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Abstract This chapter deals with the factorization and solution of initial and
boundary value problems for a class of linear and nonlinear second order differential
equations with variable coefficients subject to mixed conditions. The technique
for nonlinear differential equations is based on their decomposition into linear
components of the same or lower order and the factorization of the associated
second order linear differential operators. The implementation and efficiency of the
procedure is shown by solving several examples.

1 Introduction

One of the most important categories of ordinary differential equations is the
second order differential equations with variable coefficients. Many problems from
engineering and science are within this large class of differential equations. These
equations, in addition to their natural significance, have also been used as a vehicle
for the study of other higher order differential equations. Both exact and numerical
methods have been developed for the their solution [2]. Most of the explicit
techniques rely on the knowledge of fundamental solutions. The factorization
method does not require any fundamental solution of the given second order
differential equation, but its applicability is limited to certain problems. For a review
of the factorization of differential operators the interested reader can look at the
selected articles [1, 3–9, 14–16].

Following the work in [10–13] and [17], this paper is concerned with the exact
solution of a class of linear and nonlinear differential equations of second order with
variable coefficients subject to nonlocal boundary conditions by direct factorization
of the differential equation as well as the boundary conditions. Specifically, in
Section 2, we recall some basic results and consider linear first order problems with
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a mixed boundary condition. In Section 3, we present the operator factorization
method for solving, under certain conditions, the linear second order differential
equation

u′′(x) + p(x)u(x) + q(x)u(x) = f (x), x ∈ (a, b), (1)

where the coefficients p(x), q(x) ∈ C[a, b] and the forcing function f (x) ∈
C[a, b], subject to general boundary conditions

μ11u(a) + μ12u(b) = β1,

μ21u
′(a) + μ22u

′(b) + μ23u(a) + μ24u(b) = β2, (2)

where μij , βi ∈ R, i = 1, 2, j = 1, 2, 3, 4. In Section 4, we deal with the
construction of explicit solutions to two kinds of nonlinear differential equations of
second order, which can be decomposed initially into linear second order differential
equations. First, we consider the equation of the form

u′′(x)u′(x) + [
q(x)u′(x) + g(x)u′′(x)

]
u(x) + q(x)g(x)u2(x) = 0, (3)

for x ∈ (a, b) and q(x), g(x) ∈ C[a, b], along with the general boundary
conditions (2). Also, we consider the nonlinear differential equation of the type

F

(
u′′(x)

u(x)
, x

)
= F (w(x), x) = w2(x) + a(x)w(x) + b(x) = 0, x ∈ (a, b),

(4)
where the nonlinear function F is a second degree polynomial of w(x) =
u′′(x)/u(x) and the coefficients a(x), b(x) ∈ C[a, b], subject to general boundary
conditions (2). Finally, some conclusions are quoted in Section 5.

2 Preliminaries

We first recall some basic results. A linear operator P : C[a, b] → C[a, b] is said
to be correct if P is injective, R(P ) = C[a, b] and its inverse P −1 is bounded on
C[a, b]. Let A : C[a, b] → C[a, b] be the linear first order operator

Ay(x) = y′(x) + a(x)y(x), D(A) = C1[a, b], (5)

where a(x) ∈ C[a, b], and Â be its restriction on

D(Â) = {y(x) ∈ D(A) : y(x0) = y0} , (6)
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where x0 ∈ [a, b] and y0 is an arbitrary real initial value. Then the following
fundamental theorem holds.

Theorem 1 The linear operator Â in (5) and (6) is correct and the unique solution
of the initial value problem

Ây(x) = f (x), ∀f (x) ∈ C[a, b], (7)

is given by

y(x) = Â−1f (x) = e
− ∫ x

x0
a(t)dt

(
y0 +

∫ x

x0

f (t)e

∫ t
t0

a(τ)dτ
dt

)
. (8)

Accordingly, let B : C[a, b] → C[a, b] be the linear second order operator

By(x) = y′′(x) + b1(x)y′(x) + b2(x)y(x), D(B) = C2[a, b], (9)

where b1(x), b2(x) ∈ C[a, b], and B̂ be its restriction on

D(B̂) = {
y(x) ∈ D(B) : y(x0) = y0, y′(x0) = y′

0

}
, (10)

where x0 ∈ [a, b] and y0, y′
0 is a couple of given real numbers. Then we have the

next fundamental theorem.

