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Andreas Savas-Halilaj

Abstract In this survey article, we discuss recent developments on the mean
curvature flow of graphical submanifolds, generated by smooth maps between
Riemannian manifolds. We will see interesting applications of this technique, in
the understanding of the homotopy type of maps between manifolds.1,2

1 Introduction

Let f : M → N be a smooth map between two manifolds M and N . It is a
fundamental problem to find canonical representatives in the homotopy class of
f . By a canonical representative is usually meant a map in the homotopy class
of the given map f which is a critical point of a suitable functional. In the mid-
1960s, Eells and Sampson [34] introduced the harmonic maps as critical points of
the energy density, to attack the aforementioned problem.

One possible approach to construct harmonic maps is via the harmonic map heat
flow. If M is compact and N is negatively curved, in [34] Eells and Sampson were
able to prove long-time existence and convergence of the flow, showing that under
these assumptions one finds harmonic representatives in a given homotopy class. In
general, one can neither expect long-time existence nor convergence of this flow.
For example, the situation is very complicated in the case of maps between spheres.

1These notes are based partly on a series of lectures delivered by the author at the Chern Institute
of Mathematics held in Tianjin-China in November 2019.
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Technology (GSRT) and the Hellenic Foundation for Research and Innovation (HFRI) Grant
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There is another important functional that we may consider in the space of
smooth maps. Given a map f : M → N between Riemannian manifolds, let us
denote its graph in the product space M × N by

Γ (f ) = {(x, f (x)) ∈ M × N : x ∈ M}.

Following the terminology introduced by Schoen [79], a map whose graph is
minimal submanifold is called minimal map. Therefore, minimal maps are critical
points of the volume functional.

In this survey, among others, we will discuss deformation of graphical subman-
ifolds via the mean curvature flow. Before stating the problems that we would like
to deal with, let us provide some basic facts and definitions. Let M be a smooth m-
dimensional manifold, T > 0 a positive number and F : M ×[0, T ) → P a smooth
time-dependent family of immersions of M into a Riemannian manifold P . We say
that F evolves in time under the mean curvature flow if it satisfies the evolution
equation

dF(∂t )(x, t) = H(x, t)

for any (x, t) ∈ M × [0, T ), where H(x, t) stands for the mean curvature vector at
the point x of the immersion F(· , t) : M → P . It is a well-known fact that if M is
compact and F0 : M → P is an immersion, then the initial value problem for the
mean curvature flow admits a unique smooth solution on a maximal time interval
[0, Tmax), where 0 < Tmax ≤ ∞. Suppose now that P is the product manifold M×N

and F0 is the graph of a map f : M → N . Notice that long as the submanifolds
deformed under mean curvature flow remain graphical, one obtains a smooth family
of maps which belong to the homotopy class of the map f . In the case of long-time
existence and convergence of the flow, we obtain a smooth homotopy from f to a
minimal map.

The first result regarding evolutions by mean curvature of graphical submanifolds
is due to Ecker and Huisken [33]. They proved long-time existence of entire
graphical hypersurfaces in R

n+1. Moreover, Ecker and Huisken proved convergence
to a flat subspace, if the growth rate at infinity of the initial graphical submanifold
is linear. On the other hand, in higher codimensions, the complexity of the normal
bundle makes the situation more complicated. Results analogous to that of Ecker
and Huisken are not available any more without further assumptions. However, the
ideas developed in the paper of Ecker and Huisken opened a new era for the study
of the mean curvature flow of submanifolds in Riemannian manifolds of arbitrary
codimension; see for example [12, 13, 16–18, 60–62, 64, 75, 77, 78, 85, 87–91, 94–
96, 98–100].

This new deformation of maps between Riemannian manifolds via the mean
curvature flow has been used in order to have a better understanding of the relation
between the k-dilation Dilk and the homotopy type of maps. In order to be precise,
let us recall at first the following definition:
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Definition 1 Let f : M → N be a map between two Riemannian manifolds. We
say that Dilk(f ) ≤ α if f maps each k-dimensional submanifold Σ ⊂ M to an
image with k-dimensional volume at most α · Hk(Σ), where Hk(Σ) stands for
the k-dimensional Hausdorff measure of Σ . In particular, we say that f is area
decreasing if Dil2(f ) ≤ 1, strictly area decreasing if Dil2(f ) = 1, and area
preserving if Dil2(f ) = 1.

Roughly speaking, the k-dilation measures how much the map f : M → N

contracts k-dimensional volumes. Gromov in [38] realized that there is a close
relationship between the 1-dilation of a map and its homotopy type. For instance, he
proved that if f is a map from S

m to S
m, then its degree is at most Dilm1 (f ) and this

bound is sharp up to a constant factor. Motivated by this result, in [40, 41] Gromov
proposed the following:

Problem 1 Let f : S
m → S

n be a smooth map between euclidean spheres. Is
there a number ε(k,m, n) such that if Dilk(f ) < ε would imply that f is null-
homotopic?

Tsui and Wang in [91] proved using the mean curvature flow that smooth strictly
area decreasing maps f : Sm → S

n can be smoothly deformed to a constant map.
Guth [42] proved this result cannot be extended in the case of maps with k-dilation
strictly less than 1, if k ≥ 3. The result of Tsui and Wang was generalized by Lee
and Lee in [60]. In the matter of fact, they proved that any strictly area decreasing
map between compact Riemannian manifolds M and N whose sectional curvatures
are bounded by secM ≥ σ1 and σ2 ≥ secN , where σ1, σ2 are two real constants
such that σ1 ≥ σ2 > 0 or σ1 > 0 ≥ σ2, is homotopic by mean curvature flow to
a constant map. We would like to point out here that the curvature assumptions can
be relaxed to

secM > −σ and RicM ≥ (m − 1)σ ≥ (m − 1) secN,

where σ is a positive constant number, as it was shown in [75] by Savas-Halilaj and
Smoczyk.

In the case of a smooth area decreasing map f : M → N between two compact
Riemann surfaces M and N of the same constant sectional curvature σ , we have
a complete picture of the behaviour of the mean curvature flow. It turns out that,
under the mean curvature flow, such a map either instantly becomes strictly area
decreasing or it was and remains an area preserving map. Moreover, the mean
curvature flow preserves the graphical property, exists for all time, and converges
to a minimal surface Σ∞ of the product M × N . Additionally:

(I) If the evolved graphs are generated by strictly area decreasing maps then:

(a) If σ > 0, then Σ∞ is the graph of a constant map.
(b) If σ = 0, then Σ∞ is the graph of an affine minimal map.

(II) If the evolved graphs are generated by area preserving maps then:
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(a) If σ > 0, then Σ∞ is the graph of an isometry.
(b) If σ = 0, then Σ∞ is the graph of an affine minimal diffeomorphism.

The first steps in the proof of the above result were made in the seminal works
of Smoczyk [85] and Wang [94, 95, 100], where the area preserving case was
investigated. The strictly area decreasing case was first treated by Tsui and Wang
[91], in the positive case, and completed recently by Savas-Halilaj and Smoczyk
in [78]. The primary goal of this survey is to present a unified proof of this result,
based in [78].

From the results of Wang [94, 95, 100], we get another proof of Smale’s Theorem
[84] which says that any diffeomorphism of S2 can be smoothly deformed into an
isometry. Let us mention here that, according to a deep theorem of Hatcher [49],
any diffeomorphism of S3 can be deformed into an isometry of S3. Such a result is
not expected for spheres of dimension greater or equal than 4; see for example [28].
However, the following problem is challenging:

Problem 2 Let f : Sm → S
m, m ≥ 4, be a smooth diffeomorphism. Under which

conditions f can be smoothly deformed into an isometry of the sphere?

Another interesting problem is the investigation of the symplectomorphism
group of the complex projective space CP

m. Gromov [39] proved that the bi-
holomorphic group of CP2 is a deformation retract of its symplectomorphism group.
A natural problem is to determine whether a similar result holds for CP

m with
m ≥ 3. In the matter of fact, the following problem is still open:

Problem 3 Let f : CPm → CP
m, m ≥ 3, be a smooth symplectomorphism. Is

it true that the mean curvature flow deforms the graph Γ (f ) of f smoothly to the
graph Γ (g) of bi-holomorphic map g : CPm → CP

m? Is it true that any minimal
symplectomorphism f : CPm → CP

m is a bi-holomorphic isometry?

Medoš and Wang in [64] made some contribution by giving an affirmative answer
to the above problem under the additional assumption that the singular values of the
differential of the symplectomorphism are close to 1.

The paper is structured as follows. In Section 2 we set up the notation and
recall basic facts from submanifold geometry. In Section 3 we discuss minimal
submanifolds in euclidean spaces. We introduce the generalized Gauss map and
prove the Ruh-Vilms Theorem. Section 4 describes the class of graphical sub-
manifolds and review some Bernstein-type theorems. Section 5 is devoted to the
maximum principle for scalar and systems of PDEs. In Section 6, we introduce the
mean curvature flow, prove short-time existence, and derive various basic evolution
equations. Section 7 describes how to built smooth singularity models for the mean
curvature flow. Section 8 combines results from the previous sections to prove our
main result.
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2 Riemannian Submanifolds

In this section we set up the notation and recall some basic facts from submanifold
geometry. We closely follow the exposition in [5, 29, 55, 59, 92, 102].

2.1 Notation and Conventions

Let M be a m-dimensional manifold and (E, π,M) a vector bundle of rank k over
M . We often denote the bundles only by its total space E. The fiber of E at a point
x ∈ M is denoted by Ex , the tangent space of M at a point x ∈ M will be denoted
by TxM and the space of sections of E is denoted by Γ (E). For the tangent bundle
of M , we use the symbol T M . Sections of the tangent bundle are called vector fields
and usually Γ (T M) is denoted by X(M). A smooth map T : E → V between two
vector bundles E and V over M which maps the fiber Ex linearly to Vx , for any
x ∈ M is called bundle morphism. If additionally, T is bijective we call it bundle
isomorphism.

Definition 2 A (linear) connection on a vector bundle E is a map ∇E : X(M) ×
Γ (E) → Γ (E), written ∇E(v, φ) = ∇E

v φ, satisfying the properties:

(a) For any v1, v2 ∈ X(M) and φ ∈ Γ (E), it holds

∇E
v1+v2

φ = ∇E
v1

φ + ∇E
v2

φ.

(b) For any v ∈ X(M), f ∈ C∞ (M) and φ ∈ Γ (E), it holds

∇E
f vφ = f ∇E

v φ.

(c) For any v ∈ X(M), f ∈ C∞ (M) and φ1, φ2 ∈ Γ (E), it holds

∇E
v (φ1 + φ2) = ∇E

v φ1 + ∇E
v φ2.

(d) For any v ∈ X(M), φ ∈ Γ (E) and f ∈ C∞ (M), it holds

∇E
v (f φ) = (vf ) φ + f ∇E

v φ.

For any φ ∈ Γ (E) and x0 ∈ M , the value ∇Eφx |x0 of the quantity ∇E
v φ at

x0 ∈ M depends only on the value of v at x0 and on the restriction of φ along a curve
passing through x0 with speed v. If φ1, φ2 ∈ Γ (E) coincide on a neighbourhood of
x0 ∈ M , then

∇E
v1

φ1|x0 = ∇E
v2

φ2|x0,
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for any pair of vector fields v1, v2 ∈ X(M) with v1|x0 = v2|x0 .

Definition 3 A section φ ∈ Γ (E) is said to be parallel with respect to ∇E if, for
any vector field v on M , it holds ∇E

v φ = 0.

We can define higher derivatives of sections of a vector bundle over a manifold
M whose tangent bundle T M is equipped with a connection.

Definition 4 Suppose that M is a smooth manifold and E a vector bundle over M .
Let ∇M be a connection of T M and ∇E a connection of E. For any pair v1, v2 ∈
X(M), the map ∇2

v1,v2
: Γ (E) → Γ (E), given by

∇2
v1,v2

φ = ∇E
v1

∇E
v2

φ − ∇E
∇M

v1
v2

φ,

is called the second covariant derivative of φ, with respect to the directions v1 and
v2. By coupling the connections ∇M and ∇E , one may define, the k-th derivative
∇k of a section φ in Γ (E).

To each connection there is associated an important operator, which measures the
non commutativity of the covariant derivatiation.

Definition 5 The operator RE : X(M) × X(M) × Γ (E) → Γ (E), defined by

RE (v1, v2, φ) = ∇2
v1,v2

φ − ∇2
v2,v1

φ,

for any v1, v2 ∈ X(M) and φ ∈ Γ (E), is called the curvature operator of ∇E .

Now let us turn our attention to vector bundles equipped with a Riemannian metric
structure.

Definition 6 A Riemannian metric on a vector bundle E of rank k over the manifold
M is a smooth map gE : Γ (E) × Γ (E) → C∞(M), such that its restriction to the
fibers is a positive definite inner product.

Definition 7 A connection ∇E is called compatible with the Riemannian metric gE

or metric compatible if it satisfies

vgE(φ1, φ2) = gE

(∇E
v φ1, φ2

) + gE

(
φ1,∇E

v φ2
)
,

for any v ∈ X(M) and φ1, φ2 ∈ Γ (E). A vector bundle E endowed with these
structures is called Riemannian vector bundle endowed with a compatible linear
connection.

We say that a set of sections {φ1, . . . , φk} forms an orthonormal frame, with
respect to gE if and only if gE(φi, φj ) = δij , for any i, j ∈ {1, . . . , k}. In
particular, around any point x0 of M it is possible to find a local orthonormal frame
{φ1, . . . , φk} such that
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∇vφi |x0 = 0

for any tangent vector v. Such frames are called normal or geodesic frames.
Let us restrict ourselves at the tangent bundle T M of M . Given a Riemannian

metric g on M , there is a unique connection ∇, referred as the Levi-Civita
connection, which is compatible with the Riemannian metric. More precisely, ∇
is given by the Koszul formula

2g
(∇v1v2, v3

) = v1
(
g(v2, v3)

) + v2
(
g(v1, v3)

) − v3
(
g(v1, v2)

)

+g
([v1, v2], v3

) − g
([v1, v3], v2

) − g
([v2, v3], v1

)
,

for all v1, v2, v3 ∈ X(M). The Levi-Civita also satisfy

∇v1v2 − ∇v2v1 = [v1, v2],

for any v1, v2 ∈ X(M).
Denote by R the curvature operator with respect to the connection ∇. Combining

R with g we obtain a (4,0)-tensor which, for simplicity, we again denote with the
letter R. More precisely,

R(v1, v2, v3, v4) = −g(R(v1, v2, v3), v4),

for any v1, v2, v3, v4 ∈ X(M). If v1, v2 are linearly independent vectors, then

sec(v1, v2) = R(v1, v2, v1, v2)

g(v1, v1)g(v2, v2) − g(v1, v2)2
,

is called the sectional curvature of the plane spanned by the vectors v1 and v2. By
contracting the operator R with g we obtain the Ricci operator Ric and the scalar
curvature scal, i.e.,

Ric(v1, v2) =
m∑

i=1

R(v1, ei , v2, ei) and scal =
m∑

i=1

Ric(ei, ei),

where v ∈ X(M) and {e1, . . . , em} is a local orthonormal frame on M .

Remark 1 One can use the operations of Linear Algebra to produce new vector
bundles from given ones. For example, if E and V are vector bundles over a
manifold M , then E∗, E × V , E ⊗ V , E ⊕ V , Hom(E;V ), Λr(V ) and Symr (V )

gives rise to new bundles over M . If M is endowed with a Riemannian metric,
then this metric and its Levi-Civita connections extends in a natural way to all the
aforementioned bundles; for more details see [59] or [102].
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2.2 The Pull-back Bundle

Let M and N be two manifolds, (E, π,N) is a vector bundle of rank k over N and
suppose that f : M → N is a smooth map. The map f induces a new vector bundle
of rank k over M . Indeed, take as total space

f ∗E = {
(x, ξ) : x ∈ M, ξ ∈ Ef (x)

}

and as projection the map πf : f ∗E → M given by πf (x, ξ) = x. The space
Γ (f ∗E) contains all sections of E with base point at f (M) and inherit naturally a
vector space structure from Ef (x), given by

(x, ξ) + (x, η) = (x, ξ + η) and λ(x, ξ) = (x, λξ).

The triple (f ∗E,πf ,M) carries the structure of a vector bundle over M . This bundle
is called the pull-back or the induced by f vector bundle on M .

Suppose that h is a Riemannian metric on E and ∇E is a metric compatible
connection. The map f induces a connection ∇f ∗E on the pull-back bundle which
is defined as follows: Let {ϑ1, . . . , ϑk} be a local orthonormal frame field of E in
a neighbourhood of the point f (x) ∈ N . Then, any section φ ∈ Γ

(
f ∗E

)
can be

written in the form

φ|x =
(
x,

∑k

α=1
φα(x)ϑα|f (x)

) ∼=
∑k

α=1
φα(x)ϑα|f (x),

where φα , α ∈ {1, . . . , k}, are the components of φ with respect to the given
orthonormal frame field. Define now the induced connection by

∇f ∗E
v φ|x =

k∑

α=1

(
vφα

)
ϑα|f (x) +

k∑

α=1

φα∇E
df (v)ϑα|f (x),

for x ∈ M and v ∈ TxM . One can easily show that the curvature operator Rf ∗E of
∇f ∗E is given by

Rf ∗E(
v1, v2, φ|x

) = RE
(
df (v1), df (v2), φ|x

)
,

for any x ∈ M , v1, v2 ∈ TxM and φ ∈ E|f (x).
Let us discuss the case where f : (M, g,∇g) → (N, h,∇h) is a map between

Riemannian manifolds. The restriction of h on f ∗T N , induces a Riemannian metric
on f ∗T N , which is compatible with the pull-back connection, that is

vh(φ1, φ2) = h
(∇f ∗T N

v φ1, φ2
) + h

(
φ1,∇f ∗T N

v φ2
)
.

Moreover, for v1, v2 ∈ X(M), it holds
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∇f ∗T N
v1

df (v2) − ∇f ∗T N
v2

df (v1) = df
([v1, v2]

)
.

Definition 8 The Hessian of a map f : (M, g,∇g) → (N, h,∇h) is defined to be
the symmetric tensor B : X(M) × X(M) → Γ (f ∗E) given by

B(v1, v2) = ∇f ∗T N
v1

df (v2) − df (∇g
v1

v2),

for any v1, v2 ∈ X(M). The trace of B with respect to g is denoted by Δg,hf and is
called the Laplacian of f . If the Laplacian of f is zero, then f is called a harmonic
map.

2.3 The Second Fundamental Form

Consider Riemannian manifolds (M, g,∇g) and (N, h,∇h) of dimension m and n,
respectively, with m ≤ n. A map f : M → N is called an isometric immersion if
and only if f ∗h = g. For simplicity, we often denote both metrics g and h by 〈· , ·〉.
At every x ∈ M , we have the orthogonal decomposition

Tf (x)N = dfx(TxM) ⊕ Nf (x)M,

where Nf (x)M is the orthogonal complement of dfx(TxM) with respect to h. The
union NM of all normal spaces form a vector bundle of rank n − m over M which
is called the normal bundle. According to the above decomposition, any section
v ∈ Γ (f ∗T N) can be decomposed in a unique way in the form

v = v� + v⊥,

where v� is the tangent and v⊥ is the normal part of v along the submanifold. A
well known fact in submanifold theory is that

(∇f ∗T N
v1

df (v2)
)� = df

(∇g
v1

v2
)
, (1)

for any v1, v2 ∈ X(M). In submanifold theory, the Hessian of f is denoted by the
letter A, i.e., we have

A(v1, v2) = ∇f ∗T N
v1

df (v2) − df (∇g
v1

v2).

The tensor A is called the second fundamental form of f . If ξ is a normal vector,
then the tensor Aξ given by

Aξ(v1, v2) = 〈A(v1, v2), ξ 〉,
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for any tangent vectors v1, v2, is called shape operator with respect to ξ . The
Weingarten operator Aξ associated with ξ is defined by

〈Aξv1, v2〉 = Aξ(v1, v2) = 〈A(v1, v2), ξ 〉.

The Laplacian of f or, equivalently, the trace of A with respect to g is called the
(unormalized) mean curvature and is denoted by the letter H , that is

H = traceg A.

Definition 9 A submanifold with zero mean curvature is called minimal.

The restriction of h on NM gives rise to a Riemannian metric on the normal
bundle. Moreover, the restriction of ∇h on NM induces a connection ∇⊥ on NM

which is compatible with the metric; i.e., just define

∇⊥
v ξ = (∇N

v ξ
)⊥

.

The curvature tensor of the normal bundle is denoted by R⊥ and is given by

R⊥(v1, v2, ξ) = ∇⊥
v1

∇⊥
v2

ξ − ∇⊥
v2

∇⊥
v1

ξ − ∇⊥[v1,v2]ξ.

As usual, we can form from R⊥ a C∞(M)-valued tensor which we denote again by
R⊥, that is

R⊥(v1, v2, ξ, η) = −〈R⊥(v1, v2, ξ), η〉.

The Riemann curvature operator R of M , the curvature operator R̃ of N and
the normal curvature R⊥ are related to the second fundamental form A through the
Gauss-Codazzi-Ricci equations:

(a) Gauss equation:

R(v1, v2, v3, v4) = R̃
(
df (v1), df (v2), df (v3), df (v4)

)

+〈A(v1, v3), A(v2, v4)〉 − 〈A(v2, v3), A(v1, v4)〉.

(b) Codazzi equation:

(∇⊥
v1

A
)
(v2, v3) − (∇⊥

v2
A

)
(v1, v3) = (

R̃
(
df (v1)df (v2), df (v3)

))⊥
.

