
Canonical Systems of Partial Differential
Equations

Martin Schechter

Abstract We use critical point theory to find solutions of the nonlinear steady state
Schrödinger equations arising in the study of photonic lattices.

1 Introduction

Systems of partial differential equations arise in many investigations in the physical
sciences. Depending on the application and on the questions asked, different types
of systems emerge. Usually, if one is interested in finding steady states solutions, the
resulting system is elliptic in nature. Such systems may display severe difficulties
when one tries to solve them. Most of the time they admit a trivial solution, where
all of the unknown functions are identically zero. However, the physical application
requires a solution which is not identically zero. In such cases, the methods of
solution may be very difficult. In particular, one has to show that the solution
obtained is not trivial. The system that we study is not only deceptive, but it is
almost impossible to tell if one has solved the whole system or only parts of the
system. I call it “canonical.” I shall elaborate on this later.

Many general systems are the form

A v = f (x, v,w), x ∈ Q ⊂ R
n, (1)

Bw = g(x, v,w), x ∈ Q ⊂ R
n, (2)

where A ,B are linear partial differential operators. I call this system “deceptive”
if (v, 0) is a solution of (1) and (2) whenever v satisfies

A v = f (x, v, 0), x ∈ Q ⊂ R
n, (3)
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or (0, w) is a solution whenever w satisfies

Bw = g(x, 0, w), x ∈ Q ⊂ R
n. (4)

In this case it is very difficult to determine if both components of a solution are
nontrivial.

The particular system I have chosen consist of nonlinear Schrödinger equations
arising in optics (cf. [16]) describing the propagation of a light wave in induced
photonic lattices. They can be written in the form

iVt + ΔV = PV

1 + |V |2 + |W |2

iWt + ΔW = PW

1 + |V |2 + |W |2

for the periodic wave functions V (x, t),W(x, t) over a periodic bounded spacial
domain Ω ⊂ R

2, where P,Q are parameters (cf. [2, 21]). To find a steady state
solution, we look for solutions of the form

V (x, t) = eiλt v(x), W(x, t) = eiλtw(x),

where λ is a real constant. This leads to the following system of equations over a
periodic domain Ω ⊂ R

2 :

Δv = Pv

1 + v2 + w2 + λv, (5)

Δw = Qw

1 + v2 + w2
+ λw, (6)

where P,Q, λ are parameters. The solutions v,w are to be periodic in Ω with the
same periods. One wishes to obtain intervals of the parameter λ for which there
are nontrivial solutions. This will provide continuous energy spectrum that allows
the existence of steady state solutions. This system was studied in [2], where it was
shown that

1. If P,Q, λ are all positive, then the only solution is trivial.
2. If P < 0 and 0 < λ < −P, then the system (5) and (6) has a nontrivial solution.
3. If P,Q > 0, there is a constant δ > 0 such that the system (5) and (6) has a

nontrivial solution provided 0 < −λ < δ.

4. All of these statements are true if we replace P by Q.

Wave propagation in nonlinear periodic lattices has been studied by many reseachers
(cf., e.g., [1–11, 17, 20–23] and their bibliographies.)
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In the present paper, we wish to cover some remaining situations not mentioned
in [2] as well as extending their results to higher dimensions. We shall show that
there are many intervals of the parameters in which nontrivial solutions exist. Our
results are true in any dimension.

In stating our results, we shall make use of the following considerations. Let Ω

be a bounded periodic domain inRn, n ≥ 1.Consider the operator−Δ on functions
in L2(Ω) having the same periods as Ω. The spectrum of −Δ consists of isolated
eigenvalues of finite multiplicity:

0 = λ0 < λ1 < · · · < λ� < · · · ,

with eigenfunctions in L∞(Ω). Let λ�, � ≥ 0, be one of these eigenvalues, and
define

N =
⊕

λ≤λ�

E(λ), M = N⊥.

