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Abstract Consider a time scale consisting of a discrete core with uniform step
size, augmented with a continuous-interval periphery. On this time scale, we
determine the best constants for the Hyers–Ulam stability of a first-order dynamic
equation with complex constant coefficient, based on the placement of the complex
coefficient in the complex plane, with respect to the imaginary axis and the Hilger
circle. These best constants are then related to known results for the special cases of
completely continuous and uniformly discrete time scales.

1 Introduction

In this paper we explore the Hyers–Ulam stability of a certain dynamic equation
on a new time scale with a discrete, uniform core and continuous periphery. Ulam
inaugurated this type of stability [37], followed by Hyers [22] and Rassias [34].
Since then, there has been wide-spread interest in this type of stability, including
for difference equations, recurrence relations, h-difference equations, quantum
equations, and dynamic equations on time scales. For early papers on difference
equations, see Popa [31, 32]; more current works include Anderson and Onitsuka
[5, 6], Baias and Popa [13], Brzdęk and Wójcik [16], Onitsuka [29, 30], Rasouli,
Abbaszadeh, and Eshaghi [33], Xu and Brzdęk [38]. A related monograph is
Brzdęk, Popa, Raşa, and Xu [17]. Quantum equations and Hyers–Ulam stability
are investigated in Anderson and Onitsuka [7, 8]. For some work on matrix and
nonlinear difference equations, see Jung and Nam [24, 25], and Nam [26–28]. For
early papers on time scales, see András and Mészáros [12], Hua, Li, and Feng [21];
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contemporary results include Anderson [2], Anderson, Jennissen, and Montplaisir
[10], Anderson and Onitsuka [3, 4, 9], Shen [35], Shen and Li [36]. For recent papers
with non-constant or periodic coefficients, see Anderson [1], Anderson, Onitsuka,
and Rassias [11], Baias, Blaga, and Popa [14], Buşe, Lupulescu, and O’Regan [19],
Buşe, O’Regan, and Saierli [18].

This work will proceed as follows. In Section 2, we will define the time scale
with discrete core and continuous periphery, introduce the basic derivative and
exponential function for this time scale, and define Hyers–Ulam stability for the
dynamic equation with a complex constant coefficient. In Section 3, we establish
the best Hyers–Ulam stability constants in Theorem 5, based on the location of the
complex coefficient with respect to the imaginary axis, and for negative real part,
with respect to the left Hilger circle. If we expand the discrete core to all of hZ, or
shrink it to recover the continuum R, we are able to relate our new results with the
current literature in the field. As we do this, an interesting case arises when the real
part of the complex coefficient is negative but it lies outside the Hilger circle; this
case is explored in Section 4. After that, we provide a brief conclusion and future
direction.

2 Time Scale with Discrete Core and Continuous Periphery

Let N0 denote the non-negative integers {0, 1, 2, . . .}, let m ∈ N0, and let h > 0.
Define the time scale with discrete core and continuous periphery via

Thm := (−∞,−hm) ∪ {−hm, . . . ,−h, 0, h, . . . , hm} ∪ (hm,∞).

Here, h > 0 is the uniform step size in the discrete core, with discrete spread m ∈ N0
out to the continuous periphery. Define the graininess function μ : Thm → R via

μ(t) =
{

0 : t ∈ (−∞,−hm) ∪ [hm,∞),

h : t ∈ {−hm, . . . ,−h, 0, h, . . . , h(m − 1)}.

As h → 0, or if m = 0, we have T0,m = Th,0 = R, and we recover results for
classical differential equations; as m → ∞ for fixed h > 0, we have Th,∞ = hZ

and we recover results for standard h-difference equations.
In this section we introduce the first-order linear homogeneous equation with

constant complex-valued coefficient

xΔ(t) − λx(t) = 0, λ ∈ C\
{−1

h

}
, t ∈ Thm, (1)
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where

xΔ(t) :=
{

d
dt

x(t) : t ∈ (−∞,−hm) ∪ [hm,∞)
x(t+h)−x(t)

h
: t ∈ {−hm, . . . ,−h, 0, h, . . . , h(m − 1)}.

Lemma 1 (Exponential Function) Fix h > 0. For t ∈ Thm, define the function

eλ(t, 0) :=

⎧⎪⎪⎨
⎪⎪⎩

(1 + hλ)−meλ(t+hm) : t ∈ (−∞,−hm)

(1 + hλ)
t
h : t ∈ {−hm, . . . ,−h, 0, h, . . . , hm}

(1 + hλ)meλ(t−hm) : t ∈ (hm,∞).

(2)

Then, x(t) = x0eλ(t, 0) for eλ(t, 0) given in (2) is the unique solution of (1)
satisfying x(0) = x0 ∈ C.

3 Best Constants for First-Order Equations with Constant
Complex Coefficient

In this section, we consider on Thm the Hyers–Ulam stability of (1), defined as
follows.

Definition 1 (HUS) Let ε > 0 be arbitrary. Equation (1) has Hyers–Ulam stability
(HUS) if and only if given φ : Thm → C satisfying |φΔ(t) − λφ(t)| ≤ ε for all
t ∈ Thm, there exists a solution x : Thm → C of (1) and a constant K > 0 such that
|φ(t) − x(t)| ≤ Kε for all t ∈ Thm. Such a constant K is called an HUS constant
for (1) on Thm.

