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Abstract The inversion of the celebrated Radon transform in three dimensions
involves two-dimensional plane integration. This inversion provides the mathe-
matical foundation of the important field of medical imaging, known as three-
dimensional positron emission tomography (3D PET). In this chapter, we present an
analytical expression for the inversion of the three-dimensional Radon transform,
as well as a novel numerical implementation of this formula, based on piecewise
polynomials of the third degree.
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1 Introduction

The celebrated Radon transform of a two-dimensional function is defined as the
set of all its line integrals [1, 2]. The transition to three space dimensions yields
a certain generalization of line integration, namely plane integration. Indeed, the
Radon transform of a three-dimensional function is defined as the set of all its plane
integrals.1 The inversion of the three-dimensional Radon transform provides the
mathematical foundation of the important field of medical imaging, known as 3D
positron emission tomography (3D PET). The 3D Radon transform gives rise to
an associated inverse problem, namely to “reconstruct” a function from its plane
integrals. The main task in 3D PET imaging is the numerical implementation of the
inversion of the 3D Radon transform.

In 3D PET, contrary to the conventional 2D PET, there is a certain generalization
of the notion of image reconstruction: in the 2D case, the integration occurs in planes
instead of lines. The difficulties arising in the 2D cases and their generalizations
[3] are overcome in the 3D case. The inversion of the 3D Radon transform
seems more straightforward than the one of the conventional Radon transform [4].
There are several numerical implementation methods in the literature, including:
(i) the introduction of the concept of three-dimensional image reconstruction from
“complete” projections [5]; (ii) the formulation of the 3D Radon transform for
discrete 3D images (volumes), based on the summation over planes with small
absolute slopes [6]; and (iii) the reconstruction of conductivities in the context
of electric impedance tomography (EIT) [7]. The differences between 2D and
3D Radon transform inversion are emphasized in [8], and [9], where an analytic
filter-backprojection method is introduced based on the spatially invariant detector
point spread function. The authors of [10] proposed a spline-based inversion of the
Radon transform in two and three dimensions; also the PET image reconstruction
algorithms proposed in [11] show that analytic algorithms in 3D are linear and
therefore allow easier control of the spatial resolution and noise correlations than
in the case of the 2D reconstructions.

In this chapter, we present a novel formula for the inversion of the 3D Radon
transform, as well as a novel numerical implementation of this formula, based on
piecewise polynomial interpolation. We expect that our novel numerical implemen-
tation will enhance three-dimensional medical image reconstruction, especially in
the case of 3D PET.

1Plane integrals are special cases of surface integrals, where the surface of integration is a plane.
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2 The Radon Transform in Two Space Dimensions

In order to elucidate the properties of the three-dimensional Radon transform, it
is essential to review the corresponding properties of the two-dimensional Radon
transform.

A line L on the plane can be specified by the signed distance from the origin ρ,
with −∞ < ρ < ∞, and the angle with the x1-axis θ , with 0 ≤ θ < 2π , as in
Figure 1. We denote the corresponding unit vectors perpendicular and parallel to L

by n and p, respectively. These unit vectors are given by

n = (− sin θ, cos θ)T and p = (cos θ, sin θ)T , (1)

with

n · p = 0. (2)

Every point x = (x1, x2)
T lying on the line L in Cartesian coordinates can be

expressed in terms of the so-called local coordinates (ρ, τ ) via

x = ρ n + τp,

where τ denotes the arc length. Therefore, we parameterize each point x on the line
L in the following manner:

x := x(ρ, τ ; θ) =
[
x1(ρ, τ ; θ)

x2(ρ, τ ; θ)

]
=

[
τ cos θ − ρ sin θ

τ sin θ + ρ cos θ

]
(3)

Fig. 1 A two-dimensional function f (x1, x2) expressed in Cartesian coordinates, and its projec-
tions f̂ (ρ, θ), expressed in local coordinates
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Through Equation (3), we can express the local coordinates (ρ, τ ) in terms of
Cartesian coordinates (x1, x2) and the associated angle θ :