As noted in [2], to prove the existence of a nontrivial solution of system (5) and (6),
it suffices to obtain a nontrivial solution of either

Δv = Pv

1 + v2
+ λv, (7)

or

Δw = Qw

1 + w2 + λw. (8)

This stems from the fact that (v, 0) is a solution of (5) and (6) if v is a solution of (7)
and (0, w) is a solution of (5) and (6) if w is a solution of (8). The author is unaware
if such solutions are desirable from the physical point of view. However, we have
been able to find values of P,Q, λ for which the system (5) and (6) has a solution
(v,w) where v �= 0, w �= 0.

We shall prove

Theorem 1 If 0 < λ < −P or 0 < λ < −Q, then (5) and (6) has a nontrivial
solution.

Theorem 2 If 0 < −λ < P or 0 < −λ < Q, then (5) and (6) has a nontrivial
solution.

Theorem 3 If P > 0,Q > 0, σ = −λ > 0, and either 0 ≤ σ − P < λ1 < σ or
0 ≤ σ − Q < λ1 < σ, then (5) and (6) has a nontrivial solution.

Theorem 4 If P > 0,Q > 0, σ = −λ > 0, and either λ� ≤ σ − P < λ�+1 < σ

or λ� ≤ σ − Q < λ�+1 < σ then (5) and (6) has a nontrivial solution.

Theorem 5 If P > 0, Q = 0, λ = −λ� < 0, −Δw = λ�w and
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λ� < P

∫

Ω

1

1 + w2 /|Ω|,

then (5) and (6) has a nontrivial solution. If w �= 0, then the solution has both
components nonzero.

Theorem 6 If Q > 0, P = 0, λ = −λ� < 0, −Δv = λ�v and

λ� < Q

∫

Ω

1

1 + v2
/|Ω|,

then (5) and (6) has a nontrivial solution. If v �= 0, then the solution has both
components nonzero.

2 Some Lemmas

In proving our results we shall make use of the following lemmas (cf., e.g., [12, 14,
15, 18]). For the definition of linking, cf. [12].

Lemma 1 Let M,N be closed subspaces of a Hilbert space E such that one of
them is finite dimensional and E = M ⊕ N . Take B = ∂Bδ ∩ M, and let w0 be any
element in ∂B1 ∩ M . Take A to be the set of all u of the form

u = v + sw0, v ∈ N, s ∈ R,

satisfying the following

(a) ‖v‖E ≤ R, s = 0
(b) ‖v‖E ≤ R, s = 2R0
(c) ‖v‖E = R, 0 ≤ s ≤ 2R0,

where 0 < δ < min(R,R0). Then A and B link each other.

Lemma 2 The sets ‖u‖E = R > 0 and {e1, e2} link each other provided ‖e1‖E <

R and ‖e2‖E > R.

Lemma 3 If G(u) ∈ C1(E,R) satisfies

α = inf
E

G > −∞, (9)

then there is a sequence {uk} such that

G(uk) → α, (1 + ‖uk‖E)‖G′(uk)‖ → 0. (10)

Lemma 4 If A links B, and G(u) ∈ C1(E,R) satisfies
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a0 = sup
A

G ≤ b0 = inf
B

G, (11)

then there is a sequence {uk} such that

G(uk) → c ≥ b0, (1 + ‖uk‖E)‖G′(uk)‖ → 0. (12)

We let E be the subspace of H 1,2(Ω) consisting of those functions having the
same periodicity as Ω with norm given by

‖w‖2E = ‖∇w‖2 + ‖w‖2.

Assume P �= 0,Q �= 0, λ �= 0. Let

a(u) = 1

P
[ ‖∇v‖2 + λ ‖v‖2] + 1

Q
[ ‖∇w‖2 + λ ‖w‖2], v, w ∈ E (13)

and

G(u) = a(u) +
∫

Ω

ln(1 + u2) dx. (14)

We have

Lemma 5 If G(u) is given by (14), then every sequence satisfying (10) has a
subsequence converging in E. Consequently, there is a u ∈ E such that G(u)=c
and G′(u) = 0.

