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Abstract In this study, we extend the model developed in Leventides et al. (J Econ
Behav Organ 158:500–525, 2019) to include a wide variety of network topologies
and provide a better understanding of the relation between network structure, banks’
characteristics and interbank contagion. While the focus of this paper is on the
various factors that affect interbank contagion such as bank capital ratios, leverage,
interconnectedness and homogeneity across banks’ sizes, the model lacks flexibility
as far as the variability of the networks links is concerned. In order to circumvent this
problem, we introduce the Erdős–Rényi probabilistic network model in our study
to provide a wider vicinity of scenarios concerning the network structure of the
interbank system and study how homogeneity within the interbank network affects
the propagation of financial distress from one institution to the other parts of the
system through bilateral exposures.

1 Introduction

Meeting the SDGs has currently secured prior importance for both businesses’
and nations’ socio-economic-environmental transformation to achieving sustainable
development. More than 10,000 companies around the world have already signed
up to the principles of sustainable business behavior and an adequate number of
special toolkits has been developed to assist them towards this transformation. As
explicitly stated in [1] “Achieving the Global Goals would create a world that is
comprehensively sustainable: socially fair; environmentally secure; economically
prosperous; inclusive; and more predictable”. According to Oxford Analytica
Foundation [2], “companies that see the business case – as well as the moral
imperative – for achieving all the Global Goals will take a ‘Global Goals lens’
to every aspect of their business strategy to change the way they operate and put
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more focus on inclusion”. Accordingly, Weber [3] underlined that “the banking
sector became aware of the opportunity to finance the change to more sustainable
development instead of just focusing on risks for their lending business”. Alves et
al. [4] debated that “EU aid policy evolved over the last fifteen years in accordance
to the notion of financial liberalization and to the importance of private initiative
and combined with the SDGs increased the promotion of the financial sector as
engine of growth and development in the developing countries’ and that “the New
International Financial architecture assigns new roles for developing nations in the
global financial markets”. Achieving the Agenda 2030 depends on aligning the
entire global chain of the financial and the banking system with sustainability and
long-term outcomes therefore delineating of interbank linkages network structure
becomes of outmost importance.

Furthermore, in the wake of the aftermaths of global financial crisis of 2007–
2009 and the European sovereign debt crisis, there is a lot of attention of systemic
risk, interconnectedness and contagious effects. Thus, there is a critical need
for a better understanding of the fragility of the financial systems, their inner
interconnections, their interaction with real economy and the conditions that can
drive them from stability to instability and complete breakdown. In recent years,
both academics and regulators has started to study various architectures of the
financial system in order to assess certain risks within the system that potentially
lead to huge losses for the overall economy.

The global financial system can be represented as a large complex network
in which banks, hedge funds and other financial institutions are interconnected
to each other through various forms of financial linkages. For example, in the
banking sector, banks can be interconnected through direct and indirect links.
Direct interconnectedness arises from bilateral transactions; borrowing or lending
relationships between banks. A default by one bank, for example, can impose
distress on other entities that hold significant liabilities of the defaulting bank. Thus,
the failure of a bank can jeopardize the ability of its creditors banks to meet their
obligations to their interbank creditors which may lead to a domino effect. There are
also indirect ways that banks can be interconnected, since they invest in common
securities, namely portfolio overlap. If, for example, a bank holds identical assets
with other banks the correlation between their portfolios can cause fire sales in the
market during a crisis period depressing thus overall prices in the market, ultimately
leading to downward spirals for asset sales and inducing significant losses for all
the participants in the market. The complexity of the financial system led many
academics to utilize the network theory to study the effects of the interconnectedness
and network topology on financial stability. Studying the financial system as a
network is one of the methods to investigate the emergence of systemic risk
through the connections of banks. In such a network structure every node represents
a bank, the connections between banks are represented by edges where edge’s
weight represents the magnitude of exposure between the two parties and edge
directionality allows one to determine who is the creditor and who is the lender.
A robust interbank market plays an important role on the stability of the financial
system. Through the interbank market, banks which suffer a liquidity shortage can
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borrow from banks with liquidity surpluses. The interbank market can stabilize the
financial system, by redistributing the funds in a effective way among the banks but
at the same time can make the system prone to contagion of financial trouble from
one bank to another (linkages).

In this paper, we focus our attention on the direct contagion channel and
aim to identify the main drivers that affect interbank contagion. The flourishing
literature which ensued in recent years has developed both theoretical models
and empirical applications aimed at addressing the various issues concerning
systemic risk. Counterfactual simulations on data have been extensively employed
to study interbank contagion under different scenarios related to the topology of the
interbank network, the size of interbank exposures and the degree of heterogeneity
and interconnectedness within the network. In our assessment of the various drivers
that affect interbank contagion, we extend the model developed in Leventides
et al. [5] to include a wide variety of network topologies and provide a better
understanding of the relation between network structure, banks’ characteristics and
interbank contagion. While the focus of this paper is on the various factors that affect
interbank contagion such as bank capital ratios, leverage, interconnectedness and
homogeneity across banks’ sizes, the model lacks flexibility as far as the variability
of the networks links is concerned. In this effort, interbank exposure and capital
equity among banks displayed a stochasticness and the ability to construct a wide
range of scenarios regarding connective links among banks is limited.

The introduction of the Erdős–Rényi probabilistic network model provides us
with a wider vicinity of scenarios concerning the network structure of the interbank
system. Under this framework, we build up multiple scenarios of various network
structures that include a satisfactory number of cases via Monte Carlo simulations.
In every single network that we construct, we investigate the dynamics of cascading
defaults from an initial random shock that hits the system. Erdős–Rényi random
graph model is one of the earliest theoretical network models and was introduced
in the early 1960s by the Hungarian mathematicians Paul Erdős and Alfréd Rényi.
In this random graph, each possible link between any two nodes can occur with a
certain independent and identical probability, the Erdős and Rényi probability.

The Erdős and Rényi random graph model is a model in which has been
extensively applied for the study of contagion in financial networks, e.g. [23, 24].
However, a number of alternatives have been recently developed that differ in
the probability law governing the distribution of links between nodes. Using the
Erdős–Rényi network structure, the degree distribution or the connectivity among
banks can vary with respect to the chosen probability p. Thus, each random
network generated with the same parameters N, p looks slightly different. Not only
the detailed wiring network graph changes between realizations, but so does the
number of links. Random graphs or Erdős–Rényi graphs are useful for modeling,
analysis, and solving of structural and algorithmic problems arising in mathematics,
theoretical computer science, statistical mechanics, natural sciences, and even in
social sciences. However, the utility of an Erdős–Rényi model lies mainly in its
mathematical simplicity, not in its realism. Virtually, the comparison with real-
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world networks indicates that the random network model does not capture the degree
distribution of real networks but it provides a useful baseline for more complicated
network models.

The remainder of the paper is organized as follows. The following section
discusses briefly the recent literature that has addressed on the topic of interbank
contagion. Various aspects of systemic risk and network structures that are either
found in real-world data or used in some theoretical studies of interbank contagion
are addressed before we introduce the model investigated in Section 3. In Section 4
we describe the variables, considered in our subsequent analysis, provide in full
detail the computer experiments conducted and discuss our simulations results.
Summary and concluding remarks are drawn in the final section.

2 Related Literature

According to Upper [11], the channels through which a shock spreads can be
broken down into two groups: indirect and direct contagion channels. A direct
contagion channel results from the direct interbank linkages among banks and can
take effect when an idiosyncratic shock travels through the network. This shock
can be due to the inability of some banks to meet their financial obligations or
due to interbank exposures that are quite large relative to the lender’s capital. The
possibility of the occurrence and transmission of direct contagion depends mainly
on the structure and size of the interbank market. On the other hand, indirect
contagion is created by indirect linkages among banks such as identical assets,
portfolio returns and overlapping portfolios. If, for example, a bank holds identical
assets with other banks, the correlation between their portfolios can cause fire sales
in the market during a crisis period, thus depressing overall prices in the market
and inducing significant losses for all participants [12]. Distinguishing among the
various contagion channels is crucial for understanding financial contagion and the
mechanisms through which it spreads and evolves.

There are a number of recent studies that have dealt with the issue of interbank
contagion. Memmel and Sachs [13] simulate interbank contagion effects for the
German banking sector and find that bank capital ratios, the share of interbank
assets in the system and the degree of equality in the distribution of interbank
exposures are the most important determinants for financial stability. Georgescu
[14] compares the contagion potential of accounting induced regulatory constraints
to that of funding constraints in a bank network and concludes that the interplay
between illiquidity and solvency can lead to bank failures which are manifested by
the vulnerable funding structure of banks during a crisis. Tonzer [15] examines the
relationship between cross-border bank linkages and financial stability and show
that larger cross-border exposures increase bank risks, however, when bilateral
interbank linkages exist there is a shift toward a more stable banking system. Fink
et al. [16] model contagion in the German interbank market via the credit quality
channel and propose a novel metric which estimates the potential regulatory capital
loss to a banking system due to contagion via interbank loans. They show that



Financial Contagion in Interbank Networks: The Case of Erdős–Rényi Network Model 281

contagion effects can be reduced if banks alter their lending and borrowing habits
in response to policy interventions.