(c) Ricci equation:

R⊥(v1, v2, ξ, η) = R̃
(
df (v1), df (v2), ξ, η

)
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+
∑

k

(
Aξ(v1, ek)A

η(v2, ek) − Aη(v1, ek)A
ξ (v2, ek)

)
,

where v1, v2, v3, v4 ∈ X(M), ξ, η ∈ NM and {e1, . . . , em} is a local orthonormal
frame field with respect to g.

2.4 Local Representations

Let f : (M, g) → (N, h) be a smooth map between Riemannian manifolds. For
computational reasons, we need expressions for components of various tensorial
quantities. We can express coordinates with respect to local charts or with respect
to orthonormal frames.

Let discuss at first the notation with respect to a local coordinate system. Choose
a chart (U, ϕ) around a point x ∈ M and a chart (V ,ψ) around f (x) ∈ N . Assume
that ϕ : U → R

m is represented as ϕ = (x1, . . . , xm) and suppose that ψ : V → R
n

is represented as ψ = (y1, . . . , yn). We use Latin indices to describe quantities on
M and Greek indices for quantities on N . From the charts ϕ and ψ , we obtain for f

the local expression expression

ψ ◦ f ◦ ϕ−1 = (f 1, . . . , f n),

where

f α = yα ◦ f ◦ ϕ−1.

Denote now the basic vector fields associated with the charts (U, ϕ) and (V ,ψ)

by {∂xi
, . . . , ∂xm

}
and {∂y1, . . . , ∂yn

}
, respectively. Moreover, denote their corre-

sponding dual forms by {dx1, . . . , dxm} and {dy1, . . . , dyn}. With respect to these
conventions, the Riemannian metrics g and h can be written in the form

g =
∑

i,j

gij dxi ⊗ dxj and h =
∑

α,β

hαβdyα ⊗ dyβ.

The Christoffel symbols Γ k
ij of the metric g, are defined by the formula

∇g
∂xi

∂xj
=

∑

k

Γ k
ij ∂xk

and they can be expressed in terms of the metric as

Γ k
ij = 1

2

∑

l

gkl
( − ∂xl

gij + ∂xi
gjl + ∂xj

gli

)
,
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where gij are the components of the inverse of the matrix of the metric g, with
respect to the basis {∂x1, . . . , ∂xm}. Similarly, are defined the Christoffel symbols
Γ α

βγ of h. The differential of the map f and the pull-back via f of the metric h are
given by

df =
∑

α

f α
xi

∂yα ⊗ dxi and f ∗h =
∑

α,β

hαβf α
xi

f β
xj

.

By a straightforward computation, we see that the Hessian B of f can be represented
in the form

B(∂xi
, ∂xj

) =
∑

α

Bα
ij ∂yα =

∑

α

(
f α

xixj
−

∑

k

Γ k
ij f

α
xk

+
∑

β,γ

Γ α
βγ f β

xi
f

γ
xj

)
∂yα .

Suppose now that f : M → N is an isometric immersion. Then, the second
fundamental form A and the mean curvature H are represented, respectively, as

A(∂xi
, ∂xj

) =
∑

α

Aα
ij ∂yα =

∑

α

(
f α

xixj
−

∑

k

Γ k
ij f

α
xk

+
∑

β,γ

Γ α
βγ f β

xi
f

γ
xj

)
∂yα

and

H =
∑

α

Hα∂yα =
∑

i,j,α

gijAα
ij ∂yα

=
∑

i,j

gij
(
f α

xixj
−

∑

k

Γ k
ij f

α
xk

+
∑

β,γ

Γ α
βγ f β

xi
f

γ
xj

)
∂yα . (2)

Let us discuss now expressions of tensors in local orthonormal frames. Let
{e1, . . . , em} be a local orthonormal frame of the tangent bundle and {ξm+1, . . . , ξn}
a local orthonormal frame of the normal bundle. Here we use Latin indices for
components on the tangent bundle and Greek indices for components on the normal
bundle. For example, we write:

Aα
ij = 〈A(ei, ej ), ξα〉 = 〈Aij , ξα〉,

R̃ijkl = R̃
(
df (ei), df (ej ), df (ek), df (el)

)
,

R̃ijαβ = R̃
(
df (ei), df (ej ), ξα, ξβ

)
.

Now the Gauss-Codazzi-Ricci equations can be written as:

(a) Gauss equation:

Rijkl = R̃ijkl +
∑

α

(
Aα

ikA
α
jl − Aα

jkA
α
il

)
. (3)
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(b) Codazzi equation:

(∇⊥
ei

A
)α

jk
− (∇⊥

ej
A

)α

ik
= −

∑

α

R̃ijkα. (4)

(c) Ricci equation:

R⊥
ijαβ = R̃ijαβ +

∑

k

(
Aα

ikA
β
jk − A

β
ikA

α
jk

)
. (5)

3 Minimal Submanifolds

The theory of minimal submanifolds is one of the most active subjects of differential
geometry. There is a vast of literature, but here we will present rather basic facts
concerning higher codimensional minimal submanifolds. For more details we refer
to [21, 22, 70].

3.1 The Gauss Map of a Minimal Submanifold

One of the most important objects in the submanifold geometry is the Gauss map.
For codimension one oriented submanifolds in the euclidean space, the Gauss
map associates to every point of the hypersurface its oriented unit normal vector.
This concept can be generalized to higher codimensional oriented submanifolds.
Let f : M → R

n be an isometric immersion of a m-dimensional oriented
Riemannian manifold M into the euclidean space. The image df (TxM), can be
taken after a suitable parallel displacement in R

n, into a point G(x) of the oriented
Grassmann space G+(m, n) of m-dimensional oriented subspaces of Rn. The map
G : M → G+(m, n) defined in this way, is called the generalized Gauss map.

There is a natural way to visualize the Grassmann space G+(m, n). Let us
denote by Λm(Rn) the dual space of all alternative multilinear forms of degree m.
Elements of Λm(Rn) are called m-vectors. Hence, given vectors v1, . . . , vm on R

n,
the exterior product v1 ∧ · · · ∧ vm is the linear map which on an alternating form Ω

of degree m takes the value

(v1 ∧ · · · ∧ vm)(Ω) = Ω(v1, . . . , vm).

The exterior product is linear in each variable separately. Interchanging two
elements the sign of the product changes and if two variables are the same the
exterior product vanishes. An m-vector ξ is called simple or decomposable if it
can be written as a single wedge product of vectors, that is

ξ = v1 ∧ · · · ∧ vm.
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Note that are m-vectors which are not simple. Using standard techniques from
Linear Algebra one can verify that the exterior product v1 ∧ · · · ∧ vm is zero if
and only if the vectors are linearly dependent. Moreover, if {e1, . . . , en} consists a
basis for Rn, then the m-vectors

{ei1 ∧ · · · ∧ eim : 1 ≤ i1 < · · · < im ≤ n}

consists a basis of Λm(Rn). Therefore, the dimension of the vector space of m-
vectors is

dim Λm(Rn) =
(

n

m

)
= n!

m!(n − m)! .

Each simple vector represents a unique m-dimensional subspace of Rn. More-
over, if ξ and η are simple vectors representing the same subspace, then there exists
a non-zero real number such that ξ = λη. Therefore, there is an obvious equivalence
relation on the space of simple vectors such that the space of equivalence classes is
to an one to one correspondence with the space of m-dimensional subspaces of
R

n. Additionally, we can consider the following relation on the set of non-zero
simple m-vectors: ξ and η are called equivalent if and only if ξ = λη for some
positive number λ. Denote by [ξ ] the class containing all simple m-vectors that
are equivalent to ξ . The equivalence classes now obtained are called oriented m-
dimensional subspaces of Rn.

We can equip Λm(Rn) with a natural inner product, which for simplicity we
denote again by 〈· , ·〉. Indeed, define

〈v1 ∧ · · · ∧ vm,w1 ∧ · · · ∧ wm〉 = det
(〈vi, wj 〉

)
1≤i,j≤m

on simple m-vectors and then extend linearly. Moreover, if {e1, . . . , en} is an ortho-
normal basis of Rn then, the m-vectors

{ei1 ∧ · · · ∧ eim : 1 ≤ i1 < · · · < im ≤ n}

consists an orthonormal basis for the exterior power Λm(Rn). Moreover, it turns out
that for vectors v1, . . . , vm in R

n, the norm

|v1 ∧ · · · ∧ vm|

gives the m-volume of the parallelepiped spanned by these vectors.
We can equip G+(m, n) with a natural differentiable structure. For every m-

dimensional subspace V0 of G+(m, n), consider the open neighbourhood U(V0)

of oriented m-dimensional subspaces whose orthogonal projection into V0 is one-
to-one. Let {e1, . . . , em} be an orthonormal base spanning V0 and {ηm+1, . . . , ηn}
an orthonormal base spanning its orthogonal complement V ⊥

0 in R
n. Then, we may

parametrize U(V0) via ξ : Rm(n−m) → U(V0) given by
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(x1m+1, . . . , xiα, . . . , xmn) → ξ(x1m+1, . . . , xiα, . . . , xmn) (6)

= (
e1 +

∑

α
x1αηα

) ∧ · · · ∧ (
em +

∑

α
xmαηα

)
.

Two charts U(Vi), U(Vj ) with distinct Vi, Vj are analytically compatible.

Definition 10 The map Ψ : G+(m, n) → S(n
m)−1 given by

Ψ
([v1 ∧ · · · ∧ vm]) = v1 ∧ · · · ∧ vm

|v1 ∧ · · · ∧ vm|
is called the Plücker embedding. We regard the Grassmann space G+(m, n) as a
Riemannian manifold with the induced by Ψ Riemannian metric.

Theorem 1 The Plücker embedding is minimal.

Proof Fix a m-dimensional linear space V0 ∈ G+(m, n) and consider the
parametrization ξ : Rm(n−m) → U(V0) ⊂ G+(m, n) described in (6). Now

Ψ = Wξ =
(
e1 + ∑

αx1αηα

) ∧ · · · ∧ (
en + ∑

αxmαηα

)
∣∣(e1 + ∑

αx1αηα

) ∧ · · · ∧ (
en + ∑

αxmαηα

)∣∣ ,

where the index α run from m + 1 to n and

W = 1

|ξ | = 1
∣∣(e1 + ∑

αx1αηα

) ∧ · · · ∧ (
en + ∑

αxmαηα

)∣∣ .

Note that

ξxiα
= (

e1 +
∑

α
x1αηα

) ∧ · · · ∧ (
ei−1 +

∑

α
xi−1αηα

) ∧ ηα

∧(
ei+1 +

∑

α
xi+1αηα

) ∧ · · · ∧ (
em +

∑

α
xmαηα

)

and

ξxiαxjβ
= (

e1 +
∑

α
x1αηα

) ∧ · · · ∧ (
ei−1 +

∑

α
xi−1αηα

) ∧ ηα

∧(
ei+1 +

∑

α
xi+1αηα

) ∧ · · · ∧ (
ej−1 +

∑

α
xj−1αηα

) ∧ ηβ

∧(
ej+1 +

∑

α
xj+1αηα

) ∧ · · · ∧ (
em +

∑

α
xmαηα

)(
1 − δij

)
,

where i, j ∈ {1, . . . , m} and α, β ∈ {m + 1, . . . , n}. In particular,

ξxiα
(0) = e1 ∧ · · · ∧ ei−1 ∧ ηα ∧ ei+1 ∧ · · · ∧ em (7)

and
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ξxiαxjβ
(0) = e1 ∧· · ·∧ei−1 ∧ηα ∧ei+1 ∧· · ·∧ej−1 ∧ηβ ∧ej+1 ∧· · ·∧em(1− δij ).

(8)
Additionally,

Wxiα
= −W 3〈ξ, ξxiα

〉

and

Wxiαxjβ
= −3W 5〈ξ, ξxiα

〉〈ξ, ξxjβ
〉 − W 3〈ξxiα

, ξxjβ
〉 − W 3〈ξ, ξxiαxjβ

〉.

Moreover,

W(0) = 1, Wxiα
(0) = 0 and Wxiαxjβ

(0) = −δij δαβ. (9)

From (7) and (9) we see that

Ψxiα
(0) = e1 ∧ · · · ∧ ei−1 ∧ ηα ∧ ei+1 ∧ · · · ∧ em.

Hence, the vectors

{∂x1m+1 |0, . . . , ∂xiα
|0, . . . , ∂xmn |0}

form an orthonormal basis of TV0G+(m, n) with respect to the induced by Ψ

Riemannian metric. Moreover, from (7), (8), and (9) we deduce that

Ψxiαxjβ
(0) = −δij δαβΨ (0) + ξxiαxjβ

(0).

According to (8), the second fundamental form A of the Plücker embedding at the
point V0 is equal to

A(∂xiα
, ∂xjβ

) = e1 ∧ · · · ∧ ei−1 ∧ ηα ∧ ei+1

∧ · · · ∧ ej−1 ∧ ηβ ∧ ej+1 ∧ · · · ∧ em(1 − δij ) (10)

and, in particular,

A(∂xiα
, ∂xiα

) = 0 (11)

for any i ∈ {1, . . . , m} and α ∈ {m + 1, . . . , n}. Thus, the mean curvature H of the
embedding Ψ at V0 is given by

H(V0) =
∑

i,α

A(∂xiα
, ∂xiα

) = 0.

Consequently, Ψ gives rise to a minimal submanifold of the sphere. ��
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In 1970, Ruh and Vilms [74] obtained an important link between minimality of a
submanifold and the harmonicity of its generalized Gauss map. More precisely, the
following result holds:

Theorem 2 Let f : M → R
n be a minimal isometric immersion. Then, the

generalized Gauss map G of f is a harmonic map.

Proof Consider the map

F = Ψ ◦ G : M → S
(n
m)−1 ⊂ Λm(Rn)

where Ψ is the Plücker embedding. From the composition formula, we have

BF (v1, v2) = dΨ
(
BG(v1, v2)

) + AΨ

(
dG(v1), dG(v2)

)
(12)

for any v1, v2 ∈ X(M), where BF and BG are the Hessians of F and G and AΨ

the second fundamental form of Ψ , respectively. Fix a local orthonormal frame field
{e1, . . . , em} defined on an open neighbourhood U of M and a local orthonormal
frame {ηm+1, . . . , ηn} in the normal bundle of the immersion. Note that since f is
isometric immersion, for any x ∈ U , we have

F(x) = dfx(e1) ∧ dfx(e2) ∧ · · · ∧ dfx(em).

Fix now a point x0 ∈ U and for simplicity suppose that the frame {e1, . . . , em} is
normal at x0. By straightforward computations we see that at x0 we have

dF(ej ) = A(ej , e1) ∧ · · · ∧ df (em) + · · · + df (e1) ∧ · · · ∧ A(ej , em),

where A is the second fundamental form of f . Hence, in view of (7), we obtain that
the differential of G at x0 is equal to

dG(ej ) =
∑

α

Aα
1j ηα ∧ e2 ∧ · · · ∧ em + · · · + e1 ∧ e2 ∧ · · · ∧

∑

α

Aα
mjηα.

Recall that, from the Codazzi equations (4), we have at x0 that

(∇f ∗TR
n

ej
A

)
kl

= (∇⊥
ek

A
)
j l

−
∑

i,α

Aα
klA

α
ij df (ei),

for any j, k, l ∈ {1, . . . , m}. Differentiating dF and estimating at x0 we get

∇F ∗T Λm(Rn)
ej

dF (ej ) = −|A|2F + (∇⊥
e1

A
)
jj

∧ df (e2) ∧ · · · ∧ df (em)

+df (e1) ∧ (∇⊥
e2

A
)
jj

∧ · · · ∧ df (em) + · · · + df (e1) ∧ · · · ∧ (∇⊥
em

A
)
jj

+A1j ∧ A2j ∧ · · · ∧ df (em) + · · · + df (e1) ∧ · · · ∧ Ajm−1 ∧ Ajm.
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Therefore, at x0 we have the identity

BF (ej , ej ) = (∇⊥
e1

A
)
jj

∧ df (e2) ∧ · · · ∧ df (em)

+df (e1) ∧ (∇⊥
e2

A
)
jj

∧ · · · ∧ df (em) + · · · + df (e1) ∧ · · · ∧ (∇⊥
em

A
)
jj

+A1j ∧ A2j ∧ · · · ∧ df (em) + · · · + df (e1) ∧ · · · ∧ Ajm−1 ∧ Ajm.

Summing up and using the minimality of f , we see that at x0 it holds

traceg BF =
∑

j,α

Aα
1j ηα ∧

∑

j,β

A
β
2j ηβ ∧ df (e3) ∧ · · · ∧ df (em)

+
∑

j,α

Aα
1j ηα ∧ df (e2) ∧

∑

j,β

A
β
3j ηβ ∧ · · · ∧ df (em)

...
...

...

+df (e1) ∧ df (e2) ∧ · · · ∧
∑

j,α

Aα
m−1j ηα ∧

∑

j,α

Aα
mjηβ.

Hence, bearing in mind equation (10) which gives the formula for the second
fundamental form of Ψ it follows that at x0 we have

traceg BF =
∑

j
AΨ

(
dG(ej ), dG(ej )

)
.

Combining the last equality with (12) we get the desired result. ��

3.2 Weierstrass Representations

For two dimensional surfaces in the euclidean space, there is a link between
minimality and holomorphicity through a general formula which express a simply-
connected minimal surface in terms of complex functions with certain properties. In
particular, the following result holds:

Theorem 3 Let ϕ1, . . . , ϕn : U ⊂ C → C be holomorphic functions, where U is
simply connected, such that ϕ2

1 + · · · + ϕ2
n = 0 and |ϕ1|2 + · · · + |ϕn|2 > 0. Then,

the map

F(z) =
(

Re

∫ z

z0

ϕ1(ζ )dζ, . . . , Re

∫ z

z0

ϕn(ζ )dζ

)
, z ∈ U,

where z0 ∈ U , gives rise to minimal surface in R
n. Conversely, every minimal

surface in Rn, at least locally, can be described in this form.
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The idea to obtain such a parametrization is the following: Let f : M → R
n

be a minimal immersion of a 2-manifold. Choose a local isothermal system of
coordinates (U ⊂ C, z = x + iy), where U is simply connected; see [54]. Then,
the induced by f metric g on M has the form g = E|dz|2, where E is a smooth
positive function. Moreover, in these coordinates, the Laplace–Beltrami operator Δ

with respect to g is expressed by

Δ = E−1(∂x∂x + ∂y∂y).

With respect to such parameters, minimality is equivalent to harmonicity. Consider
now the map ϕ = (ϕ1, . . . , ϕn) : U → C

n, ϕ = fx − ify . One can readily check
that ϕ is holomorphic and its components satisfy

ϕ2
1 + · · · + ϕ2

n = 0 and |ϕ1|2 + · · · + |ϕn|2 = 2E > 0.

By fixing a point z0 ∈ U it is clear that, up to a parallel transport,

f (z) = Re

∫ z

z0

ϕ(ζ )dζ, z ∈ U.

The map ϕ has also a very important geometric interpretation. At first we observe
that the variety

Qn−2 = {[z1, . . . , zn] ∈ CP
n−1 : z2

1 + · · · + z2
n = 0

}

is diffeomorphic with G+(2, n). To see this, consider a 2-plane Π ⊂ R
n that is

spanned by u ∧ v, where the vectors u and v satisfy |u| − |v| = 0 and 〈u, v〉 = 0.

Then, vector w = u + iv belongs to Qn−2. Hence, to each oriented 2-plane we
associate a point in Qn−2. In fact, this correspondence actually is a diffeomorphism.
Consequently, the map ϕ : U → Qn−2, ϕ = fx + ify , is exactly the generalized
Gauss map of the minimal surface.

Let M be a manifold of dimension 2m endowed with a Riemannian metric g and
a metric connection ∇. An almost complex structure on M is by definition a bundle
isomorphism J : T M → T M satisfying J ◦ J = −I. The pair (M, J ) is called
an almost complex manifold. If J is an isometry with respect to g and parallel with
respect to ∇, then the triple (M, g, J ) is called Kähler manifold. In this case, the
2-form Ω given by

Ω(v1, v2) = g
(
Jv1, v2

)
,

where v1, v2 ∈ X(M), is closed and is called the Kähler form. A smooth map
f : (M, JM) → (N, JN) between Kähler manifolds is called holomorphic if
df ◦JM = JN ◦df and anti-holomorphic if df ◦JM = −JN ◦df . If the map f is a
holomorphic or anti-holomorphic isometric immersion, then f (M) will be called an
immersed complex submanifold of N . Such immersions are automatically minimal.
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With the terminology we just introduced and the discussion above, we can now
state the following result which was originally proved by Chern [20].

Theorem 4 An oriented surface of the euclidean space is minimal if and only if its
generalized Gauss map is anti-homolomorphic.

We will present now another interesting category of submanifolds, the so called
Lagrangian submanifolds.

Definition 11 Let Mm be a Riemannian manifold, (N2m, gN,Ω) be a Kähler
manifold and f : Mm → N2m an isometric immersion. The immersion f will be
called Lagrangian if and only if f ∗Ω = 0.

Let us conclude this section with the following parametrization of minimal
Lagrangian surfaces in R

4; see Chen and Morvan [19] and Aiyama [1, 2].

Theorem 5 Suppose that f, g : U → C are two holomorphic maps defined in a
simply connected domain U of the complex plane satisfying |fz|2 + |gz|2 > 0. Then
the map

F = eiβ/2

√
2

(f − ig, g + if ),

where β is a real number, is a minimal conformal Lagrangian immersion in C2. The
generalized Gauss map G takes values in S

2 × {(eiβ, 0)} � C ∪ {∞} and is given
by the formula

G = fz/gz.

Conversely, every minimal Lagrangian immersion f : M → C
2 can be, at least

locally, parametrized as above.