Theorem 1 Let λ ∈ C\
{−1

h

}
with Re(λ) > 0. Let ε > 0 be a fixed arbitrary

constant, and let φ be a function on Thm satisfying the inequality∣∣φΔ(t) − λφ(t)
∣∣ ≤ ε, t ∈ Thm.

Then, lim
t→∞

φ(t)

eλ(t, 0)
exists, and the function x given by

x(t) :=
(

lim
t→∞

φ(t)

eλ(t, 0)

)
eλ(t, 0)

is the unique solution of (1) with

|φ(t) − x(t)| ≤ ε

(
1

Re(λ)

)

for all t ∈ Thm.
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Proof Let λ ∈ C\{−1
h

} with Re(λ) > 0. Throughout this proof, as |φΔ(t) −
λφ(t)| ≤ ε for all t ∈ Thm, there exists a function q : Thm → C such that

φΔ(t) − λφ(t) = q(t), |q(t)| ≤ ε

for all t ∈ Thm. The variation of constants formula then yields

φ(t) = φ0eλ(t, 0) + eλ(t, 0)

∫ t

0

q(τ)

eλ(σ (τ ), 0)
Δτ.

Since Re(λ) > 0 and |q(t)| ≤ ε, we can rewrite φ as

φ(t) =
(

φ0 +
∫ ∞

0

q(τ)

eλ(σ (τ ), 0)
Δτ

)
eλ(t, 0) − eλ(t, 0)

∫ ∞

t

q(τ )

eλ(σ (τ ), 0)
Δτ,

(3)
where

x0 := φ0 +
∫ ∞

0

q(τ)

eλ(σ (τ ), 0)
Δτ ∈ C

exists and is finite. Clearly

x(t) := x0eλ(t, 0), t ∈ Thm

is a solution of (1), and

lim
t→∞

φ(t)

eλ(t, 0)
= lim

t→∞

(
φ0 +

∫ t

0

q(τ)

eλ(σ (τ ), 0)
Δτ

)
= x0

exists, so

x(t) =
(

lim
t→∞

φ(t)

eλ(t, 0)

)
eλ(t, 0).

We take into account three cases based on the three branches of the exponential
function in (2).

(a). For Re(λ) > 0 and t ∈ (hm,∞), using (3) we have that

|φ(t) − x(t)| =
∣∣∣∣−eλ(t, 0)

∫ ∞

t

q(τ )

eλ(σ (τ ), 0)
Δτ

∣∣∣∣
≤ ε|eλ(t, 0)|

∫ ∞

t

Δτ

|eλ(σ (τ), 0)|

= ε|1 + hλ|meRe(λ)(t−hm)

∫ ∞

t

dτ

|1 + hλ|meRe(λ)(τ−hm)

= ε

Re(λ)

holds for all t ∈ (hm,∞).
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(b). For Re(λ) > 0 and t ∈ {−hm, . . . ,−h, 0, h, . . . , hm}, using (3) we have

|φ(t) − x(t)| ≤ ε|eλ(t, 0)|
∫ ∞

t

Δτ

|eλ(σ (τ), 0)|

= ε|1 + hλ| t
h

(∫ hm

t

+
∫ ∞

hm

)
Δτ

|eλ(σ (τ), 0)|

= ε|1 + hλ| t
h

⎛
⎜⎝m−1∑

j= t
h

h

|1 + hλ|j+1 +
∫ ∞

hm

dτ

|1 + hλ|meRe(λ)(τ−hm)

⎞
⎟⎠

= ε|1 + hλ| t
h

⎛
⎝h

(
|1 + hλ|− t

h − |1 + hλ|−m
)

|1 + hλ| − 1
+ 1

|1 + hλ|m Re(λ)

⎞
⎠

= ε

(
h

|1 + hλ| − 1
+ |1 + hλ| t

h
−m

(
1

Re(λ)
− h

|1 + hλ| − 1

))

≤ ε

Re(λ)

for all t ∈ {−hm, . . . ,−h, 0, h, . . . , hm}, as t
h

≤ m and 1
Re(λ)

≥ h
|1+hλ|−1 for

Re(λ)>0 and h > 0.
(c). For Re(λ) > 0 and t ∈ (−∞,−hm), using (3) we have

|φ(t) − x(t)| ≤ ε|eλ(t, 0)|
∫ ∞

t

Δτ

|eλ(σ (τ), 0)|

= ε eRe(λ)(t+hm)

|1 + hλ|m
(∫ −hm

t

+
∫ hm

−hm

+
∫ ∞

hm

)
Δτ

|eλ(σ (τ), 0)|

= ε eRe(λ)(t+hm)

|1 + hλ|2m

(
1

Re(λ)
+

(
e− Re(λ)(t+hm) − 1

)
|1 + hλ|−2m Re(λ)

+h
(|1 + hλ|2m − 1

)
|1 + hλ| − 1

)

= ε

{
1

Re(λ)
+ eRe(λ)(t+hm)

(
1

|1 + hλ|2m Re(λ)

+
(

h

|1 + hλ| − 1

)(
1 − 1

|1 + hλ|2m

)
− 1

Re(λ)

)}

≤ ε

Re(λ)
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for all t ∈ (−∞,−hm), as t < −hm, and the expression inside the square
brackets is negative.