Our analysis also relates to the role of heterogeneity in the structure of interbank
networks and how this characteristic affect systemic risk. Iori et al. [6] use an
Erdős–Rényi network model of 400 banks comprising the interbank market in which
the lending and borrowing functions are endogenously generated. The authors find
that the likelihood of contagion is lowered in case the interconnected institutions
are homogeneous, i.e. they have similar characteristics such as size or investment
opportunities and thus, no institution becomes significant for either borrowing
or lending. The authors also suggest, in line with Allen and Gale [17], that as
connectivity increases the system becomes more stable. In a related study, Caccioli
et al. [18] study the role of heterogeneity in degree distributions (the number of
incoming and outgoing links), balance sheet size and degree correlations between
banks. They find that networks with heterogeneous degree distributions are shown
to be more resilient to contagion triggered by the failure of a random bank, but more
fragile with respect to contagion triggered by the failure of highly connected nodes.
The authors also provide evidence that when the average degree of connectivity is
low, the probability of contagion due to failure of highly connected banks is higher
than that due to the failure of large banks. However, when the average degree of
connectivity is high, the opposite holds. Since the second scenario seems to be
more realistic (networks with high connectivity), having “too big to fail” banks is
more effective in eliminating a shock. Ladley [19] develops a partial equilibrium
model of a closed economy in which heterogeneous banks interact with borrowers
and depositors through the interbank market. Banks in the model are subject to
regulation and the aim of the model is to qualitatively show how regulation and
network structure can constrain or enhance the risk of contagion. The results show
that for high levels of connectivity the system is more stable when the shock is
small, while the contagion effects are amplified in case of larger initial shocks.
Chinazzi et al. [20] explore the interplay between heterogeneity, network structure
and balance sheet composition in the transmission of contagion. They argue that
heterogeneity in connectivity provides additional resiliency to the system when the
initial default is random and also show that ‘too-connected-to-fail’ banks are more
dangerous than ‘too-big-to-fail’ ones and should be the primary concern of policy
makers since their failure can trigger systemic breakdowns. Amini et al. [10] focus
on bank heterogeneity in terms of the number of banks included in the network and
the magnitude of their interconnections with other banks. They conclude that the
more heterogeneity is introduced, the less resilient the network becomes. Contrary
to these findings, the study of Georg and Poschmann [21] finds no significant
evidence that the heterogeneity of the financial system has a negative impact on
financial stability.

Finally, as far as the structure of an interbank system is concerned, the most
common network structures that are either found in real-world data or used in
some theoretical studies of interbank contagion are the Erdős–Rényi random
network structure, introduced in Erdős and Rényi (1960), the small-world structure,
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introduced in Watts and Strogatz (1998) and the scale-free structure, introduced in
Barabasi and Albert (1999).

The Erdős–Rényi network structure, which is applied in our study, can be
obtained by connecting any two nodes with a fixed and independent probability
p. Thus, in an Erdős–Rényi network structure the degree or the number of links of
a node is p(n-1). The expected degree distribution for such networks is Binomial,
converging to Poisson for large n. The Erdős and Rényi (1960) random graph model
is a model in which has been extensively applied for the study of contagion in
financial networks, e.g. in the contributions from Iori et al. [6], Nier et al. [7], Gai
and Kapadia [8], May and Arinaminpathy[9] and Amini et al. [10]. A number of
alternatives models have been recently developed that differ in the probability law
governing the distribution of links between nodes. Nier et al. [7] study the extent to
which the resilience of an interbank network depends on a combination of variables
characterizing the network topology, banks’ characteristics in terms of net worth
and interbank exposures, and market concentration. Using Monte Carlo simulation
experiments in Erdős–Rényi random graphs, they find that the effect of the degree of
connectivity is non-monotonic. Specifically, a small initial increase in connectivity
increases the chance of contagion defaults. However, after a certain threshold value,
connectivity improves the capacity of a banking system to withstand shocks. In
addition, the authors find that the banking system is more resilient to contagious
defaults if its banks are better capitalized and this effect is non-linear. Finally, the
size of interbank liabilities tends to increase the risk of default cascades, even if
banks hold capital against such exposures and more concentrated banking systems
are shown to be prone to larger systemic risk. Gai and Kapadia [8] using a network
model of a banking system study how the probability and potential impact of
contagion is influenced by aggregate and idiosyncratic shocks, network structure
and liquidity. The authors agree with Haldane (2009) concerning the “robust-yet-
fragile” property that the financial system exhibit. Even when the probability of
contagion is very low, its effects can have tremendous consequences to the financial
system. Higher connectivity may reduce the probability of default when contagion
has not started yet but it may also increase the probability of having large default
cascades when contagion begins. May and Arinaminpathy [9] apply an Erdos–Renyi
network structure of which they build on the models of Nier et al. [7] and Gai
and Kapadia [8] and study the interplay between the characteristics of individual
banks and the overall behavior of the network. The authors consider that banks
interact through different asset classes and study contagion between those asset
classes. May and Arinaminpathy [9] find that increasing the level of connectivity
is beneficial only when the initial shock has been caused by a default on interbank
loans. However, by contrast, the opposite holds in case of liquidity shocks since
they do not experience attenuation and for a given asset class, they tend to grow
as more and more banks hold the failing asset. Finally, the authors emphasize the
importance of having large capital buffers that will make for greater robustness
both of individual banks and of the system as a whole. Finally, Amini et al. [10]
test the impact of heterogeneity in an interbank network structure and the relation
between resilience and connectivity using three different network models; a scale-
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free network with equal and heterogeneous weights and an Erdős–Rényi network
with equal weights. The main result of this study is that the most heterogeneity is
introduced, the least the resilience of the network.

3 Erdős–Rényi Random Graph Model

The random graph model which is one of the earliest theoretical network models
was introduced by Erdős and Rényi (1960). In this random graph, each possible
link between any two nodes can occur with a certain independent and identical
probability, p. This model is typically denoted G(n, p) and has two parameters: n
the number of vertices and p, the probability that each simple edge (i, j) exists,
which is constant for each pair nodes.

The adjacency matrix of a random graph is given by

∀i > j,Aij = Aji =
{

1, edge (i, j ) exists; prob (p)

0, edge (i, j ) does not exist; prob (1 − p)

In other words, each edge is included in the graph with probability p, independent
from every other edge. The probability to create randomly a graph with n nodes and

m edges is given by pm(1 − p)

⎛
⎝ n

2

⎞
⎠−m

. Furthermore, the probability p serves as
the parameter of our model and as p increases, the graph is more likely to have more
edges.

The restriction of i > j appears because edges are undirected or to put it
differently, the adjacency matrix is symmetric across the diagonal, and there are no
self loops. In the network there are n (n − 1) possible links to be created, resulting
in an expected number of edges in the network equal to pn (n − 1), so that the
(expected) average degree is p(n − 1). Thus, the degree distribution of such a graph
is given by

p(k) =
(

n − 1
k

)
pk(1 − p)n−1−k (1)

The mean degree, c, in the G(n,p) graph model is given by

c = (n − 1) p (2)

In other words, each vertex has (n-1) possible partners and each of these exist
with the same independent probability p. Asymptotically, as n → ∞, the degree
distribution of a random graph converges to a Poisson (c) distribution
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p(k) = e−cck

k! (3)

Due to the above property, the Erdős–Rényi random graph model is sometimes
referred as Poisson random graph or random graph. The Erdős and Rényi (1960)
graph model results in networks with small diameters and short average path
lengths, capturing very well the “small-world” property, observed in many real
networks. The clustering coefficient of an Erdős–Rényi graph model is equal to
the probability of an edge’s existence between two nodes, p. The Erdős and Rényi
(1960) random graph model is a model in which has been extensively applied for
the study of contagion in financial networks, e.g. in the contributions from Iori et al.
[6], Nier et al. [7], Gai and Kapadia [8] and Montagna and Kok (2013).