4 Scalar and Vectorial Maximum Principles

The maximum principle is one of the most useful tools employed in the study of
PDEs. All maximum principles rely on the following elementary result of calculus:
Suppose that Ω is an open, bounded domain of R

m and let u : Ω → R be a
continuous function which is C2-smooth in Ω . If u attains its maximum at interior
point x0, then

∇u(x0) = 0 and ∇2u(x0) ≤ 0.

As an immediate consequence of this fact is that any continuous and C2-smooth up
to the boundary strictly convex function must attain its maximum at the boundary
of Ω . In the matter of fact, one can show a little bit more: Any continuous and C2-
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smooth up to the boundary weakly convex function either attain its maximum at the
boundary of Ω or otherwise is constant. The above principle holds for a large class
of solutions of partial differential inequalities.

4.1 Hopf’s Maximum Principles

Suppose that Ω is a bounded, open and connected domain of Rm. We wish to study
operators L : C2(Ω) → C0(Ω) of the form

L =
m∑

i=1

aij ∂xi
∂xj

+
m∑

i=1

bi∂xi
, (13)

where here aij = aij , bj : Ω → R, i, j ∈ {1, . . . , m}, are uniformly bounded
functions and ∂xi

, i ∈ {1, . . . , m}, the partial derivatives with respect the cartesian
coordinates of Rm. The symmetric matrix A with coefficients the functions aij is
called the representative matrix of L.

Definition 12 The operator L is called elliptic if the matrix A is positive at each
point of Ω . Moreover, L is called uniformly elliptic if the smallest eigenvalue of its
matrix A is a function which is bounded away from zero.

Theorem 6 (Hopf’s Strong Maximum Principle) Let Ω ⊂ R
m be an open,

connected and bounded domain. Suppose that u ∈ C2(Ω) ∩ C0(Ω) is a solution of
the differential inequality

Lu + hu ≥ 0,

where L is an uniformly elliptic differential operator with uniformly bounded
coefficients and h a continuous function on Ω .

(a) Suppose that h = 0 and that u attains its maximum at an interior point of Ω .
Then, u is constant.

(b) Suppose that h ≤ 0 and that u attains a non-negative maximum at an interior
point of Ω . Then, u is constant.

For the proof see [35] or [72].

4.2 Maximum Principles for Systems

We would like to have a form of the maximum principle that is applicable for
sections in vector bundles. To generalize, first note that Hopf’s maximum principle
for functions can be re-formulated as follows:
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Let Ω be an open subset of Rm and u : Ω ⊂ R
m → [a, b] a C2-smooth function

satisfying the uniformly elliptic differential equation

m∑

i,j=1

aijuxixj
+

m∑

i=1

biuxi
= 0.

If a point of Ω is mapped into a boundary point of [a, b], then any point of Ω is
mapped into the boundary.

From this point of view of the statement of Hopf’s maximum principle, one can
guess how the generalization of the maximum principle for vector valued maps
should be. The interval is replaced by a convex set K and the statement reads:
Let Ω ⊂ R

m be open, K ⊂ R
n closed convex and u : Ω → K a C2-smooth vector

valued map satisfying the uniformly elliptic differential system

m∑

i,j=1

aijuxixj
+

m∑

i=1

biuxi
= 0.

If a point of Ω is mapped into a boundary point of K then every point is mapped
into the boundary.

4.2.1 Convexity and Distance Functions

A crucial role in the proof of the vectorial maximum principle plays the geometry
of the (signed) distance function from the boundary of a convex set. In this
subsection, we review the basic definitions of the geometry of convex sets in
euclidean space such as supporting half-spaces, tangent cones, normal vectors and
distance functions.

Definition 13 A subset K of Rn is called convex if for any pair of points z, w ∈ K ,
the segment

Ez,w = {
tz + (1 − t)w ∈ R

n : t ∈ [0, 1]}

is contained in K . The set K is said to be strictly convex, if for any pair z,w ∈ K

the segment Ez,w belongs to the interior of K .

A convex set K ⊂ R
n may have non-smooth boundary. It is a well-known fact

in Convex Geometry that the boundary ∂K is a continuous hypersurface of R
n.

In fact, according to a result of Reidemeister [73], the boundary ∂K is Lipschitz
continuous and so almost everywhere differentiable. In particular, there is no well-
defined tangent or normal space of K in the classical sense. However, there is a way
to generalize these notions for convex subsets of Rn.
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Definition 14 Let K be a closed convex subset of the euclidean space R
n. A

supporting half-space of the set K is a closed half-space of Rn which contains K

and has points of K on its boundary. A supporting hyperplane of K is a hyperplane
which is the boundary of a supporting half-space of K . The tangent cone Cy0K of
K at y0 ∈ ∂K is defined as the intersection of all supporting half-spaces of K that
contain y0.

Definition 15 Let K ⊂ R
n be a closed convex subset and y0 ∈ ∂K . Then:

(a) A non-zero vector ξ is called normal vector of ∂K at y0, if ξ is normal to a
supporting hyperplane of K passing through y0. This normal vector is called
inward pointing, if it points into the half-space containing K .

(b) A vector η is called inward pointing at y0 ∈ ∂K , if

〈ξ, η〉 ≥ 0

for any inward pointing normal vector ξ at y0.

Let K ⊂ R
n be a closed convex set and d : Rn → R the function given by

d(z) =
⎧
⎨

⎩

+ dist(z, ∂K), if z ∈ K,

− dist(z, ∂K), if z /∈ K.

Note that for each x ∈ R
n there is at least one point y ∈ ∂K such that

dist(z, ∂K) = |y − z|.

Moreover, the function d is Lipschitz continuous. For a better understanding of
the properties of d, let us suppose that ∂K is C2-smooth. Denote by ξ the
inward pointing unit normal vector field along ∂K and by the A the corresponding
Weingarten operator. Because K is convex, from Hadamard’s Theorem, A is non-
negative definite. In particular, K is strictly convex if and only if A is positive
definite; see for example [29]. Fix a point y0 ∈ ∂K . In an open neighbourhood
U ⊂ R

n of y0, the part U ∩ ∂K can be parametrized via an embedding f : Ω =
U ∩ Ty0K → R

n, which assigns to each point of Ω the height of ∂K from its
tangent plane at y0. Recall from multi-variable calculus that the distance of any
point z ∈ K0 to ∂K is realized as the intersection of a straight line passing through
z and meeting ∂K orthogonally. Hence, the level set

Kt = {z ∈ K : d(z) = t},

of d is parametrized locally via the map ft : Ω → R
n given by

ft = f + tξ.
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Proposition 1 There exists a positive real number ε, such that ft is an immersion
for all t ∈ (−ε, ε). Moreover, the unit normal along ft coincide with the unit normal
ξ of f . Additionally, the Weingarten operator At of ft is related to the Weingarten
operator A of f by the formula

At = (I − tA)−1 ◦ A.

In particular, Kt is strictly convex if and only if ∂K is strictly convex.

Proof We have

dft = df + tdξ = df ◦ (I − tA).

Hence, ξ is a unit normal vector field along ft . Therefore,

−df ◦ A = dξ = −dft ◦ At = −df ◦ (I − tA) ◦ At

and so

A = (I − tA) ◦ At .

From the above formula we deduce that there exists a positive constant ε such that
Kt is convex for all t ∈ (−ε, ε). In addition, if ∂K is strictly convex, the level sets
close to the boundary are also strictly convex. ��
Proposition 2 Let K be a closed and convex set in R

n.

(a) For any y0 ∈ ∂K there exists a neighbourhood U ⊂ R
n containing y0, such

that d is C2-smooth function on U ∩ K0.
(b) Let v,w tangent vectors ofKd(z) at z ∈ K0. Then, the Hessian∇2d of d satisfies

∇2d(v,w) = − A(v,w)

1 − d(z)A(v,w)
,

where A is the shape operator of ∂K associated to the inward pointing unit
normal, and

∇2d(v, ξ) = 0.

Proof Parametrize, locally, the boundary ∂K as the image of an embedding f :
Ω ⊂ R

n−1 → R
n. Define the map F : Ω × R ⊂ R

n → R
n, given by

F(x, t) = f (x) + tξ(x).

Then, dF(y0,t)(∂t ) = ξy0 and dF(y0,t)(v) = dfx0(v − tAv), for any index i ∈
{1, . . . , n − 1} and v ∈ Ty0Ω . From the inverse mapping theorem, there exists
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an open subset D ⊂ Ω and a positive number ε such that the map F is a C2-
diffeomorphism for any (x, t) ∈ D×(−ε, ε). Hence, under a change of coordinates,
d may be regarded as a C2-smooth function defined on D × (−ε, ε). In the matter
of fact, in these coordinates, we have

d(x, t) = 〈F(x, t) − f (x), ξ(x)〉 = t.

Therefore, ∇d(x,t) = ξx. Because |∇d| = 1, we deduce that ∇2d vanishes on the
normal bundle of any level set Kt . Moreover, ∇2d = −At on the tangent space of
any level set Kt . Now the desired result follows from Proposition 1. This completes
the proof. ��

4.2.2 Weinberger’s Maximum Principle

Weinberger [101] established a strong maximum principle for C2-smooth maps u :
Ω ⊂ R

m → K ⊂ R
n with values in a closed convex set K ⊂ R

n, whose boundary
∂K satisfies some regularity conditions that he called “slab conditions”. Inspired by
the ideas of Weinberger, Wang [93] gave a geometric proof of the strong maximum
principle, in the case where the boundary ∂K of K is of class C2. The idea of Wang
was to apply Hopf’s maximum principle to the function d ◦ u : Ω → R, whose
value at x is equal to the distance of u(x) from the boundary ∂K . Later, Evans [36]
removed all additional regularity requirements on the boundary of K .

Theorem 7 (Weinberger-Evans) Let K be a closed, convex set ofRn and u : Ω ⊂
R

m → K ⊂ R
n, u = (u1, . . . , un), a solution of the uniformly elliptic system of

partial differential equations

Lu(x) + Ψ (x, u(x)) = 0, x ∈ Ω,

where Ω is a connected open domain of Rm and Ψ : Ω × R
n → R

n a continuous
map that is Lipschitz continuous in the second variable. Suppose further that Ψ is
pointing into K .

(a) If there is a point x0 ∈ Ω such that u(x0) ∈ ∂K , then u(x) ∈ ∂K for any point
x ∈ Ω .

(b) Assume additionally that the boundary ∂K is strictly convex. If there is a point
x0 ∈ Ω such that u(x0) ∈ ∂K , then u is constant.

Proof Let us give the proof in the case where the boundary of K is smooth of class
C2, following the ideas in [93]. Consider the function f = d ◦ u : Ω → R. We
compute,

fxi
=

∑n

α=1
duαuα

xi
, (14)

and
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fxixj
=

∑n

α=1
duαuα

xixj
+

∑n

α,β=1
duαuβ uα

xi
uβ

xj
.

Consider now the uniformly differential operator L̃ given by

L̃ = L −
∑m

i=1
bi∂xi

.

By a straightforward computation, we get

L̃f =
∑n

α=1
duα

∑m

i,j=1
aiju

α
xixj

+
∑m

i,j=1
aij

∑n

α,β=1
duαuβ uα

xi
uβ

xj
. (15)

Denote the first sum in the right hand side of (15) by I and the second sum by II.
Observe at first that

I(x) = −〈∇du(x), Ψ (x, u(x))〉.

We restrict our selves in a sufficiently small neighbourhood U ⊂ R
n around u(x0)

and in an neighbourhood V of x0 such that u(V ) ⊂ U . For each x ∈ V , denote by
û(x) the unique point on ∂K with the property

f (x) = d(u(x)) = |u(x) − û(x)|.

Recall that the integral curves ∇d are straight lines perpendicular to each level set
of d. Thus, ∇du(x) = ∇dû(x). Since Ψ is inward pointing, we get that

〈∇du(x), Ψ (x, û(x)〉 = 〈∇dû(x), Ψ (x, û(x)〉 ≥ 0.

Therefore, exploiting the Lipschitz property of Ψ , we get that

I(x) = −〈∇du(x), Ψ (x, u(x)) − Ψ (x, û(x)) + Ψ (x, û(x))〉
= −〈∇du(x), Ψ (x, u(x)) − Ψ (x, û(x))〉 − 〈∇du(x), Ψ (x, û(x))〉
≤ |∇du(x)| · |Ψ (x, u(x)) − Ψ (x, û(x))|
≤ h(x)|u(x) − û(x)|
= h(x)f (x),

where h is a non-negative bounded function. Recall from Proposition 1 that U is
foliated by level sets of d. Thus, we can decompose uxi

in the form

uxi
= u�

xi
+ u⊥

xi

where (·)� denotes the orthogonal projection into the tangent space and (·)� the
orthogonal projection into the normal space of the foliation. Bearing in mind the
conclusions of Proposition 2, we deduce that
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∑n

α,β=1
duαuβ uα

xi
uβ

xj
= ∇2d

(
u�

xi
, u�

xj

) = A
(
u�

xi
, u�

xj

)

1 − f (x)A
(
u�

xi
, u�

xj

) .

Since, A is non-negative definite and A = (aij ) is positive definite, we deduce that

II = trace
(A · ∇2d

) ≤ 0.

In addition, for any x such that u(x) ∈ ∂K , we have that

II(x) =
{

strictly negative, if ∂K is strictly convex in close to u(x),

zero if ∂K is flat in a neighbourhood of u(x).
(16)

Putting everything together, we get

L̃f (x) − h(x)f (x) ≤ 0.

Since f ≥ 0 and there exists a point x0 such that f (x0) = 0, from Hopf’s strong
maximum principle we deduce that f ≡ 0. This implies now that all the values of
u lie in the boundary of K . Moreover, going back to the original equation for f , we
see that II ≡ 0. Consequently, if ∂K is strictly convex, from (16) it follows that u

must be constant. This completes the proof. ��

4.3 Maximum Principles for Bundles

To state the maximum principle for sections in vector bundles, we must introduce
an appropriate notion of convexity for subsets of vector bundles. Let us recall at first
the following definition of Hamilton [45]:

Definition 16 (Hamilton) Suppose that E is a vector bundle over the manifold M

and let K be a closed subset of E.

(a) The set K is called fiber-convex or convex in the fiber, if for each x ∈ M , the
set Kx = K ∩ Ex is a convex subset of the fiber Ex .

(b) The set K is called invariant under parallel transport, if for every smooth curve
γ : [0, b] → M and any vector v ∈ Kγ(0), the unique parallel section v(t) ∈
Eγ(t), t ∈ [0, b], along γ (t) with v(0) = v, is contained in K .

(c) A fiberwise map Ψ : E → E is a map such that π ◦ Ψ = π , where π denotes
the bundle projection. We say that a fiberwise map Ψ points into K (or is inward
pointing), if for any x ∈ M and any ϑ ∈ ∂Kx the vector Ψ (ϑ) belongs to the
tangent cone CϑKx of Kx at ϑ .
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Let E be a Riemannian vector bundle over a manifold M equipped with a metric
compatible connection. We consider uniformly elliptic operators L that are given
locally by

L =
m∑

i,j=1

aij∇2
ei ,ej

+
m∑

j=1

bj∇ej
, (E)

where {e1, . . . , em} is a local orthonormal frame of M , A = (aij ) a symmetric,
uniformly positive definite tensor and b = ∑m

i=1 biei is a smooth vector field.
For the proof of the maximum principle, we will use a result due to Böhm and

Wilking [9].

Lemma 1 Let M be a Riemannian manifold and E a Riemannian vector bundle
over M equipped with a metric compatible connection. Let K ⊂ E be a closed
and fiber-convex subset which is invariant under parallel transport. If φ is a smooth
section with values in K then, for any x ∈ M and v ∈ TxM , the Hessian

∇2
v,vφ = ∇v∇vφ − ∇∇vvφ

belongs into the tangent cone of Kx at the point φ|x .
Proof It suffices to prove the result in the case where there exists a point x0 which
is mapped via φ in the boundary of K , since otherwise the result is trivially true.
Consider a unit vector v ∈ Tx0M and an normal coordinate system (x1 , . . . , xm) in
an open neighbourhood U around a point x0 such that ∂x1

∣∣
x0

= v. Moreover, pick
a basis {φ1|x0 , . . . , φk|x0} of Ex0 and extend it into a local geodesic orthonormal
frame field. Then,

φ = u1φ1 + · · · + ukφk,

where the components ui : U → R, i ∈ {1 , . . . , k}, are smooth functions. A simple
computation shows

∇2
v,vφ|x0 = ∇∂x1

∇∂x1
φ|x0 − ∇∇∂x1

∂x1
φ|x0 =

k∑

i=1

(∂x1∂x1ui)(x0)φi |x0

=
k∑

i=1

(ui ◦ γ )′′(0)φi |x0,

where γ : (−ε, ε) → U is a length minimizing geodesic such that

γ (0) = x0 and γ ′(0) = ∂x1

∣∣
x0

.
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Define now the set

K =
{
(y1 , . . . , yk) ∈ R

k :
∑k

i=1
yiφi |x0 ∈ Kx0

}
.

Clearly K is a closed and convex subset of Rk . Since φ ∈ K and K is invariant
under parallel transport, we deduce that the curve σ : (−ε, ε) → R

k , given by

σ = (u1 ◦ γ , . . . , uk ◦ γ ),

lies in K. It suffices to prove that σ ′′(0) points into K. Indeed, because K is convex,
for any unit inward pointing normal ξ of K at σ(0), we have

g(t) = 〈ξ, σ (t) − σ(0)〉 ≥ 0,

for any t ∈ (−ε, ε). Because g attains its minimum at t = 0, from standard calculus
we get that g′′(0) ≥ 0, which implies 〈σ ′′(0), ξ 〉 ≥ 0. This completes the proof. ��
Remark 2 According to the above result, it follows that if φ is a section lying in a
set satisfying the conditions of Lemma 1 and L is a uniformly elliptic operator of
second order, then section Lφ always points into K .

Theorem 8 (Strong Elliptic Maximum Principle) Suppose that M is a Rieman-
nian manifold (without boundary) and E a vector bundle of rank k over M equipped
with a Riemannian metric gE and a metric compatible connection. LetK be a closed
fiber-convex subset of the bundle E that is invariant under parallel transport and
φ ∈ Γ (E), φ : M → K , a smooth section such that

Lφ + Ψ (φ) = 0,

where L is a uniformly elliptic operator of second order of the form given in (E)
and Ψ is a smooth fiberwise map that points into K . If there exists a point x0 ∈ M

such that φ|x0 ∈ ∂Kx0 , then φ|x ∈ ∂Kx for any point x ∈ M . If, additionally, in
a neighbourhood of φ|x0 the set Kx0 is strictly convex and the boundary ∂Kx0 is
C2-smooth, then φ is a parallel section.

Proof We follow the exposition in [76]. Let {φ1, . . . , φk} be a geodesic orthonormal
frame field defined in a neighbourhood U around x0 ∈ M . Hence, φ = u1φ1 +· · ·+
ukφk, where ui : U → R, i ∈ {1, . . . , k}, are smooth functions. With respect to this
frame we have

Lφ =
∑k

i=1

(Lui + (
gradient terms of ui

) +
∑k

j=1
uj gE(Lφj , φi)

)
φi

= −
∑k

i=1
gE(Ψ (φ), φi)φi .
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Therefore, the map u : U → R
k , u = (u1, . . . , uk), satisfies a uniformly elliptic

system of second order of the form

L̃u + Φ(u) = 0, (17)

where Φ : Rk → R
k , Φ = (Φ1, . . . , Φk), is given by

Φi(u) = gE

(
Ψ

(∑k

j=1
ujφj

) +
∑k

j=1
ujLφj , φi

)
, (18)

for any i ∈ {1, . . . , k}. Consider now the convex set

K = {
(y1, . . . , yk) ∈ R

k :
∑k

i=1
yiφi |x0 ∈ Kx0

}
.

Claim 1: For any point x ∈ U we have u(x) ∈ K.

Indeed, fix a point x ∈ U and let γ : [0, 1] → U be the geodesic curve joining the
points x and x0. Denote by θ the parallel section which is obtained by the parallel
transport of φ|x along the geodesic γ . Then,

θ |γ (t) =
∑k

i=1
yi φi |γ (t),

where yi : [0, 1] → R, i ∈ {1, . . . , k}, are smooth functions. Because, θ and φi ,
i ∈ {1, . . . , k}, are parallel along γ , it follows that

0 = ∇γ ∗E
∂t

θ =
∑k

i=1
y′
i (t)φi |γ (t).

Hence, yi(t) = yi(0) = ui(x), for any t ∈ [0, 1] and i ∈ {1, . . . , k}. Therefore,

θ |γ (1) = θ |x0 =
∑k

i=1
ui(x)φi |x0 .

Since by our assumptions K is invariant under parallel transport, it follows that
θ |x0 ∈ Kx0 . Hence, u(U) ⊂ K and this proves Claim 1.

Claim 2: For any y ∈ ∂K the vector Φ(y) defined in (18) points into K at y.

First note that the boundary of each slice Kx is invariant under parallel transport.
From (18) we deduce that it suffices to prove that both terms appearing on the right
hand side of (18) point into K. The first term points into K by assumption on Ψ .
The second term is inward pointing due to Lemma 1. This completes the proof of
Claim 2.