We next show that x is the unique solution of (1) such that |φ(t)−x(t)| ≤ Kε :=
1

Re(λ)
ε for all t ∈ Thm. Suppose φ : Thm → C is an approximate solution of (1)

such that ∣∣φΔ(t) − λφ(t)
∣∣ ≤ ε for all t ∈ Thm

for some ε > 0. Suppose further that x1, x2 : Thm → C are two different solutions
of (1) such that |φ(t) − xj (t)| ≤ Kε for all t ∈ Thm, for j = 1, 2. Then, we have
for constants cj ∈ C that

xj (t) = cj eλ(t, 0), c1 �= c2,

and

|c1 − c2| · |eλ(t, 0)| = |x1(t) − x2(t)| ≤ |x1(t) − φ(t)| + |φ(t) − x2(t)| ≤ 2Kε;
letting t → ∞ yields ∞ < 2Kε, a contradiction. Consequently, x is the unique
solution of (1) such that |φ(t) − x(t)| ≤ ε

Re(λ)
for all t ∈ Thm. This completes the

proof. 	

Theorem 2 Let λ ∈ C\

{−1
h

}
with Re(λ) < 0. Let ε > 0 be a fixed arbitrary

constant, and let φ be a function on Thm satisfying the inequality∣∣φΔ(t) − λφ(t)
∣∣ ≤ ε, t ∈ Thm.

Then, lim
t→−∞

φ(t)

eλ(t, 0)
exists, and the function x given by

x(t) :=
(

lim
t→−∞

φ(t)

eλ(t, 0)

)
eλ(t, 0)

is the unique solution of (1) with |φ(t) − x(t)| ≤ Kε for all t ∈ Thm, where

K :=
⎧⎨
⎩

−1
Re(λ)

+ 2hm : |1 + hλ| = 1

max
{ −1

Re(λ)
, h

1−|1+hλ| + |1 + hλ|2m
(

h
|1+hλ|−1 − 1

Re(λ)

)}
: |1 + hλ| �= 1.

(4)
In particular, the following holds.

(i) If t ∈ (−∞,−hm), then

|φ(t) − x(t)| ≤ ε

( −1

Re(λ)

)

for all t ∈ (−∞,−hm).
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(ii) If |1 + hλ| = 1 and t ∈ {−hm, . . . ,−h, 0, h, . . . , hm} ∪ (hm,∞), then

|φ(t) − x(t)| ≤ ε

( −1

Re(λ)
+ 2hm

)

for all t ∈ {−hm, . . . ,−h, 0, h, . . . , hm} ∪ (hm,∞).
(iii) If 0 < |1 + hλ| < 1 and t ∈ {−hm, . . . ,−h, 0, h, . . . , hm} ∪ (hm,∞), then

|φ(t) − x(t)| ≤ ε

(
h

1 − |1 + hλ| + |1 + hλ|2m

(
h

|1 + hλ| − 1
− 1

Re(λ)

))

for all t ∈ {−hm, . . . ,−h, 0, h, . . . , hm} ∪ (hm,∞).
(iv) If |1 + hλ| > 1 and t ∈ {−hm, . . . ,−h, 0, h, . . . , hm} ∪ (hm,∞), then

|φ(t) − x(t)| ≤ ε

(
h

1 − |1 + hλ| + |1 + hλ|2m

(
h

|1 + hλ| − 1
− 1

Re(λ)

))

for all t ∈ {−hm, . . . ,−h, 0, h, . . . , hm} ∪ (hm,∞).

Proof Let λ ∈ C\{−1
h

} with Re(λ) < 0. Supposing |φΔ(t) − λφ(t)| ≤ ε for all
t ∈ Thm, there exists a function q : Thm → C such that

φΔ(t) − λφ(t) = q(t), |q(t)| ≤ ε

for all t ∈ Thm. Then, we have

φ(t) = φ0eλ(t, 0) + eλ(t, 0)

∫ t

0

q(τ)

eλ(σ (τ ), 0)
Δτ.

Since Re(λ) < 0 and |q(t)| ≤ ε, we can rewrite φ as

φ(t) =
(

φ0 −
∫ 0

−∞
q(τ)

eλ(σ (τ ), 0)
Δτ

)
eλ(t, 0) + eλ(t, 0)

∫ t

−∞
q(τ)

eλ(σ (τ ), 0)
Δτ,

(5)
where

x0 := φ0 −
∫ 0

−∞
q(τ)

eλ(σ (τ ), 0)
Δτ ∈ C

exists and is finite. As in the previous case,

x(t) := x0eλ(t, 0), t ∈ Thm

is a solution of (1), and

lim
t→−∞

φ(t)

eλ(t, 0)
= lim

t→−∞

(
φ0 −

∫ 0

t

q(τ )

eλ(σ (τ ), 0)
Δτ

)
= x0
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exists, so

x(t) =
(

lim
t→−∞

φ(t)

eλ(t, 0)

)
eλ(t, 0).

We again work our way through the three cases based on the three branches of the
exponential function in (2).