In an Erdős –Rényi model we begin with n isolated nodes as presented in the first
snapshot in Figure 1. Then, with probability p > 0 each pair of nodes is connected
by a link. Therefore, in this model the network is determined only by the number

Fig. 1 Erdős–Rényi random networks: Erdős–Rényi random networks with ten nodes and differ-
ent probabilities of connecting a pair of nodes
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of nodes, n, and edges, m, and usually an Erdős–Rényi random graph is written as
G(n, m) or G(n, p). In Figure 1 we present some examples of Erdős–Rényi random
graphs with the same number of nodes and different linking probabilities. It is easy
to understand that if we repeat the process for the same number of nodes and the
same probability, we will not necessarily get the same network.

However, a number of alternatives models have been recently developed that dif-
fer in the probability law governing the distribution of links between nodes. Since,
the Erdős–Rényi probability, p, is assumed to be equal and constant across all pairs
of nodes, the resulting network structure does not present marked heterogeneity.
Thus, modeling interbank networks using the Erdős–Rényi structure fails to mimic
the heterogeneity observed in real interbank network systems.

In order to fully understand the heterogeneity of an Erdős–Rényi random
network, we now consider one particular random realization of an Erdős–Rényi
random network with 1000 nodes and p = 0.04, that is G(n = 1000, p = 0.04) and
plot the probability p(k) of finding a node of degree k, versus the degree, we obtain
Figure 2, where it can be seen that the maximum of the distribution is about the value
k = (n − 1) p = 39. Obviously, the probability p(k)follows a binomial distribution
of the form represented in Equation (1). As we explained above, for large values of
n, the degree distribution of a random graph converges to a Poisson (c) distribution.
Figure 2 displays the heterogeneity plot for G(1000, 0.04), where two characteristic
features of the Erdős–Rényi networks are observed. The first is a typical dispersion
of the points around the value x = 0, and the second is the very small value of ρ(G),
which in this case is 0.0066.

Fig. 2 Heterogeneity of Erdős–Rényi random networks. A typical Poisson degree distribution
of an Erdős–Rényi random network with 1000 nodes and p = 0.04 (left), and the characteristic
heterogeneity plot for the same network. (Source: Estrada [22])
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3.1 The Mathematical Description of the Contagion Model

In this section we study the case of an Erdős–Rényi network model in which, as
we stated earlier, all nodes have the same probability of being connected to another
node in the network. Our model is tailored to simulate default cascades triggered
by an exogenous shock in an interbank network as in Leventides et al. [5]. We first
introduce the interbank network model, describe the default cascades initiated by
a random negative shock on this network and analyze the parameters that affect
interbank contagion.

3.2 The Interbank Network

As in Leventides et al. [5], we assume that the banking system contains i = 1,...,
N banks. Every bank has its own balance sheet and the accounting equation holds
at all times. Total assets are divided in three categories: interbank assets AIB

i , other
assets AOT

i and cash reserves Ci. On the liabilities side of the balance sheet we have
included: interbank liabilities LIB

i , other liabilities LOT
i and equity capital Ei. A

schematic overview of the balance sheet is given in Table 1. Although the proposed
balance sheet structure does not capture all elements of a bank balance sheet, it
includes all those positions that are relevant to our study.

We introduce a standard notation for our model and we define a simple interbank
network as G= (V,E), where V represents the nodes of the graph while E represents
the edges. We further consider A, the adjacency matrix of the graph, defined as

∀i > j,Aij = Aji =
{

1, edge (i, j ) exists
0, edge (i, j ) does not exist

The uth row or column of A has ku entries, where ku is the degree of the node
u, which is simply the number of nearest neighbours that u has. Denoting by 1 a
|V| × 1vector, the column vector of node degrees κis given by

Table 1 Stylized Balance
sheet structure

Assets Ai Liabilities Li
Interbank Assets

(
AIB

i

)
Interbank Liabilities

(
LIB

i

)
Other Assets

(
AOT

i

)
Other Liabilities

(
LOT

i

)
Cash (Ci) Equity Capital (Ei)

The table presents a stylized balance sheet structure in
the interbank network. Total assets are divided in three
categories: Interbank assets

(
AIB

i

)
, other assets

(
AOT

i

)
,

and cash reserves(Ci). Total liabilities include: Interbank
liabilities

(
LIB

i

)
, other liabilities

(
LOT

i

)
, and equity capi-

tal (Ei). It is assumed that the accounting equation holds
at all times
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κ =
(

1T A
)T = AT 1 (4)

We define the indegree as the number of links pointing toward a given node,
and the outdegree as the number of links departing from the corresponding node.
Specifically:

κin =
(

1T A
)T = AT 1 (5)

κout = A1 (6)

Thus, our interbank network of credit exposures between n banks can be visu-
alized by a graph G = (V,E) where V represents the set of financial institutions—
nodes, and E is the set of the edges linking the banks, that is, the set of ordered
couples(i, j) ∈ V × V indicating the presence of a loan made by bank i to bank j.
The number of nodes defines the size of the interbank network. Every edge (i, j) is
weighted by the face value of the interbank claim and the representation of interbank
claims is made by a single weighted N × N matrix X:

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 · · · x1j · · · x1N

...
. . .

... . .
. ...

xi1 · · · 0 · · · xiN

... . .
. ...

. . .
...

xN1 · · · xNj · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

where xij is the credit exposure of bank i vis-à-vis bank j and N is the number of
banks in the network. Interbank assets are represented along the rows while columns
represent interbank liabilities. Once X is in place, the interbank entries of each bank
are given according to the following rules:

(i) Ai =
N∑

j=1
xij (horizontal summation), where Ai is the total interbank assets of

bank i.

(ii) Li =
N∑

i=1
xij (vertical summation), where Li is the summation of the total

interbank liabilities of bank j.

One can observe that the diagonal line contains zeros due to the fact that banks
do not lend to themselves. In this framework, a random network is generated
based on two parameters, the size of the network (number of nodes/banks) and
the probability pij that there is a lending/borrowing link between two nodes/banks.
Thus, each possible link between two nodes exists with an independent and identical
probability, which is often called the Erdős–Rényi probability.
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Although, we have undirected edges in this framework, we cannot really speak
of undirected links, since the two directions of the same link are given different
weights.

3.3 Shock Propagation and Contagion Dynamics

The failure of a bank can affect other banks through their interbank connections.
Below, we describe the mechanism through which an initial shock affecting a
bank propagates onto its counterparties along the network. Contrary to the recent
literature, the term contagion here translates into total capital losses due to multiple
default cascades. The cascade dynamics we use in this study are straightforward
to implement and enable us to run a great number of simulations on a variety of
different scenarios (Table 2).

The default procedure starts with an exogenous shock being simulated, typically
by setting to zero the equity of one randomly chosen bank i and the cascade
of defaults proceeds on a timestep-by-timestep basis, assuming zero recovery for
shock transmissions. The zero recovery assumption, which is a realistic one in
the short run, is often used in the literature to analyze worst case scenarios and

Table 2 OLS regression analysis for Scenario 1 (Heterogeneous banks with homogeneous
exposures)

N = 20 N = 50 N = 80 N = 100

CATIN 1 0.051
(16.198)***

−0.002
(−0.459)

−0.001
(−0.347)

−0.007
(−2.044)**

CATIN2 0.098
(4.195)***

0.004
(0.170)

0.179
(8.073)***

0.104
(5.059)***

LEVIN 0.389
(17.018)***

0.413
(19.043)***

0.260
(12.205)***

0.315
(15.935)***

NOUTGOING −0.080
(−3.915)***

0.097
(2.773)***

−0.170
(−4.933)***

−0.053
(−1.534)

COUNT 0.602
(138.571)***

0.572
(134.093)***

0.576
(136.735)***

0.540
(124.326)***

VARCAP −0.088
(−53.348)***

−0.075
(−61.005)***

−0.053
(−53.890)***

−0.054
(−57.165)***

P −0.101
(−5.089)***

−0.080
(−2.338)**

0.165
(4.885)***

0.107
(3.148)***

Adjusted R2 0.800 0.763 0.756 0.749

The table presents the regression results for Scenario 1. The dependent variable is CATEND
measured as the total loss of capital due to contagion as percentage of total capital in the network.
Explanatory variables are, CATIN1, CATIN2, LEVIN, NOUTGOING, COUNT, VARCAP and
P, the probability for a link to exist between two nodes. Each cell displays the OLS standardized
coefficients along with the corresponding t-statistics (shown in parentheses). The sample comprises
of 18,000 realizations (simulated banking crises). *, ** and *** denote significance at the 10, 5
and 1 percent level, respectively
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refers to a situation where creditor banks lose all of their interbank assets held
against a defaulting bank [8, 20]. A bank’s default implies that it is no longer
able to meet its interbank liabilities to its counterparties. Since these liabilities
constitute other banks’ assets, the banks that get into trouble affect simultaneously
their counterparties, leading to write-downs in their balance sheets. The interbank
asset loss due to failure of bank i is subtracted from the bank’s j capital. Bank j will
fail if its exposure against bank i exceeds its equity. A second round of bank failure
occurs if bank creditors cannot withstand the losses realized due to its default and
eventually, contagion stops if no additional bank goes bankrupt, otherwise a third
round of contagion takes place. An initial shock can be amplified through banks’
interconnections and further transmitted to other institutions, such that the overall
effect on the system goes largely beyond the original shock. As Upper and Worms
(2004) demonstrate, in response to a liquidity shock banks prefer to withdraw their
deposits at other banks instead of liquidating their long-term assets, creating further
instability and liquidity dry-ups in the financial system.

