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Abstract We study the numerical approximation of the solution of stochastic dif-
ferential equations (SDEs) that do not follow the standard smoothness assumptions.
In particular, we focus on SDEs that admit solutions which take values in a certain
domain; examples of these equations appear in various fields of application such
as mathematical finance and natural sciences among others, where the quantity of
interest may be the interest rate, which takes non-negative values, or the population
dynamics which takes values between zero and one. We review the Semi-Discrete
method (SD), a numerical method that has the qualitative feature of domain
preservation among other desirable properties.

1 Introduction

We are interested in the numerical approximation of stochastic differential equations
(SDEs) that admit solutions in a certain domain and do not satisfy the usual
assumptions. Such equations appear in mathematical finance, e.g. interest rate
models, but also in other fields of applications such as natural and social sciences.
Generally speaking, explicit solutions of these SDEs are unknown, so numerical
methods have to be used to simulate them. While numerical methods exist that
converge strongly to the true solution of SDEs with non-standard coefficients, few
of them are able to maintain the solution process domain. Implicit methods can in
some cases succeed in that direction, but they are usually more time-consuming. Let
us state the problem in mathematical terms.

Throughout, let T > 0 and (Ω,F , {Ft }0≤t≤T ,P) be a complete probability
space, meaning that the filtration {Ft }0≤t≤T is right continuous andF0 includes all
P-null sets. We are interested in the following SDE in integral form
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Xt = X0 +
∫ t

0
a(s,Xs)ds +

∫ t

0
b(s,Xs)dWs, t ∈ [0, T ], (1)

where Wt,ω : [0, T ]×Ω → R
m is an m-dimensional Wiener process adapted to the

filtration {Ft }0≤t≤T , the drift coefficient a : [0, T ] × R
d → R

d and the diffusion
coefficient b : [0, T ] × R

d → R
d×m are measurable functions such that (1) has a

unique strong solution and X0 is independent of all {Wt }0≤t≤T . SDE (1) has non-
autonomous coefficients, i.e. a(t, x), b(t, x) depend explicitly on t. More precisely,
we assume the existence of a predictable stochastic process X : [0, T ] × Ω → R

d

such that, c.f. [22, Def. 5.2.1], [24, Def. 2.1],

{a(t, Xt )} ∈ L 1([0, T ];Rd), {b(t, Xt )} ∈ L 2([0, T ];Rd×m)

and

P

[
Xt = X0 +

∫ t

0
a(s,Xs)ds +

∫ t

0
b(s,Xs)dWs

]
= 1, for every t ∈ [0, T ].

The drift coefficient a is the infinitesimal mean of the process (Xt ) and the
diffusion coefficient b is the infinitesimal standard deviation of the process (Xt ).

SDEs like (1) have rarely explicit solutions so numerical approximations are
required for path simulations of the solution process Xt(ω).

We are interested in strong approximations (mean-square) of (1), in the case of
nonlinear drift and diffusion coefficients. Strongly converging numerical schemes
have applications in many areas, such as simulating scenarios, filtering or visu-
alizing stochastic dynamics (c.f [20, Sec. 4] and references therein), they are of
theoretical interest (they provide basic insight into weak-sense schemes) and usually
do not require simulations over long-time periods or of a significant number of
trajectories. In the same time we aim for numerical methods that preserve the
domain of the original process, or as we say possess an eternal life time.

Definition 1 (Eternal Life Time of Numerical Solution) Let D ⊆ R
d and

consider a process (Xt ) well defined on the domain D, with initial condition
X0 ∈ D and such that

P({ω ∈ Ω : X(t, ω) ∈ D}) = 1,

for all t > 0. A numerical solution (Ytn)n∈N has an eternal life time if

P(Ytn+1 ∈ D
∣∣Ytn ∈ D) = 1.

Let us consider the following nonlinear model both in the drift and diffusion
coefficient:

xt = x0 +
∫ t

0
(αxs − βx2

s )ds +
∫ t

0
σx

3/2
s dWs, t ∈ [0, T ], (2)
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where x0 is independent of {Wt }0≤t≤T , x0 > 0 a.s. and σ ∈ R. SDE (2) is referred to
as the 3/2-model [18] or the inverse square root process [1] and is used for modeling
stochastic volatility. The conditions α > 0 and β > 0 are necessary and sufficient
for the stationarity of the process (xt ) and such that neither zero nor infinity is
attainable in finite time [1, App. A].