[
ρ

τ

]
:=

[
ρ(x1, x2; θ)

τ (x1, x2; θ)

]
=

[
x2 cos θ − x1 sin θ

x2 sin θ + x1 cos θ

]
(4)

We define the line integral over all lines L, defined in Equation (1), of a two-
dimensional Schwartz function f : R2 → R, f ∈ S(R2), as its two-dimensional
Radon transform, R2f . In the context of 2D PET, the 2D Radon transform of the
function f is usually stored in the form of the so-called sinogram, denoted by
f̂ (ρ, θ)

R2f = f̂ (ρ, θ) =
∫

L

f ds, (5)

where ds denotes an arc length differential, and S(R2) denotes the space of Schwartz
functions in R2,

S(R2) =
{
f ∈ C∞(R2) : ||f ||α,β < ∞

}
⊂ C∞(R2), (6)

and

||f ||α,β = sup
x∈R2

|xαDβf (x)|, ∀ multi− index α, β, |xαDβf (x)| → 0, as |x| → ∞.

(7)

Equation (5) may be rewritten via a parameterization x := x(τ ) of the line L, with
x : R2 → L, as follows:

f̂ (ρ, θ) =
∫ ∞

−∞
f (x(τ ))

∣∣∣∣x′(τ )
∣∣∣∣
2 dτ, (8)

where ||·||2 denotes theL2-norm inR2. The parameterization provided by (3) will be
proven to be very convenient and easy-to-manipulate, especially for the description
of parallel lines. In this case, it is worth noting that

∣∣∣∣x′(τ )
∣∣∣∣
2 =

√(
dx1
dτ

)2

+
(
dx2
dτ

)2

= cos2 θ + sin2 θ = 1. (9)

Hence, Equation (3) is a natural parameterization of the set of parallel lines L.
Therefore, the 2D Radon transform defined in Equation (5) may be expressed as
follows:

R2f = f̂ (ρ, θ) =
∫ ∞

−∞
f (τ cos θ − ρ sin θ, τ sin θ + ρ cos θ)dτ, (10)
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with 0 ≤ θ < 2π and −∞ < ρ < ∞. If we use a Dirac delta function, or a
line impulse, then the Radon transform, denoted by R2D defined in (10) may be
rewritten in the form:

R2f = f̂ (ρ, θ) =
∫ ∞

−∞

∫ ∞

−∞
f (x1, x2)δ(ρ + x1 sin θ − x2 cos θ)dx1dx2, (11)

taking into account Equation (4).
The 2D Radon transform (10) gives rise to one of the most significant inverse

problems in emission tomography. This specific inverse problem implies the “recon-
struction” of the function f (x1, x2), from its two-dimensional Radon transform, i.e.
the function f̂ (ρ, θ).

3 The Radon Transform in Three Space Dimensions

In the two-dimensional case, the Radon transform is considered on sets of parallel
lines. This consideration implies the involvement of line integrals. However, in
the three-dimensional case, the Radon transform is restricted on two-dimensional
planes. In this direction, the transition to three space dimensions yields a certain
generalization of line integration, namely plane integration.2

Therefore, we define the surface integral over all planes P of a three-dimensional
Schwartz function f : R

3 → R, f ∈ S(R3), as its three-dimensional Radon
transform, R3f . In the context of 3D PET, the 3D Radon transform of the function
f is usually stored in the form of the so-called 3D sinogram, denoted by f̂ (ρ, θ, φ):

R3f = f̂ (ρ, θ, φ) =
∫∫

P

f ds, (12)

where ds denotes an area differential and S(R3) denotes the space of Schwartz
functions in R3:

S(R3) =
{
f ∈ C∞(R3) : ||f ||α,β < ∞

}
⊂ C∞(R3), (13)

and

||f ||α,β = sup
x∈R3

|xαDβf (x)|, ∀ multi− index α, β, |xαDβf (x)| → 0, as |x| → ∞.

