korteweg–de Vries–Burgers),
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∂x3 = 0, u = u(t, x), α, β, γ ∈ R, (1)

is a partial differential equation utilized to answer several of those questions.
The cardiac dynamics mathematical model features both solitary and shock wave
characteristics due to the dispersion and dissipation terms, as occurring in the
arterial tree. In this chapter a focus is given on describing cardiac dynamics.
It is customarily difficult to solve nonlinear problems, especially by analytical
techniques. Therefore, seeking suitable solving methods, exact, approximate or
numerical, is an active task in branches of applied mathematics. The phase plane
of the KdV–B equation is analyzed and its qualitative behavior is derived. An
asymptotic expansion is presented and traveling wave solutions under both shock
and solitary profiles are sought. Numerical solutions are obtained for the equation,
by means of the Spectral Fourier analysis and are evolved in time by the Runge–
Kutta method. This whole analysis provides vital information about the KdV–B
equation and its connection to cardiac hemodynamics. The applications of KdV–
B, presented in this chapter, highlight its essence to human hemodynamics.
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1 Introduction

1.1 Background Information for KdV–B

In the last few decades, much attention from a rather diverse group of scientists
such as physicists, engineers and applied mathematicians has been attracted to two
contrasting themes: (a) the theory of dynamical systems, most popularly associated
with the study of chaos, and (b) the theory of integrable (or nonintegrable) systems
associated, among other things, with the study of solitary waves.

It is common knowledge that many physical phenomena, such as nonlin-
ear shallow-water waves and wave motion in plasma, can be described by the
Korteweg–de Vries (KdV) equation [29]. It is well known that solitons and solitary
waves are the class of special solutions of the KdV equation. In order to study
propagation of undular bores in shallow water [6, 27], liquid flow containing gas
bubbles [54], fluid flow in elastic tubes [28], crystal lattice theory, nonlinear circuit
theory and turbulence [20, 30, 51], the governing equation can be reduced to the
so-called Kortweg–de Vries–Burgers equation (KdV–B) as follows [10],

∂u

∂t
+ γ u

∂u

∂x
− α

∂2u

∂x2 + β
∂3u

∂x3 = 0, u = u(t, x), α, β, γ �= 0. (2)

This is a nonintegrable equation in the sense that its spectral problem is nonexis-
tent [19]. Multiplying t , x and u, by constants can be used to make the coefficients
of any of the above four terms equal to any given nonzero constant. Therefore, we
focus on the case where α ≥ 0, β > 0 and γ �= 0.

This equation is equivalent to the KdV equation with the addition of a viscous

dissipation term (α
∂2u

∂x2
). The studies of the KdV equation [29] (α = 0) and the

Burgers equation [9] (β = 0) have been undertaken, but the exact solution for the
general case of equation (2) (α ≥ 0, β > 0, γ �= 0) has still not been completed.

1.2 Biomechanical Applications

Solitons are mathematical entities appearing as solutions of nonlinear wave equa-
tions [8]. They are waves of stable and steady form, although internal oscillations
may occur, exhibiting unique characteristics when colliding with other solitary
waves as described by Ablowitz and Segur [1]. During the last decade, soliton
profiles are found when studying nonlinear optics, condensed matter Physics and
quantum theory of matter and gravity [43]. Lately, an increasing number of studies
focuses on describing the cardiac pulse as a soliton, due to the features those two
seem to share. The pulsatility synchronization of the smooth arterial muscle allows
the consideration of solitary profiles in cardiac hemodynamics [34].
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Theoretical investigation for the blood waves have been developed by many
researchers through the use of weakly nonlinear theories. The theoretical inves-
tigation of pulse wave propagation in human arteries has a long history starting
from ancient times until today. Over the past decade, the scientific efforts have
been concentrated on theoretical investigations of nonlinear wave propagation in
arteries with a variable radius. The question “How local imperfections appeared in
the artery can disturb the arterial wall deformation?” is important for understanding
the nature and main features of various cardiovascular diseases, such as stenoses and
aneurysms. Rowlands (1982) reported some extraordinary features of the cardiac
pulse, leading to his conception of the arterial flows as a solitary motion [44]. A
few years later, Otwinowski and collaborators presented a nonlinear differential
equation whose solutions exhibited similar characteristics with those reported by
Rowlands [38].

Based on those evolutionary theories, adding the inertial behavior of blood
vessel in an one-dimensional cardiovascular model, researchers concluded that the
KdV equation is a seemingly reliable tool in modelling cardiac dynamics. It was
supported that the solitary wave formulation fits much better in describing the
arterial pulse wave experimental results than the wave equation proposed by the
majority of researchers [57]. An additional reason to support the above formulation
is the peaking and steepening features of the pressure pulse, which coincide with
the structure of soliton profiles of KdV [11].