A “good” numerical scheme for the approximation of the solution of an SDE that
takes positive values, as (2), should preserve positivity, c.f. [2, 21]. The explicit Euler
scheme does not have that property, since its increments are conditionally Gaussian
and therefore there is a positive probability of producing negative values. We refer,
among other papers, to [23] that considers Euler type schemes, modifications of
them to overcome the above drawback, and the importance of positivity.

SDE (2) is a special case of super-linear models of the form (1) where one of the
coefficients a(·), b(·) is super-linear, i.e. when we have that

a(x) ≥ |x|β
C

, b(x) ≤ C|x|α, for every |x| ≥ C, (3)

or

b(x) ≥ |x|β
C

, a(x) ≤ C|x|α, for every |x| ≥ C, (4)

where β > 1, β > α ≥ 0, C > 0.
Another issue that arises at the numerical approximation of super-linear problems

like (3) or (4), is that the moments of the scheme may explode, see [19, Th. 1]. A
method that overcomes this drawback is the tamed Euler method, which reads in a
general from

YN
n+1(ω) := YN

n (ω) + aΔ(YN
n (ω)) · Δ + bΔ(YN

n (ω))ΔWn(ω), (5)

for every n ∈ {0, 1, . . . , N − 1}, N ∈ N and all ω ∈ Ω where ΔWn(ω) :=
W(n+1)T

N
(ω) − WnT

N
(ω) are the increments of the Wiener process, YN

0 (ω) := x0(ω)

and the control functions are such that aΔ → a and bΔ → b as Δ → 0, c.f
[20, (4)], [31, Rel. (3.1)], [27], for various choices of aΔ and bΔ. These balanced
type schemes are explicit, do not explode in finite time and converge strongly to the
exact solution. Nevertheless, in general they do not preserve positivity. We should
also mention here other interesting implicit methods, c.f. [26] and [25], which are
unfortunately time-consuming.

We study SDEs of the general type (1) with solutions in a certain domain and
our aim is to construct explicit numerical schemes which on the one hand, converge
strongly to the solution process and on the other, preserve the domain of the original
SDE.

The semi-discrete (SD) method, originally proposed in [7], has all the above
properties and more, that is:

• it is explicit in general and therefore does not require a lot of computational time,
• it does not explode in non-linear problems, see [8, Sec. 3], [15, Sec. 4], [11]
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• it strongly converges to the exact solution of the original SDE, [7, Sec. 3], [10–
15, 28, 29]

• has the qualitative property of domain preservation, [7, Sec. 3.2], [10, 12–14],
[15, Sec. 4], [11, 28, 29]

• preserves monotonicity, [7, Sec. 3.1]
• preserves the a.s. asymptotic stability of the underlying SDE, [16].

2 The Semi-discrete Method: Setting and General Results

We address first the scalar differential equation (1), that is the one-dimensional case
(d = 1), which we rewrite here

xt = x0 +
∫ t

0
a(s, xs)ds +

∫ t

0
b(s, xs)dWs, t ∈ [0, T ]. (6)

Consider the equidistant partition 0 = t0 < t1 < . . . < tN = T with step-size
Δ = T/N. We assume that there is a unique strong solution a.s. to the following
SDE

yt = ytn +
∫ t

tn

f (tn, s, ytn , ys)ds+
∫ t

tn

g(tn, s, ytn , ys)dWs, t ∈ (tn, tn+1], (7)

for every n ∈ N, n ≤ N − 1, with y0 = x0. Here, the auxiliary functions f and g

satisfy the following assumption.

