
Springer Optimization and Its Applications 173 

Nonlinear Analysis, 
Di� erential Equations, 
and Applications

Themistocles M. Rassias Editor



Springer Optimization and Its Applications

Volume 173

Series Editors
Panos M. Pardalos , University of Florida
My T. Thai , University of Florida

Honorary Editor
Ding-Zhu Du, University of Texas at Dallas

Advisory Editors
Roman V. Belavkin, Middlesex University
John R. Birge, University of Chicago
Sergiy Butenko, Texas A&M University
Vipin Kumar, University of Minnesota
Anna Nagurney, University of Massachusetts Amherst
Jun Pei, Hefei University of Technology
Oleg Prokopyev, University of Pittsburgh
Steffen Rebennack, Karlsruhe Institute of Technology
Mauricio Resende, Amazon
Tamás Terlaky, Lehigh University
Van Vu, Yale University
Michael N. Vrahatis, University of Patras
Guoliang Xue, Arizona State University
Yinyu Ye, Stanford University

https://orcid.org/0000-0003-2824-101X
https://orcid.org/0000-0003-0503-2012


Aims and Scope
Optimization has continued to expand in all directions at an astonishing rate. New
algorithmic and theoretical techniques are continually developing and the diffusion
into other disciplines is proceeding at a rapid pace, with a spot light on machine
learning, artificial intelligence, and quantum computing. Our knowledge of all
aspects of the field has grown even more profound. At the same time, one of the
most striking trends in optimization is the constantly increasing emphasis on the
interdisciplinary nature of the field. Optimization has been a basic tool in areas
not limited to applied mathematics, engineering, medicine, economics, computer
science, operations research, and other sciences.

The series Springer Optimization and Its Applications (SOIA) aims to
publish state-of-the-art expository works (monographs, contributed volumes,
textbooks, handbooks) that focus on theory, methods, and applications of
optimization. Topics covered include, but are not limited to, nonlinear optimization,
combinatorial optimization, continuous optimization, stochastic optimization,
Bayesian optimization, optimal control, discrete optimization, multi-objective
optimization, and more. New to the series portfolio include Works at the
intersection of optimization and machine learning, artificial intelligence, and
quantum computing.

Volumes from this series are indexed by Web of Science, zbMATH, Mathematical
Reviews, and SCOPUS.

More information about this series at http://www.springer.com/series/7393

http://www.springer.com/series/7393


Themistocles M. Rassias
Editor

Nonlinear Analysis,
Differential Equations,
and Applications



Editor
Themistocles M. Rassias
Department of Mathematics, Zografou
Campus
National Technical University of Athens
Athens, Greece

ISSN 1931-6828 ISSN 1931-6836 (electronic)
Springer Optimization and Its Applications
ISBN 978-3-030-72562-4 ISBN 978-3-030-72563-1 (eBook)
https://doi.org/10.1007/978-3-030-72563-1

Mathematics Subject Classification: 26-XX, 30-XX, 34-XX, 35-XX, 47-XX

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-72563-1


Preface

Nonlinear Analysis, Differential Equations, and Applications publishes research and
research-survey papers devoted to a broad variety of topics on functional equations,
ordinary differential equations, partial differential equations, stochastic differential
equations, optimization theory, network games, generalized Nash equilibria, critical
point theory, calculus of variations, nonlinear functional analysis, convex analysis,
variational inequalities, topology, global differential geometry, curvature flows,
perturbation theory, numerical analysis, mathematical finance, and a variety of
applications in interdisciplinary topics. More specifically, the book chapters of this
volume investigate compound superquadratic functions, the Hyers–Ulam stability of
functional equations, edge degenerate pseudo-hyperbolic equations, Kirchhoff wave
equation, BMO norms of operators on differential forms, equilibrium points of the
perturbed R3BP, complex zeros of solutions to second order differential equations, a
higher-order Ginzburg–Landau-type equation, multi-symplectic numerical schemes
for differential equations, the Erdős–Rényi network model, strongly m-convex
functions, higher order strongly generalized convex functions, factorization and
solution of second order differential equations, generalized topologically open sets
in relator spaces, graphical mean curvature flow, critical point theory in infinite
dimensional spaces using the Leray–Schauder index, non-radial solutions of a
supercritical equation in expanding domains, the semi-discrete method for the
approximation of the solution of stochastic differential equations, homotopic metric-
interval L-contractions in gauge spaces, Rhoades contractions theory, network
centrality measures, the Radon transform in three space dimensions via plane inte-
gration and applications in positron emission tomography boundary perturbations
on medical monitoring and imaging techniques, the KdV-B equation and biomedical
applications.

We would like to express our warmest thanks to all the authors who contributed
their valuable works for publication in this volume. We would also like to express
our sincere appreciation to the staff of Springer for their help throughout the
preparation of this book.

Athens, Greece Themistocles M. Rassias
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On Compound Superquadratic Functions

Shoshana Abramovich

Abstract By using compound superquadratic functions, the inequalities presented
in this paper refine and extend Jensen and Jensen-Steffensen inequalities.

2010 Mathematics Subject Classification: 26D15, 26A51, 47A63, 47A64.

1 Introduction

By using compound superquadratic functions, the inequalities presented in this
paper refine and extend Jensen and Jensen-Steffensen inequalities.

We start with some definitions, notations and lemmas that are used in this paper.

Definition 1 [3, Definition 2.1] A function f : [0,∞) → R is superquadratic
provided that for all x ∈ [0,∞) there exists a constant Cf (x) ∈ R such that the
inequality

f (y)− f (x)− Cf (x) (y − x)− f (|y − x|) ≥ 0 (1)

holds for all y ∈ [0,∞).
f is called subquadratic if −f is superquadratic.

Corollary 1 The functions f (x) = xp, x ≥ 0 are superquadratic for p ≥ 2,
subquadratic for 0 < p ≤ 2, for which Cf (x) = pxp−1 = f

′
(x). When p = 2 (1)

is an equality.

Lemma 1 ([3, Lemma 2.1, Lemma 3.2]) Let f be a superquadratic function with
Cf (x) as in Definition 1.

S. Abramovich (�)
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2 S. Abramovich

Then:

(i) f (0) ≤ 0,
(ii) if f (0) = f ′(0) = 0 then Cf (x) = f ′(x) whenever f is differentiable at

x > 0, and f (x)

x2 is non-decreasing.
(iii) if f ≥ 0, then f is convex and f (0) = f ′(0) = 0.

Lemma 2 ([3, Lemma 3.1]) Suppose that ϕ : [0, b) [→ R is continuously
differentiable and ϕ(0) ≤ 0. If ϕ′ is superadditive or ϕ′(x)

x
is non-decreasing, then

ϕ is superquadratic.

Corollary 2 ([3]) Suppose that f is superquadratic. Let ξi ≥ 0, i = 1, . . . , m, and
let ξ =∑m

i=1 piξi where pi ≥ 0, i = 1, . . . , m, and
∑m

i=1 pi = 1. Then

m∑

i=1

pif (ξi)− f
(
ξ
) ≥

m∑

i=1

pif
(∣
∣ξi − ξ

∣
∣
)
,

and in the special case that m = 2, 0 ≤ t ≤ 1 and 0 ≤ a < b <∞

(1− t) f (a)+ tf (b)

≥ f ((1− t) a + tb)+ (1− t) f (t (b − a))+ tf ((1− t) (b − a))

hold.

Definition 2 ([4]) The real n-tuple that satisfies

0 ≤ Pj ≤ Pn , j = 1, . . . , n , Pn = 1 , (2)

Pj =
j∑

i=1

ρi , P j =
n∑

i=j
ρi , j = 1, . . . , n.

are called Steffensen’s coefficients.

On Jensen-Steffensen’s inequality which extends Jensen’s inequality for not
necessarily positive coefficients see for example [7, page 57]. It states that:

Theorem 1 Let ϕ : I → R be convex, then

ϕ

(
n∑

i=1

ρiζi

)

≤
n∑

i=1

ρiϕ (ζi)

holds, where I is an interval in R, ζ = (
ζ1,...,ζn

)
is any monotonic n-tuple in In

and ρ = (ρ1, . . . , ρn) is a real n-tuple that satisfies (2).

After the introduction we obtain in Section 2 refinements of Jensen and Jensen-
Steffensen’s inequalities via compound superquadratic functions.
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On compound functions related to superquadracity see [1] and [2] where the
properties of

ϕ−1

⎛

⎝ϕ

(
n∑

i=1

tiai

)

+
n∑

i=1

tiϕ

⎛

⎝

∣
∣
∣
∣
∣
∣
ai −

n∑

j=1

tj aj

∣
∣
∣
∣
∣
∣

⎞

⎠

⎞

⎠

when
∑n

i=1 ti = 1, ti ≥ 0, ai ≥ 0, i = 1, . . . , n, are investigated.
In Section 3 similar to the discussion in [1] and [2] we deal briefly with the

behavior of

ϕ−1

⎛

⎝
n∑

i=1

tiϕ (ai)−
n∑

i=1

tiϕ

⎛

⎝

∣
∣
∣
∣
∣
∣
ai −

n∑

j=1

tj aj

∣
∣
∣
∣
∣
∣

⎞

⎠

⎞

⎠

where
∑n

i=1 ti = 1, ti ≥ 0, ai ≥ 0, i = 1, . . . , n.
On compound functions related to convexity see for instance [6, Theorems 3 and

4], [5], and [7] and their references.

2 Refinements of Jensen’s Inequality via Compound
Functions

In this section we deal with compound superquadratic functions. These functions
lead to new inequalities that refine Jensen’s inequality and Jensen-Steffensen’s
inequality.

We start with a theorem which guaranties that the compound function f = g ◦ ϕ
is non-negative superquadratic.

Theorem 2 Let g : R+ → R+ be twice differentiable, non-decreasing, convex
function and g (0) = 0. Let ϕ : R+ → R+ be twice differentiable, superquadratic
function, and let f be the compound function defined as f = g ◦ ϕ. Then, the

function f : R+ → R+ is convex, superquadratic and satisfies

(
f
′
(x)
x

)′

≥ 0 when

(
ϕ
′
(x)
x

)′

≥ 0, or when g (x) = xm, m ∈ [2,∞).

Proof The function f satisfies:
A : f

′
(x) = ϕ

′
(x) g

′
(ϕ (x)) ≥ 0, because ϕ

′
and g

′ ≥ 0.

B : f
′′
(x) = ϕ

′′
(x) g

′
(ϕ (x))+

(
ϕ
′
(x)

)2
g
′′
(ϕ (x)) ≥ 0,

C :
(

f
′
(x)
x

)′

= g
′
(ϕ (x))

(
ϕ
′
(x)
x

)′

+ 1
x

(
ϕ
′
(x)

)2
g
′′
(ϕ (x)) ≥ 0, and when

g (x) = xm, m ≥ 2
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D :
(
f
′
(x)

x

)′

= mxϕm−1 (x) ϕ" (x)

x2 +
mϕm−2 (x) ϕ

′
(x)

(
(m− 1) xϕ

′
(x)− ϕ (x)

)

x2

≥
mϕm−2 (x) ϕ

′
(x)

(
(m− 1) xϕ

′
(x)− ϕ (x)

)

x2
≥ 0

Indeed, when

(
ϕ
′
(x)
x

)′

≥ 0, and ϕ is non-negative superquadratic, then by

Lemma 1(iii) it is also convex and ϕ (0) = ϕ
′
(0) = 0. The function g is convex,

increasing, and non-negative, therefore according to the computations of A and B, f

is convex, increasing, f (0) = f
′
(0) = 0, and by C,

(
f
′
(x)
x

)′

≥ 0 holds. Therefore

according to Lemma 2 f is also superquadratic.

When m ≥ 2 the last inequality in D follows from
(
xϕ

′
(x)− ϕ (x)

)′
=

xϕ" (x) ≥ 0, and ϕ (0) = ϕ
′
(0) = 0. Hence

(
f
′
(x)
x

)′

≥ 0, and together with

f (0) = f
′
(0) = 0, by Lemma 2, f is superquadratic too. The proof is complete.

We emphasize that there are non-negative superquadratic functions ϕ which do

not satisfy the condition

(
ϕ
′
(x)
x

)′

≥ 0 as shown in [3, Example 3.3].

The proofs in the sequel do not need this condition, but only the conditions that
ϕ : R+ → R+ is strictly increasing and superquadratic, that g : R+ → R+ is
convex and g (0) = 0 and f = g ◦ ϕ is non-negative superquadratic or in some
cases only convex.

Obviously, all the results in this section hold when the functions ϕ, f and g

satisfy the conditions of Theorem 2.
In the following theorem we present refinements of Jensen’s inequality for

compound functions f where f ◦ ϕ−1 are convex. In [5] these functions are called
composite ϕ−1 convex functions.

Theorem 3 Let g : R+ → R+ be twice differentiable convex function and g (0) =
0. Let ϕ : R+ → R+ be twice differentiable, strictly increasing superquadratic
function, and f = g ◦ϕ. Then, the following refinements of Jensen’s inequality hold
when ti ≥ 0, ai ≥ 0, i = 1, . . . , n,

∑n
i=1 ti = 1 and a =∑n

i=1 tiai:

f

(
n∑

i=1

tiai

)

≤ f ◦ ϕ−1

(
n∑

i=1

tiϕ (ai)−
n∑

i=1

tiϕ (|ai − a|)
)

(3)
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≤ f ◦ ϕ−1

(
n∑

i=1

tiϕ (ai)

)

− f ◦ ϕ−1

(
n∑

i=1

tiϕ (|ai − a|)
)

≤
n∑

i=1

tif (ai)− f ◦ ϕ−1

(
n∑

i=1

tiϕ (|ai − a|)
)

≤
n∑

i=1

tif (ai)− f

(
n∑

i=1

ti (|ai − a|)
)

≤
n∑

i=1

tif (ai) .

If f is also superquadratic then

f

(
n∑

i=1

tiai

)

≤
n∑

i=1

tif (ai)−
n∑

i=1

tif (|ai − a|) (4)

≤
n∑

i=1

tif (ai) .

In particular, when ϕ
′
(x)
x

is increasing or when f ◦ ϕ−1 (x) = xm, m ≥ 2 the
inequalities (3) and (4) hold.

Proof The function ϕ is strictly increasing and therefore ϕ−1 exists.
To prove (3) we rewrite f as f = g ◦ ϕ and get

f

(
n∑

i=1

tiai

)

= g ◦ ϕ
(

n∑

i=1

tiai

)

(5)

≤ g

(
n∑

i=1

tiϕ (ai)−
n∑

i=1

tiϕ (|ai − a|)
)

≤ g

(
n∑

i=1

tiϕ (ai)

)

− g

(
n∑

i=1

tiϕ (|ai − a|)
)

= f ◦ ϕ−1

(
n∑

i=1

tiϕ (ai)

)

− g

(
n∑

i=1

tiϕ (|ai − a|)
)

≤
n∑

i=1

tif (ai)− g

(
n∑

i=1

tiϕ (|ai − a|)
)

≤
n∑

i=1

tif (ai)− f

(
n∑

i=1

ti (|ai − a|)
)
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≤
n∑

i=1

tif (ai) .

Indeed, the first inequality in (5) is due to the monotonicity of g and the
superquadracity of ϕ. The second inequality follows from the convexity
of g and from g (0) = 0. The third inequality is because the inequality
f ◦ ϕ−1

(∑n
i=1 tiϕ (ai)

) ≤∑n
i=1 tif (ai) which is the same as g

(∑n
i=1 tiϕ (ai)

) ≤∑n
i=1 tig ◦ ϕ (ai) is deduced from the convexity of g. The fourth inequality follows

from the convexity of ϕ, the monotonicity of g and because f = g ◦ ϕ. The last
inequality in (5) is due to positivity of f . Inequality (3) is proved because it is just
a variation of (5). Inequalities (4) follow directly from the superquadracity of f ,
Corollary 2 and because of the positivity and convexity of f = g ◦ ϕ which is
derived directly from the conditions on ϕ and g (see A and B in Theorem 2). Under
the conditions of Theorem 2 f is superquadratic, hence (3) and (4) hold. The proof
is complete.

Corollary 3 It is evident that we can extend Theorem 3 as follows: Let gk :
R+ → R+, be twice differentiable non-decreasing convex function and gk (0) = 0,
k = 1, . . . , m. Let ϕ : R+ → R+ be twice differentiable, strictly increasing
superquadratic function. Let f be the compound function f = gm◦gm−1◦. . .◦g1◦ϕ.
Then, the following refinements of Jensen’s inequality hold when k = 1, . . . , m,
ti ≥ 0, ai ≥ 0, i = 1, . . . , n,

∑n
i=1 ti = 1 and a =∑n

i=1 tiai :

f

(
n∑

i=1

tiai

)

= gm ◦ gm−1 ◦ . . . ◦ g1 ◦ ϕ
(

n∑

i=1

tiai

)

≤ gm ◦ gm−1 ◦ . . . ◦ g1

(
n∑

i=1

tiϕ (ai)−
n∑

i=1

tiϕ (|ai − a|)
)

≤ gm ◦ gm−1 ◦ . . . ◦ gk
(

n∑

i=1

tigk−1 ◦ gk−2 ◦ . . . ◦ g1ϕ (ai)

−gk−1 ◦ gk−2 ◦ . . . ◦ g1

(
n∑

i=1

tiϕ (|ai − a|)
))

≤
n∑

i=1

tigm ◦ gm−1 ◦ . . . ◦ g1 ◦ ϕ (ai)
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−gm ◦ gm−1 ◦ . . . ◦ g1 ◦ ϕ
(

n∑

i=1

ti (|ai − a|)
)

=
n∑

i=1

tif (ai)− f

(
n∑

i=1

ti (|ai − a|)
)

≤
n∑

i=1

tif (ai) .

Corollary 4 Under the same conditions as in Theorem 3, if n = 2, t1 = t2 = 1
2 ,

and a1 = a < an = b, the inequalities in (3) and (4) translate into

f

(
a + b

2

)

≤ g

(
ϕ (a)+ ϕ (b)

2
− ϕ

(∣
∣
∣
∣
b − a

2

∣
∣
∣
∣

))

(6)

≤ g

(
ϕ (a)+ ϕ (b)

2

)

− g

(

ϕ

(∣
∣
∣
∣
b − a

2

∣
∣
∣
∣

))

= f

(

ϕ−1
(
ϕ (a)+ ϕ (b)

2

))

− f

(∣
∣
∣
∣
b − a

2

∣
∣
∣
∣

)

≤ f (a)+ f (b)

2
− f

(∣
∣
∣
∣
b − a

2

∣
∣
∣
∣

)

≤ f (a)+ f (b)

2
.

Therefore, if ϕ is strictly convex or if g is strictly increasing, the inequalities in (6)
are strict too. Hence, for t close enough to 1

2 the inequalities in

g ◦ ϕ ((1− t) a + tb)

≤ g ((1− t) ϕ (a)+ tϕ (b)− tϕ ((1− t) |b − a|)− (1− t) ϕ (t |b − a|))
≤ (1− t) g ◦ ϕ (a)+ tg ◦ ϕ (b)

−tg ◦ ϕ ((1− t) |b − a|)− (1− t) g ◦ ϕ (t |b − a|)
≤ (1− t) g ◦ ϕ (a)+ tg ◦ ϕ (b)

hold too.

Corollary 4 is the motivation for proving Theorem 4, in which we deal with
superquadratic functions ϕ and functions f such that the functions f ◦ ϕ−1 are
convex on x ≥ 0 and satisfy

ϕ−1

⎛

⎝
2∑

i=1

tiϕ (ai)−
2∑

i=1

tiϕ

⎛

⎝

∣
∣
∣
∣
∣
∣
ai −

2∑

j=1

tj aj

∣
∣
∣
∣
∣
∣

⎞

⎠

⎞

⎠
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≤ f−1

⎛

⎝
2∑

i=1

tif (ai)−
2∑

i=1

tif

⎛

⎝

∣
∣
∣
∣
∣
∣
ai −

2∑

j=1

tj aj

∣
∣
∣
∣
∣
∣

⎞

⎠

⎞

⎠

when
∑2

i=1 ti = 1, ti ≥ 0, ai ≥ 0, i = 1, 2.

Theorem 4 Let g : R+ → R+ be twice differentiable non-decreasing convex
function and g (0) = 0. Let ϕ : R+ → R+ be twice differentiable, strictly increasing
superquadratic function. Let f defined as f = g ◦ ϕ be a superquadratic function.
If

g ((1− t) ϕ (a)+ tϕ (b)) (7)

≤ (1− t) g ◦ ϕ (a)+ tg ◦ ϕ (b)− t (1− t) g ◦ ϕ (b − a)

when 0 ≤ t ≤ 1, 0 ≤ a < b <∞ is satisfied, then the inequalities in

f ((1− t) a + tb) = g ◦ ϕ ((1− t) a + tb) (8)

≤ g ((1− t) ϕ (a)+ tϕ (b)− tϕ ((1− t) (b − a))− (1− t) ϕ (t (b − a)))

≤ (1− t) g ◦ ϕ (a)+ tg ◦ ϕ (b)

−tg ◦ ϕ ((1− t) (b − a))− (1− t) g ◦ ϕ (t (b − a))

≤ (1− t) g ◦ ϕ (a)+ tg ◦ ϕ (b) = (1− t) f (a)+ tf (b)

hold. In particular, if also ϕ
′
(x)
x

is increasing, or if g (x) = xm,m ≥ 2 and (7) holds
then (8) holds.

Proof The function ϕ is non-negative and superquadratic, therefore it is convex and
the inequalities in

0 ≤ ϕ ((1− t) a + tb) (9)

≤ (1− t) ϕ (a)+ tϕ (b)− tϕ ((1− t) |b − a|)− (1− t) ϕ (t |b − a|)
≤ (1− t) ϕ (a)+ tϕ (b)

hold. The function g is non-negative and increasing too and therefore from (9) we
get

0 ≤ g ((1− t) ϕ (a)+ tϕ (b)− tϕ ((1− t) |b − a|)− (1− t) ϕ (t |b − a|))(10)

≤ g ((1− t) ϕ (a)+ tϕ (b)) .

The function f = g ◦ ϕ is also superquadratic and non-negative and f (0) =
f
′
(0) = 0. According to Lemma 1(ii) f (kx)

x2 is increasing when k > 0, x ≥ 0
therefore the inequalities in
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0 ≤ tf ((1− t) (b − a))+ (1− t) f (t (b − a)) (11)

= t (1− t)2 f ((1− t) (b − a))

(1− t)2 + (1− t) t2 f (t (b − a))

t2

≤ t (1− t)2 f (b − a)+ (1− t) t2f (b − a)

= t (1− t) f (b − a)

hold. From (9), (10) and (11), and (7), the inequalities

(1− t) g ◦ ϕ (a)+ tg ◦ ϕ (b)

−tg ◦ ϕ ((1− t) (b − a))− (1− t) g ◦ ϕ (t (b − a))

−g ((1− t) ϕ (a)+ tϕ (b)− tϕ ((1− t) (b − a))− (1− t) ϕ (t (b − a)))

≥ (1− t) g ◦ ϕ (a)+ tg ◦ ϕ (b)

−t (1− t) g ◦ ϕ (b − a)− g ((1− t) ϕ (a)+ tϕ (b))

≥ 0

hold from which (8) follows. In the special case that also ϕ
′
(x)
x

is increasing, or
g (x) = xm, m ≥ 2, then according to Theorem 2 the function f is superquadratic
and therefore (8) holds. The proof of the theorem is complete.

Lemma 3 Let ϕ : R+ → R+ be an increasing function and let 0 ≤ a < b < ∞.
Then for m = 2, 3, . . ., and 0 ≤ t ≤ 1 we get that

(1− t) ϕm (a)+ tϕm (b)− ((1− t) ϕ (a)+ tϕ (b))m (12)

= (ϕ (b)− ϕ (a))m t
(

1− tm−1
)
+

m−1∑

k=2

ϕm−k (a) (ϕ (b)− ϕ (a))k
(
t − tk

)

= t (1− t) (ϕ (b)− ϕ (a))m
m−2∑

k=0

tk +
m−1∑

k=2

ϕm−k (a) (ϕ (b)− ϕ (a))k
k−2∑

j=0

tj

≥ t (1− t) (ϕ (b)− ϕ (a))m .

In the special cases that m = 2 and m = 3

(1− t) ϕ2 (a)+ tϕ2 (b)− ((1− t) ϕ (a)+ tϕ (b))2

= t (1− t) (ϕ (b)− ϕ (a))2

and

(1− t) ϕ3 (a)+ tϕ3 (b)− ((1− t) ϕ (a)+ tϕ (b))3



10 S. Abramovich

= t (1− t)
(
(ϕ (b)− ϕ (a))2 (ϕ (b)+ 2ϕ (a))+ t (ϕ (b)− ϕ (a))3

)

≥ t (1− t) (ϕ (b)− ϕ (a))3

respectively hold.

Proof We denote ϕ (a) = A, ϕ (b)− ϕ (a) = x and define

F (t, x) = (1− t) Am + t (A+ x)m − (A+ tx)m

and using the Newton Binomial Expansion of (A+ x)m and (A+ tx)m, we get that

F (t, x) = (1− t) Am +
m∑

k=0

Am−kxk
(
t − tk

)

= xmt
(

1− tm−1
)
+

m−1∑

k=2

Am−kxk
(
t − tk

)

= t (1− t)

⎛

⎝xm
m−2∑

k=0

tk +
m−1∑

k=2

Axk
k−2∑

j=0

tj

⎞

⎠

≥ t (1− t) xm
m−2∑

j=0

tj ≥ t (1− t) xm,

which means that (12) holds.

From D in Theorem 2, Theorem 4 and Lemma 3 we get that:

Theorem 5 Let ϕ : R+ → R+ be twice differentiable, superquadratic function and
let f (x) = ϕm (x), m ≥ 2. Then, f is superquadratic and when m = 2, 3, . . . , the
following refinements of Jensen’s inequality hold for 0 ≤ t ≤ 1

ϕm ((1− t) a + tb) (13)

≤ ((1− t) ϕ (a)+ tϕ (b)− tϕ ((1− t) |b − a|)− (1− t) ϕ (t |b − a|))m
≤ (1− t) ϕm (a)+ tϕm (b)− tϕm ((1− t) |b − a|)− (1− t) ϕm (t |b − a|)

. ≤ (1− t) ϕm (a)+ tϕm (b) .

Proof When f (x) = g ◦ ϕ (x) = (ϕ (x))m, m ≥ 2 then by D in Theorem 2, f
is superquadratic. According to (7) in Theorem 4 and (12) in Lemma 3, in order to
satisfy (8) it is enough to prove that the inequality

(1− t) ϕm (a)+ tϕm (b)− ((1− t) ϕ (a)+ tϕ (b))m (14)
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≥ t (1− t) ϕm (b − a)

holds. This means that according to (12) and Theorem 4, it is enough to prove when
m = 2, 3, . . . that

t (1− t) (ϕ (b)− ϕ (a))m ≥ t (1− t) ϕm (b − a) . (15)

holds. Inequality (15) holds because m > 0 and ϕ is a convex function that satisfies
ϕ (0) = 0, hence ϕ (b) − ϕ (a) ≥ ϕ (b − a) − ϕ (0) = ϕ (b − a) and because
0 ≤ t ≤ 1. Hence from Theorem 4 we get that for g (x) = xm, m = 2, 3, . . .,
inequality (13) holds. The proof is complete.

Next we deal with two refinements of Theorem 1—the Jensen-Steffensen’s
inequality for convex functions. First we quote part of the theorem on this subject
from [4, Theorem 1] when the functions involved are non-negative superquadratic.

Theorem 6 Let ϕ : R+ → R+ be differentiable and superquadratic, let a =
(a1, a2, . . . , an) be a non-negative increasing n-tuple in Rn, and ρ be a real n-tuple
satisfying Steffensen’s coefficients, that is ρi , i = 1, . . . , n satisfy the condition in
(2). Let a be defined by a =∑n

i=1 ρiai . Then

n∑

i=1

ρiϕ (ai)− ϕ (a) (16)

≥
(

k∑

i=1

Pi +
n∑

i=k+1

Pi

)

ϕ

( ∑n
i=1 ρi (|ai − a|)

∑k
i=1 Pi +∑n

i=k+1 Pi

)

≥ (n− 1) ϕ

(∑n
i=1 ρi (|ai − a|)

n− 1

)

,

where k ∈ {1, . . . , n− 1} satisfies

a1 ≤ a2 ≤ . . . ≤ ak < a < ak+1 ≤ . . . ≤ an.

The theorem below is a refinement of Theorem 1 and is a Jensen-Steffensen’s
inequality for non-negative compound superquadratic functions. Steffensen’s coef-
ficients in the case n = 2, leads always to ρi > 0. Therefore we deal in this theorem
with n ≥ 3.

Using the compound function f = g ◦ ϕ we get a superquadratic Jensen-
Steffensen’s type inequality, and therefore we refine Jensen-Steffensen’s inequality
for convex functions. The proof is similar to the proof of Theorem 3.

Theorem 7 Let g : R+ → R+ be twice differentiable non-decreasing convex
function and g (0) = 0. Let ϕ : R+ → R+ be twice differentiable, strictly increasing
superquadratic function, and f defined as f = g ◦ ϕ be superquadratic. If ai and
ρi , i = 1, . . . , n, satisfy the same conditions as in Theorem 6, then the inequalities
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f

(
n∑

i=1

ρiai

)

≤
n∑

i=1

ρif (ai)− (n− 1) f

(∑n
i=1 ρi (|ai − a|)

n− 1

)

(17)

≤
n∑

i=1

ρif (ai)− f

(∑n
i=1 ρi (|ai − a|)

n− 1

)

≤
n∑

i=1

ρif (ai)

and

f

(
n∑

i=1

ρiai

)

(18)

≤ f ◦ ϕ−1

(
n∑

i=1

ρiϕ (ai)− (n− 1) ϕ

(∑n
i=1 ρi (|ai − a|)

n− 1

))

≤ f ◦ ϕ−1

(
n∑

i=1

ρiϕ (ai)

)

− f ◦ ϕ−1
(

(n− 1) ϕ

(∑n
i=1 ρi (|ai − a|)

n− 1

))

≤ f ◦ ϕ−1

(
n∑

i=1

ρiϕ (ai)

)

− f ◦ ϕ−1
(

ϕ

(∑n
i=1 ρi (|ai − a|)

n− 1

))

≤
n∑

i=1

ρif (ai)− f

(∑n
i=1 ρi (|ai − a|)

n− 1

)

≤
n∑

i=1

ρif (ai)

hold. In particular, if also ϕ
′
(x)
x

is increasing, or if f ◦ ϕ−1 (x) = xm, m ≥ 2, then
(17) and (18) hold.

Proof Inequality (17) follows from (16) and the superquadracity and positivity of
f .

We use the fact that g is convex increasing and f = g ◦ ϕ to prove (18). We
follow step by step the proof of Theorem 3 and get that:

f

(
n∑

i=1

ρiai

)

≤ g

(
n∑

i=1

ρiϕ (ai)− (n− 1) ϕ

(∑n
i=1 ρi (|ai − a|)

n− 1

))

≤ g

(
n∑

i=1

ρiϕ (ai)

)

− g

(

(n− 1) ϕ

(∑n
i=1 ρi (|ai − a|)

n− 1

))

≤ g

(
n∑

i=1

ρiϕ (ai)

)

− g ◦ ϕ
(∑n

i=1 ρi (|ai − a|)
n− 1

)

≤
n∑

i=1

ρig ◦ ϕ (ai)− g ◦ ϕ
(∑n

i=1 ρi (|ai − a|)
n− 1

)



On Compound Superquadratic Functions 13

≤
n∑

i=1

ρif (ai)− f

(∑n
i=1 ρi (|ai − a|)

n− 1

)

≤
n∑

i=1

ρif (ai) .

Therefore (18) is proved. If also ϕ
′
(x)
x

is increasing or f ◦ ϕ−1 (x) = xm, m ≥ 2,
then according to Theorem 2 f = g ◦ ϕ is superquadratic and therefore (17) and
(18) hold. The proof of Theorem 7 is complete.

3 The Quasi-Mean Ff (x,λ)

In [1] and [2] the following quasi-mean

Wf (x,λ) = f−1

(

f

(
n∑

r=1

λrxr

)

+
n∑

r=1

λrf

(∣
∣
∣
∣
∣
xr −

n∑

i=1

λixi

∣
∣
∣
∣
∣

))

n∑

r=1

λr = 1, λr ≥ 0, xr, ≥ 0, r = 1, . . . , n ,

is discussed. Similarly, the quasi-mean

Ff (x,λ) = f−1

⎛

⎝
n∑

i=1

λif (xi)−
n∑

i=1

λif

⎛

⎝

∣
∣
∣
∣
∣
∣
xi −

n∑

j=1

λjxj

∣
∣
∣
∣
∣
∣

⎞

⎠

⎞

⎠

n∑

r=1

λr = 1, λr ≥ 0, xr, ≥ 0, r = 1, . . . , n,

is discussed here.
Both Ff (x,λ) and Wf (x,λ) consist the building blocks of superquadratic

functions (see Corollary 2).
First we quote from [1] about Wf (x1, x2):

Definition 3 ([1, Definition 1]) Let a strictly increasing convex function f be
defined on [0, b) , 0 < b ≤ ∞, and let f (0) = 0. For such f we define the
quasi-mean Wf (x1, x2) as

Wf (x1, x2) = f−1
(

f

(
x1 + x2

2

)

+ f

(∣
∣
∣
∣
x1 − x2

2

∣
∣
∣
∣

))

.

In the special case that f (x) = xp, Wp (x1, x2) is defined as

Wp (x1, x2) =
((

x1 + x2

2

)p

+
(∣
∣
∣
∣
x1 − x2

2

∣
∣
∣
∣

)p) 1
p
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for x1, x2 ∈ [0, b) , p ≥ 1.

In Lemma 4 it is proved that Wf (x1, x2) is a quasi-mean:

Lemma 4 ([1, Lemma 1]) Under the conditions of Definition 3 on f,Wf (x1, x2)

is symmetric and satisfies:

(a) Wf (x, x) = x, x ∈ [0, b) ,
(b) x1 ≤Wf (x1, x2) ≤ x2, 0 ≤ x1 ≤ x2 ≤ b.

When f (x) = xp, p ≥ 1,Wp (x1, x2) satisfies
(c) Wp (λx1, λx2) = λWp (x1, x2) , λ ≥ 0, 0 ≤ x1, x2 ≤ b.

Similar to Definition 3 and Lemma 4, we discuss Ff (x1, x2) which is related to
the theorems in this paper.

Definition 4 Let a strictly increasing convex function f be defined on [0, b) , 0 <

b ≤ ∞, and let f (0) = 0. For such f we define the quasi-mean Ff (x1, x2) as

Ff (x1, x2) = f−1
(
f (x1)+ f (x2)

2
− f

(∣
∣
∣
∣
x1 − x2

2

∣
∣
∣
∣

))

.

In the special case that f (x) = xp, Fp (x1, x2) is defined as

Fp (x1, x2) =
(
x
p

1 + x
p

2

2
−

(∣
∣
∣
∣
x1 − x2

2

∣
∣
∣
∣

)p
) 1

p

for x1, x2 ∈ [0, b) , p ≥ 1.

Lemma 5 Under the conditions of Definition 4
on f, Ff (x1, x2) is symmetric and satisfies:

(a) Ff (x, x) = x, x ∈ [0, b) ,
(b) x1 ≤ Ff (x1, x2) ≤ x2, 0 ≤ x1 ≤ x2 ≤ b.

When f (x) = xp, p ≥ 1, Fp (x1, x2) satisfies
(c) Fp (λx1, λx2) = λFp (x1, x2) , λ ≥ 0, 0 ≤ x1, x2 ≤ b.

Proof Properties (a) and (c) are obvious. To prove that property (b) holds we have
to show that

x1 ≤ f−1
(
f (x1)+ f (x2)

2
− f

(∣
∣
∣
∣
x1 − x2

2

∣
∣
∣
∣

))

≤ x2. (19)

As f is strictly increasing (19) is equivalent to

f (x1) ≤ f (x1)+ f (x2)

2
− f

(∣
∣
∣
∣
x1 − x2

2

∣
∣
∣
∣

)

≤ f (x2) (20)
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and because f is non-negative and increasing the right hand-side of (20) follows
from

f (x2) ≥ f (x1)− 2f

(
x2 − x1

2

)

,

and therefore the right hand-side of (19) holds.
To prove the left hand-side of (19) we deal with the left hand-side of (20) which

is the same as to prove the inequality

f (x2)− f (x1) ≥ 2f

(
x2 − x1

2

)

. (21)

We show that

f (x2)− f (x1) ≥ f (x2 − x1) ≥ 2f

(
x2 − x1

2

)

. (22)

Indeed the right hand-side inequality of (22) follows from the fact that when f

is twice differentiable, convex and f (0) = 0, then f (kx)
x

is increasing for x > 0.
From (22) inequality (21) follows, and therefore the left hand-side inequality of (19)
holds. The proof of the lemma is complete.
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Best Hyers–Ulam Stability Constants
on a Time Scale with Discrete Core and
Continuous Periphery

Douglas R. Anderson and Masakazu Onitsuka

Abstract Consider a time scale consisting of a discrete core with uniform step
size, augmented with a continuous-interval periphery. On this time scale, we
determine the best constants for the Hyers–Ulam stability of a first-order dynamic
equation with complex constant coefficient, based on the placement of the complex
coefficient in the complex plane, with respect to the imaginary axis and the Hilger
circle. These best constants are then related to known results for the special cases of
completely continuous and uniformly discrete time scales.

1 Introduction

In this paper we explore the Hyers–Ulam stability of a certain dynamic equation
on a new time scale with a discrete, uniform core and continuous periphery. Ulam
inaugurated this type of stability [37], followed by Hyers [22] and Rassias [34].
Since then, there has been wide-spread interest in this type of stability, including
for difference equations, recurrence relations, h-difference equations, quantum
equations, and dynamic equations on time scales. For early papers on difference
equations, see Popa [31, 32]; more current works include Anderson and Onitsuka
[5, 6], Baias and Popa [13], Brzdęk and Wójcik [16], Onitsuka [29, 30], Rasouli,
Abbaszadeh, and Eshaghi [33], Xu and Brzdęk [38]. A related monograph is
Brzdęk, Popa, Raşa, and Xu [17]. Quantum equations and Hyers–Ulam stability
are investigated in Anderson and Onitsuka [7, 8]. For some work on matrix and
nonlinear difference equations, see Jung and Nam [24, 25], and Nam [26–28]. For
early papers on time scales, see András and Mészáros [12], Hua, Li, and Feng [21];
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contemporary results include Anderson [2], Anderson, Jennissen, and Montplaisir
[10], Anderson and Onitsuka [3, 4, 9], Shen [35], Shen and Li [36]. For recent papers
with non-constant or periodic coefficients, see Anderson [1], Anderson, Onitsuka,
and Rassias [11], Baias, Blaga, and Popa [14], Buşe, Lupulescu, and O’Regan [19],
Buşe, O’Regan, and Saierli [18].

This work will proceed as follows. In Section 2, we will define the time scale
with discrete core and continuous periphery, introduce the basic derivative and
exponential function for this time scale, and define Hyers–Ulam stability for the
dynamic equation with a complex constant coefficient. In Section 3, we establish
the best Hyers–Ulam stability constants in Theorem 5, based on the location of the
complex coefficient with respect to the imaginary axis, and for negative real part,
with respect to the left Hilger circle. If we expand the discrete core to all of hZ, or
shrink it to recover the continuum R, we are able to relate our new results with the
current literature in the field. As we do this, an interesting case arises when the real
part of the complex coefficient is negative but it lies outside the Hilger circle; this
case is explored in Section 4. After that, we provide a brief conclusion and future
direction.

2 Time Scale with Discrete Core and Continuous Periphery

Let N0 denote the non-negative integers {0, 1, 2, . . .}, let m ∈ N0, and let h > 0.
Define the time scale with discrete core and continuous periphery via

Thm := (−∞,−hm) ∪ {−hm, . . . ,−h, 0, h, . . . , hm} ∪ (hm,∞).

Here, h > 0 is the uniform step size in the discrete core, with discrete spread m ∈ N0
out to the continuous periphery. Define the graininess function μ : Thm → R via

μ(t) =
{

0 : t ∈ (−∞,−hm) ∪ [hm,∞),

h : t ∈ {−hm, . . . ,−h, 0, h, . . . , h(m− 1)}.

As h → 0, or if m = 0, we have T0,m = Th,0 = R, and we recover results for
classical differential equations; as m → ∞ for fixed h > 0, we have Th,∞ = hZ

and we recover results for standard h-difference equations.
In this section we introduce the first-order linear homogeneous equation with

constant complex-valued coefficient

xΔ(t)− λx(t) = 0, λ ∈ C\
{−1

h

}

, t ∈ Thm, (1)
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where

xΔ(t) :=
{

d
dt
x(t) : t ∈ (−∞,−hm) ∪ [hm,∞)

x(t+h)−x(t)
h

: t ∈ {−hm, . . . ,−h, 0, h, . . . , h(m− 1)}.

Lemma 1 (Exponential Function) Fix h > 0. For t ∈ Thm, define the function

eλ(t, 0) :=

⎧
⎪⎪⎨

⎪⎪⎩

(1+ hλ)−meλ(t+hm) : t ∈ (−∞,−hm)

(1+ hλ)
t
h : t ∈ {−hm, . . . ,−h, 0, h, . . . , hm}

(1+ hλ)meλ(t−hm) : t ∈ (hm,∞).

(2)

Then, x(t) = x0eλ(t, 0) for eλ(t, 0) given in (2) is the unique solution of (1)
satisfying x(0) = x0 ∈ C.

3 Best Constants for First-Order Equations with Constant
Complex Coefficient

In this section, we consider on Thm the Hyers–Ulam stability of (1), defined as
follows.

Definition 1 (HUS) Let ε > 0 be arbitrary. Equation (1) has Hyers–Ulam stability
(HUS) if and only if given φ : Thm → C satisfying |φΔ(t) − λφ(t)| ≤ ε for all
t ∈ Thm, there exists a solution x : Thm → C of (1) and a constant K > 0 such that
|φ(t) − x(t)| ≤ Kε for all t ∈ Thm. Such a constant K is called an HUS constant
for (1) on Thm.

Theorem 1 Let λ ∈ C\
{−1

h

}
with Re(λ) > 0. Let ε > 0 be a fixed arbitrary

constant, and let φ be a function on Thm satisfying the inequality
∣
∣φΔ(t)− λφ(t)

∣
∣ ≤ ε, t ∈ Thm.

Then, lim
t→∞

φ(t)

eλ(t, 0)
exists, and the function x given by

x(t) :=
(

lim
t→∞

φ(t)

eλ(t, 0)

)

eλ(t, 0)

is the unique solution of (1) with

|φ(t)− x(t)| ≤ ε

(
1

Re(λ)

)

for all t ∈ Thm.
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Proof Let λ ∈ C\{−1
h
} with Re(λ) > 0. Throughout this proof, as |φΔ(t) −

λφ(t)| ≤ ε for all t ∈ Thm, there exists a function q : Thm → C such that

φΔ(t)− λφ(t) = q(t), |q(t)| ≤ ε

for all t ∈ Thm. The variation of constants formula then yields

φ(t) = φ0eλ(t, 0)+ eλ(t, 0)
∫ t

0

q(τ)

eλ(σ (τ ), 0)
Δτ.

Since Re(λ) > 0 and |q(t)| ≤ ε, we can rewrite φ as

φ(t) =
(

φ0 +
∫ ∞

0

q(τ)

eλ(σ (τ ), 0)
Δτ

)

eλ(t, 0)− eλ(t, 0)
∫ ∞

t

q(τ )

eλ(σ (τ ), 0)
Δτ,

(3)
where

x0 := φ0 +
∫ ∞

0

q(τ)

eλ(σ (τ ), 0)
Δτ ∈ C

exists and is finite. Clearly

x(t) := x0eλ(t, 0), t ∈ Thm

is a solution of (1), and

lim
t→∞

φ(t)

eλ(t, 0)
= lim

t→∞

(

φ0 +
∫ t

0

q(τ)

eλ(σ (τ ), 0)
Δτ

)

= x0

exists, so

x(t) =
(

lim
t→∞

φ(t)

eλ(t, 0)

)

eλ(t, 0).

We take into account three cases based on the three branches of the exponential
function in (2).

(a). For Re(λ) > 0 and t ∈ (hm,∞), using (3) we have that

|φ(t)− x(t)| =
∣
∣
∣
∣−eλ(t, 0)

∫ ∞

t

q(τ )

eλ(σ (τ ), 0)
Δτ

∣
∣
∣
∣

≤ ε|eλ(t, 0)|
∫ ∞

t

Δτ

|eλ(σ (τ), 0)|

= ε|1+ hλ|meRe(λ)(t−hm)

∫ ∞

t

dτ

|1+ hλ|meRe(λ)(τ−hm)

= ε

Re(λ)

holds for all t ∈ (hm,∞).
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(b). For Re(λ) > 0 and t ∈ {−hm, . . . ,−h, 0, h, . . . , hm}, using (3) we have

|φ(t)− x(t)| ≤ ε|eλ(t, 0)|
∫ ∞

t

Δτ

|eλ(σ (τ), 0)|

= ε|1+ hλ| th
(∫ hm

t

+
∫ ∞

hm

)
Δτ

|eλ(σ (τ), 0)|

= ε|1+ hλ| th
⎛

⎜
⎝

m−1∑

j= t
h

h

|1+ hλ|j+1 +
∫ ∞

hm

dτ

|1+ hλ|meRe(λ)(τ−hm)

⎞

⎟
⎠

= ε|1+ hλ| th
⎛

⎝
h
(
|1+ hλ|− t

h − |1+ hλ|−m
)

|1+ hλ| − 1
+ 1

|1+ hλ|m Re(λ)

⎞

⎠

= ε

(
h

|1+ hλ| − 1
+ |1+ hλ| th−m

(
1

Re(λ)
− h

|1+ hλ| − 1

))

≤ ε

Re(λ)

for all t ∈ {−hm, . . . ,−h, 0, h, . . . , hm}, as t
h
≤ m and 1

Re(λ) ≥ h
|1+hλ|−1 for

Re(λ)>0 and h > 0.
(c). For Re(λ) > 0 and t ∈ (−∞,−hm), using (3) we have

|φ(t)− x(t)| ≤ ε|eλ(t, 0)|
∫ ∞

t

Δτ

|eλ(σ (τ), 0)|

= ε eRe(λ)(t+hm)

|1+ hλ|m
(∫ −hm

t

+
∫ hm

−hm
+

∫ ∞

hm

)
Δτ

|eλ(σ (τ), 0)|

= ε eRe(λ)(t+hm)

|1+ hλ|2m
(

1

Re(λ)
+

(
e−Re(λ)(t+hm) − 1

)

|1+ hλ|−2m Re(λ)

+h
(|1+ hλ|2m − 1

)

|1+ hλ| − 1

)

= ε

{
1

Re(λ)
+ eRe(λ)(t+hm)

(
1

|1+ hλ|2m Re(λ)

+
(

h

|1+ hλ| − 1

)(

1− 1

|1+ hλ|2m
)

− 1

Re(λ)

)}

≤ ε

Re(λ)
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for all t ∈ (−∞,−hm), as t < −hm, and the expression inside the square
brackets is negative.

We next show that x is the unique solution of (1) such that |φ(t)−x(t)| ≤ Kε :=
1

Re(λ) ε for all t ∈ Thm. Suppose φ : Thm → C is an approximate solution of (1)
such that

∣
∣φΔ(t)− λφ(t)

∣
∣ ≤ ε for all t ∈ Thm

for some ε > 0. Suppose further that x1, x2 : Thm → C are two different solutions
of (1) such that |φ(t) − xj (t)| ≤ Kε for all t ∈ Thm, for j = 1, 2. Then, we have
for constants cj ∈ C that

xj (t) = cj eλ(t, 0), c1 
= c2,

and

|c1 − c2| · |eλ(t, 0)| = |x1(t)− x2(t)| ≤ |x1(t)− φ(t)| + |φ(t)− x2(t)| ≤ 2Kε;
letting t → ∞ yields ∞ < 2Kε, a contradiction. Consequently, x is the unique
solution of (1) such that |φ(t) − x(t)| ≤ ε

Re(λ) for all t ∈ Thm. This completes the
proof. ��
Theorem 2 Let λ ∈ C\

{−1
h

}
with Re(λ) < 0. Let ε > 0 be a fixed arbitrary

constant, and let φ be a function on Thm satisfying the inequality
∣
∣φΔ(t)− λφ(t)

∣
∣ ≤ ε, t ∈ Thm.

Then, lim
t→−∞

φ(t)

eλ(t, 0)
exists, and the function x given by

x(t) :=
(

lim
t→−∞

φ(t)

eλ(t, 0)

)

eλ(t, 0)

is the unique solution of (1) with |φ(t)− x(t)| ≤ Kε for all t ∈ Thm, where

K :=
⎧
⎨

⎩

−1
Re(λ) + 2hm : |1+ hλ| = 1

max
{ −1

Re(λ) ,
h

1−|1+hλ| + |1+ hλ|2m
(

h
|1+hλ|−1 − 1

Re(λ)

)}
: |1+ hλ| 
= 1.

(4)
In particular, the following holds.

(i) If t ∈ (−∞,−hm), then

|φ(t)− x(t)| ≤ ε

( −1

Re(λ)

)

for all t ∈ (−∞,−hm).
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(ii) If |1+ hλ| = 1 and t ∈ {−hm, . . . ,−h, 0, h, . . . , hm} ∪ (hm,∞), then

|φ(t)− x(t)| ≤ ε

( −1

Re(λ)
+ 2hm

)

for all t ∈ {−hm, . . . ,−h, 0, h, . . . , hm} ∪ (hm,∞).
(iii) If 0 < |1+ hλ| < 1 and t ∈ {−hm, . . . ,−h, 0, h, . . . , hm} ∪ (hm,∞), then

|φ(t)− x(t)| ≤ ε

(
h

1− |1+ hλ| + |1+ hλ|2m
(

h

|1+ hλ| − 1
− 1

Re(λ)

))

for all t ∈ {−hm, . . . ,−h, 0, h, . . . , hm} ∪ (hm,∞).
(iv) If |1+ hλ| > 1 and t ∈ {−hm, . . . ,−h, 0, h, . . . , hm} ∪ (hm,∞), then

|φ(t)− x(t)| ≤ ε

(
h

1− |1+ hλ| + |1+ hλ|2m
(

h

|1+ hλ| − 1
− 1

Re(λ)

))

for all t ∈ {−hm, . . . ,−h, 0, h, . . . , hm} ∪ (hm,∞).

Proof Let λ ∈ C\{−1
h
} with Re(λ) < 0. Supposing |φΔ(t) − λφ(t)| ≤ ε for all

t ∈ Thm, there exists a function q : Thm → C such that

φΔ(t)− λφ(t) = q(t), |q(t)| ≤ ε

for all t ∈ Thm. Then, we have

φ(t) = φ0eλ(t, 0)+ eλ(t, 0)
∫ t

0

q(τ)

eλ(σ (τ ), 0)
Δτ.

Since Re(λ) < 0 and |q(t)| ≤ ε, we can rewrite φ as

φ(t) =
(

φ0 −
∫ 0

−∞
q(τ)

eλ(σ (τ ), 0)
Δτ

)

eλ(t, 0)+ eλ(t, 0)
∫ t

−∞
q(τ)

eλ(σ (τ ), 0)
Δτ,

(5)
where

x0 := φ0 −
∫ 0

−∞
q(τ)

eλ(σ (τ ), 0)
Δτ ∈ C

exists and is finite. As in the previous case,

x(t) := x0eλ(t, 0), t ∈ Thm

is a solution of (1), and

lim
t→−∞

φ(t)

eλ(t, 0)
= lim

t→−∞

(

φ0 −
∫ 0

t

q(τ )

eλ(σ (τ ), 0)
Δτ

)

= x0
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exists, so

x(t) =
(

lim
t→−∞

φ(t)

eλ(t, 0)

)

eλ(t, 0).

We again work our way through the three cases based on the three branches of the
exponential function in (2).

(i). For Re(λ) < 0 and t ∈ (−∞,−hm), using (5) we have

|φ(t)− x(t)| =
∣
∣
∣
∣eλ(t, 0)

∫ t

−∞
q(τ)

eλ(σ (τ ), 0)
Δτ

∣
∣
∣
∣

≤ ε|eλ(t, 0)|
∫ t

−∞
Δτ

|eλ(σ (τ), 0)|

= ε|1+ hλ|−meRe(λ)(t+hm)

∫ t

−∞
|1+ hλ|mdτ
eRe(λ)(τ+hm)

= − ε

Re(λ)

holds for Re(λ) < 0 and for all t ∈ (−∞,−hm).
(ii) (a). For Re(λ) < 0 with |1+ hλ| = 1 and t ∈ {−hm, . . . ,−h, 0, h, . . . , hm},

using (5) we have

|φ(t)− x(t)| ≤ ε|eλ(t, 0)|
∫ t

−∞
Δτ

|eλ(σ (τ), 0)|

= ε

(∫ −hm

−∞
+

∫ t

−hm

)
Δτ

|eλ(σ (τ), 0)|

= ε

⎛

⎜
⎝

∫ −hm

−∞
dτ

eRe(λ)(τ+hm)
+

t−h
h∑

j=−m
h

⎞

⎟
⎠

= ε

( −1

Re(λ)
+ hm+ t

)

≤ ε

( −1

Re(λ)
+ 2hm

)

,

for Re(λ) < 0 with |1+ hλ| = 1 and t ∈ {−hm, . . . ,−h, 0, h, . . . , hm}.
(ii) (b). For Re(λ) < 0 with |1+ hλ| = 1 and t ∈ (hm,∞), using (5) we have

|φ(t)− x(t)| ≤ ε eRe(λ)(t−hm)

(∫ −hm

−∞
+

∫ hm

−hm
+

∫ t

hm

)
Δτ

|eλ(σ (τ), 0)|
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= ε eRe(λ)(t−hm)

(

2hm− e−Re(λ)(t−hm)

Re(λ)

)

≤ ε

( −1

Re(λ)
+ 2hm

)

,

as t > hm and Re(λ) < 0.
(iii) (a). For Re(λ) < 0 with 0 < |1 + hλ| < 1 and t ∈ {−hm, . . . ,−h, 0, h,

. . . , hm}, using (5) we have

|φ(t)− x(t)| ≤ ε|eλ(t, 0)|
∫ t

−∞
Δτ

|eλ(σ (τ), 0)|

= ε|1+ hλ| th
(∫ −hm

−∞
+

∫ t

−hm

)
Δτ

|eλ(σ (τ), 0)|

= ε|1+ hλ| th
⎛

⎜
⎝

∫ −hm

−∞
|1+ hλ|mdτ
eRe(λ)(τ+hm)

+
t−h
h∑

j=−m

h

|1+ hλ|j+1

⎞

⎟
⎠

= ε|1+ hλ| th
⎛

⎝
h
(
|1+ hλ|m − |1+ hλ|− t

h

)

|1+ hλ| − 1
− |1+ hλ|m

Re(λ)

⎞

⎠

= ε

(
h

1− |1+ hλ| + |1+ hλ| th+m
(

h

|1+ hλ| − 1
− 1

Re(λ)

))

≤ ε

(
h

1− |1+ hλ| + |1+ hλ|2m
(

h

|1+ hλ| − 1
− 1

Re(λ)

))

,

as t
h
≤ m and h

|1+hλ|−1 − 1
Re(λ) ≤ 0 for Re(λ) < 0 with 0 < |1+ hλ| < 1

and h > 0.
(iii) (b). For Re(λ) < 0 with 0 < |1 + hλ| < 1 and t ∈ (hm,∞), using (5) we

have

|φ(t)− x(t)| ≤ εeRe(λ)(t−hm)

|1+ hλ|−m
(∫ −hm

−∞
+

∫ hm

−hm
+

∫ t

hm

)
Δτ

|eλ(σ (τ), 0)|

= εeRe(λ)(t−hm)

(
1− e−Re(λ)(t−hm) − |1+ hλ|2m

Re(λ)

+h
(|1+ hλ|2m − 1

)

|1+ hλ| − 1

)
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= ε

(
−1

Re(λ)
+ eRe(λ)(t−hm)

(
|1+ hλ|2m − 1

−Re(λ)
+ h

(|1+ hλ|2m − 1
)

|1+ hλ| − 1

))

≤ ε

(
h

1− |1+ hλ| + |1+ hλ|2m
(

h

|1+ hλ| − 1
− 1

Re(λ)

))

,

as t > hm, Re(λ) < 0 with 0 < |1 + hλ| < 1, and the expression inside
the square brackets is non-negative.

(iv) (a). For Re(λ) < 0 with |1+ hλ| > 1 and t ∈ {−hm, . . . ,−h, 0, h, . . . , hm},
using the same calculation as in case (iii)(a), we get

|φ(t)− x(t)| ≤ ε

(
h

1− |1+ hλ| + |1+ hλ| th+m
(

h

|1+ hλ| − 1
− 1

Re(λ)

))

≤ ε

(
h

1− |1+ hλ| + |1+ hλ|2m
(

h

|1+ hλ| − 1
− 1

Re(λ)

))

,

as t
h
≤ m and h

|1+hλ|−1 − 1
Re(λ) > 0 for Re(λ) < 0 with |1+ hλ| > 1 and

h > 0.
(iv) (b). For Re(λ) < 0 with |1 + hλ| > 1 and t ∈ (hm,∞), using the same

calculation as in case (iii)(b), we get

|φ(t)− x(t)| ≤ ε

⎛

⎝ −1

Re(λ)
+ eRe(λ)(t−hm)

⎛

⎝|1+ hλ|2m − 1

−Re(λ)
+

h
(
|1+ hλ|2m − 1

)

|1+ hλ| − 1

⎞

⎠

⎞

⎠

≤ ε

(
h

1− |1+ hλ| + |1+ hλ|2m
(

h

|1+ hλ| − 1
− 1

Re(λ)

))

,

as t > hm, Re(λ) < 0 with |1 + hλ| > 1, and the expression inside the
square brackets is positive.

We next show that x is the unique solution of (1) such that |φ(t) − x(t)| ≤ Kε

for all t ∈ Thm, where K is given by (4). Suppose φ : Thm → C is an approximate
solution of (1) such that

∣
∣φΔ(t)− λφ(t)

∣
∣ ≤ ε forall t ∈ Thm

for some ε > 0. Suppose further that x1, x2 : Thm → C are two different solutions
of (1) such that |φ(t) − xj (t)| ≤ Kε for all t ∈ Thm, for j = 1, 2. Then, we have
for constants cj ∈ C that

xj (t) = cj eλ(t, 0), c1 
= c2,

and

|c1 − c2| · |eλ(t, 0)| = |x1(t)− x2(t)| ≤ |x1(t)− φ(t)| + |φ(t)− x2(t)| ≤ 2Kε;
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letting t → −∞ yields ∞ < 2Kε, a contradiction. Consequently, x is the unique
solution of (1) such that |φ(t) − x(t)| ≤ εK for all t ∈ Thm. This completes the
proof. ��
Theorem 3 Let λ ∈ C\

{−1
h

}
with Re(λ) = 0. Then, (1) is not Hyers–Ulam stable

on Thm.

Proof Assume Re(λ) = 0 for λ ∈ C. Let arbitrary ε > 0 be given, and let λ = iβ

for some β ∈ R. Then,

φ(t) := εteiβ(t, 0)
(
1+ h2β2

)m+1
2

, t ∈ Thm

satisfies the inequality

∣
∣φΔ(t)− iβφ(t)

∣
∣ = ε

∣
∣(1+ iβμ(t))eiβ(t, 0)

∣
∣

(
1+ h2β2

)m+1
2

≤ ε
∣
∣eiβ(t, 0)

∣
∣

(
1+ h2β2

)m
2
≤ ε

for all t ∈ Thm. Since x(t) = x0eiβ(t, 0) is the general solution of (1) when λ = iβ,
then

|φ(t)− x(t)| =
∣
∣eiβ(t, 0)

∣
∣

(
1+ h2β2

)m+1
2

∣
∣
∣
∣εt − x0

(
1+ h2β2

)m+1
2

∣
∣
∣
∣→∞

as t → ±∞ for t ∈ Thm and for any x0 ∈ C, β ∈ R, h > 0. So, (1) lacks HUS on
Thm if λ = iβ. ��

Using the previous theorems, we can establish the following results.

Theorem 4 Let λ ∈ C\{−1
h
}. Equation (1) has HUS on Thm if and only if

Re(λ) 
= 0.

Proof By Theorems 1, 2 and 3, we obtain the result, immediately. ��
Lemma 2 Let λ ∈ C\

{−1
h

}
with Re(λ) 
= 0.

(i) If Re(λ) > 0, then the HUS constant K for (1) satisfies

K ≥ 1

Re(λ)
.

(ii) If Re(λ) < 0, then the HUS constant K for (1) satisfies

K ≥
⎧
⎨

⎩

−1
Re(λ) + 2hm : |1+ hλ| = 1

max
{ −1

Re(λ) ,
h

1−|1+hλ| + |1+ hλ|2m
(

h
|1+hλ|−1 − 1

Re(λ)

)}
: |1+ hλ| 
= 1.
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Proof Since λ ∈ C\
{−1

h

}
with Re(λ) 
= 0, Equation (1) has HUS by Theorem 4.

We will proceed by cases.

(i). Let λ = α + iβ ∈ C\
{−1

h

}
, and assume Re(λ) = α > 0; set

φ(t) := −εeiβ(t, 0)

α
(
1+ h2β2

)m
2
+ ε

α
eλ(t, 0).

It follows that

∣
∣φΔ(t)− λφ(t)

∣
∣ =

∣
∣εαeiβ(t, 0)

∣
∣

α
(
1+ h2β2

)m
2
= ε

∣
∣eiβ(t, 0)

∣
∣

(
1+ h2β2

)m
2
≤ ε.

Since x(t) = ε
α
eλ(t, 0) is a solution of (1),

|φ(t)− x(t)| = ε
∣
∣eiβ(t, 0)

∣
∣

α
(
1+ h2β2

)m
2
≤ ε

α
,

with equality at t = hm, so the minimal HUS constant K for (1) satisfies

K ≥ 1

α
= 1

Re(λ)
.

This ends the proof of case (i).
(ii) (a). Assume Re(λ) < 0 with |1+ hλ| = 1. Let

φ(t) = eλ(t, 0)
∫ t

0

q(τ)

eλ(σ (τ ), 0)
Δτ, q(τ ) = εeλ(σ (τ), 0)

|eλ(σ (τ), 0)| , (6)

for all t ∈ Thm. Then,

φΔ(t)− λφ(t) = q(t), |q(t)| = ε,

and, employing (6), we see that φ takes the form

φ(t) = ε

⎧
⎪⎪⎨

⎪⎪⎩

(
1

Re(λ) − hm
)
eλ(t, 0)− ei Im(λ)(t+hm)

(1+hλ)m Re(λ) : t ∈ (−∞,−hm)

teλ(t, 0) : t ∈ {−hm, . . . , hm}(
1

Re(λ) + hm
)
eλ(t, 0)− ei Im(λ)(t−hm)

(1+hλ)−m Re(λ) : t ∈ (hm,∞).

If we take

x(t) := ε

(
1

Re(λ)
− hm

)

eλ(t, 0),
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then x is a solution of (1), and

|φ(t)− x(t)| =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε

∣
∣
∣ −e

i Im(λ)(t+hm)

(1+hλ)m Re(λ)

∣
∣
∣ = −ε

Re(λ) : t ∈ (−∞,−hm)

ε

∣
∣
∣− 1

Re(λ) + t + hm

∣
∣
∣ ≤ ε

( −1
Re(λ) + 2hm

)
: t ∈ {−hm, . . . , hm}

ε

∣
∣
∣− 1

Re(λ) + 2hmeRe(λ)(t−hm)
∣
∣
∣ ≤ ε

( −1
Re(λ) + 2hm

)
: t ∈ (hm,∞),

where we have equality at t = hm. This shows that the HUS constant K
must satisfy

K ≥
( −1

Re(λ)
+ 2hm

)

for Re(λ) < 0 with |1+ hλ| = 1. Here ends the proof of case (ii)(a).
(ii)(b). Assume Re(λ) < 0 with |1+ hλ| 
= 1. Again, let φ be given by (6) for all

t ∈ Thm. Then,

φΔ(t)− λφ(t) = q(t), |q(t)| = ε,

and in this case φ takes the form

φ(t) =

ε

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

( |1+hλ|m
Re(λ) − h(|1+hλ|m−1)

|1+hλ|−1

)
eλ(t, 0)− |1+hλ|mei Im(λ)(t+hm)

(1+hλ)m Re(λ) : t ∈ (−∞,−hm)

h

(

|1+hλ| th −1

)

|1+hλ| th (|1+hλ|−1)
eλ(t, 0) : t ∈ {−hm, . . . , hm}

( |1+hλ|−m
Re(λ) + h(|1+hλ|m−1)

|1+hλ|m(|1+hλ|−1)

)
eλ(t, 0)− (1+hλ)mei Im(λ)(t−hm)

|1+hλ|m Re(λ) : t ∈ (hm,∞).

If we take

x(t) := ε

( |1+ hλ|m
Re(λ)

− h (|1+ hλ|m − 1)

|1+ hλ| − 1

)

eλ(t, 0), (7)

then x is a solution of (1), and

|φ(t)− x(t)| = −ε
Re(λ)

, t ∈ (−∞,−hm).

For t ∈ {−hm, . . . ,−h, 0, h, . . . , hm},

|φ(t)− x(t)| = ε

⎛

⎝
h
(
|1+ hλ|m+ t

h − 1
)

|1+ hλ| − 1
− |1+ hλ|m+ t

h

Re(λ)

⎞

⎠ .
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If 0 < |1+ hλ| < 1, then as in the proof of Theorem 2 (iii)(a), we have

|φ(t)− x(t)| = ε

(
h

1− |1+ hλ| + |1+ hλ| th+m
(

h

|1+ hλ| − 1
− 1

Re(λ)

))

≤ ε

(
h

1− |1+ hλ| + |1+ hλ|2m
(

h

|1+ hλ| − 1
− 1

Re(λ)

))

,

as t
h
≤ m and h

|1+hλ|−1 − 1
Re(λ) ≤ 0 for Re(λ) < 0 with 0 < |1+ hλ| < 1

and h > 0, with equality at t = hm. If |1+ hλ| > 1, then as in the proof of
Theorem 2 (iv)(a),

|φ(t)− x(t)| = ε

(
h

1− |1+ hλ| + |1+ hλ| th+m
(

h

|1+ hλ| − 1
− 1

Re(λ)

))

≤ ε

(
h

1− |1+ hλ| + |1+ hλ|2m
(

h

|1+ hλ| − 1
− 1

Re(λ)

))

,

as t
h
≤ m and h

|1+hλ|−1 − 1
Re(λ) > 0 for Re(λ) < 0 with |1+ hλ| > 1 and

h > 0. For t ∈ (hm,∞) and 0 < |1 + hλ| < 1, then as in the proof of
Theorem 2 (iii)(b),

|φ(t)− x(t)| = ε

(
−1

Re(λ)
+ eRe(λ)(t−hm)

(
|1+ hλ|2m − 1

−Re(λ)
+ h

(|1+ hλ|2m − 1
)

|1+ hλ| − 1

))

≤ ε

(
h

1− |1+ hλ| + |1+ hλ|2m
(

h

|1+ hλ| − 1
− 1

Re(λ)

))

,

as t > hm, Re(λ) < 0 with 0 < |1 + hλ| < 1, and the expression inside
the square brackets is non-negative. For t ∈ (hm,∞) and |1 + hλ| > 1,
then as in the proof of Theorem 2 (iv)(b), we have

|φ(t)− x(t)| = ε

(
−1

Re(λ)
+ eRe(λ)(t−hm)

(
|1+ hλ|2m − 1

−Re(λ)
+ h

(|1+ hλ|2m − 1
)

|1+ hλ| − 1

))

≤ ε

(
h

1− |1+ hλ| + |1+ hλ|2m
(

h

|1+ hλ| − 1
− 1

Re(λ)

))

,

as t > hm, Re(λ) < 0 with |1 + hλ| > 1, and the expression inside the
square brackets is positive. This ends the proof of case (ii)(b), and thus the
overall result holds.

��
Theorem 5 Let λ ∈ C\{−1

h
}. If Re(λ) 
= 0, then (1) has HUS on Thm.

(i) If Re(λ) > 0, then

K = 1

Re(λ)
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is the best (minimal) HUS constant.
(ii) If Re(λ) < 0, then

K =
⎧
⎨

⎩

−1
Re(λ) + 2hm : |1+ hλ| = 1

max
{ −1

Re(λ) ,
h

1−|1+hλ| + |1+ hλ|2m
(

h
|1+hλ|−1 − 1

Re(λ)

)}
: |1+ hλ| 
= 1

is the best (minimal) HUS constant.

Proof This result follows immediately from the definitions of HUS and HUS
constant, Theorems 1–4, and Lemma 2. ��
Remark 1 If m = 0, then Th,0 = R, and the results in Theorems 1 and 2 (i)− (iv)

match exactly the known results for T = R, namely that x′(t)−λx(t) = 0 has HUS
on R, and

K = 1

|Re(λ)|
is the best possible HUS constant. If h → 0, then T0,m = R, and the results in
Theorems 1 and 2 (i)− (iv) also recover the known results for T = R, because

lim
h→0+

( −1

Re(λ)
+ 2hm

)

= −1

Re(λ)
, lim

h→0+
h

|1+ hλ| − 1
= lim

h→0+
1

Reh(λ)
= 1

Re(λ)

hold, where Reh(λ) represents the Hilger real part [20] for h-difference equations.
For fixed h > 0, if m→∞, then Th,∞ = hZ, and the results in Theorem 1 and

Theorem 2 (i) and (iii) match exactly the known results for T = hZ, namely that
Δhx(t)− λx(t) = 0 has HUS on hZ, and

K = h
∣
∣1− |1+ hλ|∣∣ =

1

|Reh(λ)|

is the best possible HUS constant. Theorem 2 (ii) shows an interesting connection;
as m → ∞, the HUS constant in (ii) goes to infinity as well. This is accurate,
as Re(λ) < 0 with |1 + hλ| = 1 makes the h-difference equation version of (1)
Hyers–Ulam unstable on hZ, as λ ∈ C is then on the left Hilger circle [5]; see [15,
Chapter 2.1], [20], and [23] for more on the Hilger complex plane, and [2, 5, 10] for
more on the Hilger circle and HUS. On the other hand, in case (iv) Re(λ) < 0 with
|1+ hλ| > 1, a result that does not match is obtained, that is,

lim
m→∞

(
h

1− |1+ hλ| + |1+ hλ|2m
(

h

|1+ hλ| − 1
− 1

Re(λ)

))

= ∞

when Re(λ) < 0 with |1 + hλ| > 1, but, we know that Δhx(t) − λx(t) = 0 has
HUS when |1 + hλ| > 1 (see [5]). Why does this logical gap occur? According
to the information of Theorem 2.5 (ii) in [5], in this case, the unique solution x
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is determined when t → ∞. As you can see from the claim of Theorem 2, even
in this case, the unique solution x is determined by the information of t → ∞.
Therefore, we can say that the case Re(λ) < 0 with |1+ hλ| > 1 is a distinguishing
characteristic of Hyers–Ulam stability on this time scale with discrete core and
continuous periphery. We explore this anomaly in the next section.

4 Connection with h-Difference Equations in the Case
|1 + hλ| > 1

The following result is effective for clarifying the connection with the h-difference
equation Δhx(t)− λx(t) = 0 with |1+ hλ| > 1.

Theorem 6 Let λ ∈ C\
{−1

h

}
with Re(λ) < 0 and |1 + hλ| > 1. Let ε > 0 be a

fixed arbitrary constant, and let φ be a function on Thm satisfying the inequality

∣
∣φΔ(t)− λφ(t)

∣
∣ ≤ ε, t ∈ Thm.

Then, the function x given by

x(t) :=
(

φ(hm)

eλ(hm, 0)

)

eλ(t, 0)

is a solution of (1) with

|φ(t)− x(t)| ≤ ε max

{
h
(
1− |1+ hλ|−2m

)

|1+ hλ| − 1
,
−1

Re(λ)

}

for all t ∈ {−hm, . . . ,−h, 0, h, . . . , hm} ∪ (hm,∞). In particular, the following
holds.

(i) If t ∈ {−hm, . . . ,−h, 0, h, . . . , hm}, then

|φ(t)− x(t)| ≤ ε

(
h
(
1− |1+ hλ|−2m

)

|1+ hλ| − 1

)

for all t ∈ {−hm, . . . ,−h, 0, h, . . . , hm}.
(ii) If t ∈ (hm,∞), then

|φ(t)− x(t)| ≤ ε

( −1

Re(λ)

)

for all t ∈ (hm,∞).
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Proof Let λ ∈ C\
{−1

h

}
with Re(λ) < 0 and |1+ hλ| > 1. Suppose that |φΔ(t)−

λφ(t)| ≤ ε for all t ∈ Thm, there exists a function q : Thm → C such that

φΔ(t)− λφ(t) = q(t), |q(t)| ≤ ε

for all t ∈ Thm. Then, we have

φ(t) = φ0eλ(t, 0)+ eλ(t, 0)
∫ t

0

q(τ)

eλ(σ (τ ), 0)
Δτ.

Let x(t) = x0eλ(t, 0) be the solution of (1) with

x0 := φ0 +
∫ hm

0

q(τ)

eλ(σ (τ ), 0)
Δτ ∈ C.

It follows that

φ(t)− x(t) = −eλ(t, 0)

(∫ hm

t

q(τ )

eλ(σ (τ ), 0)
Δτ

)

. (8)

(a) For Re(λ) < 0 with |1+ hλ| > 1 and t ∈ {−hm, . . . ,−h, 0, h, . . . , hm}, using
(8) we have

|φ(t)− x(t)| ≤ ε|eλ(t, 0)|
∫ hm

t

Δτ

|eλ(σ (τ), 0)| = ε|1+ hλ| th
m−1∑

j= t
h

h

|1+ hλ|j+1

= ε

⎛

⎝
h
(

1− |1+ hλ|−m+ t
h

)

|1+ hλ| − 1

⎞

⎠ ≤ ε

(
h
(
1− |1+ hλ|−2m

)

|1+ hλ| − 1

)

,

as t
h
≤ m, h > 0, and Re(λ) < 0 with |1+ hλ| > 1.

(b) For Re(λ) < 0 with |1+ hλ| > 1 and t ∈ [hm,∞), using (8) we have

|φ(t)− x(t)| =
∣
∣
∣
∣eλ(t, 0)

(∫ t

hm

q(τ)

eλ(σ (τ ), 0)
Δτ

)∣
∣
∣
∣

≤ ε|1+ hλ|meRe(λ)(t−hm)

∫ t

hm

Δτ

|eλ(σ (τ), 0)|

= ε

(
−1+ eRe(λ)(t−hm)

Re(λ)

)

≤ ε

( −1

Re(λ)

)

,

as t ≥ hm and Re(λ) < 0 with |1+ hλ| > 1. This completes the proof.
��
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Remark 2 For fixed h > 0, if m → ∞, then Th,∞ = hZ, and the result in
Theorem 6 (i) reproduces exactly the known result for T = hZ (see, Theorem
2.5 (ii) in [5]). Actually, we will explain this fact. Since

∣
∣
∣
∣

∫ hm

0

q(τ)

eλ(σ (τ ), 0)
Δτ

∣
∣
∣
∣ ≤ ε

∫ hm

0

Δτ

|eλ(σ (τ), 0)| ≤ ε

m−1∑

j=0

h

|1+hλ|j+1 <
h

|1+hλ| − 1

holds, we see that

lim
m→∞

φ(hm)

eλ(hm, 0)
= lim

t→∞
φ(t)

eλ(t, 0)

exists. In addition, an HUS constant is

lim
m→∞

h
(
1− |1+ hλ|−2m

)

|1+ hλ| − 1
= h

|1+ hλ| − 1
.

Theorem 6 (i) says that the function x given by

x(t) :=
(

lim
t→∞

φ(t)

eλ(t, 0)

)

eλ(t, 0)

is a solution of (1) with

|φ(t)− x(t)| ≤ hε

|1+ hλ| − 1

for all t ∈ hZ. As m → ∞, our exponential function eλ(t, 0) corresponds to (1 +
hλ)

t
h for all t ∈ hZ. In this case, we can prove the uniqueness of the solution. Let

ε > 0, and let φ : {−hm, . . . ,−h, 0, h, . . . , hm} → C satisfy

∣
∣φΔ(t)− λφ(t)

∣
∣ ≤ ε for all t ∈ {−hm, . . . ,−h, 0, h, . . . , hm}.

Suppose that x1, x2 : {−hm, . . . ,−h, 0, h, . . . , hm} → C are two different
solutions of (1) such that |φ(t) − xj (t)| ≤ Kε := h

|1+hλ|−1ε for all t ∈
{−hm, . . . ,−h, 0, h, . . . , hm}, for j = 1, 2. Then, we have for constants cj ∈ C

that

xj (t) = cj (1+ hλ)
t
h , c1 
= c2,

and

|c1 − c2||1+ hλ| th = |x1(t)− x2(t)| ≤ |x1(t)− φ(t)| + |φ(t)− x2(t)| ≤ 2Kε;
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letting m → ∞ and t → ∞ yields ∞ < 2Kε, a contradiction. Consequently, x is
the unique solution of Δhx(t) − λx(t) = 0 such that |φ(t) − x(t)| ≤ εK for all
t ∈ hZ.

5 Conclusion and Future Directions

In this paper we determined the best Hyers–Ulam stability constants for a first-order
complex constant coefficient dynamic equation on a time scale with a discrete core
and continuous periphery. In the future, we will study a time scale with a discrete
periphery and continuous core, whose exponential function for λ ∈ C\{− 1

h
} is

eλ(t, 0) :=

⎧
⎪⎪⎨

⎪⎪⎩

(1+ hλ)
t
h
+me−hmλ : t ∈ {. . . ,−h(m+ 2),−h(m+ 1)}

eλt : t ∈ [−hm, hm]
(1+ hλ)

t
h
−mehmλ : t ∈ {h(m+ 1), h(m+ 2), . . .}.

on Thm = {. . . ,−h(m+ 2),−h(m+ 1)}∪ [−hm, hm] ∪ {h(m+ 1), h(m+ 2), . . .},
where h > 0 is the discrete step size and m is a non-negative integer.
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Invariance Solutions and Blow-Up
Property for Edge Degenerate
Pseudo-Hyperbolic Equations in Edge
Sobolev Spaces

Carlo Cattani and Morteza Koozehgar Kalleji

Abstract This article is dedicated to study of the initial-boundary value problem
of edge pseudo-hyperbolic system with damping term on the manifold with edge
singularity. First, we will discuss about the invariance of solution set of a class of
edge degenerate pseudo-hyperbolic equations on the edge Sobolev spaces. Then,
by using a family of modified potential wells and concavity methods, it is obtained
existence and nonexistence results of global solutions with exponential decay and is
shown the blow-up in finite time of solutions on the manifold with edge singularities.

1 Introduction

Initial-boundary value problems written for hyperbolic semilinear partial differen-
tial equations emerged in several applications to physics, mechanics and engineering
sciences [9, 24, 25]. Interesting phenomena are often connected with geometric
singularities, for instance, in mechanics or cracks in a medium are described by
hypersurfaces with a boundary. In this cases, configurations of that kind belong to
the category of spaces (manifolds) with geometric singularities, here with edges.
Also, when one asks physics to calculate the self-energy of an electron, or the
structure of space time at the center of a black hole, one encounter with mathe-
matical bad behaviour, that is the singularities from the point view of mathematics.
In recent years, from a mathematical point of view, the analysis on such (in general,
stratified) spaces has become a mathematical structure theory with many deep
relations with geometry, topology, and mathematical physics [10, 15, 23, 25].
In [21], Melrose,Vasy and Wunsch investigated the geometric propagation and
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diffraction of singularities of solutions to the wave equation on manifolds with
edge singularities. Let X be an n-dimensional manifold with boundary, where the
boundary ∂X is endowed with a fibration Z → ∂X and ∂X → Y where Y,Z are
without boundary. By an edge metric g on X, we mean a metric g on the interior of
X which is a smooth 2-cotensor up to the boundary but which degenerates there in
a way compatible with the fibration. A manifold with boundary equipped with such
an edge metric also is called an edge manifold or a manifold with edge structure. If
Z is point, then an edge metric on X is simply a metric in the usual sense, smooth up
to the boundary, while if Y is a point, X is conic manifold [4]. A simple example of a
more general edge metric is obtained by performing a real blowup on a submanifold
B of a smooth, boundaryless manifold A. The blowup operation simply introduces
polar coordinates near B, i.e., it replaces B by its spherical normal bundle, thus
yielding a manifold X with boundary. The pullback of a smooth metric on A to X

is then an edge metric [21].
Up to now, elliptic boundary value problems in domains with point singularities

have been thoroughly investigated [1–4, 7, 8, 14]. The natures of the solutions to
these equations have been investigated by several means. For instance, problems
with the Dirichlet boundary conditions were investigated in [1, 2, 7, 10, 14] in
which the unique existence, the multiplicity, the regularity and the asymptotic
behaviour near the conical points of the solutions are established. Finite time blow-
up of solutions of generalized hyperbolic equations have been studied by many
authors [1, 2, 5, 7, 18, 28]. In these references, the authors consider problems either
for negative energy or for weaker conditions than a condition of negative initial
energy. Other authors have assumed a condition of positive energy under other two
conditions on the initial functions. However, the mentioned authors have not studied
the compatibility of these conditions, which is come times hard to understand. These
authors have used the classic concavity Levine’s method [17]. In this article, we
use the edge Sobolev inequality and Poincaré inequality and modified method in
[7, 8] to prove on the global well-posedness of solutions to initial-boundary value
problems for semilinear degenerate pseudo-hyperbolic equations with dissipative
term on manifolds with edge singularities. More precisely, we study the following
initial-boundary value problem for semilinear hyperbolic equation

⎧
⎨

⎩

∂2
t u−ΔEu+ V (z)u+ γΔE∂tu = gt (z)|u|p−1u, z ∈ intE, t > 0,
u(z, 0) = u0(z), ∂tu(z, 0) = u1(z), z ∈ intE

u(z, t) = 0, z ∈ ∂E, t ≥ 0,
(1)

where, 2 < p+ 1 < 2n
n−2 = 2∗ is the critical cone Sobolev exponents, z = (r, x, y),

u = u(z, t) is unknown function and γ is a non-negative parameter. Also, u0 ∈
H

1, n+1
2

2,0 (E), u1 ∈ L
n+1

2
2 (E), N = 1+n+q ≥ 3 is a dimension of E and coordinates

z := (r, x, y) = (r, x1, . . . , xn, y1, . . . , yq) ∈ E. Here the domain E is [0, 1)×X×
Y, X is an (n − 1)-dimensional closed compact manifold, Y ⊂ R

q is a bounded
domain, which is regarded as the local model near the edge points on manifolds
with edge singularities, and ∂E = {0} × X × Y. Moreover, the operator ΔE in 1 is
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defined by (r∂r )
2 + ∂2

x1
+ . . .+ ∂2

xn
+ (r∂y1)

2 + . . .+ (r∂yq )
2, which is an elliptic

operator with totally characteristic degeneracy on the boundary r = 0, we also call
it Fuchsian type edge-Laplace operator, and the corresponding gradient operator
by ∇E := (r∂r , ∂x1 , . . . , ∂xn, r∂y1 , . . . , r∂yq ). In the Equation 1, we assume that

V (z) ∈ L
n+1

4 (intE)∩C(intE) is a positive potential function such that inf
z∈EV (z) >

0. For every t ≥ 0, we suppose that gt : E → R is a non-negative function which
gt (z) := g(z, t) for every z ∈ intE and g(z, t) ∈ L∞(intE) ∩ C1(intE). The
through of this paper we consider the following constants:

C∗ = inf

{‖√V (z)u(z)‖
L

n+1
2

2 (E)

‖∇Eu‖
L

n+1
2

2 (B)

; u ∈H
1, n+1

2
2,0 (E)

}

,

C∗∗ = sup

{‖gt (z)
1

p+1 u‖
L

n+1
p+1
p+1 (E)

‖∇Eu‖
L

n+1
2

2 (E)

; u ∈H
1, n+1

2
2,0 (E)

}

.

Our investigation is in fact provoked by the study of [20] and we shall apply a
potential method which was established by Sattinger [26]. So based on edge Sobolev
spaces [10, 27], we study the existence and non-existence global weak solutions for
semilinear pseudo-hyperbolic differential equations with respect to variable time
with a positive potential function and a non-negative weighted function. The well-
known operator (ΔE+V (x)+ΔE∂t )u and other special types of it (see [11]) appears
naturally in the nonlinear heat and wave equations [25], nonlinear Schrödinger
equation with potential function [12] and the references therein for a complete
description of the model. In the sitting of parabolic type system, the authors [6, 18]
studied global existence, exponential decay and finite time blow-up of solutions for
a class of semilinear pseudo-parabolic equations with conical degeneration. Also,
our problem can be seen as a class of degenerate hyperbolic type equations in case
that V (z) = 0 and gt (z) ≡ 1 then the problem 1 is reduced to problem 1.1 in [13]
and in the classical sense our problem include the classical problem

⎧
⎨

⎩

∂2
t u−Δu+ γ ∂tu = f (u), x ∈ Ω, t > 0,
u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ Ω

u(t, x) = 0, x ∈ ∂Ω, t ≥ 0,
(2)

where Ω is bounded domain of Rn with smooth boundary ∂Ω and Δ is the standard
Laplace operator and f is a suitable function [13, 17, 19]. It is well-known that
problem 2 has been studied by many authors, for example [19, 20] and the references
therein.

In Section 2, we recall the definition of the edge Sobolev space and the
corresponding properties. In Section 3, we will give some properties of potential
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wells for problem 1 on the manifold with edge singularity, which is very useful in
the process of our main results. In Section 4, we give the proofs of the results of
global existence and non-existence, exponential decay and finite time blowing-up
of problem 1.

2 Edge Sobolev Spaces

Consider X as a closed compact C∞-manifold of dimension n of the unit sphere

in R
n+1. We define an infinite cone in R

n+1 as a quotient space XΔ = R̄+×X
{0}×X ,

with base X. The cylindrical coordinates (r, θ) ∈ XΔ − {0} in R
n+1 − {0} are

the standard coordinates. This gives us the description of XΔ − {0} in the form
R+ × X. Then the stretched cone can be defined as R̄+ × X = X∧. Now, consider
B = XΔ with a conical point, then by the similar way in [8, 10, 27], one can
define the stretched manifold B with respect to B as a C∞-manifold with smooth
boundary ∂B ∼= X(0), where X(0) is the cross section of singular point zero such
that there is a diffeomorphism B − {0} ∼= B − ∂B, the restriction of which to
U − {0} ∼= V − ∂B for an open neighborhood U ⊂ B near the conic point zero
and a collar neighborhood V ⊂ B with V ∼= [0, 1)× X(0). Therefore, we can take
B = [0, 1) × X ⊂ R̄+ × X = X∧. In order to consider another type of a manifold
with singularity of order one so-called wedge manifold, we consider a bounded
domain Y in R

q . Set W = XΔ × Y = B × Y. Then W is a corresponding wedge
in R

1+n+q . Therefore, the stretched wedge manifold W to W is X∧ × Y which is
a manifold with smooth boundary {0} × X × Y. Set (r, x) ∈ X∧. In order to define
a finite wedge, it sufficient to consider the case r ∈ [0, 1). Thus, we define a finite
wedge as

E = [0, 1)×X

{0} ×X
× Y ⊂ XΔ × Y = W.

The stretched wedge manifold with respect to E is

E = [0, 1)×X × Y = B× Y ⊂ X∧ × Y = W∧,

with smooth boundary ∂E = {0} ×X × Y.

Definition 1 For (r, x, y) ∈ R
N+ with N = 1 + n + q, assume that u(r, x, y) ∈

D ′(RN+). We say that u(r, x, y) ∈ Lp(R
N+; dμ) if

‖u‖Lp =
(∫

R
N+
rN |u(r, x, y)|pdμ

) 1
p

< +∞,

where dμ = dr
r
dx1 . . . .dxn

dy1
r

. . .
dyq
r

and for 1 ≤ p <∞.
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Moreover, the weighted Lp spaces with wight γ ∈ R is denoted by L
γ
p(R

N+; dμ),
which consists of function u(r, , y) such that

‖u‖Lγ
p
=

(∫

R
N+
rN |r−γ u(r, x, y)|pdμ

) 1
p

< +∞.

Now, we can define the weighted p-Sobolev spaces with natural scale for all 1 ≤
p <∞ on R

N=1+n+q
+ .

Definition 2 For m ∈ N, γ ∈ R and N = 1+ n+ q, the spaces

H
m,γ
p (RN+) =

{

u ∈ D
′
(RN+) | r

N
p
−γ

(r∂r )
k∂αx (r∂y)

βu ∈ Lp(R
N+; dμ)

}

for k ∈ N, multi-indices α ∈ N
n and β ∈ N

q with k + |α| + |β| ≤ m. In
other words, if u(r, x, y) ∈ H

m,γ
p (RN+) then (r∂r )

k∂αx (r∂y)
βu ∈ L

γ
p(R

N+; dμ).
Therefore, H

m,γ
p (RN+) is a Banach space with the following norm

‖u‖H m,γ
p (RN+ ) =

∑

k+|α|+|β|≤m

(∫

R
N+
rN |r−γ (r∂r )k∂αx (r∂y)βu|pdμ

) 1
p

.

Moreover, the subspace H
m,γ

p,0 (RN+) of H
m,γ
p (RN+) denotes the closure of

C∞0 (RN+) in H
m,γ
p (RN+). Now, similarly to the definitions above, we can introduce

the following weighted p-Sobolev spaces on X∧ × Y, where X∧ = R+ × X and
X∧ × Y is an open stretched wedge.

H
m,γ
p (X∧ × Y ) :=

{

u ∈ D
′
(X∧ × Y ) | r

N
p
−γ

(r∂r )
k∂αx (r∂y)

βu ∈ Lp(X
∧ × Y ; dμ)

}

for k ∈ N, multi-indices α ∈ N
n and β ∈ N

q with k + |α| + |β| ≤ m.

Then H
m,γ
p (X∧ × Y ) is a Banach space with the following norm

‖u‖H m,γ
p (X∧×Y ) =

∑

k+|α|+|β|≤m

(∫

X∧×Y
rN |r−γ (r∂r )k∂αx (r∂y)βu|pdμ

) 1
p

.

The subspace H
m,γ

p,0 (X∧ × Y ) of H
m,γ
p (X∧ × Y ) is defined as the closure of

C∞0 (X∧ × Y ).

Definition 3 Let E be the stretched wedge to the finite wedge E, then H
m,γ
p (E)

for m ∈ N, γ ∈ R denotes the subset of all u ∈ W
m,p
loc (intE) such that ωu ∈
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H
m,γ
p (X∧ × Y ) for any cut-off function ω, supported by a collar neighborhood of

(0, 1)× ∂E. Moreover, the subspace H
m,γ

p,0 (E) of H
m,γ
p (E) is defined as follows

H
m,γ

p,0 (E) := [ω]H m,γ

p,0 (X∧ × Y )+ [1− ω]Wm,p

0 (intE)

where the classical Sobolev space W
m,p

0 (intE) denotes the closure of C∞0 (intE) in
Wm,p(Ẽ) for Ẽ that is a closed compact C∞ manifold with boundary.

If u ∈ L
n+1
p

p (E) and v ∈ L

n+1
p
′

p
′ (E) with p, p

′ ∈ (1,∞) and 1
p
+ 1

p
′ = 1, then one

can obtain the following edge type Hölder inequality

∫

E

rq |uv|dμ ≤
(∫

E

rq |u|pdμ
) 1

p
(∫

E

rq |v|p′ dμ
) 1

p
′
.

In the case p = 2, we have the corresponding edge type Schwartz inequality

∫

E

rq |uv|dμ ≤
(∫

E

rq |u|2dμ
) 1

2
(

rq |v|2dμ
) 1

2

.

In the sequel, for convenience we denote

(u, v)2 =
∫

E

rquvdμ, ‖u‖
L

n+1
p

p (E)

=
(∫

E

rq |u|pdμ
) 1

p

.

Proposition 1 (Poincaré Inequality [7]) Let E = [0, 1) × X × Y be a stretched
edge manifold, γ ∈ R and p ∈ (1,∞). If u ∈H

1,γ
p (E) then

‖u(z)‖Lγ
p(E)

≤ c‖∇Eu(z)‖Lγ
p(E)

(3)

where ∇E := (r∂r , ∂x1 , . . . , ∂xn, r∂y1 , . . . , r∂yq ) and the constant c depending only
on E.

Proposition 2 ([7]) For 1 < p < 2∗ the embedding H
1, n+1

2
2,0 (E) ↪→H

0, n+1
p

p,0 (E) is
continuous.

Proposition 3 ([7]) There exist 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λj ≤ . . . , and
λj →∞ such that for all j ≥ 1, the following Dirichlet problem

{−ΔEφj = λjφj , x ∈ intE,

φj = 0, x ∈ ∂E,
(4)
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admits non-trivial solution in H
1, n+1

2
2,0 (E). Moreover, we can choose positive

{φj }j≥1 which constitute an orthonormal basis of Hilbert space H
1, n+1

2
2,0 (E), and

the inequality

λ
1
2
1 ‖u(z)‖

L
n
2
2

(E) ≤ ‖∇Eu‖
L

n+1
2

2

(E),

holds.

3 Some Auxiliary Results

In this section we give some results about the potential wells for problem 1 and
we obtain some properties of energy functional that we will use to prove the main
results in Section 4.

Similar to the classical case, we introduce the following functionals on the cone

Sobolev space H
1, n+1

2
2,0 (E):

J (u) = 1

2

∫

E

rq |∇Eu|2dμ+ 1

2

∫

E

rqV (z)|u|2dμ− 1

p + 1

∫

E

rqgt (z)|u|p+1dμ,

K(u) =
∫

E

rq |∇Eu|2dμ+
∫

E

rqV (x)|u|2dμ−
∫

E

rqgt (z)|u|p+1dμ.

Then J (u) and K(u) are well-defined and belong to space C1
(
H

1, n+1
2

2,0 (E),R
)
.

Now we define

N =
{

u ∈H
1, n+1

2
2,0 (E) ; K(u) = 0,

∫

E

rq |∇Eu|2dμ 
= 0

}

,

d = inf

{

sup
λ≥0

J (λu) ; u ∈H
1, n+1

2
2,0 (E),

∫

E

rq |∇Eu|2dμ 
= 0

}

.

Thus, similar to the results in [20] we obtain that 0 < d = inf
u∈N

J (u). For 0 < δ we

define

Kδ(u) = δ

[ ∫

E

rq |∇Eu|2dμ+
∫

E

rqV (z)|u|2dμ
]

−
∫

E

rqgt (z)|u|p+1dμ,
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Nδ =
{

u ∈H
1, n+1

2
2,0 (B) ; Kδ(u) = 0,

∫

E

rq |∇E|2dμ 
= 0

}

,

d(δ) = inf
u∈Nδ

J (u).

Proposition 4 If 0 < ‖∇Eu‖
L

n+1
2

2 (E)

< r(δ) where r(δ) = ( (C2∗ + 1)δ

C
p+1∗∗

) 1
p−1 , then

Kδ(u) > 0. In particular, if

0 < ‖∇Eu‖
L

n+1
2

2 (E)

< r(1)

then K(u) > 0.

Proof We conclude the following

‖gt (z)
1

p+1 u‖p+1

L

n+1
p+1
p+1 (E)

=
∫

E

rq |gt (z)
1

p+1 u(z)|p+1dμ =
∫

E

rq |gt (z)||u(z)|p+1dμ ≤

‖gt‖L∞
∫

E

rq |u|p+1dμ ⇒

‖gt (z)
1

p+1 u‖p+1

L

n+1
p+1
p+1 (E)

≤ Cg‖u‖p+1

L

n+1
p+1
p+1 (E)

. (5)

Also from definition of C∗:

‖V (z)
1
2 u‖2

L
n+1

2
2 (E)

≥ C2∗‖∇Eu‖2

L
n+1

2
2 (E)

. (6)

Then by definition of Kδ and using the assumption we get that

Kδ(u) = δ

[ ∫

E

rq |∇Eu|2dμ+
∫

E

rqV (z)|u|2dμ
]

−
∫

E

rqgt (z)|u|p+1dμ

≥ δ(1+ C2∗)‖∇Eu‖
L

n+1
2

2 (E)

− C
p+1∗∗ ‖∇Eu‖p+1

L
n+1

2
2 (E)

=
(

δ(1+ C2∗)− C
p+1∗∗ ‖∇Eu‖p−1

L
n+1

2
2 (E)

)

‖∇Eu‖2

L
n+1

2
2 (E)

> 0.

In case that δ = 1 then by definition of functional K we obtain that K(u) > 0.
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Proposition 5 If Kδ(u) < 0, then ‖∇Eu‖
L

n+1
2

2 (E)

> r(δ). In particular, if K(u) <

0, then ‖∇Eu‖
L

n+1
2

2 (E)

> r(1).

Proof Since Kδ(u) < 0, then by definition of Kδ(u), we get that ‖∇Eu‖2

L
n+1

2
2 (E)


=
0. Now, we have

δ‖∇Eu‖2

L
n+1

2
2 (E)

<

∫

E

rqgt (z)|u(z)|p+1dμ− δ

∫

E

rqV (z)|u(z)|2dμ

≤ ‖gt (x)
1

p+1 u‖p+1

L

n+1
p+1
p+1 (E)

− δ‖V (z)
1
2 u‖2

L
n+1

2
2 (E)

< C
p+1∗∗ ‖∇Eu‖p−1

L
n+1

2
2 (E)

‖∇Eu‖2

L
n+1

2
2 (E)

− δC2∗‖∇Eu‖2

L
n+1

2
2 (E)

.

Therefore,

‖∇Eu‖p−1

L
n+1

2
2 (E)

>

(
δ(1 + C2∗)

C
p+1∗∗

)

= rp−1(δ).

Corollary 1 Let u ∈ H
1, n+1

2
2,0 (E), Kδ(u) = 0 and ‖∇Eu‖

L
n+1

2
2 (E)


= 0. Then

‖∇Eu‖
L

n+1
2

2 (E)

≥ r(δ). In particular, if K(u) = 0 and ‖∇Eu‖
L

n+1
2

2 (E)


= 0, then

‖∇Eu‖
L

n+1
2

2 (E)

≥ r(1).

Lemma 1 (i) The functional J (λu) admits its maximum for λ = λ∗ where

λ∗ =
(‖∇Eu‖2

L
n+1

2
2 (E)

+ ∫

E

rqV (z)|u(z)|2dμ
∫

E

rqgt (z)|u(z)|p+1dμ

) 1
p−1

.

Also for 0 ≤ λ < λ∗, J (λu) is strictly increasing and for λ∗ < λ, it is strictly
decreasing.

(ii) K(λ∗u) = 0 and K(λu) > 0 if 0 < λ < λ∗. Also if λ∗ < λ then K(λu) < 0.
(iii) By results in i and ii we obtain that

d = inf

{

sup
λ≥0

J (λu) ; u ∈H
1, n+1

2
2,0 (E),

∫

E

|∇Eu|2dμ 
= 0

}

= p − 1

2(p + 1)
(1+ C2∗)

p+1
p−1 C

−2 p+1
1−p∗∗ ‖∇Eu‖2

L
n+1

2
2 (E)

.
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Proof For proof of i and ii we obtain the following conclusions. Let u ∈
H

1, n+1
2

2,0 (E) and
∫

E

|∇Eu|2dμ 
= 0. Then by definition of J we obtain that

lim
λ→+∞ J (λu) = lim

λ→+∞

[
1

2

∫

E

rq |∇Eλu|2dμ+ 1

2

∫

E

rqV (z)|λu(z)|2dμ

− 1

p + 1

∫

E

rqgt (z)|λu(x)|p+1dμ

]

= lim
λ→+∞

[
1

2
‖∇Eλu‖2

L
n+1

2
2 (E)

+ 1

2
‖V (z)

1
2 λu(z)‖2

L
n+1

2
2 (E)

− 1

p + 1
‖gt (z)

1
p+1 λu(z)‖p+1

L

n+1
p+1
p+1 (E)

]

= lim
λ→+∞

[
λ2

2
‖∇Eu‖2

L
n+1

2
2 (E)

+ λ2

2
‖V (z)

1
2 u(z)‖2

L
n+1

2
2 (E)

− λp+1

p + 1
‖gt (z)

1
p+1 u(z)‖p+1

L

n+1
p+1
p+1 (E)

]

≥ lim
λ→+∞

[
λ2

2
‖∇Eu‖2

L
n+1

2
2 (E)

+ λ2

2
C2∗‖∇Eu‖2

L
n+1

2
2 (E)

− λp+1

p + 1
C

p+1∗∗ ‖∇Eu‖p+1

L
n+1

2
2 (E)

]

= lim
λ→+∞

[
λ2

2
+ λ2

2
C2∗ −

λp+1

p + 1
C

p+1∗∗ ‖∇Eu‖p−1

L
n+1

2
2 (E)

]

‖∇Eu‖2

L
n+1

2
2 (E)

= −∞.

Also we have

J (λu) = 1

2

∫

E

|∇Eλu|2dμ+ 1

2

∫

E

rqV (z)|λu(z)|2dμ− 1

p + 1

∫

E

rqgt (z)|λu(z)|p+1

= λ2

2

∫

E

|∇Eu|2dμ+ λ2

2

∫

E

V (z)|u(z)|2dμ− λp+1

p + 1

∫

E

gt (z)|u(z)|p+1dμ.

Then

∂J (λu)

∂λ
= λ

∫

E

|∇Eu|2dμ+ λ

∫

E

rqV (z)|u(z)|2dμ− λp
∫

E

rqgt (z)|u(z)|p+1dμ

= λ‖∇Eu‖2

L
n+1

2
2 (E)

+ λ‖V (z)
1
2 u(z)‖2

L
n+1

2
2 (E)

− λp‖gt (z)
1

p+1 u(z)‖p+1

L

n+1
p+1
p+1 (E)

.

Now, ∂J (λu)
∂λ

= 0, it follows that

λ∗ := (

‖∇Eu‖2

L
n+1

2
2 (E)

+ ∫

E

rqV (z)|u(z)|2dμ
∫

E

rqgt (z)|u(z)|p+1dμ
)

1
p−1

is a maximum of J (λu) since ∂2(J (λu))

∂λ2 |λ=λ∗ < 0.
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(iii) Using of i and ii sup
λ≥0

J (λu) = J (λ∗u). Thus,

J (λ∗u) = 1

2

∫

E

rq |∇Eλ∗u|2dμ+ 1

2

∫

E

rqV (z)|λ∗u(z)|2dμ

− 1

p + 1

∫

E

rqgt (z)|λ∗u|p+1dμ

= λ2∗
[

1

2
‖∇Eu‖2

L
n+1

2
2 (E)

+ 1

2

∫

E

rqV (z)|u(z)|2dμ− λ
p−1∗

p + 1

∫

E

rqgt (z)|u|p+1dμ

]

= λ2∗
[

1

2
‖∇Eu‖2

L
n+1

2
2 (E)

+ 1

2

∫

E

rqV (z)|u(z)|2dμ

− 1

p + 1

(‖∇Eu‖2

L
n+1

2
2 (E)

+ ∫

E

rqV (z)|u(z)|2dμ
∫

E

r6qgt (z)|u(z)|p+1dμ

) p−1
p−1

(

∫

E

rqgt (z)|u|p+1dμ)

]

= λ2∗
[

1

2
‖∇Eu‖2

L
n+1

2
2 (E)

+ 1

2

∫

E

rqV (z)|u(z)|2dμ− 1

p + 1
‖∇Eu‖2

L
n+1

2
2 (E)

− 1

p + 1

∫

E

rqV (z)|u(z)|2dμ
]

= λ2∗
[

(
1

2
− 1

p + 1
) ‖∇u‖2

L
n+1

2
2 (E)

+ (
1

2
− 1

p + 1
)

∫

E

rqV (z)|u(z)|2dμ
]

=
(‖∇Eu‖2

L
n+1

2
2 (E)

+ ∫

E

rqV (z)|u(z)|2dμ
∫

E

rqgt (z)|u(z)|p+1dμ

) 2
p−1

×
(

‖∇Eu‖2

L
n+1

2
2 (E)

+
∫

E

rqV (z)|u(z)|2dμ
)

× p − 1

2(p + 1)

≥
(‖∇Eu‖2

L
n+1

2
2 (E)

+ C2∗‖∇Eu‖2

L
n+1

2
2 (E)

∫

E

rqgt |u|p+1dμ

) 2
p−1

[

‖∇Eu‖2

L
n+1

2
2 (E)

+ C2∗‖∇Eu‖2

L
n+1

2
2 (E)

]
p − 1

2(p + 1)

≥ p − 1

2(p + 1)
(1+ C2∗)

p+1
p−1 C

−2(p+1)
p−1∗∗ ‖∇Eu‖2

L
n+1

2
2 (E)

.
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Therefore,

d = inf

u∈H 1, n+1
2

2,0 (E),‖∇Eu‖2

L

n+1
2

2 (E)


=0

J (λ∗u)

= p − 1

2(p + 1)
(1+ C2∗)

p+1
p−1 C

−2(p+1)
p−1∗∗ ‖∇Eu‖2

L
n+1

2
2 (E)

.

Proposition 6 Let 0 < δ <
p+1

2 , then d(δ) ≥ a(δ)r2(δ) where a(δ) =
(

1
2 −

δ
p+1

)
(
1+ C2∗

)
. Moreover, we have

d(δ) = inf
u∈Nδ

J (u) = d λ(δ)2 a(δ)[1+ c2∗]−1 2(p + 1)

p − 1
.

Proof Let u ∈ Nδ, so by Proposition 5 we get that ‖∇Eu‖
L

n+1
2

2 (E)

> r(δ). Then by

definition of J and Kδ we obtain that

J (u) = 1

2
‖∇Eu‖2

L
n+1

2
2 (E)

+ 1

2

∫

E

rqV (z)|u(z)|2dμ− 1

p + 1

∫

E

rqgt (z)|u(z)|p+1dμ

= 1

2
‖∇Eu‖2

L
n+1

2
2 (E)

+ 1

2

∫

E

rqV (z)|u(z)|2rq

− 1

p + 1

(

δ‖∇Eu‖2

L
n+1

2
2 (E)

−Kδ(u)+ δ

∫

E

rqV (z)|u(z)|2dμ
)

.

Since Kδ(u) = 0,

J (u) ≥ (
1

2
− δ

p + 1
)‖∇Eu‖2

L
n+1

2
2 (E)

+ δ(p − 1)

2(p + 1)
‖V (x)

1
2 u‖2

L
n+1

2
2 (E)

≥ (
1

2
− δ

p + 1
)‖∇Eu‖2

L
n+1

2
2 (E)

+ δ(p − 1)

2(p + 1)
C2∗‖∇Eu‖2

L
n+1

2
2 (E)

=
(

1

2
− δ

p + 1

)
(
1+ C2∗

)‖∇Eu‖2

L
n+1

2
2 (E)

.

Since ‖∇u‖2

L
n+1

2
2 (E)

≥ r2(δ) then,

d(δ) ≥ a(δ)r2(δ).
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Now, we prove the second part of the assertion. By definition of Nδ and N , for
ū ∈ Nδ and λū ∈ N , we obtain

λ2‖∇Eū‖2

L
n+1

2
2 (E)

+ λ2
∫

E

rqV (z)|ū|2dμ = λp+1
∫

E

rqgt (z)|ū|p+1dμ, (7)

and

δ‖∇Eū‖2

L
n+1

2
2 (E)

+ δ

∫

E

rqV (z)|ū|2dμ =
∫

E

rqgt (z)|ū|p+1dμ. (8)

Then 7 gives

λ =
(‖∇Eū‖2

L
n+1

2
2 (E)

+ ∫

E

rqV (z)|ū|2dμ
∫

E

rqgt (z)|ū|p+1dμ

) 1
p−1

, (9)

and 8 gives that

δ =

∫

E

rqgt (z)|ū|p+1dμ

‖∇Eū‖2

L
n+1

2
2 (E)

+ ∫

E

rqV (z)|ū|2dμ. (10)

By 10 and 9, we define

λ = λ(δ) =
(

1

δ

) 1
p−1

. (11)

Moreover, for such λ, λū ∈ N , so by definition of d we get that

d ≤ J (λū) = 1

2
‖∇Eλū‖2

L
n+1

2
2 (E)

+ 1

2

∫

E

rqV (z)|λū|2dμ

− 1

p + 1

∫

E

rqgt (z)|λū|p+1dμ

= λ2

2
‖∇Eū‖2

L
n+1

2
2 (E)

+ λ2

2

∫

E

rqV (z)|ū|2dμ

− 1

p + 1

[

‖∇Eλū‖2

L
n+1

2
2 (E)

+
∫

E

rqV (z)|λū|2dμ−K(λū)

]
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= λ2
[

1

2
‖∇Eū‖2

L
n+1

2
2 (E)

+ 1

2

∫

E

rqV (z)|ū|2dμ− 1

p + 1
‖∇Eū‖2

L
n+1

2
2 (E)

− 1

p + 1

∫

E

rqV (z)|ū|2dμ
]

≤ (
1

δ
)

2
p−1

[
p − 1

2(p + 1)
‖∇Eū‖2

L
n+1

2
2 (E)

− (1− p)C2∗
2(p + 1)

‖∇Eū‖2

L
n+1

2
2 (E)

]

.

On the other hand,

d(δ) = J (ū)=1

2
‖∇Eū‖2

L
n+1

2
2 (E)

+ 1

2

∫

E

rqV (z)|ū|2dμ− 1

p + 1

∫

E

rqgt (z)|ū|p+1dμ

= 1

2
‖∇Eū‖2

L
n+1

2
2 (E)

+ 1

2

∫

E

rqV (z)|ū|2dμ− 1

p + 1

(

δ‖∇Eū‖2

L
n+1

2
2 (E)

+ δ

∫

E

rqV (z)|ū|2dμ−Kδ(ū)

)

= (
1

2
− δ

p + 1
)‖∇Eū‖2

L
n+1

2
2 (E)

+ (
1

2
− δ

p + 1
)

∫

E

rqV (z)|ū|2dμ

≥
(

1

2
− δ

p + 1

)

(1+ C2∗)‖∇Eū‖2

L
n+1

2
2 (E)

= a(δ)‖∇Eū‖2

L
n+1

2
2 (E)

.

Indeed,

d ≤ J (λū) ≤ (1

δ

) 2
p−1

[
p − 1

2(p + 1)
(1+ C2∗)

]
d(δ)

a(δ)
.

Hence,

d(δ) ≥ a(δ)
(1

δ

)− 2
p−1 [1+ C2∗]−1 [2(p + 1)

p − 1
]d.

Now, we let 0 < δ and ũ ∈ N is minimizer of d that is

d = J (ũ) = 1

2
‖∇Eũ‖2

L
n+1

2
2 (E)

+ 1

2

∫

E

rqV (z)|ũ|2dμ− 1

p + 1

∫

E

rqgt (z)|ũ|p+1dμ.
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we define λ = λ(δ) by

δ‖∇Eλũ‖2

L
n+1

2
2 (E)

+ δ

∫

E

rqV (z)|λũ|2dμ =
∫

E

rqgt (z)|λũ|p+1dμ.

Then for any 0 < δ, there exists a unique λ which satisfies

λ = δ
1

p−1 .

Hence, for such λ, λũ ∈ Nδ by definition of d(δ) we get that

d = 1

2
‖∇Eλũ‖2

L
n+1

2
2 (E)

+ 1

2

∫

E

rqV (z)|λũ|2dμ

− 1

p + 1

(

δ‖∇Eλũ‖2

L
n+1

2
2 (E)

+ δ

∫

E

rqV (z)|λũ|2dμ−Kδ(λũ)

)

= (
1

2
− δ

p + 1
)‖∇Eλũ‖2

L
n+1

2
2 (E)

+ (
1

2
− δ

p + 1
)

∫

E

rqV (z)|λũ|2dμ

≥
[

1

2
− δ

p + 1
+ C2∗(

1

2
− δ

p + 1
)

]

‖∇Eλũ‖2

L
n+1

2
2 (E)

.

On the other hand,

d(δ) ≤ J (λũ)=1

2
‖∇Eλũ‖2

L
n+1

2
2 (E)

+1

2

∫

E

rqV (z)|λũ|2dμ− 1

p + 1

∫

E

rqgt (z)|λũ|p+1dμ

= λ2

2
‖∇Eũ‖2

L
n+1

2
2 (E)

+ λ2

2

∫

E

rqV (z)|ũ|2dμ

− 1

p + 1

(

δ‖∇Eλũ‖2

L
n+1

2
2 (E)

+ δ

∫

E

rqV (z)|λũ|2dμ−Kδ(λũ)

)

= λ2
[

(
1

2
− δ

p + 1
)‖∇Eũ‖2

L
n+1

2
2 (E)

− (
δ

p + 1
− 1

2
)

∫

E

rqV (z)|ũ|2dμ
]

≤ δ
2

p−1

[

(
1

2
− δ

p + 1
)‖∇Eũ‖2

L
n+1

2
2 (E)

− (
δ

p + 1
− 1

2
)C2∗‖∇Eũ‖2

L
n+1

2
2 (E)

]

≤ δ
2

p+1

[
1

2
− δ

p + 1
+ (

1

2
− δ

p + 1
)C2∗

]

‖∇Eũ‖2

L
n+1

2
2 (E)

=δ 2
p−1 a(δ)‖∇Eũ‖2

L
n+1

2
2 (E)

.
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Then,

d(δ) ≤ δ
2

p−1 a(δ) d [1+ C2∗]−1 2(p + 1)

p − 1
.

Therefore,

d(δ) = inf J (u)u∈Nδ
= δ

2
p−1 a(δ) d [1+ C2∗]−1 2(p + 1)

p − 1
.

Remark 1 According to d(δ) in Proposition 6, we obtain that

(i) lim
δ→0

d(δ) = 0.

(ii) d(δ) = d
2(p+1)
p−1

[
1
2δ

2
p−1 − 1

p+1δ
p+1
p−1

]

. Then

d ′(δ) = d2(p + 1)

(p − 1)2 δ
2

p−1
[
δ−1 − 1

] = 0 ⇒ δ = 1.

Hence, if 0 < δ < 1 then d(δ) is strictly increasing function and if δ > 1 then
d(δ) is strictly decreasing function.

4 Invariance of the Solutions

Now, we introduce the following potential wells

W =
{

u ∈H
1, n+1

2
2,0 (E) ; K(u) > 0, J (u) < d

}

∪ {0},

Wδ =
{

u ∈H
1, n+1

2
2,0 (E) ; Kδ(u) > 0, J (u) < d(δ)

}

∪ {0},

for 0 < δ, and corresponding potentials outside of the set that defined as above

E =
{

u ∈ u ∈H
1, n+1

2
2,0 (E) ; K(u) < 0, J (u) < d

}

,

Eδ =
{

u ∈H
1, n+1

2
2,0 (E) ; Kδ(u) < 0, J (u) < d(δ)

}

for any 0 < δ. According to the definition of potential wells Wδ and potential outside
Eδ one can get the following inclusions:

(I) Wδ1 ⊂ Wδ2 whenever 0 < δ1 < δ2 ≤ 1,



Edge Degenerate Pseudo-Hyperbolic Equations 55

(II) Eδ1 ⊂ Eδ2 whenever 1 ≤ δ2 < δ1 <
p+1

2 . Furthermore, from the above results
on can define the following sets

Vδ =
{
u ∈H

1, n+1
2

2,0 (E) : ‖∇Eu‖
L

n+1
2

2 (E)

< r(δ)
}

V̄δ = Vδ ∪ ∂Vδ =
{
u ∈H

1, n+1
2

2,0 (E) : ‖∇Eu‖
L

n+1
2

2 (E)

≤ r(δ)
}

V c
δ =

{
u ∈H

1, n+1
2

2,0 (E) : ‖∇Eu‖
L

n+1
2

2 (E)

> r(δ)
}
.

Then for every 0 < δ <
p+1

2 one gets that

Vt(δ) ⊂ Wδ ⊂ Vs(δ), Eδ ⊂ V c
δ

where

Vt(δ) =
{
u ∈H

1, n+1
2

2,0 (E) : ‖∇Eu‖
L

n+1
2

2 (E)

< min{r2(δ), r2
0 (δ)}

}

Vs(δ) =
{
u ∈H

1, n+1
2

2,0 (E) : ‖∇Eu‖
L

n+1
2

2 (E)

<
d(δ)

a(δ)

}

where r0(δ) is the unique real root of equation r2

2 = d(δ).

Definition 4 Suppose that u(t) is a weak solution of problem 1. Tmax is called
maximal existence time of solution u(t) if one the following conditions hold:

(1) If u(t) exists for every 0 ≤ t < +∞ then Tmax = +∞. In this case, we say that
the solution is global.

(2) If there exists a t0 ∈ (0,∞) such that u(t) exists for every 0 ≤ t < t0, but does
not exist at t = t0, then Tmax = t0.

Definition 5 u = u(z, t) ∈ L∞
(

0, Tmax;H 1, n+1
2

2,0 (E)
)

with ∂tu ∈ L∞
(

0, Tmax;
L

n+1
2

2 (E)
)

is called a weak solution of the problem 1 on intE× [0, Tmax) if

(ut , v)2 + γ (∇Eu,∇Ev)2 +
∫ t

0
(∇Eu,∇Ev)2dτ +

∫ t

0
(V (x)u, v)2dτ

=
∫ t

0
(gt (z)|u|p−1u, v)2dτ

+ (γ u0, v)2 + (u1, v)2 ∀v ∈H
1, n+1

2
2,0 (E),
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u(z, 0) = u0 in H
1, n+1

2
2,0 (E) and hold the following energy inequality

I (t)+ γ

∫ t

0
‖∇E(∂τ u)‖2

L
n+1

2
2 (E)

dτ ≤ I (0), ∀t ∈ (0, Tmax),

where 0 ≤ Tmax ≤ ∞ and

I (t) = 1

2
‖∂tu‖2

L
n+1

2
2 (E)

+ 1

p + 1

∫ t

0
‖( d

dτ
gτ (z))

1
p+1 u‖p+1

L

n+1
p+1
p (E)

dτ + J (u).

We note, since u ∈ L∞
(

0, Tmax;H 1, n+1
2

2,0 (E)
)

and ∂tu ∈ L∞
(

0, Tmax;L
n+1

2
2 (E)

)

from the first equation of the problem 1 as similar in [13], one can obtain that

∂2
t u ∈ L∞

(
0, Tmax;H −1, n+1

2
2,0 (E)

)
.

Now we discuss the invariance of some sets corresponding to the problem 1.

Proposition 7 Let 0 < J(u) < d for u ∈ H
1, n+1

2
2,0 (E). Suppose that δ1 < 1 < δ2

be roots of equation d(δ) = J (u). Then Kδ(u) has no change in its sign for δ ∈
(δ1, δ2).

Proof Since 0 < J(u) < d then by Propositions 1 and 2 we can assume that
‖∇Eu‖2

L
n+1

2
2 (E)


= 0. We assume that there exists a δ0 ∈ (δ1, δ2) for which Kδ0(u) =
0. Hence, by definition of d(δ) we have J (u) ≥ d(δ). But, we have two cases the
following for δ0

{
δ1 < δ0 < 1 < δ2

δ1 < 1 < δ0 < δ2

Now, by Remark 1 We get that d(δ1) < d(δ0) or d(δ2) < d(δ0) then we obtain that
d(δ1) = d(δ2) = J (u) < d(δ0) that this is contradiction .

Theorem 1 Let u0 ∈ H
1, n+1

2
2,0 (E), 0 < e < d. Suppose that δ1 < δ2 are roots of

equations d(δ) = e then

(i) all solutions of problem 1 with 0 < J(u0) ≤ e belong to setWδ for δ1 < δ < δ2
provided K(u0) > 0 or ‖∇Eu0‖2

L
n+1

2
2 (E)

= 0.

(ii) all solutions of problem 1 with 0 < J(u0) ≤ e belong to Eδ for δ ∈ (δ1, δ2)

provided K(u0) < 0.

Proof

(i) Let u(t) be a solution of the problem 1 with initial value u0 for which satisfies
in conditions 0 < J(u0) ≤ e < d, K(u0) > 0 or ‖∇Eu0‖2

L
n+1

2
2 (E)

= 0. Let T
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be existence time for solution u(t). If ‖∇Eu0‖2

L
n+1

2
2 (E)

= 0, then since u0 has

compact support u0 = 0, so by definition of Wδ we obtain that u0 ∈ Wδ. If
K(u0) > 0 then by assumption we have

0 < J(u0) ≤ e = d(δ1) = d(δ2) < d(δ) ≤ d

for δ1 < δ < δ2. Hence, Kδ(u0(t)) > 0 for δ1 < δ < δ2, by Proposition 7.
Therefore, by definition of Wδ, u0 ∈ Wδ for δ1 < δ < δ2. Now, we have
to show that for δ1 < δ < δ2 and 0 < t < T, u(t) ∈ Wδ. Suppose that,
there exist t0 ∈ (0, T ) such that for δ1 < δ < δ2, u(t0) ∈ ∂Wδ. Then we can
imply that, Kδ(u(t0)) = 0 and ‖∇Eu0‖2

L
n+1

2
2 (E)


= 0, or by definition of Wδ,

J (u(t0)) = d(δ). Since u(t0) is a solution of problem 1, so it satisfies in energy
inequality i.e.

1

2
‖∂tu‖2

L
n+1

2
2 (E)

+ 1

p + 1

∫ t

0
‖( d

dτ
gτ (z))

1
p+1 u‖p+1

L

n+1
p+1
p+1 (Z)

dτ + J (u(t))

+ γ

∫ t

0
‖∇E(∂τ u)‖2

L
n+1

2
2 (E)

dτ

≤ I (0) = J (u0) ≤ e < d(δ),

for any δ ∈ (δ1, δ2) and t ∈ (0, T ). Therefore, the equality J (u(t0)) = d(δ)

for any δ ∈ (δ1, δ2) and t ∈ (0, T ) is not possible. If Kδ(u(t0)) = 0 and
‖∇Eu0‖2

L
n+1

2
2 (E)


= 0, then by definition of d(δ) we get that d(δ) ≤ J (u0(t)),

that is in contradiction with energy inequality. Therefore, u(t) ∈ Wδ for any
δ ∈ (δ1, δ2) and t ∈ (0, T ).

(ii) similar to first case it can be prove that u0 ∈ Eδ for δ ∈ (δ1, δ2) provided
Kδ(u0) < 0. Now, we should prove u(t) ∈ Eδ for any δ ∈ (δ1, δ2) and
t ∈ (0, T ). Suppose that there exist t0 ∈ (0, T ), such that for t ∈ [0 , t0),

u(t) ∈ Eδ and u(t0) ∈ ∂Eδ, that is, Kδ(u0) = 0 or J (u(t0)) = d(δ) for
δ ∈ (δ1, δ2). According to energy inequality the equality J (u(t0)) = d(δ)

is not possible similar to first case. Hence, we assume that Kδ(u(t0)) = 0,
then Kδ(u(t)) < 0 for t ∈ (0, t0), since for t ∈ [0, t0), u(t) ∈ Eδ, then
by definition of Eδ, Kδ(u(t)) < 0. Now, using the Proposition 5 we obtain
that ‖∇Eu(t)‖

L
n+1

2
2 (E)

> r(δ) and ‖∇Eu(t0)‖
L

n+1
2

2 (E)

> r(δ) 
= 0. Hence

by definition of d(δ), J (u(t0)) ≥ d(δ) which is in contradiction with energy
inequality.

Remark 2 suppose that all assumptions in Theorem 1 hold. Then for any δ ∈
(δ1, δ2) both seta Wδ and Eδ are invariant. Moreover, both sets
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Wδ1δ2 =
⊔

δ1<δ<δ2

Wδ, Eδ1δ2 =
⊔

δ1<δ<δ2

Eδ

are invariant respectively under flow of the problem 1. Hence, we can get for all
weak solutions of the problem 1

u(t) 
∈ Nδ1δ2 =
⊔

δ1<δ<δ2

Nδ.

To discuss about the invariant of the solutions with negative level energy, we
introduce the following results.

Proposition 8 Let u0 ∈ H
1, n+1

2
2,0 (E) and u1 ∈ L

n+1
2

2 (E). Suppose that I (0) = 0
and ‖∇Eu‖

L
n+1

2
2 (E)


= 0. Then all weak solutions of the problem 1 satisfy

‖∇Eu‖p−1

L
n+1

2
2 (E)

≥ M = (p + 1)(1+ C2∗)
2Cp+1∗∗

.

Proof Let us consider u ∈ H
1, n+1

2
2,0 (E) as a weak solution of the problem 1.

According to the Definition 5

I (t)+ γ

∫ t

0
‖∇E(∂τ u)‖2

L
n+1

2
2 (E)

dτ ≤ I (0) = 0.

Therefore, by definition of constants C∗ and C∗∗

1

2
‖∇Eu‖2

L
n+1

2
2 (E)

+ C2∗
2
‖∇Eu‖2

L
n+1

2
2 (E)

≤ 1

2
‖∂tu‖2

L
n+1

2
2 (E)

+ 1

2
‖∇Eu‖2

L
n+1

2
2 (E)

+1

2

∫

E

rqV (z)|u|2dμ

≤ C
p+1∗∗

p + 1
‖∇Eu‖p+1

L
n+1

2
2 (E)

.

Hence,

‖∇Eu‖p−1

L
n+1

2
2 (E)

≥ (p + 1)(1+ C2∗)
2Cp+1∗∗

= M.
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Theorem 2 Let u0 ∈H
1, n+1

2
2,0 (E) and u1 ∈ L

n+1
2

2 (E). Suppose that either I (0) < 0
or I (0) = 0 and ‖∇Eu‖

L
n+1

2
2 (E)


= 0. Then all weak solutions of the problem 1

belong to Eδ for any δ > 0.

Proof Let u(t) be an arbitrary weak solution of the problem 1 with expressed
assumptions in face of the Theorem and T be the existence time of u(t). From
Definition 5, for every δ > 0 and t ∈ [0, T ), we can obtain

1

2
‖∂tu‖2

L
n+1

2
2 (E)

+ a(δ)‖∇Eu‖2

L
n+1

2
2 (E)

+ 1

p + 1
Kδ(u)

= 1

2
‖∂tu‖2

L
n+1

2
2 (E)

+
(

(
1

2
− δ

p + 1
)(1+ C2∗)

)

‖∇Eu‖2

L
n+1

2
2 (E)

+ 1

p + 1

(

δ‖∇Eu‖2

L
n+1

2
2 (E)

+ δ

∫

E

rqV (z)|u|2dμ

−
∫

E

rqgt (z)|u|p+1dμ

)

= 1

2
‖∂tu‖2

L
n+1

2
2 (E)

+ 1

2
‖∇Eu‖2

L
n+1

2
2 (E)

− δC2∗
p + 1

‖∇Eu‖2

L
n+1

2
2 (E)

+ C2∗
2
‖∇Eu‖2

L
n+1

2
2 (E)

+ δ

p + 1

∫

E

rqV (z)|u|2dμ

− 1

p + 1

∫

E

rqgt (z)|u|p+1dμ

= 1

2
‖∂tu‖2

L
n+1

2
2 (E)

+ 1

2
‖∇Eu‖2

L
n+1

2
2 (E)

− δC2∗
p + 1

‖∇Eu‖2

L
n+1

2
2 (E)

+ C2∗
2
‖∇Eu‖2

L
n+1

2
2 (E)

− (1

2
− δ

p + 1

)
∫

E

rqV (z)|u|2dμ

+ 1

2

∫

E

rqV (z)|u|2dμ

− 1

p + 1

∫

E

rqgt (z)|u|p+1dμ ≤ 1

2
‖∂tu‖2

L
n+1

2
2 (E)

+ J (u)

+
(
C2∗
2
− δC2∗

p + 1
− C2∗

(1

2
− δ

p + 1

)
)

‖∇Eu‖2

L
n+1

2
2 (E)

+ 1

p + 1

∫ t

0
‖( d

dτ
gτ (x))

1
p+1 u‖p+1

L

n+1
p+1
p+1 (E)

+ γ

∫ t

0
‖∇E(∂τ u)‖2

L
n+1

2
2 (E)

≤ I (0). (12)
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If I (0) < 0, then 12 implies that Kδ(u) < 0 and J (u) < 0 < d(δ) for every
δ > 0 and t ∈ [0, T ). If I (0) = 0 and ‖∇Eu‖

L
n+1

2
2 (E)


= 0, then Proposition 8 gives

‖∇Eu‖
L

n+1
2

2 (E)

≥ M for t ∈ [0, T ). Again by relation 12 we get Kδ(u) < 0 and

J (u) < 0 < d(δ) for δ > 0 and t ∈ [0, T ). Therefore, for two cases discussed
above, for every δ > 0 and t ∈ [0, T ), we have u ∈ Eδ.

5 Global Existence and Finite-Time of the Solutions

In this section, we prove the global existence and nonexistence of solutions and give
a sharp condition for global existence of solutions for problem 1 with I (0) < d.

Theorem 3 Let γ ≥ 0, u0 ∈ H
1, n+1

2
2,0 (E) and u1 ∈ L

n+1
2

2 (E). Suppose that I (0) <
d, K(u0) > 0 or ‖∇Eu0‖

L
n+1

2
2 (E)

= 0. Then problem 1 admits a global weak

solution u(t) ∈ L∞
(

0,∞;H 1, n+1
2

2,0 (E)
)
with ∂tu ∈ L

n+1
2

2 (E) and u(t) ∈ W for

t ∈ [0,∞).

Proof By Proposition 3 we can choose {wj(z)} as orthonormal basis of space

H
1, n2

2,0 (B). Then we construct approximation solution um(z, t) similar to [20] as
following:

um(z, t) =
m∑

j=1

hjm(t)wj (z),

for m = 1, 2, . . . that satisfies in problem 1 then,

(∂2
t um,wk)2 + (∇Eum,∇Ewk)2 + (V (z)um,wk)2 + γ (∇E(∂tum),∇Ewk)2

= (gt (z)um|um|p−1, wk)2, (13)

um(z, 0) =
m∑

j=1

hjm(0)wj (z)→ u0(z), (14)

in H
1, n+1

2
2,0 (E) and

∂tum(z, 0) =
m∑

j=1

h′jm(0)wj (z)→ u1(z), (15)
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in L
n+1

2
2 (E). Multiplying 13, 14 and 15 by h′km(t) and forming the crossmarklogo

sum on k = 1, 2, . . . ,

m∑

k=1

(∂2
t um,wk)2h

′
km(t) + (∇Eum,∇Ewk)2h

′
km(t) + (V (z)um,wk)2h

′
km(t)

+
m∑

k=1

γ (∇E(∂tum),∇Ewk)2h
′
km(t)

=
m∑

k=1

(gt (z)um|um|p−1, wk)2h
′
km(t),

for m = 1, 2, 3, . . . . Therefore,

∫

E

rq∂2
t um∂tumdμ +

∫

E

rq∇Eum∂t∇Eumdμ+
∫

E

rqV (z)um∂tumdμ

+ γ

∫

E

rq∇E(∂tum)∇E(∂tum)dμ

=
∫

E

rqgt (z)um|um|p−1∂tumdμ. (16)

Using The Leibniz rule one can get

1

2

d

dt

∫

E

rq |∂2
t um|2dμ +

1

2

d

dt

∫

E

rq |∇Eum|2dμ+ 1

2

d

dt

∫

E

rqV (z)|um|2dμ

+ γ

∫

E

rq |∇E(∂tum)|2dμ = 1

p + 1

d

dt

∫

E

rqgt (z)|um|p+1dμ

− 1

p + 1

∫

E

rq(
d

dt
gt (z))|um|p+1dμ. (17)

By integration of the relation 17 with respect to t

1

2
‖∂tum‖2

L
n+1

2
2 (E)

+ 1

2
‖∇Eum‖2

L
n+1

2
2 (E)

+ 1

2

∫

rqV (z)|um|2dμ+ γ

∫ t

0
‖∇E(∂τ um)‖2

L
n+1

2
2 (E)

dτ

− 1

p + 1

∫

E

rqgt (z)|um|p+1dμ+ 1

p + 1

∫ t

0
‖( d

dτ
gτ (z))

p+1um‖
1

p+1 dτ

= I (t)+ γ

∫ t

0
‖∇E(∂τ um)‖2

L
n+1

2
2 (E)

dτ ≤ I (0) < d, (18)

where the last equal is upon Definition 5. Hence, for sufficiently large m and
0 ≤ t < ∞ we obtain that um ∈ W by Proposition 1. Using 18 and definition
of functional K,
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J (um) = 1

2
‖∇Eum‖2

L
n+1

2
2 (E)

+ 1

2

∫

E

rqV (z)|um|2dμ− 1

p + 1

∫

E

rqgt (z)|um|p+1dμ

= 1

2
‖∇Eum‖2

L
n+1

2
2 (E)

+ 1

2

∫

E

rqV (z)|um|2dμ

− 1

p + 1

(

‖∇Eum‖2

L
n+1

2
2 (E)

+
∫

E

rqV (z)|um|2dμ−K(um)

)

≥ (
p − 1

2(p + 1)

[

‖∇Eum‖2

L
n+1

2
2 (E)

+
∫

E

rqV (z)|um|2dμ
]

≥ p − 1

2(p + 1)
(1+ C2∗)‖∇Eum‖2

L
n+1

2
2 (E)

.