(14)

Equation (12) may be rewritten via a parameterization x := x(u, v) of the plane
P , with x : R3 → P , as follows:

2Plane integrals are special cases of surface integrals, where the surface of integration is a plane.
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f̂ (ρ, θ, φ) =
∫ ∞

−∞
f (x(u, v))

∣∣∣∣ ∂x∂u
× ∂x

∂v

∣∣∣∣ dudv, (15)

where, for the area differential we employed

ds =
∣∣∣∣ ∂x∂u

× ∂x
∂v

∣∣∣∣ dudv. (16)

In the three-dimensional setting, for convenience, we characterize each two-
dimensional plane P by a vector and a scalar, namely:

(i) the unit normal vector n

n =
⎡
⎣n1

n2

n3

⎤
⎦ , with

√
n21 + n22 + n23 = 1, and (17)

(ii) the signed distance from the origin ρ.

The normal from the origin to the plane intersects the plane at the point ρn. Thus, if
x = (x1, x2, x3)

T is a point on the plane under investigation, then

(ρn − x) · n = 0 (18)

The above implies
⎡
⎣ρn1 − x1

ρn2 − x2

ρn3 − x3

⎤
⎦ ·

⎡
⎣n1

n2

n3

⎤
⎦ = 0,

or

ρ(n21 + n22 + n23) − (n1x1 + n2x2 + n3x3) = 0.

Hence, the equation of the plane is

ρ − n · x = 0, ∀ x ∈ P. (19)

We suppose that the plane of integration P , specified by its signed distance from
the origin ρ and its unit normal vector n, intersects the x1x2-plane in an angle θ , and
the x2x3-plane in an angle φ (spherical angles). In this connection, the unit normal
vector n is uniquely specified by the two spherical angles, i.e. n := n(θ, φ). Thus
f (ρ,n) involves three variables, namely f (ρ,n) = f (ρ, θ, φ). In this direction,
we characterize n in terms of spherical angles, as follows:

n(θ, φ) =
⎡
⎣sin θ cosφ

sin θ sinφ

cos θ

⎤
⎦ , 0 ≤ θ ≤ π 0 ≤ φ ≤ 2π. (20)
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If a point x = (x1, x2, x3)
T lies on the plane of integration P , i.e. x ∈ P , then

Equation (19) implies

ρ − x1 sin θ cosφ − x2 sin θ sinφ − x3 cos θ = 0. (21)

Equation (21) provides a convenient parameterization of the plane under investi-
gation via x1 and x2, treated hereafter as independent variables. In this setting, x3
will be considered as a dependent variable. Taking into account the parameterization
induced by Equation (21), we rewrite the equation of a point x lying on the plane of
integration P as x = x(x1, x2). More specifically, if x ∈ P , then:

x := x(x1, x2; ρ, θ, φ) = (x1, x2, csc θ (ρ − x1 sin θ cosφ − x2 sin θ sinφ))T ,

(22)
where csc θ denotes the cosecant of the angle θ , i.e.,

csc θ = 1

cos θ
. (23)

Hence, the area differential ds is given by

ds =
∣∣∣∣∂x(x1, x2)∂x1

× ∂x(x1, x2)
∂x2

∣∣∣∣ dx1dx2, (24)

where

∂x
∂x1

× ∂x
∂x2

=

∣∣∣∣∣∣∣
x̂1 x̂2 x̂3
∂x1
∂x1

∂x2
∂x1

∂x3
∂x1

∂x1
∂x2

∂x2
∂x2

∂x3
∂x2

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
x̂1 x̂2 x̂3
1 0 − tan θ cosφ

0 1 tan θ cosφ

∣∣∣∣∣∣ =
⎡
⎣tan θ cosφ

tan θ cosφ

1

⎤
⎦ , (25)

and x̂1, x̂2, and x̂3 are the corresponding unit vectors in the x1, x2, and x3
directions, respectively. Taking into account Equation (25), the magnitude of the
above “Jacobian” vector is,

∣∣∣∣ ∂x
∂x1

× ∂x
∂x2

∣∣∣∣ =
√
tan2 θ + 1 = csc θ. (26)

Hence Equation (24) yields

ds = csc θdx1dx2. (27)

Thus, Equation (15) becomes

f̂ (ρ, θ, φ)=
∫ ∞

−∞
dx1

∫ ∞

−∞
csc θf (x1, x2, csc θ(ρ−x1 sin θ cosφ−x2 sin θ sinφ)) dx2.