The majority of studies on the wave propagation in blood flow is mainly based
on linear waves. The linearized theories proposed by Resal, Witzig, Womersly,
McDonald and others, consider the vessel as a straight, infinite, circular elastic tube
filled with an isotropic and Newtonian fluid, blood [55]. Blood is studied as an
incompressible fluid, a characterization justified by its compressibility being rather
insignificant, compared to the dilation of the blood vessels. In 1958, Lambert based
on the Euler equations of fluid motion, proposed the Method of Characteristics
for the calculations concerning the nonlinear blood flow. All theories presented
to model nonlinear blood flow are one-dimensional, meaning that both pressure
and flow velocity are seen as functions of the axial distance along the vessel
in time. Contributions in nonlinear modulation were done by Rudinger, Skalak,
Rockwell, Hawley and Anliker. The suggested equations are basically the equations
of continuity and motion coupled with an extra equation to describe the vessel wall
distensibility [3, 43, 45, 49]. Sakanishi and Hasegawa proposed a soliton profile
pulsatile wave modeling, based on the nonlinear elasticity of the vessel wall [46].
Yomosa and collaborators proposed a theory describing solitons in long arteries,
where the viscous effects, the reflective effects caused by the arterial branch as well
as the effects of the peripheral resistance are neglectible. For the above reasons, the
latter modulation is unable to describe the pressure drop caused when moving away
from the heart. Nevertheless, it points out that it does make some sense to attribute
the special features of the pulsatile wave, including the “sudden steepening” and the
change in the phase velocity, to the solitary profile [57]. While the pulsatile wave
travels to arteries with smaller radius, viscosity seems to play a vital role in both the
flow decay and the widening of the wave width [57].
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Antar and Demiray studied the propagation of weak nonlinear waves in a thin
elastic tube, under an initial stress distribution, due to the flow of an incompressible
viscous fluid [4]. The propagation of pressure pulses in dilatable tubes has been
studied by various researchers [22, 41]. Most of those studies, consider waves of
small width, neglecting the nonlinear characteristics and focusing on their dispersive
character [5, 12, 42]. It is widely accepted that a long-term evolution of weak nonlin-
ear waves of either dispersion or dissipation, can be modeled by nonlinear dispersive
equations. Two classical simplified and indicative examples are the Burgers equation
and the KdV equation, exhibiting balance between nonlinearity and dissipation
and nonlinearity and dispersion, respectively. On the other hand, when a balance
is exhibited among nonlinearity, dissipation and dispersion, the simplest and most
representative dispersive equation is the KdV–B equation, combining the KdV and
Burgers equations. Via asymptotic methods, the propagation of small, but with finite
width, waves in dilatable tubes has been studied sufficiently [4].

Hashizume and Yomosa showed that propagation, in the case of weak nonlinear
waves in a thin and nonlinear elastic tube for incompressible flow, is determined by
the KdV equation [57]. Erbay and collaborators, examining the propagation of weak
nonlinear waves in a thin viscoelastic tube filled with fluid, were lead to the Burgers,
KdV and KdV–B equations, depending on the parameters considered [15]. Demiray
studied the propagation of slightly nonlinear waves in thin elastic and viscoelastic
tubes for an incompressible fluid and finally concluded to the KdV and KdV–B
equations, respectively. In all the above studies, an inviscid fluid was considered and
the axial movement of the tube wall was neglected. However, regarding biological
applications, blood is an incompressible and viscous fluid. So, Antar and Demiray
formulated their mathematical model toward this direction [4].

In this chapter, an emphasis is given to the theoretical and numerical analysis
of the KdV–B equation and its applications, providing vital information about the
KdV–B equation and its connection to cardiac hemodynamics. More precisely,
in the next section the phase plane of the KdV–B equation is analyzed and its
qualitative behavior is derived. Furthermore, an asymptotic expansion is presented
and traveling wave solutions under both shock and solitary profiles are derived.
Finally, numerical solutions are obtained for the KdV–B equation, by means of
spectral Fourier analysis and are evolved in time by the well known explicit 4th
order Runge–Kutta method.

2 Phase Plane Analysis of KdV–B

In this section, the phase plane of the KdV–B equation is analyzed and its qualitative
behavior is derived and further described. The wave variable ζ is introduced as [25,
47],

ζ = x − λt, (3)
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with λ being the wave velocity. Then equation (2) using (3), can be written as,

(γ u − λ)
du

dζ
− α

d2u

dζ 2 + β
d3u

dζ 3 = 0, u = u(t, x) = u(x − λt) = u(ζ ) . (4)

The so-called traveling–wave solution, u = u(ζ ), shall be considered here. By
integrating equation (4) with respect to ζ , a nonlinear differential equation can be
obtained as follows,

d2u

dζ 2 + c1
du

dζ
+ c2u

2 + c3u = c0, (5)

where c1 = −α

β
, c2 = γ

2β
, c3 = −λ

β
and the integral constant c0 > − λ2

2β
.

In the case where c0 �= 0, a simple translation transformation,

u = u′ + c′
0, c′

0 =
−c3 ±

√
c2

3 + 4c0c2

2c2
,

can be made, with u′ satisfying the following equation,

d2u′

dζ 2 + c1
du′

dζ
+ c2u

′2 + (c3 + 2c2c
′
0)u

′ = 0.

Without loss of generality, we shall confine ourselves to the consideration of
c0 = 0 alone from now on. It can be further assumed that λ ≥ 0, because the
discussion on λ′ = −λ can be made in the same manner for λ < 0.

Equation (5) can be written as an autonomous system of first-order equations,

⎧
⎪⎨
⎪⎩

du

dζ
= v,

dv

dζ
= −u

β
(γ

u

2
− λ) + α

β
v.

Now, we study the above system according to the qualitative theory of ordinary
differential equations. Initially, we find the system’s singular points, setting,

f1(u, v) = v, f2(u, v) = −u

β
(γ

u

2
− λ) + α

β
v.