Then

∫ t

0

1

2
‖∂τum‖2

L
n+1

2
2 (E)

dτ + 1

p + 1

∫ t

0
‖( d

dτ
gτ )

1
p+1 um‖p+1

L

n+1
p+1
p+1 (E)

dτ

+ p − 1

2(p + 1)
(1+ C2∗)‖∇Eum‖2

L
n+1

2
2 (E)

≤ I (t)+ γ

∫ t

0
‖∇E(∂τ um)‖2

L
n+1

2
2 (E)

dτ ≤ I (0) < d.(19)

for t ∈ [0,∞) and sufficiently large m. Now, by relation 19 we can get that

‖∇Eum‖2

L
n+1

2
2 (E)

<
2(p + 1)

p − 1
(1+ C2∗)−1 d, (20)

for t ∈ [0,∞) and

1

2

∫ t

0
‖∂τum‖2

L
n+1

2
2 (E)

dτ + 1

p + 1

∫ t

0
‖( d

dτ
gτ )

1
p+1 um‖p+1

L

n+1
p+1
p+1 (E)

dτ < d, (21)

for t ∈ [0,∞). Also we obtain that

∫

E

rq |gt (z)
p

p+1 um|um|p−1| p+1
p dμ =

∫

E

rqgt (z)|um|p+1dμ ≤ C
p+1∗∗ ‖∇Eum‖p+1

L
n+1

2
2 (E)

< C
p+1∗∗ (

2(p + 1)

p − 1
(1+ C2∗)−1 d)

p+1
2 (22)

and
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∫

E

rq |V (z)
1
2 um|2dμ =

∫

E

rqV (z)|um|2dμ ≤ C2∗‖∇Eum‖2

L
n+1

2
2 (E)

< C2∗(
2(p + 1)

p − 1
(1+ C2∗)−1 d )2. (23)

From 20, 21, 22 and 23, it follows that there exists u and a subsequence still denotes

{um} for which as m → ∞, um → u in L∞
(

0,∞ ;H 1, n+1
2

2,0 (E)
)

weakly star and

a.e. in intE × [0,∞), ∂tum → ∂tu in L2
(

0,∞ ;L
n+1

2
2 (E)

)
, weakly star. Also we

have V (z)|um|2 → V (z)|u|2 in L∞
(

0,∞ ;H 1, n+1
2

2,0 (E)
)

weakly star and a.e. in

intE × [0,∞), and gt (z)um|um|p−1 → gt (z)u|u|p−1 in L∞
(

0,∞ ;H 1, n+1
2

2,0 (E)
)

weakly star and a.e. in intE× [0,∞). Therefore, in 13 for k fixed and m→∞ we
get that

(γ u,wk)2 + (ut , wk)2 +
∫ t

0
(∇Eu,∇Ewk)2dτ +

∫ t

0
(V (z)u,wk)2dτ

=
∫ t

0
(gt (z)u|u|p−1, wk)2dτ

+ (γ u0, wk)2 + (u1, wk)2.

On the other hand, from the relation 14, u(z, 0) = u0(z) in H
1, n+1

2
2,0 (E) and from

15 ∂tu(z, 0) = u1 in L
n+1

2
2 (E). By density we obtain u ∈ L∞

(
0,∞ ;H 1, n+1

2
2,0 (E)

)

with ∂tu ∈ L2
(

0,∞ ;L
n+1

2
2 (E)

)
is global weak solution of problem 1. Since u

satisfies problem 1, so by definition of K we have K(u) = 0. Hence, u(t) ∈ W for
0 ≤ t <∞.

Corollary 2 If we replace the assumption I (0) < d, K(u0) > 0 by 0 < I (0) < d,

Kδ2(u0) > 0 where (δ1, δ2) is the maximal interval including δ = 1, (see Remark 1)
such that I (0) < d(δ) for δ ∈ (δ1, δ2). Then problem 1 admits a global weak

solution u(t) ∈ L∞
(

0,∞;H 1, n+1
2

2,0 (E)
)
with ∂tu ∈ L∞

(
0,∞, L

n+1
2

2 (E)
)
and

u(t) ∈ Wδ for δ ∈ (δ1, δ2), t ∈ [0,∞).

Proof It is immediately implied form Theorems 1 and 3.

Corollary 3 If we replace the assumption Kδ2(u0) > 0 or ‖∇Eu0‖
L

n+1
2

2 (E)

= 0,

by ‖∇Eu0‖
L

n+1
2

2 (E)

< r(δ2), then problem 1 admits a global weak solution u(t) ∈

L∞
(

0,∞;H 1, n+1
2

2,0 (E)
)
with ∂tu(t) ∈ L∞

(
0,∞;L

n+1
2

2 (E)
)
satisfying
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‖∇Eu‖2

L
n+1

2
2 (E)

≤ I (0)

a(δ1)
, ‖∂tu‖2

L
n+1

2
2 (E)

≤ 2I (0), 0 ≤ t ≤ ∞ (24)

Proof From assumption ‖∇Eu0‖
L

n+1
2

2 (E)

< r(δ2), we can get that Kδ2(u0) > 0

or ‖∇Eu0‖
L

n+1
2

2 (E)

= 0. Then it follows from Corollary 2 that problem 1 admits

a global weak solution such that for any δ1 < δ < δ2, 0 ≤ t < ∞,

u(t) ∈ L∞
(

0,∞;H 1, n+1
2

2,0 (E)
)

with ∂tu ∈ L∞
(

0,∞;L
n+1

2
2 (E)

)
and u(t) ∈ Wδ.

Moreover, similar of the proof Theorem 2 for every δ1 < δ < δ2, 0 ≤ t <∞,

1

2
‖∂tu‖2

L
n+1

2
2 (E)

+ a(δ)‖∇Eu‖2

L
n+1

2
2 (E)

+ 1

p + 1
Kδ(u) ≤ I (0).

If we tend δ to δ1 then we achieve 24.

Now we discuss the global non-existence of solutions of the problem 1.

Theorem 4 Let 0 ≤ γ ≤ (p − 1)
√

1+ C2∗λ
1
2
1 , u0 ∈ H

1, n+1
2

2,0 (E), u1 ∈ L
n+1

2
2 (E).

Suppose that I (0) < d and K(u0) < 0. Then the existence time of solution for
problem 1 is finite, where λ1 is the first eigenvalue in Proposition 3 i.e.

λ
1
2
1 = inf

u∈H 1, n+1
2

2,0 (E),‖∇Eu‖
L

n+1
2

2 (E)


=0

‖∇Eu‖
L

n+1
2

2 (E)

‖u‖
L

n+1
2

2 (E)

.

Proof Let u(t) be any weak solution of problem 1 with I (0) < d and K(u0) < 0,
T be the maximal existence time of u(t). We will prove T < ∞ by contradiction.
Let M(t) := ‖u‖2

L
n+1

2
2 (E)

, then

Ṁ(t) = d

dt

∫

E

rq |u(z, t)|2dμ = 2(∂tu, u)2,

from definition of functional K,

M̈(t)=2‖∂tu‖2

L
n+1

2
2 (E)

+2(∂2
t u, u)2 = 2‖∂tu‖2

L
+1
2

2 (E)

−2γ (∇E(∂tu),∇Eu)2−2K(u). (25)

Using proof of Theorem 2 we can get,

1

2
‖∂tu‖2

L
n+1

2
2 (E)

+ a(1)‖∇Eu‖2

L
n+1

2
2 (E)

+ 1

p + 1
K(u)
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= 1

2
‖∂tu‖2

L
n+1

2
2 (E)

+
(

(
1

2
− 1

p + 1
)(1+ C2∗)

)

‖∇Eu‖2

L
n+1

2
2 (E)

+ 1

p+1

(

‖∇Eu‖2

L
n+1

2
2 (E)

+
∫

E

rqV (z)|u|2dμ−
∫

E

rqgt (z)|u|p+1dμ

)

≤ 1

2
‖∂tu‖2

L
n+1

2
2 (E)

1

2
‖∇Eu‖2

L
n+1

2
2 (E)

++
[

(
1

2
− 1

p + 1
)+ 1

p + 1

] ∫

E

rqV (x)|u|2dμ

− 1

p + 1

∫

E

rqgt (z)|u|p+1dμ ≤ 1

2
‖∂tu‖2

L
n+1

2
2 (E)

+ 1

p + 1

∫ t

0
‖( d

dτ
gτ (z))

1
p+1 u‖p+1

L

n+1
p+1
p+1 (E)

+ J (u) + γ

∫ t

0
‖∇E(∂τ u)‖2

L
n+1

2
2 (E)

= I (t)+ γ

∫ t

0
‖∇E(∂tu)‖2

L
n+1

2
2 (E)

≤ I (0). (26)

Thus inequality 26 implies that

M̈(t) ≥ 2‖∂tu‖2

L
n+1

2
2 (E)

− 2γ (∂tu, u)2 − 2(p + 1)

[

I (0)− 1

2
‖∂tu‖2

L
n+1

2
2 (E)

− p − 1

2(p + 1)
(1+ C2∗)‖∇Eu‖2

L
n+1

2
2 (E)

]

= (p + 3)‖∂tu‖2

L
n+1

2
2 (E)

+ (p − 1)(1+ C2∗)‖∇Eu‖2

L
n+1

2
2 (E)

− 2γ (∇E(∂tu),∇Eu)2 − 2(p + 1)I (0). (27)

In first, let us consider I (0) ≤ 0. Then,

M̈(t) ≥ (p+3)‖∂tu‖2

L
n+1

2
2 (E)

+(p−1)(1+C2∗)λ1‖u‖2

L
n+1

2
2 (E)

−2γ (∇E(∂tu),∇Eu)2.
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condition γ < (p − 1)(1 + C2∗)λ1 implies that, there exists a constant ε ∈(

0 , (p − 1)(1+ C2∗)
)

such that

γ 2 < (p − 1− ε)(1+ C2∗)λ1.

Therefore,

M̈(t) ≥ (4+ ε)‖∂tu‖2

L
n+1

2
2 (E)

+ (p − 1− ε)‖∂tu‖2

L
n+1

2
2 (E)

− 2γ (∇E(∂tu),∇Eu)2

+ (p − 1)(1+ C2∗)λ2
1‖u‖2

L
n+1

2
2 (E)

. (28)

On the other hand,

2γ (∇E(∂tu),∇Eu)2 ≤ (p − 1− ε)‖∂tu‖2

L
n+1

2
2 (E)

+ γ 2

p − 1− ε
‖u‖2

L
n+1

2
2 (E)

≤ (p−1−ε)‖∂tu‖2

L
n+1

2
2 (E)

+ (p − 1)(1+C2∗)λ2
1‖u‖2

L
n+1

2
2 (E)

.

(29)

From 28 and 29, we can get that

M̈(t) ≥ (4+ ε)‖∂tu‖2

L
n+1

2
2 (E)

. (30)

By Edge Hölder inequality we get

M(t)M̈(t)−4+ε
4

Ṁ(t) ≥ (4+ε)
(

‖∂tu‖2

L
n+1

2
2 (E)

‖u‖2

L
n+1

2
2 (E)

−(∇E(∂tu),∇Eu)2

)

≥ 0,

(M−α)′′ = −α
Mα+2(t)

(

M(t)M̈(t)− (α + 1)Ṁ(t)2
)

≤ 0,

for α = ε
4 and 0 ≤ t <∞. Hence, there exists a T1 > 0 such that

lim
t→T1

M−α(t) = 0

and limt→T1 M(t) = +∞, which is contradicts Tmax = +∞.

In second case, we consider 0 < I (0) < d. In this case from Theorem 1 we have
u ∈ Eδ for 0 ≤ t < ∞ and δ ∈ (1 , δ2) (see Remark 1) where (δ1 , δ2) is
the maximal interval including δ = 1 such that d(δ) > I (0) for δ ∈ (δ1 , δ2).
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Therefore, Kδ(u) < 0 and ‖∇Eu‖
L

n+1
2

2 (E)

> r(δ) for 1 < δ < δ2, 0 ≤ t < ∞.

Consequent, Kδ(u) ≤ 0 and ‖∇Eu‖ ≥ r(δ) for 0 ≤ t <∞. From 25,

d

dt
(eγ t Ṁ(t)) = eγ t

(

γ Ṁ(t)+ M̈(t)

)

= 2eγ t
(

‖∂tu‖2

L
n
2
2 (E)

‖ −K(u)

)

= 2eγ t
(

‖∂tu‖2

L
n+1

2
2 (E)

‖ + (δ2 − 1)‖∇Eu‖2

L
n+1

2
2 (E)

−Kδ2(u)

)

≥ 2eγ t (δ2 − 1)r2δ2 = C δ2e
γ t .

Hence,

eγ t Ṁ(t) ≥ C δ2

∫ t

0
eγ τ dτ + Ṁ(0) = C δ2

γ
(eγ t − 1)+ Ṁ(0),

Ṁ(t) ≥ C δ2

γ
(1− e−γ t )+ e−γ t Ṁ(0).

Hence there exists t0 > 0 for which

Ṁ(t) ≥ C δ2

2γ
∀t ≥ t0

and

M(t) ≥ C δ2

2γ
(t − t0)+M(t0) ≥ C δ2

2γ
(t − t0), t ≥ t0. (31)

From assumption γ < (p − 1)(1+ C2∗)λ1, it follows there exists a constant

ε ∈
(

0 , (p − 1)(1+ C2∗)
)

such that

γ 2 < (p − 1− ε)

[

(p − 1)(1+ C2∗)λ1 − ε

]

.

From 27,

M̈(t) ≥ (p + 3)‖∂tu‖2

L
n+1

2
2 (E)

− 2γ (∇E(∂tu),∇Eu)2 + (p − 1)(1+ C2∗)λ2
1‖u‖2

L
n
2
2 (E)

−2(p + 1)I (0)
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= ‖(4+ ε)‖∂tu‖2

L
n
2
2 (E)

+ (p − 1− ε)‖∂tu‖2

L
n+1

2
2 (E)

− 2γ (∇E(∂tu),∇Eu)2

+ [(p − 1)(1+ C2∗)λ2
1 − ε]‖∂tu‖2

L
n
2
2 (E)

+ εM(t)− 2(p + 1)I (0). (32)

Also we can obtain

2γ (∇E(∂tu),∇Eu)2 ≤ (p − 1− ε)‖∂tu‖2

L
n+1

2
2 (E)

+ γ 2

p − 1− ε
‖u‖2

L
n+1

2
2 (E)

≤ (p − 1− ε)‖∂tu‖2

L
n+1

2
2 (E)

+[(p − 1)(1+ C2∗)λ2
1 − ε]‖u‖2

L
n+1

2
2 (E)

. (33)

From 32 and 33 we get

M̈(t) ≥ (4+ ε)‖∂tu‖2

L
n+1

2
2 (E)

+ εM(t)− 2(p + 1)I (0). (34)

From 31, it follows that there exists a t1 > 0 such that

εM(t) > 2(p + 1)I (0) ∀t > t1,

and then

M̈(t) > (4+ ε)‖∂tu‖2

L
n+1

2
2 (E)

, ∀t > t1.

Now, similar to first case we can obtain a contradiction. Hence we always have
Tmax <∞.

From Theorems 13 and 4 we can obtain the following theorem for global
existence and non-existence of solutions for problem 1.

Theorem 5 Let 0 ≤ γ ≤ (p−1)
√

1+ C2∗λ
1
2
1 , u0 ∈H

1, n+1
2

2,0 (E) and u1 ∈ L
n+1

2
2 (E).

Suppose that I (0) < 0. Then, when K(u0) > 0, problem 1 admits a global weak
solution and whenK(u0) < 0, problem 1 does not admits any global weak solution.
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φ4 Solitons in Kirchhoff Wave Equation

Y. Contoyiannis, P. Papadopoulos, M. Kampitakis, S. M. Potirakis,
and N. L. Matiadou

Abstract We express the Kirchhoff wave equation in terms of classic field theory.
This permits us to introduce the spontaneous symmetry breaking phenomenon in
the study of linear structures, such as strings in order to investigate the existence
of solitons solutions. We find φ4 solitons in the space of spatial gradient of lateral
displacement of a string. This helps us detect stable states in deformations of strings.

1 Introduction

In the last 30 years important progress has been made in understanding of properties
of certain non-linear differential equations which arise in many different areas of
Physics, e.g., physics of plasma, solid state physics, biophysics, field theory etc.
[1–5]. A common interesting feature is the occurrence of solitons, i.e., stable, non-
dissipative and localized configurations behaving in many ways like particles. In
the analysis of these equations many interesting mathematical structures have been
discovered which surprisingly also appear in quantum mechanics and quantum field
theory [6]. From a pragmatic point of view these completely soluble non-linear
equations are a substantial extension of the ‘tool kit’ of a physicist which otherwise
is mainly restricted to solving linear systems. They also serve as valuable source for
intuition about the behavior of non-linear systems. In Mathematics and Physics, a
soliton, or solitary wave, is a self-reinforcing wave-packet that maintains its shape
while it propagates at a constant velocity. Solitons are caused by a cancellation
of nonlinear and dispersive effects in the medium. Solitons are the solutions of
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Fig. 1 The cylindrical
symmetry of the system
around z axis is broken by the
buckling of the string

a widespread class of weakly nonlinear dispersive partial differential equations
describing physical systems.

φ4 solitons are stable solutions which appear in spontaneous symmetry breaking
(SSB) in scalar field theories [7]. A category of systems for which SSB might
happen are linear structures such as rob, string, needle etc. Thus, if a string is
compressed by the application of a force F along its axis the obvious solution is
that it stays in the configuration x = y = 0 (see Figure 1). However, if the force
gets too large (F > Fcr), the string will jump into a bent position. It does this
because the energy in this state is lower than in meta-stable state, where it stays
aligned along the z axis. The cylindrical symmetry of the system around z axis is
broken by the buckling of the string [7].

In a φ4—scalar field the SSB is sourced from a concrete type of potential density.
This SSB produces solitary waves which ensure the stable behavior of φ scalar
field. The wave function of the lateral displacement u for a string such as the one in
Figure 1 is the solution of the Kirchhoff wave equation [8]. In this work we attempt
to reveal similarities between the potential density produced from Kirchhoff wave
equation and φ4—scalar field potential density. This would permit us to reveal the
existence of soliton in the Kirchhoff description. This would help us in order to find
stable states when the string suffers lateral deformation under the action of axial
tensions. This is the main motivation of the present work.

2 SSB in φ4 Scalar Field Theory: The Kink Solitons

The Lagrangian density of scalar field φ(x) with a φ4 interaction is given as [9]:

L = 1

2
(∂μφ)(∂

μφ)−
{

1

2
αφ2 + 1

4
λφ4

}

, (1)
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Fig. 2 The SSB in scalar
field theory. The critical point
(0.0) behaves as a
saddle-point

where μ = 0, 1, 2, 3 with ∂0φ = ∂φ
∂t

, ∂1φ = − ∂φ
∂x

, ∂2φ = − ∂φ
∂y

, ∂3φ = − ∂φ
∂z

The term of kinetic density is 1
2 (∂μφ)(∂

μφ) and the potential density is:

U(φ) = 1

2
αφ2 + 1

4
λφ4 (2)

When α, λ have positive values we have the symmetric phase (green line in
Figure 2). When α < 0, λ > 0 we have the phase of symmetry breaking
(SB) (red line in Figure 2). Thus, the ground state of energy has shifted from

φ = 0 to φ∗ = ±
√
|α|
λ

. This is the SSB phenomenon where the system should select

a new vacuum. In a thermal system the parameter α is a function of T−Tc
Tc

were T is
the temperature and Tc is the critical temperature. In a similar way, in a string SSB
the parameter α could be a function of F−Fc

Fc
. A model which demonstrates SSB is

the φ4 theory [9] where the potential has the form:

U(φ) = λ

4

(
φ2 − α

λ

)2 = −1

2
|α|φ2 + 1

4
λφ4 + α2

4λ
(3)

The above potential refers to the SB phase (α < 0, λ > 0) and a constant term

has been added. So, the critical state (0, 0) is excited to (0, α2

4λ ). This state describes
the meta-stable state of the string, before the cylindrical symmetry of the system
around z axis is broken by the buckling of the string. The potential of Equation (3)

has the same minima as the potential of Equation (2) namely φ∗ = ±
√
|α|
λ

. This
means that solitons solutions, if they exist, must asymptotically tend toward these
values as x →±∞, that is:

φ(|x| = ∞) = ±
√ |α|

λ
(4)
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Fig. 3 The φ4 soliton with
α = λ = 1 and x0 = 0

We can integrate the φ4 theory given by the Equation (3) to yield [9]: x − x0 =
± ∫ φ(x)

φ(x0)
dφ√

λ
2

1

(φ
2− α

λ
)

and inverting, we find that [9]:

φ(x) = ±
(√ |α|

λ

)

tanh

(√
α√
2
(x − x0)

)

(5)

This is the kink soliton of φ4 scalar field (Figure 3).
The most important property of solitons, as it has already been mentioned, is that

they are stable structures which behave as particles. The energy density of these
solitons is [9]:

ε(x) =
(
α2

2λ

)

sech4[m(x − x0)√
2

]
. (6)

The mass of particle-soliton is given by the integral over the energy density:

M =
∫ ∞

−∞
ε(x)dx = 2

√
2

3

|α| 3
2

λ
(7)

3 Kirchhoff Wave Function, Energy and Potential

The Kirchhoff wave equation without damping term is defined [8, 10, 11], as:

∂2u

∂2t
− (1+

∫

Ω

|∇u|2 dx)∇2u = 0 (8)
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Where u(t, x) is the lateral displacement of a string at the space coordinate x and
the time t , while Ω is a bounded domain in R

N with a smooth boundary ∂Ω .
Here the energy is given as E(t) = ∫

Ω
εdx where the energy density ε is [12–

14]:

ε(t) = 1

2

∣
∣
∣
∣
∂u

∂t

∣
∣
∣
∣

2

+
{

1

2

∣
∣
∣
∣
∂u

∂x

∣
∣
∣
∣

2

+ 1

4

∣
∣
∣
∣
∂u

∂x

∣
∣
∣
∣

2 ∣∣
∣
∣
∂u

∂x

∣
∣
∣
∣

2 }

(9)

The first term in Equation (9) is the kinetic term and the term in the curly brackets
is the Kirchhoff potential density (Kpd), UKirchhoff . So, we have that:

UKirchhoff = 1

2

∣
∣
∣
∣
∂u

∂x

∣
∣
∣
∣

2

+ 1

4

∣
∣
∣
∣
∂u

∂x

∣
∣
∣
∣

2 ∣∣
∣
∣
∂u

∂x

∣
∣
∣
∣

2

= 1

2

∣
∣
∣
∣
∂u

∂x

∣
∣
∣
∣

2

+ 1

4

∣
∣
∣
∣
∂u

∂x

∣
∣
∣
∣

4

(10)

4 The Kpd Produced from Classical Field Theory

In this section we will try to produce the Kpd through the classical field theory.
Thus, the investigation of solitons in the wave equation is not just the result of
comparing potentials but it has a fundamental origin. Let’s start from the classical
wave equation:

∂2
μφ =

∂2φ

∂2t
−∇2φ = 0 (11)

Note that in Equation (11) the wave speed constant factor c2 has been omitted.
This is done here since both Equation (8) and Equation (10) that represent Kirchhoff
wave equation without damping term and Kpd, respectively, appear in the cited
references without constant factors. However, we will restore the specific factor
later, during the derivation of the complete form of Kpd (Equation (22)).

If we substitute the ∇2φ as ∇2φ(1+ ( ∂φ
∂x

)2
), then Equation (8) is written as:

∂2φ

∂2t
− ∇2φ

(

1+
(∂φ

∂x

)2
)

= 0 (12)

∂2
μφ =

∂2φ

∂2t
− ∇2φ = −∂U

∂φ
(13)

For static solution (
∂2φ

∂2t
) = 0 the E-L equation of Equation (13) becomes:

−∇2φ = −∂U

∂φ
(14)
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where U(φ) the potential density of φ-field. From Equation (14) we can estimate
the potential density U as follows:

We multiply Equation (14) by ∂φ
∂x

and we take the following:

− ∇2φ · ∂φ
∂x
= −∂U

∂φ
· ∂φ
∂x

, (15)

which can be integrated over x, yielding [9]:

U(φ) = 1

2

(∂φ

∂x

)2
(16)

Following the above procedure, we estimate (see Appendix) the U ′ for the case
of the wave described by Equation (12) as:

U ′(φ) = 1

2

(∂φ

∂x

)2 + 1

4

(∂φ

∂x

)4
(17)

The potential density U ′(φ) has the same form with Kpd, as expressed in
Equation (10).

5 SSB in the Kpd

Now we will investigate the SSB in the Kpd. If we compare the Kpd from
Equation (17) and the potential density of SSB in the φ4 theory from Equation (3),
we find out that Equation (3) refers to a scalar field φ while Equation (17) refers
to gradient of φ, that is ∂φ

∂x
(or ∇φ). We face this by defining a new field ξ as

ξ ≡ ∇φ. Thus, we can research solitons in ξ -field. This means for the string case,
that the solitons solutions exist not at the lateral displacement space but in its spatial
gradient space. The next thing we have to do, is to introduce coefficients in the terms
of Equation (17).

The original equation of Kirchhoff without damping is written as [8]:

∂2u

∂2t
= ∇2u ·

(p0

ph

+ Y

p2L

∫ L

0

(∂u

∂x

)2
dx

)
, (18)

where 0 < x < L, with L the length of string, Y the Young modulus, p the
mass density, h the cross-section area, p0 the initial external force. In classical wave
equation Equation (11), we normally have a coefficient c2 = p0

ph
in front of the term

∇2φ. This is in agreement with Equation (18). The substitution ∇2φ → p0
ph
∇2φ in

Equation (11) transports the coefficient p0
ph

in Equation (17) in front of the first term.

From Equation (18), we have that the second coefficient is the quantity Y
p2L > 0.

Thus, the Kpd is written as:
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U ′(φ) = 1

2
α
(∂φ

∂x

)2 + 1

4
λ
(∂φ

∂x

)4
, (19)

where:

α = p0

ph
(20)

and

λ = Y

p2L
(21)

The next thing we have to do is to add the constant term in Equation (19). This

quantity is α2

4λ =
p2

0
2ph2Y

L. We consider the p0 as the resultant of axial forces. The

quantity
p2

0
2ph2Y

L > 0 expresses the excited potential of string before the cylindrical
symmetry of the system around z axis is broken by the buckling of the string. This
meta-stable state due to the axial compression ΔL from the external force. We have
to give an explanation for the negative sign of the coefficient α, which indicates
the symmetry breaking whenever the string leaves the axis and goes to the lateral
positions. The symmetry breaking is accomplished when the external axial force
overcomes a critical value. Then the internal elasticity forces obtain measure greater
than external forces and p0 obtains negative sign. From Equation (20) the coefficient
α becomes negative too. Therefore, the Kpd for the field ξ is written in the final
form as:

UKirchhoff (ξ) = −1

2
|α| ξ2 + 1

4
λξ4 + α2

4λ
(22)

Now the Kpd has taken the form of the potential density of SSB (see Equa-
tion (3)), which provides the theoretical basis for the formation of kink solitons. The
solitons solutions from Equation (5) and (Equations (20) and (21)) is written as:

ξ(x) = ±
√

p02L

Yh
tanh

[√
p0

2ph
(x −ΔLcr)

]

, (23)

where ΔLcr is the axial compression when the force overcomes its critical value.
The existence of solitons dependents from the asymptotic behavior ξ(±∞) =

±
√

p02L
Yh

.
The mass of Kirchhoff soliton which is given in Equation (7) has the form:

MKirchhoff = 4
√

2

3

p
3/2
0

Yh3/2√p
L (24)
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The transmission length where the solitons survive is determined by their
mass, according to the proportion which connects the mass of a particle and its
transmission length in the field theory is:

R ∼ 1

M
(25)

Thus, for materials with high Young modulus Y , such as steel, from Equation (24)
we obtain that the MKirchhoff is small. This means from Equation (25) that
transmission length R where the solitons survive is long and the range of stable
state is long too. So, the steel string could be found in lateral positions (Figure 1)
with greater stability and without breaking. Nevertheless, from Equation (24) one
can determine values of parameters which are possible to give stable states.

6 Conclusions

In this work we have produced the potential density of Kirchhoff wave equation, for
static solution without damping term, through the classical field theory. Thus, we
attempt to study a linear structure such as a string, which suffers lateral deformation
under the action of axial tensions through the spontaneous symmetry breaking
phenomenon. The result is that φ4 solitons in the space of gradient of lateral
displacement of string, emerge. The existence of these stable solutions permits us to
determine the stability of string deformation, through the extension of spatial range
of solitons propagation. This approximation we applied on the issue of elasticity, is
a new way to face the limits of elasticity for linear structures.

Appendix: Estimation of the Potential Density U′(φ)

For the Kirchhoff wave equation ∂2φ

∂2t
− ∇2φ

(

1+
(
∂φ
∂x

)2
)

= 0 (Equation (12)) we

initially consider that exists a potential density U ′(φ) which satisfies a generalized
“Euler-Lagrange” equation that could be written as:

−∇2φ

(

1+
(∂φ

∂x

)2
)

= −∂U ′

∂φ
, (26)

by proceeding to the replacement−∇2φ →−∇2φ

(

1+
(
∂φ
∂x

)2
)

in the E-L equation

for static solution as presented in Equation (14).
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We set as potential density U ′(φ):

U ′(φ) = U(φ)+ U1(φ) (27)

So, Equation (26) is written as:

−∇2φ −∇2φ ·
(∂φ

∂x

)2 = −∂U

∂φ
− ∂U1

∂φ
, (28)

and by using the E-L of Equation (14) we obtain:

∇2φ ·
(∂φ

∂x

)2 = ∂U1

∂φ
(29)

This equation tells us that the correction term in E-L equation corresponds to a
potential density U1 as the E-L equation corresponds to the potential density U .

We multiply Equation (29) by ∂φ
∂x

to take:

∇2φ · ∂φ
∂x

(∂φ

∂x

)2 = ∂U1

∂φ

∂φ

∂x
(30)

Moreover, Equation (30) can be integrated over x, yielding
∫

∂2φ

∂x2 · ∂φ∂x
(
∂φ
∂x

)2
dx =

∫
∂U1
∂x

∂φ
∂x

dx.
Thus, we have that:

∫
∂

∂x

(∂φ

∂x

)(∂φ

∂x

)3
dx =

∫
∂U1

∂x
dx = U1(φ) (31)

The first part of Equation (31) is estimated as:

∫
∂

∂x

(∂φ

∂x

)(∂φ

∂x

)3
dx =

(∂φ

∂x

)4 −
∫ (∂φ

∂x

) ∂

∂x

(∂φ

∂x

)3
dx =

(∂φ

∂x

)4

−
∫

∂φ

∂x
3
(∂φ

∂x

)2 ∂

∂x

(∂φ

∂x

)
dx ⇒

4
∫

∂

∂x

(∂φ

∂x

)(∂φ

∂x

)3
dx =

(∂φ

∂x

)4 ⇒
∫

∂

∂x

(∂φ

∂x

)(∂φ

∂x

)3 = 1

4

(∂φ

∂x

)4
(32)

Using Equations (16), (27), (31) and (32) we finally obtain:

U ′(φ) = 1

2

(∂φ

∂x

)2 + 1

4

(∂φ

∂x

)4
(33)
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Estimates for Lipschitz and BMO Norms
of Operators on Differential Forms

Shusen Ding, Guannan Shi, and Yuming Xing

Abstract In this paper, we introduce the generalized Lipschitz and BMO norms
of differential forms and establish the upper bound estimates for the generalized
Lipschitz and BMO norms of operators applied to differential forms. We also
demonstrate applications of our main results using examples.

1 Introduction

The main purpose of this paper is to establish the upper bound estimates for the
generalized Lipschitz and BMO norms of the iterated operators DkGk and Dk+1Gk

applied to differential forms u defined in Rn in terms of the Lp norms of u,
where k is a positive integer; G is Green’s operator and D = d + d� is the
Hodge-Dirac operator on differential forms. The Dirac operator D and Green’s
operator G are very well studied and widely used in many fields of mathematics and
physics. They play a critical role in the study of the nonlinear problems in PDEs
and nonlinear potential theory. For example, in the case k = 1, the composition
D2G is used to define the well-known Poisson’s equation D2G(u) = u − H(u)

(or ΔG(u) = u − H(u)), where H is the harmonic projection operator. In the
same sense as the Lp theory, the estimates for the BMO norms of differential
forms and the related operators are also decisive on the investigation of the solution
properties of PDEs, especially on the study of Harnack’s inequality for solutions
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to certain partial differential equations, see [1] for example. Some estimates for
the BMO norm and local Lipschitz norm of differential forms or related operators
can be found in [2–5]. We should notice that DkGk and Dk+1Gk are more general
operators which include the composite operator DG as a special case, see [5] where
DG has been investigated. However, there is no systematic study on the BMO
norm and local Lipschitz norm of the iterated operators DkGk and Dk+1Gk for the
case k > 1 in the literature. Hence, we are motivated to establish the upper bound
estimates for the generalized Lipschitz and BMO norms of the composite operator in
this paper. We first extend the definitions of the classical locLipα and BMO norms
into the generalized locLipsα and BMOs norms, respectively. Then, we study the
relationship between these two norms and Lp norms. The estimates for norms and
comparisons of norms are very important in the investigation of the corresponding
spaces in analysis. For example, it is well known that the BMO space, the dual of
Hardy space, is a substitute of L∞ space and has been playing a very indispensable
role in harmonic analysis and exterior differential analysis, as well as in the study
of the characterization of singular integral operators since it was set forth by John
and Nirenberg in 1961. We refer the readers to Chapter IV in [6] and [1, 7] for the
function case of the BMO space, and Chapter 9 in [2] and [8–11] for the case to
differential forms. Our main results are presented and proved in Section 3. These
results will enrich the theory of operators on differential forms.

Unless stated otherwise, we keep using the traditional notation and symbols
throughout this paper. Let Ω be a smoothly bounded domain without the boundary
in Rn, n ≥ 2, and B = B(x, ρ) be the ball in Rn with radius ρ centered at x, which
satisfies diam(σB) = σdiam(B). Let the direct sum Λ = Λ(Rn) = ⊕n

l=0Λ
l(Rn) be

a graded algebra with respect to the exterior product, and Λl = Λl(Rn) be the space
of l-covectors in Rn, which is spanned by the dual orthogonal basis dxi1 , · · · , dxil ,
where xi1 , · · · , xil are the coordinate functions on Rn. For the set Λ, we denote the
pointwise inner product by < ·, · > and the module by | · |. Then, every differential
form u(x) ∈ Λl(Rn) can be uniquely written as

u(x) =
∑

I

uI (x)dxI =
∑

ui1i2···il (x)dxi1 ∧ dxi2 ∧ · · · ∧ dxil ,

where the coefficients ui1i2···il (x) are differentiable functions and I =
(i1, i2, · · · , il), 1 ≤ i1 < i2 < · · · < il ≤ n. Actually, differential forms are
the generalizations of the functions, which include functions as their special cases
(functions are called 0-forms). The Hodge-star operator � : Λl(Rn) → Λn−l (Rn)

is defined by the rule that �1 = dxi1 ∧ dxi2 ∧ · · ·∧ dxil and α∧ �β =< α, β > (�1)
for every α, β ∈ Λl , l = 0, 1, · · · , n. By this definition, it induces that � is an
isometric isomorphism on Λl . The linear operator d : D′(Ω,Λl)→ D′(Ω,Λl+1),
0 ≤ l ≤ n − 1, is called the exterior differential and d� = (−1)nl+1 � d� :
D′(Ω,Λl+1) → D′(Ω,Λl), the formal adjoint of d, is known as Hodge
codifferential. The interested readers could see [10–13] for further introduction and
appropriate properties. Also, we use Lp(Ω,Λ) to denote the classical Lp space for
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differential forms, 1 < p <∞, equipped with the norm ‖u‖p,Ω =
(∫

Ω
|u|pdx) 1

p =
(∫

Ω
(
∑

I |uI |2)
p
2 dx

) 1
p
. W 1,p(Ω,Λ) is the classical Sobolev space for differential

forms with the norm ‖u‖W 1,p(Ω) = (diam(Ω))−1‖u‖p,Ω + ‖∇u‖p,Ω. W
p
d (Ω,Λl)

is the space of differential l-forms such that du ∈ Lp(Ω,Λl). Analogously,
W

p
d�(Ω,Λl) is the space of differential l-forms such that d�u ∈ Lp(Ω,Λl).

Inspired by these classical spaces for differential forms, we generalize the BMO
space and local Lipschitz space as follows.

Definition 1.1 For every ω ∈ Ls
loc(Ω,Λl), s ≥ 1, we say ω ∈ BMOs(Ω,Λl) with

the norm defined by

‖ω‖∗,s,Ω = sup
σQ⊂Ω

|Q|−1/s‖ω − ωQ‖s,Q, (1.1)

if ω satisfies supσQ⊂Ω |Q|−1/s‖ω − ωQ‖s,Q < ∞, where l = 0, 1, · · · , n and
σ > 1 is some expansion factor.

Definition 1.2 For every ω ∈ Ls
loc(Ω,Λl), s ≥ 1, l = 0, 1, · · · , n and 0 < α ≤ 1,

we call ω ∈ locLipsα(Ω,Λl) with the norm denoted by

‖ω‖locLips
α(Ω) = sup

σQ⊂Ω
|Q|−(n+αs)/sn‖ω − ωQ‖s,Q, (1.2)

if ω satisfies supσQ⊂Ω |Q|−(n+αs)/sn‖ω − ωQ‖s,Q < ∞, where σ > 1 is some
expansion factor.

Especially, for the case s = 1, the BMOs norm and locLipsα norm just reduce to
the following classical BMO norm and locLipα norm given in [10] by C. Nolder,
respectively.

‖ω‖∗,1,Ω = ‖ω‖∗,Ω = sup
σQ⊂Ω

|Q|−1‖ω − ωQ‖1,Q (1.3)

and

‖ω‖locLip1
α(Ω) = ‖ω‖locLipα(Ω) = sup

σQ⊂Ω
|Q|−(n+α)/n‖ω − ωQ‖1,Q (1.4)

Furthermore, notice that |Q|α/n ≤ |Ω|1/n since 0 < α ≤ 1 and n ≥ 1, which results
in that

|Q|−1/s = |Q|α/n|Q|−1/s−α/n ≤ |Ω|1/n|Q|−1/s−α/n

So, similarly as the result in [14], we have that there is a constant C > 0,
independent of ω, such that
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‖ω‖∗,s,Ω ≤ C‖ω‖locLips
α(Ω) (1.5)

for every ω ∈ W 1,s(Ω,Λl), which enables us to compare the locLipsα norm and the
BMOs norm for DkGk and Dk+1Gk simply. In addition, from now on, we point out
that the constants C and Ci employed in this paper, i = 1, 2, · · · , may differ from
one line to the next.

2 Local Poincaré-Type Inequalities

In this section, as preparation for the principle assertion, we show the explicit
formulas of DkGk and Dk+1Gk and the Poincaré-type inequalities of DkGk and
Dk+1Gk by applying the explicit representation in Lemma 2.4 and Lemma 2.5.
First, let us start with the brief review of Green’s operator G. For any fixed integer
l = 0, 1, · · · , n, let H be the harmonic l-field denoted by

H = {u ∈ W(Ω,Λ) : du = d�u = 0, u ∈ Lp, for some 1 < p <∞}.

In the meantime, we take the operator δ : Lp(Ω,Λ)
⋂

H⊥ → W 1,p(Ω,Λ)
⋂

H⊥
defined by Morrey in [15], which satisfies that for every u ∈ Lp(Ω,Λ)

⋂
H⊥, δ(u)

is the unique form in W 1,p(Ω,Λ)
⋂

H⊥ such that Δδ(u) = u, where � = D2 =
dd� + d�d is the Laplace operator, and H⊥ is the complement space of harmonic
field H. Therefore, we are given the definition as follows.

Definition 2.1 ([16]) Green’s operator G : Lp(Ω,Λ)→ W 1,p(Ω,Λ) ∩H⊥, 1 <

p <∞, is defined by

G(u) = δ(u−H(u))

for every u ∈ Lp(Ω,Λ), where H : Lp(Ω,Λ) → H is the projection operator.
Moreover, observe that Δδ(u) = u, so we have that

ΔG(u) = u−H(u). (2.1)

By employing the classical dominated convergence theorem, C. Scott in [16]
further gave the upper bound estimate of Green’s operator G.

Lemma 2.2 Let u ∈ Ls(Ω,Λ), 1 < s < ∞, be a differential form defined in the
domain Ω . Then, there exists a positive constant C, independent of u, such that

‖dd�G(u)‖s,B+‖d�dG(u)‖s,B+‖dG(u)‖s,B+‖d�G(u)‖s,B+‖G(u)‖s,B ≤ C(s)‖u‖s,σB
(2.2)

for any ball B ⊂ σB ⊂ Ω with some constant σ > 1, where Ω is a smoothly
bounded domain without boundary.
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Remark 1 For any v ∈ Lp(Ω,Λ)
⋂

H⊥, by the definition of the projection
operator H , it is easy to obtain that H(v) = 0. Since G(u) ∈ W 1,p(Ω,Λ) ∩ H⊥
for every u ∈ Lp(Ω,Λ), replacing v with G(u) yields that H(v) = HG(u) = 0. In
other words, the harmonic projection of Green’s operator G on Lp(Ω,Λ) is always
equal to zero.

Remark 2 Also, applying Lemma 2.2 repeatedly, it is obvious to achieve that there
is a constant C > 0, independent of u, such that

‖Gm(u)‖p,B ≤ C‖u‖p,σB. (2.3)

In particular, if u ∈ W
p
d (Ω,Λ) (or u ∈ W

p
d�(Ω,Λ)), we know that Green’s operator

G can commute with d (or d�), which implies that

dG(u) = G(du) or d�G(u) = G(d�u).

Similarly to the method employed in (2.3), we have that

‖dGm(u)‖p,B ≤ C‖du‖p,σB or ‖d�Gm(u)‖p,B ≤ C‖d�u‖p,σB (2.4)

for any integer m ≥ 1, where σ > 1 is some constant.

Meanwhile, to facilitate the upcoming argument about the Poincaré-type esti-
mates in Theorem 2.6 and Theorem 2.7, we need the following results as well.

Lemma 2.3 ([17]) Let v ∈ L
p
loc(Ω,Λl), 1 < p < ∞, be a differential form

defined in Ω and T : Lp(Ω,Λl) → W 1,p(Ω,Λl−1) be the homotopy operator,
l = 1, 2, · · · , n. Then, we have

v = d(T v)+ T (dv), (2.5)

‖∇(T v)‖p,Ω ≤ C|Ω|‖v‖p,Ω and ‖T v‖p,Ω ≤ C|Ω|diam(Ω)‖v‖p,Ω (2.6)

hold for any bounded and convex domain Ω .

Before starting the primary argument in this section, it is worth to note that the
explicit representations in Lemma 2.4 and Lemma 2.5 are the essential steps for
the argument of the Poincaé-type inequalities. In precise, if our attention is only to
estimate ‖DkGk(u)‖locLips

α
(or ‖Dk+1Gk(u)‖locLips

α(Ω)) in terms of the Lp norm
‖u‖p,Ω , we can prove it directly with the aid of the higher imbedding inequality
given in [18]. Otherwise, while we are concerned on the upper boundedness of
‖DkGk(u)‖locLips

α(Ω) (or ‖Dk+1Gk(u)‖locLips
α(Ω)) in terms of the BMOs norm

‖u‖∗,s,Ω , the higher imbedding result is not valid for this case any more. Thus,
to overcome this difficulty, the key tools in our approach are Lemma 2.4 and
Lemma 2.5, which are established by adapting the technique developed in [19] with
the inductive method.
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Lemma 2.4 Let u ∈ L
p
loc(Ω,Λ), 1 < p <∞, be a differential form in the domain

Ω , D be the Hodge-Dirac operator and G be Green’s operator. Then, we have that

DkGk(u) = Gm(u), (2.7)

Dk+1Gk(u) = dGm(u)+ d�Gm(u), (2.8)

for every even integer k = 2m and m = 1, 2, · · · .
Proof First, since Δ = D2 = (d + d�)2 = dd� + d�d, we know that it holds

u = ΔG(u)+H(u) = dd�G(u)+ d�dG(u)+H(u) (2.9)

for every u ∈ L
p
loc(Ω,Λ), which also implies that

dd�G(u)+ d�dG(u) = u−H(u). (2.10)

Due to the fact that HG(u) = 0 always holds by Remark 1, replacing u with Gm(u)

in (2.10) gives that

dd�G(Gm(u))+ d�dG(Gm(u)) = Gm(u) (2.11)

whenever the positive integer m ≥ 1.
Now, we will assert the representation (2.7) by using the inductive method. In the

case of k = 2 and m = 1, we have

D2G2(u) = (d + d�)2G2(u) = dd�G(G(u))+ d�dG(G(u)). (2.12)

Substituting 2.11 with m = 1 into (2.12) yields that D2G2(u) = G(u). Assume that
the desired result holds for any k = 2(m− 1), m = 2, 3, · · · , that is,

DkGk(u) = D2(m−1)G2(m−1)(u) = Gm−1(u). (2.13)

Then, when k is taken as 2m, it continues with (2.13) and (2.11) that

DkGk(u) = D2D2(m−1)G2(m−1)(G2(u)) = D2Gm+1(u)

= dd�G(Gm(u))+ d�dG(Gm(u)) = Gm(u). (2.14)

So, the desired result (2.7) holds. Moreover, for the operator Dk+1Gk(u), making
use of (2.7) and the fact D = d + d�, we obtain that

Dk+1Gk(u) = D(DkGk(u)) = D(Gm(u)) = dGm(u)+ d�Gm(u).

Therefore, we finish the proof of Lemma 2.4. ��
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In analogue to the method developed in Lemma 2.4, we also derive the following
results for the case k = 2m+ 1.

Lemma 2.5 Let u ∈ L
p
loc(Ω,Λ), 1 < p <∞, be a differential form defined in the

domain Ω , D be the Hodge-Dirac operator and G be Green’s operator. Then, we
derive that

DkGk(u) = dGm+1(u)+ d�Gm+1(u), (2.15)

Dk+1Gk(u) = Gm(u) (2.16)

for every odd integer k = 2m+ 1 and m = 1, 2, · · · .
Now, we are ready to give the local Poincaré-type estimates of the iterated

operator DkGk and Dk+1Gk in terms of the Lp norms of du and d�u, respectively.

Theorem 2.6 Assume that the differential form u is of the Sobolev class
W

1,p
loc (Ω,Λ), 1 < p < ∞, D is the Hodge-Dirac operator and G is Green’s

operator. Then, for any even integer k = 2m, m = 1, 2, · · · , there exists a constant
C > 0, independent of u, such that

‖DkGk(u)− (DkGk(u))B‖p,B ≤ C|B|1+1/n‖du‖p,σB, (2.17)

‖Dk+1Gk(u)− (Dk+1Gk(u))B‖p,B ≤ C|B|1+1/n‖d�u‖p,σB (2.18)

for all balls B ⊂ σB ⊂ Ω with some constant σ > 1.

Proof Initially, to prove (2.17), applying the decomposition (2.5) to DkGk(u), we
have

DkGk(u) = dT (DkGk(u))+ T d(DkGk(u)). (2.19)

Since dT (DkGk(u)) = (DkGk(u))B , for every p > 1, using (2.19), (2.7) and (2.6),
it follows that

‖DkGk(u)− (DkGk(u))B‖p,B = ‖T d(DkGk(u))‖p,B
≤ C1|B|diam(B)‖d(DkGk(u))‖p,B
= C1|B|diam(B)‖d(Gm(u))‖p,B
≤ C2|B|1+1/n‖d(Gm(u))‖p,B. (2.20)

Due to the definition of the Sobolev space and the facts that ‖du‖p,Ω ′ ≤
‖∇u‖p,Ω ′ < ∞ and ‖d�u‖p,Ω ′ ≤ ‖∇u‖p,Ω ′ < ∞ for any Ω ′ ⊂⊂ Ω , one
may readily see that Green’s operator G can commute with d and d�. Then,
combining (2.20) with (2.4) follows that
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‖DkGk(u)− (DkGk(u))B‖p,B ≤ C3|B|1+1/n‖du‖p,σ1B

for any even integer k > 0. Thus, we have (2.17) always holds for all balls B ⊂
σB ⊂ Ω with some constant σ1 > 1.

Now, we turn to the proof of the inequality (2.18). First, applying the commute
property between G and d� and (2.2), we have

‖dd�Gk(u)‖p,B = ‖dGk(d�(u))‖p,B ≤ C4‖d�u‖p,σ2B. (2.21)

Making use of the similar treatment as in the proof of DkGk with (2.8) and (2.21),
we attain that

‖Dk+1Gk(u)− (Dk+1Gk(u))B‖p,B = ‖T d(Dk+1Gk(u))‖p,B
≤ C5|B|diam(B)‖d(Dk+1Gk(u))‖p,B
≤ C6|B|1+1/n‖d(dGm(u)+ d�Gm(u))‖p,B
= C6|B|1+1/n‖dd�Gm(u)‖p,B
≤ C7|B|1+1/n‖d�u‖p,σ2B (2.22)

for every even integer k > 0 and some constant σ2 > 1 with all balls B ⊂ σ2B ⊂ Ω .
Therefore, the proof of Theorem 2.6 is ended. ��

Next, it is natural to take the case of the odd integer k > 1 into account. Using the
same process as the case k = 2m by Lemma 2.5 instead of Lemma 2.4, we derive
the results for the odd integer k = 2m+ 1. Considering the length of the paper, we
only state the results of Theorem 2.7.

Theorem 2.7 Assume that the differential form u is of the Sobolev class
W

1,p
loc (Ω,Λ), 1 < p < ∞, D is the Hodge-Dirac operator and G is Green’s

operator. Then, for any odd integer k = 2m + 1, m = 1, 2, · · · , there exists a
constant C > 0, independent of u, such that

‖DkGk(u)− (DkGk(u))B‖p,B ≤ C|B|1+1/n‖d�u‖p,σB, (2.23)

‖Dk+1Gk(u)− (Dk+1Gk(u))B‖p,B ≤ C|B|1+1/n‖du‖p,σB (2.24)

for all balls B ⊂ σB ⊂ Ω with some constant σ > 1.

Remark 3 It should be noticed that the results in Theorem 2.6 and Theorem 2.7
will play a significant role in latter discussion. Specifically, just because of the right
terms du and d�u in Theorem 2.6 and Theorem 2.7, it provides us an effective way
to derive the upper boundedness of the iterated operators DkGk and Dk+1Gk in
terms of the BMOs norm for the conjugate A-harmonic tensors u and v.
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3 Estimates for BMOs and locLips
α Norms

In this section, we present our principal results about the estimates for BMOs norm
and locLipsα norm for DkGk and Dk+1Gk applied to differential forms u and v

associated with some conjugate A-harmonic equation.
During the recent years, the study in the conjugate A-harmonic tensors is of

growing interest and has made much progress, see [2, 10, 20, 21] for examples.
Here, we consider the conjugate A-harmonic tensors of the form as follows.

Definition 3.1 ([10]) Differential forms u ∈ W 1,p(Ω,Λ) and v ∈ W 1,q (Ω,Λ) are
called the conjugate A-harmonic tensors if u and v satisfy the conjugate A-harmonic
equation of the form

A(du) = d�v, (3.1)

where the operator A : Λ(Ω) → Λ(Ω) is restricted by the following structural
assumptions:

(i) the mapping ξ → A(ξ) is continuous;
(ii) |A(ξ)| ≤ a1|ξ |p−1, < A(ξ), ξ >≥ b1|ξ |p;

(iii) A(λξ) = λ|λ|p−2A(ξ) whenever λ ∈ R, λ 
= 0;
(iv) the monotonicity inequality: | < A(ξ) − A(η), ξ − η > | ≥ L1(|ξ |2 +

|η|2) p−2
2 |ξ − η|2.

for all ξ ∈ Λ(Rn). Here, a1, b1 and L1 > 0 are the positive constants and 1 <

p, q <∞ are the conjugate exponents with 1/p + 1/q = 1.

According to Definition 3.1, together with the facts dd = 0 and d�d� = 0, it
is obvious to see that such a differential form u in (3.1) is also a solution to the
A-harmonic equation

d�A(du) = 0. (3.2)

Moreover, if the operator A is invertible, in view of the isometric property of the
Hodge-star operator �, there exists an operator B such that the differential form v

in (3.1) meanwhile satisfies

d�B(d(�v)) = 0, (3.3)

where the operator B : Λ(Ω)→ Λ(Ω) is given the similar conditions i)–iv) that

(b-i) the mapping ξ → B(ξ) is continuous on Λ(Rn);
(b-ii) |B(ξ)| ≤ a2|ξ |q−1, < B(ξ), ξ >≥ b2|ξ |q ;

(b-iii) B(κξ) = κ|κ|q−2B(ξ) whenever κ ∈ R, κ 
= 0;
(b-iv) the monotonicity inequality: | < B(ξ) − B(η), ξ − η > | ≥ L2(|ξ |2 +

|η|2) q−2
2 |ξ − η|2.
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for almost every x ∈ Ω and all ξ ∈ ∧l (Rn). Here, a2, b2 and L2 are the positive
constants and 1 < q <∞ is associated with (3.3).

Observe that A-harmonic equation is a special case of Dirac-harmonic equation,
so we derive the Caccippoli inequality and the weak reverse Hölder inequality,
respectively, by Corollary 2.3 and Theorem 4.3 in [22].

Lemma 3.2 Let u ∈ W 1,p(Ω,Λ) and v ∈ W 1,q (Ω,Λ) satisfy the conjugate A-
harmonic equation (3.1), and the operator A be invertible, where 1 < p, q < ∞
are the given conjugate exponents with 1/p+1/q = 1. Then, there exists a constant
C > 0, independent of u and v, such that

‖du‖p,B ≤ C|B|−1/n‖u− c‖p,σB, (3.4)

‖d�v‖q,B ≤ C|B|−1/n‖ � v − c�‖q,σB (3.5)

for some constant σ > 1 and any ball B ⊂ σB ⊂ Ω , where c and c� are both
closed forms.

Lemma 3.3 Let ω ∈ W 1,p(Ω,Λ) be a solution to the homogenous A-harmonic
equation, 1 < p <∞. Then, for every 0 < s, t <∞, there exists a constant C > 0,
independent of ω, such that

‖ω‖s,B ≤ C|B|1/s−1/t‖ω‖t,σB, (3.6)

where all balls B ⊂ σB ⊂ Ω and σ > 1 is some constant.

In addition, the local higher order inequality is also necessary for our latter
argument.

Lemma 3.4 Let u ∈ L
p
loc(Ω,Λ), 1 < p < ∞, be a differential form, D be the

Hodge-Dirac operator and G be Green’s operator. Then, for any positive integer
k ≥ 1, we have that

(i) if 1 < p < n, for any real number 0 < s < np/(n− p), there exists a constant
C > 0, independent of u, such that

‖DkGk(u)− (DkGk(u))B‖s,B ≤ C|B|1+1/n+1/s−1/p‖u‖p,σB, (3.7)

‖Dk+1Gk(u)− (Dk+1Gk(u))B‖p,B ≤ C|B|1+1/n+1/s−1/p‖u‖p,σB (3.8)

(ii) if p ≥ n, for any real number s > 0, there is a constant C > 0, independent of
u, such that

‖DkGk(u)− (DkGk(u))B‖s,B ≤ C|B|1+1/n+1/s−1/p‖u‖p,σB, (3.9)

‖Dk+1Gk(u)− (Dk+1Gk(u))B‖p,B ≤ C|B|1+1/n+1/s−1/p‖u‖p,σB (3.10)

for all balls B ⊂ σB ⊂ Ω with some constant σ > 1.
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Now, with these facts in mind, let us first prove Theorem 3.5.

Theorem 3.5 Let u ∈ Lp(Ω,Λ), 1 < p < n, be a differential form defined on the
smoothly bounded domain Ω , D be the Hodge-Dirac operator and G be Green’s
operator. Then, for any positive integer k > 1 and any real number 0 < s <

np/(n− p), there exist two constants C1, C2 > 0, independent of u, such that

‖DkGk(u)‖∗,s,Ω ≤ C1‖DkGk(u)‖locLips
α(Ω) ≤ C2‖u‖p,Ω, (3.11)

‖Dk+1Gk(u)‖∗,s,Ω ≤ C1‖Dk+1Gk(u)‖locLips
α(Ω) ≤ C2‖u‖p,Ω, (3.12)

where 0 < α ≤ 1 is some constant.

Proof First, we notice that 1 + 1
n
− 1

p
− α

n
=

(
1− 1

p

)
+

(
1
n
− α

n

)
> 0 because

0 < α ≤ 1 and 1 < p <∞. Then, for any ball B ⊂ Ω , we have

|B|1+1/n−1/p−α/n ≤ |Ω|1+1/n−1/p−α/n. (3.13)

In the meantime, by replacing ω with DkGk(u) and Dk+1Gk(u) in (1.5), respec-
tively, it is immediate to achieve that

‖DkGk(u)‖∗,s,Ω ≤ C1‖DkGk(u)‖locLips
α(Ω), (3.14)

‖Dk+1Gk(u)‖∗,s,Ω ≤ C1‖Dk+1Gk(u)‖locLips
α(Ω). (3.15)

Thus, to estimate (3.11), applying (3.7) and (3.13) gives

‖DkGk(u)‖locLips
α(Ω) = sup

σ2B⊂Ω
|B|− n+αs

sn ‖DkGk(u)− (DkGk(u))B‖s,B

≤ sup
σ2B⊂Ω

|B|−1/s−α/nC2|B|1+1/s+1/n−1/p‖u‖p,σ1B

= sup
σ2B⊂Ω

C2|B|1+1/n−1/p−α/n‖u‖p,σ1B

≤ sup
σ2B⊂Ω

C2|Ω|1+1/n−1/p−α/n‖u‖p,σ1B

≤ C3 sup
σ2B⊂Ω

‖u‖p,σ1B

≤ C4‖u‖p,Ω, (3.16)

where the constants σ2 > σ1 > 1 and all balls B ⊂ σ1B ⊂ σ2B ⊂ Ω . So, according
to (3.14) and (3.16), we have that (3.11) holds as desired. Moreover, using the same
treatment to the operator Dk+1Gk(u) with (3.8) and (3.15), the inequality (3.12)
holds as well. Therefore, the proof of Theorem 3.5 is finished. ��
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For the case p ≥ n, repeating the process as in Theorem 3.5 with (3.9) and (3.10),
we obtain the analogue results.

Theorem 3.6 Let u ∈ Lp(Ω,Λ), p ≥ n, be a differential form defined on the
smoothly bounded domain Ω , D be the Hodge-Dirac operator and G be Green’s
operator. Then, for any positive integer k > 1 and any real number s > 0, there
exist two constants C1, C2 > 0, independent of u, such that

‖DkGk(u)‖∗,s,Ω ≤ C1‖DkGk(u)‖locLips
α(Ω) ≤ C2‖u‖p,Ω, (3.17)

‖Dk+1Gk(u)‖∗,s,Ω ≤ C1‖Dk+1Gk(u)‖locLips
α(Ω) ≤ C2‖u‖p,Ω, (3.18)

where 0 < α ≤ 1 is some constant.

Next, we begin to establish our principle relationship between BMOs norm and
locLipsα norm of the iterated operators in terms of the norms of the conjugate
harmonic tensors u and v. From Theorem 3.7 and Theorem 3.8 to Corollary 3.9
and Corollary 3.10 below, we always assume that Ω ⊂ Rn is smoothly bounded
domain without boundary, the operator A in (3.1) is invertible.

Theorem 3.7 Let u ∈ W 1,p(Ω,Λ) and v ∈ W 1,q (Ω,Λ), 1 < p, q < ∞ with
1/p+ 1/q = 1, be the conjugate A-harmonic tensors satisfying the Equation (3.1),
D be the Hodge-Dirac operator and G be Green’s operator. Then, for every integer
k = 2m and any real number s > 0, m = 1, 2, · · · , there are two constants
C1, C2 > 0, independent of u and v, such that

‖DkGk(u)‖∗,s,Ω ≤ C1‖DkGk(u)‖locLips
α(Ω) ≤ C2‖u‖∗,p,Ω, (3.19)

‖Dk+1Gk(v)‖∗,s,Ω ≤ C1‖Dk+1Gk(v)‖locLips
β (Ω) ≤ C2‖ � v‖∗,p,Ω, (3.20)

where 0 < α, β ≤ 1 are the expansion factors.

Proof First, without loss of generality, we assume that the conjugate A-harmonic
tensor u is a solution to the A-harmonic equation (3.2). Then, it is natural to view
the corresponding v as a solution to Equation (3.3). Next, we will divide our proof
into two parts.

(i) For every 1 < p <∞, applying (2.17) into Definition 1.2, we have that

‖DkGk(u)‖locLips
α(Ω) = sup

σ1B⊂Ω
|B|−1/s−α/n‖DkGk(u)− (DkGk(u))B‖s,B

≤ sup
σ1B⊂Ω

C1|B|−1/s−α/n|B|1+1/n‖du‖s,σ2B

≤ C1 sup
σ1B⊂Ω

|B|1+1/n−1/s−α/n‖du‖s,σ2B (3.21)
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Observe that du is a solution for the A-harmonic equation since du is a closed
form. Then, for any real number s > 0, using Lemma 3.3 yields that

‖du‖s,σ2B ≤ C2|B|1/s−1/p‖du‖p,σ3B. (3.22)

where σ3 > σ2 > 1. Under the assumption, we know that u satisfies the
Caccippoli inequality (3.4). Especially, choosing c = uB in (3.4) follows

‖du‖p,σ3B ≤ C3|B|−1/n‖u− uB‖p,σ4B (3.23)

for some constant σ4 > σ3 > 1 with any ball σ3B ⊂ σ4B ⊂ Ω . Moreover,
combining (3.22) and (3.23) gives

‖du‖s,σ2B ≤ C4|B|1/s−1/n−1/p‖u− uB‖p,σ4B (3.24)

So, substituting (3.24) into (3.21), together with Definition 1.1, yields that

‖DkGk(u)‖locLips
α(Ω) ≤ C5 sup

σ1B⊂Ω
|B|1+1/n−1/s−α/n|B|1/s−1/n−1/p‖u−uB‖p,σ4B

≤ C5 sup
σ1B⊂Ω

|B|1−1/p−α/n‖u− uB‖p,σ4B

≤ C5 sup
σ1B⊂Ω

|Ω|1−α/n|B|−1/p‖u− uB‖p,σ4B

≤ C6 sup
σ1B⊂Ω

|B|−1/p‖u− uB‖p,σ4B

≤ C6‖u‖∗,p,Ω, (3.25)

where the constants σ1 > σ4 > 1. Therefore, we have that (3.19) holds for any
even integer k > 1 and any real number s > 0.

The proof of (3.20) is similar to that of (3.19). Next, we only present the
different steps.

(ii) For every conjugate A-harmonic tensor v ∈ W 1,q (Ω,Λ), employing the same
treatment used in the proof of (3.19), along with (2.18), we have that

‖DkGk(v)‖locLips
β (Ω) ≤ C7 sup

η1B⊂Ω
|B|1+1/n−1/s−β/n‖d�v‖s,η2B. (3.26)

According to the isometric property of the Hodge-star operator �, we know that
|d�v| = |d�v|. Notice that d�v is a closed form satisfying A-harmonic equation.
So, for any real number s > 0, using Lemma 3.3 again, we derive that

‖d�v‖s,η2B = ‖d � v‖s,η2B ≤ C8|B|1/s−1/q‖d � v‖q,η3B (3.27)
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Also, by the comments after Definition 3.1, it implies that �v is a solution to
the A-harmonic equation (3.3). Then, by Lemma 3.2, letting c� = (�v)B shows
that

‖d � v‖q,η3B ≤ C9|η3B|−1/n‖ � v − (�v)B‖q,η4B. (3.28)

So, combining (3.27) with (3.28) and plugging it into (3.26), we have that

‖Dk+1Gk(v)‖locLips
β (Ω) ≤ sup

η1B⊂Ω
|B|1+1/n−1/s−β/n‖d�v‖s,η2B

≤ sup
η1B⊂Ω

C10|B|1+1/n−1/s−β/n|B|1/s−1/q−1/n

‖ � v − (�v)B‖q,η4B

≤ sup
η1B⊂Ω

C10|Ω|1−β/n|B|−1/q‖ � v − (�v)B‖q,η4B

≤ C11 sup
η1B⊂Ω

|B|−1/q‖ � v − (�v)B‖q,η4B

= C11‖ � v‖∗,q,Ω (3.29)

as desired, where the constants η1 > η4 > η3 > η2 > 1.
��

Now, in the odd case k = 2m + 1, we have the similar estimates as follows. It
should be pointed out that the proof of Theorem 3.8 is the analogue of Theorem 3.7,
so we only state the results and leave the proof of the odd case k > 1 to the readers.

Theorem 3.8 Let u ∈ W 1,p(Ω,Λ) and v ∈ W 1,q (Ω,Λ), 1 < p, q < ∞ with
1/p+ 1/q = 1, be the conjugate A-harmonic tensors satisfying the Equation (3.1),
D be the Hodge-Dirac operator and G be Green’s operator. Then, for every odd
integer k = 2m + 1 and any real number s > 0, m = 1, 2, · · · , there are two
constants C1, C2 > 0, independent of u and v, such that

‖DkGk(v)‖∗,s,Ω ≤ C1‖DkGk(v)‖locLips
β (Ω) ≤ C2‖ � v‖∗,q,Ω, (3.30)

‖Dk+1Gk(u)‖∗,s,Ω ≤ C1‖Dk+1Gk(u)‖locLips
α(Ω) ≤ C2‖u‖∗,p,Ω, (3.31)

where 0 < α, β ≤ 1 are the expansion factors.

In particular, if p(α − 1) = q(η − 1), as a consequence of Theorem 3.7 and 3.8,
the following estimates are established simply by means of Theorem 6.6 in [10]. It
is worth to notice that the treatment applied in Corollary 3.9 and Corollary 3.10 are
very similar, so we only give the complete proof of Corollary 3.9 in details.

Corollary 3.9 Let u ∈ W 1,p(Ω,Λ) and v ∈ W 1,q (Ω,Λ), 1 < p, q < ∞ with
1/p+ 1/q = 1, be the conjugate A-harmonic tensors satisfying the Equation (3.1),
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D be the Dirac operator and G be the Green’s operator. If 0 < α, β ≤ 1 satisfy
p(α−1) = q(β−1), for any real s > 0, then there exist two constants C1, C2 > 0,
independent of u and v, such that

‖DkGk(u)‖∗,s,Ω ≤ C1‖DkGk(u)‖locLips
α(Ω) ≤ C2‖ � v‖q/p

locLip
q
β(Ω)

, (3.32)

‖Dk+1Gk(v)‖∗,s,Ω ≤ C1‖Dk+1Gk(v)‖locLips
β (Ω) ≤ C2‖u‖p/q

locLip
p
α (Ω)

, (3.33)

whenever k = 2m, m = 1, 2, · · · .
Proof First, combining (1.5) and Theorem 6.6 in [10], we have

‖u‖∗,s,Ω ≤ C1‖u‖locLips
α(Ω) ≤ C2‖ � v‖q/p

locLip
q
β(Ω)

, (3.34)

‖ � v‖BMO,Ω ≤ C3‖ � v‖locLipβ(Ω) ≤ C4‖u‖p/qlocLipα(Ω). (3.35)

Then, substituting (3.34) into (3.19) and (3.35) into (3.20), respectively, it yields
that

‖DkGk(u)‖∗,s,Ω ≤ C5‖DkGk(u)‖locLips
α(Ω) ≤ C6‖ � v‖q/p

locLip
q
β(Ω)

,

‖Dk+1Gk(v)‖∗,s,Ω ≤ C7‖Dk+1Gk(v)‖locLips
β (Ω) ≤ C8‖u‖p/q

locLip
p
α (Ω)

as desired. ��
Corollary 3.10 Suppose that 0 < α, β ≤ 1 satisfy p(α − 1) = q(β − 1), for any
real number s > 0, then there exist two constants C1, C2 > 0, independent of u and
v, such that

‖DkGk(v)‖∗,s,Ω ≤ C1‖DkGk(v)‖locLips
β (Ω) ≤ C2‖u‖p/q

locLip
p
α (Ω)

, (3.36)

‖Dk+1Gk(u)‖∗,s,Ω ≤ C1‖Dk+1Gk(u)‖locLips
α(Ω) ≤ C2‖ � v‖q/p

locLip
q
β(Ω)

, (3.37)

whenever k = 2m+ 1, m = 1, 2, · · · .
What is more, for each pair of conjugate A-harmonic tensors u and v, in accord

to the facts that |du|p ≤ |d�v|q ≤ a
q

1 |du|p and |d�v| = |d � v|, one may easily
establish such a useful Lp-equivalence with respect to u and v as follows:

‖du‖p,Ω ′ ≤ ‖d � v‖q/p
q,Ω ′ ≤ a

q/p

1 ‖du‖p,Ω ′ , (3.38)

whenever Ω ′ ⊂ Ω , where 1 < p, q < ∞ are the conjugate Hölder exponents. In
view of the equivalence (3.38), if u and v are the conjugate A-harmonic tensors,
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it further reveals the relations (3.39)–(3.42) below. Namely, when k is any positive
even integer, there exist two constants C1, C2 > 0, independent of u and v, such
that

‖DkGk(u)‖∗,s,Ω ≤ C1‖DkGk(u)‖locLips
α(Ω) ≤ C2‖d � v‖q/pq,Ω, (3.39)

‖Dk+1Gk(v)‖∗,s,Ω ≤ C1‖Dk+1Gk(v)‖locLips
β (Ω) ≤ C2‖du‖p/qp,Ω. (3.40)

for any real number s > 0. As such, when k > 1 is any odd integer, there also exist
two constants C1, C2 > 0, independent of u and v, such that

‖DkGk(v)‖∗,s,Ω ≤ C1‖DkGk(v)‖locLips
β (Ω) ≤ C2‖du‖p/qp,Ω, (3.41)

‖Dk+1Gk(u)‖∗,s,Ω ≤ C1‖Dk+1Gk(u)‖locLips
α(Ω) ≤ C2‖d � v‖q/pq,Ω. (3.42)

It should be pointed out that the proof of the above assertions are parallel to the
those of Theorem 3.7. Therefore, we omit the details.

4 Applications

In this section, we use some concrete examples to illustrate the applications of the
main results obtained in Section 3.

Let the mapping f : Ω → Rn, f = (f 1, · · · , f n), be of Sobolev class
W

1,p
loc (Ω,Λ) and J (x, f ) = det (Df (x)) be the Jacobian determinant of f . Then,

we have that

u = J (xi1 , xi2 , · · · , xil ; f j1 , f j2 , · · · , f jl )dxi1 ∧ dxi2 ∧ · · · ∧ dxil , (4.1)

is a differential l-form, where J (xi1 , xi2 , · · · , xil ; f j1 , f j2 , · · · , f jl ) is the subde-
terminant of J (x, f ) of the form:

J (xi1 , xi2 , · · · , xil ; f j1 , f j2 , · · · , f jl ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

f
j1
xi1

f
j1
xi2
· · · f j1

xil

f
j2
xi1

f
j2
xi2
· · · f j2

xil

· · · · · · · · · · · ·
f
jl
xi1

f
jl
xi2
· · · f jl

xil

∣
∣
∣
∣
∣
∣
∣
∣
∣

Referring to Chapter 1 in [2], we find that Theorem 3.5 and Theorem 3.6 are
applicable to such sort of the differential form u. Here, take a special case of 2-
dimensional Euclidean space for instance.
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Example 4.1 Assume that u = J (x, y; f 1, f 2)dx ∧ dy is the differential 2-form
defined on the domain Ω = {(x, y) ∈ R2 : 0 < x2 + y2 < r2}, where the mapping
f : Ω → R2 is of the Sobolev class W 1,p

loc (Ω,Λ) denoted by

f (x, y) = (f 1(x, y), f 2(x, y)) =
(

x

(x2 + y2)1/8 ,
y

(x2 + y2)1/8

)

(4.2)

for any r > 0 and p > 1. After a simple calculation, one may derive that

u = J (x, y; f 1, f 2)dx ∧ dy = 3

4
(x2 + y2)−1/4dx ∧ dy.

Thus, by the spherical coordinate transformation, it is easy to see that u ∈
Lp(Ω,Λ2) for any p < 4. For example, choosing p = 3/2, we know that
u ∈ L3/2(Ω,Λ2). However, by the direct integral calculation with Definition 1.1
and Definition 1.2, it is quite hard to infer the higher order boundedness of BMOs

norm and locLipsα norm with respect to DkGk(u) and Dk+1Gk(u). Then, applying
Theorem 3.5 to DkGk and Dk+1Gk , for any 0 < s < np/(n− p) = 2·3/2

2−3/2 = 6, we

have that DkGk(u) ∈ BMOs(Ω,Λ2) and Dk+1Gk(u) ∈ BMOs(Ω,Λ2). Moreover,
there are two constants C1, C2 > 0, independent of u, such that

‖DkGk(u)‖∗,s,Ω ≤ C1‖DkGk(u)‖locLips
α(Ω) ≤ C2r

5/4, (4.3)

‖Dk+1Gk(u)‖∗,s,Ω ≤ C1‖Dk+1Gk(u)‖locLips
α(Ω) ≤ C2r

5/4 (4.4)

for every 0 < α ≤ 1 and all positive integer k ≥ 1.

Especially, if the homeomorphism f : Ω → Rn of Sobolev class W 1,n
loc (Ω,Rn),

as mentioned above, is the K-quasiregular mapping, K ≥ 1. From [23], we know
that

u = f ldf 1 ∧ · · · ∧ df l−1 and v = �f l+1df l+2 ∧ · · · ∧ df n

are the conjugate A-harmonic tensors, whenever l = 1, 2, · · · , n−1. Here, consider
the 4-dimensional space as an example.

Example 4.2 Let f = (f 1, f 2, f 3, f 4) be the K-quasiregular mapping defined on
the domain Ω = {(x1, x2, x3, x4) : |xi | < a, i = 1, 2, 3, 4} ⊂ R4, and choose the
conjugate A-harmonic tensors as follows:

u = f 2df 1 and v = �f 3df 4.

where 0 < a < ∞ is some real number. If u ∈ BMOp(Ω,Λ) and �v ∈
BMOq(Ω,Λ), where p and q are conjugate exponents with 1/p + 1/q = 1, by
applying Theorem 3.7 and Theorem 3.8, respectively, we have that for any even
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integer k = 2m and any real number s > 0, m = 1, 2, · · · , there are two constants
C1, C2 > 0, such that

‖DkGk(u)‖∗,s,Ω ≤ C1‖DkGk(u)‖locLips
α(Ω) ≤ C2‖f 2df 1‖∗,p,Ω,

‖Dk+1Gk(v)‖∗,s,Ω ≤ C1‖Dk+1Gk(v)‖locLips
β (Ω) ≤ C2‖f 3df 4‖∗,q,Ω,

where 0 < α, β ≤ 1 are two factors. While the integer k = 2m+ 1, m = 1, 2, · · · ,
it holds that

‖DkGk(v)‖∗,s,Ω ≤ C1‖DkGk(v)‖locLips
β (Ω) ≤ C2‖f 3df 4‖∗,q,Ω,

‖Dk+1Gk(u)‖∗,s,Ω ≤ C1‖Dk+1Gk(u)‖locLips
α(Ω) ≤ C2‖f 2df 1‖∗,p,Ω,

for any real number s > 0, where 0 < α, β ≤ 1 are two factors.

Remark 4 In general, all results we establish here provide us an impressive descrip-
tion about the relation between BMOs norm and locLipsα norm for the iterated
operators. Also, from the results, one may realize that locLipsα-norm estimates for
differential forms are fairly essential for the process to derive the BMOs estimate
with respect to DkGk and Dk+1Gk for differential forms.
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Application of Boundary Perturbations
on Medical Monitoring and Imaging
Techniques
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Abstract We present an overview on the application of boundary perturbations
for Electroencephalography and Magnetoencephalography predominantly for the
spherical geometry. With the mathematical tools produced, both forward and inverse
problems can be tackled providing explicit computationally efficient solutions.
Utilizing perturbation analysis in the framework of medical monitoring and imag-
ing techniques, possesses the advantage introducing geometric variations without
limiting the installation of analytic, or at least semi-analytic solutions, in view
of complicated surfaces. In our example, surfaces which do not allow an analytic
mathematical treatment can be handled if considered as small deviations from the
sphere. In that setting, irregularities in head shapes, e.g. craniofacial alterations can
be investigated theoretically.
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1 Introduction

Medical monitoring techniques such as Electroencephalography (EEG) and func-
tional neuroimaging techniques such as Magnetoencephalography (MEG) provide
the possibility of recognizing brain structures and map cortical activity at its core
functional level. Both consist noninvasive diagnostic techniques, playing a crucial
role in many aspects of today’s clinical research either as the principal investigative
tool or providing supportive evidence. As Ilmoniemi and Näätänen assert (for
MEG) [1] “[. . .] tool to probe into the real-time operation of the human brain in
experimental conditions that are suitable for studying sensory and cognitive brain
functions as well as their disturbances.” As an illustration, EEG is practised in
reporting schizophrenia [2], in detection and analysis of epileptic activity [3], in
the study of language processing [4] and many others. On the other hand, MEG is
used tracing the dynamics and connectivity of large-scale brain activity [5].

The core question of EEG and MEG is to gain insight of the working human
brain by recognizing the precise position and strength of the underlying neuronal
activity. In the case of EEG, measurements are based on the post-synaptic potentials,
which originate in the pyramidal neurons recorded on the scalp [6], whereas
MEG measures oscillatory magnetic fields [7]. The identification of which brain
areas have been activated, based on either EEG or MEG measurements, is termed
the inverse problem or source reconstruction, while the obverse is labeled the
forward problem [8]. Historically, the forward and inverse EEG problems have been
extensively scrutinized since the 1950s when Wilson and Bayley [9] attempted to
quantify the interplay between neuronal activity and the potentials, generated at the
scalp [10, 11]. Similar hold for MEG, since David Cohen first measured magnetic
fields produced by Humans in the late 1960s [12].

From the mathematical point of view, the formulation for the Electroencephalog-
raphy and Magnetoencephalography problems are derived from the quasi-static
theory of electromagnetism [13, 14]. We recall that microscopic currents are largely
approximated by equivalent dipole sources and that an exclusive source configu-
ration for each measurement of either EEG or MEG does not exist, comprising
the corresponding inverse problems ill-posed. Regarding non-uniqueness, Albanese
and Monk [15] demonstrated that the reconstruction of a three-dimensional current
based on EEG measurements is irrealizable and has been practically demonstrated
by Dassios and Fokas [16]. Nevertheless, if the source representing neuronal activity
has dimensionality less than three, the inverse problems at hand admit a unique
solution. The classic example is the dipole approximation of zero dimensionality.
The same is true stipulating that neuronal activity is characterized via continuously
distributed currents in one [17] and two dimensions [18]. Evidently, discarding the
dipole hypothesis, allows the investigation and analysis of complicated activation
patterns in terms of distributed currents.

Another interesting aspect regards the complementarity of EEG and MEG, a
consequence due to sensitivity of EEG and MEG to radial and tangential sources.
The notion of complementarity has been mathematically defined spherical model
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of the brain and a continuously distributed neuronal current, demonstrating that the
information which is missing in EEG data is contained in MEG data and vice versa
[19]. Importantly, it has been proved in [20] that, independent of the geometry, the
inverse EEG problem is not capable of reconstructing more than 1/3 of any neuronal
activity, whereas the inverse MEG problem cannot recover the 2/3 of any brain
activity, including the 1/3 of EEG.

Scope of the paper is to provide an analytic overview on the application of
boundary perturbations for EEG and MEG predominantly for the spherical geome-
try, allowing a systematic presentation of the mathematical complexity associated.
Extensive use is made of special functions and especially spherical harmonics.
Details and technicalities regarding manipulation of formulas involving spherical
harmonics can be found in [21, 22]. Our work is organized as follows: In the next
subsection, we provide a brief discussion on boundary perturbations. In Section 2,
the mathematical formulation of medical monitoring techniques are presented and
the influence of geometric variations on the forward as well as inverse problem to
EEG and MEG are studied. Finally, in Section 3, two specific examples are provided
for the obtained solutions of both EEG and MEG, while in Section 4 we discuss our
results and conclude.

1.1 Boundary Perturbations. A Short Introduction

Consider the action of the operator L (τ ) on a function w(τ ) within a suitable
domain Ω, such that

(Lw) (τ ) = φ(τ ), τ ∈ Ω, (1)

where φ(τ ) is the outcome of the operation. In the setting of Boundary Value Prob-
lems (BVPs) the latter must be accompanied by appropriate boundary conditions,
namely

(Bw) (τ ) = ψ(τ ), τ ∈ ∂Ω. (2)

In above setting everything is known except w(τ ). For a variety of reasons, closed
form solutions to BVP (1) and (2) in its present form are not feasible. The operator
L (τ ) may be linear but of high dimensions or even worst, non-linear. On the
other hand, for complex boundaries even simple linear operators do not possess
eigenfunctions.

We approach BVP (1) and (2) by substituting Ω and its boundary by an auxiliary
domain D and boundary ∂D such that (1) and (2) can be solved in terms of the
corresponding eigenfunctions of the operator in question, which we consider to be
linear for simplicity. In order to proceed, a connection between boundaries has to
established. To this end, any point τ lying on ∂Ω can be written as the sum of
the position vector r plus their difference, measuring the deviation between the so-



104 M. Doschoris et al.

called perturbed boundary ∂Ω and the corresponding unperturbed ∂D. Denoting by
f (r̂) the aforementioned difference and introducing a scaling factor ε, we have that

τ̂ = r̂+ εf (r̂). (3)

Note that for ε to be dimensionless, unit vectors have to be introduced. The initial
BVP now reads as

(Lw) (r, ε) = φ(r, ε), r ∈ D, (4)

(Bw) (r, ε) = ψ(r, ε), r ∈ ∂D, (5)

from which it is clear that any perturbation of the boundary is transferred
onto terms involving powers of ε. In general, perturbations affect the functions
w(τ ), φ(τ ), ψ(τ ) involved, as well as the operators L and B. However, if the
operator L describes the physical properties of the problem it remains unaltered.
The sought perturbation terms are evaluated by expanding involved quantities in
powers of ε, given that the perturbation parameter ε is considered small and the
coefficients of the expansion are independent of ε. These coefficients, on the other
hand, are evaluated solving specific expressions, produced after substituting the
expansions into (1), (2) and collecting coefficients of ε.

For example, replacing the Poincaré type expansion h(r, ε) = ∑∞
n=0 ε

nhn(r),
where h represents any of the functions of interest, into (1) and (2), respectively,
gives

∞∑

n=0

εnLwn(r) =
∞∑

n=0

εnφn(r), r ∈ D (6)

and

∞∑

n=0

εn
n∑

i=0

(Bnwn−i ) (r) =
∞∑

n=0

εnψn(r), r ∈ ∂D, (7)

respectively, the latter indicating the Cauchy product of
(∑∞

n=0 ε
nBn(r)

) (∑∞
n=0

εnwn(r)) .
Collecting now coefficients of ε, furnishes the BVPs which have to be solved,

e.g.

(Lw0) (r) = φ0(r), r ∈ D, (B0w0) (r) = ψ0(r), r ∈ ∂D,

(8)

(Lw1) (r) = φ1(r), r ∈ D, (B0w1 +B1w0) (r) = ψ1(r), r ∈ ∂D,

(9)

(Lw2) (r) = φ2(r), r ∈ D, (B0w2 +B1w1 +B2w0) (r) = ψ2(r), r ∈ ∂D,

(10)

. . . . . .
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providing, the unperturbed instance (n = 0) (8), the first (9) and second (10)
correction and so on. It is evident that for each correction, the solution to the
previous one must be obtained in order to proceed. Further details can be found
in [23, 24].

2 Mathematical Formulation of Medical Monitoring
Techniques. Electroencephalography and
Magnetoencephalography

Consider a homogeneous conductor modeling the brain denoted by Ω ⊂ R
3 and let

∂Ω be its boundary. Let the exterior, not conductive, to the brain region denoted
by Ωc. The activity of the brain, represented by a neuronal current Jp, can be
recorded either as electrical impulses along the surface (EEG), or measuring the
magnetic fields generated by Jp, the neuronal current a few centimeters above the
surface (MEG). The basic assumption is that neuronal current Jp is represented
either as a discrete or as a continuous distribution of dipoles with specified
moments Q.

In 1967, Plonsey and Heppner [13] illustrated that the electromagnetic activity
of the brain is governed by the quasi-static theory of Maxwell’s equations, namely

∇ × E = 0, (11)

∇ × B = μ0(Jp + σ E), (12)

∇ · B = 0, (13)

where E and B denote the electric and magnetic field, respectively, corresponding
to the neuronal current Jp, σ is the conductivity of the medium occupying Ω and
μ0 is the magnetic permeability, assumed constant everywhere in R

3 and equal to
the magnetic permeability of the free space. After some straightforward calculations
(for details see [25]) one can show that, if the medium is homogeneous, the electric
potential U, introduced as E = −∇ U, is related to the primary current Jp by
Poisson’s equation

ΔU = 1

σ
∇ · Jp. (14)

Similar, in the current free, non-conductive domain Ωc the magnetic field, due
to (13), can be represented as a gradient of a harmonic function, namely

B(τ , r0) = μ0

4π
∇W(τ , r0), (15)

where W(τ , r0) denotes the scalar magnetic potential, vanishing at infinity.
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Another way is connected to Geselowitz’s integral formula [26], which is
geometry independent, but relies on knowledge of the electrical potential U

B(τ ; r0) = μ0

4π
Q(r0)× τ − r0

|τ − r0|3 −
μ0σ

4π

∫

Ω

∇r′U(r′; r0)× τ − r′

|τ − r′|3 dυ(r′).

(16)

Since

∇r0

1

|τ − r0| = −∇τ
1

|τ − r0| =
τ − r0

|τ − r0|3 , (17)

(16) becomes

B(τ ; r0) = μ0

4π
Q(r0)×∇r0

1

|τ − r0| −
μ0σ

4π

∫

Ω

∇r′U(r′; r0)×∇r′
1

|τ − r′|dυ(r
′).

(18)

In view of the identity

∫

Ω

(∇f )× (∇g) dυ =
∫

Ω

∇ × (f ∇g) dυ =
∮

∂Ω

ν̂ × f ∇g dS, (19)

the integral on the RHS of equation (18) simplifies as

∫

Ω

∇r′U(r′; r0)×∇r′
1

|τ − r′|dυ(r
′) =

∫

Ω

∇r′ ×
(

U(r′; r0)∇r′
1

|τ − r′|
)

dυ(r′)

(20)

=
∮

∂Ω

U(r′; r0)ν̂ × τ − r′

|τ − r′|3 dS(r̂′).

(21)

2.1 The Influence of Geometric Variations on the Forward
Problem

2.1.1 EEG

Adopt that the neuronal current is represented by a single equivalent dipole at
the point r0 with moment Q, which is sufficient when modeling smaller cortical
neuronal sources [27]. Then, the primary current can be represented as Jp =
Qδ(τ − r0), δ(r) denoting the Dirac measure. Equation (14) then simplifies as
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Δτ U(τ , r0) = 1

σ
Q(r0) · ∇τ δ(τ − r0), τ ∈ Ω, (22)

accompanied by the condition

ν̂ · ∇τ U(τ , r0) = 0, τ ∈ ∂Ω, (23)

where ν̂ denotes the unit vector normal to the boundary. The solution to BVP (22)
and (23) is

U(τ ; r0) = 1

4πσ

(
Q · ∇r0

)
(

1

|τ − r0| + u(τ ; r0)

)

, (24)

where − 1
4π |τ − r0|−1 is the fundamental solution and u(τ ; r0) is known as we will

see shortly.
Due to the arbitrary shape of the boundary, arriving at analytic solutions for the

problems (22) and (23) is in general not feasible. Notwithstanding, introducing an
auxiliary boundary ∂D say, in the shape of a sphere of radius R, it is possible to
transform (22) and (23) to approximate problems with reference to the specific
symmetrical case. Following the steps outlined in Section 1.1, we connect the
boundaries as

τ = Rr̂+ ε f (r̂) (25)

with f (r̂) explicitly carrying units of [L]. The corresponding electric potentials are
then straightforwardly computed by replacing

U(τ ) =
∞∑

n=0

εn Un(r) , (26)

into expression (22). After collecting coefficients of ε we obtain

σΔr U0(r, r0) = Q · ∇r δ(r− r0), r ∈ D, (27)

Δr Un(r, r0) = 0, n ≥ 1 r ∈ D. (28)

In order to identify the implication of the deformed boundary on the solution
process, expansion (26) is assumed to be valid all the way to the boundary. The
Neumann condition (23) now reads

τ 2 ∂U(τ )

∂τ
− ∂τ

∂θ

∂U(τ )

∂θ
− 1

sin2 θ

∂τ

∂φ

∂U(τ )

∂φ
= 0, (29)

combined with expressions (25), (26) and bearing in mind that ∂r f = 0, gives rise
to the system
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r̂ · ∇Un(Rr̂, r0) =
n−1∑

k=0

(−1)k(k + 1)

(
f

R

)k (
∇ f · ∇Un−k−1(Rr̂, r0)

)
, (30)

the latter holding for every n, where by convention
∑−1

n=0 = 0.
The electric potential of a deformed spherical conductor due to a single dipole

excitation can be presented in terms of spherical harmonics as

U(τ , r0) =
∞∑

k=1

k∑

�=−k
B�

k(τ, r0,Q)Y�
k(τ̂ ), τ ∈ Ω. (31)

In a similar fashion, each nth-order correction specified by relation (26) is given by

Un(r, r0) =
∞∑

k=1

k∑

�=−k
A�

n,k(r, r0,Q)Y�
k(r̂), r ∈ D. (32)

Combining relations (26) and (32) yields

B�
k(r, r0,Q; ε) =

∞∑

n=0

εnA�
n,k(r, r0,Q) . (33)

The electric potential in regard to the spherical conductor D ⊂ R
3 is then

provided via the zeroth-order correction (32), a solution to (27) together with
∂r U0(Rr̂, r0) = 0. It is not hard to show that on the surface of the non-deformed
conductor we have

A�
0,k(R, r0,Q) = Q

kσRk+1 · ∇r0 r
k
0 Y

�

k(r̂0), (34)

where Y represent the spherical harmonics and an over-line denotes complex
conjugation and we made use of the fact that in spherical coordinates the function
U in (24) enjoys the expansion

U(r; r0) = 4π
∞∑

n=1

n∑

m=−n

n+ 1

n(2n+ 1)

rnrn0

R2n+1 Ym
n (r̂)Y

m

n (r̂0). (35)

Conveniently, in conjecture with the generating function

1

|r− r0| =
∞∑

n=0

n∑

m=−n

4π

2n+ 1

rn0

rn+1 Ym
n (r̂)Y

m

n (r̂0), (36)
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it is possible to express the surface potential U0 in closed form (see [28] for details)
as

U0(Rr̂, r0) = Q
4πσ

·
(

2
Rr̂− r0

|Rr̂− r0|3 +
1

R|Rr̂− r0|
|Rr̂− r0|r̂+ (Rr̂− r0)

|Rr̂− r0| + r̂ · (Rr̂− r0)

)

.

(37)

On the other hand, the first-order correction U1 is derived as the solution to (28)
for n = 1 joint by (30), namely

R2 ∂U1(Rr̂, r0)

∂r
= ∂ f (r̂)

∂θ

∂ U0(Rr̂, r0)

∂θ
+ 1

sin2 θ

∂ f (r̂)
∂φ

∂ U0(Rr̂, r0)

∂φ
. (38)

Replacing into the latter the expressions for U0 and U1 through (32) and integrating
the resulting relation over the unit ball, determines the coefficients A�

1,k(R, r0,Q)

as

A�
1,k =

1

kR

∞∑

n=1

n∑

m=−n
Am

0,n

{∮

S2

[
1

sin θ

∂f

∂θ

(
n jmn+1 Ym

n+1(r̂)− (n+ 1) jmn Ym
n−1(r̂)

)

+ ı̇
m

sin2 θ

∂f

∂φ
Ym

n (r̂)
]

Y�
k(r̂)dS(r̂)

}

, (39)

where the coefficients Am
0,n are given by (34) and we further employed the

recurrence relations

sin θ
∂

∂θ
Ym

n (r̂) = n jmn+1 Ym
n+1(r̂)− (n+ 1) jmn Ym

n−1(r̂), jmn =
√

n2 −m2

4n2 − 1
,

(40)

∂

∂φ
Ym

n (r̂) = ı̇mYm
n (r̂). (41)

By the fact that the geometry is fixed and parameters corresponding to the geometry
of choice (here the radius R) and medium (here the conductivity σ ) are known,
the surface potential U0 is calculated via (37), which leads to knowledge of the
coefficients A�

0,k through (32) for n = 0, since

A�
0,k =

∮

S2

U0(Rr̂, r0)Y
�

k(r̂) dS(r̂) . (42)

After an approximate function f (r̂) has been derived capable to fit the perturbed
surface, the coefficients A�

n,k corresponding to the nth-order correction (n ≥ 1) are
computed as demonstrated above. Subsequently, either the corresponding potentials
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Un, n ≥ 1 via (32) or the coefficients (33) are estimated, leading to the perturbed
surface potential U(τ ).

The electric potential due to a dipolar source can be represented by Geselowitz’s
integral representation [29]

U(r) = 1

4πσ
Q · r− r0

|r− r0|3 −
1

4π

∮

S2
U(τ )ν̂ · r− τ

|r− τ |3 dS(τ̂ ), r /∈ S, (43)

where r is the point of observation (measurement site). In the case of a spherical
conductor of radius R, the integral becomes

U(r) = 1

4πσ
Q · r− r0

|r− r0|3 −
R2

4π

∮

∂D

U(r′) r̂′ · r− R

|r− Rr̂′|3 dΩ(r̂′), r /∈ S, (44)

where Ω denotes the solid angle. The latter is a Fredholm integral equation of the
second kind and can be solved accordingly. By expanding all relevant expressions
in (43) an integral representation for the perturbed instance is obtained leading again
to Fredholm equations of the second kind for both the zeroth U0 and first order
correction U1. This scenario will be presented elsewhere.

2.1.2 MEG

From (13) and (15) it is evident that the scalar magnetic potential W is harmonic
and can be expanded as

W(r; r0) =
∞∑

n=1

n∑

m=−n
Cm

n

Ym
n (r̂)
rn+1 , (45)

where

Cm
n =

4π

(n+ 1)(2n+ 1)
(Q× r0) · ∇r0rn0Y

m

n (r̂0), (46)

or

Cm
n

rn+1 =
∮

S2
W(r; r0)Y

m

n (r̂0)dS(r̂). (47)

Clearly, knowledge of W provides the values of Cm
n via (47) and thus the solution

to the forward MEG problem.
The scalar magnetic potential W introduced in (15) can be computed, using

integration along a ray from r to infinity as

W(r; r0) = −4π

μ0

∫ +∞

r

τ̂ · B(τ ; r0)dτ, (48)
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which, combined with expression

r̂ · B(r; r0) = −μ0

4π
Q× r0 · r̂

|r− r0|3 , (49)

becomes

W(r; r0) = Q× r0 · r̂
∫ +∞

r

dτ

|τ τ̂ − r0|3 . (50)

Performing straightforward calculations (details are provided in [28]) the magnetic
potential assumes the form

W(r; r0) = Q · r̂× P̂

P(1+ r̂ · P̂) , P = r− r0, (51)

implying that

B(r; r0) = μ0

4π

Q× (r− P)

rP 2(1+ r̂ · P̂) −
μ0

4π

U(r; r0)

P

[

P̂+ r − P

r(1+ r̂ · P̂) (r̂− P̂)
]

.

(52)

Based on Geselowitz’s formula (16), the magnetic field can also be computed as

B(r; r0) = μ0

4π
Q(r0)×∇r0

1

|r− r0| −
μ0

(4π)2

(
Q · ∇r0

)
K(r; r0), (53)

where

K(r; r0) =
∮

∂D

(
1

|r′ − r0| +
∞∑

n=1

n∑

m=−n
4π

n+ 1

n(2n+ 1)

rnrn0

R2n+1 Y
m

n (r̂)Y
m
n (r̂0)

)

r′

×∇r′
1

|r− r′|ds(r
′).

(54)

It can be shown that the magnetic field B for the perturbed sphere equals [30]

B(τ ; r0) =
∞∑

n=0

εnBn(r; r0)

=μ0

4π
Q× r− r0

|r− r0|3 −
μ0σ

4π

∮

∂D

α0(r̂, r) U0(Rr̂, r)
dΩ(r̂)
|r− Rr̂|3



112 M. Doschoris et al.

− ε
μ0σ

4π

∮

∂D

(
α0(r̂, r) U1(Rr̂, r)+ α1(r̂, r) U0(Rr̂, r)

) dΩ(r̂)
|r− Rr̂|3

+ O(ε2), (55)

given that

α0(r̂, r) =R2(r̂× r), (56)

α1(r̂, r) =
[
2|r− Rr̂|2 − 3R(R − r · r̂)

] f (r̂)α0(r̂, r)
R|r− Rr̂|2 − R∇ f (r̂)× (r− Rr̂).

(57)

2.2 The Influence of Geometric Variations on the Inversion
Algorithm

2.2.1 EEG

In order to pinpoint the position r0 = (
x01 x02 x03

)�
and moment Q =

(
Q1 Q2 Q3

)�
of the dipole, six equations are required in general. These relations

are acquired based on formulas translating the spherical harmonics into Cartesian
form (for example [21, pp. 155–156]). In the unperturbed case the position and
moment of the equivalent dipole are expressed through (34) for k up to two as

r0 = R√
5

(
A−2

0,2

A−1
0,1

− A2
0,2

A1
0,1

−ı̇
(
A−2

0,2

A−1
0,1

+ A2
0,2

A1
0,1

)
1

A±1
0,1

(

2A±1
0,2 −

√
2
A0

0,1A
±2
0,2

A±1
0,1

))�

(58)

and

Q = σ R2
√

π

3

(√
2
(
A−1

0,1 −A1
0,1

)
−ı̇√2

(
A−1

0,1 +A1
0,1

)
2A0

0,1

)�
, (59)

respectively.
In order to analyze the effect of perturbations on the inversion algorithm, our

starting point is boundary condition (38). Substituting the matching potentials
from (32) and expanding the known function f (r̂) in terms of conjugate spherical
harmonics

f (r̂) =
∞∑

p=0

p∑

q=−p
C

q

p Y
q

p(r̂) (60)
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we obtain

∞∑

k=1

k∑

�=−k
k Rk+1 A�

1,k Y�
k(r̂) =

∞∑

k=1

k∑

�=−k

∞∑

p=0

p∑

q=−p
A�

0,kC
q

p

(
∂Y

q

p(r̂)

∂θ

∂Y�
k(r̂)

∂θ

+ �q

sin2 θ
Y

q

p(r̂)Y
�
k(r̂)

)

.

(61)

Integrating above first with respect to φ ∈ (0, 2π ] and then with respect to θ ∈
[0, π ] and having in mind that

∫ 1

−1

(

(1− x2)
dPm

n (x)

dx

dP�
k(x)

dx
+m2 Pm

n (x)P�
k(x)

1− x2

)

dx = 2n(n+ 1)

2n+ 1

(n+m)!
(n−m)! δn,k ,

(62)

where we make use of the Kronecker symbol δn,n = 1, else 0, yields

∞∑

k=1

k∑

�=−k

k(k + 1)

Rk+1

(
Q · ∇r0r

k
0 Y

�

k(r̂0)
)
C

�

k = 0 , (63)

providing a criterion for the solvability of the BVP at hand. A crucial aspect
is the fact that due to relation (63), which is an immediate consequence of
the compatibility condition regarding the Neumann problem for the first-order
correction, a restriction between the surface deformation f (r̂), the dipole’s position
r0 and moment Q is imposed. The fine points will be demonstrated in the Example
section.

2.2.2 MEG

As aforementioned, the key in calculating the sought position and moments of the
dipole is to translate the spherical harmonics in Cartesian coordinates. For example,
in the unperturbed case the coefficients are given by (46) and for k = 2 and � = 0
we have

C0
2=

4π

15
(Q× r0) · ∇r0r2

0Y
0
2(r̂0)=2π

15

√
5

π
(Q× r0) ·

(−x01x̂1 − x02x̂2 + 2x03x̂3
)
.

(64)

Repeating the procedure and after some algebra, we obtain the following 3 × 3
system
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⎛

⎝
C1

1 − C−1
1 ı̇(C1

1 + C−1
1 ) 2

√
2C0

1
0 ı̇

√
2C0

1 C1
1 + C−1

1
−√2C0

1 0 C−1
1 − C1

1

⎞

⎠

⎛

⎝
x01

x02

x03

⎞

⎠ =

⎛

⎜
⎜
⎝

√
15
2 C0

2√
5

2 C−1
2 + C1

2√
5

2 C−1
2 − C1

2

⎞

⎟
⎟
⎠ , (65)

from which we can pinpoint the source r0 =
(
x01 x02 x03

)�
. On the other hand,

using higher-order coefficients, we obtain r0 in an easier fashion as

r0 =
√

5

4

(
C−2

2

C−1
1

− C2
2

C1
1

−ı̇
(
C−2

2

C−1
1

+ C2
2

C1
1

) √
3
C0

2

C0
1

− 1√
2

(
C−2

2 C1
1

C−1
1 C0

1

+ C2
2C
−1
1

C1
1C

0
1

))�
.

(66)

Clearly, equating the relations for x0i , i = 1, 2, 3, uniqueness conditions emerge as
we will see shortly. Similar, by properly rearranging coefficients and by the fact that

Q× r0 = î(x03Q2 − x02Q3)− ĵ(x03Q1 − x01Q3)+ k̂(x02Q1 − x01Q2), (67)

we find for the moments

⎛

⎝
0 x03 −x02

−x03 0 x01

x02 −x01 0

⎞

⎠

⎛

⎝
Q1

Q2

Q3

⎞

⎠ =

⎛

⎜
⎜
⎜
⎝

√
3

2π

(
C−1

1 − C1
1

)

−ı̇
√

3
2π

(
C−1

1 + C1
1

)

√
3
π
C0

1

⎞

⎟
⎟
⎟
⎠

. (68)

However, the determinant of the latter vanishes and thus more information is needed.
Before we proceed calculating the moments of the dipole, we note that if C0

1 = 0
and one of C±1

1 = 0, results in Q× r0 = 0. In the presence of neuronal activity the
latter implies Q is parallel to r0, i.e. the moment Q is always radial in the spherical
coordinate system. This leads to that all radial dipoles inside a homogeneous sphere
are not visible by MEG and localization of the dipole r0,Q is restrained finding the
position r0 as well as the tangential components Qθ0 and Qφ0 as Q = Qr0 r̂0 +
Qθ0 θ̂0 +Qφ0

φ̂0. Following the same procedure, we have

Qθ0 =
√

3

2π

C−1
1 − C1

1

r0 sinφ0
+

√
3

π

C0
1

r0 tan θ0 tanφ0
, (69)

Qφ0
= −

√
3

π

C0
1

r0 sin θ0
. (70)

Moreover, employing a different combination of coefficients would lead, for
example, to

Qθ0 = −
√

3

π

tanφ0

r0 tan θ0
C0

1 − ı̇

√
3

2π

1

r0 cosφ0
(C−1

1 + C1
1). (71)
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Evidently, above relations regarding Qθ0 must coincide and by equating them we
obtain

ı̇√
2

(
e−ı̇φ0C−1

1 + eı̇φ0C1
1

)
= − 1

tan θ0
C0

1. (72)

namely the condition for Qθ0 and Qφ0
to be unique and is consistent with the

system (68). Additional details can be found in [31].
In the perturbed case the scalar magnetic potential can be express as

W(τ ) =
∞∑

n=0

εnWn(r) (73)

and expanding both W(τ ) and Wn(r) as in (45), gives

D�
k(τ , r0,Q; ε) =

∞∑

n=0

εnE�
n,k(r, r0,Q), E�

0,k(r, r0,Q) = C�
k(r, r0,Q). (74)

The coefficients E�
n,k are computed with the aid of (48) by properly expanding the

inner product r̂′ · B(r̂′, r0), yielding

W(r, r0; ε) =
∫ +∞

r

Q× r0 · r̂′
|r′ − r0|3 dr ′

+ εσR2
∫ +∞

r

[∮

∂D

U1(v)
r̂′ · ∇f × v̂
|r′ − Rv̂|3 dΩ(v̂)

]

dr ′. (75)

By the fact that

∇v
1

|r ′r̂′ − v| =
r ′r̂′ − v
|r ′r̂′ − v|3 , v = vv̂ (76)

and

∫ ∞

r

1

|r ′r̂′ − v|
dr ′

r ′
=

∞∑

k=0

k∑

�=−k

4

(k + 1)(2k + 1)

vk

rk+1 Y�
k(r̂

′)Y�

k(v̂), (77)

the first order coefficients, in view of (40) and (41), are

E�
1,k =

4πσRk+1

(k + 1)(2k + 1)

∞∑

p=1

p∑

q=−p
B

q
p

∮

∂D

[
∂f

∂φ

1

sin θ

(
k j�k+1 Y

�

k+1(r̂)Y
q
p(r̂)

− (k + 1) j�k Y
�

k−1(r̂)Y
q
p(r̂)

)+ ı̇k
∂f

∂θ
Y

�

k(r̂)Y
q
p(r̂)

]

dθdφ (78)
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where Bq
p are the coefficients corresponding to the surface electric potential and are

given by (33). The coefficients E�
0,k for the unperturbed case are given by (47).

The analysis so far holds for a single dipole located at r0. Following Fokas [32],
let us assume that the neuronal activity is distributed inside the spherical brain as Jp

at r0. This instance is analyzed replacing Q(r0) by
∫
D

Jp(r0)dυ(r0) in Geselowitz’s
formula (53), i.e.

4π

μ0
B(r; r0)=

∫

D

Jp(r0)×∇r0

1

|r−r0|dυ(r0)− 1

4π

∫

D

Jp(r0) · ∇r0 K(r; r0)dυ(r0).

(79)

Although the analysis is presented in [32], we will reproduce part of it providing all
necessary details in order to facilitate the transition to the perturbed case. Utilizing
the identities ∇×(f g) = ∇f ×g+f∇×g and ∇ ·(f⊗g) = (∇ ·f)⊗g+f·∇⊗g, ⊗
denoting the tensor product, gives

Jp(r0)×∇r0

1

|r− r0| =
1

|r− r0|∇r0 × Jp(r0)−∇r0 ×
Jp(r0)

|r− r0| (80)

and

∇r0 · (Jp(r0)⊗K(r; r0)) = (∇r0 · Jp(r0))⊗K(r; r0)+ Jp(r0) · ∇r0 ⊗K(r; r0).

(81)

Replacing (80) and (81) into (79) yields
∫

D

Jp(r0)×∇r0

1

|r− r0|dυ(r0) =
∫

D

(∇r0 × Jp(r0)
) 1

|r− r0|dυ(r0), (82)

since, according to (19)
∫

D

∇r0 ×
(

1

|r− r0|J
p(r0)

)

dυ(r0) =
∫

∂D

n̂×
(

1

|r− r0|J
p(r0)

)

ds(r0) = 0,

(83)

which vanishes bearing in mind that Jp(r0) = 0 on the boundary ∂D. Similar,

∫

D

Jp(r0) · ∇r0 K(r; r0)dυ(r0) =
∫

D

∇r0 ·
(
Jp(r0)K(r; r0)

)
dυ(r0)

−
∫

D

(∇r0 · Jp(r0)
)

K(r; r0)dυ(r0). (84)

Applying the divergence theorem
∫
D
∇ ⊗ fdυ = ∫

∂D
f⊗ ν̂dS, we get

∫

D

∇r0 ·
(
Jp(r0)K(r; r0)

)
dυ(r0) =

∫

∂D

ν̂ · (Jp(r0)K(r; r0)
)

ds(r0). (85)
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Therefore, (79) reads as

4π

μ0
B(r) =

∫

D

(∇r0 × Jp(r0)
) dυ(r0)

|r− r0| +
1

4π

∫

D

(∇r0 · Jp(r0)
)

K(r; r0)dυ(r0).

(86)

The fact that the conductor D is star shaped and letting the neuronal current Jp be
C 1 allows for Jp to be represented by Helmholtz’s decomposition, namely

Jp(r0) = ∇Ψ (r0)+ ∇ × A(r0), ∇ · A(r0) = 0, r0 ∈ D (87)

Above in mind, we have ∇r0 × Jp(r0) = −Δr0A(r0) and ∇r0 · Jp(r0) = Δr0Ψ (r0)

and equation (86) becomes

4π

μ0
B(r) = −

∫

D

(
Δr0A(r0)

) dυ(r0)

|r− r0| +
1

4π

∫

D

(
Δr0Ψ (r0)

)
K(r; r0)dυ(r0).

(88)

Now, the first integral of (88) writes as

r ·
∫

D
Δr0 A(r0)

dυ(r0)

|r− r0|=
∫

D
Δr0 A(r0) · r− r0

|r−r0|dυ(r0)+
∫

D
Δr0 A(r0) · r0

|r− r0|dυ(r0),

(89)

where

∫

D

Δr0A(r0) · r− r0

|r− r0|dυ(r0) =
∫

D

|r− r0|2
(

Δr0A(r0) · ∇r0

1

|r− r3
0

)

dυ(r0)

(90)

and
∫

D

∇r0 ·
[(
|r− r0|2Δr0A(r0)

) 1

|r− r0|
]

dυ(r0) =
∫

D

[
∇r0 ·

(
|r− r0|2Δr0A(r0)

)] 1

|r− r0|dυ(r0)+
∫

D

(
|r− r0|2Δr0A(r0)

)

· ∇r0

1

|r− r0|dυ(r0) (91)

so that
∫

D

Δr0A(r0) · r− r0

|r− r0|dυ(r0) =
∮

∂D

ν̂(r0) · |r− r0|Δr0A(r0)ds(r0)

−
∫

D

[
∇r0 ·

(
|r− r0|2Δr0A(r0)

)] 1

|r− r0|dυ(r0)

(92)
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By the fact that Jp(r0) vanishes on ∂D so does A(r0). Thus

∫

D

Δr0A(r0) · r− r0

|r− r0|dυ(r0) =−
∫

D

(
∇r0 |r− r0|2

)
·Δr0A(r0)

1

|r− r0|dυ(r0)

−
∫

D

|r− r0|2
(∇r0 ·Δr0A(r0)

) 1

|r− r0|dυ(r0).

(93)

Also ∇r0 · Δr0A(r0) = Δr0

(∇r0 · A(r0)
) = 0, ∇r0 |r − r0|2 = −2 (r− r0) and

therefore
∫

D

Δr0A(r0) · r− r0

|r− r0|dυ(r0) = 2
∫

D

(r− r0) ·Δr0A(r0)
1

|r− r0|dυ(r0) (94)

so that

r ·
∫

D

Δr0A(r0)
dυ(r0)

|r− r0| =
∫

D

r0 ·Δr0A(r0)
dυ(r0)

|r− r0| . (95)

In the sequel, employing the identity

Δ(f · g) = (Δf) · g+ f · (Δg)+ 2 (∇ ⊗ f)� .. (∇ ⊗ g) , (96)

� denoting transposition and .. the double dot product, yields

Δr0 (r0 · A(r0)) = Δr0r0 · A(r0)+ r0 ·Δr0A(r0)+ 2 (∇ ⊗ r0)
� ..

(∇r0 ⊗ A(r0)
)

= 0 · A(r0)+ r0 ·Δr0A(r0)+ 2Ĩ..∇r0 ⊗ A(r0)

= r0 ·Δr0A(r0)+ 2∇r0 · A(r0)

= r0 ·Δr0A(r0). (97)

Combining (97) and (95) gives

r ·
∫

D

Δr0A(r0)
dυ(r0)

|r− r0| =
∫

D

Δr0 (r0 · A(r0))
dυ(r0)

|r− r0| (98)

and finally, (88) reads

4π

μ0
r · B(r)=−

∫

D

Δr0 (r0 · A(r0))
dυ(r0)

|r− r0|+
1

4π

∫

D

(
Δr0Ψ (r0)

)
r ·K(r; r0)dυ(r0).

(99)
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Next, consider the quantity r ·K(r; r0) present in the second integral of the RHS
of (99). In view of (54) we have

r · r′ × ∇r′
1

|r− r′| = r · r′ × r− r′

|r− r′|3 = r · r′ × r
|r− r′|3 = 0 (100)

and thus r ·K(r; r0) = 0 so that (99) simplifies as

r · B(r) = −μ0

4π

∫

∂D

Δr0 (r0 · A(r0))
dυ(r0)

|r− r0| . (101)

Introducing the expansion

1

|r− r0| =
∞∑

n=0

n∑

m=−n

4π

2n+ 1

rn0

rn+1 Ym
n (r̂)Y

m

n (r̂0) (102)

and (101) reads

r · B(r) = −μ0

∞∑

n=0

n∑

m=−n

1

2n+ 1

Ym
n (r̂)
rn+1

∫

r0<R

Δr0 (r0 · A(r0)) r
n
0 Y

m

n (r̂0)dυ(r0).

(103)

Further, assume

r0 · A(r0) =
∞∑

n=0

n∑

m=−n
r2

0 amn (r0)Y
m
n (r̂0), r0 ∈ [0, R) (104)

so that

Δr0 (r0 · A(r0)) =
(

∂2

∂r2
0

+ 2

r0

∂

∂r0
+ 1

r2
0

B(r̂0)

)

(r0 · A(r0)) , (105)

where the Beltrami or surface Laplacian operator B(r̂0) is

B(r̂0) = ∂2

∂θ2
0

+ cos θ0

sin θ0

∂

∂θ0
+ 1

sin2 θ0

∂2

∂φ2
0

, (106)

fulfilling

B(r̂0)Y
m
n (r̂0) = −n(n+ 1)Ym

n (r̂0). (107)
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Hence,

Δr0 (r0 · A(r0)) =
∞∑

n=0

n∑

m=−n

[

r0
d2amn

dr2
0

+ 4
damn
dr0

− 1

r0
(n− 1)(n+ 2)amn

]

Ym
n (r̂0).

(108)

Replacing above into (103) yields

r · B(r) = −μ0

∞∑

n=1

n∑

m=−n

1

2n+ 1

Ym
n (r̂)
rn+1

×
∫ R

0

(

rn+3
0

d2amn

dr2
0

+ 4rn+2
0

damn
dr0

− rn+1
0 (n− 1)(n+ 2)amn

)

dr0,

(109)

since dυ(r0) = r2
0 dr0dΩ(r̂0) and

∫

S2(r̂0)

Yq
p(r̂0)Y

m

n (r̂0)dΩ(r̂0) = δpnδqm. (110)

Note, that since B(r) = O
(
r−2

)
as r → ∞, n must begin with one. Simple

calculations lead to

r · B(r) = −μ0

∞∑

n=1

n∑

m=−n

1

2n+ 1

Rn+2

rn+1

(

R
damn
dr0

∣
∣
∣
r0=R

− (n− 1)amn (R)

)

Ym
n (r̂).

(111)

In what follows, consider the quantity r · B(r) known from measurements, i.e. if
we expand

r · B(r) =
∞∑

n=1

n∑

m=−n
dm
n (r)Ym

n (r̂), (112)

then the coefficients dm
n (r) are known as well. Combining (111) and (112) we have

R
damn
dr0

∣
∣
∣
r0=R

− (n− 1)amn (R) = −2n+ 1

μ0

rn+1

Rn+2
dm
n (r) (113)

from which the coefficients amn are calculated.
The remaining two components of A(r), namely Aθ(r) and Aφ(r), are computed

with the aid of ∇ · A(r) = 0, i.e.

1

r2

∂

∂r

(
r2Ar(r)

)
+ 1

r sin θ

∂

∂θ
(sin θAθ (r))+ 1

r sin θ

∂

∂φ
Aφ(r) = 0, (114)

since
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A(r) = Ar(r)r̂+ Aθ(r)θ̂ + Aφ(r)φ̂. (115)

Further, considering that r · A(r) = rAr(r), we find, with the help of (104), that

r2Ar(r) =
∞∑

n=1

n∑

m=−n
r2 amn (r)Ym

n (r̂), (116)

which is known. Moreover, let

∂

∂θ
(sin θAθ (r)) = sin θ

∞∑

n=1

n∑

m=−n
ζmn (r)Ym

n (r̂), (117)

∂

∂φ
Aφ(r) = sin θ

∞∑

n=1

n∑

m=−n
ηmn (r)Y

m
n (r̂), (118)

so that (114) gives

ζmn + ηmn =
1

r

d

dr

(
r2amn

)
. (119)

Switching to the perturbed case, we see from equation (54) that the quantity
K(τ ; r0) is the only one affected by boundary deformations. Therefore, on the
deformed boundary,

ν̂(τ )dS(τ ) = (R + ε f )
[
(R + ε f ) sin θ r̂− ε sin θ∇f ]

dθdφ. (120)

Also, employing Taylor’s expansion gives

n̂(τ )× r− τ

|r− τ |3 dS(τ ) =
( ∞∑

n=0

εnαn(r̂, r)

)
dS(r̂)

|r− Rr̂|3 , (121)

where the first two coefficients α are given by (56) and (57), respectively and further

1

|τ − r0| =
1

|Rr̂− r0| − εf
R − r̂ · r0

|Rr̂− r0|3 + . . . (122)

On the other hand, r ·K(r; r0) implies r · αn(r̂, r), n ∈ N, namely

r · α0(r̂, r) =0, (123)

r · α1(r̂, r) =R2∇sf (r̂)× r̂ · r. (124)

Combining all results, finally gives
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r ·K(r; r0) =
∞∑

n=1

εnIn(r; r0), (125)

provided that

I1(r; r0) =R2
∮

S2

(
1

|Rr̂− r0| + U0(Rr̂; r0)

) ∇sf (r̂)× r̂ · r
|r− Rr̂|3 dS(r̂). (126)

Note that the integrals In(r; r0) do not depend on Jp. Replacing everything back,
gives

4π

μ0
r · B(r) = −

∫

D

Δr0 (r0 · A(r0))
dυ(r0)

|r− r0|

+ 1

4π

∞∑

n=1

εn
∫

D

(
Δr0Ψ (r0)

)
In(r; r0)dυ(r0). (127)

Following previous analysis we have
∫

D

Δr0 (r0 · A(r0))
dυ(r0)

|r− r0|

= 4π
∞∑

n=1

n∑

m=−n

1

2n+ 1

Rn+2

rn+1

(

R
damn
dr0

∣
∣
∣
r0=R

− (n− 1)amn (R)

)

Ym
n (r̂).

(128)

On the other hand, letting

Ψ (r0) =
∞∑

n=0

n∑

m=−n
ψm
n (r0)Y

m
n (r̂0), (129)

we find

Δr0Ψ (r0) =
∞∑

n=0

n∑

m=−n

(

ψ̈m
n (r0)+ 2

r0
ψ̇m
n (r0)− n(n+ 1)

r2
0

ψm
n (r0)

)

Ym
n (r̂0).

(130)

The surface integral I1 provided by (126) is evaluated as follows. First we note that
the quantity inside the parenthesis enjoys the expansion

1

|Rr̂− r0| + u(Rr̂; r0) = 4π
∞∑

n=1

n∑

m=−n

n+ 1

n(2n+ 1)

rn0

Rn+1 Ym
n (r̂)Y

m

n (r̂0). (131)

Moreover, by the fact that ∇f (r̂)× r̂ · r′ = 0, we have
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∇f (r̂)× r̂ · r′
|r′ − Rr̂|3 = (∇f (r̂)× r̂

) · ∇r′
∞∑

n=0

n∑

m=−n

r ′n

rn+1
Ym

n (r̂)Y
m

n (r̂
′). (132)

Expand the functions in terms of spherical harmonics as

1

sin θ

∂f (r̂)
∂φ

=
∞∑

n=0

n∑

m=−n
Am

n Ym
n (r̂),

∂f (r̂)
∂θ

=
∞∑

n=0

n∑

m=−n
Bm
n Ym

n (r̂) (133)

to find

∇f (r̂)× r̂ =
∞∑

n=0

n∑

m=−n
Cm

n Ym
n (r̂), Cm

n = Am
n θ̂ − Bm

n φ̂, (134)

given that

Am
n =

∮

S2

1

sin θ

∂f (r̂)
∂φ

Y
m

n (r̂)dS(r̂), (135)

Bm
n =

∮

S2

∂f (r̂)
∂θ

Y
m

n (r̂)dS(r̂). (136)

Replacing (134) into (132), gives

∞∑

n=0

n∑

m=−n
Cm

n Ym
n (r̂) · ∇r

∞∑

n=0

n∑

m=−n

r ′n

rn+1 Ym
n (r̂)Y

m

n (r̂)

=
∞∑

n=0

n∑

m=−n

Rn−1

rn+1 Ym
n (r̂)Y

m
n (r̂)

(

Am
n

∂Y
m

n (r̂)
∂θ

− Bm
n

sin θ

∂Y
m

n (r̂)
∂φ

)

(137)

Substituting (131), (137) into the surface integral (126) yields

I1(r; r0) = R2
∮

S2

⎛

⎝4π
∞∑

n=1

n∑

m=−n
υm
n (r0)Y

m
n (r̂)Y

m
n (r̂0)

⎞

⎠

×
⎡

⎣
∞∑

p=1

p∑

q=−p
τp−1

rp+1
Yq
p(r̂)Y

q
p(r̂)

(

A
q
p

∂Y
q
p(r̂)

∂θ
− B

q
p

sin θ

∂Y
q
p(r̂)

∂φ

)⎤

⎦ dS(r̂),

(138)

where the second expansion now begins with p = 1, since for p = 0 the
corresponding spherical harmonic is a constant and the derivatives present vanish.
Employing (40) and (41), we find
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A
q
p

∂Y
q

p(r̂)

∂θ
− B

q
p

sin θ

∂Y
q

p(r̂)

∂φ′
= 1

sin θ ′
[
p j

q

p+1 A
q
pY

q

p+1(r̂)+ ı̇q B
q
pY

q

p(r̂)

−(p + 1) jqp A
q
pY

q

p−1(r̂)
]

(139)

so that the integral now reads

I1(r; r0) = 4πR2
∑

n,m

∑

p,q

Rp−1

rp+1

n+ 1

n(2n+ 1)

rn0

R2n+1 Yq
p(r̂)Y

m

n (r̂0)J
m,q
n,p , (140)

where the indices n and p start with 1 and

J
m,q
n,p = p j

q

p+1 A
q
p I

m,q

1,n,p + ı̇q B
q
p I

m,q

2,n,p − (p + 1) jqp A
q
p I

m,q

3,n,p, (141)

while

I
m,q

1,n,p =
∮

S2

1

sin θ
Ym

n (r̂)Y
q
p(r̂)Y

q

p+1(r̂)dS(r̂), (142)

I
m,q

2,n,p =
∮

S2

1

sin θ
Ym

n (r̂)Y
q
p(r̂)Y

q

p(r̂)dS(r̂), (143)

I
m,q

3,n,p =
∮

S2

1

sin θ
Ym

n (r̂)Y
q
p(r̂)Y

q

p−1(r̂)dS(r̂). (144)

With above relations, as well as (130), the second integral on the RHS of (127) in
the linear regime becomes

∫

D

(
Δr0Ψ (r0)

)
I1(r; r0)dυ(r0) =

∫

D

[ ∞∑

n=0

n∑

m=−n

(

ψ̈m
n (r0)+ 2

r0
ψ̇m
n (r0)− n(n+ 1)

r2
0

ψm
n (r0)

)

Ym
n (r̂0)

]

× 4πR2
∑

k,l

∑

p,q

Rp−1

rp+1

k + 1

k(2k + 1)

rk0

R2k+1 Yq
p(r̂)Y

l

k(r̂0)J
l,q
k,pdυ(r0). (145)

Moreover, due to orthogonality the integral corresponding to n = 0 vanishes,
namely

∮

S2
Y0

0(r̂0)Y
l
k(r̂0)dS(r̂0) = 0, ∀k ≥ 1 (146)
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and we are left with

∫

D

(
Δr0Ψ (r0)

)
I1(r; r0)dυ(r0) = 4π

∑

n,m

∑

p,q

p + 1

p(2p + 1)

(
R

r

)n+1

J
q,m
p,n

(
Rψ̇

q
p(R)− pψ

q
p(R)

)
Ym

n (r̂). (147)

Replacing everything back into (127) and following the procedure demonstrated,
yields

∑

n,m

dm
n Ym

n (r̂) =
μ0

4π

∑

n,m

{

− 4π

2n+ 1

Rn+2

rn+1

(
Rȧmn (R)− (n− 1)amn (R)

)

+ ε
∑

p,q

p + 1

p(2p + 1)

(
R

r

)n+1

J
q,m
p,n

× (
Rψ̇

q
p(R)− pψ

q
p(R)

)
}

Ym
n (r̂). (148)

Since amn are known via (113), we deduce that the coefficients ψm
n are calculated as

dm
n = μ0

(
R

r

)n+1 [

− R

2n+ 1

(
Rȧmn (R)− (n− 1)amn (R)

)

+ ε

4π

∞∑

p=1

p∑

q=−p

p + 1

p(2p + 1)
J
q,m
p,n

(
Rψ̇

q
p(R)− pψ

q
p(R)

)
]

.

(149)

The remaining two components are given by equations (119).

3 Example

Let us now showcase the particulars of the algorithms presented in an analytical
fashion by referring to the simplest example possible, namely that of an univariate
function f (θ). In order to facilitate calculations, but without loss of generality,
let f (r̂) = cos θ. The procedure regarding complex functions f (r̂) can be found
in [33].
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3.1 EEG

When f (r̂) = cos θ, the corresponding coefficients C
m

n are computed from (60)
by integrating over the unit ball, i.e. C

m

n = ∮
S2 cos θ Ym

n (r̂)dS(r̂) . Forasmuch as,

cos θ = √
4π/3Y0

1(r̂) only coefficients with m = 0 will survive, namely C
0
n =√

4π/(2n+ 1) δ1,n and thus (63) simplifies to Q·∇r0r0 Y
0
1(r̂0) = 0, implying Q3 =

0. Hence, for if f (r̂) = cos θ, we cannot retrieve the z-coordinate of the moment
for the first correction.

Expanding the dipoles position and moment in powers of ε, we obtain the
following approximations (keeping only linear corrections)

r0 =r0,0 + ε r0,1 , (150)

Q =Q0 + ε Q1 , (151)

respectively. The zeroth-order corrections r0,0 and Q0 are provided via relations (58)
and (59), respectively. On the other hand, the first-order corrections r0,1 and Q1
depend upon the surface deformation, namely the function f (r̂).

Nevertheless, relation (39) simplifies accordingly as

A�
1,k=−

4π

2k + 1

N�
k

kR

(k + �)!
(k − �)!

∞∑

n=1

A�
0,n

(
n j�n+1N

�
n+1δn+1,k−(n+ 1) j�nN

�
n−1δn−1,k

)
,

(152)

where N�
k denote the corresponding normalization constants and δn,m the Kronecker

symbol. Computing the latter for k = 1, 2, furnishes the following eight relations

A�
1,1 =

3j�2
R2 A�

0,2, � = −1, 0, 1, (153)

A�
1,2 =

1

2R3

(
4j�3A

�
0,3 − j�2A

�
0,1

)
, � = −2,−1, 0, 1, 2 . (154)

However, only six of them are needed in order to identify r0,1 and Q1, those being

A±1
1,1 =∓

3

4σR5

√
3

2π
x1,3

(
Q1,1 ∓ ı̇Q1,2

)
, (155)

A0
1,1 =−

3

2σR5

√
1

3π

(
Q1,1x1,1 +Q1,2x1,2

)
, (156)

A±2
1,2 =∓

8
√

5

9R2 B
±1
1

(
x1,1 ∓ ı̇x1,2

)
, (157)

A0
1,2 =

2

R2
B0

1x1,3. (158)
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Solving above system (155)–(158), yields

r0,1 = R2

2

(
9

8
√

5

(
A−2

1,2

A−1
1,1

− A2
1,2

A1
1,1

)

−ı̇ 9

8
√

5

(
A−2

1,2

A−1
1,1

+ A2
1,2

A1
1,1

)
A0

1,2

A0
1,1

)�
, (159)

Q1 = 4σR3

3

√
2π

3

A0
1,1

A0
1,2

(
A−1

1,1 −A1
1,1 −ı̇(A−1

1,1 +A1
1,1) 0

)�
. (160)

3.2 MEG

Substituting f (τ̂ ) = cos θ into (78) we find

E�
1,k = −ı̇4πσRk+1 k

(k + 1)(2k + 1)
B�

k. (161)

As seen, forming a 3 × 3 system from six equations for k = 1, 2 and utilizing the
corresponding Cartesian forms, furnishes

x1,1 =ı̇
√

5π

6
σR2

[
B−1

1 E−2
1,2

(E−1
1,1)

2
+ B1

1 E
2
1,2

(E1
1,1)

2
− 4R

5

(
B2

2

E1
1,1

+ B−2
2

E−1
1,1

)]

, (162)

x1,2 =
√

5π

6
σR2

[
B−1

1 E−2
1,2

(E−1
1,1)

2
− B1

1 E
2
1,2

(E1
1,1)

2
+ 4R

5

(
B2

2

E1
1,1

− B−2
2

E−1
1,1

)]

, (163)

x1,3 =ı̇
√

5π

3
√

2
σR2 1

E0
1,1

[
B−1

1 E−2
1,2
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The moment equals

Qr0 =0, (165)
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4 Conclusions and Discussion

We presented a short review on the application of boundary perturbations for the
forward and inverse problems in EEG and MEG. In all four cases, the surface of
reference has been the homogeneous sphere, leading to solutions with corrections
incorporating the deviation from the spherical geometry, included up to the first
correction. Higher order corrections are feasible, but mathematically tedious to
obtain and seldom provide more accuracy. A major impediment are the constrains,
which are brought in by the Neumann condition (30), demonstrated in the example
(Section 3), leading to the fact that components of either the moment of the dipole
or its location or both, remain concealed. As a rule of thumb, complex functions
introduce complex constrains. However, since the Neumann condition, rising from
Green’s theorem, cannot be avoided in the framework of the specific BVP, it is
an integral part of the presented analysis. Nevertheless, one can still gain valuable
insight into the problem at hand, namely if and how strong surface deformations
affect measurements.

Advanced analytical or semi-analytical solutions and formulae attaining closed-
type forms in EEG and MEG have quite important advantages compared with
the pure numerical methods. Indeed, the validity of numerical solutions can be
verified by such techniques, nevertheless the basic outcome gained is the facility
in incorporating with the inverse problem, knowing the mathematical tools of the
forward one itself. On the other hand, bearing in mind that very important physical
laws can be derived from analytical methods, we can understand the necessity
of tackling with a confident mathematical basis before getting involved with an
algorithmic procedure. Therefore, even nowadays, there is always room for such
kind of methods that coexist with pure numerical codes and aim to the solution of
boundary value problems in physical applications of major importance.

Mathematical and computational work is currently in progress and involves
research into several directions, such as the introduction of more complicated
geometries for representing the head’s shape or the accomplishment of actually
difficult inversion algorithms, taking profit from the proposed framework.
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Poynting–Robertson and Oblateness
Effects on the Equilibrium Points of the
Perturbed R3BP: Application on Cen X-4
Binary System

Aguda Ekele Vincent and Angela E. Perdiou

Abstract We examine the dynamical effects of Poynting–Robertson (P–R) drag
and oblateness together with small perturbations in the Coriolis and centrifugal
forces on the existence, location and stability of equilibrium points in the pho-
togravitational restricted three-body problem. It is found that under constant P–R
drag effect, collinear equilibrium points cease to exist numerically and of course
analytically. The problem admits five non-collinear equilibrium points and it is
found that the positions of these points depend on all the system parameters except
small perturbation in the Coriolis force. Finally, we justify the relevance of the
model in astronomy by applying it to Cen X-4 binary system, for which all the
equilibrium points have been seen to be unstable.
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1 Introduction

The restricted three-body problem (R3BP) consists of two finite bodies, known as
primaries which rotate in circular orbits around their common center of mass and
a massless body which moves in the plane of motion of the primaries under their
gravitational attraction and does not affect their motion. The study of the R3BP
is still an active field of research because of its applications in dynamics of the
solar and stellar systems, artificial satellites and lunar theory. The circular restricted
three-body problem (CR3BP) has been the well known studied problem in celestial
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mechanics. In this problem there are five equilibrium points; three of them lie on
the x-axis and are called collinear while the other two are away from the x-axis
and are called triangular equilibrium points. The three collinear points are generally
unstable while the triangular points are generally stable for the mass ratio μ �
0.03850 . . . [30]. These equilibrium points are extensively used in space mission
(see [1, 3, 12, 31] and references therein).

In celestial mechanics, many scientists and astronomers over the years have made
modifications to the classical CR3BP (e.g. [6, 8, 13, 17–19, 22, 23, 29, 32–34]).
Some of the modifications made, include the consideration of one or both primaries
as oblate spheroids and/or radiation sources with small change in Coriolis and
centrifugal forces and/or under the effect of different kinds of dissipation (Stokes
and/or Poynting–Robertson drags). The studying of these issues enable us to get real
and accurate data about the dynamical features of the system. For example, Oberti
and Vienne [15] showed that the addition of oblateness effects leads to improved
approximations of real orbits of certain satellites in the Solar System. Singh [28]
examined out-of-plane equilibria by considering effect of a small change in Coriolis
and centrifugal forces, when the primaries are both radiating and oblate spheroids.
Chernikov [4] studied the existence and stability of equilibrium points under the
influence of radiation and Poynting–Robertson drag. He found that six equilibrium
points exist at most and pointed out that the collinear points are not positioned
on the axis connecting the primaries any more while the triangular points are not
symmetrical with respect to this axis. It was found that the triangular points are
unstable for P–R effect. Schuerman [21] studied the triangular points of the problem
and found that the points are unstable due to P–R effect. Furthermore, Ragos and
Zafiropoulos [20] extended the problem to the case that both main bodies are
radiation sources and studied the existence and stability of the equilibrium points.
The P–R effect renders unstable those equilibrium points which are conditionally
stable in the classical case. Murray [14] discussed the dynamical effect of different
kinds of dissipation (nebular drag, gas drag, and P–R drag) in the circular restricted
three body problem and found the collinear points are not positioned on the
axis joining the two masses while the displaced triangular points L4 and L5 are
asymptotically stable for certain classes of drag forces.

Kushvah [11] studied numerically the existence of equilibrium points of the
perturbed R3BP, where the bigger and smaller primaries are considered radiation
sources and oblate spheroids, respectively, and discussed the P–R effect which
is caused due to the radiation pressure. They observed that the collinear points
deviate from the axis joining the two primaries, while the triangular points are
not symmetrical due to radiation pressure. The P–R effect ruins the stability of
equilibrium points known to be conditionally stable in the gravitational case.
When the primaries are radiation sources, Singh and Aminu [24] investigated the
influences of small perturbations in the Coriolis and centrifugal forces together
with P–R drag from both primaries on the triangular points. They found that the
positions of these points are affected from the radiation pressure, P–R drag and small
perturbation in the centrifugal force. They also discovered that these perturbing
forces do not influence the nature of the stability of the points in the presence of P–R
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drag as they remain unstable for the binary systems Luyten 726–8 and Kruger 60.1.
In the same vein, Singh and Amuda [25] studied the triangular equilibrium points
when the effect of radiation pressure from the smaller primary and its Poynting
Robertson (P–R) drag are taken into account and the bigger primary as an oblate
spheroid. They found numerically that the equilibrium points of the binary RXJ
0450.1–5856 are unstable. Later, Singh and Amuda [26] investigated the three
dimensional case of the problem studied in [25] and they pointed out that the
out-of-plane equilibria of the binary Cen X-4 system are unstable. By taking into
consideration the P–R effect and Stellar wind drag, Chakraborty and Narayan [5]
investigated the photogravitational elliptic restricted three-body problem and found
that the equilibrium points are unstable due to the effect of the drag. Recently,
Kalantonis et al. [10] studied the stability of the triangular equilibrium points in
the elliptic R3BP with radiation and oblateness and showed that the positions of
the triangular equilibrium points are given by an analytical formulae in which the
parameters of the problem are only involved.