Proof The sequence satisfies

G(uk) = 1

P
‖∇vk‖2 + λ

P
‖vk‖2 + 1

Q
‖∇wk‖2 + λ

Q
‖wk‖2 (15)

+
∫

Ω

ln{1 + |uk|2} dx → c,

(G′(uk), q)/2 = 1

P
(∇vk,∇g) + λ

P
(vk, g) (16)

+ 1

Q
(∇wk,∇h) + λ

Q
(wk, h)

+
∫

Ω

ukq

1 + u2k

dx → 0, q = (g, h),

(G′(uk), vk)/2 = 1

P
(∇vk,∇vk) + λ

P
(vk, vk) (17)
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+
∫

Ω

ukvk

1 + u2k

dx → 0.

and

(G′(uk), wk)/2 = 1

Q
(∇wk,∇wk) + λ

Q
(wk,wk) (18)

+
∫

Ω

ukwk

1 + u2k

dx → 0.

Thus,

∫

Ω

H(x, uk) dx → c, (19)

where

H(x, t) = ln(1 + t2) − t2

1 + t2
. (20)

Let ρk = ‖uk‖H , where

‖u‖2H = 1

|P | [‖∇v‖2 + |λ| ‖v‖2] (21)

+ 1

|Q| [‖∇w‖2 + |λ| ‖w‖2], u = (v,w) ∈ E.

Assume first that ρk → ∞. Let ũk = uk/ρk. Then ‖ũk‖H = 1. Hence, there is a
renamed subsequence such that ũk ⇀ ũ in E, and ũk → ũ in L2(Ω) and a.e. Now

‖uk‖2H = 1

|P | [‖∇vk‖2 + |λ| ‖vk‖2] + 1

|Q| [‖∇wk‖2 + |λ| ‖wk‖2]. (22)

By (17) and (18),

‖uk‖2H ≤ |(G′(uk), vk)|/2 + |(G′(uk), wk)|/2

+ |λ| − λ

|P | ‖vk‖2 + |λ| − λ

|Q| ‖wk‖2

+
∫

Ω

u2k

1 + u2k

dx.

Hence,
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1 = ‖ũk‖2H ≤ [|(G′(uk), vk)|/2 + |(G′(uk), wk)|/2]/ρ2
k + C‖ũk‖2. (23)

In the limit we have,

1 ≤ C‖ũ‖2.

This shows that ũ �≡ 0. Let Ω0 be the subset of Ω where ũ(x) �= 0. Then |Ω0| �= 0.
Thus

∫

Ω

H(x, uk) dx =
∫

Ω0

H(x, uk) dx +
∫

Ω\Ω0

H(x, uk) dx

≥
∫

Ω0

H(x, uk) dx → ∞.

This contradicts (19). Thus, the sequence satisfying (10) is bounded in E. Hence,
there is a renamed subsequence such that uk ⇀ u0 in E, and uk → u0 in L2(Ω)

and a.e. Taking the limit in (17), we obtain

(G′(u0), q)/2 = 1

P
(∇v0,∇g) + λ

P
(v0, g) (24)

+ 1

Q
(∇w0,∇h) + λ

Q
(w0, h)

+
∫

Ω

u0q

1 + u20

dx = 0, q = (g, h),

Thus, u0 satisfies G′(u0) = 0. Since u0 ∈ E, it satisfies

(G′(u0), u0)/2 = 1

P
(∇v0,∇v0) + λ

P
(v0, v0) (25)

+ 1

Q
(∇w0,∇w0) + λ

Q
(w0, w0)

+
∫

Ω

u20

1 + u20

dx = 0

Also, from the limit in (17), we have

lim
1

P
‖∇vk‖2 = lim(G′(uk), vk)/2

− lim[ λ

P
‖vk‖2 +

∫

Ω

v2k

1 + u2k

dx]
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= − [ λ

P
‖v‖2 +

∫

Ω

v2

1 + u2
dx]

= 1

P
‖∇v‖2,

with a similar statement for ‖∇w‖2. Consequently, ∇uk → ∇u in L2(Ω). This
shows that G(uk) → G(u0). Hence, G(u0) = c.