A general mathematical description of the dynamical system expressing the
shock propagation mechanism is presented hereafter. We consider a network
consisting of N banks numbered from 1 to N. We define bi as the capital possessed
by bank i in the network and

b0 = (b1, b2, . . . , bN)
(7)

stands for the initial vector of bank capital. X is defined as a N × N matrix with
entries:

xi j= the credit exposure of bank i vis-à-vis bank j in the network

xi i = bi (8)

We consider the case where some of the banks (one or more) collapse. We wish
to study how the crisis travels through the bank network and when exactly it comes
to a fixed point. The collapse of banks i1, i2, ..., ik (where k ≤ N), can be described
in the following way. Consider the element x0 ∈ Z2

N = {0, 1}N which has zero
entries everywhere except the positions i1, i2, ..., ik where x0 takes on the value 1.
Then,

b1 = b0 − X· x0 (9)

is the new vector of capital of the N banks. We now take

x1(i) =
{

1, b1(i) ≤ 0;
0, b1(i) > 0.

(10)
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Then x1 ∈ ZN
2 and x1 indicates the banks that have collapsed after the bankruptcy

of the first k banks. The vector x1 takes on the value 1 in the positions i1, i2, ..., ik .
If x1 �= x0, this indicates that the collapse of the first k banks has adversely affected
other banks leading them to bankruptcy. Similarly, from x1 we take:

b1 = b0 − X· x1 (11)

and then

x2(i) =
{

1, b2(i) ≤ 0;
0, b2(i) > 0.

(12)

The vector x2 indicates the banks that collapse after the bankruptcy of the banks
of x1. Therefore, we have a map:

F : Z
N
2

→ Z
N
2

(13)

x → F(x) = f (b0 − X· x) (14)

The map F(x) defines a dynamical system xn + 1 = F(xn) which describes the
evolution of contagion in the interbank network.

3.4 Monte Carlo simulations

In this section we apply Monte Carlo simulations in four different stages. As in
Leventides et al. [5], we introduce randomness in three areas: amount of capital,
interbank claims and network structure. The stochasticness introduced in our model
provides us with a wide vicinity of scenarios that may come across in real world.
Using the Erdős–Rényi network structure, the degree distribution or the connectivity
among banks can vary with respect to the chosen probability p. Thus, each random
network generated with the same parameters N, p looks slightly different.

The second stage involves estimating the parameters of interest, i.e. the value
of the coefficients in the regression model. In the third stage the test statistics of
interest are saved, while in the fourth stage we go back to the first stage and repeat
N times. The quantity N is the number of replications which should be as large as
is feasible. As Monte Carlo is based on random sampling from a given distribution
(with results equal to their analytical counterparts asymptotically), setting a small
number of replications will yield results that are sensitive to odd combinations of
random number draws. Generally speaking, the sampling variation is measured by
the standard error estimate, denoted Sx = √

var(x)/N , where x denotes the value of
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the parameter of interest and var(x) is the variance of the estimates of the quantity
of interest over the N replications.

Similar to Leventides et al. [5], we consider four different scenarios, in line with
Chinazzi et al. [20], where we let vary the balance sheet composition, the size of the
network and the link probability among banks which is held constant for each pair
of nodes. The four scenarios tested are as follows:

Scenario 1: • Heterogeneous banks with homogeneous exposures. In this scenario,
we construct interbank networks where banks have different equity size
and their interbank claims are evenly distributed across the outgoing links

Scenario 2: • Heterogeneous banks with heterogeneous exposures. In this scenario,
the interbank networks allow for heterogeneous bank sizes and
heterogeneous interbank claims among banks.

Scenario 3: • Homogeneous banks with heterogeneous exposures. In this scenario,
we construct interbank networks where banks have the same equity size
and unevenly distribute their exposures across creditor banks

Scenario 4: • Homogeneous banks with homogeneous exposures. In this last
scenario, we construct interbank networks where banks have the same
equity size and interbank claims are evenly distributed across creditor
banks

In each case, we do not control the number of outgoing links as in Leventides
et al. [5] but for each network that is generated a random probability, which is
constant for each pair of nodes, defines the lending/borrowing relation of each bank.
The probability pij is assumed to be equal and constant across all pairs (i,j). For
simplicity, we denote the probability, termed as the Erdős–Rényi probability, by
p. Since the probability of forming a link is homogeneous, the resulting network
structure does not present marked heterogeneity.

We examine banking systems consisting of small banks with low, medium and
large interbank exposures, as well as systems of large banks with corresponding
exposure levels. We consider a basic model that uses only two components from a
bank’s balance sheet, that is, equity and interbank loans–in the words of May and
Arinaminpathy [9] ‘a caricature for banking ecosystems’. We generate our model
in two separate steps. First, we construct a model structure of N nodes representing
the banks in our system and randomly choose the probability p of forming a link

between each of the

(
N

2

)
possible links.

For all the possible couples of nodes, a link is created with probability p which
represent lending/borrowing relationship, while in a second step, we assign each
node to a stylized balance sheet structure. Once the banking networks are created,
the default propagation dynamics are implemented to examine the effects of an
idiosyncratic shock hitting one bank. The effect of a shock is simulated, typically by
setting to zero the equity of the affected bank. We estimate the initial loss of capital
by letting the first bank default and subsequently record the loss as percentage of
the total capital in the system. Consequently, the defaulted bank will be unable to
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repay its creditors and the interbank loans that were granted will be written-off, as
we have selected to work under a zero recovery assumption. This bad debt will be
recorded and expressed as percentage of the total capital in the system. Moreover,
the creditors of the defaulted bank will experience a shock on their balance sheets
and the recorded losses will be subtracted from their equity.

If at any time the total losses realized by a bank exceed its net worth, the bank
is deemed in default and is removed from the network. Note that time steps are
modeled as being discrete and there is the possibility that many banks default
simultaneously in each timestep. These shocks propagate to their creditors and
take effect in the next timestep. When no further failures are observed, the default
procedure terminates and various contagion indicators1 are calculated based on the
contagion map as described in Subsection 3.3.

4 Main Findings

This section discusses the main findings of this study. Subsection 4.1 describes in
full detail the computer experiments conducted while Subsection 4.2 discusses the
simulation results of all four scenarios considered.

4.1 Computer Experiments

Having generated banking systems via an Erdős–Rényi network structure frame-
work and balance sheet allocation, the dynamics of an initial shock affecting a
bank within the interbank network can be investigated. Given the complexity of
the interbank network outlined above, it is extremely difficult to derive analytical
solutions. In order to obtain data to describe the variables that affect contagion,
we employ several Monte Carlo simulations. In each realization, we construct an
interbank network with N ∈ [20, 50, 80, 100] nodes under the rewiring process of the
Erdős–Rényi methodology. In a second step, we test the four scenarios mentioned
before by varying the equity size of banks and the interbank exposure structure
across creditor banks. For each scenario tested we check a wide range of link
probabilities, such that we can observe dense or sparse interbank network systems.
Since the probability of forming a link is homogeneous, the resulting network
structure does not present marked heterogeneity.

When homogeneity across bank sizes is considered, all banks are assumed to
have the same equity size and thus, each bank is endowed with a balance sheet that

1We refer the interested reader to Appendix in Leventides et al. [5] for a formalization of the
aforementioned mechanism in a pseudocode which simulates the default cascade in the interbank
network.
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consists of 100 units of equity. On the other hand, when homogeneity is present
with respect to interbank exposures, interbank claims are randomly allocated within
the interbank network and are categorized as follows: small loans granted (4 units),
medium loans (8 units) and large loans (14 units). With respect to scenarios tested
where heterogeneity of bank size is introduced, the amount of equity of each bank
is drawn from a uniform distribution in the range: bi ∈ [0, 100], whereas when
heterogeneity is introduced with respect to interbank claims, credit is allocated in the
following ranges: aij ∈ [0, 4], aij ∈ [0, 8], aij ∈ [0, 14].