In this work, we aim to make an extension to the work of Singh and Amuda [25]
by also taking small perturbations in the Coriolis and centrifugal forces and continue
to study numerically the existence and location of the equilibrium points. As
an application in this study, we consider the Cen X-4 binary system. The paper
is organized as follows: In Section 2, the dynamical equations that involve the
parameters of the infinitesimal particle in the binary system under consideration are
obtained. In Section 3, we determine the existence and locations of the equilibrium
points numerically and verify them graphically for values of the parameters of
the problem, while their linear stability is analyzed in Section 4. A numerical
application of these results is given in Section 5 while Section 6 summarizes the
discussion and conclusion of our study.

2 Equations of Motion

The dynamical system consists of two bodies (known as the primaries) which
move on circular orbits. We consider a barycentric coordinate system Oxyz rotating
relative to an inertial reference system with angular velocity ω about a common
z-axis. The two finite bodies P1 (bigger primary) and P2 (smaller primary) have
masses m1 = 1−μ and m2 = μ (0 < μ � 1/2), respectively, with μ being the mass
ratio parameter while the test particle P is considered to have a mass m, which is
significantly smaller than the masses of the primaries and therefore it does not affect
their motion. Also, the bigger primary body is considered to be an oblate spheroid
while the smaller one is a source of radiation with its P–R drag. The equations of
motion of the test particle in the three-dimensional restricted three-body problem
with the origin resting at the center of mass, in a barycentric rotating coordinate
system take the form [25]:
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with

r2
1 = (x+μ)2+y2+z2, r2

2 = (x+μ−1)2+y2+z2, W2 = μ(1− q2)

cd
, (2)

where ri, i = 1, 2 are the distances of the test particle from the bigger and smaller
primaries, respectively, q2 ∈ (0, 1], W2 " 1 stand for radiation pressure and P–R
drag of the smaller body, respectively, cd is the dimensional velocity of light which
depends on the physical masses of the two bodies and the distance between them,
chosen to the value cd = 299792458 (see [25]) while the dots denote differentiation
with respect to time t . Also, A1 is the oblateness coefficient of the bigger primary
body defined by the formula A1 = (A2

E − A2
P )/5R2 " 1 where AE and AP

are the equatorial and polar radii of the said primary body, respectively, and R is
the distance between the primaries. On account of the oblateness of the primary
body m1, the mean perturbed motion n is defined by n2 = 1 + 3

2A1. Additionally,
perturbations on the Coriolis and centrifugal forces are included with the help of
the parameters α and β, respectively, such that α = 1 + ε1, β = 1 + ε2, |εi | " 1,
i = 1, 2. The unperturbed value of each is taken as unity. Restricting ourselves to the
plane Oxy and following the work of Singh and Aminu [24], the pertinent equations
of motion (1) are finally written in the form:
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Table 1 Numerical data for the binary Cen X-4 system

Dimensionless

Binary system Mass (M⊗) Radiation pressure Binary separation speed of light Mass ratio

m1 m2 q2 a cd μ

Cen X-4 1.9996 0.0801 0.993 4.31 988.323 0.038515
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The physical parameters of the binary Cen X-4 system are shown in Table 1 (see
[2, 25, 26]).

3 Existence and Positions of Equilibrium Points

The equilibrium (or Lagrangian) points are obtained when the acceleration (ẍ, ÿ)

and velocity (ẋ, ẏ) components of the test particle are zero. So, we obtain the
coordinates (x0, y0) of equilibrium points as solutions of the equations:
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(5)
It is interesting to note that for A1 = 0, q2 = β = 1, the classical case of the
R3BP is recovered while the case β = 1 leads to the equations of motion presented
in [25]. It is well known that in the classical R3BP there are two types of equilibria
or solutions, depending on whether y = 0 or y 
= 0. Points for which y = 0 are
called collinear equilibrium points and they lie on the line connecting the primaries,
the x-axis of the synodic system, while points for which y 
= 0 are called triangular
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(non-collinear) equilibrium points and they lie away from the x-axis of the synodic
system.

In the perturbed R3BP where the radiation pressure coupled with P–R drag
terms appear, the existence of collinear equilibria as well as the total number of
the equilibrium points depend on the particular values of the radiation pressure (see,
for example, [4, 14]). Ragos and Zafiropoulos [20] have shown numerically that
in the photogravitational CR3BP including the P–R effect there are at most five
equilibrium points (with no collinear points), depending on the values of radiation
factors q1 and q2. Following the lead of above paper, we resort to a numerical
study in this case of the problem since the system of Equations (5) which provides
the (x0, y0) coordinates of the points of equilibrium cannot be solved analytically.
In this premise, the equilibrium points are obtained by solving Equations (5)
simultaneously using any well-known iterative method for finding roots of non-
linear algebraic equations. The aforementioned method has been successfully
applied in [16, 27] and [7] (see also references therein) for the determination of
equilibrium points in a different model problem of Celestial Mechanics. We observe
that our problem admits five non-collinear equilibrium points, Li, i = 1, 2, . . . , 5,
which positions are independent of the Coriolis force but dependent upon the
centrifugal force and the remaining involved parameters.

Generally, to obtain the positions for the collinear equilibrium points we solve
Equations (5) for y = 0 but due to the existence of the dissipative term defined
by the P–R drag, it is obvious that collinear equilibrium solution does not exist
anymore. This is also easy to show geometrically by plotting the contours of the
two implicit functions presented in system (5) (see Figure 1). We observe from
this figure that the y components of the equilibrium points L1,2,3 are close to zero
but not zero. Moreover, this can be easily seen from bottom-left and right frames
in Figure 1 where we enlarge the area close to L1,2 and L3, respectively. Therefore,
we can conclude that under the effect of P–R drag, induced by the radiation pressure
of the smaller primary, there are no equilibrium points that lie exactly on the x-axis,
called collinear equilibrium points. This result agrees with [14, 20] and [11].

So, for the non-collinear equilibrium points, the second Equation (5) holds
and the equilibria are obtained by solving both Equations (5) simultaneously.
Figure 1 depicts the five non-collinear equilibrium points, Li, i = 1, 2, . . . , 5 of
the problem in the xy-plane, along with the associated primaries, which have been
found by solving numerically the aforementioned system for assumed values of
μ = 0.03852, β = 1.01, A1 = 0.0005, q2 = 0.9999 and cd = 299792458. We
denote here that the equilibria in the xy-plane are given by the mutual intersections
of the two coloured curves where blue and brown lines in the figure correspond
to the first and second equation of (5), respectively. Here we also note that the
intersection points of these curves show the coordinates (x0, y0) of the equilibria
on the xy-plane. It is seen that under the combined effects of the parameters, there
exist five non-collinear equilibrium points for which the ordinates of L1, L2 and L3
are close to zero but not zero. Therefore, from Figure 1, it is observed that under the
combined effects of radiating smaller primary with it P–R drag, and oblateness of
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Fig. 1 The five non-collinear equilibrium points and the position of the primary bodies for μ =
0.03852, β = 1.01, A1 = 0.0005, q2 = 0.9999 and cd = 299792458. Bottom frames depict
zoomed images of L1,2 and L3, respectively, with intersections of the curves. Black dots indicate
the positions of the bodies mi, i = 1, 2 while the positions of the equilibrium points Li, i =
1, 2, . . . , 5 are denoted by green dots

the bigger primary, the equilibria positions are different from those of the classical
R3BP. All these results tally with [20].

4 Stability of the Non-collinear Equilibrium Points

To study analytically the solutions in the neighborhood of the non-collinear
equilibrium points Li, i = 1, 2, . . . , 5, following Ragos and Zafiropoulos [20] as
well as Singh and Amuda [25], we consider small displacements ξ and η given to
the coordinates of an equilibrium point (x0, y0) such that ξ = x − x0, η = y − y0
and denote the right-hand side of equations of motion (3) by Ωx = ∂Ω/∂x and
Ωy = ∂Ω/∂y, respectively. Then the variational form of the equations of motion is
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derived as:

ξ̈ − 2nαη̇ = Ω
(0)
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(6)

where the dots are the derivatives with respect to time t and only the linear terms in
ξ and η have been taken. Now, we assume solutions of the variational equations of
the form:

ξ = B1e
λt , η = B2e

λt , (7)

where Bi, i = 1, 2, are arbitrary constants and λ is a parameter. Substituting
Equations (7) in Equations (6) and simplifying, we obtain:
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Now, for the nontrivial solution the determinant of the coefficients matrix of the
above system must be zero, namely:

∣
∣
∣
∣
∣

λ2 − λΩ
(0)
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Simplifying Equation (9) we obtain the characteristic polynomial corresponding to
the system (6) as:

λ4 + aλ3 + bλ2 + cλ+ d = 0, (10)

with

a = −(Ω(0)
yẏ +Ω

(0)
xẋ ),

b = 4n2α2 +Ω
(0)
xẋ Ω

(0)
yẏ −Ω

(0)
xx −Ω

(0)
yy − [Ω(0)

xẏ ]2,
c = Ω

(0)
xẋ Ω

(0)
yy +Ω

(0)
xx Ω

(0)
yẏ + 2nαΩ(0)

xy − 2nαΩ(0)
yx −Ω

(0)
yẋ Ω

(0)
xy −Ω

(0)
yx Ω

(0)
xẏ ,

d = Ω
(0)
xx Ω

(0)
yy −Ω

(0)
yx Ω

(0)
xy ,

(11)
and the obtained eigenvalues determine the stability or instability of the respective
equilibrium point. The second order partial derivative of Ω are denoted by subscripts
while the superscript “0” means that the corresponding derivatives have been
evaluated at the equilibrium points (x0, y0) and are given by the following analytical
formulas:
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Ω(0)
xx = n2β − (1− μ)

r3
10

− q2μ

r3
20

− 3A1(1− μ)

2r5
10

+ 3(1− μ)(x0 + μ)2

r5
10

+ 3q2μ(x0 + μ− 1)2

r5
20

+

15A1(1− μ)(x0 + μ)2

2r7
10

− 2nW2y0(x0 + μ− 1)

r4
20

, (12)

Ω(0)
yy = n2β − (1− μ)

r3
10

− q2μ

r3
20

+ 3(1− μ)y2
0

r5
10

− 3(1− μ)A1

2r5
10

+ 3q2μy
2
0

r5
20

+

15A1(1− μ)y2
0

2r7
10

+ 2nW2y0(x0 + μ− 1)

r4
20

, (13)

Ω(0)
xy =

nW2

r2
20

− 2nW2y
2
0

r4
20

+ 3(1− μ)(x0 + μ)y0

r5
10

+ 3q2μ(x0 + μ− 1)y0

r5
20

+

15A1(1− μ)(x0 + μ)y0

2r7
10

, (14)

Ω(0)
yx = −

nW2

r2
20

+ 2nW2(x0 + μ− 1)2

r4
20

+ 3(1− μ)(x0 + μ)y0

r5
10

+

3q2μ(x0 + μ− 1)y0

r5
20

+ 15A1(1− μ)(x0 + μ)y0

2r7
10

, (15)

Ω
(0)
xẋ = −

W2

r2
20

(1+ 1

r2
20

)+ W2x0

r4
20

(2− x0)+ W2μ

r4
20

(2(1− x0)− μ), (16)

Ω
(0)
yẏ = −

W2

r2
20

(1+ y2
0

r2
20

), Ω
(0)
xẏ =

W2y0

r4
20

(1− (x0 + μ)) = Ω
(0)
yẋ , (17)

with

r2
10 = (x0 + μ)2 + y2

0 , r2
20 = (x0 + μ− 1)2 + y2

0 . (18)
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An equilibrium point (x0, y0) is said to be stable in the sense of Lyapunov if and
only if all the four roots of the characteristic polynomial, given by Equation (10),
are either negative real numbers or distinct imaginary; asymptotically stable if roots
are complex with negative real parts and unstable, otherwise.

5 Numerical Application

In this section, we compute and examine graphically and numerically the positions
of the non-collinear equilibrium points for the binary Cen X-4 system using the
astrophysical parameters presented in Table 1 for some assumed oblateness and
centrifugal force parameters. As pointed out in Section 2, the adjective non-collinear
is due to the fact that L1, L2 and L3 do not lie exactly on the x-axis. In order
to visualize the evolution of the equilibria we consider region of the oblateness
coefficient A1 is [0, 0.2] (see [9]). The investigated region for the values of the
Coriolis and centrifugal forces are α, β ∈ [1, 1.2] (see, e.g. [28]) while the value
of the dimensional velocity of light is kept fixed to cd = 988.323 for all numerical
calculations.

Solving Equations (5), using parameters in Table 1, we present in Figures 2
and 3 the positions of the equilibria for the binary system as the two parameters
A1 and β vary in the absence and presence of the P–R drag effect, respectively.
For better understanding the evolution of the equilibria, in both figures, we use
colour codes to indicate the set of pairs (A1, β), while green dots signify the
positions of the equilibria. So, the intersections of blue-magenta, black-magenta,
and red-magenta curves correspond to three specific pairs of values of A1 and β;
particularly to (0, 1), (0.1, 1.04) and (0.2, 1.1), respectively. It is necessary to note
that, although the curves are identical, their behaviours are different as we observe
completely different results regarding the movement of the equilibrium points. From
Figure 2 it can be observed that for varying oblateness factor and varying centrifugal
force we have five equilibrium points (as in the classical restricted problem), three
collinear L1,2,3 and two triangular L4,5, where equilibria L1 and L2 both approach
the radiating primary m2, while L3 moves toward the oblate primary m1 and point
L4 (the situation is same at the symmetric point L5) moves closer to the point
L1. For clarity purposes, the top-right, bottom-left, and bottom-right frames are
enlargements of the top-left frame of Figure 2 (first frame) close to L1,2, L3, and
L4(5) points, respectively.

In Table 2, we have evaluated numerically the coordinates of the five equilibrium
points for different values of the parameters A1 and β for the binary system. One
can observe in this table that the variational trend of the equilibria is similar to the
scenario presented in Figure 2. However, the situation is different in the presence
of P–R drag effect as we observe that for increasing values of the oblateness
and centrifugal force parameters, there exist five non-collinear equilibrium points
positioned off the Ox-axis. In addition L1,3,4 have y > 0, while points L2,5 have
y < 0. It can be observed that the equilibria L1 and L2 approach the radiating
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Fig. 2 Effect of oblateness and centrifugal force parameters on the collinear L1,2,3 and the
triangular L4,5 points of Cen X-4 system without P–R effect (i.e., q2 = 1, W2 = 0) for
A1 = 0, β = 1 (blue, magenta); A1 = 0.1, β = 1.04 (black, magenta) and A1 = 0.2, β = 1.1
(red, magenta). Top-right, bottom-left and right frames: Zoomed areas close to L1,2, L3 and L4
points, respectively. Black dots represent the primaries while green dots represent the positions of
the equilibria

primary body m2 in opposite directions while L3 approaches the oblate primary
m1, and the two non symmetric equilibria L4 and L5 approach the displaced L1 in
opposite directions. Tables 3 and 4 provide the locations of the equilibrium points
Li, i = 1, 2, . . . , 5 for varying oblateness and centrifugal force parameters in the
presence of P–R drag for same fixed values of the parameters. One can see from
these tables that the variational trend of the equilibria is similar to the behaviour
presented in Figure 3.

Next, since we have already found the coordinates (x0, y0) of the equilibrium
points (presented in Tables 2, 3, and 4), we can insert them into the characteristic
Equation (10) and thus derive their linear stability numerically. In Tables 5 and 6,
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Fig. 3 Effect of oblateness and centrifugal force parameters on the non-collinear equilibrium
points of Cen X-4 system with P–R effect (i.e., q2 = 0.993, W2 = 2.72790 × 10−7) for
A1 = 0, β = 1 (blue, magenta); A1 = 0.1, β = 1.04 (black, magenta) and A1 = 0.2, β = 1.1
(red, magenta). Top-right, bottom-left and right frames: Zoomed areas close to L1,2, L3 and L4
points, respectively. Black dots represent the primaries while green dots represent the positions of
the equilibria

Table 2 Positions of the five equilibrium points for varying oblateness and varying centrifugal
force in the absence of P–R (i.e. q2 = 1,W2 = 0) for the binary Cen X-4 system

(A1, β) L1 L2 L3 L4,5

(0, 1) (0.744951, 0) (1.21443, 0) (−1.01604, 0) (0.461485,±0.866025)

(0.025, 1.025) (0.748593, 0) (1.20566, 0) (−1.00853, 0) (0.473601,±0.849585)

(0.05, 1.05) (0.751774, 0) (1.19750, 0) (−1.00156, 0) (0.484977,±0.833890)

(0.075, 1.075) (0.754572, 0) (1.18988, 0) (−0.99508, 0) (0.495655,±0.818874)

(0.1, 1.1) (0.757045, 0) (1.18275, 0) (−0.98900, 0) (0.505677,±0.804479)

we show the nature of the stability of the equilibrium points for various values of
oblateness, Coriolis and centrifugal forces in the absence and presence of the P–R
effect, respectively, for the binary Cen X-4 system. Analysis of Tables 5 and 6
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Table 4 Positions of L4,5 non-collinear equilibrium points for varying oblateness and varying
centrifugal force in the presence of P–R for the binary Cen X-4 system (continuation of Table 3)

(A1, β) L4 L5

(0, 1) (0.46382, 0.864673) (0.463823,−0.864672)

(0.025, 1.025) (0.47584, 0.848230) (0.475845,−0.845228)

(0.05, 1.05) (0.48713, 0.832534) (0.487133,−0.832533)

(0.075, 1.075) (0.49773, 0.817519) (0.497729,−0.817517)

(0.1, 1.1) (0.50767, 0.803125) (0.507675,−0.803124)

Table 5 Stability of Cen X-4 system for small assumed values of oblateness and perturbations in
Coriolis and centrifugal forces in the absence of P–R drag effect (see Table 2)

Li, i = 1, 2, . . . , 5 (x0, y0) λ1,2 λ3,4

Case: A1 = 0, β = 1, α = 1

L1 (0.744951, 0) ±3.145064 ±2.469515i

L2 (1.21443, 0) ±2.002264 ±1.772113i

L3 (−1.01604, 0) ±0.314525 ±1.031797i

L4,5 (0.461485,±0.866025) ±0.711480i ±0.702705i

Case: A1 = 0.05, β = 1.05, α = 1.04

L1 (0.751774, 0) ±3.338678 ±2.591204i

L2 (1.19750, 0) ±2.224148 ±1.956125i

L3 (−1.00156, 0) ±0.351533 ±1.083626i

L4,5 (0.484977,±0.83389) −0.130094± 0.755847i 0.130094± 0.755847i

Case: A1 = 0.1, β = 1.1, α = 1.08

L1 (0.757045, 0) ±3.497120 ±2.700120i

L2 (1.182750, 0) ±2.452064 ±2.146047i

L3 (−0.989004, 0) ±0.386942 ±1.141295i

L4,5 (0.505677,±0.804479) −0.180429± 0.806787i 0.180429± 0.806787i

reveals the non existence of pure imaginary roots except in the classical case (i.e.
q2 = 1,W2 = 0, α = β = 1). In all cases for all the assumed values of oblateness
and perturbations in Coriolis and centrifugal forces with and without P–R effect,
there exists at least a positive real root and/or a complex root with positive real part.
Consequently the motion of the infinitesimal body is unbounded and thus unstable
around all these equilibrium points.

6 Discussion and Conclusion

The location and stability of the equilibrium points in the photogravitational
restricted three-body problem that accounts for Poynting–Robertson (P–R) drag
force with oblateness of the first primary together with small perturbations in
the Coriolis and centrifugal forces were studied. It was found both analytically
and numerically that in the presence of P–R drag effect the well-known collinear
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equilibrium points of the circular restricted three-body problem cease to exist while
the respective triangular equilibrium points do not form equilateral triangles.

Using the astrophysical parameters of the Cen X-4 binary system we performed
a numerical study for its equilibrium points and showed that in the case where P–R
drag was considered five non-collinear equilibrium points exist whereas in the
absence of P–R drag force there are also five equilibrium points but three of them
are located on the axis joining the primaries and the rest two form in the plane of
motion equilateral triangles with the primaries, as in the circular restricted three-
body problem. It was also found that the equilibrium points are independent of
the effect of small perturbation in the Coriolis force but are affected by the small
perturbation in centrifugal force. For the stability of the five equilibria, the four
roots of the characteristic polynomial were determined numerically and found that
are unstable due to the existence of at least one positive real root or a complex
root with positive real part. The instability of the equilibrium points agrees with
the results existing in the literature when the primaries are not oblate spheroids and
small perturbations in the Coriolis and centrifugal forces are not considered (for
details we refer to [4, 21])
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Localization and Perturbation of
Complex Zeros of Solutions to Second
Order Differential Equations with
Polynomial Coefficients. A Survey

Michael Gil’

Abstract This paper is a survey of the recent results of the author on the
complex zeros of solutions to linear homogeneous second order ordinary differential
equations with polynomial coefficients. In particular, estimates for the sums and
products of the zeros are derived. These estimates give us bounds for the function
counting the zeros of solutions and information about the zero-free domain. Some
other applications of the obtained estimates for the sums and products of the zeros
are also discussed. In addition, we investigate the variation of the zeros of solutions
under perturbations of the coefficients. Illustrative examples are also presented. A
part of the results presented in the paper is new.
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1 Introduction

This paper is a survey of the recent results of the author on the zeros of solutions
to a linear ordinary differential equation (ODE) with polynomial coefficients in the
complex domain.

The literature devoted to the zeros of the solutions of such equations is very
rich. Besides, the main tool is the Nevanlinna theory. The excellent exposition
of the Nevanlinna theory and its applications to differential equations is given in
the book [32]. In that book, in particular, the well-known results of Banks [4–6],
Brűggemann [7, 8], Hellerstein and Rossi [26–28, 36], and other mathematicians
are reflected. The classical comparison principle for zeros of ODEs in the complex
plane is presented in [29].

The real zeros of solutions to equations with polynomial coefficients were
investigated in the papers by Gundersen [25], Eremenko and Merenkov [11], and
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by C.Z. Huang [30]. The paper [37] studies the convergence of the zeros of a non-
trivial (entire) solution to the linear differential equation

f ′′ + {
Q1(z)e

P1(z) +Q2(z)e
P2(z) +Q3(z)e

P3(z)
}
f = 0,

where Pj are polynomials of degree n ≥ 1 and Qj( 
≡ 0) are entire functions of order
less than n (j = 1, 2, 3). In the paper [13], by certain separation and comparison
results, estimates for the counting functions of the zeros of solutions to nth-order
linear differential equations are deduced. These estimates generalize known results
for the zeros of solutions to third- and fourth-order linear differential equations. The
remarkable results on the zeros of a wide class of ordinary differential equations
with polynomial coefficients, whose solutions are classical orthogonal polynomials,
have been established by N. Anghel [2]. In addition, in the paper [3] N. Anghel
investigated the following question: when is an entire function of finite order, the
solution to a complex second order homogeneous linear differential equation with
polynomial coefficients ? He gives two (equivalent) answers to this question, one of
which involves certain Stieltjes-like relations for the zeros of solutions, the second
one requires the vanishing of all but finitely many suitable expressions constructed
via the relations of the sums of the zeros of the function derived in [17].

In connection with the recent results on the complex zeros of solutions to ODEs
see also the papers [12, 13, 31, 34], and references given therein. Certainly, we could
not survey the whole subject here and refer the reader to the listed publications.

It should be noted that in the above cited works mainly the asymptotic distribu-
tions of zeros are investigated. At the same time, bounds for the zeros of solutions
are very important in various applications. But to the best of our knowledge, they
have been investigated considerably less than the asymptotic distributions. In the
paper [18] the author has established bounds for the sums of the zeros of solutions
for the second order homogeneous equations with polynomial coefficients. In the
interesting paper [9], some results from [18] have been extended to the equation
u(m) = P(z)u, where P is a polynomial and m > 2. In the papers [19, 22] and [21]
the main result from [18] have been extended to the second order ODEs with non-
polynomial coefficients, to ODEs having singular points and to non-homogeneous
second order ODEs, respectively. In addition, in the paper [20] the author has
derived a bound for the products of the zeros of solutions to ODEs with polynomial
coefficients.

It should be also noted that to the best of our knowledge, perturbations of the
zeros of solutions were almost not investigated in the available literature. Here we
can mention only the paper [19] on perturbations of the zeros of solutions to second
order differential equations with polynomial coefficients.

The present paper reflects some results from the just pointed papers of the author.
Besides, the proofs are considerably simplified. Our main tool is the recent results
for the zeros of entire functions established in [14, 15] (see also [17]).

A few words about the contents. The paper consists of 13 sections.
Section 2 contains solution estimates for non-homogeneous ODEs.
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In Section 3 we recall the basic properties of singular values of compact
operators, which we need for the proofs of our main results.

In Sections 4 and 5 we obtain bounds for the sums and products of zeros of finite
order entire functions via Taylor coefficients and via orders of the functions. As it
was above mentioned, bounds for the zeros of entire functions are our main tool.

In Sections 6 we derive bounds for the sums and products of zeros of solutions
to the equation u′′ = P(z)u (z ∈ C), where P(z) is a polynomial. In Section 7 we
discuss some applications of these bounds.

In Sections 8, 9, and 10 we obtain perturbation results for the zeros of entire
functions, which are used in Section 12 to obtain perturbation bounds for the zeros
of ODEs.

In Section 13 we present an example which illustrates the results obtained in
Section 12.

2 Solution Estimates for ODEs

Consider the equation

d2u

dz2 = Q(z)u+ F(z) (z ∈ C, u(0) = u0 ∈ C, u′(0) = u1 ∈ C), (1)

where Q(z) and F(z) are entire functions. A solution of (1) is a twice continuously
differentiable function u(z) defined for all z ∈ C and satisfying the given initial
conditions. Since the equation is linear, the existence and uniqueness of solutions
is well known, cf. [32]. About the recent results on solution estimates for ordinary
differential equations see for instance the books [1, 35] and references given therein.
For an entire function f and a positive number r put Mf (r) = sup|z|≤r |f (z)|.
Lemma 1 A solution u(z) of Equation (1) satisfies the inequality

Mu(r) ≤
(

|u0| + r|u1| +
∫ r

0
(r − s)MF (s)ds

)

cosh
(
r
√
MQ(r)

)

(r ≥ 0, cosh x = (ex + e−x)/2, x ≥ 0).

Proof For a fixed t ∈ [0, 2π) and z = reit from (1) we have

1

e2it

d2u(reit )

dr2
= Q(reit )u(reit )+ F(reit ).

Integrating twice this equation in r , we obtain

u(reit ) = e2it (u0 + ru1)+ e2it
∫ r

0
(r − s)[Q(seit )u(seit )+ F(seit )]ds.
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Hence,

Mu(r) ≤ |u0| + r|u1| +
∫ r

0
(r − s)(MQ(s)Mu(s)+MF(s))ds

=
∫ r

0
(r − s)MQ(s)Mu(s)ds +H(r),

where

H(r) = |u0| + r|u1| +
∫ r

0
(r − s)MF (s)ds.

Due to the comparison lemma [10, Lemma III.2.1], we have Mu(r) ≤ v(r), where
v(r) is a solution of the equation

v(r) = H(r)+
∫ r

0
(r − s)MQ(s)v(s)ds = H(r)+ (V v)(r).

Here V is the Volterra operator defined by

(V v)(r) =
∫ r

0
(r − s)MQ(s)v(s)ds =

∫ r

0

∫ r1

0
MQ(r2)v(r2)dr2dr1,

and therefore,

v =
∞∑

k=0

V kH. (2)

But for any positive nondecreasing function h(r) we have

(V h)(r)=
∫ r

0

∫ r1

0
MQ(r2)h(r2)dr2dr1 ≤ h(r)MQ(r)

∫ r

0

∫ r1

0
dr2dr1=h(r)MQ(r)r2/2.

Similarly,

(V 2h)(r) =
∫ r

0

∫ r1

0
MQ(r2)

∫ r2

0

∫ r3

0
MQ(r4)h(r4)dr4 dr3 dr2 dr1

≤ h(r)M2
Q(r)

∫ r

0

∫ r1

0

∫ r2

0

∫ r3

0
dr4 dr3 dr2 dr1 = h(r)M2

Q(r)r4/4!

Continuous this process we obtain

(V mh)(r) ≤ h(r)Mm
Q(r)

r2m

(2m)! (m = 1, 2, . . .).
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Thus from (2) it follows

Mu(r) ≤ v(r) ≤ H(r)

∞∑

k=0

Mk
Q(r)r2k

(2k)! .

But

∞∑

k=0

Mk
Q(r)r2k

(2k)! = cosh(r
√
MQ(r)).

This implies the required result. Q.E.D.

Since cosh(x) ≤ ex, x ≥ 0, we obtain the following corollary.

Corollary 1 A solution u(z) of Equation (1) satisfies the inequality

Mu(r) ≤
(

|u0| + r|u1| +
∫ r

0
(r − s)MF (s)ds

)

exp
(
r
√
MQ(r)

)
(r ≥ 0).

Now let Q(z) = P(z), where

P(z) =
n∑

k=0

ckz
k (cn 
= 0; ck ∈ C, k = 0, . . . , n <∞).

Consider the equation

u′′ = P(z)u+ F(z), u(0) = u0, u
′(0) = u1 (u0, u1 ∈ C). (3)

In the considered case MQ(r) ≤ p(r), where

p(r) =
n∑

k=0

|ck|rk.

According to Corollary 1, a solution u(z) of (3) satisfies the inequality

Mu(r) ≤ (|u0| + r|u1|) exp
(
r
√
p(r)

)
(r ≥ 0). (4)

Recall the Young inequality

ab ≤ am

m
+ al

l
(

1

m
+ 1

l
= 1; m > 1; a, b > 0).

Then with m = (n+ 2)/(k + 2) we have



154 M. Gil’

rk ≤ krn+2

n+ 2
+ 1− k

n+ 2
= (k + 2)rn+2

n+ 2
+ n+ 2− (k + 2)

n+ 2
.

Hence

r2p(r) =
n∑

k=0

|ck|rk+2 ≤
n∑

k=0

|ck|
(
(k + 2)rn+2

n+ 2
+ n− k

n+ 2

)

= b0r
n+2 + b1,

where

b0 = 1

n+ 2

n∑

k=0

|ck|(k + 2)

and

b1 = 1

n+ 2

n∑

k=0

|ck|(n− k).

Since

√
a + b ≤ √a +√b (a, b ≥ 0),

we get

r
√
p(r) =

√

r2p(r) ≤ √
b0r

n/2+1 +√
b1.

Thus

exp[r√MP (r)] ≤ exp[r√p(r)] ≤ ηP exp[γP rn/2+1],

where

γP =
√
√
√
√ 1

n+ 2

n∑

k=0

|ck|(k + 2) and ηP = exp

⎡

⎣

√
√
√
√ 1

n+ 2

n∑

k=0

|ck|(n− k)

⎤

⎦ .

Now (4) implies

Corollary 2 A solution u(z) of Equation (3) satisfies the inequality

Mu(r) ≤ ηP

(

|u0| + r|u1| +
∫ r

0
(r − s)MF (s)ds

)

exp[γP rn/2+1] (r ≥ 0).
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3 Singular Values of Compact Operators

Let H be a complex separable Hilbert space, cf. [24].
For a compact operator A acting in H , by λk(A) (k = 1, 2, . . .) we denote the

eigenvalues of A taken with their multiplicities and ordered in the non-increasing
way of their absolute values; sk(A) (k = 1, 2, . . .) are the singular numbers (i.e.
the eigenvalues of (A∗A)1/2), taken with their multiplicities and ordered in the non-
increasing way. Here A∗ is the operator adjoint to A. In the sequel we need the
following well-known results, cf. [24, Section II.4.2], [23, Section IV.4].

Lemma 2 Let A and B be compact operators in H . Then

j∑

k=1

sk(A+ B) ≤
j∑

k=1

(sk(A)+ sk(B)),

j∑

k=1

s
p
k (AB) ≤

j∑

k=1

s
p
k (A)s

p
k (B) (p ≥ 1)

and

j∏

k=1

sk(AB) ≤
j∏

k=1

sk(A)sk(B) (j = 1, 2, . . .).

In addition, if C and D are bounded linear operators in H , then

sk(CAD) ≤ ‖C‖‖D‖sk(A) (k ≥ 1),

where ‖C‖ means the operator norm of C.

According to Corollary 2.2 from the book [23] the operators A and A∗ have the
same singular values.

Recall that A is said to be normal if AA∗ = A∗A.

Lemma 3 (Weyl’s Inequalities) The inequalities

k∏

j=1

|λj (A)| ≤
k∏

j=1

sj (A)

and

k∑

j=1

|λj (A)| ≤
k∑

j=1

sj (A) (k = 1, 2, . . .)

are true. They become equalities if and only if A is normal.



156 M. Gil’

For the proof see Theorem IV.3.1 and Corollary IV.3.4 from [23], or Section II.3.1
from [24, Section II.4.2].

4 Bounds for Zeros of Entire Functions via Taylor
Coefficients

Let us consider the entire function

h(z) =
∞∑

k=0

akz
k

(k!)α (0 < α ≤ 1, z ∈ C, a0 = 1, ak ∈ C, k ≥ 1). (5)

Enumerate the zeros zk(h) of h with the multiplicities in non-decreasing order of
their absolute values: |zk(h| ≤ |zk+1(h)| (k = 1, 2, . . .) and assume that

θ(h) := [
∞∑

k=1

|ak|2]1/2 <∞. (6)

The aim of this section is to prove the following theorem.

Theorem 1 Let h be defined by (5) and condition (6) hold. Then

j∑

k=1

1

|zk(h)| ≤ θ(h)+
j∑

k=1

1

(k + 1)α
(j = 1, 2, . . .)

and

j∏

k=1

1

|zk(h)| ≤ (θ(h)+ 1

2α
)

j∏

k=2

1

(k + 1)α
(j = 2, 3, . . .).

To prove this theorem introduce the polynomial

fn(z) =
n∑

k=0

akz
n−k

(k!)α (0 < α ≤ 1, z ∈ C, a0 = 1, ak ∈ C, k > 1)

and the n× n-matrix

Fn =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−a1 −a2 . . . −an−1 −an
1/(2α) 0 . . . 0 0

0 1/(3α) . . . 0 0
. . . . . . .

0 0 . . . 1/(nα) 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.
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Let zk(fn) (k = 1, . . . , n) be the zeros of fn with their multiplicities enumerated in
non-increasing order of their absolute values. and λk(Fn) be the eigenvalues of Fn

taken with the multiplicities enumerated in the non-increasing order of their absolute
values.

Lemma 4 One has λk(Fn) = zk(fn) (k = 1, . . . , n).

Proof Clearly, fn is the characteristic polynomial of the matrix

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−a1 − a2
2α . . . − an−1

((n−1)!)α − an
(n!)α

1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . .

0 0 . . . 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Following [17, Lemma 5.2.1, p. 117], put

mk = 1

kα
and ψk = 1

(k!)α = m1m2 · · ·mk (k = 1, . . . , n).

Then

Fn =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−a1 −a2 . . . −an−1 −an
m2 0 . . . 0 0
0 m3 . . . 0 0
. . . . . . .

0 0 . . . mn 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−a1 −a2ψ2 . . . −an−1ψn−1 −anψn

1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . .

0 0 . . . 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Let μ be an eigenvalue of B, i.e. for the eigenvector (xk)nk=1 ∈ Cn, we have

−a1x1 − a2ψ2x2 − . . .− an−1ψn−1xn−1 − anψnxn = μx1,

xk = μxk+1 (k = 1, . . . , n− 1).

Put xk = yk/ψk . Since ψ1 = 1, we obtain

−a1y1 − a2y2 . . .− an−1yn−1 − anyn = μy1
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and

yk

ψk

= μ
yk+1

ψk+1
(k = 1, . . . , n− 1).

Or

mk+1yk = ykψk+1

ψk

= μyk+1 (k = 1, . . . , n− 1).

These equalities are equivalent to the equality Fny = μy with y = (yk). In other
words T BT −1 = Fn, where T = diag(1, ψ2, . . . , ψn) and therefore

T −1 = diag(1,
1

ψ2
, . . . ,

1

ψn

).

This proves the lemma. Q.E.D.

Put

hn(z) = znfn(1/z) =
n∑

k=0

akz
k

(k!)α .

Then

zk(hn) = 1

zk(fn)
= 1

λk(Fn)
(k = 1, . . . , n). (7)

Here zk(hn) are the zeros of hn with their multiplicities enumerated in non-
decreasing order of their absolute values.

Furthermore, note that Fn = M + C, where

M =

⎛

⎜
⎜
⎝

−a1 −a2 . . . −an−1 −an
0 0 . . . 0 0
. . . . . . .

0 0 . . . 0 0

⎞

⎟
⎟
⎠ and C =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 . . . 0 0
1/2α 0 . . . 0 0

0 1/3α . . . 0 0
. . . . . . .

0 0 . . . 1/nα 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Therefore, with

θ(hn) = [
n∑

k=1

|ak|2]1/2,
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we have

MM∗ =

⎛

⎜
⎜
⎝

θ2(hn) 0 . . . 0 0
0 0 . . . 0 0
. . . . . . .

0 0 . . . 0 0

⎞

⎟
⎟
⎠ and CC∗ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 . . . 0 0
0 1/22α . . . 0 0
0 0 . . . 0 0
. . . . . . .

0 0 . . . 0 1/n2α

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Hence, the singular values of M are s1(M) = θ(hn) and sk(M) = 0 for k > 1. In
addition,

sk(C) = 1

(k + 1)α
(k = 1, . . . , n− 1), sn(C) = 0.

Thus, applying Corollary 2.2 from [24], we arrive at the following result.

Lemma 5 The singular values sk(Fn) of Fn satisfy the inequalities

s1(Fn) ≤ θ(hn)+ 1

2α
and sk(Fn) ≤ 1

(k + 1)α
for k = 2, . . . , n.

Hence due to Weyl’s inequalities (see the previous section), we obtain

j∑

k=1

|λk(Fn)| ≤ θ(hn)+
j∑

k=1

1

(k + 1)α
(j = 1, . . . , n)

and

j∏

k=1

|λk(Fn)| ≤ (θ(hn)+ 1/2α)
j∏

k=2

1

(k + 1)α
(j = 2, . . . , n).

Now (7) implies

j∑

k=1

1

|zk(hn)| ≤ θ(hn)+
j∑

k=1

1

(k + 1)α
(j = 1, . . . , n) (8)

and

j∏

k=1

1

|zk(hn)| ≤ (θ(hn)+ 1/2α)
j∏

k=2

1

(k + 1)α
(j = 2, . . . , n). (9)
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Proof of Theorem 1 In each compact domain Ω ∈ C, we have hn(z)→ h(z) (n→
∞) uniformly in Ω . Due to the Hurwitz theorem [33, p. 5] zk(hn) → zk(h) for
zk(h) ∈ Ω . Now (8) and (9) prove the theorem. Q.E.D.

5 Bounds for Sums and Products of Zeros of an Entire
Function via Its Order

Lemma 6 For an entire function f (z) let the inequality

Mf (r) ≤ exp[Brρ] (B = const > 0; ρ ≥ 1, r > 0) (10)

be fulfilled. Then its Taylor coefficients fj (j = 1, 2, . . .) satisfy the inequality

|fj | ≤ (eBρ)j/ρ

(j !)1/ρ
(j ≥ 1).

Proof By the well-known inequality for the coefficients of a power series

|fj | ≤ Mf (r)

rj
≤ eBrρ

rj
.

Employing the usual method for finding extrema it is easy to see that the function in
the right-hand side of this inequality takes its smallest value in the range r > 0 for
r = (

j
Bρ

)1/ρ and therefore

|fj | ≤ (
eBρ

j
)j/ρ.

Since jj ≥ j !, we obtain

|fj | ≤ (eBρ)j/ρ
1

(j j )1/ρ ≤
(eBρ)j/ρ

(j !)1/ρ ,

as claimed. Q.E.D.

If an entire function v(z) satisfies the inequality

Mv(r) ≤ rm exp[Brρ] (m = 1, 2, . . .),

then we can write v(z) = f (z)zm with f (z) satisfying (10). Then due Lemma 6 the
Taylor coefficients at zero vj of v satisfy the relations
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|vj |=|fj−m| ≤ (eBρ)(j−m)/ρ

((j −m)!)1/ρ
(j=m,m+1, . . .) and vj = 0 (j=0, 1, . . . , m−1).

Hence we get

Corollary 3 Let an entire function v(z) be subject to the inequality

Mv(r) ≤ exp[Bvr
ρ](D0 +D1r +D2r

2 + . . .+Dmr
m)

(r > 0;Dj = const ≥ 0, j = 1, . . . , m <∞). (11)

Then its Taylor coefficients at zero vj satisfy the inequalities

|vj | ≤
m∑

k=0

Dk

(eBvρ)
(j−k)/ρ

((j − k)!)1/ρ (j = 0, 1, . . .).

Note that

1

(j − k)! = 0 if k > j and 0! = 1.

Put

dj = vj (j)
1/ρ, ξ = ξv := (eBvρ)

1/ρ

and

lj := (j !)1/ρ
m∑

k=0

Dk

ξ
j−k
v

((j − k)!)1/ρ (j = 1, . . .).

Then due to Corollary 3 |dj | ≤ lj . Assume that

eBvρ < 1. (12)

Then ξv < 1 and for j < m we have

lj ≤ (j !)1/ρ
j∑

k=0

Dkξ
j−k ≤ C0(j !)1/ρ,

where

C0 :=
m∑

k=0

Dk.
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If j ≥ m, then

lj ≤ (j !)1/ρ
m∑

k=0

Dk

ξj−k

((j − k)!)1/ρ ≤ C0j
mξj−m.

Thus

ψ1(v) :=
∞∑

j=1

lj =
∞∑

j=1

(j !)1/ρ
m∑

k=0

Dk

ξj−k

((j − k)!)1/ρ

≤ C0(

m−1∑

j=0

(j !)1/ρ +
∞∑

j=m
ξj−mjm) <∞.

The following quantity plays an essential role hereafter:

ψ(v) := (

∞∑

j=1

l2j )
1/2 =

⎡

⎣
∞∑

j=1

(

(j !)1/ρ
m∑

k=0

Dk

ξj−k

((j − k)!)1/ρ

)2
⎤

⎦

1/2

.

Since ψ(v) ≤ ψ1(v), we have ψ(v) < ∞. We thus have proved the following
lemma.

Lemma 7 Let an entire function v(z) be subject to inequalities (11) and (12). Then
it is representable as

v(z) =
∞∑

k=0

dkz
k

(k!)1/ρ
,

and

θ(v) :=
⎡

⎣
∞∑

j=1

|dj |2
⎤

⎦

1/2

≤ ψ(v) <∞.

Making use of Theorem 1 and the latter lemma we get our next result.

Theorem 2 Let v be an entire function satisfying inequalities (11) and (12), and let
v(0) = 1. Then

j∑

k=1

1

|zk(v)| ≤ ψ(v)+
j∑

k=1

1

(k + 1)1/ρ (j = 1, 2, . . .)
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and

j∏

k=1

1

|zk(v)| ≤ (ψ(v)+ 1

21/ρ )

j∏

k=2

1

(k + 1)1/ρ (j = 2, 3, . . .).

Remark 1 Condition (12) is not very restrictive. If eBρ ≥ 1, then we can apply the
substitution z = wc with

cρ <
1

eBρ
.

Indeed, put vc(w) = v(cw). Then condition (11) implies.

Mvc(r) ≤ (D0 +D1cr + . . . .+Dmcr
m) exp[Bcρrρ] (r > 0).

Condition (12) takes the form

eBcρρ < 1.

So if

cρ <
1

eBρ
,

then Theorem 2 can be applied to the function vc(z). Besides, zk(v) = czk(vc).

6 Sums and Products of Zeros of Solutions to Homogeneous
ODEs with Polynomial Coefficients

Again consider the equation

u′′(z) = P(z)u(z) (u(0) = 1, u′(0) = u1 ∈ C, z ∈ C), (13)

where

P(z) =
n∑

k=0

ckz
k (cn 
= 0; ck ∈ C, k = 0, . . . , n).

As is well-known [32], a solution u(z) of (13) is an entire function whose order
is no more than n/2 + 1, and the zeros zk(u) of u(z) are simple. Enumerate the
zeros of u in the nondecreasing order of their absolute values: |zk(u)| ≤ |zk+1(u)|
(k = 1, 2, . . .).
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According to Corollary 2 u(t) satisfies inequality (11) with

B = γP , ρ = n/2+ 1,D0 = ηP ,D1 = ηP |u1|,Dk = 0 (k ≥ 2).

Recall that

γP =
√
√
√
√ 1

n+ 2

n∑

k=0

|ck|(k + 2) and ηP = exp

⎡

⎣

√
√
√
√ 1

n+ 2

n∑

k=0

|ck|(n− k)

⎤

⎦ .

Condition (12) takes the form

eγP (n+ 1/2) < 1. (14)

Hence,

ξP := (eγP (n+ 1/2))2/(2n+1) < 1.

Simple calculations show that

ψ(u) = ηP [
∞∑

j=1

ξ
2j
P

(

1+ |u1|j
2/(n+2)

ξP

)2

]1/2 <∞.

Now Theorem 2 implies

Theorem 3 If condition (14) holds, then the zeros of a solution u(z) to Equa-
tion (13) satisfy the inequalities

j∑

k=1

1

|zk(u)| ≤ ψ(u)+
j∑

k=1

1

(k + 1)2/(n+2)
(j = 1, 2, . . .) (15)

and

j∏

k=1

1

|zk(u)| ≤ (ψ(u)+ 1

22/(n+2)
)

j∏

k=2

1

(k + 1)2/(n+2)
(j = 2, 3, . . .).

Remark 2 Condition (14) is not very restrictive. If it does not hold: eγP (n+1/2) ≥
1, then one can apply the substitution z = wb with

0 < b = const <
1

eγP (n/2+ 1)
. (16)

Indeed, substituting z = wb into (13), with ub(w) = u(bw) we have

1

b2

d2ub(w)

dw2
= P(bw)ub(w).
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Or

d2ub(w)

dw2
= Pb(w)ub(w), (17)

where

Pb(w) = b2P(bw) =
n∑

k=0

ckb
k+2wk.

If eγP (n+ 1/2) ≥ 1, then due to (16) we have b < 1 and therefore

γPb
=

√
√
√
√ 1

n+ 2

n∑

k=0

bk+2|ck|(k + 2) ≤ b

√
√
√
√ 1

n+ 2

n∑

k=0

|ck|(k + 2) = γP b.

According to (16) condition (14) for Equation (17) is fulfilled:

eγPb
(n/2+ 1) < ebγP (n+ 1/2) < 1.

Therefore we can apply Theorem 3. Besides zk(u) = bzk(ub) (k = 1, 2, . . .).

Example 1 To estimate the sharpness of Theorem 3, consider the equation

u′′ + a2u = 0, u(0) = 1, u′(0) = 0 (a = const > 0).

Then u(z) = cos(az) and its zeros are

π

a
(m+ 1/2) (m = 0,±1,±2, . . .).

So

z2k(cos(az)) = π

a
(k − 1/2), z2k−1 = π

a
(−k + 1/2) (k = 1, 2, . . .)

and

2j∑

k=1

1

|zk(cos(az))| =
2a

π

j∑

k=1

1

k − 1/2
(j = 1, 2, . . .). (18)

In the considered case n = 0, γP = a and ηP = 1. Thus,

eγP (n+ 1/2) = ea

2
.
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So condition (14) holds, provided

a <
2

e
.

This condition yields ξP := ea/2 < 1 and ψ(u) = ψ(cos(az)), where

ψ(cos(az)) = [
∞∑

k=1

ξ2k
P ]1/2 = [

∞∑

k=1

(ea/2)2k]1/2 = 1

[(2/ea)2 − 1]1/2 .

Now Theorem 3 implies

2j∑

k=1

1

|zk(cos(az))| ≤ ψ(cos(az))+
2j∑

k=1

1

k + 1
(j = 1, 2, . . .) (19)

and

2j∏

k=1

1

|zk(cos(az))| ≤ (ψ(cos(az))+ 1

2
)

2j∏

k=2

1

(k + 1)
(j = 2, 3, . . .).

We can see that (19) and (18) are asymptotically equivalent.

7 Applications of Theorem 3

Again u(z) is a solution of Equation (13). Recall that u(0) = 1. Assume that n ≥ 1
and for the brevity put

α = 2

n+ 2
.

Since |zk(u)| ≤ |zk+1(u)|, Theorem 3 implies that

j

|zj (u)| ≤ ψ(u)+
j∑

k=1

1

(k + 1)α
(j = 1, 2, . . .),

provided condition (14) holds. But

j∑

k=1

(k + 1)−α ≤
∫ j+1

1

dx

xα
= (1+ j)1−α − 1

1− α
(0 < α < 1).
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Thus,

j

|zj (u)| ≤ ψ(u)+ (1+ j)1−α − 1

1− α

and therefore,

|zj (u)| ≥ χj (u), (20)

where

χj (u) = j

ψ(u)+ (1+j)1−α−1
1−α

.

If |zj (u)| ≥ a (a > 0), then u(z) has in Ω(a) := {z ∈ C : |z| < a} no more
than j − 1 zeros. Denote by ν(f, a) the number of the zeros of an entire function
f inside Ω(a), i.e. ν(f, a) is the counting function of the zeros of f . In particular,
due to (20) ν(u, a) = 0 for any positive

a < χ1(u) = 1

ψ(u)+ 21−α−1
1−α

.

We thus arrive at

Corollary 4 Let condition (14) hold and n ≥ 1. Then the counting function of the
zeros of a solution u(z) of (13) satisfies the inequality ν(u, a) ≤ j − 1 for any
positive a ≤ χj (u) (j = 1, 2, . . .).

Moreover the circle {z ∈ C : |z| < χ1(u)} is a zero-free domain of u(z).

To consider additional applications of Theorem 3 recall some inequalities for
convex functions. The following result is classical, cf. [24, Lemma II.3.4], [23,
p. 53].

Lemma 8 Let φ(x) (−∞ ≤ x ≤ ∞) be a convex continuous function, such that

φ(−∞) = lim
x→−∞φ(x) = 0,

and aj , bj (j = 1, 2, . . . , l ≤ ∞) be two non-increasing sequences of real
numbers, such that

j∑

k=1

ak ≤
j∑

k=1

bk (j = 1, 2, . . . , l).

Then

j∑

k=1

φ(ak) ≤
j∑

k=1

φ(bk) (j = 1, 2, . . . , l).
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The next result is also well known, cf. [24, Chapter II], [23, p. 53].

Lemma 9 Let a scalar-valued function Φ(t1, t2, . . . , tj ) with an integer j be
defined on the domain

−∞ < tj ≤ tj−1 . . . ≤ t2 ≤ t1 <∞

and have continuous partial derivatives, satisfying the condition

∂Φ

∂t1
>

∂Φ

∂t2
> . . . >

∂Φ

∂tj
> 0 for t1 > t2 > . . . > tj ,

and ak, bk (k = 1, 2, . . . , j) be two non-increasing sequences of real numbers
satisfying the condition

m∑

k=1

ak ≤
m∑

k=1

bk (m = 1, 2, . . . , j).

Then Φ(a1, . . . , aj ) ≤ Φ(b1, . . . , bj ).

Furthermore, put

ϑ1 = ψ(u)+ 1

2α
and ϑk = 1

(k + 1)α
(k = 2, 3, . . .).

Inequality (15) and Lemma 8 yield

Corollary 5 Let φ(t) (0 ≤ t < ∞) be a continuous convex function, such that
φ(0) = 0. Then

j∑

k=1

φ(
1

|zk(u)| ) ≤
j∑

k=1

φ(ϑk) (j = 1, 2, . . .).

In particular, for any p ≥ 1 and j = 2, 3, . . ., we have

j∑

k=1

1

|zk(u)|p ≤
j∑

k=1

ϑ
p
k

and therefore, if p > 1/α = n/2+ 1, then

∞∑

k=1

1

|zk(u)|p ≤ ϑ
p

1 + ζ(pα)− 1− 1

2pα
<∞,
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where ζ(z) is the zeta Riemann function:

ζ(z) =
∞∑

k=1

1

kz
(Re z > 1).

In addition, making use of (15) and Lemma 9, we arrive at

Corollary 6 Let Φ(t1, t2, . . . , tj ) satisfy the hypothesis of Lemma 9. Then

Φ(
1

|z1(u)| , . . . ,
1

|zj (u)| ) ≤ Φ(ϑ1, . . . , ϑj ).

In particular, let {mk}∞k=1 be a decreasing sequence of positive numbers with m1 =
1. Then the previous corollary yields the inequality

j∑

k=1

mk

|zk(u)| ≤ ψ(u)+
j∑

k=1

mk

(k + 1)α
(j = 1, 2, . . .).

8 A Perturbation Bound for the Zeros of Entire Functions
in Terms of Taylor Coefficients

Definition 1 Let zj (h) and zj (h̃) (j = 1, 2, . . .) be the zeros of entire functions h

and h̃, respectively, enumerated with the multiplicities in the non-decreasing order
of their absolute values. Then the quantity

rvh(h̃) = sup
j

inf
k

∣
∣
∣
∣
∣

1

zk(h)
− 1

zj (h̃)

∣
∣
∣
∣
∣

will be called the relative variation of the zeros of h̃ with respect to the zeros of h.

In this section we consider entire functions of the form

h(z) =
∞∑

k=0

akz
k

(k!)α and h̃(z) =
∞∑

k=0

ãkz
k

(k!)α (a0 = ã0 = 1, 0 < α ≤ 1) (21)

with complex coefficients ak, ãk (k = 1, 2, . . .), assuming that

θ(h) = (

∞∑

k=1

|ak|2)1/2 <∞ and θ(h̃) = (

∞∑

k=1

|ãk|2)1/2 <∞. (22)
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To investigate the relative variation of the zeros take an integer p satisfying the
inequality

p >
1

2α
(23)

and put

#p(h) := 2

[

(θ(h)+ 1

2α
)2p + ζ(2αp)− 1− 1

22αp

]1/2p

.

Rcall that ζ(z) is the Riemann zeta function. Finally, denote

q :=
[ ∞∑

k=1

|ak − ãk|2
]1/2

and

χp(h, y) :=
p−1∑

k=0

#k
p(h)

yk+1 exp

[
1

2
+ #

2p
p (h)

2y2p

]

(y > 0).

Theorem 4 Let h and h̃ be defined by (21) and conditions (22) be fulfilled. Then
for any integer p satisfying inequality (23) we have

rvh(h̃) ≤ yp(q, h),

where yp(q, h) is the unique positive root of the equation

qχp(h, y) = 1.

The proof of this theorem is presented in the next section. Since χp(h, .) is a
monotonically decreasing function, the latter theorem implies

Corollary 7 Let h and h̃ be defined by (21), and conditions (22) and (23) be ful-
filled. Then all the zeros of h̃ lie in the union of the setsWk(p, h) (k = 1, 2, 3, . . .),
where

Wk(p, h) :=
{

λ ∈ C : qχp

(

h, | 1

zk(h)
− 1

λ
|
)

≥ 1

}

.

In particular, if h has l < ∞ zeros (we do not take into account the zero limits at
infinity), then all the zeros of h̃ lie in the set

∪l
k=0Wk(p, h),
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where

W0(p, h) = {λ ∈ C : qχp(h,
1

|λ| ) ≥ 1}.

Note that

χp

(

h,
1

|λ|
)

=
p−1∑

k=0

#k
p(h)|λ|k+1 exp

[
1

2
(1+#

2p
p (h)|λ|2p)

]

.

Furthermore, we need the following lemma.

Lemma 10 The unique positive root za of the equation

p−1∑

j=0

1

yj+1
exp [1

2
(1+ 1

y2p
)] = a (a = const > 0)

satisfies the inequality za ≤ δp(a), where

δp(a) :=
{
pe/a if a ≤ pe,

[ln (a/p)]−1/2p if a > pe
.

For the proof see [16, Lemma 8.3.3] or Lemma 1.6.4 from [17]. Substitute the
equality y = x#p(h) into the equation qχp(h, y) = 1, and apply the latter lemma.
Then, we have the inequality

yp(q, h) ≤ δp(q, h), (24)

where

δp(q, h) :=
{
epq if #p(h) ≤ epq,

#p(h) [ln (#p(h)/qp)]−1/2p if #p(h) > epq.

Now Theorem 4 yields the inequality

rvf (h̃) ≤ δp(q, h).

If h has an infinite set of zeros, then according to Theorem 4 for any zero z(h̃) of h̃,
there is a zero z(h) of h, such that

|z(h̃)− z(h)| ≤ yp(q, h)|z(h̃)z(h)|

Hence,
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|z(h)| ≤ |z(h̃)|(1+ yp(q, h)|z(h)|)

and therefore, for any zero z(h̃) of h̃, there is a zero z(h) of h, such that

|z(h̃)| ≥ |z(h)|
yp(q, h)|z(h)| + 1

.

Now (24) implies

|z(h̃)| ≥ |z(h)|
δp(q, h)|z(h)| + 1

.

9 Proof of Theorem 4

For an integer n ≥ 2, consider the polynomials

hn(z) =
n∑

k=0

akz
k

(k!)α and h̃n(z) =
n∑

k=0

ãkz
k

(k!)α .

Put

θ(hn) :=
[

n∑

k=1

|ak|2
]1/2

,#p(hn) := 2

[

(θ(hn)+ 1

2pα
)2p+

n∑

k=2

1

(k + 1)2pα

]1/2p

,

χp(hn, y) :=
p−1∑

k=0

#k
p(hn)

yk+1 exp

[
1

2
+ #

2p
p (hn)

2y2p

]

(y > 0),

and

qn :=
[

n∑

k=1

|ak − ãk|2
]1/2

.

Let

fn(λ) = λnhn(1/λ) =
n∑

k=0

ak

kα
λn−k and f̃n(λ) = λnh̃n(1/λ) =

n∑

k=0

ãk

kα
λn−k.

Lemma 11 For any zero z(f̃n) of f̃n, there is a zero z(fn) of fn, such that

|z(fn)− z(f̃n)| ≤ yp(qn, fn),
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where yp(qn, fn) s the unique (positive) root of the equation

qnχp(hn, y) = 1.

Proof Introduce the matrices

Fn =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−a1 −a2 . . . −an−1 −an
1

2α 0 . . . 0 0
0 1

3α . . . 0 0
. . . . . . .

0 0 . . . 1
nα

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and

F̃n =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−ã1 −ã2 . . . −ãn−1 −ãn
1

2α 0 . . . 0 0
0 1

3α . . . 0 0
. . . . . . .

0 0 . . . 1
nα

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Thanks to Lemma 4, we have

λk(Fn) = zk(fn), λk(F̃n) = zk(f̃n) (k = 1, 2, . . . , n),

where λk(A), k = 1, . . . , n are the eigenvalues of an n × n matrix A with their
multiplicities. Besides,

F̃n − Fn =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ã1 − a1 ã2 − a2 . . . ãn−1 − an−1 ãn − an

0 0 . . . 0 0
0 0 . . . 0 0
. . . . . . .

0 0 . . . 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and

qn = ‖Fn − F̃n‖,

where ‖.‖ is the spectral norm, i.e. the operator norm with respect to the Euclidean
vector norm. Making use of [17, Theorem 2.12.4], we can assert that for any λj (F̃n)

there is a λk(Fn), such that

|λj (F̃n)− λk(Fn)| ≤ yp(qn), (25)

where yp(qn) is the unique (positive) root of the equation
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qn

p−1∑

k=0

(2N2p(Fn))
k

yk+1 exp

[
1

2
+ (2N2p(Fn))

2p

2y2p

]

= 1.

Here

N2p(Fn) = [
n∑

k=1

s
2p
k (Fn)]1/2p

is the Schatten-von Neumann norm of Fn. Due to Lemma 5,

s1(Fn) ≤ θ(hn)+ 1

2α

and

sk(Fn) ≤ 1

(k + 1)α

for k > 1. Thus,

N
2p
2p (Fn) ≤ (θ(hn)+ 1

2α
)2p +

n∑

k=2

1

(k + 1)2pα = #
2p
p (hn).

Now (25) implies the required result. Q.E.D.

Proof of Theorem 4 Since

zk(hn) = 1

zk(fn)
and zk(h̃n) = 1

zk(fn)
,

taking into account that #p(hn) ≤ #p(h), and the roots continuously depend on
coefficients, we have the required result, letting in the previous lemma n → ∞.
Q.E.D.

10 A Perturbation Bound for the Zeros of an Entire Function
via Its Order

Let h(z) and h̃(z) be entire functions with h(0) = h̃(0) = 1. Put v(z) = h(z)− h̃(z)

and assume that

Mh(r) ≤ exp[Bhr
ρ](C0 + C1r + C2r

2 + . . .+ Cs)

(r > 0;Bh,Cj = const ≥ 0, j = 0, 1, . . . , s <∞), (26)
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and

Mv(r) ≤ exp[Bvr
ρ](D1r +D2r

2 + . . .+Dmr
m)

(r > 0;Bv,Dj = const ≥ 0, j = 1, . . . , m <∞). (27)

By Corollary 3 the Taylor coefficients at zero vj of v satisfy the inequalities

|vj | ≤
m∑

k=1

Dk

ξ
j−k
v

((j − k)!)1/ρ
(j = 1, . . .),

where ξv = (eBvρ)
1/ρ . Similarly, the Taylor coefficients at zero hj of h satisfy the

inequalities

|hj | ≤
s∑

k=0

Ck

ξ
j−k
h

((j − k)!)1/ρ (j = 1, 2 . . .),

where ξh := (eBhρ)
1/ρ . Recall that 1

(j−k)! = 0 if k > j and 0! = 1. If

Bh ≤ Bv and eBvρ < 1, (28)

then ξv < 1 and ξh < 1. Besides,

ψ(v) =
⎡

⎣
∞∑

j=1

(j !)2/ρ

(
m∑

k=1

Dk

ξ
j−k
v

((j − k)!)1/ρ

)2
⎤

⎦

1/2

<∞

and

ψ(h) =
⎡

⎣
∞∑

j=1

(j !)2/ρ

(
s∑

k=0

Ck

ξ
j−k
h

((j − k)!)1/ρ

)2
⎤

⎦

1/2

<∞

(see Section 5). Due to Lemma 7 v(z) is representable as

v(z) =
∞∑

k=0

dkz
k

(k!)1/ρ , (29)

with

θ2(v) =
∞∑

j=1

|dj |2 ≤ ψ2(v)
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and h(z) is representable as

h(z) =
∞∑

k=0

akz
k

(k!)1/ρ ,

with

θ2(h) =
∞∑

j=1

|aj |2 ≤ ψ2(h).

Since v(z) = h(z) − h̃(z), the Taylor coefficients h̃k of h̃ are equal to hk − vk and
due to (29) we can write

h̃(z) =
∞∑

k=0

ãkz
k

(k!)1/ρ ,

with

θ2(h̃) =
∞∑

j=1

|ãj |2 <∞.

Besides, in (29) we have dj = aj − ãj . So

q =
[ ∞∑

k=1

|ak − ãk|2
]1/2

≤ ψ(v).

Furthermore, according to (23) for an integer p satisfying the inequality

p > ρ/2 (30)

we have

#p(h) = 2

[

(θ(h)+ 1

21/ρ
)2p + ζ(2p/ρ)− 1− 1

22p/ρ

]1/2p

≤ πp(h),

where

πp(h) := 2

[

(ψ(h)+ 1

21/ρ )
2p + ζ(2p/ρ)− 1− 1

22p/ρ

]1/2p

.

Hence χp(h, y) ≤ τp(h, y), where
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τp(h, y) =
p−1∑

k=0

πk
p(h)

yk+1 exp

[
1

2
+ π

2p
p (h)

2y2p

]

(y > 0).

Now Lemma 10 implies

Theorem 5 Let entire functions h and h̃ satisfy the conditions h(0) = h̃(0) =
1, (26), (27) and (28). Then for any integer p satisfying inequality (30) we have
rvh(h̃) ≤ xp(v, h), where xp(v, h) is the unique positive root of the equation

ψ(v)τp(h, y) = 1.

Since τp(h, .) is a monotonically decreasing function, the latter theorem implies that
all the zeros of h̃ lie in the union of the sets Ŵk(h, ψ(v)) (k = 1, 2, 3, . . .), where

Ŵk :=
{

λ ∈ C : ψ(v)τp

(

h, | 1

zk(h)
− 1

λ
|
)

≥ 1

}

.

In particular if h has a finite number l of zeros, then all the zeros of h̃ lie in the set

∪l
k=0Ŵk(h, ψ(v)),

where

Ŵ0(h, ψ(v)) = {λ ∈ C : ψ(v)τp(h,
1

|λ| ) ≥ 1}.

Note that

τp

(

h,
1

|λ|
)

=
p−1∑

k=0

πk
p(h)|λ|k+1 exp

[
1

2
(1+ π

2p
p (h)|λ|2p)

]

.

Furthermore, according to (24) we have the inequality

xp(v, h) ≤ ωp(v, h), (31)

where

ωp(v, h) :=
{
epψ(v) if πp(h) ≤ epψ(v),

πp(h)[ln (
πp(h)

ψ(v)p
)]−1/2p if πp(h) > epψ(v)

.

Now Theorem 5 yields the inequality rvf (h̃) ≤ ωp(v, h).
If h has an infinite set of zeros, then according to Theorem 5 and (31), for any

zero z(h̃) of h̃, there is a zero z(h) of h, such that
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|z(h̃)− z(h)| ≤ xp(v, h)|z(h̃)z(h)| ≤ ωp(v, h)|z(h̃)z(h)|.

These relations imply the inequalities

|z(h)| − |z(h̃)| ≤ xp(v, h)|z(h̃)z(h)| ≤ ωp(v, h)|z(h̃)z(h)|.

Hence,

|z(h̃)| ≥ |z(h)|
xp(v, h)|z(h)| + 1

≥ |z(h)|
ωp(v, h)|z(h)| + 1

.

11 An Estimate for the Difference of Two Solutions

Consider the equations

u′′ = P(z)u, (32)

and

ũ′′ = P̃ (z)ũ (z ∈ C), (33)

where

P(z) =
n∑

k=0

ckz
k and P̃ (z) =

n∑

k=0

c̃kz
k (cn 
= 0; c̃n 
= 0)

are polynomials with complex coefficients.
In the sequel it is assumed that

ũ(0) = u(0) = 1, ũ′(0) = u′(0) = u1 (u1 ∈ C). (34)

Recall that numbers ηP and γP are defined in Section 2.

Lemma 12 Let u(z) and ũ(z) be the solutions of (32) and (33), respectively. Let the
initial conditions (34) hold. Then

|u(z)− ũ(z)| ≤
n∑

k=0

|ck − c̃k|rk+2

(k + 1)(k + 2)
(1+ r|u1|)ηP ηP̃ exp[(γP + γ

P̃
)rn/2+1]

(|z| ≤ r, r > 0).
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Proof Put w(z) = u(z)− ũ(z). Then

w′′ = P(z)w + (P (z)− P̃ (z))ũ.

We have

|P(z)− P̃ (z)| ≤ ν̂(r) (|z| = r, r > 0),

where

ν̂(r) :=
n∑

k=0

|ck − c̃k|rk.

Due to Corollary 2

Mũ(r) ≤ η
P̃
(1+ r|u1|) exp[γ

P̃
rn/2+1].

Thus,

|(P (z)− P̃ (z))ũ(z)| ≤ β(r) (|z| ≤ r),

where

β(r) := ν̂(r)η
P̃
(1+ r|u1|) exp[γ

P̃
rn/2+1].

Since w(0) = w′(0) = 0, due to Corollary 1,

Mw(r) ≤ ηP exp[γP rn/2+1]
∫ r

0
(r − s)β(s)ds

≤ (1+ r|u1|)ηP ηP̃ exp[(γP + γ
P̃
)rn/2+1]

∫ r

0
(r − s)ν̂(s)ds.

But

∫ r

0
(r − s)ν̂(s)ds ≤

n∑

k=0

|ck − c̃k|
∫ r

0
(r − s)skds =

n∑

k=0

|ck − c̃k| rk+2

(k + 1)(k + 2)
.

Thus w(z) satisfies the inequality

Mw(r) ≤
n∑

k=0

|ck − c̃k| rk+2

(k + 1)(k + 2)
(1+ r|u1|)ηP ηP̃ exp[(γP + γ

P̃
)rn/2+1],

as claimed. Q.E.D.
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Put b0 = ηP ηP̃ . Then due to the latter lemma we can write

|w(z)| = |u(z)−ũ(z)| ≤
n+3∑

k=2

gkr
k exp[(γP+γP̃ )rn/2+1] (|z| ≤ r, r > 0), (35)

where

g2 = b0

2
|c0 − c̃0|, g3 = b0

( |c1 − c̃1|
6

+ |u1| |c0 − c̃0|
2

)

,

g4 = b0

( |c2 − c̃2|
12

+ |u1| |c1 − c̃1|
6

)

, . . . , gn+1 = b0

( |cn − c̃n|
(n+ 1)(n+ 2)

+ |u1| |cn−1 − c̃n−1|
(n− 1)n

)

,

gn+3 = b0

(n+ 1)(n+ 2)
|u1||cn − c̃n|.

We thus arrive at our next result.

Corollary 8 Let u(z) and ũ(z) be the solutions of (32) and (33), respectively. Let
the initial condition (34) hold. Then inequality (35) is valid.

12 Perturbations of the Zeros of Solutions to ODEs

As above zk(u) and zk(ũ) (k = 1, 2, . . .) are the zeros of the solutions u and
ũ to (32) and (33), respectively, enumerated in the non-decreasing order of their
absolute values. To apply Theorem 5 to perturbations of the zeros of solutions to the
considered equations, note that due to Corollary 2,

Mu(r) ≤ ηP (1+ r|u1|) exp[γP rn/2+1].

So taking in Theorem 5 h(z) = u(z) and v(z) = w(z), where w(z) = u(z)− ũ(z),
we have

Bu = γP , ρ = n/2+ 1 and ξu = ξP ,

where

ξP := (eγP (n/2+ 1))2/(n+2).

Besides, C0 = ηP , C1 = ηP |u1| and Ck = 0 overwise. Similarly, due to (35) we
have

Bw = γP + γ
P̃

and ξw = ξ(P, P̃ ),
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where

ξ(P, P̃ ) := (e(γP + γ
P̃
)(n/2+ 1))2/(n+2).

In addition, Dk = gk (k = 2, . . . , n+ 3) and Dk = 0 overwise. If

e(γP + γ
P̃
)(n/2+ 1) < 1, (36)

then ξ(P, P̃ ) < 1 and ξP < 1, and therefore, ψ(w) = Δ, where

Δ :=
⎡

⎣
∞∑

j=1

(j !)4/(n+2)

(
n+1∑

k=2

gk
ξj−k(P, P̃ )

((j − k)!)4/(n+2)

)2⎤

⎦

1/2

<∞

and

ψ(u) = ηP

⎡

⎣
∞∑

j=1

(j !)4/(n+2)

(
ξ
j
P

(j !)4/(n+2)
+ |u1| ξ

j−1
P

(j − 1)!)4/(n+2)

)2
⎤

⎦

1/2

<∞.

Furthermore, for an integer p satisfying the inequality

p >
n+ 2

4
, (37)

we can write

πp(u) = 2

[

(ψ(u)+ 1

22/(n+2)
)2p + ζ(4p/(n+ 2))− 1− 1

24p/(n+2)

]1/2p

and

τp(u, y) =
p−1∑

k=0

πk
p(u)

yk+1
exp

[
1

2
+ π

2p
p (u)

2y2p

]

(y > 0).

Now Theorem 5 implies

Theorem 6 Let u(z) and ũ(z) be the solutions to Equations (32) and (33),
respectively. Let conditions (34) and (36) hold. Then for an integer p satisfying
the inequality (37) one has

rvu(ũ) ≤ xp(Δ, u),
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where xp(Δ, u) is the unique positive root of the equation

Δ · τp(u, y) = 1.

According to Remark 2 condition (36) is not very restrictive. If it does not hold,
i.e. if e(γP + γ

P̃
)(n+ 1/2) ≥ 1, then one can apply the substitution z = wb̂ with

0 < b̂ = const <
1

e(γP + γ
P̃
)(n/2+ 1)

.

Furthermore, according to (24) we have the inequality

xp(Δ, u) ≤ ωp(Δ,w), (38)

where

ωp(Δ,w) :=
{
epΔ if πp(u) ≤ epΔ,

πp(u) [ln (πp(u)/(pΔ)]−1/2p if πp(u) > epΔ
.

Now Theorem 6 yields the inequality

rvu(ũ) ≤ ωp(u,w).

Since τp(u, .) is a monotonically decreasing function, the latter theorem implies
that all the zeros of ũ lie in the union of the sets Ŵk(u,Δ) (k = 1, 2, 3, . . .), where

Ŵk(u,Δ) :=
{

λ ∈ C : Δ · τp
(

u, | 1

zk(u)
− 1

λ
|
)

≥ 1

}

.

In particular, if u has l <∞ zeros, then all the zeros of ũ lie in the set

∪l
k=0Ŵk(u,Δ),

where

Ŵ0(u,Δ) = {λ ∈ C : Δ · τp(u, 1

|λ| ) ≥ 1}.

Note that

τp

(

u,
1

|λ|
)

=
p−1∑

k=0

πk
p(u)|λ|k+1 exp

[
1

2
(1+ π

2p
p (u)|λ|2p)

]

.
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13 Example to Theorem 6

To illustrate Theorem 6, consider the equations

u′′ + a2u = 0, u(0) = 1, u′(0) = 0 (a = const > 0). (39)

and

ũ′′ + ã2ũ = 0, ũ(0) = 1, ũ′(0) = 0 (ã = const > 0). (40)

Then u(z) = cos(az), ũ(z) = cos(ãz) and their zeros are

π

a
(m+ 1/2) and

π

ã
(m+ 1/2) (m = 0,±1,±2, . . .),

respectively. Consequently,

rvu(ũ) = sup
j

inf
k

∣
∣
∣
∣
∣

1

zk(h)
− 1

zj (h̃)

∣
∣
∣
∣
∣

= sup
j=0,±1,±2,...

inf
k=0,±1,±2,...

∣
∣
∣
∣

a

π(k + 1/2)
− ã

π(j + 1/2)

∣
∣
∣
∣

= |ã − a|
π

sup
j=0,±1,±2,...

1

j + 1/2
.

Hence,

rvu(ũ) = 2
|ã − a|

π
. (41)

In the considered case n = 0, γP = a, γ
P̃
= ã, and η

P̃
= ηP = 1. In addition,

ξ(P, P̃ ) = e(a + ã), and ξP = ea. So condition (36) holds, provided

e(a + ã) < 1. (42)

This condition yields ψ(u) = ψ(cos(az)) = ψ1(a), where

ψ1(a)) = [
∞∑

k=1

ξ2k
P ]1/2 = [

∞∑

k=1

(ae)2k]1/2 = 1

[1/(ae)2 − 1]1/2 .

Moreover, g2 = |a − ã|/2, gk = 0 for k ≥ 3, and
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Δ = g2[
∞∑

k=2

(k(k − 1)ξk−2(P, P̃ ))2]1/2 ≤ g2

∞∑

k=2

k(k − 1)ξk−2(P, P̃ ).

Since

∞∑

k=2

xk−2k(k − 1) = d2

dx2

∞∑

k=0

xk = d2

dx2 (1− x)−1 = 6

(1− x)3 (0 < x < 1),

we have Δ ≤ Δ1, where

Δ1 = 6g2

(1− ξ(P, P̃ ))3
= 3|a − ã|

(1− (a + ã)e)3
.

With p = 1 the inequality (37) holds and π1(u) = π̂(a), where

π̂(a) := 2

[

(ψ1(a)+ 1

2
)2 + ζ(2)− 1− 1

22

]1/2

,

and τ1(u, y) = τ̂ (a, y), where

τ̂ (a, y) := 1

y
exp

[
1

2
+ π̂2(a)

2y2

]

(y > 0).

Since cos 0 = 1 and sin 0 = 0, making use of Theorem 6, we can assert the
following result: if condition (42) holds, then for solutions of (39) and (40) we have
rvu(ũ) ≤ x(Δ, a), where x(Δ, a) is the unique positive root of the equation

Δ1 · τ̂ (a, y) = 1.

By (38)

x1(Δ, q) ≤ ω1(Δ1),

where

ω1(Δ1) :=
{
eΔ1 if π̂(a) ≤ eΔ1,

π̂(a) [ln (π̂(a)/Δ1)]−1/2 if π̂(a) > eΔ1.

So if π̂(a) ≤ eΔ1, then

rvu(ũ) ≤ eΔ1 = 3e|a − ã|
(1− e(a + ã))3 .

For sufficiently small ã and a this inequality is “close” to (41).
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Dynamics of a Higher-Order
Ginzburg–Landau-Type Equation

Theodoros P. Horikis, Nikos I. Karachalios, and Dimitrios J. Frantzeskakis

Abstract We study possible dynamical scenarios associated with a higher-order
Ginzburg–Landau-type equation. In particular, first we discuss and prove the
existence of a limit set (attractor), capturing the long-time dynamics of the system.
Then, we examine conditions for finite-time collapse of the solutions of the
model at hand, and find that the collapse dynamics is chiefly controlled by the
linear/nonlinear gain/loss strengths. Finally, considering the model as a perturbed
nonlinear Schrödinger equation, we employ perturbation theory for solitons to
analyze the influence of gain/loss and other higher-order effects on the dynamics
of bright and dark solitons.

1 Introduction

In this work, our aim is to study the dynamics of a higher-order Ginzburg–Landau
type equation. In particular, the model under consideration has the form of a higher-
order nonlinear Schrödinger (NLS) equation incorporating gain and loss. The origin
of our motivation is the following dimensionless higher-order NLS equation:

∂tu+ is

2
∂2
xu− i|u|2u = β∂3

xu+ μ∂x(|u|2u)+ (ν − iσR) u∂x(|u|2), (1)
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where u(x, t) is a complex field, β, μ, ν and σR are real constants, while s = ±1
stands for normal (s = +1) or anomalous (s = −1) group-velocity dispersion.
Note that Equation (1) can be viewed as a perturbed NLS equation, with the
perturbation—in case of small values of relevant coefficients—appearing in the
right-hand side (see, e.g., Refs. [1–3]).

Variants of Equation (1) appear in a variety of physical contexts, where they
are derived at higher-order approximations of perturbation theory [the lowest-order
nonlinear model is simply the NLS equation in the left-hand side of Equation (1)].
The most prominent example is probably that of nonlinear optics [1–3]. In this case,
t and x denote propagation distance and retarded time (in a reference frame moving
with the group velocity), respectively, while u(x, t) is the complex electric field
envelope.

For β = μ = ν = σR = 0, Equation (1) reduces to the unperturbed equation,
i.e., the completely integrable NLS [4], which supports bright soliton solutions
(for s = −1) [5], or dark soliton solutions (for s = +1) [6]. As concerns the
origin of the higher-order terms, we mention the following. While the unperturbed
NLS equation is sufficient to describe optical pulse propagation, for ultra-short
pulses, third-order dispersion and self-steepening (characterized by coefficients β,
μ and ν, respectively) become important and have to be incorporated in the model.
Similar situations also occur in other contexts and, thus, corresponding versions
of Equation (2) have been derived and used, e.g., in the context of nonlinear
metamaterials [7–9], but also in the problem of water waves in finite depth [10–12].
Moreover, in the context of optics, and for relatively long propagation distances,
higher-order nonlinear dissipative effects, such as the stimulated Raman scattering
(SRS) effect, of strength σR > 0, are also important [1–3].

In addition to the above mentioned effects, our aim is to investigate the dynamics
in the framework of Equation (1), but also incorporating linear or nonlinear gain and
loss. This way, we are going to analyze the following model:

∂tu+ is

2
∂2
xu− i|u|2u = γ u+ δ|u|2u+ μ∂x(|u|2u)+ β∂3

xu+ (ν − iσR) u∂x(|u|2),
(2)

which also incorporates dissipative effects, such as linear loss (for γ < 0) [or gain
(for γ > 0)]. These effects are physically relevant in the context of nonlinear
optics [1–3, 13]: indeed, nonlinear gain (δ > 0) [or loss (δ < 0)] may be used
to counterbalance the effects from the linear loss/gain mechanisms, which may
potentially lead to the stabilization of optical solitons—see, e.g., Refs. [14, 15].
Notice that it is the presence of gain/loss that renders Equation (2) a higher-order
cubically nonlinear Ginzburg–Landau-type equation (see recent studies [16–18] on
such models), featuring zero diffusion.

In this work, we will discuss various possible dynamical scenarios associated
with Equation (2). In particular, the organization of the presentation and main results
of this work can be described as follows.
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In Section 2, first we show that the incorporation of gain and loss terms in the
model gives rise to the existence of an attractor, capturing the long-time dynamics
of the system. A rigorous proof is provided, based on the interpretation of the
energy balance equation and properties of the functional (phase) space in which the
problem defines an infinite-dimensional flow. It will also be discussed that although
the gain/loss effects are pivotal for the dissipative nature of the infinite-dimensional
flow that will be defined below, the structure of the attractor is basically determined
by the other higher-order effects. In the same Section (Section 2), we also examine
conditions for finite-time collapse of the solutions of the model. In particular, upon
using energy arguments, we find that the collapse dynamics is chiefly controlled
by the linear/nonlinear gain/loss strengths. We also identify a critical value of the
linear gain, separating the possible decay of solutions to the trivial zero-state, from
collapse.

In addition, considering the higher-order Ginzburg–Landau-type equation as a
perturbed NLS equation, in Section 3 we study the dynamics of bright and dark
solitons under the influence of the higher-order effects. The analysis is based
on various perturbative techniques, relying on general aspects of the perturbation
theory for bright and dark solitons. Specifically, we adopt the so-called adiabatic
approximation, according to which the soliton form does not chance due to the
(small) perturbation, but its characteristics (center, amplitude, velocity, etc.) become
unknown functions of time. We derive relevant evolution equations for the soliton
characteristics and describe the pertinent soliton dynamics. We also briefly discuss
still another method to analyze soliton dynamics, namely a multiscale expansion
technique that asymptotically reduces the model to a Korteweg-de Vries–Burgers
(KdV-B) equation. This way, we discuss various other nonlinear wave structures
that can be supported by the higher-order effects, namely anti-dark solitons, as well
as shock waves and rarefaction waves.

2 Limit Set and Collapse

2.1 Existence of the Limit Set

Let us consider the case s = −1, and supplement Equation (2) with periodic
boundary conditions for u and its spatial derivatives up to the-second order, namely:

u(x + 2L, t) = u(x, t), and
∂
j
x (x + 2L, t) = ∂

j
x (x, t), j = 1, 2,

(3)

∀ (x, t) ∈ R× [0, T ], for some T > 0, where L > 0 is given. The initial condition

u(x, 0) = u0(x), ∀ x ∈ R, (4)
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also satisfies the periodicity conditions (3).
As shown in Ref. [19], all possible regimes except γ > 0, δ < 0, are associated

with finite-time collapse or decay. Furthermore, a critical value γ ∗ can be identified
in the regime γ < 0, δ > 0, which separates finite-time collapse from the decay of
solutions. On the other hand, for γ > 0, δ < 0, below we prove the existence of
a limit set (attractor) ω(B), attracting all bounded orbits initiating from arbitrary,
appropriately smooth initial data u0 (considered elements of a bounded set B in
a suitable Sobolev space). Notice that, as shown numerically in Ref. [20], the
attractor ω(B) captures the full route, ranging from Poincaré–Bendixson limit-
cycle dynamics to quasiperiodic or chaotic dynamics.

The starting point of our proof is the power balance equation:

d

dt

∫ L

−L
|u|2dx = 2γ

∫ L

−L
|u|2dx + 2δ

∫ L

−L
|u|4dx, (5)

satisfied by any local solution u ∈ C([0, T ],Hk
per (Ω)), which initiates from

sufficiently smooth initial data u0 ∈ Hk
per(Ω), for fixed k ≥ 3. Here, Hk

per (Ω)

denotes the Sobolev spaces of periodic functions Hk
per [21], in the fundamental

interval Ω = [−L,L]. Analysis of (5), results in the asymptotic estimate:

lim sup
t→∞

1

2L

∫ L

−L
|u(x, t)|2dx ≤ −γ

δ
, (6)

implying that local in time solutions u ∈ C([0, T ],Hk
per (Ω)) are uniformly

bounded in L2(Ω). This allows for the definition of the extended dynamical system:

ϕ(t, u0) : Hk
per (Ω))→ L2(Ω), ϕ(t, u0) = u,

whose orbits are bounded ∀t ≥ 0. Moreover, from the above asymptotic estimate,
we derive the following: if L2(Ω) is endowed with the equivalent averaged norm

||u||2α =
1

2L

∫ L

−L
|u|2dx,

then its ball:

Bα(0, ρ) =
{
u ∈ L2(Ω) : ||u||2α ≤ ρ2, ρ2 > −γ

δ

}
,

attracts all bounded sets B ∈ Hk
per (Ω). That is, there exists T ∗ > 0, such that

ϕ(t,B) ⊂ Bα , for all t ≥ T ∗. Thus, we may define for any bounded set B ∈
Hk

per (Ω)), k ≥ 3, its ω-limit set in L2(Ω),
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ω(B) =
⋂

s≥0

⋃

t≥s
ϕ(t,B).

The closures are taken with respect to the weak topology of L2(Ω). Then, the
standard (embedding) properties of Sobolev spaces imply that the attractor ω(B) is
at least weakly compact in L2(Ω), or relatively compact in the dual space H−1

per (Ω).
In the direct numerical simulations of Ref. [20], it was found that apart from the

gain/loss parameters γ and δ, the other higher-order effects play also important role
on the dynamics. In particular, the competition between the third-order dispersion
(characterized by the coefficient β) and SRS effect (characterized by the coefficient
σR gives rise to rich dynamics (briefly mentioned above): indeed, the dynamics
ranges from Poincaré–Bendixson-type scenarios, in the sense that bounded solutions
may converge either to distinct equilibria via orbital connections or to space-time
periodic solutions, to the emergence of almost periodic and chaotic behavior. A
main result is that third-order dispersion has a dominant role in the development of
such complex dynamics, since it can be chiefly responsible (even in the absence of
other higher-order effects) for the existence of periodic, quasiperiodic, and chaotic
spatiotemporal structures.

We conclude by illustrating some representative results illustrating the richness
of these dynamics.

Figure 1 depicts the birth of a space time periodic solution emerging from
the modulation instability of the continuous wave (cw) steady-state solution of
amplitude |φb|2 = − γ

δ
for the choice of parameters β = 0.55, σR = 0.01, γ = 1.5,

δ = −1, σR = 0.3, μ = ν = 0.01. The initial condition is a single-mode cw of the
form

u0(x) = ε e−i
Kπx
L , K > 0. (7)

with K = 5 and ε = 0.01. This is one of the examples showing the Poincaré-
Bendixson type dynamics when the instability of a steady state gives rise to the
birth of a limit-cycle. The results visualise the asymptotic behavior in the 2D-finite
dimensional subspace

P2={(X, Y ) ∈ R
2 : (X(t), Y (t))=(|u(x1, t)|2, |u(x2, t)|2), x1, x2 ∈ Ω, t ≥ 0},

for some arbitrarily chosen fixed spatial coordinates x1, x2. In this subspace, the
steady-state φb is marked by the point A = (|φb|2, |φb|2) =

(− γ
δ
,− γ

δ

)
. The 3D-

counterpart is defined as

P3={(X, Y,Z) ∈ R
3 : (X(t), Y (t), Z(t))=(|u(x1, t)|2, |u(x2, t)|2, |u(x3, t)|2),

x1, x2, x3 ∈ Ω, t ≥ 0}. (8)

The emergence of limit-cycles characterizing the global attractor persists up to
certain thresholds for the parameter β.
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Fig. 1 (Color Online) Upper left panel: The birth of a space-time periodic solution from the
instability of the cw-steady state of amplitude |φb|2 = −γ /δ, for cw-initial data (7) of K = 5 and
ε = 0.01. Parameters β = 0.55, σR = 0.01, γ = 1.5, δ = −1, σR = 0.3, μ = ν = 0.01. Upper
right panel: Integral curves X(t) = |u(x1, t)|2 (upper fig.-purple curve) and Y (t) = |u(x2, t)|2
(bottom fig.-red curve), for the spatial coordinates x1 = 0 and x2 = 5 respectively: Convergence
to a periodic solution, for the set of parameters of the upper left panel. Bottom left panel: The
space-time periodic solution of the left upper panel, as a limit cycle in the 2D-phase space P2 for
the spatial coordinates x1 = 0 and x2 = 5. Bottom middle panel: Convergence to the limit cycle of
the bottom left panel for the cw-initial condition of K = 5 and ε = √3. Bottom right panel: The
space-time periodic solution of the upper right panel as a limit cycle on the 3D-phase space P3
(defined by (8)), for the choice of spatial coordinates x1 = 0, x2 = 5 and x3 = 10

On the other hand, even when the steady state φb is asymptotically stable, the
convergence may include highly non-trivial transient dynamics. Figure 2 depict an
example of the evolution of the initial condition

u0(x) = ε sechx. (9)

Such initial data correspond to the profile of a “bright soliton” as an initial state.
The example is for ε = 1 and parameters σR = μ = ν = β = 0.01. The
gain/loss strengths are γ = 1.5, δ = −1. We observe formation of a “shock-
wave” transitioning to an unstable periodic solution and then, the formation of a
decaying travelling pulse, prior to the ultimate convergence to the asymptotically
stable state φb.
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Fig. 2 (Color Online) Snapshots of the evolution of the density |u|2 for initial data (9) with ε = 1,
when σR = μ = ν = β = 0.01 and γ = 1.5, δ = −1. Formation of a decaying “bright” traveling
solitary pulse, prior to the ultimate convergence to the steady state φb. The array indicates the
direction of the travelling pulses

2.2 Conditions for Collapse

The question of collapse concerns sufficiently smooth (weak) solutions of Equa-
tion (2). The existence of such solutions, is guaranteed by a local existence
result associated with the initial-boundary value problem (2)–(4). In particular, the
methods which are used in order to prove such a local existence result in the Sobolev
spaces of periodic functions Hk

per [22, 23], are based on the lines of approach
of [24–27]. The application of these methods to establish local existence for the
problem (2)–(4), although involving lengthy computations, is now considered as
standard. Thus, we refrain from showing the details here, and we just state it in:

Theorem 1 Let u0 ∈ Hk
per (Ω) for any integer k ≥ 2, and β, γ, δ, μ, ν, σR ∈ R.

Then there exists T > 0, such that the problem (2)–(4), has a unique solution

u ∈ C([0, T ],Hk
per (Ω)) and ut ∈ C([0, T ],Hk−3

per (Ω)).

Moreover, the solution u ∈ Hk
per (Ω) depends continuously on the initial data u0 ∈

Hk
per (Ω), i.e., the solution operator

S (t) : Hk
per (Ω) #→ Hk

per(Ω), t ∈ [0, T ], (10)
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u0 #→ S (t)u0 = u,

is continuous.

Here, for the sake of completeness, let us recall the definition of Hk
per (Ω):

Hk
per (Ω) = {u : Ω → C, u and

∂ju

∂xj
∈ L2(Ω), j = 1, 2, . . . , k;

u(x), and
∂ju

∂xj
(x) for j = 1, 2, . . . , k − 1, are 2L- periodic}. (11)

Since our analytical energy arguments for examining collapse require sufficiently
smoothness of local-in-time solutions, we shall implement Theorem 1 by assuming
that k = 3, at least. As it follows from the definition of the Sobolev spaces (2.2),
this assumption means that the initial condition u0(x), x ∈ Ω , and its spatial (weak)
derivatives, at least up to the 2nd-order, are 2L-periodic. Then, it turns out from
Theorem 1, that the unique, local-in-time solution u(x, t) of (2) satisfies the periodic
boundary conditions (3) for t ≥ 0, and is sufficiently (weakly) smooth. Such
periodicity and smoothness properties of the local-in-time solutions are sufficient
for our purposes (see Theorem 2 below).

Next, we adopt the method of deriving a differential inequality for the functional

M(t) = e−2γ t

2L

∫ L

−L
|u(x, t)|2dx, (12)

and then, showing that its solution diverges in finite-time under appropriate
assumptions on its initial value at time t = 0; see [22, 23, 28–30] and references
therein. Note that the choice of this functional is not arbitrary; in fact, it is a direct
consequence of the conservation laws of the NLS model. For a discrete counterpart
of this argument applied in discrete Ginzburg–Landau-type equations, we refer to
[31]. For applications of these types of arguments in the study of escape dynamics
for Klein–Gordon chains, we refer to [32].

Theorem 2 For u0 ∈ Hk
per (Ω), k ≥ 3, let S (t)u0 = u ∈ C([0, Tmax),H

k
per (Ω))

be the local- in- time solution of the problem (2)–(4), with [0, Tmax) be its maximal
interval of existence. Assume that the parameter δ > 0 and that the initial condition
u0(x) is such that M(0) > 0. Then, Tmax is finite, in the following cases:

(i) Tmax ≤ 1

2γ
log

[

1+ γ

δM (0)

]

, (13)

for γ 
= 0, and γ > −δM (0) . (14)

(ii) Tmax ≤ 1

2δM (0)
, for γ = 0. (15)
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Proof For any T < Tmax, since k ≥ 3, due to the continuous embedding [22]:

C([0, T ],Hk
per (Ω)) ⊂ C([0, T ], L2(Ω)),

the solution S (t)u0 = u ∈ C([0, T ], L2(Ω)). Furthermore, it follows from
Theorem 1, that ut ∈ C([0, T ], L2(Ω)). Then, by differentiating M(t) with respect
to time, we find that:

dM(t)

dt
= −γ e−2γ t

L

∫ L

−L
|u|2dx + e−2γ t

L
Re

∫ L

−L
utudx. (16)

In the second term on the right-hand side of (16), we substitute ut by the right-hand
side of Equation (2). Then, after some computations, Equation (16) results in:

dM(t)

dt
= δ

e−2γ t

L

∫ L

−L
|u|4dx. (17)

Next, by the Cauchy-Schwarz inequality, we have

∫ L

−L
|u|2dx ≤ √2L

(∫ L

−L
|u|4dx

)1/2

. (18)

Therefore, for the functional M(t) defined in (12), we get the inequality

M(t) ≤ e−2γ t

√
2L

(∫ L

−L
|u|4dx

)1/2

, (19)

which in turns, implies the estimate

M(t)2 ≤ e−4γ t

2L

∫ L

−L
|u|4dx, (20)

for all t ∈ [0, Tmax). On the other hand, from (17) we have that

∫ L

−L
|u|4dx = e2γ t L

δ

dM(t)

dt
,

and hence, we may rewrite (20) as

[M (t)]2 ≤ e−2γ t

2δ

dM (t)

dt
, or

dM(t)
dt

[M (t)]2 ≥ 2δe2γ t . (21)
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Since

d

dt

[
1

M (t)

]

= −
dM(t)
dt

[M (t)]2 ,

we get from (21) the differential inequality

d

dt

[
1

M (t)

]

≤ −2δe2γ t . (22)

Integration of (22) with respect to time, implies that

1

M (t)
≤ 1

M (0)
− 2δ

∫ t

0
e2γ sds,

and since M(t) > 0, we see that M(0) > 0 satisfies the inequality

2δ
∫ t

0
e2γ sds ≤ 1

M (0)
. (23)

From (23), we shall distinguish between the following cases for the damping
parameter γ :

• We assume that the damping parameter γ 
= 0. In this case, (23) implies that

2δ

2γ

(
e2γ t − 1

)
≤ 1

M (0)
, or e2γ t ≤ 1+ γ

δM (0)
.

Thus, assuming that

γ

δM (0)
> −1,

we derive that the maximal time of existence is finite, since

t ≤ 1

2γ
log

[

1+ γ

δM (0)

]

.

The inequality above, proves the estimate of the collapse time (13) under
assumption (14), that is, case (i) of the Theorem.

• Assume that the damping parameter is γ = 0. Then, Equation (23) implies that

2δt ≤ 1

M (0)
,
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or

t ≤ 1

2δM (0)
.

This inequality proves the estimate of the collapse time (15) in the absence of
damping, that is, case (ii) of the Theorem. �

From condition (14) on the definition of the analytical upper bound of the blow-up
time

Tmax[γ, δ,M(0)] = 1

2γ
log

[

1+ γ

δM (0)

]

, (24)

given in (13), we define a critical value of the linear gain/loss parameter as

γ ∗ = −δM(0). (25)

We observe that

lim
γ→γ ∗

Tmax[γ, δ,M(0)] = +∞, (26)

while Tmax[γ, δ,M(0)] is finite if

γ > γ ∗, (27)

according to the condition (14). Then, (26) suggests that when δ > 0, the critical
value γ ∗ may act as a critical point separating the two dynamical behaviors: blow-up
in finite-time for γ > γ ∗ and global existence for γ < γ ∗.

We also remark that the analytical upper bound for the blow-up time (15) in the
case γ = 0,

Tmax[δ,M(0)] = 1

2δM (0)
, (28)

is actually the limit of the analytical upper bound (24) for γ > 0 as γ → 0, e.g.,

lim
γ→0

Tmax[γ, δ,M(0)] = Tmax[δ,M(0)]. (29)

The analytical estimates for the blow-up time have been proved sharp with respect
to their dependence on the several parameters as it was illustrated by the relevant
numerical simulations [19].
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3 Soliton Dynamics: Perturbative Approach

Below, our aim is to consider the higher-order Ginzburg–Landau equation (2) as
a perturbed NLS equation. This can be done, upon rewriting Equation (2) in the
following form,

iut − s

2
uxx + |u|2u = εF [u], (30)

where subscripts denote partial derivatives, and the functional perturbation F [u] is
given by:

F [u] = iγ u+ iδ|u|2u+ iβuxxx + iμ(|u|2u)x + (iν + σR)u(|u|2)x. (31)

In other, words, we consider the situation where the coefficients of the gain/loss
and higher-order terms are small, i.e., of the order of a formal small parameter
ε (with 0 < ε " 1). This problem finds applications in long-haul optical fiber
communications, where the terms involved in F [u] can indeed be considered as
small perturbations [1].

Based on the fact that, for ε = 0, Equation (30) becomes the traditional NLS
model that possesses bright or dark solitons for s = −1 and s = +1 respectively,
we will study separately these two cases, and investigate how the perturbation (31)
alters the soliton dynamics. Our analysis relies on various perturbation techniques
that have been developed in the past, both for bright [33–35] and dark [36–38],
including the perturbed inverse scattering method, the variational approach (or
Lagrangian method), the Lie transform method, and others (see also [1–3] and
references therein). Among these techniques, a particularly convenient method to
study the soliton dynamics is the so-called adiabatic approach. According to this,
an adiabatic relation is the balance between nonlinearity and dispersion, so that
(amplitude)×(width)=const. In other words, it is assumed that—in the presence
of the perturbations—the functional form of the soliton remains unchanged, but
the soliton parameters change (slowly) as the soliton evolves. Thus, the soliton
parameters are treated as unknown functions of t , and their evolution is determined
by the evolution of the conserved quantities (integrals of motion) of the unperturbed
NLS. Particularly relevant such conserved quantities include the energy:

E =
∫ −∞

−∞
|u|2dx, (32)

the momentum,

P = i

2

∫ −∞

−∞
(uūx − ūux) dx, (33)

where overbar denotes complex conjugate, and the Hamiltonian:
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H = 1

2

∫ −∞

−∞

(
s|ux |2 + |u|4

)
dx. (34)

In addition, for our considerations below, it is also useful to introduce still another
conserved quantity, namely the central position of the soliton(s)–alias “soliton
center”—given by:

Rbs =
∫ +∞

−∞
x|u|2dx, Rds =

∫ +∞

−∞
x
(
u2∞ − |u|2

)
dx, (35)

for the bright and dark solitons respectively.

3.1 Perturbation Theory for Bright Solitons (s = −1)

We start with the case of s = −1, i.e., the case of bright solitons. First, using
Equation (30) and its complex conjugate, it is straightforward to derive the following
equations for the evolution of the NLS conserved quantities under the action of the
perturbation:

dE

dt
= ε

∫ +∞

−∞
(
ūF + uF̄

)
dx, (36)

dP

dt
= εi

∫ +∞

−∞
(
ūxF − uxF̄

)
dx, (37)

dH

dt
= 2ε

∫ +∞

−∞

[(
1

2
ūxx + |u|2ū

)

F +
(

1

2
uxx + |u|2u

)

F̄

]

dx. (38)

For sufficiently small perturbation, the form of the bright soliton solution ubs(x, t)

may be assumed to have the following rather general form, where all its parameters
are allowed to vary in t as

ubs(x, t) = η(t) sech[η(t)(x − x0(t))] exp [−iκ(t)x + iφ(t)] , (39)

where the soliton’s amplitude (and inverse width) η, its central position x0, the
wavenumber κ , and phase φ are unknown functions of t that have to be determined.
Notice that, in the absence of the perturbation, x0 and φ are constants, given by:

dx0

dt
= −κ, dφ

dt
= 1

2

(
η2 − κ2

)
. (40)

Substituting the soliton (39) into Equations (37)–(38) [and (35)], we obtain a
set of four ordinary differential equations (ODEs) for the four unknown soliton
parameters:
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dη

dt
= −Im

{∫ ∞

−∞
F [u]ūdx

}

, (41)

dκ

dt
= Re

{∫ ∞

−∞
F [u] tanh[η(x − x0)]ūdx

}

, (42)

dt0

dt
= −κ − 1

η2
Im

{∫ ∞

−∞
F [u](x − x0)ūdx

}

, (43)

dφ

dt
= 1

2
(η2 − κ2)+ x0

dκ

dt

− Re

{∫ ∞

−∞
F [u]

[
1

η
− (x − x0) tanh[η(x − x0)]

]

ūdx

}

, (44)

where Re and Im stand for the real and imaginary parts, respectively.
Before analyzing the full problem, where the perturbation F [u] is given by

Equation (31), it is relevant to consider at first a simple example. In particular, let
the linear loss/gain term be a small perturbation, i.e., F [u] = iγ u, with γ " 1,
and assume that δ = β = ν = σR = 0. Then, substituting this form of F [u] into
Equations (41)–(44), and performing the integrations, it is found that the soliton
wavenumber κ and the central position x0 remain unaffected of the perturbation,
while the soliton amplitude η and phase φ evolve, due to the presence of the
loss/gain, as follows:

η(t) = exp(2γ t), φ(t) = φ(0)− 1

8γ

[
1− exp(4γ t)

]
. (45)

To obtain the above result, it was assumed that η(0) = 1 and κ(0) = x0(0) =
0 (hence κ(t) = x0(t) = 0 ∀t). Thus, in the presence of loss, γ < 0 (or gain,
γ > 0) the soliton amplitude decreases (or increases), while its width increases (or
decreases), i.e., the soliton broadens (or is compressed) during its evolution.

We now return to the full problem, and study the effect of the perturbation (31)
on the dynamics of bright solitons. Following the same procedure, i.e., substituting
Equation (31) into Equations (41)–(44), and performing the integrations, we find
that the soliton parameters evolve according to the following system:

dη

dt
= 2

3
η(3γ + 2δη2), (46)

dκ

dt
= − 8

15
σRη

4, (47)

dt0

dt
= −κ + 1

3
(3β − 3μ− 2ν)η + 3βκ2η2, (48)

dφ

dt
= −κ

[
(μ− 3β)η2 + β(η2 − 2)q2

]
+ 1

2
(η2 − κ2)− 8

15
σRt0η

4. (49)
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Although the result in this case is more complicated, it is still possible to arrive
at a simple analytical result. Indeed, first observe that Equation (46) can be solved
analytically to provide the functional form of η(z), which is found to be:

η2(t) = 3Cγ e4γ t

1− 2Cδe4γ t
, C = η2(0)

3γ + 2δη2(0)
. (50)

Then, the wavenumber κ(t) can be obtained from Equation (47) by simply integrat-
ing the above expression for η. Finally, having found η(t) and κ(t), integration of
Equations (48) and (49) yield, respectively, the functional forms of x0(z) and φ(t).

3.2 Perturbation Theory for Dark Solitons (s = +1)

In this section, we consider the case s = +1, and provide analytical results based on
the perturbation theory for dark solitons devised in Ref. [38]. We start by noting that,
for ε = 0, the unperturbed defocusing NLS Equation (30) possesses the following
single dark soliton solution:

uds(x, t) = [A+ iB tanh(BX)]]eiσ0 , (51)

where X = x − X0, with X0 = x − ∫ t

0 A(s)ds − x0 being the dark soliton center,
A2+B2 = u2∞, and Δφ0 = 2 tan−1(B/A) is the phase jump across the soliton. The
latter, is equal to π for stationary, so-called “black” solitons with A = 0 (moving
solitons with A 
= 0 are termed “grey”) [39, 40]; finally, A and B depict the velocity
and depth of the dark soliton, respectively, while x0 and σ0 are real parameters.
Notice that u∞ represents the boundary condition at infinity, i.e., u∞ = u(x →∞),
and sets the amplitude of the soliton background. The dark soliton (51) is, therefore,
comprised of a background of constant density, and a density dip that propagates on
top, accompanied by a phase jump across the minimum density.

The effect of the perturbation of Equation (31) on the dark soliton dynamics
will now be studied upon assuming that the soliton parameters are slowly varying
functions of t . As shown in Ref. [38], dissipative terms—similar to the ones
considered here—give rise to a shelf, which develops around the soliton; the shelf
has a non-trivial contribution to the integrals employed in order to find expressions
for the soliton parameters. Thus, this perturbative approach is better suited here,
compared to ones merely relying on the adiabatic approximation [36, 37], as they
do not take into account this important contribution.

Our analysis starts with the dynamics of the soliton background. Assuming that
u(x →∞) = u0(t), we derive from Equation (30 the equation:

iu0t − |u0|2u0 = iγ u0 + iδ|u0|2u0. (52)

Then, employing the polar decomposition u0 = u∞(t) exp(iθ(t)), we obtain:
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u′∞ = (γ + δu2∞)u∞, θ ′ = u2∞, (53)

where primes denote differentiation with respect to t . The role of the term of strength
δ is now more obvious: a nontrivial equilibrium (constant solution), exists iff γ δ < 0
which is u2∞ = −γ /δ. Note the relevance of the solution u2∞ with the upper bound
in the estimate (6). It is also the density of the cw steady-state solution φb (see
Fig. 1). We focus here on these solutions, i.e., solutions that tend to stabilize the
soliton, by keeping its parameters constant. The evolution of the rest of the soliton
parameters [see (51)] can be found by means of a multiscale boundary layer theory
[38]; the resulting evolution equations are:

2BAt = Re

{∫ ∞

−∞
F [uds](ūds)t dx

}

, (54)

Bx0t = Im

{∫ ∞

−∞
x(F [u∞]u∞ − F [uds]ūds) dx

}

, (55)

u∞σ0t = Im

{∫ ∞

−∞
(F [u∞]u∞ − F [uds]ūds) dx

}

+ Re {F [u∞]} , (56)

BBt = u∞u∞t − AAt, (57)

u2∞Δφ0t = 2ABt − 2BAt , (58)

q±1 =
1

2

σ0t ±Δφ0t

u∞ ∓ A
, φ±1t = ∓2q±1 . (59)

Here, we should mention that q±1 and φ±1 in Equations (59) represent the asympotics
of the shelf, induced by the perturbation F [u], as x → ±∞ respectively; in fact,
they are higher-order corrections to the soliton, so that the shelf amplitude is u∞ +
q±1 and its speed u∞. Integrating the above equations, and using Equation (53),
finally yields:

u′∞ = (γ + δu2∞)u∞, (60)

A′ = 4

15
σRA

4 + 2

3
δA3 − 8

15
σRu

2∞A2 +
(

γ + δ

3
u2∞

)

A+ 4

15
σRu

4∞, (61)

x′0 =
(

2β − μ− 2ν

3

)

A2 −
(

2β + 2μ+ 4ν

3

)

u2∞, (62)

σ ′0 =
Bz

u∞
− 2B

3u∞

(
3γ + 4u2∞δ + 2δA2

)
. (63)

These equations show that the evolution of the soliton center, described by the
equation X′0 = A + x′0, is affected by all parameters of Equation (30) [directly
or indirectly from A(t)]. On the other hand, the rest of the soliton characteristics,
i.e., the background, the dip and the shelf, only depend on γ , δ and σR . This implies
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that soliton stabilization can be targeted accordingly. Indeed, stable fixed points of
this system correspond to stable solitons traveling on top of a constant background
with a constant speed. It is possible to identify two such solitons, namely a grey and
a black one, supported in the presence (σR 
= 0) and in the absence (σR = 0) of the
SRS effect, respectively. In both cases, the background assumes the same form: this
can be obtained by means of Equation (60), which depicts the nontrivial stationary
solution u2∞ = −γ /δ for γ δ < 0, i.e., for linear loss and nonlinear gain, or vice
versa.

We start with the case σR 
= 0. Substituting the above mentioned constant back-
ground in Equation (61), and seeking stationary solutions for the soliton velocity,
we arrive at a 4th-order algebraic equation for A. Solving this equation, we find

that there exists only one root, namely A = (4δσR)−1(−5δ2 +
√

25δ4 − 16γ δσ 2
R),

which does not violate the relationship A2+B2 = u2∞. Thus, a stable soliton exists
for:

u2∞ = −
γ

δ
, A =

−5δ2 +
√

25δ4 − 16γ δσ 2
R

4δσR
. (64)

Note that since γ δ < 0 the quantity under the square root is always positive.
In general, the solution of Equation (60) with u∞(0) = u0 is:

u2∞(t) = γ u2
0e

2γ t

γ + δu2
0 − δu2

0e
2γ t

, (65)

which suggests that there is a (finite) time for which the background exhibits blow-
up, as it was discussed in Theorem 2. Indeed, the denominator becomes zero when

t = t∗ ≡ 1

2γ
ln

(

1+ γ

δu2
0

)

. (66)

The unexpected feature here is that the addition of the term iδ|u|2u which
compensates the effect of the linear loss term iγ u may result in blow-up of the
background in finite time, even when the other soliton parameters remain finite. In
addition, Equation (65) indicates that an equilibrium can also be reached in finite
time when the denominator is a multiple of the numerator. Nevertheless, while
under this requirement the background will be stabilized, this does not necessarily
guarantees the stabilization of the other soliton parameters.

Next, we consider the case of σR = 0. In this case, Equations (60) and (61) lead
to the following equations for the background and soliton velocity:

u2∞ = −
γ

δ
, A′ = 2

3
(δA2 − γ )A, (67)
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Obviously, the above equation for the velocity depicts a stationary solution A = 0
(recall that γ δ < 0), that corresponds to a black soliton. Hence, when SRS is absent
(which would give a frequency downshift causing the soliton to move), a stable
black soliton can exist.

An important comment is in order here. While for these specific choice of u∞ and
A the soliton gets stabilized, this does not mean that the shelf is no longer present.
In fact, the shelf is always present in the perturbed NLS, even though its amplitude
is small, since it appears as a higher-order correction in the perturbation theory
[38]. Thus, the shelf does not affect the soliton propagation but it does, however,
affect soliton interactions (see Ref. [41] for a relevant study, but in the framework of
another dissipative NLS model). Notice, also, that the shelf can be suppressed with
counter effect the destabilization of the soliton.

Finally, we briefly consider the case where gain/loss terms are absent, i.e., γ =
δ = 0. In this particular case, the dark soliton dynamics is merely driven by the SRS
effect. Indeed, now the evolution of the background and soliton velocity is described
by the following equations:

u′∞ = 0, A′ = 4

15
σR(A

2 − u2∞)2, (68)

which recover the results obtained in Refs. [36, 37]. The soliton dynamics in this
case can be understood as follows. Since A2 
= u2∞, the right-hand-side of the
second equation is always positive and, thus, the soliton becomes shallower and
faster, i.e., B → 0 and A→ u∞, so that the condition A2 + B2 = u2∞ is satisfied.
Thus, the dark soliton eventually decays to the stationary background. It is therefore
clear that no stable dark soliton (in the sense of the existence of stationary soliton
parameters) exists in this case.

3.3 Solitons and Shock Waves in an Effective KdV-Burgers
Picture

Finally, for completeness, it is relevant to briefly mention the following. Apart
from the direct perturbation theory for solitons, there exists still another method to
analyze the dynamics of dark solitons in the framework of Equation (30). Indeed, as
shown in Ref. [42] for the special case of γ = δ = 0, it is possible to employ
a multiscale expansion method and asymptotically reduce the higher-order NLS
equation to a Korteweg-de Vries–Burgers (KdV-B) equation. This can be done upon
seeking solutions of the form:

u(x, t) = [u∞ + U(x, t)] exp[iu2∞t + iφ(x, t)], (69)

where U(x, t) and φ(x, t) are unknown real functions (to be determined) rep-
resenting an amplitude and a phase modulation of the background wave ub =
u∞ exp(iu2∞t). Then, it is assumed that these functions are presented in the form
of formal asymptotic series,
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U = ε2U1 + ε4U2 + · · · , φ = εφ1 + ε3φ2 + · · · , (70)

where the unknown functions Uj and φj (j = 1, 2, . . .) depend on the slow variables
X = ε(x − υt) and T = ε3t , with υ being an unknown velocity, and ε being
a formal small parameter. Substituting Equations (69)–(70) into Equation (30),
we obtain the following results. First, to the lowest-order of approximation in ε

of the perturbation technique, we derive the unknown velocity υ and an equation
connecting the functions φ1T and U1. Second, to the next order of approximation,
we derive the following KdV-B equation:

U1T + c1U1U1X + c2U1XXX = c3U1XX, (71)

where, U1 obviously represents the soliton amplitude. The coefficients of the
underlying KdV equation, c1 and c2, depend on the coefficients of the pNLS, β
and ν, as well as on the background amplitude u∞, while the diffusion coefficient
c3 depends on the SRS parameter, σR .

Importantly, the relevant asymptotic reduction to the KdV-B equation can be
performed for both normal and anomalous dispersion cases, i.e., for both s = ±1.
Of course, in the case s = −1 it is known [1–3] that the soliton’s background
plane wave is prone to the modulational instability (MI), but this long-wavelength
instability may be suppressed: indeed, in applications, one expects periodic or other
boundary conditions in the x-direction, meaning that the admitted wavenumbers are
quantized, hence they are limited from below by a minimum wavenumber, kmin,
which corresponds to the transverse size of the system. In such a case, if kmin >

Kmax (where K is the perturbation wavenumber characterizing the MI, and Kmax
defines the width of the instability band, 0 ≤ K ≤ Kmax), no quantized wavenumber
can get into the instability band and, hence, the MI is eliminated.

The effective KdV-B description of the soliton dynamics offers a number of
interesting results. First, in the absence of the SRS effect (σR = 0), dark solitons
small-amplitude dark solitary wave solutions can exist for both the normal and
anomalous dispersion regimes. This result is in sharp contrast with the conventional
form and certain perturbed versions of the NLS equation, where dark solitons solely
exist for the normal dispersion regime (s = +1). In addition, in this latter regime,
there exists another type of solution, namely an anti-dark soliton, having the form
of a hump, rather than a dip, on top of the background plane wave. Notice that
the transformation from the dark to the anti-dark soliton is possible (see details in
Ref. [42]).

When the SRS effect is present (σR 
= 0), the soliton dynamics is governed by a
KdV–B equation. In this case, the evolution of solitons can be studied by means of
the perturbation theory for solitons [33, 35]. The results that can been obtained in
this case show that the solitons experience a decrease in their amplitudes and/or their
velocities, depending on the direction of propagation and the dispersion region (s =
−1 or s = +1). In particular, right-going solitons experience a decrease in both their
amplitudes and their velocities, while the evolution of left-going solitons depends on
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s: for s = −1, they increase their amplitudes and decrease their velocities, while for
s = +1, they decrease their amplitudes and increase their velocities—in accordance
with the results presented in the previous section.

Still another nonlinear wave structure that can be predicted to occur in this
setting, is the one of a traveling shock wave [43]. In the effective KdV-B picture,
the existence of such a structure is not surprising, because the KdV-B equation
possesses stable traveling shock wave solutions. The latter, are obviously supported
by the SRS effect (recall that if σR = 0 then c3 = 0 and the diffusion term in
Equation (71) vanishes, as was also found by means of other methods in other
studies [44–46]. Notice that, as before, shock wave type structures are possible for
both normal and anomalous dispersion cases. In particular, in the case of the normal
dispersion (s = +1), the structure has the usual shock wave profile, while in the
case of the anomalous dispersion (s = −1 it has the form of a rarefaction wave.

Finally, based on the analysis of the shock wave structure of the KdV-B equation,
one may deduce the relevant profiles in the context of the perturbed NLS equation.
Thus, the structure of the front of the shock solutions may be monotonic, in the
nonlinearity-dominated regime, or oscillatory in the dispersion-dominated regime.
In fact, since the former regime is only accessible for s = −1 [43] the front
of the rarefaction wave is monotonic. On the other hand, the profile of the front
of the shock wave supported for s = +1, may be either monotonic in the
nonlinearity-dominated regime (resembling the regular stationary solutions of the
Burgers equation), or oscillating. It is interesting to mention that the oscillations
in the kink front can be studied in the framework of the perturbation theory for
solitons of the KdV equation, treating the diffusion term as a small perturbation
[33, 35]. This way, it can be deduced that the oscillations of the shock front can be
considered as a succession of KdV solitons, a fact that completes the connection
between the soliton and shock wave solutions of the perturbed NLS model.
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The Role of Differential Equations in
Applied Statistics

Christos P. Kitsos and C. S. A. Nisiotis

Abstract The target of this paper is to discuss, investigate and present how the
differential equations are applied in Statistics. The stochastic orientation of Statistics
creates problems to adopt the differential equations as an individual tool, but
Applied Statistics is using the differential equations either through applications from
other fields, like Chemistry or as a tool to explain “variation” in stochastic processes.

1 Introduction

Differential equations (de), [30] among others, support a number of sciences.
Quincy Wright in his early work introduced (de) in political science, on a study
of War. In such cases, there is a covered uncertainty. In others, like electric circuits,
see Appendix 1, there is a solid background for (de), and not any uncertainty. In
Astronomy, were (de) are extensively used, this uncertainty is measured through a
Probability model, the Gaussian, [5].

Consider two points in the Universe and their distance l. Due to the expansion
of the Universe the distance l it is not a constant function, but it depends on time t .
Therefore considering a scale factor s(t) acting as normalizing factor, the distance
D = D(t) is eventually of the form

D(t) = s(t)l(t)
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From D(t) we can obtain the velocity V (t) and the acceleration α(t) as

V (t) = Ḋ(t) = ṡ(t)l(t)+ s(t)l̇(t)

α(t) = V̇ (t) = s̈l + 2ṡ l̇ + sl̈

where:

ṡ(t)l(t) = isknownasvelocityduetotheexpansion

s(t)l̇(t) = isknownaspeculiarvelocity, usuallydenotedbyu

2ȧl̇(t)sl̈ = isknownaspeculiaracceleration,

Considering the gravitational potential G the equation of motion is [10],

d2D

dt2 = ∇DG

If we set:

Ψ (l, t) := G(l, t)+ 1

2
ss̈l2

It can be proven, [10, 46], that:

∂u

∂t
+ ṡ

s
u = −1

s
∇Ψ

Let p = p(x) be the density of the Universe at the position x, and p̄ the mean
density of the Universe. Thus, if we define:

δ = δ(x) = p(x)− p̄

p̄

the probability distribution of δ is Normal with mean zero and variance σ 2
δ known

i.e. δ ∼ N(0, σ 2
δ ) or:

P(δ) = 1√
2πσδ

exp

(

−1

2

δ2

σ 2
δ

)

The above relation provides evidence that Astronomy is adopting Statistics on the
way that Statistics is adopting (de). As Statistics is working with descriptive data,
not continuous, the difference equations are adopted widely, but we shall not refer
to this characteristic form of equations. In Section 4 we discuss how probability is
adopted the (de) to measure the “rate of change” in a random walk.
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Now, although the optimal experimental design theory was early originated
[41], it was applied in Chemistry only by the pioneering work [15], who worked
with the dilution assessment problem, while [25] investigates the problem for the
sequential point of view. In principle, the essential problem with the non-linear
experimental design problems is, that there is not a global statistical framework,
for all the adopted models. There is a solid statistical theoretical background for
any nonlinear function, but not for the particular nonlinear equation, which is arisen
though a differential equation approach, in Chemical Kinetics, see the early work
in [11–13], either from Chemistry or Biology. So each model should be particularly
investigated, in order to calculate the optimal design points, which are functions of
the unknown parameters! The proposed solution to overpass the unknown parameter
repentance, [25, 26, 28] is to adopt the sequential principle of design.

The differential equations play a vital role to Statistical application in Chemical
Kinetics, typical example being the Michaelis–Menten model, [29]. They are
applied to create the model, which as it is based on observations the continuation
is destroyed. Therefore the observations obtained are coming from the model plus
a stochastic error. The usual assumption is the normality of the errors, with mean
zero and variance constant σ 2 > 0. Here comes another problem in statistical non-
linear case: the variance depends on the input variables and the parameters, we
want to estimate. Although the D-optimality criterion appeared to have an aesthetic
appeal, as it requests the minimization of the variance, in Chemical Kinetics, see
[11] another problem appears: as nonlinear models does not provide, in Statistical
terms, the appropriate information, the Taylor expansion has been applied, see the
early work [6, 25], among others. Therefore what is consider in this paper is:

• The differential equation (de) that approaches the phenomenon
• Form the model in general Statistical model
• Consider the non Linear Statistical model
• Provide a general framework to obtain the optimal design.

The use and abuse of regression is also discussed as well as the use of differential
equations in Statistics. Therefore the (de) are applied, in principle, in three
characteristic lines of thoughts:

1. To provide a theoretical framework and a solid background to physical problems,
see Appendix 1.

2. Although a theoretical background is developed through (de) principles there is
an underlying uncertainty covered by Statistics.

2 Theoretical Framework for the Nonlinear Design

Consider the non-empty set U ⊆ Rk in which the k predictor variables or covariates
or explanatory variables or independent variables are u = (u1, u2, · · · , uk). We
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assume that their values are within the known as experimental region or design
space U . A typical example of an input variable from Chemical Kinetics is time.

The parameter space Θ ⊆ RP is the set where the p-term parameter vector
θ = (θ1, θ2, · · · , θP ) takes values. Where the sequential procedure of design is
adopted [26, 31] Θ is assumed compact. When the response vector y is supposed to
take any value in the response space, Ψ we also suppose that a regression model, in
principle a nonlinear function f , that links u and θ , and consists of the deterministic
portion f (u, θ) and the stochastic portion, e, known as error, linked, eventually,
through the relation

y = f (u, θ)+ ,with E(y) = η = f (u, θ) (1)

where E(y) means the expected value of y.
For the independent identically distributed errors we suppose that are normally

distributed with mean 0 and variance σ 2 > 0. The function f (u, θ) (which describes
the chemical kinetic model in our scenario) is assumed to be continuous with the
second order derivatives of f (·) with respect to θ existing at and near the true value
of the parameter, see [16]. For model (1) we introduce the quantity [3, 4]:

Sn(θ) =
∑

(yi − f (ui, θ))
2 =‖ y − f (u, θ) ‖2 (2)

where ‖ ‖̇2 is the l2-norm. An estimate θ̂ will be called the least squares estimate
(LSE) if Sn(θ̂) = min{Sn(θ); θ ∈ Θ}.

In the non-linear regression problems the variance σ 2 = σ 2(u, θ). That is
σ 2 depends on the design point and the parameter vector. In the linear case it is
independent of the parameter θ .

The concept of the average-per-observation information matrix (apoim) is
important for the nonlinear design problem, as described [29]. It is defined for ξn, the
n-point design measure [16] (practically: the portion of observations at the optimal
design space), to be, for the discrete case, equal to

M(θ, ξn) = n−1
∑

I (θ, ui) (3)

while for the continuous case is

M(θ, ξ) =
∫

U

I (θ, u)ξ(du). (4)

The following partition of matrix M is usually considered

M =
(
M11 M12

M21 M22

)

(5)
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with M11 ∈ Mat(s, s), M12 ∈ Mat(s, p − s), M22 ∈ Mat(p − s, p − s), 1 ≤ s < p

and Mat(n, p) the set of n× p matrices, see also [20, 25].
We now briefly discussed how the Optimal Experimental Design Theory, for

the Non-Linear model proceeds, see [16]. The average per observation information
matrix is considered, were θ takes its true value. Then we can define the following
operator JQ applied to (apoim) M , Kitsos (1986), through a considered known
matrix Q:

JQ(M) = QM−(θ, ξ)QT ,

M− a generalized inverse of M and QT ∈ Mat(p, s).
Given the above notation a real valued convex, decreasing function, ω say, on the

set of nonnegative definite matrices, say NMat(s, s), is applied to JQ is what we
consider as an optimality criterion function.

The design measure ξ∗ is called ω-optimal if and only if:

ω
{
JQ

[
M(θ, ξ∗)

]} = min
{
ω
{
QM−(θ, ξ)QT

}
, ξ ∈ Ξ

}
. (6)

For the special case for ω such as ω(·) = log
[
det

(
QM−QT

)]
, and for Q =

I ∈ Mat(p, p) the identity matrix we are referring to D-optimal design, which
is adopted in this paper. Different values of the convex function and the matrix
Q define other optimality criteria (When the trace of the covariance matrix is
minimized we are referred to A-optimality),which are beyond the target of this
paper. Now, two theoretical results (DR1 and DR2) are useful to reduce the number
of parameters required to calculate D-optimal designs:

DR1: Let f (x, θ) be any nonlinear model of the form:

f (x, θ) = L(x1, β1)+NL(x2, β2)

where θ = (
θ1, θ2, . . . , θs; θs+1, . . . , θp

) = (β1;β2), NL(x2, β2) is the non-
linear part, L(x, β1) = βT

1 x1, βT
1 the transpose of β1 and dimβ1 = dimx1 =

s.
Then the D-optimal design depends only on β2 (the Non-Linearly

involved parameters) as well as the Ds-optimal design for the vector β1.
DR2: Hill [20] defined the partially nonlinear model for the k parameters, k < p,

to be the one for which ∇f (u, θ) = B(θ)H(u, β), where B(θ) is a matrix
depending on θ = (θ1, θ2, . . . , θp, β is the vector of the k parameters which
appear in a nonlinear way and H is an appropriate matrix. In such a case the
design depends only on the parameters of β.

We try to have results reducing the number of the involved parameters,
as former information is needed for the involved parameters. So the less the
involved parameters, the less the required information, especially when DR1
holds.
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3 Growth Curves

In Statistics the nonlinear models are mainly produced by a linear system of
differential equations, [7–9, 12, 19, 21, 22, 27, 31, 32, 40, 47], . See also the
pioneer work [37], and [35, 45] . In principle compartment models are based on
a division of the system into compartments. Then it is assumed that the “rates of
flow” of whatever is under investigation, with typical example the drugs between
compartments follow the first order kinetics, with the relevant (de) and eventually
the rate of transfer is proportional to the concentration.

The target is to find a growth curve, as a mathematical model, to describe the
plant dry weight data over a pre-defined season. A number of growth curves (gc)
have been developed in various fields. The main approach remains the same, either
they serve a chemical oriented purpose, [32, 33] (cgc) or a plant gc, (pgc).

We pay attention to pgc, in the presence of its dry weight W , which varies with
time t , W = W(t). Moreover growth exists at the expense of a substate S. The rate
of the growth reaction is linearly proportional to S and W , so with λ being a constant
it holds:

dIV

dt
= λSW (7)

When W be maximum i.e. W = Wm say, then S = 0 and in then the equality can
be reduced to:

dW

dt
= λ(Wm −W)W (8)

The solution of (8) is, with W0 = W(t = 0) be the starting observation:

W ≡ W0 exp(Wmλt) (9)

In Statistical terms, as there were introduced in the above section, model (9) is
considered as η = θ0 exp (θ1t), with the parameters definition to be clear, see [33].
The Michaelis–Menten (M-M) model is a typical example, see [29]

E + S
k2
↼−−⇁
k1

ES → E + P

with E = enzyme, S = substrate and P = product. Eventually the model is:

u = umax[s]
k + [s] (10)

with u = speed of the steady-state reaction [·] declares concentrations:
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k = k2 + k3

k1

Equation (10) declare that:

du

d[s]
∣
∣
∣
∣
[s]=0

= umax

k
(11)

Adopting the general notation in Statistical terms introduced in Section 2 model
(12) can be considered as:

η = θ1u

θ2 + u
(12)

where η is the rate of the enzyme reaction, θ1 corresponds to the maximum rate
reaction and θ2 is the half saturation constant, with u being the concentration of
substrate, see also [34].

Moreover under DR1 proposition considering (θ = θ1, θ2; θ3, θ4) = (β1, β2)

with

L(u, β1) = θ1 + θ2u

NL(u, β2) = θ3u

θ4 + u

then an extending (M-M) model is:

f (u, θ) = θ1 + θ2u+ θ3u

θ4 + u
(extM −M)

has exactly the same D-optimal design as

nN = θ3u

θ4 + u

Again under DR1 the design does not depend on θ3 so prior information for (ext
M-M) only for θ4 is needed, while for the design approach see [33].

The Gompertz growth equation for given dry matter is D, by two plant research
first-order (de) (1st de), with S being the senescence parameter:

dD

dt
= λD,

dλ

dt
= −λS (13)

or by the one: dD
dt
= λ0De−St with λ0 = specific growth at t = 0.

The Semi-Empirical model, [45], is the model which describes the lightflux
densities within the canopy of an isolated plant.
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Given a point M = M(r), with r being the radius describing the position of the
point M when the ray of light traverse. This de provides, by integration:

I = I0 exp

[

−
∫ s

0
kF (r)ds

]

(14)

with I0 = I (s = 0). If k and F does not vary along the chosen path it is known that
we can have:

I = I0e
−kFS (15)

The estimating photosynthesis rate P for the presence of light variability is
another example of adopting a mathematical approach. Let I be the flux density
falling a leaf then it can be easily proved that when I changes:

ΔP = ∂P

∂I
ΔI + 1

2

∂2P

∂I 2
(ΔI)2 (16)

If we let the CO2 density to be C and α, β constants then it is:

P = (αI)(βC)

αI + βC
(17)

Considering (9) for N fluctuations with N being large and taking into account
the first order terms are canceled about the mean value variation:

ΔP = 1

2
I 2 ∂

2P

∂I
(CV )2 (18)

with (CV ) being the coefficient of variation. From (17) and (18) one can obtain:

ΔP

P
= − (αI)(βC)

(αI + βC)2 (CV )2 (19)

Then the maximum values can be evaluated for the absolute correction P ,
especially for and the relative correction ΔP/P as a function of the coefficient of
variation:

(
ΔP

P

)

max

= −1

4
(CV )2 at αS = βC (20)

Let us consider the light flux density I from a steady value I1 say to a new one
I2, say. The effect on photosynthesis rate of charging is under consideration.

Let us assume that the centre is t = 0, where this charge occurs fast. Then for
t < 0 let I = I1 and for t > 0 let I = I2, while the density of CO2 is C. In such a
case the system in photosynthesizing at steady rate P1 and P2 is respectively:
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Pi = aIiβC

aIi + βC
i = 1, 2

The time constant is in this case:

τ = k

aIβC

Then as it holds:

dP

dt
= 1

τ
(P2 − P)

one can obtain:

dP

P2 − P
= dt

τ

Therefore the final model can be:

P = P2 − (P2 − P1)e
−t/τ

Thus from the general framework of Section 2 it can be written following the
notation on a nonlinear Statistical model as:

η = θ0 − θ1 exp(−θ2u) (21)

Notice that under DR1, DR2 the design depends only on θ2.
Notice that Equation (21) hinds what is behind, as Statistics are involving of

solving the stochastic problem

η = f (u, θ)+ error

This is an important point for our scenario: The use of differential equation is
only to form, eventually equations like the (21) one. This is exactly what we present
briefly in this paper in this section.

For an irreversible, unimolecular homogeneous reaction of the type A
k→ B

under isothermal conditions, the rate equation is described by: d[A]
dt

= −k[A],
where [A], as usually, is the concentration or partial pressure of reagent A, t is
the reaction time and k the reaction rate constant[21]. Integrating, with a given initial
concentration of A at time t = 0, [A]0,

[A]
[A]0 = XA = exp(−kt) = exp

[

−At exp

(

−ΔE

RT

)]

(22)
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where the fraction [A]
[A]0 resembles the molar fraction of A, XA, k is the rate constant,

which is a function of the absolute temperature T . Then (22) arises.
As A and ΔE

R
are highly correlated, it is desirable to introduce k1, the rate of the

reaction at some specific reference temperature T0.
Thus k1 = A exp

(−ΔE
RT

)
, so that Equation (21) is reduced to:

XA = exp

{

−k1t1 exp

[

−ΔE

R

(
1

T
− 1

T0

)]}

. (23)

Rewriting Equation (21) in terms of the rate θ1(= k1), and letting (under the general
framework of a nonlinear model):

θ2 = ΔE

R
, t2 = 1

T
− 1

T0
,

we obtain the suitable model for the developed experimental design framework as
in Equation (1), with θ ⊆ R2, see also [33]:

η = exp
[−θ1t1 exp (−θ2t2)

]
, u = (t1, t2) ∈ U ⊆ R+xΔ, Δ = [380, 450].

(24)
This is the first order decay law for η, the molar fraction of A (XA).

If it is assumed that f (∞, θ)− f (0, θ) = 1 then the model is reduced to

η = θ1 − exp(−θ2u). (25)

Under DR1 model (24) depends only on theta2, therefore prior information only
for θ2 is needed.

Recall to verify that the design depends only on θ2.
The reaction network of two irreversible first-order reactions in series proceeds

according to the scheme A
k1−→ B

k2−→ C: a raw material A reacts to form a partial
product B which, in turn, decomposes to give a substance C.

We shall refer bellow to the law of mass action is the proposition that the rate
of the chemical reaction is directly proportional to the product of the activities or
concentrations of the reactants. This law forms (at least) a differential equation and
not only explains abut also predicts behaviors of solutions in dynamic equilibrium.