Observe now that the solution of the uniformly second order elliptic partial
differential system (17) satisfies all the assumptions of Theorem 7. Therefore,
because u(x0) ∈ ∂K it follows that u(U) is contained in the boundary ∂K of K.
Consequently, φ|x ∈ ∂K for any x ∈ U . Since M is connected, we deduce that



Graphical MCF 523

φ(M) ⊂ ∂K . Note, that if K is additionally strictly convex at u(x0), then the map u

is constant. This implies that

φ|x =
∑k

i=1
ui(x0)φi |x

for any x ∈ U . Thus, φ is a parallel section taking all its values in ∂K . ��

4.3.1 Maximum Principles for Symmetric Tensors

Let (E, gE) be a Riemannian vector bundle over a manifold M . For any φ ∈
Sym(E∗ ⊗ E∗), a real number λ is called eigenvalue of φ with respect to gE at
the point x ∈ M , if there exists a non-zero vector v ∈ Ex , such that

φ(v,w) = λgE(v,w),

for any w ∈ Ex . The linear subspace Eigλ,φ(x) of Ex given by

Eigλ,φ(x) = {v ∈ Ex : φ(v,w) = λgE(v,w), for any w ∈ Ex},

is called the eigenspace of λ at x. Since φ is symmetric, it admits k real eigenvalues
λ1(x), . . . , λk(x) at each point x ∈ M . We will always arrange the eigenvalues such
that λ1(x) ≤ · · · ≤ λk(x). If λ1(x) ≥ 0 (resp. > 0) we say that φ is non-negatively
(resp. positively) definite at x.

Before stating the main results, let us recall the following definition due to
Hamilton [44].

Definition 17 A fiberwise map Ψ : Sym(E∗ ⊗ E∗) → Sym(E∗ ⊗ E∗) is said to
satisfy the null-eigenvector condition, if whenever ϑ is a non-negative symmetric
2-tensor at a point x ∈ M and if v ∈ TxM is a null-eigenvector of ϑ , then
Ψ (ϑ)(v, v) ≥ 0.

The next theorem consists the elliptic analogue of the maximum principle of
Hamilton [45]. More precisely:

Theorem 9 Let (M, g) be a Riemannian manifold (without boundary) and suppose
that (E, gE) is a Riemannian vector bundle over M equipped with a metric
connection. Assume that φ ∈ Sym(E∗ ⊗ E∗) is non-negative definite and satisfies

Lφ + Ψ (φ) = 0,

whereΨ is a smooth fiberwise map satisfying the null-eigenvector condition. If there
is a point of M where φ has a zero eigenvalue, then φ must have a zero eigenvalue
everywhere.

Proof Denote by K the set of non-negative definite symmetric 2-tensors, i.e.,
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K = {ϑ ∈ Sym(E∗ ⊗ E∗) : ϑ ≥ 0}.

Each set Kx is a closed and convex. Then,

∂Kx = {ϑ ∈ Kx : exists nonzero v ∈ Tx M such that ϑ(v, ·) = 0}.

The tangent cone of Kx at a point ϑ ∈ ∂K is given by

CϑKx = {φ ∈ Sym(E∗
x ⊗ E∗

x ) : φ(v, v) ≥ 0, for all v ∈ Eig0,ϑ (x)}.

Claim 1. The set K is invariant under parallel translation.

Let γ : [0, 1] → M be a geodesic, Pt the parallel transport operator of vectors
along γ and Πt the parallel transport operator of 2-tensors along the curve γ .
Consider ϑ ∈ Kγ(0). Then, for any v ∈ Tγ (0)M , we have

∂t

{(
Πtϑ

)
(Ptv, Ptv)

} = (∇∂t Πtϑ
)
(Ptv, Ptv) + 2Πtθ

(∇∂t Ptv, Ptv
) = 0.

Therefore, for any vector v ∈ Tγ (0)M , it holds
(
Πtϑ

)
(Ptv, Ptv) = ϑ(v, v).

Consequently, for any w ∈ Tγ (t)M , we obtain that

(
Πtϑ

)
(w,w) = ϑ(P −1

t w, P −1
t w) ≥ 0.

This proves the claim.

Claim 2. Let Ψ : Sym(E∗ ⊗ E∗) → Sym(E∗ ⊗ E∗) be a smooth fiberwise map
satisfying the null-eigenvector condition. Then, for any x ∈ M and ϑ ∈
∂K , the vector Ψ (x, ϑ) points into K .

Indeed, let ϑ ∈ ∂Kx0 . Then Ψ points inwards of Kx0 at ϑ if and only if

〈v∗ ⊗ v∗, Ψ (x, ϑ)〉 = Ψ (x, ϑ)(v, v) ≥ 0,

for any x in M and null-eigenvector v ∈ Tx0M of φ.
This complete the proof. ��

4.3.2 A Second Derivative Test for Symmetric 2-tensors

Theorem 10 Let (M, g) be a Riemannian manifold (without boundary) and
(E, gE) a Riemannian vector bundle of rank k over the manifold M equipped with
a metric connection ∇. Suppose that φ ∈ Sym(E∗ ⊗ E∗) is a smooth symmetric
2-tensor. If the biggest eigenvalue λk of φ admits a local maximum λ at an interior
point x0 ∈ M , then

(∇φ)(v, v) = 0 and (Lφ)(v, v) ≤ 0,
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for all v ∈ Eigλ,φ(x0) and for all uniformly elliptic second order operators L.
Remark 3 The above theorem is due to Hamilton [44]. Replacing φ by −φ in
Theorem 10, we get a similar result for the smallest eigenvalue λ1 of φ.

Proof Let v ∈ Eigλ,φ(x0) be a unit vector and V ∈ Γ (E) such that V |x0 = v

and ∇V |x0 = 0. Define the symmetric 2-tensor S given by S = φ − λgE .
From our assumptions, S is non-positive definite in a small neighbourhood of x0.
Moreover, the biggest eigenvalue of S at x0 equals 0. Consider the smooth function
f : M → R, given by f (x) = S(V |x, V |x). The function f is non-positive in the
same neighbourhood around x0 and attains a local maximum at x0. In particular,
f (x0) = 0, df (x0) = 0 and (Lf )(x0) ≤ 0. Consider a local orthonormal frame
{e1, . . . , em} with respect to g defined in a neighbourhood of the point x0. A simple
calculation yields

df (ei) = (∇ei
S
)
(V , V ) + 2S

(∇ei
V , V

)
.

Taking into account that gE is parallel, we deduce that

0 = (∇f )(x0) = (∇S)(v, v) = (∇φ)(v, v).

Furthermore,

∇2
ei ,ej

f = (∇2
ei ,ej

S)(V , V ) + 2S(V,∇2
ei ,ej

V )

+2
(∇ei

S
)
(∇ej

V , V ) + 2
(∇ej

S
)
(∇ei

V , V )

+2S(∇ei
V ,∇ej

V ).

Bearing in mind the definition of S and using the fact that gE is parallel with respect
to ∇, we obtain

Lf = (Lφ)(V, V ) + 2S(V,LV )

+2
∑m

i,j=1
aij

{
S(∇ei

V ,∇ej
V ) + 2(∇ei

S)(∇ej
V , V )

}

= (Lφ)(V, V ) + 2S(V,LV )

+2
∑m

i,j=1
aij

{
S(∇ei

V ,∇ej
V ) + 2(∇ei

S)(∇ej
V , V )

}
.

Estimating at x0 and taking into account that V |x0 = v is a null eigenvector of S at
x0, we get

0 ≥ (Lf )(x0) = (Lφ)(v, v).

This completes the proof. ��
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5 Graphical Submanifolds

5.1 Definitions

Let (M, gM) and (N, gN) be Riemannian manifolds of dimension m and n,
respectively. The induced metric on M × N will be denoted by gM×N = gM × gN .

We often denote the product metric also by 〈· , ·〉. A smooth map f : M → N

defines an embedding F : M → M × N , given by F(x) = (x, f (x)), for any
x ∈ M . The graph of f is defined to be the submanifold

Γ (f ) = F(M) = {(x, f (x)) ∈ M × N : x ∈ M}.

Since F is an embedding, it induces another Riemannian metric g = F ∗gM×N on
M . The two natural projections πM : M × N → M and πN : M × N → N are
submersions, that is they are smooth and have maximal rank. Note that the tangent
bundle of the product manifold M × N , splits as a direct sum

T (M × N) = T M ⊕ T N.

The four metrics gM, gN, gM×N and g are related by

gM×N = π∗
MgM + π∗

NgN and g = F ∗gM×N = gM + f ∗gN . (19)

The Levi-Civita connection ∇gM×N associated to the Riemannian metric gM×N on
M × N is related to the Levi-Civita connections ∇gM on (M, gM) and ∇gN on
(N, gN) by

∇gM×N = π∗
M∇gM ⊕ π∗

N∇gN .

The corresponding curvature operator R̃ on the product M × N is related to the
curvature operators on (M, gM) and RN on (N, gN) by

R̃ = π∗
MRM ⊕ π∗

NRN.

The map f : M → N is called minimal if Γ (f ) ⊂ M × N is minimal.

5.2 Singular Value Decomposition

For any fixed point x ∈ M , let λ2
1(x) ≤ · · · ≤ λ2

m(x) be the eigenvalues of
f ∗gN with respect to gM . The corresponding values λi ≥ 0, i ∈ {1, . . . , m},
are usually called singular values of the differential df of f at the point x. Let
r = r(x) = rank df (x). Then, r ≤ min{m, n} and λ1(x) = · · · = λm−r (x) = 0.
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It is well-known that the singular values can be used to define the so-called
singular decomposition of df . At the point x, consider an orthonormal basis
{α1, . . . , αm−r ;αm−r+1, . . . , αm} with respect to gM which diagonalizes f ∗gN .
Moreover, at f (x) consider an orthonormal basis {β1, . . . , βn−r ;βn−r+1, . . . , βn}
with respect to gN such that, for any i ∈ {m − r + 1, . . . , m},

df (αi) = λi(x)βn−m+i .

It is well-known fact that, with the above ordering, the singular values give rise
to continuous functions. In the matter of fact, they are even smooth on an open
and dense subset of M . In particular, they are smooth on open subsets where the
corresponding multiplicities are constant and the corresponding eigenspaces are
smooth distributions; see [83].

We may define a special basis for the tangent and the normal space of the graph
in terms of the singular values. The vectors

ei =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αi , 1 ≤ i ≤ m − r,

αi√
1 + λ2

i (x)

,m − r + 1 ≤ i ≤ m,
(20)

form an orthonormal basis with respect to the metric gM×N of the tangent space
dF(TxM) of the graph Γ (f ) at x. Moreover, the vectors

ξi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

βi , 1 ≤ i ≤ n − r,

−λi+m−n(x)αi+m−n ⊕ βi√
1 + λ2

i+m−n (x)

, n − r + 1 ≤ i ≤ n,
(21)

give an orthonormal basis with respect to gM×N of the normal space NxM .

5.3 Length and Area Decreasing Maps

Let (M, gM) and (N, gN) be two Riemannian manifolds of dimensions m and n

respectively. For any smooth map f : M → N its differential df induces a map
Λkdf : ΛkT M → ΛkT N given by

(
Λkdf

)
(v1 , . . . , vk) = df (v1) ∧ · · · ∧ df (vk),

for any smooth vector fields v1, . . . , vk ∈ T M . The map Λkdf is called the k-
Jacobian of f . The supremum norm or the k-dilation |Λkdf |(x) of the map f at a
point x ∈ M is defined as the supremum of
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√
det

(
(f ∗gN(vi, vj ))1≤i,j≤k

)

when {v1, . . . , vm} runs over all orthonormal bases of TxM .

Definition 18 A smooth map f : (M, gM) → (N, gN) between Riemannian
manifolds is called (weakly) k-volume decreasing if |Λkdf | ≤ 1, strictly k-volume
decreasing if |Λkdf | < 1 and k-volume preserving if |Λkdf | = 1. For k = 1 we
use the term length instead of 1-volume and if k = 2 we use the term area instead
of 2-volume.

There is a way to express the length and area decreasing property of a map in
terms of positivity of symmetric tensors. Define on M the symmetric 2-tensors
SM×N and S given by

SM×N = π∗
MgM − π∗

NgN and S = F ∗SM×N = gM − f ∗gN .

With respect to the basis of the singular value decomposition, we have

SM×N(ei, ej ) = 1 − λ2
i

1 + λ2
i

δij , 1 ≤ i, j ≤ m. (22)

Hence, the eigenvalues μ1, μ2, . . . , μm of S with respect to g, are

μ1 = 1 − λ2
m

1 + λ2
m

≤ · · · ≤ μm = 1 − λ2
1

1 + λ2
1

.

Hence, f is length decreasing if S ≥ 0. Additionally let us mention that

SM×N(ξi, ξj ) =

⎧
⎪⎪⎨

⎪⎪⎩

−δij , 1 ≤ i ≤ n − r,

−1 − λ2
i+m−n

1 + λ2
i+m−n

δij , n − r + 1 ≤ i ≤ n.
(23)

and

SM×N(em−r+i , ξn−r+j ) = − 2λm−r+i

1 + λ2
m−r+i

δij , 1 ≤ i, j ≤ r. (24)

Observe now that, for any pair of indices i, j ∈ {1, . . . , m}, we have

μi + μj = 1 − λ2
i

1 + λ2
i

+ 1 − λ2
j

1 + λ2
j

= 2(1 − λ2
i λ

2
j )

(1 + λ2
i )(1 + λ2

j )
.
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Hence, the map is strictly area decreasing, if and only if the tensor S is strictly 2-
positive, i.e., the sum of the two smallest eigenvalues is positive. The 2-positivity
of a tensor T ∈ Sym(T ∗M ⊗ T ∗M) can be expressed as the positivity of another
tensor T [2] ∈ Sym(Λ2T ∗M ⊗ Λ2T ∗M). Indeed, let P and Q be two symmetric
2-tensors. Then, the Kulkarni-Nomizu product P ©∧ Q given by

(P ©∧ Q)(v1 ∧ w1, v2 ∧ w2) = P(v1, v2)Q(w1, w2) + P(w1, w2)Q(v1, v2)

−P(w1, v2)Q(v1, w2) − P(v1, w2)Q(w1, v2)

is an element of the vector bundle Sym(Λ2T ∗M ⊗Λ2T ∗M). Now, to every element
T ∈ Sym(T ∗M⊗T ∗M) let us assign an element T [2] of the bundle Sym(Λ2T ∗M⊗
Λ2T ∗M), by setting

T [2] = T ©∧ g.

We point out that the Riemannian metric G of Λ2T M is given by

G = 1
2g ©∧ g = 1

2g[2].

The relation between the eigenvalues of the tensor T and the eigenvalues of T [2] is
explained in the following lemma:

Lemma 2 Let T be a symmetric 2-tensor with eigenvalues μ1 ≤ · · · ≤ μm and
corresponding eigenvectors {v1, . . . , vm} with respect to the metric g. Then the
eigenvalues of the symmetric 2-tensor T [2] with respect to G are μi + μj , for any
1 ≤ i < j ≤ m, with corresponding eigenvectors vi ∧ vj , for any 1 ≤ i < j ≤ m.

5.4 Minimal Graphs in the Euclidean Space

Let us discuss the case of graphs generated by smooth maps f : Rm → R
n. The

induced metric g on the graph is given in local coordinates in the form

gij = δij +
m∑

i,j=1

n∑

α=1

f α
xi

f α
xj

.

As usual, the components of the inverse matrix of the induced metric g are denoted
by gij . It is not difficult to show that Γ (f ) is minimal if and only if the components
of

f = (f 1, . . . , f m)

satisfy the following system of differential equations
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m∑

i,j=1

gij f α
xixj

= 0. (MSE)

The equation is known in the literature as the minimal surface equation. For
graphical hypersurfaces, that is for graphs generated by functions smooth f : U ⊂
R

m → R, minimality is expressed by the equation

div

(
grad f

√
1 + | grad f |2

)

= 0.

There is a long history of attempts to study entire solutions of the minimal surface
equation. Bernstein [8] proved that the only entire minimal graphs in the R

3 are
planes. However, there was a gap in the original proof of Bernstein which was fixed
40 years later; see [51, 65]. In the meantime, several complex analysis proofs have
been obtained; for more details see the surveys of Osserman [70, 71].

It was conjectured for a long time that the theorem of Bernstein holds in any
dimension for graphical hypersurfaces. For m = 3, its validity was proved by De
Giorgi [30], for n = 4 by Almgren [3] and for m = 5, 6, 7 by Simons [80]. It was
a big surprise when Bombieri, De Giorgi and Giusti [10] proved that, for m ≥ 8,
there are entire solutions of the minimal surface equation other than the affine ones.

In higher codimensions, the situation is more complicated. There are plenty of
non-flat entire minimal graphs. For example, the graph of an entire holomorphic
map f : Cm → C

n is minimal. Moreover, Osserman [70] has constructed examples
of complete minimal two-dimensional graphs in R

4, which are not complex analytic
with respect to any orthogonal complex structure on R

4. For instance, the graph
Γ (f ) over the map f : R2 → R

2, given by

f (x, y) =
(
e

x
2 − 3e− x

2

) (
cos

y

2
,− sin

y

2

)

for any (x, y) ∈ R
2, is such an example. Now the obvious questions became:

Question 1 If entire solutions of the minimal surface equation need not be linear,
do they have any other distinguishing characteristics? What additional restrictions
on entire solutions would guarantee linearity in all dimensions?

The first result in this direction was obtained by Osserman [69] for two-
dimensional graphs, generated by maps f : R

2 → R
n. He proved that if the

differential df of the map f is bounded, then must be a plane. In fact, he proved the
following more general theorem:

Theorem 11 Suppose that Σ is a complete, oriented minimal surface (not neces-
sarily graphical) in the euclidean space Rn. Assume that the Gauss map of Σ omits
an open neighbourhood in the Grassmannian. Then, Σ is flat.
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Let us restrict now in two dimensional graphs in R
4, i.e., minimal graphs

generated by maps f = (f1, f2). For such graphs, Simon [81] proved that if one
component of f have bounded gradient, then f is affine. Later on, Schoen [79]
obtained a Bernstein-type result by imposing the assumption that f : R2 → R

2 is
a diffeomorphism. Moreover, Ni [68] has derived a result of Bernstein type under
the assumption that f is an area-preserving map. In this case, area preserving is
equivalent with the condition | det(df )| = 1. The function Jac(f ) = det(df ) is
called the Jacobian determinant of f . All these result were generalized by Hasanis,
Savas-Halilaj and Vlachos in [47, 48], just by assuming that Jac(f ) is bounded. In
fact, the following result is shown:

Theorem 12 Let f : R
2 → R

2 be an entire solution of the minimal surface
equation. Assume that Γ (f ) is not a plane. Then, Γ (f ) is a complex analytic curve
if and only if the Jacobian determinant Jac(f ) of f does not take every real value.
In particular if Γ (f ) is a complex analytic curve, then:

(a) The Jacobian determinant Jac(f ) takes every real value in (0,+∞) or in
[0,+∞) if f is holomorphic.

(b) The Jacobian determinant Jac(f ) takes every real value in (−∞, 0) or in
(−∞, 0], if f is anti-holomorphic.

All these proofs use strongly the fact that the Gauss map of a minimal surface in
the euclidean space is anti-holomorphic.

The first Bernstein-type theorem which was valid for arbitrary dimension and
codimension is due to Hildebrandt, Jost, and Widman [50]. They obtained such a
result under the assumption of a certain quantitative bound for the slope, that is a
bound on the norm of the differential of the generating map.

Let us describe here briefly their technique. Note at first that a bound on the
differential of the map forces the Gauss map of the graph to lie in a bounded region
of the Grassmannian manifold. In particular, the first step is to determine which
bounds on the differential will force the Gauss map to have its range in a sufficiently
small convex subset of the Grassmannian. The second step is to find a convex
function defined on the convex set, which contains the Gauss image of the graph,
and to compose it with the Gauss map. By Theorem 2 of Ruh and Vilms, the Gauss
map is harmonic. Consequently, the composition of the Gauss map with the convex
function will give rise to a subharmonic function defined on the graph. The third step
is to show that this particular subharmonic function is constant and the Gauss map
is parallel. Of course, there are many difficulties to overcome to run this program.
The first problem is the complexity of the Grassmannian manifolds. For example,
it is not so easy to identify which are the convex subsets of the Grassmannian and
their corresponding convex supporting functions. One way is to consider distance
balls. In fact, Hildebrandt, Jost, and Widman [50] identified the largest ball in the
Grassmannian manifold on which the square of the distance function is convex.
Another major difficulty is that an entire euclidean minimal graph is complete and
non-compact. Consequently, the standard maximum principle cannot be applied
directly. Let us mention here that the original assumption on the slope was obtained
by Hildebrandt, Jost, and Widman in [50] was
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E(f ) = √
det(I + df tdf ) ≤ β0 < cos−p

(
π

2
√

2 p

)

where β0 is a constant and p = min{m, n}. Over the years, the bound on E(f ) was
improved. Recently, Jost, Xin, and Yang [56] proved the following:

Theorem 13 Let f : R
m → R

n be an entire solution of the minimal surface
equation. Suppose that there exists a number β0 such that

β0 <

{
3, if n ≥ 2,

∞, if n = 1,

and

E(f ) = √
det(I + df tdf ) ≤ β0.

Then Γ (f ) is an affine subspace of Rm × R
n.

Remark 4 For codimension one graphs, the above theorem was first obtained by
Moser [67].

Question 2 Let f : Rm → R
n be an entire solution of the minimal surface equation

such that

E(f ) = √
det(I + df tdf ) < 9.

Is it true that Γ (f ) is an affine subspace of Rm × R
n?

Remark 5 The number 9 in the above conjecture should be the sharp bound. The
reason is that there are examples of Lipschitz minimal maps constructed by Lawson
and Osserman [58] with E(f ) = 9; see also [37]. These examples are generated
from the map f : C2 − {0} = R

4 − {0} → R × C = R
3 given by

f (x) =
√

5

2
|x|H

(
x

|x|
)

,

where H : C2 → R × C is the Hopf-map H(z, w) = (|z|2 − |w|2, 2zw).