The following conditions should be met,

f1(u, v) = f2(u, v) = 0
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⇔
⎧
⎨
⎩

v = 0

−u

β
(γ

u

2
− λ) + α

β
v = 0

⇔
{

v = 0

u = 0, u = 2λ
γ

.

Therefore, the singular points are,

{
P1 = (0, 0),

P2 = ( 2λ
γ

, 0).

Next, we are to find the eigenvalues of the linearization matrices, defined for our
singular points, as follows,

A(P1) =
⎡
⎢⎣

∂f1

∂u

∂f1

∂v
∂f2

∂u

∂f2

∂v

⎤
⎥⎦ , (P1) =

⎡
⎣ 0 1

λ

β

α

β

⎤
⎦ ,

so, for its eigenvalues we get,

det (AP1 − sI2) = 0 ⇔ s2 − α

β
s − λ

β
= 0

⇔

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
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α

β
+ 1

β

√
α2 + 4λβ

2
> 0

s2 =
α

β
− 1

β

√
α2 + 4λβ

2
< 0

.

A(P2) =
⎡
⎢⎣

∂f1

∂u

∂f1

∂v
∂f2

∂u

∂f2

∂v

⎤
⎥⎦ , (P2) =

⎡
⎣ 0 1

−λ

β

α

β

⎤
⎦ ,

so, for its eigenvalues we get,

det (AP2 − sI2) = 0 ⇔ s2 − α

β
s + λ

β
= 0
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⇔

⎧
⎪⎪⎪⎪⎪⎨
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α

β
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β
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2
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α
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β
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√
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⎪⎪⎪⎪⎪⎨
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α

β
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1

β

√
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2
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α

β
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1
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, α ∈ (0, 2
√
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⎧
⎪⎪⎨
⎪⎪⎩

s1 = i

√
λ

β

s2 = −i

√
λ

β

α = 0 .

We conclude that (0, 0) is invariably a saddle point, whereas ( 2λ
γ

, 0) has three
cases depending on the values of α, β, λ [37],

A. a source for α ≥ 2
√

λβ,
B. a spiral source for α ∈ (0, 2

√
λβ),

C. a central point for α = 0 (KdV).

Regarding the geometric nature of the above characterizations, we have the
following [37],

1. (0, 0) being a saddle point, means that it’s an unstable node and phase trajectories
tend to move around it in hyperbolas, defined by the separatrices (i.e. straight
lines directed along the two eigenvectors of the linearization matrix).

2. (( 2λ
γ

, 0) : α ≥ 2
√

λβ) being a source, means that it’s an unstable node from
where phase trajectories diverge away without any (or relatively little) rotation.

3. (( 2λ
γ

, 0) : α ∈ (0, 2
√

λβ)) being a spiral source, means that it’s an unstable focus
where phase trajectories tend to spiral around before eventually diverge away
from it.

4. (( 2λ
γ

, 0) : α = 0) being a central point, means that the phase trajectories tend to
move in ellipses around the point, describing periodic motion of a point in the
phase space.

The phase plots of Fig. 1 depict our three cases, where we have set for convenience
γ = 1, since it is not related to any of α, β, λ in effecting the stabillity statuses.

An essential tool in studying the phase portrait of nonlinear autonomous systems,
like the above, is the Hartman–Grobman Theorem [22, 23, 37],
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Fig. 1 The point (0, 0) is invariably a saddle point whereas (2, 0) is a source point in a, a spiral
source point in b and a central point in c. (a) (α = 2, β = λ = 1). (b) (α = β = λ = 1). (c)
(α = 0, β = λ = 1)

Theorem 1 (Hartman-Grobman) Consider a two-dimensional nonlinear
autonomous system with a continuously differentiable field f̄ ,

x̄′ = f̄ (x̄)

and consider its linearization at a hyperbolic critical point x̄0 (that is the Jacobian
matrix has eigenvalues with non-zero real part),

ū′ = (Df0)(ū).

Then there is a neighborhood of the hyperbolic critical point where all the
solutions of the linear system can be transformed into solutions of the nonlinear
system by a continuous, invertible transformation.



Nonlinear Dynamics of the KdV-B Equation and Its Biomedical Applications 773

Remark 1 The above theorem implies that the phase portrait of the linear system
in a neighborhood of the hyperbolic critical point can be transformed to the phase
portrait of the nonlinear system by a continuous, invertible transformation. When
that happens, we say that the two phase portraits are topologically equivalent.

Additional information about the phase plane of KdV–B equation can be found
in [14].

3 Asymptotic Expansion for KdV–B

In the study of ordinary differential equations and their applications, an asymptotic
expansion is of high importance. It would be very useful to understand thoroughly
the property of the solution to the KdV–B equation. The asymptotic expansion
would provide a reliable basis for estimating the advantages and disadvantages when
seeking and applying numerical methods to our equation.

Here, by means of variable transformation and the qualitative theory of ordinary
differential equations, the asymptotic behavior of the traveling wave solutions to the
KdV–B equation is presented. The asymptotic expansion is real and continuous, if
the argument is greater than a certain value.

The following variable transformation can be made [36, 48],

u = −e
−c1(1 − k)ζ

2
c1k

2

c2
y(ξ), ξ = e−c1kζ , k =

√
1 − 4c3

c2
1

=
√

1 + 4βλ

α2 ≥ 1.