Using the Guldberg-Waage form, of the reaction rates, to describe the network,
provide for constant volume the simultaneous equations:

d[A]
dt

= −k1[A], d[B]
dt

= k1[A] − k2[B], d[C]
dt

= k2[B],
[A]0 + [B]0 + [C]0 = [A] + [B] + [C]

⎫
⎪⎬

⎪⎭
(26)

Integration of the differential equation for the concentration of A, [A], with the
initial conditions [A] = [A]0 at t = 0 yields [A] = [A]0 exp(−k1t). Substituting
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into the differential equation for the concentration of B, [B], gives:

d[B]
dt

+ k2[B] = k1[A]0 exp(−k1t). (27)

With the initial conditions [B]0 = [C]0 = 0 at t = 0 the solution of (27) for the
concentration of B, adopting the integrating factor method, is eventually

[B] = k1[A]0
k2 − k1

[
exp(−k1t)− exp(−k2t)

]
. (28)

The experimental design model produced between the response η (concentration
of B, [B]) and time t , will be in terms of Equation (1):

η = θ1

θ1 − θ2

[
exp(−θ2u)− exp(−θ1u)

]
, u ∈ U = R+, Θ ⊆ R2 (29)

where θ1 and θ2 correspond to k1 and k2, respectively, both functions of the tem-
perature according to the Arrhenius law, [41, 43]. The optimal design for the model
that appears in (29) is considered with (t, T ) ∈ U ⊆ R+xΔ, Δ = [380, 450].
For the experimental design of this model, also known as compartmental, see [2].
Kitsos and Kolovos [33] worked on a number of Chemical Models and calculated
their D-optimal statistical design points, see following Section 2.

4 Differential Equations in Probability

Differential equations can be traced as a useful tool in Probability Theory, [5, 14, 23]
. In the sequence we present in a compact form differential equations are essential
in Applied Statistical Theory.

Although the difference equations play an important role in Probability theory
differential equations are also very useful. The well known Chapman–Kolmogorov
differential equations are the most applied either the forward one or the backwards
type. In this section we are focused on the following type differential equations
applied in Probability Theory.

4.1 Brownian Motion

The English botanist Brown, in 1827, introduced the physical phenomenon, known
hear after the Brownian motion. In physics, was introduced in 1905 by Einstein.
For us in this paper Brownian motion is an example of a continuous time, continues
state space, Markov process X(t) = Xt , t ∈ T with characteristics:
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B1: A process with independent increments. It is reflected then that the changes of
Xt over non-over-lapping time periods are independent random variables (irv.).

B2: The probability distribution of X(t2)−X(t1), t2 > t1 depends only on t2 − t1

B3: P [X(r) − X(s) ≤ x] = 1√
2π(r−s)

∫ x

−∞ exp
[
−u2

2 A(r − s)du
]
, r > s with A

being a positive constant.

Let assume that X0 = 0. Note that E(X(t)) = 0, V ar(X(t)) = σ 2(Xt ) = At .
At time t0 the particle process the position X(t0) = X0. The conditional probability
density of X(t + t0) given that X(t0) = x0 is denoted by φ(x, b|x0), see also
Appendix 2.

It is important that Einstein proved that φ(x, b|x0) satisfies the partial differential
equation, known as the diffusion equation:

∂φ

∂t
= D

∂2φ

∂x2

with D being the diffusion coefficient. For the Diffusion equation the requests for
the density function p(x, t |x0) act as boundary conditions and provide a unique
solution. Moreover:

D = 2RT

Nf

where R is the gas constant, T the temperature, N is Avogadro’s number and f is a
coefficient of friction. With the appropriate scales D = 1

2 and then:

φ(x, t |x0) = 1√
2πt

exp

[

− 1

2t
(x − x0)

2
]

the well known Gaussian distribution.
Therefore it comes easily that a Brownian motion is a stochastic process

{X(t), t ≥ 0} with:

Br1. ∀t, s X(t + s)−X(s) ∼ N(0, σ 2t)

Br2. Consider time intervals [t1, t2] ∩ [t3, t4] = ∅, tL ≤ tL+1, L = 1, 2, 3 then
X(tL+1) − X(tL) ∼ N(0, σ 2t) L = 1, 2, 3 and are independent random
variables. This is true for r disjoint time intervals.

Br3. X(0) = 0, X(t) is continuous as t = 0

The X∗(t) = X(t)/σ ∼ N(0, 1) is the standard Brownian motion. Given the
interval I = (t0, t1), X(0) = 0, the probability that X(t) has at least one zero within
I is

γ = 2

π
arccos

√
t0

t1
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Another very important stochastic process in Probability Theory is the Wiener
process. The Wiener process, Wt , is a continuous-time process based on:

W1 : W0 = 0
W2 : Wt is almost surely continuous
W3 : Wt has independent increments
W4 : Wt −Ws ∼ N(0, t − s), 0 ≤ s < t

Through the Wiener process the stochastic differential equation (s-de):

dXt = μtdt + σtdWt , μt = μ(Xt , t), σt = σ(Xt , t)

and μ is the drift and the diffusion coefficient:

D = D(Xt , t) = 1

2
σ 2(Xt , t)

The Fokker–Plank equation for the probability density p(x, t) of a given variable
(rv) Xt is:

∂p

∂t
= − ∂

∂x
[μ(x, t)p(x, t)]+ ∂2

∂x2 [D(x, t)p(x, t)]

When the drift is zero and the diffusion constant we are referred to Brownian
motion discussed above.

4.2 Pure Birth Process

Suppose we have a system E = {E1, E2, . . . , Ej , Ej+1, . . . , En} and that from
state Ej you can move only to Ej+1. Moreover in state En at time t , the probability
of a jump at a sort time interval I = (t, t + h) equals λnh+O(h).

The probability of more than one jump with I is O(h).
Let Pn(t) be the probability that at time t the system is at stage En. Then,

Pn(t + h)− Pn(t)

h
= −λPn(t)+ Pn−1(t)+ O(h)

h
(30)

with h→ 0 the above is reduced to:

P ′n(t) = −λPn(t)+ λPn−1(t) (31)

with:

P ′0(t) = −λP0(t) (32)
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The Poisson process satisfies the above (de) and it holds

Pk(0) = 1, Pn(0) = 0, n 
= k

The Poisson process acts as the solution of (31) with form

Pn(t) = (λt)n

n! e−λt , n ≥ 1.

4.3 The Birth-and-Death Process

The assumption about the system E = {E1, E2, . . . , Ej−1, Ej , Ej+1} is now
changing, that the system changes only through transitions from states to their
nearest ones (i.e., can move backwards). In principle from En moves either to
En+1 or En−1, while E0 give rise only to E1 movement. Consider the time interval
I = (t, t + h) the probability that the transition is from En to En+1 equals to
λnh+O(h), while the probability that from En there is a movement to En−1 equals
to μnh + O(h). The probability that within I move that one change takes place is
O(h).

If we let νn = λn+μn, due to the independence of the events, it can be eventually
proved:

Pn(t + h) = Pn(t)[1− νnh] + λn−1hPn−1(t)+ μn+1hPn+1(t)+O(h) (33)

Thus, from the above equation we obtain (divining by h, h→ 0)
This theory is extended to more variables under the light of physical applications

and will not discussed here. We believe that the birth / death process is very
important in applications.

P ′n(t) = −νnPn(t)+ λn−1Pn−1(t)+ μn+1Pn+1(t), n ≥ 1

P ′0(t) = −λ0P0(t)+ μ1P1(t) (34)

with initial conditions:

P1(0) = 1, Pn(0) = 0

If the coefficients are bounded there is a unique solution, under the regularity
condition

∑
Pn(t) = 1, while for

∑
Pn(t) < 1 there exist infinitely many solutions.

The solution of (34) can be obtained by induction. Let:

π0 = 1, πj = λ0λ1 · · · λj−1

μ1μ2 · · ·μj

j ≥ 1
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Then from (34) we obtain: P1 = λ0/μ1 P1 = π1P0
Assuming that: Pk = πkP0 k = 1, . . . j we have eventually, [23] Pj+1 =

πj+1P0
Trivially the consequence Pj , j = 1, 2, . . . defines a distribution, if

∑
Pj = 1.

Provided that
∑

πk <∞ it holds:

Pj = πj
∑

πk

j = 0, 1, 2, . . .

It can be proven that the limit

lim
k→∞Pn(t) = Pn (35)

exist and is independent of the initial conditions. Due to (35) for an ordinary Markov
chain it holds:

Pn,n+1 = λn

νn
, Pn,n−1 = μn

νn

Let ai , i = 1, 2, . . . , n be the probability of absorption into state 0 from the initial
state 1. Then we obtain that:

ai = λi

νi
ai+1 + μi

νi
ai−1 i ≥ 1

where a0 = 0. The above relation can be considered through the “embedded random
walk” associated to a given b-d process.

As far as applications concerns see the early work [14] and [23].
The values of birth and death process give rise to a number of applications. The

most well known is coming from the queuing theory, where the Kendall’s notation is
described by three factors: if “Arrivals” denotes the time between arrivals in queue,
“Service” is the time service distribution and “channels” is the number of service
channels open at the nobe, the queue is denoted by Assistance/Service/Channel. If
the arrival process and the service time distribution is Markovian (or Memoryless)
the M/M/1 system is a typical one. In principle the Arrival process is a Poisson
process and the Service time distribution is an exponential distribution, see the
pioneering work [24].

The birth and death rates are constant, say λi = λ, μi = μ with the average rate
of arrivals to be λ, and the average service time to be 1/μ.

The corresponding (de) for the evaluation of the probability that M/M/1 system
is at state k at the given time t with ν = λ+ μ are:

P ′0(t) = μP1(t)− λP0(t)

P ′k(t) = λPk−1(t)+ μPk+1(t)− νPk(t)
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when more than one channel exists a M/M/C queue exists with (C) = S servers and
an infinite buffer, the birth and death process is characterized by λi = λ as above
and:

μi = μ, fori ≤ S − 1,μi = Sμ, fori ≥ S

We introduce the notation:

νk = λ+ kμ, νs = λ+ Sμ

Then the corresponding (de) are:

P ′0(t) = μP1(t)− λP0(t)

P ′k(t) = λPk−1(t)+ (k + 1)μPk+1(t)− νkPk(t)fork = 1, 2, . . . , S − 1

P ′k(t) = λPk−1(t)+ SμPk+1(t)− νsPk(t),k ≥ S

For different queues different (de) are needed, so (de) are essential in Probability
Theory.

5 Discussion

The Design theory is widely applied, [36, 39, 48] to a number of different oriented
experiments. At the same time different fields of Mathematics are considering
Statistics, [1], among others. The target of this paper is to discuss how differential
equations (de) are applied to Statistics. The back-bone of Statistics is the optimal
Design theory. Although the problem of (de) seems to have with Statistics as
intersection the null set this is not the true situation. As the Ca problem as faced
[31] seems to have no relation with [38] this is not true: to solve the low dose
problems, as Robins-Monro iterations, it is similar to solve an non-linear equation
with Newton-Raphson method.

Same story with the solution of the partial (de), [42] and the optimal Design
Problem, [16, 44]. Still the hidden theory is based on (de), so does a number of
Growth Models, facing by Statistics. As it was proven in Section 3 the Growth
Curves in most of the Chemical, Biological cases are based on non-linear problems
coming from (de). For the Linear case of Growth Curves see [18] were no (de) are
needed.

In Probability theory the use of (de) is clear to birth and death stochastic process-
esare based on random walks, see Appendix 2. In Physics or Electrical Engineering
(de) are applied extensively, see Appendix 1, and their use defines a solid and
compact theoretical model, while in Statistics there exists a stochastic orientation
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of the use: either the stochastic error in models or the Probabilistic development
in random works. The Browian motion, eventually joints three sciences: Math, Stat
and Physics.

There are three lines of though for facing a de: the theoretical inside, see [42]
the applied—how we can solve a de—see [30] and the Numerical Analysis point of
view, see [17].

It is true that no such a deep development of de exists in Statistics. But we would
say, that as Statistics serves all Sciences, so do and de. We tried to cover how this so
widely used lines of thought are, eventually, communicate.

Appendix 1

Let us consider the main types of fundamental electrical circuits, so essential to
build a differential equations approach to electrical circuits. To avoid any confusion
the imaginary unit is denoted by j = (0, 1) and the current is denoted by i = i(t).

1. An RL—circuit.
The voltage source, where it is assumed that it is AC, and thus E = E0 sinωt .
Then based on the 2nd law of Kirchoff:

L
di

dt
+ Ri = E0 sinωt t ≥ 0

The (general) solution is:

i(t) = i0e
−R

L
t + E0

(
R2 + L2ω2

)−1/2
sin

(
ωt − ArctanωL

R

)

+E0ω
(
R2 + L2ω2

)−1
e−R

L
t

2. An RC—Circuit.
Then it holds:

Ri + 1

C

∫ t

0
idt1 = E(t)

And if E(t) = constant = E0 then:

Ri + 1

C

∫ t

0
idt1 = E0

And the solution is:

i = i(t) = E0

R
e−t/RC,
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3. RC—circuit with E = E0 cos(ωt)
Then it holds:

Ri + 1

C

∫ t

0
idt1 = E0 cos(ωt)

And if we let:

u =
∫ t

0
idt1

We obtain that:

R
du

dt
+ u

C
= E0 cos(ωt), u(0) = 0

Thus:

u = te−t/RC

∫ t

0

E0

R
e−t1/RC cos(t)du

= E0

R

[
(1/RC)

(
cos(ωt)− e−t/RC

)+ ω sin(ωt)

(1/RC)2 + ω2

]

= u1 + u2

With:

u1 = −E0/R
(
e−t/RC/RC

)

(1/RC)2 + ω2 , u2 = E0

R

(1/RC) cos(ωt)+ ω sin(ωt)

(1/RC)2 + ω2

Eventually we can evaluate that:

i1 = du1

dt
= −E0/R

(
e−t/RC/RC

)2

(1/RC)2 + ω2
= E0

R
e−t/RC/(1+ ω2(RC)2)

i2 = du1

dt
= E0

R

[−ωRC sin(ωt)+ ω2(RC)2 cos(ωt)

1+ (RC)2ω2

]

∼= E0

R

[−ωRC sin(ωt)

1

]

= −ωCE0 sin(ωt)

Notice that with t " i1, t = RC say then: i1 ∼= E0
R

1
e
.

4. RL—circuit
Assuming that E = E0 the (de) concerning this circuit is:

L
di

dt
+ Ri = E0, L(0) = 0
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With solution: i = E0
R
− E0

R
e−R

L
t

5. LC—circuit with E = E0.
The corresponding (de) is:

L
di

dt
+ 1

C

∫ t

0
idt1 = E(t)andthesolutionis :

i = E0
√
C/L sin

(
t/
√
LC

)
withi(0) = 0andL′i (0) = E0

6. LC—circuit with E = E0 cos(ωt).
The corresponding equation is: Ldi

dt
+ 1

C

∫ t

0 idt = E0 cos(ωt).

With solution eventually: i = ejωt

(−Lω2+jωR+1/C)
As it is known that it holds:

sin(ωt) = ejωt − e−jωt

2j

with the appropriate calculations the general solution eventually is:

i = −E0ω
(
1/C − Lω2

)
sin(ωt + E0Rω2 cos(ωt)

(−Lω2 + 1/C
)2 + ω2R2

There is an extensive approach which is beyond the target of this appendix.

Appendix 2: Introduction to Heat Equation

Consider a random walk, where we assume that the probability to move to the
closest up, down, backwards, forwards points are equal to 1/4. Let P(x, y; t) be
the probability that a particle at time t is at (x, y) ∈ R2 point. Then we can see that
at time t + 1 holds:

P(x, y; t + 1)=1

4
{P(x−1, y; t)+P(x, y−1; t)+P(x + 1, y, t)+P(x, y + 1; t)}

Thus for the difference:

P(x, y; t + 1)− P(x, y; t) = 1

4

{
P(x + 1, y; t)− 2P(x, y; t)+ P(x − 1, y, t)

+ P(x, y + 1; t)− 2P(x, y; t)+ P(x, y − 1; t)
}
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This difference equation approximated by the two-dimensional heat equation:

∂P

∂t
= C

(
∂2P

∂x2 +
∂2P

∂y2

)

If we assume that the random—walk takes place in a limited domain D, usually
of the form D = (l, u) × [L,U ] ⊆ R2. More over it is assumed that the particle
is absorbed when it reaches the boundary. Let (x0, y0) be the boundary points and
W = W(xb, yb) the associated “profit that is paid out”.

If we denote by P(x, y; x0, y0) the probability that the particle start from the
(interior) point (x, y) to be absorbed at the boundary (xb, yb) the expected “profit”
is:

u(x, y) =
∑

b

P (x, y; xb, yb)W(xb, yb)

and satisfies the difference equation

u(x, y) = 1

4
{u(x + 1, y)+ u(x − 1, y)+ u(x, y + 1)+ u(x, y − 1)}

with u(xb, yb) = W(xb, yb). This equation is a well-known approximation of the
Laplace equation:

∂2u

∂x2
+ ∂2u

∂y2
= 0

Recall that

∇2u =
{

0 Laplaceequation

C(x, y) Poissonequation

Through the Laplace equation three different well-known problems, associated
with the boundary are defined: Dirichlet’s problem, Neuman’s problem, Robbin–
Churchill’s problem for elliptic equations.
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Geometric Derivation and Analysis of
Multi-Symplectic Numerical Schemes for
Differential Equations

Odysseas Kosmas, Dimitrios Papadopoulos, and Dimitrios Vlachos

Abstract In the current work we present a class of numerical techniques for the
solution of multi-symplectic PDEs arising at various physical problems. We first
consider the advantages of discrete variational principles and how to use them
in order to create multi-symplectic integrators. We then consider the nonstandard
finite difference framework from which these integrators derive. The latter is
now expressed at the appropriate discrete jet bundle, using triangle and square
discretization. The preservation of the discrete multi-symplectic structure by the
numerical schemes is shown for several one- and two- dimensional test cases, like
the linear wave equation and the nonlinear Klein–Gordon equation.

1 Introduction and Motivation

In general, symplectic integrators are robust, efficient and accurate in preserving the
long time behavior of the solutions of Hamiltonian ordinary differential equations
(ODEs) [1]. The basic feature of a symplectic integrator is that the numerical
performance is designed to preserve a physical observable property, i.e., the
symplectic form at each time step. Recently, it was shown that many conservative
partial differential equations (PDEs) allow for description similar to the symplectic
structure of Hamiltonian ODEs, called the multi-symplectic formulation (see,
e.g., Refs. [2–5]). For example, in Ref. [2] authors develop the multi-symplectic
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structure of Hamiltonian PDEs from a Lagrangian formulation, using the variational
principle. The wave equation and its multisymplectic structure have been studied by
[6–8] from the Hamiltonian viewpoint.

On the other hand, in the past decades, nonstandard finite difference schemes
have been well established by Mickens [9–11] to compensate the weaknesses that
may be caused by standard finite difference methods as, such as the numerical
instabilities. Regarding the positivity, the boundedness, and the monotonicity of
solutions, nonstandard finite difference schemes have a better performance than
standard ones, due to their flexibility to construct a nonstandard finite difference
method. The latter can preserve certain properties and structures, which are obeyed
by the original equations.

In the present paper, following our previous work [12] we pay special atten-
tion to the geometric structure of multisymplectic integrators through the use of
nonstandard finite difference schemes for variational partial differential equations
(PDEs). The considered approach comes as a first step towards developing a Veselov
type discretization for PDEs in variational form, e.g. [2, 4, 5] and combines it with
nonstandard nonstandard finite difference schemes of Mickens [9–11]. The resulting
multisymplectic-momentum integrators have very good energy performance in the
level of the conservation of a nearby Hamiltonian, under appropriate circumstances,
up to exponentially small error [2].

In the following Section 2 we present a short overview of the standard numerical
techniques relying on variational integrator schemes and their special case of
exponential variational integrators in Section 3. Afterwards, nonstandard finite
difference properties are employed for the derivation of nonstandard variational
integrators by using a triangle discretization of the spacetime (Section 4.1). Then, in
Sections 5 and 6, we demonstrate concrete applications of the proposed integrators,
for the numerical solution of the linear wave equation, the Laplace equation and
the Poisson equation. In Section 7, we perform dispersion analysis and convergence
experiments to further illustrate the numerical properties of the method. Finally, in
Section 8, we summarize the main conclusions coming out of our study.

2 Review of Variational Integrators

The discrete Euler–Lagrange equations can be derived in correspondence to the
steps of derivation of the Euler–Lagrange equations in the continuous formulation
of Lagrangian dynamics [3]. Denoting the tangent bundle of the configuration
manifold Q by TQ, the continuous Lagrangian L : TQ → R can be defined.
In the discrete setting, considering approximate configurations qk ≈ q(tk) and
qk+1 ≈ q(tk+1) at the time nodes tk, tk+1, with h = tk+1 − tk being the fixed
time step, a discrete Lagrangian Ld : Q × Q → R is defined to approximate the
action integral along the curve segment between qk and qk+1, i.e.,
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Ld(qk, qk+1) ≈
∫ tk+1

tk

L(q(t), q̇(t))dt. (1)

Defining the discrete trajectory γd = (q0, . . . , qN), N ∈ N, one can obtain the
action sum

Sd(γd) =
N−1∑

k=1

Ld(qk, qk+1). (2)

The discrete Hamilton’s principle states that a motion γd of the discrete mechanical
system extremizes the action sum, i.e., δSd = 0. Through differentiation and
rearrangement of the terms, holding the end points q0 and qN fixed, the discrete
Euler–Lagrange equations are obtained [3]

D2Ld(qk−1, qk)+D1Ld(qk, qk+1) = 0, k = 1, . . . , N − 1, (3)

where the notation DiLd indicates derivative with respect to the i-th argument of
Ld , see also [3, 12–16].

The definition of the discrete conjugate momentum at time steps k and k + 1
reads

pk = −D1Ld(qk, qk+1), pk+1 = D2Ld(qk, qk+1), k = 0, . . . , N − 1. (4)

The above equations, also known as position-momentum form of a variational
integrator, can be used when an initial condition (q0, p0) is known, to obtain
(q1, p1).

To construct high order methods, we approximate the action integral along the
curve segment between qk and qk+1 using a discrete Lagrangian that depends only
on the end points. We obtain expressions for configurations qj

k and velocities q̇j
k for

j = 0, . . . , S − 1, S ∈ N at time t
j
k ∈ [tk, tk+1] by expressing t

j
k = tk + C

j
k h for

C
j
k ∈ [0, 1] such that C0

k = 0, CS−1
k = 1 using

q
j
k = g1(t

j
k )qk + g2(t

j
k )qk+1, q̇

j
k = ġ1(t

j
k )qk + ġ2(t

j
k )qk+1, (5)

where h ∈ R is the time step. We choose functions

g1(t
j
k ) = sin

(

u− t
j
k − tk

h
u

)

(sinu)−1, g2(t
j
k ) = sin

(
t
j
k − tk

h
u

)

(sinu)−1,(6)

to represent the oscillatory behavior of the solution, see [17, 18]. For continuity,
g1(tk+1) = g2(tk) = 0 and g1(tk) = g2(tk+1) = 1 is required.

For any different choice of interpolation used, we define the discrete Lagrangian
by the weighted sum
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Ld(qk, qk+1) = h

S−1∑

j=0

wjL(q(t
j
k ), q̇(t

j
k )), (7)

where it can be easily proved that for maximal algebraic order

S−1∑

j=0

wj(C
j
k )

m = 1

m+ 1
, (8)

where m = 0, 1, . . . , S − 1 and k = 0, 1, . . . , N − 1 see [17, 18].
Applying the above interpolation technique with the trigonometric expressions

of (6), following the phase lag analysis of [13, 14, 17, 18], the parameter u can
be chosen as u = ωh. For problems that include a constant and known domain
frequency ω (such as the harmonic oscillator) the parameter u can be easily
computed. For the solution of orbital problems of the general N -body problem,
where no unique frequency is given, a new parameter u must be defined by
estimating the frequency of the motion of any moving point mass [16, 19–21].

3 Exponential Integrators

We now consider the Hamiltonian systems

q̈ +Ωq = g(q), g(q) = −∇U(q), (9)

where Ω is a diagonal matrix (will contain diagonal entries ω with large modulus)
and U(q) is a smooth potential function. We are interested in the long time behavior
of numerical solutions when ωh is not small.

Since qn+1 − 2 cos(hω)qn + qn−1 = 0 is en exact discretisation of (9) we can
consider the numerical scheme

qn+1 − 2 cos(hω)qn + qn−1 = h2ψ(ωh)g(φ(ωh)qn), (10)

where the functions ψ(ωh) and φ(ωh) are even, real-valued functions satisfying
ψ(0) = φ(0) = 1, see [1]. The resulting methods using the latter numerical scheme
are known as exponential integrators (for some examples of those integrators see
the appendix).
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3.1 Exponential High Order Variational Integrators

If we now use the phase fitted variational integrator for the system (9) the result of
the discrete Euler–Lagrange equations (3) will be

qn+1 +Λ(u, ω, h, S)qn + qn−1 = h2Ψ (ωh)g(Φ(ωh)qn), (11)

where

Λ(u, ω, h, S) =

S−1∑

j=0

wj

[

ġ1(t
j
k )

2 + ġ2(t
j
k )

2 − ω2(g1(t
j
k )

2 + g2(t
j
k )

2)
]

S−1∑

j=0

wj

[

ġ1(t
j
k )ġ2(t

j
k )− ω2g1(t

j
k )g2(t

j
k )

] . (12)

Using the above expressions, to obtain exponential variational integrators that use
expressions for configurations qj

k and velocities q̇j
k taken from (5), we get

Λ(u, ω, h, S) = −2 cos(ωh). (13)

In [16] we have proved (using the phase lag analysis of [22]) that exponentially
fitted methods using phase fitted variational integrators can be derived when (13)
holds. So phase fitted variational integrators using trigonometric interpolation can
be considered as exponential integrators, i.e. when using phase fitted variational
integrators, keeping the phase lag zero the resulting methods are exponentially
fitted methods (exponential integrators). Those methods has been tested on several
numerical results in [16].

3.2 Frequency Estimation for Mass Points Motion in Three
Dimensions

In our previous work [16], we constructed adaptive time step variational integrators
using phase fitting techniques and estimated the required frequency through the use
of a harmonic oscillator with given frequency ω. Here, in solving the general N -
body problem by using a constant time step, a new frequency estimation is necessary
in order to find for each body i) the frequency at an initial time t0 and ii) the
frequency at time tk for k = 1, . . . , N − 1.

It is now clear that, by applying the trigonometric interpolation (6), the parameter
u can be chosen as u = ωh. For problems for which the domain of frequency ω is
fixed and known (such as the harmonic oscillator) the parameter u can be easily
computed. For the solution of orbital problems involved in the general N -body
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problem, where no unique frequency is determined, the parameter u must be defined
by estimating the frequency of the motion of any moving material point.

Towards this purpose, we consider the general case of N masses moving in three
dimensions. If qi(t) (i = 1, . . . , N ) denotes the trajectory of the i-th particle, its
curvature can be computed from the known expression

ki(t) = |q̇i (t)× q̈i (t)|
|q̇i (t)|3 , (14)

where q̇i (t) the velocity of the i-th mass with magnitude |q̇i (t)| at a point qi(t). After
a short time h, the angular displacement of that mass is h|q̇i (t) × q̈i (t)|/|q̇i (t)|2,
which for each mass’s actual frequency gives the expression

ωi(t) = |q̇i (t)× q̈i (t)|
|q̇i (t)|2 . (15)

From (14) and (15) the well known relation ωi(t) = ki(t)|q̇i (t)| holds (see also
[16]).

For the specific case of many-particle physical problems, that can be described
via a Lagrangian of the form L(q, q̇) = 1

2 q̇
T M(q)q̇ − V (q), where M(q)

represents a symmetric positive definite mass matrix and V is a potential function,
the continuous Euler–Lagrange equations are M(q)q̈ = −∇V (q). In this case,
the expression for frequency estimation (15), referred to the i-th body at time tk ,
k = 1, . . . , N − 1, takes the form

ωi(tk) = h−1

∣
∣M−1(qk)pk ×

(
M−1(qk)pk −M−1(qk−1)pk−1

)∣
∣

∣
∣M−1(qk)pk

∣
∣2

, (16)

where the quantities on the right hand side are the mass matrix, the configuration
and the momentum of the i-th body. Since the frequency ωi(tk) must be also known
at an initial time instant t0 (in which the initial positions are q̄0 and initial momenta
are p̄0), using the continuous Euler–Lagrange equation at t0 we obtain

ωi(t0) =
∣
∣M−1(q̄0)p̄0 ×

(−M−1(q̄0)∇V (q̄0)
)∣
∣

∣
∣M−1(q̄0)p̄0

∣
∣2

. (17)

Equations (16) and (17) provide an “estimated frequency” for each mass in the
general motion of the N -body problem. This allows us to derive high order vari-
ational integrator methods using trigonometric interpolation where the frequency
is estimated at every time step of the integration procedure. These methods show
better energy behavior, i.e. smaller total energy oscillation than other methods which
employ constant frequency, see [14, 16].

Before closing this section, it should be mentioned that the linear stability of our
method is comprehensively analyzed in our previous works [14, 16, 19].
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4 Triangle and Square Discretization

In order to express the discrete Lagrangian and discrete Hamilton function, we will
use the definition of the tangent bundle TQ and cotangent bundle T ∗Q as in [2] to
fields over the higher-dimensional manifold X. In this way, we also view fields over
X as sections of some fiber bundle B → X, with fiber Y , and then consider the first
jet bundle J 1B and its dual (J 1B

∗
) as the appropriate analogs of the tangent and

cotangent bundles.
It is then possible to use the generalization of the Veselov discretization [4, 5] to

multisymplectic field theory, by discretizing the spacetime X. For simplicity reasons
we will restrict ourselves to the discrete analogue of dimX = 2. Thus, we take
X = Z× Z = (i, j) and the fiber bundle Y to be X × F for some smooth manifold
F [2, 12].

4.1 Triangle Discretization

Assume that we have a uniform quadrangular mesh in the base space, with mesh
lengths Δx and Δt . The nodes in this mesh are denoted by (i, j),∈ Z × Z,
corresponding to the points (xi, tj ) := (iΔx, jΔt) ∈ R

2. We denote the value of
the field u at the node (i, j) by uij . We label the triangle at (i, j) with three ordered
triple ((i, j), (i+1, j), (i, j +1)) as

�
ij , and we define X� to be the set of all such

triangles, see Figure 1.
Then, the discrete jet bundle is defined as follows [2]

J 1�Y := {(uji , uji+1, u
j+1
i ) ∈ R

3 : ((i, j), (i + 1, j), (i, j + 1)) ∈ X�}, (18)

(i, j) (i, j + 1)

(i + 1, j + 1)

(i  1, j  1)

(i, j  1)

(i  1, j)

(i, j)

(i + 1, j) (i + 1, j + 1)

(i, j + 1)

Fig. 1 The triangles which touch (i, j)
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which is equal to X� × R
3. The field u can be now defined by averaging the fields

over all vertices of the triangle (see Figure 1a)

u→ u
j
i + u

j+1
i + u

j+1
i+1

3
, (19)

while the derivatives can be expressed using nonstandard finite differences [9–11]

du

dt
→ u

j+1
i − u

j
i

φ(Δt)
,

du

dx
→ u

j+1
i+1 − u

j+1
i

ψ(Δx)
, (20)

with [9, 10]

φ(Δt) = 2 sin

(
Δt

2

)

, ψ(Δx) = 2 sin

(
Δx

2

)

. (21)

Using the latter expressions, we can obtain the discrete Lagrangian at any triangle,
which depends on the edges of the triangle, i.e., Ld(u

j
i , u

j+1
i , u

j+1
i+1 ), while the

discrete Euler–Lagrange field equations are

D1Ld(u
j
i , u

j+1
i , u

j+1
i+1 )+D2Ld(u

j−1
i , u

j
i , u

j

i+1)+D3Ld(u
j−1
i−1 , u

j

i−1, u
j
i )=0, (22)

see Figure 1 (right).

4.2 Square Discretization

For the cases where square discretization is used, and if we also denote a square at
(i, j) with four ordered quaternion ((i, j), (i + 1, j), (i + 1, j + 1), (i, j + 1)) by
�i

j , we can consider X� to be the set of all such squares, see Figure 1. Then, the
discrete jet bundle is defined as (for more details see [2] and references therein)

J 1
�Y :={(uj

i
, u

j
i+1, u

j+1
i+1 , u

j+1
i

) ∈ R
4 : ((i, j), (i + 1, j), (i + 1, j + 1), (i, j + 1)) ∈ X�},

(23)
which is equal to X� × R

4.
By averaging the fields over all vertices of the square, the field u can be now

obtained as (see Figure 2 (left))

u→ u
j
i + u

j

i+1 + u
j+1
i + u

j+1
i+1

4
. (24)

As above, the expressions for the derivatives can be taken from [9–11] for
the discrete Lagrangian, which now depends on the edges of the square, i.e.,



Geometric Derivation and Analysis of Multi-Symplectic Numerical Schemes. . . 239

(i, j) (i, j + 1)

(i + 1, j + 1)(i + 1, j)

(i 1, j+1)

(i, j +1)

(i +1, j)

(i, j 1)

(i 1, j 1)

(i+1, j+1)

(i 1, j)

(i +1, j 1)

Fig. 2 The triangles which touch (i, j)

Ld(u
j
i , u

j

i+1, u
j+1
i+1 , u

j+1
i ). As a result, the discrete Euler–Lagrange field equations

are

D1Ld(u
j
i , u

j+1
i , u

j+1
i+1 , u

j

i+1)+D2Ld(u
j−1
i , u

j
i , u

j

i+1, u
j−1
i+1 )+

D3Ld(u
j−1
i−1 , u

j

i−1, u
j
i , u

j−1
i )+D4Ld(u

j

i−1, u
j+1
i−1 , u

j+1
i , u

j
i ) = 0, (25)

see Figure 2 (right).

5 Numerical Examples Using Triangle Discretization

To illustrate the proposed method, we consider the basic PDEs of three physical
problems, i.e., the linear wave equation, the Laplace equation, and the Poisson
equation (see [2] and [23, 24]). In the following subsections, for representation
requirements, quadrilaterals have been by interpolating the solution on triangles.

5.1 Linear Wave Equation

The linear wave equation contains second order partial derivatives of the wavefunc-
tion u(x, t) with respect to time and space, respectively, as (see e.g. [23, 24])

∂2u

∂t2 + c
∂2u

∂x2 = 0. (26)

This equation may be considered for the description of the wave function, i.e.,
the amplitude of oscillation, that is created from a one-dimensional medium (e.g. a
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string extended in the x-direction). For the special case that the velocity of the wave,
representing by the parameter c, is chosen as c = −1, the corresponding Lagrangian
is [12]

L(u, ut , ux) = 1

2
u2
t −

1

2
u2
x, (27)

where the derivatives are ∂u/∂t = ut and ∂u/∂x = ux .
If we use triangle discretization, described in Section 4.1, we end up with discrete

Lagrangian

Ld

(
u
j
i , u

j+1
i , u

j+1
i+1

)
= 1

2
ΔtΔx

⎡

⎣1

2

(
u
j+1
i − u

j
i

φ(Δt)

)2

− 1

2

(
u
j+1
i+1 − u

j+1
i

ψ(Δx)

)2
⎤

⎦ ,

(28)
where Δt and Δx are the mesh lengths for time and space, respectively. Applying
the above discrete Lagrangian to the discrete Euler–Lagrange field equations (22),
we get

u
j+1
i − 2uji + u

j−1
i

(φ(Δt))2 − u
j

i+1 − 2uji + u
j

i−1

(ψ(Δx))2 = 0. (29)

The latter expression represents the variational integrator for the linear wave Equa-
tion (26), resulting through the use of the proposed nonstandard finite difference
schemes.

In Figure 3 the solution u(x, t) of (29) is shown in a 3-D diagram. We have
chosen as initial conditions 0 < x < 1, u(x, 0) = 0.5[1−cos(2πx)], ut (x, 0) = 0.1
and as boundary conditions u(0, t) = u(1, t), ux(0, t) = ux(1, t), the latter being
periodic. The grid discretization has been taken to be Δt = 0.01 and Δx = 0.01. As
seen, the time evolution of the solution u(x = const., t) is a continuous function,
while the periodicity is preserved.

5.2 Laplace Equation

As another physical example, we have chosen the Laplace equation over a 2-D scalar
field u(x, y). It is written as

uxx + uyy = 0. (30)

The function u(x, y) may describe a potential in a 2-D medium or a potential
inside a 3-D medium, which does not depend on the third coordinate z. Thus, the
2-dimensional second order PDE (30) governs a variety of equilibrium physical
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Fig. 3 The waveforms of linear wave equation (26)

phenomena such as temperature distribution in solids, electric field in electrostatics,
inviscid and irrotational two-dimensional flow (potential flow), groundwater flow,
etc.

The corresponding continuous Lagrangian of (30) takes the form

L(u, ux, uy) = 1

2
u2
x +

1

2
u2
y. (31)

By applying the triangle discretization of Section 4.1, the discrete Lagrangian can
be written as

Ld

(
u
j
i , u

j+1
i , u

j+1
i+1

)
= 1

2
ΔxΔy

⎡

⎣1

2

(
u
j+1
i − u

j
i

φ(Δx)

)2

+ 1

2

(
u
j+1
i+1 − u

j+1
i

ψ(Δy)

)2
⎤

⎦ .

(32)

From the latter Lagrangian, working in a similar manner to that followed in
Section 4.2, results the integrator from the proposed nonstandard finite difference
schemes

u
j+1
i − 2uji + u

j−1
i

(φ(Δx))2 + u
j

i+1 − 2uji + u
j

i−1

(ψ(Δy))2 = 0. (33)

The solution of the above equation, when considering the boundary conditions
u(x, 0) = 0, u(x, 1) = 1 and u(0, y) = u(1, y) = 0, is plotted in Figure 4. The grid
discretization has been chosen to be Δx = 0.02 and Δy = 0.02.
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Fig. 4 Contour plot (left) and three-dimensional surface plot (right) of the solution of Laplace
equation with boundary conditions u(x, 0) = 0, u(x, 1) = 1, u(0, y) = u(1, y) = 0, and
discretization: Δx = 0.02, Δy = 0.02

5.3 Poisson Equation

As a final application to illustrate the advantages of the proposed variational
integrator relying on nonstandard finite difference schemes, we examine the Poisson
equation, which is an elliptic PDE of the form

− uxx − uyy = f (x, y). (34)

Obviously, this equation in physical applications presents an additional complexity
compared to the Laplace equation (30). Now the right hand side is a non-zero
function f (x, y), which may be considered as a source (or a load) function defined
on some two-dimensional domain denoted by Ω ⊂ R

2 (it could also be a general
non-linear function f (u, x, y)). A solution u satisfying (34) will also satisfy specific
conditions on the bounderies of the domain Ω . For example, for the element ∂Ω the
general condition holds

αu+ β
∂u

∂n
= g on ∂Ω, (35)

where ∂u/∂n denotes the directional derivative in the direction normal to the
boundary ∂Ω and α and β are constants [23, 24].

As it is well known, the system of (34) and (35) is referred to as a boundary value
problem for the Poisson equation. If the constant β in Equation (35) is zero, then the
boundary condition is of Dirichlet type, and the boundary value problem is referred
to as the Dirichlet problem for the Poisson equation. Alternatively, if the constant
α is zero, then we correspondingly have a Neumann boundary condition, and the
problem is referred to as a Neumann problem. A third possibility exists when the
Dirichlet conditions hold on a part of the boundary ∂ΩD , and Neumann conditions
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hold on the remainder ∂Ω \ ∂ΩD (or indeed mixed conditions where α and β are
both nonzero), see [23, 24] and references therein.

Equation (34) can also be obtained by starting from the Lagrangian

L(u, ux, uy) = 1

2
u2
x +

1

2
u2
y − f u. (36)

The triangle discretization of Section 4.1 in the Poisson problem defines the discrete
Lagrangian

Ld

(
u
j
i , u

j+1
i , u

j+1
i+1

)
= 1

2
ΔxΔy

⎡

⎣1

2

(
u
j+1
i − u

j
i

φ(Δx)

)2

+ 1

2

(
u
j+1
i+1 − u

j+1
i

ψ(Δy)

)2
⎤

⎦

−f
j
i u

j
i + f

j+1
i u

j+1
i + f

j+1
i+1 u

j+1
i+1

3
. (37)

By inserting the latter discrete Lagrangian into the discrete Euler–Lagrange field
equations (22) and elaborating as done in [2], the resulting integrator from the
proposed nonstandard finite difference schemes is

− u
j+1
i − 2uji + u

j−1
i

(φ(Δx))2 − u
j

i+1 − 2uji + u
j

i−1

(ψ(Δy))2 = f
j
i + ∂f

j
i /∂u

j
i . (38)

As a special case we chose the source term f (x, y) ≡ 1, so ∂f
j
i /∂u

j
i = 0 in (38),

and the boundary conditions u(0, y) = u(1, y) = 0 and u(x, 0) = u(x, 1) = 0.
Figure 5 shows the numerical results obtained with the discretization Δx = 0.02
and Δy = 0.02.
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Fig. 5 Contour plot (left) and three-dimensional surface plot (right) of the solution of Poisson
equation, using the variational integrator with nonstandard finite difference schemes. The source
term was chosen f (x, y) ≡ 1, while the boundary conditions u(0, y) = u(1, y) = 0, u(x, 0) =
u(x, 1) = 0 for discretization Δx = 0.02, Δy = 0.02
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6 Numerical Examples Using Square Discretization

To illustrate the behavior of the proposed method, we will consider the Klein–
Gordon equation, which plays a significant role in many scientific applications such
as solid state physics, nonlinear optics and quantum field theory, see for example
[25].

6.1 Klein–Gordon

For the general case, the initial-value problem of the one-dimensional nonlinear
Klein–Gordon equation is given by

utt + αuxx + g(u) = f (x, t), (39)

where u = u(x, t) represents the wave displacement at position x and time t , α is a
known constant and g(u) is the nonlinear force which, in the physical applications
has also other forms [25].

Here we will consider the special case that α = −1, g(u) = u3−u and f (x, t) =
0 resulting

utt = uxx − u3 + u. (40)

The above equation can be described using the Lagrangian

L(u, ut , ux) = 1

2
u2
t −

1

2
u2
x −

1

4
u4 − 1

2
u2.

Following Section 4.2 we can obtain the discrete Lagrangian that now uses square
discretization as

Ld(u
j
i , u

j

i+1, u
j+1
i+1 , u

j+1
i ) = ΔtΔx

2

(
u
j+1
i − u

j
i

2φ(Δt)
+ u

j+1
i+1 − u

j

i+1

2φ(Δt)

)2

−

ΔtΔx

2

(
u
j+1
i+1 − u

j+1
i

2ψ(Δx)
+ u

j

i+1 − u
j
i

2ψ(Δx)

)2

−

−ΔtΔx

4
u
j
i u

j

i+1u
j+1
i+1 u

j+1
i +

ΔtΔx

2

(
u
j
i u

j

i+1 + u
j
i u

j+1
i+1 + u

j
i u

j+1
i + u

j

i+1u
j+1
i+1 + u

j+1
i+1 u

j+1
i + u

j+1
i+1 u

j+1
i

6

)

,
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The waveforms of Klein-Gordon equation
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Fig. 6 Numerical solution of the Klein–Gordon equation (40) using square discretization of
Section 4.2

which we will consider for the discrete Euler–Lagrange equations (25) in order
to derive the resulting integrator from the proposed nonstandard finite difference
schemes.

Figure 6 shows the numerical results obtained with the discretization Δt = 0.05
and Δx = 0.05. To that we have used initial conditions u(x, 0) = A(1+ cos( 2πx

L
))

where A = 5 and ut (x, 0) = 0, while the boundary conditions were u(−1, t) =
u(1, t) and ux(−1, t) = ux(1, t).

7 Analysis of the Proposed Schemes

A dispersion analysis and mesh convergence experiments are performed in this
section in order to show the numerical properties of the proposed method.

7.1 Dispersion Analysis

We will now turn our study to the dispersion-dissipation properties of the derived
numerical schemes and compare them with the ones of [2]. To that end, similar to
[26], we consider the discrete analog of the Fourier mode
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u
j
i = ûei(ikΔx+jωΔt), (41)

where i2 = 1. Using k̄ = kΔx and ω̄ = kΔt , the latter equation results in

u
j
i = ûei(ik̄+jω̄). (42)

Following the above, the multi-symplectic scheme of [2], also known as leap frog
algorithm, for the case of the linear wave (26) gives

u
j+1
i − 2uji + u

j−1
i

(Δt)2
− u

j

i+1 − 2uji + u
j

i−1

(Δx)2
= 0. (43)

When substituting (42) in the latter equation, we get the discrete dispersion
relationship

eik̄

(Δt)2

[
e2iω̄ − 2eiω̄ + 1

]
− eiω̄

(Δx)2

[
e2ik̄ − 2eik̄ + 1

]
= 0. (44)

As a second example we consider the second order implicit Runge–Kutta scheme
described in [27, 28] and [29]. This scheme, also known as implicit Crank-Nicolson,
is a symplectic time discretization of order two, which for the case of (26) gives

4
(
u
j+2
i − 2uj+1

i + u
j
i

)
− λ2

(
u
j+2
i−1 − 2uj+2

i + u
j+2
i+1

)

−2λ2
(
u
j+1
i−1 − 2uj+1

i + u
j+1
i+1

)
− λ2

(
u
j

i−1 − 2uji + u
j

i+1

)
= 0, (45)

where

λ2 =
(
Δt

Δx

)2

. (46)

Substituting to the above integrator the form (42) we obtain the discrete dispersion
relationship

4eik̄

(Δt)2

[
e2iω̄ − 2eiω̄ + 1

]
−

[
e2ik̄ − 2eik̄ + 1

]

(Δx)2

[
e2iω̄ − 2eiω̄ + 1

]
= 0. (47)

For the case of the linear wave Equation (26) the integrator with the proposed
technique, i.e., (29) for uji of (42) gives

(cos ω̄ − 1) (1− cosΔx)− (
cos k̄ − 1

)
(1− cosΔt) = 0. (48)
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Fig. 7 Dispersion curves for the linear wave equation with the proposed method (red), the leap
frog scheme of [2] (blue), the implicit Runge–Kutta (green) and the analytic one (dashed black)
for λ = {0.95, 0.9, 0.85, 0.8}

For now we will restrict ourselves only to λ ≤ 1, but due to symmetry, all other
cases can be easily obtained. Figure 7 shows the discrete dispersion relationships for
λ = {0.95, 0.9, 0.85, 0.8}. Specifically, to each sub plot we can see the dispersion
curve of the leap frog scheme, i.e., Equation (44), with blue line, the red line
corresponds to the proposed method, described by (48), while the green line is the
one for the implicit Runge–Kutta scheme, Equation (47). For all the choices of λ

tested the behaviour of the method using nonstandard finite difference schemes is
close to the excellent behaviour of the leap frog scheme, and much better than the
implicit Runge–Kutta scheme.

7.2 Convergence Experiments

In order to show the grid independence of the solution, following the finite element
convention, the l∞-norm error is calculated between the solutions on two successive
grids according to

eh = max
i
{|ufi − uci |, . . . , |ufnel − ucnel

|}, (49)
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Fig. 8 Error of numerical solution as a function of grid size Δx for different time steps: (a) triangle
discretization (b) square discretization

where ufi is the solution on the fine grid, uci the solution on a coarse grid interpolated
on the fine one. Here, nel are the total number of elements, where the elements of
the mesh are either triangles or squares. A sample convergence of the calculations
for the Klein–Gordon case is shown in Figure 8 in a logarithmic plot for triangle
and square discretizations and for different time steps. It can be easily seen that by
decreasing the space discretization the error is also decreased linearly in the log
scale.

8 Summary and Conclusions

The derivation of advantageous multisymplectic numerical methods, relying on
nonstandard finite difference schemes, is investigated. The numerical solution of
the linear wave equation, the 2-D Laplace equation, and the 2-D Poisson equation,
which are addressed in this study, show a good energy behavior and the preservation
of the discrete multisymplectic structure of the proposed numerical schemes.
Moreover, we showed with the help of dispersion analysis and mesh convergence
experiments the numerical properties of the proposed method.

Future applications may include the field equation of incompressible fluid
dynamics, like that of Cotter et al [30] and Pavlov et al [31], which could be
of interest in investigating the properties of 3-D media. For partial differential
equations arising in the field of fluid dynamics, dissipative terms should be
taken into consideration. These dissipative perturbations necessitate application of
techniques similar to [32, 33] but in the case of PDEs. Furthermore, a possible
application in complex geometries, as they appear in real world problems, would
necessitate the extension of this methodology to non-uniform grids.

The variational method presented in this work can be applied in a variety
of physical problems, ranging from magnetic field simulations in NMR [34] to
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inverse problems that arise in geophysics [35] and others. Future work may include
comparison with other numerical of PDEs, such as the finite element method or the
finite volume method.

Acknowledgments Dr. Odysseas Kosmas wishes to acknowledge the support of EPSRC via grand
EP/N026136/1 “Geometric Mechanics of Solids”.

Appendix

By denoting sinc(ξ) = sin(ξ)/ξ , special cases of the exponential integrators
described using (10) can be obtained, i.e.

• Gautschi type exponential integrators [36] for

ψ(Ωh) = sinc2
(
Ωh

2

)

, φ(Ωh) = 1

• Deuflhard type exponential integrators [37] for

ψ(Ωh) = sinc(Ωh), φ(Ωh) = 1

• García-Archilla et all. type exponential integrators [38] for

ψ(Ωh) = sinc2(Ωh), φ(Ωh) = sinc(Ωh)

Finally, in [1] a way to write the Störmer-Verlet algorithm as an exponential
integrators is presenting.
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Non-radial Solutions of a Supercritical
Equation in Expanding Domains: The
Limit Case

Nikos Labropoulos

Abstract In this article, we introduce a new method to prove the existence of an
infinite sequence of distinct non-radial but symmetric nodal (i.e. sign changing)
solutions for supercritical nonlinear elliptic problems defined in the whole Euclidean
space. By ‘symmetric’ we mean that both the domain and the solution remain
invariant under the action of a compact subgroup G of the isometry group O(n),
without finite subgroup. The key ingredient of the method is a process through
which an open symmetric domain of the n-dimensional space can be extended in
an appropriate manner to ‘fill’ eventually the entire space ‘almost everywhere’,
remaining symmetric, and giving a sequence of domains where in each of them
subsequently we solve an appropriate auxiliary problem. Passing to the limit we
obtain the solution of the problem as a limit of the sequence formed by the solutions
of the corresponding to the domains sequence of equations.

The base model problem of interest is stated bellow:

(P)

{
Δpu = |u|a u, u ∈ C2 (Rn) , n � 3

1 < p < n− k, 0 ≤ a ≤ p∗(k) = (n−k)p
n−k−p ,

where p∗G is the critical exponent of the embedding

H
1,p
0,G(Ω) ↪→ Lp∗G(Ω)

(being the critical of the supercritical one) and k is the minimum orbit dimension in
G. However, we will focus on the critical of the supercritical case a = p∗(k), since
on the one hand it is the most important and on the other hand it covers all the other
cases.
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By H
1,p
0,G(Ω) is denoted the closure of the subspace C∞0,G(Ω) consisting of all

G-invariant functions in C∞0 (Ω).

1 Introduction

In this article, the main objective is to prove the existence of non-radial nodal (sign-
changing) solutions of the above problem (P), in the case where the exponent a is
the critical of supercritical exponent, since the rest of the cases have been studied.
Thus, the problem (P) is set out in detail as follows:

(P)

⎧
⎨

⎩

Δpu = |u|p∗(k)−2u in R
n, n ≥ 3

1 < p < n− k, p∗(k) = (n−k)p
n−k−p ,

Here, G is a group of symmetries that acts on the domains and the functions defined
on them together, k is the minimum dimension orbit of all orbits of G,

Δpu = −div
(
|∇u|p−2∇u

)
, 1 < p 
= 2

is the p-Laplacian operator (note that if p = 2, is the Laplace–Beltrami operator)
and p∗(k) is the critical exponent of the Sobolev embedding

H
1,p
G (Ω) ↪→ Lp(Ω).

By H
1,p
G (Ω) is denoted the subspace of all G-invariant functions in H 1,p(Ω).

In problem (P) the solutions obtained are such that

∫

Rn

|∇u|pdx →∞.

We study both the cases, p = 2 and p ∈ (1, 2) ∪ (2, n − k), however, to avoid
any confusion we note that throughout the article we denote by

Δpu = −div
(
|∇u|p−2∇u

)
, 1 < p < n− k

the p-Laplacian as well as the Laplace–Beltrami operator but when we refer to
other articles the Laplace–Beltrami operator is denoted as in the referred articles,
i.e. without the minus conversion.

For the problem (P), we prove the existence and find both the type and the
number of the solutions to the problem (P). For this aim we use the method of
expanding domains which was successfully introduced for the first time in [42]. In
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that article this method was used firstly to prove the existence of a solution and
secondly to determine the type and the number of the solutions to critical nonlinear
elliptic problem:

(P0) −Δu = |u| 4
n−2 u, u ∈ C2(Rn), n ≥ 3.

Concerning the method itself it seems to have particular value because it can be used
and in other types of partial differential equations.

Both cases, i.e. p = 2 and p 
= 2, are extremely interesting and that is why for
several decades now many researchers have been paying attention to them.

Problem (P0) consists a special case of (P) for p = 2 and it owns its origin in
many astrophysical and physical contexts and more precisely in the Lane-Emden-
Fowler problem,

(
P′0

)
{ −Δu = uq

u > 0 in Ω, u = 0 on ∂Ω,

where Ω is a domain with smooth boundary in R
N and p > 1. But its greatest

interest lies in its relation to the Yamabe problem (see in [5, 57, 64, 68]) and for
a complete and detailed study we refer to [6], nevertheless it has an autonomous
presence holding an important place among the most famous nonlinear partial
differential equations). We refer, also, to the classical papers [20, 30, 47], which
are some of the large number of very good papers that are devoted to the study of
this problem.

Gidas, Ni, and Nirenberg, in their celebrated paper [30], proved symmetry and
some related properties of positive solutions of a larger class of second order elliptic
equations. Concerning the equation

−Δu = |u| 4
n−2 u, u ∈ C2(Rn), n ≥ 3,

they proved that any positive solution of this, which has finite energy, namely

∫

Rn

|∇u|2dx < +∞,

is necessarily of the form

u(x) =
(

λ
√
n(n− 2)

λ2 + |x − x0|2
) n−2

2

, λ > 0, x0 ∈ R
n.

These solutions yield the well-known one-instanton solutions in a regular gauge
of the Yang–Mills equation. In addition, since this equation is invariant under the
conformal transformations of Rn, if u(x) is a solution, then



256 N. Labropoulos

λ
n−2

2 u(
x − x0

λ
), ∀ λ > 0 and x0 ∈ R

n

is also a solution. Moreover, all solutions obtained in this way have the same energy
and we will say that these solutions are equivalent. In particular, all these solutions
are equivalent.

Ding in his also celebrated article [20] using Ambrosetti and Rabinowitz analysis
(see in [2]) proved that this problem has infinite distinct solutions uk ∈ C2(Rn),
k = 1, 2, · · · , which changes sign and such that

lim
k→∞

∫

Rn

|∇uk|2dx →∞.

Ding showed that it is possible to solve the equation in the whole Euclidean
space, reduced the problem to an equivalent problem on S

n, the Euclidean n-sphere
throughout a conformal deformation. However, this method cannot be used in the
case of the p-Laplacian operator, because this operator is not a conformal invariant
operator.

Mazzeo and Smale in their also celebrated article [47] proved that if Ω is an open

set in R
n and u is a positive C2 function on Ω such that the metric g = u

4
n−2 g0 on

Ω has scalar curvature R(g) = n(n− l), then u must satisfy the equation

Δu+ n(n− 2)

4
u

n+2
n−2 = 0, u > 0

on Ω , where g0 is the Euclidean metric on R
n.

Caffarelli, Gidas, and Spruck in their classical paper [11] studied non-negative
smooth solutions of the conformally invariant equation

−Δu = u
n+2
n−2 , u ≥ 0, n ≥ 3,

in a punctured ball B1(0)\{0} ⊆ R
n, with an isolated singularity at the origin. In this

paper, the authors introduced a heuristic idea of asymptotic symmetry technique
which can roughly be described as follows: After an inversion, the function u

becomes defined in the complement of B1, is strictly positive of ∂B1, and in some
sense ‘goes to zero’ at infinity. If the function u can be extended to B1 as a super
solution of our problem, then the reflection process at infinity can start and move all
the way to ∂B1. This would imply asymptotic radial symmetry at infinity. With this
comprehensive report on this issue we would like, on the one hand, to emphasize
the important contribution of this great article of Caffarelli, Gidas, and Spruck on
the study on the direction of finding the radial solutions of our problem and on the
other hand, we wish to make clear that in our procedural paper we do not care about
the radial solutions but we do care about the existence of non-radial solutions.
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Schoen in [57] built solutions of (P) with prescribed isolated singularities.
Schoen, also, in [58], have used the geometrical meaning of problem (P) in order to
derive, through ideas of conformal geometry, the existence of weak solutions having
a singular set whose Hausdorff dimension is less than or equal to n−2

2 . Let us notice
that in this paper the authors explain how to build solutions of (P) with a singular
set whose Hausdorff dimension is not necessarily an integer.

Bartsch and Schneider in [8] proved that for N > 2m the equation

(−Δ)m = |u| 4m
N−2m u

on R
N has a sequence of nodal, finite energy solutions which is unbounded in

Dm,2(RN), the completion of D(RN) with respect to the scalar product:

(u, υ) =
{∫

RN Δ
m
2 u ·Δm

2 υ, m even
∫
RN ∇Δm−1

2 u · ∇Δm−1
2 υ, m odd.

This result generalizes the result of Ding for m = 1, and provides interesting
information concerning the number and the kind of the solutions of the equation.

Wang in [66] studied the following nonlinear Neumann elliptic problem:

(PN)

⎧
⎪⎨

⎪⎩

−Δu = u
N+2
N−2 , u > 0 in R

N\Ω,

u (x)→ 0 as |x| → +∞,
∂u
∂n
= 0 on ∂Ω,

where n denotes interior unit normal vector and Ω is a smooth bounded domain
in R

N , N ≥ 4. In this paper, it is proved that if N ≥ 4, (Wang believes that the
results will also hold in the case of N = 3), and Ω is a smooth and bounded domain
then the problem (PN) has infinity many non-radial positive solutions, whose energy
can be made arbitrarily large when Ω is convex, as seen from inside (with some
symmetries). We refer to the Wang’s problem (PN) due to its close relationship
with our problem and as we will see later, if we choose suitable Ω we can have a
result on this problem in almost all the space. In particular, in both problems we
have to solve the same non-linear differential equation with critical exponent with
boundary conditions Dirichlet and Neumann, respectively. In addition, in both cases
the domain Ω presents some symmetries. However, a subsequent process in each
case is completely different from that of another. In our case, our goal is to solve
the problem almost in the whole space, starting from an open symmetric domain
Ω of n-dimensional space and we extend the Ω so that it remains symmetrical to
fill almost all the space. In the other case is considered the corresponding Neumann
problem in R

N\Ω where Ω is convex as seen from inside with some symmetries.
If we choose appropriate a such Ω with a small volume as much as we can say
that the solutions of Wang satisfy the conditions of the problem almost in the whole
space. Finally, in both problems we take an infinity number of non-radial solutions,
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whose energy can be made arbitrary large, however in the first problem we find
nodal solutions while in the second are founded positive solutions.

Concerning to the progress of the study of the problem (P) for p = 2 a number
of important articles are available (cf. [1, 3, 4, 9–11, 20, 21, 23, 27, 29, 30, 32, 37,
42, 43, 45, 47, 48, 52, 57, 58, 63, 66]).

The p-Laplace operator (or p-harmonic operator) occupies a similar position
to the standard Laplace operator when it comes to nonlinear phenomena. In fact,
many of the things that apply to the usual Laplace operator and consequently
to the equations that relate to it also apply to the p-Laplace as well as his
equations, except that the Principle of Superposition which is of course lost. A
very detailed and complete study is provided by Lindqvist [44]. Also, a Morse
theoretic study of a very general class of homogeneous operators that includes the
p-Laplacian as a special case is presented by Perera, Agarwal, and O’Regan in [53].
However, the p-Laplacian operator also appears in many areas of physics, such as
non-Newtonian fluid flows, turbulent filtration in porous media, plasticity theory,
rheology, glaciology, radiation of heat (cf. [24, 35, 49]).

The p-Laplace operator is a particularly interesting and remarkable case and this
fact is confirmed not only by the large number of articles dedicated to it but also by
the multifaceted study of the problems related to it (cf. [13, 18, 22, 26, 28, 31, 36,
40, 46, 54, 55, 60, 67, 69]).

In the problem (P), considered for any 1 < p < n − k, a main difficulty comes
from the double lack of compactness. By lack of compactness, we mean that the
functional that we consider do not satisfy the Palais-Smale condition (cf. [50, 51,
59, 61, 62, 70]), (i.e. there exists a sequence along which the functional remains
bounded, its gradient goes to zero, and does not converge). However, for p 
= 2, a
second difficulty arises from the fact that the p-Laplace operator is not conformal
invariant operator so the methods used in the case of the Laplace operator cannot be
applied.

Concerning the lack of compactness, the first difficulty comes from the fact that
the exponent

p∗(k) = (n− k)p

n− k − p

is supercritical (in fact the critical of the supercritical), and the second one is some
extra difficulty because of the lack of compactness in unbounded domains. But, it
is well known (see in [15, 16, 25, 32]) that the symmetry property of the domain
allows us to improve the Sobolev embedding in higher Lp spaces and we overcome
the obstruction of the exponent. Regarding the problem of lack of compactness in
unbounded domains we avoid solving problems in such domains by remaining in
bounded domains and then we pass to unbounded with limit procedures. In addition,
this ensures us the ability to overcome the problems due to the non-conformality of
the p-Laplace operation.

To overcome all the above obstacles we consider the following corresponding
problem
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(Pε)

⎧
⎪⎪⎨

⎪⎪⎩

Δpuε + ε a(x)|uε|p−2uε = f (x)|uε|p∗(k)−2uε

uε 
≡ 0 in Ωε, uε = 0 on ∂Ωε

1 < p < n− k, p∗(k) = (n−k)p
n−k−p ,

where Ωε, ε > 0, is an expanding domain in R
n, n ≥ 3, invariant under the action

of a subgroup G of the isometry group O(n) and a, f ∈ C∞(Ωε) are two smooth
G-invariant functions on Ωε.

The problem (Pε) has been studied by many authors. We refer to [3, 4, 10,
20, 23, 27, 29, 32] and the references therein for a further discussion of both the
problem itself and several variants of it. Some special cases have been also studied.
For example, no solution can exist if Ω is starshaped, as a consequence of the
Pohozaev identity (see in [56]). Furthermore, if Ω is an annulus, there are infinite
solutions (see in [43]). Also, a general result of Bahri and Coron guarantees the
existence of positive solutions in domains Ω having nontrivial topology (i.e. certain
homology groups of Ω are non trivial) (see in [7]). The existence and multiplicity
of positive or nodal solutions of critical equations on bounded domains or in some
contractible domains have been determined by other authors (see for example in
[21, 27, 32, 52, 63]). Some more nonexistence results in this case are available, (see
in [1, 4, 12, 37]).

Our proof is via approximation by an infinite sequence of problems defined on a
sequence of expanding symmetric bounded domains. Firstly, we solve the problem
(Pε). (see in [14, 42] for the case of the Laplacian and for the case of the p-Laplacian
see in [15, 16], for n = 3, and for n ≥ 3, respectively). Then we consider a sequence
of problems (Pεj), j = 1, 2, · · · , defined in a sequence of expanding domains
Ωεj , j = 1, 2, · · · , and henceforth, sending ε → 0, we obtain the solution of
the limit problem (P) as the limit of the sequence of the solutions of the problems
(Pεj). This method is a generalization of the method we used in [42] and thus a
uniform treatment of both cases p = 2 and p ∈ (1, 2) ∪ (2, n − k) is achieved.
In addition, the used method is a different from previous ones and can be used to
solve poly-harmonic equations with supercritical exponent and even in the critical
of supercritical case, as in our case, providing an alternative way of utilizing the best
constants of the appearing Sobolev inequalities. Furthermore, this method enables
us to determine the kind and the number of solutions of the problem in both cases,
i.e. for p = 2 and for p ∈ (1, 2) ∪ (2, n− k).

This article is organized as follows: Section 2 is devoted to notations and in
some necessary background material. In Section 3, we introduce our main tool,
meaning the process through which an open symmetric domain of n-dimensional
space can be extended in an appropriate manner to ‘fill’ eventually the entire space
‘almost everywhere’, remaining symmetric, and subsequently we solve the auxiliary
problem (Pε). Section 4 is devoted to some basic definitions and to the proof of the
main theorem.
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2 Notations and Some Background Material

As referred in the beginning of this article, our main objective is to prove the
existence of an infinite sequence of distinct non-radial nodal G-invariant solutions
defined in ‘almost the whole’ Euclidean space for the supercritical nonlinear elliptic
problem (P). However, before dealing with problem (P) let us consider the following
basic problem which will play an important role in solving the problem (P).

(P0)

{
Δpu+ a(x)|u|p−2u = f (x)|u|q−2u

u 
≡ 0 in *, u = 0 on ∂*,

where Ω is a bounded, smooth, domain of Rn, n ≥ 3.
If we consider

p∗ = np

n− p

it is well known by Sobolev’s embedding theorem (cf. [6]) the embedding

H
1,p
0 (Ω) ↪→ Lp(Ω)

is compact for any p ∈ [1, p∗) but the embedding

H
1,p
0 (Ω) ↪→ Lp∗(Ω)

is only continuous.
We say that the exponent

p∗ = np

n− p

for the Sobolev embedding

H
1,p
0 (Ω) ↪→ Lp(Ω)

is the critical exponent for this embedding and that the problem (P) is supercritical,
critical or supercritical if q − 1 < p∗, q − 1 = p∗ or q − 1 > p∗ respectively. If
p > n the problem (P) is always sub-critical.

In order to make this article self-contained we will open at this point a parenthesis
where we will introduce some useful background material from the geometry. (More
details see in [9] or [38]).

Consider a group G acting on a set X. The orbit of a point x in X is the set of
elements of X to which x can be moved by the elements of G. (Just as gravity moves
a planet around in its orbit, the group action moves an element around in its orbit.)
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The G− orbit of x is denoted by

OG(x) = {τ(x), τ ∈ G} ,
and for any Y ⊆ X, we write

G(Y) = {τ(y) : y ∈ Y and τ ∈ G}.
If for some subset Y ⊆ X is valid

G(Y) = Y,

then, we say that Y is invariant under the action of G and in this case we denote it
by YG.

For every x ∈ X, we define the stabilizer subgroup of G with respect to x (also
called the isotropy group) as the set of all elements in G that fix x:

SG(x) = {τ ∈ G : τ(x) = x} .

Moreover, if the set X is equipped with a metric, then the isometry group of
this metric space is the set of all isometries (i.e. distance-preserving maps) from
the metric space onto itself, with the function composition as group operation.
Its identity element is the identity function (i.e. the isometry group of a two-
dimensional sphere is the orthogonal group O(3)).

Given (M, g) a Riemannian manifold (complete or not, but connected), we
define by I (M, g) its group of isometries. It is well known (see for instance [38])
that I (M, g) is a Lie group with respect to the compact open topology, and that
I (M, g) acts differentiably on M . Since (this is actually due to E. Cartan) any closed
subgroup of a compact Lie group is a Lie group, we get that any compact subgroup
of I (M, g) is a sub-Lie group of I (M, g). It is now classical (see [9] and [19]), that
for any x ∈ M , OG(x) is a smooth compact sub-manifold of M .

We denote by |OG(x)| the volume of OG(x) for the Riemannian metric induced
on OG(x). In the special case where OG(x) has finite cardinal, then,

|OG(x)| = cardOG(x).

Let G be a closed subgroup of I (M, g). Assume that for any x ∈ M ,

cardOG(x) = +∞,

and set

k = min
x∈M dimOG(x).

Then k ≥ 1 (see [32]), and is called minimum orbit dimension.
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We consider a bounded, smooth domain Ω of Rn = R
k×R

n−k , k ≥ 2, n−k ≥ 1
such that

Ω ⊂
(
R

k\{0}
)
× R

n−k.

Suppose that Ω is invariant under the action of Gk,n−k , that is

τ(Ω) = Ω, for all τ ∈ Gk,n−k,

where Gk,n−k = O(k)×Idn−k (then denoted by G), is the subgroup of the isometry
group O(n) of the type

(x1, x2) −→ (σ (x1), x2), σ ∈ O(k), x1 ∈ R
k, x2 ∈ R

n−k.

For example, a such Ω in R
3 is the solid torus

T =
{

(x, y, z) ∈ R
3 :

(√

x2 + y2 − R

)2

+ z2 ≤ r2, R > r > 0

}

.

Also, as such Ω we can see the part of the n-dimensional ball Bn from which we
have removed a part of it in such a way that the rest is invariant under the action of
the group G and its cover belongs to Bn ⊂

(
R

k\{0}) × R
n−k . This is because the

balls enjoy a large number of symmetries in addition to the radial symmetry.
We define

C∞G (Ω) = {
u ∈ C∞(Ω) : u ◦ τ = u , ∀ τ ∈ G

}
,

and

C∞0,G(Ω) = {
u ∈ C∞0 (Ω) : u ◦ τ = u , ∀ τ ∈ G

}
,

where C∞(Ω) denotes the space of smooth functions on Ω and where C∞0 (Ω)

denotes the space of smooth functions with compact support on Ω .
We define, also, the Sobolev space H 1,p(Ω) as the completion of C∞(Ω) with

respect to the norm

‖u‖H 1,p(Ω) =
(
‖∇u‖pLp(Ω) + ‖u‖pLp(Ω)

)1/p
, p ≥ 1,

and the Sobolev space H
1,p
0 (Ω) as the closure of C∞0 (Ω) in H 1,p(Ω).

Finally, we denote by H
1,p
G (Ω) and H

1,p
0,G(Ω) the subspaces of H 1,p(Ω) and

H 1,p(Ω), respectively, of all G-invariant functions defined on Ω .
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It is well known that the symmetry property of the domain allows us to improve
the Sobolev embedding in higher Lp spaces. More precisely, let us consider a
smooth compact n-dimensional, n ≥ 3, Riemannian manifold (M, g) invariant
under the action of an arbitrary compact subgroup G of Isomg(M). Let us also
assume that

CardOx
G = +∞

for any orbit Ox
G of G and k ≥ 1. It is well known that the Sobolev embedding

H
1,p
G (M) ↪→ Lq(M)

is compact for any

1 ≤ q <
(n− k)p

n− k − p

but if

1 ≤ q ≤ (n− k)p

n− k − p

is only continuous (cf. in [14, 16, 20, 25, 33, 34]).

3 Preliminary Results

Let Ω be a domain such that Ω ⊂ (
R

k\{0}) × R
n−k and also invariant under the

action of the group G defined above. For any small ε > 0 and some m > 0 (which
will be determined later) we consider the family of expanding domains

Ωε = ε−mΩ = {ε−mx : x ∈ Ω}

Then, it is very simple to be confirmed that Ωεs inherit the symmetry properties of
Ω for any ε.

At this point we need to comment on the term ‘almost the whole’ space and
specify the impact of this term on solutions to the problem. To do this we must
describe the process by which we ‘fill’ the space by properly expanding the domain
Ω and then see how the method of solving the problem works. In fact we consider
a sequence consisting of Ωεj , where the sequence of εj s (for the time being) is a
sequence that tends to 0 in such a way that Ωεj s extend continuously and as ε → 0
they cover “almost everywhere” the entire space. This is because this extension also
entails the inside boundary of the Ωεj s (i.e. the one that is on the zero side) and of
course increases the volume of the orbit with the minimum dimension. This does not
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pose a problem for us in the solution because it depends only on the volume of this
orbit (apart from the other parameters) (see Theorem 3) so we can extend these Ωεj s
to the inside as much as we want by extending with zero values the functions defined
in them. The outer boundary of Ωεj s does not impose any restrictions and this is
because any orbits close to it do not play any role since as mentioned above only the
orbit with the minimum volume affects the solutions and it is on the opposite side,
the side of zero. Finally, the fact that the domain is also expanding does not affect
either the Sobolev inequalities associated with the problem or the solutions because
we can, for example, normalize the functions uj i.e. so that their norms are equal
to 1.

We consider now the transformation

φ : Ω → Ωε : X = ε−mx, x ∈ Ω, X ∈ Ωε (1)

and for � > 0 we set

uε(X) = ε−�u
(
εmX

)
.

In particular we obtain

|∇u| = ε−m|∇uε| (2)

and

Δpu = −ε−mp div
(
|∇uε|p−2∇uε

)
. (3)

Note the equality (3) remains valid for p = 2, i.e. for Δ2 = Δ, the Laplace–Beltrami
operator.

In the following, we will suppose that p 
= 2, since the case where p = 2 was
studied in [42].

Applying the transformation (1) in the equation of the problem (P0), because
of (2) and (3), we obtain the following equation

Δpuε + εmp+�(2−p)a(x)|uε|p−2uε = εmp+�(2−q)f (x)|uε|q−2uε.

Since � is an arbitrary positive real, we can choose � = mp
q−2 and thus we obtain the

following equation:

Δpuε + εmp+mp(2−p)/(q−2)a(x)|uε|p−2uε = f (x)|uε|q−2uε. (4)

Finally, replacing the εmp+mp(2−p)/(q−2) by ε, we can write the equation (4) in
the following form

Δpuε + εa(x)|uε|p−2uε = f (x)|uε|q−2uε. (5)
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Let Ω be a smooth bounded domain in R
n, G-invariant and k be the minimum

of the dimensions of all orbits of G with infinite cardinal. Let, also, Ωε as defined
above. A such Ω is the above defined solid torus T and a such Ωε, in this case, is
an expanding torus Tε.

Now for any ε > 0 consider the following auxiliary problem:

(Pε)

⎧
⎪⎪⎨

⎪⎪⎩

Δpuε + ε a(x)|uε|p−2uε = f (x)|uε|p∗(k)−2uε

uε 
≡ 0 in Ωε, uε = 0 on ∂Ωε

1 < p < n− k, p∗(k) = (n−k)p
n−k−p ,

where a, f are two smooth H
p
σ -invariant functions (defined bellow).

Before, we solve the problem (Pε), we must compute the best constant Kp
G(Ωε)

in the following Sobolev inequality, which appears in this problem:

⎛

⎜
⎝

∫

Ωε

|u|p∗(k) dx
⎞

⎟
⎠

p

p∗(k)

�
(
K

p
G(Ωε)+ ε

)
∫

Ωε

|∇u|p dx + Bε

∫

Ωε

|u|p dx, (6)

where ε is a positive constant no matter how small, but it cannot disappear and Bε a
positive constant.

In fact we will express the best constant KG(Ωε) of inequality (6) as a function
of the optimal constant the best constant Kp

G(Ω) and ε.
Concerning this best constant the following theorem holds:

Theorem 1

KG(Ωε) = εmKG(Ω) = K (n− k, p)

ε−mV
1

n−k

where K(n− k, p) is the best constant in the classical Sobolev inequality of R
n−k

and V denotes the minimum of the volume of the k-dimensional orbits in Ω .

Proof According to the Theorem 2.1 in [16], (see, also, Theorem 3.1 in [15]) we
have

K
p
G(Ωε) = K(n− k, p)

V
1

n−k
ε

and since

Vε = ε−m(n−k)V
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we obtain

K
p
G(Ωε) = K(n− k, p)

ε−mV
1

n−k

�
Now, for the problem (Pε), consider the functional

J (uε) =
∫

Ωε

(
|∇uε|p + εa(x)|uε|p

)
dx

and suppose that the operator

Lp(uε) = Δpuε + ε a(x)|uε|p−2uε

is coercive.
Denote

H p =

⎧
⎪⎨

⎪⎩
uε ∈ H

1,p
0,G(Ωε) :

∫

Ωε

f (x)|uε|qdx = 1

⎫
⎪⎬

⎪⎭
,

με = inf J (uε),

for all uε ∈ H p, and suppose that exists an isometry σ such that σ(Ωε) = Ωε.
Moreover we suppose that the functions a(x) and f (x) are invariant under the action
of σ , and

H p
σ =H p ∩

{
uε ∈ H

1,p
0,G(Ωε) : uε ◦ σ = −uε

}

= ∅.

Then, we have the following theorems.

Theorem 2 For p = 2 and n ≥ 3, the problem (Pε), always, has a non-radial nodal
solution u. Moreover, if f (x) > 0 for all x ∈ Ωε, (P0) has an infinity sequence {uεi }
of non-radial nodal solutions, such that

lim
i→∞

∫

Ωε

(|∇uεi |2 + u2
εi
)dx = +∞.

In addition, u and {uεi }i=1,2,... are G-invariant and σ -antisymmetrical.

Theorem 3 Let a and f be two smooth functions, H
p
σ -invariant and p, q be

two real numbers defined as in (Pε). Suppose that supx∈Ωεf (x) > 0 and the
operator Lp is coercive. Then the problem (Pε) has a non-radial nodal H

p
σ -

invariant solution, that belongs to C1,α(Ωε) for some α ∈ (0, 1), if
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με < K
p
G(Ωε)

−p
(

sup
x∈Ωε

f (x)

)−p/q
.

The proofs of Theorems 2 and 3 use standard variational methods, under the
assumptions of Lemma 3.6 in [16], (cf. [14, 15, 17, 25]).

4 Solution of the Problem (P)

We return to our main problem

(P)

⎧
⎨

⎩

Δpu = |u|p∗(k) u, u ∈ C2 (Rn) , n � 3

1 < p < n− k, p∗(k) = (n−k)p
n−k−p .

In the problem (P) direct variational methods are not applicable because of the
double lack of compactness. To overcome this problem we will use an approximate
method. That is, we consider a sequence of expanding Ωεj (where εj → 0 as
j →∞) as well as the sequence of problems

(Pεj)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δpuεj + εj a (x)
∣
∣uεj

∣
∣p−2

uεj = f (x)
∣
∣uεj

∣
∣p
∗(k)−2

uεj

uεj 
≡ 0 in Ω, uεj = 0 on ∂Ω

1 < p < n− k, p∗ (k) = (n−k)p
n−k=p ,

where a, f are as in the problem (Pεj).
According to the Theorems 2 and 3, every problem (Pεj) has a non-radial nodal

H
p
σ -invariant solution. Thus, a solution to the problem (P) may be then obtained

by the limit procedure as εj → 0.
Before we will approximate the solutions in R

n by solutions in bounded domains
Ωεj ∈ R

n, we note that, in the generalized setting of the problems in Ωεj s, the
Dirichlet condition uεj (x) = 0 on ∂Ωεj may actually be included in the condition

uεj ∈ H
1,p
0,G(Ωεj ).

Moreover, since any function uεj ∈ H
1,p
0,G(Ωεj ) can be extended onto R

n by

ũε (x) =
{
uεj (x) , x ∈ Ωεj

0, x ∈ R
n\Ωεj ,

generalized solutions may be defined in Ωεj s analogously to the case in R
n .

We need now the following two definitions:
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Definition 1 A function uεj ∈ H
1,p
0,G(Ωεj ) is a generalized solution of (Pεj) if the

function

g(x, uεj ) = εj a(x)uεj − f (x)|uεj |p
∗(k)−2uεj

is locally integrable and for all ϕ ∈ C∞0 (Ωεj ), the following holds:

∫

Ωεj

|∇uεj |p−2(∇uεj ,∇ϕ)dx +
∫

Ωεj

f (x, uεj )ϕdx = 0.

Definition 2 A function uε ∈ C2(Ωε) ∩ C(Ωε) is a classical solution to (Pε) if
after substituting it into equation of (Pε), this equation becomes the identity at each
x ∈ Ωε and uε(x) = 0 provided x ∈ ∂Ωε.

Provided that all the conditions of the Theorem 3 are satisfied, we apply it to
the sequence of the problems (Pεj) and denote by {uj }∞j=1 the sequence of the
corresponding solutions.

Under the above considerations to following theorem holds.

Theorem 4 The problem

Δpu = f (x)|u|p∗(k)−2u in R
n, n ≥ 3

has a generalized non-radial nodal H
p
σ -invariant solution u and there is a sub-

sequence of {uj } (again denoted by {uj }) such that

uj ⇀ u in H
1,p
0,G as j →∞.

In addition

lim
j→∞

∫

Rn

|∇uj |pdx = +∞.

Proof The case p = 2 is presented in [42], thus, we will prove the case p ∈ (1, 2)∪
(2, n − k). However, we present a unified proof for both cases. For the proof we
borrow ideas from [42] and carried out in 5 steps.

Step 1. According to the above Theorem 3, every problem (Pεj) has at least one
non-radial nodal G-invariant and σ antisymmetrical solution uj . Let uj , j =
1, 2, . . ., an arbitrary sequence of such solutions. Since the problem (Pεj) has a
nontrivial solution belonging to one of the spaces considered earlier, then for any
λ > 0 the function

vj = λ
1

p∗(k)−p uj ∈ H
1,p
0,G

(
Ωεj

)
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is a non trivial solution to the problem:

(Pλ
εj
)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δpvj + εj a (x)
∣
∣vj

∣
∣p−2

vj = λf (x)
∣
∣vj

∣
∣p
∗(k)−2

vj

vj 
≡ 0 in Ω, vj = 0 on ∂Ω

1 < p < n− k, p∗ (k) = (n−k)p
n−k=p .

In this first step of the proof we prove that there exists a sub-sequence of the

sequence of the solutions to the problems
(
Pλ
εj

)
which converges weakly in

H
1,p
0 (Rn).

For

λ = ∥
∥uj

∥
∥−(p∗(k)−p)
H 1,p

(
Ωεj

)

we obtain that

vj = uj∥
∥uj

∥
∥
H 1,p

(
Ωεj

)
,

which means that the sequence {υεj } is bounded in H 1,p(Ωεj ) for all j =
1, 2, . . ..
Therefore, there is a positive constant C not dependent on j and such that:

‖υj‖H 1,p(Ωεj
) ≤ C, ∀ j = 1, 2, · · · . (7)

Because of the reflexivity of H 1,p
0 (Rn) and condition (7) we may choose a sub-

sequence of {υj } (again denoted by {υj }) such that:

υj ⇀ υ in H
1,p
0 (Rn) as j →+∞. (8)

Step 2. In this step we prove that the function υ is a nontrivial G-invariant
generalized solution of the limit problem obtained from the sequence of problems
(Pλ

εj
) as j →∞.

We choose an arbitrary ϕ ∈ C∞0 (Rn). Then, according to the definition of
C∞0 (Rn), the support of ϕ is bounded in R

n, which means that there is an
Ωε0 such that suppϕ ⊂ Ωε0 . Since, by definition, the Ωεj s constitute a family
of expanding domains, we can choose the Ωε0 such that Ωε0 ⊂ Ωε1 and so
Ωε0 ⊂ Ωεj for all j = 1, 2, . . ..
Let

g(x, vj ) = εj a(x)vj − λf (x)|vj |p∗(k)−2vj .
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Then, because the υj is a generalized solution to (Pλ
εj
), it holds

∫

Rn

|∇vj |p−2(∇vj ,∇ϕ)dx = −
∫

Ωεj

g(x, vj )ϕdx = −
∫

Ωε0

g(x, vj )ϕdx. (9)

for all Ωεj .
By the weak convergence (8), we obtain the following limit relation for the left-
hand side of (9):

lim
j→∞

∫

Rn

|∇vj |p−2(∇vj ,∇ϕ)dx =
∫

Rn

|∇v|p−2(∇v,∇ϕ)dx. (10)

In addition, the critical exponent of the embedding

H
1,p
G (Ωε0) ↪→ Lp(Ωε0)

is equal to

p∗(k) = (n− k)p

n− k − k
>

np

n− p
= p∗.

Let some p0 such that

p∗ < p0 < p∗(k).

Then the embedding is compact and thus from the Sobolev and Kondrashov
theorems together and (9) arises that

υj → υ in Lp0−1(Ωε0), as j →+∞. (11)

Furthermore, by definition of a(x) and f (x), there exists a positive constant C
such that:

|g(x, t)| ≤ C(|t | + |t |p0−1), p∗ < p0 < p∗(k),

for almost all x ∈ Ωε
j
, j = 1, 2, . . . and for all t ∈ R.

Therefore, by Vainberg-Krasnoselskii Theorem (cf. [39, 65] or [41]) gives that:

ϕg(·, υj (·))→ ϕg(·, υ(·)) in L
p0
p∗ (Ωε0

) as j →+∞ (12)

and the Hölder inequality from (12) follows that:

ϕg(·, υj (·))→ ϕg(·, υ(·)) in Lr(Ωε0
) as j →+∞, (13)
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for all 1 ≤ r ≤ p0
p∗ .

By (13) the limit relation from the right hand-side of (10) yields:

lim
j→∞

∫

Ωε0

g(x, υj )ϕdx =
∫

Ωε0

g(x, υ)ϕdx. (14)

Finally, passing to the limit in (9) because of (8) and (14), we obtain:

∫

Rn

|∇υ|p−2(∇υ,∇ϕ)dx = −
∫

Ωε0

g(x, υ)ϕdx = −
∫

Rn

g(x, υ)ϕdx,

which corresponds to the definition of a weak solution. This is a generalized
solution by the force of (9) and since the function f is regular enough it is a
classical solution, (see §§ 1.2 and 3.1 in [41]). As convergence in Lp spaces
implies a.e. convergence by (11) follows that the function υ will be G-invariant.

Step 3. In this step we prove that the solution v is non trivial, that is υ 
≡ 0.
Suppose, by contradiction, that υ ≡ 0. Then, for any ε > 0 we have

|υ| < ε

2
. (15)

On the other hand, from (13) arises that

υj → υ in L1(Ωε0
),

which means that for any ε > 0 there exists a positive integer j0 such that:

|υj − υ| < ε

2
for all j > j0. (16)

Therefore, by the standard inequality

|υj | ≤ |υj − υ| + |υ|

due to (15) and (16) we obtain that:

|υj | < ε for any j ≥ j0. (17)

We recall now that every solution to the problem (Pεj) belongs to the set

H σ
ε =

⎧
⎪⎨

⎪⎩
uε ∈ H

1,p
0,G(Ωεj ) : uεj ◦ σ = −uεj and

∫

Ωεj

f (x)|uεj |p
∗(k)dx = 1

⎫
⎪⎬

⎪⎭
.
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Since every υj corresponds to an uεj ∈ H σ
ε , and υεj = λ

1
p∗(k)−p uεj , by

definition, we have the following:

1 =
∫

Ωεj

f (x)λ
− p∗(k)

p∗(k)−p |υj |p∗(k)dx <

∫

Ωεj

f (x)λ
− p∗(k)

p∗(k)−p εp
∗(k)dx,

which is false due to (17) as the ε > 0 can be chosen as small as we want.
Step 4. We have proved that the limit problem

(Pλ) Δpυ = λf (x)|υ|p∗(k)−2υ in R
n, n ≥ 3

has a generalized non-radial nodal G-invariant and σ -anti-symmetrical solution

υ, which means that the function u = λ
1

p∗(k)−p υ is a generalized non-radial nodal
G-invariant and σ -anti-symmetrical solution to the limit problem:

(P) Δpu = f (x)|u|p∗(k)−2u in R
n, n ≥ 3.

Step 5. It remains to prove that

lim
j→∞

∫

Rn

|∇uj |pdx = +∞.

The Sobolev inequality (6) after a normalization of the sequence uj s so that
‖uj‖Lp∗(k)(Ωεj

)=1 and provided that the constants Bε are positive give us that

1 �
(
K

p
G

(
Ωεj

)+ ε
)
∫

Ωεj

∣
∣∇uj

∣
∣p dx. (18)

From (18) after a replacement of the constant Kp
G(Ωεj ) from the one calculated in

Theorem 1 we obtain the inequality

1

εmj V
− 1

n−k K (n− k, p)+ ε
<

∫

Ωεj

∣
∣∇uj

∣
∣p dx. (19)

By inequality (19) taking the limits for j →∞ we have that εj → 0 and then

∫

Rn

∣
∣∇uj

∣
∣p dx →∞.

This completes the proof of the theorem. �
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Corollary 1 The problem:

(P)

{
Δpu = |u|p∗(k) u, u ∈ C2 (Rn) , n � 3

1 < p < n− k, p∗(k) = (n−k)p
n−k−p ,

has a sequence {uj } of non-radial nodal G-invariant and σ -anti-symmetrical
solutions, such that:

lim
j→+∞

∫

Rn

|∇uj |p0dx = +∞.

Proof The result is obtained if we put

f (x) = 1

|Ωεj |
− εj |x|α, α > −n

and follows the spirit of the approach in Theorem 4. �
Remark 1 The number of the sequences of non-radial nodal G-invariant and σ -anti-
symmetrical solutions to the problem (P) , depends on the number of all subgroups
of O(n) of which the cardinal of orbits with minimum volume is infinite, that are
on the dimension n of the domain.
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Financial Contagion in Interbank
Networks: The Case of Erdős–Rényi
Network Model

K. Loukaki, P. Boufounou, and J. Leventides

Abstract In this study, we extend the model developed in Leventides et al. (J Econ
Behav Organ 158:500–525, 2019) to include a wide variety of network topologies
and provide a better understanding of the relation between network structure, banks’
characteristics and interbank contagion. While the focus of this paper is on the
various factors that affect interbank contagion such as bank capital ratios, leverage,
interconnectedness and homogeneity across banks’ sizes, the model lacks flexibility
as far as the variability of the networks links is concerned. In order to circumvent this
problem, we introduce the Erdős–Rényi probabilistic network model in our study
to provide a wider vicinity of scenarios concerning the network structure of the
interbank system and study how homogeneity within the interbank network affects
the propagation of financial distress from one institution to the other parts of the
system through bilateral exposures.

1 Introduction

Meeting the SDGs has currently secured prior importance for both businesses’
and nations’ socio-economic-environmental transformation to achieving sustainable
development. More than 10,000 companies around the world have already signed
up to the principles of sustainable business behavior and an adequate number of
special toolkits has been developed to assist them towards this transformation. As
explicitly stated in [1] “Achieving the Global Goals would create a world that is
comprehensively sustainable: socially fair; environmentally secure; economically
prosperous; inclusive; and more predictable”. According to Oxford Analytica
Foundation [2], “companies that see the business case – as well as the moral
imperative – for achieving all the Global Goals will take a ‘Global Goals lens’
to every aspect of their business strategy to change the way they operate and put
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more focus on inclusion”. Accordingly, Weber [3] underlined that “the banking
sector became aware of the opportunity to finance the change to more sustainable
development instead of just focusing on risks for their lending business”. Alves et
al. [4] debated that “EU aid policy evolved over the last fifteen years in accordance
to the notion of financial liberalization and to the importance of private initiative
and combined with the SDGs increased the promotion of the financial sector as
engine of growth and development in the developing countries’ and that “the New
International Financial architecture assigns new roles for developing nations in the
global financial markets”. Achieving the Agenda 2030 depends on aligning the
entire global chain of the financial and the banking system with sustainability and
long-term outcomes therefore delineating of interbank linkages network structure
becomes of outmost importance.

Furthermore, in the wake of the aftermaths of global financial crisis of 2007–
2009 and the European sovereign debt crisis, there is a lot of attention of systemic
risk, interconnectedness and contagious effects. Thus, there is a critical need
for a better understanding of the fragility of the financial systems, their inner
interconnections, their interaction with real economy and the conditions that can
drive them from stability to instability and complete breakdown. In recent years,
both academics and regulators has started to study various architectures of the
financial system in order to assess certain risks within the system that potentially
lead to huge losses for the overall economy.

The global financial system can be represented as a large complex network
in which banks, hedge funds and other financial institutions are interconnected
to each other through various forms of financial linkages. For example, in the
banking sector, banks can be interconnected through direct and indirect links.
Direct interconnectedness arises from bilateral transactions; borrowing or lending
relationships between banks. A default by one bank, for example, can impose
distress on other entities that hold significant liabilities of the defaulting bank. Thus,
the failure of a bank can jeopardize the ability of its creditors banks to meet their
obligations to their interbank creditors which may lead to a domino effect. There are
also indirect ways that banks can be interconnected, since they invest in common
securities, namely portfolio overlap. If, for example, a bank holds identical assets
with other banks the correlation between their portfolios can cause fire sales in the
market during a crisis period depressing thus overall prices in the market, ultimately
leading to downward spirals for asset sales and inducing significant losses for all
the participants in the market. The complexity of the financial system led many
academics to utilize the network theory to study the effects of the interconnectedness
and network topology on financial stability. Studying the financial system as a
network is one of the methods to investigate the emergence of systemic risk
through the connections of banks. In such a network structure every node represents
a bank, the connections between banks are represented by edges where edge’s
weight represents the magnitude of exposure between the two parties and edge
directionality allows one to determine who is the creditor and who is the lender.
A robust interbank market plays an important role on the stability of the financial
system. Through the interbank market, banks which suffer a liquidity shortage can
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borrow from banks with liquidity surpluses. The interbank market can stabilize the
financial system, by redistributing the funds in a effective way among the banks but
at the same time can make the system prone to contagion of financial trouble from
one bank to another (linkages).

In this paper, we focus our attention on the direct contagion channel and
aim to identify the main drivers that affect interbank contagion. The flourishing
literature which ensued in recent years has developed both theoretical models
and empirical applications aimed at addressing the various issues concerning
systemic risk. Counterfactual simulations on data have been extensively employed
to study interbank contagion under different scenarios related to the topology of the
interbank network, the size of interbank exposures and the degree of heterogeneity
and interconnectedness within the network. In our assessment of the various drivers
that affect interbank contagion, we extend the model developed in Leventides
et al. [5] to include a wide variety of network topologies and provide a better
understanding of the relation between network structure, banks’ characteristics and
interbank contagion. While the focus of this paper is on the various factors that affect
interbank contagion such as bank capital ratios, leverage, interconnectedness and
homogeneity across banks’ sizes, the model lacks flexibility as far as the variability
of the networks links is concerned. In this effort, interbank exposure and capital
equity among banks displayed a stochasticness and the ability to construct a wide
range of scenarios regarding connective links among banks is limited.

The introduction of the Erdős–Rényi probabilistic network model provides us
with a wider vicinity of scenarios concerning the network structure of the interbank
system. Under this framework, we build up multiple scenarios of various network
structures that include a satisfactory number of cases via Monte Carlo simulations.
In every single network that we construct, we investigate the dynamics of cascading
defaults from an initial random shock that hits the system. Erdős–Rényi random
graph model is one of the earliest theoretical network models and was introduced
in the early 1960s by the Hungarian mathematicians Paul Erdős and Alfréd Rényi.
In this random graph, each possible link between any two nodes can occur with a
certain independent and identical probability, the Erdős and Rényi probability.

The Erdős and Rényi random graph model is a model in which has been
extensively applied for the study of contagion in financial networks, e.g. [23, 24].
However, a number of alternatives have been recently developed that differ in
the probability law governing the distribution of links between nodes. Using the
Erdős–Rényi network structure, the degree distribution or the connectivity among
banks can vary with respect to the chosen probability p. Thus, each random
network generated with the same parameters N, p looks slightly different. Not only
the detailed wiring network graph changes between realizations, but so does the
number of links. Random graphs or Erdős–Rényi graphs are useful for modeling,
analysis, and solving of structural and algorithmic problems arising in mathematics,
theoretical computer science, statistical mechanics, natural sciences, and even in
social sciences. However, the utility of an Erdős–Rényi model lies mainly in its
mathematical simplicity, not in its realism. Virtually, the comparison with real-
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world networks indicates that the random network model does not capture the degree
distribution of real networks but it provides a useful baseline for more complicated
network models.

The remainder of the paper is organized as follows. The following section
discusses briefly the recent literature that has addressed on the topic of interbank
contagion. Various aspects of systemic risk and network structures that are either
found in real-world data or used in some theoretical studies of interbank contagion
are addressed before we introduce the model investigated in Section 3. In Section 4
we describe the variables, considered in our subsequent analysis, provide in full
detail the computer experiments conducted and discuss our simulations results.
Summary and concluding remarks are drawn in the final section.

2 Related Literature

According to Upper [11], the channels through which a shock spreads can be
broken down into two groups: indirect and direct contagion channels. A direct
contagion channel results from the direct interbank linkages among banks and can
take effect when an idiosyncratic shock travels through the network. This shock
can be due to the inability of some banks to meet their financial obligations or
due to interbank exposures that are quite large relative to the lender’s capital. The
possibility of the occurrence and transmission of direct contagion depends mainly
on the structure and size of the interbank market. On the other hand, indirect
contagion is created by indirect linkages among banks such as identical assets,
portfolio returns and overlapping portfolios. If, for example, a bank holds identical
assets with other banks, the correlation between their portfolios can cause fire sales
in the market during a crisis period, thus depressing overall prices in the market
and inducing significant losses for all participants [12]. Distinguishing among the
various contagion channels is crucial for understanding financial contagion and the
mechanisms through which it spreads and evolves.

There are a number of recent studies that have dealt with the issue of interbank
contagion. Memmel and Sachs [13] simulate interbank contagion effects for the
German banking sector and find that bank capital ratios, the share of interbank
assets in the system and the degree of equality in the distribution of interbank
exposures are the most important determinants for financial stability. Georgescu
[14] compares the contagion potential of accounting induced regulatory constraints
to that of funding constraints in a bank network and concludes that the interplay
between illiquidity and solvency can lead to bank failures which are manifested by
the vulnerable funding structure of banks during a crisis. Tonzer [15] examines the
relationship between cross-border bank linkages and financial stability and show
that larger cross-border exposures increase bank risks, however, when bilateral
interbank linkages exist there is a shift toward a more stable banking system. Fink
et al. [16] model contagion in the German interbank market via the credit quality
channel and propose a novel metric which estimates the potential regulatory capital
loss to a banking system due to contagion via interbank loans. They show that
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contagion effects can be reduced if banks alter their lending and borrowing habits
in response to policy interventions.

Our analysis also relates to the role of heterogeneity in the structure of interbank
networks and how this characteristic affect systemic risk. Iori et al. [6] use an
Erdős–Rényi network model of 400 banks comprising the interbank market in which
the lending and borrowing functions are endogenously generated. The authors find
that the likelihood of contagion is lowered in case the interconnected institutions
are homogeneous, i.e. they have similar characteristics such as size or investment
opportunities and thus, no institution becomes significant for either borrowing
or lending. The authors also suggest, in line with Allen and Gale [17], that as
connectivity increases the system becomes more stable. In a related study, Caccioli
et al. [18] study the role of heterogeneity in degree distributions (the number of
incoming and outgoing links), balance sheet size and degree correlations between
banks. They find that networks with heterogeneous degree distributions are shown
to be more resilient to contagion triggered by the failure of a random bank, but more
fragile with respect to contagion triggered by the failure of highly connected nodes.
The authors also provide evidence that when the average degree of connectivity is
low, the probability of contagion due to failure of highly connected banks is higher
than that due to the failure of large banks. However, when the average degree of
connectivity is high, the opposite holds. Since the second scenario seems to be
more realistic (networks with high connectivity), having “too big to fail” banks is
more effective in eliminating a shock. Ladley [19] develops a partial equilibrium
model of a closed economy in which heterogeneous banks interact with borrowers
and depositors through the interbank market. Banks in the model are subject to
regulation and the aim of the model is to qualitatively show how regulation and
network structure can constrain or enhance the risk of contagion. The results show
that for high levels of connectivity the system is more stable when the shock is
small, while the contagion effects are amplified in case of larger initial shocks.
Chinazzi et al. [20] explore the interplay between heterogeneity, network structure
and balance sheet composition in the transmission of contagion. They argue that
heterogeneity in connectivity provides additional resiliency to the system when the
initial default is random and also show that ‘too-connected-to-fail’ banks are more
dangerous than ‘too-big-to-fail’ ones and should be the primary concern of policy
makers since their failure can trigger systemic breakdowns. Amini et al. [10] focus
on bank heterogeneity in terms of the number of banks included in the network and
the magnitude of their interconnections with other banks. They conclude that the
more heterogeneity is introduced, the less resilient the network becomes. Contrary
to these findings, the study of Georg and Poschmann [21] finds no significant
evidence that the heterogeneity of the financial system has a negative impact on
financial stability.

Finally, as far as the structure of an interbank system is concerned, the most
common network structures that are either found in real-world data or used in
some theoretical studies of interbank contagion are the Erdős–Rényi random
network structure, introduced in Erdős and Rényi (1960), the small-world structure,
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introduced in Watts and Strogatz (1998) and the scale-free structure, introduced in
Barabasi and Albert (1999).

The Erdős–Rényi network structure, which is applied in our study, can be
obtained by connecting any two nodes with a fixed and independent probability
p. Thus, in an Erdős–Rényi network structure the degree or the number of links of
a node is p(n-1). The expected degree distribution for such networks is Binomial,
converging to Poisson for large n. The Erdős and Rényi (1960) random graph model
is a model in which has been extensively applied for the study of contagion in
financial networks, e.g. in the contributions from Iori et al. [6], Nier et al. [7], Gai
and Kapadia [8], May and Arinaminpathy[9] and Amini et al. [10]. A number of
alternatives models have been recently developed that differ in the probability law
governing the distribution of links between nodes. Nier et al. [7] study the extent to
which the resilience of an interbank network depends on a combination of variables
characterizing the network topology, banks’ characteristics in terms of net worth
and interbank exposures, and market concentration. Using Monte Carlo simulation
experiments in Erdős–Rényi random graphs, they find that the effect of the degree of
connectivity is non-monotonic. Specifically, a small initial increase in connectivity
increases the chance of contagion defaults. However, after a certain threshold value,
connectivity improves the capacity of a banking system to withstand shocks. In
addition, the authors find that the banking system is more resilient to contagious
defaults if its banks are better capitalized and this effect is non-linear. Finally, the
size of interbank liabilities tends to increase the risk of default cascades, even if
banks hold capital against such exposures and more concentrated banking systems
are shown to be prone to larger systemic risk. Gai and Kapadia [8] using a network
model of a banking system study how the probability and potential impact of
contagion is influenced by aggregate and idiosyncratic shocks, network structure
and liquidity. The authors agree with Haldane (2009) concerning the “robust-yet-
fragile” property that the financial system exhibit. Even when the probability of
contagion is very low, its effects can have tremendous consequences to the financial
system. Higher connectivity may reduce the probability of default when contagion
has not started yet but it may also increase the probability of having large default
cascades when contagion begins. May and Arinaminpathy [9] apply an Erdos–Renyi
network structure of which they build on the models of Nier et al. [7] and Gai
and Kapadia [8] and study the interplay between the characteristics of individual
banks and the overall behavior of the network. The authors consider that banks
interact through different asset classes and study contagion between those asset
classes. May and Arinaminpathy [9] find that increasing the level of connectivity
is beneficial only when the initial shock has been caused by a default on interbank
loans. However, by contrast, the opposite holds in case of liquidity shocks since
they do not experience attenuation and for a given asset class, they tend to grow
as more and more banks hold the failing asset. Finally, the authors emphasize the
importance of having large capital buffers that will make for greater robustness
both of individual banks and of the system as a whole. Finally, Amini et al. [10]
test the impact of heterogeneity in an interbank network structure and the relation
between resilience and connectivity using three different network models; a scale-
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free network with equal and heterogeneous weights and an Erdős–Rényi network
with equal weights. The main result of this study is that the most heterogeneity is
introduced, the least the resilience of the network.

3 Erdős–Rényi Random Graph Model

The random graph model which is one of the earliest theoretical network models
was introduced by Erdős and Rényi (1960). In this random graph, each possible
link between any two nodes can occur with a certain independent and identical
probability, p. This model is typically denoted G(n, p) and has two parameters: n
the number of vertices and p, the probability that each simple edge (i, j) exists,
which is constant for each pair nodes.

The adjacency matrix of a random graph is given by

∀i > j,Aij = Aji =
{

1, edge (i, j ) exists; prob (p)
0, edge (i, j ) does not exist; prob (1− p)

In other words, each edge is included in the graph with probability p, independent
from every other edge. The probability to create randomly a graph with n nodes and

m edges is given by pm(1− p)

⎛

⎝
n

2

⎞

⎠−m
. Furthermore, the probability p serves as

the parameter of our model and as p increases, the graph is more likely to have more
edges.

The restriction of i > j appears because edges are undirected or to put it
differently, the adjacency matrix is symmetric across the diagonal, and there are no
self loops. In the network there are n (n − 1) possible links to be created, resulting
in an expected number of edges in the network equal to pn (n − 1), so that the
(expected) average degree is p(n − 1). Thus, the degree distribution of such a graph
is given by

p(k) =
(
n− 1
k

)

pk(1− p)n−1−k (1)

The mean degree, c, in the G(n,p) graph model is given by

c = (n− 1) p (2)

In other words, each vertex has (n-1) possible partners and each of these exist
with the same independent probability p. Asymptotically, as n → ∞, the degree
distribution of a random graph converges to a Poisson (c) distribution
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p(k) = e−cck

k! (3)

Due to the above property, the Erdős–Rényi random graph model is sometimes
referred as Poisson random graph or random graph. The Erdős and Rényi (1960)
graph model results in networks with small diameters and short average path
lengths, capturing very well the “small-world” property, observed in many real
networks. The clustering coefficient of an Erdős–Rényi graph model is equal to
the probability of an edge’s existence between two nodes, p. The Erdős and Rényi
(1960) random graph model is a model in which has been extensively applied for
the study of contagion in financial networks, e.g. in the contributions from Iori et al.
[6], Nier et al. [7], Gai and Kapadia [8] and Montagna and Kok (2013).

In an Erdős –Rényi model we begin with n isolated nodes as presented in the first
snapshot in Figure 1. Then, with probability p > 0 each pair of nodes is connected
by a link. Therefore, in this model the network is determined only by the number

Fig. 1 Erdős–Rényi random networks: Erdős–Rényi random networks with ten nodes and differ-
ent probabilities of connecting a pair of nodes
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of nodes, n, and edges, m, and usually an Erdős–Rényi random graph is written as
G(n, m) or G(n, p). In Figure 1 we present some examples of Erdős–Rényi random
graphs with the same number of nodes and different linking probabilities. It is easy
to understand that if we repeat the process for the same number of nodes and the
same probability, we will not necessarily get the same network.

However, a number of alternatives models have been recently developed that dif-
fer in the probability law governing the distribution of links between nodes. Since,
the Erdős–Rényi probability, p, is assumed to be equal and constant across all pairs
of nodes, the resulting network structure does not present marked heterogeneity.
Thus, modeling interbank networks using the Erdős–Rényi structure fails to mimic
the heterogeneity observed in real interbank network systems.

In order to fully understand the heterogeneity of an Erdős–Rényi random
network, we now consider one particular random realization of an Erdős–Rényi
random network with 1000 nodes and p = 0.04, that is G(n = 1000, p = 0.04) and
plot the probability p(k) of finding a node of degree k, versus the degree, we obtain
Figure 2, where it can be seen that the maximum of the distribution is about the value
k = (n − 1) p = 39. Obviously, the probability p(k)follows a binomial distribution
of the form represented in Equation (1). As we explained above, for large values of
n, the degree distribution of a random graph converges to a Poisson (c) distribution.
Figure 2 displays the heterogeneity plot for G(1000, 0.04), where two characteristic
features of the Erdős–Rényi networks are observed. The first is a typical dispersion
of the points around the value x = 0, and the second is the very small value of ρ(G),
which in this case is 0.0066.

Fig. 2 Heterogeneity of Erdős–Rényi random networks. A typical Poisson degree distribution
of an Erdős–Rényi random network with 1000 nodes and p = 0.04 (left), and the characteristic
heterogeneity plot for the same network. (Source: Estrada [22])
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3.1 The Mathematical Description of the Contagion Model

In this section we study the case of an Erdős–Rényi network model in which, as
we stated earlier, all nodes have the same probability of being connected to another
node in the network. Our model is tailored to simulate default cascades triggered
by an exogenous shock in an interbank network as in Leventides et al. [5]. We first
introduce the interbank network model, describe the default cascades initiated by
a random negative shock on this network and analyze the parameters that affect
interbank contagion.

3.2 The Interbank Network

As in Leventides et al. [5], we assume that the banking system contains i = 1,...,
N banks. Every bank has its own balance sheet and the accounting equation holds
at all times. Total assets are divided in three categories: interbank assets AIB

i , other
assets AOT

i and cash reserves Ci. On the liabilities side of the balance sheet we have
included: interbank liabilities LIB

i , other liabilities LOT
i and equity capital Ei. A

schematic overview of the balance sheet is given in Table 1. Although the proposed
balance sheet structure does not capture all elements of a bank balance sheet, it
includes all those positions that are relevant to our study.

We introduce a standard notation for our model and we define a simple interbank
network as G= (V,E), where V represents the nodes of the graph while E represents
the edges. We further consider A, the adjacency matrix of the graph, defined as

∀i > j,Aij = Aji =
{

1, edge (i, j ) exists
0, edge (i, j ) does not exist

The uth row or column of A has ku entries, where ku is the degree of the node
u, which is simply the number of nearest neighbours that u has. Denoting by 1 a
|V| × 1vector, the column vector of node degrees κis given by

Table 1 Stylized Balance
sheet structure

Assets Ai Liabilities Li
Interbank Assets

(
AIB

i

)
Interbank Liabilities

(
LIB
i

)

Other Assets
(
AOT

i

)
Other Liabilities

(
LOT
i

)

Cash (Ci) Equity Capital (Ei)

The table presents a stylized balance sheet structure in
the interbank network. Total assets are divided in three
categories: Interbank assets

(
AIB

i

)
, other assets

(
AOT

i

)
,

and cash reserves(Ci). Total liabilities include: Interbank
liabilities

(
LIB
i

)
, other liabilities

(
LOT
i

)
, and equity capi-

tal (Ei). It is assumed that the accounting equation holds
at all times
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κ =
(

1T A
)T = AT 1 (4)

We define the indegree as the number of links pointing toward a given node,
and the outdegree as the number of links departing from the corresponding node.
Specifically:

κin =
(

1T A
)T = AT 1 (5)

κout = A1 (6)

Thus, our interbank network of credit exposures between n banks can be visu-
alized by a graph G = (V,E) where V represents the set of financial institutions—
nodes, and E is the set of the edges linking the banks, that is, the set of ordered
couples(i, j) ∈ V × V indicating the presence of a loan made by bank i to bank j.
The number of nodes defines the size of the interbank network. Every edge (i, j) is
weighted by the face value of the interbank claim and the representation of interbank
claims is made by a single weighted N × N matrix X:

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · x1j · · · x1N
...

. . .
... . .

. ...

xi1 · · · 0 · · · xiN
... . .

. ...
. . .

...

xN1 · · · xNj · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

where xij is the credit exposure of bank i vis-à-vis bank j and N is the number of
banks in the network. Interbank assets are represented along the rows while columns
represent interbank liabilities. Once X is in place, the interbank entries of each bank
are given according to the following rules:

(i) Ai =
N∑

j=1
xij (horizontal summation), where Ai is the total interbank assets of

bank i.

(ii) Li =
N∑

i=1
xij (vertical summation), where Li is the summation of the total

interbank liabilities of bank j.

One can observe that the diagonal line contains zeros due to the fact that banks
do not lend to themselves. In this framework, a random network is generated
based on two parameters, the size of the network (number of nodes/banks) and
the probability pij that there is a lending/borrowing link between two nodes/banks.
Thus, each possible link between two nodes exists with an independent and identical
probability, which is often called the Erdős–Rényi probability.
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Although, we have undirected edges in this framework, we cannot really speak
of undirected links, since the two directions of the same link are given different
weights.

3.3 Shock Propagation and Contagion Dynamics

The failure of a bank can affect other banks through their interbank connections.
Below, we describe the mechanism through which an initial shock affecting a
bank propagates onto its counterparties along the network. Contrary to the recent
literature, the term contagion here translates into total capital losses due to multiple
default cascades. The cascade dynamics we use in this study are straightforward
to implement and enable us to run a great number of simulations on a variety of
different scenarios (Table 2).

The default procedure starts with an exogenous shock being simulated, typically
by setting to zero the equity of one randomly chosen bank i and the cascade
of defaults proceeds on a timestep-by-timestep basis, assuming zero recovery for
shock transmissions. The zero recovery assumption, which is a realistic one in
the short run, is often used in the literature to analyze worst case scenarios and

Table 2 OLS regression analysis for Scenario 1 (Heterogeneous banks with homogeneous
exposures)

N = 20 N = 50 N = 80 N = 100

CATIN 1 0.051
(16.198)***

−0.002
(−0.459)

−0.001
(−0.347)

−0.007
(−2.044)**

CATIN2 0.098
(4.195)***

0.004
(0.170)

0.179
(8.073)***

0.104
(5.059)***

LEVIN 0.389
(17.018)***

0.413
(19.043)***

0.260
(12.205)***

0.315
(15.935)***

NOUTGOING −0.080
(−3.915)***

0.097
(2.773)***

−0.170
(−4.933)***

−0.053
(−1.534)

COUNT 0.602
(138.571)***

0.572
(134.093)***

0.576
(136.735)***

0.540
(124.326)***

VARCAP −0.088
(−53.348)***

−0.075
(−61.005)***

−0.053
(−53.890)***

−0.054
(−57.165)***

P −0.101
(−5.089)***

−0.080
(−2.338)**

0.165
(4.885)***

0.107
(3.148)***

Adjusted R2 0.800 0.763 0.756 0.749

The table presents the regression results for Scenario 1. The dependent variable is CATEND
measured as the total loss of capital due to contagion as percentage of total capital in the network.
Explanatory variables are, CATIN1, CATIN2, LEVIN, NOUTGOING, COUNT, VARCAP and
P, the probability for a link to exist between two nodes. Each cell displays the OLS standardized
coefficients along with the corresponding t-statistics (shown in parentheses). The sample comprises
of 18,000 realizations (simulated banking crises). *, ** and *** denote significance at the 10, 5
and 1 percent level, respectively
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refers to a situation where creditor banks lose all of their interbank assets held
against a defaulting bank [8, 20]. A bank’s default implies that it is no longer
able to meet its interbank liabilities to its counterparties. Since these liabilities
constitute other banks’ assets, the banks that get into trouble affect simultaneously
their counterparties, leading to write-downs in their balance sheets. The interbank
asset loss due to failure of bank i is subtracted from the bank’s j capital. Bank j will
fail if its exposure against bank i exceeds its equity. A second round of bank failure
occurs if bank creditors cannot withstand the losses realized due to its default and
eventually, contagion stops if no additional bank goes bankrupt, otherwise a third
round of contagion takes place. An initial shock can be amplified through banks’
interconnections and further transmitted to other institutions, such that the overall
effect on the system goes largely beyond the original shock. As Upper and Worms
(2004) demonstrate, in response to a liquidity shock banks prefer to withdraw their
deposits at other banks instead of liquidating their long-term assets, creating further
instability and liquidity dry-ups in the financial system.

A general mathematical description of the dynamical system expressing the
shock propagation mechanism is presented hereafter. We consider a network
consisting of N banks numbered from 1 to N. We define bi as the capital possessed
by bank i in the network and

b0 = (b1, b2, . . . , bN)
(7)

stands for the initial vector of bank capital. X is defined as a N × N matrix with
entries:

xi j= the credit exposure of bank i vis-à-vis bank j in the network

xi i = bi (8)

We consider the case where some of the banks (one or more) collapse. We wish
to study how the crisis travels through the bank network and when exactly it comes
to a fixed point. The collapse of banks i1, i2, ..., ik (where k ≤ N), can be described
in the following way. Consider the element x0 ∈ Z2

N = {0, 1}N which has zero
entries everywhere except the positions i1, i2, ..., ik where x0 takes on the value 1.
Then,

b1 = b0 − X· x0 (9)

is the new vector of capital of the N banks. We now take

x1(i) =
{

1, b1(i) ≤ 0;
0, b1(i) > 0.

(10)
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Then x1 ∈ ZN
2 and x1 indicates the banks that have collapsed after the bankruptcy

of the first k banks. The vector x1 takes on the value 1 in the positions i1, i2, ..., ik .
If x1 
= x0, this indicates that the collapse of the first k banks has adversely affected
other banks leading them to bankruptcy. Similarly, from x1 we take:

b1 = b0 − X· x1 (11)

and then

x2(i) =
{

1, b2(i) ≤ 0;
0, b2(i) > 0.

(12)

The vector x2 indicates the banks that collapse after the bankruptcy of the banks
of x1. Therefore, we have a map:

F : Z N
2
→ Z

N
2

(13)

x → F(x) = f (b0 − X· x) (14)

The map F(x) defines a dynamical system xn + 1 = F(xn) which describes the
evolution of contagion in the interbank network.

3.4 Monte Carlo simulations

In this section we apply Monte Carlo simulations in four different stages. As in
Leventides et al. [5], we introduce randomness in three areas: amount of capital,
interbank claims and network structure. The stochasticness introduced in our model
provides us with a wide vicinity of scenarios that may come across in real world.
Using the Erdős–Rényi network structure, the degree distribution or the connectivity
among banks can vary with respect to the chosen probability p. Thus, each random
network generated with the same parameters N, p looks slightly different.

The second stage involves estimating the parameters of interest, i.e. the value
of the coefficients in the regression model. In the third stage the test statistics of
interest are saved, while in the fourth stage we go back to the first stage and repeat
N times. The quantity N is the number of replications which should be as large as
is feasible. As Monte Carlo is based on random sampling from a given distribution
(with results equal to their analytical counterparts asymptotically), setting a small
number of replications will yield results that are sensitive to odd combinations of
random number draws. Generally speaking, the sampling variation is measured by
the standard error estimate, denoted Sx = √var(x)/N , where x denotes the value of
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the parameter of interest and var(x) is the variance of the estimates of the quantity
of interest over the N replications.

Similar to Leventides et al. [5], we consider four different scenarios, in line with
Chinazzi et al. [20], where we let vary the balance sheet composition, the size of the
network and the link probability among banks which is held constant for each pair
of nodes. The four scenarios tested are as follows:

Scenario 1: • Heterogeneous banks with homogeneous exposures. In this scenario,
we construct interbank networks where banks have different equity size
and their interbank claims are evenly distributed across the outgoing links

Scenario 2: • Heterogeneous banks with heterogeneous exposures. In this scenario,
the interbank networks allow for heterogeneous bank sizes and
heterogeneous interbank claims among banks.

Scenario 3: • Homogeneous banks with heterogeneous exposures. In this scenario,
we construct interbank networks where banks have the same equity size
and unevenly distribute their exposures across creditor banks

Scenario 4: • Homogeneous banks with homogeneous exposures. In this last
scenario, we construct interbank networks where banks have the same
equity size and interbank claims are evenly distributed across creditor
banks

In each case, we do not control the number of outgoing links as in Leventides
et al. [5] but for each network that is generated a random probability, which is
constant for each pair of nodes, defines the lending/borrowing relation of each bank.
The probability pij is assumed to be equal and constant across all pairs (i,j). For
simplicity, we denote the probability, termed as the Erdős–Rényi probability, by
p. Since the probability of forming a link is homogeneous, the resulting network
structure does not present marked heterogeneity.

We examine banking systems consisting of small banks with low, medium and
large interbank exposures, as well as systems of large banks with corresponding
exposure levels. We consider a basic model that uses only two components from a
bank’s balance sheet, that is, equity and interbank loans–in the words of May and
Arinaminpathy [9] ‘a caricature for banking ecosystems’. We generate our model
in two separate steps. First, we construct a model structure of N nodes representing
the banks in our system and randomly choose the probability p of forming a link

between each of the

(
N

2

)

possible links.

For all the possible couples of nodes, a link is created with probability p which
represent lending/borrowing relationship, while in a second step, we assign each
node to a stylized balance sheet structure. Once the banking networks are created,
the default propagation dynamics are implemented to examine the effects of an
idiosyncratic shock hitting one bank. The effect of a shock is simulated, typically by
setting to zero the equity of the affected bank. We estimate the initial loss of capital
by letting the first bank default and subsequently record the loss as percentage of
the total capital in the system. Consequently, the defaulted bank will be unable to
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repay its creditors and the interbank loans that were granted will be written-off, as
we have selected to work under a zero recovery assumption. This bad debt will be
recorded and expressed as percentage of the total capital in the system. Moreover,
the creditors of the defaulted bank will experience a shock on their balance sheets
and the recorded losses will be subtracted from their equity.

If at any time the total losses realized by a bank exceed its net worth, the bank
is deemed in default and is removed from the network. Note that time steps are
modeled as being discrete and there is the possibility that many banks default
simultaneously in each timestep. These shocks propagate to their creditors and
take effect in the next timestep. When no further failures are observed, the default
procedure terminates and various contagion indicators1 are calculated based on the
contagion map as described in Subsection 3.3.

4 Main Findings

This section discusses the main findings of this study. Subsection 4.1 describes in
full detail the computer experiments conducted while Subsection 4.2 discusses the
simulation results of all four scenarios considered.

4.1 Computer Experiments

Having generated banking systems via an Erdős–Rényi network structure frame-
work and balance sheet allocation, the dynamics of an initial shock affecting a
bank within the interbank network can be investigated. Given the complexity of
the interbank network outlined above, it is extremely difficult to derive analytical
solutions. In order to obtain data to describe the variables that affect contagion,
we employ several Monte Carlo simulations. In each realization, we construct an
interbank network with N ∈ [20, 50, 80, 100] nodes under the rewiring process of the
Erdős–Rényi methodology. In a second step, we test the four scenarios mentioned
before by varying the equity size of banks and the interbank exposure structure
across creditor banks. For each scenario tested we check a wide range of link
probabilities, such that we can observe dense or sparse interbank network systems.
Since the probability of forming a link is homogeneous, the resulting network
structure does not present marked heterogeneity.

When homogeneity across bank sizes is considered, all banks are assumed to
have the same equity size and thus, each bank is endowed with a balance sheet that

1We refer the interested reader to Appendix in Leventides et al. [5] for a formalization of the
aforementioned mechanism in a pseudocode which simulates the default cascade in the interbank
network.



Financial Contagion in Interbank Networks: The Case of Erdős–Rényi Network Model 293

consists of 100 units of equity. On the other hand, when homogeneity is present
with respect to interbank exposures, interbank claims are randomly allocated within
the interbank network and are categorized as follows: small loans granted (4 units),
medium loans (8 units) and large loans (14 units). With respect to scenarios tested
where heterogeneity of bank size is introduced, the amount of equity of each bank
is drawn from a uniform distribution in the range: bi ∈ [0, 100], whereas when
heterogeneity is introduced with respect to interbank claims, credit is allocated in the
following ranges: aij ∈ [0, 4], aij ∈ [0, 8], aij ∈ [0, 14].

2 Interbank exposures are set
60% lower than these in Leventides et al. [5]. This is due to the fact that we cannot
control the connectivity across banks since the link probability in randomly selected.
The interbank exposure decrease was set by trial and error in order not to observe
enormous high leveraged systems. In addition, we control the leverage of the system
by setting the rule that the maximum leverage ratio of each network system cannot
exceed five. Then, balance sheets are assigned to each node, consistent with each
specific scenario tested. We randomly choose a single bank in the system to default
due to an exogenous shock and the default cascades proceed sequentially, assuming
zero recovery. When no further failures are observed results are recorded before
another realization begins. We then impose another shock on the second bank in the
network and this procedure continues until all banks in the interbank network are
hit by an exogenous shock.

For each scenario tested and for each network size we have three cases in which
we allow the weight of outgoing links (small, medium and large interbank claims)to
vary among banks. Each case gives us 6000 realizations or, to put it differently, 6000
banking crises. We deem that 6000 realizations provide a satisfactory number of
runs and robustness to our analysis. Thus, for each scenario tested and each network
size we employ 6000 × 3 = 18,000 realizations using the following variables in
each realization:

• Total loss of capital due to contagion as percentage of total capital in the system
(CATEND)

• Initial loss of capital by defaulting bank i as percentage of total capital in the
system (CATIN1), i.e. bank’s i depleted equity divided by the total equity in the
network

• Loss of capital at the first stage (interbank loans that cannot be repaid) by
defaulting bank i as percentage of total capital in the system (CATIN2), i.e. total
amount of loans granted to bank i that cannot be repaid divided by the total equity
in the network

• Leverage of the interbank network(LEVIN), i.e. total interbank exposures as
measured by the sum of matrix’s A elements, divided by the total capital in the
network

2Although those ranges have been selected arbitrarily, they are not sensitive to any regression
model employed in the following analysis and thus, our regression results will be unaffected from
a qualitative point of view if different ranges are used.
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• Number of outgoing links of bank i (NOUTGOING), i.e. the outdegree of a bank
i which corresponds to the number of creditors in the network. It is defined as the
summation of the ith column of the adjacency matrix A.

• Shock propagation variable (COUNT) which measures the number of rounds
needed until no further bank defaults

• Variance of capital (equity) (VARCAP) used in those scenarios tested where only
heterogeneous bank sizes are considered

• Variance of interbank loans (VARLOANS) used in those scenarios tested where
only heterogeneous interbank loan exposures are considered

• Erdős–Rényi probability pij (p) that there is a lending/borrowing link between
two nodes/banks.

Our selection of variables is motivated by economic intuition and by the findings
of previous studies on the dynamics of systemic risks [7] and Leventides et al. [5].
Table 3 presents summary statistics on these variables. In order to study the effect the
aforementioned variables have on contagion risk, we estimate the following ordinary
least squares (OLS) models:

CATEND = β1CAT IN1+ β2CAT IN2+ β3LEV IN + β4NOUTGOING

+β5COUNT + β6VARCAP + β7p

(15)

CATEND = β1CAT IN1+ β2CAT IN2+ β3LEV IN + β4NOUTGOING

+ β5COUNT + β6VARCAP + β7VARLOANS + β8p

(16)

CATEND = β1CAT IN2+ β2LEV IN + β3NOUTGOING+ β4COUNT

+ β5VARLOANS + β6p

(17)

CATEND = β1CAT IN2+ β2LEV IN + β3

NOUTGOING+ β4COUNT + β5p
(18)

The model described in Equation (15) is applied to scenarios involving heteroge-
neous bank sizes with homogeneous exposures in the network structure, Equation
(15) refers to a situation where emphasis is placed on heterogeneous interbank
loan exposures combined with heterogeneous bank sizes, Equation (17) takes into
account homogeneous banks with heterogeneous exposures while Equation (18)
considers only homogeneous bank sizes and interbank claims. The variable CATIN1
has been omitted from Eqs. (17) and (18) due to the fact that banks in the interbank
system are homogeneous, i.e. we keep constant the equity of each bank and thus
CATIN1 remains stable during our simulation runs. There is an explanation in the
next subsection concerning the fact that in our experiments we have selected to
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work with standardized variables—both dependent and independent variables—and
have not included the intercept term in the regression models as it will be zero. Our
concern is to measure effects not in terms of the original units of the dependent
variable or the independent variables, but in standard deviation units.3

4.2 Simulation Results

In this section, we discuss the regression results of all four scenarios. Since
our variables are measured on different scales, we cannot directly infer which
independent variable has the largest effect on the dependent variable. In order to
circumvent this problem we standardize our series to have zero mean and unit
variance. Table 2 presents the regression results of the first scenario using the OLS
model described in Equation (15), where heterogeneous banks distribute evenly
their interbank claims across the outgoing links of a network consisting of N = 20,
50, 80 and 100 banks. Almost all regressor coefficients are found to be statistically
significant for all the sizes of the network. We discern only two cases where
regressor coefficients are found to be statistically insignificant and has to do with
CATIN1 variable and one case that has to do with CATIN2. R-squared coefficients
take on large values ranging from 74.9 to 80% and highlight the ability of our
selected variables to explain financial distress in interbank networks.

The variable CATIN1 captures the initial effect defaulting bank i exerts on
the network, whereas the magnitude of interconnectedness across the banks that
comprise the interbank network is measured through parameter CATIN2. As we
observe from Table 1, variable CATIN1 does not seem to affect much the dependent
variable, whereas two regressor coefficients are found to be insignificant. Financial
shocks will propagate into the defaulting bank’s counterparties along the network,
erode their capital and make them more vulnerable to subsequent shocks. The
magnitude of the positive relationship between CATIN2 and CATEND – the
dependent variable - seems to increase as the size of the interbank network increases
with the only exception being the N = 50 bank network segment which follows an
autonomous path (although statistically insignificant). The increasing magnitude of
the above relationship seems to cease as we move from the case of n = 80 banks
to the case of n = 100 banks. This finding implies that as we move from smaller
to larger network settings, systemic risk and the likelihood of contagion increases.
However, when we move from the case of n = 80 banks to the case of n = 100
banks the likelihood of contagion seems to decreases. Figure 3 visually illustrates
the extent of contagion as a function of the percentage loss of capital due to bank’s
i default. It is shown that as the network size increases from small to medium sized
networks, we observe that capital losses rises, confirming the findings from the

3See Wooldridge (2003) for an interesting discussion on standardization and explanation of the
absence of the standardized intercept.
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(a) N=20 banks

(b) N=50 banks

(c) N=80 banks
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Fig. 3 Scenario 1: Heterogeneous Banks with homogeneous exposures. Extent of contagion
(expressed as the total capital lost from the banking system due to the failure of at least one bank)
as a function of the % initial loss of capital due to default of the first bank. Panels (a–d) show
the relation between the % initial loss of capital due to default of the first bank and the extent of
contagion across interbank networks with different number of banks
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(d) N=100 banks
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Fig. 3 (continued)

regression model. As we can observe from Figure 3, as we move from the n = 80
interbank network scheme to n= 100 the likelihood of contagion seems to decrease
since we have very few cases that cause systemic break downs and defaults.

As expected, we also find that there is a positive relationship between the leverage
of the network and the capital losses due to contagion, which is depicted by Figure
4. This result is in line with the findings of Nier et al. [7] who provide evidence
that systemic risk increases when system-wide leverage increases. Highly leveraged
banks in the interbank network are clearly more exposed to the risk of default on
interbank loans. The greater the size of default on debt is, the larger the losses
are that banks transmit to their neighbors, other things being equal. Thus, highly
leveraged banks contribute more to systemic risk as they become a vehicle for
transmitting shocks within the network. Moreover, it is shown that the magnitude
of the positive relationship between the network’s leverage and contagion risk
increases as we move from smaller to larger interbank networks (illustrated in
Table 2) with the only exception being the n = 80 bank network scheme where
the magnitude of the standardized coefficients seems to decrease.

Our results also suggest that connectivity, expressed in our experiments as the
outgoing4 of the first bank that defaults, has a negative effect on interbank contagion
with the only exception being the case of n = 50 banks where we can observe a
positive relationship between contagious defaults and connectivity.

Interestingly, as we move from small networks consisted of twenty banks to
networks consisted of 50 banks the effect of connectivity to interbank contagion
turns from negative to positive and after then connectivity keeps affect negatively
the systemic risk of the network. Thus, as we move from network systems consisted
of fifty banks to networks consisted of 100 banks this negative relationship seems
to decrease. In relatively small interbank networks, a high level of connectivity

4It should be highlighted that in the Erdős–Rényi network structure the outdegree equals the
indegree since we have an undirected network structure. However, in our framework, the two
directions of the same link are given different weights.
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will allow an efficient absorption of shocks, whereas in medium size networks
the increased connectivity will spread the shock throughout the system, potentially
leading to many default cascades. The link probability, that is assumed to be equal
across all pairs, seems to contribute to the resilience of the system for small and
medium size networks. However, as we move from medium to large size networks

(a) N=20 banks

(b) N=50 banks

(c) N=80 banks
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Fig. 4 Scenario 1: Heterogeneous Banks with homogeneous exposures. Extent of contagion
(expressed as the total capital lost from the banking system due to the failure of at least one bank)
as a function of the leverage of the system. Panels (a–d) show the relation between the leverage
of the system and the extent of contagion across interbank networks with different number of banks
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(d) N=100 banks
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Fig. 4 (continued)

this effect turns negative to the resilience of the system as it seems to contribute
positively to systemic risk.

Our regression analysis also shows that the COUNT variable which measures the
number of rounds until no further bank defaults, has a positive impact on interbank
contagion. Heterogeneity expressed as the variance of capital exhibits a negative
and statistically significant relationship with interbank contagion, showing that size
heterogeneity can have positive effects on the stability of an interbank network.

However, the positive magnitude seems to decrease as we move from small
to large interbank networks. An interbank network consisting of banks of various
sizes can more easily withstand a negative shock, therefore no institution becomes
significant for either borrowing or lending. Furthermore, in such network both
smaller and larger banks can act as shock absorbers when an initial shock hits the
banking system, making contagion a less likely phenomenon. This finding is in line
with the results of Iori et al. [6] concerning bank size heterogeneity.

Table 4 presents the regression results of the second scenario using the model
described in Equation (16), where banking institutions with heterogeneous bank
sizes are linked to one another via heterogeneous interbank claims. The regressor
coefficients are statistically significant in almost all cases and the R-squared values
are quite high and lie in the vicinity of 75–83%, highlighting the good explanatory
power of the model.

CATIN1 does not seem to impact much the dependent variable in all network
segments and the regressor coefficients in the relatively large interbank networks
becomes statistically insignificant. The magnitude of standardized coefficients is
almost the same with the corresponding magnitude of those derived from the first
scenario. In other words, an initial shock from defaulting bank i will spill over more
easily in the network. Thus, the first bank defaulting has the dynamics to spread
the initial shock and contaminate the entire interbank network. CATIN2 has a large
positive impact on contagion risk, however, its magnitude fades away as we move
from smaller to larger networks. It should also be highlighted that the CATIN2
coefficients are much larger than those recorded in the first scenario in all network
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Table 4 OLS regression analysis for Scenario 2 (Heterogeneous banks with heterogeneous
exposures)

N = 20 N = 50 N = 80 N = 100

CATIN 1 0.070
(23.660)***

0.007
(2.024)**

0.000
(0.047)

−0.001
(−0.283)

CATIN2 0.201
(19.541)***

0.113
(11.183)***

0.106
(9.669)***

0.071
(6.015)***

LEVIN 0.653
(58.484)***

0.346
(30.847)***

0.321
(26.320)***

0.399
(30.132)***

NOUTGOING −0.136
(−11.540)***

−0.150
(−6.539)***

−0.052
(−2.253)**

0.038
(1.575)

COUNT 0.456
(111.687)***

0.630
(156.274)***

0.577
(141.939)***

0.573
(131.397)***

VARCAP −0.032
(−18.897)***

−0.067
(−50.848)***

−0.053
(−52.027)***

−0.041
(−40.597)***

VARLOANS −0.246
(−45.472)***

−0.091
(−14.882)***

−0.018
(−3.113)***

−0.082
(−12.307)***

P −0.254
(−21.462)***

0.038
(1.620)

0.064
(2.678)***

−0.110
(−4.311)***

Adjusted R2 0.830 0.796 0.776 0.751

The table presents the regression results for Scenario 2. The dependent variable is CATEND
measured as the total loss of capital due to contagion as percentage of total capital in the network.
Explanatory variables are the constant term CATIN1, CATIN2, LEVIN, NOUTGOING, COUNT,
VARCAP, VARLOANS and P, the probability for a link to exist between two nodes. Each cell
displays the OLS standardized coefficients along with the corresponding t-statistics (shown in
parentheses). The sample comprises of 18,000 realizations (simulated banking crises). *, ** and
*** denote significance at the 10, 5 and 1 percent level, respectively

sizes. An initial shock following the default of bank i seems to contribute much to
a banking crisis scenario within small and medium-sized networks and the size of
total capital losses is smaller than that documented in the first scenario. Figure 5
depicts the extent of contagion as a function of the percentage loss of capital due to
default of the first bank and confirms the results recorded in Table 5.