(i). For Re(λ) < 0 and t ∈ (−∞,−hm), using (5) we have

|φ(t) − x(t)| =
∣∣∣∣eλ(t, 0)

∫ t

−∞
q(τ)

eλ(σ (τ ), 0)
Δτ

∣∣∣∣
≤ ε|eλ(t, 0)|

∫ t

−∞
Δτ

|eλ(σ (τ), 0)|

= ε|1 + hλ|−meRe(λ)(t+hm)

∫ t

−∞
|1 + hλ|mdτ

eRe(λ)(τ+hm)

= − ε

Re(λ)

holds for Re(λ) < 0 and for all t ∈ (−∞,−hm).
(ii) (a). For Re(λ) < 0 with |1 + hλ| = 1 and t ∈ {−hm, . . . ,−h, 0, h, . . . , hm},

using (5) we have

|φ(t) − x(t)| ≤ ε|eλ(t, 0)|
∫ t

−∞
Δτ

|eλ(σ (τ), 0)|

= ε

(∫ −hm

−∞
+

∫ t

−hm

)
Δτ

|eλ(σ (τ), 0)|

= ε

⎛
⎜⎝∫ −hm

−∞
dτ

eRe(λ)(τ+hm)
+

t−h
h∑

j=−m

h

⎞
⎟⎠

= ε

( −1

Re(λ)
+ hm + t

)

≤ ε

( −1

Re(λ)
+ 2hm

)
,

for Re(λ) < 0 with |1 + hλ| = 1 and t ∈ {−hm, . . . ,−h, 0, h, . . . , hm}.
(ii) (b). For Re(λ) < 0 with |1 + hλ| = 1 and t ∈ (hm,∞), using (5) we have

|φ(t) − x(t)| ≤ ε eRe(λ)(t−hm)

(∫ −hm

−∞
+

∫ hm

−hm

+
∫ t

hm

)
Δτ

|eλ(σ (τ), 0)|
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= ε eRe(λ)(t−hm)

(
2hm − e− Re(λ)(t−hm)

Re(λ)

)

≤ ε

( −1

Re(λ)
+ 2hm

)
,

as t > hm and Re(λ) < 0.
(iii) (a). For Re(λ) < 0 with 0 < |1 + hλ| < 1 and t ∈ {−hm, . . . ,−h, 0, h,

. . . , hm}, using (5) we have

|φ(t) − x(t)| ≤ ε|eλ(t, 0)|
∫ t

−∞
Δτ

|eλ(σ (τ), 0)|

= ε|1 + hλ| t
h

(∫ −hm

−∞
+

∫ t

−hm

)
Δτ

|eλ(σ (τ), 0)|

= ε|1 + hλ| t
h

⎛
⎜⎝∫ −hm

−∞
|1 + hλ|mdτ

eRe(λ)(τ+hm)
+

t−h
h∑

j=−m

h

|1 + hλ|j+1

⎞
⎟⎠

= ε|1 + hλ| t
h

⎛
⎝h

(
|1 + hλ|m − |1 + hλ|− t

h

)
|1 + hλ| − 1

− |1 + hλ|m
Re(λ)

⎞
⎠

= ε

(
h

1 − |1 + hλ| + |1 + hλ| t
h
+m

(
h

|1 + hλ| − 1
− 1

Re(λ)

))

≤ ε

(
h

1 − |1 + hλ| + |1 + hλ|2m

(
h

|1 + hλ| − 1
− 1

Re(λ)

))
,

as t
h

≤ m and h
|1+hλ|−1 − 1

Re(λ)
≤ 0 for Re(λ) < 0 with 0 < |1 + hλ| < 1

and h > 0.
(iii) (b). For Re(λ) < 0 with 0 < |1 + hλ| < 1 and t ∈ (hm,∞), using (5) we

have

|φ(t) − x(t)| ≤ εeRe(λ)(t−hm)

|1 + hλ|−m

(∫ −hm

−∞
+

∫ hm

−hm

+
∫ t

hm

)
Δτ

|eλ(σ (τ), 0)|

= εeRe(λ)(t−hm)

(
1 − e− Re(λ)(t−hm) − |1 + hλ|2m

Re(λ)

+h
(|1 + hλ|2m − 1

)
|1 + hλ| − 1

)
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= ε

(
−1

Re(λ)
+ eRe(λ)(t−hm)

(
|1 + hλ|2m − 1

− Re(λ)
+ h

(|1 + hλ|2m − 1
)

|1 + hλ| − 1

))

≤ ε

(
h

1 − |1 + hλ| + |1 + hλ|2m

(
h

|1 + hλ| − 1
− 1

Re(λ)

))
,

as t > hm, Re(λ) < 0 with 0 < |1 + hλ| < 1, and the expression inside
the square brackets is non-negative.

(iv) (a). For Re(λ) < 0 with |1 + hλ| > 1 and t ∈ {−hm, . . . ,−h, 0, h, . . . , hm},
using the same calculation as in case (iii)(a), we get

|φ(t) − x(t)| ≤ ε

(
h

1 − |1 + hλ| + |1 + hλ| t
h
+m

(
h

|1 + hλ| − 1
− 1

Re(λ)

))

≤ ε

(
h

1 − |1 + hλ| + |1 + hλ|2m

(
h

|1 + hλ| − 1
− 1

Re(λ)

))
,

as t
h

≤ m and h
|1+hλ|−1 − 1

Re(λ)
> 0 for Re(λ) < 0 with |1 + hλ| > 1 and

h > 0.
(iv) (b). For Re(λ) < 0 with |1 + hλ| > 1 and t ∈ (hm,∞), using the same

calculation as in case (iii)(b), we get

|φ(t) − x(t)| ≤ ε

⎛
⎝ −1

Re(λ)
+ eRe(λ)(t−hm)

⎛
⎝|1 + hλ|2m − 1

− Re(λ)
+

h
(
|1 + hλ|2m − 1

)
|1 + hλ| − 1

⎞
⎠
⎞
⎠

≤ ε

(
h

1 − |1 + hλ| + |1 + hλ|2m

(
h

|1 + hλ| − 1
− 1

Re(λ)

))
,

as t > hm, Re(λ) < 0 with |1 + hλ| > 1, and the expression inside the
square brackets is positive.