Assumption 2.1 Let f (s, r, x, y), g(s, r, x, y) : [0, T ]2 × R
2 → R be such that

f (s, s, x, x) = a(s, x), g(s, s, x, x) = b(s, x), where f, g satisfy the following
conditions:

|f (s1, r1, x1, y1)−f (s2, r2, x2, y2)| ≤ CR (|s1−s2|+|r1−r2|+|x1−x2|+|y1 − y2|)
|g(s1, r1, x1, y1)−g(s2, r2, x2, y2)| ≤ CR (|s1−s2|+|r1−r2|+|x1−x2|+|y1 − y2|

+ √|x1 − x2|
)

,

for any R > 0 such that |x1|∨|x2|∨|y1|∨|y2| ≤ R, where the constant CR depends
on R and x ∨ y denotes the maximum of x, y.

We consider the following interpolation process of the semi-discrete approxima-
tion, in a compact form,

yt = y0 +
∫ t

0
f (ŝ, s, yŝ , ys)ds +

∫ t

0
g(ŝ, s, yŝ , ys)dWs, (8)
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where ŝ = tn when s ∈ [tn, tn+1). In that way we may compare with the exact
solution xt , which is a continuous time process. The first and third variable in f, g

denote the discretized part of the original SDE. We observe from (8) that in order to
solve for yt , we have to solve, in general, an SDE and not an algebraic equation.
We can reproduce the Euler scheme if we choose f (s, r, x, y) = a(s, x) and
g(s, r, x, y) = b(s, x). The semi-discrete method (8) can be appropriately modified
to produce an implicit scheme that is explicitly and easily solved if necessary (see
[11, 14, 29]).

In the case of superlinear coefficients the numerical scheme (8) converges to the
true solution xt of SDE (6) and this is stated in the following, see [15, Th. 2.1].

Theorem 1 (Strong Convergence) Suppose Assumption 2.1 holds and (7) has a
unique strong solution for every n ≤ N − 1, where x0 ∈ L p(Ω,R). Let also

E( sup
0≤t≤T

|xt |p) ∨ E( sup
0≤t≤T

|yt |p) < A,

for some p > 2 and A > 0. Then the semi-discrete numerical scheme (8) converges
to the true solution of (6) in theL 2-sense, that is

lim
Δ→0

E sup
0≤t≤T

|yt − xt |2 = 0. (9)

Theorem 1 is an extension of [8, Th. 1] to time-dependent coefficients which
covers super-linear diffusion coefficients, like for example of the form b(t, x) =
β(t) · x3/2. In all other cases we may assume the usual local Lipschitz assumption
for both f and g.

We understand by the general form of decomposition (7) that we may produce
many different semi-discrete numerical schemes. In a sense the method is problem
dependent, since the form of the drift and diffusion coefficients, a and b, of
the original SDE suggest the way of discretization. We will see in the following
Sections 3 and 4 applications of the semi-discrete method which all have in common
the qualitative property of domain preservation.

Relation (9) does not reveal the order of convergence. In order to show the order
of convergence, we work with a truncated version of the SD method, see [30].

We choose a strictly increasing function μ : R+ → R+ such that for every
s, r ≤ T

sup
|x|≤u

(|f (s, r, x, y)| ∨ |g(s, r, x, y)|) ≤ μ(u)(1 + |y|), u ≥ 1. (10)

The inverse function of μ, denoted by μ−1, maps [μ(1),∞) to R+. Moreover,
we choose a strictly decreasing function h : (0, 1] → [μ(1),∞) and a constant
ĥ ≥ 1 ∨ μ(1) such that

lim
Δ→0

h(Δ) = ∞ and Δ1/6h(Δ) ≤ ĥ for every Δ ∈ (0, 1]. (11)
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Let Δ ∈ (0, 1] and fΔ, gΔ defined by

φΔ(s, r, x, y) := φ

(
s, r, (|x| ∧ μ−1(h(Δ)))

x

|x| , y
)

, (12)

for x, y ∈ R where we set x/|x| = 0 when x = 0. Using the truncated auxiliary
functions fΔ and gΔ we may redefine SDEs (7) and (8), which now read

yΔ
t = yΔ

tn
+

∫ t

tn

fΔ(tn, s, y
Δ
tn

, yΔ
s )ds +

∫ t

tn

gΔ(tn, s, y
Δ
tn

, yΔ
s )dWs, t ∈ (tn, tn+1],

(13)
and

yΔ
t = y0 +

∫ t

0
fΔ(ŝ, s, yΔ

ŝ
, yΔ

s )ds +
∫ t

0
gΔ(ŝ, s, yΔ

ŝ
, yΔ

s )dWs. (14)

respectively, with y0 = x0 a.s.