The results also show that there still exists a positive relationship between
leverage and contagion (illustrated in Figure 6); however, the coefficient estimates
are larger in almost all cases than those recorded in the previous scenario. Moreover,
the magnitude of the leverage coefficients decreases as the number of banks in the
interbank network increases, with the only exception being the 100 bank network
segment where one can observe a slight increase compared to the 80 bank network
segment.

Results on connectivity are qualitatively similar to those of the first scenario,
showing that connectivity negatively impacts contagion risk especially in small and
medium interbank networks with the only exception being the 100 bank network
segment which follows an autonomous path and is positively related to contagion
(although statistically insignificant).
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Fig. 5 Scenario 2: Heterogeneous Banks with heterogeneous exposures. Extent of contagion
(expressed as the total capital lost from the banking system due to the failure of at least one bank)
as a function of the % initial loss of capital due to default of the first bank. Panels (a–d) show
the relation between the % initial loss of capital due to default of the first bank and the extent of
contagion across interbank networks with different number of banks
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Fig. 5 (continued)

Table 5 OLS regression analysis for Scenario 3 (Homogeneous banks with heterogeneous
exposures)

N = 20 N = 50 N = 80 N = 100

CATIN2 0.196
(25.178)***

0.143
(16.422)***

0.125
(15.232)***

0.088
(9.806)***

LEVIN 0.324
(39.268)***

0.298
(32.475)***

0.275
(31.619)***

0.279
(30.578)***

NOUTGOING −0.163
(−15.308)***

−0.168
(−10.438)***

−0.126
(−8.707)***

−0.087
(−5.561)***

COUNT 0.736
(191.690)***

0.761
(175.841)***

0.790
(195.383)***

0.793
(186.247)***

VARLOANS −0.175
(−43.977)***

−0.190
(−44.390)***

−0.180
(−46.723)***

−0.167
(−41.937)***

P −0.253
(−24.270)***

−0.313
(−19.153)***

−0.322
(−21.833)***

−0.339
(−21.575)***

Adjusted R2 0.860 0.823 0.845 0.809

The table presents the regression results for Scenario 3. The dependent variable is CATEND
measured as the total loss of capital due to contagion as percentage of total capital in the
network. Explanatory variables are the constant term CATIN2, LEVIN, NOUTGOING, COUNT,
VARLOANS and P, the probability for a link to exist between two nodes. Each cell displays the
OLS standardized coefficients along with the corresponding t-statistics (shown in parentheses).
The sample comprises of 18,000 realizations (simulated banking crises). *, ** and *** denote
significance at the 10, 5 and 1 percent level, respectively

As far as the link probability is concerned, we can observe a different pattern
from that of the first scenario. For small and large sized networks, link probability
seems to contribute negatively to systemic risk while for medium sized networks
there is a positive relationship between link probability and contagion. The number
of rounds until no further bank defaults positively impacts contagion risk and
contributes the most to total capital losses in the banking system when medium and
large interbank networks are formed. Under this scenario, the heterogeneity allowed
on both bank sizes and interbank exposures has had a great impact on the resilience
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(c) N=80 banks
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Fig. 6 Scenario 2: Heterogeneous Banks with heterogeneous exposures. Extent of contagion
(expressed as the total capital lost from the banking system due to the failure of at least one bank)
as a function of the leverage of the system. Panels (a–d) show the relation between the leverage
of the system and the extent of contagion across interbank networks with different number of banks

of the network system. Heterogeneity impacts negatively on interbank contagion
although its intensity decreases as the size of the network increases. Moreover, as we
can see from the Table 4 heterogeneity of bank size contributes less to the resilience
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(d) N=100 banks
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Fig. 6 (continued)

of the interbank network than heterogeneity of interbank exposures when it comes
to small and medium sized networks.

The heterogeneity of interbank exposures acts as a diversification tool and
contributes to a smaller extent to an unfolding crisis compared to the scenario
where homogeneous banks are interconnected via heterogeneous exposures (shown
in Table 4).

Table 5 depicts the results of the third scenario as described in Equation (17). In
this scenario, we construct network systems where banks have the same equity size
and unevenly distribute their exposures across creditor banks. We note that an initial
shock fades away with the failure of the first bank and does not spillover to other
banks within the network. This is mainly due to our choice of parameters regarding
the equity of each bank, the links among banks and the interbank claims among
creditor banks. In order to observe default cascades we relax our initial assumptions
and lower the equity of each bank in the network system.

Specifically, each bank is now endowed with a balance sheet that consists of
25 units of equity and interbank claims among creditor banks are distributed in
the following ranges: aij ∈ [0, 10], aij ∈ [0, 20], aij ∈ [0, 35]. Interbank exposures
levels were kept the same as in Leventides et al. (2018). Moreover, we control the
leverage of the system by setting the rule that the maximum leverage ratio of each
network system cannot exceed seven. Similar to the previous scenarios, the regressor
coefficients are statistically significant in all cases and the R-squared values are still
large, in fact the largest of all three scenarios tested. Variable CATIN2 has a highly
significant positive impact on systemic risk that fades away as the network system
gets larger. The same observation holds for the level of connectivity in the banking
system i.e. a strong negative impact on contagion risk that dissipates as N increases.

The leverage of the system has a positive impact on systemic risk and its
magnitude decreases as the size of the network increases. Figures 7 and 8 illustrate
the third scenario as a function of the percentage loss of capital due to default of
the first bank in the network and as a function of leverage in the banking system,
respectively. As in the previous cases, we find the number of rounds until no further
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bank defaults to affect contagion risk positively and statistically significantly, and
such impact is magnified in relatively larger interbank networks. The heterogeneity
of interbank exposures plays a significant role in the stability of the financial
network especially in the medium sized interbank networks.
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Fig. 7 Scenario 3: Homogeneous banks with heterogeneous exposures (expressed as the total
capital lost from the banking system due to the failure of at least one bank) as a function of the %
initial loss of capital due to default of the first bank. Panels (a–d) show the relation between the
% initial loss of capital due to default of the first bank and the extent of contagion across interbank
networks with different number of banks
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Fig. 7 (continued)

Table 6 OLS regression analysis for Scenario 4 (Homogeneous banks with homogeneous expo-
sures)

N = 20 N = 50 N = 80 N = 100

CATIN2 0.228
(21.978)***

0.153
(14.098)***

0.137
(12.902)***

0.105
(9.426)***

LEVIN 0.137
(14.890)***

0.268
(28.512)***

0.352
(37.106)***

0.352
(37.707)***

NOUTGOING −0.257
(−15.906)***

−0.146
(−9.715)***

−0.130
(−8.719)***

−0.095
(−6.262)***

COUNT 0.645
(198.356)***

0.617
(172.925)***

0.568
(150.736)***

0.573
(148.381)***

P −0.156
(−10.231)***

−0.304
(−21.593)***

−0.378
(−26.723)***

−0.379
(−27.197)***

Adjusted R2 0.834 0.806 0.817 0.779

The table presents the regression results for Scenario 4. The dependent variable is CATEND
measured as the total loss of capital due to contagion as percentage of total capital in the network.
Explanatory variables are the constant term CATIN2, LEVIN, NOUTGOING, COUNT and P,
the probability for a link to exist between two nodes.. Each cell displays the OLS standardized
coefficients along with the corresponding t-statistics (shown in parentheses). The sample comprises
of 18,000 realizations (simulated banking crises). *, ** and *** denote significance at the 10, 5
and 1 percent level, respectively

Finally, Table 6 depicts the results of the fourth scenario as described in
Equation (18). In this scenario, we construct network systems where banks have
the same equity size and interbank claims are evenly distributed across creditor
banks. We acknowledge the fact that this scenario is a bit unrealistic as banks in real-
world interbank networks do not have the same equity size and do not necessarily
distribute their interbank claims evenly across their creditors. However, by testing
a wide range of link probabilities between any two nodes, we are in a position
to effectively examine the effect of different calibrations on systemic risk. Thus,
although this scenario can be regarded as a special case with magnifying effects, it
provides useful insights on interbank market resiliency during periods of stress.
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The variable CATIN2 has a strong positive impact on systemic risk that
dissipates as the network system gets larger. Simulations show that this scenario
yields qualitatively similar results with the previous three scenarios in relation to
the leverage of the network, that is, leverage positively and significantly affects
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Fig. 8 Scenario 3: Homogeneous banks with heterogeneous exposures. Extent of contagion
(expressed as the total capital lost from the banking system due to the failure of at least one bank)
as a function of the leverage of the system. Panels (a–d) show the relation between the leverage
of the system and the extent of contagion across interbank networks with different number of banks
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Fig. 8 (continuued)

contagion risk (illustrated in Figure 10). However, in this scenario, we observe that
this effect becomes stronger progressively when the number of constituent banks
in the network increases. Figure 9 confirms the results recorded in the Table 6
concerning the relationship between the extent of contagion and the percentage
loss of capital in the network. For instance, the likelihood of systemic breakdowns
seems to decrease as we move from smaller to larger network systems since we have
very few cases that cause large capital losses. Connectivity impacts negatively on
interbank contagion, although this negative impact dissipates as the number of banks
in the interbank networks increases. As expected, the link probability has the same
negative impact as connectivity on the interbank contagion. Contrary to the previous
findings concerning connectivity, the negative impact of the link probability on
interbank contagion seems to scale up as we move from smaller to larger interbank
networks (Figure 10).

Finally, the number of rounds until no further bank defaults affects contagion
risk in a statistically significant manner especially when small interbank networks
are considered.

The main intuition behind these results is that increasing connectivity on a
homogeneous interbank network can reduce the frequency of contagion in case the
first bank that defaults is less leveraged as the interbank network has the dynamics
to absorb more easily the shock and thus the initial shock is dissipated at a faster
rate. This is the case for small network systems. As the size of the network increase
and the system gets more leveraged, the stabilizing force of connectivity weakens
and default cascades prevail.

Tables 7, 8, 9, and 10 depict robustness tests on all four scenarios based on
random sampling. We have performed second run Monte Carlo simulations in order
to examine whether the new results differ from the previous ones, thus checking how
random sampling affects our main conclusions. We observe qualitatively similar
results in all four cases to those from the first run providing evidence that our
findings are stable across different simulation scenarios.
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Fig. 9 Scenario 4: Homogeneous banks with homogeneous exposures (expressed as the total
capital lost from the banking system due to the failure of at least one bank) as a function of the %
initial loss of capital due to default of the first bank. Panels (a–d) show the relation between the
% initial loss of capital due to default of the first bank and the extent of contagion across interbank
networks with different number of banks
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Fig. 9 (continued)

5 Conclusions

This paper investigates how complexity under a specific network structure, that has
been extensively applied for the study of contagion in financial networks, affects
interbank contagion. Similar to Leventides et al. [5], we explore the interplay
between heterogeneity, balance sheet composition in the spreading of contagion
using four basic scenarios, under an Erdős–Rényi network structure using a wide
range of link probabilities between any two banks.

Our findings indicate a non-monotonic relation between diversification and
interbank contagion across the different sizes of interbank networks for all scenarios
tested. While for small or medium interbank networks, connectivity can act as an
absorbing barrier, such that interbank systems of these sizes can withstand the initial
shock, for large network systems connectivity does not seem to provide an effective
shield against capital losses. Our results, for the four scenarios tested, indicate that
small and thus more concentrated interbank network systems are more prone to
contagion. In these cases, we observe that the size of total capital losses is, in most
cases, larger than that documented in medium and large sized systems, which is in
line with the findings of Nier et al. [7].

As far as heterogeneity is concerned, this enters in our experiments in the form
of interbank claims and bank sizes. Our results clearly suggests that heterogeneity
plays a significant role in the stability of the financial system. Similar to Leventides
et al. [5], we still find that when heterogeneity is introduced with respect to the
size of each bank, the system’s shock absorption capacity is enhanced. In addition,
when we allow for heterogeneity on interbank exposures in our model, we observe
additional resilience to the interbank network as an initial shock dissipates more
easily than in the case of homogeneous interbank claims.

Finally, we should also justify the fact that we choose to work under an Erdős–
Rényi network structure even if this network framework is not very realistic. In an
such a network framework, where the probability of forming a link is homogeneous,
the resulting network structure does not present marked heterogeneity. As we
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observed from all the four scenarios tested, the initial shock that hits the system
seems to propagates into the system jeopardizing thus the stability of the entire
system. This strengthens even more our arguments concerning the critical role that
heterogeneity plays in the resilience of the financial system.
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(b) N=50 banks
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Fig. 10 Scenario 4: Homogeneous banks with homogeneous exposures. Extent of contagion
(expressed as the total capital lost from the banking system due to the failure of at least one bank)
as a function of the leverage of the system. Panels (a–d) show the relation between the leverage
of the system and the extent of contagion across interbank networks with different number of banks
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Fig. 10 (continued)

Table 7 Robustness tests: OLS regression analysis for Scenario 1 (Heterogeneous banks with
homogeneous exposures)

N = 20 N = 50 N = 80 N = 100

CATIN 1 0.044
(13.363)***

0.001
(0.389)

−0.004
(−1.135)

0.002
(0.579)

CATIN2 0.259
(10.095)***

0.163
(7.044)***

0.073
(3.301)***

0.050
(2.614)***

LEVIN 0.272
(10.899)***

0.255
(11.408)***

0.412
(19.261)***

0.402
(22.155)***

NOUTGOING −0.213
(−10.339)**

−0.162
(−4.518)***

0.014
(−4.933)***

0.042
(1.328)

COUNT 0.569
(128.765)***

0.604
(147.789)***

0.523
(126.895)***

0.539
(131.678)***

VARCAP −0.085
(−50.816)***

−0.075
(−57.790)***

−0.057
(−58.108)***

−0.054
(−64.019)***

P 0.021
(−5.089)***

0.141
(3.998)**

−0.006
(−0.171)

−0.012
(−0.405)

Adjusted R2 0.786 0.785 0.768 0.789

The table presents the regression results for Scenario1 applied on a second run of Monte Carlo
simulations based on random sampling as robustness test. The dependent variable is CATEND
measured as the total loss of capital due to contagion as percentage of total capital in the network.
Explanatory variables are, CATIN1, CATIN2, LEVIN, NOUTGOING, COUNT, VARCAP and
P, the probability for a link to exist between two nodes. Each cell displays the OLS standardized
coefficients along with the corresponding t-statistics (shown in parentheses). The sample comprises
of 18,000 realizations (simulated banking crises). *, ** and *** denote significance at the 10, 5
and 1 percent level, respectively



Table 8 Robustness tests: OLS regression analysis for Scenario 2 (Heterogeneous banks with
heterogeneous exposures)

N = 20 N = 50 N = 80 N = 100

CATIN 1 0.071
(23.366)***

0.001
(0.273)

0.008
(2.368)***

0.006
(1.730)*

CATIN2 0.207
(20.109)***

0.098
(8.941)***

0.101
(9.336)***

0.068
(6.721)***

LEVIN 0.602
(53.999)***

0.469
(38.008)***

0.313
(26.051)***

0.304
(26.494)***

NOUTGOING −0.154
(−12.833)***

−0.096
(−4.023)***

−0.064
(−2.747)***

0.008
(0.391)

COUNT 0.459
(107.602)***

0.567
(131.004)***

0.590
(144.084)***

0.609
(156.107)***

VARCAP −0.038
(−21.431)***

−0.067
(−41.713)***

−0.053
(−54.105)***

−0.051
(−40.597)***

VARLOANS −0.220
(−42.365)***

−0.091
(−24.628)***

−0.018
(−2.107)**

−0.009
(−12.307)***

P −0.223
(−18.398)***

−0.080
(−3.217)***

0.092
(3.779)***

0.061
(2.751)***

Adjusted R2 0.817 0.770 0.772 0.800

The table presents the regression results for Scenario2 applied on a second run of Monte Carlo
simulations based on random sampling as robustness test. The dependent variable is CATEND
measured as the total loss of capital due to contagion as percentage of total capital in the network.
Explanatory variables are the constant term CATIN1, CATIN2, LEVIN, NOUTGOING, COUNT,
VARCAP, VARLOANS and P, the probability for a link to exist between two nodes. Each cell
displays the OLS standardized coefficients along with the corresponding t-statistics (shown in
parentheses). The sample comprises of 18,000 realizations (simulated banking crises). *, ** and
*** denote significance at the 10, 5 and 1 percent level, respectively

Table 9 Robustness tests: OLS regression analysis for Scenario 3 (Homogeneous banks with
heterogeneous exposures)

N = 20 N = 50 N = 80 N = 100

CATIN2 0.200
(25.728)***

0.153
(18.410)***

0.127
(13.078)***

0.157
(21.173)***

LEVIN 0.282
(34.036)***

0.189
(22.195)***

0.329
(32.672)***

0.308
(37.777)***

NOUTGOING −0.187
(−16.831)***

−0.168
(−11.145)***

−0.114
(−6.923)***

−0.145
(−11.721)***

COUNT 0.745
(190.987)***

0.773
(184.138)***

0.736
(164.477)***

0.765
(190.795)***

VARLOANS −0.167
(−41.084)***

−0.137
(−33.586)***

−0.164
(−38.890)***

−0.196
(−46.316)***

P −0.217
(−19.612)***

−0.226
(−14.785)***

−0.371
(−22.288)***

−0.323
(−25.206)***

Adjusted R2 0.862 0.824 0.789 0.864

The table presents the regression results for Scenario3 applied on a second run of Monte Carlo
simulations based on random sampling as robustness test. The dependent variable is CATEND
measured as the total loss of capital due to contagion as percentage of total capital in the
network. Explanatory variables are the constant term CATIN2, LEVIN, NOUTGOING, COUNT,
VARLOANS and P, the probability for a link to exist between two nodes. Each cell displays the
OLS standardized coefficients along with the corresponding t-statistics (shown in parentheses).
The sample comprises of 18,000 realizations (simulated banking crises). *, ** and *** denote
significance at the 10, 5 and 1 percent level, respectively
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Table 10 Robustness tests: OLS regression analysis for Scenario4 (Homogeneous banks with
homogeneous exposures)

N = 20 N = 50 N = 80 N = 100

CATIN2 0.266
(25.631)***

0.196
(18.103)***

0.153
(13.994)***

0.126
(11.749)***

LEVIN 0.163
(17.098)***

0.247
(25.943)***

0.283
(29.111)***

0.357
(37.852)***

NOUTGOING −0.306
(−19.180)***

−0.220
(−14.254)***

−0.164
(−10.529)***

−0.118
(−8.020)***

COUNT 0.616
(188.365)***

0.600
(161.885)***

0.609
(160.323)***

0.565
(145.072)***

P −0.150
(−9.783)***

−0.256
(−17.542)***

−0.309
(−20.730)***

−0.371
(−26.650)***

Adjusted R2 0.834 0.804 0.790 0.798

The table presents the regression results for Scenario4 applied on a second run of Monte Carlo
simulations based on random sampling as robustness test. The dependent variable is CATEND
measured as the total loss of capital due to contagion as percentage of total capital in the network.
Explanatory variables are the constant term CATIN2, LEVIN, NOUTGOING, COUNT and P,
the probability for a link to exist between two nodes.. Each cell displays the OLS standardized
coefficients along with the corresponding t-statistics (shown in parentheses). The sample comprises
of 18,000 realizations (simulated banking crises). *, ** and *** denote significance at the 10, 5
and 1 percent level, respectively
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Higher Order Strongly m-convex
Functions

Muhammad Aslam Noor and Khalida Inayat Noor

Abstract Some new concepts of the m-convex functions, where m ∈ (0, 1] are
introduced and studied. Basic properties of m-convex functions are discussed.
New modified Regula Falsi methods are suggested for solving nonlinear equations.
Characterizations of the higher order strongly m-convex functions are investigated
under suitable conditions. It is shown that the parallelogram laws for Banach spaces
can be obtained as applications of higher order strongly m-convex functions. Results
obtained in this paper can be viewed as refinement and significant improvement of
previously known results.

1 Introduction

Lin and Fukushima [11] introduced the concept of higher order strongly convex
functions and used it in the study of mathematical program with equilibrium
constraints. These mathematical programs with equilibrium constraints are defined
defined by a parametric variational inequality or complementarity system and play
an important role in many fields such as engineering design, economic equilibrium,
and multilevel game. Mishra and Sharma [12] derived the Hermite–Hadamard type
inequalities for higher order strongly convex functions. Characterizations of the
higher order strongly convex functions discussed in Lin and Fukushima [11] are
not correct. These facts and observations motivated Noor and Noor [16] to consider
higher order strongly convex function. Several new characterizations of the higher
order strongly convex functions were discussed. Parallelogram laws for uniformly
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Banach spaces can be deduced from the definitions of the higher order strongly
convex functions, which is itself a novel and interesting property.

Strongly convex functions were introduced and studied by Polyak [20], which
play an important part in the optimization theory and related areas. Karmardian [9]
used the strongly convex functions to discuss the unique existence of a solution
of the nonlinear complementarity problems. Strongly convex functions also played
important role in the convergence analysis of the iterative methods for solving
variational inequalities and equilibrium problems, see Zu and Marcotte [24].
Nikodem and Pales [14] investigated the characterization of the inner product spaces
using the strongly convex functions, which can be viewed as a novel and innovative
application. It is also known that the minimum of the strongly convex functions
is unique. Qu and Li [21] investigated the exponentially stability of primal-dual
gradient dynamics using the concept of strongly convex functions. Awan et al. [3]
have derived Hermite–Hadamard type inequalities for various classes of strongly
convex functions, which provide upper and lower estimate for the integrand. For
more applications and properties of the strongly convex functions, see [1–4, 9–
19, 21] and the references therein.

Relevant to the convex set and convex functions, we also have the concept of m-
convex sets and m-convex functions, which were introduced by Toader [22]. For the
properties and other aspects of the m-convex functions, see [10] and the references
therein. Lara et al. [10] introduced and investigated the properties of strongly m-
convex functions. We would like to mention that the concepts of strongly m-convex
[10] are not correct. To overcome these deficiencies of the higher order strongly
convex functions and strongly m-convex functions, we consider some new classes
of convex functions, which are called higher order strongly m-convex functions.
Using the techniques and ideas of this paper, one can easily obtain the refine and
correct versions of higher order strongly convex functions and strongly m-convex
functions.

In Section 2, we introduce the new concepts of m-convex functions and discuss
their characterizations. It is pointed our that these m-convex functions are distinctly
different the concepts of m-functions of Toader [22], which are being investigated
in recent years. Higher order strongly m-convex functions are introduced in
Section 3. Some results are discussed in Section 4. In Section 5, we discuss some
applications of the higher order strongly convex functions. It is shown that the
weakly parallelogram laws can be deduced from the definitions, which characterize
the uniformly reflex Banach spaces. As special cases, one can obtain various new
and refined versions of known results. It is expected that the ideas and techniques of
this paper may stimulate further research in this field.

2 m-Convex Functions

Let K be a nonempty closed set in a real Hilbert space H . We denote by 〈·, ·〉 and
‖ · ‖ be the inner product and norm, respectively.
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Definition 1 ([11, 19]) A set K in H is said to be a convex set, if

u+ t (v − u) ∈ K, ∀u, v ∈ K, t ∈ [0, 1].

We denote by m ∈ (0, 1], unless otherwise specified.

Definition 2 ([23]) The set K in H is said to be m-convex set, if

(1− t)u+ tmv ∈ K, ∀u, v ∈ K, t ∈ [0, 1].

Also one can define the concept of m1-convex set as:

Definition 3 ([23]) The set K in H is said to be m1-convex set, if

(1− t)m1u+ tv ∈ K, ∀u, v ∈ K, t ∈ [0, 1],m1 ∈ (0, 1].

We remark that m-convex set and m1-convex set are entirely two different general-
izations of the so-called convex sets. that is m-convex set 
= m1-convex set.

For example, [m1a, b] 
= [a,mb], m,m1 ∈ (0, 1]. Consequently these sets
have different properties.

In [10], the authors remarked that [m1a, b] = [a,mb], which is not true. In
passing, we remark that the concept of strongly m-convex functions introduced and
discussed in [10] is also wrong. Our results can be viewed as the refinement and
improvement of the known results.

In this paper, we only consider the m-convex set Km, unless otherwise specified.
We now introduce new concepts of m-convex functions.

Definition 4 ([17]) A function F is said to be m-convex function, if

F((1− t)u+ tmv) ≤ (1− t)F (u)+ tF (mv), ∀u, v ∈ Km, t ∈ [0, 1],m ∈ (0, 1].

We now consider the m-convex functions on the interval I = [a,mb], m ∈ (0, 1].
Definition 5 Let I = [a,mb]. Then F is m-convex function, if and only if,

∣
∣
∣
∣
∣
∣

1 1 1
a x mb

F(a) F (x) F (mb)

∣
∣
∣
∣
∣
∣
≥ 0; a ≤ x ≤ mb.

One can easily show that the following are equivalent:

1. F is m-convex function.
2. F(x) ≤ F(a)+ F(mb)−F(a)

mb−a (x − a).

3. F(x)−F(a)
x−a ≤ F(mb)−F(a)

mb−a .

4. (mb − x)F (a)+ (a −mb)F(x)+ (x − a)F (mb) ≥ 0.
5. F(a)

(mb−a)(a−x) + F(x)
(x−mb)(a−x) + F(mb)

(mb−a)(x−mb)
≤ 0,
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where x = (1− t)a + tmb ∈ [a,mb].
We now suggest an iterative method for solving the nonlinear equations F(x) =

0 in the interval [a,mb], m ∈ (0.1] and [ma, b], m ∈ (0.1]. From F(x) =
F(a)+ F(mb)−F(a)

mb−a (x − a), and using the fact that F(x) = 0, we have

x = aF(mb)−mbF(a)

mb − a
, x ∈ [a,mb],m ∈ (0, 1].

This enable to suggest the following iterative method for solving the nonlinear
equations F(x) = .

Algorithm 1 For given u0, u1, find the approximate solution un+1 by the iterative
scheme

un+2 = aF(mun+1)−mun+1F(un)

mun+1 − un
, m ∈ (0, 1],

which is called the Modified Regula Falsi Method.
In a similar way, we can also suggest the following modified Regula Falsi

Method.

Algorithm 2 For given u0, u1, find the approximate solution un+1 by the iterative
scheme

un+2 = munF(un+1)− un+1F(mun)

un+1 −mun
, m ∈ (0, 1].

It is worth mentioning that Algorithms 1 and 2 are quite different and provide
different results.

Using the technique of Toader [22], we can introduce the following concept of
m-convex functions:

Definition 6 ([22]) A function F is said to be m-convex function in the Toader
sense, if

F((1− t)u+ tmv) ≤ (1− t)F (u)+mtF(v), ∀u, v ∈ Km, t ∈ [0, 1].

We would like to point out that these concepts defined in Definitions 2 and
6 are equivalent, if the functions F(mv) = mF(v), that is, the function F is
homogeneous. Consequently all the results proved in this paper can be extended
for the m-convex functions in the Toader sense with suitable modifications.

In this section, we consider some basic properties of m-convex functions. Using
the technique of Pavic and Ardic [18], we derive the following result.

Theorem 1 Let I = [a,mb] ⊂ R be an interval containing the zero and let m ∈
(0, ] be a constant. Let a, b, c ∈ I be a point such that a ≤ mc ≤ b. Then the
m-convex function satisfy the inequality
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∫ b

a

F (x)dx ≤ mc − a

2
F(a)+ b −mc

2
F(b)+ b − a

2
F(mc). (1)

Proof Assume that a ≤ x ≤ mc. Then, from (1), we have

∫ mc

a

F (x)dx ≤
∫ mc

a

mc − x

mc − a
F(a)dx +

∫ mc

a

x − a

mc − a
F(mc)dx

= mc − a

2

(
f (a)+ f (mc)

)
. (2)

In a similar way, for mc ≤ x ≤ b, we have

∫ b

mc

F (x)dx ≤
∫ b

mc

mc − x

mc − a
F(mc)dx +

∫ b

mc

x − a

mc − a
F(b)dx

= mc − a

2

(
F(b)+ F(mc)

)
. (3)

From (2 ) and (3), we have

∫ b

a

F (x)dx =
∫ mc

a

F (x)dx +
∫ b

mc

F (x)dx

= mc − a

2

(
F(a)+ F(mc)

)+ mc − a

2

(
F(b)+ F(mc)

)

= mc − a

mc − a
F(a)+ b −mc

2
F(b)+ b − a

2
F(mc),

the required (1).

Remark 1 For the interval I = a, b] containing the zero, one can choose an point
c ∈ [a, b] in (3), since mc ∈ [a, b]. Using this information,we can obtain the
following inequality for the m-convex functions for the case c = a or b = c.

∫ b

a

F (x)dx ≤ mb − a

2
F(a)+ b −ma

2
F(b),

from which, we can have

∫ b

a

F (x)dx ≤ b − a

2
{F(a)+ F(b)}.

Theorem 2 Let F be a strictly m-convex function. Then any local minimum of F is
a global minimum.

Proof Let the m-convex function F have a local minimum at u ∈ Km. Assume the
contrary, that is, F(mv) < F(u) for some mv ∈ Km. Since F is m-convex, so
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F(u+ t (mv − u)) < tF (mv)+ (1− t)F (u), for 0 < t < 1.

Thus

F(u+ t (mv − u))− F(u) < t[F(mv)− F(u)] < 0,

from which it follows that

F(u+ t (mv − u)) < F(u),

for arbitrary small t > 0, contradicting the local minimum.

Theorem 3 If the function F on the m-convex set Km is m-convex, then the level
set Lα = {u ∈ Km : F(u) ≤ α, α ∈ R} is a m-convex set.

Proof Let u,mv ∈ Lα. Then F(u) ≤ α and F(mv) ≤ α. Now, ∀t ∈ (0, 1), w =
u+ t (mv − u) ∈ Km, since Km is a m-convex set. Thus, by the m-convexity of F,

we have

F(u+ t (mv − u) ≤ (1− t)F (u)+ tF (mv)

≤ (1− t)α + tα = α,

from which it follows that u+ t (mv − u) ∈ Lα Hence Lα is a m-convex set.

Theorem 4 The function F is a m-convex function, if and only if,

epi(F ) = {(u, α) : u ∈ Km : F(u) ≤ α, α ∈ R}

is a m-convex set.

Proof Assume that F is a m-convex function. Let (u, α), (mv, β) ∈ epi(F ).

Then it follows that F(u) ≤ α and (mv) ≤ β. Thus, ∀t ∈ [0, 1], u,mv ∈ Km,

we have

F(u+ t (mv − u)) ≤ (1− t)F (u)+ tF (mv)

≤ (1− t)α + tβ,

which implies that

(u+ t (mv − u), (1− t)α + tβ) ∈ epi(F ).

Thus epi(F ) is a m-convex set. Conversely, let epi(F ) be a convex set. Let u,mv ∈
K. Then (u, F (u)) ∈ epi(F ) and (mv, eF(mv)) ∈ epi(F ). Since epi(F ) is a m-
convex set, we must have

(u+ t (mv − u), (1− t)F (u)+ tF (mv)) ∈ epi(F ),
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which implies that

F(u+ t (mv − u)) ≤ (1− t)F (u)+ tF (mv).

This shows that F is a m-convex function.

Theorem 5 The function F is quasi m-convex, if and only if, the level set Lα =
{u ∈ Km, α ∈ R : eF(u) ≤ α} is a m-convex set.

Proof Let u,mv ∈ Lα. Then u,mv ∈ Km and max(F (u), F (mv)) ≤ α. Now for
t ∈ (0, 1), w = u+ t (mv − u) ∈ Km, We have to prove that u+ t (mv − u) ∈ Lα.

By the quasi m-convexity of F, we have

F(u+ t (mv − u)) ≤ maxF(u), F (mv) ≤ α,

which implies that u + t (mv − u) ∈ Lα, showing that the level set Lα is indeed a
m-convex set.

Conversely, assume that Lα is a m-convex set. Then for any u,mv ∈ Lα, t ∈
[0, 1], u+ t (mv − u) ∈ Lα. Let u,mv ∈ Lα for

α = max(F (u), F (mv)) and F(mv) ≤ F(u).

Then from the definition of the level set Lα , it follows that

F(u+ t (mv − u)) ≤ maxF(u), F (mv) ≤ α.

Thus F is an quasi m-convex function. This completes the proof.

Theorem 6 Let F be a m-convex function. Let μ = infu∈Km F(u). Then the set
E = {u ∈ Km : F(u) = μ} is a m-convex set of K. If F is a exponentially m-
convex function, then E is a singleton.

Proof Let u,mv ∈ E. For 0 < t < 1, let w = u+t (mv−u). Since F is a m-convex
function, then

F(w) = F(u+ t (mv − u)) ≤ (1− t)F (u)+ tF (mv)

= tμ+ (1− t)μ = μ,

which implies that to w ∈ E. and hence E is a m-convex set. For the second part,
assume to the contrary that F(u) = F(mv) = μ. Since K is a m-convex set, then
for 0 < t < 1, u+ t (mv− u) ∈ Km. Further, since F is strictly m-convex function,

F(u+ t (mv − u)) < (1− t)F (u)+ tF (mv) = (1− t)μ+ tμ = μ.

This contradicts the fact that μ = infu∈Km F(u) and hence the result follows.
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Theorem 7 If F is a m-convex function such that F(mv) < F(u),∀u,mv ∈ Km,

then F is a strictly quasi m-convex function.

Proof By the m-convexity of the function F, ∀u,mv ∈ Km,m, t ∈ [0, 1], we have

F(u+ t (mv − u)) ≤ (1− t)F (u)+ tF (mv) < F(u),

since F(mv) < F(u), which shows that the function F is strictly quasi m-convex.

We now discuss some properties of the differentiable m-convex functions.

Theorem 8 Let F be a differentiable function on the m-convex set Km. Then the
function F is m-convex function, if and only if,

F(mv)− F(u) ≥ 〈F ′(u),mv − u〉, ∀mv, u ∈ Km. (4)

Proof Let F be a y m-convex function. Then

F(u+ t (mv − u)) ≤ (1− t)F (u)+ tF (mv), ∀u,mv ∈ Km,

which can be written as

F(mv)− F(u) ≥ {F(u+ t (mv − u))− F(u)

t
}.

Taking the limit in the above inequality as t → 0, we have

F(mv)− F(u) ≥ 〈F ′(u),mv − u)〉,

which is (4), the required result.
Conversely, let (4) hold. Then ∀u,mv ∈ Km, t ∈ [0, 1], vt = u+ t (mv−u) ∈

Km, we have

F(mv)− F(vt ) ≥ 〈F ′(vt ),mv − vt )〉 = (1− t)〈F ′(vt ),mv − u〉. (5)

In a similar way, we have

F(u)− F(vt ) ≥ 〈F ′(vt ), u− vt )〉 = −t〈F ′(vt ),mv − u〉. (6)

Multiplying (5) by t and (6) by (1− t) and adding the resultant, we have

F(u+ t (mv − u) ≤ (1− t)F (u)+ tF (mv),

showing that F is a m-convex function.

Theorem 8 enables us to introduce the concept of the m-monotone operators,
which appears to be new ones.
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Definition 7 The differential F ′(.) is said to be m-monotone, if

〈F ′(u)− F ′(mv), u−mv〉 ≥ 0, ∀u,mv ∈ H.

Definition 8 The differential F ′(.) is said to be pseudo m-monotone, if

〈F ′(u),mv − u〉 ≥ 0, ⇒ 〈F ′(mv),mv − u〉 ≥ 0, ∀u,mv ∈ H.

From these definitions, it follows that m-monotonicity implies pseudo m-
monotonicity, but the converse is not true.

Theorem 9 Let F be differentiable m-convex function on the mconvex set Km.

Then (19) holds, if and only if, F ′(.) satisfies

〈F ′(u)− F ′(mv), u−mv〉 ≥ 0, ∀u,mv ∈ Km. (7)

Proof Let F be a m-convex function on the m-convex set Km. Then, from
Theorem 8, we have

F(mv)− F(u) ≥ 〈F ′(u),mv − u〉, ∀u,mv ∈ Km. (8)

Changing the role of u and mv in (8), we have

F(u)− F(mv) ≥ 〈F ′(mv), u−mv)〉, ∀u,mv ∈ Km. (9)

Adding (7) and (8), we have

〈F ′(u)− F ′(mv), u−mv〉 ≥ 0,

which shows that F ′ is a m-monotone.
Conversely, from (7), we have

〈F ′(mv), u−mv〉 ≤ 〈F ′(u), u−mv)〉. (10)

Since K is a m-convex set, ∀u,mv ∈ Km, t ∈ [0, 1] vt = u+ t (mv − u) ∈ Km.

Taking v = vt in (10), we have

〈F ′(vt ), u− vt 〉 ≤ 〈F ′(u), u− vt 〉 = −t〈F ′(u),mv − u〉,

which implies that

〈F ′(vt ),mv − u〉 ≥ 〈F ′(u), v − u〉. (11)

Consider the auxiliary function

g(t) = eF(u+t (mv−u)),
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from which, we have

g(1) = F(mv), g(0) = F(u).

Then, from (11), we have

g′(t) = 〈F ′(vt ,mv − u〉 ≥ 〈F ′(u),mv − u〉. (12)

Integrating (12) between 0 and 1, we have

g(1)− g(0) =
∫ 1

0
g′(t)dt ≥ 〈F ′(u),mv − u〉.

Thus it follows that

F(mv)− F(u) ≥ 〈F ′(u),mv − u〉,

which is the required (8).

3 Strongly m-Convex Functions

We now introduce the concept of higher order strongly m-convex functions and its
variant forms.

Definition 9 A function F on the convex set Km is said to be higher order strongly
m-convex, if there exists a constant μ > 0, such that

F(u+ t (mv − u)) ≤ (1−t)F (u)+tF (mv)−μ{tp(1−t)+t (1−t)p}‖mv − u‖p,
∀u,mv ∈ Km, t ∈ [0, 1],m ∈ (0, 1], p > 1. (13)

A function F is said to higher order strongly m-concave, if and only if, −F is
higher order strongly m-convex function.

If t = 1
2 and μ = 1, then

F

(
u+mv

2

)

≤ F(u)+F(mv)

2
−μ 1

2p
‖mv − u‖p, ∀u,mv ∈ Km,m ∈ (0, 1], p > 1.

(14)

The function F is said to be higher order strongly Jm-convex function.
For m = 1, Definition 9 reduces to:

Definition 10 A function F on the convex set K is said to be higher order strongly
convex, if there exists a constant μ > 0, such that
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F(u+ t (v − u)) ≤ (1− t)F (u)+ tF (v)− μ{tp(1− t)+ t (1− t)p}‖v − u‖p,
∀u, v ∈ K, t ∈ [0, 1]. (15)

A function F is said to higher order strongly concave, if and only if,−F is higher
order strongly convex.

If t = 1
2 and μ = 1, then

F

(
u+ v

2

)

≤ F(u)+ F(v)

2
− μ

1

2p
‖v − u‖p,∀u, v ∈ K,p > 1. (16)

The function F is said to be higher order strongly J -convex function.

Definition 11 A function F on the m-convex set Km is said to be a higher order
strongly affine m-convex, if there exists a constant μ > 0, such that

F(u+t (mv−u))=(1−t)F (u)+tF (mv)−μ{tp(1−t)+t (1−t)p}‖mv−u‖p, (17)

∀u,mv ∈ Km, t ∈ [0, 1], P > 1.

Note that if a functions is both higher order strongly m-convex and higher order
strongly m-concave, then it is higher order strongly affine m-convex function.

A function F is called higher order strongly quadratic equation, if there exists a
constant μ > 0, such that

F

(
u+mv

2

)

=F(u)+F(mv)

2
−μ 1

2p
‖mv − u‖p,∀u,mv ∈ Km, t ∈ [0, 1]. (18)

This function F is also called higher order strongly affine Jm-convex function.
We now discuss some special cases.

I. If p = 2, then the higher order strongly convex function becomes strongly
convex functions, that is,

F(u+t (mv−u)) ≤ (1−t)F (u)+tF (mv)−μt(1−t)‖mv−u‖2, ∀u, v ∈ Km, t ∈ [0, 1].

For the properties of the strongly convex functions in variational inequalities and
equilibrium problems, see Noor [15].

Definition 12 A function F on the m-convex set Km is said to be higher order
strongly quasi m-convex, if there exists a constant μ > 0 such that

F(u+ t (mv − u) ≤ max{F(u), F (mv)} − μ{tp(1− t)+ t (1− t)p}‖mv − u‖p,
∀u, v ∈ Km, t ∈ [0, 1], p > 1.
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Definition 13 A function F on the m-convex set Km is said to be higher order
strongly log m-convex, if there exists a constant μ > 0 such that

F(u+ t (mv − u)) ≤ (F (u))1−t (F (mv))t − μ{tp(1− t)+ t (1− t)p}‖mv − u‖p,
∀u,mv ∈ Km, t ∈ [0, 1],

where F(·) > 0.

From the above definitions, we have

F(u+ t (mv − u)) ≤ (F (u))1−t (F (mv))t − μ{tp(1− t)+ t (1− t)p}‖mv − u‖p
≤ (1− t)F (u)+tF (mv)−μ{tp(1− t)+ t (1− t)p}‖mv − u‖p
≤ max{F(u), F (mv)} − μ{tp(1− t)+ t (1− t)p}‖mv − u‖p.

This shows that every higher order strongly log m-convex function is a higher order
strongly m-convex function and every higher order strongly m-convex function is a
higher order quasi m-convex function. However, the converse is not true.

Definition 14 An operator T : Km → H is said to be:

1. Higher order strongly m-monotone, if and only if, there exists a constant α > 0
such that

〈T u− T (mv), u−mv〉 ≥ α‖mv − u‖p,∀u,mv ∈ Km.

2. Higher order strongly m-pseudomonotone, if and only if, there exists a constant
ν > 0 such that

〈T u,mv − u〉 + ν‖mv − u‖p ≥ 0

⇒
〈T (mv),mv − u〉 ≥ 0,∀u,mv ∈ Km.

3. Higher order strongly relaxed m-pseudomonotone, if and only if, there exists a
constant μ > 0 such that

〈T u,mv − u〉 ≥ 0

⇒
−〈T (mv), u−mv〉 + μ‖mv − u‖p ≥ 0,∀u, v ∈ Km.

Definition 15 A differentiable function F on the convex set Km is said to be higher
order strongly pseudo m-convex function, if and only if, if there exists a constant
μ > 0 such that

〈F ′(u),mv − u〉 + μ‖mv − u‖p ≥ 0 ⇒ F(mv) ≥ F(u),∀u,mv ∈ Km.
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4 Properties of Strongly m-Convex Functions

In this section, we consider some basic properties of higher order strongly m-convex
functions.

Theorem 10 Let F be a differentiable function on the m-convex set Km. Then the
function F is higher order strongly m-convex function, if and only if,

F(mv)− F(u) ≥ 〈F ′(u),mv − u〉 + μ‖mv − u‖p,∀mv, u ∈ Km. (19)

Proof Let F be a higher order strongly m-convex function on the convex set Km.

Then

F(u+t (mv−u)) ≤ (1−t)F (u)+tF (mv)−μ{tp(1− t)+ t (1− t)p}‖mv − u‖p,
∀u,mv ∈ Km,

which can be written as

F(mv)−F(u) ≥ {F(u+t (mv − u))− F(u)

t
}+{tp−1(1−t)+(1− t)p}‖mv − u‖p.

Taking the limit in the above inequality as t → 0,, we have

F(mv)− F(u) ≥ 〈F ′(u),mv − u)〉 + μ‖mv − u‖p,∀u,mv ∈ Km.

which is (19), the required result.
Conversely, let (19) hold. Then, ∀u,mv ∈ K, t ∈ [0, 1], vt = u+t (mv−u) ∈ K,

we have

F(mv)− F(vt ) ≥ 〈F ′(vt ),mv − vt )〉 + μ‖mv − vt‖p
= (1−t)F ′(vt ),mv−u〉+μ(1−t)p‖mv−u‖p,∀u,mv ∈ Km.(20)

In a similar way, we have

F(u)− F(vt ) ≥ 〈F ′(vt ), u− vt )〉 + μ‖u− vt‖p
= −tF ′(vt ),mv − u〉 + μtp‖mv − u‖p. (21)

Multiplying (20) by t and (21) by (1− t) and adding the resultant, we have

F(u+t (mv − u)) ≤ (1− t)F (u)+ tF (mv)−μ{tp(1−t)+t (1−t)p}‖mv − u‖p,
∀u,mv ∈ Km,

showing that F is a higher order strongly m-convex function.
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Theorem 11 Let F be a differentiable higher order strongly m-convex function on
the m-convex set Km. Then F ′(.) is a higher order strongly m-monotone operator.

Proof Let F be a higher order strongly m-convex function on the m-convex set Km.

Then, from Theorem 10. we have

F(mv)− F(u) ≥ 〈F ′(u),mv − u〉 + μ‖mv − u‖p, ∀u,mv ∈ Km. (22)

Changing the role of u and mv in (22), we have

F(u)− F(mv) ≥ 〈F ′(mv), u−mv)〉 + μ‖mv − u‖p, ∀u,mv ∈ Km. (23)

Adding (22) and (23), we have

〈F ′(u)− F ′(mv), u−mv〉 ≥ 2μ‖mv − u‖p, ∀u,mv ∈ Km. (24)

which shows that F ′(.) is a higher order strongly monotone operator.

We remark that the converse of Theorem 11 is not true. However, we have the
following result.

Theorem 12 If the differential operator F ′(.) of a differentiable higher order
strongly m-convex function F is higher order strongly m-monotone operator, then

F(mv)− F(u) ≥ 〈F ′(u),mv − u〉 + 2μ
1

p
‖mv − u‖p,∀u,mv ∈ Km. (25)

Proof Let F ′(.) be a higher order strongly m-monotone operator. Then, from (24),
we have

〈F ′(v), u− v〉 ≥ 〈F ′(u), u− v)〉 + 2μ‖v − u‖p. ∀u, v ∈ K. (26)

Since K is an convex set, ∀u,mv ∈ Km, t ∈ [0, 1], vt = u + t (mv − u) ∈ Km.

Taking v = vt in (26, we have

〈F ′(vt ), u− vt 〉 ≤ 〈F ′(u), u− vt 〉 − 2μ‖mv − u‖p
= −t〈F ′(u), v − u〉 − 2μtp‖mv − u‖p,

which implies that

〈F ′(vt ),mv − u〉 ≥ 〈F ′(u),mv − u〉 + 2μtp−1‖mv − u‖P . (27)

Consider the auxiliary function

g(t) = F(u+ t (mv − u),∀u,mv ∈ Km,
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from which, we have

g(1) = F(mv), g(0) = F(u).

Then, from (27), we have

g′(t) = 〈F ′(vt ,mv − u〉 ≥ 〈F ′(u),mv − u〉 + 2μtp−1‖mv − u‖p. (28)

Integrating (28) between 0 and 1, we have

g(1)− g(0 ) =
∫ 1

0
g′(t)dt

≥ 〈F ′(u),mv − u〉 + 2μ
1

p
‖mv − u‖p.

Thus it follows that

F(mv)− F(u) ≥ 〈F ′(u),mv − u〉 + 2μ
1

p
‖v − u‖p,∀u,mv ∈ Km,

which is the required (25).

We note that, if p = 2, then Theorem 12 can be viewed as the converse of
Theorem 11.

We now give a necessary condition for higher order strongly pseudo m-convex
function.

Theorem 13 Let F ′(.) be a higher order strongly relaxed pseudo m-monotone
operator. Then F is a higher order strongly pseudo m-connvex function.

Proof Let F ′ be a higher order strongly relaxed pseudo m-monotone operator.
Then, ∀u,mv ∈ Km,

〈F ′(u),mv − u〉 ≥ 0.

implies that

〈F ′(mv),mv − u〉 ≥ μ‖mv − u‖p,∀u,mv ∈ Km. (29)

Since Km is an m-convex set, ∀u,mv ∈ Km, t ∈ [0, 1], vt = u+ t (mv−u) ∈ K.

Taking v = vt in (29), we have

〈F ′(vt ),mv − u〉 ≥ μtp−1‖mv.− u‖p. (30)

Consider the auxiliary function
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g(t) = F(u+ t (mv − u)) = F(vt ), ∀u,mv ∈ Km, t ∈ [0, 1],

which is differentiable, since F is differentiable function. Then, using (30), we have

g′(t) = 〈F ′(vt ),mv − u)〉 ≥ μtp−1‖mv − u‖p.

Integrating the above relation between 0 to 1, we have

g(1)− g(0) =
∫ 1

0
g′(t)dt ≥ μ

p
‖mv − u‖p,

that is,

F(mv)− F(u) ≥ μ

p
‖mv − u‖p),∀u,mv ∈ Km,

showing that F is a higher order strongly pseudo m-convex function.

Definition 16 A function F is said to be sharply higher order strongly pseudo m-
convex, if there exists a constant μ > 0 such that

〈F ′(u),mv − u〉 ≥ 0

⇒
F(mv) ≥ F(mv+t (u−mv))+μ{tp(1−t)+t (1−t)p}‖mv − u‖p,∀u,mv ∈ Km.

Theorem 14 Let F be a sharply higher order strongly pseudo m-convex function
on Km with a constant μ > 0. Then

〈F ′(mv),mv − u〉 ≥ μ‖mv − u‖p,∀u,mv ∈ Km.

Proof Let F be a sharply higher order strongly pesudo m-convex function on Km.

Then

F(mv) ≥ F(mv + t (u−mv))+ μ{tp(1− t)+ t (1− t)p}‖mv − u‖p,
∀u,mv ∈ Km, t ∈ [0, 1],

from which, we have

{F(mv + t (u−mv))− F(mv)

t
} + μ{tp−1(1− t)+ (1− t)p}‖mv − u‖p ≥ 0.

Taking limit in the above inequality, as t → 0, we have

〈F ′(mv),mv − u〉 ≥ μ‖mv − u‖p,∀u,mv ∈ Km,
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the required result.

Definition 17 A function F is said to be a pseudo mconvex function, if there exists
a strictly positive bifunction b(., .), such that

F(mv) < F(u)

⇒
F(u+ t (mv, u)) < F(u)+ t (t − 1)b(mv, u),∀u,mv ∈ Km, t ∈ [0, 1].

Theorem 15 If the function F is higher order stronglym-convex function such that
F(mv) < F(u), then the function F is higher order strongly pseudo m-convex.

Proof Since F(mv) < F(u) and F is higher order strongly m-convex function,
then ∀u,mv ∈ Km, t ∈ [0, 1], we have

F(u+ t (mv − u)) ≤ F(u)+ t (F (mv)− F(u))− μ{tp(1− t)+ t (1− t)p}‖mv − u‖p

< F(u)+ t (1− t)(F (mv)− F(u))− μ{tp(1− t)+ t (1− t)p}‖mv − u‖p

= F(u)+ t (t − 1)(F (u)− F(mv))− μ{tp(1− t)+ t (1− t)p}‖mv − u‖p

< F(u)+ t (t − 1)b(u,mv)− μ{tp(1−t)+t (1−t)p}‖mv − u‖p,∀u,mv ∈ Km,

where b(u,mv) = F(u)−F(mv) > 0. Thus, it show that the functionF is a higher
order strongly m-convex function.

We now discuss the optimality for the differentiable generalized strongly convex
functions, which is the main motivation of our next result.

Theorem 16 Let F be a differentiable higher order strongly m-convex function
with modulus μ > 0. If u ∈ Km is the minimum of the function F, then

F(mv)− F(u) ≥ μ‖mv − u‖p, ∀u,mv ∈ Km. (31)

Proof Let u ∈ Km be a minimum of the function F. Then

F(u) ≤ F(mv),∀mv ∈ Km. (32)

Since K is a m-convex set, so, ∀u,mv ∈ Km, t ∈ [0, 1],

vt = (1− t)u+ tmv ∈ Km.

Taking v = vt in (32), we have

0 ≤ lim
t→0
{F(u+ t (mv − u))− F(u)

t
} = 〈F ′(u),mv − u〉. (33)

Since F is differentiable higher order strongly m-convex function, so
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F(u+t (mv−u)) ≤ F(u)+t (F (mv)−F(u))−μ{tp(1−t)+t (1−t)p}‖mv − u‖p,
∀u,mv ∈ Km,

from which, using (33), we have

F(mv)− F(u) ≥ lim
t→0
{F(u+ t (mv − u))− F(u)

t
}

+μ{tp−1(1− t)+ (1− t)p}‖mv − u‖p
= 〈F ′(u),mv − u〉 + μ‖mv − u‖p,

the required result (31).

Remark 2 We would like to mention that, if

〈F ′(u),mv − u〉 + μ‖mv − u‖p ≥ 0, ∀u,mv ∈ Km,

then u ∈ Km is the minimum of the function F.

Theorem 17 Let f be a higher order strongly affine m-convex function. Then F is
a higher order strongly m-convex function, if and only if, g = F − f is a m-convex
function.

Proof Let f be a higher order strongly affine m-convex function, Then

f ((1−t)u+tmv)=(1−t)f (u)+tf (mv)−μ{tp(1−t)+t (1− t)p}‖mv − u‖p,
∀u,mv ∈ Km. (34)

From the higher order strongly convexity of F, we have

F((1− t)u+tmv) ≤ (1− t)F (u)+tF (mv)−μ{tp(1−t)+t (1−t)p}‖mv−u‖p,
∀u,mv ∈ Km. (35)

From (34) and (35), we have

F((1− t)u+ tmv)− f ((1− t)f (u)+ tf (mv) ≤ (1− t)(F (u)− f (u))

+t (F (mv)− f (mv)), (36)

from which it follows that

g((1− t)u+ tmv) = F((1− t)u+ tmv)− f ((1− t)u+ tmv)

≤ (1− t)F (u)+ tF (mv)− (1− t)f (u(−tf (mv)

= (1− t)(F (u)− f (u))+ t (F (mv)− f (mv)),
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which show that g = F − f is a m-convex function.
The inverse implication is obvious.

5 Applications

In this section, we show that the characterizations of uniformly Banach spaces
involving the notion of higher order strong m-convexity.

Setting F(u) = ‖u‖p in Definition 9, we have

‖u+t (mv−u)‖p ≤ (1−t)‖u‖p+t‖mv‖p−μ{tp(1−t)+t (1−t)p}‖mv−u‖p,(37)

∀u,mv ∈ Km, t ∈ [0, 1].

Taking t = 1
2 in (37), we have

‖u+mv

2
‖p + μ

1

2p
‖mv − u‖p ≤ 1

2
‖u‖p + 1

2
‖mv‖p,∀u,mv ∈ Km, (38)

which implies that

‖u+mv‖p + μ‖mv − u‖p ≤ 2p−1{‖u‖p + ‖mv‖p},∀u,mv ∈ Km, (39)

which is known as the lower parallelogram for the lp-spaces. In a similar way, one
can obtain the upper parallelogram law as

‖u+mv‖p + μ‖mv − u‖p ≥ 2p−1{‖u‖p + ‖mv‖p},∀u,mv ∈ Km, (40)

From Definition 11, we have

‖u+mv‖p + μ‖mv − u‖p = 2p−1{‖u‖p + ‖mv‖p},∀u,mv ∈ Km, (41)

which is known as the parallelogram for the lp-spaces.
Note that, for m = 1, we obtain the parallelogram laws for uniformly Banach

spaces. To be more precise, Xi [21] obtained the characterizations of p-uniform
convexity and q-uniform smoothness of a Banach space via the functionals ‖.‖p and
‖.‖q, respectively. Bynum [5] and Chen et al. [6–8] have studied the properties and
applications of the parallelogram laws for the Banach spaces. It is interesting to note
that these parallelogram laws follow from the concepts of the higher order strongly
m-convex functions, which is surprising and novel applications of the higher order
strongly convex functions. For the applications of the parallelogram laws in Banach
spaces in prediction theory and applied sciences, see [5–8, 20] and the references
therein.
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Conclusion

In this paper, we have introduced and studied a new class of convex functions, which
is called higher order strongly m-convex function. It is shown that several new
classes of strongly convex functions can be obtained as special cases of these higher
order strongly m-convex functions. We have studied the basic properties of these
functions. We have derived new parallelogram laws as applications of the higher
order strongly m-convex functions. Some known results can be obtained for suitable
and appropriate choices of m, which have been used to characterize the p-uniform
convexity and q-uniform smoothness of a Banach spaces. The interested readers
may explore the applications and other properties of the higher order strongly
convex functions in various fields of pure and applied sciences. This is an interesting
direction of future research.
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Characterizations of Higher Order
Strongly Generalized Convex Functions

Muhammad Aslam Noor, Khalida Inayat Noor, and Michael Th. Rassias

Abstract In this paper, we define and consider some new concepts of the higher
order strongly generalized convex functions with respect to two arbitrary functions.
Some properties of the higher order strongly generalized convex functions are
investigated under suitable conditions. It is shown that the operator parallelogram
laws for the characterization of uniformly Banach spaces can be obtained as a
novel applications of higher order strongly affine functions. It is shown that the
optimality conditions of the higher order strongly generalized convex functions are
characterized by a new class of variational inequalities. Some special cases also
discussed. Results obtained in this paper can be viewed as significant refinement
and improvement of previously known results.

1 Introduction

Convexity theory is a branch of mathematical sciences with a wide range of appli-
cations in industry, physical, social, regional and engineering sciences. The general
theory of the convexity started soon after the introduction of differential and integral
calculus by Newton and Leibnitz, although some individual optimization problems
had been investigated before that. To be more specific, Bernoulli’s brothers (1697)
were the first, who considered the variational problems in mathematical terms. It
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is worth mentioning that the first phase of the development of calculus of varia-
tions was characterized by a combination of philosophical concepts, mathematical
methods and physical problems. Euler (eighteenth century) created a new branch
of mathematics known as the calculus of variations. Motivated by geometrical
considerations, Euler deduced his first principle which is now referred to as Eulers
differential equation for the determination of maximizing and minimizing arcs.
By variational principles, we mean maximum and minimum problems arising in
game theory, mechanics, geometrical optics, general relativity theory, economics,
transportation, differential geometry and related areas. The Hamiltonian-Jacobi
theory represents a general framework for the mathematical description of the
propagation of actions in nature and optimal modeling of control processes in daily
life. It is known that the gauge field theories are a continuation of Einsteins concept
of describing physical effects mathematically in terms of differential geometry.
These theories play a fundamental role in the modern theory of elementary particles
and are right tool of building up a unified theory of elementary particles, which
includes all kind of known interactions. For example, the Weinberg-Salam theory
unifies weak and electromagnetic interactions. It is also known that the variational
formulation of field theories allows for a degree of unification absent their versions
in terms of differential equations. Convexity plays an important part in the existence
and stability of soliton, which occur in almost every branch of physics.

Variational inequalities represent the optimality conditions for the differentiable
convex functions on the convex sets in a normed space. which were introduced and
considered in early 1960s by Stampacchia [41], Variational inequalities combine
both theoretical and algorithmic advances with new and novel domain of appli-
cations. Analysis of these problems requires a blend of techniques from convex
analysis, functional analysis and numerical analysis. In recent years, considerable
interest has been shown in developing various extensions and generalizations of
variational inequalities, both for their own sake and their applications.

Mohsen et al. [19] and Noor and Noor [30–34, 37] introduced the concept of
higher order strongly convex functions and studied their properties. These results
can be viewed as a significant refinement of the results of Adamek [1], Alabdali
et al. [2] and Lin and Fukushima [18]. Higher order strongly convex functions
include the strongly convex functions, which were introduced and studied by Polyak
[39]. Karmardian[15] used the strongly convex functions to discuss the unique
existence of a solution of the nonlinear complementarity problems. Awan et al. [4, 5]
have derived Hermite–Hadamard type inequalities for various classes of strongly
convex functions, which provide upper and lower estimate for the integrand. For the
applications of strongly convex functions in optimization, variational inequalities
and other branches of pure and applied sciences, see [1–8, 8–18, 20, 22–32, 34, 43–
45] and the references therein.

It is known that the properties of the convex functions may not hold, in general,
when the convex set is non-convex. Recently, the concept of convexity has been
generalized in several directions. A significant generalization of the convex set is
the introduction of the (h, g)-convex set and (h, g)-convex [14, 28, 29] function
involving two arbitrary functions h and g, (say). These (h, g) convex functions are
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called generalized convex functions. It has been shown that that the generalized
convex functions enjoy some nice properties which convex function have. We would
like to emphasize that the (h, g)-convex set and generalized convex functions may
not be convex sets and convex functions. For h = g, generalized functions reduces
the g-convex functions, which were introduced and studied by Youness [43]. It is
known [24] that the minimum of a differentiable g-convex function on the g-convex
set can be characterized by a class of variational inequalities, which is known as
general (Noor) variational inequalities introduced and studied by Noor [22, 24, 25]
in 1988. For suitable and appropriate choices of the arbitrary functions h and g,

one can obtain a wide classes of known and new classes of convex functions and
related general variational inequalities. This clearly shows that the (h, g)-convex
sets and the generalized convex functions are quite flexible and unifying ones.
For the formulation, applications, numerical methods,sensitivity analysis and other
aspects of general variational inequalities, see [11–14, 19–29, 34, 35, 37] and the
references es therein.

Noor and Noor [32] have considered and studied the strongly generalized
functions and studied their properties. Motivated by the work of Noor et al. [30–
34], Alabdali et al. [2] and Lin and Fukushima [18], we introduce and investigate
a new class of higher order strongly generalized convex functions with respect to
two arbitrary functions, which is the main motivation of this paper. Several new
concepts of monotonicity are introduced. We establish the relationship between
these classes and derive some new results under some mild conditions. It is shown
that (operator) parallelograms laws, which characterize the uniform Banach spaces
can be obtained from these definitions. We have shown that the minimum of the a
higher order strongly generalized convex functions on the generalized convex set
can be characterized by higher order strongly generalized variational inequalities.
Some new special cases are discussed, which can be viewed itself an novel and
interesting applications of the higher order strongly generalized convex functions.

For the sake of readers convenience, we include all the relevant all the details.
In Section 2, we recall the baric concepts and results. Generalized convex functions
and their properties are discussed in Section 3. In Section 4, higher order strongly
generalized convex are introduced. It is shown that several important special cases
are discussed, which can be viewed significant refinement of the previous known
results. Properties of the differential higher order strongly generalized convex are
proved. It is shown that the parallelogram laws can be obtained from the generalized
affine functions, which itself a novel application. These concepts are discussed in
Section 5. Connection with generalized variational inequalities is investigated with
the optimality conditions of the differentiable generalized convex functions, which
is the main motivation of Section “Conclusion”. We would like to emphasize that
the results obtained and discussed in this paper may motivate and bring a large
number of novel, innovate and potential applications, extensions and interesting
topics in these areas. We have given only a brief introduction of higher order
strongly generalized convex functions and applications. The interested reader is
advised to explore this field further and discover novel and fascinating applications
of the generalized convex functions in other areas of sciences.
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2 Formulations and Basic Facts

Let K be a nonempty closed set in a real Hilbert space H . We denote by 〈·, ·〉 and
‖ · ‖ be the inner product and norm, respectively.

Definition 1 ([10, 20]) A set K in H is said to be a convex set, if

u+ t (v − u) ∈ K, ∀u, v ∈ K, t ∈ [0, 1].

Definition 2 A function F is said to be convex function, if

F((1− t)u+ tv) ≤ (1− t)F (u)+ tF (v); ∀u, v ∈ K, t ∈ [0, 1]. (1)

It is well known that u ∈ K of a differential convex functions F is equivalent to
finding u ∈ K such that

〈F ′(u(, v − u〉 ≥ 0,∀v ∈ K, (2)

which is called the variational inequality, introduced and studied by Stampacchia
[41]. Variational inequalities can be regarded as a novel and significant extension
of variational principles, the origin of which can be traced back to Euler, Lagrange,
Newton, and Bernoulli brothers.

We would like to mention that the underlying the set may not be a convex set
in many important applications. To overcome this drawback, the set can be made
convex set with respect to an arbitrary function, which is called general convex set.

We would like to mention that the underlying the set may not be a convex set
in many important applications. To overcome this drawback, the set can be made
convex set with respect to two arbitrary functions, which is called a generalized or
(h, g)-convex set [14, 27, 28].

Definition 3 ([14, 28]) The set K ⊆ H is said to be a (h, g)-convex set, if there are
two functions h and g such as

(1− t)h(u)+ tg(v) ∈ K; ∀u, v ∈ K, t ∈ [0, 1]. (3)

We now discuss some special cases of the (h, g)-convex set K ⊆ D.

(I). If g(u) = I (u) = u = h(u), the identity operator, then (h, g)-convex set
reduces to the classical convex set. Clearly every convex set is a (h, g)-convex
set, but the converse is not true.

(II). If h(u) = I (u) = u, then the (h, g)-convex set becomes the g-convex set, that
is,

Definition 4 The set K is said to be g-convex set, if

(1− t)u+ tg(v) ∈ K ⊆ D, ∀u, v ∈ K ⊆ D, t ∈ [0, 1],
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which was introduced and studied by Noor [27]. Cristescu et al. [9] discussed
various applications of the general convex sets related to the necessity of adjusting
investment or development projects out of environmental or social reasons. For
example, the easiest manner of constructing this kind of convex sets comes from
the problem of modernizing the railway transport system. Shape properties of the
general convex sets with respect to a projection are investigated.

(III). If g(u) = I (u) = u, then the (h, g)-convex set becomes the h-convex set,
that is,

Definition 5 The set K is said to be h-convex set, if

(1− t)h(u)+ tv ∈ K ⊆ D, ∀u, v ∈ K ⊆ D, t ∈ [0, 1],

which is mainly due to Noor [28].

For the sake of simplicity, we always assume that function F : D → R and
K ∪ h(K) ∪ g(K) ⊆ D. If K is (g, h)-convex set, then this condition becomes
K ⊆ D and (h, g)-convex is called generalized convex functions unless otherwise
specified.

Definition 6 A function F is said to be a generalized convex function on the (h, g)-
convex set K ⊆ D, if there exist two arbitrary non-negative functions h, g such that

F((1−t)h(u)+tg(v)) ≤ (1−t)F (h(u))+tF (g(v)), ∀u, v ∈ K ⊆ D, t ∈ [0, 1].(4)

The generalized convex functions were introduced by Noor [28]. Noor [28] proved
that the minimum u ∈ K ⊆ D of a differentiable generalized convex functions F

can be characterized by the class of variational inequalities of the type:

〈F ′(h(u)), g(v)− h(u)〉 ≥ 0, ∀v ∈ K ⊆ D, (5)

which is known as the extended general variational inequalities. For the applications
of the general variational inequalities in various branches of pure and applied
sciences, see [22–25, 27–29, 37] and the references therein.

We now define the generalized convex functions on the interval K = Ihg =
[h(a), g(b)].
Definition 7 Let Ihg = [h(a), g(b)]. Then F is a generalized convex function, if
and only if,

∣
∣
∣
∣
∣
∣

1 1 1
h(a) x g(b)

F (h(a) F (x) F (g(b))

∣
∣
∣
∣
∣
∣
≥ 0; h(a) ≤ x ≤ g(b).

One can easily show that the following are equivalent:
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1. F is a generalized convex function.
2. F(x) ≤ F(h(a))+ F(g(b)−F(h(a)

g(b)−h(a) (x − h(a)).

3. F(x)−F(h(a))
x−h(a) ≤ F(g(b)−F(h(a))

g(b)−h(a) .

4. (g(b)− x)F (h(a))+ (h(a)− g(b))F (x)+ (x − h(a))F (g(b)) ≥ 0.
5. F(a)

(g(b)−h(a))(h(a)−x) + F(x)
(x−g(b))(a−x) + F(g(b))

(g(b)−h(a))(x−g(b)) ≤ 0,

where x = (1− t)h(a)+ tg(b) ∈ [h(a), g(b)].
Definition 8 The function F on the (h, g)-convex set K is said to be a generalized
quasi-convex, if

F(h(u)+ t (g(v)− h(u))) ≤ max{F(h(u)), F (g(v))}, ∀u, v ∈ K, t ∈ [0, 1].

Definition 9 The function F on the (h, g)-convex set K is said to be a generalized
log-convex, if

F(h(u)+ t (g(v)− h(u))) ≤ (F (h(u))1−t (F (g(v)))t , ∀u, v ∈ K, t ∈ [0, 1],

where F(·) > 0.

From the above definitions, we have

F(h(u)+ t (g(v)− h(u)) ≤ (F (h(u))1−t (F (g(v)))t

≤ (1− t)F (h(u))+ tF (g(v)))

≤ max{F(h(u)), F (g(v))}, ∀u, v ∈ K, t ∈ [0, 1].

This shows that every generalized log-convex function is a generalized convex
function and every generalized convex function is a generalized quasi-convex
function. However, the converse is not true.

3 Generalized Convex Functions

In section, we now consider some basic properties of generalized convex functions.

Theorem 1 Let F be a strictly generalized convex function. Then any local
minimum of F is a global minimum.

Proof Let the strictly generalized convex function F have a local minimum at u ∈
K. Assume the contrary, that is, F(g(v)) < F(h(u)) for some g(v) ∈ K. Since F

is strictly generalized convex function, so

F(h(u)+ t (g(v)− h(u))) < tF (g(v))+ (1− t)F (h(u)), for 0 < t < 1.

Thus
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F(h(u)+ t (g(v)− h(u)))− F(h(u)) < −t[F(g(v))− F(h(u))] < 0,

from which it follows that

F(h(u)+ t (g(v)− h(u)) < F(h(u)),

for arbitrary small t > 0, contradicting the local minimum.

Theorem 2 If the function F on the (h, g)-convex setK is generalized convex, then
the level set

Lα = {u ∈ K : F(h(u)) ≤ α, α ∈ R}

is a (h, g)-convex set.

Proof Let h(u), g(v) ∈ Lα. Then F(h(u)) ≤ α and F(g(v)) ≤ α. Now, ∀t ∈
(0, 1), g(w) = u + t (g(v) − h(u)) ∈ K, since K is a (h, g)-convex set. Thus, by
the generalized convexity of F, we have

F(h(u))+ t (g(v)− h(u))) ≤ (1− t)F (h(u)+ tF (g(v)) ≤ (1− t)α + tα = α,

from which it follows that h(u)+ t (g(v)−h(u)) ∈ Lα . Hence Lα is a (h, g)-convex
convex set.

Theorem 3 The function F is generalized convex function, if and only if,

epi(F ) = {h(u), α) : h(u) ∈ K : F(h(u)) ≤ α, α ∈ R}

is a (h, g)-convex set.

Proof Assume that F is generalized convex function. Let

(h(u), α), (g(v), β) ∈ epi(F ).

Then it follows that F(h(u() ≤ α and F(g(v)) ≤ β. Hence, we have

F(h(u)+ t (g(v)− h(u))) ≤ (1− t)F (h(u))+ tF (g(v)) ≤ (1− t)α + tβ,

which implies that

((1− t)h(u)+ tg(v)), (1− t)α + tβ) ∈ epi(F ).

Thus epi(F ) is a (h, g)-convex set. Conversely, let epi(F ) be a (h, g)-convex set.
Let h(u), g(v) ∈ K. Then (h(u), F (h(u) ∈ epi(F ) and (g(v), F (g(v))) ∈ epi(F ).

Since F is a (h, g)-convex set, we must have

(h(u)+ t (g(v)− h(u)), (1− t)F (h(u))+ tF (g(v)) ∈ epi(F ),
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which implies that

F((1− t)h(u)+ tg(v)) ≤ (1− t)F (h(u)+ tF (g(v)).

This shows that F is a generalized convex function.

Theorem 4 The function F is a generalized quasi-convex, if and only if, the level
set

Lα = {h(u) ∈ K,α ∈ R : F(h(u)) ≤ α}

is a (h, g)-convex set.

Proof Let h(u), g(v) ∈ Lα. Then h(u), g(v) ∈ K and max(F (h(u)), F (g(v))) ≤
α. Now for t ∈ (0, 1), g(w) = h(u) + t (g(v) − h(u)) ∈ K. We have to prove that
h(u)+ t (g(v)− h(u)) ∈ Lα. By the generalized convexity of F, we have

F(h(u)+ t (g(v)− h(u))) ≤ max (F (h(u)), F (g(v))) ≤ α,

which implies that h(u) + t (g(v) − h(u)) ∈ Lα, showing that the level set Lα is
indeed a (h, g)-convex set.

Conversely, assume that Lα is a (h, g)-convex set. Then, ∀ h(u), g(v) ∈
Lα, t ∈ [0, 1], h(u)+ t (g(v)− h(u)) ∈ Lα. Let h(u), g(v) ∈ Lα for

α = max(F (h(u)), F (g(v))) and F(g(v)) ≤ F(h(u)).

Then from the definition of the level set Lα , it follows that

F(h(u)+ t (g(v)− h(u)) ≤ max (F (h(u)), F (g(v))) ≤ α.

Thus F is an generalized quasi-convex function. This completes the proof.

Theorem 5 Let F be a generalized convex function. Let μ = infh(u)∈K F(u). Then
the set

E = {h(u) ∈ K : F(h(u)) = μ}

is a (h, g)-convex set of K. If F is strictly generalized convex function, then E is a
singleton.

Proof Let h(u), g(v) ∈ E. For 0 < t < 1, let g(w) = h(u)+ t (g(v)−h(u)). Since
F is a generalized convex function, then

F(g(w)) = F(h(u)+ t (g(v)− h(u))

≤ (1− t)F (h(u))+ tF (g(v)) = tμ+ (1− t)μ = μ,
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which implies g(w) ∈ E and hence E is a (h, g)-convex set. For the second part,
assume to the contrary that F(h(u)) = F(g(v)) = μ. Since K is a (h, g)-convex
set, then for 0 < t < 1, h(u) + t (g(v) − h(u)) ∈ K. Further, since F is a strictly
generalized convex function, so

F(h(u)+ t (g(v)− h(u))) < (1− t)F (h(u))+ tF (g(v)) = (1− t)μ+ tμ = μ.

This contradicts the fact that μ = infh(u)∈K F(u) and hence the result follows.

Theorem 6 If the function F is a generalized convex such that

F(g(v)) < F(h(u)),∀h(u), g(v) ∈ K,

then F is a strictly generalized quasi-convex function.

Proof By the generalized convexity of the function F, we have

F(h(u)+t (g(v)−h(u))) ≤ (1−t)F (h(u))+tF (g(v)),∀h(u), g(v) ∈ K, t ∈ [0, 1]
< F(h(u)),

since F(g(v)) < F(h(u)), which shows that the function F is a strictly generalized
quasi-convex.

4 Higher Order Strongly Generalized Convex Functions

In this section, some new classes of higher order strongly generalized convex
functions and higher order strongly affine (h, g) functions on the (h, g)-convex set
K ⊆ D.

Definition 10 A function F on the (h, g)-convex set K ⊆ D is said to be higher
order strongly generalized convex with respect to two functions h and g, if there
exists a constant μ > 0, such that

F(h(u)+ t (g(v)− h(u))) (6)

≤ (1− t)F (h(u))+ tF (g(v))− μ{tp(1− t)+ t (1− t)p}‖g(v)− h(u)‖p,
∀u, v ∈ K ⊆ D, t ∈ [0, 1], p > 1.

A function F is said to be higher order strongly generalized convex with respect
to two functions h and g, if and only if, −F is a higher order strongly generalized
convex function with respect to two functions h and g.

If t = 1
2 in Definition 10, then one gets the generalized Jensen-type property

called higher order strongly generalized convex with respect to two functions h

and g.
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We now discuss some special cases.

(IV). If p = 2. then the Definition 10 reduces to:

Definition 11 A function F on the (h, g)-convex set K ⊆ D is said to be strongly
generalized convex with respect to two functions h and g, if there exists a constant
μ > 0, such that

F(h(u)+ t (g(v)− h(u))) ≤ (1− t)F (h(u))+ tF (g(v)) (7)

−μ{t (1− t)}‖g(v)− h(u)‖2,

∀u, v ∈ K ⊆ D, t ∈ [0, 1], p > 1.

For the characterizations and properties of the strongly generalized convex func-
tions, see Noor and Noor [32].

(V). If h(u) = I (u) = u, then the higher order strongly generalized convex with
respect to two functions h and g, becomes strongly g-convex functions, that
is,

F(u+ t (g(v)− u)) ≤ (1− t)F (u)+ tF (g(v))− μ{tp(1− t)

+t (1− t)p}‖g(v)− u‖p,
∀u, v ∈ K ⊆ D, t ∈ [0, 1].

For the properties of the higher order strongly generalized convex func-
tions in variational inequalities and equilibrium problems, see Noor [27].

(VI). If g(u) = I (u) = u, then the higher order strongly generalized convex with
respect to two functions h and g, becomes higher order strongly h-convex
functions, that is,

F(h(u)+ t (v − h(u)) ≤ (1− t)F (h(u))+ tF (v)− μ{tp(1− t)

+t (1− t)p}‖v − h(u)‖p,
∀u, v ∈ K ⊆ D, t ∈ [0, 1].

Definition 12 A function F on the (h, g)-convex set K ⊆ D is said to be a higher
order strongly generalized quasi-convex with respect to two functions h and g, if
there exists a constant μ > 0 such that

F(h(u)+ t (g(v)− h(u)) ≤ max{F(h(u)), F (g(v))} − μ{tp(1− t)

+t (1− t)p}‖g(v)− h(u)‖p,
∀u, v ∈ K ⊆ D, t ∈ [0, 1].



Generalized Convex Functions 351

Definition 13 A function F on the (h, g)-convex set K ⊆ D is said to be higher
order strongly generalized log-convex with respect to two functions h and g, if there
exists a constant μ > 0 such that

F(h(u)+ t (g(v)− h(u)) ≤ (F (h(u)))1−t (F (g(v)))t − μ{tp(1− t)

+t (1− t)p}‖g(v)− h(u)‖p,
∀u, v ∈ K ⊆ D, t ∈ [0, 1],

where F(·) > 0.

From the above definitions, we have

F(h(u)+ t (g(v)− h(u)) ≤ (F (h(u)))1−t (F (g(v)))t − μ{tp(1− t)+t (1−t)p}‖g(v)− h(u)‖p

≤ (1− t)F (h(u))+ tF (g(v))−μ{tp(1−t)+t (1−t)p}‖g(v)−h(u)‖p

≤ max{F(h(u)), F (g(v))} − μ{tp(1− t)+ t (1− t)p}‖g(v)− h(u)‖p.

This shows that every higher order strongly generalized log-convex function is a
higher order strongly generalized convex function and every higher order strongly
generalized convex function is a higher order strongly generalized quasi-convex
function. However, the converse is not true.

Definition 14 A function F on the (h, g)-convex set K ⊆ D is said to be a higher
order strongly generalized affine with respect to two functions h and g, if there
exists a constant μ > 0, such that

F(h(u)+ t (g(v)− h(u)) = (1− t)F (h(u))+ t (F (g(v))− μ{tp(1− t)

+t (1− t)p}‖g(v)− h(u)‖p,
∀u, v ∈ K ⊆ D, t ∈ [0, 1].

We would like to remark that, if t = 1/2 in Definition 14, then one gets the higher
order generalized Jensen type property called higher order strongly generalized J -
affine function.

For appropriate and suitable choice of the arbitrary functions h, g, one can obtain
several new and known classes of and their variant forms as special cases of higher
order strongly generalized convex functions with respect to two functions h and g.

This shows that the class of higher order strongly generalized convex functions with
respect to two functions h and g, is quite broad and unifying one.

We now introduce some new concepts and definitions.

Definition 15 Let K ⊆ D be a (h, g)-convex set. An operator T : K → H is said
to be:

1. Higher order strongly monotone, if and only if, there exists a constant α > 0
such that
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〈T u− T v, h(u)− g(v)〉 ≥ α‖g(v)− h(u)‖p,∀u, v ∈ K ⊆ D.

2. Higher order strongly pseudomonotone, if and only if, there exists a constant
ν > 0 such that

〈T u, g(v)− h(u)〉 + ν‖g(v)− h(u)‖p ≥ 0

⇒
〈T v, g(v)− h(u)〉 ≥ 0,∀u, v ∈ K ⊆ D.

3. Higher order strongly relaxed pseudomonotone, if and only if, there exists a
constant μ > 0 such that

〈T u, g(v)− h(u)〉 ≥ 0

⇒
−〈T v, h(u)− g(v)〉 + μ‖g(v)− h(u)‖p ≥ 0,∀u, v ∈ K ⊆ D.

4. Generalized monotone with respect to two functions h and g, if

〈T (h(u))− T (g(v)), h(u)− g(v)〉 ≥ 0,∀u, v ∈ K ⊆ D.

Definition 16 A differentiable function F on the (h, g)-convex set K ⊆ D is said
to be higher order strongly generalized pseudoconvex function, if and only if, if
there exists a constant μ > 0, such that

〈F ′(h(u)), g(v)−h(u)〉+μ‖g(v)−h(u)‖p ≥ 0 ⇒ F(g(v)) ≥ F(h(u)),

∀u, v ∈ K ⊆ D.

For suitable and appropriate choices of the arbitrary functions h, g and the
constant p, one can obtain various new and old concepts as special of the above
definitions. Thus, it is obvious that these concepts are unifying ones and flexible.

We now consider some basic properties of higher order strongly generalized
convex functions.

Theorem 7 Let F be a differentiable function on the (h, g)-convex set K ⊆ D.

Then the function F is higher order strongly generalized convex function, if and
only if,

F(g(v))− F(h(u)) ≥ 〈F ′(h(u)), g(v)− h(u)〉 + μ‖g(v)− h(u)‖p,
∀u, v ∈ K ⊆ D, t ∈ [0, 1]. (8)

Proof Let F be a higher order strongly generalized convex function on the (h, g)-
convex set K ⊆ D. Then
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F(h(u)+ t (g(v)− h(u))) ≤ (1− t)F (h(u))+ tF (g(v))

−μ{tp(1− t)+ t (1− t)p}‖g(v)− h(u)‖p,
∀u, v ∈ K, t ∈ [0.1].

which can be written as

F(g(v))− F(h(u)) ≥ {F(h(u)+ t (g(v)− h(u))− F(h(u))

t
}

+{tp−1(1− t)+ (1− t)p}‖g(v)− h(u)‖p.

Taking the limit in the above inequality as t → 0, we have

F(g(v))− F(h(u)) ≥ 〈F ′(h(u)), g(v)− h(u))〉 + μ‖g(v)− h(u)‖p,
∀u, v ∈ K ⊆ D.

which is (8), the required result.
Conversely, let (8) hold. Then, ∀u, v ∈ K ⊆ D, t ∈ [0, 1],

g(vt ) = h(u)+ t (g(v)− h(u)) ∈ K ⊆ D, we have

F(g(v))− F(g(vt )) ≥ 〈F ′(g(vt )), g(v)− g(vt ))〉 + μ‖g(v)− g(vt )‖p
= (1−t)F ′(g(vt )), g(v)−h(u)〉+μ(1−t)p‖g(v)−h(u)‖p,(9)

∀v, u ∈ K ⊆ D.

In a similar way, we have

F(u)− F(vt ) ≥ 〈F ′(vt ), u− vt )〉 + μ‖g(u)− g(vt )‖p
= −tF ′(vt ), v − u〉 + μtp‖g(v)− g(u)‖p. (10)

Multiplying (9) by t and (10) by (1− t) and adding the resultant, we have

F(h(u)+ t (g(v)− h(u)) ≤ (1− t)F (h(u))+ tF (g(v))− μ{tp(1− t)

+t (1− t)p}‖g(v)− h(u)‖p,
∀u, v ∈ K ⊆ D,

showing that F is a higher order strongly generalized convex function.

Theorem 8 Let F be a differentiable higher order strongly generalized convex
function on the (h, g)-convex set K ⊆ D. Then F ′(.) is a higher order strongly
monotone operator.
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Proof Let F be a higher order strongly generalized convex function on the (h, g)-
convex set K ⊆ D. Then, from Theorem 7, we have

F(g(v))−F(h(u)) ≥ 〈F ′(h(u)), g(v)−h(u)〉+μ‖g(v)−h(u)‖p, ∀u, v ∈ K ⊆ D.

(11)

Changing the role of h(u) and g(v) in (11), we have

F(h(u))−F(g(v)) ≥ 〈F ′(g(v)), h(u)−g(v))〉+μ‖g(v)−h(u)‖p, ∀u, v ∈ K ⊆ D.

(12)

Adding (11) and (12), we have

〈F ′(h(u))−F ′(g(v)), h(u)−g(v)〉 ≥ 2μ‖g(v)−h(u)‖p, ∀u, v ∈ K ⊆ D. (13)

which shows that F ′(.) is a higher order strongly monotone operator.

We remark that the converse of Theorem 8 is not true. However, we have the
following result.

Theorem 9 If the differential operator F ′(.) of a differentiable higher order
strongly generalized convex function F is higher order strongly monotone operator,
then

F(g(v))− F(h(u)) ≥ 〈F ′(h(u)), g(v)− h(u)〉 + 2μ 1
p
‖g(v)− h(u)‖p,

∀u, v ∈ K ⊆ D. (14)

Proof Let F ′(.) be a higher order strongly monotone operator. Then, from (13), we
have

〈F ′(g(v)), h(u)− g(v)〉 ≥ 〈F ′(h(u)), h(u)− g(v))〉 + 2μ‖g(v)− h(u)‖p.
∀u, v ∈ K ⊆ D. (15)

Since K is the (h, g)-convex set, ∀u, v ∈ K ⊆ D, t ∈ [0, 1],
g(vt ) = h(u)+ t (g(v)− h(u)) ∈ K ⊆ D. Taking g(v) = g(vt ) in (15, we have

〈F ′(g(vt )), h(u)− g(vt )〉 ≤ 〈F ′(h(u)), h(u)− g(vt )〉 − 2μ‖g(v)− h(u)‖p
= −t〈F ′(h(u)), g(v)− h(u)〉 − 2μtp‖g(v)− h(u)‖p,

which implies that

〈F ′(g(vt )), g(v)−h(u)〉 ≥ 〈F ′(h(u)), g(v)−h(u)〉+2μtp−1‖g(v)−h(u)‖P .(16)
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Consider the auxiliary function

ξ(t) = F(h(u)+ t (g(v)− h(u)),∀u, v ∈ K ⊆ D,

from which, we have

ξ(1) = F(g(v)), ξ(0) = F(h(u)).

Then, from (16), we have

ξ ′(t)=〈F ′(g(vt ), g(v)−h(u)〉 ≥ 〈F ′(h(u)), g(v)−h(u)〉
+2μtp−1‖g(v)−h(u)‖p. (17)

Integrating (17) between 0 and 1, we have

ξ(1)− ξ(0) =
∫ 1

0
ξ ′(t)dt ≥ 〈F ′(h(u)), g(v)− h(u)〉 + 2μ

1

p
‖g(v)− h(u)‖p.

Thus it follows that

F(g(v))− F(h(u)) ≥ 〈F ′(h(u)), g(v)− h(u)〉 + 2μ 1
p
‖g(v)− h(u)‖p,

∀u, v ∈ K ⊆ D,

which is the required (14).

We note that, if p = 2, then Theorem 9 can be viewed as the converse of
Theorem 8.

We now give a necessary condition for higher order strongly generalized pseudo-
convex function.

Theorem 10 Let F ′(.) be a higher order strongly relaxed pseudomonotone opera-
tor. Then F is a higher order strongly generalized pseudo-connvex function.

Proof Let F ′ be a higher order strongly relaxed pseudomonotone operator. Then,

〈F ′(h(u)), g(v)− h(u)〉 ≥ 0,∀u, v ∈ K ⊆ D,

implies that

〈F ′(g(v)), g(v)− h(u)〉 ≥ μ‖g(v)− h(u)‖p,∀u, v ∈ K ⊆ D. (18)

Since K is an convex set, ∀u, v ∈ K ⊆ D, t ∈ [0, 1], g(vt ) = h(u) + t (g(v) −
h(u)) ∈ K ⊆ D.
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Taking g(v) = g(vt ) in (18), we have

〈F ′(g(vt ), g(v)− h(u)〉 ≥ μtp−1‖g(v)− h(u)u‖p. (19)

Consider the auxiliary function

ξ(t) = F(h(u)+ t (g(v)− h(u))) = F(g(vt )), ∀u, v ∈ K ⊆ D, t ∈ [0, 1],

which is differentiable, since F is differentiable function. Then, using (19), we have

ξ ′(t) = 〈F ′(g(vt )), g(v)− h(u))〉 ≥ μtp−1‖g(v(−h(u)‖p.

Integrating the above relation between 0 to 1, we have

ξ(1)− ξ(0) =
∫ 1

0
ξ ′(t)dt ≥ μ

p
‖g(v)− h(u)‖p,

that is,

F(g(v))− F(h(u)) ≥ μ

p
‖g(v)− h(u)‖p),∀u, v ∈ K ⊆ D,

showing that F is a higher order strongly generalized pseudo-convex function.

Definition 17 A function F is said to be sharply higher order strongly generalized
pseudo convex, if there exists a constant μ > 0 such that

〈F ′(h(u)), g(v)− h(u)〉 ≥ 0

⇒
F(g(v)) ≥ F(g(v)+t (h(u)−g(v)))+μ{tp(1− t)+ t (1− t)p}‖g(v)− h(u)‖p,

∀u, v ∈ K ⊆ D.

Theorem 11 Let F be a sharply higher order strongly generalized pseudo convex
function on the (h, g)-convex set K ⊆ D with a constant μ > 0. Then

〈F ′(g(v)), g(v)− h(u)〉 ≥ μ‖g(v)− h(u)‖p,∀u, v ∈ K ⊆ D.

Proof Let F be a sharply higher order strongly generalized pesudo-convex function.
Then

F(g(v)) ≥ F(g(v)+ t (h(u)− g(v)))+ μ{tp(1− t)+ t (1− t)p}‖g(v)− h(u)‖p,
∀u, v ∈ K ⊆ D, t ∈ [0, 1],
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from which, we have

{F(g(v)+ t (h(u)− g(v))− F(g(v))

t
} + μ{tp−1(1− t)+ (1− t)p}‖g(v)− h(u)‖p ≥ 0.

Taking limit in the above inequality, as t → 0, we have

〈F ′(g(v)), g(v)− g(u)〉 ≥ μ‖g(v)− h(u)‖p,∀u, v ∈ K ⊆ D,

the required result.

Theorem 12 Let f be a higher order strongly affine generalized convex function.
Then F is a higher order strongly generalized convex function, if and only if, H =
F − f is a generalized convex function.

Proof Let f be a higher order strongly affine generalized convex function, Then

f ((1− t)h(u)+ tg(v)) = (1− t)f (h(u))+ tf (g(v))− μ{tp(1− t)

+t (1− t)p}‖g(v)− h(u)‖p, (20)

∀u, v ∈ K ⊆ D.

From the higher order strongly generalized convexity of F, we have

F((1− t)h(u)+ tg(v)) ≤ (1− t)F (h(u))+ tF (g(v))− μ{tp(1− t)

+t (1− t)p}‖g(v)− h(u)‖p, (21)

∀u, v ∈ K ⊆ D.

From (20 ) and (21), we have

F((1−t)h(u)+tg(v))−f ((1−t)f (h(u))+tf (g(v)) ≤ (1−t)(F (h(u))−f (h(u)))
+t (F (g(v))−f (g(v))),(22)

from which it follows that

H((1− t)h(u)+ tg(v)) = F((1− t)h(u)+ tg(v))− f ((1− t)h(u)+ tg(v))

≤ (1− t)F (h(u))+ tF (g(v))− (1− t)f (h(u)(−tf (g(v))
= (1− t)(F (h(u))− f (h(u)))+ t (F (g(v))− f (g(v))),

which show that H = F − f is a convex function.
The inverse implication is obvious.

Definition 18 A function F is said to be a pseudoconvex function with respect to a
strictly positive bifunction B(., .), if
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F(g(v)) < F(h(u))

⇒
F(h(u)+ (1− t)(g(v), h(u))) < F(h(u))+ t (t − 1)B(g(v), h(u)),

∀u, v ∈ K ⊆ D, t ∈ [0, 1].

Theorem 13 If the function F is higher order strongly generalized convex function
such that F(g(v)) < F(h(u)), then the function F is higher order strongly
generalized pseudo convex function

Proof Since F(g(v)) < F(h(u)) and F is higher order strongly generalized convex
function, then
∀u, v ∈ K ⊆ D, t ∈ [0, 1], we have

F(h(u)+ t (g(v)− h(u))) ≤ F(h(u))+ t (F (g(v))− F(h(u)))

−μ{tp(1− t)+ t (1− t)p}‖g(v)− hu)‖p
< F(h(u))+t (1−t)(F (g(v))−F(h(u)))−μ{tp(1−t)+t (1−t)p}‖g(v)−h(u)‖p
= F(h(u))+t (t−1)(F (h(u))−F(g(v)))−μ{tp(1−t)+t (1−t)p}‖g(v)−h(u)‖p
< F(h(u))+t (t−1)B(h(u), g(v))−μ{tp(1−t)+t (1−t)p}‖g(v)−h(u)‖p,
∀u, v ∈ K ⊆ D,

where B(h(u), g(v)) = F(h(u)) − F(g(v)) > 0. Hence the function F is higher
order strongly generalized convex function, the required result.

From Definition 10, we have

F((1− t)h(u)+ tg(v)) + F(th(u)+ (1− t)g(v))

≤ F(h(u))+F(g(v))−2μ{tp(1−t)+t (1−t)p}‖g(v)−h(u)‖p,
∀u, v ∈ K ⊆ D, t ∈ [0, 1], p > 1,

which is called the higher order strongly Wright generalized convex functions.
One can investigate the properties and applications of higher order strongly Wright
generalized convex functions.

5 Applications

We now show that uniformly Banach spaces can be characterized by the parallelo-
gram laws, which can be obtained from the higher order strongly generalized affine
functions.
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Setting F(u) = ‖u‖p in Definition 14, we have

‖h(u)+ t (g(v)− h(u))‖p (23)

= (1− t)‖h(u)‖p + t‖g(v)‖p − μ{tp(1− t)+ t (1− t)p}‖g(v)− h(u)‖p,
∀u, v ∈ K ⊆ D, t ∈ [0, 1].

Taking t = 1
2 in (23), we have

‖h(u)+g(v)
2

‖p+μ 1

2p
‖g(v)−h(u)‖p=1

2
‖h(u)‖p+1

2
‖g(v)‖p, ∀u, v ∈ K ⊆ D, (24)

which implies that

‖h(u)+g(v)‖p+μ‖g(v)−h(u)‖p=2p−1{‖h(u)‖p+‖g(v)‖p}, ∀u, v ∈ K ⊆ D, (25)

which is the generalized parallelogram law for the lp-spaces.
For p = 2, the generalized parallelogram law (25) reduces to:

‖h(u)+ g(v)‖2 + μ‖g(v)− h(u)‖2 = 2{‖h(u)‖2 + ‖g(v)‖2}, ∀u, v ∈ K ⊆ D, (26)

which is a new parallelogram law involving two arbitrary functions characterizing
the inner product spaces and can be viewed as a novel application of the strongly
generalized affine functions.

For g(u) = h(u) = I, we obtain the well known parallelogram law, that is,

‖u+ v‖p + μ‖v − u‖p = 2p−1{‖u‖p + ‖v‖p},∀u, v ∈ K ⊆ D, (27)

which was derived by Xu [42] via the functionals ‖.‖p and ‖.‖q, respectively. These
parallelogram laws characterize the p-uniform convexity and q-uniform smoothness
of a Banach space. Bynum [6] and Chen et al. [7, 8] have studied the properties
and applications of the parallelogram laws for the Banach spaces in the prediction
theory. In brief, for suitable and appropriate choice of the arbitrary functions h

and g, one can obtained a wide class of parallelogram laws, which can be used
to characterize the inner product spaces and uniformly Banach spaces. It is an
interesting problem to consider the applications in optimization and prediction
theory.

Let B(H) be the space of all bounded linear operators on a separable complex
Hilbert space H. The absolute value of an operatorA ∈ B(H) is defined by ‖A‖p =
〈A,A〉.

By taking F(u) = ‖A‖p in (27), we have

‖A+ B‖p + μ‖A− B‖p = 2p−1{‖A‖p + ‖B‖p}, ∀A,B ∈ B(H) ⊆ D,
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which is known as the Clarkson Inequalities for Operators and be viewed as
Operator Parallelogram Laws characterizing the uniformly Banach spaces. For more
details, see Hirzallah and Kittaneh [12].

5.1 Generalized Variational Inequalities

In this section, we show that the optimality conditions of the differentiable higher
order strongly generalized convex functions can be characterized be a class of
variational inequalities. This is the main motivation of our next result.

Theorem 14 Let F be a differentiable higher order strongly generalized convex
function with modulus μ > 0. If u ∈ K ⊆ D is the minimum of the function F, then

F(g(v))− F(h(u)) ≥ μ‖g(v)− h(u)‖p, ∀v ∈ K ⊆ D, p ≥ 1. (28)

Proof Let u ∈ K ⊆ D be a minimum of the function F. Then

F(h(u)) ≤ F(g(v)),∀v ∈ K ⊆ D. (29)

Since K ⊆ D is a (h, g)-convex set, so, ∀u.v ∈ K ⊆ D, t ∈ [0, 1],

g(vt ) = (1− t)h(u)+ tg(v) ∈ K ⊆ D.

Taking g(v) = g(vt ) in (29), we have

0 ≤ lim
t→0
{F(h(u)+t (g(v)−h(u)))−F(h(u))

t
}=〈F ′(h(u)), g(v)− h(u)〉. (30)

Since F is differentiable higher order strongly convex generalized function, so

F(h(u)+ t (g(v)− h(u))) ≤ F(h(u))+ t (F (g(v))− F(h(u)))

−μ{tp(1− t)+ t (1− t)p}‖g(v)− h(u)‖p, ∀u.v ∈ K ⊆ D,

from which, using (30), we have

F(g(v))− F(h(u)) ≥ lim
t→0

{F(h(u)+ t (g(v)− h(u)))− F(h(u))

t
} + μ‖g(v)− h(u)‖p

= 〈F ′(h(u)), g(v)− h(u)〉 + μ‖g(v)− h(u)‖p,
≥ μ‖g(v)− h(u)‖p,

the required result (28).
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Using the above technique and ideas of Theorem 7, one can obtain the following
result.

Theorem 15 Let K ⊆ D be a (h, g)-convex set. If u ∈ K ⊆ D satisfies the
inequality

〈F ′(h(u)), g(v)− h(u)〉 + μ‖g(v)− h(u)‖p ≥ 0,∀u, v ∈ K ⊆ D,p ≥ 1, (31)

then u ∈ K ⊆ D is the minimum of the higher order strongly generalized convex
function F.

Remark 1 The inequality (31) is called the higher order strongly extended strongly
general variational inequality, which include strongly extended general variational
inequalities, higher order strongly general variational inequalities and general
variational inequalities as special cases. It is an interesting problem to study the
both quantitative and qualitative properties of these variational inequalities.

Theorem 16 If the operator T is a generalized monotone with respect the arbitrary
functions h, g and u ∈ KsubseteqD is the solution of the inequality (31), then
u ∈ K ⊆ D satisfies the inequality

〈F ′(g(v)), g(v)−h(u)〉+μ‖g(v)−h(u)‖p ≥ 0,∀u, v ∈ K ⊆ D, p ≥ 1. (32)

Proof Let u ∈ K ⊆ D satisfies the inequality (31). Then

0 ≤ 〈F ′(h(u)), g(v)− h(u)〉 + μ‖g(v)− h(u)‖p
= 〈F ′(h(u))− F ′(g(v))+ F ′(g(v)), g(v)− h(u)〉 + μ‖g(v)− h(u)‖p
≤ F ′(g(v)), g(v)− h(u)〉 + μ‖g(v)− h(u)‖p,

where we have used the generalized monotonicity of the operator T .

We note that the converse of Theorem 16 does not hold due the presence of the term
‖g(v) − h(u)‖p. However, for p = 1, one can prove the converse of Theorem 16
using the concept of hemicontinuity.

Remark 2 The inequality (32) is called the Minty higher order strongly extended
strongly general variational inequality. We remark that the projection method and its
variant forms can not be used to study the higher order strongly general variational
inequalities (31) due to its inherent structure. To overcome this drawback, one can
consider the auxiliary principle technique for solving higher order strongly extended
strongly general variational inequality, which is mainly due to Glowinski et al. [11]
and Lions and Stampacchia [17] as developed by Noor [25, 26]and Noor et al.
[37]. We have only given a glimpse of the higher order strongly extended general
variational inequalities. We are going to consider these problems in future. These
problems may applications in various branches of pure and applied sciences and
need further efforts.
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Conclusion

In this paper, we have introduced and studied a new class of convex functions,
which is called higher order strongly generalized convex function. It is shown
that several new classes of strongly convex functions can be obtained as special
cases of these higher order strongly generalized convex functions. We have studied
the basic properties of these functions. We have shown that one can derive the
parallelogram laws in Banach spaces, which have applications in prediction theory
and stochastic analysis. It is shown that the minimum of the differentiable higher
order strongly generalized convex functions can be characterized by a new class
of variational inequalities. Several important special cases are also discussed, which
can be obtained from our results. The interested readers may explore the applications
and other properties of the higher order strongly convex functions in various fields
of pure and applied sciences. This is an interesting direction of future research.
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A Note on Generalized Nash Games
Played on Networks

Mauro Passacantando and Fabio Raciti

Abstract We investigate a generalized Nash equilibrium problem where players
are modeled as nodes of a network and the utility function of each player depends
on his/her own action as well as on the actions of his/her neighbors in the network.
In the case of a quadratic reference model with shared constraints we are able to
derive the variational solution of the game as a series expansion which involves the
powers of the adjacency matrix, thus extending a previous result. Our analysis is
illustrated by means of some numerical examples.

1 Introduction

Economic and social sciences are probably the areas that have benefited the
most from the mathematical development of Game Theory (GT), although in the
last decades, specific game-theoretical models have also been applied to various
problems from engineering, transportation and communication networks, biology,
and other fields (see, e.g., [1, 19, 21]. The pervasive role of physical and virtual
social interactions in the actions taken by individuals or groups, described through
a network model, has led to consider Network Games as a powerful tool to describe
the process of decision making. Indeed, in many social or economic environments
our actions are influenced by the actions of our friends, acquaintances or colleagues.
In network game models, each individual (player) is identified with the node of a
graph and the players that can interact directly are connected through links of the
graph. The specificity of these games is the central role played by the graph structure
in the description of the patterns of interactions, and in the final social or economic
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outcome. The mathematical consequence of this description is that some interesting
results depend on quantities such as the spectral radius of the adjacency matrix, its
minimum eigenvalue, and its powers. With the huge variety of possible networks
and interactions, it is difficult to make progress in the analysis without positing
some specific structure of the problems under consideration. In these regards it is
interesting to investigate the two classes of games with strategic complements and
substitutes. Roughly speaking, in the first case, the incentive for a player to take
an action increases when the number of his/her social contacts who take the action
increases while in the second case this monotonic relation in reversed. The linear-
quadratic model, although its simplicity, deserves particular attention and has been
investigated in detail because it can be solved exactly and the solution formula can
be nicely interpreted from a graph-theoretical point of view. Among the numerous
references we suggest that the reader who wishes to become familiar with the topic
of network games see the beautiful survey by Jackson and Zenou [9], along with the
seminal paper by Ballester et al. [3]. Very recently, a different approach, based on
variational inequality theory, has been put forward to tackle this kind of problems
and, in this respect, the interested reader can refer to the interesting and very detailed
paper by Parise and Ozdaglar [20].

In this paper we investigate, within the simple frame of the linear-quadratic
model, a generalized Nash equilibrium problem (GNEP) with shared constraints.
This class of games was proposed a long time ago by Rosen [22], but the last decade
has witnessed a renewed interest in the subject, due to its wide range of applications
and to its connection with the theory of variational inequalities [5, 7, 16, 17]. By
adding a shared constrained to the original quadratic problem we thus obtain a
GNEP, and loose uniqueness of the solution. Among the solutions of the new
problem, we select the so called variational solution and provide a closed form
expression for it. Furthermore, the new formula can be written by a series expansion
of the adjacency matrix, thus extending one of the results in [3] and allowing for a
graph-theoretic (as well as socio-economic) interpretation. Namely, this expansion
shows that although players only interact with their neighbors, the solution also
depends, to a certain extent, on indirect contacts (i.e., neighbors of neighbors,
neighbors of neighbors of neighbors, and so on).

The paper is organized as follows. In the following Section 2 we summarize
the basic background material on network games and focus on the exactly solvable
linear-quadratic model. Section 3 is devoted to a brief description of generalized
Nash equilibrium problems with shared constrained, and to the solution of our
specific problem, while Section 4 is dedicated to illustrate our result by means of two
worked-out examples. The paper ends with a concluding section where we outline
some promising avenues of research.
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2 Network Games

2.1 Elements of Graph Theory and Game Classes

We begin this section by recalling a few concepts and definitions of graph theory that
will be used in the sequel. We warn the reader that the terminology is not uniform
in the related literature. Formally, a graph g is a pair of sets (V ,E), where V is the
set of nodes (or vertexes) and E is the set of arcs (or edges), formed by pairs of
nodes (v,w). Arcs which have the same end nodes are called parallel, while arcs
of the form (v, v) are called loops. We consider here simple graphs, that is graphs
with no parallel arcs or loops. In our setting, the players will be represented by the
n nodes in the graph. Moreover, we consider here indirect graphs: arcs (v,w) and
(w, v) are the same. Two nodes v and w are adjacent if they are connected by an
arc, i.e., if (v,w) is an arc. The information about the adjacency of nodes can be
stored in the adjacency matrix G whose elements gij are equal to 1 if (vi, vj ) is an
arc, 0 otherwise. G is thus a symmetric and zero diagonal matrix. Given a node v,
the nodes connected to v with an arc are called the neighbors of v and are grouped
in the set Nv(g). The number of elements of Nv(g) is the degree of v. A walk in the
graph g is a finite sequence of the form

vi0 , ej1 , vi1 , ej2 , . . . , ejk , vjk ,

which consists of alternating nodes and arcs of the graph, such that vit−1 and vit are
end nodes of ejt . The length of a walk is the number of its arcs. Let us remark that
it is allowed to visit a node or go through an arc more than once. A path is a walk
with all different nodes (except possibly the initial and terminal ones if the walk is
closed). The indirect connections between any two nodes in the graph are described
by means of the powers of the adjacency matrix G. Indeed, it can be proved that the
element g[k]ij of Gk gives the number of walks of length k between vi and vj .

We now proceed to specify the type of game that we will consider. For simplicity,
the set of players will be denoted by {1, 2, . . . , n} instead of {v1, v2, . . . , vn}. We
denote with Ai ⊂ R the action space of player i, while A = A1 × · · · × An and
the notation a = (ai, a−i ) will be used when we want to distinguish the action of
player i from the action of all the other players. Each player i is endowed with a
payoff function ui : A→ R that he/she wishes to maximize. The notation ui(a, g)

is often utilized when one wants to emphasize the influence of the graph structure
(e.g., when studying perturbation with respect to the removal of an arc). The solution
concept that we consider here is the Nash equilibrium of the game, that is, we seek
an element a∗ ∈ A such that for each i ∈ {1, . . . , n}:

ui(a
∗
i , a

∗−i ) ≥ ui(ai, a
∗−i ), ∀ ai ∈ Ai. (1)

A peculiarity of network games is that the vector a−i is only made up of components
aj such that j ∈ Ni(g), that is, j is a neighbor of i.
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We mentioned in the introduction that it is convenient to consider two specific
classes of games which allow a deeper investigation of the patterns of interactions
among players. For any given player i it is interesting to distinguish how variations
of the actions of player’s i neighbors affect his/her marginal utility. In the case where
the utility functions are twice continuously differentiable the following definitions
clarify this point.

Definition 1 We say that the network game has the property of strategic substitutes
if for each player i the following condition holds:

∂2ui(ai, a−i )
∂aj ∂ai

< 0, ∀(i, j) : gij = 1, ∀ a ∈ A.

Definition 2 We say that the network game has the property of strategic comple-
ments if for each player i the following condition holds:

∂2ui(ai, a−i )
∂aj ∂ai

> 0, ∀(i, j) : gij = 1,∀ a ∈ A.

For the subsequent development it is important to recall that if the ui are contin-
uously differentiable functions on A, the Nash equilibrium problem is equivalent to
the variational inequality V I (F,A): find a∗ ∈ A such that

[F(a∗)]�(a − a∗) ≥ 0, ∀ a ∈ A, (2)

where

[F(a)]� := −
(
∂u1

∂a1
(a), . . . ,

∂un

∂an
(a)

)

(3)

is also called the pseudo-gradient of the game, according to the terminology
introduced by Rosen. For an account of variational inequalities the interested reader
can refer to [6, 13, 18]. We recall here some useful monotonicity properties.

Definition 3 F : Rn → R
n is said to be monotone on A iff:

[F(x)− F(y)]�(x − y) ≥ 0, ∀ x, y ∈ A.

If the equality holds only when x = y, F is said to be strictly monotone.

A stronger type of monotonicity is given by the following

Definition 4 Let β > 0. F : Rn → R
n is said to be β-strongly monotone on A iff:

[F(x)− F(y)]�(x − y) ≥ β‖x − y‖2, ∀ x, y ∈ A.



Network Games 369

For linear operators on R
n the two concepts of strict and strong monotonicity

coincide and are equivalent to the positive definiteness of the corresponding matrix.
Conditions that ensure the unique solvability of a variational inequality problem

are given by the following theorem (see, e.g. [6, 13, 18]).

Theorem 1 IfK ⊂ R
n is a compact convex set and F : Rn → R

n is continuous on
K , then the variational inequality problem V I (F,K) admits at least one solution.
In the case that K is unbounded, existence of a solution may be established under
the following coercivity condition:

lim‖x‖→+∞
[F(x)− F(x0)]�(x − x0)

‖x − x0‖ = +∞,

for x ∈ K and some x0 ∈ K .
Furtheremore, if F is strictly monotone on K the solution is unique.

In the following subsection, we describe in detail the linear-quadratic reference
model on which we will build our generalized Nash equilibrium problem.

2.2 The Linear-Quadratic Model

Let Ai = R+ for any i ∈ {1, . . . , n}, hence A = R
n+. The payoff of player i is given

by:

ui(a, g) = −1

2
a2
i + αai + φ

n∑

j=1

gij aiaj , α, φ > 0. (4)

In this simplified model α and φ take on the same value for all players, which
then only differ according to their position in the network. The last term describes
the interaction between neighbors and since φ > 0 this interaction falls in the class
of strategic complements. The pseudo-gradient’s components of this game are easily
computed as:

Fi(a) = ai − α − φ

n∑

j=1

gij aj , i ∈ {1, . . . , n},

which can be written in compact form as:

F(a) = (I − φG)a − α1,

where 1 = (1, . . . , 1)� ∈ R
n. We will seek Nash equilibrium points by solving the

variational inequality:
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[F(a∗)]�(a − a∗) ≥ 0, ∀ a ∈ R
n+. (5)

Since the constraint set is unbounded, to ensure solvability we require that F be
strongly monotone, which (implying coercivity, for linear operators) also guarantees
the uniqueness of the solution.

Lemma 1 (see e.g. [9]) The matrix I−φG is positive definite iff φρ(G) < 1, where
ρ(G) is the spectral radius of G.

Proof The symmetric matrix I − φG is positive definite if and only if λmin(I −
φG) > 0. On the other hand, λmin(I−φG) = 1−φλmax(G). Since G is a symmetric
non-negative matrix, the Perron-Frobenius Theorem guarantees that λmax(G) =
ρ(G), hence I − φG is positive definite if and only if φρ(G) < 1. ��

To be self consistent, in the next lemma we recall the following result about series
of matrices.

Lemma 2 (see e.g. [2]) Let T be a square matrix and consider the series:

I + T + T 2 + · · · + T k + . . .

The series converges provided that lim
k

T k = 0, which is equivalent to ρ(T ) < 1. In

such case the matrix I − T is non singular and we have:

(I − T )−1 = I + T + T 2 + · · · + T k + . . .

Theorem 2 (see e.g. [9]) If φρ(G) < 1, then the unique Nash equilibrium is

a∗ = α(I − φG)−11 = α

∞∑

p=0

φpGp1 . (6)

Proof Since φρ(G) < 1, Lemma 1 guarantees that F is strongly monotone. Hence,
Theorem 1 applies and we get a unique solution of (5). On the other hand, Lemma 2
implies that the matrix I − φG is non singular, thus the linear system F(a) = 0,
which reads

(I − φG)a = α1,

has a unique solution a∗ given by (6). Moreover, looking at the expansion we get,
by construction, that any component of a∗ is strictly positive. Therefore, a∗ is the
unique solution of (5), thus it is the unique Nash equilibrium. ��
Remark 1 The expansion in (6) suggests an interesting interpretation. Indeed, it can
be shown that the (i, j) entry, g[p]ij , of the matrix Gp gives the number of walks of
length p between nodes i and j . Based on this observation, a measure of centrality
on the network was proposed by Katz and Bonacich (see e.g. [4]). Specifically, for
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any weight w ∈ R
n+, the weighted vector of Katz-Bonacich is given by:

bw(G, φ) = M(G, φ) = (I − φG)−1w =
∞∑

p=0

φpGpw.

In the case where w = 1, the (non weighted) centrality measure of Katz-Bonacich
of node i is given by:

b1,i (G, φ) =
n∑

j=1

Mij (G, φ)

and counts the total number of walks in the graph, which start at node i, exponen-
tially damped by φ.

Remark 2 The game under consideration also falls in the class of potential games
according to the definition introduced by Monderer and Shapley [15]. Indeed, a
potential function is given by:

P(a,G, φ) =
n∑

i=1

ui(a,G)− φ

2

n∑

i=1

n∑

j=1

gij aiaj .

Monderer and Shapley have proved that, in general, the solutions of the problem

max
a∈A P (a,G, φ)

form a subset of the solution set of the Nash game. Because under the condition
φρ(G) < 1 both problems have a unique solution, it follows that the two problems
share the same solution.

3 Generalized Nash Equilibrium Problems on Networks

3.1 An Overview of GNEPs and the Variational Inequality
Approach to their Solution

In GNEPs each player’s startegy set may depend on the strategies of the other
players. We consider here the simplified framework where Ai ⊆ R+ and we are
given a function g : Rn → R

m which describes the shared constraints. The strategy
set of player i is then written as

Ki(a−i ) = {ai ∈ R+ : g(a) = g(ai, a−i ) ≤ 0}.
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Thus, players share a common constraint g and have an additional individual
nonnegativity constraint. With these ingredients, the GNEP is the problem of finding
a∗ ∈ R

n such that, for any i ∈ {1, . . . , n}, a∗i ∈ Ki(a
∗−i ) and

ui(a
∗
i , a

∗−i ) ≥ ui(ai, a
∗−i ), ∀ ai ∈ Ki(a

∗−i ). (7)

We will work under the common (although not minimal) assumptions that for
each fixed a−i ∈ A−i , the functions ui(·, a−i ) are concave and continuously
differentiable, and the components of g are convex and continuously differentiable.
As a consequence, a necessary and sufficient condition for a∗i ∈ Ki(a

∗−i ) to
satisfy (7) is

− ∂ui(a
∗
i , a

∗−i )
∂ai

(ai − a∗i ) ≥ 0, ∀ ai ∈ Ki(a
∗−i ). (8)

Thus, if we define F(a) as in (3), and

K(a) = K1(a−1)× · · · ×Kn(a−n),

it follows that a∗ is a GNE if and only if a∗ ∈ K(a∗) and

[F(a∗)]�(a − a∗) ≥ 0, ∀ a ∈ K(a∗). (9)

The problem above, where also the feasible set depends on the solution, is called
a quasi-variational inequality and its solution is as difficult as the original GNEP.

Assume now that a∗ is a solution of GNEP. Hence, for each i, a∗i solves the
maximization problem

max
ai
{ui(ai, a∗−i ) : g(ai, a

∗−i ) ≤ 0, ai ≥ 0}.

Under some standard constraint qualification we can then write the KKT conditions
for each maximization problem. We then introduce the Lagrange multiplier λi ∈ R

m

associated with the costraint g(ai, a∗−i ) ≤ 0 and the multiplier μi ∈ R associated
with the nonnegativity constraint ai ≥ 0. The Lagrangian function for each player i
reads as:

Li(ai, a
∗−i , λi, μi) = ui(ai, a

∗−i )− [g(ai, a∗−i )]�λi + μiai

and the KKT conditions for all players are given by:

∇aiLi(a
∗
i , a

∗−i , λi∗, μ∗i ) = 0, i = 1, . . . , n, (10)

λi∗j gj (a
∗) = 0, λi∗j ≥ 0, gj (a

∗) ≤ 0, i = 1, . . . , n, j = 1, . . . , m (11)

μ∗i a∗i = 0, μ∗i ≥ 0, a∗i ≥ 0, i = 1, . . . , n. (12)
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Conversely, under the assumptions made, if a∗, λ, μ∗, where λ∗ = (λ1∗, . . . , λn∗)
and μ∗ = (μ∗1, . . . , μ∗n), satisfy the KKT system (10)–(12), then a∗ is a GNE.

Definition 5 Let a∗ be a GNE which together with the Lagrange multipliers λ∗ =
(λ1∗, . . . , λn∗) and μ∗ = (μ∗1, . . . , μ∗n) satisfies the KKT system of all players. We
call a∗ a normalized equilibrium if there exists a vector r ∈ R

n++ and a vector
λ̄ ∈ R

m+ such that

λi∗ = λ̄

ri
, ∀ i = 1, . . . , n,

which means that, for a normalized equilibrium, the multipliers of the constraints
shared by all players are proportional to a common multiplier. In the special case
ri = 1 for any i, i.e., the multipliers coincide for each player, a∗ is called variational
equilibrium (VE). Rosen [22] proved that if the feasible set, which in our case is:

K = {a ∈ R
n+ : g(a) ≤ 0}

is compact and convex, then there exists a normalized equilibrium for each r ∈
R

n++.

Now, let us define, for each r ∈ R
n++, the vector function F r : Rn → R

n as follows:

[F r(a)]� := −
(

r1
∂u1

∂a1
(a), . . . , rn

∂un

∂an
(a)

)

.

The variational inequality approach for finding the normalized equilibria of the
GNEP is expressed by the following theorem which can be viewed as a special case
of Proposition 3.2 in [17] or of Theorem 6.1 in [14].

Theorem 3

1. Suppose that a∗ is a solution of V I (F r,K), where r ∈ R
n++, a constraint

qualification holds at a∗ and (λ̄, μ̄) ∈ R
m × R

n are the multipliers associated
to a∗. Then, a∗ is a normalized equilibrium such that the multipliers (λi∗, μ∗i ) of
each player i satisfy the following conditions:

λi∗ = λ̄

ri
, μ∗i =

μ̄i

ri
, ∀ i = 1, . . . , n.

2. If a∗ is a normalized equilibrium such that the multipliers (λi∗, μ∗i ) of each
player i satisfy the following conditions:

λi∗ = λ̄

ri
, ∀ i = 1, . . . , n,
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for some vector λ̄ ∈ R
m+ and r ∈ R

n++, then a∗ is a solution of V I (F r,K) and
(λ̄, r1μ

∗
1, . . . , rnμ

∗
n) are the corresponding multipliers.

3.2 A Linear-Quadratic Network GNEP

In this section we investigate an extension to a GNEP of the linear-quadratic network
game described in Section 2.2. Specifically, we assume the same network structure
given by the adjacency matrix G and the same payoff functions defined as in (4),
while the strategy set of player i is given by the usual individual constraint ai ≥
0 and an additional constraint, shared by all the players, on the total quantity of
activities of all players, that is

Ki(a−i ) =
⎧
⎨

⎩
ai ∈ R+ :

n∑

j=1

aj ≤ C

⎫
⎬

⎭
, i = 1, . . . , n,

where C > 0 is a given parameter. Depending on the specific application, the
additional constraint can have the meaning of a collective budget upper bound or
of a limited availability of a certain commodity.

We know from Theorem 2 that if φρ(G) < 1, then the linear-quadratic network
game (without the new shared constraint) has a unique Nash equilibrium a∗ given
by (6). However, if a∗ does not satisfy the shared constraint, i.e., it does not belong
to the set

K =
{

a ∈ R
n+ :

n∑

i=1

ai ≤ C

}

,

it cannot be a GNE for the new game. On the other hand, under the assumption
φρ(G) < 1, Theorem 1 guarantees that the pseudo-gradient F of the game, defined
as

F(a) = (I − φG)a − α1,

is strongly monotone, hence there exists a unique solution of V I (F,K), i.e., there
exists a unique variational equilibrium of the linear-quadratic network GNEP. The
following result gives an explicit formula for such variational equilibrium and an
expansion similar to (6).

Theorem 4 If φρ(G) < 1, then the unique variational equilibrium ā of the linear-
quadratic network GNEP, that is the unique solution of V I (F,K), is given by the
following formula:
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ā =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a∗ = α
∞∑
p=0

φpGp1 if
n∑

i=1
a∗i ≤ C,

Ca∗
n∑

i=1
a∗i
=

C
∞∑
p=0

φpGp1

∞∑
p=0

φp1�Gp1
if

n∑

i=1
a∗i > C,

(13)

where a∗ = α(I − φG)−11 is the Nash equilibrium of the linear-quadratic network
game.

Proof Theorem 1 guarantees that the matrix I − φG is positive definite and the
map F is strongly monotone. Therefore, V I (F,K) has a unique solution. If a∗ ∈
K , then a∗ solves V I (F,K) since F(a∗) = 0. Otherwise, if a∗ /∈ K , then ā =
Ca∗/

n∑

i=1
a∗i ∈ K since āi > 0 for any i = 1, . . . , n and

∑n
i=1 āi = C. Moreover ā

is a solution of the KKT system related to V I (F,K) with multipliers

λ̄ = α

⎛

⎜
⎜
⎝1− C

n∑

i=1
a∗i

⎞

⎟
⎟
⎠ > 0,

associated to the shared constraint, and μ̄i = 0 associated to ai ≥ 0 for any i =
1, . . . , n. In fact, we have

F(ā)+ λ̄1− μ̄ = Cα(I − φG)(I − φG)−11
∑n

i=1 a
∗
i

− α1+ α

⎛

⎜
⎜
⎝1− C

n∑

i=1
a∗i

⎞

⎟
⎟
⎠ 1 = 0

λ̄ ≥ 0,
n∑

i=1

āi ≤ C, λ̄

(

C −
n∑

i=1

āi

)

= 0

μ̄i ≥ 0, āi ≥ 0, μ̄i āi = 0, ∀ i = 1, . . . , n.

Therefore, ā solves V I (F,K). Finally, the ratio between the expansions in (13)
follows from the one for a∗ given in (6):

ā = Ca∗

1�a∗
=

Cα
∞∑
p=0

φpGp1

α
∞∑
p=0

φp1�Gp1
=

C
∞∑
p=0

φpGp1

∞∑
p=0

φp1�Gp1
.

This concludes the proof. ��
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Notice that if a∗ ∈ K , then the formula giving ā contains α but does not C, while
if a∗ /∈ K , it contains C but not α.

4 Numerical Experiments

In this section, we show some preliminary numerical experiments for the linear-
quadratic network GNEP described in Section 3.2 by means of two small-size test
problems.

Example 1 We consider the network shown in Figure 1 (see also [3]) with 11 nodes
(players). The spectral radius of the adjacency matrix G is ρ(G) ) 4.4040. We set
parameter α = 1 and chose five different values for φ:

φ = 0.3/ρ(G), φ = 0.5/ρ(G), φ = 0.7/ρ(G), φ = 0.9/ρ(G), φ = 0.95/ρ(G),

to guarantee the assumption of Theorem 4 holds. Moreover, we set C = 20 in
the shared constraint so that the variational equilibrium ā of the GNEP is different
from the Nash equilibrium a∗ of the classical network game. It follows from
expansions in (13) that a∗ and ā can be approximated by the sequences {a∗k } and
{āk}, respectively:

a∗k = α

k∑

p=0

φpGp1, āk =
C

k∑

p=0
φpGp1

k∑

p=0
φp1�Gp1

.

Table 1 shows, for both sequences, the number of sums needed to get an approxi-
mation error less than 10−t for any t = 1, . . . , 10. Specifically, for any value of φ,
the numbers

min
{
k : ‖a∗k − a∗‖∞ < 10−t

}
and min

{
k : ‖āk − ā‖∞ < 10−t

}

Fig. 1 Network topology of
Example 1

1

2

3

4

5

6

7

8

9

10

11
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Table 1 Speed of convergence of the sequences {a∗k } and {āk} to a∗ and ā, respectively

φ = 0.3

ρ(G)
φ = 0.5

ρ(G)
φ = 0.7

ρ(G)
φ = 0.9

ρ(G)
φ = 0.95

ρ(G)

Error NE VE NE VE NE VE NE VE NE VE

10−1 2 1 4 1 10 1 44 1 105 1

10−2 4 2 7 3 16 5 66 9 150 11

10−3 6 4 11 6 23 11 88 27 194 43

10−4 8 5 14 9 29 17 110 48 239 86

10−5 9 7 17 13 35 23 132 70 284 131

10−6 11 9 21 16 42 30 153 92 329 176

10−7 13 11 24 19 48 36 175 114 374 221

10−8 15 13 27 23 55 43 197 136 419 265

10−9 17 15 31 26 61 49 219 157 464 310

10−10 19 17 34 29 68 56 241 179 509 355

For any value of φ, the first column (NE) reports min
{
k : ‖a∗k − a∗‖∞ < 10−t

}
, while the second

column (VE) reports min
{
k : ‖āk − ā‖∞ < 10−t

}
, for any t = 1, . . . , 10

Fig. 2 Network topology of
Example 2

1

2

3

are reported in the first (NE) and second (VE) column, respectively, for any t =
1, . . . , 10.

The results in Table 1 show that the convergence of {āk} to the variational
equilibrium ā seems to be faster than the convergence of {a∗k } to the Nash
equilibrium a∗. Moreover, the more the value of φ is close to 1/ρ(G), the more
this gap is evident.

Example 2 We now consider the network shown in Figure 2 with 3 nodes (players).
The spectral radius of the adjacency matrix G is ρ(G) = 2. We set parameter α = 1,
φ = 0.25 and C = 3, so that the Nash equilibrium is a∗ = (2, 2, 2)� and the
variational equilibrium is ā = (1, 1, 1)�. We exploit Theorem 3 to approximate the
set of normalized equilibria. Consider the simplex

W =
{
r ∈ R

3++ : r1 + r2 + r3 = 1
}

of weights of the parametrized V I (F r,K) and its discretization given by the finite
set of vectors

(q1

D
,
q2

D
,
q3

D

)
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0 1 2 3

a
1

0

1
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a 2
Normalized equilibria (D=20)

0 1 2 3
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1

0

1

2
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Normalized equilibria (D=40)

0 1 2 3

a
1

0

1

2

3
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Normalized equilibria (D=60)

0 1 2 3

a
1

0

1

2

3

a 2

Normalized equilibria (D=80)

Fig. 3 Normalized equilibria (blue points) and variational equilibrium (red circle) of the linear-
quadratic network GNEP

such that q1, q2, q3 and D are positive integers and q1 + q2 + q3 = D. Figure 3
shows the set of normalized equilibria, projected on the plane (a1, a2), for different
values of D. Notice that all the found normalized equilibria belong to the plane
a1 + a2 + a3 = 3.

The results in Figure 3 suggest that the set of normalized equilibria is equal to

{
a ∈ R

3+ : a1 + a2 + a3 = 3, ai ≤ 1.3924 i = 1, 2, 3
}

= conv

⎧
⎨

⎩

⎛

⎝
1.3924
1.3924
0.2152

⎞

⎠ ,

⎛

⎝
1.3924
0.2152
1.3924

⎞

⎠ ,

⎛

⎝
0.2152
1.3924
1.3924

⎞

⎠

⎫
⎬

⎭
.

Notice that, due to the symmetry of the considered network, the variational
equilibrium ā is equal to the barycenter of the set of normalized equilibria.



Network Games 379

5 Conclusions and Further Research Perspectives

In this note, we dealt with a network GNEP and derived a closed formula for
its solution which involves the powers of the adjacency matrix, thus extending
a previous result. To the best of our knowledge, this kind of formulas have
been derived only in a few special cases and, because of their very interesting
interpretation, it would be desirable to obtain similar results for more general
problem classes. Another promising direction of research is the inclusion of random
data in the model (see e.g. [10, 11]), which could be done by using tools from
infinite-dimensional duality theory (see e.g. [8, 12, 14]).
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Abstract The inversion of the celebrated Radon transform in three dimensions
involves two-dimensional plane integration. This inversion provides the mathe-
matical foundation of the important field of medical imaging, known as three-
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analytical expression for the inversion of the three-dimensional Radon transform,
as well as a novel numerical implementation of this formula, based on piecewise
polynomials of the third degree.
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1 Introduction

The celebrated Radon transform of a two-dimensional function is defined as the
set of all its line integrals [1, 2]. The transition to three space dimensions yields
a certain generalization of line integration, namely plane integration. Indeed, the
Radon transform of a three-dimensional function is defined as the set of all its
plane integrals.1The inversion of the three-dimensional Radon transform provides
the mathematical foundation of the important field of medical imaging, known as
3D positron emission tomography (3D PET). The 3D Radon transform gives rise
to an associated inverse problem, namely to “reconstruct” a function from its plane
integrals. The main task in 3D PET imaging is the numerical implementation of the
inversion of the 3D Radon transform.

In 3D PET, contrary to the conventional 2D PET, there is a certain generalization
of the notion of image reconstruction: in the 2D case, the integration occurs in planes
instead of lines. The difficulties arising in the 2D cases and their generalizations
[3] are overcome in the 3D case. The inversion of the 3D Radon transform
seems more straightforward than the one of the conventional Radon transform [4].
There are several numerical implementation methods in the literature, including:
(i) the introduction of the concept of three-dimensional image reconstruction from
“complete” projections [5]; (ii) the formulation of the 3D Radon transform for
discrete 3D images (volumes), based on the summation over planes with small
absolute slopes [6]; and (iii) the reconstruction of conductivities in the context
of electric impedance tomography (EIT) [7]. The differences between 2D and
3D Radon transform inversion are emphasized in [8], and [9], where an analytic
filter-backprojection method is introduced based on the spatially invariant detector
point spread function. The authors of [10] proposed a spline-based inversion of the
Radon transform in two and three dimensions; also the PET image reconstruction
algorithms proposed in [11] show that analytic algorithms in 3D are linear and
therefore allow easier control of the spatial resolution and noise correlations than
in the case of the 2D reconstructions.

In this chapter, we present a novel formula for the inversion of the 3D Radon
transform, as well as a novel numerical implementation of this formula, based on
piecewise polynomial interpolation. We expect that our novel numerical implemen-
tation will enhance three-dimensional medical image reconstruction, especially in
the case of 3D PET.

1Plane integrals are special cases of surface integrals, where the surface of integration is a plane.
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2 The Radon Transform in Two Space Dimensions

In order to elucidate the properties of the three-dimensional Radon transform, it
is essential to review the corresponding properties of the two-dimensional Radon
transform.

A line L on the plane can be specified by the signed distance from the origin ρ,
with −∞ < ρ < ∞, and the angle with the x1-axis θ , with 0 ≤ θ < 2π , as in
Figure 1. We denote the corresponding unit vectors perpendicular and parallel to L

by n and p, respectively. These unit vectors are given by

n = (− sin θ, cos θ)T and p = (cos θ, sin θ)T , (1)

with

n · p = 0. (2)

Every point x = (x1, x2)
T lying on the line L in Cartesian coordinates can be

expressed in terms of the so-called local coordinates (ρ, τ ) via

x = ρ n+ τp,

where τ denotes the arc length. Therefore, we parameterize each point x on the line
L in the following manner:

x := x(ρ, τ ; θ) =
[
x1(ρ, τ ; θ)
x2(ρ, τ ; θ)

]

=
[
τ cos θ − ρ sin θ

τ sin θ + ρ cos θ

]

(3)

Fig. 1 A two-dimensional function f (x1, x2) expressed in Cartesian coordinates, and its projec-
tions f̂ (ρ, θ), expressed in local coordinates
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Through Equation (3), we can express the local coordinates (ρ, τ ) in terms of
Cartesian coordinates (x1, x2) and the associated angle θ :

[
ρ

τ

]

:=
[
ρ(x1, x2; θ)
τ (x1, x2; θ)

]

=
[
x2 cos θ − x1 sin θ

x2 sin θ + x1 cos θ

]

(4)

We define the line integral over all lines L, defined in Equation (1), of a two-
dimensional Schwartz function f : R2 → R, f ∈ S(R2), as its two-dimensional
Radon transform, R2f . In the context of 2D PET, the 2D Radon transform of the
function f is usually stored in the form of the so-called sinogram, denoted by
f̂ (ρ, θ)

R2f = f̂ (ρ, θ) =
∫

L

f ds, (5)

where ds denotes an arc length differential, and S(R2) denotes the space of Schwartz
functions in R

2,

S(R2) =
{
f ∈ C∞(R2) : ||f ||α,β <∞

}
⊂ C∞(R2), (6)

and

||f ||α,β = sup
x∈R2

|xαDβf (x)|, ∀ multi− index α, β, |xαDβf (x)| → 0, as |x| → ∞.

(7)

Equation (5) may be rewritten via a parameterization x := x(τ ) of the line L, with
x : R2 → L, as follows:

f̂ (ρ, θ) =
∫ ∞

−∞
f (x(τ ))

∣
∣
∣
∣x′(τ )

∣
∣
∣
∣
2 dτ, (8)

where ||·||2 denotes the L2-norm in R
2. The parameterization provided by (3) will be

proven to be very convenient and easy-to-manipulate, especially for the description
of parallel lines. In this case, it is worth noting that

∣
∣
∣
∣x′(τ )

∣
∣
∣
∣
2 =

√
(

dx1

dτ

)2

+
(

dx2

dτ

)2

= cos2 θ + sin2 θ = 1. (9)

Hence, Equation (3) is a natural parameterization of the set of parallel lines L.
Therefore, the 2D Radon transform defined in Equation (5) may be expressed as
follows:

R2f = f̂ (ρ, θ) =
∫ ∞

−∞
f (τ cos θ − ρ sin θ, τ sin θ + ρ cos θ)dτ, (10)
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with 0 ≤ θ < 2π and −∞ < ρ < ∞. If we use a Dirac delta function, or a
line impulse, then the Radon transform, denoted by R2D defined in (10) may be
rewritten in the form:

R2f = f̂ (ρ, θ) =
∫ ∞

−∞

∫ ∞

−∞
f (x1, x2)δ(ρ + x1 sin θ − x2 cos θ)dx1dx2, (11)

taking into account Equation (4).
The 2D Radon transform (10) gives rise to one of the most significant inverse

problems in emission tomography. This specific inverse problem implies the “recon-
struction” of the function f (x1, x2), from its two-dimensional Radon transform, i.e.
the function f̂ (ρ, θ).