We next show that x is the unique solution of (1) such that |φ(t) − x(t)| ≤ Kε

for all t ∈ Thm, where K is given by (4). Suppose φ : Thm → C is an approximate
solution of (1) such that∣∣φΔ(t) − λφ(t)

∣∣ ≤ ε forall t ∈ Thm

for some ε > 0. Suppose further that x1, x2 : Thm → C are two different solutions
of (1) such that |φ(t) − xj (t)| ≤ Kε for all t ∈ Thm, for j = 1, 2. Then, we have
for constants cj ∈ C that

xj (t) = cj eλ(t, 0), c1 �= c2,

and

|c1 − c2| · |eλ(t, 0)| = |x1(t) − x2(t)| ≤ |x1(t) − φ(t)| + |φ(t) − x2(t)| ≤ 2Kε;



Hyers–Ulam Stability for a Discrete Core 27

letting t → −∞ yields ∞ < 2Kε, a contradiction. Consequently, x is the unique
solution of (1) such that |φ(t) − x(t)| ≤ εK for all t ∈ Thm. This completes the
proof. 	

Theorem 3 Let λ ∈ C\

{−1
h

}
with Re(λ) = 0. Then, (1) is not Hyers–Ulam stable

on Thm.

Proof Assume Re(λ) = 0 for λ ∈ C. Let arbitrary ε > 0 be given, and let λ = iβ

for some β ∈ R. Then,

φ(t) := εteiβ(t, 0)(
1 + h2β2

)m+1
2

, t ∈ Thm

satisfies the inequality

∣∣φΔ(t) − iβφ(t)
∣∣ = ε

∣∣(1 + iβμ(t))eiβ(t, 0)
∣∣(

1 + h2β2
)m+1

2

≤ ε
∣∣eiβ(t, 0)

∣∣(
1 + h2β2

)m
2

≤ ε

for all t ∈ Thm. Since x(t) = x0eiβ(t, 0) is the general solution of (1) when λ = iβ,
then

|φ(t) − x(t)| =
∣∣eiβ(t, 0)

∣∣(
1 + h2β2

)m+1
2

∣∣∣∣εt − x0

(
1 + h2β2

)m+1
2

∣∣∣∣ → ∞

as t → ±∞ for t ∈ Thm and for any x0 ∈ C, β ∈ R, h > 0. So, (1) lacks HUS on
Thm if λ = iβ. 	


Using the previous theorems, we can establish the following results.

Theorem 4 Let λ ∈ C\{−1
h

}. Equation (1) has HUS on Thm if and only if
Re(λ) �= 0.

Proof By Theorems 1, 2 and 3, we obtain the result, immediately. 	

Lemma 2 Let λ ∈ C\

{−1
h

}
with Re(λ) �= 0.

(i) If Re(λ) > 0, then the HUS constant K for (1) satisfies

K ≥ 1

Re(λ)
.

(ii) If Re(λ) < 0, then the HUS constant K for (1) satisfies

K ≥
⎧⎨
⎩

−1
Re(λ)

+ 2hm : |1 + hλ| = 1

max
{ −1

Re(λ)
, h

1−|1+hλ| + |1 + hλ|2m
(

h
|1+hλ|−1 − 1

Re(λ)

)}
: |1 + hλ| �= 1.
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Proof Since λ ∈ C\
{−1

h

}
with Re(λ) �= 0, Equation (1) has HUS by Theorem 4.

We will proceed by cases.

(i). Let λ = α + iβ ∈ C\
{−1

h

}
, and assume Re(λ) = α > 0; set

φ(t) := −εeiβ(t, 0)

α
(
1 + h2β2

)m
2

+ ε

α
eλ(t, 0).

It follows that

∣∣φΔ(t) − λφ(t)
∣∣ =

∣∣εαeiβ(t, 0)
∣∣

α
(
1 + h2β2

)m
2

= ε
∣∣eiβ(t, 0)

∣∣(
1 + h2β2

)m
2

≤ ε.

Since x(t) = ε
α
eλ(t, 0) is a solution of (1),

|φ(t) − x(t)| = ε
∣∣eiβ(t, 0)

∣∣
α

(
1 + h2β2

)m
2

≤ ε

α
,

with equality at t = hm, so the minimal HUS constant K for (1) satisfies

K ≥ 1

α
= 1

Re(λ)
.

This ends the proof of case (i).
(ii) (a). Assume Re(λ) < 0 with |1 + hλ| = 1. Let

φ(t) = eλ(t, 0)

∫ t

0

q(τ)

eλ(σ (τ ), 0)
Δτ, q(τ ) = εeλ(σ (τ), 0)

|eλ(σ (τ), 0)| , (6)

for all t ∈ Thm. Then,

φΔ(t) − λφ(t) = q(t), |q(t)| = ε,

and, employing (6), we see that φ takes the form

φ(t) = ε

⎧⎪⎪⎨
⎪⎪⎩

(
1

Re(λ)
− hm

)
eλ(t, 0) − ei Im(λ)(t+hm)

(1+hλ)m Re(λ)
: t ∈ (−∞,−hm)

teλ(t, 0) : t ∈ {−hm, . . . , hm}(
1

Re(λ)
+ hm

)
eλ(t, 0) − ei Im(λ)(t−hm)

(1+hλ)−m Re(λ)
: t ∈ (hm,∞).