2 Interbank exposures are set
60% lower than these in Leventides et al. [5]. This is due to the fact that we cannot
control the connectivity across banks since the link probability in randomly selected.
The interbank exposure decrease was set by trial and error in order not to observe
enormous high leveraged systems. In addition, we control the leverage of the system
by setting the rule that the maximum leverage ratio of each network system cannot
exceed five. Then, balance sheets are assigned to each node, consistent with each
specific scenario tested. We randomly choose a single bank in the system to default
due to an exogenous shock and the default cascades proceed sequentially, assuming
zero recovery. When no further failures are observed results are recorded before
another realization begins. We then impose another shock on the second bank in the
network and this procedure continues until all banks in the interbank network are
hit by an exogenous shock.

For each scenario tested and for each network size we have three cases in which
we allow the weight of outgoing links (small, medium and large interbank claims)to
vary among banks. Each case gives us 6000 realizations or, to put it differently, 6000
banking crises. We deem that 6000 realizations provide a satisfactory number of
runs and robustness to our analysis. Thus, for each scenario tested and each network
size we employ 6000 × 3 = 18,000 realizations using the following variables in
each realization:

• Total loss of capital due to contagion as percentage of total capital in the system
(CATEND)

• Initial loss of capital by defaulting bank i as percentage of total capital in the
system (CATIN1), i.e. bank’s i depleted equity divided by the total equity in the
network

• Loss of capital at the first stage (interbank loans that cannot be repaid) by
defaulting bank i as percentage of total capital in the system (CATIN2), i.e. total
amount of loans granted to bank i that cannot be repaid divided by the total equity
in the network

• Leverage of the interbank network(LEVIN), i.e. total interbank exposures as
measured by the sum of matrix’s A elements, divided by the total capital in the
network

2Although those ranges have been selected arbitrarily, they are not sensitive to any regression
model employed in the following analysis and thus, our regression results will be unaffected from
a qualitative point of view if different ranges are used.
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• Number of outgoing links of bank i (NOUTGOING), i.e. the outdegree of a bank
i which corresponds to the number of creditors in the network. It is defined as the
summation of the ith column of the adjacency matrix A.

• Shock propagation variable (COUNT) which measures the number of rounds
needed until no further bank defaults

• Variance of capital (equity) (VARCAP) used in those scenarios tested where only
heterogeneous bank sizes are considered

• Variance of interbank loans (VARLOANS) used in those scenarios tested where
only heterogeneous interbank loan exposures are considered

• Erdős–Rényi probability pij (p) that there is a lending/borrowing link between
two nodes/banks.

Our selection of variables is motivated by economic intuition and by the findings
of previous studies on the dynamics of systemic risks [7] and Leventides et al. [5].
Table 3 presents summary statistics on these variables. In order to study the effect the
aforementioned variables have on contagion risk, we estimate the following ordinary
least squares (OLS) models:

CAT END = β1CAT IN1 + β2CAT IN2 + β3LEV IN + β4NOUT GOING

+β5COUNT + β6V ARCAP + β7p

(15)

CAT END = β1CAT IN1 + β2CAT IN2 + β3LEV IN + β4NOUT GOING

+ β5COUNT + β6V ARCAP + β7V ARLOANS + β8p

(16)

CAT END = β1CAT IN2 + β2LEV IN + β3NOUT GOING + β4COUNT

+ β5V ARLOANS + β6p

(17)

CAT END = β1CAT IN2 + β2LEV IN + β3

NOUT GOING + β4COUNT + β5p
(18)

The model described in Equation (15) is applied to scenarios involving heteroge-
neous bank sizes with homogeneous exposures in the network structure, Equation
(15) refers to a situation where emphasis is placed on heterogeneous interbank
loan exposures combined with heterogeneous bank sizes, Equation (17) takes into
account homogeneous banks with heterogeneous exposures while Equation (18)
considers only homogeneous bank sizes and interbank claims. The variable CATIN1
has been omitted from Eqs. (17) and (18) due to the fact that banks in the interbank
system are homogeneous, i.e. we keep constant the equity of each bank and thus
CATIN1 remains stable during our simulation runs. There is an explanation in the
next subsection concerning the fact that in our experiments we have selected to
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work with standardized variables—both dependent and independent variables—and
have not included the intercept term in the regression models as it will be zero. Our
concern is to measure effects not in terms of the original units of the dependent
variable or the independent variables, but in standard deviation units.3

4.2 Simulation Results

In this section, we discuss the regression results of all four scenarios. Since
our variables are measured on different scales, we cannot directly infer which
independent variable has the largest effect on the dependent variable. In order to
circumvent this problem we standardize our series to have zero mean and unit
variance. Table 2 presents the regression results of the first scenario using the OLS
model described in Equation (15), where heterogeneous banks distribute evenly
their interbank claims across the outgoing links of a network consisting of N = 20,
50, 80 and 100 banks. Almost all regressor coefficients are found to be statistically
significant for all the sizes of the network. We discern only two cases where
regressor coefficients are found to be statistically insignificant and has to do with
CATIN1 variable and one case that has to do with CATIN2. R-squared coefficients
take on large values ranging from 74.9 to 80% and highlight the ability of our
selected variables to explain financial distress in interbank networks.

The variable CATIN1 captures the initial effect defaulting bank i exerts on
the network, whereas the magnitude of interconnectedness across the banks that
comprise the interbank network is measured through parameter CATIN2. As we
observe from Table 1, variable CATIN1 does not seem to affect much the dependent
variable, whereas two regressor coefficients are found to be insignificant. Financial
shocks will propagate into the defaulting bank’s counterparties along the network,
erode their capital and make them more vulnerable to subsequent shocks. The
magnitude of the positive relationship between CATIN2 and CATEND – the
dependent variable - seems to increase as the size of the interbank network increases
with the only exception being the N = 50 bank network segment which follows an
autonomous path (although statistically insignificant). The increasing magnitude of
the above relationship seems to cease as we move from the case of n = 80 banks
to the case of n = 100 banks. This finding implies that as we move from smaller
to larger network settings, systemic risk and the likelihood of contagion increases.
However, when we move from the case of n = 80 banks to the case of n = 100
banks the likelihood of contagion seems to decreases. Figure 3 visually illustrates
the extent of contagion as a function of the percentage loss of capital due to bank’s
i default. It is shown that as the network size increases from small to medium sized
networks, we observe that capital losses rises, confirming the findings from the

3See Wooldridge (2003) for an interesting discussion on standardization and explanation of the
absence of the standardized intercept.
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(a) N=20 banks

(b) N=50 banks

(c) N=80 banks
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Fig. 3 Scenario 1: Heterogeneous Banks with homogeneous exposures. Extent of contagion
(expressed as the total capital lost from the banking system due to the failure of at least one bank)
as a function of the % initial loss of capital due to default of the first bank. Panels (a–d) show
the relation between the % initial loss of capital due to default of the first bank and the extent of
contagion across interbank networks with different number of banks
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(d) N=100 banks
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Fig. 3 (continued)

regression model. As we can observe from Figure 3, as we move from the n = 80
interbank network scheme to n = 100 the likelihood of contagion seems to decrease
since we have very few cases that cause systemic break downs and defaults.

As expected, we also find that there is a positive relationship between the leverage
of the network and the capital losses due to contagion, which is depicted by Figure
4. This result is in line with the findings of Nier et al. [7] who provide evidence
that systemic risk increases when system-wide leverage increases. Highly leveraged
banks in the interbank network are clearly more exposed to the risk of default on
interbank loans. The greater the size of default on debt is, the larger the losses
are that banks transmit to their neighbors, other things being equal. Thus, highly
leveraged banks contribute more to systemic risk as they become a vehicle for
transmitting shocks within the network. Moreover, it is shown that the magnitude
of the positive relationship between the network’s leverage and contagion risk
increases as we move from smaller to larger interbank networks (illustrated in
Table 2) with the only exception being the n = 80 bank network scheme where
the magnitude of the standardized coefficients seems to decrease.

Our results also suggest that connectivity, expressed in our experiments as the
outgoing4 of the first bank that defaults, has a negative effect on interbank contagion
with the only exception being the case of n = 50 banks where we can observe a
positive relationship between contagious defaults and connectivity.

Interestingly, as we move from small networks consisted of twenty banks to
networks consisted of 50 banks the effect of connectivity to interbank contagion
turns from negative to positive and after then connectivity keeps affect negatively
the systemic risk of the network. Thus, as we move from network systems consisted
of fifty banks to networks consisted of 100 banks this negative relationship seems
to decrease. In relatively small interbank networks, a high level of connectivity

4It should be highlighted that in the Erdős–Rényi network structure the outdegree equals the
indegree since we have an undirected network structure. However, in our framework, the two
directions of the same link are given different weights.
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will allow an efficient absorption of shocks, whereas in medium size networks
the increased connectivity will spread the shock throughout the system, potentially
leading to many default cascades. The link probability, that is assumed to be equal
across all pairs, seems to contribute to the resilience of the system for small and
medium size networks. However, as we move from medium to large size networks

(a) N=20 banks

(b) N=50 banks

(c) N=80 banks
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Fig. 4 Scenario 1: Heterogeneous Banks with homogeneous exposures. Extent of contagion
(expressed as the total capital lost from the banking system due to the failure of at least one bank)
as a function of the leverage of the system. Panels (a–d) show the relation between the leverage
of the system and the extent of contagion across interbank networks with different number of banks
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(d) N=100 banks
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Fig. 4 (continued)

this effect turns negative to the resilience of the system as it seems to contribute
positively to systemic risk.