(28)
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An alternative way to express the three-dimensional Radon transform of a
function f : R3 → R involves a Dirac delta, or “plane impulse”, namely

R3f = f̂ (ρ, θ, φ) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x1, x2, x3)

× δ(ρ − x1 sin θ cosφ − x2 sin θ sinφ − x3 cos θ)dx1dx2dx3. (29)

The alternative definition given by Equation (29) will be proven very useful (see
Theorem 1) for the inversion and the numerical implementation of the three-
dimensional Radon transform, as discussed in Sections 4 and 5.

4 The Inversion of the Radon Transform in Three Space
Dimensions via Plane Integration

For the analytical inversion of the Radon transform in three space dimensions
defined in Equation (28) we shall employ plane integration. In this direction, we
will make use of the so-called central slice theorem (CST). This specific theorem,
applied in the three-dimensional case, provides a fundamental tool for the Fourier-
based inversion of the 3D Radon transform.

Theorem 1 (Central Slice Theorem in 3D) The three-dimensional Fourier trans-
form F3 of a function f (x1, x2, x3), usually denoted by f̃ = F3f , equals the
one-dimensional Fourier transform with respect to the signed distance from the
origin F (ρ)

1 of the three-dimensional Radon transform R3 of the same function
f̂ = R3f , i.e.

F3f = F (ρ)
1 R3f, or f̃ = F (ρ)

1 f̂ , (30)

where

f̃ (k1, k2, k3) := (F3f ) (k1, k2, k3)

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x1, x2, x3)e

−2π i(k1x1+k2x2+k3x3)dx1dx2dx3, (31)

and

F (ρ)
1 f̂ =

∫ ∞

−∞
f̂ (ρ, θ, φ)e−2π ikρdρ. (32)

Proof For the proof of the central slice theorem in three dimensions, it is convenient
to employ the alternative definition of the three-dimensional Radon transform as
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provided via a delta function in Equation (29). In this case, we expand Equation
(32) as follows:

F (ρ)
1 f̂ =

∫ ∞

−∞
f̂ (ρ, θ, φ)e−2π ikρdρ (33)

=
∫ ∞

−∞

(∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x1, x2, x3)

× δ(ρ − x1 sin θ cosφ − x2 sin θ sinφ − x3 cos θ)dx1dx2dx3

)
e−2π ikρdρ

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x1, x2, x3)

( ∫ ∞

−∞
e−2π ikρ

× δ(ρ − x1 sin θ cosφ − x2 sin θ sinφ − x3 cos θ)dρ

)
dx1dx2dx3

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x1, x2, x3)e

−2π ik(x1 sin θ cosφ+x2 sin θ sinφ+x3 cos θ)

dx1dx2dx3

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x1, x2, x3)e

−2π i[(k sin θ cosφ)x1+(k sin θ sinφ)x2+(k cos θ)x3]

dx1dx2dx3

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x1, x2, x3)e

−2π i(k1x1+k2x2+k3x3)dx1dx2dx3

= f̃ ,

where we introduced the new k-variables in the Fourier space vector k :=
(k1, k2, k3)

T of spatial frequencies as follows:

k1 = k sin θ cosφ, k2 = k sin θ sinφ, k3 = k cos θ, (34)

as the new k-variables in the Fourier space. 	