If we take

x(t) := ε

(
1

Re(λ)
− hm

)
eλ(t, 0),
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then x is a solution of (1), and

|φ(t) − x(t)| =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε

∣∣∣ −ei Im(λ)(t+hm)

(1+hλ)m Re(λ)

∣∣∣ = −ε
Re(λ)

: t ∈ (−∞,−hm)

ε

∣∣∣− 1
Re(λ)

+ t + hm

∣∣∣ ≤ ε
( −1

Re(λ)
+ 2hm

)
: t ∈ {−hm, . . . , hm}

ε

∣∣∣− 1
Re(λ)

+ 2hmeRe(λ)(t−hm)
∣∣∣ ≤ ε

( −1
Re(λ)

+ 2hm
)

: t ∈ (hm,∞),

where we have equality at t = hm. This shows that the HUS constant K

must satisfy

K ≥
( −1

Re(λ)
+ 2hm

)

for Re(λ) < 0 with |1 + hλ| = 1. Here ends the proof of case (ii)(a).
(ii)(b). Assume Re(λ) < 0 with |1 + hλ| �= 1. Again, let φ be given by (6) for all

t ∈ Thm. Then,

φΔ(t) − λφ(t) = q(t), |q(t)| = ε,

and in this case φ takes the form

φ(t) =

ε

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

( |1+hλ|m
Re(λ)

− h(|1+hλ|m−1)
|1+hλ|−1

)
eλ(t, 0) − |1+hλ|mei Im(λ)(t+hm)

(1+hλ)m Re(λ)
: t ∈ (−∞,−hm)

h

(
|1+hλ| t

h −1

)

|1+hλ| t
h (|1+hλ|−1)

eλ(t, 0) : t ∈ {−hm, . . . , hm}( |1+hλ|−m

Re(λ)
+ h(|1+hλ|m−1)

|1+hλ|m(|1+hλ|−1)

)
eλ(t, 0) − (1+hλ)mei Im(λ)(t−hm)

|1+hλ|m Re(λ)
: t ∈ (hm,∞).

If we take

x(t) := ε

( |1 + hλ|m
Re(λ)

− h (|1 + hλ|m − 1)

|1 + hλ| − 1

)
eλ(t, 0), (7)

then x is a solution of (1), and

|φ(t) − x(t)| = −ε

Re(λ)
, t ∈ (−∞,−hm).

For t ∈ {−hm, . . . ,−h, 0, h, . . . , hm},

|φ(t) − x(t)| = ε

⎛
⎝h

(
|1 + hλ|m+ t

h − 1
)

|1 + hλ| − 1
− |1 + hλ|m+ t

h

Re(λ)

⎞
⎠ .
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If 0 < |1 + hλ| < 1, then as in the proof of Theorem 2 (iii)(a), we have

|φ(t) − x(t)| = ε

(
h

1 − |1 + hλ| + |1 + hλ| t
h
+m

(
h

|1 + hλ| − 1
− 1

Re(λ)

))

≤ ε

(
h

1 − |1 + hλ| + |1 + hλ|2m

(
h

|1 + hλ| − 1
− 1

Re(λ)

))
,

as t
h

≤ m and h
|1+hλ|−1 − 1

Re(λ)
≤ 0 for Re(λ) < 0 with 0 < |1 + hλ| < 1

and h > 0, with equality at t = hm. If |1 + hλ| > 1, then as in the proof of
Theorem 2 (iv)(a),

|φ(t) − x(t)| = ε

(
h

1 − |1 + hλ| + |1 + hλ| t
h
+m

(
h

|1 + hλ| − 1
− 1

Re(λ)

))

≤ ε

(
h

1 − |1 + hλ| + |1 + hλ|2m

(
h

|1 + hλ| − 1
− 1

Re(λ)

))
,

as t
h

≤ m and h
|1+hλ|−1 − 1

Re(λ)
> 0 for Re(λ) < 0 with |1 + hλ| > 1 and

h > 0. For t ∈ (hm,∞) and 0 < |1 + hλ| < 1, then as in the proof of
Theorem 2 (iii)(b),

|φ(t) − x(t)| = ε

(
−1

Re(λ)
+ eRe(λ)(t−hm)

(
|1 + hλ|2m − 1

− Re(λ)
+ h

(|1 + hλ|2m − 1
)

|1 + hλ| − 1

))

≤ ε

(
h

1 − |1 + hλ| + |1 + hλ|2m

(
h

|1 + hλ| − 1
− 1

Re(λ)

))
,

as t > hm, Re(λ) < 0 with 0 < |1 + hλ| < 1, and the expression inside
the square brackets is non-negative. For t ∈ (hm,∞) and |1 + hλ| > 1,
then as in the proof of Theorem 2 (iv)(b), we have

|φ(t) − x(t)| = ε

(
−1

Re(λ)
+ eRe(λ)(t−hm)

(
|1 + hλ|2m − 1

− Re(λ)
+ h

(|1 + hλ|2m − 1
)

|1 + hλ| − 1

))

≤ ε

(
h

1 − |1 + hλ| + |1 + hλ|2m

(
h

|1 + hλ| − 1
− 1

Re(λ)

))
,

as t > hm, Re(λ) < 0 with |1 + hλ| > 1, and the expression inside the
square brackets is positive. This ends the proof of case (ii)(b), and thus the
overall result holds.