Assumption 2.2 Let the truncated versions fΔ(s, r, x, y), gΔ(s, r, x, y) of f, g

satisfy the following condition (φΔ ≡ fΔ, gΔ)

|φΔ(s1, r1, x1, y1)−φΔ(s2, r2, x2, y2)|≤h(Δ)
(
|s1−s2|+|r1−r2|+|x1−x2|+|y1−y2|

)

for all 0 < Δ ≤ 1 and x1, x2, y1, y2 ∈ R, where h(Δ) is as in (11).

Let us also assume that the coefficients a(t, x), b(t, x) of the original SDE satisfy
the Khasminskii-type condition.

Assumption 2.3 We assume the existence of constants p ≥ 2 and CK > 0 such
that x0 ∈ L p(Ω,R) and

xa(t, x) + p − 1

2
b(t, x)2 ≤ CK(1 + |x|2)

for all (t, x) ∈ [0, T ] × R.

Under the local Lipschitz and the Khasminskii-type condition SDE (6) has a
unique solution and finite moment bounds of order p, c.f. [24], i.e. for all T > 0,
there exists a constant A > 0 such that sup0≤t≤T E|xt |p < A. We rewrite the main
result [30, Th. 3.1].

Theorem 2 (Order of Strong Convergence) Suppose Assumption 2.2 and
Assumption 2.3 hold and (13) has a unique strong solution for every n ≤ N − 1,
where x0 ∈ L p(Ω,R) for some p ≥ 14 + 2γ. Let ε ∈ (0, 1/3) and define for
γ > 0

μ(u) = Cu1+γ , u ≥ 0 and h(Δ) = C + √
lnΔ−ε, Δ ∈ (0, 1],
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where Δ ≤ 1 and ĥ are such that (11) holds. Then the semi-discrete numerical
scheme (14) converges to the true solution of (6) in the L 2-sense with order
arbitrarily close to 1/2, that is

E sup
0≤t≤T

|yΔ
t − xt |2 ≤ CΔ1−ε . (15)

3 Applications of the Semi-discrete Method: Mathematical
Finance

3.1 3/2-Model

Let us first consider the more general 3/2-model (2) with super-linear drift and
diffusion coefficients, see [15, Sec. 4.1],

xt = x0 +
∫ t

0
(k1(s)xs − k2(s)x

2
s )ds +

∫ t

0
k3(s)x

3/2
s φ(xs)dWs, t ∈ [0, T ],

(16)
where φ(·) is a locally Lipschitz and bounded function with locally Lipschitz
constant C

φ
R, bounding constant Kφ , x0 is independent of all {Wt }0≤t≤T , x0 ∈

L 4p(Ω,R) for some 2 < p and x0 > 0 a.s., E(x0)
−2 < A, k1(·), k2(·), k3(·) are

positive and bounded functions with k2,min > 7
2 (Kφk3,max)

2. It holds that xt > 0
a.s. The following semi-discrete numerical scheme,

yt = y0 +
∫ t

0
(k1(s) − k2(s)yŝ)ysds +

∫ t

0
k3(s)

√
yŝφ(yŝ)ysdWs, (17)

where ŝ = tn, when s ∈ [tn, tn+1), produces a linear SDE with solution

yt = x0 exp
{∫ t

0

(
k1(s)−k2(s)yŝ − k23(s)

yŝφ
2(yŝ)

2

)
ds+

∫ t

0
k3(s)

√
yŝφ(yŝ)dWs

}
,

(18)
where yt = yt (t0, x0). We call (18) an exponential semi-discrete approximation
of (16). The exponential semi-discrete numerical scheme (18) converges to the
true solution of (16) in the mean square sense, is positive and has finite moments
E(sup0≤t≤T (yt )

p) for appropriate p, see [15, Sec. 4.1]. See also the very recent
work [17], a combination of the Lamperti transformation with the SD method,
named LSD method.
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3.2 CEV Process

The following SDE

xt = x0 +
∫ t

0
(k1 − k2xs)ds +

∫ t

0
k3(xs)

qdWs, t ∈ [0, T ], (19)

where k1, k2, k3 are positive and 1/2 < q < 1 is known as a mean-reverting
CEV process. Equation (19) may represent the instantaneous volatility or the
instantaneous variance of the underlying financially observable. Here the diffusion
coefficient is sub-linear. Feller’s test implies that there is a unique non-explosive
strong solution such that xt > 0 a.s. when x0 > 0 a.s. c.f. [22, Prop. 5.22]. The
steady-state level of xt is k1/k2 and the rate of mean-reversion is k2.