Hence, the Fourier transform with respect to ρ of the “data” equals the three-
dimensional Fourier transform of the function under investigation evaluated at the
new set of variables. The inversion of Equation (30) yields

f = F−1
3 f̃ . (35)

For the inversion of the 3D Radon transform we will utilize the following corollary.
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Corollary 1 (One-Dimensional Fourier Transform of the Second Derivative)
For any twice differentiable function g with respect to ρ, the one-dimensional
Fourier transform of the second derivative of g, F (ρ)

1 g′′, is related with the one-

dimensional Fourier transform of g, F (ρ)
1 g, by the following expression:

(
F (ρ)

1 g′′) (ξ) = −4π2ξ2G(ξ), (36)

where F (ρ)
1 denotes the one-dimensional Fourier transform with respect to ρ

defined in Equation (32), g′′ denotes the second derivative of g with respect to ρ,
i.e.,

g′′ = ∂2g

∂ρ2 , (37)

and G denotes the one-dimensional Fourier transform of g,

G = F (ρ)
1 g. (38)

Proof Inverting Equation (32) and employing g instead of f̃ yields

g =
{
F (ρ)

1

}−1
G =

∫ ∞

−∞
G(ξ)e2π iρξdξ, (39)

where G is defined in Equation (38). As in [12], we take the second derivative of
both sides of Equation (39):

g′′ := ∂2g

∂ρ2 = ∂2

∂ρ2

(∫ ∞

−∞
G(ξ)e2π iρξdξ

)

=
∫ ∞

−∞
G(ξ)

[
∂2

∂ρ2

(
e2π iρξ

)]
dξ

=
∫ ∞

−∞
G(ξ)

[
(2π iξ)2 e2π iρξ

]
dξ

=
∫ ∞

−∞

[
−4π2ξ2G(ξ)

]
e2π iρξdξ. (40)

From the above it is clear that the functions g′′ and −4π2ξ2G(ξ) form a Fourier
transform pair. Hence, Equation (40), combined with Equation (39), imply Equation
(36). 	

Theorem 2 (Inversion of the Three-Dimensional Fourier Transform) The
inverse of the three dimensional Radon transform f̃ = R3f , defined in Equations
(28) and (29), of a Schwartz function f ∈ S (R3) is given by
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f (x1, x2, x3) = − 1

4π2

∫ π

0
sin θdθ

∫ 2π

0
f̃ ′′(ρ∗, θ, φ)dφ, (41)

where, as in Equation (37), prime denotes differentiation with respect to ρ, i.e.

f̃ ′′(ρ∗, θ, φ) = ∂2

∂ρ2 f̂ (ρ, θ, φ)

∣∣∣∣
ρ=ρ∗

, (42)

and ρ∗ is given by

ρ∗ = x1 sin θ cosφ + x2 sin θ sinφ + x3 cos θ. (43)

Proof Equation (35) implies

(
F−1

3 g
)

(x1, x2, x3) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(x1, x2, x3)e

2π i(k1x1+k2x2+k3x3)dk1dk2dk3.

(44)
In this direction, the inversion of the three-dimensional Fourier transform will reveal
the unknown function f in the sense that:

f (x1, x2, x3) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f̃ (k1, k2, k3)e

2π i(k1x1+k2x2+k3x3)dk1dk2dk3.

(45)
We proceed by making a change of variables from (k1, k2, k3) to (k, θ, φ) defined
by Equation (34). The corresponding Jacobian is given by

J (k, θ, φ) =

∣∣∣∣∣∣∣

∂k1
∂k

∂k1
∂θ

∂k1
∂φ

∂k2
∂k

∂k2
∂θ

∂k2
∂φ

∂k3
∂k

∂k3
∂θ

∂k3
∂φ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
sin θ cosφ k cos θ cosφ −k sin θ sinφ

sin θ sinφ k cos θ sinφ k sin θ cosφ

cos θ −k sin θ 0

∣∣∣∣∣∣ = k2 sin θ.