(6)
Equation (5) (c0 = 0), can be reduced to the Emden–Fowler equation [35],

d2y

dξ2
= ξσ y2, σ = 1 − 5k

2k
. (7)

It is obvious that,

{
σ = −2, λ = 0,

σ ∈ [−5
2 ,−2), λ > 0.

(8)

Some characteristics of the KdV–B equation can be derived from equation (7).
Next we demonstrate some essential results that will help us in deriving the

asymptotic expansion of KdV–B.
First, we show that the KdV–B equation, Equation (5) has finite isolated zero

points only. Since y satisfies (7), y′′ does not change sign for ξ ∈ (0,∞), so
Equation (7) has finite zero points only, except that it identically vanishes for some
intervals. Equation (7) has finite zero points only. This indicates that the solution of
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KdV–B is consistently positive negative or zero for large arguments, which depends
upon the condition of infinite point.

Our next important tool is the Integral Rule of asymptotic formulae [31, 36, 48].

Lemma 1 (Integral Rule of Asymptotic Formulae) Let,

φ(t) ∼ f (t),

where f �= 0 and f does not change in sign. Then,
{∫ t

t0
φ(t)dt ∼ ∫ t

t0
f (t)dt, if

∫ ∞
t0

|f (t)|dt = ∞,∫ ∞
t

φ(t)dt ∼ ∫ ∞
t

f (t)dt, if
∫ ∞
t0

|f (t)|dt < ∞.

Following the above result, we demonstrate the character of asymptotic expan-
sion [31, 36, 48].

Lemma 2 (Character of Asymptotic Expansion) If f (t) > 0 and f ′ is continu-
ous and non-negative as t ≥ t0, then,

f ′ ≤ f 1+ε

for any t ≥ t0 and for any ε > 0, except perhaps in a set of intervals of finite total
length, which depends upon ε.

The final necessary result will be Hardy’s Theorem [31, 36, 48].

Theorem 2 (Hardy) Any solution of an equation,

df

dt
= P(f, t)

Q(f, t)
,

which is continuous for t ≥ t0, is ultimately monotonic, together with all of its
derivatives, and satisfies one of the following relations,

f ∼ atbeE(t),

or

f ∼ atb(ln t)c,

where E(t) is a polynomial in time and a, b, c are constants.

Now, all the above three results can be adopted to derive the asymptotic
expansion of KdV–B, for the different values of λ.

Claim (Shu [48]) Let λ > 0. The negative asymptotic expansion of KdV–B has the
following form,
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u= − 2k2v2U∞
δ

e
− (k−1)vζ

2δ − 8k4v2U2∞
(k−1)(3k−1)δ

e
− (k−1)vζ

δ [1+O(1)], ζ →∞,

(9)

where k =
√

1 + 4λδ

v2 and U∞ > 0 is a constant.

In order to prove that, we consider λ > 0 for which σ ∈ (−5

2
,−2). If u has a

negative asymptotic expansion then y has a positive asymptotic expansion. Since,

d2y

dξ2
= ξσ y2 > 0, ξ > 0,

y′ must be strictly monotonically increasing for ξ > 0 and y must be a monotone
function for large ξ . Thus y′ has three possible cases as ξ → ∞,

1. y′ → 0
2. y′ → y′

0 = const > 0
3. y′ → ∞
Let us show that case (2) cannot hold.
If

y′ → y′
0 = const > 0,

then,

y ∼ y′
0 ξ

and from equation (7),

y′′ = y2ξσ ∼ y′2
0 ξσ+2 >

1

2
y′2

0 ξσ+2,

whose integration yields,

y′ >
y′2

0

2(σ + 3)
ξσ+3 → ∞,

for large ξ , which leads to a contradiction. Then it will be shown that case (3) leads
to a contradiction as well.
If

y′ → ∞,



776 M. A. Xenos and A. C. Felias

then,

y′ > M,

for large ξ and some M > 0, and hence,

y > Mξ .

Reverting to equation (7),

y′′ = ξσ y2 > M2ξσ+2,

so,

y >
M2

(σ + 3)(σ + 4)
ξσ+4,

for large ξ . Continuing in this fashion,

y > y0 ξ5,

can be obtained for large ξ and the constant y0. Hence, from equation (7),

y′′ = ξσ y2 >
√

y0y
3
2 ,

for large ξ . Since y′ is positive,

y′y′′ >
√

y0y
3
2 y′,

whose integration yields,

y′ >
2y

1
4
0√
5

y
3
4 ,

which is impossible due to Lemma (2).
Consequently, we are left with case (1). Since y′ < 0 is strictly monotone

increasing for ξ > 0, and y is strictly monotone decreasing for ξ > 0. Since y > 0
for large ξ , y has a finite limit U∞ ≥ 0 as ξ → ∞. Now, let us show that U∞ �= 0. If
U∞ = 0, y(ξ0) = δ > 0 is set to be small. Since y is strictly monotone decreasing,

δ = y(ξ0) =
∫ ∞

ξ0

(∫ ∞

t

τ σ y2dτ

)
dt < δ2

∫ ∞

ξ0

(∫ ∞

t

τ σ dτ

)
dt

or
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δ >
(σ + 1)(σ + 2)

ξσ+2
0

,

which leads to the contradiction for δ sufficiently small.
Then let,

y(∞) = U∞ > 0, y(ξ) = U∞ + O(1), ξ → ∞ .