Theorem 2 The linear operator B̂ in (9) and (10) is correct and the initial value
problem

B̂y(x) = f (x), ∀f (x) ∈ C[a, b], (11)

has exactly one solution y(x) = B̂−1f (x).

We now consider a problem for a first order differential equation and a nonlocal
boundary condition, which we will encounter below. For this, we prove the next
theorem.

Theorem 3 Let the general linear first order problem with a nonlocal boundary
condition

Q̂y(x) = y′(x) + q(x)y(x) = f (x),

D(Q̂) =
{
y(x) ∈ C1[a, b] : μ1y(a) + μ2y(b) = β

}
, (12)

where the operator Q̂ : C[a, b] → C[a, b], the given functions q(x), f (x) ∈
C[a, b], and the constants μ1, μ2, β ∈ R. If

μ1 + μ2e
− ∫ b

a q(t)dt �= 0, (13)
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then the operator Q̂ is correct and the unique solution of problem (12) is given by

y(x) = Q̂−1f (x) = e− ∫ x
a q(t)dt

(
C +

∫ x

a

f (t)e
∫ t
a q(τ )dτ dt

)
, (14)

where

C =
(
μ1 + μ2e

− ∫ b
a q(t)dt

)−1
(

β − μ2e
− ∫ b

a q(t)dt

∫ b

a

f (t)e
∫ t
a q(τ )dτ dt

)
.

Proof It is known that the general solution of the first order differential equation
in (12) is

y(x) = e
− ∫ x

x0
q(t)dt

(
C +

∫ x

x0

f (t)e

∫ t
t0

q(τ)dτ
dt

)
, (15)

where x0 ∈ [a, b]. For x0 = a, we have

y(a) = C, y(b) = e− ∫ b
a q(t)dt

(
C +

∫ b

a

f (t)e
∫ t
a q(τ )dτ dt

)
.

Substituting these values into the boundary condition in (12), we obtain

(
μ1 + μ2e

− ∫ b
a q(t)dt

)
C = β − μ2e

− ∫ b
a q(t)dt

∫ b

a

f (t)e
∫ t
a q(τ )dτ dt.

If relation (13) holds, then

C =
(
μ1 + μ2e

− ∫ b
a q(t)dt

)−1
(

β − μ2e
− ∫ b

a q(t)dt

∫ b

a

f (t)e
∫ t
a q(τ )dτ dt

)
. (16)

From (15) and (16) it is implied (14). ��

3 Factorization Method for Linear Differential Equations

Let the linear differential operators of first order L1 : C[a, b] → C[a, b] and L2 :
C[a, b] → C[a, b] be defined by

L1u(x) = [D + r(x)] u(x), D(L1) = C1[a, b], (17)

L2u(x) = [D + s(x)] u(x), D(L2) = C1[a, b], (18)
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respectively, where D = d
dx
, and the coefficients r(x) ∈ C[a, b] and s(x) ∈

C1[a, b]. Consider the composition,

L1L2u(x) = L1 (L2u(x))

= [D + r(x)] ([D + s(x)] u(x))

=
[
D2 + (r(x) + s(x)) D + (s′(x) + r(x)s(x))

]
u(x). (19)

This gives rise to the following proposition.

Proposition 1 Let the linear differential operator of second order L : C[a, b] →
C[a, b] be defined by

Lu(x) =
[
D2 + p(x)D + q(x)

]
u(x), D(L) = C2[a, b], (20)

where the coefficients p(x), q(x) ∈ C[a, b]. If there exist two functions r(x) ∈
C[a, b] and s(x) ∈ C1[a, b] satisfying the relations

r(x) + s(x) = p(x), (21)

s′(x) + r(x)s(x) = q(x), (22)

then the operator L can be factorized into a product of the two linear differential
operators of first order L1, L2 in (17) and (18), respectively, such that

Lu(x) = L1L2u(x). (23)

Remark 1 By solving equation (21) with respect to r(x) and then substituting
into (22), we get

r(x) = p(x) − s(x), (24)

s′(x) + p(x)s(x) − s2(x) = q(x), (25)

where (25) is the nonlinear Riccati equation.