Lemma 6 If G′(u) = 0, then (v,w) is a solution of (5) and (6).

Proof From (24) we see that

|(∇u,∇q)| ≤ C‖q‖, q ∈ E.

From the fact that the functions and Ω are periodic with the same period, it follows
that u ∈ H 2,2(Ω) and satisfies (5) and (6) (cf., e.g., [13]).

Lemma 7
∫

Ω

ln(1 + u2)dx/‖u‖2H → 0, ‖u‖H → ∞. (26)

Proof Suppose uk ∈ H is a sequence such that ρk = ‖uk‖H → ∞. Let ũk =
uk/ρk. Then ‖ũk‖H = 1. Hence, there is a renamed subsequence such that ũk ⇀ ũ

in H, and ũk → ũ in L2(Ω) and a.e. Now

ln(1 + u2k)

ρ2
k

= ln(1 + u2k)

u2k

ũ2k → 0 a.e.

and it is dominated a.e. by ũ2k → ũ2 in L1(Ω). Thus

∫

Ω

ln(1 + u2k)

ρ2
k

dx → 0.

Since this is true for any sequence satisfying ‖uk‖H → ∞, we see that (26) holds.

Corollary 1 If

I (u) = ‖u‖2H −
∫

Ω

ln(1 + u2) dx,

then

I (v) → ∞ as ‖v‖H → ∞. (27)

Proof We have
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I (u)/‖u‖2H = 1 −
∫

Ω

ln(1 + u2)dx/‖u‖2H → 1, ‖u‖H → ∞

by Lemma 7. This gives (27).

Lemma 8
∫

Ω

[u2 − ln(1 + u2)]dx/‖u‖2H → 0, ‖u‖H → 0. (28)

Proof Suppose uk ∈ H is a sequence such that ρk = ‖uk‖H → 0. In particular,
there is a renamed subsequence such that uk → 0 a.e. Let ũk = uk/ρk. Then
‖ũk‖H = 1. Hence, there is a renamed subsequence such that ũk ⇀ ũ ∈ H, and
ũk → ũ in L2(Ω) and a.e. Now

u2k − ln(1 + u2k)

ρ2
k

≤ u2k

1 + u2k

ũ2k → 0 a.e.

and it is dominated a.e. by ũ2k → ũ2 in L1(Ω). Thus

∫

Ω

u2k − ln(1 + u2k)

ρ2
k

dx → 0.

Since this is true for any sequence satisfying ‖uk‖H → 0, we see that (28) holds.

3 Proofs of the Theorems

Proof of Theorem 1 We let E be the subspace of H 1,2(Ω) consisting of those
functions having the same periodicity as Ω with norm given by

‖w‖2E = ‖∇w‖2 + ‖w‖2.

Let u = (v,w), where v,w ∈ E and u2 = v2 + w2. If q = (g, h), we write
uq = vg + wh. Define

‖u‖2H = 1

|P | [‖∇v‖2 + |λ| ‖v‖2] (29)

+ 1

|Q| [‖∇w‖2 + |λ| ‖w‖2], v, w ∈ E.

Assume that P,Q, λ do not vanish. Then ‖u‖2H is a norm on H = E × E having a
scalar product (u, h)H .

Let
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I (u) = ‖u‖2H −
∫

Ω

ln(1 + u2) dx. (30)

Then,

(I ′(u), q)/2 = (u, q)H −
∫

Ω

uq

1 + u2
dx, q ∈ H. (31)

If I ′(u) = 0, then

Δv = −|P |v
1 + |v|2 + |w|2 + |λ|v, (32)

Δw = −|Q|w
1 + |v|2 + |w|2 + |λ|w. (33)

This is equivalent to (5) and (6) if P < 0,Q < 0, λ > 0. To prove the theorem, we
must show that there is a nontrivial solution of I ′(u) = 0 when either 0 < λ < −P

or 0 < λ < −Q.