Let us conclude this section by mentioning some results in special situations. The
first one is due to Fischer-Colbrie [37] and it says that a 3-dimensional complete
minimal graph with bounded differential is totally geodesic. In the matter of fact,
the following holds:

Theorem 14 Let f : R
3 → R

n be an entire solution of the minimal surface
equation. If |df | is uniformly bounded, then Γ (f ) is flat.
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In codimension two, no specific bound on the differential of f is needed.
Recently, Assimos and Jost [6] obtained the following interesting theorem:

Theorem 15 Let f : R
m → R

2 be an entire solution of the minimal surface
equation. Suppose that there exists a number β0 such that

E(f ) = √
det(I + df tdf ) ≤ β0.

Then Γ (f ) is an affine subspace of Rm × R
2.

The next result we would like to mention is due to Wang [97]. He obtained the
following theorem for strictly area decreasing minimal graphs.

Theorem 16 Let f : R
m → R

n be an entire solution of the minimal surface
equation. Suppose that there exists numbers δ1 ∈ (0, 1) and δ2 > 0 such that
|Λ2df | ≤ 1 − δ1 and E(f ) ≤ δ2. Then Γ (f ) is an affine subspace of Rm × R

n.

Remark 6 The above cannot be extended for k-volume decreasing minimal maps
with k > 2. For example, consider f : C2 = R

4 → C
2 = R

4, given by

f (z,w) = (β0z + h(w),w),

where z,w ∈ C, h : C → C is a non-affine holomorphic map and β0 a real
number. Observe that the graph Γ (f ) is a non-flat minimal submanifold of R8 and
|Λ4df | = |β0|. Consequently, there exists an abundance of non-flat minimal graphs
in the euclidean space with arbitrary small 4-Jacobian.

6 Mean Curvature Flow

In this section, we introduce the notion of the mean curvature flow. Later, we will
examine how various geometric quantities evolve under the mean curvature flow.
Suppose that M is a manifold of dimension m, let T > 0 be a real number and
F : M × [0, T ) → N a smooth time-dependent family of immersions of M into a
Riemannian manifold N of dimension n. We follow the exposition in [5, 32, 63, 86].

Definition 19 Let N be a Riemannian manifold. We say that a family of immer-
sions F : M × [0, T ) → N evolves by mean curvature flow (MCF for short) with
initial data the immersion F0 : M → N if it satisfies the initial value problem

{
dF(x,t)(∂t ) = H(F(x, t))

F (x, 0) = F0(x)
,

for any (x, t) ∈ M × [0, T ), where H
(
F(x, t)

)
denotes the mean curvature vector

of the immersion F(· , t) : M → N at the point x ∈ M .
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6.1 Basic Facts for Systems of Parabolic PDEs

In this section we recall basic facts about solvability of Cauchy problems; for more
details see [57].

6.1.1 Differential Operators

Let M be a smooth manifold equipped with a Riemannian metric g whose associated
Levi-Civita connection is ∇M . Suppose that E1 and E2 are two vector bundles over
M and assume that E1 is equipped with a Riemannian metric h and a compatible
connection ∇E1 . As in Definition 4, from the connections ∇M and ∇E1 , one can
form the k-th derivative ∇k of a section φ ∈ Γ (E1).

Definition 20 A map P : Γ (E1) → Γ (E2) of the form

(Pφ)(x) = Q
(
x,∇1φ(x), . . . ,∇kφ(x)

) ∈ (E2)x,

where Q is smooth in all its variables, will be called differential operator of order
k. In the case where P is R-linear, we say that P is a linear differential operator of
order k. Otherwise, we say that P is non-linear.

Suppose that P : Γ (E1) → Γ (E2) is a linear differential operator of degree k.
Then, in index notation, it can be written in the form

Pφ =
∑

i1,...,ik

Ai1··· ik∇k
∂xi1

... ∂xik

φ + · · · +
∑

i1

Ai1∇1
∂xi1

φ + A0φ,

where for each x ∈ M , Ai1... ik (x) : (E1)x → (E2)x is linear map. These maps are
called the coefficients of the linear operator P .

Definition 21 Let P : Γ (E1) → Γ (E2) be a linear differential operator of
order k, let x be a point in M and ζ = ∑

i ζidxi ∈ T ∗
x M . The linear map

σζ (P ; x) : (E1)x → (E2)x , given by

σζ (P ; x)φ =
∑

i1,...,ik

ζi1 · · · ζikA
i1...ik φ|x,

is called the principal symbol of the operator P at the point x and in the direction
ζ . In particular, the operator P is called elliptic if its principal symbol is an
isomorphism, for every point x and every non-zero direction ζ .

Definition 22 The differential or the linearization of P at φ0, if it exists, is defined
to be the linear map DP |φ0 : Γ (E1) → Γ (E2), given by the expression

DP |φ0(ψ) = lim
s→0

P(φ0 + sψ) − P(φ0)

s
,
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for any ψ ∈ Γ (E1).

Definition 23 Let P : Γ (E1) → Γ (E2) be a differential operator of order k.
We say that P is elliptic, undetermined elliptic or overdetermined elliptic if its
linearization is so.

Example 1 Let f : M → N be a smooth map between manifolds endowed
with Riemannian metrics gM and gN , respectively, and consider the operator
ΔgM,gN

: C∞(M) → C∞(M), given by

ΔgM,gN
f = trgM

B,

where B stands for the Hessian of f . In local coordinates, we have

ΔgM,gN
f =

∑

i,j,α

g
ij
M

(
f α

xixj
−

∑

k

Γ k
ij f

α
xk

+
∑

γ,δ

Γ α
γ δf

γ
xi

f δ
xj

)
∂yα .

The linearization of ΔgM,gN
f is

DΔgM,gN
|f (G) = lim

s→∞
ΔgM,gN

(f + sG) − ΔgM,gN
(f )

s

=
∑

i,j

g
ij
MGα

xixj
∂yα + lower order terms.

Hence, for any

ζ = (ζ1, . . . , ζm) and φ = (φ1, . . . , φn)

we have

σζ (DΔgM,gN
, x)φ =

∑

i,j
g

ij
Mζiζjφ|x = |ζ |2gφ|x,

Consequently, the Laplacian operator ΔgM,gn is elliptic.

6.1.2 Time-Dependent Vector Bundles

Suppose that I ⊂ R is an open interval and let {g(t)}t∈I be a smooth family of
Riemannian metrics on a manifold M . This means that for any (x, t) ∈ M × I we
have an inner product g(x,t) on TxM . We can regard {g(t)}t∈I as a metric g acting
on the spatial tangent bundle H, defined by

H = {v ∈ T (M × R) : dπ2(v) = 0},
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where π2 : M × I → I is given by π2(x, t) = t. Note that each g(t) is a metric on
H since H(x,t) is isomorphic to TxM via π2. We can even extend g into a metric on
M × I , with respect to which we have the orthogonal decomposition

T (M × I ) = H ⊕ R∂t .

Since H is a subbundle of T (M ×I ), any section of H is also a section of T (M ×I ).
Sections of Γ (H) are called spatial vector fields. There is a natural connection ∇
on M × I . Namely, define ∇ by

∇vw = ∇g(t)
v w, ∇v∂t = 0, ∇∂t ∂t = 0 and ∇∂t v = [∂t , v], (25)

for any v,w ∈ Γ (H), where ∇g(t) stand for the Levi-Civita connection of g(t). One
can readily check that ∇ is compatible with g, i.e.,

vg(w1, w2) = g(∇vw1, w2) + g(w1,∇vw2),

for any v ∈ X(M × R) and w1, w2 ∈ Γ (H). Moreover, for any w1, w2 ∈ Γ (H),

∇w1w2 − ∇w2w1 = [w1, w2].

The situation we discussed above occurs, when we have a family of immersions
F : M × I → N. In this case, F ∗h gives a family of metrics on M . Endowing
M × I with the connection ∇, we have for any v ∈ Γ (H) that

∇F ∗T N
∂t

dF (v) − ∇F ∗T N
v dF (∂t ) = dF([∂t , v]) = dF(∇∂t v).

6.1.3 Parabolic Differential Equations

Let M be a manifold equipped with a family of metrics {g(t)}[0,T ). Denote by
{∇g(t)}t∈[0,T ) the corresponding Levi-Civita connections. Let E1 and E2 be vector
bundles over M and assume that E1 is equipped with a fixed time independent metric
h and connections {∇(t)}t∈[0,T ) that are compatible with h, i.e.,

vh(φ1, φ2) = h
(∇(t)vφ1, φ2

) + h
(
φ1,∇(t)vφ2

)
,

for any tangent vector v, sections φ1, φ2 ∈ Γ (E) and any time t ∈ [0, T ).
As in Definition 4, by coupling ∇(t) with ∇g(t) we obtain repeated covariant

derivatives ∇k(t) acting on sections of E1. Suppose now that {φ(t)}t∈[0,T ) is a
smooth time-dependent family of sections of E1, where smooth means that for any
fixed (x, t) ∈ M × [0, T ), the time-derivative

(∇∂t φ)(x, t) = lim
h→0

φ(x, t + h) − φ(x, t)

h
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exists. Hence, {∇∂t φ}t∈[0,T ) is another one parameter family of sections on E1. We
are interested now in expressions of the form:

(∇∂t φ)(x, t) = (Pφ)(x, t) = Q
(
x, t,∇1(t)φ(x, t), . . . ,∇k(t)φ(x, t)

)
, (26)

where now P : Γ (E1) → Γ (E2) is a time-dependent differentiable operator of
order k. If for each fixed t the operator P is linear elliptic, we say that (26) is a linear
parabolic differential equation. We say that (26) represents a non-linear parabolic
differential equation if and only if, for any φ ∈ Γ (E1), its linearization is parabolic.

Theorem 17 If the differential operator P is parabolic at φ0 ∈ Γ (E1), then there
exist a T > 0 and a smooth family φ(t) ∈ Γ (E1), for t ∈ [0, T ], such that there
exists a unique smooth solution for the initial value problem

{
∇∂t φ = Pφ,

φ(0) = φ0.

for t ∈ [0, T ], where T depends on the initial data φ0.

We close this section with an application of this general theory.

Definition 24 Let (M, gM) and (N, gN) be Riemannian manifolds. We say that a
family of smooth maps F : M × [0, T ) → N evolves by (harmonic) heat flow, with
initial data F0 : M → N , if it satisfies the initial value problem

{
∇∂t dF = dF(∂t ) = ΔgM,gN

F,

F (·, 0) = F0.
(27)

Theorem 18 Let (M, gM) be a compact Riemannian manifold and suppose that
F0 : (M, gM) → (N, gN) is a smooth map into a Riemannian manifold (N, gN).
Then, (27) admits a unique, smooth solution on a maximal time interval [0, Tmax),
where 0 < Tmax ≤ ∞.

Proof We already computed that for ζ ∈ T ∗M , we have

σζ (DΔgM,gN
, x) = |ζ |2gI.

Hence, the parabolic theory can be used to ensure short-time existence. ��

6.2 Short-time Existence of the Mean Curvature Flow

A supposed solution F of MCF can be represented in local coordinates as

F(x1, . . . , xm, t) = (
F 1(x1, . . . , xm, t), . . . , F n(x1, . . . , xm, t)

)
.
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Then, from (2) we have

H =
∑

i,j,α

gij
(
Fα

xixj
−

∑

k

Γ k
ijF

α
xk

+
∑

γ,δ

Γ α
γ δF

γ
xi

F δ
xj

)
∂yα ,

where

gij =
∑

α,β

hαβFα
xi

F β
xj

and Γ k
ij = 1

2

∑

l

gkl(∂xi
gjl + ∂xj

gil − ∂xl
gij ).

Note that g is the induced metric and it depends on F . Hence,

∂xi
gjl =

∑

β,γ

(
hβγ F

γ
xixj

F β
xl

+ hβγ F
γ
xj

F β
xixl

) + lower order terms

and consequently

Γ k
ij =

∑

l,β,γ

gklhβγ F
γ
xl

F β
xixj

+ lower order terms. (28)

Combining the formula (28) with equation (2), we obtain

H =
∑

i,j,α,β

gij
(
δαβ −

∑

k,l,γ

gklhβγ Fα
xk

F
γ
xl

)
Fβ

xixj
∂yα + lower order terms.

By a straightforward computation, we get

DH |F (G) = lim
s→0

H(F + sG) − H(F)

s

=
∑

i,j,α,β

gij
(
δαβ −

∑

k,l,γ

gklhβγ Fα
xk

F
γ
xl

)
Gβ

xixj
∂yα + lower order terms.

Denote by πT M and πNM the projections of F ∗T N onto dF(TxM) and NM ,
respectively. Then, for any φ = ∑

α φα∂yα ∈ Γ (F ∗T N), we have

πNM(φ) = φ − πT M(φ) =
∑

α,β

(
δαβ −

∑

k,l,γ

gklhβγ Fα
xk

F β
xl

)
φβ∂yα .

Therefore, the principal symbol is given by

σζ (DH ; x)φ =
∑

i,j
gij ζiζj

∑

α,β

(
δαβ −

∑

k,l,γ
gklhβγ Fα

xk
F β

xl

)
φβ∂yα

= |ζ |2gπNM(φ|x).
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Observe that the principal symbol is zero for tangent directions. Thus, MCF is
degenerate and we cannot obtain information from the standard theory about short-
time existence. Short-time existence and uniqueness of MCF was originally proven
using results of Hamilton [43, 44] based on the Nash-Moser iteration method. We
present a proof adapting a variant of the DeTurck’s trick which was first used in
Ricci flow [31]; see also [7, 63, 92].

Theorem 19 (Invariance Under Tangential Variations) Suppose that F : M ×
[0, T ) → N is a family of immersions satisfying the system of PDEs

{
dF(x,t)(∂t ) = H

(
F(x, t)

) + dF(x,t)

(
V (x, t)

)
,

F (x, 0) = F0(x),
(29)

where (x, t) ∈ M × [0, T ), the manifold M is compact and V is a time-dependent
family of smooth vector fields. Then, there exists a unique family of diffeomorphisms
ψ : M × [0, T ) → M , such that the map F̂ : M × [0, T ) → N given by F̂ (x, t) =
F

(
ψ(x, t), t

)
, is a solution of

{
dF̂(x,t)(∂t ) = H

(
F̂ (x, t)

)
,

F̂ (x, 0) = F0
(
ψ(x, 0)

)
.

Conversely, if F : M × [0, T ) → N is a solution of the mean curvature flow and
ψ : M × [0, T ) → M is a family of diffeomorphisms, then F̂ : M × [0, T ) → N

satisfies a system of the form (29).

Proof Consider for the moment an arbitrary family a time-dependent of diffeo-
morphisms ψ : M × [0, T ) → M and define F̂ : M × [0, T ) → N given by
F̂ (x, t) = F

(
ψ(x, t), t

)
, for (x, t) ∈ M × [0, T ). From the chain rule, we have

dF̂(x,t)(∂t ) = H
(
F̂ (x, t)

) + dF(ψ(x,t),t)

(
V (ψ(x, t), t) + dψ(x,t)(∂t )

)
,

for any (x, t) ∈ M × [0, T ). Hence, it suffices to find a one-parameter family of
diffeomorphisms ψ : M × [0, T ) → M solving the initial value problem

{
dψ(x,t)(∂t ) = −V

(
ψ(x, t), t

)
,

ψ(x, 0) = I,

for any (x, t) ∈ M × [0, T ), where I : M → M is the identity map. By Picard-
Lindelöf theorem there exists a unique smooth solution of the above initial value
problem. Moreover, because the initial data is the identity, taking T > 0 small
enough we can assume that for any t ∈ [0, T ] the map ψ(· , t) : M → M is a
diffeomorphism. The converse is straightforward. ��
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Theorem 20 (Short-time Existence) Let M be a compact Riemannian manifold
and F0 : M → N an immersion into a Riemannian manifold N . Then, the mean
curvature flow with initial data the immersion F0 admits a smooth solution on a
maximal time interval [0, Tmax), where 0 < Tmax ≤ ∞.

Proof The idea is to modify MCF by adding some tangential component in order
to make it parabolic. Suppose that F : M × [0, Tmax) → N solves MCF. Fix a
Riemannian metric ĝ on M , denote its Levi-Civita connection by ∇̂ and consider
the vector field VDT on M given by

VDT = trg(∇ − ∇̂). (30)

Note that in local coordinates, VDT has the form

VDT =
∑

i,j,k

gij (Γ k
ij − Γ̂ k

ij )∂xk
,

where Γ k
ij and Γ̂ k

ij are the Christoffel symbols of the connections ∇ and ∇̂,
respectively. Consider now the initial value problem,

{
dF(∂t ) = H + dF(VDT )

F (·, 0) = F0
, (31)

The first equation of (31) in local coordinates takes the form

Ft =
∑

i,j,α

gij
(
Fα

xixj
−

∑

k

Γ̂ k
ijF

α
xk

+
∑

γ,δ

Γ α
γ δF

γ
xi

F δ
xj

)
∂yα .

Since Γ̂ k
ij does not depend on time, the principal symbol of (31) is

σζ

(
D(H + VDT ), ·) = |ζ |2I.

Hence (31) is parabolic and has a unique solution. According to Theorem 19, from
a solution of (31) we obtain a solution of the mean curvature flow. ��
Definition 25 Let F : M × [0, T ) → N be a solution of MCF. Fix a metric ĝ

and consider the vector field VDT . The modified flow (31) is called DeTurck mean
curvature flow.

Lemma 3 The vector field VDT defined in (30) is minus the Laplacian of the
identity map I : (M, g) → (M, ĝ).

Proof The Hessian B of the map I is given by

B(v1, v2) = ∇̂dI (v1)dI (v2) − dI (∇v1v2) = ∇̂v1v2 − ∇v1v2,

for any v1, v2 ∈ X(M). Hence, Δg,̂gI = −VDT . This completes the proof. ��
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Theorem 21 (Uniqueness) Let M be a compact Riemannian manifold and
F0 : M → N an immersion into a Riemannian manifold N . Then, the solution of
MCF, with initial data the immersion F0 : M → N , is unique up to diffeomorphisms.

Proof Suppose that F̃ : M × [0, Tmax) → N is the maximal solution of MCF, with
initial data the given immersion F0, and denote the induced metrics by g̃. As in the
existence part, fix a metric ĝ and denote by ∇̂ its associated Levi-Civita connection.
Consider the initial value problem

{
dφ(∂t ) = Δg̃,̂gφ

φ(·, 0) = I
.

Observe that the above problem is a parabolic and thus its solution gives rise to a
unique one parameter family of diffeomorphisms φ : M × [0, ε) → M , for at least
some short time ε > 0. Denote by ψ : M × [0, ε) → M the one parameter family
of diffeomorphisms with the property that, for each t , the map ψ(· , t) is the inverse
of φ(· , t), i.e.,

ψ(φ(x, t), t) = x = φ(ψ(x, t), t)

for any (x, t) in space-time. From the chain rule, we have

dψ(φ(x,t),t)(∂t ) = −dψ(φ(x,t),t)

(
(Δg̃,̂gφ)(x)

)
. (32)

Define the map F : M × [0, ε) → N given by F(x, t) = F̃ (ψ(x, t), t), for any
(x, t) ∈ M × [0, Tmax). The induced time-dependent metric on M is g = ψ∗g̃.
Moreover, the map F satisfies the evolution equation

Ft = H + dF̃ (W), (33)

where for any point (x, t) in space-time, we have

W(ψ(x, t), t) = dψ(x,t)(∂t ).

Taking into account (32) and the composition formula for the Laplacian (see for
example [24, page 116, equation (2.56)]), we have

W(ψ(x, t), t) = dψ(x,t)(VDT (x)), (34)

for any (x, t) ∈ M ×[0, ε). From (33) and (34), we see that F satisfies the DeTurck
mean curvature flow

dF(∂t ) = H + dF(VDT ),

with initial data the immersion F0 : M → N .
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Suppose now that F̃1, F̃2 : M × [0, Tmax) → N are two solutions of the mean
curvature flow, with the same initial condition F0 : M → N . As before fix a metric
ĝ on M and denote by g̃1 and g̃2 the induced time-dependent metrics on M by F̃1
and F̃2, respectively. Denote by

φ1 : M × [0, ε) → N and φ2 : M × [0, ε) → N

the one-parameter family of diffeomorphisms solving the initial value problem

{
dη(∂t ) = Δg̃i ,̂gη,

η(·, 0) = I.

Then, as we verified above, the maps

Fi : M × [0, ε) → N, i ∈ {1, 2},

satisfy

F̃i(x, t) = Fi

(
φi(x, t), t

)
,

for any (x, t) ∈ M × [0, ε), form solutions of the DeTurck mean curvature flow,
with common initial data the immersion F0 : M → N . Since the DeTurck mean
curvature flow is parabolic, it follows that its solution is unique. ��

6.3 Parabolic Maximum Principles

In this subsection, we state the weak and strong version of the parabolic maximum
principle for scalar functions obeying a diffusion-reaction equation on a manifold
equipped with a smooth time-dependent family of Riemannian metrics. Then we
also present Hamilton’s version [44, 45] of the parabolic maximum principle for
arbitrary sections of a vector bundle; for detailed proofs see also the excellent
monograph [26].

6.3.1 Scalar Parabolic Maximum Principle

Suppose that M is a smooth manifold, possibly with boundary ∂M , and {g(t)}t∈[0,T )

a smooth family of Riemannian metrics. We will consider the second order time-
dependent operator L given by

Lu = Δg(t)u + g(t)(X,∇g(t)u) (P)
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where

u ∈ C2(M × (0, T )
) ∪ C0(M × [0, T ]).

Note that, for each fixed time, L is an elliptic operator.