Our regression analysis also shows that the COUNT variable which measures the
number of rounds until no further bank defaults, has a positive impact on interbank
contagion. Heterogeneity expressed as the variance of capital exhibits a negative
and statistically significant relationship with interbank contagion, showing that size
heterogeneity can have positive effects on the stability of an interbank network.

However, the positive magnitude seems to decrease as we move from small
to large interbank networks. An interbank network consisting of banks of various
sizes can more easily withstand a negative shock, therefore no institution becomes
significant for either borrowing or lending. Furthermore, in such network both
smaller and larger banks can act as shock absorbers when an initial shock hits the
banking system, making contagion a less likely phenomenon. This finding is in line
with the results of Iori et al. [6] concerning bank size heterogeneity.

Table 4 presents the regression results of the second scenario using the model
described in Equation (16), where banking institutions with heterogeneous bank
sizes are linked to one another via heterogeneous interbank claims. The regressor
coefficients are statistically significant in almost all cases and the R-squared values
are quite high and lie in the vicinity of 75–83%, highlighting the good explanatory
power of the model.

CATIN1 does not seem to impact much the dependent variable in all network
segments and the regressor coefficients in the relatively large interbank networks
becomes statistically insignificant. The magnitude of standardized coefficients is
almost the same with the corresponding magnitude of those derived from the first
scenario. In other words, an initial shock from defaulting bank i will spill over more
easily in the network. Thus, the first bank defaulting has the dynamics to spread
the initial shock and contaminate the entire interbank network. CATIN2 has a large
positive impact on contagion risk, however, its magnitude fades away as we move
from smaller to larger networks. It should also be highlighted that the CATIN2
coefficients are much larger than those recorded in the first scenario in all network
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Table 4 OLS regression analysis for Scenario 2 (Heterogeneous banks with heterogeneous
exposures)

N = 20 N = 50 N = 80 N = 100

CATIN 1 0.070
(23.660)***

0.007
(2.024)**

0.000
(0.047)

−0.001
(−0.283)

CATIN2 0.201
(19.541)***

0.113
(11.183)***

0.106
(9.669)***

0.071
(6.015)***

LEVIN 0.653
(58.484)***

0.346
(30.847)***

0.321
(26.320)***

0.399
(30.132)***

NOUTGOING −0.136
(−11.540)***

−0.150
(−6.539)***

−0.052
(−2.253)**

0.038
(1.575)

COUNT 0.456
(111.687)***

0.630
(156.274)***

0.577
(141.939)***

0.573
(131.397)***

VARCAP −0.032
(−18.897)***

−0.067
(−50.848)***

−0.053
(−52.027)***

−0.041
(−40.597)***

VARLOANS −0.246
(−45.472)***

−0.091
(−14.882)***

−0.018
(−3.113)***

−0.082
(−12.307)***

P −0.254
(−21.462)***

0.038
(1.620)

0.064
(2.678)***

−0.110
(−4.311)***

Adjusted R2 0.830 0.796 0.776 0.751

The table presents the regression results for Scenario 2. The dependent variable is CATEND
measured as the total loss of capital due to contagion as percentage of total capital in the network.
Explanatory variables are the constant term CATIN1, CATIN2, LEVIN, NOUTGOING, COUNT,
VARCAP, VARLOANS and P, the probability for a link to exist between two nodes. Each cell
displays the OLS standardized coefficients along with the corresponding t-statistics (shown in
parentheses). The sample comprises of 18,000 realizations (simulated banking crises). *, ** and
*** denote significance at the 10, 5 and 1 percent level, respectively

sizes. An initial shock following the default of bank i seems to contribute much to
a banking crisis scenario within small and medium-sized networks and the size of
total capital losses is smaller than that documented in the first scenario. Figure 5
depicts the extent of contagion as a function of the percentage loss of capital due to
default of the first bank and confirms the results recorded in Table 5.

The results also show that there still exists a positive relationship between
leverage and contagion (illustrated in Figure 6); however, the coefficient estimates
are larger in almost all cases than those recorded in the previous scenario. Moreover,
the magnitude of the leverage coefficients decreases as the number of banks in the
interbank network increases, with the only exception being the 100 bank network
segment where one can observe a slight increase compared to the 80 bank network
segment.

Results on connectivity are qualitatively similar to those of the first scenario,
showing that connectivity negatively impacts contagion risk especially in small and
medium interbank networks with the only exception being the 100 bank network
segment which follows an autonomous path and is positively related to contagion
(although statistically insignificant).
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(a) N=20 banks

(b) N=50 banks

(c) N=80 banks
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Fig. 5 Scenario 2: Heterogeneous Banks with heterogeneous exposures. Extent of contagion
(expressed as the total capital lost from the banking system due to the failure of at least one bank)
as a function of the % initial loss of capital due to default of the first bank. Panels (a–d) show
the relation between the % initial loss of capital due to default of the first bank and the extent of
contagion across interbank networks with different number of banks
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(d) N=100 banks

%
 c

ap
ita

l l
os

t

% loss of capital at the first stage
0-0,02 0,02-0,04 0,04-0,06 0,06-0,08 0,08-0,1

% loss of capital at the first stage
0-0,02 0,02-0,04 0,04-0,06 0,06-0,08 0,08-0,1

8000

7000

6000

5000

4000

3000

2000

1000

0

N
um

be
r o

f o
bs

er
va

tio
s

1
0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1
0

Fig. 5 (continued)

Table 5 OLS regression analysis for Scenario 3 (Homogeneous banks with heterogeneous
exposures)

N = 20 N = 50 N = 80 N = 100

CATIN2 0.196
(25.178)***

0.143
(16.422)***

0.125
(15.232)***

0.088
(9.806)***

LEVIN 0.324
(39.268)***

0.298
(32.475)***

0.275
(31.619)***

0.279
(30.578)***

NOUTGOING −0.163
(−15.308)***

−0.168
(−10.438)***

−0.126
(−8.707)***

−0.087
(−5.561)***

COUNT 0.736
(191.690)***

0.761
(175.841)***

0.790
(195.383)***

0.793
(186.247)***

VARLOANS −0.175
(−43.977)***

−0.190
(−44.390)***

−0.180
(−46.723)***

−0.167
(−41.937)***

P −0.253
(−24.270)***

−0.313
(−19.153)***

−0.322
(−21.833)***

−0.339
(−21.575)***

Adjusted R2 0.860 0.823 0.845 0.809

The table presents the regression results for Scenario 3. The dependent variable is CATEND
measured as the total loss of capital due to contagion as percentage of total capital in the
network. Explanatory variables are the constant term CATIN2, LEVIN, NOUTGOING, COUNT,
VARLOANS and P, the probability for a link to exist between two nodes. Each cell displays the
OLS standardized coefficients along with the corresponding t-statistics (shown in parentheses).
The sample comprises of 18,000 realizations (simulated banking crises). *, ** and *** denote
significance at the 10, 5 and 1 percent level, respectively

As far as the link probability is concerned, we can observe a different pattern
from that of the first scenario. For small and large sized networks, link probability
seems to contribute negatively to systemic risk while for medium sized networks
there is a positive relationship between link probability and contagion. The number
of rounds until no further bank defaults positively impacts contagion risk and
contributes the most to total capital losses in the banking system when medium and
large interbank networks are formed. Under this scenario, the heterogeneity allowed
on both bank sizes and interbank exposures has had a great impact on the resilience
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(c) N=80 banks
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Fig. 6 Scenario 2: Heterogeneous Banks with heterogeneous exposures. Extent of contagion
(expressed as the total capital lost from the banking system due to the failure of at least one bank)
as a function of the leverage of the system. Panels (a–d) show the relation between the leverage
of the system and the extent of contagion across interbank networks with different number of banks

of the network system. Heterogeneity impacts negatively on interbank contagion
although its intensity decreases as the size of the network increases. Moreover, as we
can see from the Table 4 heterogeneity of bank size contributes less to the resilience
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(d) N=100 banks

%
 c

ap
ita

l l
os

t

Leverage of the system Leverage of the system
0-1 1-2 2-3 3-4 4-5 0-1 1-2 2-3 3-4 4-5

1000

2000

3000

4000

5000

0

N
um

be
r o

f o
bs

er
va

tio
s

1
0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1
0

Fig. 6 (continued)

of the interbank network than heterogeneity of interbank exposures when it comes
to small and medium sized networks.