Here we examine two versions of an implicit SD scheme that are solved
explicitly. In [14], we propose

yt = x0 +
∫ t

0
(k1 − k2(1 − θ)yŝ − k2θỹs) ds + k3

∫ t

0
(yŝ)

q− 1
2
√

ysdWs

+
∫ tn+1

t

(
k1 − k2(1 − θ)ytn − (k3)

2

4(1 + k2θΔ)
(ytn)

2q−1 − k2θyt

)
ds, (20)

for t ∈ (tn, tn+1] where

ŝ=tj , s ∈ (tj , tj+1], j=0, . . . , n, s̃=
{

tj+1, for s ∈ [tj , tj+1],
t, for s ∈ [tn, t], j=0, . . . , n−1

and θ ∈ [0, 1] represents the level of implicitness. After rearranging

yt (q)=yn+
∫ t

tn

(k3)
2

4(1 + k2θΔ)2
(ytn)

2q−1ds+ k3

1 + k2θΔ
(ytn)

q− 1
2

∫ t

tn

sgn(zs)
√

ysdWs,

(21)
with solution

yt (q) = (zt )
2, zt := √

yn + k3

2(1 + k2θΔ)
(ytn)

q− 1
2 (Wt − Wtn), (22)

where yn is

yn := ytn

(
1 − k2Δ

1 + k2θΔ

)
+ k1Δ

1 + k2θΔ
− (k3)

2

4(1 + k2θΔ)2
(ytn)

2q−1Δ.

The SD method (22) is positive by construction and under some conditions on the
coefficients ki, the level of implicitness θ and the step-size Δ, it strongly converges
to the solution of (19) with a logarithmic rate if also E(x0)

p < A for some p ≥ 4
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and with a polynomial rate of convergence of magnitude 1
2 (q− 1

2 ) if x0 ∈ R, see [14,
Th.1 and Th.2]. The other version of the implicit SD scheme, see [12], is written in
each sub-interval,

ỹt (q) = ỹn +
∫ t

tn

q(k3)
2

2
(ỹs)

2q−1ds + k3

∫ t

tn

sgn(̃zs)(ỹs)
qdWs (23)

with solution

ỹt (q) = |̃zt |1/(1−q), z̃t := (ỹn)
1−q + k3(1 − q)(Wt − Wtn), (24)

where

ỹn := ỹtn (1 − k2Δ) + k1Δ − q(k3)
2Δ

2
(ỹtn )

2q−1.

The SD method (24) is again positive by construction and under some conditions
on the coefficients ki, the level of implicitness θ and the step-size Δ, it strongly
converges to the solution of (19) with a polynomial rate of convergence of
magnitude q(q − 1

2 ) if x0 ∈ R. See also how LSD performs [17].

3.3 CIR/CEV Delay Models with Jump

Here we study a general model of type (19) including delay and jump terms. In
particular we consider the following stochastic delay differential equation (SDDE)
with jump,

xt =
⎧⎨
⎩

ξ0 + ∫ t

0 (k1 − k2xs−)ds +∫ t

0 k3b(xs−τ )x
α
s−dWs +∫ t

0 g(xs−)dÑs, t ∈ [0, T ],

ξ(t), t ∈ [−τ, 0],
(25)

where xs− = limr↑s xr , the coefficient b ∈ C (R+,R+)1 and is assumed to be
γ -Hölder continuous with γ > 0, the jump coefficient g : R → R is assumed
deterministic for simplicity, the function ξ ∈ C ([−τ, 0], (0,∞)) and τ > 0
is a positive constant which represents the delay. Process Ñ(t) = N(t) − λt a
compensated Poisson process with intensity λ > 0 independent of Wt. (25) has a
unique and nonnegative solution and under some conditions on ‖ξ‖ and the step-size
Δ the following scheme strongly converges to the solution of (25) with polynomial
or logarithmic rate, see [29],