Assume 0 < λ < −P. We show that I (u) has a minimum u �= 0.
Let the sequence uk ∈ H satisfy

I (uk) ↘ α = inf
H

I

(which may be −∞). By (27), ρk = ‖uk‖H is bounded. Hence, there is a renamed
subsequence such that uk ⇀ u0 in H, and uk → u0 in L2(Ω) and a.e. Since

‖uk‖2H − 2([uk − u0], u0)H = ‖u0‖2H + ‖uk − u0‖2H ,

we have

I (u0) ≤ ‖uk‖2H − 2([uk − u0], u0)H
−

∫

Q

ln(1 + u20)dx

= I (uk) − 2([uk − u0], u0)H
−

∫

Q

[ln(1 + u20) − ln(1 + u2k)]dx

→ α.

Thus,

α ≤ I (u0) ≤ α,
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showing that α is finite and that u0 is a minimum. Thus, I ′(u0) = 0 and u0 is a
solution of

Δv = −|P |v
1 + |v|2 + |w|2 + λv, (34)

Δw = −|Q|w
1 + |v|2 + |w|2 + λw. (35)

Next, we show that u0 �= 0. We do this by showing that α < 0. Consider a constant
function u = (s, 0). Then,

I (u) = [ λ

|P | s
2 − ln(1 + s2)]|Ω|, s ∈ R.

This has a negative minimum if λ < |P |. Thus I (u0) = α < 0. Since I (0, 0) = 0,
we see that u0 �= 0. However, u0 satisfies (34) and (35), not (5) and (6). To rectify
the situation, we merely note that the same method produces a negative minimum
v0 for I (v, 0), and (v0, 0) is a nontrivial solution of (5) and (6). This completes the
proof for the case 0 < λ < −P. The case 0 < λ < −Q is treated similarly.

Proof of Theorem 2 Assume 0 < σ < P, 0 < σ < Q, and let a(u) and G(u) be
given by (13) and (14), respectively. Then G′(u) = 0 iff u = (v,w) is a solution of
(5) and (6). We search for a nontrivial solution.

Let ρk = ‖uk‖H , where

‖u‖2H = 1

|P | [‖∇v‖2 + |λ| ‖v‖2] (36)

+ 1

|Q| [‖∇w‖2 + |λ| ‖w‖2], u = (v,w) ∈ E.

Assume that ρk → 0. Let ũk = uk/ρk. Then ‖ũk‖H = 1. Hence, there is a renamed
subsequence such that ũk ⇀ ũ in E, and ũk → ũ in L2(Ω) and a.e. We have

G(uk)/ρ
2
k = 1

P
‖∇ṽk‖2 + λ + P

P
‖ṽk‖2

+ 1

Q
‖∇w̃k‖2 + λ + Q

Q
‖w̃k‖2

+
∫

Ω

[ln{1 + |uk|2} − u2k] dx/ρ2
k .

Since P > σ and Q > σ, we see in view of Lemma 7 that there are positive
constants ε, η such that

G(u)/‖u‖2H ≥ ε, ‖u‖H ≤ η.
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Let A be the set of those u ∈ H such that ‖u‖H = η. Consider a constant function
u = (s, 0). Then,

G(u)/s2 = [ λ

P
+ s−2 ln(1 + s2)]|Ω| → λ

P
|Ω| < 0, s → ∞.

Hence, there is a u ∈ H such that ‖u‖H > η and G(u) < εη2. Since G(0, 0) = 0,
there is a u ∈ H such that ‖u‖H < η and G(u) < εη2. The theorem now follows
from Lemmas 2, 4, and 5.