Consider the linear second order initial value problem

Lu(x) = f (x), u(x0) = β1, u′(x0) = β2, (26)

where f (x) ∈ C[a, b] is a forcing function, x0 is a point in [a, b], βi ∈ R, i = 1, 2,
and u(x) ∈ C2[a, b] is the unknown function describing the response of the system
modeled by (26). If (21) and (22) hold true, then this problem can be factorized and
solved in closed form as it is shown in the next theorem.
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Theorem 4 Let L be the linear differential operator of second order in (20) and L̂

be its restriction on

D(L̂) = {u(x) ∈ D(L) : u(x0) = β1, u′(x0) = β2}, (27)

where x0 ∈ [a, b] and β1, β2 ∈ R. If the prerequisites (21) and (22) are fulfilled
then:

(i) The operator L̂ can be factorized as

L̂u(x) = L̂1L̂2u(x), (28)

where L̂1, L̂2 are correct restrictions of the linear first order differential
operators L1, L2, defined in (17) and (18), on

D(L̂1) = {z(x) ∈ D(L1) : z(x0) = β2 + s(x0)β1}, (29)

D(L̂2) = {u(x) ∈ D(L2) : u(x0) = β1}, (30)

respectively.
(ii) The operator L̂ is correct and the unique solution of the initial value problem

L̂u(x) = f (x), ∀f (x) ∈ C[a, b], (31)

is given in closed form by

u(x) = L̂−1u(x) = L̂−1
2 L̂−1

1 f (x) = L̂−1
2 z(x)

= e
− ∫ x

x0
s(t)dt

(
β1 +

∫ x

x0

z(t)e

∫ t
t0

s(τ )dτ
dt

)
, (32)

where

z(x) = L̂−1
1 f (x) = e

− ∫ x
x0

r(t)dt
(

β2 + s(x0)β1 +
∫ x

x0

f (t)e

∫ t
t0

r(τ )dτ
dt

)
.

(33)

Proof

(i) From the definition of L̂ and Proposition 1, we have

Lu(x) = L1L2u(x) = f (x), u(x0) = β1, u′(x0) = β2. (34)

By setting

L2u(x) = u′(x) + s(x)u(x) = z(x), (35)
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we get

L1z(x) = z′(x) + r(x)z(x) = f (x). (36)

From (35) it is implied that

u′(x0) = z(x0) − s(x0)u(x0),

which when is substituted into the second condition in (34) yields

z(x0) = β2 + s(x0)β1.

Whence, we have the two linear first order initial value problems

L1z(x) = f (x), z(x0) = β2 + s(x0)β1, (37)

L2u(x) = z(x), u(x0) = β1. (38)

That is L̂u(x) = L̂1L̂2u(x). It remains to show that D(L̂) = D(L̂1L̂2). By
using (29) and (30), we obtain

D(L̂1L̂2) = {
u(x) ∈ D(L̂2) : L̂2u(x) ∈ D(L̂1)

}

= {
u(x) ∈ D(L2) : u(x0) = β1, u′(x) + s(x)u(x) ∈ D(L̂1)

}

=
{
u(x) ∈ C2[a, b] : u(x0) = β1, u′(x0) + s(x0)u(x0) = β2 + s(x0)β1

}

=
{
u(x) ∈ C2[a, b] : u(x0) = β1, u′(x0) = β2

}
. (39)

(ii) The linear first order initial value problem (37) possesses exactly one solution
z(x), which can be found by using the standard means, such as the method
of integrating factors [2], and is given in (33). Having obtained z(x), we can
solve the linear first order initial value problem (38) in like manner to obtain
the solution u(x) in (32), which is the solution of the linear second order initial
value problem (31). The operator L̂ = L̂1L̂2 is correct because L̂1 and L̂2 are
correct.