1C (A,B) the space of continuous functions φ : A → B with norm ‖φ‖ = supu∈A φ(u).
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{
ytk+1− = (ztk+1)

2,

ytk+1 = ytk+1− + g(ytk+1− )ΔÑk,
(26)

where

zt =
√

ytk

(
1 − k2Δk

1 + k2θΔk

)
+ k1Δk

1 + k2θΔk

− (k3)2

4(1 + k2θΔk)2

b2(ytk−τ
)

(1 + b(ytk−τ
)Δm

k )2
(ytk )

2α−1Δk

+ k3

2(1 + k2θΔk)

b(ytk−τ
)

1 + b(ytk−τ
)Δm

k

(ytk )
α− 1

2 (Wt − Wtk )

yt = ξ(t) when t ∈ [−τ, 0] and for k = 0, 1, . . . , nT − 1, and Δk = tk+1 −
tk,ΔÑk := Ñ(tk+1) − Ñ(tk) = ΔNk − λΔk and θ ∈ [0, 1] represents the level of
implicitness, with m = 1/4. The SD scheme (26) combines the semi-discrete idea
with a taming procedure. For the case α = 1/2, known as the CIR model, where no
delay and jump terms, see also [7, 11] and the application of the LSD method [17].
For extensions of the SD method to the two-factor CIR, see [10].

3.4 Aït-Sahalia Model

Let

xt = x0 +
∫ t

0
(
a1

xs

− a2 + a3xs − a4x
r
s )ds + σ

∫ t

0
xρ
s dWs, (27)

where x0 > 0, the coefficients ai are nonnegative and r > 1, ρ > 1. SDE (27),
known as the Aït-Sahaliamodel, is used as an interest rate model and satisfies xt > 0
a.s. The approximation of (27), by a combination of the splitting step method and
the semi-discrete method, is proposed in [13]. In fact the SD approximation for the
transformed process zt = x2

t takes place first with dynamics given by

zt = z0+
∫ t

0
(2a1zs−2a2

√
zs+2a3zs−2a4z

(r+1)/2
s +σ 2zρ

s )ds+2σ
∫ t

0
z
(ρ+1)/2
s dWs.

(28)
Splitting (28) in each subinterval with t ∈ [tn, tn+1] as

z1(t) = z2(tn) +
∫ t

tn

(ln(4/3)z1(s) − 2a2
√

z1(s))ds (29)

z2(t) = z1(tn+1) +
∫ t

tn

(2a1 + (2a3 − ln(4/3))z2(s) − 2a4z
(r+1)/2
2 (s) + σ 2z

ρ
2 (s))ds

+2σ
∫ t

tn

z
(ρ+1)/2
2 (s)dWs, (30)
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where z2(0) = x0 suggests that we may take the solution of (29)

z1(t) =
(

2a2
ln(4/3)

+
(√

z2(tn) − 2a2
ln(4/3)

) (
4

3

)(t−tn)/2
)2

(31)

and approximate (30) with

z̃2(t) = z1(tn+1) + 2a1Δ

+
∫ t

tn

(
2a3 − ln(4/3) − 2a4̃z

(r−1)/2
2 (ŝ) + σ 2̃z

(ρ−1)/2
2 (ŝ)

)
z̃2(s)ds

+2σ
∫ t

tn

z̃
(ρ−1)/2
2 (ŝ)̃z2(s)dWs. (32)

We end up with the following SD numerical scheme for the transformed process zt

z̃n+1 =
⎛
⎝2a1Δ +

(
2a2

ln(4/3)
+

(√̃
zn − 2a2

ln(4/3)

) (
4

3

)Δ/2
)2

⎞
⎠

× exp{(2a3 − ln(4/3) − 2a4̃z
(r−1)/2
n − σ 2̃zρ−2

n )Δ + 2σ z̃
(ρ−1)/2
n ΔWn} (33)

and then take yn = √̃
zn for the approximation of the original Aït-Sahalia model,

which is positive, strongly convergent with finite moment bounds, when r+1 > 2ρ,

with ρ ≥ 2, see [13]. See also the performance of LSD [17].