Then

y′(ξ) = −
∫ ∞

ξ

y′′dt = −
∫ ∞

ξ

tσ y2dt = U2∞
σ + 1

ξσ+1[1 + O(1)]

and thus,

y(ξ) = U∞ −
∫ ∞

ξ

y′dt = U∞ + U2∞
(σ + 1)(σ + 2)

ξσ+2[1 + O(1)] .

The latter proves our claim.

Claim (Shu [48]) Let λ = 0. The negative asymptotic expansion of the KdV–B
equation has the following form,

u = −2kv

ζ
e

−(k − 1)vζ

2δ , ζ → ∞, (10)

where k =
√

1 + 4λδ

v2
.

For the proof, we consider λ = 0, which gives us σ = −2. If u has a negative
asymptotic expansion, y has a positive asymptotic expansion. Let ξ = es , obtaining
from equation (7),

d2y

ds2
− dy

ds
− y2 = 0. (11)

If
dy

ds
= 0 at s0, then,

d2y

ds2
= y2 > 0

and y can only have a minimum at s0. Hence, y is a monotone function for large ξ .
Thus y has three possible cases as s → ∞:

1. y → 0
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2. y → y0 = const > 0
3. y → ∞

Let us show that case (2) cannot hold.
If

y → y0 = const > 0,

then

d2y

ds2 − dy

ds
∼ y2 .

Integrating, we get,

dy

ds
− y ∼ y2

0s .

Since y → y0, this implies,

dy

ds
∼ y2

0s

from which,

y ∼ 1

2
y2

0s2,

which contradicts y → y0. Next, we will show that case (3) is impossible.
If y → ∞, let,

p = dy

ds
.

Then equation (11) becomes,

p
dp

dy
− p − y2 = 0. (12)

Since y → y0, we have,

p
dp

dy
> 0 .

Now, Theorem (2) indicates that p has two possible cases for large y,

1. p ∼ aybeE(y),
2. p ∼ ayb(ln y)c,
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where E(y) is a polynomial in y and a > 0, b, c are constants. We also show that
case (1) is impossible.

If E(y) → −∞, then,

p → 0,
dp

dy
→ 0

which leads to a contradiction by referring to equation (12).
If E(y) → ∞, then,

p > y2,

for large y, which contradicts Lemma (2). Hence,

E(y) = const .

If b > 1, then,

p > y
b+1

2 ,

for large y, which is impossible due to Lemma (2).
If b ≤ 1, then,

p
dp

dy
∼ y2,

is obtained from equation (12). By integration,

1

2
p2 ∼ 1

3
y3,

is obtained, so that b = 3

2
> 1, which leads to a contradiction. Let us now show

that case (2) is also impossible.
If b > 1, then,

p > y
b+1

2 ,

for large y, which is impossible due to Lemma (2).
If b ≤ 1, then,

1

2
p2 ∼ 1

3
y3,

is obtained, so that b = 3

2
> 1, which leads to a contradiction.



780 M. A. Xenos and A. C. Felias

Consequently, we are left with case (1), where y → 0. Let v = 1

y
and w = dv

ds
,

obtaining from equation (12),

w
dw

dv
− 2w2

v
− w + 1 = 0. (13)

Since y → 0, v → ∞ and
dv

ds
< 0, we have,

w = dv

ds
= − 1

y2

dy

ds
> 0,

is obtained. Theorem (2) indicates that w has two possible cases for large v,

1. w ∼ avbeE(v),
2. w ∼ avb(ln v)c,

where E(v) is a polynomial in v and a > 0, b, c are constants. It is now shown that
if case (3) is satisfied, E(v) = const and b = 0. Similar to above, E(v) = const

and b ≤ 1.
If b = 1, then,

dw

dv
∼ a > 0.

From equation (13), a = −1 is obtained, which leads to a contradiction.
If b ∈ (0, 1), then,

dw

ds
∼ 1,

is obtained from equation (13). By integrating, we get,

w ∼ v,

so that b = 1, which also leads to a contradiction.
If b < 0, then,

w
dw

dv
∼ −1,

is obtained from equation (13). By integrating, we get,

1

2
w2 ∼ −v,

which leads to a contradiction.
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Let us now show that if case (2) is satisfied, then b = c = 0. Similar to above,
either b = 1, c �= 0 or b = 0.
If b = 1, c < 0 or c > 0, then,

dw

dv
∼ 1 or

dw

dv
∼ 2w

v
,

is obtained from equation (13). By integrating, we get,

w ∼ v or w ∼ v2,

is obtained, so that c = 0, which leads to a contradiction. Hence b = 0.
If c < 0, then,

w
dw

dv
∼ −1,

is obtained from equation (13). By integrating, we get,

1

2
w2 ∼ −v,

is obtained, which leads to a contradiction.
If c > 0, then,

dw

dv
∼ 1,

is obtained from equation (13). By integrating, we get,

w ∼ v,

so that c = 0, which leads to a contradiction.
Summing up and from equation (13), we get,

w ∼ 1,

so that,

dv

ds
∼ 1, s → ∞ .

By integrating, we finally obtain,

v ∼ s,

as s → ∞, so that,
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y ∼ 1

ln ξ
, ξ → ∞ .

That proves our claim.