��
The factorization method also applies to some types of boundary value problems,

although it is more complicated. Let the linear second order differential equation,

Lu(x) = u′′(x) + p(x)u(x) + q(x)u(x) = f (x), x ∈ (a, b), (40)

where the coefficients p(x), q(x) ∈ C[a, b] and f (x) ∈ C[a, b], and assume that
the operator L : C[a, b] → C[a, b] is factorable, i.e. there exist r(x) ∈ C[a, b] and
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s(x) ∈ C1[a, b] such that r(x) + s(x) = p(x) and s′(x) + r(x)s(x) = q(x). Let
also the two boundary conditions

μ11u(a) + μ12u(b) = β1,

μ21[u′(a) + s(a)u(a)] + μ22[u′(b) + s(b)u(b)] = β2, (41)

where μij , βi ∈ R, i = 1, 2, j = 1, 2. Notice that (41) are the boundary conditions
as in (2) when

μ23 = s(a)μ21, μ24 = s(b)μ22. (42)

We claim that the boundary value problem for the differential equation (40) and
the boundary conditions (41) can be factorized and solved explicitly. We prove the
following theorem.

Theorem 5 Let L be the linear second order differential operator in (40) and
assume that there exist two functions r(x) ∈ C[a, b] and s(x) ∈ C1[a, b] which
satisfy (21) and (22). Let L̄ be a restriction of L on

D(L̄) = {u(x) : u(x) ∈ D(L), μ11u(a) + μ12u(b) = β1,

μ21[u′(a) + s(a)u(a)] + μ22[u′(b) + s(b)u(b)] = β2}, (43)

where μij , βi ∈ R, i = 1, 2, j = 1, 2. Then:

(i) The operator L̄ can be factorized as follows

L̄u(x) = L̄1L̄2u(x), (44)

where L̄1, L̄2 are restrictions of the two first order linear differential operators
L1, L2, defined in (17) and (18), on

D(L̄1) =
{
z(x) ∈ C1[a, b] : μ21z(a) + μ22z(b) = β2

}
, (45)

D(L̄2) =
{
u(x) ∈ C1[a, b] : μ11u(a) + μ12u(b) = β1

}
, (46)

respectively.
(ii) If

μ21 + μ22e
− ∫ b

a r(t)dt �= 0, μ11 + μ12e
− ∫ b

a s(t)dt �= 0, (47)

then the operator L̄ is correct and the unique solution of the boundary value
problem

L̄u(x) = f (x), ∀f (x) ∈ C[a, b], (48)
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is given by

u(x) = L̄−1f (x) = L̄−1
2 L̄−1

1 f (x) = L̄−1
2 z(x)

= e− ∫ x
a s(t)dt

(
C2 +

∫ x

a

z(t)e
∫ t
a s(τ )dτ dt

)
, (49)

where

z(x) = L̄−1
1 f (x) = e− ∫ x

a r(t)dt

(
C1 +

∫ x

a

f (t)e
∫ t
a r(τ )dτ dt

)
, (50)

and

C1 =
(
μ21 + μ22e

− ∫ b
a r(t)dt

)−1
(

β2 − μ22e
− ∫ b

a r(t)dt

∫ b

a

f (t)e
∫ t
a r(τ )dτ dt

)
,

C2 =
(
μ11 + μ12e

− ∫ b
a s(t)dt

)−1
(

β1 − μ12e
− ∫ b

a s(t)dt

∫ b

a

z(t)e
∫ t
a s(τ )dτ dt

)
.

Proof

(i) From the definition of L̄ and Proposition 1, we have

Lu(x) = L1L2u(x) = f (x), (51)

and

μ11u(a) + μ12u(b) = β1,

μ21[u′(a) + s(a)u(a)] + μ22[u′(b) + s(b)u(b)] = β2. (52)

Let

L2u(x) = u′(x) + s(x)u(x) = z(x). (53)

It follows that

u′(a) + s(a)u(a) = z(a), u′(b) + s(b)z(b) = z(b),

and upon substitution into the second boundary condition in (52), we get

μ21z(a) + μ22z(b) = β2.

Thus, we have

L1z(x) = z′(x) + r(x)z(x) = f (x), μ21z(a) + μ22z(b) = β2, (54)
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L2u(x) = u′(x) + s(x)u(x) = z(x), μ11u(a) + μ12u(b) = β1. (55)

That is L̄u(x) = L̄1L̄2u(x). It remains to show that D(L̄) = D(L̄1L̄2). By
using the definition of D(L̄1L̄2) we obtain

D(L̄1L̄2) = {
u(x) ∈ D(L̄2) : L̄2u(x) ∈ D(L̄1)