3 The Radon Transform in Three Space Dimensions

In the two-dimensional case, the Radon transform is considered on sets of parallel
lines. This consideration implies the involvement of line integrals. However, in
the three-dimensional case, the Radon transform is restricted on two-dimensional
planes. In this direction, the transition to three space dimensions yields a certain
generalization of line integration, namely plane integration.2

Therefore, we define the surface integral over all planes P of a three-dimensional
Schwartz function f : R

3 → R, f ∈ S(R3), as its three-dimensional Radon
transform, R3f . In the context of 3D PET, the 3D Radon transform of the function
f is usually stored in the form of the so-called 3D sinogram, denoted by f̂ (ρ, θ, φ):

R3f = f̂ (ρ, θ, φ) =
∫∫

P

f ds, (12)

where ds denotes an area differential and S(R3) denotes the space of Schwartz
functions in R

3:

S(R3) =
{
f ∈ C∞(R3) : ||f ||α,β <∞

}
⊂ C∞(R3), (13)

and

||f ||α,β = sup
x∈R3

|xαDβf (x)|, ∀ multi− index α, β, |xαDβf (x)| → 0, as |x| → ∞.

(14)

Equation (12) may be rewritten via a parameterization x := x(u, v) of the plane
P , with x : R3 → P , as follows:

2Plane integrals are special cases of surface integrals, where the surface of integration is a plane.
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f̂ (ρ, θ, φ) =
∫ ∞

−∞
f (x(u, v))

∣
∣
∣
∣
∂x
∂u
× ∂x

∂v

∣
∣
∣
∣ dudv, (15)

where, for the area differential we employed

ds =
∣
∣
∣
∣
∂x
∂u
× ∂x

∂v

∣
∣
∣
∣ dudv. (16)

In the three-dimensional setting, for convenience, we characterize each two-
dimensional plane P by a vector and a scalar, namely:

(i) the unit normal vector n

n =
⎡

⎣
n1

n2

n3

⎤

⎦ , with
√
n2

1 + n2
2 + n2

3 = 1, and (17)

(ii) the signed distance from the origin ρ.

The normal from the origin to the plane intersects the plane at the point ρn. Thus, if
x = (x1, x2, x3)

T is a point on the plane under investigation, then

(ρn− x) · n = 0 (18)

The above implies
⎡

⎣
ρn1 − x1

ρn2 − x2

ρn3 − x3

⎤

⎦ ·
⎡

⎣
n1

n2

n3

⎤

⎦ = 0,

or

ρ(n2
1 + n2

2 + n2
3)− (n1x1 + n2x2 + n3x3) = 0.

Hence, the equation of the plane is

ρ − n · x = 0, ∀ x ∈ P. (19)

We suppose that the plane of integration P , specified by its signed distance from
the origin ρ and its unit normal vector n, intersects the x1x2-plane in an angle θ , and
the x2x3-plane in an angle φ (spherical angles). In this connection, the unit normal
vector n is uniquely specified by the two spherical angles, i.e. n := n(θ, φ). Thus
f (ρ,n) involves three variables, namely f (ρ,n) = f (ρ, θ, φ). In this direction,
we characterize n in terms of spherical angles, as follows:

n(θ, φ) =
⎡

⎣
sin θ cosφ
sin θ sinφ

cos θ

⎤

⎦ , 0 ≤ θ ≤ π 0 ≤ φ ≤ 2π. (20)
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If a point x = (x1, x2, x3)
T lies on the plane of integration P , i.e. x ∈ P , then

Equation (19) implies

ρ − x1 sin θ cosφ − x2 sin θ sinφ − x3 cos θ = 0. (21)

Equation (21) provides a convenient parameterization of the plane under investi-
gation via x1 and x2, treated hereafter as independent variables. In this setting, x3
will be considered as a dependent variable. Taking into account the parameterization
induced by Equation (21), we rewrite the equation of a point x lying on the plane of
integration P as x = x(x1, x2). More specifically, if x ∈ P , then:

x := x(x1, x2; ρ, θ, φ) = (x1, x2, csc θ (ρ − x1 sin θ cosφ − x2 sin θ sinφ))T ,

(22)
where csc θ denotes the cosecant of the angle θ , i.e.,

csc θ = 1

cos θ
. (23)

Hence, the area differential ds is given by

ds =
∣
∣
∣
∣
∂x(x1, x2)

∂x1
× ∂x(x1, x2)

∂x2

∣
∣
∣
∣ dx1dx2, (24)

where

∂x
∂x1

× ∂x
∂x2

=

∣
∣
∣
∣
∣
∣
∣

x̂1 x̂2 x̂3
∂x1
∂x1

∂x2
∂x1

∂x3
∂x1

∂x1
∂x2

∂x2
∂x2

∂x3
∂x2

∣
∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

x̂1 x̂2 x̂3

1 0 − tan θ cosφ
0 1 tan θ cosφ

∣
∣
∣
∣
∣
∣
=

⎡

⎣
tan θ cosφ
tan θ cosφ

1

⎤

⎦ , (25)

and x̂1, x̂2, and x̂3 are the corresponding unit vectors in the x1, x2, and x3
directions, respectively. Taking into account Equation (25), the magnitude of the
above “Jacobian” vector is,

∣
∣
∣
∣
∂x
∂x1

× ∂x
∂x2

∣
∣
∣
∣ =

√
tan2 θ + 1 = csc θ. (26)

Hence Equation (24) yields

ds = csc θdx1dx2. (27)

Thus, Equation (15) becomes

f̂ (ρ, θ, φ)=
∫ ∞

−∞
dx1

∫ ∞

−∞
csc θf (x1, x2, csc θ(ρ−x1 sin θ cosφ−x2 sin θ sinφ)) dx2.

(28)
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An alternative way to express the three-dimensional Radon transform of a
function f : R3 → R involves a Dirac delta, or “plane impulse”, namely

R3f = f̂ (ρ, θ, φ) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x1, x2, x3)

× δ(ρ − x1 sin θ cosφ − x2 sin θ sinφ − x3 cos θ)dx1dx2dx3. (29)

The alternative definition given by Equation (29) will be proven very useful (see
Theorem 1) for the inversion and the numerical implementation of the three-
dimensional Radon transform, as discussed in Sections 4 and 5.

4 The Inversion of the Radon Transform in Three Space
Dimensions via Plane Integration

For the analytical inversion of the Radon transform in three space dimensions
defined in Equation (28) we shall employ plane integration. In this direction, we
will make use of the so-called central slice theorem (CST). This specific theorem,
applied in the three-dimensional case, provides a fundamental tool for the Fourier-
based inversion of the 3D Radon transform.

Theorem 1 (Central Slice Theorem in 3D) The three-dimensional Fourier trans-
form F3 of a function f (x1, x2, x3), usually denoted by f̃ = F3f , equals the
one-dimensional Fourier transform with respect to the signed distance from the
origin F (ρ)

1 of the three-dimensional Radon transform R3 of the same function
f̂ = R3f , i.e.

F3f = F (ρ)
1 R3f, or f̃ = F (ρ)

1 f̂ , (30)

where

f̃ (k1, k2, k3) := (F3f ) (k1, k2, k3)

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x1, x2, x3)e

−2π i(k1x1+k2x2+k3x3)dx1dx2dx3, (31)

and

F (ρ)
1 f̂ =

∫ ∞

−∞
f̂ (ρ, θ, φ)e−2π ikρdρ. (32)

Proof For the proof of the central slice theorem in three dimensions, it is convenient
to employ the alternative definition of the three-dimensional Radon transform as
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provided via a delta function in Equation (29). In this case, we expand Equation
(32) as follows:

F (ρ)
1 f̂ =

∫ ∞

−∞
f̂ (ρ, θ, φ)e−2π ikρdρ (33)

=
∫ ∞

−∞

(∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x1, x2, x3)

× δ(ρ − x1 sin θ cosφ − x2 sin θ sinφ − x3 cos θ)dx1dx2dx3

)

e−2π ikρdρ

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x1, x2, x3)

(∫ ∞

−∞
e−2π ikρ

× δ(ρ − x1 sin θ cosφ − x2 sin θ sinφ − x3 cos θ)dρ

)

dx1dx2dx3

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x1, x2, x3)e

−2π ik(x1 sin θ cosφ+x2 sin θ sinφ+x3 cos θ)

dx1dx2dx3

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x1, x2, x3)e

−2π i[(k sin θ cosφ)x1+(k sin θ sinφ)x2+(k cos θ)x3]

dx1dx2dx3

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x1, x2, x3)e

−2π i(k1x1+k2x2+k3x3)dx1dx2dx3

= f̃ ,

where we introduced the new k-variables in the Fourier space vector k :=
(k1, k2, k3)

T of spatial frequencies as follows:

k1 = k sin θ cosφ, k2 = k sin θ sinφ, k3 = k cos θ, (34)

as the new k-variables in the Fourier space. ��
Hence, the Fourier transform with respect to ρ of the “data” equals the three-
dimensional Fourier transform of the function under investigation evaluated at the
new set of variables. The inversion of Equation (30) yields

f = F−1
3 f̃ . (35)

For the inversion of the 3D Radon transform we will utilize the following corollary.
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Corollary 1 (One-Dimensional Fourier Transform of the Second Derivative)
For any twice differentiable function g with respect to ρ, the one-dimensional
Fourier transform of the second derivative of g, F (ρ)

1 g′′, is related with the one-

dimensional Fourier transform of g, F (ρ)
1 g, by the following expression:

(
F (ρ)

1 g′′
)
(ξ) = −4π2ξ2G(ξ), (36)

where F (ρ)
1 denotes the one-dimensional Fourier transform with respect to ρ

defined in Equation (32), g′′ denotes the second derivative of g with respect to ρ,
i.e.,

g′′ = ∂2g

∂ρ2 , (37)

and G denotes the one-dimensional Fourier transform of g,

G = F (ρ)
1 g. (38)

Proof Inverting Equation (32) and employing g instead of f̃ yields

g =
{
F (ρ)

1

}−1
G =

∫ ∞

−∞
G(ξ)e2π iρξdξ, (39)

where G is defined in Equation (38). As in [12], we take the second derivative of
both sides of Equation (39):

g′′ := ∂2g

∂ρ2 =
∂2

∂ρ2

(∫ ∞

−∞
G(ξ)e2π iρξdξ

)

=
∫ ∞

−∞
G(ξ)

[
∂2

∂ρ2

(
e2π iρξ

)]

dξ

=
∫ ∞

−∞
G(ξ)

[
(2π iξ)2 e2π iρξ

]
dξ

=
∫ ∞

−∞

[
−4π2ξ2G(ξ)

]
e2π iρξdξ. (40)

From the above it is clear that the functions g′′ and −4π2ξ2G(ξ) form a Fourier
transform pair. Hence, Equation (40), combined with Equation (39), imply Equation
(36). ��
Theorem 2 (Inversion of the Three-Dimensional Fourier Transform) The
inverse of the three dimensional Radon transform f̃ = R3f , defined in Equations
(28) and (29), of a Schwartz function f ∈ S (R3) is given by
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f (x1, x2, x3) = − 1

4π2

∫ π

0
sin θdθ

∫ 2π

0
f̃ ′′(ρ∗, θ, φ)dφ, (41)

where, as in Equation (37), prime denotes differentiation with respect to ρ, i.e.

f̃ ′′(ρ∗, θ, φ) = ∂2

∂ρ2 f̂ (ρ, θ, φ)

∣
∣
∣
∣
ρ=ρ∗

, (42)

and ρ∗ is given by

ρ∗ = x1 sin θ cosφ + x2 sin θ sinφ + x3 cos θ. (43)

Proof Equation (35) implies

(
F−1

3 g
)
(x1, x2, x3) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(x1, x2, x3)e

2π i(k1x1+k2x2+k3x3)dk1dk2dk3.

(44)
In this direction, the inversion of the three-dimensional Fourier transform will reveal
the unknown function f in the sense that:

f (x1, x2, x3) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f̃ (k1, k2, k3)e

2π i(k1x1+k2x2+k3x3)dk1dk2dk3.

(45)
We proceed by making a change of variables from (k1, k2, k3) to (k, θ, φ) defined
by Equation (34). The corresponding Jacobian is given by

J (k, θ, φ) =

∣
∣
∣
∣
∣
∣
∣

∂k1
∂k

∂k1
∂θ

∂k1
∂φ

∂k2
∂k

∂k2
∂θ

∂k2
∂φ

∂k3
∂k

∂k3
∂θ

∂k3
∂φ

∣
∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

sin θ cosφ k cos θ cosφ −k sin θ sinφ

sin θ sinφ k cos θ sinφ k sin θ cosφ
cos θ −k sin θ 0

∣
∣
∣
∣
∣
∣
= k2 sin θ.

(46)
Thus we modify Equation (45) in the following manner:

f (x1, x2, x3) =
∫ π

0

∫ 2π

0

∫ ∞

−∞
f̃ (k sin θ cosφ, k sin θ sinφ, k cos θ)

× e2π ik(sin θ cosφx1+sin θ sinφx2+cos θx3)J (k, θ, φ)dkdθdφ. (47)

However, a point x = (x1, x2, x3)
T lying on the plane of integration P (x ∈ P ),

according to Equation (21), satisfies

ρ∗ − x1 sin θ cosφ − x2 sin θ sinφ − x3 cos θ = 0, (48)

where ρ∗ is the signed distance of the plane P from the origin, see Equation (43).
Hence, taking into account Equations (46), (48), and (47) may be rewritten as
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f (x1, x2, x3) =
∫ π

0
sin θdθ

∫ 2π

0

[ ∫ ∞

−∞
f̃ (k sin θ cosφ, k sin θ sinφ, k cos θ)

× e2π ikρ∗k2dk

]

dφ. (49)

We combine Equations (30) with (32) and (34) to obtain

f̃ (k sin θ cosφ, k sin θ sinφ, k cos θ) =
∫ ∞

−∞
f̂ (ρ, θ, φ)e−2π ikρdρ. (50)

In Equation (49), we replace f̃ by the right-hand side of Equation (50)

f (x1, x2, x3) =
∫ π

0
sin θdθ

∫ 2π

0

[∫ ∞

−∞

(∫ ∞

−∞
f̂ (ρ, θ, φ)e−2π ikρdρ

)

(51)

e2π ikρ∗k2dk
]

dφ.

We denote the one-dimensional Fourier transform of the three-dimensional Radon
transform of f by F̂ ,

F̂ (k) :=
∫ ∞

−∞
f̂ (ρ, θ, φ)e−2π ikρdρ, (52)

and insert Equation (52) into Equation (51):

f (x1, x2, x3) =
∫ π

0
sin θdθ

∫ 2π

0

[∫ ∞

−∞
k2F̂ (k)e2π ikρ∗dk

]

dφ. (53)

The final step involves the rewriting of Equation (53) in the following manner:

f (x1, x2, x3) = − 1

4π2

∫ π

0
sin θdθ

∫ 2π

0

[∫ ∞

−∞

(
−4π2k2F̂ (k)

)
e2π ikρ∗dk

]

dφ.

(54)
We employ Corollary 1, and replace the integral inside the brackets on the left-hand
side of Equation (54), by the left-hand side of the first line of Equation (40) to obtain

f (x1, x2, x3) = − 1

(4π)2

∫ π

0
sin θdθ

∫ 2π

0

∂2f̃ (ρ, θ, φ)

∂ρ2

∣
∣
∣
∣
ρ=ρ∗

dφ, (55)

which, via Equation (42), is Equation (41). ��
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5 Numerical Implementation of the Inversion of the Radon
Transform in Three Space Dimensions via Piecewise Cubic
Polynomials

For the numerical implementation of the inversion of the Radon transform in three
space dimensions we will employ piecewise continuous cubic polynomials, namely
cubic splines. It is important to note that all integrals involving the second derivative
with respect to ρ of the 3D Radon transform will be evaluated at ρ = ρ∗, namely at

ρ∗ = x1 sin θ cosφ + x2 sin θ sinφ + x3 cos θ. (56)

As shown in the previous section, the 3D inverse Radon transform can be expressed
as

f (x1, x2, x3) = − 1

4π2

∫ π

0
sin θdθ

∫ 2π

0
f̂ ′′(ρ, θ, φ)

∣
∣
∣
∣
ρ=ρ∗

dφ (57)

where ρ∗, f̂ and f̂ ′′ are defined in Equations (56), (28), and (42), respectively.
We assume that the three-dimensional Radon transform, f̂ , is given for every θ

and every φ at the n knots {ρi}n1. We denote the value of f̂ at ρi by f̂i , namely

f̂i = f̂ (ρi, θ, φ), θ ∈ [0, π ], φ ∈ [0, 2π ], i = 1, . . . , n− 1. (58)

We also assume that both f̂ (ρ, θ, φ) and f̂ ′(ρ, θ, φ), where

f̂ ′(ρ, θ, φ) = ∂f̂ (ρ, θ, φ)

∂ρ
, (59)

vanish at the endpoints ρ1 = −1 and ρn = 1, i.e.

f̂ (ρ1, θ, φ) = f̂ (ρn, θ, φ) = 0, θ ∈ [0, π ], φ ∈ [0, 2π ], (60)

and

∂

∂ρ
f̂ (ρ1, θ, φ) = ∂

∂ρ
f̂ (ρn, θ, φ) = 0, θ ∈ [0, π ], φ ∈ [0, 2π ]. (61)

In each interval [ρi, ρi+1], i = 1, . . . , n − 1, we approximate f̂ (ρ, θ, φ) by the
third-degree spline S

(3)
i , namely

f̂ (ρ, θ, φ) ∼ S
(3)
i (ρ, θ, φ), ρ ∈ [ρi, ρi+1] θ ∈ [0, π ], φ ∈ [0, 2π ]. (62)
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The cubic spline S
(3)
i interpolates f̃ at the points {ρi}n1:

S
(3)
i (ρi, θ, φ) = fi, i = 1, . . . , n. (63)

Therefore, for ρ ∈ [ρi, ρi+1]

S
(3)
i (ρ, θ, φ) = ai(θ, φ)+ bi(θ, φ)ρ + ci(θ, φ)ρ

2 + di(θ, φ)ρ
3. (64)

Then, following Equation (62),

∂

∂ρ
f̂ (ρ, θ, φ) ∼ ∂

∂ρ
S
(3)
i (ρ, θ, φ) =: S(2)

i (ρ, θ, φ), (65)

where

S
(2)
i (ρ, θ, φ) = bi(θ, φ)+ 2ci(θ, φ)ρ + 3di(θ, φ)ρ

2. (66)

Similarly,

∂2

∂ρ2 f̂ (ρ, θ, φ) ∼
∂2

∂ρ2 S
(3)
i (ρ, θ, φ) = ∂

∂ρ
S
(2)
i (ρ, θ, φ) =: S(1)

i (ρ, θ, φ), (67)

where

S
(1)
i (ρ, θ, φ) = 2ci(θ, φ)+ 6di(θ, φ)ρ (68)

Hence, Equation (57) becomes

f (x, y, z) = − 1

4π2

∫ π

0

∫ π

0
[2ci(θ, φ)+ 6di(θ, φ)ρ] sin θdφdθ (69)

The constants ci(θ, φ) and di(θ, φ) involved in the above inversion integral, are
given by the following expressions, see [13]:

ci(θ) = 1

2-i

(ρi+1f̂
′′
i − ρif̂

′′
i+1), (70a)

di(θ) =
f̂ ′′i+1 − f̂ ′′i

6Δi

, (70b)

where

Δi = ρi+1 − ρi, (70c)
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and

f̂ ′′i :=
∂2

∂ρ2
f̂ (ρi, θ, φ). (70d)

It is worth noting that the inversion formula (57) involves the known constants
{f̂ }n1 and the unknown constants {f̂ ′′}n1. For the computation of {f̂ ′′}n1, we employ
the continuity of the first derivative of the cubic spline, i.e.

S
(2)
i (ρi+1, θ, φ) = S

(2)
i+1(ρi, θ, φ), i = 1, 2, . . . , n−2, θ ∈ [0, π ], φ ∈ [0, 2π ],

(71a)
and

S
(2)
1 (ρ1, θ, φ) = S

(2)
n−1(ρn, θ, φ) = 0, θ ∈ [0, π ], φ ∈ [0, 2π ]. (71b)

The above consists of a system of n unknowns and of n equations, namely n − 2
equations arising from Equation (71a) for i = 1, 2, . . . , n − 2), and 2 equations
arising from Equation (71b). The continuity of the cubic spline itself, i.e.

S
(3)
i (ρi+1, θ, φ) = S

(3)
i+1(ρi, θ, φ) = 0, i = 1, 2, . . . , n−2, θ ∈ [0, π ], φ ∈ [0, 2π ]

(72a)
and

S
(2)
1 (ρ1, θ, φ) = S

(2)
n−1(ρn, θ, φ) = 0, θ ∈ [0, π ], φ ∈ [0, 2π ]. (72b)

The continuity of the cubic spline, S(3)
i (ρ, θ, φ), as expressed in Equations (72),

implies that the knots {ρi}n1 are removable logarithmic singularities.
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Factorization and Solution of Linear and
Nonlinear Second Order Differential
Equations with Variable Coefficients and
Mixed Conditions

E. Providas

Abstract This chapter deals with the factorization and solution of initial and
boundary value problems for a class of linear and nonlinear second order differential
equations with variable coefficients subject to mixed conditions. The technique
for nonlinear differential equations is based on their decomposition into linear
components of the same or lower order and the factorization of the associated
second order linear differential operators. The implementation and efficiency of the
procedure is shown by solving several examples.

1 Introduction

One of the most important categories of ordinary differential equations is the
second order differential equations with variable coefficients. Many problems from
engineering and science are within this large class of differential equations. These
equations, in addition to their natural significance, have also been used as a vehicle
for the study of other higher order differential equations. Both exact and numerical
methods have been developed for the their solution [2]. Most of the explicit
techniques rely on the knowledge of fundamental solutions. The factorization
method does not require any fundamental solution of the given second order
differential equation, but its applicability is limited to certain problems. For a review
of the factorization of differential operators the interested reader can look at the
selected articles [1, 3–9, 14–16].

Following the work in [10–13] and [17], this paper is concerned with the exact
solution of a class of linear and nonlinear differential equations of second order with
variable coefficients subject to nonlocal boundary conditions by direct factorization
of the differential equation as well as the boundary conditions. Specifically, in
Section 2, we recall some basic results and consider linear first order problems with
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a mixed boundary condition. In Section 3, we present the operator factorization
method for solving, under certain conditions, the linear second order differential
equation

u′′(x)+ p(x)u(x)+ q(x)u(x) = f (x), x ∈ (a, b), (1)

where the coefficients p(x), q(x) ∈ C[a, b] and the forcing function f (x) ∈
C[a, b], subject to general boundary conditions

μ11u(a)+ μ12u(b) = β1,

μ21u
′(a)+ μ22u

′(b)+ μ23u(a)+ μ24u(b) = β2, (2)

where μij , βi ∈ R, i = 1, 2, j = 1, 2, 3, 4. In Section 4, we deal with the
construction of explicit solutions to two kinds of nonlinear differential equations of
second order, which can be decomposed initially into linear second order differential
equations. First, we consider the equation of the form

u′′(x)u′(x)+ [
q(x)u′(x)+ g(x)u′′(x)

]
u(x)+ q(x)g(x)u2(x) = 0, (3)

for x ∈ (a, b) and q(x), g(x) ∈ C[a, b], along with the general boundary
conditions (2). Also, we consider the nonlinear differential equation of the type

F

(
u′′(x)
u(x)

, x

)

= F (w(x), x) = w2(x)+ a(x)w(x)+ b(x) = 0, x ∈ (a, b),

(4)
where the nonlinear function F is a second degree polynomial of w(x) =
u′′(x)/u(x) and the coefficients a(x), b(x) ∈ C[a, b], subject to general boundary
conditions (2). Finally, some conclusions are quoted in Section 5.

2 Preliminaries

We first recall some basic results. A linear operator P : C[a, b] → C[a, b] is said
to be correct if P is injective, R(P ) = C[a, b] and its inverse P−1 is bounded on
C[a, b]. Let A : C[a, b] → C[a, b] be the linear first order operator

Ay(x) = y′(x)+ a(x)y(x), D(A) = C1[a, b], (5)

where a(x) ∈ C[a, b], and Â be its restriction on

D(Â) = {y(x) ∈ D(A) : y(x0) = y0} , (6)
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where x0 ∈ [a, b] and y0 is an arbitrary real initial value. Then the following
fundamental theorem holds.

Theorem 1 The linear operator Â in (5) and (6) is correct and the unique solution
of the initial value problem

Ây(x) = f (x), ∀f (x) ∈ C[a, b], (7)

is given by

y(x) = Â−1f (x) = e
− ∫ x

x0
a(t)dt

(

y0 +
∫ x

x0

f (t)e

∫ t
t0
a(τ)dτ

dt

)

. (8)

Accordingly, let B : C[a, b] → C[a, b] be the linear second order operator

By(x) = y′′(x)+ b1(x)y
′(x)+ b2(x)y(x), D(B) = C2[a, b], (9)

where b1(x), b2(x) ∈ C[a, b], and B̂ be its restriction on

D(B̂) = {
y(x) ∈ D(B) : y(x0) = y0, y′(x0) = y′0

}
, (10)

where x0 ∈ [a, b] and y0, y
′
0 is a couple of given real numbers. Then we have the

next fundamental theorem.

Theorem 2 The linear operator B̂ in (9) and (10) is correct and the initial value
problem

B̂y(x) = f (x), ∀f (x) ∈ C[a, b], (11)

has exactly one solution y(x) = B̂−1f (x).

We now consider a problem for a first order differential equation and a nonlocal
boundary condition, which we will encounter below. For this, we prove the next
theorem.

Theorem 3 Let the general linear first order problem with a nonlocal boundary
condition

Q̂y(x) = y′(x)+ q(x)y(x) = f (x),

D(Q̂) =
{
y(x) ∈ C1[a, b] : μ1y(a)+ μ2y(b) = β

}
, (12)

where the operator Q̂ : C[a, b] → C[a, b], the given functions q(x), f (x) ∈
C[a, b], and the constants μ1, μ2, β ∈ R. If

μ1 + μ2e
− ∫ b

a q(t)dt 
= 0, (13)
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then the operator Q̂ is correct and the unique solution of problem (12) is given by

y(x) = Q̂−1f (x) = e−
∫ x
a q(t)dt

(

C +
∫ x

a

f (t)e
∫ t
a q(τ )dτ dt

)

, (14)

where

C =
(
μ1 + μ2e

− ∫ b
a q(t)dt

)−1
(

β − μ2e
− ∫ b

a q(t)dt

∫ b

a

f (t)e
∫ t
a q(τ )dτ dt

)

.

Proof It is known that the general solution of the first order differential equation
in (12) is

y(x) = e
− ∫ x

x0
q(t)dt

(

C +
∫ x

x0

f (t)e

∫ t
t0
q(τ)dτ

dt

)

, (15)

where x0 ∈ [a, b]. For x0 = a, we have

y(a) = C, y(b) = e−
∫ b
a q(t)dt

(

C +
∫ b

a

f (t)e
∫ t
a q(τ )dτ dt

)

.

Substituting these values into the boundary condition in (12), we obtain

(
μ1 + μ2e

− ∫ b
a q(t)dt

)
C = β − μ2e

− ∫ b
a q(t)dt

∫ b

a

f (t)e
∫ t
a q(τ )dτ dt.

If relation (13) holds, then

C =
(
μ1 + μ2e

− ∫ b
a q(t)dt

)−1
(

β − μ2e
− ∫ b

a q(t)dt

∫ b

a

f (t)e
∫ t
a q(τ )dτ dt

)

. (16)

From (15) and (16) it is implied (14). ��

3 Factorization Method for Linear Differential Equations

Let the linear differential operators of first order L1 : C[a, b] → C[a, b] and L2 :
C[a, b] → C[a, b] be defined by

L1u(x) = [D + r(x)] u(x), D(L1) = C1[a, b], (17)

L2u(x) = [D + s(x)] u(x), D(L2) = C1[a, b], (18)
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respectively, where D = d
dx

, and the coefficients r(x) ∈ C[a, b] and s(x) ∈
C1[a, b]. Consider the composition,

L1L2u(x) = L1 (L2u(x))

= [D + r(x)] ([D + s(x)] u(x))

=
[
D2 + (r(x)+ s(x))D + (s′(x)+ r(x)s(x))

]
u(x). (19)

This gives rise to the following proposition.

Proposition 1 Let the linear differential operator of second order L : C[a, b] →
C[a, b] be defined by

Lu(x) =
[
D2 + p(x)D + q(x)

]
u(x), D(L) = C2[a, b], (20)

where the coefficients p(x), q(x) ∈ C[a, b]. If there exist two functions r(x) ∈
C[a, b] and s(x) ∈ C1[a, b] satisfying the relations

r(x)+ s(x) = p(x), (21)

s′(x)+ r(x)s(x) = q(x), (22)

then the operator L can be factorized into a product of the two linear differential
operators of first order L1, L2 in (17) and (18), respectively, such that

Lu(x) = L1L2u(x). (23)

Remark 1 By solving equation (21) with respect to r(x) and then substituting
into (22), we get

r(x) = p(x)− s(x), (24)

s′(x)+ p(x)s(x)− s2(x) = q(x), (25)

where (25) is the nonlinear Riccati equation.

Consider the linear second order initial value problem

Lu(x) = f (x), u(x0) = β1, u′(x0) = β2, (26)

where f (x) ∈ C[a, b] is a forcing function, x0 is a point in [a, b], βi ∈ R, i = 1, 2,
and u(x) ∈ C2[a, b] is the unknown function describing the response of the system
modeled by (26). If (21) and (22) hold true, then this problem can be factorized and
solved in closed form as it is shown in the next theorem.
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Theorem 4 Let L be the linear differential operator of second order in (20) and L̂

be its restriction on

D(L̂) = {u(x) ∈ D(L) : u(x0) = β1, u′(x0) = β2}, (27)

where x0 ∈ [a, b] and β1, β2 ∈ R. If the prerequisites (21) and (22) are fulfilled
then:

(i) The operator L̂ can be factorized as

L̂u(x) = L̂1L̂2u(x), (28)

where L̂1, L̂2 are correct restrictions of the linear first order differential
operators L1, L2, defined in (17) and (18), on

D(L̂1) = {z(x) ∈ D(L1) : z(x0) = β2 + s(x0)β1}, (29)

D(L̂2) = {u(x) ∈ D(L2) : u(x0) = β1}, (30)

respectively.
(ii) The operator L̂ is correct and the unique solution of the initial value problem

L̂u(x) = f (x), ∀f (x) ∈ C[a, b], (31)

is given in closed form by

u(x) = L̂−1u(x) = L̂−1
2 L̂−1

1 f (x) = L̂−1
2 z(x)

= e
− ∫ x

x0
s(t)dt

(

β1 +
∫ x

x0

z(t)e

∫ t
t0
s(τ )dτ

dt

)

, (32)

where

z(x) = L̂−1
1 f (x) = e

− ∫ x
x0

r(t)dt
(

β2 + s(x0)β1 +
∫ x

x0

f (t)e

∫ t
t0
r(τ )dτ

dt

)

.

(33)

Proof

(i) From the definition of L̂ and Proposition 1, we have

Lu(x) = L1L2u(x) = f (x), u(x0) = β1, u′(x0) = β2. (34)

By setting

L2u(x) = u′(x)+ s(x)u(x) = z(x), (35)
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we get

L1z(x) = z′(x)+ r(x)z(x) = f (x). (36)

From (35) it is implied that

u′(x0) = z(x0)− s(x0)u(x0),

which when is substituted into the second condition in (34) yields

z(x0) = β2 + s(x0)β1.

Whence, we have the two linear first order initial value problems

L1z(x) = f (x), z(x0) = β2 + s(x0)β1, (37)

L2u(x) = z(x), u(x0) = β1. (38)

That is L̂u(x) = L̂1L̂2u(x). It remains to show that D(L̂) = D(L̂1L̂2). By
using (29) and (30), we obtain

D(L̂1L̂2) =
{
u(x) ∈ D(L̂2) : L̂2u(x) ∈ D(L̂1)

}

= {
u(x) ∈ D(L2) : u(x0) = β1, u′(x)+ s(x)u(x) ∈ D(L̂1)

}

=
{
u(x) ∈ C2[a, b] : u(x0) = β1, u′(x0)+ s(x0)u(x0) = β2 + s(x0)β1

}

=
{
u(x) ∈ C2[a, b] : u(x0) = β1, u′(x0) = β2

}
. (39)

(ii) The linear first order initial value problem (37) possesses exactly one solution
z(x), which can be found by using the standard means, such as the method
of integrating factors [2], and is given in (33). Having obtained z(x), we can
solve the linear first order initial value problem (38) in like manner to obtain
the solution u(x) in (32), which is the solution of the linear second order initial
value problem (31). The operator L̂ = L̂1L̂2 is correct because L̂1 and L̂2 are
correct.

��
The factorization method also applies to some types of boundary value problems,

although it is more complicated. Let the linear second order differential equation,

Lu(x) = u′′(x)+ p(x)u(x)+ q(x)u(x) = f (x), x ∈ (a, b), (40)

where the coefficients p(x), q(x) ∈ C[a, b] and f (x) ∈ C[a, b], and assume that
the operator L : C[a, b] → C[a, b] is factorable, i.e. there exist r(x) ∈ C[a, b] and
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s(x) ∈ C1[a, b] such that r(x) + s(x) = p(x) and s′(x) + r(x)s(x) = q(x). Let
also the two boundary conditions

μ11u(a)+ μ12u(b) = β1,

μ21[u′(a)+ s(a)u(a)] + μ22[u′(b)+ s(b)u(b)] = β2, (41)

where μij , βi ∈ R, i = 1, 2, j = 1, 2. Notice that (41) are the boundary conditions
as in (2) when

μ23 = s(a)μ21, μ24 = s(b)μ22. (42)

We claim that the boundary value problem for the differential equation (40) and
the boundary conditions (41) can be factorized and solved explicitly. We prove the
following theorem.

Theorem 5 Let L be the linear second order differential operator in (40) and
assume that there exist two functions r(x) ∈ C[a, b] and s(x) ∈ C1[a, b] which
satisfy (21) and (22). Let L̄ be a restriction of L on

D(L̄) = {u(x) : u(x) ∈ D(L), μ11u(a)+ μ12u(b) = β1,

μ21[u′(a)+ s(a)u(a)] + μ22[u′(b)+ s(b)u(b)] = β2}, (43)

where μij , βi ∈ R, i = 1, 2, j = 1, 2. Then:

(i) The operator L̄ can be factorized as follows

L̄u(x) = L̄1L̄2u(x), (44)

where L̄1, L̄2 are restrictions of the two first order linear differential operators
L1, L2, defined in (17) and (18), on

D(L̄1) =
{
z(x) ∈ C1[a, b] : μ21z(a)+ μ22z(b) = β2

}
, (45)

D(L̄2) =
{
u(x) ∈ C1[a, b] : μ11u(a)+ μ12u(b) = β1

}
, (46)

respectively.
(ii) If

μ21 + μ22e
− ∫ b

a r(t)dt 
= 0, μ11 + μ12e
− ∫ b

a s(t)dt 
= 0, (47)

then the operator L̄ is correct and the unique solution of the boundary value
problem

L̄u(x) = f (x), ∀f (x) ∈ C[a, b], (48)
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is given by

u(x) = L̄−1f (x) = L̄−1
2 L̄−1

1 f (x) = L̄−1
2 z(x)

= e−
∫ x
a s(t)dt

(

C2 +
∫ x

a

z(t)e
∫ t
a s(τ )dτ dt

)

, (49)

where

z(x) = L̄−1
1 f (x) = e−

∫ x
a r(t)dt

(

C1 +
∫ x

a

f (t)e
∫ t
a r(τ )dτ dt

)

, (50)

and

C1 =
(
μ21 + μ22e

− ∫ b
a r(t)dt

)−1
(

β2 − μ22e
− ∫ b

a r(t)dt

∫ b

a

f (t)e
∫ t
a r(τ )dτ dt

)

,

C2 =
(
μ11 + μ12e

− ∫ b
a s(t)dt

)−1
(

β1 − μ12e
− ∫ b

a s(t)dt

∫ b

a

z(t)e
∫ t
a s(τ )dτ dt

)

.

Proof

(i) From the definition of L̄ and Proposition 1, we have

Lu(x) = L1L2u(x) = f (x), (51)

and

μ11u(a)+ μ12u(b) = β1,

μ21[u′(a)+ s(a)u(a)] + μ22[u′(b)+ s(b)u(b)] = β2. (52)

Let

L2u(x) = u′(x)+ s(x)u(x) = z(x). (53)

It follows that

u′(a)+ s(a)u(a) = z(a), u′(b)+ s(b)z(b) = z(b),

and upon substitution into the second boundary condition in (52), we get

μ21z(a)+ μ22z(b) = β2.

Thus, we have

L1z(x) = z′(x)+ r(x)z(x) = f (x), μ21z(a)+ μ22z(b) = β2, (54)
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L2u(x) = u′(x)+ s(x)u(x) = z(x), μ11u(a)+ μ12u(b) = β1. (55)

That is L̄u(x) = L̄1L̄2u(x). It remains to show that D(L̄) = D(L̄1L̄2). By
using the definition of D(L̄1L̄2) we obtain

D(L̄1L̄2) =
{
u(x) ∈ D(L̄2) : L̄2u(x) ∈ D(L̄1)

}

=
{
u(x) ∈ C1[a, b] : μ11u(a)+ μ12u(b) = β1,

u′(x)+ s(x)u(x) ∈ D(L̄1)
}

=
{
u(x) ∈ C1[a, b] : μ11u(a)+ μ12u(b) = β1,

z(x) = u′(x)+ s(x)u(x) ∈ C1[a, b],
μ21[u′(a)+ s(a)u(a)] + μ22[u′(b)+ s(b)u(b)] = β2

}

=
{
u(x) ∈ C2[a, b] : μ11u(a)+ μ12u(b) = β1,

μ21[u′(a)+ s(a)u(a)] + μ22[u′(b)+ s(b)u(b)] = β2
}

= D(L̄). (56)

(ii) Application of Theorem 3 to solve boundary value problem (54) yields (50).
Substituting this unique solution z(x) = L̄−1

1 f (x) into (55) and applying
Theorem 3 once more, we obtain (49), which is the solution to boundary value
problem (48). The correctness of L̄ = L̄1L̄2 follows from the correctness of L̄1
and L̄2.

��
To elucidate the implementation of the above procedure, we solve the following

example problem.

Example 1 Let the boundary value problem

u′′(x)− x+2
x+1u

′(x)+ 1
x+1u(x) = 3(x + 1), 0 < x < 1,

u(0)− 5u(1) = 0,

3u′(0)− 4u′(1)− 3u(0)+ 4u(1) = 2. (57)

We take

p(x) = −x + 2

x + 1
, and q(x) = 1

x + 1
,

which are continuous on [0, 1]. Notice that equations (21) and (22) are satisfied by
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r(x) = − 1

x + 1
, and s(x) = −1,

which are continuous on [0, 1] and s′(x) = 0. Lastly, the second of the boundary
conditions (57) can be put in the form

3[u′(0)+ (−1)u(0)] − 4[u′(1)+ (−1)u(1)] = 2.

Thus (57) is carried to

L̄u(x) = u′′(x)− x + 2

x + 1
u′(x)+ 1

x + 1
u(x) = f (x),

D(L̄) =
{
u(x) : u(x) ∈ C2[0, 1], u(0)− 5u(1) = 0,

3[u′(0)+ s(0)u(0)] − 4[u′(1)+ s(1)u(1)] = 2
}
, (58)

where f (x) = 3(x+1). By Theorem 5, the operator L̄ can be factorized as L̄u(x) =
L̄1L̄2u(x), where

L̄1z(x) = z′(x)− 1

x + 1
z(x), D(L̄1) =

{
z(x) ∈ C1[0, 1] : 3z(0)− 4z(1) = 2

}
,

L̄2u(x) = u′(x)− u(x), D(L̄2) =
{
u(x) ∈ C1[0, 1] : u(0)− 5u(1) = 0

}
.

Furthermore,

μ21 + μ22e
− ∫ 1

0 r(t)dt = −5 
= 0, μ11 + μ12e
− ∫ 1

0 s(t)dt = 1− 5e 
= 0, (59)

and therefore (58) has only one solution. To construct the solution, we first solve the
problem L̄1u(x) = f (x) by means of (50), which yields

z(x) = (x + 1)(3x − 26

5
). (60)

Then by utilizing (60) and solving L̄2u(x) = z(x) by (49), we get

u(x) = 142ex

5(5e − 1)
− 15x2 + 19x − 7

5
. (61)

This is the unique solution of the given boundary value problem (57).
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4 Factorization Method for Nonlinear Differential Equations

In this section, we deal with the solution of a class of nonlinear boundary value
problems for second order differential equations. Let the nonlinear differential
equation of the form

u′′(x)u′(x)+ [
q(x)u′(x)+ g(x)u′′(x)

]
u(x)+ q(x)g(x)(u(x))2 = 0, (62)

for x ∈ (a, b), and where q(x), g(x) ∈ C[a, b], together with the boundary
conditions

μ11u(a)+ μ12u(b) = β1,

μ21u
′(a)+ μ22u

′(b)+ μ23u(a)+ μ24u(b) = β2, (63)

where μij , βi ∈ R, i = 1, 2, j = 1, 2, 3, 4.
The nonlinear equation (62) can be decomposed as the product

[
u′′(x)+ q(x)u(x)

] [
u′(x)+ g(x)u(x)

] = 0,

and hence, either

u′′(x)+ q(x)u(x) = 0, (64)

or

u′(x)+ g(x)u(x) = 0. (65)

As a consequence, the solutions of the nonlinear boundary value problem (62) and
(63) may be obtained by solving the linear second order problem (64) and (63) and
the linear first order problem (65) and (63).

For the solution of the linear second order problem (64) and (63), we may employ
Theorem 5 provided that prerequisites (21) and (22) are satisfied, i.e. there exist
r(x) ∈ C[a, b] and s(x) ∈ C1[a, b] such that

r(x) = −s(x), s′(x)− (s(x))2 = q(x), (66)

and if

μ23 = s(a)μ21, μ24 = s(b)μ22. (67)

In this case problem (64), (63) can be put in the form

L̄u(x) = u′′(x)+ q(x)u(x) = 0,
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D(L̄) =
{
u(x) ∈ C2[a, b] : μ11u(a)+ μ12u(b) = β1,

μ21[u′(a)+ s(a)u(a)] + μ22[u′(b)+ s(b)u(b)] = β2
}
. (68)

Problem (68) can be now solved by means of Theorem 5.
The linear first order problem (65) and (63) is subjected to more conditions than

the order of the differential equation and it is most likely to possess no solution.
Nevertheless, we can proceed as follows. By utilizing (65) evaluate u′(a) and u′(b)
and substitute into the second of the boundary conditions in (63). Taking into
account (67), we get

μ21[s(a)− g(a)]u(a)+ μ22[s(b)− g(b)]u(b) = β2. (69)

Thus, problem (65) and (63) may be formulated as

T u(x) = u′(x)+ g(x)u(x) = 0,

D(T ) = {u(x) ∈ C1[0, 1] : μ11u(a)+ μ12u(b) = β1,

μ21[s(a)− g(a)]u(a)+ μ22[s(b)− g(b)]u(b) = β2}. (70)

By employing Theorem 3, we find the unique solution of the problem

T0u(x) = u′(x)+ g(x)u(x) = 0,

D(T0) = {u(x) ∈ C1[0, 1] : μ11u(a)+ μ12u(b) = β1}. (71)

If the solution u(x) of this problem satisfies the second boundary condition in (70),
then u(x) is a solution of (70); otherwise (70) has no solution.

Example 2 Let us find the solutions of the nonlinear second order boundary value
problem

u′′(x)u′(x)−
[

2
(x+1)2 u

′(x)+ 1
x+3u

′′(x)
]
u(x)+ 2

(x+3)(x+1)2 (u(x))
2 = 0,

u(0)+ 5u(1) = 0,

−u′(0)+ 6u′(1)− u(0)+ 3u(1) = 4, (72)

where x ∈ [0, 1] and u(x) ∈ C2[0, 1].
The nonlinear second order differential equation (72) is of the type (62) with

q(x) = − 2

(x + 1)2 , g(x) = − 1

x + 3
,

and it can be decomposed as
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[

u′′(x)− 2

(x + 1)2 u(x)

] [

u′(x)− 1

x + 3
u(x)

]

= 0.

Thus, we get the following two linear problems

L̄u(x) = u′′(x)− 2

(x + 1)2
u(x) = 0,

D(L̄) = {u(x) ∈ C2[0, 1] : u(0)+ 5u(1) = 0,

−u′(0)+ 6u′(1)− u(0)+ 3u(1) = 4}, (73)

and

T u(x) = u′(x)− 1

x + 3
u(x) = 0,

D(T ) = {u(x) ∈ C2[0, 1] : u(0)+ 5u(1) = 0,

−u′(0)+ 6u′(1)− u(0)+ 3u(1) = 4}. (74)

In solving the boundary value problem (73), notice that the functions

r(x) = − 1

x + 1
, s(x) = 1

x + 1
,

obey (66), r(x) ∈ C[0, 1], s(x) ∈ C1[0, 1] and s(0) = 1, s(1) = 1
2 , and that the

preconditions (67) are met. Hence, problem (73) may be written in the form (68),
namely

L̄u(x) = u′′(x)− 2

(x + 1)2 u(x) = 0,

D(L̄) = {u(x) ∈ C2[0, 1] : u(0)+ 5u(1) = 0,

−[u′(0)+ s(0)u(0)] + 6[u′(1)+ s(1)u(1)] = 4}. (75)

By Theorem 5, the boundary value problem (75) is factorized into the following two
first order problems

L̄1z(x) = z′(x)− 1

x + 1
z(x) = 0,

D(L̄1) =
{
z(x) ∈ C1[0, 1] : −z(0)+ 6z(1) = 4

}
, (76)

and
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L̄2u(x) = u′(x)+ 1

x + 1
u(x) = z(x),

D(L̄2) =
{
u(x) ∈ C1[0, 1] : u(0)+ 5u(1) = 0

}
. (77)

The first of the uniqueness requirements (47) is fulfilled, viz.

μ21 + μ22e
− ∫ 1

0 r(t)dt = −1+ 6
(
e
∫ 1

0
1

t+1 dt
)
= 11 
= 0, (78)

and therefore the operator L̄1 is correct and the unique solution of (76) is derived
through (50), which is

z(x) = 4

11
(x + 1). (79)

By substituting (79) into (77) and verifying that the second of the uniqueness
conditions (47) is also satisfied, viz.

μ11 + μ12e
− ∫ 1

0 s(t)dt = 1+ 5
(
e−

∫ 1
0

1
t+1 dt

)
= 7

2

= 0, (80)

it follows that the operator L̄2 is correct and the unique solution of (77), obtained
via (49), is

u(x) = 4(x3 + 3x2 + 3x − 5)

33(x + 1)
. (81)

The function u(x) in (81) is a solution to nonlinear second order boundary value
problem (72).

We now examine the existence of a solution of the linear first order problem (74).
By applying Theorem 3, we find that the problem

T1u(x) = u′(x)− 1

x + 3
u(x) = 0,

D(T1) = {u(x) ∈ C2[0, 1] : u(0)+ 5u(1) = 0} (82)

has no solution except the trivial u(x) = 0, which however does not satisfy the
second of the boundary conditions in (74).

Summing up, the nonlinear second order boundary value problem (72) admits
only the solution (81).

The technique presented above and explained in Example 2 can be extended to
solve and other types of nonlinear boundary value problems. For example, consider
the nonlinear differential equation of second order of the form
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(u′′(x))2 + a(x)u′′(x)u(x)+ b(x)(u(x))2 = 0, x ∈ (a, b), (83)

subject to two general boundary constraints

μ11u(a)+ μ12u(b) = β1,

μ21u
′(a)+ μ22u

′(b)+ μ23u(a)+ μ24u(b) = β2, (84)

where a(x), b(x) ∈ C[a, b] and μij , βi ∈ R, i = 1, 2, j = 1, 2, 3, 4.
The differential equation (83) can be put in the form

F

(
u′′(x)
u(x)

, x

)

= F (w(x), x) = (w(x))2 + a(x)w(x)+ b(x) = 0,

where w(x) = u′′(x)/u(x) and the nonlinear function F is a second degree
polynomial of w(x). Hence, it can be decomposed as

[
w(x)+ q−(x)

] [
w(x)+ q+(x)

] = 0,

where q−(x), q+(x) ∈ C[a, b] and a(x) = q−(x)+ q+(x), b(x) = q−(x)q+(x).
By substituting back w(x) = u′′(x)/u(x), we get

[
u′′(x)+ q−(x)u(x)

] [
u′′(x)+ q+(x)u(x)

] = 0, (85)

from where follows that, either

u′′(x)+ q−(x)u(x) = 0, x ∈ (a, b), (86)

or

u′′(x)+ q+(x)u(x) = 0, x ∈ (a, b). (87)

Thus, the solution of the nonlinear boundary value problem (83) and (84) is reduced
to the solution of the two linear second order boundary value problems (86), (84),
and (87), (84). Whenever the conditions (21), (22) and (42) are met, Theorem 5 may
be applied to acquire the solutions in closed form.

5 Conclusions

A practical technique has been presented for factorizing and solving linear initial
and boundary value problems for second order differential equations with nonlocal
boundary conditions. Two types of nonlinear boundary value problems for second
order differential equations have also been considered where the factorization
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method was used to construct their solutions in closed form. The main advantage of
the factorization method is that no fundamental or particular solutions are required.
Its main disadvantage is that it cannot be applied to all boundary value problems
except to those where certain conditions are satisfied. The efficiency of the method
encourages the pursuit of further research for the extension of the method to
problems with fully mixed boundary conditions and multipoint conditions.
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A General Framework for Studying
Certain Generalized Topologically Open
Sets in Relator Spaces

Themistocles M. Rassias and Árpád Száz

Abstract A family R of binary relations on a set X is called a relator on X, and
the ordered pair X(R ) = (X,R ) is called a relator space. Sometimes relators on
X to Y are also considered.

By using an obvious definition of the generated open sets, each generalized topo-
logy T on X can be easily derived from the family RT of all Pervin’s preorder
relations RV = V 2 ∪V c×X with V ∈ T , where V 2 = V×V and V c = X \V .

For a subset A of the relator space X(R), we define

A◦ = intR (A) = {
x ∈ X : ∃ R ∈ R : R (x) ⊆ A

}

and A−= clR (A) = intR (Ac)c. And, for instance, we write A ∈ TR if A ⊆ A◦ .
Moreover, following some basic definitions in topological spaces, for a subset A

of the relator space X(R ) we write

(1) A ∈ T r
R if A = A−◦;

(2) A ∈ T
p

R if A ⊆ A−◦; (3) A ∈ T s
R if A ⊆ A◦−;

(4) A ∈ T α
R if A ⊆ A◦−◦; (5) A ∈ T

β

R if A ⊆ A−◦−;
(6) A ∈ T a

R if A ⊆ A−◦ ∩ A◦−; (7) A ∈ T b
R if A ⊆ A−◦ ∪ A◦− .

The members of the above families will be called the topologically regular open,
preopen, semi-open, α-open, β-open, a-open and b-open subsets of the relator
space X(R), respectively.
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In our former papers, having in mind the original definitions of N. Levine [49]
and H. H. Corson and E. Michael [11], we have also investigated four further, closely
related, families of generalized topologically open sets in X(R).

Now, we shall offer a general framework for studying these families. Moreover,
motivated by a definition of Á. Császár [15] and his predecessors, we shall also
consider a further important class of generalized topologically open sets.

For the latter purpose, for a subset A of the relator space X(R), we shall write

(8) A ∈ AR if A−◦ ⊆ A◦−.

Thus, according to Császár’s terminology, the members of the family AR should
be called the topologically quasi-open subsets of the relator space X(R). However,
in the earlier literature, these sets have been studied under different names.

While, for the former purpose, for any two subsets A and B of the relator space
X(R) we shall write

(9) A ∈ LnR (B) and B ∈ UnR (A) if A ⊆ B ⊆ A−.

Moreover, for a family A of subsets of X(R) we shall define

(10) A � = clLnR (A ) = Ln−1
R [A ] and A u = clUnR (A ) = Un−1

R [A ].
Thus, A � and A u may be called the lower and upper nearness closures of A ,

respectively. Namely, if A ∈ LnR (B), then we may naturally say that A is near to
B from below and B is near to A from above.

The most important particular cases are when A is a minimal structure or a
generalized topology on X. Or even more specially, A is one of the families TR ,
T �

R or T u
R .

1 Motivations

If T is a family of subsets of a set X such that T is closed under finite intersections
and arbitrary unions, then the family T is called a topology on X, and the ordered
pair X(T ) = (X,T ) is called a topological space.

The members of T are called the open subsets of X. While, the members of
F = {Ac : A ∈ T }, where Ac = X \ A, are called the closed subsets of X.
Moreover, the members of T ∩ F are called the clopen subsets of X.

Since, ∅ =⋃∅ and X =⋂∅, we necessary have {∅ , X} ⊆ T ∩F . Therefore,
if in particular T = {∅ , X}, then T is called minimal [69] instead of indiscrete.
While, if T ∩ F = {∅ , X}, then T is called connected [97, p. 31].

For a subset A of X (T ), the sets A◦ = int(A) = ⋃
T ∩P (A) ,

A− = cl(A) = int( Ac)c and A† = res(A) = cl(A) \ A

are called the interior, closure and residue of A, respectively.
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Thus, – is a Kuratowski closure operation on X. That is, ∅− = ∅, and – is
extensive, idempotent and additive in the sense that, for any A , B ⊆ X, we have
A ⊆ A− , A−− = A− and (A ∪ B)− = A− ∪ B−.

In particular, the members of the families

D = {
A ⊆ X : A− = X

}
and N = {

A ⊆ X : A−◦ = ∅ }

are called the dense and rare (or nowhere dense) subsets of X(T ), respectively.
In 1922, a subset A of a closure space X(−) was called regular open by

Kuratowski [44] if A = A−◦. While, in 1937, a subset A of a topological space
X (T ) was called regular open by Stone [72] if A = B ◦ for some B ∈ F .

The importance of regular open subsets of X (T ) lies mainly in the fact that their
family forms a complete Boolean agebra [32, p. 66] with respect to the operations
defined by A′ = A−c , A ∧ B = A ∩ B and A ∨ B = (A ∪ B)′′ .

In 1982, a subset A of X(T ) was called preopen by Mashhour et al. [56] if
A ⊆ A−◦. However, by Dontchev [22], preopen sets, under different names, were
much earlier studied by several mathematicians.

For instance, in 1964, Corson and Michael [11] called a subset A of X(T )

locally dense if it is a dense subset of some V ∈ T in the sense that A ⊆ V ⊆ A−.
Moreover, they noted that this property is equivalent to the inclusion A ⊆ A−◦.

This equivalence was later also stated by Jun at al. [38]. Moreover, Ganster [28]
proved that A is preopen if and only if there exist V ∈ T and B ∈ D such that
A = V ∩ B. ( See also Dontchev [22].)

In 1963, a subset A of X (T ) was called semi-open by Levine [49] if there exists
V ∈ T such that V ⊆ A ⊆ V −. First of all, he showed that the set A is semi-open
if and only if A ⊆ A◦−.

Moreover, he also proved that if A is a semi-open subset of X(T ), then there
exist V ∈ T and B ∈ N such that A = V ∪ B and V ∩ B = ∅. In addition, he
also noted that the converse statement is false.

Levine’s statement closely resembles to a famous stability theorem of Hyers
[36] which says that an ε-approximately additive function of one Banach space
to another is the sum of an additive function and an ε-small function.

Analogously to the paper of Hyers, Levine’s paper has also attracted the interest
of a surprisingly great number of mathematicians. For instance, by the Google
Scholar, it has been cited by 2985 works.

Moreover, the above statement of Levine was improved by Dlaska et al. [21] who
observed that a subset A of X(T ) is semi-open if and only if there exist V ∈ T
and B ⊆ V † such that A = V ∪ B.

The latter observation was later reformulated, in a more convenient form, by
Duszyński and Noiri [23] who noted that a subset A of X(T ) is semi-open if and
only if there exists B ⊆ A◦ † such that A = A◦ ∪ B.

In particular, in 1965 and 1971, Njåstad [62] and Isomichi [37], being not
aware of the paper of Levine, studied semi-open sets under the names β-sets and
subcondensed sets, respectively.
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Moreover, Njåstad called a subset A of X(T ) an α-set if A ⊆ A◦−◦. And, he
proved that the set A is an α-set if and only if there exist V ∈ T and B ∈ N such
that A = V \ B.

In 1983, the subset A was called β-open by Abd El-Monsef et al. [1] if
A ⊆ A−◦−. Moreover, in 1986 Andrijević [3] used the term semi-preopen instead
of β-open without knowing of [1].

Actually, Andrijević called a subset A of X(T ) semi-preopen if there exists a
preopen subset V of X(T ) such that V ⊆ A ⊆ V −. And, he showed that this is
equivalent to the inclusion A ⊆ A−◦−.

Moreover, in 1996, a subset A of X(T ) was called b-open by Andrijević [4] if
A ⊆ A◦− ∪ A−◦. He proved that A is b-open if and only if there exist a preopen
subset B and a semi-open subset C of X(T ) such that A = B ∪ C .

In 1961, a subset A of a topological space X (T ) was said to have property Q

by Levine [48] if A◦− = A−◦. He proved that A has property Q if and only if
there exist V ∈ T ∩F and B ∈ N such that A = VΔB. ( See also [7, 10].)

While, in 1991, a subset A of X(T ) was called a δ-set by Chattopadhyay and
Bandyopadhyay [8] if A−◦ ⊆ A◦−. Moreover, in 2001, δ-open sets, under the
name quasi-open sets, were more systematically studied by Császár [15, 16].

In 1992, Ganster et al. [29] already proved that A is a δ-set if and only if
A = V ∪ N for some V ∈ T and B ∈ N . Thus, δ-sets coincide with the simply
open sets of Biswas [5] and Neubrunnová [61]. ( See also [43, 59, 60].)

Actually, such sets were also first studied by Kuratowski [45, p. 69] in a more
general framework. By his definition, a subset A of X(T ) has to be called open
modulo nowhere dense sets if there exists V ∈ T such that AΔV ∈ N .

2 Preliminaries

In our former papers [67, 68], we have shown that the above definitions and several
theorems on generalized open sets can be naturally extended not only to generalized
topological and closure spaces, but also to relator spaces.

In the sequel, following a terminology introduced by the second author [73], a
family R of binary relations on a set X will be called a relator on X, and the ordered
pair X (R) = (X,R) will be called a relator space.

Thus, relator spaces are generalizations of not only ordered sets [19] and uniform
spaces [27], but also topological, closure and proximity spaces [57]. However, to
include context spaces [30] relators on X to Y are also needed [81, 82].

For instance, by [85], each generalized topology T on X can be easily derived
from the family RT of all Pervin’s preorder relations RV = V 2 ∪ V c× X with
V ∈ T . Thus, generalized topologies need not be studied separately.

For a subset A of the relator space X(R), we define

A◦ = intR (A) = {
x ∈ X : ∃ R ∈ R : R (x) ⊆ A

}
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and A−= clR (A) = intR (Ac)c. And, for instance, A ∈ TR if A ⊆ A◦.
Now, according to the former definitions on open-like subsets of topologically

spaces mentioned in the Motivations, we may also naturally write

(1) A ∈ T r
R if A = A−◦;

(2) A ∈ T
p

R if A ⊆ A−◦; (3) A ∈ T s
R if A ⊆ A◦−;

(4) A ∈ T α
R if A ⊆ A◦−◦; (5) A ∈ T

β

R if A ⊆ A−◦−;
(6) A ∈ T a

R if A ⊆ A−◦ ∩ A◦−; (7) A ∈ T b
R if A ⊆ A−◦ ∪ A◦−;

(8) A ∈ T
q

R if there exists V ∈ TR such that V ⊆ A ⊆ V −;
(9) A ∈ T

ps

R if there exists V ∈ TR such that A ⊆ V ⊆ A−;
(10) A ∈ T

γ

R if there exists V ∈ T s
R such that A ⊆ V ⊆ A−;

(11) A ∈ T δ
R if there exists V ∈ T

p

R such that V ⊆ A ⊆ V −.
Moreover, the members of the above families may be called the topologically

regular open, preopen, semi-open, α-open, β-open, a-open, b-open, quasi-open,
pseudo-open, γ -open and δ-open subsets of the relator space X(R), respectively.

Here, the use of the extra term “topologically” can only be motivated by the fact,
for any two subsets A and B of the relator space X(R), we may also naturally write
B ∈ IntR (A) if R [B ] ⊆ A for some R ∈ R.

Thus, by using the plausible notations ClR (A) = IntR ( Ac)c, and A ∈ τR if
A ∈ IntR (A), we may also naturally introduce some reasonable notions of certain
generalized proximally open sets.

By using the topological closure (refinement)

R ∧ = {
S ⊆ X2 : ∀ x ∈ X : x ∈ S(x)◦

}

of the relator R, it can be shown that IntR∧ (A) = P
(

intR (A)
)

and τR∧ = TR .
Therefore, the topological properties of R can, in principle, be immediately

derived from some proximal ones. For instance, R may be called topologically
compact if R∧ is properly compact in the sense that for each S ∈ R∧ there exists
a finite subset A of X such that X = S [A ]. ( See [78] and [80].)

Unfortunately, up till now we have not been able to find the right proximal
versions of definitions (1)–(11). However, we can now offer a general framework
for introducing and studying the families given by (8)–(11).

Moreover, following the ideas of Chattopadhyay and Bandyopadhyay [8],
Császár [15] and others mentioned in the Motivations, we shall now also consider a
further important class of generalized topologically open sets.

For the latter purpose, for a subset A of the relator space X(R), we shall write

(12) A ∈ AR if A−◦ ⊆ A◦−.

Thus, the members of the family AR may be called the topologically simply open
subsets subsets of the relator space X(R).

While, for the former purpose, for any two subsets A and B of the relator space
X(R) we shall write
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(13) A ∈ LnR (B) and B ∈ UnR (A) if A ⊆ B ⊆ A−.

Moreover, for a family A of subsets of X(R) we shall define

(14) A � = clLnR(A ) = Ln−1
R [A ] and A u = clUnR(A ) = Un−1

R [A ].
Thus, A � and A u may be called the lower and upper nearness closures of A ,

respectively. Namely, if A ∈ LnR (B), then we may naturally say that A is near to
B from below and B is near to A from above.

The most important particular cases are when A is a minimal structure or a
generalized topology on X. Or even more specially, A is one of the families TR ,
T �

R or T u
R .

In a subsequent paper, we shall also try to work out a general framework for
introducing and studying the families given by definitions (2)–(7). However, for
this, in addition to ordinary and hyper relators we shall also need super relators.

The necessary prerequisites on relations and relators, which are certainly unfa-
miliar to the reader, will be briefly laid out in the subsequent preparatory sections
which will also contain several new observations.

These sections may also be useful for all those readers who are not very much
interested in the various generalizations of open sets having been studied recently
by a surprisingly great number of topologists.

3 A Few Basic Facts on Relations

A subset F of a product set X×Y is called a relation on X to Y . In particular, a
relation on X to itself is called a relation on X. And, ΔX = {(x , x) : x ∈ X} is
called the identity relation of X.

If F is a relation on X to Y , then by the above definitions we can also state that F

is a relation on X ∪ Y . However, for several purposes, the latter view of the relation
F would be quite unnatural.

If F is a relation on X to Y , then for any x ∈ X and A ⊆ X the sets F(x) =
{ y ∈ Y : (x , y) ∈ F } and F [A ] = ⋃{F (x) : x ∈ A} are called the images or
neighbourhoods of x and A under F , respectively.

If (x , y) ∈ F , then instead of y ∈ F (x), we may also write x F y. However,
instead of F [A ], we cannot write F (A). Namely, it may occur that, in addition to
A ⊆ X, we also have A ∈ X.

Now, the sets DF = {x ∈ X : F (x) 
= ∅} and RF = F [X ] may be called
the domain and range of F , respectively. If in particular DF = X, then we may say
that F is a relation of X to Y , or that F is a non-partial relation on X to Y .

In particular, a relation f on X to Y is called a function if for each x ∈ Df there
exists y ∈ Y such that f (x) = {y }. In this case, by identifying singletons with their
elements, we may simply write f (x) = y instead of f (x) = {y }.
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Moreover, a function � of X to itself is called a unary operation on X. While, a
function ∗ of X2 to X is called a binary operation on X. And, for any x, y ∈ X, we
usually write x� and x ∗ y instead of �(x) and ∗((x , y)), respectively.

If F is a relation on X to Y , then a function f of DF to Y is called a selection
function of F if f (x) ∈ F(x) for all x ∈ DF . By using the Axiom of Choice, it
can be shown that every relation is the union of its selection functions.

For a relation F on X to Y , we may naturally define two set-valued functions ϕF

of X to P (Y ) and ΦF of P (X) to P (Y ) such that ϕF (x) = F(x) for all x ∈ X

and ΦF (A ) = F [A ] for all A ⊆ X.
Functions of X to P (Y ) can be naturally identified with relations on X to Y .

While, functions of P (X) to P (Y ) are more general objects than relations on X

to Y . In [88, 93, 94], they were briefly called corelations on X to Y .
However, a relation on P (X) to Y should be rather called a super relation on X

to Y , and a relation on P (X) to P (Y ) should be rather called a hyper relation on
X to Y . Thus, clR is a super relation and ClR is a hyper relation on X.

If F is a relation on X to Y , then one can easily see that F =⋃
x∈X {x}×F(x).

Therefore, the images F(x), where x ∈ X, uniquely determine F . Thus, a relation
F on X to Y can also be naturally defined by specifying F(x) for all x ∈ X.

For instance, the complement F c and the inverse F −1 can be defined such that
F c(x) = F (x)c = Y \ F(x) for all x ∈ X and F −1(y) = {x ∈ X : y ∈ F(x)}
for all y ∈ Y . Thus, it can be easily seen that F c = X×Y \ F .

Moreover, if in addition G is a relation on Y to Z, then the composition G ◦ F
can be defined such that (G ◦ F )(x) = G [F(x) ] for all x ∈ X. Thus, it can be
easily seen that (G ◦ F )[A ] = G

[
F [A ] ] = ⋃

y∈F [A] G(y) for all A ⊆ X.
While, if G is a relation on Z to W , then the box product F �G can be defined

such that (F �G)(x, z) = F(x)×G(z) for all x ∈ X and z ∈ Z. Thus, it can be
shown that (F �G)[A ] = G ◦ A ◦ F −1 for all A ⊆ X×Z [87].

Hence, by taking A = {(x , z)}, and A = ΔY if Y = Z, one can at once see that
the box and composition products are actually equivalent tools. However, the box
product can be immediately defined for any family of relations.

Now, a relation R on X may be briefly defined to be reflexive on X if ΔX ⊆ R,
and transitive if R ◦R ⊆ R. Moreover, R may be briefly defined to be symmetric if
R−1 ⊆ R, and antisymmetric if R ∩ R−1 ⊆ ΔX.

Thus, a reflexive and transitive (symmetric) relation may be called a preorder
(tolerance) relation. And, a symmetric (antisymmetric) preorder relation may be
called an equivalence (partial order) relation.

For any relation R on X, we may also naturally define R 0 = ΔX and Rn =
R ◦ R n−1 if n ∈ N. Moreover, we may also naturally define R∞ = ⋃∞

n=0 R
n .

Thus, R∞ is the smallest preorder relation on X containing R [33].
For A ⊆ X, the Pervin relation RA = A2 ∪ Ac×X is an important preorder on

X [66]. While, for a pseudometric d on X, the Weil surrounding Br = {(x, y) ∈
X2 : d (x, y) < r }, with r > 0, is an important tolerance on X [99].

Note that SA = RA∩R−1
A = RA∩RAc = A2∩(Ac)2 is already an equivalence

relation on X. And, more generally if A is a cover (partition) of X, then SA =⋃
A∈A A2 is a tolerance (equivalence) relation on X.
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As an important generalization of the Pervin relation RA, for any A ⊆ X and
B ⊆ Y , we may also naturally consider the Hunsaker-Lindgren relation R(A,B) =
A×B ∩ Ac×Y [35]. Namely, thus we evidently have RA = R(A,A).

The Pervin relations RA and the Hunsaker-Lindgren relations R(A,B) were
actually first used by Davis [20] and Császár [12, pp. 42 and 351] in some less
explicit and convenient forms, respectively.

4 A Few Basic Facts on Relators

A family R of relations on one set X to another Y is called a relator on X to Y ,
and the ordered pair (X, Y )(R ) = (

(X, Y ), R
)

is called a relator space. For the
origins of this notion, see [73, 81], and the references in [73].

If in particular R is a relator on X to itself, then R is simply called a relator
on X. Thus, by identifying singletons with their elements, we may naturally write
X(R ) instead of (X,X)(R ). Namely, (X,X) = {{X}, {X,X}} = {{X}}.

Relator spaces of this simpler type are already substantial generalizations of the
various ordered sets [19] and uniform spaces [27]. However, they are insufficient
for some important purposes. ( See, for instance, [30] and [81, 91].)

A relator R on X to Y , or the relator space (X, Y )(R ), is called simple if R =
{R} for some relation R on X to Y . Simple relator spaces (X, Y )(R) and X(R)

were called formal contexts and gosets in [30] and [90], respectively.
Moreover, a relator R on X, or the relator space X(R), may, for instance, be

naturally called reflexive if each member of R is reflexive on X. Thus, we may also
naturally speak of preorder, tolerance, and equivalence relators.

For instance, for a family A of subsets of X, the family RA = {RA : A ∈ A },
where RA = A2∪Ac×X, is an important preorder relator on X. Such relators were
first used by Pervin [66] and Levine [52].

While, for a family D of pseudo-metrics on X, the family RD = {Bd
r : r > 0,

d ∈ D }, where Bd
r = {(x, y) : d(x, y) < r }, is an important tolerance relator on

X. Such relators were first considered by Weil [99].
Moreover, if S is a family of partitions of X, then the family RS = { SA :

A ∈ S }, where SA =⋃
A∈A A2, is an equivalence relator on X. Such practically

important relators were first investigated by Levine [51].
If � is a unary operation for relations on X to Y , then for any relator R on X to Y

we may naturally define R � = {
R� : R ∈ R

}
. However, this plausible notation

may cause some confusions whenever, for instance, � = c.
In particular, for any relator R on X, we may naturally define R∞ = {

R∞ :
R ∈ R

}
. Moreover, we may also naturally define R ∂ = {

S ⊆ X2 : S∞ ∈ R
}

.
These operations were first introduced by Mala [53, 55] and Pataki [64, 65].

While, if ∗ is a binary operation for relations, then for any two relators R and S
we may naturally define R ∗ S = {

R ∗ S : R ∈ R , S ∈ S
}
. However, this

plausible notation may again cause some confusions whenever, for instance, ∗ = ∩.
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Therefore, in general we rather write R ∧ S = {
R ∩ S : R ∈ R , S ∈ S

}
.

Moreover, for instance, we also write R�R−1 = {
R ∩ R−1 : R ∈ R

}
. Note

that thus R�R−1 is a symmetric relator such that R�R−1⊆ R ∧R−1 .
A function � of the family of all relators on X to Y is called a direct (indirect)

unary operation for relators if, for every relator R on X to Y , the value R � =
� (R) is a relator on X to Y (on Y to X).

For instance, c and −1 are involution operations for relators. While, ∞ and ∂

are projection operations for relators. Moreover, the operation � = c , ∞ or ∂ is
inversion compatible in the sense that R � −1 = R −1 �.

More generally, a function F of the family of all relators on X to Y is called a
structure for relators if, for every relator R on X to Y , the value FR = F (R) is in
a power set depending only on X and Y .

For instance, if clR(B) = ⋂ {R−1[B ] : R ∈ R } for every relator R on X

to Y and B ⊆ Y , then the function F, defined by F (R) = clR , is a structure for
relators such that F (R) ⊆ P (Y )×X, and thus F (R) ∈ P

(
P (Y )×X

)
.

A structure F for relators is called increasing if R ⊆ S implies FR ⊆ FS for
any two relators R and S on X to Y . And, F is called quasi-increasing if R ∈ R
implies FR ⊆ FR for any relator R on X to Y . Note that here FR = F{R}.

Moreover, the structure F is called union-preserving if F⋃
i∈I Ri

= ⋃
i∈I FRi

for any family (Ri )i∈I of relators on X to Y . It can be shown that F is union-
preserving if and only if FR =⋃

R∈R FR for every relator R on X to Y [88].
In particular, an increasing operation � for relators on X to Y is called a

projection or modification operation for relators if it is idempotent in the sense that
R �� = R � holds for any relator R on X to Y .

Moreover, a projection operation � for relators on X to Y is called a closure or
refinement operation for relators if it is extensive in the sense that R ⊆ R� holds
for any relator R on X to Y .

By using Pataki connections [64, 95], several closure operations can be derived
from union-preserving structures. However, more generally, one can find first the
Galois adjoint G of such a structure F, and then take �F = G ◦ F [84].

Now, for an operation � for relators, a relator R on X to Y may be naturally
called �-fine if R� = R. And, for some structure F for relators, two relators R
and S on X to Y may be naturally called F-equivalent if FR = FS .

Moreover, for a structure F for relators, a relator R on X to Y may, for instance,
be naturally called F-simple if FR = FR for some relation R on X to Y . Thus, in
particular singleton relators have to be actually called properly simple.

5 Structures Derived from Relators

Definition 1 If R is a relator on X to Y , then for any A ⊆ X , B ⊆ Y and x ∈ X,
y ∈ Y we define:

(1) A ∈ IntR (B) if R [A ] ⊆ B for some R ∈ R;
(2) A ∈ ClR (B) if R [A ] ∩ B 
= ∅ for all R ∈ R;
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(3) x ∈ intR (B) if {x} ∈ IntR(B); (4) x ∈ σR (y) if x ∈ intR
({y });

(5) x ∈ clR (B) if {x} ∈ ClR (B); (6) x ∈ ρR (y) if x ∈ clR
({y });

(7) B ∈ ER if intR (B) 
= ∅; (8) B ∈ DR if clR (B) = X.

Remark 1 The relations IntR , intR and σR are called the proximal, topological
and infinitesimal interiors generated by R, respectively. While, the members of
the families, ER and DR are called the fat and dense subsets of the relator space
(X, Y )(R ), respectively.

The origins of the relations ClR and IntR go back to Efremović’s proximity δ

[24] and Smirnov’s strong inclusion � [71], respectively. While, the convenient
notations ClR and IntR , and family ER , together with its dual DR , was first
explicitly used by the second author [73, 75, 76, 83].

The following simple, but important theorem shows that the big interior and
closure are equivalent tools in a relator space.

Theorem 1 If R is a relator on X to Y , then for any B ⊆ Y we have

(1) ClR (B) = IntR ( Bc )c; (2) IntR (B) = ClR ( Bc )c.

Remark 2 By using the notation CY (B) = B c, assertion (1) can be expressed in
the more concise form that ClR = (

IntR ◦CY

)c = (
IntR

)c ◦ CY .

From Theorem 1, we can easily derive the following more familiar

Theorem 2 If R is a relator on X to Y , then for any B ⊆ Y we have

(1) clR (B) = intR ( Bc )c; (2) intR (B) = clR ( Bc )c.

Remark 3 By using the convenient notations B− = clR (B) and B ◦ = intR (B),
assertion (1) can be expressed in the more concise form that − = c ◦ c, or equi-
valently − c = c ◦.

The small closure and interior are usually much weaker tools than the big ones.
Namely, in general, we can only prove the following

Theorem 3 If R is a relator on X to Y , then for any A ⊆ X and B ⊆ Y

(1) A ∈ IntR (B) implies A ⊆ intR (B);
(2) A ∩ clR (B) 
= ∅ implies A ∈ ClR (B).

Concerning closures and interiors, we can also prove the following two theorems
which show that, despite their equivalences, closures are sometimes more conve-
nient tools than interiors.

Theorem 4 For any relator R on X to Y , we have

(1) ClR−1 = Cl−1
R ; (2) IntR−1 = CY ◦ Int−1

R ◦CX.

Theorem 5 If R is a relator on X to Y , then for any B ⊆ Y , we have (1)

clR (B) = ⋂
R∈R R−1 [B ]; (2) intR (B) = ⋃

R∈R R−1 [Bc ]c .



Generalized Topologically Open Sets 425

From the B = {y } particular case of this theorem, we can easily derive

Corollary 1 For any relator R on X to Y , we have

ρR =
⋂

R−1 = ( ⋂
R

)−1
.

Moreover, by using the R = {R} particular case of Theorem 5, we can prove

Theorem 6 If R is a relation on X to Y , then for any A ⊆ X and B ⊆ Y

A ⊆ intR (B) ⇐⇒ clR−1 (A) ⊆ B.

Remark 4 This shows that the mappings A #→ clR−1(A) and B #→ intR (B)

establish a Galois connection between the posets P (X) and P (Y ).
The above important closure-interior Galois connection, used first in [92], is not

independent from the well-known upper and lower bound one [86].

The following two closely related theorems show that the fat and dense sets are
also equivalent tools in a relator space.

Theorem 7 If R is a relator on X to Y , then for any B ⊆ Y we have (1) B ∈
DR ⇐⇒ Bc /∈ ER ; (2) B ∈ ER ⇐⇒ Bc /∈ DR .

Theorem 8 If R is a relator on X to Y , then for any B ⊆ Y we have

(1) B ∈ DR if and only if B ∩ E 
= ∅ for all E ∈ ER ;
(2) B ∈ ER if and only if B ∩D 
= ∅ for all D ∈ DR .

Remark 5 By the corresponding definitions, we have R (x) ∈ ER and thus also
R (x)c /∈ DR for all x ∈ X and R ∈ R.

While, by using the notation UR (x) = int−1
R (x) = {B ⊆ Y : x ∈ intR (B)},

we can note that ER = ⋃
x∈X UR (x).

By using Definition 1, we may easily introduce several further important
definitions. For instance, we may also naturally have the following

Definition 2 If R is a relator on X to Y , then for any B ⊆ Y , we define (1)

bndR (B) = clR (B) \ intR (B).

Moreover, if in particular R is a relator on X, then for any A ⊆ X we also define
(2) resR (A) = clR (A) \ A; (3) borR (A) = A \ intR (A).

Remark 6 Somewhat differently, the border, boundary and residue of a set in
neighbourhood and closure spaces were also introduced by Hausdorff and Kura-
towski [44, pp. 4–5]. ( See also Elez and Papaz [26] for a recent treatment.)

If in particular R is a reflexive relator on X, then by Definition 1, for any A ⊆ X,
we have A◦ ⊆ A ⊆ A− Therefore,

bndR (A) = resR (A) ∪ borR (A) = resR (A) ∪ resR (Ac).
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Namely, by using Definition 2 and Theorem 2, we can easily see that

resR (Ac) = Ac− \ Ac = Ac− ∩ Ac c = A◦ c ∩ A = A \ A◦ = borR (A).

Note that if in particular A ∈ TR in the sense that A ⊆ A◦, then borR (A) = ∅.
Therefore, in this particular case, by the above equality, we can simply state that
bndR (A) = resR (A).

6 Further Structures Derived from Relators

By using Definition 1, we may also naturally introduce the following

Definition 3 If R is a relator on X , then for any A ⊆ X we also define:
(1) A ∈ τR if A ∈ IntR (A); (2) A ∈ τ-R if Ac /∈ ClR (A);
(3) A ∈ TR if A ⊆ intR (A); (4) A ∈ FR if clR (A) ⊆ A;
(5) A ∈ NR if clR (A) /∈ ER; (6) A ∈MR if intR (A) ∈ DR .

Remark 7 The members of the families, τR and TR and NR are called the
proximally open, topologically open and rare (or nowhere dense) subsets of the
relator space X(R ), respectively.

The family τR was first introduced by the second author in [75, 76]. While,
the practical notation τ-R was suggested by János Kurdics who first noticed that
“connectedness” is a particular case of “well-chainedness”. ( See [46, 47, 65, 69].)

By using the corresponding results of Section 5, we can easily establish the
following theorems.

Theorem 9 IfR is a relator onX, then for anyA ⊆ X, we have (1) A ∈ τ-R ⇐⇒
Ac ∈ τR ; (2) A ∈ τR ⇐⇒ Ac ∈ τ-R .

Theorem 10 For any relator R on X, we have (1) τ-R = τR−1 ; (2) τR =
τ-R−1 .

Theorem 11 If R is a relator on X, then for any A ⊆ X, we have (1) A ∈
FR ⇐⇒ Ac ∈ TR ; (2) A ∈ TR ⇐⇒ Ac ∈ FR .

Corollary 2 IfR is a relator onX and A ⊆ X and V ∈ TR such that A∩V = ∅,
then clR (A) ∩ V = ∅ also hold.
Proof By Theorem 11, we have V c ∈ FR . Thus, by Definition 3, we also have
V c− ⊆ V c . Hence, by using the increasingness of the operation −, we can see that
A∩ V = ∅ .⇒ A ⊆ V c .⇒ A− ⊆ V c− .⇒ A− ⊆ V c .⇒ A− ∩ V = ∅.

Remark 8 Note that if R is a reflexive relator on X, then A ⊆ A− for any A ⊆ X.
Therefore, A− ∩ V = ∅ trivially implies A ∩ V = ∅ for any A,V ⊆ X.
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Theorem 12 For any relatorR onX, we have (1) τR ⊆ TR ; (2) τ-R ⊆ FR .

Remark 9 In particular, for any relation R on X, we have
(1) τR = TR ; (2) τ-R = FR .

Theorem 13 For any relator R on X, we have (1) TR \ {∅} ⊆ ER; (2)

DR ∩FR ⊆ {X}.
Remark 10 Hence, by using global complementations, we can easily infer that
FR ⊆ (

DR
)c ∪ {X} and DR ⊆ (

FR
)c ∪ {X}.

Theorem 14 If R is a relator on X, then for any A ⊆ X we have (1) A ∈ ER if

V ⊆ A for some V ∈ TR \ {∅};
(2) A ∈ DR only if A \W 
= ∅ for all W ∈ FR \ {X}.
Remark 11 The fat sets are frequently more convenient tools than the topologically
open ones. For instance, if ≤ is a relation on X , then T≤ and E≤ are the families
of all ascending and residual subsets of the goset X(≤ ), respectively.

Moreover, if in particular X = R and R (x) = { x − 1 } ∪ [ x,+∞[ for all
x ∈ X, then R is a reflexive relation on X such that TR = {∅ , X }, but ER is quite
a large family. Namely, the supersets of each R(x) are also contained in ER .

However, the importance of fat and dense lies mainly in the following

Definition 4 If R is a relator on X to Y , and ϕ and ψ are functions of a relator
space Γ (U ) to X and Y , respectively, then by using the notation

( ϕ , ψ )(γ ) = (
ϕ(γ ), ψ(γ )

)

for all γ ∈ Γ , we may also naturally define (1) ϕ ∈ LimR (ψ ) if (ϕ, ψ )−1 [R ] ∈
EU for all R ∈ R ,
(2) ϕ ∈ AdhR (ψ ) if (ϕ, ψ )−1 [R ] ∈ DU for all R ∈ R.

Moreover, for any x ∈ X, we may also naturally define:
(3) x ∈ limR(ψ ) if xΓ ∈ LimR(ψ ), (4) x ∈ adhR(ψ ) if xΓ ∈ AdhR(ψ ),
where xΓ is a function of Γ to X such that xΓ (γ ) = x for all γ ∈ Γ .

Remark 12 Fortunately, the small limit and adherece relations are equivalent to the
small closure and interior ones.

However, the big limit and adherence relations, suggested by Efremović and
Švarc [25], are usually stronger tools than the big closure and interior ones.

In this respect, it seems convenient to only mention here the following
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Theorem 15 If R is a relator on X to Y , then for any A ⊆ X and B ⊆ Y the
following assertions are equivalent:

(1) A ∈ ClR (B);
(2) there exist functions ϕ and ψ of the poset R (⊇ ) to A and B, respectively,

such that ϕ ∈ LimR (ψ );
(3) there exist functions ϕ and ψ of a relator space Γ (U ) to A and B,

respectively, such that ϕ ∈ LimR (ψ ).

Proof For instance, if (1) holds, then for each R ∈ R, we have R [A ] ∩ B 
= ∅.
Therefore, there exist ϕ (R) ∈ A and ψ (R) ∈ B such that ψ (R) ∈ R

(
ϕ (R)

)
.

Hence, we can already infer that ( ϕ , ψ )(R) = (
ϕ(R), ψ(R)

) ∈ R, and thus also
R ∈ (ϕ , ψ )−1 [R ].

Therefore, if R ∈ R, then for any S ∈ R, with R ⊇ S, we have

S ∈ (ϕ , ψ )−1 [ S ] ⊆ (ϕ , ψ )−1 [R ].

This shows that (ϕ , ψ )−1 [R ] is a fat subset of R (⊇ ), and thus ϕ ∈ LimR (ψ ).

Remark 13 Finally, we note that if R is a relator on X to Y , then according to
[82] , for any A ⊆ X and B ⊆ Y , we may also naturally write A ∈ LbR (B) and
B ∈ UbR (A) if there exists R ∈ R such that A×B ⊆ R.

However, the algebraic structures LbR and UbR , and the structures derivable
from them, are not independent of the former topological ones. Namely, it can be
easily shown that LbR = IntR c◦CY and IntR = LbR c◦CY .

7 Closure Operations for Relators

Similar operations for relators have formerly been studied by Kenyon [42], Nakano–
Nakano [58], Száz [77, 79] and Pataki [64].

Definition 5 For any relator R on X to Y , the relators

R ∗ = {
S ⊆ X×Y : ∃ R ∈ R : R ⊆ S

};
R # = {

S ⊆ X×Y : ∀ A ⊆ X : ∃ R ∈ R : R [A ] ⊆ S [A ] };
R ∧ = {

S ⊆ X×Y : ∀ x ∈ X : ∃ R ∈ R : R (x) ⊆ S (x)
};

and

R � = {
S ⊆ X×Y : ∀ x ∈ X : ∃ u ∈ X : ∃ R ∈ R : R (u) ⊆ S (x)

}

are called the uniform, proximal, topological and paratopological closures (or
refinements) of the relator R, respectively.
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Remark 14 Thus, we evidently have R ⊆ R ∗ ⊆ R # ⊆ R ∧ ⊆ R � . Moreover,
if R is a relator on X, then it can be easily shown that R∞ ⊆ R ∗∞ ⊆ R∞∗ ⊆
R ∗.

Remark 15 However, it is now more important to note that, because of Definition 1,
we also have

R # = {
S ⊆ X×Y : ∀ A ⊆ X : A ∈ IntR

(
S [A ] ) } ,

R ∧ = {
S ⊆ X×Y : ∀ x ∈ X : x ∈ intR

(
S(x)

)}
,

R � = {
S ⊆ X×Y : ∀ x ∈ X : S(x) ∈ ER

}
.

Morover, by using Pataki connections [64, 69, 95], the following equivalences
and their consequences can be proved in a unified way.

Theorem 16 # , ∧ and � are closure operations for relators on X to Y such that,
for any two relators R and S on X to Y , we have

(1) S ⊆ R # ⇐⇒ S # ⊆ R # ⇐⇒ IntS ⊆ IntR ⇐⇒ ClR ⊆ ClS ,
(2) S ⊆ R ∧ ⇐⇒ S ∧ ⊆ R ∧ ⇐⇒ intS ⊆ intR ⇐⇒ clR ⊆ clS ,
(3) S ⊆ R � ⇐⇒ S � ⊆ R � ⇐⇒ ES ⊆ ER ⇐⇒ DR ⊆ DS .

Corollary 3 For any relator R on X to Y ,

(1) S = R # is the largest relator on X to Y such that IntS ⊆ IntR(
IntS = IntR

)
, or equivalently ClR ⊆ ClS

(
ClS = ClR

)
;

(2) S = R ∧ is the largest relator on X to Y such that intS ⊆ intR(
intS = intR

)
, or equivalently clR ⊆ clS

(
clS = clR

)
;

(3) S = R � is the largest relator on X to Y such that ES ⊆ ER
(
ES = ER

)
,

or equivalently DR ⊆ DS
(
DS = DR

)
.

Remark 16 To prove some similar statements for the operation ∗, the structures
LimR and AdhR have to be used [73].

Moreover, for instance, to investigate the structures LbR and UbR the com-
pound operation #© = c # c is needed [89].

Concerning the above basic closure operations, we can also prove the following
two theorems.

Theorem 17 For any relator R on X to Y , we have

(1) R # = R ♦ # = R # ♦ with ♦ = ∗ and #;
(2) R ∧ = R ♦∧ = R ∧♦ with ♦ = ∗, # and ∧;
(3) R � = R ♦ � = R �♦ with ♦ = ∗ , #,∧ and �.

Proof To prove (1), note that, by Remark 14 and the closure properties, we have
R # ⊆ R # ∗ ⊆ R # # = R # and R # ⊆ R ∗ # ⊆ R # # = R # .
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Theorem 18 For any relator R on X to Y , we have (1) R ∗−1 = R −1 ∗; (2)

R #−1 = R −1 #.

Proof To prove (2), note that by Theorems 4 and 16 we have

ClR #−1 = Cl−1
R # = Cl−1

R = ClR−1 .

and thus in particular ClR−1 ⊆ ClR #−1 . Hence, by using Theorem 16, we can infer
that R #−1 ⊆ R−1 #.

Now, by writing R−1 in place of R, we can see that R−1 #−1 ⊆ R #, and thus
R−1 # ⊆ R #−1. Therefore, (2) is also true.

Remark 17 For instance, the elementwise operations c and ∞ are also inversion
compatible. Moreover, the operation ∂ is also inversion compatible.

However, unfortunately, the operations ∧ and � are not inversion compatible.
Therefore, in addition to Definition 5, we must also have the following

Definition 6 For any relator R on X to Y , we define

R ∨ = R ∧−1 and R � = R �−1 .

Remark 18 The latter operations have very curious properties. For instance, if R
is nonvoid, then R ∨∧ = { ρR }∧ [54].

Thus, in particular, the relator R ∨ is topologically simple in the sense that it is
topologically equivalent to a singleton relator.

8 Some Further Theorems on the Operations ∧ and �

A preliminary form of the following theorem was already proved in [73].

Theorem 19 If R is nonvoid relator on X to Y , then for any B ⊆ Y we have: (1)

IntR∧ (B) = P
(

intR (B)
)
; (2) ClR∧ (B) = P

(
clR (B)c

)c
.

Proof If A ∈ IntR∧ (B), then by Theorems 3 and 16 we have

A ⊆ intR∧ (B) = intR (B) ,

and thus A ∈P
(

intR (B)
)
. Therefore, IntR∧ (B) ⊆ P

(
intR (B)

)
.

While, if A ∈ P
(

intR (B)
)
, then A ⊆ intR (B). Therefore, for each x ∈ A,

there exists Rx ∈ R such that Rx (x) ⊆ B. Now, by defining

S(x) = Rx(x) forall x ∈ A and S (x) = Y forall x ∈ Ac,
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we can easily see that S ∈ R ∧ such that S [A ] ⊆ B. Therefore, we also have A ∈
IntR∧ (B). Consequently, P

(
intR (B)

) ⊆ IntR∧ (B), and thus (1) also holds.
Now, by using Theorems 1 and 2, we can also easily see that

ClR∧ (B) = IntR∧ ( Bc )c =P
(

intR (Bc )
)c = P

(
clR (B)c

)c
.

Remark 19 Thus, for any A ⊆ X, we have

A ∈ ClR∧ (B) ⇐⇒ A ∩ clR (B) 
= ∅.

From Theorem 19, by using Definition 3, we can immediately derived

Corollary 4 If R is a nonvoid relator onX, then (1) τR∧ = TR; (2) τ-R∧ =
FR .

Remark 20 Hence, since τR = ⋃
R∈R τR = ⋃

R∈R TR , we can infer that

TR =⋃
R∈R∧ TR .

Unfortunately, in contrast to the structures Int , int , E and τ , the increasing
structure T is already not union-preserving.

Example 1 If card (X) > 2 , x1 ∈ X and x2 ∈ X \ { x1}, and

Ri = { xi }2 ∪
(
X \ { xi }

)2

for all i = 1, 2, then R = {R1 , R2} is an equivalence relator on X such that

{ x1 , x2} ∈ TR \
(
TR1 ∪TR2

)
, and thus TR 
⊆ TR1 ∪ TR1 .

From Corollary 4, by using Theorem 17, we can immediately derive

Corollary 5 If R is a nonvoid relator on X, then (1) τR� = TR� ; (2)

τ-R� = FR� .

Concerning the operation �, we can also prove the following

Theorem 20 If R is a nonvoid relator on X to Y , then for any B ⊆ Y we have:

(1) IntR� (B) = {∅} if B /∈ ER and IntR� (B) = P (X) if B ∈ ER ;
(2) ClR� (B) = ∅ if B /∈ DR and ClR� (B) = P (X) \ {∅} if B ∈ DR .

Proof If A ∈ IntR� (B), then there exists S ∈ R� such that S [A ] ⊆ B.
Therefore, if A 
= ∅, then there exists x ∈ X such that S (x) ⊆ B. Hence, since
S (x) ∈ ER , it follows that B ∈ ER . Therefore, the first part of (1) is true.

To prove the second part of (1), it is enough to note only that if B ∈ ER , then
R = X×B ∈ R� such that R [A ] ⊆ B, and thus A ∈ IntR� (B) for all A ⊆ X.
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Assertion (2) can again be derived from (1) by using Theorem 1.

From this theorem, by Definition 1, it is clear that in particular we also have

Corollary 6 If R is nonvoid relator on X to Y , then for any B ⊆ Y :

(1) clR� (B) = ∅ if B /∈ DR and clR� (B) = X if B ∈ DR ;
(2) intR� (B) = ∅ if B /∈ ER and intR� (B) = X if B ∈ ER .

Hence, by using Definitions 1 and 3, we can immediately derive

Corollary 7 If R is a relator on X , then (1) TR� = ER ∪ {∅}; (2) FR� =
(
P (X) \ DR

) ∪ {X}.
Remark 21 Note that if in particular R = ∅, then ER = ∅. Moreover, R� = ∅ if
X 
= ∅, and R� = {∅} if X = ∅. Therefore, TR � = {∅}, and thus (1) is still true.

Now, since ∅ /∈ ER if R is non-partial, we can also state

Corollary 8 If R is a non-partial relator on X , then (1) ER = TR� \ {∅} ,
(2) DR = (

P (X) \FR�
) ∪ {X}.

9 Projection Operations for Relators

By using the basic properties of the operation ∞, in addition to a particular case of
Theorem 16, we can also prove the following

Theorem 21 ∞ is a closure operation for relations on X such that, for any two
relations R and S on X, we have

S ⊆ R∞ ⇐⇒ S∞ ⊆ R∞ ⇐⇒ τR ⊆ τS ⇐⇒ τ-R ⊆ τ-S;

Proof To prove that τR ⊆ τS ⇐⇒ S ⊆ R∞, note that if x ∈ X, then because of
the inclusion R ⊆ R∞ and the transitivity of R∞ we have

R [ R∞(x) ] ⊆ R∞ [ R∞(x) ] = (
R∞ ◦ R∞)

(x) ⊆ R∞(x).

Thus, by the definition of τR , we have R∞(x) ∈ τR . Now, if τR ⊆ τS holds, then
we can see that R∞(x) ∈ τS , and thus S [R∞(x) ] ⊆ R∞(x). Hence, by using the
reflexivity of R∞, we can already infer that S(x) ⊆ R∞(x). Therefore, S ⊆ R∞
also holds.

While, if A ∈ τR , then by the definition of τR we have R [A ] ⊆ A. Hence,
by induction, we can see that Rn [A ] ⊆ A for all n ∈ N. Now, since R 0 [A ] =
ΔX [A ] = A also holds, we can already state that
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R∞[A ] =
( ∞⋃
n=0

Rn
)
[A ] =

∞⋃
n=0

Rn [A ] ⊆
∞⋃
n=0

A = A.

Therefore, if S ⊆ R∞ holds, then we have S [A ] ⊆ R∞ [A ] ⊆ A, and thus
A ∈ τS also holds.

Now, analogously to Corollary 3, we can also state

Corollary 9 For any relation R on X, S = R∞ is the largest relation on X such
that τR ⊆ τS

(
τR = τS

)
, or equivalently τ-R ⊆ τ-S

(
τ-R = τ-S

)
.

Remark 22 Preliminary forms of the above theorem and its corollary were first
proved by Mala [53].

Moreover, he also proved that R∞(x) = ⋂ {A ∈ τR : x ∈ A } for all x ∈ X,
and thus R∞ = ⋂ {RA : A ∈ τR }.

By using Theorem 21, as an analogue of Theorem 16, we can also prove

Theorem 22 # ∂ is a closure operation for relators on X such that, for any two
relators R and S on X, we have

S ⊆ R # ∂ ⇐⇒ S # ∂ ⊆ R # ∂ ⇐⇒ τS ⊆ τR ⇐⇒ τ-S ⊆ τ-R;

Thus, analogously to Corollary 3, we can also state

Corollary 10 For any relator R onX, S = R #∂ is the largest relator onX such
that τS ⊆ τR

(
τS = τR

)
, or equivalently τ-S ⊆ τ-R

(
τ-S = τ-R

)
.

By using the Galois property of the operations ∞ and ∂ , Theorem 22 can be
reformulated in the following more convenient form.

Theorem 23 #∞ is a projection operation for relators on X such that, for any
two relators R and S on X, we have

S ∞ ⊆ R # ⇐⇒ S #∞ ⊆ R #∞ ⇐⇒ τS ⊆ τR ⇐⇒ τ-S ⊆ τ-R .

Remark 23 Moreover, it can be shown that the inclusions S ∞ ⊆ R # , S #∞ ⊆
R # and S ∞ # ⊆ R ∞ # are also equivalent.

Now, analogously to our former corollaries, we can also state

Corollary 11 For any relator R on X, S = R #∞ is the largest preorder relator
on X such that τS ⊆ τR

(
τS = τR

)
, or equivalently τ-S ⊆ τ-R

(
τ-S = τ-R

)
.

Remark 24 The advantage of the projection operation #∞ over the closure
operation # ∂ lies mainly in the fact that, in contrast to # ∂ , it is stable in the sense
{X2}#∞ = {X2}.

Since the structure T is not union-preserving, by using some parts of the theory
of Pataki connections [64, 69, 95], we can only prove the following
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Theorem 24 ∧ ∂ is a preclosure operation for relators such that, for any two
relators R and S on X, we have

TS ⊆ TR ⇐⇒ FS ⊆ FR .⇒ S ∧ ⊆ R ∧ ∂ .⇒ S ∧ ∂ ⊆ R ∧ ∂ .

Remark 25 If card(X) > 2, then by using the equivalence relator R = {
X2

}

Mala [53, Example 5.3] proved that there does not exist a largest relator S on X

such that TR = TS .
Moreover, Pataki [64, Example 7.2] proved that TR∧∂ 
⊆ TR and ∧ ∂ is not

idempotent. ( Actually, it can be proved that R ∧ ∂ ∧ 
⊆ R ∧ ∂ also holds [84,
Example 10.11].)

Fortunately, as an analogue of Theorem 23, we can also prove

Theorem 25 ∧∞ is a projection operation for relators on X such that, for any
two nonvoid relators R and S on X, we have

S ∧∞ ⊆ R ∧ ⇐⇒ S ∧∞ ⊆ R ∧∞ ⇐⇒ TS ⊆ TR ⇐⇒ FS ⊆ FR .

Thus, in particular, we can also state

Corollary 12 For any nonvoid relator R on X, S = R ∧∞ is the largest
preorder relator on X such that TS ⊆ TR

(
TS = TR

)
, or equivalently

FS ⊆ FR
(
FS = FR

)
.

Remark 26 In the light of the several disadvantages of the structure T , it is rather
curious that most of the works in general topology and abstract analysis have been
based on open sets suggested by Tietze [98] and Alexandroff [2], and standardized
by Bourbaki [6] and Kelley [41]. ( See Thron [97, p. 18].)

Moreover, it also a very striking fact that, despite the results of Davis [20] , Pervin
[66], Hunsaker and Lindgren [35] and the second author [76, 85], generalized proxi-
mities and closures, minimal structures, generalized topologies and stacks (ascen-
ding systems) are still intensively investigated by a great number of mathematicians
without using generalized uniformities.

10 Reflexive, Non-partial and Non-degenerated Relators

Definition 7 A relator R on X is called reflexive if each member R of R is a
reflexive relation on X.

Remark 27 Thus, the following assertions are equivalent:

(1) R is reflexive;
(2) x ∈ R (x) for all x ∈ X and R ∈ R;
(3) A ⊆ R [A ] for all A ⊆ X and R ∈ R.
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The importance of reflexive relators is also apparent from the following two
obvious theorems.

Theorem 26 For a relator R on X, the following assertions are equivalent: (1)

ρR is reflexive; (2) R is reflexive;
(3) A ⊆ clR (A)

(
intR (A) ⊆ A

)
for all A ⊆ X .

Proof To prove the equivalence of (1) and (2), recall that ρR = ( ⋂
R

)−1.

Remark 28 Thus, the relator R is reflexive if and only if A◦ ⊆ A (A ⊆ A−) for
all A ⊆ X.

Therefore, if R is a reflexive relator on X, then for any A ⊆ X we have A ∈
TR ( A ∈ FR ) if and only if A◦ = A (A− = A ).

Theorem 27 For a relator R on X, the following assertions are equivalent:

(1) R is reflexive;
(2) A ∈ IntR (B) implies A ⊆ B for all A,B ⊆ X;
(3) A ∩ B 
= ∅ implies A ∈ ClR (B) for all A,B ⊆ X .

Remark 29 In addition to the above two theorems, it is also worth mentioning that
if R is a reflexive relator on X, then

(1) IntR is a transitive relation on P (X);
(2) B ∈ ClR (A) implies P (X) = ClR (A)c ∪ Cl−1

R (B);
(3) intR

(
borR (A)

) = ∅ and intR
(

resR (A))
) = ∅ for all A ⊆ X .

Thus, for instance, for any A ⊆ X we have resR (A) ∈ TR if and only if A ∈ FR .

Analogously to Definition 7, we may also naturally have the following

Definition 8 A relator R on X to Y is called non-partial if each member R of R
is a non-partial relation on X to Y .

Remark 30 Thus, the following assertions are equivalent:

(1) R is non-partial;
(2) R−1 [Y ] = X for all R ∈ R;
(3) R(x) 
= ∅ for all x ∈ X and R ∈ R.

The importance of non-partial relators is apparent from the following

Theorem 28 For a relator R on X to Y , the following assertions are equivalent:
(1) R is non-partial;

(2) ∅ /∈ ER; (3) DR 
= ∅; (4) Y ∈ DR ; (5) ER 
= P (Y ).

Sometimes, we also need the following localized form of Definition 8.

Definition 9 A relator R on X is called locally non-partial if for each x ∈ X there
exists R ∈ R such that for any y ∈ R (x) and S ∈ R we have S (y) 
= ∅.
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Remark 31 Thus, if either X = ∅ or R is nonvoid and non-partial, then R is
locally non-partial.

Moreover, by using the corresponding definitions, we can also easily prove

Theorem 29 For a relator R onX, the following assertions are equivalent: (1) R

is locally non-partial; (2) X = intR
(

clR (X)
)
.

Proof To prove the implication (1) .⇒ (2), note that if (1) holds, then for each
x ∈ X there exists R ∈ R such that for any y ∈ R (x) and for any S ∈ R we have
S (y) ∩ X = S (y) 
= ∅, and thus y ∈ clR (X).

Therefore, for each x ∈ X there exists R ∈ R such that R (x) ⊆ clR (X), and
thus x ∈ intR

(
clR (X)

)
. Hence, we can already see that X ⊆ intR

(
clR (X)

)
,

and thus (2) also holds. ( Therefore, by a former notation, X ∈ T r
R .)

In addition to Definition 8, it is also worth introducing the following

Definition 10 A relator R on X to Y is called non-degerated if both X 
= ∅ and
R 
= ∅.

Thus, analogously to Theorem 28, we can also easily establish the following

Theorem 30 For a relator R on X to Y , the following assertions are equivalent:
(1) R is non-degenerated;

(2) ∅ /∈ DR ; (3) ER 
= ∅; (4) Y ∈ ER; (5) DR 
=P (Y ).

Remark 32 In addition to Theorems 28 and 30, it is also worth mentioning that if a
relator R on X to Y is paratopologically simple in the sense that ER = ES for some
relation S on X to Y , then the stack ER has a base B with card (B) ≤ card (X).
( See [63, Theorem 5.9] of Pataki.)

The existence of a non-paratopologically simple (actually finite equivalence)
relator, proved first by Pataki [63, Example 5.11], shows that in our definitions of
the relations LimR and AdhR we cannot restrict ourselves to functions of gosets
(generalized ordered sets) without some loss of generality.

11 Topological and Quasi-Topological Relators

The following improvement of [74, Definition 2.1] was first considered in [75].

Definition 11 A relator R on X is called:

(1) quasi-topological if x ∈ intR
(

intR
(
R (x)

))
for all x ∈ X and R ∈ R;

(2) topological if for any x ∈ X and R ∈ R there exists V ∈ TR such that
x ∈ V ⊆ R (x).

The appropriateness of these definitions is already quite obvious from the
following four theorems.
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Theorem 31 For a relator R on X, the following assertions are equivalent:

(1) R is quasi-topological;
(2) intR

(
R (x)

) ∈ TR for all x ∈ X and R ∈ R.
(3) clR ( A ) ∈ FR

(
intR ( A ) ∈ TR

)
for all A ⊆ X .

Remark 33 Hence, by Definition 3, we can see that the relator R is quasi-
topological if and only if A◦ ⊆ A◦◦ ( A−− ⊆ A−) for all A ⊆ X.

Theorem 32 For a relator R on X, the following assertions are equivalent:

(1) R is topological; (2) R is reflexive and quasi-topological.

Remark 34 By Theorem 31, the relator R may be called weakly (strongly) quasi-
topological if ρR(x) ∈ FR

(
R (x) ∈ TR

)
for all x ∈ X and R ∈ R.

Moreover, by Theorem 32, the relator R may be called weakly (strongly)
toplogical if it is reflexive and weakly (strongly) quasi-topological.

The following theorem shows that in a topological relator space X(R), the
relation intR and the family TR are also equivalent tools.

Theorem 33 For a relator R on X, the following assertions are equivalent:

(1) R is topological;
(2) intR (A) = ⋃

TR ∩P (A) for all A ⊆ X;
(3) clR (A) = ⋂

FR ∩P−1(A) for all A ⊆ X .

Now, as an immediate consequence of Theorems 14 and 33, we can also state

Corollary 13 If R is topological relator on X, then for any A ⊂ X, we have

(1) A ∈ ER if and only if there exists V ∈ TR \ {∅} such that V ⊆ A;
(2) A ∈ DR if and only if for all W ∈ FR \ {X} we have A \W 
= ∅.

However, it is now more important to note that we can also prove the following

Theorem 34 For a relator R on X, the following assertions are equivalent:

(1) R is topological;
(2) R is topologically equivalent to R ∧∞;
(3) R is topologically equivalent to a preorder relator on X .

Proof To prove the implication (1) .⇒ (3), note that if (1) holds, then by
Definition 11, for any x ∈ X and R ∈ R, there exists V ∈ TR such that
x ∈ V ⊆ R(x). Thus, by using the Pervin preorder relator

S = RTR
= {

RV : V ∈ TR
}
, where RV = V 2 ∪ V c×X,

we can show that intR (A) = intS (A) for all A ⊆ X, and thus (3) also holds.
For this, we have to note that
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RV (x) = V if x ∈ V and RV (x) = X if x ∈ V c.

In addition to Theorem 31, it is also worth proving the following

Theorem 35 For a relator R onX, the following assertions are equivalent: (1) R

is quasi-topological;
(2) R ⊆ (

R ∧◦R
)∧

; (3) R ∧ ⊆ (
R ∧◦R ∧)∧.

Remark 35 By [74], a relator R on X may be naturally called topologically
transitive if, for each x ∈ X and R ∈ R there exist S, T ∈ R such that
T [ S (x)] ⊆ R (x).

This property can be easily reformulated in the more concise form that R ⊆(
R ◦R

)∧. Thus, the equivalence (1) and (3) can be expressed by saying that R is
quasi-topological if and only if R ∧ is topologically transitive.

12 Proximal and Quasi-Proximal Relators

Analogously to Definition 11, we may also naturally have the following

Definition 12 A relator R on X is called

(1) quasi-proximal if A ∈ IntR
[
τR ∩ IntR

(
R [ A ] ) ] for all A ⊆ X and

R ∈ R;
(2) proximal if for any A ⊆ X and R ∈ R there exists V ∈ τR such that

A ⊆ V ⊆ R [A ].
Remark 36 Thus, the relator R is quasi-proximal if and only if, for any A ⊆ X

and R ∈ R, there exists V ∈ τR such that A ∈ IntR(V ) and V ∈ IntR
(
R [A ] ).

Now, by using the corresponding definitions, we can also easily prove the follo-
wing analogues of Theorems 32 and 33.

Theorem 36 For a relator R onX, the following assertions are equivalent: (1) R

is proximal; (2) R is reflexive and quasi-proximal.

Proof To prove the implication (1) .⇒ (2), note that if (1) holds, then for any
A ⊆ X and R ∈ R, there exists V ∈ τR such that A ⊆ V ⊆ R [A ]. Hence, by
taking A = {x } for x ∈ X, we can see that R is reflexive.

Moreover, since V ∈ τR , we can also note that V ∈ IntR (V ). Hence, by using
that A ⊆ V and V ⊆ R [A ], we can already infer that A ∈ IntR (V ) and V ∈
IntR

(
R [A ] ). Therefore, by Remark 36, R is quasi-proximal.

Remark 37 Note that if R is only a weakly proximal relator on X in the sense that,
for any x ∈ X and R ∈ R, there exists V ∈ τR such that x ∈ V ⊆ R (x), then
because of τR ⊆ TR we can already state that R is topological.
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Theorem 37 For a relator R on X, the following assertions are equivalent:

(1) R is proximal;
(2) IntR (A) =P

[
τR ∩ P (A)

]
for all A ⊆ X;

(3) ClR (A) = ⋂ {
P (W c)c : W ∈ τ-R ∩P−1(A)

}
for all A ⊆ X .

Proof Note that if A ⊆ X and B ∈ P
[
τR ∩ P (A)

]
, then there exists V ∈ τR

such that B ∈ P (V ) and V ∈ P (A), and thus B ⊆ V ⊆ A. Hence, by using
that V ∈ IntR (V ) we can already infer that B ∈ IntR (A). Thus, the inclusion
P

[
τR ∩ P (A)

] ⊆ IntR (A) is always true.
Therefore, to obtain (1), it is enough to assume only the converse inclusion. For

this, note that if A ⊆ X and R ∈ R, then because of R [A ] ⊆ R [A ], we always
have A ∈ IntR

(
R [A ] ). Therefore, if IntR

(
R [A ]) ⊆ P

[
τR ∩ P

(
R [A ])],

then we also have A ∈P
[
τR ∩P

(
R [A ])]. Thus, there exists V ∈ τR such that

A ∈P (V ) and V ∈P
(
R [A ]), and thus A ⊆ V ⊆ R [A ].

Remark 38 Note that P (A) = IntΔX
(A) for all A ⊆ X. Therefore, instead of (2)

we may write that IntR (A) = IntΔX

[
τR ∩ IntΔX

(A)
]

for all A ⊆ X.

However, it is now more important to note that we also have the following

Theorem 38 For a relator R on X, the following assertions are equivalent:

(1) R is proximal;
(2) R is proximally equivalent to R∞ or R #∞;
(3) R is proximally equivalent to a preorder relator on X .

In principle, each theorem on topological and quasi-topological relators can be
immediately derived from a corresponding theorem on proximal and quasi-proximal
relators by using the following two theorems.

Theorem 39 For a relator R onX, the following assertions are equivalent: (1) R

is quasi-topological; (2) R ∧ is quasi-proximal.

Proof To prove the implication (1) .⇒ (2), assume that (1) holds, and moreover
A ⊆ X and S ∈ R ∧ . Define V = intR

(
S [A ] ). Then, if R 
= ∅, by

Theorem 31 and Corollary 4, we have V ∈ TR = τR∧ . Moreover, since
V ⊆ intR

(
S [A ] ), by Theorem 19 we also have V ∈ IntR∧

(
S [A ] ). Therefore,

V ∈ τR∧ ∩ IntR∧
(
S [A ] ).

Furthermore, since S [A ] ⊆ S[A ], we can also note that A ∈ IntR∧
(
S [A ] ).

Hence, by Theorem 19, we can infer that A ⊆ intR
(
S [A ] ) = V . Moreover, since

V ∈ τR∧ , we can also note that V ∈ IntR∧(V ). Hence, since A ⊆ V , we can infer
that A ∈ IntR∧(V ). Therefore, since V ∈ τR∧ ∩ IntR∧

(
S [A ] ), we also have

A ∈ IntR∧
[
τR∧ ∩ IntR∧

(
S [ A ] ) ].

This shows that (1) implies (2) whenever R 
= ∅. However, if R = ∅, then it can
be easily seen that R is topological and R ∧ is proximal.
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Remark 39 If assertion (2) holds, then R ∧ is semi-proximal in the sense that
A ∈ IntR∧

[
IntR∧

(
S [A ] ) ] for all A ⊆ X and S ∈ R ∧.

Moreover, if in particular {x } ∈ IntR∧
[

IntR∧
(
R(x)

)]
for all x ∈ X and

R ∈ R, then we can already prove that assertion (1) also holds.

From Theorem 39, by using Theorems 32 and 36, we can immediately derive

Theorem 40 For a relator R onX, the following assertions are equivalent: (1) R

is topological , (2) R∧ is proximal.

Remark 40 By the corresponding definitions, it is clear that the relator R ∧ is
reflexive if and only if R is reflexive.

However, if R 
⊆ {X2}, then there exists R ∈ R such that R 
= X2. Therefore,
there exist x, y ∈ X such that x /∈ R (y). Thus, S = {x}×R (y) ∪ {x}c×X is a
non-reflexive relation on X such that S ∈ R �. Therefore, R � cannot be reflexive.

Note that if in particular either R = ∅ or R = {X2}, then R � is also reflexive.

13 A Few Basic Facts on Filtred Relators

Intersection properties of relators were also first investigated in [74, 75].

Definition 13 A relator R on X to Y is called

(1) properly filtered if for any R, S ∈ R we have R ∩ S ∈ R;
(2) uniformly filtered if for any R, S ∈ R there exists T ∈ R such that T ⊆

R ∩ S;
(3) proximally filtered if for any A ⊆ X and R, S ∈ R there exists T ∈ R such

that T [A ] ⊆ R [A ] ∩ S [A ];
(4) topologically filtered if for any x ∈ X and R, S ∈ R there exists T ∈ R

such that T (x) ⊆ R (x) ∩ S (x).

Remark 41 By using the binary operation ∧ and the basic closure operations on
relators, the above properties can be reformulated in some more concise forms.

For instance, we can see that R is topologically filtered if and only if any one of
the properties R ∧R ⊆ R ∧ , (R ∧R )∧ = R ∧ and R ∧ ∧ R ∧ = R ∧ holds.

However, in general, we only have (R∩S)[A ] ⊆ R [A ]∩S [A ]. Therefore, the
corresponding proximal filteredness properties are, unfortunately, not equivalent.

Despite this, we can easily prove the following theorem which shows the
appropriateness of the above proximal filteredness property.

Theorem 41 For a relatorR onX to Y , the following assertions are equivalent:

(1) R is proximally filtered;
(2) ClR (A ∪ B) = ClR (A) ∪ ClR (B) for all A,B ⊆ Y ;
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(3) IntR (A ∩ B) = IntR (A) ∩ IntR (B) for all A,B ⊆ Y .

Proof To prove the implication (3) .⇒ (1), note that if A ⊆ X and R, S ∈ R,
then by the definition of IntR we trivially have A ∈ IntR

(
R [A ] ) and A ∈

IntR
(
S [A ] ). Therefore, if (3) holds, then we also have A ∈ IntR

(
R [A ] ∩

S [A ] ). Thus, by the definition of IntR , there exists T ∈ R such that T [A ] ⊆
R [A ] ∩ S [A ].

Now, as an immediate consequence of this theorem, we can also state

Corollary 14 If R is a proximally filtered relator on X, then the families τ-R and
τR are closed under binary unions and intersections, respectively.

From Theorem 41, we can also easily derive the following

Theorem 42 For a relatorR onX to Y , the following assertions are equivalent:

(1) R is topologically filtered;
(2) clR (A ∪ B) = clR (A) ∪ clR (B) for all A,B ⊆ Y ;
(3) intR (A ∩ B) = intR (A) ∩ intR (B) for all A,B ⊆ Y .

Thus, in particular, we can also state the following

Corollary 15 If R is a topologically filtered relator on X, then the families FR
and TR are closed under binary unions and intersections, respectively.

The following example shows that, for a non-topological relator R, the converse
of the above corollary need not be true.

Example 2 If X = {1, 2, 3} and Ri is relation on X, for each i = 1, 2, such that

Ri (1) = { 1 , i + 1 } and Ri (2) = Ri (3) = { 2 , 3 } ,

then R = {
R1 , R2

}
is a reflexive relator on X such that TR is closed under

arbitrary intersections, but R is still not topologically filtered.
By the corresponding definitions, it is clear that TR = { ∅ , {2, 3}, X

}
.

Moreover, we can note that Ri (1) 
⊆ R1(1) ∩ R2(1) for each i = 1, 2. Thus,
by Definition 13, the relator R is not topologically filtered.

In addition to Theorem 42, we can also prove the following generalization of [48,
Lemma 7] of Levine.

Theorem 43 If R is a topologically filtered relator on X, A,B ⊆ X and there
exists V ∈ TR ∩ FR such that A ⊆ V and B ⊆ V c, then

intR (A ∪ B) = intR (A) ∪ intR (B).

Proof Because of the increasingness of ◦, we evidently have A◦ ∪B ◦ ⊆ (A∪B)◦.
Therefore, we need actually prove the converse inclusion.
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For this, note that if x ∈ (A∪B)◦, then by the definition of the operation ◦, there
exists R ∈ R such that R (x) ⊆ A ∪ B.

Now, if x ∈ V , then by the definition of TR , we can see that there exists S ∈ R
such that S (x) ⊆ V . Moreover, since R is topologically filtered, there exists T ∈ R
such that T (x) ⊆ R (x) ∩ S (x). Hence, we can already infer that

T (x) ⊆ R (x) ∩ S (x) ⊆ (A ∪ B) ∩ V = (A ∩ V ) ∪ (B ∩ V ) = A ∪ ∅ = A.

Therefore, if x ∈ V , then x ∈ A◦.
A quite similar argument shows that if x ∈ V c, then x ∈ B ◦. Therefore, in both

cases, we have x ∈ A◦ ∪ B ◦. Thus, the inclusion (A ∪ B)◦ ⊆ A◦ ∪ B ◦ is also
true.

Remark 42 More difficult conditions for the dual equality (A ∩ B)− = A− ∩ B−
to hold were given by Gottschalk [34] and Jung and Nam [39, 40].

Concerning the latter problem, we shall only mention here the following

Theorem 44 If R is a nonvoid, reflexive relator on X such that

clR (A ∩ B) = clR (A) ∩ clR (B)

for all A,B ⊆ X, then R ∧∞ =P (X2)∞.

Proof For this, it is enough to prove only that TR = P (X). Namely, in this case
we have TR = TΔX

. Hence, by using Theorem 25 and the corresponding defini-
tions, we can already infer that R ∧∞ = {ΔX }∧∞ = {ΔX }∗∞ = P (X2)∞.

To prove the equality TR = P (X), note that if this not true, then there exists
A ⊆ X such that A /∈ TR , and thus B = Ac /∈ FR . Therefore, B− 
⊆ B, and
thus there exists x ∈ B− such that x /∈ B. Hence, by using the assumptions of the
theorem, we can arrive at the contradiction that x ∈ {x }− ∩ B− = ( {x } ∩ B

)− =
∅− = ∅.

14 A Few Basic Facts on Quasi-Filtered Relators

Since R ⊆ R∞ for every relation R on X, in addition to Definition 13, we may also
naturally introduce the following

Definition 14 A relator R on X is called

(1) quasi-uniformly filtered if for any R, S ∈ R there exists T ∈ R such that
T ⊆ R∞ ∩ S∞;

(2) quasi-proximally filtered if for any A ⊆ X and R, S ∈ R there exists T ∈ R
such that T [A ] ⊆ R∞[A ] ∩ S∞[A ];
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(3) quasi-topologically filtered if for any x ∈ X and R, S ∈ R ∧ there exists
T ∈ R such that T (x) ⊆ R∞(x) ∩ S∞(x).

Remark 43 Analogously to Remark 41, the above quasi-filteredness properties can
also be reformulated in some more concise forms.

For instance, we can see that R is quasi-topologically filtered if and only if
R ∧∞∧R ∧∞ ⊆ R ∧ , (R ∧∞∧R ∧∞)∧∞ = R ∧∞ or R ∧∞∧R ∧∞ = R ∧∞.

However, it is now more important to note that, by using some former results, we
can also prove the following two theorems which show the appropriateness of the
above quasi-proximal and quasi-topological filteredness properties.

Theorem 45 For any relator R on X, the following assertions are equivalent:

(1) R is a quasi-proximally filtered;
(2) τ-R is closed under binary unions;
(3) τR is closed under binary intersections.

Theorem 46 For any relator R on X, the following assertions are equivalent:

(1) R is a quasi-topologically filtered;
(2) FR is closed under binary unions;
(3) TR is closed under binary intersections.

Remark 44 In this respect it is also worth mentioning that if R is a relator on X to
Y , then the family ER is closed under binary intersections if and only if R is quasi-
directed in the sense that for any x, y ∈ X and R, S ∈ R we have R (x) ∩ S (y) ∈
ER .

From the above two theorems, by using Corollaries 14 and 15, we can derive

Corollary 16 If R is a proximally (topologically) filtered relator on X, then R is
also quasi-proximally (quasi-topologically) filtered.

Now, by using Theorem 45, we can also easily prove the following

Theorem 47 If R is a quasi-proximally filtered, proximal relator on X, then R is
proximally filtered.

Proof Suppose that A ⊆ X and R, S ∈ R. Then, by Definition 12, there exist
U ,V ∈ τR such that A ⊆ U ⊆ R [A ] and A ⊆ V ⊆ S [A ].

Moreover, by Theorem 45, we can state that U ∩ V ∈ τR . Therefore, by the
definition of τR , there exists T ∈ R such that T [U ∩ V ] ⊆ U ∩ V . Hence, we
can already see that T [A ] ⊆ T [U ∩ V ] ⊆ U ∩ V ⊆ R [A ] ∩ S [A ].

Moreover, by using Theorem 46, we can quite similarly prove the following

Theorem 48 If R is a quasi-topologically filtered, topological relator on X, then
R is topologically filtered.
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Remark 45 Our former Example 2 shows that even a quasi-proximally filtered,
reflexive relator need not be topologically filtered.

Namely, if X and R are as in Example 2, then by the corresponding definitions
it is clear that τR = {∅ , {2, 3}, X

}
, and thus by Theorem 45 the relator R is

quasi-proximally filtered.

15 Some Further Theorems on Topologically Filtered
Relators

In our former papers [67, 68], by using the arguments of Kuratowski [45, pp. 39,
45] , we have also proved the following two basic theorems.

Theorem 49 IfR is a topologically filtered relator onX to Y , then for any A,B ⊆
Y we have

clR (A) \ clR (B) = clR ( A \ B) \ clR (B).

Proof By using Theorem 42, we can see that

A− ∪ B− = (A ∪ B)− = (
(A \ B) ∪ B

)− = (A \ B)− ∪ B− .

Hence, because of the identity (U ∪V )\V = U \V , the required equality follows.

Thus, in particular we can also state the following

Corollary 17 If R is a topologically filtered relator on X to Y , then for any
A,B ⊆ Y we have clR (A) \ clR (B) ⊆ clR ( A \ B).

This corollary already allows us to easily prove the following

Theorem 50 If R is a topologically filtered relator onX, then for any A ⊆ X and
U ∈ TR we have

clR (A) ∩ U = clR ( A ∩ U ) ∩ U.

Proof By Definition 3 and Theorem 2, we have U ⊆ U ◦ = U c−c. Hence, by
using Corollary 17, we can infer that

A− ∩ U ⊆ A− ∩ U c−c = A− \ U c− ⊆ ( A \ U c)− = (A ∩ U )− .

Therefore, A− ∩ U = A− ∩ (U ∩ U ) = ( A− ∩ U ) ∩ U ⊆ ( A ∩ U )− ∩ U .
Moreover, by using the increasingness of −, we can see that (A ∩ U )− ⊆ A−,

and thus (A ∩ U )− ∩ U ⊆ A− ∩ U is always true. Therefore, we actually have
A− ∩ U = (A ∩ U )− ∩ U .
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This theorem can also be easily derived from its subsequent corollary which can
also be easily proved directly, without using Corollary 17. ( See [68].)

Corollary 18 If R is a topologically filtered relator on X, then for any A ⊆ X

and U ∈ TR we have clR (A) ∩ U ⊆ clR ( A ∩ U ).

Remark 46 The importance of the closure space counterpart of Corollary 18 was
also recognized Császár [13–18] and Sivagami [70] who assumed it as an axiom
for an increasing set-to-set function γ .

Now, as a dual form of Theorem 50, it is also worth proving the following

Theorem 51 If R is a topologically filtered relator on X, then for any A ⊆ X and
V ∈ FR we have

intR (A) ∪ V = intR ( A ∪ V ) ∪ V.

Proof By using Theorems 2 and 50, we can see that

A◦ ∪ V = Ac−c ∪ V cc = ( Ac− ∩ V c)c = (
( Ac ∩ V c)− ∩ V c

)c

= (
( A ∪ V )c− ∩ V c

)c = (A ∪ V )c−c ∪ V = (A ∪ V )◦ ∪ V.

Thus, in particular we can also state the following

Corollary 19 If R is a topologically filtered relator onX, then for any A ⊆ X and
V ∈ FR we have intR (A ∪ V ) ⊆ intR (A) ∪ V .

The importance of this corollary is apparent from the following

Theorem 52 If R is a topologically filtered, quasi-topological relator on X, then
for any A,B ∈ NR we have A ∪ B ∈ NR .

Proof By using Theorem 42 and Corollary 19, we can see that

(A ∪ B)−◦ = ( A− ∪ B−)◦ ⊆ A−◦ ∪ B− = ∅ ∪ B− = B−.

Hence, by using Theorem 31 and the definition of TR , we can infer that

(A ∪ B)−◦ ⊆ (A ∪ B)−◦◦ ⊆ B−◦ = ∅.

Therefore, (A ∪ B)−◦ = ∅, and thus A ∪ B ∈ NR .

Now, by using this theorem, we can also easily establish the following

Corollary 20 If R is a nonvoid, non-partial, topologically filtered, quasi-
topological relator on X, then NR is an ideal on X.
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Proof By the definition of NR and the increasingness of − and ◦ , it is clear that
NR is always descending. Moreover, since R is nonvoid and non-partial, we can
also see that ∅−◦ = ∅◦ = ∅. Therefore, ∅ ∈ NR , and thus NR 
= ∅. Furthermore,
from Theorem 52, we know that NR is closed under pairwise unions.

Remark 47 Note that if R is a locally non-partial relator on X, then by Theorem 29
we have X−◦ = X. Therefore, if X 
= ∅, then we can also state that X /∈ NR , and
thus NR 
= P (X).

While, if R is a quasi-topological relator on X and A ∈ NR , then by using
Theorem 31 and the increasingness of ◦ we can also see that A−−◦ ⊆ A−◦ = ∅.
Therefore, A−−◦ = ∅, and thus A− ∈ NR .

16 Some More Particular Theorems on Topologically
Filtered Relators

By using Corollary 18, we can also easily prove the following

Theorem 53 If R is a topologically filtered, topological relator onX, then for any
A ⊆ X and U ∈ TR we have

clR ( A ∩ U ) = clR
(

clR (A) ∩ U
)
.

Proof By Corollary 18 we have A−∩B ⊆ (A∩B)−. Hence, by using Theorems 32
and 31, we can infer that

( A− ∩ B )− ⊆ (A ∩ B)−− ⊆ (A ∩ B)−.

On the other hand, by Theorem 26, we have A ⊆ A−, and thus also A∩B ⊆ A− ∩
B. Hence, we can infer that (A∩B)− ⊆ (

A−∩B
)− . Therefore, the corresponding

equality is also true.

From this theorem, we can immediate derive

Corollary 21 If R is a topologically filtered, topological relator on X, then for
any A ∈ DR and U ∈ TR we have clR (U ) = clR ( A ∩ U ).

Proof By Definition 1 and Theorem 53, we evidently have

U− = (X ∩ U )− = ( A− ∩ U )− = (A ∩ U )−.

Now, by modifying an argument of Levine [50], we can also prove

Theorem 54 If R is a nonvoid, topological relator on X and A ⊆ X such that
clR (U ) = clR ( A ∩ U ) for all U ∈ TR , then A ∈ DR .
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Proof Assume on the contrary that A /∈ DR . Then, by Definition 1, there exists
x ∈ X such that x /∈ A−. Thus, by Definition 1, there exists R ∈ R such that
A ∩ R (x) = ∅. Moreover, by Definition 11, there exists U ∈ TR such that x ∈
U ⊆ R (x). Thus, in particular we also have A ∩ U = ∅.

Hence, by using the assumptions of the theorem, we can already infer that U− =
(A ∩ U )− = ∅− = ∅. Note that the latter equality already requires that R 
= ∅.

On the other hand, from the inclusion x ∈ U , by using Theorems 32 and 26 and
the increasingness of −, we can infer that x ∈ {x }− ⊆ U−, and thus U− 
= ∅. This
contradiction proves that A ∈ DR .

Remark 48 If R is a nonvoid, reflexive relator on X and A ⊆ X such that
clR

(
R (x)

) = clR
(
A ∩ R (x)

)
for all x ∈ X and R ∈ R, then we can even

more easily prove that A ∈ DR .

In addition to Theorem 54, we can also prove the following

Theorem 55 If R is a topologically filtered, topological relator onX, then for any
U ∈ TR we have

resR (U) ∈ FR \ ER .

Proof By Theorem 11, we have U c ∈ FR . Moreover, by Theorems 32 and 31, we
have U− ∈ FR . Hence, by using the notation U † = resR (U), we can infer that

U † = U− \ U = U− ∩ U c ∈ FR .

Moreover, by using Theorems 42, 2, 32, and 26, we can also see that

U † ◦ = (
U− \ U )◦ = U−◦ ∩ U c ◦ = U−◦ ∩ U−c ⊆ U− ∩ U−c = ∅ ,

and thus U † ◦ = ∅. Therefore, U † /∈ ER , and thus U † ∈ FR \ ER .

Now, as an immediate consequence of this theorem, we can also state

Corollary 22 If R is a topologically filtered, topological relator on X, then
resR (U ) ∈ NR for all U ∈ TR .

Remark 49 Note that if R is a topological relator on X and U ∈ TR , then by
Definition 3 and Theorems 32 and 26 we have U = U ◦. Therefore, under the
notation U ‡ = bndR (U), we have U † = U− \ U = U− \ U ◦ = U ‡.

Moreover, it is also worth noticing that in Theorem 55 and Corollary 22, it is
enough to assume only that R is a quasi-topologically filtered, topological relator
on X. Namely, in this case, R is already topologically filtered by Theorem 48.
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17 Some Generalized Topologically Open Sets

Notation 1 In the sequel, we shall always assume that X is a set and R is a relator
on X.

Moreover, to shorten the subsequent proofs, we shall again use the notations

A− = clR (A) , A◦ = intR (A) and A† = resR (A).

In our first joint paper [67], motivated by the corresponding definitions on
generalized open subsets of topological spaces mentioned in the Motivations, we
have introduced the following

Definition 15 For a subset A of the relator space X(R ), we write

(1) A ∈ T s
R if A ⊆ clR

(
intR (A)

);
(2) A ∈ T

p

R if A ⊆ intR
(

clR (A)
);

(3) A ∈ T α
R if A ⊆ intR

(
clR

(
intR (A)

)) ;
(4) A ∈ T

β

R if A ⊆ clR
(

intR
(

clR (A)
)) ;

(5) A ∈ T a
R if A ⊆ clR

(
intR (A)

) ∩ intR
(

clR (A)
);

(6) A ∈ T b
R if A ⊆ clR

(
intR (A)

) ∪ intR
(

clR (A)
)
.

And, the members of the above families are called the topologically semi-open,
preopen, α-open, β-open, a-open and b-open subsets of the relator space X(R),
respectively.

Remark 50 Note that, for instance, ◦− is always an increasing operation on P (X).
Moreover, if R is nonvoid and non-partial, then ∅◦− = ∅ and X◦− = X .

Therefore, by [76, Theorem 9.4], there exists a nonvoid and non-partial relator
S on X such that A◦− = intS (A) for all A ⊆ X, and thus T s

R = TS .
However, this fact can be used to establish only that if R is a nonvoid and non-

partial relator on X, then T s
R is a generalized topology on X [85].

In [67], by using the enormous literature on generalized open sets in topolo-
gical spaces and their generalizations, we have, for instance, proved the following
theorems.

Theorem 56 We have (1) T a
R = T s

R ∩ T
p

R ; (2) T s
R ∪ T

p

R ⊆ T b
R .

Theorem 57 If R is a reflexive relator on X, then (1) T α
R ⊆ T a

R; (2)

T b
R ⊆ T

β

R .
(3) TR ⊆ T κ

R for all κ = s , p, α, β , a and b.

Remark 51 Note that, by the former inclusions, it is enough to prove the inclusion
TR ⊆ T κ

R only for κ = α.

Theorem 58 If R is a topological relator on X, then T α
R = T a

R .
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Theorem 59 IfR is a topological relator on X, then for anyA ⊆ X, the following
assertions are equivalent:
(1) A ∈ T s

R; (2) clR (A) ⊆ clR
(

intR (A)
)
; (3) clR (A) = clR

(
intR (A)

)
.

Theorem 60 If R is a topological relator on X, then for any A ⊆ X the following
assertions are equivalent:

(1) A ∈ T s
R;

(2) there exists V ∈ TR such that V ⊆ A and clR (A) = clR (V );
(3) there exist V ∈ TR and B ⊆ X such that A = V ∪ B and B ⊆ resR (V ).