Claim (Shu [48])
Let λ > 0. The negative asymptotic expansion of KdV–B can be written in the form
(see Fig. 2),

u=− 2k2v2U∞
δ

e

−(k−1)vζ

2δ −2k4v2

δ

∞∑
i=1

(2U∞)i+1e
− (i+1)(k−1)vζ

2δ
∏i

j=1 [j (k−1)+2k] j (k−1)
, ζ → ∞,

(14)

where k =
√

1 + 4λδ

v2
and U∞ > 0 is a constant.

To prove the latter, we first notice that since,

e
− (i + 1)(k − 1)vζ

2δ

exists, the infinite series converges. Let,

um = −2k2v2U∞
δ

e

−(k − 1)vζ

2δ − 2k4v2

δ

∞∑
i=1

(2U∞)i+1e
− (i + 1)(k − 1)vζ

2δ
∏i

j=1 [j (k − 1) + 2k] j (k − 1)

Fig. 2 The graph shows the asymptotic expansion of the KdV–B equation (see Equation (14)) for
the parameters, α = 0.1, β = 0.7, γ = 1, λ = 1, U∞ = 1 and σ = −2.25. The shock wave
characteristics can be observed
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and

ym = U∞ +
m∑

i=1

2i−1u1+i∞ ξ i(σ+2

∏i
j=1 [j (σ + 2) − 1] j (σ + 2)

.

Then,

ym+1[1 + O(1)] = U∞ +
∫ ∞

ξ

(∫ ∞

t

τ σ y2
m[1 + O(1)]2dτ

)
dt

can be obtained for an arbitrary integer m. Since um → u as m → ∞, we get,

ym → y∞, m → ∞,

so that,

y∞ = U∞ +
∫ ∞

ξ

(∫ ∞

t

τ σ y2∞dτ

)
dt

and y∞ is the positive asymptotic expansion of equation (7).

4 Hyperbolic Methods for Traveling Wave Solutions of
KdV–B

Since the late 1980s, various methods for seeking explicit exact solutions to the
KdV–B equation have been independently proposed by many mathematicians,
engineers and physicists. The first analytical traveling wave solution to the Burgers-
KdV equation was obtained by Xiong [56] in 1989. Two different methods for the
construction of exact solutions to the KdV–B equation were proposed by Jeffrey
and Mohamad [26]. Wang [52] applied the homogeneous balance method to the
study of exact solutions of the compound KdV–B equation. Demiray [13] proposed
a so-called “hyperbolic tangent approach” for finding the exact solution to the KdV–
B equation, which is actually the Parkes and Duffy’s automated method [39, 40].
Recently, Feng [16–18] introduced the first-integral method to study the exact
solution of KdV–B, which is based on the ring theory of commutative algebra.
The Cauchy problem for the KdV–B equation was investigated by Bona and
Schonbek [7]. They proved the existence and uniqueness of bounded traveling wave
solutions which tend to constant states at plus and minus infinity.

We focus on deriving traveling wave solutions for KdV–B, using the Tanh and
Sech methods [21, 24, 32, 33, 53]. We start with the Tanh method, considering,

− λu + γ
u2

2
− α

du

dζ
+ β

d2u

dζ 2 = 0, (15)
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where λ is the wave velocity, assuming that both our solution and its spatial
derivatives vanish at either plus or minus infinity.

The Tanh method uses a finite series,

u(x, t) = u(μζ) = s(y) =
M∑

m=0

amym, (16)

where μ is the wave number, inversely proportional to the width of the wave, and
M is a positive integer, in most cases, that will be determined. However if M is not
an integer, a transformation formula is usually used. Substituting equation (16) into
equation (15) yields an equation in powers of y.

To determine the parameter M , we usually balance the linear terms of highest
order in the resulting equation with the highest order nonlinear terms. With M

determined, we collect all coefficients of powers of y in the resulting equation where
these coefficients have to vanish.

This will give a system of algebraic equations involving the parameters am,
m = 0, . . . ,M , μ and λ. Having determined these parameters, knowing that M

is a positive integer in most cases, and using equation (16), we obtain an analytic
solution in a closed form. We introduce,

y = tanh(μζ), (17)

that leads to the change of derivatives,

⎧
⎪⎪⎨
⎪⎪⎩

d

dζ
= d

dy

dy

dz
= μ(1 − y2)

d

dy
,

d2

dζ 2 = d

dζ

d

dζ
= μ2(1 − y2)

(
−2y

d

dy
+ (1 − y2)

d2

dy2

)
.

(18)

Therefore, by replacing equation (16) in equation (15) and using equation (18), we
derive an equation with respect to u as follows,

− λ

(
M∑

m=0

amym

)
+ γ

2

(
M∑

m=0

amym

)2

− αμ(1 − y2)
d

dy

(
M∑

m=0

amym

)

+ βμ2(1 − y2)

(
−2y

d

dy

(
M∑

m=0

amym

)
+ (1 − y2)

d2

dy2

(
M∑

m=0

amym

))
= 0 .

To determine M , we follow the procedure described above to get M = 2. This gives
the solution in the form,

s =
M∑

m=0

amym = a0 + a1y + a2y
2, a2 �= 0. (19)
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Substituting equation (19) into equation (15), we get,

−λ(a0 + a1y + a2y
2) + γ

2
(a0 + a1y + a2y

2)2

− αμ(1 − y2)(a1 + 2a2y) + βμ2(1 − y2)
(
−2y(a1 + 2a2y) + 2a2(1 − y2)

)
= 0.