}

=
{
u(x) ∈ C1[a, b] : μ11u(a) + μ12u(b) = β1,

u′(x) + s(x)u(x) ∈ D(L̄1)
}

=
{
u(x) ∈ C1[a, b] : μ11u(a) + μ12u(b) = β1,

z(x) = u′(x) + s(x)u(x) ∈ C1[a, b],
μ21[u′(a) + s(a)u(a)] + μ22[u′(b) + s(b)u(b)] = β2

}

=
{
u(x) ∈ C2[a, b] : μ11u(a) + μ12u(b) = β1,

μ21[u′(a) + s(a)u(a)] + μ22[u′(b) + s(b)u(b)] = β2
}

= D(L̄). (56)

(ii) Application of Theorem 3 to solve boundary value problem (54) yields (50).
Substituting this unique solution z(x) = L̄−1

1 f (x) into (55) and applying
Theorem 3 once more, we obtain (49), which is the solution to boundary value
problem (48). The correctness of L̄ = L̄1L̄2 follows from the correctness of L̄1
and L̄2.

��
To elucidate the implementation of the above procedure, we solve the following

example problem.

Example 1 Let the boundary value problem

u′′(x) − x+2
x+1u

′(x) + 1
x+1u(x) = 3(x + 1), 0 < x < 1,

u(0) − 5u(1) = 0,

3u′(0) − 4u′(1) − 3u(0) + 4u(1) = 2. (57)

We take

p(x) = −x + 2

x + 1
, and q(x) = 1

x + 1
,

which are continuous on [0, 1]. Notice that equations (21) and (22) are satisfied by
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r(x) = − 1

x + 1
, and s(x) = −1,

which are continuous on [0, 1] and s′(x) = 0. Lastly, the second of the boundary
conditions (57) can be put in the form

3[u′(0) + (−1)u(0)] − 4[u′(1) + (−1)u(1)] = 2.

Thus (57) is carried to

L̄u(x) = u′′(x) − x + 2

x + 1
u′(x) + 1

x + 1
u(x) = f (x),

D(L̄) =
{
u(x) : u(x) ∈ C2[0, 1], u(0) − 5u(1) = 0,

3[u′(0) + s(0)u(0)] − 4[u′(1) + s(1)u(1)] = 2
}
, (58)

where f (x) = 3(x+1). By Theorem 5, the operator L̄ can be factorized as L̄u(x) =
L̄1L̄2u(x), where

L̄1z(x) = z′(x) − 1

x + 1
z(x), D(L̄1) =

{
z(x) ∈ C1[0, 1] : 3z(0) − 4z(1) = 2

}
,

L̄2u(x) = u′(x) − u(x), D(L̄2) =
{
u(x) ∈ C1[0, 1] : u(0) − 5u(1) = 0

}
.

Furthermore,

μ21 + μ22e
− ∫ 1

0 r(t)dt = −5 �= 0, μ11 + μ12e
− ∫ 1

0 s(t)dt = 1 − 5e �= 0, (59)

and therefore (58) has only one solution. To construct the solution, we first solve the
problem L̄1u(x) = f (x) by means of (50), which yields

z(x) = (x + 1)(3x − 26

5
). (60)

Then by utilizing (60) and solving L̄2u(x) = z(x) by (49), we get

u(x) = 142ex

5(5e − 1)
− 15x2 + 19x − 7

5
. (61)

This is the unique solution of the given boundary value problem (57).



408 E. Providas

4 Factorization Method for Nonlinear Differential Equations

In this section, we deal with the solution of a class of nonlinear boundary value
problems for second order differential equations. Let the nonlinear differential
equation of the form

u′′(x)u′(x) + [
q(x)u′(x) + g(x)u′′(x)

]
u(x) + q(x)g(x)(u(x))2 = 0, (62)

for x ∈ (a, b), and where q(x), g(x) ∈ C[a, b], together with the boundary
conditions

μ11u(a) + μ12u(b) = β1,

μ21u
′(a) + μ22u

′(b) + μ23u(a) + μ24u(b) = β2, (63)

where μij , βi ∈ R, i = 1, 2, j = 1, 2, 3, 4.
The nonlinear equation (62) can be decomposed as the product

[
u′′(x) + q(x)u(x)

] [
u′(x) + g(x)u(x)

] = 0,

and hence, either

u′′(x) + q(x)u(x) = 0, (64)

or

u′(x) + g(x)u(x) = 0. (65)

As a consequence, the solutions of the nonlinear boundary value problem (62) and
(63) may be obtained by solving the linear second order problem (64) and (63) and
the linear first order problem (65) and (63).