Corollary 23 If R is a topologically filtered, topological relator on X and A ∈
T s

R , then there exist V ∈ TR and B ∈ NR such that A = V ∪B and V ∩B = ∅.
Theorem 61 If R is a topologically filtered, topological relator onX, then for any
A ⊆ X the following assertions are equivalent:

(1) A ∈ T
p

R ;
(2) there exist V ∈ TR and B ∈ DR such that A = V ∩ B;
(3) there exists V ∈ TR such that A ⊆ V and clR(A) = clR (V ).

Theorem 62 If R is a topologically filtered, topological relator onX, then for any
A ⊆ X the following assertions are equivalent:

(1) A ∈ T α
R ;

(2) there exist V ∈ TR and B ∈ NR such that A = V \ B;
(3) there exist V ∈ TR and B ⊆ resR

(
intR (A)

)
such that A = V \ B.

Theorem 63 If R is a topological relator onX, then for any A ⊆ X the following
assertions are equivalent: (1) A ∈ T

β

R ; (2) clR (A) ∈ T s
R;

(3) there exists V ∈ TR such that clR (A) = clR (V ).

Remark 52 Hence, by using Theorems 59 and 60, we can derive some further
characterizations of the family T

β

R .
On the other hand, from Theorem 56, by using Theorems 59, 60, and 61, we can

derive several characterizations of the family T a
R .

Theorem 64 If R is a topologically filtered, topological relator onX, then for any
A ⊆ X the following assertions are equivalent:

(1) A ∈ T b
R ;

(2) there exist B ∈ T s
R and C ∈ T

p

R such that A = B ∪ C.
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18 Some Further Theorems on Generalized Topologically
Open Sets

In our second joint paper [68], by using the enormous literature on generalized open
sets in topological spaces and their generalizations, we have, for instance, proved
the following theorems.

Theorem 65 The families T κ
R , with κ = s , p, α, β , a and b, are closed under

arbitrary unions.

Remark 53 Thus, in particular we have ∅ ∈ T κ
R for all κ = s , p, α, β , a and b.

Theorem 66 The following assertions are equivalent: (1) X ∈ T s
R ; (2)

X ∈ T
β

R ; (3) R is non-partial.

Theorem 67 The following assertions are equivalent: (1) X ∈ T
p

R ; (2)

X ∈ T α
R ; (3) R is locally non-partial.

Corollary 24 The following assertions are equivalent: (1) X ∈ T a
R ; (2) R

is non-partial and locally non-partial.

Remark 54 If R is either non-partial or locally non-partial, then by Theo-
rems 56, 66, and 67, we can also state that X ∈ T b

R .

Theorem 68 If R is a nonvoid, non-partial relator onX, then T κ
R is a generalized

topology on X for all κ = s , p, α, β , a and b.

Theorem 69 If R is a topologically filtered relator on X and U ∈ TR , then U ∩
A ∈ T κ

R for all A ∈ T κ
R with κ = s , p, α, β , a and b.

Theorem 70 IfR is a topologically filtered, topological relator onX and A ∈ T α
R ,

then A ∩ B ∈ T κ
R for all A ∈ T κ

R with κ = s , p, α, β , a and b.

Corollary 25 If R is a nonvoid, topologically filtered, topological relator on X,
then T α

R is a topology on X.

In [68], by using an argument of Njåstad [62, p. 962], we have also proved

Theorem 71 If R is a nonvoid, topologically filtered, topological relator onX and
A ⊆ X such that A ∩ B ∈ T s

R for all B ∈ T s
R , then A ∈ T α

R .

Moreover, to introduce the corresponding generalized topologically closed sets,
we have also used the following

Definition 16 For any κ = s , p, α, β , a and b, we define

F κ
R = {

A ⊆ X : Ac ∈ T κ
R

}
.

Thus, by using Theorem 2, we could easily prove the following
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Theorem 72 For any A ⊆ X, we have

(1) A ∈ F s
R if and only if intR

(
clR (A)

) ⊆ A;
(2) A ∈ F

p

R if and only if clR
(

intR (A)
) ⊆ A;

(3) A ∈ F α
R if and only if clR

(
intR

(
clR (A)

)) ⊆ A;

(4) A ∈ F
β

R if and only if intR
(

clR
(

intR (A)
)) ⊆ A;

(5) A ∈ F a
R if and only if intR

(
clR (A)

) ∪ clR
(

intR (A)
) ⊆ A;

(6) A ∈ F b
R if and only if intR

(
clR (A)

) ∩ clR
(

intR (A)
) ⊆ A.

In [67] and [68], following Kuratowski [44], we have also introduced

Definition 17 A subset A of the relator space X(R) is called topologically regular
open if

A = intR
(

clR (A)
)
.

And, the family of all such subsets of X(R) is denoted by T r
R .

Thus, by using several papers on regular open sets in topological spaces, we have,
for instance, proved the following theorems.

Theorem 73 If R is a quasi-topological relator on X, then T r
R ⊆ TR .

Theorem 74 If R is a reflexive relator on X, then TR ∩ FR ⊆ T r
R .

Theorem 75 We always have T r
R = T

p

R ∩F s
R .

Theorem 76 If R is a topological relator on X, then (1) T r
R = TR ∩ F s

R ;

(2) T r
R = T α

R ∩ F
β

R .

Theorem 77 If R is a topological relator on X, then (1) clR (A) ∈ T r
R for all

A ∈ T s
R ;

(2) intR
(

clR (A)
) ∈ T r

R for all A ⊆ X.

Theorem 78 If R is a topologically filtered, topological relator on X, then T r
R is

closed under pairwise intersections.

The following example shows that the counterparts of Theorems 65 and 69 fail
to hold for the family T r

R .

Example 3 If X = R and

Rn =
{
(x , y) ∈ X2 : d (x, y) < n−1 }
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for all n ∈ N, then R = {Rn : n ∈ N} is a properly filtered, strongly topological,
tolerance relator on X such that, for the sets

A = ] 0, 1 [ , B = ] 1, 2 [ , C = ] 0, 2 [ and U = {1}c ,

we have A ∪ B = C ∩ U /∈ T r
R despite that A,B,C ∈ T r

R and U ∈ TR .

19 A Further Family of Generalized Topologically Open Sets

The following definitions and some of the forthcoming theorems have been mainly
suggested to us by Levine [48], Chattopadhyay and Bandyopadhyay [8] and
Császár [15, 16].

In [48], a subset A of a topological space is said to have property Q if A−◦ =
A◦−. While, in [8] and [15], the set A is called a δ-set and a quasi-open set,
respectively, if A−◦ ⊆ A◦−.

Definition 18 If Φ and Ψ are relation on P (X) to X, then for any A ⊆ X we
shall write

A ∈ A (Φ,Ψ ) if Ψ
(
Φ (A)

) ⊆ Φ
(
Ψ (A)

)
.

Remark 55 Thus, for any A ⊆ X, we have

A ∈ A (Φ,Ψ ) ∩A (Ψ ,Φ) if and only if Ψ
(
Φ (A)

) = Φ
(
Ψ (A)

)
.

That is, the associated set-valued functions commute at the set A.

In the sequel, we shall also restrict ourselves to the particular case when Φ = clR
and Ψ = intR . And, to shorten the subsequent statements and proofs, we shall use
the following

Definition 19 In particular, we define

AR = AR (−, ◦) = A
(

clR , intR
)
.

Remark 56 Thus, for any A ⊆ X, we have

A ∈ AR if and only if A−◦ ⊆ A◦−.

By using the latter property, we can easily prove the following theorems which
could, to some extent, be generalized to the more general case in Definition 18.

Theorem 79 We have NR ⊆ AR .
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Proof If A ∈ NR , then by Definition 3, we have A−◦ = ∅. Thus, A−◦ ⊆ A◦−
trivially holds. Hence, by Remark 56, we can see that A ∈ AR . Therefore, the
required inclusion is true.

Remark 57 If R is a nonvoid, reflexive relator on X, then we can also state that
NR ⊆ AR (−, ◦) ∩ AR(◦,−).

Namely, if R is reflexive, then by Theorem 26 we have A ⊆ A−, and thus also
A◦ ⊆ A−◦. Therefore, if A ∈ NR , i.e., A−◦ = ∅, then we also have A◦ = ∅.
Moreover, if R is nonvoid, then we also have ∅− = ∅. Therefore, in this particular
case, we actually have A◦− = ∅− = ∅ = A−◦ , and thus also A ∈ AR(◦,−).

Theorem 80 If R is a nonvoid relator on X, then

(1) AR \ NR ⊆ ER; (2) A ∈ AR ∩DR implies intR (A) ∈ DR .

Proof If A ∈ AR \NR , then A ∈ AR and A /∈ NR . Therefore, by Remark 56
and Definition 3, we have A−◦ ⊆ A◦− and A−◦ 
= ∅, and thus A◦− 
= ∅. Hence,
since R 
= ∅, and thus ∅− = ∅, we can infer that A◦ 
= ∅. Therefore, A ∈ ER ,
and thus assertion (1) is true.

While, if A ∈ AR ∩ DR , then we have A ∈ AR and A ∈ DR . Therefore, by
Remark 56 and Definition 1, we have A−◦ ⊆ A◦− and A− = X. Hence, since
R 
= ∅, and thus X◦ = X, we can infer that X = X◦ = A−◦ ⊆ A◦−, and thus
A◦− = X. Therefore, A◦ ∈ DR , and thus assertion (2) is also true.

Remark 58 Assertions (1) and (2) can be reformulated in the forms that:

(1) AR \ ER ⊆ NR ; (2)
(
AR ∩ DR

)◦ ⊆ DR .

Theorem 81 If R is a reflexive relator on X, then TR ⊆ AR .

Proof If A ∈ TR , then by Definition 3 and Theorem 26 we have A ⊆ A◦ and
A◦ ⊆ A, and thus also A = A◦.

Now, by Theorem 26, we can also see that A−◦ ⊆ A− = A◦− , and thus by
Remark 56 we also have A ∈ AR .

Theorem 82 If R is a topological relator on X, then T s
R ⊆ AR .

Proof If A ∈ T s
R , then by Definition 15, we have A ⊆ A◦−. Hence, by using the

increasingness of the operation −◦ and Theorems 32, 31, and 26, we can see that

A−◦ ⊆ A◦−−◦ ⊆ A◦−◦ ⊆ A◦−.

Therefore, by Remark 56, we also have A ∈ AR .

Theorem 83 We have

(1) AR ∩ T
p

R ⊆ T s
R;

(2) AR ∩ T
p

R = AR ∩ T a
R ; (3) AR ∩ T s

R = AR ∩ T b
R .
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Proof If A ∈ AR∩T
p

R , then A ∈ T
p

R and A ∈ AR . Hence, by using Definition 15
and Remark 56, we can see that A ⊆ A−◦ ⊆ A◦−. Thus, by Remark 56, we also
have A ∈ T s

R . Therefore, inclusion (1) is true.
By Remark 56, it is clear that, for any A ⊆ X, the following assertions are

equivalent:

(a) A ∈ AR ; (b) A−◦ = A−◦ ∩ A◦−; (c) A◦− = A−◦ ∪ A◦−.

Hence, by Definition 15, it is clear that, for any A ∈ AR , we have

A ∈ T
p

R ⇐⇒ A ⊆ A−◦ ⇐⇒ A ⊆ A−◦ ∩ A◦− ⇐⇒ A ∈ T a
R ,

and quite similarly

A ∈ T s
R ⇐⇒ A ⊆ A◦− ⇐⇒ A ⊆ A−◦ ∪ A◦− ⇐⇒ A ∈ T b

R .

Therefore, equalities (2) and (3) are also true.

Remark 59 By using Theorem 56 and assertion (3), we can also see that

AR ∩ T
p

R ⊆ AR ∩ (T s
R ∪ T

p

R ) ⊆ AR ∩ T b
R = AR ∩ T s

R ⊆ T s
R .

Therefore, assertion (3) is somewhat stronger than assertion (1).

20 Some Further Theorems on the Family AR

The following theorem shows that, in contrast to TR and T κ
R , the family AR is

closed under elementwise complementation.

Theorem 84 For any A ∈ AR , we have Ac ∈ AR .

Proof By using Remark 56 and Theorem 2, we can see that

A ∈ AR .⇒ A−◦ ⊆ A◦− .⇒ A−c−c ⊆ A◦c◦c

.⇒ A◦c◦ ⊆ A−c− .⇒ Ac−◦ ⊆ Ac ◦− .⇒ Ac ∈ AR .

Remark 60 By using the practical, but ambiguous notation

A c = [A ]c = CX [A ] = {CX(A) : A ∈ A
}

the above theorem can be reformulated in the instructive form that A c
R = AR .
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From our former Theorems 79 and 81–83, by using Theorem 84, we can
immediately derive the following four theorems.

Theorem 85 We have

NR ∪ N c
R ⊆ AR .

Theorem 86 If R is a reflexive relator on X, then

TR ∪FR ⊆ AR .

Remark 61 If R is a reflexive relator on X, then we can also state that TR∩FR ⊆
AR (−, ◦) ∩ AR(◦,−).

Namely, if A ∈ TR ∩ FR , then by using Definition 3 and Theorem 26 we can
see that

A◦− = A− = A = A◦ = A−◦.

Therefore, A ∈ AR(◦,−), and thus TR ∩ FR ⊆ AR(◦,−) also holds.

Theorem 87 If R is a topological relator on X, then

T s
R ∪ F s

R ⊆ AR .

Theorem 88 We have

(1) AR ∩ F
p

R ⊆ F s
R ;

(2) AR ∩ F
p

R = AR ∩ F a
R ; (3) AR ∩ F s

R = AR ∩ F b
R .

Now, analogously to Theorem 84, we can also prove the following

Theorem 89 If R is a topological relator on X, then for any A ∈ AR we have

(1) clR (A) ∈ AR ; (2) intR (A) ∈ AR .

Proof If A ∈ AR , then by Remark 56 we have

A−◦ ⊆ A◦−.

Moreover, by Theorems 32, 31 and 26, we also have

A−− ⊆ A− and A ⊆ A−.

Hence, by using the increasingness of the operations ◦ and ◦−, we can infer that

A−−◦ ⊆ A−◦ ⊆ A◦− ⊆ A−◦−.

Therefore, by the definition of AR , we also have A− ∈ AR .
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Assertion (2) can now be easily derived from (1) by using Theorems 2 and 84.
Namely, by Theorem 2, we have A◦ = Ac−c.

Remark 62 Assertions (1) and (2) can be reformulated in the form that

A −
R ∪ A ◦

R ⊆ AR .

The following theorem shows that, analogously to the families T α
R and T r

R , the
family AR may also be frequently closed under pairwise intersections.

Theorem 90 If R is a topologically filtered, topological relator onX, then for any
A,B ∈ AR we have A ∩ B ∈ AR .

Proof By Remark 56, we have

A−◦ ⊆ A◦− and B−◦ ⊆ B ◦−.

Hence, by using the increasingness of the operations—and ◦, Theorems 32 and 31,
Corollary 18 and Theorem 42, we can see that

( A ∩ B )−◦ ⊆ A−◦ ∩ B−◦ ⊆ A◦− ∩ B−◦ ⊆ (
A◦ ∩ B−◦

)−

⊆ (
A◦ ∩ B ◦−

)− ⊆ (
A◦ ∩ B ◦

)−− ⊆ (
A◦ ∩ B ◦

)− = ( A ∩ B )◦−.

Thus, by Remark 56, we also have A ∩ B ∈ AR .

Now, as a useful consequence of Theorems 84 and 90, we can also state

Corollary 26 If R is a topologically filtered, topological relator on X, then for
any A,B ∈ AR we have (1) A \ B ∈ AR ; (2) A ∪ B ∈ AR ; (3)

AΔB ∈ AR .

Proof To prove these, recall that

A \ B = A ∩ Bc , A ∪ B = ( Ac ∩ Bc)c , AΔB = (A \ B) ∪ (B \ A).

Remark 63 Thus, if R is a topologically filtered, topological relator on X, then AR
forms an algebra of subsets of X.

The countable infinite set Q of all rational numbers, used also by Levine [48]
and Császár [15], shows that AR is not in general a σ -algebra.

Example 4 If X and R are as in Example 3 and Ar = {r } for all r ∈ Q, then
Ar ∈ AR for all r ∈ Q such that

⋃
r∈Q Ar = Q /∈ AR .

To check this, note that Ar ∈ FR , and thus by Theorem 86 we also have Ar ∈
AR for all r ∈ Q. However, Q

−◦ = R
◦ = R, but Q◦− = ∅− = ∅. Therefore, by

Remark 56, we have Q /∈ AR .
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21 Characterizations of the Family AR

By using the corresponding definitions, one can easily establish the following

Theorem 91 For any A ⊆ X, the following assertions are equivalent:

(1) A ∈ AR ;
(2) if x ∈ X and there exists R ∈ R such that for any y ∈ R (x) and S ∈ R we

have S (y)∩ A 
= ∅, then for every U ∈ R there exist z ∈ U (x) and V ∈ R
such that V (z) ⊆ A.

However, this intrinsic characterization of the family AR cannot, certainly, be
used to prove our former and subsequent theorems on AR .

Therefore, analogously to the first part of [15, Theorem 2.3] of Császár, we shall
also prove a more particular, but much deeper characterization theorem.

Theorem 92 If R is a topologically filtered, topological relator onX, then for any
A ⊆ X the following assertions are equivalent:

(1) A ∈ AR ;
(2) there exist V ∈ TR and B ∈ NR such that A = V ∪ B;
(3) there exist V ∈ T s

R and B ∈ NR such that A = V ∪ B.

Proof If (1) holds, then by Remark 56 we have A−◦ ⊆ A◦−. Moreover, by
Theorems 32 and 26, we can also note that A◦ ⊆ A, and thus

A = A◦ ∪ ( A \ A◦).

Therefore, by taking

V = A◦ and B = A \ A◦

we can state that A = V ∪ B with V ∩ B = ∅. Moreover, by Theorem 32 and 31,
we can also note that V = A◦ ∈ TR , and thus V ⊆ V ◦.

On the other hand, by using Corollary 2, Theorem 42 and the inclusions

V − = A◦− ⊇ A−◦ ⊇ B−◦ ,

we can see that

B = A \ V .⇒ V ∩ B = ∅ .⇒ V ∩ B− = ∅
.⇒ ( V ∩ B−)◦ = ∅ .⇒ V ◦ ∩ B−◦ = ∅ .⇒ V ∩ B−◦ = ∅

.⇒ V − ∩ B−◦ = ∅ .⇒ B−◦ = ∅ .⇒ B ∈ NR .

Therefore, (2) also holds.
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Now, since the implication (2) .⇒ (3) is immediate from the inclusion TR ⊆
T s

R , we need only show that (3) also implies (1).
For this, note that if (3) holds, then by Theorems 82 and 79 we also have V ∈

AR and B ∈ AR . Hence, by Corollary 26, we can already infer that A = V ∪ B ∈
AR .

Remark 64 From the inclusions TR ⊆ T α
R ⊆ T a

R ⊆ T s
R , valid for any reflexive

relator R on X, it clear that in the above theorem we may write T α
R and T a

R instead
of T s

R .
Moreover, if R is a reflexive relator on X, then from assertion (2) of Theorem 92,

by using the inclusion TR ⊆ T
p

R , we can also infer that there exist V ∈ T
p

R and
B ∈ NR such that A = V ∪ B.

However, this statement cannot certainly be used to obtain assertion (1) of
Theorem 92. Namely, if R is as in Theorem 92 and V ∈ T

p

R , then by Theorem 61
we can only state that there exist W ∈ TR and C ∈ DR such that V = W ∩ C.
And, C need not belong to AR .

Namely, if R is a nonvoid relator on X and in addition to C ∈ DR we also have
C ∈ AR , then X = X◦ = C−◦ ⊆ C ◦−. Therefore, X = C ◦−, and thus C ◦ ∈ DR
which usually does not hold.

Now, analogously to [9, Lemma 1.3] of Chattopadhyay and Roy, we can also
prove the following

Theorem 93 If R is a topologically filtered, topological relator on X, then the
following assertions are equivalent:

(1) AR = TR; (2) AR ⊆ TR;
(3) TR = FR; (4) TR ⊆ FR; (5) FR ⊆ TR .

Proof By Theorem 81, it is clear that assertions (1) and (2) are equivalent even if
R is assumed only to be reflexive. Moreover, by using Theorem 11, we can easily
see that assertions (3), (4) and (5) are always equivalent. Therefore, it is sufficient
to prove only the equivalence of (2) and (4).

For this, note that if (4) does not hold, then there exists V ∈ TR such that
V /∈ FR . Hence, by using Theorem 11, we can infer that V c ∈ FR and V c /∈ TR .
Now, by Theorem 86, we can also state that V c ∈ AR . Thus, assertion (2) does not
also hold. Therefore, (2) implies (4) even if R is assumed to be only reflexive.

On the other hand, if A ∈ AR , then by Theorem 92 there exist V ∈ TR and
B ∈ NR such that

A = V ∪ B.

Moreover, if (4) holds, then (5) also holds. Therefore, by using Theorems 32, 26
and 31 , we can also see that

B ⊆ B− = B−◦ = ∅ ,
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and thus B = ∅. Hence, we can already infer that A = V ∪B = V ∪∅ = V ∈ TR .
Therefore, (2) also holds.

22 Some Further Characterizations of the Family AR

Analogously to [15, Theorem 2.3] of Császár and [29, Theorem 2.2] of Ganster,
Reilly and Vamanamurthy, we can also prove the following two theorems.

Theorem 94 If R is a nonvoid, topologically filtered, topological relator on X,
then for any A ⊆ X the following assertions are equivalent:

(1) A ∈ AR ;
(2) there exists V ∈ TR such that AΔV ∈ NR;
(3) there exists V ∈ TR such that A \ V ∈ NR and V \ A ∈ NR .

Proof If (1) holds, then by Theorem 92 there exist V ∈ TR and B ∈ NR such
that A = V ∪ B. Hence, we can infer that

A \ V ⊆ B and V \ A = ∅.

Now, since B ∈ NR and NR is descending, we can see that A \ V ∈ NR .
Moreover, since R is nonvoid and reflexive, we can also see that ∅−◦ = ∅◦ = ∅,
and thus V \ A = ∅ ∈ NR . Therefore, (3) also holds.

Conversely, if (3) holds, then by defining

W = V \ ( V \ A )−

and using Theorems 32, 32, and 11 and Corollary 15 we can see that

W = V ∩ ( V ∩ Ac)−c ∈ TR .

Moreover, by using Theorems 2, 32, and 26, we can also see that

W = V ∩ ( V ∩ Ac)c◦ = V ∩ ( V c ∪ A )◦ ⊆ V ∩ ( V c ∪ A ) = V ∩ A ⊆ A ,

and thus A = W ∪ ( A \W ). Furthermore, we can also note that

A \W = A ∩W c = A ∩ (
V ∩ ( V ∩ Ac)−c

)c = A ∩ (
V c ∪ ( V ∩ Ac)−

) =
( A∩V c)∪(A∩( V ∩Ac)−

) = ( A\V )∪(A∩( V \A )−
) ⊆ ( A\V )∪( V \A )−.

Hence, by using the assumptions A \ V ∈ NR and V \ A ∈ NR and three basic
properties of NR established at the end of Section 15, we can already infer that
A \W ∈ NR . Therefore, by Theorem 92, assertion (1) also holds.
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Now, to complete the prove it remains only to note that, because of the equality
AΔV = ( A \ V ) ∪ ( V \ A ) and two basic properties of NR , assertions (2) and
(3) are also equivalent.

Remark 65 Note that if, V ∈ T κ
R , with κ = s , α or a, then by Theorems 31, 11,

and 69, we have W = V ∩ ( V ∩ Ac)−c ∈ T κ
R . Therefore, by Theorem 92 and

Remark 64, in Theorem 94 we can write T κ
R instead of TR .

However, it is now more important to note that, by a general definition of
Kuratowski [45, p. 11], Theorem 94 can be briefly reformulated by stating that
A ∈ AR if and only if A is congruent to a member V of TR modulo NR .

Thus, under the assumptions of Theorem 94, by [45, p. 12], we can also state
that A ∈ AR if and only if there exist V ∈ TR and B,C ∈ NR such that A =
(V \ B) ∪ C. However, by Theorem 62, we have V \ B ∈ T α

R .

Theorem 95 If R is a nonvoid, topologically filtered, topological relator on X,
then for any A ⊆ X the following assertions are equivalent:

(1) A ∈ AR ;
(2) there exist V ∈ T s

R and W ∈ F s
R such that A = V ∩W ;

(3) there exist V ∈ T α
R and W ∈ F α

R such that A = V ∩W .

Proof Because of the inclusion T α
R ⊆ T s

R and its consequence F α
R ⊆ F s

R , it is
clear that (3) implies (2).

Moreover, if (2) holds, then by Definition 15 and Theorem 72, we have

V ⊆ V ◦− and W −◦ ⊆ W.

Hence, by using the inclusions A ⊆ V and A ⊆ W , and the corresponding
properties of the operations—and ◦, we can infer that

A−◦ ⊆ V −◦ ⊆ V ◦−−◦ = V ◦−◦ ⊆ V ◦−

and

A−◦ ⊆ W −◦ ⊆ W , andthus A−◦ = A−◦◦ ⊆ W ◦.

Now, by using Corollary 18 and Theorem 42, we can already see that

A−◦ ⊆ V ◦− ∩ W ◦ ⊆ ( V ◦ ∩ W ◦)− = ( V ∩W)◦− = A◦−.

Thus, by Remark 56, assertion (1) also hols.
Finally, if (1) holds, then by Theorem 84 we also have Ac ∈ AR . Thus, by

Theorem 92, there exist B ∈ NR and V ∈ TR such that Ac = B ∩ V , and thus

A = Bc ∩ V c.
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Moreover, by using Theorems 62 and 57, we can see that Bc ∈ T α
R and V ∈ T α

R ,
and hence also V c ∈ F α

R . Therefore, assertion (3) also holds.

Remark 66 If R is nonvoid, topologically filtered topological relator on X, then
necessary and sufficient conditions for a subset A of X, in order that A−◦ = A◦−,
i.e., A ∈ A (−, ◦) ∩ A (◦,−) could hold, can be derived from the results of
Levine [48], Choda and Matoba [10] and Chapman [7].

23 Lower and Upper Nearness Relations for Sets

If A,B ⊆ X, then A is said to be near to B, with respect to the relator R, if
A ∈ ClR (B). That is, R [A ] ∩ B 
= ∅ for all R ∈ R.

Note that if A ∩ clR (B) 
= ∅, then by Theorem 3 we also have A ∈ ClR (B).
Therefore, A is near to B with respect to R.

Moreover, if in particular R is nonvoid and topologically fine, then by Theo-
rem 19 the converse of the above implication is also true.

Therefore, for some particular purposes, the relation clR can also be naturally
used to define a reasonable nearness relation for sets.

However, our main motivation for the subsequent definition has mainly come
from the famous observations of Levine [49] and Corson and Michael [11] that for
a subset A of a topological space X(T ) we can state that;

(1) A is preopen if and only if there exists V ∈ T such that A ⊆ V ⊆ A−;
(2) A is semi-open if and only if there exists V ∈ T such that V ⊆ A ⊆ V −.

Now, by an observation of Andrijević [3], we can also state that A is β-open if and
only if there exists a preopen subset V of X(T ) such that A ⊆ V ⊆ A−. Therefore,
for the approximations of sets, we may also use generalized open sets.

The above observations strongly suggest that, analogously to the definition of the
big lower and upper bound relations LbR and UbR mentioned in Remark 13, we
may also naturally introduce the following

Definition 20 If A,B ⊆ X, such that

A ⊆ B ⊆ clR (A) ,

then we shall write

A ∈ LnR (B) and B ∈ UnR (A).

Moreover, in this case, we shall say that A is near to B from below and B is
near to A from above with respect to the relator R.

Remark 67 Thus, the relations LnR and UnR are also not independent of each
other. Namely, by the above definition, evidently have UnR = Ln−1

R .
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Therefore, in the sequel, we shall only establish some basic properties of the
relation LnR .

Theorem 96 For any A,B ⊆ X, the following assertions are equivalent:

(1) A ∈ LnR (B);
(2) A ⊆ B and for each x ∈ B and R ∈ R we have R (x) ∩ A 
= ∅.
Proof By the corresponding definitions, we have

A ∈ LnR (B) ⇐⇒ A ⊆ B ⊆ A−

and

B ⊆ A− ⇐⇒ ∀ x ∈ B : x ∈ A− ⇐⇒ ∀ x ∈ B : ∀ R ∈ R : R (x)∩A 
= ∅.

Therefore, assertions (1) and (2) are also equivalent.

Remark 68 In principle, this intrinsic characterization of the relation LnR can be
used to establish every possible properties of LnR .

However, in most of the forthcoming proofs, it will be more convenient to use
Definition 20 and the basic properties of the relation clR .

Theorem 97 For any A,B ⊆ X, the following assertions are equivalent:

(1) Ac ∈ LnR
(
Bc

)
; (2) intR (A) ⊆ B ⊆ A.

Proof If (1) holds, then by Definition 20 we have Ac ⊆ Bc ⊆ Ac−. Hence, by
using Theorem 2, we can infer that

A◦ = Ac−c ⊆ B ⊆ A.

Thus, (2) also holds. The converse implication (2) .⇒ (1) can be proved quite
similarly, by reversing the above argument.

Remark 69 Analogously to Remark 2, assertion (1) can also be expressed in the
more instructive form that A ∈ (LnR ◦CX)c(B).

Theorem 98 If R is a topological relator on X, then for any A,B ⊆ X, the
following assertions are equivalent:

(1) A ∈ LnR (B); (2) A ⊆ B and clR (A) = clR (B).

Proof If (2) holds, then by Theorems 32 and 26, we can see that

A ⊆ B ⊆ B− = A−.

Therefore, by Definition 20, assertion (1) also holds even if R is assumed to be only
reflexive.
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Conversely if (1) holds, then by Definition 20 we have A ⊆ B ⊆ A−. Hence, by
using the increasingness of – and Theorem 31, we can infer that

A− ⊆ B− ⊆ A−− ⊆ A−.

Therefore, A− = B−, and thus (2) also holds even if R is assumed to be only
quasi-topological.

24 Some Set-Theoretic Properties of the Relation LnR

To prove the following six theorems, it will be convenient to use Theorem 96.

Theorem 99 For any A ⊆ X, the following assertions are equivalent: (1) A ∈
LnR (∅); (2) A = ∅.
Proof By Theorem 96, assertion (1) holds if and only if

(a) A ⊆ ∅; (b) ∀ x ∈ ∅ : ∀ R ∈ R : R (x) ∩ A 
= ∅.
Hence, since (a) is equivalent to (2), and (b) automatically holds, it is clear that (1)
and (2) are equivalent.

Theorem 100 For any B ⊆ X, the following assertions are equivalent:

(1) ∅ ∈ LnR (B); (2) either B = ∅ or R = ∅.
Proof By Theorem 96, assertion (1) holds if and only if

(a) ∅ ⊆ B; (b) ∀ x ∈ B : ∀ R ∈ R : R (x) ∩ ∅ 
= ∅.
Hence, since (a) automatically holds, and (b) can only hold if and only if (2) holds,
it is clear that (1) and (2) are equivalent.

Theorem 101 For any a ∈ X andB ⊆ X, the following assertions are equivalent:

(1) {a} ∈ LnR (B);
(2) a ∈ B and for any x ∈ B and R ∈ R we have a ∈ R (x).

Proof By Theorem 96, assertion (1) holds if and only if

(a) {a} ⊆ B; (b) ∀ x ∈ B : ∀ R ∈ R : R (x) ∩ {a} 
= ∅.
Hence, since (a) is equivalent to a ∈ B, and R (x) ∩ {a} 
= ∅ is equivalent to
a ∈ R (x), it is clear that (1) and (2) are equivalent.

Theorem 102 For any A ⊆ X and b ∈ X, the following assertions are equivalent:

(1) A ∈ LnR
({b});

(2) either A = ∅ and R = ∅, or A = {b} and for any R ∈ R we have
b ∈ R (b).

Proof By Theorem 96, assertion (1) holds if and only if
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(a) A ⊆ {b}; (b) ∀ x ∈ {b} : ∀ R ∈ R : R (x) ∩ A 
= ∅.
Hence, since (a) can hold if and only if either A = ∅ or A = {b}, and moreover
x ∈ {b} is equivalent to x = b, and R (b) ∩ A 
= ∅ can hold if and only if A = {b}
and b ∈ R (b), it is clear that (1) and (2) are equivalent.

Theorem 103 For any A ⊆ X, the following assertions are equivalent:

(1) A ∈ LnR (X);
(2) for any x ∈ X and R ∈ R we have R (x) ∩ A 
= ∅.
Proof By Theorem 96, assertion (1) holds if and only if

(a) A ⊆ X; (b) ∀ x ∈ X : ∀ R ∈ R : R (x) ∩ A 
= ∅.
Hence, since (a) automatically holds, and (b) coincides with (2), it is clear that (1)
and (2) are equivalent.

Theorem 104 For any B ⊆ X, the following assertions are equivalent:

(1) X ∈ LnR (B); (2) B = X and R is non-partial.

Proof By Theorem 96, assertion (1) holds if and only if

(a) X ⊆ B; (b) ∀ x ∈ B : ∀ R ∈ R : R (x) ∩ X 
= ∅.
Hence, since (a) is equivalent to B = X, and R (x) ∩ X = R (x), it is clear that
now (b) means only that for any x ∈ X and R ∈ R we have R (x) 
= ∅, i.e., R is
non-partial. Therefore, (1) and (2) are equivalent.

To prove the following two theorems, we shall again use Definition 20 and some
basic properties of the relation clR .

Theorem 105 If ( Ai )i∈I and ( Bi )i∈I are families of subsets of X such that
Ai ∈ LnR (Bi) for all i ∈ I , then

⋃

i∈I
Ai ∈ LnR

( ⋃

i∈I
Bi

)
.

Proof By Definition 20, we have Ai ⊆ Bi ⊆ A−i for all i ∈ I . Hence, by using
the increasingness of the corresponding operations, we can infer that

⋃

i∈I
Ai ⊆ ⋃

i∈I
Bi ⊆ ⋃

i∈I
A−i ⊆

( ⋃

i∈I
Ai

)−
.

Therefore, by Definition 20, the required assertion is also true.

Theorem 106 If R is a topologically filtered relator on X and A,B ⊆ X such
that A ∈ LnR (B), then for any V ∈ TR we have

A ∩ V ∈ LnR (B ∩ V ).
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Proof By Definition 20, we have A ⊆ B ⊆ A−. Hence, by using Corollary 18, we
can infer that

A ∩ V ⊆ B ∩ V ⊆ A− ∩ V ⊆ ( A ∩ V )−.

Thus, by Definition 20, the required assertion is also true.

The next simple example shows that the condition V ∈ TR of the above theorem
cannot be omitted or replaced with V ∈ FR .

Example 5 If X and R are as in Example 3, then for the sets

A = [ 0 , 1 [ , B = [ 0 , 1 ] and V = {1} ,

we have A ∈ LnR (B) and A ∩ V /∈ LnR (B ∩ V ).

25 Some Topological Properties of the Relation LnR

Theorem 107 If A,B ⊆ X such that A ∈ LnR(B) and Φ is an increasing
relation on P (X) to X, then

(1) Φ (A) ∈ LnR
(
Φ(B)

)
if A ∈ A

(
clR , Φ

)
;

(2) Φ (B) ∈ LnR
(
Φ
(

clR (A)
))

if B ∈ A
(

clR , Φ
)
.

Proof By Definition 20 and the increasingness of −, we have

A ⊆ B ⊆ A− ⊆ B−.

Hence, by using the increasingness of Φ, we can infer that

Φ (A) ⊆ Φ (B) ⊆ Φ (A−) ⊆ Φ (B−).

Moreover, if A ∈ A
(− , Φ

)
, then by Definition 18 we have

Φ (A−) ⊆ Φ (A)−.

Hence, we can that see that

Φ (A) ⊆ Φ (B) ⊆ Φ (A)−.

Thus, by Definition 20, we have Φ (A) ∈ LnR
(
Φ(B)

)
.

While, if B ∈ A
(− , Φ

)
, then by Definition 18 we have

Φ (B−) ⊆ Φ (B)−.
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Hence, we can see that

Φ (B) ⊆ Φ (A−) ⊆ Φ (B)−

Thus, by Definition 20, we have Φ (B) ∈ LnR
(
Φ(A−)

)
.

Remark 70 Note that if in particular Φ (A) = A for all A ⊆ X, or Φ (A) =
clR (A) for all A ⊆ X, then Φ is increasing, and by Definition 18 we have
A
(

clR , Φ
) = P (X).

Therefore, as an immediate consequence of the above theorem, we can state

Corollary 27 If A,B ⊆ X such that A ∈ LnR(B) then

(1) B ∈ LnR
(

clR (A)
)
;

(2) clR (A) ∈ LnR
(

clR (B)
)
; (3) clR (B) ∈ LnR

(
clR

(
clR (A)

))
.

Remark 71 Note that if in particular Φ (A) = intR (A) for all A ⊆ X, then Φ is
increasing, and by Definition 19 we have A

(
clR , Φ

) = AR .

Therefore, as an immediate consequence of Theorem 107, we can also state

Corollary 28 If A,B ⊆ X such that A ∈ LnR(B), then

(1) intR (A) ∈ LnR
(

intR (B)
)

if A ∈ AR ;
(2) intR (B) ∈ LnR

(
intR

(
clR (A)

))
if B ∈ AR .

From the above two corollaries, we can easily derive the following two corol-
laries.

Corollary 29 If A ∈ AR and B ⊆ X such that A ∈ LnR(B), then

(1) intR (B) ∈ LnR
(

clR
(

intR (A)
))
;

(2) clR
(

intR (A)
) ∈ LnR

(
clR

(
intR (B)

))
;

(3) clR
(

intR (B)
) ∈ LnR

(
clR

(
clR

(
intR (A)

)))
.

Proof By Corollary 28, we have

A◦ ∈ LnR (B ◦).

Hence, by using Corollary 27, we can infer that
B ◦ ∈ LnR (A◦−) , A◦− ∈ LnR (B ◦−) , B ◦− ∈ LnR (A◦−−).
Therefore, assertions (1), (2) and (3) are true.

Corollary 30 If A ⊆ X and B ∈ AR such that A ∈ LnR(B), then

(1) intR
(

clR (A)
) ∈ LnR

(
clR

(
intR (B)

))
;

(2) intR
(

clR (B)
) ∈ LnR

(
clR

(
intR

(
clR (A)

)))
;

(3) clR
(

intR
(

clR(A)
)) ∈ LnR

(
clR

(
clR

(
intR (B)

)))
.

Proof By Corollary 28, we have
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B ◦ ∈ LnR (A−◦).

Hence, by using Corollary 27, we can infer that
A−◦ ∈ LnR (B ◦−) , B ◦− ∈ LnR (A−◦−) , A−◦− ∈ LnR (B ◦−−).

Therefore, assertions (1), (2) and (3) are true.

Remark 72 Note that if R is a topological relator on X, then by Theorems 32, 26,
and 31, we have A−− = A− for all A ⊆ X.

Therefore, in this particular case,assertions (3) in Corollaries 27, 29, and 30 can
be simplified by writing clR instead of clR clR .

26 Some Further Topological Properties of the Relation LnR

From the above corollaries, by using the results of Section 20, we can easily derive
several further topological properties of the relation LnR .

For instance, by Corollaries 28 and 29 and Theorem 85, we can at once state the
following two theorems.

Theorem 108 If A ∈ NR ∪ N c
R and B ⊆ X such that A ∈ LnR(B), then

(1) intR (A) ∈ LnR
(

intR (B)
)
;

(2) intR (B) ∈ LnR
(

clR
(

intR (A)
))
;

(3) clR
(

intR (A)
) ∈ LnR

(
clR

(
intR (B)

))
;

(4) clR
(

intR (B)
) ∈ LnR

(
clR

(
clR

(
intR (A)

)))
.

Theorem 109 If A ⊆ X and B ∈ NR ∪ N c
R such that A ∈ LnR(B), then

(1) intR (B) ∈ LnR
(

intR
(

clR (A)
))
;

(2) intR
(

clR (A)
) ∈ LnR

(
clR

(
intR (B)

))
;

(3) intR
(

clR (B)
) ∈ LnR

(
clR

(
intR

(
clR (A)

)))
;

(4) clR
(

intR
(

clR(A)
)) ∈ LnR

(
clR

(
clR

(
intR (B)

)))
.

Remark 73 Note that if in particular R is reflexive ( resp. topological), then in the
above two theorems, by Theorem 86 ( resp. 87), we may write TR ∪ FR ( resp.
T s

R ∪ F s
R ) instead of NR ∪ N c

R .
Moreover, if R is topological, then assertions (3) in the above two theorems can

also be simplified by writing clR instead of clR clR .

More importantly, concerning topological relators, we can also prove the follo-
wing two theorems.

Theorem 110 If R is a topological relator on X, A ∈ A and B ⊆ X such that
A ∈ LnR (B), then

(1) intR
(

clR (A)
) ∈ LnR

(
intR

(
clR (B)

))
;

(2) intR
(

clR (B)
) ∈ LnR

(
clR

(
intR (clR (A))

))
;
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(3) intR
(

clR (A)
) ∈ LnR

(
clR

(
intR

(
clR (B)

)))
;

(4) clR
(

intR
(

clR(A)
)) ∈ LnR

(
clR

(
intR (clR (B))

))
;

(5) clR
(

intR
(

clR(B)
)) ∈ LnR

(
clR

(
intR (clR (A))

))
.

Proof By Corollary 27 and Theorem 89, we have

A− ∈ LnR (B−) and A− ∈ AR .

Hence, by using Corollary 28 and 29, we can infer that

A−◦ ∈ LnR (B−◦)

and

B−◦ ∈ LnR (A−◦−); A−◦− ∈ LnR (B−◦−); B−◦− ∈ LnR (A−◦−).

Thus, assertions (1), (2), (4) and (5) are true.
Moreover, by Corollary 27, we now also have B ∈ LnR (A−). Hence, by using

Corollary 30, we can infer that A−◦ ∈ LnR (B−◦−). Thus, assertion (3) is also
true.

Theorem 111 If R is a topological relator on X, A ⊆ X and B ∈ AR such that
A ∈ LnR (B), then

(1) intR
(

clR (B)
) ∈ LnR

(
intR

(
clR (A)

))
;

(2) intR
(

clR (B)
) ∈ LnR

(
clR

(
intR (clR (A))

))
;

(3) intR
(

clR (A)
) ∈ LnR

(
clR

(
intR

(
clR (B)

)))
;

(4) clR
(

intR
(

clR(A)
)) ∈ LnR

(
clR

(
intR (clR (B))

))
;

(5) clR
(

intR
(

clR(B)
)) ∈ LnR

(
clR

(
intR (clR (A))

))
.

Proof By Corollary 27 and Theorem 89, we have

A− ∈ LnR (B−) and B− ∈ AR .

Hence, by using Corollary 28 and 30, we can infer that

B−◦ ∈ LnR (A−◦)

and

A−◦ ∈ LnR (B−◦−); B−◦ ∈ LnR (A−◦−); A−◦− ∈ LnR (B−◦−).

Thus, assertions (1), (3), (2) and (4) are true.
Moreover, by Corollary 27, we now also have B− ∈ LnR (A−). Hence, by using

Corollary 29, we can infer that B−◦− ∈ LnR (A−◦−). Thus, assertion (5) is also
true.
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27 Some Relation-Theoretic Properties of the Relation LnR

By using Definition 20, we can also easily establish the following two theorems.

Theorem 112 If R is a reflexive relator on X, then LnR is a reflexive relation on
P (X).

Proof Namely, if A ⊆ X, then we trivially have A ⊆ A. Moreover, by Theorem 26,
we also have A ⊆ A−. Thus, by Definition 20, we have A ∈ LnR (A).

Remark 74 Actually, by the corresponding definitions and Theorem 26, the
converse of the above theorem is also true.

For, if the relation LnR is reflexive, then for any A ⊆ X we have A ∈ LnR (A),
and thus A ⊆ A−. Therefore, by Theorem 26, the relator R is reflexive.

Theorem 113 If R is a quasi-topological relator on X, then LnR is a transitive
relation on P (X).

Proof If A,B,C ⊆ X such that A ∈ LnR (B) and B ∈ LnR (C), then by
Definition 20 we have

A ⊆ B ⊆ A− and B ⊆ C ⊆ B−.

Moreover, by using Theorem 31 and the increasingness of −, we can see that

B− ⊆ A−− ⊆ A−.

Hence, we can already see that A ⊆ C ⊆ A−, and thus A ∈ LnR (C) also holds.

Thus, since the relation LnR is always antisymmetric, we can also state

Corollary 31 If R is a topological relator on X, then LnR is a partial order
relation on P (X).

Remark 75 Note that this corollary can also be immediately derived from Theo-
rem 98.

Now, from Theorem 107 and its corollaries, by using Theorem 113, we can easily
derive the following five theorems.

Theorem 114 If R is a quasi-topological relator on X and A,B ∈ A
(

clR , Φ
)

such that A ∈ LnR(B), then for any increasing relation on P (X) to X, we have

Φ (A) ∈ LnR
(
Φ
(

clR (A)
))

.

Proof By Theorem 107, we have both

Φ (A) ∈ LnR
(
Φ(B)

)
and Φ (B) ∈ LnR

(
Φ
(

clR (A)
))

.
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Moreover, by Theorem 113, the relation LnR is transitive. Hence, it is clear that the
required assertion is true.

Theorem 115 If R is a quasi-topological relator on X and A,B ⊆ X such that
A ∈ LnR(B) then

(1) B ∈ LnR ( clR (B)); (2) A ∈ LnR ( clR (B));
(3) clR (A) ∈ LnR

(
clR

(
clR (A)

))
.

Proof Assertion (3) is the Φ = clR particular case of Theorem 114. Assertion
(1) can be derived from Corollary 27 by using Theorem 113. While, assertion (2)
is an immediate consequence of the assumption A ∈ LnR(B), assertion (1) and
Theorem 113.

The following three theorems can be derived quite similarly from Corollar-
ies 28, 29, and 30 by using Theorem 113.

Theorem 116 If R is a quasi-topological relator on X and A ∈ AR such that
A ∈ LnR(B) for some B ∈ AR , then

intR (A) ∈ LnR
(

intR
(

clR (A)
))

.

Theorem 117 If R is a quasi-topological relator on X and A ∈ AR and B ⊆ X

such that A ∈ LnR(B), then

(1) intR (B) ∈ LnR
(

clR
(

intR (B)
))
;

(2) clR
(

intR (A)
) ∈ LnR

(
clR

(
clR

(
intR (A)

)))
.

Theorem 118 If R is a quasi-topological relator on X and A ⊆ X and B ∈ AR
such that A ∈ LnR(B), then

(1) intR
(

clR (A)
) ∈ LnR

(
clR

(
intR

(
clR (A)

)))
;

(2) intR
(

clR (B)
) ∈ LnR

(
clR

(
clR

(
intR (B)

)))
.

Moreover, by using Theorem 113, from the results of Section 26, we can also
derive some similar theorems.

For instance, from Theorems 110 and 111, by using Theorem 113, we can
immediately derive the following two theorems.

Theorem 119 If R is a topological relator on X and A ∈ AR such that A ∈
LnR (B) for some B ⊆ X, then

intR
(

clR (A)
) ∈ LnR

(
clR

(
intR (clR (A))

))
.

Theorem 120 If R is a topological relator on X, A ⊆ X and B ∈ AR such that
A ∈ LnR (B), then

(1) intR
(

clR (A)
) ∈ LnR

(
clR

(
intR (clR (A))

))
;

(2) intR
(

clR (B)
) ∈ LnR

(
clR

(
intR (clR (B))

))
.
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From the latter two theorems, by using Theorem 113, we can immediately derive

Theorem 121 If R is a topological relator on X and A,B ⊆ X such that such
that A ∈ LnR (B) and either A ∈ AR or B ∈ AR , then

(1) intR
(

clR (A)
) ∈ LnR

(
clR

(
intR (clR (A))

))
;

(2) intR
(

clR (B)
) ∈ LnR

(
clR

(
intR (clR (B))

))
.

28 Lower and Upper Nearness Closures of Families of Sets

By using our former nearness relations and a very particular case of the induced
topological closure clR , we may naturally introduce

Definition 21 For any A ⊆P (X), the families

A � = A �R = cl LnR (A ) and A u = A uR = cl UnR (A )

will be called the lower and upper nearness closures of the family A with respect
to the relator R, respectively.

Thus, by Theorem 5, Remark 67 and Definition 1, we can at once state the
following two theorems.

Theorem 122 For any A ⊆P (X), we have

(1) A � = Ln−1
R [ A ]; (2) A u = LnR [A ].

Theorem 123 For any A ⊆ X and A ⊆P (X), we have

(1) A ∈ A � if and only if A ∩ LnR (A) 
= ∅;
(2) A ∈ A u if and only if A ∩ Ln−1

R (A) 
= ∅.
Hence, by the corresponding definitions, it is clear that we also have the following

Theorem 124 For any A ⊆ X and A ⊆P (X), we have

(1) A ∈ A � if and only if there exists V ∈ A such that V ∈ LnR (A);
(2) A ∈ A u if and only if there exists V ∈ A such that A ∈ LnR (V ).

From this theorem, by using Definition 20 and Theorem 96, we can immediately
derive the following two theorems.

Theorem 125 For any A ⊆ X and A ⊆P (X), we have

(1) A ∈ A � if and only if there exists V ∈ A such that V ⊆ A ⊆ clR (V );
(2) A ∈ A u if and only if there exists V ∈ A such that A ⊆ V ⊆ clR (A).
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Theorem 126 For any A ⊆ X and A ⊆P (X), we have

(1) A ∈ A � if and only if there exists V ∈ A such that V ⊆ A, and for any
x ∈ A and R ∈ R we have R (x) ∩ V 
= ∅;

(2) A ∈ A u if and only if there exists V ∈ A such that A ⊆ V , and for any
x ∈ V and R ∈ R we have R (x) ∩ A 
= ∅.

Proof To prove the “only if part” of (2), note that if A ∈ A u, then by Theorem 124
there exists V ∈ A such that A ∈ LnR (V ). Hence, by Theorem 96, we can see
that A ⊆ V and for any x ∈ V and R ∈ R we have R (x) ∩ A 
= ∅.

Remark 76 The most important particular cases of Definition 21 are when A =
τS or TS for some nonvoid relator S on X. That is, A is a minimal structure or
a generalized topology on X. ( See [85].)

In our former papers [67, 68], the members of the families T �
R , T u

R , T su
R

and T
p�

R have been called the topologically quasi-open, pseudo-open, γ -open and
δ-open subsets of the relator space X(R), respectively.

29 Some Set-Theoretic Properties of the Families A 


and A u

By using Theorems 124 and 99–104, we can easily prove the following three
theorems.

Theorem 127 For any A ⊆ X and A ⊆P (X) we have

(1) ∅ ∈ A � if and only if ∅ ∈ A ;
(2) ∅ ∈ A u if and only if either ∅ ∈ A , or A 
= ∅ and R = ∅.
Proof By Theorems 124 and 99, we have

∅ ∈ A � ⇐⇒ ∃ V ∈ A : V ∈ LnR (∅) ⇐⇒ ∃ V ∈ A : V = ∅ ⇐⇒ ∅ ∈ A .

While, by Theorems 124 and 100, we have

∅ ∈ A u ⇐⇒ ∃ V ∈ A : ∅ ∈ LnR (V ) ⇐⇒
∃ V ∈ A : V = ∅ or R = ∅ ⇐⇒ ∅ ∈ A or (A 
= ∅ , R = ∅ ).

Theorem 128 For any a ∈ X and A ⊆P (X) we have

(1) {a} ∈ A � if {a} ∈ A and for any R ∈ R we have a ∈ R (a);
(2) {a} ∈ A u if and only if there exists V ∈ A such that a ∈ V and for any

x ∈ V and R ∈ R we have a ∈ R (x).
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Proof By Theorems 124 and 101, we have

{a} ∈ A u ⇐⇒ ∃ V ∈ A : {a} ∈ LnR (V ) ⇐⇒
∃ V ∈ A : a ∈ V , ∀ x ∈ V : ∀ R ∈ R : a ∈ R (x).

While, by Theorems 124 and 102, we have

{a} ∈ A � ⇐⇒ ∃ V ∈ A : V ∈ LnR ({a}) ⇐⇒
∃ V ∈ A : ( V = ∅, R = ∅ ) or ( V = {a} , ∀ R ∈ R : a ∈ R (a) ).

Theorem 129 For any A ⊆ X and A ⊆P (X) we have

(1) X ∈ A � if X ∈ A and R non-partial;
(2) X ∈ A u if and only if X ∈ A and R non-partial.

Proof By Theorems 124 and 104, we have

X ∈ A u ⇐⇒ ∃ V ∈ A : X ∈ LnR (V ) ⇐⇒ ∃ V ∈ A : V = ∅ , Risnon− partial.

While, by Theorems 124 and 103, we have

X ∈ A � ⇐⇒ ∃ V ∈ A : V ∈ LnR (X) ⇐⇒
∃ V ∈ A : ∀ x ∈ X : ∀ R ∈ R : R (x) ∩ V 
= ∅.

From Theorems 127 and 129, we can obtain the following

Corollary 32 If R is a non-partial relator on X and A is a minimal structure on
X, then A � and A u are also minimal structures on X.

In addition to this corollary, by using Theorems 124 and 105, we can also prove

Theorem 130 If A ⊆ P (X) such that A is closed under arbitrary unions, then
A � and A u are also closed under arbitrary unions.

Proof If Ai ∈ A � for all i ∈ I , then by Theorem 124 for each i ∈ I there exists
Vi ∈ A such that Vi ∈ LnR ( Ai ). Hence, by using the assumed property of A and
Theorem 105, we can infer that

⋃

i∈I
Ai ∈ A and

⋃

i∈I
Ai ∈ LnR

( ⋃

i∈I
Bi

)
.

Therefore, by Theorem 124, we also have
⋃

i∈I Ai ∈ A �.
This proves the first statement of the theorem. The second statement can be

proved quite similarly.
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Now, as and immediate consequence of Corollary 32 and Theorem 130, we can
also state

Corollary 33 If R is a non-partial relator on X and A is a generalized topology
on X, then A � and A u are also generalized topologies on X.

In this respect, it is also worth proving the following

Theorem 131 If A is a stack on X, then

(1) A � ⊆ A ; (2) A u− ⊆ A .

Proof For instance, if A ∈ A u, then by Theorem 125, there exists V ∈ A such
that A ⊆ V ⊆ A−. Thus, since A is ascending, A− ∈ A also holds. Therefore,
assertion (2) is true.

Moreover, by using Theorems 124 and 97, we can also prove

Theorem 132 For any A ⊆ X and A ⊆P (X), we have

(1) A ∈ A l c if and only if there exists W ∈ A c such that intR (W) ⊆ A ⊆ W ;
(2) A ∈ A uc if and only if there exists W ∈ A c such that intR (A) ⊆ W ⊆ A.

Proof If A ∈ A l c, then Ac ∈ A l . Thus, by Theorem 124, there exists V ∈ A such
that V ∈ LnR ( Ac). Hence, by taking W = V c, we can see that W ∈ A c such that
W c ∈ LnR ( Ac). Therefore, by Theorem 97, we can also state that W ◦ ⊆ A ⊆ W .

Thus, we have proved the “only if part” of (1). The if part of (1) and assertion (2)
can be proved quite similarly.

30 Intersection Properties of the Families A 
 and A u

Theorem 133 IfR is a topologically filtered relator onX, and moreover U ∈ TR
and A ⊆P (X) such that U ∩ V ∈ A for all V ∈ A , then

(1) U ∩ A ∈ A � for all A ∈ A �; (2) U ∩ A ∈ A u for all A ∈ A u.

Proof If A ∈ A �, then by Theorem 124 there exists V ∈ A such that V ∈
LnR (A). Hence, by assumption, we can infer that U ∩ V ∈ A . Moreover, by
using Theorem 106, we can see that

U ∩ V ∈ LnR (U ∩ A).

Thus, by Theorem 124, we also have U ∩ A ∈ A �. Therefore, assertion (1) is true.
While, if A ∈ A u, then by Theorem 124 there exists V ∈ A such that A ∈

LnR (V ). Hence, by assumption, we can infer that U ∩V ∈ A . Moreover, by using
Theorem 106, we can see that

U ∩ A ∈ LnR (U ∩ V ).



Generalized Topologically Open Sets 475

Thus, by Theorem 124, we also have U ∩ A ∈ A u. Therefore, assertion (2) is also
true.

Repeated applications of this theorem give the following

Corollary 34 If R is a topologically filtered relator onX, and moreover U ∈ TR
and A ⊆ P (X) such that U ∩ V ∈ A for all V ∈ A , then U ∩ A ∈ A κ for all
A ∈ A κ with κ = ��, uu, �u and u�.

Proof By Theorem 133, for instance we have U ∩A ∈ A � for all A ∈ A �. Hence,
by applying Theorem 133, to the family A � instead of A , for instance we can infer
that U ∩ A ∈ A �� for all A ∈ A ��.

From Theorem 133 and Corollary 34, by Corollary 15, it is clear that in particular
we also have

Corollary 35 If R is a topologically filtered relator on X and U ∈ TR , then
U ∩ A ∈ T κ

R for all A ∈ T κ with κ = �, u, ��, uu, �u and u�.

Proof By Corollary 15, we have U ∩ V ∈ TR for all V ∈ TR . Thus, by
Theorem 133, for instance we have U ∩ A ∈ T �

R for all A ∈ T �
R .

Moreover, from Theorem 133, by using Theorem 69, we can derive

Corollary 36 If R is a topologically filtered relator on X and U ∈ TR , then
U ∩ A ∈ T κ ν

R for all A ∈ T κμ

R with κ = s , p, α, β , a, b and μ = � , u.

Proof By Theorem 69, for instance we have U ∩ A ∈ T s
R for all A ∈ T s

R . Thus,
by Theorem 133, for instance we have U ∩ A ∈ T s �

R for all A ∈ T s �
R .

Remark 77 If R is a nonvoid, topologically filtered, topological relator on X, then
by Theorems 70, 71, and 144, we can see that

T α
R = {

A ⊆ X : ∀ B ∈ T �
R : A ∩ B ∈ T �

R

}
.

This fact can also be used to prove that now T α
R is an ordinary topology on X.

Other classes of generalized topologically open sets do not, in general, form
topologies. For instance, the following example shows that the family T

p

R need
not be a topology.

Example 6 If X and R are as in Example 3 and

A = Q and B = {1} ∪Q
c ,

then A,B ∈ T
p

R , but A ∩ B /∈ T
p

R .
To check this, recall that families of all rational and irrational numbers are dense

in R. Therefore,

A−◦ = R
◦ = R = X
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and quite similarly B−◦ = X. Thus, in particular A,B ∈ T
p

R . However,

(
A ∩ B

)−◦ = {1}−◦ = {1}◦ = ∅ ,

and thus A ∩ B /∈ T
p

R .

Remark 78 In this respect, it is also worth mentioning that if R is a topologically
filtered, topological relator on X, then by Theorem 78 the family T r

R is closed
under pairwise intersections.

However, the family T r
R does not also form a topology. Namely, in contrast to

the various families of generalized topological open sets, it is not, in general, closed
even under pairwise unions.

31 Some Algebraic and Topological Properties of the
Operations 
 and u

By using Theorems 122, 112, and 113, we can easily establish the following basic
properties of the operations � and u introduced in Definition 21.

Theorem 134 The operations � and u are union-preserving.

Thus, in particular, we can also state

Corollary 37 The operations � and u are increasing.

Theorem 135 If R is a reflexive relator on X, then the operations � and u are
expansive.

Hence, by using Theorem 131, we can derive

Corollary 38 If R is a reflexive relator on X and A is a stack on X, then A � =
A .

Theorem 136 If R is a quasi-topological relator on X, then the operations � and
u are upper quasi-idempotent.

Proof By Theorem 113, LnR is a transitive relation on P (X). Hence, it is clear
that Ln−1

R is also a transitive relation on P (X). Therefore, Ln−1
R ◦ Ln−1

R ⊆ Ln−1
R .

Hence, by using Theorem 122, we can already see that

A �� = Ln−1
R

[
Ln−1

R [A ] ] = (
Ln−1

R ◦ Ln−1
R

)[A ] ⊆ Ln−1
R [A ] = A �

for all A ⊆ P (X). Thus, the operation � is quasi-idempotent. The corresponding
assertion for u can be proved even more easily.

Now, as an immediate consequence of the above three theorems, we can state
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Corollary 39 IfR is a topological relator onX, then � and u are union-preserving
closure operations on P (X).

By using Theorem 124, Corollaries 27, and 28 and Theorem 115, we can prove
the following three theorems.

Theorem 137 For any A ⊆P (X), we have

(1) A � ⊆ A −u; (2) A u− ⊆ A �;
(3) A �− ⊆ A −�; (4) A u− ⊆ A −u.

Proof If A ∈ A �, then by Theorem 124 there exists V ∈ A such that V ∈
LnR (A). Hence, by using Corollary 27, we can infer that A ∈ LnR (V −). Now,
since V − ∈ A −, by Theorem 124 we can see that A ∈ A −u. Therefore,
A � ⊆ A −u.

While, if A ∈ A u, then by Theorem 124 there exists V ∈ A such that A ∈
LnR (V ). Hence, by using Corollary 27, we can infer that A− ∈ LnR (V −). Now,
since V − ∈ A −, by Theorem 124 we can see that A− ∈ A −u. Therefore, A u− ⊆
A −u also holds.

Thus, we have proved assertions (1) and (4). The proof of assertions (2) and (3)
are quite similar.

Theorem 138 We have

(1) A �◦
R ⊆ A ◦�

R ; (2) A u−◦
R ⊆ A ◦�

R .

Proof If A ∈ A �
R , then by Theorem 124 there exists V ∈ AR such that V ∈

LnR (A). Hence, by using Corollary 28 we can infer that V ◦ ∈ LnR (A◦). Now,
since V ◦ ∈ A ◦

R , by Theorem 124 we can see that A◦ ∈ A ◦�
R . Therefore, A �◦

R ⊆
A ◦�

R .
While, if A ∈ A u

R , then by Theorem 124 there exists V ∈ AR such that
A ∈ LnR (V ). Hence, by using Corollary 28, we can infer that V ◦ ∈ LnR ( A−◦).
Now, since V ◦ ∈ A ◦

R , by Theorem 124 we can see that A−◦ ∈ A ◦�
R . Therefore,

A u−◦
R ⊆ A ◦�

R also holds.

Theorem 139 If R is a quasi-topological relator on X, then for any A ⊆P (X)

we have A �− ⊆ A �.

Proof If A ∈ A �, then by Theorem 124 there exists V ∈ A such that V ∈
LnR (A). Hence, by using Theorem 115, we can infer that V ∈ LnR (A−). Now, by
Theorem 124, we can see that A− ∈ A �. Therefore, A �− ⊆ A �.

Theorem 140 If R is a quasi-topological relator on X, then for any A ⊆ P (X)

we have

(1) A �u ⊆ A −u; (2) A �u− ⊆ A �;
(3) A u� ⊆ A −u; (4) A u�− ⊆ A �.
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Proof If A ∈ A �u, then by Theorem 124 there exists B ∈ A � such that A ∈
LnR (B). Moreover, also by Theorem 124, there exists V ∈ A such that V ∈
LnR (B). Hence, by using Corollary 27, we can infer that B ∈ LnR

(
V −

)
. Now,

by using Theorem 113, we can see that A ∈ LnR
(
V −

)
. Thus, since V − ∈ A −,

by using Theorem 124, we can see that A− ∈ A −u. Therefore, A �u ⊆ A −u.
While, if A ∈ A u�, then by Theorem 124 there exists B ∈ A u such that

B ∈ LnR (A). Moreover, also by Theorem 124, there exists V ∈ A such that
B ∈ LnR (V ). Hence, by using Corollary 27, we can infer that

V ∈ LnR ( B−) and B− ∈ LnR ( A−).

Now, by using Theorem 113, we can see that V ∈ LnR
(
A−

)
. Thus, by using

Theorem 124, we can see that A− ∈ A −�. Therefore, A u� ⊆ A �.
Thus, we have proved assertions (1) and (4). The proofs of assertions (2) and (3)

are quite similar.

32 Nearness Closures of the Families TR , T s
R

and T
p

R

The importance of Definition 21 lies mainly in the following theorems.

Theorem 141 We have

(1) T �
R ⊆ T s

R ; (2) T u
R ⊆ T

p

R .

Proof If A ∈ T �
R , then by Theorem 125 there exists V ∈ TR such that

V ⊆ A ⊆ V − .

Hence, by using the definition of TR and the increasingness of ◦, we can infer that
V ⊆ V ◦ ⊆ A◦ . Now, by using the increasingness of −, we can also see that

A ⊆ V − ⊆ A◦− .

Therefore, by Definition 15, we also have A ∈ T s
R .

While, if A ∈ T u
R , then by Theorem 125, there exists V ∈ TR such that

A ⊆ V ⊆ A− .

Hence, by using the definition of TR and the increasingness of ◦, we can infer that

A ⊆ V ⊆ V ◦ ⊆ A−◦ .

Therefore, by Definition 15, we also have A ∈ T
p

R .
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Theorem 142 If R is a reflexive relator on X, then

(1) T �
R ⊆ T s �

R ; (2) T u
R ⊆ T

pu

R .

Proof By Theorems 135 and 141 and Corollary 37, we have

T �
R ⊆ T ��

R ⊆ T s �
R and T u

R ⊆ T uu
R ⊆ T

pu

R .

Theorem 143 If R is a quasi-topological relator on X, then

(1) T s �
R ⊆ T s

R ; (2) T
pu

R ⊆ T
p

R .

Proof If A ∈ T s �
R , then by Theorem 125 there exists V ∈ T s

R such that

V ⊆ A ⊆ V −.

Moreover, by Definition 15, we have V ⊆ V ◦−. Hence, by using the increasingness
of–and Theorem 31, we can infer that

V − ⊆ V ◦−− ⊆ V ◦−.

On the other hand, because of V ⊆ A and the increasingness of ◦−, we also have
V ◦− ⊆ A◦−. Therefore, V − ⊆ A◦− also holds. Hence, because of A ⊆ V − , we
can already see that A ⊆ A◦− . Thus, by Definition 15, we also have A ∈ T s

R .
Therefore, assertion (1) is true.

While, if A ∈ T
pu

R , then by Theorem 125 there exists V ∈ T
p

R such that

A ⊆ V ⊆ A−.

Moreover, by Definition 15, we have A ⊆ A−◦ . Hence, by using that B ⊆ A,
we can see that B ⊆ A−◦. Moreover, from the inclusion A ⊆ B−, by using the
increasingness of–and Theorem 31, we can infer that

A− ⊆ B−− ⊆ B− .

Hence, by using the increasingness of ◦, we can infer that A−◦ ⊆ B−◦. Therefore,
because of B ⊆ A−◦, we also have B ⊆ B−◦ . Hence, by Definition 15, we can see
that B ∈ T

p

R also holds. Therefore, assertion (2) is also true.

Theorem 144 If R is a topological relator on X, then

(1) T �
R = T s

R ; (2) T u
R = T

p

R .

Proof If A ∈ T s
R , then by Definition 15 we have A ⊆ A◦−. Hence, by taking

V = A◦, we get A ⊆ V −. Moreover, by using Theorems 32, 26, and 31, we can
see that
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V = A◦ ⊆ A and V = A◦ ∈ TR .

Thus, by Theorem 125, we also have A ∈ T �
R . This proves that T s

R ⊆ T �
R .

While, if A ∈ T
p

R , then by Definition 15 we have A ⊆ A−◦. Hence, by taking
V = A−◦, we get A ⊆ V . Moreover, by using Theorems 32, 26, and 31, we can
see that

V = A−◦ ⊆ A− and V = A−◦ ∈ TR .

Thus, by Theorem 125, we also have A ∈ T u
R . This proves that T

p

R ⊆ T u
R .

Now, by Theorem 141, we can see that assertions (1) and (2) are also true.

From Theorems 142 and 143, by using Theorem 144, we can immediately derive

Corollary 40 If R is a topological relator on X, then

(1) T s �
R = T s

R; (2) T
pu

R = T
p

R .

Remark 79 Note that this corollary can also be immediately derived from Theo-
rem 144 by using Corollary 39.

33 Some Further Theorems on the Families T s
R

and T
p

R

In addition to Corollary 40, we can also prove the following

Theorem 145 If R is a topological relator, then

(1) TR = T s◦
R ; (2) TR = T

p◦
R .

Proof By Theorem 32, R is reflexive and quasi-topological. Thus, if in particular
V ∈ TR , then by Theorem 57 we also have V ∈ T s

R .
Moreover, by Definition 3 and Theorem 26, we also have V ⊆ V ◦ and V ◦ ⊆ V ,

and thus also V = V ◦ . Therefore, V ∈ T s◦
R , and thus TR ⊆ T s◦

R .
On the other hand, by Theorem 31 we have A◦ ∈ TR for all A ⊆ X. Thus,

P (X)◦ ⊆ TR , and thus in particular T s◦
R ⊆ TR also holds.

Therefore, assertion (1) is true. The proof of assertion (2) is quite similar.

However, it is now more important to note that, by using Corollary 40, we can
prove the following theorems.

Theorem 146 If R is a topological relator on X, then

(1) T s−
R ⊆ T s

R; (2) A− ∈ T
p

R implies A ∈ T
p

R for all A ⊆ X .

Proof If A ⊆ X, then by Theorems 32 and 31, we have A ⊆ A− ⊆ A−. Hence,
if A ∈ T s

R , then by using Theorem 125 we can see that A− ∈ T s �
R . Thus, by

Corollary 40, we also have A− ∈ T s
R . Therefore, assertion (1) is true.
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On the other hand, if A ⊆ X such that A− ∈ T
p

R , then from the inclusions
A ⊆ A− ⊆ A− by using Theorem 125 we can see that A ∈ T

pu

R . Thus, by
Corollary 40, we also have A ∈ T

p

R . Therefore, assertion (2) is also true.

From this theorem, by using Theorem 57, we can immediately derive

Corollary 41 If R is a topological relator on X, then

(1) T −
R ⊆ T s

R ; (2) A− ∈ TR implies A ∈ T
p

R for all A ⊆ X .

Proof Namely, by Theorem 32 and 57, we have TR ⊆ T s
R and TR ⊆ T

p

R .
Hence, by Theorem 146, it is clear that in particular assertions are also true.

Remark 80 If R is a topological relator on X, then in particular we also have
P (X)◦− ⊆ T s

R .
Namely, by Theorems 32 and 31, we have P (X)◦ ⊆ TR . Hence, by using

Corollary 41, we can infer that P (X)◦− ⊆ T −
R ⊆ T s

R .

Theorem 147 If R is a topological relator on X, then A = T s
R is the smallest

subset of P (X) such that

(1) TR ⊆ A ; (2) A � ⊆ A .

Proof If A = T s
R , then from Theorems 57 and 141, we can see that (1) and (2)

hold.
While, if A ⊆P (X) such that (1) and (2) hold, then by using Theorem 144 and

Corollary 37 we can see that

T s
R = T �

R ⊆ A � ⊆ A .

Therefore, the stated minimality property of T s
R is also true.

Remark 81 Assertion (1) of Theorem 144 showed that, for a topological relator R
on X, the family T s

R is the l-closure of TR in P (X).
While, assertion (1) of Theorem 147 shows that, for a topological relator R on

X, the family T s
R is the smallest ł-closed subset of P (X) containing TR .

Theorem 148 If R is a topological relator on X, then A = T
p

R is the smallest
subset of P (X) such that

(1) TR ⊆ A ; (2) A u ⊆ A .

Proof If A = T
p

R , then from Theorems 57 and 141, we can see that (1) and (2)
hold.

While, if A ⊆P (X) such that (1) and (2) hold, then by using Theorem 144 and
Corollary 37 we can see that

T
p

R = T u
R ⊆ A u ⊆ A .

Therefore, the stated minimality property of T
p

R is also true.
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Remark 82 In the above theorems, by Theorem 144, we may also write T �
R and

T u
R instead of T s

R and T
p

R , respectively.

34 Some Basic Properties of the Families T su
R

and T
p


R

The following theorems will show that the families T su
R and T

p�

R are usually more
important than the families T s l

R and T
pu

R considered in Section 32.

Theorem 149 We have

T su
R ∪T

p �

R ⊆ T
β

R .

Proof If A ∈ T su
R , then by Theorem 125 there exists V ∈ T s

R such that

A ⊆ V ⊆ A− .

Hence, by using Definition 15 and the increasingness of ◦−, we can infer that

A ⊆ V ⊆ V ◦− ⊆ A−◦− .

Thus, by Definition 15, we also have A ∈ T
β

R . Therefore, T su
R ⊆ T

β

R .

While, if A ∈ T
p �

R , then by Theorem 125 there exists V ∈ T
p

R such that

V ⊆ A ⊆ V − .

Hence, by using Definition 15 and the increasingness of—and − ◦ −, we can infer
that

A ⊆ V − ⊆ V −◦− ⊆ A−◦− .

Thus, by Definition 15, we also have A ∈ T
β

R . Therefore, T
p �

R ⊆ T
β

R .

From this theorem, by using Theorem 141 and Corollary 37, we can derive

Corollary 42 We have T �u
R ∪T u �

R ⊆ T
β

R .

Theorem 150 If R is a reflexive relator on X, then

(1) T s
R ∪ T u

R ⊆ T su
R ; (2) T

p

R ∪ T �
R ⊆ T

p �

R .

Proof By Theorem 135, we have T s
R ⊆ T su

R . Moreover, by Theorem 57, we have
TR ⊆ T s

R . Hence, by using Corollary 37, we can infer that T u
R ⊆ T su

R .
Therefore, assertion (1) is true. Assertion (2) can be proved quite similarly.
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From this theorem, by using Theorem 141, we can derive

Corollary 43 If R is a reflexive relator on X, then T �
R ∪ T u

R ⊆ T su
R ∩ T

p�

R .

However, this is of no particular importance since we can now also prove a
stronger statement.

Theorem 151 If R is a reflexive relator on X, then

T �
R ∪ T u

R ⊆ T �u
R ∩ T u �

R .

Proof By Theorem 135, we have T �
R ⊆ T �u

R and TR ⊆ T �
R . Hence, by using

Corollary 37, we can infer that T u
R ⊆ T �u

R .
Therefore, T �

R ∪ T u
R ⊆ T �u

R . The inclusion T �
R ∪ T u

R ⊆ T u�
R can be

proved quite similarly.

From this theorem, by using Theorem 135, we can derive

Corollary 44 If R is a reflexive relator on X, then TR ⊆ T �u
R ∩ T u�

R .

Moreover, by using Theorem 135, we can also prove

Theorem 152 If R is a reflexive relator on X, then

T a
R ⊆ T su

R ∩ T
p�

R .

Proof By Theorems 56 and 135, we have

T a
R = T s

R ∩ T
p

R ⊆ T su
R ∩ T

p�

R .

However, it is now more important to note that, in addition to Theorem 149, we
can also prove the following two theorems.

Theorem 153 If R is a topological relator on X, then T su
R = T

β

R .

Proof By Theorem 149, we always have T su
R ⊆ T

β

R . Therefore, we need only

prove that now T
β

R ⊆ T su
R also holds.

For this, note that if A ∈ T
β

R , then by Theorem 63 we have also A− ∈ T s
R .

Hence, by defining V = A−, we can note that V ∈ T s
R such that V ⊆ A−.

Moreover, by Theorems 32 and 26, we can see that A ⊆ A− = V is also true.
Therefore, by Theorem 125, we also have A ∈ T u

R .

Theorem 154 If R is a topologically filtered, topological relator on X, then
T

p�

R = T
β

R .

Proof By Theorem 149, we always have T
p�

R ⊆ T
β

R . Therefore, we need only

prove that now T
β

R ⊆ T
p�

R also holds.
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For this, note that if A ∈ T
β

R , then by Theorem 63 we have A− ∈ T s
R . Hence,

by using Theorems 32, 26, 31, and 59, we can infer that

A− = A−− = A−◦− .

Now, by defining V = A ∩ A−◦ , we can note that V ⊆ A. Moreover, by using
Corollary 18 and Theorems 32, 31, and 26, we can see that

V − = (
A ∩ A−◦

)− ⊇ A− ∩ A−◦ = A−◦.

Hence, by using the increasingness of ◦ and Theorems 32, 31, and 26, we can infer
that

V −◦ ⊇ A−◦◦ = A−◦ ⊇ A ∩ A−◦ = V .

Thus, by Definition 15, we also have V ∈ T
p

R .
Moreover, quite similarly, we can now also note that

A ⊆ A− = A−◦− ⊆ V −− = V −.

Therefore, by Theorem 125, we also have A ∈ T
p�

R .

From Theorems 153 and 154, by using Corollary 39, we can immediately derive
the following two corollaries.

Corollary 45 If R is a topological relator on X, then T
βu

R = T
β

R .

Corollary 46 If R is a topologically filtered, topological relator on X, then
T

β�

R = T
β

R .

35 Some Further Theorems on the Closure Operation �

By Theorems 17 and 16, we evidently have the following

Theorem 155 For any ♦ = ∗ , # and ∧, we have
(1) AR = AR♦ ,
(2) LnR = LnR♦ and UnR = UnR♦ ;
(3) �R = �R♦ and uR = uR♦ .

Proof By Theorem 17, we have R∧ = R♦∧. Hence, by using Theorem 16, we
can infer that

clR = clR♦ and intR = intR♦ .
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Thus, by Definitions 19, 20, and 21, the required assertions are also true.

Moreover, analogously to the results of [67, Sections 33–35], we can also easily
prove the following theorems.

Theorem 156 If R is nonvoid, non-partial relator on X, then

ER ∪ E c
R ⊆ AR� .

Proof By Theorem 28, we have

∅ /∈ ER and X ∈ DR .

Therefore, if A ∈ ER , then by Corollary 6 we have

clR�
(

intR� (A)
) = clR� (X) = X.

Thus, intR�
(

clR� (A)
) ⊆ clR�

(
intR� (A)

)
, i.e., A ∈ AR� trivially holds.

While, if A ∈ E c
R , i.e., Ac ∈ ER , then by Theorem 7 we have A /∈ DR .

Therefore, by Corollary 6, we have

intR�
(

clR� (A)
) = intR� (∅) = ∅.

Thus, intR�
(

clR� (A)
) ⊆ clR�

(
intR� (A)

)
, i.e., A ∈ AR� trivially holds.

Theorem 157 If R is non-degenerated relator on X, then

DR ∩AR� ⊆ ER .

Proof By Definition 10 and Theorem 30, we have

X 
= ∅ , R 
= ∅ and ∅ /∈ DR , X ∈ ER .

Thus, if A ∈ DR , then by Corollary 6 we have

intR�
(

clR� (A)
) = intR� (X) = X.

Now, if A ∈ AR� , i.e., intR�
(

clR� (A)
) ⊆ clR�

(
intR� (A)

)
, then we also have

clR�
(

intR� (A)
) = X 
= ∅.

Hence, by using Corollary 6, we can infer that intR� (A) ∈ DR . Thus, since ∅ /∈
DR , we can also state that intR� (A) 
= ∅. Hence, by using Corollary 6, we can
already infer that A ∈ ER .
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Theorem 158 If R is a nonvoid relator on X, then for any A ⊆ X we have

(1) UnR� (A) = P−1(A) if A ∈ DR ;
(2) UnR� (A) = ∅ if A /∈ DR \ {∅}; (3) UR� (∅) = {∅} if ∅ /∈ DR .

Proof If A ∈ DR , then by Definition 20 and Corollary 6, for any B ⊆ X we have

B ∈ UnR� (A) ⇐⇒ A ∈ LnR� (B) ⇐⇒ A ⊆ B ⊆ clR� (A)

⇐⇒ A ⊆ B ⊆ X ⇐⇒ A ∈P (B) ⇐⇒ B ∈P−1(A).

Therefore, assertion (1) is true.
While, if A /∈ DR , then by Definition 20 and Corollary 6, for any B ⊆ X we

have

B ∈ UnR� (A) ⇐⇒ A ∈ LnR� (B)

⇐⇒ A ⊆ B ⊆ clR� (A) ⇐⇒ A ⊆ B ⊆ ∅ ⇐⇒ A = B = ∅.

Hence, it is clear that assertions (2) and (3) are also true.

From this theorem, by using Theorem 30, we can immediately derive

Corollary 47 If R is a non-degenerated relator on X, then for any A ⊆ X we
have

(1) UnR� (A) = ∅ if A /∈ DR; (2) UR� (A) = P−1(A) if A ∈ DR .

Hence, by using Remark 67 and Theorem 122, we can easily derive

Theorem 159 If R is a non-degenerated relator on X, then for any A ⊆ P (X)

we have

A �R� =
⋃

A∈A ∩DR

P−1(A).

Proof By Remark 67, Theorem 122 and Corollary 47, we can see that

A �R� = Ln−1
R� [A ] = UnR� [A ] = ⋃

A∈A
UnR� (A) = ⋃

A∈A ∩DR

P−1(A).

36 An Illustrating Diagram and Two Related Examples

The following diagram and the subsequent two examples have been constructed by
Muwafaq Mahdi Salih, a PhD student of the second author from the University of
Duhok, Kurdistan Region, Iraq.
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Diagram 1 For a reflexive relator R on X, the following implications hold:

Remark 83 By our former theorems, nine from the above implications do not
require the relator R to be reflexive.

Moreover, the following two examples established in [67] show that seventeen
implications in Diagram 1 are not reversible.

Example 7 If X = {1, 2, 3} and R is a relation on X such that

R (1) = {1, 2} and R (2) = R (3) = X ,

then R = {R} is a reflexive relator on X such that:

(1) TR = T r
R = T �

R = {∅, X};
(2) T s

R = T a
R = T α

R = {∅, {1, 2} , X
}
;

(3) T u
R = T

p

R = T b
R = T

β

R = T su
R = T

p�

R = P (X) \ {{3}}.
Example 8 If X = {1, 2, 3, 4} and R1 and R2 are relations on X such that

R1(1) = R1(2) = {1, 2, 3} , R1(3) = R1(4) = {1, 3, 4};

R2(1) = {1, 2, 3} , R2(2) = {1, 2} , R2(3) = R2(4) = {3, 4};
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then R = {R1 , R2} is a reflexive relator on X such that:

(1) TR = T α
R = {∅, {3, 4}, X} ; (2) T r

R = TR ∪ {{2 }} ;
(3) T �

R = T a
R = TR ∪ {{1, 3, 4}} ; (4) T s

R = T �
R ∪ {{1, 2}} ;

(5) T
p

R = P (X) \ {{1}, {1, 2}} ; (6) T u
R = T

p

R \ {{2}} ;
(7) T b

R = T
p�

R = P (X) \ {{1}} ; (8) T
β

R = T su
R = P (X).

Remark 84 Unfortunately, the above two examples cannot be used to show that the
implication A ∈ T su

R .⇒ A ∈ T
β

R is also not reversible.
Note that, by Theorem 149, this implication does not also require the relator R

to be reflexive. Moreover, if R is topological, then by Theorem 153 the reverse
implication is also true.

Note 1 Some of the results of this paper can be generalized according to the ideas
of Gargouri and Rezgui [31] and the second author [96].
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25. V.A. Efremović, A.S. Švarc, A new definition of uniform spaces. Metrization of proximity

spaces. Dokl. Acad. Nauk. SSSR 89, 393–396 (1953) (Russian)
26. N. Elez, O. Papaz, The new operators in topological spaces. Math. Moravica 17, 63–68 (2013)
27. P. Fletcher, W.F. Lindgren, Quasi-Uniform Spaces (Marcel Dekker, New York, 1982)
28. M. Ganster, Preopen sets and resolvable spaces. Kyungpook J. 27, 135–143 (1987)
29. M. Ganster, I.L. Reilly, M.K. Vamanamurthy, Remarks on locally closed sets. Math. Pannon.

3, 107–113 (1992)
30. B. Ganter, R. Wille, Formal Concept Analysis (Springer, Berlin, 1999)
31. R. Gargouri, A. Rezgui, A unification of weakening of open and closed subsets in a topological

spaces. Bull. Malays. Math. Sci. Soc. 40, 1219–1230 (2017)
32. S. Givant, P. Halmos, Introduction to Boolean Algebras (Springer, Berlin, 2009)
33. T. Glavosits, Generated preorders and equivalences. Acta Acad. Paed. Agrienses, Sect. Math.

29, 95–103 (2002)
34. W.H. Gottschalk, Intersection and closure. Proc. Am. Math. Soc. 4, 470–473 (1953)
35. W. Hunsaker, W. Lindgren, Construction of quasi-uniformities. Math. Ann. 188, 39–42 (1970)
36. D.H. Hyers, On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A 27,

222–224 (1941)
37. Y. Isomichi, New concept in the theory of topological spaces–Supercondensed set, subcon-

densed set, and condensed set. Pac. J. Math. 38, 657–668 (1971)
38. Y.B. Jun, S.W. Jeong, H.j. Lee, J.W. Lee, Applications of pre-open sets. Appl. Gen. Top. 9,

213–228 (2008)
39. S.-M. Jung, Interiors and closure of sets and applications. Int. J. Pure Math. 3, 41–45 (2016)
40. S.-M. Jung, D. Nam, Some properties of interior and closure in general topology. Mathematics

7, 624 (2019)
41. J.L. Kelley, General Topology (Van Nostrand Reinhold Company, New York, 1955)
42. H. Kenyon, Two theorems on relations. Trans. Am. Math. Soc. 107, 1–9 (1963)
43. V.L. Kljushin, Al bayati J.H. Hussein, On simply-open sets. Vestnik UDC 3, 34–38 (2011).

(Russian)
44. K. Kuratowski, Sur l’opération A de l’analysis situs. Fund. Math. 3, 182–199 (1922) (An

English translation: On the operation A in analysis situs, prepared by M. Bowron in 2010,
is available on the Internet)

45. K. Kuratowski, Topology I (Academic Press, New York, 1966)
46. J. Kurdics, A note on connection properties. Acta Math. Acad. Paedagog. Nyházi. 12, 57–59

(1990)
47. J. Kurdics, Á. Száz, Well-chainedness characterizations of connected relators. Math. Pannon.

4, 37–45 (1993)
48. N. Levine, On the commutivity of the closure and interior operators in topological spaces. Am.

Math. Montly 68, 474–477 (1961)
49. N. Levine, Semi-open sets and semi-continuity in topological spaces. Am. Math. Monthly 70,

36–41 (1963)
50. N. Levine, Some remarks on the closure operator in topological spaces. Am. Math. Monthly

70, 553 (1963)
51. N. Levine, On uniformities generated by equivalence relations. Rend. Circ. Mat. Palermo 18,

62–70 (1969)
52. N. Levine, On Pervin’s quasi uniformity. Math. J. Okayama Univ. 14, 97–102 (1970)
53. J. Mala, Relators generating the same generalized topology. Acta Math. Hungar. 60, 291–297

(1992)
54. J. Mala, Á. Száz, Properly topologically conjugated relators. Pure Math. Appl. Ser. B 3,

119–136 (1992)



490 Th. M. Rassias and Á. Száz

55. J. Mala, Á. Száz, Modifications of relators. Acta Math. Hungar. 77, 69–81 (1997)
56. A.S. Mashhour, M.E. Abd El-Monsef, S.N. El-Deeb, On precontinuous and weak preconti-

nuous mappings. Proc. Math. Phys. Soc. Egypt 53, 47–53 (1982)
57. S.A. Naimpally, B.D. Warrack, Proximity Spaces (Cambridge University Press, Cambridge,

1970)
58. H. Nakano, K. Nakano, Connector theory. Pac. J. Math. 56, 195–213 (1975)
59. A.A. Nasef, R. Mareay, More on simplly open sets and its applications. South Asian J. Math.

5, 100–108. (2015)
60. A.A. Nasef, R. Mareay, Ideals and some applications of simply open sets. J. Adv. Math. 13,

7264–7271 (2017)
61. A. Neubrunnová, On transfinite sequences of certain types of functions. Acta Fac. Rer. Natur.

Univ. Commun. Math. 30, 121–126 (1975)
62. O. Njåstad, On some classes of nearly open sets. Pac. J. Math. 15, 195–213 (1965)
63. G. Pataki, Supplementary notes to the theory of simple relators. Radovi Mat. 9, 101–118 (1999)
64. G. Pataki, On the extensions, refinements and modifications of relators. Math. Balk. 15,

155–186 (2001)
65. G. Pataki, Á. Száz, A unified treatment of well-chainedness and connectedness properties. Acta

Math. Acad. Paedagog. Nyházi. (N.S.) 19, 101–165 (2003)
66. W.J. Pervin, Quasi-uniformization of topological spaces. Math. Ann. 147, 316–317 (1962)
67. Th.M. Rassias, M. Salih, Á. Száz, Characterizations of generalized topologically open sets in

relator spaces, in Recent Trends on Pure and Applied Mathematics, Special Issue of the Montes
Taurus, ed. by G.V. Milovanovic, Thm. M. Rassias, Y. Simsek. J. Pure Appl. Math., Dedicated
to Professor Hari Mohan Srivastava on the occasion of his 80th Birthday, Montes Taurus J.
Pure Appl. Math. 3, 39–94 (2021)

68. Th.M. Rassias, M. Salih, Á. Száz, Set-theoretic properties of generalized topologically open
sets in relator spaces, in Mathematical Analysis in Interdisciplinary Research, ed. by I.N.
Parasidis, E. Providas, Th.M. Rassias, to appear

69. M. Salih, Á. Száz, Generalizations of some ordinary and extreme connectedness properties of
topological spaces to relator spaces. Electron. Res. Arch. 28, 471–548 (2020)

70. P. Sivagami, Remarks on γ -interior. Acta Math. Hungar. 119, 81–94 (2008)
71. Yu.M. Smirnov, On proximity spaces. Math. Sb. 31, 543–574 (1952) (Russian)
72. M.H. Stone, Application of the theory of Boolean rings to general topology. Trans. Am. Math.

Soc. 41, 374–481 (1937)
73. Á. Száz, Basic tools and mild continuities in relator spaces. Acta Math. Hungar. 50, 177–201

(1987)
74. Á. Száz, Directed, topological and transitive relators. Publ. Math. Debrecen 35, 179–196

(1988)
75. Á. Száz, Relators, Nets and Integrals. Unfinished doctoral thesis, Debrecen (1991), 126 pp.
76. Á. Száz, Structures derivable from relators. Singularité 3, 14–30 (1992)
77. Á. Száz, Refinements of relators. Tech. Rep., Inst. Math., Univ. Debrecen, vol. 76 (1993), 19

pp.
78. Á. Száz, Cauchy nets and completeness in relator spaces. Colloq. Math. Soc. János Bolyai 55,

479–489 (1993)
79. Á. Száz, Neighbourhood relators. Bolyai Soc. Math. Stud. 4, 449–465 (1995)
80. Á. Száz, Uniformly, proximally and topologically compact relators. Math. Pannon. 8, 103–116

(1997)
81. Á. Száz, Somewhat continuity in a unified framework for continuities of relations. Tatra Mt.

Math. Publ. 24, 41–56 (2002)
82. Á. Száz, Upper and lower bounds in relator spaces. Serdica Math. J. 29, 239–270 (2003)
83. Á. Száz, Rare and meager sets in relator spaces. Tatra Mt. Math. Publ. 28, 75–95 (2004)
84. Á. Száz, Galois-type connections on power sets and their applications to relators. Tech. Rep.,

Inst. Math., Univ. Debrecen 2005/2 (2005), 38 pp.
85. Á. Száz, Minimal structures, generalized topologies, and ascending systems should not be

studied without generalized uniformities. Filomat 21, 87–97 (2007)



Generalized Topologically Open Sets 491

86. Á. Száz, Galois type connections and closure operations on preordered sets. Acta Math. Univ.
Comenian. (N.S.) 78, 1–21 (2009)

87. Á. Száz, Inclusions for compositions and box products of relations. J. Int. Math. Virt. Inst. 3,
97–125 (2013)

88. Á. Száz, A particular Galois connection between relations and set functions. Acta Univ. Sapien-
tiae, Math. 6, 73–91 (2014)

89. Á. Száz, Generalizations of Galois and Pataki connections to relator spaces. J. Int. Math. Virtual
Inst. 4, 43–75 (2014)

90. Á. Száz, Basic tools, increasing functions, and closure operations in generalized ordered sets,
in Contributions in Mathematics and Engineering, ed. by P.M. Pardalos, Th.M. Rassias. In
Honor of Constantion Caratheodory (Springer, Berlin, 2016), pp. 551–616

91. Á. Száz, Four general continuity properties, for pairs of functions, relations and relators, whose
particular cases could be investigated by hundreds of mathematicians. Tech. Rep., Inst. Math.,
Univ. Debrecen, 2017/1 (2017), 17 pp.

92. Á. Száz, The closure-interior Galois connection and its applications to relational equations and
inclusions. J. Int. Math. Virt. Inst. 8, 181–224 (2018)

93. Á. Száz, Corelations are more powerful tools than relations, in Applications of Nonlinear
Analysis, ed. by Th.M. Rassias. Optimization and Its Applications, vol. 134 (Springer, Berlin,
2018), pp. 711–779

94. Á. Száz, Relationships between inclusions for relations and inequalities for corelations. Math.
Pannon. 26, 15–31 (2018)

95. Á. Száz, Galois and Pataki connections on generalized ordered sets. Earthline J. Math. Sci. 2,
283–323 (2019)

96. Á. Száz, Birelator spaces are natural generalizations of not only bitopological spaces, but also
ideal topological spaces, in Mathematical Analysis and Applications, Springer Optimization
and Its Applications, ed. by Th.M. Rassias, P.M. Pardalos, vol. 154 (Springer, Switzerland,
2019), pp. 543–586

97. W.J. Thron, Topological Structures (Holt, Rinehart and Winston, New York, 1966)
98. H. Tietze, Beiträge zur allgemeinen Topologie I. Axiome für verschiedene Fassungen des

Umgebungsbegriffs. Math. Ann. 88, 290–312 (1923)
99. A. Weil, Sur les espaces á structure uniforme et sur la topologie générale. Actual. Sci. Ind., vol.

551 (Herman and Cie, Paris 1937)



Graphical Mean Curvature Flow

Andreas Savas-Halilaj

Abstract In this survey article, we discuss recent developments on the mean
curvature flow of graphical submanifolds, generated by smooth maps between
Riemannian manifolds. We will see interesting applications of this technique, in
the understanding of the homotopy type of maps between manifolds.1,2

1 Introduction

Let f : M → N be a smooth map between two manifolds M and N . It is a
fundamental problem to find canonical representatives in the homotopy class of
f . By a canonical representative is usually meant a map in the homotopy class
of the given map f which is a critical point of a suitable functional. In the mid-
1960s, Eells and Sampson [34] introduced the harmonic maps as critical points of
the energy density, to attack the aforementioned problem.

One possible approach to construct harmonic maps is via the harmonic map heat
flow. If M is compact and N is negatively curved, in [34] Eells and Sampson were
able to prove long-time existence and convergence of the flow, showing that under
these assumptions one finds harmonic representatives in a given homotopy class. In
general, one can neither expect long-time existence nor convergence of this flow.
For example, the situation is very complicated in the case of maps between spheres.

1These notes are based partly on a series of lectures delivered by the author at the Chern Institute
of Mathematics held in Tianjin-China in November 2019.
2The author would like to acknowledge support by the General Secretariat for Research and
Technology (GSRT) and the Hellenic Foundation for Research and Innovation (HFRI) Grant
No:133.

A. Savas-Halilaj (�)
Department of Mathematics, University of Ioannina, Ioannina, Greece
e-mail: ansavas@uoi.gr

© Springer Nature Switzerland AG 2021
Th. M. Rassias (ed.), Nonlinear Analysis, Differential Equations, and Applications,
Springer Optimization and Its Applications 173,
https://doi.org/10.1007/978-3-030-72563-1_20

493

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72563-1_20&domain=pdf
mailto:ansavas@uoi.gr
https://doi.org/10.1007/978-3-030-72563-1_20


494 A. Savas-Halilaj

There is another important functional that we may consider in the space of
smooth maps. Given a map f : M → N between Riemannian manifolds, let us
denote its graph in the product space M ×N by

Γ (f ) = {(x, f (x)) ∈ M ×N : x ∈ M}.

Following the terminology introduced by Schoen [79], a map whose graph is
minimal submanifold is called minimal map. Therefore, minimal maps are critical
points of the volume functional.

In this survey, among others, we will discuss deformation of graphical subman-
ifolds via the mean curvature flow. Before stating the problems that we would like
to deal with, let us provide some basic facts and definitions. Let M be a smooth m-
dimensional manifold, T > 0 a positive number and F : M×[0, T )→ P a smooth
time-dependent family of immersions of M into a Riemannian manifold P . We say
that F evolves in time under the mean curvature flow if it satisfies the evolution
equation

dF(∂t )(x, t) = H(x, t)

for any (x, t) ∈ M × [0, T ), where H(x, t) stands for the mean curvature vector at
the point x of the immersion F(· , t) : M → P . It is a well-known fact that if M is
compact and F0 : M → P is an immersion, then the initial value problem for the
mean curvature flow admits a unique smooth solution on a maximal time interval
[0, Tmax), where 0 < Tmax ≤ ∞. Suppose now that P is the product manifold M×N

and F0 is the graph of a map f : M → N . Notice that long as the submanifolds
deformed under mean curvature flow remain graphical, one obtains a smooth family
of maps which belong to the homotopy class of the map f . In the case of long-time
existence and convergence of the flow, we obtain a smooth homotopy from f to a
minimal map.

The first result regarding evolutions by mean curvature of graphical submanifolds
is due to Ecker and Huisken [33]. They proved long-time existence of entire
graphical hypersurfaces in R

n+1. Moreover, Ecker and Huisken proved convergence
to a flat subspace, if the growth rate at infinity of the initial graphical submanifold
is linear. On the other hand, in higher codimensions, the complexity of the normal
bundle makes the situation more complicated. Results analogous to that of Ecker
and Huisken are not available any more without further assumptions. However, the
ideas developed in the paper of Ecker and Huisken opened a new era for the study
of the mean curvature flow of submanifolds in Riemannian manifolds of arbitrary
codimension; see for example [12, 13, 16–18, 60–62, 64, 75, 77, 78, 85, 87–91, 94–
96, 98–100].

This new deformation of maps between Riemannian manifolds via the mean
curvature flow has been used in order to have a better understanding of the relation
between the k-dilation Dilk and the homotopy type of maps. In order to be precise,
let us recall at first the following definition:
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Definition 1 Let f : M → N be a map between two Riemannian manifolds. We
say that Dilk(f ) ≤ α if f maps each k-dimensional submanifold Σ ⊂ M to an
image with k-dimensional volume at most α · Hk(Σ), where Hk(Σ) stands for
the k-dimensional Hausdorff measure of Σ . In particular, we say that f is area
decreasing if Dil2(f ) ≤ 1, strictly area decreasing if Dil2(f ) = 1, and area
preserving if Dil2(f ) = 1.

Roughly speaking, the k-dilation measures how much the map f : M → N

contracts k-dimensional volumes. Gromov in [38] realized that there is a close
relationship between the 1-dilation of a map and its homotopy type. For instance, he
proved that if f is a map from S

m to S
m, then its degree is at most Dilm1 (f ) and this

bound is sharp up to a constant factor. Motivated by this result, in [40, 41] Gromov
proposed the following:

Problem 1 Let f : Sm → S
n be a smooth map between euclidean spheres. Is

there a number ε(k,m, n) such that if Dilk(f ) < ε would imply that f is null-
homotopic?

Tsui and Wang in [91] proved using the mean curvature flow that smooth strictly
area decreasing maps f : Sm → S

n can be smoothly deformed to a constant map.
Guth [42] proved this result cannot be extended in the case of maps with k-dilation
strictly less than 1, if k ≥ 3. The result of Tsui and Wang was generalized by Lee
and Lee in [60]. In the matter of fact, they proved that any strictly area decreasing
map between compact Riemannian manifolds M and N whose sectional curvatures
are bounded by secM ≥ σ1 and σ2 ≥ secN , where σ1, σ2 are two real constants
such that σ1 ≥ σ2 > 0 or σ1 > 0 ≥ σ2, is homotopic by mean curvature flow to
a constant map. We would like to point out here that the curvature assumptions can
be relaxed to

secM > −σ and RicM ≥ (m− 1)σ ≥ (m− 1) secN,

where σ is a positive constant number, as it was shown in [75] by Savas-Halilaj and
Smoczyk.

In the case of a smooth area decreasing map f : M → N between two compact
Riemann surfaces M and N of the same constant sectional curvature σ , we have
a complete picture of the behaviour of the mean curvature flow. It turns out that,
under the mean curvature flow, such a map either instantly becomes strictly area
decreasing or it was and remains an area preserving map. Moreover, the mean
curvature flow preserves the graphical property, exists for all time, and converges
to a minimal surface Σ∞ of the product M ×N . Additionally:

(I) If the evolved graphs are generated by strictly area decreasing maps then:

(a) If σ > 0, then Σ∞ is the graph of a constant map.
(b) If σ = 0, then Σ∞ is the graph of an affine minimal map.

(II) If the evolved graphs are generated by area preserving maps then:
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(a) If σ > 0, then Σ∞ is the graph of an isometry.
(b) If σ = 0, then Σ∞ is the graph of an affine minimal diffeomorphism.

The first steps in the proof of the above result were made in the seminal works
of Smoczyk [85] and Wang [94, 95, 100], where the area preserving case was
investigated. The strictly area decreasing case was first treated by Tsui and Wang
[91], in the positive case, and completed recently by Savas-Halilaj and Smoczyk
in [78]. The primary goal of this survey is to present a unified proof of this result,
based in [78].

From the results of Wang [94, 95, 100], we get another proof of Smale’s Theorem
[84] which says that any diffeomorphism of S2 can be smoothly deformed into an
isometry. Let us mention here that, according to a deep theorem of Hatcher [49],
any diffeomorphism of S3 can be deformed into an isometry of S3. Such a result is
not expected for spheres of dimension greater or equal than 4; see for example [28].
However, the following problem is challenging:

Problem 2 Let f : Sm → S
m, m ≥ 4, be a smooth diffeomorphism. Under which

conditions f can be smoothly deformed into an isometry of the sphere?

Another interesting problem is the investigation of the symplectomorphism
group of the complex projective space CP

m. Gromov [39] proved that the bi-
holomorphic group of CP2 is a deformation retract of its symplectomorphism group.
A natural problem is to determine whether a similar result holds for CP

m with
m ≥ 3. In the matter of fact, the following problem is still open:

Problem 3 Let f : CPm → CP
m, m ≥ 3, be a smooth symplectomorphism. Is

it true that the mean curvature flow deforms the graph Γ (f ) of f smoothly to the
graph Γ (g) of bi-holomorphic map g : CPm → CP

m? Is it true that any minimal
symplectomorphism f : CPm → CP

m is a bi-holomorphic isometry?

Medoš and Wang in [64] made some contribution by giving an affirmative answer
to the above problem under the additional assumption that the singular values of the
differential of the symplectomorphism are close to 1.

The paper is structured as follows. In Section 2 we set up the notation and
recall basic facts from submanifold geometry. In Section 3 we discuss minimal
submanifolds in euclidean spaces. We introduce the generalized Gauss map and
prove the Ruh-Vilms Theorem. Section 4 describes the class of graphical sub-
manifolds and review some Bernstein-type theorems. Section 5 is devoted to the
maximum principle for scalar and systems of PDEs. In Section 6, we introduce the
mean curvature flow, prove short-time existence, and derive various basic evolution
equations. Section 7 describes how to built smooth singularity models for the mean
curvature flow. Section 8 combines results from the previous sections to prove our
main result.
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2 Riemannian Submanifolds

In this section we set up the notation and recall some basic facts from submanifold
geometry. We closely follow the exposition in [5, 29, 55, 59, 92, 102].

2.1 Notation and Conventions

Let M be a m-dimensional manifold and (E, π,M) a vector bundle of rank k over
M . We often denote the bundles only by its total space E. The fiber of E at a point
x ∈ M is denoted by Ex , the tangent space of M at a point x ∈ M will be denoted
by TxM and the space of sections of E is denoted by Γ (E). For the tangent bundle
of M , we use the symbol TM . Sections of the tangent bundle are called vector fields
and usually Γ (TM) is denoted by X(M). A smooth map T : E → V between two
vector bundles E and V over M which maps the fiber Ex linearly to Vx , for any
x ∈ M is called bundle morphism. If additionally, T is bijective we call it bundle
isomorphism.

Definition 2 A (linear) connection on a vector bundle E is a map ∇E : X(M) ×
Γ (E)→ Γ (E), written ∇E(v, φ) = ∇E

v φ, satisfying the properties:

(a) For any v1, v2 ∈ X(M) and φ ∈ Γ (E), it holds

∇E
v1+v2

φ = ∇E
v1
φ + ∇E

v2
φ.

(b) For any v ∈ X(M), f ∈ C∞ (M) and φ ∈ Γ (E), it holds

∇E
f vφ = f∇E

v φ.

(c) For any v ∈ X(M), f ∈ C∞ (M) and φ1, φ2 ∈ Γ (E), it holds

∇E
v (φ1 + φ2) = ∇E

v φ1 + ∇E
v φ2.

(d) For any v ∈ X(M), φ ∈ Γ (E) and f ∈ C∞ (M), it holds

∇E
v (f φ) = (vf ) φ + f∇E

v φ.

For any φ ∈ Γ (E) and x0 ∈ M , the value ∇Eφx |x0 of the quantity ∇E
v φ at

x0 ∈ M depends only on the value of v at x0 and on the restriction of φ along a curve
passing through x0 with speed v. If φ1, φ2 ∈ Γ (E) coincide on a neighbourhood of
x0 ∈ M , then

∇E
v1
φ1|x0 = ∇E

v2
φ2|x0,
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for any pair of vector fields v1, v2 ∈ X(M) with v1|x0 = v2|x0 .

Definition 3 A section φ ∈ Γ (E) is said to be parallel with respect to ∇E if, for
any vector field v on M , it holds ∇E

v φ = 0.

We can define higher derivatives of sections of a vector bundle over a manifold
M whose tangent bundle TM is equipped with a connection.

Definition 4 Suppose that M is a smooth manifold and E a vector bundle over M .
Let ∇M be a connection of TM and ∇E a connection of E. For any pair v1, v2 ∈
X(M), the map ∇2

v1,v2
: Γ (E)→ Γ (E), given by

∇2
v1,v2

φ = ∇E
v1
∇E
v2
φ −∇E

∇M
v1
v2
φ,

is called the second covariant derivative of φ, with respect to the directions v1 and
v2. By coupling the connections ∇M and ∇E , one may define, the k-th derivative
∇k of a section φ in Γ (E).

To each connection there is associated an important operator, which measures the
non commutativity of the covariant derivatiation.

Definition 5 The operator RE : X(M)× X(M)× Γ (E)→ Γ (E), defined by

RE (v1, v2, φ) = ∇2
v1,v2

φ −∇2
v2,v1

φ,

for any v1, v2 ∈ X(M) and φ ∈ Γ (E), is called the curvature operator of ∇E .

Now let us turn our attention to vector bundles equipped with a Riemannian metric
structure.

Definition 6 A Riemannian metric on a vector bundle E of rank k over the manifold
M is a smooth map gE : Γ (E)× Γ (E)→ C∞(M), such that its restriction to the
fibers is a positive definite inner product.

Definition 7 A connection ∇E is called compatible with the Riemannian metric gE
or metric compatible if it satisfies

vgE(φ1, φ2) = gE
(∇E

v φ1, φ2
)+ gE

(
φ1,∇E

v φ2
)
,

for any v ∈ X(M) and φ1, φ2 ∈ Γ (E). A vector bundle E endowed with these
structures is called Riemannian vector bundle endowed with a compatible linear
connection.

We say that a set of sections {φ1, . . . , φk} forms an orthonormal frame, with
respect to gE if and only if gE(φi, φj ) = δij , for any i, j ∈ {1, . . . , k}. In
particular, around any point x0 of M it is possible to find a local orthonormal frame
{φ1, . . . , φk} such that
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∇vφi |x0 = 0

for any tangent vector v. Such frames are called normal or geodesic frames.
Let us restrict ourselves at the tangent bundle TM of M . Given a Riemannian

metric g on M , there is a unique connection ∇, referred as the Levi-Civita
connection, which is compatible with the Riemannian metric. More precisely, ∇
is given by the Koszul formula

2g
(∇v1v2, v3

) = v1
(
g(v2, v3)

)+ v2
(
g(v1, v3)

)− v3
(
g(v1, v2)

)

+g([v1, v2], v3
)− g

([v1, v3], v2
)− g

([v2, v3], v1
)
,

for all v1, v2, v3 ∈ X(M). The Levi-Civita also satisfy

∇v1v2 − ∇v2v1 = [v1, v2],

for any v1, v2 ∈ X(M).
Denote by R the curvature operator with respect to the connection ∇. Combining

R with g we obtain a (4,0)-tensor which, for simplicity, we again denote with the
letter R. More precisely,

R(v1, v2, v3, v4) = −g(R(v1, v2, v3), v4),

for any v1, v2, v3, v4 ∈ X(M). If v1, v2 are linearly independent vectors, then

sec(v1, v2) = R(v1, v2, v1, v2)

g(v1, v1)g(v2, v2)− g(v1, v2)2
,

is called the sectional curvature of the plane spanned by the vectors v1 and v2. By
contracting the operator R with g we obtain the Ricci operator Ric and the scalar
curvature scal, i.e.,

Ric(v1, v2) =
m∑

i=1

R(v1, ei , v2, ei) and scal =
m∑

i=1

Ric(ei, ei),

where v ∈ X(M) and {e1, . . . , em} is a local orthonormal frame on M .

Remark 1 One can use the operations of Linear Algebra to produce new vector
bundles from given ones. For example, if E and V are vector bundles over a
manifold M , then E∗, E × V , E ⊗ V , E ⊕ V , Hom(E;V ), Λr(V ) and Symr (V )

gives rise to new bundles over M . If M is endowed with a Riemannian metric,
then this metric and its Levi-Civita connections extends in a natural way to all the
aforementioned bundles; for more details see [59] or [102].
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2.2 The Pull-back Bundle

Let M and N be two manifolds, (E, π,N) is a vector bundle of rank k over N and
suppose that f : M → N is a smooth map. The map f induces a new vector bundle
of rank k over M . Indeed, take as total space

f ∗E = {
(x, ξ) : x ∈ M, ξ ∈ Ef (x)

}

and as projection the map πf : f ∗E → M given by πf (x, ξ) = x. The space
Γ (f ∗E) contains all sections of E with base point at f (M) and inherit naturally a
vector space structure from Ef (x), given by

(x, ξ)+ (x, η) = (x, ξ + η) and λ(x, ξ) = (x, λξ).

The triple (f ∗E,πf ,M) carries the structure of a vector bundle over M . This bundle
is called the pull-back or the induced by f vector bundle on M .

Suppose that h is a Riemannian metric on E and ∇E is a metric compatible
connection. The map f induces a connection ∇f ∗E on the pull-back bundle which
is defined as follows: Let {ϑ1, . . . , ϑk} be a local orthonormal frame field of E in
a neighbourhood of the point f (x) ∈ N . Then, any section φ ∈ Γ

(
f ∗E

)
can be

written in the form

φ|x =
(
x,

∑k

α=1
φα(x)ϑα|f (x)

) ∼=
∑k

α=1
φα(x)ϑα|f (x),

where φα , α ∈ {1, . . . , k}, are the components of φ with respect to the given
orthonormal frame field. Define now the induced connection by

∇f ∗E
v φ|x =

k∑

α=1

(
vφα

)
ϑα|f (x) +

k∑

α=1

φα∇E
df (v)ϑα|f (x),

for x ∈ M and v ∈ TxM . One can easily show that the curvature operator Rf ∗E of
∇f ∗E is given by

Rf ∗E(v1, v2, φ|x
) = RE

(
df (v1), df (v2), φ|x

)
,

for any x ∈ M , v1, v2 ∈ TxM and φ ∈ E|f (x).
Let us discuss the case where f : (M, g,∇g) → (N, h,∇h) is a map between

Riemannian manifolds. The restriction of h on f ∗TN , induces a Riemannian metric
on f ∗TN , which is compatible with the pull-back connection, that is

vh(φ1, φ2) = h
(∇f ∗TN

v φ1, φ2
)+ h

(
φ1,∇f ∗TN

v φ2
)
.

Moreover, for v1, v2 ∈ X(M), it holds
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∇f ∗TN
v1

df (v2)− ∇f ∗TN
v2

df (v1) = df
([v1, v2]

)
.

Definition 8 The Hessian of a map f : (M, g,∇g)→ (N, h,∇h) is defined to be
the symmetric tensor B : X(M)× X(M)→ Γ (f ∗E) given by

B(v1, v2) = ∇f ∗TN
v1

df (v2)− df (∇g
v1
v2),

for any v1, v2 ∈ X(M). The trace of B with respect to g is denoted by Δg,hf and is
called the Laplacian of f . If the Laplacian of f is zero, then f is called a harmonic
map.

2.3 The Second Fundamental Form

Consider Riemannian manifolds (M, g,∇g) and (N, h,∇h) of dimension m and n,
respectively, with m ≤ n. A map f : M → N is called an isometric immersion if
and only if f ∗h = g. For simplicity, we often denote both metrics g and h by 〈· , ·〉.
At every x ∈ M , we have the orthogonal decomposition

Tf (x)N = dfx(TxM)⊕Nf (x)M,

where Nf(x)M is the orthogonal complement of dfx(TxM) with respect to h. The
union NM of all normal spaces form a vector bundle of rank n−m over M which
is called the normal bundle. According to the above decomposition, any section
v ∈ Γ (f ∗TN) can be decomposed in a unique way in the form

v = v� + v⊥,

where v� is the tangent and v⊥ is the normal part of v along the submanifold. A
well known fact in submanifold theory is that

(∇f ∗TN
v1

df (v2)
)� = df

(∇g
v1
v2

)
, (1)

for any v1, v2 ∈ X(M). In submanifold theory, the Hessian of f is denoted by the
letter A, i.e., we have

A(v1, v2) = ∇f ∗TN
v1

df (v2)− df (∇g
v1
v2).

The tensor A is called the second fundamental form of f . If ξ is a normal vector,
then the tensor Aξ given by

Aξ(v1, v2) = 〈A(v1, v2), ξ 〉,
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for any tangent vectors v1, v2, is called shape operator with respect to ξ . The
Weingarten operator Aξ associated with ξ is defined by

〈Aξv1, v2〉 = Aξ(v1, v2) = 〈A(v1, v2), ξ 〉.

The Laplacian of f or, equivalently, the trace of A with respect to g is called the
(unormalized) mean curvature and is denoted by the letter H , that is

H = traceg A.

Definition 9 A submanifold with zero mean curvature is called minimal.

The restriction of h on NM gives rise to a Riemannian metric on the normal
bundle. Moreover, the restriction of ∇h on NM induces a connection ∇⊥ on NM

which is compatible with the metric; i.e., just define

∇⊥v ξ = (∇N
v ξ

)⊥
.

The curvature tensor of the normal bundle is denoted by R⊥ and is given by

R⊥(v1, v2, ξ) = ∇⊥v1
∇⊥v2

ξ −∇⊥v2
∇⊥v1

ξ − ∇⊥[v1,v2]ξ.

As usual, we can form from R⊥ a C∞(M)-valued tensor which we denote again by
R⊥, that is

R⊥(v1, v2, ξ, η) = −〈R⊥(v1, v2, ξ), η〉.

The Riemann curvature operator R of M , the curvature operator R̃ of N and
the normal curvature R⊥ are related to the second fundamental form A through the
Gauss-Codazzi-Ricci equations:

(a) Gauss equation:

R(v1, v2, v3, v4) = R̃
(
df (v1), df (v2), df (v3), df (v4)

)

+〈A(v1, v3), A(v2, v4)〉 − 〈A(v2, v3), A(v1, v4)〉.

(b) Codazzi equation:

(∇⊥v1
A
)
(v2, v3)−

(∇⊥v2
A
)
(v1, v3) =

(
R̃
(
df (v1)df (v2), df (v3)

))⊥
.

(c) Ricci equation:

R⊥(v1, v2, ξ, η) = R̃
(
df (v1), df (v2), ξ, η

)
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+
∑

k

(
Aξ(v1, ek)A

η(v2, ek)− Aη(v1, ek)A
ξ (v2, ek)

)
,

where v1, v2, v3, v4 ∈ X(M), ξ, η ∈ NM and {e1, . . . , em} is a local orthonormal
frame field with respect to g.

2.4 Local Representations

Let f : (M, g) → (N, h) be a smooth map between Riemannian manifolds. For
computational reasons, we need expressions for components of various tensorial
quantities. We can express coordinates with respect to local charts or with respect
to orthonormal frames.

Let discuss at first the notation with respect to a local coordinate system. Choose
a chart (U, ϕ) around a point x ∈ M and a chart (V ,ψ) around f (x) ∈ N . Assume
that ϕ : U → R

m is represented as ϕ = (x1, . . . , xm) and suppose that ψ : V → R
n

is represented as ψ = (y1, . . . , yn). We use Latin indices to describe quantities on
M and Greek indices for quantities on N . From the charts ϕ and ψ , we obtain for f
the local expression expression

ψ ◦ f ◦ ϕ−1 = (f 1, . . . , f n),

where

f α = yα ◦ f ◦ ϕ−1.

Denote now the basic vector fields associated with the charts (U, ϕ) and (V ,ψ)

by {∂xi , . . . , ∂xm
}

and {∂y1, . . . , ∂yn
}
, respectively. Moreover, denote their corre-

sponding dual forms by {dx1, . . . , dxm} and {dy1, . . . , dyn}. With respect to these
conventions, the Riemannian metrics g and h can be written in the form

g =
∑

i,j

gij dxi ⊗ dxj and h =
∑

α,β

hαβdyα ⊗ dyβ.

The Christoffel symbols Γ k
ij of the metric g, are defined by the formula

∇g
∂xi

∂xj =
∑

k

Γ k
ij ∂xk

and they can be expressed in terms of the metric as

Γ k
ij =

1

2

∑

l

gkl
(− ∂xl gij + ∂xi gjl + ∂xj gli

)
,
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where gij are the components of the inverse of the matrix of the metric g, with
respect to the basis {∂x1, . . . , ∂xm}. Similarly, are defined the Christoffel symbols
Γ α
βγ of h. The differential of the map f and the pull-back via f of the metric h are

given by

df =
∑

α

f α
xi
∂yα ⊗ dxi and f ∗h =

∑

α,β

hαβf
α
xi
f β
xj
.

By a straightforward computation, we see that the Hessian B of f can be represented
in the form

B(∂xi , ∂xj ) =
∑

α

Bα
ij ∂yα =

∑

α

(
f α
xixj

−
∑

k

Γ k
ij f

α
xk
+

∑

β,γ

Γ α
βγ f

β
xi
f
γ
xj

)
∂yα .

Suppose now that f : M → N is an isometric immersion. Then, the second
fundamental form A and the mean curvature H are represented, respectively, as

A(∂xi , ∂xj ) =
∑

α

Aα
ij ∂yα =

∑

α

(
f α
xixj

−
∑

k

Γ k
ij f

α
xk
+

∑

β,γ

Γ α
βγ f

β
xi
f
γ
xj

)
∂yα

and

H =
∑

α

Hα∂yα =
∑

i,j,α

gijAα
ij ∂yα

=
∑

i,j

gij
(
f α
xixj

−
∑

k

Γ k
ij f

α
xk
+

∑

β,γ

Γ α
βγ f

β
xi
f
γ
xj

)
∂yα . (2)

Let us discuss now expressions of tensors in local orthonormal frames. Let
{e1, . . . , em} be a local orthonormal frame of the tangent bundle and {ξm+1, . . . , ξn}
a local orthonormal frame of the normal bundle. Here we use Latin indices for
components on the tangent bundle and Greek indices for components on the normal
bundle. For example, we write:

Aα
ij = 〈A(ei, ej ), ξα〉 = 〈Aij , ξα〉,

R̃ijkl = R̃
(
df (ei), df (ej ), df (ek), df (el)

)
,

R̃ijαβ = R̃
(
df (ei), df (ej ), ξα, ξβ

)
.

Now the Gauss-Codazzi-Ricci equations can be written as:

(a) Gauss equation:

Rijkl = R̃ijkl +
∑

α

(
Aα

ikA
α
jl − Aα

jkA
α
il

)
. (3)



Graphical MCF 505

(b) Codazzi equation:

(∇⊥ei A
)α
jk
− (∇⊥ej A

)α
ik
= −

∑

α

R̃ijkα. (4)

(c) Ricci equation:

R⊥ijαβ = R̃ijαβ +
∑

k

(
Aα

ikA
β
jk − A

β
ikA

α
jk

)
. (5)

3 Minimal Submanifolds

The theory of minimal submanifolds is one of the most active subjects of differential
geometry. There is a vast of literature, but here we will present rather basic facts
concerning higher codimensional minimal submanifolds. For more details we refer
to [21, 22, 70].

3.1 The Gauss Map of a Minimal Submanifold

One of the most important objects in the submanifold geometry is the Gauss map.
For codimension one oriented submanifolds in the euclidean space, the Gauss
map associates to every point of the hypersurface its oriented unit normal vector.
This concept can be generalized to higher codimensional oriented submanifolds.
Let f : M → R

n be an isometric immersion of a m-dimensional oriented
Riemannian manifold M into the euclidean space. The image df (TxM), can be
taken after a suitable parallel displacement in R

n, into a point G(x) of the oriented
Grassmann space G+(m, n) of m-dimensional oriented subspaces of Rn. The map
G : M → G+(m, n) defined in this way, is called the generalized Gauss map.

There is a natural way to visualize the Grassmann space G+(m, n). Let us
denote by Λm(Rn) the dual space of all alternative multilinear forms of degree m.
Elements of Λm(Rn) are called m-vectors. Hence, given vectors v1, . . . , vm on R

n,
the exterior product v1 ∧ · · · ∧ vm is the linear map which on an alternating form Ω

of degree m takes the value

(v1 ∧ · · · ∧ vm)(Ω) = Ω(v1, . . . , vm).

The exterior product is linear in each variable separately. Interchanging two
elements the sign of the product changes and if two variables are the same the
exterior product vanishes. An m-vector ξ is called simple or decomposable if it
can be written as a single wedge product of vectors, that is

ξ = v1 ∧ · · · ∧ vm.
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Note that are m-vectors which are not simple. Using standard techniques from
Linear Algebra one can verify that the exterior product v1 ∧ · · · ∧ vm is zero if
and only if the vectors are linearly dependent. Moreover, if {e1, . . . , en} consists a
basis for Rn, then the m-vectors

{ei1 ∧ · · · ∧ eim : 1 ≤ i1 < · · · < im ≤ n}

consists a basis of Λm(Rn). Therefore, the dimension of the vector space of m-
vectors is

dimΛm(Rn) =
(
n

m

)

= n!
m!(n−m)! .

Each simple vector represents a unique m-dimensional subspace of Rn. More-
over, if ξ and η are simple vectors representing the same subspace, then there exists
a non-zero real number such that ξ = λη. Therefore, there is an obvious equivalence
relation on the space of simple vectors such that the space of equivalence classes is
to an one to one correspondence with the space of m-dimensional subspaces of
R

n. Additionally, we can consider the following relation on the set of non-zero
simple m-vectors: ξ and η are called equivalent if and only if ξ = λη for some
positive number λ. Denote by [ξ ] the class containing all simple m-vectors that
are equivalent to ξ . The equivalence classes now obtained are called oriented m-
dimensional subspaces of Rn.

We can equip Λm(Rn) with a natural inner product, which for simplicity we
denote again by 〈· , ·〉. Indeed, define

〈v1 ∧ · · · ∧ vm,w1 ∧ · · · ∧ wm〉 = det
(〈vi, wj 〉

)
1≤i,j≤m

on simple m-vectors and then extend linearly. Moreover, if {e1, . . . , en} is an ortho-
normal basis of Rn then, the m-vectors

{ei1 ∧ · · · ∧ eim : 1 ≤ i1 < · · · < im ≤ n}

consists an orthonormal basis for the exterior power Λm(Rn). Moreover, it turns out
that for vectors v1, . . . , vm in R

n, the norm

|v1 ∧ · · · ∧ vm|

gives the m-volume of the parallelepiped spanned by these vectors.
We can equip G+(m, n) with a natural differentiable structure. For every m-

dimensional subspace V0 of G+(m, n), consider the open neighbourhood U(V0)

of oriented m-dimensional subspaces whose orthogonal projection into V0 is one-
to-one. Let {e1, . . . , em} be an orthonormal base spanning V0 and {ηm+1, . . . , ηn}
an orthonormal base spanning its orthogonal complement V ⊥0 in R

n. Then, we may
parametrize U(V0) via ξ : Rm(n−m) → U(V0) given by
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(x1m+1, . . . , xiα, . . . , xmn)→ ξ(x1m+1, . . . , xiα, . . . , xmn) (6)

= (
e1 +

∑

α
x1αηα

) ∧ · · · ∧ (
em +

∑

α
xmαηα

)
.

Two charts U(Vi), U(Vj ) with distinct Vi, Vj are analytically compatible.

Definition 10 The map Ψ : G+(m, n)→ S(
n
m)−1 given by

Ψ
([v1 ∧ · · · ∧ vm]

) = v1 ∧ · · · ∧ vm

|v1 ∧ · · · ∧ vm|
is called the Plücker embedding. We regard the Grassmann space G+(m, n) as a
Riemannian manifold with the induced by Ψ Riemannian metric.

Theorem 1 The Plücker embedding is minimal.

Proof Fix a m-dimensional linear space V0 ∈ G+(m, n) and consider the
parametrization ξ : Rm(n−m) → U(V0) ⊂ G+(m, n) described in (6). Now

Ψ = Wξ =
(
e1 +∑

αx1αηα
) ∧ · · · ∧ (

en +∑
αxmαηα

)

∣
∣
(
e1 +∑

αx1αηα
) ∧ · · · ∧ (

en +∑
αxmαηα

)∣
∣
,

where the index α run from m+ 1 to n and

W = 1

|ξ | =
1

∣
∣
(
e1 +∑

αx1αηα
) ∧ · · · ∧ (

en +∑
αxmαηα

)∣
∣
.

Note that

ξxiα =
(
e1 +

∑

α
x1αηα

) ∧ · · · ∧ (
ei−1 +

∑

α
xi−1αηα

) ∧ ηα

∧(ei+1 +
∑

α
xi+1αηα

) ∧ · · · ∧ (
em +

∑

α
xmαηα

)

and

ξxiαxjβ =
(
e1 +

∑

α
x1αηα

) ∧ · · · ∧ (
ei−1 +

∑

α
xi−1αηα

) ∧ ηα

∧(ei+1 +
∑

α
xi+1αηα

) ∧ · · · ∧ (
ej−1 +

∑

α
xj−1αηα

) ∧ ηβ

∧(ej+1 +
∑

α
xj+1αηα

) ∧ · · · ∧ (
em +

∑

α
xmαηα

)(
1− δij

)
,

where i, j ∈ {1, . . . , m} and α, β ∈ {m+ 1, . . . , n}. In particular,

ξxiα (0) = e1 ∧ · · · ∧ ei−1 ∧ ηα ∧ ei+1 ∧ · · · ∧ em (7)

and
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ξxiαxjβ (0) = e1∧· · ·∧ei−1∧ηα ∧ei+1∧· · ·∧ej−1∧ηβ ∧ej+1∧· · ·∧em(1− δij ).

(8)
Additionally,

Wxiα = −W 3〈ξ, ξxiα 〉

and

Wxiαxjβ = −3W 5〈ξ, ξxiα 〉〈ξ, ξxjβ 〉 −W 3〈ξxiα , ξxjβ 〉 −W 3〈ξ, ξxiαxjβ 〉.

Moreover,

W(0) = 1, Wxiα (0) = 0 and Wxiαxjβ (0) = −δij δαβ. (9)

From (7) and (9) we see that

Ψxiα (0) = e1 ∧ · · · ∧ ei−1 ∧ ηα ∧ ei+1 ∧ · · · ∧ em.

Hence, the vectors

{∂x1m+1 |0, . . . , ∂xiα |0, . . . , ∂xmn |0}

form an orthonormal basis of TV0G+(m, n) with respect to the induced by Ψ

Riemannian metric. Moreover, from (7), (8), and (9) we deduce that

Ψxiαxjβ (0) = −δij δαβΨ (0)+ ξxiαxjβ (0).

According to (8), the second fundamental form A of the Plücker embedding at the
point V0 is equal to

A(∂xiα , ∂xjβ ) = e1 ∧ · · · ∧ ei−1 ∧ ηα ∧ ei+1

∧ · · · ∧ ej−1 ∧ ηβ ∧ ej+1 ∧ · · · ∧ em(1− δij ) (10)

and, in particular,

A(∂xiα , ∂xiα ) = 0 (11)

for any i ∈ {1, . . . , m} and α ∈ {m+ 1, . . . , n}. Thus, the mean curvature H of the
embedding Ψ at V0 is given by

H(V0) =
∑

i,α

A(∂xiα , ∂xiα ) = 0.

Consequently, Ψ gives rise to a minimal submanifold of the sphere. ��
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In 1970, Ruh and Vilms [74] obtained an important link between minimality of a
submanifold and the harmonicity of its generalized Gauss map. More precisely, the
following result holds:

Theorem 2 Let f : M → R
n be a minimal isometric immersion. Then, the

generalized Gauss map G of f is a harmonic map.

Proof Consider the map

F = Ψ ◦ G : M → S
(nm)−1 ⊂ Λm(Rn)

where Ψ is the Plücker embedding. From the composition formula, we have

BF (v1, v2) = dΨ
(
BG(v1, v2)

)+ AΨ

(
dG(v1), dG(v2)

)
(12)

for any v1, v2 ∈ X(M), where BF and BG are the Hessians of F and G and AΨ

the second fundamental form of Ψ , respectively. Fix a local orthonormal frame field
{e1, . . . , em} defined on an open neighbourhood U of M and a local orthonormal
frame {ηm+1, . . . , ηn} in the normal bundle of the immersion. Note that since f is
isometric immersion, for any x ∈ U , we have

F(x) = dfx(e1) ∧ dfx(e2) ∧ · · · ∧ dfx(em).

Fix now a point x0 ∈ U and for simplicity suppose that the frame {e1, . . . , em} is
normal at x0. By straightforward computations we see that at x0 we have

dF(ej ) = A(ej , e1) ∧ · · · ∧ df (em)+ · · · + df (e1) ∧ · · · ∧ A(ej , em),

where A is the second fundamental form of f . Hence, in view of (7), we obtain that
the differential of G at x0 is equal to

dG(ej ) =
∑

α

Aα
1j ηα ∧ e2 ∧ · · · ∧ em + · · · + e1 ∧ e2 ∧ · · · ∧

∑

α

Aα
mjηα.

Recall that, from the Codazzi equations (4), we have at x0 that

(∇f ∗TRn

ej A
)
kl
= (∇⊥ekA

)
j l
−

∑

i,α

Aα
klA

α
ij df (ei),

for any j, k, l ∈ {1, . . . , m}. Differentiating dF and estimating at x0 we get

∇F ∗TΛm(Rn)
ej

dF (ej ) = −|A|2F +
(∇⊥e1

A
)
jj
∧ df (e2) ∧ · · · ∧ df (em)

+df (e1) ∧
(∇⊥e2

A
)
jj
∧ · · · ∧ df (em)+ · · · + df (e1) ∧ · · · ∧

(∇⊥emA
)
jj

+A1j ∧ A2j ∧ · · · ∧ df (em)+ · · · + df (e1) ∧ · · · ∧ Ajm−1 ∧ Ajm.
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Therefore, at x0 we have the identity

BF (ej , ej ) =
(∇⊥e1

A
)
jj
∧ df (e2) ∧ · · · ∧ df (em)

+df (e1) ∧
(∇⊥e2

A
)
jj
∧ · · · ∧ df (em)+ · · · + df (e1) ∧ · · · ∧

(∇⊥emA
)
jj

+A1j ∧ A2j ∧ · · · ∧ df (em)+ · · · + df (e1) ∧ · · · ∧ Ajm−1 ∧ Ajm.

Summing up and using the minimality of f , we see that at x0 it holds

traceg BF =
∑

j,α

Aα
1j ηα ∧

∑

j,β

A
β
2j ηβ ∧ df (e3) ∧ · · · ∧ df (em)

+
∑

j,α

Aα
1j ηα ∧ df (e2) ∧

∑

j,β

A
β
3j ηβ ∧ · · · ∧ df (em)

...
...

...

+df (e1) ∧ df (e2) ∧ · · · ∧
∑

j,α

Aα
m−1j ηα ∧

∑

j,α

Aα
mjηβ.

Hence, bearing in mind equation (10) which gives the formula for the second
fundamental form of Ψ it follows that at x0 we have

traceg BF =
∑

j
AΨ

(
dG(ej ), dG(ej )

)
.

Combining the last equality with (12) we get the desired result. ��

3.2 Weierstrass Representations

For two dimensional surfaces in the euclidean space, there is a link between
minimality and holomorphicity through a general formula which express a simply-
connected minimal surface in terms of complex functions with certain properties. In
particular, the following result holds:

Theorem 3 Let ϕ1, . . . , ϕn : U ⊂ C → C be holomorphic functions, where U is
simply connected, such that ϕ2

1 + · · · + ϕ2
n = 0 and |ϕ1|2 + · · · + |ϕn|2 > 0. Then,

the map

F(z) =
(

Re

∫ z

z0

ϕ1(ζ )dζ, . . . , Re

∫ z

z0

ϕn(ζ )dζ

)

, z ∈ U,

where z0 ∈ U , gives rise to minimal surface in R
n. Conversely, every minimal

surface in Rn, at least locally, can be described in this form.
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The idea to obtain such a parametrization is the following: Let f : M → R
n

be a minimal immersion of a 2-manifold. Choose a local isothermal system of
coordinates (U ⊂ C, z = x + iy), where U is simply connected; see [54]. Then,
the induced by f metric g on M has the form g = E|dz|2, where E is a smooth
positive function. Moreover, in these coordinates, the Laplace–Beltrami operator Δ
with respect to g is expressed by

Δ = E−1(∂x∂x + ∂y∂y).

With respect to such parameters, minimality is equivalent to harmonicity. Consider
now the map ϕ = (ϕ1, . . . , ϕn) : U → C

n, ϕ = fx − ify . One can readily check
that ϕ is holomorphic and its components satisfy

ϕ2
1 + · · · + ϕ2

n = 0 and |ϕ1|2 + · · · + |ϕn|2 = 2E > 0.

By fixing a point z0 ∈ U it is clear that, up to a parallel transport,

f (z) = Re

∫ z

z0

ϕ(ζ )dζ, z ∈ U.