Theorem 22 (Comparison Principle) Suppose that M is a compact, without
boundary, manifold equipped with a smooth family {g(t)}t∈[0,T ) of Riemannian
metrics and u : M × [0, T ) → R a C2-smooth function, which satisfies the
differential inequality

∂tu − Lu ≤ Ψ (u, t),

where L is the (time-dependent) operator defined in (P) and Ψ : R × R → R a
smooth map. Let ϕ be the solution of the associated ODE

{
ϕ′(t) = Ψ (ϕ(t), t),

ϕ(0) = maxx∈M u(x, 0).

Then, the solution u of the differential inequality is bounded from above by the
solution ϕ of the ODE, that is u(x, t) ≤ ϕ(t), for every (x, t) ∈ M × [0, T ).

As in the elliptic case, there exists a criterion which forces a solution of a
parabolic differential inequality to be constant.

Theorem 23 (StrongMaximum Principle) Suppose that M is a smooth manifold,
possibly with boundary, equipped with a smooth family {g(t)}t∈[0,T ) of Riemannian
metrics. Let u ∈ C2

(
M × (0, T )

) ∪ C0
(
M × [0, T ]) be a solution of

∂tu − Lu + c u ≤ 0

where c is a non-negative constant.

(a) If c = 0 and u attains a maximum at point (x0, t0) ∈ M × (0, T ) then u is
constant on M × [0, t0].

(b) If c < 0 and the function u attains a non-negative maximum at a point (x0, t0) ∈
M × (0, T ), then u is constant on M × [0, t0].

By reversing both inequalities we obtain the corresponding minimum version of the
comparison and strong principle; for the proofs see [5, 35] or [72].

6.3.2 Vectorial Parabolic Maximum Principle

Let M be a smooth manifold, possibly with boundary ∂M , equipped with a smooth
family of metrics {g(t)}t∈[0,T ) and associated Levi-Civita connections ∇g(t). Let
E be a vector bundle over M equipped with a time-independent metric h and a
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family {∇(t)}t∈[0,T ) of connections that are compatible with h. The time-dependent
Laplacian acting on smooth sections of E is defined by

Δ(t)φ =
m∑

i=1

(∇(t)vi
∇(t)vi

φ − ∇(t)∇g(t)
vi

vi
φ
)

where {v1, . . . , vm} is an orthonormal basis of g(t).
Following the same lines as in the elliptic case, we can derive Weinberger-

Hamilton’s versions of the parabolic maximum principle.

Theorem 24 (Weak Vectorial MaximumPrinciple) Suppose thatM is a compact
manifold, possibly with boundary ∂K , equipped with a smooth family {g(t)}t∈[0,T )

of Riemannian metrics. Let E be a vector bundle over M endowed with time
independent bundle metric h and a family {∇(t)}t∈[0,T ) of connections that are
compatible with h. Let K be a closed fiber-convex subset of E that is invariant
under parallel transport with respect to each connection ∇(t), t ∈ [0, T ), and let
{φ(t)}t∈[0,T ) be a smooth family of sections such that

∇∂t φ − Δ(t)φ = ∇(t)Xφ + Ψ (φ)

where X is a smooth time dependent vector field and Ψ is a smooth fiberwise map
that points into K . If φ(x,t) ∈ K for any (x, t) in the parabolic boundary of M ×
[0, T ), i.e., for any (x, t) ∈ (

M × {0}) ∪ (
∂M × [0, T )

)
, then φ(x,t) ∈ K for any

(x, t) ∈ M × [0, T ).

Theorem 25 (Strong Vectorial Maximum Principle) Suppose that M is a
smooth, not necessarily compact, manifold equipped with a smooth family
{g(t)}t∈[0,T ) of Riemannian metrics. Moreover, let E be a vector bundle over M

endowed with time independent metric h and a family {∇(t)}t∈[0,T ) of connections
that are compatible with h. Assume that K is a closed fiber-convex subset of the
vector bundle E that is invariant under parallel transport with respect to each
connection ∇(t), t ∈ [0, T ), and let {φ(t)}t∈[0,T ) be a smooth family of sections
such that

∇∂t φ − Δ(t)φ = ∇(t)Xφ + Ψ (φ)

where X is a smooth time dependent vector field and Ψ is a smooth fiberwise map
that points into K . If there exists a point (x0, t0) ∈ M × (0, T ) such that φ(x0,t0) ∈
∂K , then φ(x,t) ∈ ∂K for any (x, t) ∈ M × [0, t0].

Let us describe now the parabolic maximum principle in the special case where
as vector bundle we consider the space of symmetric 2-tensors.

Theorem 26 Let M be a compact manifold equipped with a smooth family
{g(t)}t∈[0,T ) of Riemannian metrics. Suppose that {φ(t)}t∈[0,T ) is smooth family
of symmetric 2-tensors on M such that
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∇∂t φ − Δ(t)φ = ∇(t)Xφ + Ψ (φ)

where Ψ : Sym(T ∗M ⊗ T ∗M) → Sym(T ∗M ⊗ T ∗M) is a smooth fiberwise map
satisfying the null-eigenvector condition and X is a smooth time dependent vector
field. If φ(0) ≥ 0, then φ(t) ≥ 0 for all t ∈ [0, T ). Additionally, if there is a
point (x0, t0) ∈ M × (0, T ) where φ(t0) has a zero eigenvalue then φ(t) has a zero
eigenvalue for any t ∈ (0, t0).

6.4 Evolution Equations

We will compute the evolution of some important quantities. In order to simplify
the notation, we omit upper or lower indices on connections and Laplacians
which identify the corresponding bundles where they are defined. Most of these
computations can be found in [4, 75–78, 86, 94, 96].

Lemma 4 Suppose that F : M × [0, T ) → N is a solution of the mean curvature
flow. Then, the following facts are true:

(a) The induced metrics g evolve in time under the equation

(∇∂t g
)
(v1, v2) = −2〈H,A(v1, v2)〉 = −2AH (v1, v2),

for any v1, v2 ∈ X(M).
(b) The induced volume form Ω on (M, g) evolves according to the equation

∇∂t Ω = −|H |2Ω.

Moreover, the volume of the evolved submanifolds satisfy

∂tVol = −
∫

M

|H |2Ω.

(c) There exists a local smooth time-dependent tangent orthonormal frame field
and a local smooth time-dependent orthonormal frame field along the normal
bundle of the evolving submanifolds.

Proof

(a) Let v1, . . . , vm be time-independent tangent vector fields. Keeping in mind the
notation introduced in Section 6.1.2, we have

∇∂t dF (vi) = ∇vi
dF (∂t ) + dF

([∂t , vi]
) = ∇vi

H,

for any i ∈ {1, . . . , m}. Therefore, for any i, j ∈ {1, . . . , m}, we deduce that
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(∇∂t g)(vi, vj ) = ∂t (g(vi, vj )) − g(∇∂t vi , vj ) − g(vi,∇∂t vj )

= ∂t 〈dF(vi), dF (vj )〉 = 〈∇vi
H, dF (vj )〉 + 〈∇vj

H, dF (vi)〉
= −〈H,∇vi

dF (vj )〉 − 〈H,∇vj
dF (vi)〉

= −2〈H,A(vi, vj )〉.

(b) We compute

∂t

√
det gij =

∑

k,l

(
gkl∂tgkl

)
det gij

2
√

det gij

= −
∑

k,l

〈H, gklAkl〉
√

det gij

= −|H |2√det gij .

(c) The associated adjoint operator P : (T M, g) → (T M, g) of AH satisfies

AH (v1, v2) = g(Pv1, v2) = g(v1, P v2), (35)

for any v1, v2 ∈ X(M). Consider now the family of bundle isomorphism U(t) :(
T M, g(0)

) → (
T M, g(t)

)
, given as the solution of the initial value problem

{∇∂t U(t) = P ◦ U(t),

U(0) = I.
(36)

By a straightforward computation, we can show that U∗(t)g(t) = g(0). Hence,
if {e1(0), . . . , em(0)} is a local orthonormal frame with respect to g(0), then
{e1(t) = U(t)e1(0), . . . , em(t) = U(t)em(0)} is a local orthonormal frame of
g(t). By taking the complement of {e1, . . . , em}, we get a time-dependent frame
field on the normal bundles of the evolving submanifolds.

��
Lemma 5 The time-derivative of the second fundamental form is given by

(∇⊥
∂t

A
)α

ij
= (∇⊥2H

)α

ij
−

∑

k,β
HβA

β
jkA

α
ik −

∑

β
HβR̃βijα,

where the indices are with respect to a local orthonormal frame.

Proof Suppose that {e1, . . . , em; ξm+1, . . . , ξn} is a local adapted orthonormal
frame field around a fixed point (x0, t0). Recall that

∇∂t ∂t = 0, ∇ei
∂t = 0 and [∂t , ei] = ∇∂t ei =

∑

j,β
HβA

β
ij ej . (37)

In order to simplify the computations, we may assume that {e1, . . . , em} is normal
frame at (x0, t0). Under these considerations, we have that at (x0, t0)
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(∇∂t A)ij = ∇∂t ∇ei
dF (ej ) − ∇∂t dF (∇ei

ej ) − A(∇∂t ei , ej ) − A(ei,∇∂t ej )

= ∇ei
∇∂t dF (ej ) + R̃

(
H, dF(ei), dF (ej )

) + ∇∇∂t ei
dF (ej )

−dF
(∇∂t ∇ei

ej

) − A(∇∂t ei , ej ) − A(ei,∇∂t ej ).

Hence,

(∇∂t A)ij = ∇ei

(∇ej
H + dF(∇∂t ej )

) + R̃
(
H, dF(ei), dF (ej )

)

+∇∇∂t ei
dF (ej ) − dF

(∇∂t ∇ei
ej

) − A(∇∂t ei , ej ) − A(ei,∇∂t ej )

= ∇2
ei ,ej

H + R̃
(
H, dF(ei), dF (ej )

) + ∇ei
dF (∇∂t ej )

+∇∇∂t ei
dF (ej ) − dF

(∇∂t ∇ei
ej

) − A(∇∂t ei , ej ) − A(ei,∇∂t ej )

= ∇2
ei ,ej

H + R̃
(
H, dF(ei), dF (ej )

) + ∇ei
dF (∇∂t ej )

+∇∇∂t ei
dF (ej ) − dF

(∇∂t ∇ei
ej

) − A(∇∂t ei , ej ) − A(ei,∇∂t ej )

and so

(∇∂t A)ij = ∇2
ei ,ej

H + R̃
(
H, dF(ei), dF (ej )

) − dF
(
R∇(∂t , ei , ej )

)

where R∇ is the curvature operator of ∇ on T (M×(0, T )). Consequently, at (x0, t0)

we have

(∇⊥
∂t

A)ij =
∑

α
〈(∇⊥

∂t
A)ij , ξα〉ξα =

∑

α
〈(∇∂t A)ij , ξα〉ξα

=
∑

α
〈∇ei

∇ej
H, ξα〉ξα +

∑

α,β
HβR̃βijαξα.

On the other hand,

〈∇ei
∇ej

H, ξα〉 = 〈∇⊥
ei

(∇⊥
ej

H +
∑

k
〈∇ej

H, dF (ek)〉dF(ek)
)
, ξα〉

= (∇2⊥H)αij −
∑

k,β
HβA

β
jkA

α
ik.

Combining the last two equalities we obtain the result. ��
Lemma 6 The mean curvature H evolves in time under the equation

(∇⊥
∂t

H)α = (Δ⊥H)α −
∑

i,β

HβR̃βiiα +
∑

i,j,β

HβA
β
ijA

α
ij .

Moreover,
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∂t |H |2 = Δ|H |2 − 2|∇⊥H |2 + 2|AH |2 − 2
∑

i,α,β

HαHβR̃αiiβ ,

where the indices are with respect to a local orthonormal frame.

Proof Let (x0, t0) ∈ M × (0, T ) and {e1, . . . , em; ξm+1, . . . , ξn} be a local
orthonormal frame field around of (x0, t0). From (37) and Lemma 5, we have

(∇⊥
∂t

H
)α =

∑

i

(∇⊥
∂t

Aii

)α =
∑

i

(∇⊥
∂t

A)αii + 2
∑

i

Aα(∇∂t ei , ei)

= (Δ⊥H)α +
∑

i,β

HβR̃βiiα −
∑

i,j,β

HβA
β
ijA

α
ij + 2

∑

i,j,β

HβA
β
ijA

α
ij ,

from where we deduce the evolution equation for H . Moreover

∂t |H |2 = ∂t 〈H,H 〉 = 2〈∇⊥
∂t

H,H 〉 =
∑

α

(∇⊥
∂t

H)αHα

= 2
∑

α

(ΔH)αHα − 2
∑

i,α,β

HαHβR̃αiiβ + 2
∑

i,j,α,β

HαHβAα
ijA

β
ij .

On the other hand

∑

α

Δ(Hα)2 = 2
∑

α

(ΔH)αHα + 2
∑

α

|∇Hα|2.

Combining the last two identities we obtain the desired identity. ��

6.5 Evolution Equations of Parallel Forms

Let F : M ×[0, T ) → N be a solution of the mean curvature flow and suppose that
Φ is a parallel k-tensor on N . Then, the pullback via F of Φ gives rise to a time-
dependent k-form on M . For example, the volume form of N is such a tensor. As we
will see in the next section, interesting situations occurs when N is a Riemannian
product N1 × N2 and we consider the volume forms Ω1 and Ω2 of N1 and N2,
respectively.

In the next lemmata, we will compute how these pullback tensors evolve under
the mean curvature flow.

Lemma 7 The covariant derivative of the tensor F ∗Φ is given by

(∇es F
∗Φ)i1...ik =

∑

α

(
Aα

si1
Φαi2...ik + · · · + Aα

sim
Φi1...im−1α

)
,

for any adapted orthonormal frame field {e1, . . . , em; ξm+1, . . . , ξn−m}.
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Proof As usually let us suppose that {e1, . . . , em} is a normal frame at a fixed point
(x0, t0) in space-time. By a direct computation, we get that at (x0, t0) we have

(∇es F
∗Φ)i1...ik = esΦ

(
dF(ei1), . . . , dF (eim)

)

= Φ
(∇es dF (ei1), . . . , dF (eim)

) + · · · + Φ
(
dF(ei1), . . . ,∇es dF (eim)

)

= Φ
(
A(es, ei1), . . . , dF (eim)

) + · · · + Φ
(
dF(ei1), . . . , A(es, eim)

)

=
∑

α

(
Aα

si1
Φαi2...ik + · · · + Aα

sim
Φi1...im−1α

)
.

This completes the proof. ��
By a direct computation we can derive the expression for the Laplacian of the

pullback of a parallel k-tensor on N .

Lemma 8 The Laplacian of the k-tensor F ∗Φ is given by

(ΔF ∗Φ)i1...im =
∑

α

(∇⊥
ei1

H)αΦαi2...im + · · · +
∑

α

(∇⊥
eim

H)αΦi1...im−1α

+ 2
∑

k,α,β

Aα
ki1

A
β
ki2

Φαβi2...im + · · · + 2
∑

k,α,β

Aα
kim−1

A
β
kim

Φi1...αβ

−
∑

k,l,α

(
Aα

ki1
Aα

klΦli2...im + · · · + Aα
kim

Aα
klΦi1...im−1l

)

−
∑

k,α

(
R̃kαki1Φαi2...im + · · · + R̃kαkimΦi1...im−1α

)
,

for any adapted orthonormal frame field {e1, . . . , em; ξm+1, . . . , ξn−m}.
Proof Let {e1, . . . , em; ξm+1, . . . , ξn−m} be an adapted normal frame at the point
(x0, t0) in space-time. We compute,

(∇ek
∇ek

F ∗Φ
)
i1...im

= ek

(
Φ(Aki1 , . . . , dF (eim)) + · · · + Φ(dF(ei1), . . . , Akim)

)

= Φ((∇ek
A)ki1 , . . . , dF (eim)) + · · · + Φ(dF(ei1), . . . , (∇ek

A)kim)

+2Φ
(
Aki1 , Aki2 , . . . , dF (eim)

) + · · · + 2Φ
(
dF(ei1), . . . , Akim−1 , Akim

)

= Φ((∇⊥
ek

A)ki1 , . . . , dF (eim)) + · · · + Φ(dF(ei1), . . . , (∇⊥
ek

A)kim)

+2Φ
(
Aki1 , Aki2 , . . . , dF (eim)

) + · · · + 2Φ
(
dF(ei1), . . . , Akim−1 , Akim

)

−
∑

l
〈Aki1 , Akl〉F ∗Φ(el, . . . eim) − · · · −

∑

l
〈Akim,Akl〉F ∗Φ(ei1 . . . , el).

Summing over k and using the Codazzi equation (4), we get the result. ��
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Lemma 9 Suppose that F : M × [0, T ) → N is a solution of the mean curvature
flow and let Φ be a parallel m-form on N . Then, u = ∗(F ∗Φ), where ∗ is the
Hodge star operator with respect to the induced Riemannian metric g, evolves in
time under the equation

∂tu − Δu = −2
∑

k,α,β

Aα
k1A

β
k2Φαβ2...m − · · · − 2

∑

k,α,β

Aα
km−1A

β
kmΦ1...αβ

+
∑

k,l,α

(
Aα

k1A
α
klΦl2...m + · · · + Aα

kmAα
klΦ1...m−1l

)

+
∑

k,α

(
R̃kαk1Φα2...m + · · · + R̃kαkmΦ1...m−1α

)
,

for any adapted orthonormal frame field {e1, . . . , em; ξm+1, . . . , ξn−m}.
Proof Let us make our computations again, with respect to a time-dependent
orthonormal frame field as in Lemma 4. We compute,

∂tu = ∂t

(
(F ∗Φ)(e1, . . . , em)

)

= Φ
(∇∂t dF (e1), . . . , dF (em)

) + · · · + Φ
(
dF(e1), . . . ,∇∂t dF (em)

)
.

Taking into account the formulas (37), we have

∇∂t dF (ei) = ∇ei
dF (∂t ) + dF(∇∂t ei) = ∇ei

H +
∑

k,β

HβA
β
ikdF (ek)

= ∇⊥
ei

H,

for any i ∈ {1, . . . , m}. Hence, putting everything together, we deduce that

∂tu = Φ
(∇⊥

e1
H, . . . , dF (em)

) + · · · + Φ
(
dF(e1), . . . ,∇⊥

em
H

)
.

Combining with Lemma 8 we obtain the result. ��

7 Formation of Singularities Under Mean Curvature Flow

In this section, we present how one can build smooth singularity models for
the mean curvature flow by rescaling properly around points, where the second
fundamental form attains its maximum. The proof relies heavily on a compactness
theorem of Cheeger-Gromov-Taylor [14] for pointed Riemannian manifolds and on
the standard compactness theorem for immersions; see for example [27].
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7.1 Characterization of the Maximal Time of Existence

In the following theorem, we give a characterization of the maximal time of
solutions of the mean curvature flow. Its proof has been done by Huisken in [52, 53]
and is based on the parabolic maximum principle. The key observation is that all
higher derivatives ∇kA, k ∈ N, of the second fundamental tensor are uniformly
bounded, once A is uniformly bounded. More precisely, the following result holds:

Theorem 27 Let M be a compact manifold and let F0 : M → N a smooth
immersion into a complete Riemannian manifold N . Then, the maximal time Tmax
of the solution of the mean curvature flow, with initial data F0, is finite if and only if

lim supt→Tmax

(
maxM×[0,t]|A|) = ∞.

An immediate consequence of the above result is the following theorem.

Theorem 28 Let M be a compact manifold and F : M → [0, Tmax) → N

a solution of the mean curvature flow on a maximal time interval in a complete
Riemannian manifold N . If the norm |A| of the second fundamental form is
uniformly bounded, then the maximal time of solution of the flow is infinite.

Remark 7 When the target space N is compact and the maximal time of solution
of the flow is infinite, due to a deep result of Simon [82], it follows that the flow
converges smoothly and uniformly to a minimal submanifold. However, long-time
existence does not automatically imply convergence. For instance, start with a
latitude circle S

1 on a complete surface of revolution that does not admit closed
embedded curves as geodesics. Then the flow with initial that particular circle will
run forever, but it will not converge.

Remark 8 Due to a recent result of Cooper [27], it is not necessary to have
boundedness on the full norm of the second fundamental form in order to get long-
time existence of the flow. In the matter of fact, he showed that uniform boundedness
of the second fundamental form only in the direction of the mean curvature also
leads to long-time existence.

7.2 Cheeger-Gromov Compactness for Metrics

Let us recall here the basic notions and definitions. For more details, see [5, 25] and
[66]. We closely follow the exposition in [78].

Definition 26 Let (E, π,Σ) be a vector bundle endowed with a Riemannian metric
g and a metric connection ∇ and suppose that {ξk}k∈N is a sequence of sections of
E. Let U be an open subset of Σ with compact closure Ū in Σ . Fix a natural number
p ≥ 0. We say that {ξk}k∈N converges Cp-smoothly to ξ∞ ∈ Γ (E|U), if for every
ε > 0, there exists k0 = k0(ε), such that
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sup
0≤α≤p

sup
x∈Ū

|∇α(ξk − ξ∞)| < ε

where k ≥ k0. We say that {ξk}k∈N C∞-smoothly converges to ξ∞ ∈ Γ (E|Ū ) if
{ξk}k∈N converges in Cp to ξ∞ ∈ Γ (E|U), for any p ≥ 0.

Definition 27 Let (E, π,Σ) be a vector bundle endowed with a Riemannian metric
g and a metric connection ∇. Let {Un}n∈N be an exhaustion of Σ and {ξk}k∈N be
a sequence of sections of E defined on open sets Ak of Σ . We say that {ξk}k∈N
converges smoothly on compact sets to ξ∞ ∈ Γ (E) if:

(a) For every n ∈ N there exists k0 such that Un ⊂ Ak , for all natural numbers
k ≥ k0.