Collecting the coefficients of different powers of y, gives the following system of
algebraic equations for λ μ, a0, a1 and a2,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2(γ a2 + 12βμ2) = 0

γ a1a2 + 2βμ2a1 + 2αμa2 = 0

−λa2 − 8βμ2a2 + γ a0a2 + γ

2
a2

1 + αμa1 = 0

−λa1 − 2βμ2a1 + γ a0a1 − 2αμa2 = 0

−λa0 + γ

2
a2

0 − αμa1 + 2βμ2a2 = 0

with solution,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λ = ± 6
25

α2

β
,

μ = ± α
10β

,

a0 = λ
γ

+ 12βμ2

γ
,

a1 = − 12
5

αμ
γ

,

a2 = −12βμ2

γ
.

(20)

Using the trigonometric identities,
{

tanh2(θ) = 1 − sech2(θ)

tanh(−θ) = −tanh(θ)
, θ ∈ R

and requiring for both our solution and its spatial derivatives to vanish at plus
infinity, we get the following traveling wave solution,

u1 ∞(ζ ) = 3

25

α2

βγ

(
sech2(μζ ) − 2tanh(μζ) + 2

)
, μ, λ > 0 (21)

Requiring for both our solution and its spatial derivatives to vanish at minus infinity,
we get the following traveling wave solution,

u2 −∞(ζ ) = 3

25

α2

βγ

(
sech2(μζ ) − 2tanh(μζ) − 2

)
, μ > 0, λ < 0 (22)
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Remark 2 A notable result is that our traveling wave solutions are expressed as
a composition of a bell-profile solitary wave (KdV) and a kink-profile solitary

wave (Burgers’) with velocity λ = ± 6
25

α2

β
. The shock profile is dominant here.

All those exact solutions, and others mentioned in literature, can be proved to be
algebraically equivalent to each other [18]. That is, essentially only one explicit
traveling solitary wave solution to the KdV–B equation is known which can be
expressed as a composition of a bell-profile solitary wave and a kink-profile solitary
wave. In other words, a feature of this solution is that is a linear combination of
particular solutions of the KdV equation and the Burgers equation [18, 26].

By following similar steps as with the Tanh method for traveling wave solutions
of KdV–B, the Sech method uses the variable transformation [21, 24, 53],

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y = sech(μζ), μ �= 0,
d

dζ
= −μy

√
1 − y2 d

dy
,

d2

dζ 2
= μ2y[(1 − 2y2)

d

dy
+ (y − y3)

d2

dy2
]

(23)

and the ansatz,

u(x, t) = u(μζ) = s(y) =
2∑

m=0

amym. (24)

Then by replacing equation (24) in equation (15) and using equation (23), we derive
an equation with respect to u as follows,

[a2(γ
a2

2
− μα − 6βμ2)]y4 + [a1(γ a2 − αμ

2
− 2βμ2)]y3

+ [−λa2 + γ

2
a2

1 + γ a0a2 + 2αμa2

+ 4βμ2a2]y2 + [a1(−λ + γ a0 + αμ + βμ2)]y
+ γ

2
a2

0 − λa0 = 0.

Above, we used the first order Taylor approximation,

√
1 − y2 ∼ 1 − y2

2
.

Collecting the coefficients of different powers of y, gives the following system of
algebraic equations for λ μ, a0, a1 and a2,
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2(γ
a2

2
− μα − 6βμ2) = 0

a1(γ a2 − αμ

2
− 2βμ2) = 0

−λa2 + γ

2
a2

1 + γ a0a2 + 2αμa2 + 4βμ2a2

a1(−λ + γ a0 + αμ + βμ2) = 0
γ

2
a2

0 − λa0 = 0

with a solution being,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λ = 2μ(α + 2βμ)

a0 = 4μ

γ
(α + 2βμ)

a1 = 0

a2 = 2μ

γ
(α + 6βμ)

, μ �= 0 (25)

giving a solitary profile traveling wave solution,

2μ

γ

(
2(α + 2βμ) + (α + 6βμ)sech2(μζ )

)
, μ �= 0. (26)

Remark 3 A notable result is that the Sech method can give “purely” solitary profile
traveling wave solutions.
The following graph, Fig. 3, depicts the solutions studied in this section.

Fig. 3 u1 and u2 are two shock profile traveling waves of the KdV–B equation vanishing at plus
and minus infinity, respectively, whereas u3 is a solitary profile traveling wave solution of the KdV
equation, for the parameters, α = 1, β = 0.1, γ = 1, λ = 1
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5 Spectral Fourier Analysis for the Numerical Solution of
KdV–B

We define the Fourier and Inverse Fourier Transform of a function, say f , in the
sense that the following symbols make sense, to be [2, 31],

⎧
⎨
⎩

F [f (x)] = f̂ (k) = ∫ ∞
−∞ e−ikxf (x)dx,

F−1[f̂ (k)] = f (x) = 1

2π

∫ ∞
−∞ eikx f̂ (k)dk.

(27)

It is easy to see, integrating by parts, that regarding the nth derivative of f and its
Fourier Transform, the following results hold,

⎧
⎪⎨
⎪⎩

dnf

dxn
= (in)F−1

[
knf̂ (k)

]
,

dnf̂

dxn
= (−i)nF [xnf (x)] .