The heterogeneity of interbank exposures acts as a diversification tool and
contributes to a smaller extent to an unfolding crisis compared to the scenario
where homogeneous banks are interconnected via heterogeneous exposures (shown
in Table 4).

Table 5 depicts the results of the third scenario as described in Equation (17). In
this scenario, we construct network systems where banks have the same equity size
and unevenly distribute their exposures across creditor banks. We note that an initial
shock fades away with the failure of the first bank and does not spillover to other
banks within the network. This is mainly due to our choice of parameters regarding
the equity of each bank, the links among banks and the interbank claims among
creditor banks. In order to observe default cascades we relax our initial assumptions
and lower the equity of each bank in the network system.

Specifically, each bank is now endowed with a balance sheet that consists of
25 units of equity and interbank claims among creditor banks are distributed in
the following ranges: aij ∈ [0, 10], aij ∈ [0, 20], aij ∈ [0, 35]. Interbank exposures
levels were kept the same as in Leventides et al. (2018). Moreover, we control the
leverage of the system by setting the rule that the maximum leverage ratio of each
network system cannot exceed seven. Similar to the previous scenarios, the regressor
coefficients are statistically significant in all cases and the R-squared values are still
large, in fact the largest of all three scenarios tested. Variable CATIN2 has a highly
significant positive impact on systemic risk that fades away as the network system
gets larger. The same observation holds for the level of connectivity in the banking
system i.e. a strong negative impact on contagion risk that dissipates as N increases.

The leverage of the system has a positive impact on systemic risk and its
magnitude decreases as the size of the network increases. Figures 7 and 8 illustrate
the third scenario as a function of the percentage loss of capital due to default of
the first bank in the network and as a function of leverage in the banking system,
respectively. As in the previous cases, we find the number of rounds until no further
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bank defaults to affect contagion risk positively and statistically significantly, and
such impact is magnified in relatively larger interbank networks. The heterogeneity
of interbank exposures plays a significant role in the stability of the financial
network especially in the medium sized interbank networks.
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(c) N=80 banks
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Fig. 7 Scenario 3: Homogeneous banks with heterogeneous exposures (expressed as the total
capital lost from the banking system due to the failure of at least one bank) as a function of the %
initial loss of capital due to default of the first bank. Panels (a–d) show the relation between the
% initial loss of capital due to default of the first bank and the extent of contagion across interbank
networks with different number of banks
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(d) N=100 banks
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Fig. 7 (continued)

Table 6 OLS regression analysis for Scenario 4 (Homogeneous banks with homogeneous expo-
sures)

N = 20 N = 50 N = 80 N = 100

CATIN2 0.228
(21.978)***

0.153
(14.098)***

0.137
(12.902)***

0.105
(9.426)***

LEVIN 0.137
(14.890)***

0.268
(28.512)***

0.352
(37.106)***

0.352
(37.707)***

NOUTGOING −0.257
(−15.906)***

−0.146
(−9.715)***

−0.130
(−8.719)***

−0.095
(−6.262)***

COUNT 0.645
(198.356)***

0.617
(172.925)***

0.568
(150.736)***

0.573
(148.381)***

P −0.156
(−10.231)***

−0.304
(−21.593)***

−0.378
(−26.723)***

−0.379
(−27.197)***

Adjusted R2 0.834 0.806 0.817 0.779

The table presents the regression results for Scenario 4. The dependent variable is CATEND
measured as the total loss of capital due to contagion as percentage of total capital in the network.
Explanatory variables are the constant term CATIN2, LEVIN, NOUTGOING, COUNT and P,
the probability for a link to exist between two nodes.. Each cell displays the OLS standardized
coefficients along with the corresponding t-statistics (shown in parentheses). The sample comprises
of 18,000 realizations (simulated banking crises). *, ** and *** denote significance at the 10, 5
and 1 percent level, respectively

Finally, Table 6 depicts the results of the fourth scenario as described in
Equation (18). In this scenario, we construct network systems where banks have
the same equity size and interbank claims are evenly distributed across creditor
banks. We acknowledge the fact that this scenario is a bit unrealistic as banks in real-
world interbank networks do not have the same equity size and do not necessarily
distribute their interbank claims evenly across their creditors. However, by testing
a wide range of link probabilities between any two nodes, we are in a position
to effectively examine the effect of different calibrations on systemic risk. Thus,
although this scenario can be regarded as a special case with magnifying effects, it
provides useful insights on interbank market resiliency during periods of stress.
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The variable CATIN2 has a strong positive impact on systemic risk that
dissipates as the network system gets larger. Simulations show that this scenario
yields qualitatively similar results with the previous three scenarios in relation to
the leverage of the network, that is, leverage positively and significantly affects
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Fig. 8 Scenario 3: Homogeneous banks with heterogeneous exposures. Extent of contagion
(expressed as the total capital lost from the banking system due to the failure of at least one bank)
as a function of the leverage of the system. Panels (a–d) show the relation between the leverage
of the system and the extent of contagion across interbank networks with different number of banks
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(d) N=100 banks
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Fig. 8 (continuued)

contagion risk (illustrated in Figure 10). However, in this scenario, we observe that
this effect becomes stronger progressively when the number of constituent banks
in the network increases. Figure 9 confirms the results recorded in the Table 6
concerning the relationship between the extent of contagion and the percentage
loss of capital in the network. For instance, the likelihood of systemic breakdowns
seems to decrease as we move from smaller to larger network systems since we have
very few cases that cause large capital losses. Connectivity impacts negatively on
interbank contagion, although this negative impact dissipates as the number of banks
in the interbank networks increases. As expected, the link probability has the same
negative impact as connectivity on the interbank contagion. Contrary to the previous
findings concerning connectivity, the negative impact of the link probability on
interbank contagion seems to scale up as we move from smaller to larger interbank
networks (Figure 10).

Finally, the number of rounds until no further bank defaults affects contagion
risk in a statistically significant manner especially when small interbank networks
are considered.

The main intuition behind these results is that increasing connectivity on a
homogeneous interbank network can reduce the frequency of contagion in case the
first bank that defaults is less leveraged as the interbank network has the dynamics
to absorb more easily the shock and thus the initial shock is dissipated at a faster
rate. This is the case for small network systems. As the size of the network increase
and the system gets more leveraged, the stabilizing force of connectivity weakens
and default cascades prevail.

Tables 7, 8, 9, and 10 depict robustness tests on all four scenarios based on
random sampling. We have performed second run Monte Carlo simulations in order
to examine whether the new results differ from the previous ones, thus checking how
random sampling affects our main conclusions. We observe qualitatively similar
results in all four cases to those from the first run providing evidence that our
findings are stable across different simulation scenarios.
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Fig. 9 Scenario 4: Homogeneous banks with homogeneous exposures (expressed as the total
capital lost from the banking system due to the failure of at least one bank) as a function of the %
initial loss of capital due to default of the first bank. Panels (a–d) show the relation between the
% initial loss of capital due to default of the first bank and the extent of contagion across interbank
networks with different number of banks
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Fig. 9 (continued)

5 Conclusions

This paper investigates how complexity under a specific network structure, that has
been extensively applied for the study of contagion in financial networks, affects
interbank contagion. Similar to Leventides et al. [5], we explore the interplay
between heterogeneity, balance sheet composition in the spreading of contagion
using four basic scenarios, under an Erdős–Rényi network structure using a wide
range of link probabilities between any two banks.

Our findings indicate a non-monotonic relation between diversification and
interbank contagion across the different sizes of interbank networks for all scenarios
tested. While for small or medium interbank networks, connectivity can act as an
absorbing barrier, such that interbank systems of these sizes can withstand the initial
shock, for large network systems connectivity does not seem to provide an effective
shield against capital losses. Our results, for the four scenarios tested, indicate that
small and thus more concentrated interbank network systems are more prone to
contagion. In these cases, we observe that the size of total capital losses is, in most
cases, larger than that documented in medium and large sized systems, which is in
line with the findings of Nier et al. [7].

As far as heterogeneity is concerned, this enters in our experiments in the form
of interbank claims and bank sizes. Our results clearly suggests that heterogeneity
plays a significant role in the stability of the financial system. Similar to Leventides
et al. [5], we still find that when heterogeneity is introduced with respect to the
size of each bank, the system’s shock absorption capacity is enhanced. In addition,
when we allow for heterogeneity on interbank exposures in our model, we observe
additional resilience to the interbank network as an initial shock dissipates more
easily than in the case of homogeneous interbank claims.