(b) The sequence {ξ |Uk
}k≥k0 converges in C∞ to the restriction of the section ξ∞

on Un.

In the next definitions, we recall the notion of the smooth Cheeger-Gromov
convergence of sequences of Riemannian manifolds.

Definition 28 A pointed Riemannian manifold (Σ, g, x) is a Riemannian manifold
(Σ, g) with a choice of origin or base point x ∈ Σ . If the metric g is complete, we
say that (Σ, g, x) is a complete pointed Riemannian manifold.

Definition 29 We will say that a sequence {(Σk, gk, xk)}k∈N of complete, pointed
Riemannian manifolds smoothly converges in the sense of Cheeger-Gromov to a
complete pointed Riemannian manifold (Σ∞, g∞, x∞), if there exists:

(a) An exhaustion {Uk}k∈N of Σ∞ with x∞ ∈ Uk , for all k ∈ N.
(b) A sequence of diffeomorphisms Φk : Uk → Φk(Uk) ⊂ Σk , with

Φk(x∞) = xk

and such that the sequence {Φ∗
k gk}k∈N smoothly converges in C∞ to g∞ on

compact sets in Σ∞.

The sequence {(Uk,Φk)}k∈N is called a family of convergence pairs of the sequence
{(Σk, gk, xk)}k∈N, with respect to the limit (Σ∞, g∞, x∞).

When we say smooth convergence, we always mean smooth convergence in the
sense of Cheeger-Gromov. The family of convergence pairs is not unique. Two such
families {(Uk,Φk)}k∈N,{(Wk, Ψk)}k∈N are equivalent in the sense that there exists
an isometry I of the limit (Σ∞, g∞, x∞), such that for every compact subset K of
Σ∞, there exists a natural number k0, such that for any natural k ≥ k0:

(a) The mapping Φ−1
k ◦ Ψk is well defined over K .

(b) The sequence {Φ−1
k ◦ Ψk}k≥k0 smoothly converges to I on K .

The limiting pointed Riemannian manifold (Σ∞, g∞, x∞) of the Definition 29 is
unique up to isometries.
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Definition 30 Let M be a Riemannian manifold. The injectivity radius at x ∈ M is
the supremum of all values r, such that the expotential map from the unit ball Br(x)

in TxM , to the manifold M, is injective.

Definition 31 A complete Riemannian manifold (Σ, g) is said to have bounded
geometry, if the following conditions are satisfied:

(a) For any integer j ≥ 0, there exists a uniform positive constant Cj , such that
|∇jR| ≤ Cj .

(b) The injectivity radius satisfies injg(Σ) > 0.

The following proposition is standard and will be useful in the proof of the long-time
existence of the mean curvature flow.

Proposition 3 Suppose (Σ, g) is a complete Riemannian manifold with bounded
geometry. Suppose that {αk}k∈N is an increasing sequence of real numbers that
tends to +∞ and let {xk}k∈N be a sequence of points on Σ . Then, the sequence
{(Σ, α2

kg, xk)}k∈N smoothly subconverges to the euclidean space (Rm, geuc, 0).

We will use the following definition of uniformly bounded geometry for a sequence
of pointed Riemannian manifolds.

Definition 32 We say that a sequence {(Σk, gk, xk)}k∈N of complete pointed
Riemannian manifolds has uniformly bounded geometry, if the following two
conditions are satisfied:

(a) For any integer j ≥ 0, there exists a uniform constant Cj , such that for each
k ∈ N it holds |∇jRk| ≤ Cj , where Rk is the curvature operator of the metric
gk .

(b) There exists a uniform constant c0, such that injgk
(Σk) ≥ c0 > 0.

In the next result, we state the Cheeger-Gromov compactness theorem for sequences
of complete pointed Riemannian manifolds. The version that we present here is due
to Hamilton [46].

Theorem 29 Let {(Σk, gk, xk)}k∈N be a sequence of complete pointed Riemannian
manifolds with uniformly bounded geometry. Then, the sequence {(Σk, gk, xk)}k∈N
subconverges smoothly to a complete pointed Riemannian manifold (Σ∞, g∞, x∞).

Remark 9 We would like to mention here that due to an estimate from Cheeger,
Gromov and Taylor [14], the above compactness theorem still holds under the
weaker assumption that the injectivity radius is uniformly bounded from below
by a positive constant, only along the base points {xk}k∈N, thereby avoiding the
assumption of the uniform lower bound for injgk

(Σk).
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7.3 Convergence of Immersions

Definition 33 Let Fk : (Σk, gk, xk) → (Pk, hk, yk) be a sequence of isometric
immersions, such that F(xk) = yk , for any k ∈ N. We say that the sequence {Fk}k∈N
converges smoothly to an isometric immersion

F∞ : (Σ∞, g∞, x∞) → (P∞, h∞, y∞)

if the following conditions are satisfied:

(a) The sequence {(Σk, gk, xk)}k∈N smoothly converges to (Σ∞, g∞, x∞).
(b) The sequence {(Pk, hk, yk)}k∈N smoothly converges to (P∞, h∞, y∞).
(c) If {(Uk,Φk)}k∈N is a family of convergence pairs of {(Σk, gk, xk)}k∈N and

{(Wk, Ψk)}k∈N is a family of convergence pairs of {(Pk, hk, yk)}k∈N, then for
each k ∈ N, we have Fk ◦ Φk(Uk) ⊂ Ψk(Wk) and Ψ −1

k ◦ F ◦ Φk smoothly
converges to F∞ on compact sets.

Lemma 10 Suppose that (P, h) is a complete Riemannian manifold with bounded
geometry. Then, for any C > 0, there exists a positive constant r > 0, such that
injg(Σ) > r , for any isometric immersion F : (Σ, g) → (P, h) such that the norm
|AF | of its second fundamental form satisfies |AF | ≤ C.

The last lemma and the Cheeger-Gromov compactness theorem allow us to deduce
a compactness theorem in the category of sequences of immersions; see for example
[27].

Theorem 30 Let {(Σk, gk, xk)}k∈N and {(Pk, hk, yk)}k∈N be two sequences of
complete Riemannian manifolds with dimensions m and l, respectively. Suppose
that Fk : (Σk, gk, xk) → (Pk, hk, yk) is a family of isometric immersions, where
Fk(xk) = yk . Assume that:

(a) Each Σk is compact.
(b) The sequence {(Pk, hk, yk)}k∈N has uniformly bounded geometry.
(c) For any integer j ≥ 0, there exists a uniform constant Cj , such that

|(∇Fk )jAFk
| ≤ Cj ,

for any k ∈ N. Here, AFk
stands for the second fundamental form of Fk .

Then, the sequence {Fk}k∈N subconverges smoothly to a complete isometric immer-
sion F∞ : (Σ∞, g∞, x∞) → (P∞, h∞, y∞).
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7.4 Modeling the Singularities

In the following theorem, we describe a method of rescaling around points, where
the second fundamental form attains its maximum.

Theorem 31 Let Σ be a compact manifold and let F : Σ × [0, Tmax) → (P, h) be
a solution of mean curvature flow, where P is a Riemannian manifold with bounded
geometry and Tmax ≤ ∞ is the maximal time of existence of a smooth solution.
Suppose that there exists a point x∞ ∈ Σ and a sequence of points {(xk, tk)}k∈N in
Σ × [0, T ) with lim xk = x∞, lim tk = Tmax such that

ak = max
M×[0,tk]

|A(x, t)| = |A(xk, tk)| → ∞.

Then:

(a) The family of maps Fk : Σ × [−a2
k tk, 0] → (P, a2

kh),k ∈ N, given by

Fk(x, s) = Fk,s(x) = F(x, s/a2
k + tk),

form a sequence of mean curvature flow solutions. The mean curvature HFk
and

the norm |AFk
| of the second fundamental form of Fk satisfy the equation

HFk
= 1

a2
k

H(x, s/a2
k + tk) and |AFk

(x, s)| = 1

ak

|A(x, s/a2
k + tk)|.

Moreover, for any s ≤ 0 we have

|AFk
(x, s)| ≤ 1 and |AFk

(xk, 0)| = 1,

for any k ∈ N.

(b) For any fixed s ≤ 0, the sequence {(Σ, F ∗
k,s(a

2
kh), xk)}k∈N smoothly sub-

converges in the Cheeger-Gromov sense to a connected complete pointed
Riemannian manifold (Σ∞, g∞(s), x∞), where Σ∞ does not depend on the
choice of s. Moreover, the sequence

{(
P, a2

kh, Fk(xk, s)
)}

k∈N smoothly sub-
converges in the Cheeger-Gromov sense to the standard Euclidean space
(Rl , geuc, 0).

(c) There is an ancient smooth solution F∞ : Σ∞ × (−∞, 0] → R
l of the mean

curvature flow, such that for each fixed time s ≤ 0, the sequence {Fk,s}k∈N
smoothly subconverges in the Cheeger-Gromov sense to F∞,s . Additionally,

|AF∞| ≤ 1 and |AF∞(x∞, 0)| = 1.

(d) If dim Σ = 2 and HF∞ = 0, then the limiting Riemann surface Σ∞ has finite
total curvature. In the matter of fact, the limiting surface Σ∞ is conformally
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diffeomorphic to a compact Riemann surface minus a finite number of points
and is of parabolic type.

For the proof see [15] and [66].

8 Graphical MCF of Surfaces in Four Manifolds

Let (M, gM) and (N, gN) be compact Riemann surfaces. Recall that a smooth map
f : M → N is called area decreasing if |Λ2df | ≤ 1, where Λ2df is the 2-Jacobian
of f . Being area decreasing means that the map f contracts 2-dimensional regions
of M . If |Λ2df | < 1 the map is called strictly area decreasing and if |Λ2df | ≡ 1
the map is said area preserving.

We will deform area decreasing maps f by evolving their corresponding graphs

Γ (f ) = {
(x, f (x)) ∈ M × N : x ∈ M

}
,

under the mean curvature flow in the Riemannian product 4-manifold

(M × N, gM×N = π∗
MgM + π∗

NgN),

where πM : M × N → M and πN : M × N → N are the natural projection maps.
Our goal is to give a detailed, unified proof of the following theorem, which was

shown in [78, 85, 95, 100]. For the strictly area decreasing case, we closely follow
the presentation in [78].

Theorem 32 Let (M, gM) and (N, gN) be compact Riemann surfaces and f :
M → N be a smooth area decreasing map. Suppose that the curvatures σM of
gM and σN of gN are related by

min σM ≥ max σN .

Then there exists a family of smooth area decreasing maps ft : M → N , t ∈
[0,∞), f0 = f , such that the graphs Γ (ft ) of ft move by mean curvature flow in
(M × N, gM×N). Furthermore, there exist only two possible categories of initial
data sets and corresponding solutions:

(I) The curvatures σM and σN are constant and equal and the map f0 is area
preserving. In this category, each ft is area preserving and Γ (ft ) smoothly
converges to a minimal Lagrangian graph Γ (f∞) in M ×N , with respect to the
symplectic form

ΩM×N = π∗
MΩM ∓ π∗

NΩN,
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depending on whether the map f0 is orientation preserving or reversing,
respectively. Here ΩM and ΩN are the positively oriented volume forms of M

and N , respectively.
(II) All other possible cases. In this category, for t > 0 each map ft is strictly

area decreasing. Moreover, depending on the sign of σ = min σM we have the
following behavior:

(a) If σ > 0, then the family Γ (ft ) smoothly converges to the graph of a
constant map.

(b) If σ = 0, then Γ (ft ) smoothly converges to a totally geodesic graph Γ (f∞)

of M × N .
(c) If σ < 0, then Γ (ft ) smoothly converges to a minimal surface M∞ of the

product manifold M × N .

8.1 Jacobians of the Projection Maps

Let ΩM denote the Kähler form of the Riemann surface (M, gM) and ΩN the Kähler
form of (N, gN). We can extend ΩM and ΩN to two parallel 2-forms on the product
manifold M × N by pulling them back via the projection maps πM and πN . That is
we may define the parallel forms Ω1 = π∗

MΩM and Ω2 = π∗
NΩN. Define now two

smooth functions u1 and u2 given by

u1 = ∗(F ∗Ω1) = ∗{
(πM ◦ F)∗ΩM

} = ∗(I ∗ΩM)

and

u2 = ∗(F ∗Ω2) = ∗{
(πN ◦ F)∗ΩN

} = ∗(f ∗ΩN)

where here ∗ stands for the Hodge star operator with respect to the metric g. Note
that u1 is the Jacobian of the projection map from Γ (f ) to the first factor of M ×N

and u2 is the Jacobian of the projection map of Γ (f ) to the second factor of M ×N .
With respect to the basis {e1, e2; ξ3, ξ4} of the singular decomposition, we can write

u1 = 1
√

(1 + λ2)(1 + μ2)
and |u2| = λμ

√
(1 + λ2)(1 + μ2)

.

Another important quantity that plays a crucial role in the case of maps between
equi-dimensional manifolds is the Jacobian determinant, i.e., the map given by

Jac(f ) = ∗(f ∗ΩN)

∗(I ∗ΩM)
= u2

u1
.
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Moreover, the difference between u1 and |u2| measures how far f is from being
area preserving. In particular:

u1 − |u2| ≥ 0 if and only if f is area decreasing,

u1 − |u2| > 0 if and only if f is strictly area decreasing,

u1 − |u2| = 0 if and only if f is area preserving.

8.2 The Kähler Angles

There are two natural complex structures associated to the product space (M ×
N, gM×N), namely J1 = π∗

MJM −π∗
NJN and J2 = π∗

MJM +π∗
NJN, where JM and

JN are the complex structures on M and N defined by

ΩM(· , ·) = gM(JM · , ·) and ΩN(· , ·) = gN(JN · , ·).

Chern and Wolfson [23] introduced a function which measures the deviation of the
tangent plane dF(TxM) from a complex line of the space TF(x)(M × N). More
precisely, if we consider (M × N, gM×N) as a complex manifold with respect to J1
then its corresponding Kähler angle a1 is given by the formula

cos a1 = ϕ = gM×N

(
J1dF(v1), dF (v2)

) = u1 − u2.

For our convenience we require that a1 ∈ [0, π ]. Note that in general a1 is not
smooth at points where ϕ = ±1. If there exists a point x ∈ M such that a1(x) = 0
then dF(TxM) is a complex line of TF(x)(M × N) and x is called a complex point
of F . If a1(x) = π then dF(TxM) is an anti-complex line of TF(x)(M × N) and x

is said anti-complex point of F . In the case where a1(x) = π/2, the point x is called
Lagrangian point of the map F . In this case u1 = u2. Similarly, if we regard the
product manifold (M ×N, gM×N) as a Kähler manifold with respect to the complex
structure J2, then its corresponding Kähler angle a2 is defined by the formula

cos a2 = ϑ = gM×N

(
J2dF(v1), dF (v2)

) = u1 + u2.

The graph Γ (f ) in the product Kähler manifold (M × N, gM×N, Ji) is called
symplectic with respect to the Kähler form related to Ji , if the corresponding Kähler
angle satisfies cos ai > 0. Therefore a map f is strictly area decreasing if and only
if its graph Γ (f ) is symplectic with respect to both Kähler forms.
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8.3 Structure Equations

Around each point x ∈ Γ (f ) we choose an adapted local orthonormal frame
{e1, e2; ξ3, ξ4} along the graph. In this special case the Gauss equation reads

2σg = 2u2
1σM + 2u2

2σN + |H |2 − |A|2,

where here σg is the Gauss curvature of the induced metric. From the Ricci equation
we see that the curvature σn of the normal bundle of Γ (f ) is given by the formula

σn = R⊥
1234 = u1u2(σM + σN) + A3

11A
4
12 − A3

12A
4
11 + A3

12A
4
22 − A3

22A
4
12.

The sum of the last four terms in the above formula is equal to minus the commutator
σ⊥ of the matrices A3 = (A3

ij ) and A4 = (A4
ij ), that is

σ⊥ = 〈[A3, A4]e1, e2〉 = −A3
11A

4
12 + A3

12A
4
11 − A3

12A
4
22 + A3

22A
4
12. (38)

In the case where u1 = u2 and σM = σ = σn, it turns out that the immersion F is
Lagrangian and σg = σn. In this case, the following algebraic equality holds

σ⊥ = |A|2 − |H |2
2

. (39)

8.4 Estimates for the Jacobians and the Kähler Angles

Let us evolve now by mean curvature flow the graph Γ (f ). Denote by Tmax the
maximal time of solution of the flow and by TΓ the time until graphical property is
preserved. Of course, 0 < TΓ ≤ Tmax. We will give here several a priori estimates
for the Jacobians u1 and u2 and the Kähler angles. The proofs are straightforward
and follow directly as special cases of the general formulas of Section 6.5.

Lemma 11 The gradients of the functions ϕ, ϑ at a point x ∈ M satisfy the
equations

|∇ϕ|2 = (
1 − ϕ2)((A3

11 + A4
12)

2 + (A3
12 + A4

22)
2),

|∇ϑ |2 = (
1 − ϑ2)((A3

11 − A4
12)

2 + (A3
12 − A4

22)
2),

As long the mean curvature flow remains graphical, the Jacobians u1 and u2 satisfy
the following coupled system of parabolic equations

∂tu1 − Δu1 = |A|2u1 + 2σ⊥u2 + σM(1 − u2
1 − u2

2)u1 − 2σNu1u
2
2,
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∂tu2 − Δu2 = |A|2u2 + 2σ⊥u1 + σN(1 − u2
1 − u2

2)u2 − 2σMu2
1u2.

Moreover, ϕ and ϑ satisfy the following system of equations

∂tϕ − Δϕ = (|A|2 − 2σ⊥)ϕ + 1

2

(
σM(ϕ + ϑ) + σN(ϕ − ϑ)

)
(1 − ϕ2),

∂tϑ − Δϑ = (|A|2 + 2σ⊥)ϑ + 1

2

(
σM(ϕ + ϑ) − σN(ϕ − ϑ)

)
(1 − ϑ2).

Lemma 12 Let f : (M, gM) → (N, gN) be an area decreasing map between
compact Riemann surfaces. Suppose that the curvatures of gM and gN satisfy σ =
min σM ≥ max σN . Then the following statements hold.

(a) The conditions Jac(f ) ≤ 1 or Jac(f ) ≥ −1 are both preserved as long as the
flow remains graphical. In particular, the area decreasing property is preserved
as long as the flow remains graphical.

(b) If there is a point (x0, t0) ∈ M × (0, TΓ ) where Jac2(f )(x0, t0) = 1, then
Jac2(f ) ≡ 1 in space and time and σM ≡ σ ≡ σN .

(c) The flow remains graphical as long as it exists, that is TΓ = Tmax.

Proof

(a) From Lemma 11, we deduce that

∂tϕ − Δϕ = (|A|2 − 2σ⊥ + σN(1 − ϕ2)
)
ϕ + 1

2
(σM − σN)(ϕ + ϑ)(1 − ϕ2).

Note that the quantities 1 − ϕ2 and ϕ + ϑ are non-negative. Hence, because of
our curvature assumptions, the last line of the above equality is positive. Thus,
there exists a time dependent function h such that

∂tϕ − Δϕ ≥ h ϕ.

From the maximum principle we deduce that ϕ stays non-negative in time.
(b) From the strong maximum principle it follows that if ϕ vanishes at a point

(x0, t0) ∈ M × (0, TΓ ), then it vanishes identically in space and time. In this
case, ϑ is positive. Going back to the evolution equation of ϕ, we see that σM

and σN must be constant equal to σ . Similarly, we prove the results concerning
ϑ .

(c) By compactness, initially, we have that minx∈M u1(x, 0) = ε > 0. By
continuity, the minimum of u1 stays positive for small values of t . However,
we will show that the flow remains graphical as long as it exists. As a matter of
fact, we will show that

min
x∈M

u1(x, t) > 0,
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as long as the flow exists. Suppose to the contrary, that there exists a first time
where the graphical property does not hold. This means that there exists a point
(x0, t0) in space-time with t0 < T , such that u1(x0, t0) = 0 and u1(x, t) > 0,
for all (x, t) ∈ M × [0, t0). Since the area decreasing property is preserved by
the flow and |A|2 is bounded on M × [0, t0], there exists a constant c(t0) ∈ R,
such that

∂tu1 − Δu1 ≥ c(t0)u1,

for all (x, t) ∈ M × [0, t0). From the parabolic maximum principle, we get
u1(x, t) ≥ ec(t0)t , for all (x, t) ∈ M×[0, t0). Passing to the limit as t approaches
t0, we obtain

u1(x0, t0) = lim
t→t0

u1(x0, t) ≥ ec(t0)t0 > 0,

which leads to a contradiction.

This completes the proof. ��
From the Lemma 12 we see that, under our assumptions, the evolved maps

{ft }t∈(0,Tmax) are either strictly area decreasing or area preserving. This fact leads
us to investigate these two cases separately.

8.4.1 Strictly Area Decreasing Case

We will explore the behaviour of ρ : M × [0, Tmax) → R given by ρ = ϕ ϑ under
the graphical mean curvature flow.

Lemma 13 Let (M, gM) and (N, gN) be compact Riemann surfaces such that their
curvatures σM and σN are related by σ = min σM ≥ max σN . The following hold
true:

(a) If σ ≥ 0, then there exists a positive constant c0 such that

ρ ≥ c0e
σ t

√
1 + c2

0e
2σ t

,

for any (x, t) in space-time.
(b) If σ < 0, then there exists a positive constant c0 such that

ρ ≥ c0e
2σ t

√
1 + c2

0e
4σ t

,

for any (x, t) in space-time.
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Proof From Lemma 11 we get,

∂tρ − Δρ = 2ρ|A|2 − 2〈∇ϕ,∇ϑ〉 + 2(1 − ρ)σMu2
1 − 2(1 + ρ)σNu2

2.