For the solution of the linear second order problem (64) and (63), we may employ
Theorem 5 provided that prerequisites (21) and (22) are satisfied, i.e. there exist
r(x) ∈ C[a, b] and s(x) ∈ C1[a, b] such that

r(x) = −s(x), s′(x) − (s(x))2 = q(x), (66)

and if

μ23 = s(a)μ21, μ24 = s(b)μ22. (67)

In this case problem (64), (63) can be put in the form

L̄u(x) = u′′(x) + q(x)u(x) = 0,
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D(L̄) =
{
u(x) ∈ C2[a, b] : μ11u(a) + μ12u(b) = β1,

μ21[u′(a) + s(a)u(a)] + μ22[u′(b) + s(b)u(b)] = β2
}
. (68)

Problem (68) can be now solved by means of Theorem 5.
The linear first order problem (65) and (63) is subjected to more conditions than

the order of the differential equation and it is most likely to possess no solution.
Nevertheless, we can proceed as follows. By utilizing (65) evaluate u′(a) and u′(b)

and substitute into the second of the boundary conditions in (63). Taking into
account (67), we get

μ21[s(a) − g(a)]u(a) + μ22[s(b) − g(b)]u(b) = β2. (69)

Thus, problem (65) and (63) may be formulated as

T u(x) = u′(x) + g(x)u(x) = 0,

D(T ) = {u(x) ∈ C1[0, 1] : μ11u(a) + μ12u(b) = β1,

μ21[s(a) − g(a)]u(a) + μ22[s(b) − g(b)]u(b) = β2}. (70)

By employing Theorem 3, we find the unique solution of the problem

T0u(x) = u′(x) + g(x)u(x) = 0,

D(T0) = {u(x) ∈ C1[0, 1] : μ11u(a) + μ12u(b) = β1}. (71)

If the solution u(x) of this problem satisfies the second boundary condition in (70),
then u(x) is a solution of (70); otherwise (70) has no solution.

Example 2 Let us find the solutions of the nonlinear second order boundary value
problem

u′′(x)u′(x) −
[

2
(x+1)2

u′(x) + 1
x+3u

′′(x)
]
u(x) + 2

(x+3)(x+1)2
(u(x))2 = 0,

u(0) + 5u(1) = 0,

−u′(0) + 6u′(1) − u(0) + 3u(1) = 4, (72)

where x ∈ [0, 1] and u(x) ∈ C2[0, 1].
The nonlinear second order differential equation (72) is of the type (62) with

q(x) = − 2

(x + 1)2
, g(x) = − 1

x + 3
,

and it can be decomposed as
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[
u′′(x) − 2

(x + 1)2
u(x)

] [
u′(x) − 1

x + 3
u(x)

]
= 0.

Thus, we get the following two linear problems

L̄u(x) = u′′(x) − 2

(x + 1)2
u(x) = 0,

D(L̄) = {u(x) ∈ C2[0, 1] : u(0) + 5u(1) = 0,

−u′(0) + 6u′(1) − u(0) + 3u(1) = 4}, (73)

and

T u(x) = u′(x) − 1

x + 3
u(x) = 0,

D(T ) = {u(x) ∈ C2[0, 1] : u(0) + 5u(1) = 0,

−u′(0) + 6u′(1) − u(0) + 3u(1) = 4}. (74)

In solving the boundary value problem (73), notice that the functions

r(x) = − 1

x + 1
, s(x) = 1

x + 1
,

obey (66), r(x) ∈ C[0, 1], s(x) ∈ C1[0, 1] and s(0) = 1, s(1) = 1
2 , and that the

preconditions (67) are met. Hence, problem (73) may be written in the form (68),
namely

L̄u(x) = u′′(x) − 2

(x + 1)2
u(x) = 0,

D(L̄) = {u(x) ∈ C2[0, 1] : u(0) + 5u(1) = 0,

−[u′(0) + s(0)u(0)] + 6[u′(1) + s(1)u(1)] = 4}. (75)

By Theorem 5, the boundary value problem (75) is factorized into the following two
first order problems

L̄1z(x) = z′(x) − 1

x + 1
z(x) = 0,

D(L̄1) =
{
z(x) ∈ C1[0, 1] : −z(0) + 6z(1) = 4

}
, (76)

and
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L̄2u(x) = u′(x) + 1

x + 1
u(x) = z(x),

D(L̄2) =
{
u(x) ∈ C1[0, 1] : u(0) + 5u(1) = 0

}
. (77)

The first of the uniqueness requirements (47) is fulfilled, viz.