Proof of Theorem 3 Assume P > 0,Q > 0, λ < 0 and σ = −λ > max[P, λ1].
Let

a(u) = 1

P
[ ‖∇v‖2 − σ ‖v‖2] + 1

Q
[ ‖∇w‖2 − σ ‖w‖2], v, w ∈ E (37)

and

G(u) = a(u) +
∫

Ω

ln(1 + u2) dx. (38)

Then G′(u) = 0 iff u satisfies (5) and (6).
First, we note that

G(u) ≤ 0, u ∈ N,

if σ ≥ P, σ ≥ Q. To see this, let u = (c, d) ∈ N. Then

a(c, d) = − σ

P
c2|Ω| − σ

Q
d2|Ω|

and
∫

Ω

ln(1 + c2 + d2)dx ≤ (c2 + d2)|Ω|.

Thus,

G(u) ≤ [1 − σ

P
]c2|Ω| + [1 − σ

Q
]d2|Ω|.

This means that

G(u) ≤ 0, u ∈ N, (39)

provided σ ≥ P, σ ≥ Q.
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Next, let ψ be an eigenfunction of −Δ corresponding to the eigenvalue λ1. If we
take u = (ψ + c, ψ + d), we have

a(u) = 1

P
[ ‖∇(ψ + c)‖2 − σ ‖(ψ + c)‖2]

+ 1

Q
[ ‖∇(ψ + d)‖2 − σ ‖(ψ + d)‖2],

and this gives

a(u) = 1

P
[(λ1 − σ) ‖ψ‖2 − σc2] + 1

Q
[(λ1 − σ) ‖ψ‖2 − σd2],

which will be negative if σ > λ1. Moreover,

∫

Ω

ln(1 + 2ψ2 + c2 + d2)dx/‖u‖2H → 0, ‖u‖H → ∞.

This follows from the fact that
∫

Ω

ln(1 + u2)dx/‖u‖2H → 0, ‖u‖H → ∞ (40)

(Lemma 7). Consequently,

lim sup
‖(ψ+c,ψ+d)‖H →∞

G(ψ + c, ψ + d) < 0 (41)

provided σ > λ1.

Next, let u = (v,w) be any function in M. Then ‖∇u‖2 = ‖∇v‖2 + ‖∇w‖2 ≥
λ1‖v‖2 + λ1‖w‖2 = λ1‖u‖2. Then

a(u) + ‖u‖2 ≥ 1

P
[1 − σ − P

λ1
] ‖∇v‖2 + 1

Q
[1 − σ − Q

λ1
] ‖∇w‖2.

Thus, there is an ε > 0 such that

a(u) + ‖u‖2 ≥ 2ε‖∇u‖2, u ∈ M, (42)

when σ − λ1 < min[P,Q].
Now

∫

Ω

[u2 − ln(1 + u2)]dx/‖u‖2H → 0, ‖u‖H → 0 (43)

by Lemma 8. If we combine (42) and (43), we see that there is an ε > 0 such that
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G(u) ≥ ε‖∇u‖2, u ∈ M, (44)

when ‖∇u‖2 is small and σ − λ1 < min[P,Q].
Take A = ∂(N ⊕ {ψ}), B = ∂Bδ ∩ M. By (39), (41), and (44) one can

apply Lemma 1 to obtain (10) and then Lemma 5 to conclude that (5) and (6) has
a nontrivial solution. To see this, note that a0 = 0 < ε ≤ b0, showing that the
solution u0 satisfies G(u0) ≥ ε > 0. Since G(0) = 0, we see that u0 �= 0. If
max[P, λ1] < −λ < P + λ1 is true, but max[Q,λ1] < −λ < Q + λ1, is not,
we can apply the argument used in the proof of Theorem 1. The same is true in the
other direction. This completes the proof.