Note that

−2ρ〈∇ϕ,∇ϑ〉 + 1

2
|∇ρ|2 = 1

2

(|∇(ϕϑ)|2 − 4ϕϑ〈∇ϕ,∇ϑ〉)

= 1

2

(
ϕ2|∇ϑ |2 + ϑ2|∇ϕ|2 − 2ϕϑ〈∇ϕ,∇ϑ〉)

≥ 1

2

(|ϕ∇ϑ | − |ϑ∇ϕ|)2
.

Since by assumption σM ≥ σ ≥ σN , we deduce that

∂tρ − Δρ ≥ − 1

2ρ
|∇ρ|2 + 2σρ(1 − u2

1 − u2
2).

One can algebraically check that

1 − ρ2 ≤ 2(1 − u2
1 − u2

2) ≤ 2(1 − ρ2). (40)

(a) Suppose at first that σ ≥ 0. Then

∂tρ − Δρ ≥ − 1

2ρ
|∇ρ|2 + σρ(1 − ρ2).

From the comparison maximum principle we obtain

ρ ≥ c0e
σ t

√
1 + c2

0e
2σ t

,

where c0 is a positive constant.
(b) In the case where σ < 0, from the Equation (40) we deduce that

∂tρ − Δρ ≥ − 1

2ρ
|∇ρ|2 + 2σρ(1 − ρ2),

from where we get the desired estimate.

This completes the proof. ��
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8.4.2 Area Preserving Case

Suppose that the family of the graphs is generated orientation preserving by area
decreasing maps. This means that ϕ is identically zero. In the next lemma we derive
an estimate for the Kähler angle ϑ .

Lemma 14 Suppose that M and N are compact with the same constant sectional
curvature σ and that f : M → N is an area preserving map. Then, there exists a
positive real number c0 such that

1 ≥ ϑ(x, t) ≥ c0e
σ t

√
1 + c2

0e
2σ t

,

for any point (x, t) in space-time.

Proof Since |A|2 + 2σ⊥ ≥ 0, from the evolution equation of ϑ , we get

∂tϑ − Δϑ ≥ σϑ(1 − ϑ2).

According to the parabolic maximum principle, there exist a positive real number
c0 such that

ϑ(x, t) ≥ c0e
σ t

√
1 + c2

0e
2σ t

,

for any (x, t) in space-time. This completes the proof. ��

8.5 Curvature Decay Estimates

8.5.1 Strictly Area Decreasing Case

Lemma 15 Let f : (M, gM) → (N, gN) be a strictly area decreasing map.
Suppose that the curvatures of M and N satisfy σ = min σM ≥ max σN . Let
δ : [0, T ) → R be a positive increasing real function and τ the time dependent
function given by τ = log

(
δ|H |2 + ε

)
, where ε is a non-negative number. Then,

∂t τ − Δτ ≤ 2δ

δ|H |2 + ε
|H |2|A|2 + δ′

δ|H |2 + ε
|H |2

+ 2δ

δ|H |2 + ε
|H |2σM(1 − u2

1 − u2
2) + 1

2
|∇τ |2.
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Proof Recall from Lemma 6 that |H |2 evolves in time under the equation

∂t |H |2 − Δ|H |2 = 2|AH |2 − 2|∇⊥H |2
+2R̃(H, dF (e1),H, dF (e1)) + 2R̃(H, dF (e2),H, dF (e2)),

where {e1, e2} is a local orthonormal frame with respect to g. Using the special
frames of the singular value decomposition we see that

R̃
(
H, dF(e1),H, dF (e1)

) + R̃
(
H, dF(e2),H, dF (e2)

)

= σMu2
1(λ

2 + μ2)|H |2 − (σM − σN)u2
1

(
λ2(H 4)2 + μ2(H 3)2)

≤ σM(1 − u2
1 − u2

2)|H |2.

Note that from Cauchy–Schwarz inequality |AH | ≤ |A| · |H |. Moreover, observe
that at points where the mean curvature vector is non-zero, from Kato’s inequality,
we have that

∣∣∇⊥H
∣∣2 ≥ ∣∣∇|H |∣∣2

.

Consequently, at points where the norm |H | of the mean curvature is not zero the
following inequality holds

∂t |H |2 − Δ|H |2 ≤ −2
∣∣∇|H |∣∣2 + 2|A|2|H |2 + 2σM(1 − u2

1 − u2
2)|H |2.

Now let us compute the evolution equation of the function τ . We have,

∂t τ − Δτ = δ(∂t |H |2 − Δ|H |2)
δ|H |2 + ε

+ δ2|∇|H |2|2
(δ|H |2 + ε)2 + δ′|H |2

δ|H |2 + ε

≤ − 2δ

δ|H |2 + ε

∣∣∇|H |∣∣2 + δ2

(δ|H |2 + ε)2

∣∣∇|H |2∣∣2

+ 2δ

δ|H |2 + ε
|H |2|A|2 + δ′

δ|H |2 + ε
|H |2

+ 2δ

2δ|H |2 + ε
|H |2σM(1 − u2

1 − u2
2).

Note that

− 2δ

δ|H |2 + ε

∣∣∇|H |∣∣2 + 1

2

δ2

(δ|H |2 + ε)2 |∇∣∣H |2∣∣2 ≤ 0.
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Therefore,

∂t τ − Δτ ≤ 1

2
|∇τ |2 + 2δ

δ|H |2 + ε
|H |2|A|2

+ δ′

δ|H |2 + ε
|H |2 + 2δ

δ|H |2 + ε
|H |2σM(1 − u2

1 − u2
2),

and this completes the proof. ��
Theorem 33 Let f : (M, gM) → (N, gN) be an area decreasing map, where M

and N are compact Riemann surfaces. Suppose that the curvatures of M and N

satisfy σ = min σM ≥ sup σN . Then the following statements hold:

(a) There exist a positive time independent constant C such that |H |2 ≤ C.

(b) If σ ≥ 0, there exist a time independent constant C so that |H |2 ≤ Ct−1.

Proof Consider the time dependent function Θ = log(δ|H |2 + ε) − log ρ, where
δ is a positive increasing function. From Lemmas 6 and 13 and |H |2 ≤ 2|A|2, we
deduce that

∂tΘ − ΔΘ ≤ 1

2
〈∇Θ,∇τ + ∇ρ〉 + δ′|H |2 − ε|H |2 − 2εσ (1 − u2

1 − u2
2)

δ|H |2 + ε
.

Choosing δ = 1 and ε = 0, we obtain that

∂tΘ − ΔΘ ≤ 1

2
〈∇Θ,∇τ + ∇ρ〉.

From the maximum principle the norm |H | remains uniformly bounded in time
regardless of the sign of the constant σ . In the case where σ ≥ 0, choosing ε = 1
and δ = t , we deduce that Θ remains uniformly bounded in time which gives the
desired decay estimate for H . ��

8.5.2 Area Preserving Case

In the sequel, we provide a very important decay estimate due to Wang [91] for the
mean curvature in the area preserving case.

Theorem 34 Suppose that M and N are compact Riemannian manifolds with the
same constant sectional curvature σ and that f : M → N is an area preserving
map. Then, the following decay estimate holds:

∫ |H |2
ϑ

Ω ≤ eσ t ,

where Ω is the volume element of the induced metric.
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Proof The idea is to compare |H | with ϑ . We compute

∂t

(
ϑ−1|H |2

)
− Δ

(
ϑ−1|H |2

)
= ϑ−1(∂t |H |2 − Δ|H |2) − ϑ−2|H |2(∂tϑ − Δϑ)

+2ϑ−2〈∇|H |2,∇ϑ〉 − 2ϑ−3|H |2|∇ϑ |2.

But from the evolution equation of ϑ and |H |2, we obtain

∂t

(
ϑ−1|H |2

)
− Δ

(
ϑ−1|H |2

)
(41)

= ϑ−1( − 2|∇⊥H |2 + 2
∑

k,α,β
HαHβR̃αkβk + 2

∑

i,j
(AH

ij )2)

−ϑ−2|H |2((|A|2 + 2σ⊥)ϑ + σϑ(1 − ϑ2)
) + 2ϑ−2〈∇|H |2,∇ϑ〉 − 2ϑ−3|H |2|∇ϑ |2.

Using the Equation (39) and the formula

∑

k,α,β

HαHβR̃αkβk = σ

(
1 − ϑ2

2

)
|H |2 (42)

the identity (41) becomes

∂t

(
ϑ−1|H |2

)
− Δ

(
ϑ−1|H |2

)

= ϑ−3
(

4ϑ |H |〈∇ϑ,∇|H |〉 − 2|∇ϑ |2|H |2 − 2ϑ2|∇⊥H |2
)

+ϑ−1
(

2
∑

i,j
(AH

ij )2 − 2|H |2|A|2 + |H |4
)

+ σϑ−1|H |2.

Integrating and using Stokes’ theorem, we have

∂t

(∫
ϑ−1|H |2Ω

)
=

∫
ϑ−1|H |2∇∂t Ω

+2
∫

ϑ−3
(

2ϑ |H |〈∇ϑ,∇|H |〉 − |∇ϑ |2|H |2 − ϑ2|∇⊥H |2
)
Ω

+
∫

ϑ−1
(

2
∑

i,j
(AH

ij )2 − 2|H |2|A|2 + |H |4
)
Ω + σ

∫
ϑ−1|H |2Ω.

Using

∣
∣∇|H |∣∣ ≤ ∣

∣∇⊥H
∣
∣

in the first term on the right hand side of the above equation and completing the
square, we have
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2ϑ |H |〈∇ϑ,∇|H |〉 − |∇ϑ |2|H |2 − ϑ2
∣∣∇|H |∣∣2 = −∣∣|H |∇ϑ − ϑ∇|H |∣∣2 ≤ 0.

Moreover, from Lemma 4, we have ∇∂t Ω = −|H |2Ω. Also, by Cauchy–Schwarz
inequality, we get

∑

i,j
(AH

ij )2 ≤
∑

i,j
|Aij |2|H |2 = |A|2|H |2.

Therefore, putting everything together, we get

∂t

( ∫
ϑ−1|H |2Ω

)
≤ σ

∫
ϑ−1|H |2Ω

and by integration, we obtain the result. ��

8.6 Long-time Existence

We will show now that the graphical MCF exists for all times.

Theorem 35 Let (M, gM) and (N, gN) be compact Riemann surfaces such that
their curvatures σM and σN are related by σ = min σM ≥ max σN . Also, let f :
M → N be an area preserving map. Evolve the graph off under the mean curvature
flow. Then, the norm of the second fundamental form of the evolved graphs stays
uniformly bounded in time and so the graphical mean curvature flow exists for all
times.

Proof Suppose that |A| is not uniformly bounded. Then, there exists a sequence
{(xk, tk)}k∈N in M × [0, Tmax) with lim tk = Tmax ≤ ∞, and such that

ak = max
(x,t)∈M×[0,tk]

|A(x, t)| = |A(xk, tk)| → ∞.

Let Fk : M × [−a2
k tk, 0] → (N, a2

kgN) be the graph of the “rescaled map"

f : (M, a2
kgM) → (N, a2

kgN).

Claim: The singular values are invariant under parabolic rescalings.

Let {α1, α2} and {β1, β2} orthonormal frames of the singular value decomposi-
tion of f . Then {̃α1 = α1/ak, α̃2 = α2/ak} is an orthonormal frame with respect to
a2
kgM and {β̃1 = β1/αk, β̃2 = β2/αk} is orthonormal with respect to gN . Therefore,

the singular values of the rescaled map f are given by

df (̃α1) = 1

ak

df (α1) = λ
β1

ak

= λβ̃1
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and

df (̃α2) = 1

ak

df (α2) = μ
β2

ak

= μβ̃2.

This completes the proof of the claim.
Thus, ϕFk

= ϕ and ϑFk
= ϑ . Also, from Theorem 31(a) we have

HFk
(x, s) = 1

a2
k

H(x, s/a2
k + tk),

for any (x, s) ∈ M × [−a2
k tk, 0].

CASE 1 Suppose that the evolved graphs are generated by strictly area decreasing
maps. Since from the estimate of Lemma 15 the norm |H | of the mean curvature is
uniformly bounded and the convergence is smooth, it follows that F∞ : Σ∞ → R

4

is a complete minimal immersion of parabolic type. Hence, any non-negative
superharmonic function must be constant. Since the convergence is smooth, the
corresponding Kähler angles ϕ∞, ϑ∞ of F∞ with respect to the complex structures
J = (JR2 ,−JR2) and J2 = (JR2, JR2) of R4 are non-negative. As in Lemma 11 we
get that

Δϕ∞ + (|AF∞|2 − 2σ⊥
F∞

)
ϕ∞ = 0, (43)

Δϑ∞ + (|AF∞|2 + 2σ⊥
F∞

)
ϑ∞ = 0, (44)

where −σ⊥
F∞ is the normal curvature of F∞. Moreover,

|∇ϕ∞|2 = (1 − ϕ2∞)
((

(AF∞)3
11 + (AF∞)4

12

)2 + (
(AF∞)3

12 − (AF∞)4
11

)2
)
, (45)

|∇ϑ∞|2 = (1 − ϑ2∞)
((

(AF∞)3
11 − (AF∞)4

12

)2 + (
(AF∞)3

12 + (AF∞)4
11

)2
)
. (46)

Note that from (38) one can easily derive the inequalities

|AF∞|2 ± 2σ⊥
F∞ ≥ 0.

From (43) and (44) we deduce that ϕ∞ and ϑ∞ are superharmonic and consequently
they must be constants. Thus, the functions (u1)∞ and (u2)∞ are also constants. We
will distinguish three subcases:

Sub-case A Suppose at first that ϕ∞ > 0 and ϑ∞ > 0. Then from (43) and (44)
we deduce that

|AF∞|2 ± 2σ⊥
F∞ = 0
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which implies that |AF∞| = 0. This contradicts the fact that there is a point where
|AF∞| = 1.

Sub-case B Suppose that both constants ϕ∞ and ϑ∞ are zero. Then from the
Equations (45) and (46) we obtain that AF∞ vanishes identically, which is a again a
contradiction.

Sub-case C Suppose now that only one of the constants ϕ∞, ϑ∞ is zero. Let us
assume that ϕ∞ = 0 and ϑ∞ > 0. The case ϕ∞ > 0 and ϑ∞ = 0 is treated in
a similar way. Since ϕ∞ = 0, F∞ : Σ∞ → R

4 must be a minimal Lagrangian
immersion. Note that in this case necessarily (u1)∞ = (u2)∞ = const > 0. Recall
from Theorem 5 that the minimal Lagrangian F∞ can be locally reparametrized in
the form

F∞ = 1√
2
eiβ/2(F1 − iF2,F2 + iF1

)
,

where β is a constant and F1, F2 : D ⊂ C → C are holomorphic functions defined
in a simply connected domain D such that

|(F1)z|2 + |(F2)z|2 > 0.

The Gauss map of F∞ is described by G : D → S
2 = C ∪ {∞} given by

G = (F1)z/(F2)z.

Because (u1)∞ = const > 0 we get that F∞ is the graph of an area preserving map
h. Then

F1 = (z + ih)/2, F2 = (−iz + h)/2 and |hz|2 − |hz̄|2 = 1.

Therefore

G = (F1)z/(F2)z = (1 − ihz̄)/hz.

A straightforward computation shows that

|G|2 =
∣
∣1 + ihz̄

∣
∣2

|hz|2 = 1 + |hz̄|2 + i
(
hz̄ − hz̄

)

1 + |hz̄|2 = 1 + 2 Im(hz̄)

1 + |hz̄|2 ≤ 2.

Hence, the image of G is contained in a bounded subset of C ∪ {∞}. But then, due
to Theorem 11 the immersion F∞ must be flat, which is a contradiction.
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CASE 2 Let us treat now the area preserving case. In this situation, we have that

|HFk
|2

ϑFk

= 1

a2
k

|H |2
ϑ

.

We distinguish two subcases:

Sub-case A Let us suppose that σ ≤ 0. Using Lemma 34, we have

∫ |HFk
|2

ϑFk

Ωk = 1

a2
k

∫ |H |2
ϑ

Ω ≤ 1

a2
k

eσ(s/a2
k+tk) ≤ 1

a2
k

c,

where c > 0. Since the convergence is smooth, we have

0 = lim
k→∞

∫ |HFk
|2

ϑFk

Ω =
∫

lim
k→∞

|HFk
|2

ϑFk

Ω =
∫ |HF∞|2

ϑ∞
Ω.

Therefore, HF∞ = 0. Proceeding exactly in the same way as in CASE 1 we can
prove that F∞ is flat, something which leads to a contradiction.

Sub-case B Let us treat now the case σ > 0. We will show at first that Tmax = ∞.
To show this, assume in contrary that Tmax < +∞. Then,

∫ |H |2
ϑ

Ω ≤ eσ t ≤ eσTmax < +∞.

As in the previous case, we deduce that HF∞ = 0. Performing exactly the same
procedure as above, we get a contradiction. Therefore, there is no finite time
singularity and the flow exists for all times. It remains to show that |A|2 ≤ C,
where C is time independent. Indeed, since λμ = 1, we obtain

ϑ = 2λ

1 + λ2
≤ 1.

On the other hand, from Lemma 14, we have

1 ≥ ϑ ≥ c0e
t

√
1 + c2

0e
2t

,

which tends to 1 as t → ∞. Therefore, ϑ∞ = 1 and λ∞ = 1. Therefore, f∞ is an
isometry and, thus, F∞ must be totally geodesic. The latter implies |AF∞| = 0 and
this is again a contradiction.

This completes the proof. ��
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8.7 Convergence and Proof of Theorem 32

We are ready to prove the main theorem stated in the introduction of this section.
We will show that the graphical mean curvature flow of an area preserving map
converges to an isometry in the positive case, to an affine map in the zero case, and
to a minimal surface in the negative case. Recall that from Theorem 35, we already
know that the norm of the second fundamental form stays uniformly bounded in
time. Since

∇∂t Ω = −
∫

M

|H |2Ω

and since the graphical flow exists for all time we have that there exists a time-
independent constant C, such that

∫ ∞

0

(∫

M

|H |2Ω
)

dt ≤ C.

Therefore, there exists a sequence {tk}k∈N, such that

lim
k→∞

∫

M

|H |2Ω = 0. (47)

From Theorem 35, the norms of the second fundamental forms of the evolving
submanifolds and their derivatives are uniformly bounded in time. Since the product
manifold M × N is compact, after passing to a subsequence of {tk}k∈N if necessary,
we deduce that the flow subconverges smoothly to a smooth surface M∞ of M ×N ;
see for example [11, Theorem 1.1]. From (47) M∞ should be minimal. Due to a deep
result of Simon [82], it follows that the flow converges smoothly and uniformly to a
minimal surface M∞ ⊂ M × N . Additionally, we have the following situations:

Area Preserving Case Let us treat the case where the evolving maps are area
preserving.

(a) If σ > 0, then from Lemma 14(c), we have ϑ → 1, as t → ∞. Therefore, M∞
is the graph of an isometry f∞ : M → N .

(b) If σ = 0, then from Lemma 14(c), we have that ϑ ≥ c0 > 0. Hence, the surface
M∞ is the graph of a map f∞ : M → N . From Lemma 11 and the fact that
2σ⊥∞ = |A∞|2, we have

−Δϑ∞ = 2|A∞|2ϑ∞ ≥ 0.

By the strong maximum principle, we get |A∞|2 = 0. Hence, M∞ is totally
geodesic.
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Strictly Area Decreasing Case Assume that our maps are area decreasing.

(a) Suppose that σ > 0. In this case the flow is smoothly converging to a graphical
minimal surface M∞ = Γ (f∞) of M × N . Due to Theorem 13(a), the biggest
singular value tends to zero as time goes to infinity. Hence, M∞ must be totally
geodesic and f∞ is a constant map.

(b) Assume that σ = 0. As in the previous case, we have smooth convergence of
the flow to a minimal graphical surface M∞ = Γ (f∞) of M × N , where f∞ is
a strictly area decreasing map. Because of the formula

∂t

∫

M

Ω = −
∫

M

|H |2Ω ≤ 0,

we obtain that
∫

M

Ω ≤
∫

M

ΩM = constant .

From Theorem 33(b), there is a non-negative constant C such that

∫

M

|H |2Ω ≤ C

t

∫

M

Ω ≤ C

t

∫

M

Ω.

Due to our assumptions we have u2
2 ≤ u2

1 ≤ 1 and min σM ≥ 0 ≥ sup σN .

Moreover, recall that

Ω =
√

(1 + λ2)(1 + μ2)ΩM = u−1
1 ΩM.

From the Gauss equation (8.3) and the Gauss-Bonnet formula we get

∫

M

|A|2Ω =
∫

M

|H |2Ω + 2
∫

M

(
σMu2

1 + σNu2
2

)
Ω − 2

∫

M

σg(t)Ω

≤ 2
∫

M

σMu2
1Ω − 2

∫

M

σg(t)Ω +
∫

M

|H |2Ω

≤ 2
∫

M

σMu1Ω − 2
∫

M

σg(t)Ω +
∫

M

|H |2Ω

≤ 2
∫

M

σMΩM − 2
∫

M

σg(t)Ω +
∫

M

|H |2Ω =
∫

M

|H |2Ω

≤ Ct−1,

where C is a non-negative constant. Passing to the limit, we deduce that

∫

M

|A∞|2Ω∞ = 0.
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Thus, M∞ = F∞(M) must be a totally geodesic graphical surface.

This completes the proof. ��
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