μ21 + μ22e
− ∫ 1

0 r(t)dt = −1 + 6
(
e
∫ 1
0

1
t+1 dt

)
= 11 �= 0, (78)

and therefore the operator L̄1 is correct and the unique solution of (76) is derived
through (50), which is

z(x) = 4

11
(x + 1). (79)

By substituting (79) into (77) and verifying that the second of the uniqueness
conditions (47) is also satisfied, viz.

μ11 + μ12e
− ∫ 1

0 s(t)dt = 1 + 5
(
e− ∫ 1

0
1

t+1 dt
)

= 7

2
�= 0, (80)

it follows that the operator L̄2 is correct and the unique solution of (77), obtained
via (49), is

u(x) = 4(x3 + 3x2 + 3x − 5)

33(x + 1)
. (81)

The function u(x) in (81) is a solution to nonlinear second order boundary value
problem (72).

We now examine the existence of a solution of the linear first order problem (74).
By applying Theorem 3, we find that the problem

T1u(x) = u′(x) − 1

x + 3
u(x) = 0,

D(T1) = {u(x) ∈ C2[0, 1] : u(0) + 5u(1) = 0} (82)

has no solution except the trivial u(x) = 0, which however does not satisfy the
second of the boundary conditions in (74).

Summing up, the nonlinear second order boundary value problem (72) admits
only the solution (81).

The technique presented above and explained in Example 2 can be extended to
solve and other types of nonlinear boundary value problems. For example, consider
the nonlinear differential equation of second order of the form
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(u′′(x))2 + a(x)u′′(x)u(x) + b(x)(u(x))2 = 0, x ∈ (a, b), (83)

subject to two general boundary constraints

μ11u(a) + μ12u(b) = β1,

μ21u
′(a) + μ22u

′(b) + μ23u(a) + μ24u(b) = β2, (84)

where a(x), b(x) ∈ C[a, b] and μij , βi ∈ R, i = 1, 2, j = 1, 2, 3, 4.
The differential equation (83) can be put in the form

F

(
u′′(x)

u(x)
, x

)
= F (w(x), x) = (w(x))2 + a(x)w(x) + b(x) = 0,

where w(x) = u′′(x)/u(x) and the nonlinear function F is a second degree
polynomial of w(x). Hence, it can be decomposed as

[
w(x) + q−(x)

] [
w(x) + q+(x)

] = 0,

where q−(x), q+(x) ∈ C[a, b] and a(x) = q−(x) + q+(x), b(x) = q−(x)q+(x).
By substituting back w(x) = u′′(x)/u(x), we get

[
u′′(x) + q−(x)u(x)

] [
u′′(x) + q+(x)u(x)

] = 0, (85)

from where follows that, either

u′′(x) + q−(x)u(x) = 0, x ∈ (a, b), (86)

or

u′′(x) + q+(x)u(x) = 0, x ∈ (a, b). (87)

Thus, the solution of the nonlinear boundary value problem (83) and (84) is reduced
to the solution of the two linear second order boundary value problems (86), (84),
and (87), (84). Whenever the conditions (21), (22) and (42) are met, Theorem 5 may
be applied to acquire the solutions in closed form.

5 Conclusions

A practical technique has been presented for factorizing and solving linear initial
and boundary value problems for second order differential equations with nonlocal
boundary conditions. Two types of nonlinear boundary value problems for second
order differential equations have also been considered where the factorization
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method was used to construct their solutions in closed form. The main advantage of
the factorization method is that no fundamental or particular solutions are required.
Its main disadvantage is that it cannot be applied to all boundary value problems
except to those where certain conditions are satisfied. The efficiency of the method
encourages the pursuit of further research for the extension of the method to
problems with fully mixed boundary conditions and multipoint conditions.
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