Proof of Theorem 4 First, we note that

G(u) ≤ 0, u ∈ N, (45)

if σ ≥ λ� + max[P,Q]. To see this, let u = (v,w) ∈ N. Then ‖∇u‖2 = ‖∇v‖2 +
‖∇w‖2 ≤ λ�‖v‖2 + λ�‖w‖2 = λ�‖u‖2. Then

G(u) ≤ 1

P
[λ� − σ + P ] ‖v‖2 + 1

Q
[λ� − σ + Q] ‖w‖2 ≤ 0.

Next, let g be an eigenfunction of −Δ corresponding to the eigenvalue λ�+1. If
we take u = (g + v, g + w), we have

a(u) = 1

P
[ ‖∇(g + v)‖2 − σ ‖(g + v)‖2]

+ 1

Q
[ ‖∇(g + w)‖2 − σ ‖(g + w)‖2],

and this gives

a(u) = 1

P
[(λ�+1 − σ) ‖g‖2 + (λ� − σ)‖v‖2]

+ 1

Q
[(λ�+1 − σ) ‖g‖2 + (λ� − σ 2)‖w‖2],

which will be negative if σ > λ�+1. Moreover, by Lemma 7,

∫

Ω

ln(1 + 2g2 + v2 + w2)dx/‖u‖2H → 0, ‖u‖H → ∞. (46)

Consequently, (46) holds provided σ > λ�+1.

Next, let u = (v,w) be any function in M. Then ‖∇u‖2 = ‖∇v‖2 + ‖∇w‖2 ≥
λ�+1‖v‖2 + λ�+1‖w‖2 = λ�+1‖u‖2. Then
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a(u) + ‖u‖2 ≥ 1

P
[1 − σ − P

λ�+1
] ‖∇v‖2 + 1

Q
[1 − σ − Q

λ�+1
] ‖∇w‖2.

Thus, there is an ε > 0 such that

a(u) + ‖u‖2 ≥ 2ε‖∇u‖2, u ∈ M, (47)

when σ − λ�+1 < min[P,Q].
Now by Lemma 8,

∫

Ω

[u2 − ln(1 + u2)]dx/‖u‖2H → 0, ‖u‖H → 0. (48)

If we combine (47) and (48), we see that there is an ε > 0 such that

G(u) ≥ ε‖∇u‖2, u ∈ M, (49)

when ‖∇u‖2 is small and σ − λ�+1 < min[P,Q].
By (45), (46), and (49) one can apply Lemma 1 to obtain (10) and then Lemma 5

to conclude that (5) and (6) has a nontrivial solution u0 takingA = ∂(N⊕{g}), B =
∂Bδ∩M. Then a0 = 0 < ε ≤ b0, showing thatG(u0) ≥ ε > 0. Since G(0, 0) = 0,
we see that u0 �= 0. If λ� < σ −P < λ�+1 < σ is true, but λ� < σ −Q < λ�+1 < σ

is not, we can apply the argument used in the proof of Theorem 1. The same is true
in the other direction. This completes the proof.

Proof of Theorem 5 If w = 0, this follows from Theorem 1 since 0 < λ� < −P .
Otherwise, let

Iw(v) = 1

P
‖∇v‖2 − λ�

P
‖v‖2 +

∫

Ω

ln{1 + v2 + w2} dx, v ∈ H. (50)

Then,

(I ′
w(v), g)/2 = 1

P
(∇v,∇g) − λ�

P
(v, g) +

∫

Ω

vg

1 + v2 + w2 dx. (51)

If I ′
w(v) = 0, then u = (v,w) satisfies

Δv = Pv

1 + v2 + w2 − λ�v, (52)

Δw = −λ�w, (53)

which is (5) and (6) for the case Q = 0, λ = −λ�. If we can find a solution
v �= 0 of I ′

w(v) = 0, then we shall have a solution u = (v,w) of (5) and (6) with
v �= 0, w �= 0. This was done in Theorem 3 of [19].

The proof of Theorem 6 is similar to that of Theorem 5 and is omitted.
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