	

Theorem 5 Let λ ∈ C\{−1

h
}. If Re(λ) �= 0, then (1) has HUS on Thm.

(i) If Re(λ) > 0, then

K = 1

Re(λ)
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is the best (minimal) HUS constant.
(ii) If Re(λ) < 0, then

K =
⎧⎨
⎩

−1
Re(λ)

+ 2hm : |1 + hλ| = 1

max
{ −1

Re(λ)
, h

1−|1+hλ| + |1 + hλ|2m
(

h
|1+hλ|−1 − 1

Re(λ)

)}
: |1 + hλ| �= 1

is the best (minimal) HUS constant.

Proof This result follows immediately from the definitions of HUS and HUS
constant, Theorems 1–4, and Lemma 2. 	

Remark 1 If m = 0, then Th,0 = R, and the results in Theorems 1 and 2 (i) − (iv)

match exactly the known results for T = R, namely that x′(t)−λx(t) = 0 has HUS
on R, and

K = 1

| Re(λ)|
is the best possible HUS constant. If h → 0, then T0,m = R, and the results in
Theorems 1 and 2 (i) − (iv) also recover the known results for T = R, because

lim
h→0+

( −1

Re(λ)
+ 2hm

)
= −1

Re(λ)
, lim

h→0+
h

|1 + hλ| − 1
= lim

h→0+
1

Reh(λ)
= 1

Re(λ)

hold, where Reh(λ) represents the Hilger real part [20] for h-difference equations.
For fixed h > 0, if m → ∞, then Th,∞ = hZ, and the results in Theorem 1 and

Theorem 2 (i) and (iii) match exactly the known results for T = hZ, namely that
Δhx(t) − λx(t) = 0 has HUS on hZ, and

K = h∣∣1 − |1 + hλ|∣∣ = 1

| Reh(λ)|

is the best possible HUS constant. Theorem 2 (ii) shows an interesting connection;
as m → ∞, the HUS constant in (ii) goes to infinity as well. This is accurate,
as Re(λ) < 0 with |1 + hλ| = 1 makes the h-difference equation version of (1)
Hyers–Ulam unstable on hZ, as λ ∈ C is then on the left Hilger circle [5]; see [15,
Chapter 2.1], [20], and [23] for more on the Hilger complex plane, and [2, 5, 10] for
more on the Hilger circle and HUS. On the other hand, in case (iv) Re(λ) < 0 with
|1 + hλ| > 1, a result that does not match is obtained, that is,

lim
m→∞

(
h

1 − |1 + hλ| + |1 + hλ|2m

(
h

|1 + hλ| − 1
− 1

Re(λ)

))
= ∞

when Re(λ) < 0 with |1 + hλ| > 1, but, we know that Δhx(t) − λx(t) = 0 has
HUS when |1 + hλ| > 1 (see [5]). Why does this logical gap occur? According
to the information of Theorem 2.5 (ii) in [5], in this case, the unique solution x
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is determined when t → ∞. As you can see from the claim of Theorem 2, even
in this case, the unique solution x is determined by the information of t → ∞.
Therefore, we can say that the case Re(λ) < 0 with |1 + hλ| > 1 is a distinguishing
characteristic of Hyers–Ulam stability on this time scale with discrete core and
continuous periphery. We explore this anomaly in the next section.

4 Connection with h-Difference Equations in the Case
|1 + hλ| > 1

The following result is effective for clarifying the connection with the h-difference
equation Δhx(t) − λx(t) = 0 with |1 + hλ| > 1.

Theorem 6 Let λ ∈ C\
{−1

h

}
with Re(λ) < 0 and |1 + hλ| > 1. Let ε > 0 be a

fixed arbitrary constant, and let φ be a function on Thm satisfying the inequality

∣∣φΔ(t) − λφ(t)
∣∣ ≤ ε, t ∈ Thm.

Then, the function x given by

x(t) :=
(

φ(hm)

eλ(hm, 0)

)
eλ(t, 0)

is a solution of (1) with

|φ(t) − x(t)| ≤ ε max

{
h

(
1 − |1 + hλ|−2m

)
|1 + hλ| − 1

,
−1

Re(λ)

}

for all t ∈ {−hm, . . . ,−h, 0, h, . . . , hm} ∪ (hm,∞). In particular, the following
holds.

(i) If t ∈ {−hm, . . . ,−h, 0, h, . . . , hm}, then

|φ(t) − x(t)| ≤ ε

(
h

(
1 − |1 + hλ|−2m

)
|1 + hλ| − 1

)

for all t ∈ {−hm, . . . ,−h, 0, h, . . . , hm}.
(ii) If t ∈ (hm,∞), then

|φ(t) − x(t)| ≤ ε

( −1

Re(λ)

)

for all t ∈ (hm,∞).
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Proof Let λ ∈ C\
{−1

h

}
with Re(λ) < 0 and |1 + hλ| > 1. Suppose that |φΔ(t) −

λφ(t)| ≤ ε for all t ∈ Thm, there exists a function q : Thm → C such that

φΔ(t) − λφ(t) = q(t), |q(t)| ≤ ε

for all t ∈ Thm. Then, we have

φ(t) = φ0eλ(t, 0) + eλ(t, 0)

∫ t

0

q(τ)

eλ(σ (τ ), 0)
Δτ.