4 Applications of the Semi-discrete Method: Population
Dynamics and Biology

4.1 Wright-Fisher Model

The next class of SDEs appears in population dynamics to describe fluctuations
in gene frequency of reproducing individuals among finite populations [5] and ion
channel dynamics within cardiac and neuronal cells, (cf. [3, 4, 6] and references
therein),

xt = x0 +
∫ t

0
(k1 − k2xs)ds + k3

∫ t

0

√
xs(1 − xs)dWs, (34)

where ki > 0, i = 1, 2, 3. If x0 ∈ (0, 1) and (k1 ∧ (k2 − k1)) ≥ (k3)
2/2, then

0 < xt < 1 a.s. The process
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yt = ytn +
∫ tn+1

tn

(
k1 − (k3)

2

4
+ ytn

(
(k3)

2

2
− k2

))
ds +

∫ t

tn

(k3)
2

4
(1 − 2ys)ds

+k3

∫ t

tn

√
ys(1 − ys) sgn(zs)dWs, (35)

for t ∈ (tn, tn+1], with y0 = x0 a.s. and zt = sin
(
k3ΔWt

n + 2 arcsin(
√

yn)
)
, where

yn := ytn +
(
k1 − (k3)

2

4 + ytn

(
(k3)

2

2 − k2

))
· Δ has the following solution

yt = sin2
(

k3

2
ΔWt

n + arcsin(
√

yn)

)
, (36)

which has the pleasant feature that yt ∈ (0, 1) when y0 ∈ (0, 1). Process (36) is
well defined when 0 < yn < 1, which is achieved for appropriate Δ. To simplify
conditions on the parameters and the step size d we may adopt the strategy presented
in [28] considering a perturbation of order Δ in the initial condition. Here we used
an additive discretization of the drift coefficient and the eternal life time SD scheme
(36) strongly converges to the solution of (34), see [28]. Moreover, in [28], an
application of the SD method to an extension of the Wright-Fisher model to the
multidimensional case is treated, producing a strongly converging and boundary
preserving scheme.

4.2 Predator-Prey Model

The following system of SDEs, c.f. [20],

X
(1)
t = X

(1)
0 +

∫ t

0
(aX(1)

s − bX(1)
s X(2)

s )ds +
∫ t

0
k1X

(1)
s dW(1)

s ,

X
(2)
t = X

(2)
0 +

∫ t

0
(cX(1)

s X(2)
s − dX(2)

s )ds +
∫ t

0
k2X

(2)
s dW(2)

s ,

where a, b, c, d > 0 and k1, k2 ∈ R with independent Brownian motions
W

(1)
t ,W

(2)
t was studied in [9]. Under somemoment bound conditions for (X(i)

t ), i =
1, 2 and when X

(1)
0 > 0 andX

(2)
0 > 0 then X

(1)
t > 0 and X

(2)
t > 0 a.s. Transforming

the second equation Z
(2)
t = ln(X(2)

t ) produces the following system

X
(1)
t = X

(1)
0 +

∫ t

0
(a − beZ

(2)
s )X(1)

s ds +
∫ t

0
k1X

(1)
s dW(1)

s ,

Z
(2)
t = Z

(2)
0 +

∫ t

0
(cX(1)

s − d − (k2)
2)ds + k2W

(2)
t ,
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which is approximated by the following SD scheme

Y
(1)
t = X

(1)
0 +

∫ t

0
(a − beY

(2)
ŝ )Y (1)

s ds +
∫ t

0
k1Y

(1)
s dW(1)

s ,

Y
(2)
t = Y

(2)
0 +

∫ t

0
(cY

(1)
ŝ

− d − (k2)
2)ds + k2W

(2)
t ,

which reads

Y
(1)
tn+1

= Y
(1)
tn

exp{(a − beY
(2)
tn − (k1)

2

2
)Δ + k1ΔW(1)

n }

Y
(2)
tn+1

= Y
(2)
tn

+ (cY
(1)
tn

− d − (k2)
2)Δ + k2ΔW(2)

n .
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