(28)

Now consider the KdV–B equation,

∂u

∂t
+ γ u

∂u

∂x
− α

∂2u

∂x2 + β
∂3u

∂x3 = 0, u = u(t, x). (29)

Rearranging the terms of equation (29), we get,

∂u

∂t
= −γ u

∂u

∂x
+ α

∂2u

∂x2
− β

∂3u

∂x3
. (30)

By means of the Inverse Fourier Transform, F−1, equation (30) can be written in
the form [2, 50],

∂u

∂t
= f (t, u), (31)

where we have substituted the x-partial derivatives with,

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u

∂x
= iF−1(κû),

∂2u

∂x2 = −F−1(κ2û),

∂3u

∂x3 = −iF−1(κ3û).

Now, equation (31) is suitable for applying the 4th order explicit Runge–Kutta
method, giving us the following,
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1 = un + h
6 (k1 + 2k2 + 2k3 + k4)

tn+1 = tn + h

k1 = f (tn, un)

k2 = f (tn + h
2 , un + hk1

2 )

k3 = f (tn + h
2 , un + hk2

2 )

k4 = f (tn + h, un + hk3)

, n = 0, 1, . . . (32)

For n = 0, we may choose either a soliton of the KdV equation or a similarity
solution of the viscous Burgers equation or a traveling wave solution of KdV–B.

Below we exhibit the obtained numerical results for each case separately. In
Fig. 4, the evolution of an initial solitary profile solution of the KdV equation is
depicted, where diffusive effects are absent. It can be observed that the solitary
waveform is retained. In Fig. 5, the evolution of a solitary profile solution of the
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Fig. 4 A solution of the KdV–B equation, evolving a solitary profile solution of the KdV equation,
where diffusive effects are absent (KdV case), for the parameters, λ = 1, α = 0, β = 0.7, γ = 1
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Fig. 5 A solution of the KdV–B equation, evolving a solitary profile solution of the KdV equation,
where both diffusive and dispersive effects coexist, for the parameters, λ = 1, α = 0.5, β = 0.7,
γ = 1
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KdV equation is presented, where both diffusive and dispersive effects coexist.
It is observed that the profile loses energy and reduces in amplitude drastically.
Additionally, in Fig. 6 we present the evolution of a similarity shock profile solution
of the viscous Burgers equation, where both diffusive and dispersive effects coexist.
In this case a wavefront can be observed revealing a shock-like behavior. Finally,
in Fig. 7, the evolution of a traveling shock wave profile solution of the KdV–B
equation is presented, where both diffusive and dispersive effects coexist. These
numerical solutions clearly reveal both solitary and shock wave features of the
KdV–B equation, revealing its connection to cardiac hemodynamics where all these
phenomena, such as convection, diffusion and dispersion, can be observed.
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Fig. 6 A solution of the KdV–B equation, evolving a similarity shock profile solution of the
viscous Burgers equation, where both diffusive and dispersive effects coexist, for the parameters,
λ = 1.8, α = 0.19, β = 0.01, γ = 3.4
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Fig. 7 A solution of the KdV–B equation, evolving a traveling wave shock profile solution of the
KdV–B equation, where both diffusive and dispersive effects coexist, for the parameters, α = 0.3,
β = 0.7, γ = 1
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6 Conclusions

Recent advancements concerning cardiac dynamics pose important questions
about the cardiac waveform. A governing equation, namely the KdV–B equation
(Korteweg–de Vries–Burgers), which is a partial differential equation can be utilized
to answer several of those questions. The KdV–B equation features both solitary
and shock wave characteristics due to the dispersion and dissipation terms, as also
occurring in the arterial tree. This study focuses on describing cardiac dynamics
with the applications of mathematics and nonlinear analysis. It is customarily
difficult to solve nonlinear problems, especially by analytical techniques. Therefore,
seeking suitable solving methods, such as, exact, approximate or numerical
methods, is an active task in branches of applied mathematics and nonlinear
analysis.

In this chapter, the phase plane of the KdV–B equation is analyzed and its qualita-
tive behavior is derived, depicting the stability states of the equation contributing to
the decisions made for further analytical and numerical consideration. The analysis
reveals a saddle point (0, 0), and an additional one that could be a source point or a
spiral source point or a central point depending on the equation’s parameters, α, β

and λ.
Furthermore, an asymptotic expansion is presented, providing a reliable basis for

estimating the advantages and disadvantages when seeking and applying numerical
methods to KdV–B equation. Furthermore, traveling wave solutions under both
solitary and shock profiles are obtained from the hyperbolic methods, whose
strength is their ease of use to find which solitary wave structures and/or shock-wave
(kinks) profiles satisfy nonlinear wave and evolution equations. These techniques
allow to develop algorithms for symbolic software packages, so that nonlinear
partial differential equations and difference equations, can be studied automatically
whether (or not) they possess traveling wave solutions. Additionally, numerical
solutions are obtained for the equation, by means of the Spectral Fourier analysis.
Both these solutions and the latter traveling wave solutions are evolved in time
by the Runge–Kutta method. These solutions clearly depict both solitary and
shock wave characteristics of the KdV–B equation. This analysis provides vital
information about the equation and its connection to cardiac hemodynamics.
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