(46)
Thus we modify Equation (45) in the following manner:

f (x1, x2, x3) =
∫ π

0

∫ 2π

0

∫ ∞

−∞
f̃ (k sin θ cosφ, k sin θ sinφ, k cos θ)

× e2π ik(sin θ cosφx1+sin θ sinφx2+cos θx3)J (k, θ, φ)dkdθdφ. (47)

However, a point x = (x1, x2, x3)
T lying on the plane of integration P (x ∈ P ),

according to Equation (21), satisfies

ρ∗ − x1 sin θ cosφ − x2 sin θ sinφ − x3 cos θ = 0, (48)

where ρ∗ is the signed distance of the plane P from the origin, see Equation (43).
Hence, taking into account Equations (46), (48), and (47) may be rewritten as
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f (x1, x2, x3) =
∫ π

0
sin θdθ

∫ 2π

0

[ ∫ ∞

−∞
f̃ (k sin θ cosφ, k sin θ sinφ, k cos θ)

× e2π ikρ
∗
k2dk

]
dφ. (49)

We combine Equations (30) with (32) and (34) to obtain

f̃ (k sin θ cosφ, k sin θ sinφ, k cos θ) =
∫ ∞

−∞
f̂ (ρ, θ, φ)e−2π ikρdρ. (50)

In Equation (49), we replace f̃ by the right-hand side of Equation (50)

f (x1, x2, x3) =
∫ π

0
sin θdθ

∫ 2π

0

[∫ ∞

−∞

(∫ ∞

−∞
f̂ (ρ, θ, φ)e−2π ikρdρ

)
(51)

e2π ikρ
∗
k2dk

]
dφ.

We denote the one-dimensional Fourier transform of the three-dimensional Radon
transform of f by F̂ ,

F̂ (k) :=
∫ ∞

−∞
f̂ (ρ, θ, φ)e−2π ikρdρ, (52)

and insert Equation (52) into Equation (51):

f (x1, x2, x3) =
∫ π

0
sin θdθ

∫ 2π

0

[∫ ∞

−∞
k2F̂ (k)e2π ikρ

∗
dk

]
dφ. (53)

The final step involves the rewriting of Equation (53) in the following manner:

f (x1, x2, x3) = − 1

4π2

∫ π

0
sin θdθ

∫ 2π

0

[∫ ∞

−∞

(
−4π2k2F̂ (k)

)
e2π ikρ

∗
dk

]
dφ.

(54)
We employ Corollary 1, and replace the integral inside the brackets on the left-hand
side of Equation (54), by the left-hand side of the first line of Equation (40) to obtain

f (x1, x2, x3) = − 1

(4π)2

∫ π

0
sin θdθ

∫ 2π

0

∂2f̃ (ρ, θ, φ)

∂ρ2

∣∣∣∣
ρ=ρ∗

dφ, (55)

which, via Equation (42), is Equation (41). 	
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5 Numerical Implementation of the Inversion of the Radon
Transform in Three Space Dimensions via Piecewise Cubic
Polynomials

For the numerical implementation of the inversion of the Radon transform in three
space dimensions we will employ piecewise continuous cubic polynomials, namely
cubic splines. It is important to note that all integrals involving the second derivative
with respect to ρ of the 3D Radon transform will be evaluated at ρ = ρ∗, namely at

ρ∗ = x1 sin θ cosφ + x2 sin θ sinφ + x3 cos θ. (56)

As shown in the previous section, the 3D inverse Radon transform can be expressed
as

f (x1, x2, x3) = − 1

4π2

∫ π

0
sin θdθ

∫ 2π

0
f̂ ′′(ρ, θ, φ)

∣∣∣∣
ρ=ρ∗

dφ (57)

where ρ∗, f̂ and f̂ ′′ are defined in Equations (56), (28), and (42), respectively.
We assume that the three-dimensional Radon transform, f̂ , is given for every θ

and every φ at the n knots {ρi}n1. We denote the value of f̂ at ρi by f̂i , namely

f̂i = f̂ (ρi, θ, φ), θ ∈ [0, π ], φ ∈ [0, 2π ], i = 1, . . . , n − 1. (58)

We also assume that both f̂ (ρ, θ, φ) and f̂ ′(ρ, θ, φ), where

f̂ ′(ρ, θ, φ) = ∂f̂ (ρ, θ, φ)

∂ρ
, (59)

vanish at the endpoints ρ1 = −1 and ρn = 1, i.e.

f̂ (ρ1, θ, φ) = f̂ (ρn, θ, φ) = 0, θ ∈ [0, π ], φ ∈ [0, 2π ], (60)

and

∂

∂ρ
f̂ (ρ1, θ, φ) = ∂

∂ρ
f̂ (ρn, θ, φ) = 0, θ ∈ [0, π ], φ ∈ [0, 2π ]. (61)