Let x(t) = x0eλ(t, 0) be the solution of (1) with

x0 := φ0 +
∫ hm

0

q(τ)

eλ(σ (τ ), 0)
Δτ ∈ C.

It follows that

φ(t) − x(t) = −eλ(t, 0)

(∫ hm

t

q(τ )

eλ(σ (τ ), 0)
Δτ

)
. (8)

(a) For Re(λ) < 0 with |1 + hλ| > 1 and t ∈ {−hm, . . . ,−h, 0, h, . . . , hm}, using
(8) we have

|φ(t) − x(t)| ≤ ε|eλ(t, 0)|
∫ hm

t

Δτ

|eλ(σ (τ), 0)| = ε|1 + hλ| t
h

m−1∑
j= t

h

h

|1 + hλ|j+1

= ε

⎛
⎝h

(
1 − |1 + hλ|−m+ t

h

)
|1 + hλ| − 1

⎞
⎠ ≤ ε

(
h

(
1 − |1 + hλ|−2m

)
|1 + hλ| − 1

)
,

as t
h

≤ m, h > 0, and Re(λ) < 0 with |1 + hλ| > 1.
(b) For Re(λ) < 0 with |1 + hλ| > 1 and t ∈ [hm,∞), using (8) we have

|φ(t) − x(t)| =
∣∣∣∣eλ(t, 0)

(∫ t

hm

q(τ)

eλ(σ (τ ), 0)
Δτ

)∣∣∣∣
≤ ε|1 + hλ|meRe(λ)(t−hm)

∫ t

hm

Δτ

|eλ(σ (τ), 0)|

= ε

(
−1 + eRe(λ)(t−hm)

Re(λ)

)
≤ ε

( −1

Re(λ)

)
,

as t ≥ hm and Re(λ) < 0 with |1 + hλ| > 1. This completes the proof.
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Remark 2 For fixed h > 0, if m → ∞, then Th,∞ = hZ, and the result in
Theorem 6 (i) reproduces exactly the known result for T = hZ (see, Theorem
2.5 (ii) in [5]). Actually, we will explain this fact. Since

∣∣∣∣
∫ hm

0

q(τ)

eλ(σ (τ ), 0)
Δτ

∣∣∣∣ ≤ ε

∫ hm

0

Δτ

|eλ(σ (τ), 0)| ≤ ε

m−1∑
j=0

h

|1+hλ|j+1 <
h

|1+hλ| − 1

holds, we see that

lim
m→∞

φ(hm)

eλ(hm, 0)
= lim

t→∞
φ(t)

eλ(t, 0)

exists. In addition, an HUS constant is

lim
m→∞

h
(
1 − |1 + hλ|−2m

)
|1 + hλ| − 1

= h

|1 + hλ| − 1
.

Theorem 6 (i) says that the function x given by

x(t) :=
(

lim
t→∞

φ(t)

eλ(t, 0)

)
eλ(t, 0)

is a solution of (1) with

|φ(t) − x(t)| ≤ hε

|1 + hλ| − 1

for all t ∈ hZ. As m → ∞, our exponential function eλ(t, 0) corresponds to (1 +
hλ)

t
h for all t ∈ hZ. In this case, we can prove the uniqueness of the solution. Let

ε > 0, and let φ : {−hm, . . . ,−h, 0, h, . . . , hm} → C satisfy

∣∣φΔ(t) − λφ(t)
∣∣ ≤ ε for all t ∈ {−hm, . . . ,−h, 0, h, . . . , hm}.

Suppose that x1, x2 : {−hm, . . . ,−h, 0, h, . . . , hm} → C are two different
solutions of (1) such that |φ(t) − xj (t)| ≤ Kε := h

|1+hλ|−1ε for all t ∈
{−hm, . . . ,−h, 0, h, . . . , hm}, for j = 1, 2. Then, we have for constants cj ∈ C

that

xj (t) = cj (1 + hλ)
t
h , c1 �= c2,

and

|c1 − c2||1 + hλ| t
h = |x1(t) − x2(t)| ≤ |x1(t) − φ(t)| + |φ(t) − x2(t)| ≤ 2Kε;
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letting m → ∞ and t → ∞ yields ∞ < 2Kε, a contradiction. Consequently, x is
the unique solution of Δhx(t) − λx(t) = 0 such that |φ(t) − x(t)| ≤ εK for all
t ∈ hZ.

5 Conclusion and Future Directions

In this paper we determined the best Hyers–Ulam stability constants for a first-order
complex constant coefficient dynamic equation on a time scale with a discrete core
and continuous periphery. In the future, we will study a time scale with a discrete
periphery and continuous core, whose exponential function for λ ∈ C\{− 1

h
} is

eλ(t, 0) :=

⎧⎪⎪⎨
⎪⎪⎩

(1 + hλ)
t
h
+me−hmλ : t ∈ {. . . ,−h(m + 2),−h(m + 1)}

eλt : t ∈ [−hm, hm]
(1 + hλ)

t
h
−mehmλ : t ∈ {h(m + 1), h(m + 2), . . .}.

on Thm = {. . . ,−h(m+ 2),−h(m+ 1)}∪ [−hm, hm] ∪ {h(m+ 1), h(m+ 2), . . .},
where h > 0 is the discrete step size and m is a non-negative integer.
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