Finally, we should also justify the fact that we choose to work under an Erdős–
Rényi network structure even if this network framework is not very realistic. In an
such a network framework, where the probability of forming a link is homogeneous,
the resulting network structure does not present marked heterogeneity. As we
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observed from all the four scenarios tested, the initial shock that hits the system
seems to propagates into the system jeopardizing thus the stability of the entire
system. This strengthens even more our arguments concerning the critical role that
heterogeneity plays in the resilience of the financial system.

(a) N=20 banks

(b) N=50 banks

(c) N=80 banks

1
0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

%
 c

ap
ita

l l
os

t

Leverage of the system

0
0-1 1-2 2-3 3-4 4-5 5-6 6-7

Leverage of the system
0-1 1-2 2-3 3-4 4-5 5-6 6-7

2900

2800

2700

2600

2500

2400

2300

2200

2100
N

um
be

r o
f o

bs
er

va
tio

s

1
0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

%
 c

ap
ita

l l
os

t

Leverage of the system

0
0-1 1-2 2-3 3-4 4-5 5-6 6-7

Leverage of the system
0-1 1-2 2-3 3-4 4-5 5-6 6-7

3500

2500

1500

500

0

1000

3000

2000

N
um

be
r o

f o
bs

er
va

tio
s

1
0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

%
 c

ap
ita

l l
os

t

Leverage of the system

0
0-1 1-2 2-3 3-4 4-5 5-6 6-7

Leverage of the system
0-1 1-2 2-3 3-4 4-5 5-6 6-7

4000

3500

2500

1500

500

0

1000

2000

3000

N
um

be
r o

f o
bs

er
va

tio
s

Fig. 10 Scenario 4: Homogeneous banks with homogeneous exposures. Extent of contagion
(expressed as the total capital lost from the banking system due to the failure of at least one bank)
as a function of the leverage of the system. Panels (a–d) show the relation between the leverage
of the system and the extent of contagion across interbank networks with different number of banks
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Fig. 10 (continued)

Table 7 Robustness tests: OLS regression analysis for Scenario 1 (Heterogeneous banks with
homogeneous exposures)

N = 20 N = 50 N = 80 N = 100

CATIN 1 0.044
(13.363)***

0.001
(0.389)

−0.004
(−1.135)

0.002
(0.579)

CATIN2 0.259
(10.095)***

0.163
(7.044)***

0.073
(3.301)***

0.050
(2.614)***

LEVIN 0.272
(10.899)***

0.255
(11.408)***

0.412
(19.261)***

0.402
(22.155)***

NOUTGOING −0.213
(−10.339)**

−0.162
(−4.518)***

0.014
(−4.933)***

0.042
(1.328)

COUNT 0.569
(128.765)***

0.604
(147.789)***

0.523
(126.895)***

0.539
(131.678)***

VARCAP −0.085
(−50.816)***

−0.075
(−57.790)***

−0.057
(−58.108)***

−0.054
(−64.019)***

P 0.021
(−5.089)***

0.141
(3.998)**

−0.006
(−0.171)

−0.012
(−0.405)

Adjusted R2 0.786 0.785 0.768 0.789

The table presents the regression results for Scenario1 applied on a second run of Monte Carlo
simulations based on random sampling as robustness test. The dependent variable is CATEND
measured as the total loss of capital due to contagion as percentage of total capital in the network.
Explanatory variables are, CATIN1, CATIN2, LEVIN, NOUTGOING, COUNT, VARCAP and
P, the probability for a link to exist between two nodes. Each cell displays the OLS standardized
coefficients along with the corresponding t-statistics (shown in parentheses). The sample comprises
of 18,000 realizations (simulated banking crises). *, ** and *** denote significance at the 10, 5
and 1 percent level, respectively



Table 8 Robustness tests: OLS regression analysis for Scenario 2 (Heterogeneous banks with
heterogeneous exposures)

N = 20 N = 50 N = 80 N = 100

CATIN 1 0.071
(23.366)***

0.001
(0.273)

0.008
(2.368)***

0.006
(1.730)*

CATIN2 0.207
(20.109)***

0.098
(8.941)***

0.101
(9.336)***

0.068
(6.721)***

LEVIN 0.602
(53.999)***

0.469
(38.008)***

0.313
(26.051)***

0.304
(26.494)***

NOUTGOING −0.154
(−12.833)***

−0.096
(−4.023)***

−0.064
(−2.747)***

0.008
(0.391)

COUNT 0.459
(107.602)***

0.567
(131.004)***

0.590
(144.084)***

0.609
(156.107)***

VARCAP −0.038
(−21.431)***

−0.067
(−41.713)***

−0.053
(−54.105)***

−0.051
(−40.597)***

VARLOANS −0.220
(−42.365)***

−0.091
(−24.628)***

−0.018
(−2.107)**

−0.009
(−12.307)***

P −0.223
(−18.398)***

−0.080
(−3.217)***

0.092
(3.779)***

0.061
(2.751)***

Adjusted R2 0.817 0.770 0.772 0.800

The table presents the regression results for Scenario2 applied on a second run of Monte Carlo
simulations based on random sampling as robustness test. The dependent variable is CATEND
measured as the total loss of capital due to contagion as percentage of total capital in the network.
Explanatory variables are the constant term CATIN1, CATIN2, LEVIN, NOUTGOING, COUNT,
VARCAP, VARLOANS and P, the probability for a link to exist between two nodes. Each cell
displays the OLS standardized coefficients along with the corresponding t-statistics (shown in
parentheses). The sample comprises of 18,000 realizations (simulated banking crises). *, ** and
*** denote significance at the 10, 5 and 1 percent level, respectively

Table 9 Robustness tests: OLS regression analysis for Scenario 3 (Homogeneous banks with
heterogeneous exposures)

N = 20 N = 50 N = 80 N = 100

CATIN2 0.200
(25.728)***

0.153
(18.410)***

0.127
(13.078)***

0.157
(21.173)***

LEVIN 0.282
(34.036)***

0.189
(22.195)***

0.329
(32.672)***

0.308
(37.777)***

NOUTGOING −0.187
(−16.831)***

−0.168
(−11.145)***

−0.114
(−6.923)***

−0.145
(−11.721)***

COUNT 0.745
(190.987)***

0.773
(184.138)***

0.736
(164.477)***

0.765
(190.795)***

VARLOANS −0.167
(−41.084)***

−0.137
(−33.586)***

−0.164
(−38.890)***

−0.196
(−46.316)***

P −0.217
(−19.612)***

−0.226
(−14.785)***

−0.371
(−22.288)***

−0.323
(−25.206)***

Adjusted R2 0.862 0.824 0.789 0.864

The table presents the regression results for Scenario3 applied on a second run of Monte Carlo
simulations based on random sampling as robustness test. The dependent variable is CATEND
measured as the total loss of capital due to contagion as percentage of total capital in the
network. Explanatory variables are the constant term CATIN2, LEVIN, NOUTGOING, COUNT,
VARLOANS and P, the probability for a link to exist between two nodes. Each cell displays the
OLS standardized coefficients along with the corresponding t-statistics (shown in parentheses).
The sample comprises of 18,000 realizations (simulated banking crises). *, ** and *** denote
significance at the 10, 5 and 1 percent level, respectively
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Table 10 Robustness tests: OLS regression analysis for Scenario4 (Homogeneous banks with
homogeneous exposures)

N = 20 N = 50 N = 80 N = 100

CATIN2 0.266
(25.631)***

0.196
(18.103)***

0.153
(13.994)***

0.126
(11.749)***

LEVIN 0.163
(17.098)***

0.247
(25.943)***

0.283
(29.111)***

0.357
(37.852)***

NOUTGOING −0.306
(−19.180)***

−0.220
(−14.254)***

−0.164
(−10.529)***

−0.118
(−8.020)***

COUNT 0.616
(188.365)***

0.600
(161.885)***

0.609
(160.323)***

0.565
(145.072)***

P −0.150
(−9.783)***

−0.256
(−17.542)***

−0.309
(−20.730)***

−0.371
(−26.650)***

Adjusted R2 0.834 0.804 0.790 0.798

The table presents the regression results for Scenario4 applied on a second run of Monte Carlo
simulations based on random sampling as robustness test. The dependent variable is CATEND
measured as the total loss of capital due to contagion as percentage of total capital in the network.
Explanatory variables are the constant term CATIN2, LEVIN, NOUTGOING, COUNT and P,
the probability for a link to exist between two nodes.. Each cell displays the OLS standardized
coefficients along with the corresponding t-statistics (shown in parentheses). The sample comprises
of 18,000 realizations (simulated banking crises). *, ** and *** denote significance at the 10, 5
and 1 percent level, respectively
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