In each interval [ρi, ρi+1], i = 1, . . . , n − 1, we approximate f̂ (ρ, θ, φ) by the
third-degree spline S

(3)
i , namely

f̂ (ρ, θ, φ) ∼ S
(3)
i (ρ, θ, φ), ρ ∈ [ρi, ρi+1] θ ∈ [0, π ], φ ∈ [0, 2π ]. (62)
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The cubic spline S
(3)
i interpolates f̃ at the points {ρi}n1:

S
(3)
i (ρi, θ, φ) = fi, i = 1, . . . , n. (63)

Therefore, for ρ ∈ [ρi, ρi+1]

S
(3)
i (ρ, θ, φ) = ai(θ, φ) + bi(θ, φ)ρ + ci(θ, φ)ρ2 + di(θ, φ)ρ3. (64)

Then, following Equation (62),

∂

∂ρ
f̂ (ρ, θ, φ) ∼ ∂

∂ρ
S

(3)
i (ρ, θ, φ) =: S

(2)
i (ρ, θ, φ), (65)

where

S
(2)
i (ρ, θ, φ) = bi(θ, φ) + 2ci(θ, φ)ρ + 3di(θ, φ)ρ2. (66)

Similarly,

∂2

∂ρ2 f̂ (ρ, θ, φ) ∼ ∂2

∂ρ2 S
(3)
i (ρ, θ, φ) = ∂

∂ρ
S

(2)
i (ρ, θ, φ) =: S

(1)
i (ρ, θ, φ), (67)

where

S
(1)
i (ρ, θ, φ) = 2ci(θ, φ) + 6di(θ, φ)ρ (68)

Hence, Equation (57) becomes

f (x, y, z) = − 1

4π2

∫ π

0

∫ π

0
[2ci(θ, φ) + 6di(θ, φ)ρ] sin θdφdθ (69)

The constants ci(θ, φ) and di(θ, φ) involved in the above inversion integral, are
given by the following expressions, see [13]:

ci(θ) = 1

2�i

(ρi+1f̂
′′
i − ρif̂

′′
i+1), (70a)

di(θ) = f̂ ′′
i+1 − f̂ ′′

i

6Δi

, (70b)

where

Δi = ρi+1 − ρi, (70c)
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and

f̂ ′′
i := ∂2

∂ρ2
f̂ (ρi, θ, φ). (70d)

It is worth noting that the inversion formula (57) involves the known constants
{f̂ }n1 and the unknown constants {f̂ ′′}n1. For the computation of {f̂ ′′}n1, we employ
the continuity of the first derivative of the cubic spline, i.e.

S
(2)
i (ρi+1, θ, φ) = S

(2)
i+1(ρi, θ, φ), i = 1, 2, . . . , n−2, θ ∈ [0, π ], φ ∈ [0, 2π ],

(71a)
and

S
(2)
1 (ρ1, θ, φ) = S

(2)
n−1(ρn, θ, φ) = 0, θ ∈ [0, π ], φ ∈ [0, 2π ]. (71b)

The above consists of a system of n unknowns and of n equations, namely n − 2
equations arising from Equation (71a) for i = 1, 2, . . . , n − 2), and 2 equations
arising from Equation (71b). The continuity of the cubic spline itself, i.e.

S
(3)
i (ρi+1, θ, φ) = S

(3)
i+1(ρi, θ, φ) = 0, i = 1, 2, . . . , n−2, θ ∈ [0, π ], φ ∈ [0, 2π ]

(72a)
and

S
(2)
1 (ρ1, θ, φ) = S

(2)
n−1(ρn, θ, φ) = 0, θ ∈ [0, π ], φ ∈ [0, 2π ]. (72b)

The continuity of the cubic spline, S
(3)
i (ρ, θ, φ), as expressed in Equations (72),

implies that the knots {ρi}n1 are removable logarithmic singularities.
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