The map ϕ has also a very important geometric interpretation. At first we observe
that the variety

Qn−2 =
{[z1, . . . , zn] ∈ CP

n−1 : z2
1 + · · · + z2

n = 0
}

is diffeomorphic with G+(2, n). To see this, consider a 2-plane Π ⊂ R
n that is

spanned by u ∧ v, where the vectors u and v satisfy |u| − |v| = 0 and 〈u, v〉 = 0.
Then, vector w = u + iv belongs to Qn−2. Hence, to each oriented 2-plane we
associate a point in Qn−2. In fact, this correspondence actually is a diffeomorphism.
Consequently, the map ϕ : U → Qn−2, ϕ = fx + ify , is exactly the generalized
Gauss map of the minimal surface.

Let M be a manifold of dimension 2m endowed with a Riemannian metric g and
a metric connection ∇. An almost complex structure on M is by definition a bundle
isomorphism J : TM → TM satisfying J ◦ J = −I. The pair (M, J ) is called
an almost complex manifold. If J is an isometry with respect to g and parallel with
respect to ∇, then the triple (M, g, J ) is called Kähler manifold. In this case, the
2-form Ω given by

Ω(v1, v2) = g
(
Jv1, v2

)
,

where v1, v2 ∈ X(M), is closed and is called the Kähler form. A smooth map
f : (M, JM) → (N, JN) between Kähler manifolds is called holomorphic if
df ◦JM = JN ◦df and anti-holomorphic if df ◦JM = −JN ◦df . If the map f is a
holomorphic or anti-holomorphic isometric immersion, then f (M) will be called an
immersed complex submanifold of N . Such immersions are automatically minimal.
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With the terminology we just introduced and the discussion above, we can now
state the following result which was originally proved by Chern [20].

Theorem 4 An oriented surface of the euclidean space is minimal if and only if its
generalized Gauss map is anti-homolomorphic.

We will present now another interesting category of submanifolds, the so called
Lagrangian submanifolds.

Definition 11 Let Mm be a Riemannian manifold, (N2m, gN,Ω) be a Kähler
manifold and f : Mm → N2m an isometric immersion. The immersion f will be
called Lagrangian if and only if f ∗Ω = 0.

Let us conclude this section with the following parametrization of minimal
Lagrangian surfaces in R

4; see Chen and Morvan [19] and Aiyama [1, 2].

Theorem 5 Suppose that f, g : U → C are two holomorphic maps defined in a
simply connected domain U of the complex plane satisfying |fz|2+ |gz|2 > 0. Then
the map

F = eiβ/2

√
2
(f − ig, g + if ),

where β is a real number, is a minimal conformal Lagrangian immersion in C2. The
generalized Gauss map G takes values in S

2 × {(eiβ, 0)} ) C ∪ {∞} and is given
by the formula

G = fz/gz.

Conversely, every minimal Lagrangian immersion f : M → C
2 can be, at least

locally, parametrized as above.

4 Scalar and Vectorial Maximum Principles

The maximum principle is one of the most useful tools employed in the study of
PDEs. All maximum principles rely on the following elementary result of calculus:
Suppose that Ω is an open, bounded domain of R

m and let u : Ω → R be a
continuous function which is C2-smooth in Ω . If u attains its maximum at interior
point x0, then

∇u(x0) = 0 and ∇2u(x0) ≤ 0.

As an immediate consequence of this fact is that any continuous and C2-smooth up
to the boundary strictly convex function must attain its maximum at the boundary
of Ω . In the matter of fact, one can show a little bit more: Any continuous and C2-
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smooth up to the boundary weakly convex function either attain its maximum at the
boundary of Ω or otherwise is constant. The above principle holds for a large class
of solutions of partial differential inequalities.

4.1 Hopf’s Maximum Principles

Suppose that Ω is a bounded, open and connected domain of Rm. We wish to study
operators L : C2(Ω)→ C0(Ω) of the form

L =
m∑

i=1

aij ∂xi ∂xj +
m∑

i=1

bi∂xi , (13)

where here aij = aij , bj : Ω → R, i, j ∈ {1, . . . , m}, are uniformly bounded
functions and ∂xi , i ∈ {1, . . . , m}, the partial derivatives with respect the cartesian
coordinates of Rm. The symmetric matrix A with coefficients the functions aij is
called the representative matrix of L.

Definition 12 The operator L is called elliptic if the matrix A is positive at each
point of Ω . Moreover, L is called uniformly elliptic if the smallest eigenvalue of its
matrix A is a function which is bounded away from zero.

Theorem 6 (Hopf’s Strong Maximum Principle) Let Ω ⊂ R
m be an open,

connected and bounded domain. Suppose that u ∈ C2(Ω) ∩ C0(Ω) is a solution of
the differential inequality

Lu+ hu ≥ 0,

where L is an uniformly elliptic differential operator with uniformly bounded
coefficients and h a continuous function on Ω .

(a) Suppose that h = 0 and that u attains its maximum at an interior point of Ω .
Then, u is constant.

(b) Suppose that h ≤ 0 and that u attains a non-negative maximum at an interior
point of Ω . Then, u is constant.

For the proof see [35] or [72].

4.2 Maximum Principles for Systems

We would like to have a form of the maximum principle that is applicable for
sections in vector bundles. To generalize, first note that Hopf’s maximum principle
for functions can be re-formulated as follows:
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Let Ω be an open subset of Rm and u : Ω ⊂ R
m → [a, b] a C2-smooth function

satisfying the uniformly elliptic differential equation

m∑

i,j=1

aijuxixj +
m∑

i=1

biuxi = 0.

If a point of Ω is mapped into a boundary point of [a, b], then any point of Ω is
mapped into the boundary.

From this point of view of the statement of Hopf’s maximum principle, one can
guess how the generalization of the maximum principle for vector valued maps
should be. The interval is replaced by a convex set K and the statement reads:
Let Ω ⊂ R

m be open, K ⊂ R
n closed convex and u : Ω → K a C2-smooth vector

valued map satisfying the uniformly elliptic differential system

m∑

i,j=1

aijuxixj +
m∑

i=1

biuxi = 0.

If a point of Ω is mapped into a boundary point of K then every point is mapped
into the boundary.

4.2.1 Convexity and Distance Functions

A crucial role in the proof of the vectorial maximum principle plays the geometry
of the (signed) distance function from the boundary of a convex set. In this
subsection, we review the basic definitions of the geometry of convex sets in
euclidean space such as supporting half-spaces, tangent cones, normal vectors and
distance functions.

Definition 13 A subset K of Rn is called convex if for any pair of points z, w ∈ K ,
the segment

Ez,w =
{
tz+ (1− t)w ∈ R

n : t ∈ [0, 1]}

is contained in K . The set K is said to be strictly convex, if for any pair z,w ∈ K

the segment Ez,w belongs to the interior of K .

A convex set K ⊂ R
n may have non-smooth boundary. It is a well-known fact

in Convex Geometry that the boundary ∂K is a continuous hypersurface of R
n.

In fact, according to a result of Reidemeister [73], the boundary ∂K is Lipschitz
continuous and so almost everywhere differentiable. In particular, there is no well-
defined tangent or normal space of K in the classical sense. However, there is a way
to generalize these notions for convex subsets of Rn.
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Definition 14 Let K be a closed convex subset of the euclidean space R
n. A

supporting half-space of the set K is a closed half-space of Rn which contains K

and has points of K on its boundary. A supporting hyperplane of K is a hyperplane
which is the boundary of a supporting half-space of K . The tangent cone Cy0K of
K at y0 ∈ ∂K is defined as the intersection of all supporting half-spaces of K that
contain y0.

Definition 15 Let K ⊂ R
n be a closed convex subset and y0 ∈ ∂K . Then:

(a) A non-zero vector ξ is called normal vector of ∂K at y0, if ξ is normal to a
supporting hyperplane of K passing through y0. This normal vector is called
inward pointing, if it points into the half-space containing K .

(b) A vector η is called inward pointing at y0 ∈ ∂K , if

〈ξ, η〉 ≥ 0

for any inward pointing normal vector ξ at y0.

Let K ⊂ R
n be a closed convex set and d : Rn → R the function given by

d(z) =
⎧
⎨

⎩

+ dist(z, ∂K), if z ∈ K,

− dist(z, ∂K), if z /∈ K.

Note that for each x ∈ R
n there is at least one point y ∈ ∂K such that

dist(z, ∂K) = |y − z|.

Moreover, the function d is Lipschitz continuous. For a better understanding of
the properties of d, let us suppose that ∂K is C2-smooth. Denote by ξ the
inward pointing unit normal vector field along ∂K and by the A the corresponding
Weingarten operator. Because K is convex, from Hadamard’s Theorem, A is non-
negative definite. In particular, K is strictly convex if and only if A is positive
definite; see for example [29]. Fix a point y0 ∈ ∂K . In an open neighbourhood
U ⊂ R

n of y0, the part U ∩ ∂K can be parametrized via an embedding f : Ω =
U ∩ Ty0K → R

n, which assigns to each point of Ω the height of ∂K from its
tangent plane at y0. Recall from multi-variable calculus that the distance of any
point z ∈ K0 to ∂K is realized as the intersection of a straight line passing through
z and meeting ∂K orthogonally. Hence, the level set

Kt = {z ∈ K : d(z) = t},

of d is parametrized locally via the map ft : Ω → R
n given by

ft = f + tξ.
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Proposition 1 There exists a positive real number ε, such that ft is an immersion
for all t ∈ (−ε, ε). Moreover, the unit normal along ft coincide with the unit normal
ξ of f . Additionally, the Weingarten operator At of ft is related to the Weingarten
operator A of f by the formula

At = (I − tA)−1 ◦ A.

In particular, Kt is strictly convex if and only if ∂K is strictly convex.

Proof We have

dft = df + tdξ = df ◦ (I − tA).

Hence, ξ is a unit normal vector field along ft . Therefore,

−df ◦ A = dξ = −dft ◦ At = −df ◦ (I − tA) ◦ At

and so

A = (I − tA) ◦ At .

From the above formula we deduce that there exists a positive constant ε such that
Kt is convex for all t ∈ (−ε, ε). In addition, if ∂K is strictly convex, the level sets
close to the boundary are also strictly convex. ��
Proposition 2 Let K be a closed and convex set in R

n.

(a) For any y0 ∈ ∂K there exists a neighbourhood U ⊂ R
n containing y0, such

that d is C2-smooth function on U ∩K0.
(b) Let v,w tangent vectors ofKd(z) at z ∈ K0. Then, the Hessian∇2d of d satisfies

∇2d(v,w) = − A(v,w)

1− d(z)A(v,w)
,

where A is the shape operator of ∂K associated to the inward pointing unit
normal, and

∇2d(v, ξ) = 0.

Proof Parametrize, locally, the boundary ∂K as the image of an embedding f :
Ω ⊂ R

n−1 → R
n. Define the map F : Ω × R ⊂ R

n → R
n, given by

F(x, t) = f (x)+ tξ(x).

Then, dF(y0,t)(∂t ) = ξy0 and dF(y0,t)(v) = dfx0(v − tAv), for any index i ∈
{1, . . . , n − 1} and v ∈ Ty0Ω . From the inverse mapping theorem, there exists
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an open subset D ⊂ Ω and a positive number ε such that the map F is a C2-
diffeomorphism for any (x, t) ∈ D×(−ε, ε). Hence, under a change of coordinates,
d may be regarded as a C2-smooth function defined on D × (−ε, ε). In the matter
of fact, in these coordinates, we have

d(x, t) = 〈F(x, t)− f (x), ξ(x)〉 = t.

Therefore, ∇d(x,t) = ξx. Because |∇d| = 1, we deduce that ∇2d vanishes on the
normal bundle of any level set Kt . Moreover, ∇2d = −At on the tangent space of
any level set Kt . Now the desired result follows from Proposition 1. This completes
the proof. ��

4.2.2 Weinberger’s Maximum Principle

Weinberger [101] established a strong maximum principle for C2-smooth maps u :
Ω ⊂ R

m → K ⊂ R
n with values in a closed convex set K ⊂ R

n, whose boundary
∂K satisfies some regularity conditions that he called “slab conditions”. Inspired by
the ideas of Weinberger, Wang [93] gave a geometric proof of the strong maximum
principle, in the case where the boundary ∂K of K is of class C2. The idea of Wang
was to apply Hopf’s maximum principle to the function d ◦ u : Ω → R, whose
value at x is equal to the distance of u(x) from the boundary ∂K . Later, Evans [36]
removed all additional regularity requirements on the boundary of K .

Theorem 7 (Weinberger-Evans) LetK be a closed, convex set ofRn and u : Ω ⊂
R

m → K ⊂ R
n, u = (u1, . . . , un), a solution of the uniformly elliptic system of

partial differential equations

Lu(x)+ Ψ (x, u(x)) = 0, x ∈ Ω,

where Ω is a connected open domain of Rm and Ψ : Ω × R
n → R

n a continuous
map that is Lipschitz continuous in the second variable. Suppose further that Ψ is
pointing into K .

(a) If there is a point x0 ∈ Ω such that u(x0) ∈ ∂K , then u(x) ∈ ∂K for any point
x ∈ Ω .

(b) Assume additionally that the boundary ∂K is strictly convex. If there is a point
x0 ∈ Ω such that u(x0) ∈ ∂K , then u is constant.

Proof Let us give the proof in the case where the boundary of K is smooth of class
C2, following the ideas in [93]. Consider the function f = d ◦ u : Ω → R. We
compute,

fxi =
∑n

α=1
duαu

α
xi
, (14)

and
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fxixj =
∑n

α=1
duαu

α
xixj

+
∑n

α,β=1
duαuβ u

α
xi
uβxj .

Consider now the uniformly differential operator L̃ given by

L̃ = L−
∑m

i=1
bi∂xi .

By a straightforward computation, we get

L̃f =
∑n

α=1
duα

∑m

i,j=1
aiju

α
xixj

+
∑m

i,j=1
aij

∑n

α,β=1
duαuβ u

α
xi
uβxj . (15)

Denote the first sum in the right hand side of (15) by I and the second sum by II.
Observe at first that

I(x) = −〈∇du(x), Ψ (x, u(x))〉.

We restrict our selves in a sufficiently small neighbourhood U ⊂ R
n around u(x0)

and in an neighbourhood V of x0 such that u(V ) ⊂ U . For each x ∈ V , denote by
û(x) the unique point on ∂K with the property

f (x) = d(u(x)) = |u(x)− û(x)|.

Recall that the integral curves ∇d are straight lines perpendicular to each level set
of d. Thus, ∇du(x) = ∇dû(x). Since Ψ is inward pointing, we get that

〈∇du(x), Ψ (x, û(x)〉 = 〈∇dû(x), Ψ (x, û(x)〉 ≥ 0.

Therefore, exploiting the Lipschitz property of Ψ , we get that

I(x) = −〈∇du(x), Ψ (x, u(x))− Ψ (x, û(x))+ Ψ (x, û(x))〉
= −〈∇du(x), Ψ (x, u(x))− Ψ (x, û(x))〉 − 〈∇du(x), Ψ (x, û(x))〉
≤ |∇du(x)| · |Ψ (x, u(x))− Ψ (x, û(x))|
≤ h(x)|u(x)− û(x)|
= h(x)f (x),

where h is a non-negative bounded function. Recall from Proposition 1 that U is
foliated by level sets of d. Thus, we can decompose uxi in the form

uxi = u�xi + u⊥xi

where (·)� denotes the orthogonal projection into the tangent space and (·)� the
orthogonal projection into the normal space of the foliation. Bearing in mind the
conclusions of Proposition 2, we deduce that



Graphical MCF 519

∑n

α,β=1
duαuβ u

α
xi
uβxj = ∇2d

(
u�xi , u

�
xj

) = A
(
u�xi , u

�
xj

)

1− f (x)A
(
u�xi , u�xj

) .

Since, A is non-negative definite and A = (aij ) is positive definite, we deduce that

II = trace
(
A · ∇2d

) ≤ 0.

In addition, for any x such that u(x) ∈ ∂K , we have that

II(x) =
{

strictly negative, if ∂K is strictly convex in close to u(x),

zero if ∂K is flat in a neighbourhood of u(x).
(16)

Putting everything together, we get

L̃f (x)− h(x)f (x) ≤ 0.

Since f ≥ 0 and there exists a point x0 such that f (x0) = 0, from Hopf’s strong
maximum principle we deduce that f ≡ 0. This implies now that all the values of
u lie in the boundary of K . Moreover, going back to the original equation for f , we
see that II ≡ 0. Consequently, if ∂K is strictly convex, from (16) it follows that u
must be constant. This completes the proof. ��

4.3 Maximum Principles for Bundles

To state the maximum principle for sections in vector bundles, we must introduce
an appropriate notion of convexity for subsets of vector bundles. Let us recall at first
the following definition of Hamilton [45]:

Definition 16 (Hamilton) Suppose that E is a vector bundle over the manifold M

and let K be a closed subset of E.

(a) The set K is called fiber-convex or convex in the fiber, if for each x ∈ M , the
set Kx = K ∩ Ex is a convex subset of the fiber Ex .

(b) The set K is called invariant under parallel transport, if for every smooth curve
γ : [0, b] → M and any vector v ∈ Kγ(0), the unique parallel section v(t) ∈
Eγ(t), t ∈ [0, b], along γ (t) with v(0) = v, is contained in K .

(c) A fiberwise map Ψ : E → E is a map such that π ◦ Ψ = π , where π denotes
the bundle projection. We say that a fiberwise map Ψ points into K (or is inward
pointing), if for any x ∈ M and any ϑ ∈ ∂Kx the vector Ψ (ϑ) belongs to the
tangent cone CϑKx of Kx at ϑ .
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Let E be a Riemannian vector bundle over a manifold M equipped with a metric
compatible connection. We consider uniformly elliptic operators L that are given
locally by

L =
m∑

i,j=1

aij∇2
ei ,ej

+
m∑

j=1

bj∇ej , (E)

where {e1, . . . , em} is a local orthonormal frame of M , A = (aij ) a symmetric,
uniformly positive definite tensor and b =∑m

i=1 biei is a smooth vector field.
For the proof of the maximum principle, we will use a result due to Böhm and

Wilking [9].

Lemma 1 Let M be a Riemannian manifold and E a Riemannian vector bundle
over M equipped with a metric compatible connection. Let K ⊂ E be a closed
and fiber-convex subset which is invariant under parallel transport. If φ is a smooth
section with values in K then, for any x ∈ M and v ∈ TxM , the Hessian

∇2
v,vφ = ∇v∇vφ −∇∇vvφ

belongs into the tangent cone of Kx at the point φ|x .
Proof It suffices to prove the result in the case where there exists a point x0 which
is mapped via φ in the boundary of K , since otherwise the result is trivially true.
Consider a unit vector v ∈ Tx0M and an normal coordinate system (x1 , . . . , xm) in
an open neighbourhood U around a point x0 such that ∂x1

∣
∣
x0
= v. Moreover, pick

a basis {φ1|x0 , . . . , φk|x0} of Ex0 and extend it into a local geodesic orthonormal
frame field. Then,

φ = u1φ1 + · · · + ukφk,

where the components ui : U → R, i ∈ {1 , . . . , k}, are smooth functions. A simple
computation shows

∇2
v,vφ|x0 = ∇∂x1

∇∂x1
φ|x0 −∇∇∂x1

∂x1
φ|x0 =

k∑

i=1

(∂x1∂x1ui)(x0)φi |x0

=
k∑

i=1

(ui ◦ γ )′′(0)φi |x0,

where γ : (−ε, ε)→ U is a length minimizing geodesic such that

γ (0) = x0 and γ ′(0) = ∂x1

∣
∣
x0

.
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Define now the set

K =
{
(y1 , . . . , yk) ∈ R

k :
∑k

i=1
yiφi |x0 ∈ Kx0

}
.

Clearly K is a closed and convex subset of Rk . Since φ ∈ K and K is invariant
under parallel transport, we deduce that the curve σ : (−ε, ε)→ R

k , given by

σ = (u1 ◦ γ , . . . , uk ◦ γ ),

lies in K. It suffices to prove that σ ′′(0) points into K. Indeed, because K is convex,
for any unit inward pointing normal ξ of K at σ(0), we have

g(t) = 〈ξ, σ (t)− σ(0)〉 ≥ 0,

for any t ∈ (−ε, ε). Because g attains its minimum at t = 0, from standard calculus
we get that g′′(0) ≥ 0, which implies 〈σ ′′(0), ξ 〉 ≥ 0. This completes the proof. ��
Remark 2 According to the above result, it follows that if φ is a section lying in a
set satisfying the conditions of Lemma 1 and L is a uniformly elliptic operator of
second order, then section Lφ always points into K .

Theorem 8 (Strong Elliptic Maximum Principle) Suppose that M is a Rieman-
nian manifold (without boundary) andE a vector bundle of rank k overM equipped
with a Riemannian metric gE and a metric compatible connection. LetK be a closed
fiber-convex subset of the bundle E that is invariant under parallel transport and
φ ∈ Γ (E), φ : M → K , a smooth section such that

Lφ + Ψ (φ) = 0,

where L is a uniformly elliptic operator of second order of the form given in (E)
and Ψ is a smooth fiberwise map that points into K . If there exists a point x0 ∈ M

such that φ|x0 ∈ ∂Kx0 , then φ|x ∈ ∂Kx for any point x ∈ M . If, additionally, in
a neighbourhood of φ|x0 the set Kx0 is strictly convex and the boundary ∂Kx0 is
C2-smooth, then φ is a parallel section.

Proof We follow the exposition in [76]. Let {φ1, . . . , φk} be a geodesic orthonormal
frame field defined in a neighbourhood U around x0 ∈ M . Hence, φ = u1φ1+· · ·+
ukφk, where ui : U → R, i ∈ {1, . . . , k}, are smooth functions. With respect to this
frame we have

Lφ =
∑k

i=1

(
Lui +

(
gradient terms of ui

)+
∑k

j=1
uj gE(Lφj , φi)

)
φi

= −
∑k

i=1
gE(Ψ (φ), φi)φi .
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Therefore, the map u : U → R
k , u = (u1, . . . , uk), satisfies a uniformly elliptic

system of second order of the form

L̃u+Φ(u) = 0, (17)

where Φ : Rk → R
k , Φ = (Φ1, . . . , Φk), is given by

Φi(u) = gE
(
Ψ
(∑k

j=1
ujφj

)+
∑k

j=1
ujLφj , φi

)
, (18)

for any i ∈ {1, . . . , k}. Consider now the convex set

K = {
(y1, . . . , yk) ∈ R

k :
∑k

i=1
yiφi |x0 ∈ Kx0

}
.

Claim 1: For any point x ∈ U we have u(x) ∈ K.

Indeed, fix a point x ∈ U and let γ : [0, 1] → U be the geodesic curve joining the
points x and x0. Denote by θ the parallel section which is obtained by the parallel
transport of φ|x along the geodesic γ . Then,

θ |γ (t) =
∑k

i=1
yi φi |γ (t),

where yi : [0, 1] → R, i ∈ {1, . . . , k}, are smooth functions. Because, θ and φi ,
i ∈ {1, . . . , k}, are parallel along γ , it follows that

0 = ∇γ ∗E
∂t

θ =
∑k

i=1
y′i (t)φi |γ (t).

Hence, yi(t) = yi(0) = ui(x), for any t ∈ [0, 1] and i ∈ {1, . . . , k}. Therefore,

θ |γ (1) = θ |x0 =
∑k

i=1
ui(x)φi |x0 .

Since by our assumptions K is invariant under parallel transport, it follows that
θ |x0 ∈ Kx0 . Hence, u(U) ⊂ K and this proves Claim 1.

Claim 2: For any y ∈ ∂K the vector Φ(y) defined in (18) points into K at y.

First note that the boundary of each slice Kx is invariant under parallel transport.
From (18) we deduce that it suffices to prove that both terms appearing on the right
hand side of (18) point into K. The first term points into K by assumption on Ψ .
The second term is inward pointing due to Lemma 1. This completes the proof of
Claim 2.

Observe now that the solution of the uniformly second order elliptic partial
differential system (17) satisfies all the assumptions of Theorem 7. Therefore,
because u(x0) ∈ ∂K it follows that u(U) is contained in the boundary ∂K of K.
Consequently, φ|x ∈ ∂K for any x ∈ U . Since M is connected, we deduce that
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φ(M) ⊂ ∂K . Note, that if K is additionally strictly convex at u(x0), then the map u

is constant. This implies that

φ|x =
∑k

i=1
ui(x0)φi |x

for any x ∈ U . Thus, φ is a parallel section taking all its values in ∂K . ��

4.3.1 Maximum Principles for Symmetric Tensors

Let (E, gE) be a Riemannian vector bundle over a manifold M . For any φ ∈
Sym(E∗ ⊗ E∗), a real number λ is called eigenvalue of φ with respect to gE at
the point x ∈ M , if there exists a non-zero vector v ∈ Ex , such that

φ(v,w) = λgE(v,w),

for any w ∈ Ex . The linear subspace Eigλ,φ(x) of Ex given by

Eigλ,φ(x) = {v ∈ Ex : φ(v,w) = λgE(v,w), for anyw ∈ Ex},

is called the eigenspace of λ at x. Since φ is symmetric, it admits k real eigenvalues
λ1(x), . . . , λk(x) at each point x ∈ M . We will always arrange the eigenvalues such
that λ1(x) ≤ · · · ≤ λk(x). If λ1(x) ≥ 0 (resp. > 0) we say that φ is non-negatively
(resp. positively) definite at x.

Before stating the main results, let us recall the following definition due to
Hamilton [44].

Definition 17 A fiberwise map Ψ : Sym(E∗ ⊗ E∗) → Sym(E∗ ⊗ E∗) is said to
satisfy the null-eigenvector condition, if whenever ϑ is a non-negative symmetric
2-tensor at a point x ∈ M and if v ∈ TxM is a null-eigenvector of ϑ , then
Ψ (ϑ)(v, v) ≥ 0.

The next theorem consists the elliptic analogue of the maximum principle of
Hamilton [45]. More precisely:

Theorem 9 Let (M, g) be a Riemannian manifold (without boundary) and suppose
that (E, gE) is a Riemannian vector bundle over M equipped with a metric
connection. Assume that φ ∈ Sym(E∗ ⊗ E∗) is non-negative definite and satisfies

Lφ + Ψ (φ) = 0,

whereΨ is a smooth fiberwise map satisfying the null-eigenvector condition. If there
is a point of M where φ has a zero eigenvalue, then φ must have a zero eigenvalue
everywhere.

Proof Denote by K the set of non-negative definite symmetric 2-tensors, i.e.,
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K = {ϑ ∈ Sym(E∗ ⊗ E∗) : ϑ ≥ 0}.

Each set Kx is a closed and convex. Then,

∂Kx = {ϑ ∈ Kx : exists nonzero v ∈ Tx M such that ϑ(v, ·) = 0}.

The tangent cone of Kx at a point ϑ ∈ ∂K is given by

CϑKx = {φ ∈ Sym(E∗x ⊗ E∗x ) : φ(v, v) ≥ 0, for all v ∈ Eig0,ϑ (x)}.

Claim 1. The set K is invariant under parallel translation.

Let γ : [0, 1] → M be a geodesic, Pt the parallel transport operator of vectors
along γ and Πt the parallel transport operator of 2-tensors along the curve γ .
Consider ϑ ∈ Kγ(0). Then, for any v ∈ Tγ (0)M , we have

∂t
{(
Πtϑ

)
(Ptv, Ptv)

} = (∇∂tΠtϑ
)
(Ptv, Ptv)+ 2Πtθ

(∇∂t Ptv, Ptv
) = 0.

Therefore, for any vector v ∈ Tγ (0)M , it holds
(
Πtϑ

)
(Ptv, Ptv) = ϑ(v, v).

Consequently, for any w ∈ Tγ (t)M , we obtain that

(
Πtϑ

)
(w,w) = ϑ(P−1

t w, P−1
t w) ≥ 0.

This proves the claim.

Claim 2. Let Ψ : Sym(E∗ ⊗ E∗) → Sym(E∗ ⊗ E∗) be a smooth fiberwise map
satisfying the null-eigenvector condition. Then, for any x ∈ M and ϑ ∈
∂K , the vector Ψ (x, ϑ) points into K .

Indeed, let ϑ ∈ ∂Kx0 . Then Ψ points inwards of Kx0 at ϑ if and only if

〈v∗ ⊗ v∗, Ψ (x, ϑ)〉 = Ψ (x, ϑ)(v, v) ≥ 0,

for any x in M and null-eigenvector v ∈ Tx0M of φ.
This complete the proof. ��

4.3.2 A Second Derivative Test for Symmetric 2-tensors

Theorem 10 Let (M, g) be a Riemannian manifold (without boundary) and
(E, gE) a Riemannian vector bundle of rank k over the manifold M equipped with
a metric connection ∇. Suppose that φ ∈ Sym(E∗ ⊗ E∗) is a smooth symmetric
2-tensor. If the biggest eigenvalue λk of φ admits a local maximum λ at an interior
point x0 ∈ M , then

(∇φ)(v, v) = 0 and (Lφ)(v, v) ≤ 0,
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for all v ∈ Eigλ,φ(x0) and for all uniformly elliptic second order operators L.
Remark 3 The above theorem is due to Hamilton [44]. Replacing φ by −φ in
Theorem 10, we get a similar result for the smallest eigenvalue λ1 of φ.

Proof Let v ∈ Eigλ,φ(x0) be a unit vector and V ∈ Γ (E) such that V |x0 = v

and ∇V |x0 = 0. Define the symmetric 2-tensor S given by S = φ − λgE .
From our assumptions, S is non-positive definite in a small neighbourhood of x0.
Moreover, the biggest eigenvalue of S at x0 equals 0. Consider the smooth function
f : M → R, given by f (x) = S(V |x, V |x). The function f is non-positive in the
same neighbourhood around x0 and attains a local maximum at x0. In particular,
f (x0) = 0, df (x0) = 0 and (Lf )(x0) ≤ 0. Consider a local orthonormal frame
{e1, . . . , em} with respect to g defined in a neighbourhood of the point x0. A simple
calculation yields

df (ei) =
(∇ei S

)
(V , V )+ 2S

(∇ei V , V
)
.

Taking into account that gE is parallel, we deduce that

0 = (∇f )(x0) = (∇S)(v, v) = (∇φ)(v, v).

Furthermore,

∇2
ei ,ej

f = (∇2
ei ,ej

S)(V , V )+ 2S(V,∇2
ei ,ej

V )

+2
(∇ei S

)
(∇ej V , V )+ 2

(∇ej S
)
(∇ei V , V )

+2S(∇ei V ,∇ej V ).

Bearing in mind the definition of S and using the fact that gE is parallel with respect
to ∇, we obtain

Lf = (Lφ)(V, V )+ 2S(V,LV )

+2
∑m

i,j=1
aij

{
S(∇ei V ,∇ej V )+ 2(∇ei S)(∇ej V , V )

}

= (Lφ)(V, V )+ 2S(V,LV )

+2
∑m

i,j=1
aij

{
S(∇ei V ,∇ej V )+ 2(∇ei S)(∇ej V , V )

}
.

Estimating at x0 and taking into account that V |x0 = v is a null eigenvector of S at
x0, we get

0 ≥ (Lf )(x0) = (Lφ)(v, v).

This completes the proof. ��
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5 Graphical Submanifolds

5.1 Definitions

Let (M, gM) and (N, gN) be Riemannian manifolds of dimension m and n,
respectively. The induced metric on M ×N will be denoted by gM×N = gM × gN .

We often denote the product metric also by 〈· , ·〉. A smooth map f : M → N

defines an embedding F : M → M × N , given by F(x) = (x, f (x)), for any
x ∈ M . The graph of f is defined to be the submanifold

Γ (f ) = F(M) = {(x, f (x)) ∈ M ×N : x ∈ M}.

Since F is an embedding, it induces another Riemannian metric g = F ∗gM×N on
M . The two natural projections πM : M × N → M and πN : M × N → N are
submersions, that is they are smooth and have maximal rank. Note that the tangent
bundle of the product manifold M ×N , splits as a direct sum

T (M ×N) = TM ⊕ TN.

The four metrics gM, gN, gM×N and g are related by

gM×N = π∗MgM + π∗NgN and g = F ∗gM×N = gM + f ∗gN . (19)

The Levi-Civita connection ∇gM×N associated to the Riemannian metric gM×N on
M × N is related to the Levi-Civita connections ∇gM on (M, gM) and ∇gN on
(N, gN) by

∇gM×N = π∗M∇gM ⊕ π∗N∇gN .

The corresponding curvature operator R̃ on the product M × N is related to the
curvature operators on (M, gM) and RN on (N, gN) by

R̃ = π∗MRM ⊕ π∗NRN.

The map f : M → N is called minimal if Γ (f ) ⊂ M ×N is minimal.

5.2 Singular Value Decomposition

For any fixed point x ∈ M , let λ2
1(x) ≤ · · · ≤ λ2

m(x) be the eigenvalues of
f ∗gN with respect to gM . The corresponding values λi ≥ 0, i ∈ {1, . . . , m},
are usually called singular values of the differential df of f at the point x. Let
r = r(x) = rank df (x). Then, r ≤ min{m, n} and λ1(x) = · · · = λm−r (x) = 0.
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It is well-known that the singular values can be used to define the so-called
singular decomposition of df . At the point x, consider an orthonormal basis
{α1, . . . , αm−r ;αm−r+1, . . . , αm} with respect to gM which diagonalizes f ∗gN .
Moreover, at f (x) consider an orthonormal basis {β1, . . . , βn−r ;βn−r+1, . . . , βn}
with respect to gN such that, for any i ∈ {m− r + 1, . . . , m},

df (αi) = λi(x)βn−m+i .

It is well-known fact that, with the above ordering, the singular values give rise
to continuous functions. In the matter of fact, they are even smooth on an open
and dense subset of M . In particular, they are smooth on open subsets where the
corresponding multiplicities are constant and the corresponding eigenspaces are
smooth distributions; see [83].

We may define a special basis for the tangent and the normal space of the graph
in terms of the singular values. The vectors

ei =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αi , 1 ≤ i ≤ m− r,

αi
√

1+ λ2
i (x)

,m− r + 1 ≤ i ≤ m,
(20)

form an orthonormal basis with respect to the metric gM×N of the tangent space
dF(TxM) of the graph Γ (f ) at x. Moreover, the vectors

ξi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

βi , 1 ≤ i ≤ n− r,

−λi+m−n(x)αi+m−n ⊕ βi
√

1+ λ2
i+m−n (x)

, n− r + 1 ≤ i ≤ n,
(21)

give an orthonormal basis with respect to gM×N of the normal space NxM .

5.3 Length and Area Decreasing Maps

Let (M, gM) and (N, gN) be two Riemannian manifolds of dimensions m and n

respectively. For any smooth map f : M → N its differential df induces a map
Λkdf : ΛkTM → ΛkTN given by

(
Λkdf

)
(v1 , . . . , vk) = df (v1) ∧ · · · ∧ df (vk),

for any smooth vector fields v1, . . . , vk ∈ TM . The map Λkdf is called the k-
Jacobian of f . The supremum norm or the k-dilation |Λkdf |(x) of the map f at a
point x ∈ M is defined as the supremum of
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√
det

(
(f ∗gN(vi, vj ))1≤i,j≤k

)

when {v1, . . . , vm} runs over all orthonormal bases of TxM .

Definition 18 A smooth map f : (M, gM) → (N, gN) between Riemannian
manifolds is called (weakly) k-volume decreasing if |Λkdf | ≤ 1, strictly k-volume
decreasing if |Λkdf | < 1 and k-volume preserving if |Λkdf | = 1. For k = 1 we
use the term length instead of 1-volume and if k = 2 we use the term area instead
of 2-volume.

There is a way to express the length and area decreasing property of a map in
terms of positivity of symmetric tensors. Define on M the symmetric 2-tensors
SM×N and S given by

SM×N = π∗MgM − π∗NgN and S = F ∗SM×N = gM − f ∗gN .

With respect to the basis of the singular value decomposition, we have

SM×N(ei, ej ) = 1− λ2
i

1+ λ2
i

δij , 1 ≤ i, j ≤ m. (22)

Hence, the eigenvalues μ1, μ2, . . . , μm of S with respect to g, are

μ1 = 1− λ2
m

1+ λ2
m

≤ · · · ≤ μm = 1− λ2
1

1+ λ2
1

.

Hence, f is length decreasing if S ≥ 0. Additionally let us mention that

SM×N(ξi, ξj ) =

⎧
⎪⎪⎨

⎪⎪⎩

−δij , 1 ≤ i ≤ n− r,

−1− λ2
i+m−n

1+ λ2
i+m−n

δij , n− r + 1 ≤ i ≤ n.
(23)

and

SM×N(em−r+i , ξn−r+j ) = − 2λm−r+i
1+ λ2

m−r+i
δij , 1 ≤ i, j ≤ r. (24)

Observe now that, for any pair of indices i, j ∈ {1, . . . , m}, we have

μi + μj = 1− λ2
i

1+ λ2
i

+ 1− λ2
j

1+ λ2
j

= 2(1− λ2
i λ

2
j )

(1+ λ2
i )(1+ λ2

j )
.
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Hence, the map is strictly area decreasing, if and only if the tensor S is strictly 2-
positive, i.e., the sum of the two smallest eigenvalues is positive. The 2-positivity
of a tensor T ∈ Sym(T ∗M ⊗ T ∗M) can be expressed as the positivity of another
tensor T [2] ∈ Sym(Λ2T ∗M ⊗ Λ2T ∗M). Indeed, let P and Q be two symmetric
2-tensors. Then, the Kulkarni-Nomizu product P ©∧ Q given by

(P ©∧ Q)(v1 ∧ w1, v2 ∧ w2) = P(v1, v2)Q(w1, w2)+ P(w1, w2)Q(v1, v2)

−P(w1, v2)Q(v1, w2)− P(v1, w2)Q(w1, v2)

is an element of the vector bundle Sym(Λ2T ∗M⊗Λ2T ∗M). Now, to every element
T ∈ Sym(T ∗M⊗T ∗M) let us assign an element T [2] of the bundle Sym(Λ2T ∗M⊗
Λ2T ∗M), by setting

T [2] = T ©∧ g.

We point out that the Riemannian metric G of Λ2TM is given by

G = 1
2g©∧ g = 1

2g
[2].

The relation between the eigenvalues of the tensor T and the eigenvalues of T [2] is
explained in the following lemma:

Lemma 2 Let T be a symmetric 2-tensor with eigenvalues μ1 ≤ · · · ≤ μm and
corresponding eigenvectors {v1, . . . , vm} with respect to the metric g. Then the
eigenvalues of the symmetric 2-tensor T [2] with respect to G are μi + μj , for any
1 ≤ i < j ≤ m, with corresponding eigenvectors vi ∧ vj , for any 1 ≤ i < j ≤ m.

5.4 Minimal Graphs in the Euclidean Space

Let us discuss the case of graphs generated by smooth maps f : Rm → R
n. The

induced metric g on the graph is given in local coordinates in the form

gij = δij +
m∑

i,j=1

n∑

α=1

f α
xi
f α
xj
.

As usual, the components of the inverse matrix of the induced metric g are denoted
by gij . It is not difficult to show that Γ (f ) is minimal if and only if the components
of

f = (f 1, . . . , f m)

satisfy the following system of differential equations
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m∑

i,j=1

gij f α
xixj

= 0. (MSE)

The equation is known in the literature as the minimal surface equation. For
graphical hypersurfaces, that is for graphs generated by functions smooth f : U ⊂
R

m → R, minimality is expressed by the equation

div

(
grad f

√
1+ | grad f |2

)

= 0.

There is a long history of attempts to study entire solutions of the minimal surface
equation. Bernstein [8] proved that the only entire minimal graphs in the R

3 are
planes. However, there was a gap in the original proof of Bernstein which was fixed
40 years later; see [51, 65]. In the meantime, several complex analysis proofs have
been obtained; for more details see the surveys of Osserman [70, 71].

It was conjectured for a long time that the theorem of Bernstein holds in any
dimension for graphical hypersurfaces. For m = 3, its validity was proved by De
Giorgi [30], for n = 4 by Almgren [3] and for m = 5, 6, 7 by Simons [80]. It was
a big surprise when Bombieri, De Giorgi and Giusti [10] proved that, for m ≥ 8,
there are entire solutions of the minimal surface equation other than the affine ones.

In higher codimensions, the situation is more complicated. There are plenty of
non-flat entire minimal graphs. For example, the graph of an entire holomorphic
map f : Cm → C

n is minimal. Moreover, Osserman [70] has constructed examples
of complete minimal two-dimensional graphs in R

4, which are not complex analytic
with respect to any orthogonal complex structure on R

4. For instance, the graph
Γ (f ) over the map f : R2 → R

2, given by

f (x, y) =
(
e

x
2 − 3e−

x
2

) (
cos

y

2
,− sin

y

2

)

for any (x, y) ∈ R
2, is such an example. Now the obvious questions became:

Question 1 If entire solutions of the minimal surface equation need not be linear,
do they have any other distinguishing characteristics? What additional restrictions
on entire solutions would guarantee linearity in all dimensions?

The first result in this direction was obtained by Osserman [69] for two-
dimensional graphs, generated by maps f : R

2 → R
n. He proved that if the

differential df of the map f is bounded, then must be a plane. In fact, he proved the
following more general theorem:

Theorem 11 Suppose that Σ is a complete, oriented minimal surface (not neces-
sarily graphical) in the euclidean space Rn. Assume that the Gauss map ofΣ omits
an open neighbourhood in the Grassmannian. Then, Σ is flat.
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Let us restrict now in two dimensional graphs in R
4, i.e., minimal graphs

generated by maps f = (f1, f2). For such graphs, Simon [81] proved that if one
component of f have bounded gradient, then f is affine. Later on, Schoen [79]
obtained a Bernstein-type result by imposing the assumption that f : R2 → R

2 is
a diffeomorphism. Moreover, Ni [68] has derived a result of Bernstein type under
the assumption that f is an area-preserving map. In this case, area preserving is
equivalent with the condition | det(df )| = 1. The function Jac(f ) = det(df ) is
called the Jacobian determinant of f . All these result were generalized by Hasanis,
Savas-Halilaj and Vlachos in [47, 48], just by assuming that Jac(f ) is bounded. In
fact, the following result is shown:

Theorem 12 Let f : R
2 → R

2 be an entire solution of the minimal surface
equation. Assume that Γ (f ) is not a plane. Then, Γ (f ) is a complex analytic curve
if and only if the Jacobian determinant Jac(f ) of f does not take every real value.
In particular if Γ (f ) is a complex analytic curve, then:

(a) The Jacobian determinant Jac(f ) takes every real value in (0,+∞) or in
[0,+∞) if f is holomorphic.

(b) The Jacobian determinant Jac(f ) takes every real value in (−∞, 0) or in
(−∞, 0], if f is anti-holomorphic.

All these proofs use strongly the fact that the Gauss map of a minimal surface in
the euclidean space is anti-holomorphic.

The first Bernstein-type theorem which was valid for arbitrary dimension and
codimension is due to Hildebrandt, Jost, and Widman [50]. They obtained such a
result under the assumption of a certain quantitative bound for the slope, that is a
bound on the norm of the differential of the generating map.

Let us describe here briefly their technique. Note at first that a bound on the
differential of the map forces the Gauss map of the graph to lie in a bounded region
of the Grassmannian manifold. In particular, the first step is to determine which
bounds on the differential will force the Gauss map to have its range in a sufficiently
small convex subset of the Grassmannian. The second step is to find a convex
function defined on the convex set, which contains the Gauss image of the graph,
and to compose it with the Gauss map. By Theorem 2 of Ruh and Vilms, the Gauss
map is harmonic. Consequently, the composition of the Gauss map with the convex
function will give rise to a subharmonic function defined on the graph. The third step
is to show that this particular subharmonic function is constant and the Gauss map
is parallel. Of course, there are many difficulties to overcome to run this program.
The first problem is the complexity of the Grassmannian manifolds. For example,
it is not so easy to identify which are the convex subsets of the Grassmannian and
their corresponding convex supporting functions. One way is to consider distance
balls. In fact, Hildebrandt, Jost, and Widman [50] identified the largest ball in the
Grassmannian manifold on which the square of the distance function is convex.
Another major difficulty is that an entire euclidean minimal graph is complete and
non-compact. Consequently, the standard maximum principle cannot be applied
directly. Let us mention here that the original assumption on the slope was obtained
by Hildebrandt, Jost, and Widman in [50] was
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E(f ) = √
det(I + df tdf ) ≤ β0 < cos−p

(
π

2
√

2p

)

where β0 is a constant and p = min{m, n}. Over the years, the bound on E(f ) was
improved. Recently, Jost, Xin, and Yang [56] proved the following:

Theorem 13 Let f : R
m → R

n be an entire solution of the minimal surface
equation. Suppose that there exists a number β0 such that

β0 <

{
3, if n ≥ 2,

∞, if n = 1,

and

E(f ) = √
det(I + df tdf ) ≤ β0.

Then Γ (f ) is an affine subspace of Rm × R
n.

Remark 4 For codimension one graphs, the above theorem was first obtained by
Moser [67].

Question 2 Let f : Rm → R
n be an entire solution of the minimal surface equation

such that

E(f ) = √
det(I + df tdf ) < 9.

Is it true that Γ (f ) is an affine subspace of Rm × R
n?

Remark 5 The number 9 in the above conjecture should be the sharp bound. The
reason is that there are examples of Lipschitz minimal maps constructed by Lawson
and Osserman [58] with E(f ) = 9; see also [37]. These examples are generated
from the map f : C2 − {0} = R

4 − {0} → R× C = R
3 given by

f (x) =
√

5

2
|x|H

(
x

|x|
)

,

where H : C2 → R× C is the Hopf-map H(z, w) = (|z|2 − |w|2, 2zw).

Let us conclude this section by mentioning some results in special situations. The
first one is due to Fischer-Colbrie [37] and it says that a 3-dimensional complete
minimal graph with bounded differential is totally geodesic. In the matter of fact,
the following holds:

Theorem 14 Let f : R
3 → R

n be an entire solution of the minimal surface
equation. If |df | is uniformly bounded, then Γ (f ) is flat.
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In codimension two, no specific bound on the differential of f is needed.
Recently, Assimos and Jost [6] obtained the following interesting theorem:

Theorem 15 Let f : R
m → R

2 be an entire solution of the minimal surface
equation. Suppose that there exists a number β0 such that

E(f ) = √
det(I + df tdf ) ≤ β0.

Then Γ (f ) is an affine subspace of Rm × R
2.

The next result we would like to mention is due to Wang [97]. He obtained the
following theorem for strictly area decreasing minimal graphs.

Theorem 16 Let f : R
m → R

n be an entire solution of the minimal surface
equation. Suppose that there exists numbers δ1 ∈ (0, 1) and δ2 > 0 such that
|Λ2df | ≤ 1− δ1 and E(f ) ≤ δ2. Then Γ (f ) is an affine subspace of Rm × R

n.

Remark 6 The above cannot be extended for k-volume decreasing minimal maps
with k > 2. For example, consider f : C2 = R

4 → C
2 = R

4, given by

f (z,w) = (β0z+ h(w),w),

where z,w ∈ C, h : C → C is a non-affine holomorphic map and β0 a real
number. Observe that the graph Γ (f ) is a non-flat minimal submanifold of R8 and
|Λ4df | = |β0|. Consequently, there exists an abundance of non-flat minimal graphs
in the euclidean space with arbitrary small 4-Jacobian.

6 Mean Curvature Flow

In this section, we introduce the notion of the mean curvature flow. Later, we will
examine how various geometric quantities evolve under the mean curvature flow.
Suppose that M is a manifold of dimension m, let T > 0 be a real number and
F : M × [0, T ) → N a smooth time-dependent family of immersions of M into a
Riemannian manifold N of dimension n. We follow the exposition in [5, 32, 63, 86].

Definition 19 Let N be a Riemannian manifold. We say that a family of immer-
sions F : M × [0, T ) → N evolves by mean curvature flow (MCF for short) with
initial data the immersion F0 : M → N if it satisfies the initial value problem

{
dF(x,t)(∂t ) = H(F(x, t))

F (x, 0) = F0(x)
,

for any (x, t) ∈ M × [0, T ), where H
(
F(x, t)

)
denotes the mean curvature vector

of the immersion F(· , t) : M → N at the point x ∈ M .
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6.1 Basic Facts for Systems of Parabolic PDEs

In this section we recall basic facts about solvability of Cauchy problems; for more
details see [57].

6.1.1 Differential Operators

Let M be a smooth manifold equipped with a Riemannian metric g whose associated
Levi-Civita connection is ∇M . Suppose that E1 and E2 are two vector bundles over
M and assume that E1 is equipped with a Riemannian metric h and a compatible
connection ∇E1 . As in Definition 4, from the connections ∇M and ∇E1 , one can
form the k-th derivative ∇k of a section φ ∈ Γ (E1).

Definition 20 A map P : Γ (E1)→ Γ (E2) of the form

(Pφ)(x) = Q
(
x,∇1φ(x), . . . ,∇kφ(x)

) ∈ (E2)x,

where Q is smooth in all its variables, will be called differential operator of order
k. In the case where P is R-linear, we say that P is a linear differential operator of
order k. Otherwise, we say that P is non-linear.

Suppose that P : Γ (E1) → Γ (E2) is a linear differential operator of degree k.
Then, in index notation, it can be written in the form

Pφ =
∑

i1,...,ik

Ai1··· ik∇k
∂xi1

... ∂xik
φ + · · · +

∑

i1

Ai1∇1
∂xi1

φ + A0φ,

where for each x ∈ M , Ai1... ik (x) : (E1)x → (E2)x is linear map. These maps are
called the coefficients of the linear operator P .

Definition 21 Let P : Γ (E1) → Γ (E2) be a linear differential operator of
order k, let x be a point in M and ζ = ∑

i ζidxi ∈ T ∗x M . The linear map
σζ (P ; x) : (E1)x → (E2)x , given by

σζ (P ; x)φ =
∑

i1,...,ik

ζi1 · · · ζikAi1...ik φ|x,

is called the principal symbol of the operator P at the point x and in the direction
ζ . In particular, the operator P is called elliptic if its principal symbol is an
isomorphism, for every point x and every non-zero direction ζ .

Definition 22 The differential or the linearization of P at φ0, if it exists, is defined
to be the linear map DP |φ0 : Γ (E1)→ Γ (E2), given by the expression

DP |φ0(ψ) = lim
s→0

P(φ0 + sψ)− P(φ0)

s
,
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for any ψ ∈ Γ (E1).

Definition 23 Let P : Γ (E1) → Γ (E2) be a differential operator of order k.
We say that P is elliptic, undetermined elliptic or overdetermined elliptic if its
linearization is so.

Example 1 Let f : M → N be a smooth map between manifolds endowed
with Riemannian metrics gM and gN , respectively, and consider the operator
ΔgM,gN : C∞(M)→ C∞(M), given by

ΔgM,gN f = trgM B,

where B stands for the Hessian of f . In local coordinates, we have

ΔgM,gN f =
∑

i,j,α

g
ij
M

(
f α
xixj

−
∑

k

Γ k
ij f

α
xk
+

∑

γ,δ

Γ α
γ δf

γ
xi f

δ
xj

)
∂yα .

The linearization of ΔgM,gN f is

DΔgM,gN |f (G) = lim
s→∞

ΔgM,gN (f + sG)−ΔgM,gN (f )

s

=
∑

i,j

g
ij
MGα

xixj
∂yα + lower order terms.

Hence, for any

ζ = (ζ1, . . . , ζm) and φ = (φ1, . . . , φn)

we have

σζ (DΔgM,gN , x)φ =
∑

i,j
g
ij
Mζiζjφ|x = |ζ |2gφ|x,

Consequently, the Laplacian operator ΔgM,gn is elliptic.

6.1.2 Time-Dependent Vector Bundles

Suppose that I ⊂ R is an open interval and let {g(t)}t∈I be a smooth family of
Riemannian metrics on a manifold M . This means that for any (x, t) ∈ M × I we
have an inner product g(x,t) on TxM . We can regard {g(t)}t∈I as a metric g acting
on the spatial tangent bundle H, defined by

H = {v ∈ T (M × R) : dπ2(v) = 0},
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where π2 : M × I → I is given by π2(x, t) = t. Note that each g(t) is a metric on
H since H(x,t) is isomorphic to TxM via π2. We can even extend g into a metric on
M × I , with respect to which we have the orthogonal decomposition

T (M × I ) = H⊕ R∂t .

Since H is a subbundle of T (M×I ), any section of H is also a section of T (M×I ).
Sections of Γ (H) are called spatial vector fields. There is a natural connection ∇
on M × I . Namely, define ∇ by

∇vw = ∇g(t)
v w, ∇v∂t = 0, ∇∂t ∂t = 0 and ∇∂t v = [∂t , v], (25)

for any v,w ∈ Γ (H), where ∇g(t) stand for the Levi-Civita connection of g(t). One
can readily check that ∇ is compatible with g, i.e.,

vg(w1, w2) = g(∇vw1, w2)+ g(w1,∇vw2),

for any v ∈ X(M × R) and w1, w2 ∈ Γ (H). Moreover, for any w1, w2 ∈ Γ (H),

∇w1w2 −∇w2w1 = [w1, w2].

The situation we discussed above occurs, when we have a family of immersions
F : M × I → N. In this case, F ∗h gives a family of metrics on M . Endowing
M × I with the connection ∇, we have for any v ∈ Γ (H) that

∇F ∗TN
∂t

dF (v)− ∇F ∗TN
v dF (∂t ) = dF([∂t , v]) = dF(∇∂t v).

6.1.3 Parabolic Differential Equations

Let M be a manifold equipped with a family of metrics {g(t)}[0,T ). Denote by
{∇g(t)}t∈[0,T ) the corresponding Levi-Civita connections. Let E1 and E2 be vector
bundles over M and assume that E1 is equipped with a fixed time independent metric
h and connections {∇(t)}t∈[0,T ) that are compatible with h, i.e.,

vh(φ1, φ2) = h
(∇(t)vφ1, φ2

)+ h
(
φ1,∇(t)vφ2

)
,

for any tangent vector v, sections φ1, φ2 ∈ Γ (E) and any time t ∈ [0, T ).
As in Definition 4, by coupling ∇(t) with ∇g(t) we obtain repeated covariant

derivatives ∇k(t) acting on sections of E1. Suppose now that {φ(t)}t∈[0,T ) is a
smooth time-dependent family of sections of E1, where smooth means that for any
fixed (x, t) ∈ M × [0, T ), the time-derivative

(∇∂t φ)(x, t) = lim
h→0

φ(x, t + h)− φ(x, t)

h
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exists. Hence, {∇∂t φ}t∈[0,T ) is another one parameter family of sections on E1. We
are interested now in expressions of the form:

(∇∂t φ)(x, t) = (Pφ)(x, t) = Q
(
x, t,∇1(t)φ(x, t), . . . ,∇k(t)φ(x, t)

)
, (26)

where now P : Γ (E1) → Γ (E2) is a time-dependent differentiable operator of
order k. If for each fixed t the operator P is linear elliptic, we say that (26) is a linear
parabolic differential equation. We say that (26) represents a non-linear parabolic
differential equation if and only if, for any φ ∈ Γ (E1), its linearization is parabolic.

Theorem 17 If the differential operator P is parabolic at φ0 ∈ Γ (E1), then there
exist a T > 0 and a smooth family φ(t) ∈ Γ (E1), for t ∈ [0, T ], such that there
exists a unique smooth solution for the initial value problem

{
∇∂t φ = Pφ,

φ(0) = φ0.

for t ∈ [0, T ], where T depends on the initial data φ0.

We close this section with an application of this general theory.

Definition 24 Let (M, gM) and (N, gN) be Riemannian manifolds. We say that a
family of smooth maps F : M ×[0, T )→ N evolves by (harmonic) heat flow, with
initial data F0 : M → N , if it satisfies the initial value problem

{
∇∂t dF = dF(∂t ) = ΔgM,gN F,

F (·, 0) = F0.
(27)

Theorem 18 Let (M, gM) be a compact Riemannian manifold and suppose that
F0 : (M, gM) → (N, gN) is a smooth map into a Riemannian manifold (N, gN).
Then, (27) admits a unique, smooth solution on a maximal time interval [0, Tmax),
where 0 < Tmax ≤ ∞.

Proof We already computed that for ζ ∈ T ∗M , we have

σζ (DΔgM,gN , x) = |ζ |2gI.

Hence, the parabolic theory can be used to ensure short-time existence. ��

6.2 Short-time Existence of the Mean Curvature Flow

A supposed solution F of MCF can be represented in local coordinates as

F(x1, . . . , xm, t) =
(
F 1(x1, . . . , xm, t), . . . , F

n(x1, . . . , xm, t)
)
.
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Then, from (2) we have

H =
∑

i,j,α

gij
(
Fα
xixj

−
∑

k

Γ k
ijF

α
xk
+

∑

γ,δ

Γ α
γ δF

γ
xiF

δ
xj

)
∂yα ,

where

gij =
∑

α,β

hαβF
α
xi
F β
xj

and Γ k
ij =

1

2

∑

l

gkl(∂xi gjl + ∂xj gil − ∂xl gij ).

Note that g is the induced metric and it depends on F . Hence,

∂xi gjl =
∑

β,γ

(
hβγ F

γ
xixj F

β
xl
+ hβγ F

γ
xj F

β
xixl

)+ lower order terms

and consequently

Γ k
ij =

∑

l,β,γ

gklhβγ F
γ
xl F

β
xixj

+ lower order terms. (28)

Combining the formula (28) with equation (2), we obtain

H =
∑

i,j,α,β

gij
(
δαβ −

∑

k,l,γ

gklhβγ F
α
xk
F

γ
xl

)
Fβ
xixj

∂yα + lower order terms.

By a straightforward computation, we get

DH |F (G) = lim
s→0

H(F + sG)−H(F)

s

=
∑

i,j,α,β

gij
(
δαβ −

∑

k,l,γ

gklhβγ F
α
xk
F

γ
xl

)
Gβ

xixj
∂yα + lower order terms.

Denote by πTM and πNM the projections of F ∗TN onto dF(TxM) and NM ,
respectively. Then, for any φ =∑

α φα∂yα ∈ Γ (F ∗TN), we have

πNM(φ) = φ − πTM(φ) =
∑

α,β

(
δαβ −

∑

k,l,γ

gklhβγ F
α
xk
F β
xl

)
φβ∂yα .

Therefore, the principal symbol is given by

σζ (DH ; x)φ =
∑

i,j
gij ζiζj

∑

α,β

(
δαβ −

∑

k,l,γ
gklhβγ F

α
xk
F β
xl

)
φβ∂yα

= |ζ |2gπNM(φ|x).
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Observe that the principal symbol is zero for tangent directions. Thus, MCF is
degenerate and we cannot obtain information from the standard theory about short-
time existence. Short-time existence and uniqueness of MCF was originally proven
using results of Hamilton [43, 44] based on the Nash-Moser iteration method. We
present a proof adapting a variant of the DeTurck’s trick which was first used in
Ricci flow [31]; see also [7, 63, 92].

Theorem 19 (Invariance Under Tangential Variations) Suppose that F : M ×
[0, T )→ N is a family of immersions satisfying the system of PDEs

{
dF(x,t)(∂t ) = H

(
F(x, t)

)+ dF(x,t)

(
V (x, t)

)
,

F (x, 0) = F0(x),
(29)

where (x, t) ∈ M × [0, T ), the manifold M is compact and V is a time-dependent
family of smooth vector fields. Then, there exists a unique family of diffeomorphisms
ψ : M × [0, T )→ M , such that the map F̂ : M × [0, T )→ N given by F̂ (x, t) =
F
(
ψ(x, t), t

)
, is a solution of

{
dF̂(x,t)(∂t ) = H

(
F̂ (x, t)

)
,

F̂ (x, 0) = F0
(
ψ(x, 0)

)
.

Conversely, if F : M × [0, T ) → N is a solution of the mean curvature flow and
ψ : M × [0, T ) → M is a family of diffeomorphisms, then F̂ : M × [0, T ) → N

satisfies a system of the form (29).

Proof Consider for the moment an arbitrary family a time-dependent of diffeo-
morphisms ψ : M × [0, T ) → M and define F̂ : M × [0, T ) → N given by
F̂ (x, t) = F

(
ψ(x, t), t

)
, for (x, t) ∈ M × [0, T ). From the chain rule, we have

dF̂(x,t)(∂t ) = H
(
F̂ (x, t)

)+ dF(ψ(x,t),t)

(
V (ψ(x, t), t)+ dψ(x,t)(∂t )

)
,

for any (x, t) ∈ M × [0, T ). Hence, it suffices to find a one-parameter family of
diffeomorphisms ψ : M × [0, T )→ M solving the initial value problem

{
dψ(x,t)(∂t ) = −V

(
ψ(x, t), t

)
,

ψ(x, 0) = I,

for any (x, t) ∈ M × [0, T ), where I : M → M is the identity map. By Picard-
Lindelöf theorem there exists a unique smooth solution of the above initial value
problem. Moreover, because the initial data is the identity, taking T > 0 small
enough we can assume that for any t ∈ [0, T ] the map ψ(· , t) : M → M is a
diffeomorphism. The converse is straightforward. ��
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Theorem 20 (Short-time Existence) Let M be a compact Riemannian manifold
and F0 : M → N an immersion into a Riemannian manifold N . Then, the mean
curvature flow with initial data the immersion F0 admits a smooth solution on a
maximal time interval [0, Tmax), where 0 < Tmax ≤ ∞.

Proof The idea is to modify MCF by adding some tangential component in order
to make it parabolic. Suppose that F : M × [0, Tmax) → N solves MCF. Fix a
Riemannian metric ĝ on M , denote its Levi-Civita connection by ∇̂ and consider
the vector field VDT on M given by

VDT = trg(∇ − ∇̂). (30)

Note that in local coordinates, VDT has the form

VDT =
∑

i,j,k

gij (Γ k
ij − Γ̂ k

ij )∂xk ,

where Γ k
ij and Γ̂ k

ij are the Christoffel symbols of the connections ∇ and ∇̂,
respectively. Consider now the initial value problem,

{
dF(∂t ) = H + dF(VDT )

F (·, 0) = F0
, (31)

The first equation of (31) in local coordinates takes the form

Ft =
∑

i,j,α

gij
(
Fα
xixj

−
∑

k

Γ̂ k
ijF

α
xk
+

∑

γ,δ

Γ α
γ δF

γ
xiF

δ
xj

)
∂yα .

Since Γ̂ k
ij does not depend on time, the principal symbol of (31) is

σζ
(
D(H + VDT ), ·

) = |ζ |2I.

Hence (31) is parabolic and has a unique solution. According to Theorem 19, from
a solution of (31) we obtain a solution of the mean curvature flow. ��
Definition 25 Let F : M × [0, T ) → N be a solution of MCF. Fix a metric ĝ

and consider the vector field VDT . The modified flow (31) is called DeTurck mean
curvature flow.

Lemma 3 The vector field VDT defined in (30) is minus the Laplacian of the
identity map I : (M, g)→ (M, ĝ).

Proof The Hessian B of the map I is given by

B(v1, v2) = ∇̂dI (v1)dI (v2)− dI (∇v1v2) = ∇̂v1v2 − ∇v1v2,

for any v1, v2 ∈ X(M). Hence, Δg,̂gI = −VDT . This completes the proof. ��
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Theorem 21 (Uniqueness) Let M be a compact Riemannian manifold and
F0 : M → N an immersion into a Riemannian manifold N . Then, the solution of
MCF, with initial data the immersion F0 : M → N , is unique up to diffeomorphisms.

Proof Suppose that F̃ : M × [0, Tmax)→ N is the maximal solution of MCF, with
initial data the given immersion F0, and denote the induced metrics by g̃. As in the
existence part, fix a metric ĝ and denote by ∇̂ its associated Levi-Civita connection.
Consider the initial value problem

{
dφ(∂t ) = Δg̃,̂gφ

φ(·, 0) = I
.

Observe that the above problem is a parabolic and thus its solution gives rise to a
unique one parameter family of diffeomorphisms φ : M × [0, ε)→ M , for at least
some short time ε > 0. Denote by ψ : M × [0, ε) → M the one parameter family
of diffeomorphisms with the property that, for each t , the map ψ(· , t) is the inverse
of φ(· , t), i.e.,

ψ(φ(x, t), t) = x = φ(ψ(x, t), t)

for any (x, t) in space-time. From the chain rule, we have

dψ(φ(x,t),t)(∂t ) = −dψ(φ(x,t),t)

(
(Δg̃,̂gφ)(x)

)
. (32)

Define the map F : M × [0, ε) → N given by F(x, t) = F̃ (ψ(x, t), t), for any
(x, t) ∈ M × [0, Tmax). The induced time-dependent metric on M is g = ψ∗g̃.
Moreover, the map F satisfies the evolution equation

Ft = H + dF̃ (W), (33)

where for any point (x, t) in space-time, we have

W(ψ(x, t), t) = dψ(x,t)(∂t ).

Taking into account (32) and the composition formula for the Laplacian (see for
example [24, page 116, equation (2.56)]), we have

W(ψ(x, t), t) = dψ(x,t)(VDT (x)), (34)

for any (x, t) ∈ M×[0, ε). From (33) and (34), we see that F satisfies the DeTurck
mean curvature flow

dF(∂t ) = H + dF(VDT ),

with initial data the immersion F0 : M → N .
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Suppose now that F̃1, F̃2 : M × [0, Tmax) → N are two solutions of the mean
curvature flow, with the same initial condition F0 : M → N . As before fix a metric
ĝ on M and denote by g̃1 and g̃2 the induced time-dependent metrics on M by F̃1
and F̃2, respectively. Denote by

φ1 : M × [0, ε)→ N and φ2 : M × [0, ε)→ N

the one-parameter family of diffeomorphisms solving the initial value problem

{
dη(∂t ) = Δg̃i ,̂gη,

η(·, 0) = I.

Then, as we verified above, the maps

Fi : M × [0, ε)→ N, i ∈ {1, 2},

satisfy

F̃i(x, t) = Fi

(
φi(x, t), t

)
,

for any (x, t) ∈ M × [0, ε), form solutions of the DeTurck mean curvature flow,
with common initial data the immersion F0 : M → N . Since the DeTurck mean
curvature flow is parabolic, it follows that its solution is unique. ��

6.3 Parabolic Maximum Principles

In this subsection, we state the weak and strong version of the parabolic maximum
principle for scalar functions obeying a diffusion-reaction equation on a manifold
equipped with a smooth time-dependent family of Riemannian metrics. Then we
also present Hamilton’s version [44, 45] of the parabolic maximum principle for
arbitrary sections of a vector bundle; for detailed proofs see also the excellent
monograph [26].

6.3.1 Scalar Parabolic Maximum Principle

Suppose that M is a smooth manifold, possibly with boundary ∂M , and {g(t)}t∈[0,T )

a smooth family of Riemannian metrics. We will consider the second order time-
dependent operator L given by

Lu = Δg(t)u+ g(t)(X,∇g(t)u) (P)
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where

u ∈ C2(M × (0, T )
) ∪ C0(M × [0, T ]).

Note that, for each fixed time, L is an elliptic operator.

Theorem 22 (Comparison Principle) Suppose that M is a compact, without
boundary, manifold equipped with a smooth family {g(t)}t∈[0,T ) of Riemannian
metrics and u : M × [0, T ) → R a C2-smooth function, which satisfies the
differential inequality

∂tu− Lu ≤ Ψ (u, t),

where L is the (time-dependent) operator defined in (P) and Ψ : R × R → R a
smooth map. Let ϕ be the solution of the associated ODE

{
ϕ′(t) = Ψ (ϕ(t), t),

ϕ(0) = maxx∈M u(x, 0).

Then, the solution u of the differential inequality is bounded from above by the
solution ϕ of the ODE, that is u(x, t) ≤ ϕ(t), for every (x, t) ∈ M × [0, T ).

As in the elliptic case, there exists a criterion which forces a solution of a
parabolic differential inequality to be constant.

Theorem 23 (Strong Maximum Principle) Suppose thatM is a smooth manifold,
possibly with boundary, equipped with a smooth family {g(t)}t∈[0,T ) of Riemannian
metrics. Let u ∈ C2

(
M × (0, T )

) ∪ C0
(
M × [0, T ]) be a solution of

∂tu− Lu+ c u ≤ 0

where c is a non-negative constant.

(a) If c = 0 and u attains a maximum at point (x0, t0) ∈ M × (0, T ) then u is
constant on M × [0, t0].

(b) If c < 0 and the function u attains a non-negative maximum at a point (x0, t0) ∈
M × (0, T ), then u is constant on M × [0, t0].

By reversing both inequalities we obtain the corresponding minimum version of the
comparison and strong principle; for the proofs see [5, 35] or [72].

6.3.2 Vectorial Parabolic Maximum Principle

Let M be a smooth manifold, possibly with boundary ∂M , equipped with a smooth
family of metrics {g(t)}t∈[0,T ) and associated Levi-Civita connections ∇g(t). Let
E be a vector bundle over M equipped with a time-independent metric h and a
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family {∇(t)}t∈[0,T ) of connections that are compatible with h. The time-dependent
Laplacian acting on smooth sections of E is defined by

Δ(t)φ =
m∑

i=1

(∇(t)vi∇(t)vi φ − ∇(t)∇g(t)
vi

vi
φ
)

where {v1, . . . , vm} is an orthonormal basis of g(t).
Following the same lines as in the elliptic case, we can derive Weinberger-

Hamilton’s versions of the parabolic maximum principle.

Theorem 24 (Weak Vectorial Maximum Principle) Suppose thatM is a compact
manifold, possibly with boundary ∂K , equipped with a smooth family {g(t)}t∈[0,T )

of Riemannian metrics. Let E be a vector bundle over M endowed with time
independent bundle metric h and a family {∇(t)}t∈[0,T ) of connections that are
compatible with h. Let K be a closed fiber-convex subset of E that is invariant
under parallel transport with respect to each connection ∇(t), t ∈ [0, T ), and let
{φ(t)}t∈[0,T ) be a smooth family of sections such that

∇∂t φ −Δ(t)φ = ∇(t)Xφ + Ψ (φ)

where X is a smooth time dependent vector field and Ψ is a smooth fiberwise map
that points into K . If φ(x,t) ∈ K for any (x, t) in the parabolic boundary of M ×
[0, T ), i.e., for any (x, t) ∈ (

M × {0}) ∪ (
∂M × [0, T )

)
, then φ(x,t) ∈ K for any

(x, t) ∈ M × [0, T ).

Theorem 25 (Strong Vectorial Maximum Principle) Suppose that M is a
smooth, not necessarily compact, manifold equipped with a smooth family
{g(t)}t∈[0,T ) of Riemannian metrics. Moreover, let E be a vector bundle over M

endowed with time independent metric h and a family {∇(t)}t∈[0,T ) of connections
that are compatible with h. Assume that K is a closed fiber-convex subset of the
vector bundle E that is invariant under parallel transport with respect to each
connection ∇(t), t ∈ [0, T ), and let {φ(t)}t∈[0,T ) be a smooth family of sections
such that

∇∂t φ −Δ(t)φ = ∇(t)Xφ + Ψ (φ)

where X is a smooth time dependent vector field and Ψ is a smooth fiberwise map
that points into K . If there exists a point (x0, t0) ∈ M × (0, T ) such that φ(x0,t0) ∈
∂K , then φ(x,t) ∈ ∂K for any (x, t) ∈ M × [0, t0].

Let us describe now the parabolic maximum principle in the special case where
as vector bundle we consider the space of symmetric 2-tensors.

Theorem 26 Let M be a compact manifold equipped with a smooth family
{g(t)}t∈[0,T ) of Riemannian metrics. Suppose that {φ(t)}t∈[0,T ) is smooth family
of symmetric 2-tensors on M such that
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∇∂t φ −Δ(t)φ = ∇(t)Xφ + Ψ (φ)

where Ψ : Sym(T ∗M ⊗ T ∗M) → Sym(T ∗M ⊗ T ∗M) is a smooth fiberwise map
satisfying the null-eigenvector condition and X is a smooth time dependent vector
field. If φ(0) ≥ 0, then φ(t) ≥ 0 for all t ∈ [0, T ). Additionally, if there is a
point (x0, t0) ∈ M × (0, T ) where φ(t0) has a zero eigenvalue then φ(t) has a zero
eigenvalue for any t ∈ (0, t0).

6.4 Evolution Equations

We will compute the evolution of some important quantities. In order to simplify
the notation, we omit upper or lower indices on connections and Laplacians
which identify the corresponding bundles where they are defined. Most of these
computations can be found in [4, 75–78, 86, 94, 96].

Lemma 4 Suppose that F : M × [0, T ) → N is a solution of the mean curvature
flow. Then, the following facts are true:

(a) The induced metrics g evolve in time under the equation

(∇∂t g
)
(v1, v2) = −2〈H,A(v1, v2)〉 = −2AH(v1, v2),

for any v1, v2 ∈ X(M).
(b) The induced volume form Ω on (M, g) evolves according to the equation

∇∂tΩ = −|H |2Ω.

Moreover, the volume of the evolved submanifolds satisfy

∂tVol = −
∫

M

|H |2Ω.

(c) There exists a local smooth time-dependent tangent orthonormal frame field
and a local smooth time-dependent orthonormal frame field along the normal
bundle of the evolving submanifolds.

Proof

(a) Let v1, . . . , vm be time-independent tangent vector fields. Keeping in mind the
notation introduced in Section 6.1.2, we have

∇∂t dF (vi) = ∇vi dF (∂t )+ dF
([∂t , vi]

) = ∇viH,

for any i ∈ {1, . . . , m}. Therefore, for any i, j ∈ {1, . . . , m}, we deduce that
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(∇∂t g)(vi, vj ) = ∂t (g(vi, vj ))− g(∇∂t vi , vj )− g(vi,∇∂t vj )

= ∂t 〈dF(vi), dF (vj )〉 = 〈∇viH, dF (vj )〉 + 〈∇vj H, dF (vi)〉
= −〈H,∇vi dF (vj )〉 − 〈H,∇vj dF (vi)〉
= −2〈H,A(vi, vj )〉.

(b) We compute

∂t
√

det gij =
∑

k,l

(
gkl∂tgkl

)
det gij

2
√

det gij
= −

∑

k,l

〈H, gklAkl〉
√

det gij

= −|H |2√det gij .

(c) The associated adjoint operator P : (TM, g)→ (TM, g) of AH satisfies

AH(v1, v2) = g(Pv1, v2) = g(v1, P v2), (35)

for any v1, v2 ∈ X(M). Consider now the family of bundle isomorphism U(t) :(
TM, g(0)

)→ (
TM, g(t)

)
, given as the solution of the initial value problem

{∇∂t U(t) = P ◦ U(t),

U(0) = I.
(36)

By a straightforward computation, we can show that U∗(t)g(t) = g(0). Hence,
if {e1(0), . . . , em(0)} is a local orthonormal frame with respect to g(0), then
{e1(t) = U(t)e1(0), . . . , em(t) = U(t)em(0)} is a local orthonormal frame of
g(t). By taking the complement of {e1, . . . , em}, we get a time-dependent frame
field on the normal bundles of the evolving submanifolds.

��
Lemma 5 The time-derivative of the second fundamental form is given by

(∇⊥∂t A
)α
ij
= (∇⊥2H

)α
ij
−

∑

k,β
HβA

β
jkA

α
ik −

∑

β
HβR̃βijα,

where the indices are with respect to a local orthonormal frame.

Proof Suppose that {e1, . . . , em; ξm+1, . . . , ξn} is a local adapted orthonormal
frame field around a fixed point (x0, t0). Recall that

∇∂t ∂t = 0, ∇ei ∂t = 0 and [∂t , ei] = ∇∂t ei =
∑

j,β
HβA

β
ij ej . (37)

In order to simplify the computations, we may assume that {e1, . . . , em} is normal
frame at (x0, t0). Under these considerations, we have that at (x0, t0)
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(∇∂t A)ij = ∇∂t∇ei dF (ej )− ∇∂t dF (∇ei ej )− A(∇∂t ei , ej )− A(ei,∇∂t ej )

= ∇ei∇∂t dF (ej )+ R̃
(
H, dF(ei), dF (ej )

)+ ∇∇∂t ei
dF (ej )

−dF (∇∂t∇ei ej
)− A(∇∂t ei , ej )− A(ei,∇∂t ej ).

Hence,

(∇∂t A)ij = ∇ei

(∇ej H + dF(∇∂t ej )
)+ R̃

(
H, dF(ei), dF (ej )

)

+∇∇∂t ei
dF (ej )− dF

(∇∂t∇ei ej
)− A(∇∂t ei , ej )− A(ei,∇∂t ej )

= ∇2
ei ,ej

H + R̃
(
H, dF(ei), dF (ej )

)+∇ei dF (∇∂t ej )

+∇∇∂t ei
dF (ej )− dF

(∇∂t∇ei ej
)− A(∇∂t ei , ej )− A(ei,∇∂t ej )

= ∇2
ei ,ej

H + R̃
(
H, dF(ei), dF (ej )

)+∇ei dF (∇∂t ej )

+∇∇∂t ei
dF (ej )− dF

(∇∂t∇ei ej
)− A(∇∂t ei , ej )− A(ei,∇∂t ej )

and so

(∇∂t A)ij = ∇2
ei ,ej

H + R̃
(
H, dF(ei), dF (ej )

)− dF
(
R∇(∂t , ei , ej )

)

where R∇ is the curvature operator of∇ on T (M×(0, T )). Consequently, at (x0, t0)

we have

(∇⊥∂t A)ij =
∑

α
〈(∇⊥∂t A)ij , ξα〉ξα =

∑

α
〈(∇∂t A)ij , ξα〉ξα

=
∑

α
〈∇ei∇ej H, ξα〉ξα +

∑

α,β
HβR̃βijαξα.

On the other hand,

〈∇ei∇ej H, ξα〉 = 〈∇⊥ei
(∇⊥ej H +

∑

k
〈∇ej H, dF (ek)〉dF(ek)

)
, ξα〉

= (∇2⊥H)αij −
∑

k,β
HβA

β
jkA

α
ik.

Combining the last two equalities we obtain the result. ��
Lemma 6 The mean curvature H evolves in time under the equation

(∇⊥∂t H)α = (Δ⊥H)α −
∑

i,β

HβR̃βiiα +
∑

i,j,β

HβA
β
ijA

α
ij .

Moreover,
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∂t |H |2 = Δ|H |2 − 2|∇⊥H |2 + 2|AH |2 − 2
∑

i,α,β

HαHβR̃αiiβ ,

where the indices are with respect to a local orthonormal frame.

Proof Let (x0, t0) ∈ M × (0, T ) and {e1, . . . , em; ξm+1, . . . , ξn} be a local
orthonormal frame field around of (x0, t0). From (37) and Lemma 5, we have

(∇⊥∂t H
)α =

∑

i

(∇⊥∂t Aii

)α =
∑

i

(∇⊥∂t A)αii + 2
∑

i

Aα(∇∂t ei , ei)

= (Δ⊥H)α +
∑

i,β

HβR̃βiiα −
∑

i,j,β

HβA
β
ijA

α
ij + 2

∑

i,j,β

HβA
β
ijA

α
ij ,

from where we deduce the evolution equation for H . Moreover

∂t |H |2 = ∂t 〈H,H 〉 = 2〈∇⊥∂t H,H 〉 =
∑

α

(∇⊥∂t H)αHα

= 2
∑

α

(ΔH)αHα − 2
∑

i,α,β

HαHβR̃αiiβ + 2
∑

i,j,α,β

HαHβAα
ijA

β
ij .

On the other hand

∑

α

Δ(Hα)2 = 2
∑

α

(ΔH)αHα + 2
∑

α

|∇Hα|2.

Combining the last two identities we obtain the desired identity. ��

6.5 Evolution Equations of Parallel Forms

Let F : M ×[0, T )→ N be a solution of the mean curvature flow and suppose that
Φ is a parallel k-tensor on N . Then, the pullback via F of Φ gives rise to a time-
dependent k-form on M . For example, the volume form of N is such a tensor. As we
will see in the next section, interesting situations occurs when N is a Riemannian
product N1 × N2 and we consider the volume forms Ω1 and Ω2 of N1 and N2,
respectively.

In the next lemmata, we will compute how these pullback tensors evolve under
the mean curvature flow.

Lemma 7 The covariant derivative of the tensor F ∗Φ is given by

(∇esF
∗Φ)i1...ik =

∑

α

(
Aα

si1
Φαi2...ik + · · · + Aα

sim
Φi1...im−1α

)
,

for any adapted orthonormal frame field {e1, . . . , em; ξm+1, . . . , ξn−m}.
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Proof As usually let us suppose that {e1, . . . , em} is a normal frame at a fixed point
(x0, t0) in space-time. By a direct computation, we get that at (x0, t0) we have

(∇esF
∗Φ)i1...ik = esΦ

(
dF(ei1), . . . , dF (eim)

)

= Φ
(∇es dF (ei1), . . . , dF (eim)

)+ · · · +Φ
(
dF(ei1), . . . ,∇es dF (eim)

)

= Φ
(
A(es, ei1), . . . , dF (eim)

)+ · · · +Φ
(
dF(ei1), . . . , A(es, eim)

)

=
∑

α

(
Aα

si1
Φαi2...ik + · · · + Aα

sim
Φi1...im−1α

)
.

This completes the proof. ��
By a direct computation we can derive the expression for the Laplacian of the

pullback of a parallel k-tensor on N .

Lemma 8 The Laplacian of the k-tensor F ∗Φ is given by

(ΔF ∗Φ)i1...im =
∑

α

(∇⊥ei1H)αΦαi2...im + · · · +
∑

α

(∇⊥eimH)αΦi1...im−1α

+ 2
∑

k,α,β

Aα
ki1

A
β
ki2

Φαβi2...im + · · · + 2
∑

k,α,β

Aα
kim−1

A
β
kim

Φi1...αβ

−
∑

k,l,α

(
Aα

ki1
Aα

klΦli2...im + · · · + Aα
kim

Aα
klΦi1...im−1l

)

−
∑

k,α

(
R̃kαki1Φαi2...im + · · · + R̃kαkimΦi1...im−1α

)
,

for any adapted orthonormal frame field {e1, . . . , em; ξm+1, . . . , ξn−m}.
Proof Let {e1, . . . , em; ξm+1, . . . , ξn−m} be an adapted normal frame at the point
(x0, t0) in space-time. We compute,

(∇ek∇ekF
∗Φ

)
i1...im

= ek
(
Φ(Aki1 , . . . , dF (eim))+ · · · +Φ(dF(ei1), . . . , Akim)

)

= Φ((∇ekA)ki1 , . . . , dF (eim))+ · · · +Φ(dF(ei1), . . . , (∇ekA)kim)

+2Φ
(
Aki1 , Aki2 , . . . , dF (eim)

)+ · · · + 2Φ
(
dF(ei1), . . . , Akim−1 , Akim

)

= Φ((∇⊥ekA)ki1 , . . . , dF (eim))+ · · · +Φ(dF(ei1), . . . , (∇⊥ekA)kim)

+2Φ
(
Aki1 , Aki2 , . . . , dF (eim)

)+ · · · + 2Φ
(
dF(ei1), . . . , Akim−1 , Akim

)

−
∑

l
〈Aki1 , Akl〉F ∗Φ(el, . . . eim)− · · · −

∑

l
〈Akim,Akl〉F ∗Φ(ei1 . . . , el).

Summing over k and using the Codazzi equation (4), we get the result. ��
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Lemma 9 Suppose that F : M × [0, T ) → N is a solution of the mean curvature
flow and let Φ be a parallel m-form on N . Then, u = ∗(F ∗Φ), where ∗ is the
Hodge star operator with respect to the induced Riemannian metric g, evolves in
time under the equation

∂tu−Δu = −2
∑

k,α,β

Aα
k1A

β
k2Φαβ2...m − · · · − 2

∑

k,α,β

Aα
km−1A

β
kmΦ1...αβ

+
∑

k,l,α

(
Aα

k1A
α
klΦl2...m + · · · + Aα

kmA
α
klΦ1...m−1l

)

+
∑

k,α

(
R̃kαk1Φα2...m + · · · + R̃kαkmΦ1...m−1α

)
,

for any adapted orthonormal frame field {e1, . . . , em; ξm+1, . . . , ξn−m}.
Proof Let us make our computations again, with respect to a time-dependent
orthonormal frame field as in Lemma 4. We compute,

∂tu = ∂t
(
(F ∗Φ)(e1, . . . , em)

)

= Φ
(∇∂t dF (e1), . . . , dF (em)

)+ · · · +Φ
(
dF(e1), . . . ,∇∂t dF (em)

)
.

Taking into account the formulas (37), we have

∇∂t dF (ei) = ∇ei dF (∂t )+ dF(∇∂t ei) = ∇eiH +
∑

k,β

HβA
β
ikdF (ek)

= ∇⊥ei H,

for any i ∈ {1, . . . , m}. Hence, putting everything together, we deduce that

∂tu = Φ
(∇⊥e1

H, . . . , dF (em)
)+ · · · +Φ

(
dF(e1), . . . ,∇⊥emH

)
.

Combining with Lemma 8 we obtain the result. ��

7 Formation of Singularities Under Mean Curvature Flow

In this section, we present how one can build smooth singularity models for
the mean curvature flow by rescaling properly around points, where the second
fundamental form attains its maximum. The proof relies heavily on a compactness
theorem of Cheeger-Gromov-Taylor [14] for pointed Riemannian manifolds and on
the standard compactness theorem for immersions; see for example [27].
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7.1 Characterization of the Maximal Time of Existence

In the following theorem, we give a characterization of the maximal time of
solutions of the mean curvature flow. Its proof has been done by Huisken in [52, 53]
and is based on the parabolic maximum principle. The key observation is that all
higher derivatives ∇kA, k ∈ N, of the second fundamental tensor are uniformly
bounded, once A is uniformly bounded. More precisely, the following result holds:

Theorem 27 Let M be a compact manifold and let F0 : M → N a smooth
immersion into a complete Riemannian manifold N . Then, the maximal time Tmax
of the solution of the mean curvature flow, with initial data F0, is finite if and only if

lim supt→Tmax

(
maxM×[0,t]|A|

) = ∞.

An immediate consequence of the above result is the following theorem.

Theorem 28 Let M be a compact manifold and F : M → [0, Tmax) → N

a solution of the mean curvature flow on a maximal time interval in a complete
Riemannian manifold N . If the norm |A| of the second fundamental form is
uniformly bounded, then the maximal time of solution of the flow is infinite.

Remark 7 When the target space N is compact and the maximal time of solution
of the flow is infinite, due to a deep result of Simon [82], it follows that the flow
converges smoothly and uniformly to a minimal submanifold. However, long-time
existence does not automatically imply convergence. For instance, start with a
latitude circle S

1 on a complete surface of revolution that does not admit closed
embedded curves as geodesics. Then the flow with initial that particular circle will
run forever, but it will not converge.

Remark 8 Due to a recent result of Cooper [27], it is not necessary to have
boundedness on the full norm of the second fundamental form in order to get long-
time existence of the flow. In the matter of fact, he showed that uniform boundedness
of the second fundamental form only in the direction of the mean curvature also
leads to long-time existence.

7.2 Cheeger-Gromov Compactness for Metrics

Let us recall here the basic notions and definitions. For more details, see [5, 25] and
[66]. We closely follow the exposition in [78].

Definition 26 Let (E, π,Σ) be a vector bundle endowed with a Riemannian metric
g and a metric connection ∇ and suppose that {ξk}k∈N is a sequence of sections of
E. Let U be an open subset of Σ with compact closure Ū in Σ . Fix a natural number
p ≥ 0. We say that {ξk}k∈N converges Cp-smoothly to ξ∞ ∈ Γ (E|U), if for every
ε > 0, there exists k0 = k0(ε), such that
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sup
0≤α≤p

sup
x∈Ū

|∇α(ξk − ξ∞)| < ε

where k ≥ k0. We say that {ξk}k∈N C∞-smoothly converges to ξ∞ ∈ Γ (E|Ū ) if
{ξk}k∈N converges in Cp to ξ∞ ∈ Γ (E|U), for any p ≥ 0.

Definition 27 Let (E, π,Σ) be a vector bundle endowed with a Riemannian metric
g and a metric connection ∇. Let {Un}n∈N be an exhaustion of Σ and {ξk}k∈N be
a sequence of sections of E defined on open sets Ak of Σ . We say that {ξk}k∈N
converges smoothly on compact sets to ξ∞ ∈ Γ (E) if:

(a) For every n ∈ N there exists k0 such that Un ⊂ Ak , for all natural numbers
k ≥ k0.

(b) The sequence {ξ |Uk
}k≥k0 converges in C∞ to the restriction of the section ξ∞

on Un.

In the next definitions, we recall the notion of the smooth Cheeger-Gromov
convergence of sequences of Riemannian manifolds.

Definition 28 A pointed Riemannian manifold (Σ, g, x) is a Riemannian manifold
(Σ, g) with a choice of origin or base point x ∈ Σ . If the metric g is complete, we
say that (Σ, g, x) is a complete pointed Riemannian manifold.

Definition 29 We will say that a sequence {(Σk, gk, xk)}k∈N of complete, pointed
Riemannian manifolds smoothly converges in the sense of Cheeger-Gromov to a
complete pointed Riemannian manifold (Σ∞, g∞, x∞), if there exists:

(a) An exhaustion {Uk}k∈N of Σ∞ with x∞ ∈ Uk , for all k ∈ N.
(b) A sequence of diffeomorphisms Φk : Uk → Φk(Uk) ⊂ Σk , with

Φk(x∞) = xk

and such that the sequence {Φ∗k gk}k∈N smoothly converges in C∞ to g∞ on
compact sets in Σ∞.

The sequence {(Uk,Φk)}k∈N is called a family of convergence pairs of the sequence
{(Σk, gk, xk)}k∈N, with respect to the limit (Σ∞, g∞, x∞).

When we say smooth convergence, we always mean smooth convergence in the
sense of Cheeger-Gromov. The family of convergence pairs is not unique. Two such
families {(Uk,Φk)}k∈N,{(Wk, Ψk)}k∈N are equivalent in the sense that there exists
an isometry I of the limit (Σ∞, g∞, x∞), such that for every compact subset K of
Σ∞, there exists a natural number k0, such that for any natural k ≥ k0:

(a) The mapping Φ−1
k ◦ Ψk is well defined over K .

(b) The sequence {Φ−1
k ◦ Ψk}k≥k0 smoothly converges to I on K .

The limiting pointed Riemannian manifold (Σ∞, g∞, x∞) of the Definition 29 is
unique up to isometries.
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Definition 30 Let M be a Riemannian manifold. The injectivity radius at x ∈ M is
the supremum of all values r, such that the expotential map from the unit ball Br(x)

in TxM , to the manifold M, is injective.

Definition 31 A complete Riemannian manifold (Σ, g) is said to have bounded
geometry, if the following conditions are satisfied:

(a) For any integer j ≥ 0, there exists a uniform positive constant Cj , such that
|∇jR| ≤ Cj .

(b) The injectivity radius satisfies injg(Σ) > 0.

The following proposition is standard and will be useful in the proof of the long-time
existence of the mean curvature flow.

Proposition 3 Suppose (Σ, g) is a complete Riemannian manifold with bounded
geometry. Suppose that {αk}k∈N is an increasing sequence of real numbers that
tends to +∞ and let {xk}k∈N be a sequence of points on Σ . Then, the sequence
{(Σ, α2

kg, xk)}k∈N smoothly subconverges to the euclidean space (Rm, geuc, 0).

We will use the following definition of uniformly bounded geometry for a sequence
of pointed Riemannian manifolds.

Definition 32 We say that a sequence {(Σk, gk, xk)}k∈N of complete pointed
Riemannian manifolds has uniformly bounded geometry, if the following two
conditions are satisfied:

(a) For any integer j ≥ 0, there exists a uniform constant Cj , such that for each
k ∈ N it holds |∇jRk| ≤ Cj , where Rk is the curvature operator of the metric
gk .

(b) There exists a uniform constant c0, such that injgk (Σk) ≥ c0 > 0.

In the next result, we state the Cheeger-Gromov compactness theorem for sequences
of complete pointed Riemannian manifolds. The version that we present here is due
to Hamilton [46].

Theorem 29 Let {(Σk, gk, xk)}k∈N be a sequence of complete pointed Riemannian
manifolds with uniformly bounded geometry. Then, the sequence {(Σk, gk, xk)}k∈N
subconverges smoothly to a complete pointed Riemannian manifold (Σ∞, g∞, x∞).

Remark 9 We would like to mention here that due to an estimate from Cheeger,
Gromov and Taylor [14], the above compactness theorem still holds under the
weaker assumption that the injectivity radius is uniformly bounded from below
by a positive constant, only along the base points {xk}k∈N, thereby avoiding the
assumption of the uniform lower bound for injgk (Σk).
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7.3 Convergence of Immersions

Definition 33 Let Fk : (Σk, gk, xk) → (Pk, hk, yk) be a sequence of isometric
immersions, such that F(xk) = yk , for any k ∈ N. We say that the sequence {Fk}k∈N
converges smoothly to an isometric immersion

F∞ : (Σ∞, g∞, x∞)→ (P∞, h∞, y∞)

if the following conditions are satisfied:

(a) The sequence {(Σk, gk, xk)}k∈N smoothly converges to (Σ∞, g∞, x∞).
(b) The sequence {(Pk, hk, yk)}k∈N smoothly converges to (P∞, h∞, y∞).
(c) If {(Uk,Φk)}k∈N is a family of convergence pairs of {(Σk, gk, xk)}k∈N and

{(Wk, Ψk)}k∈N is a family of convergence pairs of {(Pk, hk, yk)}k∈N, then for
each k ∈ N, we have Fk ◦ Φk(Uk) ⊂ Ψk(Wk) and Ψ−1

k ◦ F ◦ Φk smoothly
converges to F∞ on compact sets.

Lemma 10 Suppose that (P, h) is a complete Riemannian manifold with bounded
geometry. Then, for any C > 0, there exists a positive constant r > 0, such that
injg(Σ) > r , for any isometric immersion F : (Σ, g)→ (P, h) such that the norm
|AF | of its second fundamental form satisfies |AF | ≤ C.

The last lemma and the Cheeger-Gromov compactness theorem allow us to deduce
a compactness theorem in the category of sequences of immersions; see for example
[27].

Theorem 30 Let {(Σk, gk, xk)}k∈N and {(Pk, hk, yk)}k∈N be two sequences of
complete Riemannian manifolds with dimensions m and l, respectively. Suppose
that Fk : (Σk, gk, xk) → (Pk, hk, yk) is a family of isometric immersions, where
Fk(xk) = yk . Assume that:

(a) Each Σk is compact.
(b) The sequence {(Pk, hk, yk)}k∈N has uniformly bounded geometry.
(c) For any integer j ≥ 0, there exists a uniform constant Cj , such that

|(∇Fk )jAFk
| ≤ Cj ,

for any k ∈ N. Here, AFk
stands for the second fundamental form of Fk .

Then, the sequence {Fk}k∈N subconverges smoothly to a complete isometric immer-
sion F∞ : (Σ∞, g∞, x∞)→ (P∞, h∞, y∞).
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7.4 Modeling the Singularities

In the following theorem, we describe a method of rescaling around points, where
the second fundamental form attains its maximum.

Theorem 31 Let Σ be a compact manifold and let F : Σ × [0, Tmax)→ (P, h) be
a solution of mean curvature flow, where P is a Riemannian manifold with bounded
geometry and Tmax ≤ ∞ is the maximal time of existence of a smooth solution.
Suppose that there exists a point x∞ ∈ Σ and a sequence of points {(xk, tk)}k∈N in
Σ × [0, T ) with lim xk = x∞, lim tk = Tmax such that

ak = max
M×[0,tk]

|A(x, t)| = |A(xk, tk)| → ∞.

Then:

(a) The family of maps Fk : Σ × [−a2
k tk, 0] → (P, a2

kh),k ∈ N, given by

Fk(x, s) = Fk,s(x) = F(x, s/a2
k + tk),

form a sequence of mean curvature flow solutions. The mean curvatureHFk
and

the norm |AFk
| of the second fundamental form of Fk satisfy the equation

HFk
= 1

a2
k

H(x, s/a2
k + tk) and |AFk

(x, s)| = 1

ak
|A(x, s/a2

k + tk)|.

Moreover, for any s ≤ 0 we have

|AFk
(x, s)| ≤ 1 and |AFk

(xk, 0)| = 1,

for any k ∈ N.

(b) For any fixed s ≤ 0, the sequence {(Σ, F ∗k,s(a2
kh), xk)}k∈N smoothly sub-

converges in the Cheeger-Gromov sense to a connected complete pointed
Riemannian manifold (Σ∞, g∞(s), x∞), where Σ∞ does not depend on the
choice of s. Moreover, the sequence

{(
P, a2

kh, Fk(xk, s)
)}

k∈N smoothly sub-
converges in the Cheeger-Gromov sense to the standard Euclidean space
(Rl , geuc, 0).

(c) There is an ancient smooth solution F∞ : Σ∞ × (−∞, 0] → R
l of the mean

curvature flow, such that for each fixed time s ≤ 0, the sequence {Fk,s}k∈N
smoothly subconverges in the Cheeger-Gromov sense to F∞,s . Additionally,

|AF∞| ≤ 1 and |AF∞(x∞, 0)| = 1.

(d) If dimΣ = 2 and HF∞ = 0, then the limiting Riemann surface Σ∞ has finite
total curvature. In the matter of fact, the limiting surface Σ∞ is conformally
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diffeomorphic to a compact Riemann surface minus a finite number of points
and is of parabolic type.

For the proof see [15] and [66].

8 Graphical MCF of Surfaces in Four Manifolds

Let (M, gM) and (N, gN) be compact Riemann surfaces. Recall that a smooth map
f : M → N is called area decreasing if |Λ2df | ≤ 1, where Λ2df is the 2-Jacobian
of f . Being area decreasing means that the map f contracts 2-dimensional regions
of M . If |Λ2df | < 1 the map is called strictly area decreasing and if |Λ2df | ≡ 1
the map is said area preserving.

We will deform area decreasing maps f by evolving their corresponding graphs

Γ (f ) = {
(x, f (x)) ∈ M ×N : x ∈ M

}
,

under the mean curvature flow in the Riemannian product 4-manifold

(M ×N, gM×N = π∗MgM + π∗NgN),

where πM : M ×N → M and πN : M ×N → N are the natural projection maps.
Our goal is to give a detailed, unified proof of the following theorem, which was

shown in [78, 85, 95, 100]. For the strictly area decreasing case, we closely follow
the presentation in [78].

Theorem 32 Let (M, gM) and (N, gN) be compact Riemann surfaces and f :
M → N be a smooth area decreasing map. Suppose that the curvatures σM of
gM and σN of gN are related by

min σM ≥ max σN .

Then there exists a family of smooth area decreasing maps ft : M → N , t ∈
[0,∞), f0 = f , such that the graphs Γ (ft ) of ft move by mean curvature flow in
(M × N, gM×N). Furthermore, there exist only two possible categories of initial
data sets and corresponding solutions:

(I) The curvatures σM and σN are constant and equal and the map f0 is area
preserving. In this category, each ft is area preserving and Γ (ft ) smoothly
converges to a minimal Lagrangian graph Γ (f∞) inM×N , with respect to the
symplectic form

ΩM×N = π∗MΩM ∓ π∗NΩN,
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depending on whether the map f0 is orientation preserving or reversing,
respectively. Here ΩM and ΩN are the positively oriented volume forms of M
and N , respectively.

(II) All other possible cases. In this category, for t > 0 each map ft is strictly
area decreasing. Moreover, depending on the sign of σ = min σM we have the
following behavior:

(a) If σ > 0, then the family Γ (ft ) smoothly converges to the graph of a
constant map.

(b) If σ = 0, then Γ (ft ) smoothly converges to a totally geodesic graph Γ (f∞)

of M ×N .
(c) If σ < 0, then Γ (ft ) smoothly converges to a minimal surface M∞ of the

product manifold M ×N .

8.1 Jacobians of the Projection Maps

Let ΩM denote the Kähler form of the Riemann surface (M, gM) and ΩN the Kähler
form of (N, gN). We can extend ΩM and ΩN to two parallel 2-forms on the product
manifold M ×N by pulling them back via the projection maps πM and πN . That is
we may define the parallel forms Ω1 = π∗MΩM and Ω2 = π∗NΩN. Define now two
smooth functions u1 and u2 given by

u1 = ∗(F ∗Ω1) = ∗
{
(πM ◦ F)∗ΩM

} = ∗(I ∗ΩM)

and

u2 = ∗(F ∗Ω2) = ∗
{
(πN ◦ F)∗ΩN

} = ∗(f ∗ΩN)

where here ∗ stands for the Hodge star operator with respect to the metric g. Note
that u1 is the Jacobian of the projection map from Γ (f ) to the first factor of M ×N

and u2 is the Jacobian of the projection map of Γ (f ) to the second factor of M×N .
With respect to the basis {e1, e2; ξ3, ξ4} of the singular decomposition, we can write

u1 = 1
√
(1+ λ2)(1+ μ2)

and |u2| = λμ
√
(1+ λ2)(1+ μ2)

.

Another important quantity that plays a crucial role in the case of maps between
equi-dimensional manifolds is the Jacobian determinant, i.e., the map given by

Jac(f ) = ∗(f ∗ΩN)

∗(I ∗ΩM)
= u2

u1
.
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Moreover, the difference between u1 and |u2| measures how far f is from being
area preserving. In particular:

u1 − |u2| ≥ 0 if and only if f is area decreasing,

u1 − |u2| > 0 if and only if f is strictly area decreasing,

u1 − |u2| = 0 if and only if f is area preserving.

8.2 The Kähler Angles

There are two natural complex structures associated to the product space (M ×
N, gM×N), namely J1 = π∗MJM −π∗NJN and J2 = π∗MJM +π∗NJN, where JM and
JN are the complex structures on M and N defined by

ΩM(· , ·) = gM(JM · , ·) and ΩN(· , ·) = gN(JN · , ·).

Chern and Wolfson [23] introduced a function which measures the deviation of the
tangent plane dF(TxM) from a complex line of the space TF(x)(M × N). More
precisely, if we consider (M ×N, gM×N) as a complex manifold with respect to J1
then its corresponding Kähler angle a1 is given by the formula

cos a1 = ϕ = gM×N
(
J1dF(v1), dF (v2)

) = u1 − u2.

For our convenience we require that a1 ∈ [0, π ]. Note that in general a1 is not
smooth at points where ϕ = ±1. If there exists a point x ∈ M such that a1(x) = 0
then dF(TxM) is a complex line of TF(x)(M × N) and x is called a complex point
of F . If a1(x) = π then dF(TxM) is an anti-complex line of TF(x)(M × N) and x

is said anti-complex point of F . In the case where a1(x) = π/2, the point x is called
Lagrangian point of the map F . In this case u1 = u2. Similarly, if we regard the
product manifold (M×N, gM×N) as a Kähler manifold with respect to the complex
structure J2, then its corresponding Kähler angle a2 is defined by the formula

cos a2 = ϑ = gM×N
(
J2dF(v1), dF (v2)

) = u1 + u2.

The graph Γ (f ) in the product Kähler manifold (M × N, gM×N, Ji) is called
symplectic with respect to the Kähler form related to Ji , if the corresponding Kähler
angle satisfies cos ai > 0. Therefore a map f is strictly area decreasing if and only
if its graph Γ (f ) is symplectic with respect to both Kähler forms.
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8.3 Structure Equations

Around each point x ∈ Γ (f ) we choose an adapted local orthonormal frame
{e1, e2; ξ3, ξ4} along the graph. In this special case the Gauss equation reads

2σg = 2u2
1σM + 2u2

2σN + |H |2 − |A|2,

where here σg is the Gauss curvature of the induced metric. From the Ricci equation
we see that the curvature σn of the normal bundle of Γ (f ) is given by the formula

σn = R⊥1234 = u1u2(σM + σN)+ A3
11A

4
12 − A3

12A
4
11 + A3

12A
4
22 − A3

22A
4
12.

The sum of the last four terms in the above formula is equal to minus the commutator
σ⊥ of the matrices A3 = (A3

ij ) and A4 = (A4
ij ), that is

σ⊥ = 〈[A3, A4]e1, e2〉 = −A3
11A

4
12 + A3

12A
4
11 − A3

12A
4
22 + A3

22A
4
12. (38)

In the case where u1 = u2 and σM = σ = σn, it turns out that the immersion F is
Lagrangian and σg = σn. In this case, the following algebraic equality holds

σ⊥ = |A|2 − |H |2
2

. (39)

8.4 Estimates for the Jacobians and the Kähler Angles

Let us evolve now by mean curvature flow the graph Γ (f ). Denote by Tmax the
maximal time of solution of the flow and by TΓ the time until graphical property is
preserved. Of course, 0 < TΓ ≤ Tmax. We will give here several a priori estimates
for the Jacobians u1 and u2 and the Kähler angles. The proofs are straightforward
and follow directly as special cases of the general formulas of Section 6.5.

Lemma 11 The gradients of the functions ϕ, ϑ at a point x ∈ M satisfy the
equations

|∇ϕ|2 = (
1− ϕ2)((A3

11 + A4
12)

2 + (A3
12 + A4

22)
2),

|∇ϑ |2 = (
1− ϑ2)((A3

11 − A4
12)

2 + (A3
12 − A4

22)
2),

As long the mean curvature flow remains graphical, the Jacobians u1 and u2 satisfy
the following coupled system of parabolic equations

∂tu1 −Δu1 = |A|2u1 + 2σ⊥u2 + σM(1− u2
1 − u2

2)u1 − 2σNu1u
2
2,
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∂tu2 −Δu2 = |A|2u2 + 2σ⊥u1 + σN(1− u2
1 − u2

2)u2 − 2σMu2
1u2.

Moreover, ϕ and ϑ satisfy the following system of equations

∂tϕ −Δϕ = (|A|2 − 2σ⊥)ϕ + 1

2

(
σM(ϕ + ϑ)+ σN(ϕ − ϑ)

)
(1− ϕ2),

∂tϑ −Δϑ = (|A|2 + 2σ⊥)ϑ + 1

2

(
σM(ϕ + ϑ)− σN(ϕ − ϑ)

)
(1− ϑ2).

Lemma 12 Let f : (M, gM) → (N, gN) be an area decreasing map between
compact Riemann surfaces. Suppose that the curvatures of gM and gN satisfy σ =
min σM ≥ max σN . Then the following statements hold.

(a) The conditions Jac(f ) ≤ 1 or Jac(f ) ≥ −1 are both preserved as long as the
flow remains graphical. In particular, the area decreasing property is preserved
as long as the flow remains graphical.

(b) If there is a point (x0, t0) ∈ M × (0, TΓ ) where Jac2(f )(x0, t0) = 1, then
Jac2(f ) ≡ 1 in space and time and σM ≡ σ ≡ σN .

(c) The flow remains graphical as long as it exists, that is TΓ = Tmax.

Proof

(a) From Lemma 11, we deduce that

∂tϕ −Δϕ = (|A|2 − 2σ⊥ + σN(1− ϕ2)
)
ϕ + 1

2
(σM − σN)(ϕ + ϑ)(1− ϕ2).

Note that the quantities 1− ϕ2 and ϕ + ϑ are non-negative. Hence, because of
our curvature assumptions, the last line of the above equality is positive. Thus,
there exists a time dependent function h such that

∂tϕ −Δϕ ≥ hϕ.

From the maximum principle we deduce that ϕ stays non-negative in time.
(b) From the strong maximum principle it follows that if ϕ vanishes at a point

(x0, t0) ∈ M × (0, TΓ ), then it vanishes identically in space and time. In this
case, ϑ is positive. Going back to the evolution equation of ϕ, we see that σM
and σN must be constant equal to σ . Similarly, we prove the results concerning
ϑ .

(c) By compactness, initially, we have that minx∈M u1(x, 0) = ε > 0. By
continuity, the minimum of u1 stays positive for small values of t . However,
we will show that the flow remains graphical as long as it exists. As a matter of
fact, we will show that

min
x∈M u1(x, t) > 0,
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as long as the flow exists. Suppose to the contrary, that there exists a first time
where the graphical property does not hold. This means that there exists a point
(x0, t0) in space-time with t0 < T , such that u1(x0, t0) = 0 and u1(x, t) > 0,
for all (x, t) ∈ M × [0, t0). Since the area decreasing property is preserved by
the flow and |A|2 is bounded on M × [0, t0], there exists a constant c(t0) ∈ R,
such that

∂tu1 −Δu1 ≥ c(t0)u1,

for all (x, t) ∈ M × [0, t0). From the parabolic maximum principle, we get
u1(x, t) ≥ ec(t0)t , for all (x, t) ∈ M×[0, t0). Passing to the limit as t approaches
t0, we obtain

u1(x0, t0) = lim
t→t0

u1(x0, t) ≥ ec(t0)t0 > 0,

which leads to a contradiction.

This completes the proof. ��
From the Lemma 12 we see that, under our assumptions, the evolved maps

{ft }t∈(0,Tmax) are either strictly area decreasing or area preserving. This fact leads
us to investigate these two cases separately.

8.4.1 Strictly Area Decreasing Case

We will explore the behaviour of ρ : M × [0, Tmax)→ R given by ρ = ϕ ϑ under
the graphical mean curvature flow.

Lemma 13 Let (M, gM) and (N, gN) be compact Riemann surfaces such that their
curvatures σM and σN are related by σ = min σM ≥ max σN . The following hold
true:

(a) If σ ≥ 0, then there exists a positive constant c0 such that

ρ ≥ c0e
σ t

√
1+ c2

0e
2σ t

,

for any (x, t) in space-time.
(b) If σ < 0, then there exists a positive constant c0 such that

ρ ≥ c0e
2σ t

√
1+ c2

0e
4σ t

,

for any (x, t) in space-time.
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Proof From Lemma 11 we get,

∂tρ −Δρ = 2ρ|A|2 − 2〈∇ϕ,∇ϑ〉 + 2(1− ρ)σMu2
1 − 2(1+ ρ)σNu2

2.

Note that

−2ρ〈∇ϕ,∇ϑ〉 + 1

2
|∇ρ|2 = 1

2

(|∇(ϕϑ)|2 − 4ϕϑ〈∇ϕ,∇ϑ〉)

= 1

2

(
ϕ2|∇ϑ |2 + ϑ2|∇ϕ|2 − 2ϕϑ〈∇ϕ,∇ϑ〉)

≥ 1

2

(|ϕ∇ϑ | − |ϑ∇ϕ|)2
.

Since by assumption σM ≥ σ ≥ σN , we deduce that

∂tρ −Δρ ≥ − 1

2ρ
|∇ρ|2 + 2σρ(1− u2

1 − u2
2).

One can algebraically check that

1− ρ2 ≤ 2(1− u2
1 − u2

2) ≤ 2(1− ρ2). (40)

(a) Suppose at first that σ ≥ 0. Then

∂tρ −Δρ ≥ − 1

2ρ
|∇ρ|2 + σρ(1− ρ2).

From the comparison maximum principle we obtain

ρ ≥ c0e
σ t

√
1+ c2

0e
2σ t

,

where c0 is a positive constant.
(b) In the case where σ < 0, from the Equation (40) we deduce that

∂tρ −Δρ ≥ − 1

2ρ
|∇ρ|2 + 2σρ(1− ρ2),

from where we get the desired estimate.

This completes the proof. ��
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8.4.2 Area Preserving Case

Suppose that the family of the graphs is generated orientation preserving by area
decreasing maps. This means that ϕ is identically zero. In the next lemma we derive
an estimate for the Kähler angle ϑ .

Lemma 14 Suppose that M and N are compact with the same constant sectional
curvature σ and that f : M → N is an area preserving map. Then, there exists a
positive real number c0 such that

1 ≥ ϑ(x, t) ≥ c0e
σ t

√
1+ c2

0e
2σ t

,

for any point (x, t) in space-time.

Proof Since |A|2 + 2σ⊥ ≥ 0, from the evolution equation of ϑ , we get

∂tϑ −Δϑ ≥ σϑ(1− ϑ2).

According to the parabolic maximum principle, there exist a positive real number
c0 such that

ϑ(x, t) ≥ c0e
σ t

√
1+ c2

0e
2σ t

,

for any (x, t) in space-time. This completes the proof. ��

8.5 Curvature Decay Estimates

8.5.1 Strictly Area Decreasing Case

Lemma 15 Let f : (M, gM) → (N, gN) be a strictly area decreasing map.
Suppose that the curvatures of M and N satisfy σ = min σM ≥ max σN . Let
δ : [0, T ) → R be a positive increasing real function and τ the time dependent
function given by τ = log

(
δ|H |2 + ε

)
, where ε is a non-negative number. Then,

∂t τ −Δτ ≤ 2δ

δ|H |2 + ε
|H |2|A|2 + δ′

δ|H |2 + ε
|H |2

+ 2δ

δ|H |2 + ε
|H |2σM(1− u2

1 − u2
2)+

1

2
|∇τ |2.
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Proof Recall from Lemma 6 that |H |2 evolves in time under the equation

∂t |H |2 −Δ|H |2 = 2|AH |2 − 2|∇⊥H |2
+2R̃(H, dF (e1),H, dF (e1))+ 2R̃(H, dF (e2),H, dF (e2)),

where {e1, e2} is a local orthonormal frame with respect to g. Using the special
frames of the singular value decomposition we see that

R̃
(
H, dF(e1),H, dF (e1)

)+ R̃
(
H, dF(e2),H, dF (e2)

)

= σMu2
1(λ

2 + μ2)|H |2 − (σM − σN)u2
1

(
λ2(H 4)2 + μ2(H 3)2)

≤ σM(1− u2
1 − u2

2)|H |2.

Note that from Cauchy–Schwarz inequality |AH | ≤ |A| · |H |. Moreover, observe
that at points where the mean curvature vector is non-zero, from Kato’s inequality,
we have that

∣
∣∇⊥H ∣

∣2 ≥ ∣
∣∇|H |∣∣2.

Consequently, at points where the norm |H | of the mean curvature is not zero the
following inequality holds

∂t |H |2 −Δ|H |2 ≤ −2
∣
∣∇|H |∣∣2 + 2|A|2|H |2 + 2σM(1− u2

1 − u2
2)|H |2.

Now let us compute the evolution equation of the function τ . We have,

∂t τ −Δτ = δ(∂t |H |2 −Δ|H |2)
δ|H |2 + ε

+ δ2|∇|H |2|2
(δ|H |2 + ε)2 +

δ′|H |2
δ|H |2 + ε

≤ − 2δ

δ|H |2 + ε

∣
∣∇|H |∣∣2 + δ2

(δ|H |2 + ε)2

∣
∣∇|H |2∣∣2

+ 2δ

δ|H |2 + ε
|H |2|A|2 + δ′

δ|H |2 + ε
|H |2

+ 2δ

2δ|H |2 + ε
|H |2σM(1− u2

1 − u2
2).

Note that

− 2δ

δ|H |2 + ε

∣
∣∇|H |∣∣2 + 1

2

δ2

(δ|H |2 + ε)2 |∇
∣
∣H |2∣∣2 ≤ 0.
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Therefore,

∂t τ −Δτ ≤ 1

2
|∇τ |2 + 2δ

δ|H |2 + ε
|H |2|A|2

+ δ′

δ|H |2 + ε
|H |2 + 2δ

δ|H |2 + ε
|H |2σM(1− u2

1 − u2
2),

and this completes the proof. ��
Theorem 33 Let f : (M, gM) → (N, gN) be an area decreasing map, where M

and N are compact Riemann surfaces. Suppose that the curvatures of M and N

satisfy σ = min σM ≥ sup σN . Then the following statements hold:

(a) There exist a positive time independent constant C such that |H |2 ≤ C.

(b) If σ ≥ 0, there exist a time independent constant C so that |H |2 ≤ Ct−1.

Proof Consider the time dependent function Θ = log(δ|H |2 + ε) − log ρ, where
δ is a positive increasing function. From Lemmas 6 and 13 and |H |2 ≤ 2|A|2, we
deduce that

∂tΘ −ΔΘ ≤ 1

2
〈∇Θ,∇τ +∇ρ〉 + δ′|H |2 − ε|H |2 − 2εσ (1− u2

1 − u2
2)

δ|H |2 + ε
.

Choosing δ = 1 and ε = 0, we obtain that

∂tΘ −ΔΘ ≤ 1

2
〈∇Θ,∇τ +∇ρ〉.

From the maximum principle the norm |H | remains uniformly bounded in time
regardless of the sign of the constant σ . In the case where σ ≥ 0, choosing ε = 1
and δ = t , we deduce that Θ remains uniformly bounded in time which gives the
desired decay estimate for H . ��

8.5.2 Area Preserving Case

In the sequel, we provide a very important decay estimate due to Wang [91] for the
mean curvature in the area preserving case.

Theorem 34 Suppose that M and N are compact Riemannian manifolds with the
same constant sectional curvature σ and that f : M → N is an area preserving
map. Then, the following decay estimate holds:

∫ |H |2
ϑ

Ω ≤ eσ t ,

where Ω is the volume element of the induced metric.
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Proof The idea is to compare |H | with ϑ . We compute

∂t

(
ϑ−1|H |2

)
−Δ

(
ϑ−1|H |2

)
= ϑ−1(∂t |H |2 −Δ|H |2)− ϑ−2|H |2(∂tϑ −Δϑ)

+2ϑ−2〈∇|H |2,∇ϑ〉 − 2ϑ−3|H |2|∇ϑ |2.

But from the evolution equation of ϑ and |H |2, we obtain

∂t

(
ϑ−1|H |2

)
−Δ

(
ϑ−1|H |2

)
(41)

= ϑ−1(− 2|∇⊥H |2 + 2
∑

k,α,β
HαHβR̃αkβk + 2

∑

i,j
(AH

ij )
2)

−ϑ−2|H |2((|A|2 + 2σ⊥)ϑ + σϑ(1− ϑ2)
)+ 2ϑ−2〈∇|H |2,∇ϑ〉 − 2ϑ−3|H |2|∇ϑ |2.

Using the Equation (39) and the formula

∑

k,α,β

HαHβR̃αkβk = σ

(

1− ϑ2

2

)

|H |2 (42)

the identity (41) becomes

∂t

(
ϑ−1|H |2

)
− Δ

(
ϑ−1|H |2

)

= ϑ−3
(

4ϑ |H |〈∇ϑ,∇|H |〉 − 2|∇ϑ |2|H |2 − 2ϑ2|∇⊥H |2
)

+ϑ−1
(

2
∑

i,j
(AH

ij )
2 − 2|H |2|A|2 + |H |4

)
+ σϑ−1|H |2.

Integrating and using Stokes’ theorem, we have

∂t

(∫

ϑ−1|H |2Ω
)

=
∫

ϑ−1|H |2∇∂tΩ

+2
∫

ϑ−3
(

2ϑ |H |〈∇ϑ,∇|H |〉 − |∇ϑ |2|H |2 − ϑ2|∇⊥H |2
)
Ω

+
∫

ϑ−1
(

2
∑

i,j
(AH

ij )
2 − 2|H |2|A|2 + |H |4

)
Ω + σ

∫

ϑ−1|H |2Ω.

Using

∣
∣∇|H |∣∣ ≤ ∣

∣∇⊥H ∣
∣

in the first term on the right hand side of the above equation and completing the
square, we have
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2ϑ |H |〈∇ϑ,∇|H |〉 − |∇ϑ |2|H |2 − ϑ2
∣
∣∇|H |∣∣2 = −∣

∣|H |∇ϑ − ϑ∇|H |∣∣2 ≤ 0.

Moreover, from Lemma 4, we have ∇∂tΩ = −|H |2Ω. Also, by Cauchy–Schwarz
inequality, we get

∑

i,j
(AH

ij )
2 ≤

∑

i,j
|Aij |2|H |2 = |A|2|H |2.

Therefore, putting everything together, we get

∂t

(∫

ϑ−1|H |2Ω
)

≤ σ

∫

ϑ−1|H |2Ω

and by integration, we obtain the result. ��

8.6 Long-time Existence

We will show now that the graphical MCF exists for all times.

Theorem 35 Let (M, gM) and (N, gN) be compact Riemann surfaces such that
their curvatures σM and σN are related by σ = min σM ≥ max σN . Also, let f :
M → N be an area preserving map. Evolve the graph off under the mean curvature
flow. Then, the norm of the second fundamental form of the evolved graphs stays
uniformly bounded in time and so the graphical mean curvature flow exists for all
times.

Proof Suppose that |A| is not uniformly bounded. Then, there exists a sequence
{(xk, tk)}k∈N in M × [0, Tmax) with lim tk = Tmax ≤ ∞, and such that

ak = max
(x,t)∈M×[0,tk]

|A(x, t)| = |A(xk, tk)| → ∞.

Let Fk : M × [−a2
k tk, 0] → (N, a2

kgN) be the graph of the “rescaled map"

f : (M, a2
kgM)→ (N, a2

kgN).

Claim: The singular values are invariant under parabolic rescalings.

Let {α1, α2} and {β1, β2} orthonormal frames of the singular value decomposi-
tion of f . Then {̃α1 = α1/ak, α̃2 = α2/ak} is an orthonormal frame with respect to
a2
kgM and {β̃1 = β1/αk, β̃2 = β2/αk} is orthonormal with respect to gN . Therefore,

the singular values of the rescaled map f are given by

df (̃α1) = 1

ak
df (α1) = λ

β1

ak
= λβ̃1
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and

df (̃α2) = 1

ak
df (α2) = μ

β2

ak
= μβ̃2.

This completes the proof of the claim.
Thus, ϕFk

= ϕ and ϑFk
= ϑ . Also, from Theorem 31(a) we have

HFk
(x, s) = 1

a2
k

H(x, s/a2
k + tk),

for any (x, s) ∈ M × [−a2
k tk, 0].

CASE 1 Suppose that the evolved graphs are generated by strictly area decreasing
maps. Since from the estimate of Lemma 15 the norm |H | of the mean curvature is
uniformly bounded and the convergence is smooth, it follows that F∞ : Σ∞ → R

4

is a complete minimal immersion of parabolic type. Hence, any non-negative
superharmonic function must be constant. Since the convergence is smooth, the
corresponding Kähler angles ϕ∞, ϑ∞ of F∞ with respect to the complex structures
J = (JR2 ,−JR2) and J2 = (JR2, JR2) of R4 are non-negative. As in Lemma 11 we
get that

Δϕ∞ +
(|AF∞|2 − 2σ⊥F∞

)
ϕ∞ = 0, (43)

Δϑ∞ +
(|AF∞|2 + 2σ⊥F∞

)
ϑ∞ = 0, (44)

where −σ⊥F∞ is the normal curvature of F∞. Moreover,

|∇ϕ∞|2 = (1− ϕ2∞)
((

(AF∞)3
11 + (AF∞)4

12

)2 + (
(AF∞)3

12 − (AF∞)4
11

)2
)
, (45)

|∇ϑ∞|2 = (1− ϑ2∞)
((

(AF∞)3
11 − (AF∞)4

12

)2 + (
(AF∞)3

12 + (AF∞)4
11

)2
)
. (46)

Note that from (38) one can easily derive the inequalities

|AF∞|2 ± 2σ⊥F∞ ≥ 0.

From (43) and (44) we deduce that ϕ∞ and ϑ∞ are superharmonic and consequently
they must be constants. Thus, the functions (u1)∞ and (u2)∞ are also constants. We
will distinguish three subcases:

Sub-case A Suppose at first that ϕ∞ > 0 and ϑ∞ > 0. Then from (43) and (44)
we deduce that

|AF∞|2 ± 2σ⊥F∞ = 0
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which implies that |AF∞| = 0. This contradicts the fact that there is a point where
|AF∞| = 1.

Sub-case B Suppose that both constants ϕ∞ and ϑ∞ are zero. Then from the
Equations (45) and (46) we obtain that AF∞ vanishes identically, which is a again a
contradiction.

Sub-case C Suppose now that only one of the constants ϕ∞, ϑ∞ is zero. Let us
assume that ϕ∞ = 0 and ϑ∞ > 0. The case ϕ∞ > 0 and ϑ∞ = 0 is treated in
a similar way. Since ϕ∞ = 0, F∞ : Σ∞ → R

4 must be a minimal Lagrangian
immersion. Note that in this case necessarily (u1)∞ = (u2)∞ = const > 0. Recall
from Theorem 5 that the minimal Lagrangian F∞ can be locally reparametrized in
the form

F∞ = 1√
2
eiβ/2(F1 − iF2,F2 + iF1

)
,

where β is a constant and F1, F2 : D ⊂ C→ C are holomorphic functions defined
in a simply connected domain D such that

|(F1)z|2 + |(F2)z|2 > 0.

The Gauss map of F∞ is described by G : D→ S
2 = C ∪ {∞} given by

G = (F1)z/(F2)z.

Because (u1)∞ = const > 0 we get that F∞ is the graph of an area preserving map
h. Then

F1 = (z+ ih)/2, F2 = (−iz+ h)/2 and |hz|2 − |hz̄|2 = 1.

Therefore

G = (F1)z/(F2)z = (1− ihz̄)/hz.

A straightforward computation shows that

|G|2 =
∣
∣1+ ihz̄

∣
∣2

|hz|2 = 1+ |hz̄|2 + i
(
hz̄ − hz̄

)

1+ |hz̄|2 = 1+ 2 Im(hz̄)

1+ |hz̄|2 ≤ 2.

Hence, the image of G is contained in a bounded subset of C ∪ {∞}. But then, due
to Theorem 11 the immersion F∞ must be flat, which is a contradiction.
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CASE 2 Let us treat now the area preserving case. In this situation, we have that

|HFk
|2

ϑFk

= 1

a2
k

|H |2
ϑ

.

We distinguish two subcases:

Sub-case A Let us suppose that σ ≤ 0. Using Lemma 34, we have

∫ |HFk
|2

ϑFk

Ωk = 1

a2
k

∫ |H |2
ϑ

Ω ≤ 1

a2
k

eσ(s/a
2
k+tk) ≤ 1

a2
k

c,

where c > 0. Since the convergence is smooth, we have

0 = lim
k→∞

∫ |HFk
|2

ϑFk

Ω =
∫

lim
k→∞

|HFk
|2

ϑFk

Ω =
∫ |HF∞|2

ϑ∞
Ω.

Therefore, HF∞ = 0. Proceeding exactly in the same way as in CASE 1 we can
prove that F∞ is flat, something which leads to a contradiction.

Sub-case B Let us treat now the case σ > 0. We will show at first that Tmax = ∞.
To show this, assume in contrary that Tmax < +∞. Then,

∫ |H |2
ϑ

Ω ≤ eσ t ≤ eσTmax < +∞.

As in the previous case, we deduce that HF∞ = 0. Performing exactly the same
procedure as above, we get a contradiction. Therefore, there is no finite time
singularity and the flow exists for all times. It remains to show that |A|2 ≤ C,
where C is time independent. Indeed, since λμ = 1, we obtain

ϑ = 2λ

1+ λ2
≤ 1.

On the other hand, from Lemma 14, we have

1 ≥ ϑ ≥ c0e
t

√
1+ c2

0e
2t
,

which tends to 1 as t → ∞. Therefore, ϑ∞ = 1 and λ∞ = 1. Therefore, f∞ is an
isometry and, thus, F∞ must be totally geodesic. The latter implies |AF∞| = 0 and
this is again a contradiction.

This completes the proof. ��



Graphical MCF 571

8.7 Convergence and Proof of Theorem 32

We are ready to prove the main theorem stated in the introduction of this section.
We will show that the graphical mean curvature flow of an area preserving map
converges to an isometry in the positive case, to an affine map in the zero case, and
to a minimal surface in the negative case. Recall that from Theorem 35, we already
know that the norm of the second fundamental form stays uniformly bounded in
time. Since

∇∂tΩ = −
∫

M

|H |2Ω

and since the graphical flow exists for all time we have that there exists a time-
independent constant C, such that

∫ ∞

0

(∫

M

|H |2Ω
)

dt ≤ C.

Therefore, there exists a sequence {tk}k∈N, such that

lim
k→∞

∫

M

|H |2Ω = 0. (47)

From Theorem 35, the norms of the second fundamental forms of the evolving
submanifolds and their derivatives are uniformly bounded in time. Since the product
manifold M ×N is compact, after passing to a subsequence of {tk}k∈N if necessary,
we deduce that the flow subconverges smoothly to a smooth surface M∞ of M×N ;
see for example [11, Theorem 1.1]. From (47) M∞ should be minimal. Due to a deep
result of Simon [82], it follows that the flow converges smoothly and uniformly to a
minimal surface M∞ ⊂ M ×N . Additionally, we have the following situations:

Area Preserving Case Let us treat the case where the evolving maps are area
preserving.

(a) If σ > 0, then from Lemma 14(c), we have ϑ → 1, as t →∞. Therefore, M∞
is the graph of an isometry f∞ : M → N .

(b) If σ = 0, then from Lemma 14(c), we have that ϑ ≥ c0 > 0. Hence, the surface
M∞ is the graph of a map f∞ : M → N . From Lemma 11 and the fact that
2σ⊥∞ = |A∞|2, we have

−Δϑ∞ = 2|A∞|2ϑ∞ ≥ 0.

By the strong maximum principle, we get |A∞|2 = 0. Hence, M∞ is totally
geodesic.
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Strictly Area Decreasing Case Assume that our maps are area decreasing.

(a) Suppose that σ > 0. In this case the flow is smoothly converging to a graphical
minimal surface M∞ = Γ (f∞) of M × N . Due to Theorem 13(a), the biggest
singular value tends to zero as time goes to infinity. Hence, M∞ must be totally
geodesic and f∞ is a constant map.

(b) Assume that σ = 0. As in the previous case, we have smooth convergence of
the flow to a minimal graphical surface M∞ = Γ (f∞) of M ×N , where f∞ is
a strictly area decreasing map. Because of the formula

∂t

∫

M

Ω = −
∫

M

|H |2Ω ≤ 0,

we obtain that
∫

M

Ω ≤
∫

M

ΩM = constant .

From Theorem 33(b), there is a non-negative constant C such that

∫

M

|H |2Ω ≤ C

t

∫

M

Ω ≤ C

t

∫

M

Ω.

Due to our assumptions we have u2
2 ≤ u2

1 ≤ 1 and min σM ≥ 0 ≥ sup σN .

Moreover, recall that

Ω =
√

(1+ λ2)(1+ μ2)ΩM = u−1
1 ΩM.

From the Gauss equation (8.3) and the Gauss-Bonnet formula we get

∫

M

|A|2Ω =
∫

M

|H |2Ω + 2
∫

M

(
σMu2

1 + σNu2
2

)
Ω − 2

∫

M

σg(t)Ω

≤ 2
∫

M

σMu2
1Ω − 2

∫

M

σg(t)Ω +
∫

M

|H |2Ω

≤ 2
∫

M

σMu1Ω − 2
∫

M

σg(t)Ω +
∫

M

|H |2Ω

≤ 2
∫

M

σMΩM − 2
∫

M

σg(t)Ω +
∫

M

|H |2Ω =
∫

M

|H |2Ω

≤ Ct−1,

where C is a non-negative constant. Passing to the limit, we deduce that

∫

M

|A∞|2Ω∞ = 0.
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Thus, M∞ = F∞(M) must be a totally geodesic graphical surface.

This completes the proof. ��
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Critical Point Theory in Infinite
Dimensional Spaces Using the
Leray–Schauder Index

Martin Schechter

Abstract Many problems arising in science and engineering call for the solving
of the Euler–Lagrange equations of functionals. Thus, solving the Euler–Lagrange
equations is tantamount to finding critical points of the corresponding functional.
An idea that has been very successful is to find appropriate sets that sandwich the
functional. This means that the functional is bounded from above on one of the sets
and bounded from below on the other. Two sets of the space are said to form a
sandwich if they produce a critical sequence whenever they sandwich a functional.
If the critical sequence has a convergent subsequence, then that produces a critical
point. Finding sets that sandwich a functional is quite easy, but determining whether
or not the sets form a sandwich is quite another story. It appears that the only way
we can check to see if two sets form a sandwich is to require that one of them be
contained in a finite-dimensional subspace. The reason is that in order to verify the
definition, we need to invoke the Brouwer fixed point theorem. Our aim is to find
a counterpart that holds true when both sets are infinite dimensional. We adjust
our definitions to accommodate infinite dimensions. These definitions reduce to
the usual when one set is finite dimensional. In order to prove the corresponding
theorems, we make adjustments to the topology of the space and introduce infinite
dimensional splitting. This allows us to use a form of compactness on infinite
dimensional subspaces that does not exist under the usual topology. We lose the
Brouwer index, but we are able to replace it with the Leray–Schauder index. We
carry out the details in Sections 5, 7, and 8. In Section 6 we solve a system of
equations which require infinite dimensional splitting.
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1 Introduction

Many problems arising in science and engineering call for the solving of the Euler-
Lagrange equations of functionals, i.e., equations equivalent to

G′(u) = 0, (1)

where G(u) is a C1-functional (usually representing the energy) arising from the
given data. By this we mean that functions are solutions of the Euler–Lagrange
equations of G iff they satisfy (1). Solutions of (1) are called critical points of G.
Thus, solving the Euler–Lagrange equations is tantamount to finding critical points
of the corresponding functional.

The variational approach to solving differential equations and systems has its
roots in the calculus of variations. The original problem was to minimize or
maximize a given functional. The approach was to obtain the Euler–Lagrange
equations of the functional, solve them, and show that the solutions provided the
required minimum or maximum. This worked well for one-dimensional problems.
However, when it came to higher dimensions, it was recognized quite early that
it was more difficult to solve the Euler–Lagrange equations than it was to find
minima or maxima of the corresponding functional. Consequently, the approach
was abandoned for many years.

Eventually, when nonlinear partial differential equations and systems arose in
applications and people were searching for solutions, they began to check if the
equations and systems were the Euler-Lagrange equations of functionals. If so, a
natural approach would be to find critical points of the corresponding functionals.
The problem is that there is no uniform way of finding them.

The initial approach to finding critical points is to look for maxima or minima.
Global extrema are the easiest to find, but they can exist only if the functional is semi
bounded. For instance, if the continuously differential functional G is bounded from
below, then we can find a minimizing sequence {uk} such that

G(uk)→ a = infG > −∞. (2)

If this series converges or has a convergent subsequence, we have a minimum.
However, if the functional G is bounded from below, it can be shown that there

is a sequence satisfying

G(uk)→ a, G′(uk)→ 0. (3)

If the sequence has a convergent subsequence, this will produce a minimum. The
gain is that a sequence satisfying (3) has a better chance of having a convergent
subsequence than a sequence satisfying only (2).

When the functional is not semibounded, there is no clear way of obtaining
critical points. In general, one would like to determine when a functional has a
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critical sequence, i.e., a sequence satisfying

G(uk)→ a, G′(uk)→ 0. (4)

This would give one the same advantages that one has in the case of semi-
bounded functionals.

2 Sandwich Sets

An idea that has been very successful is to find appropriate sets that sandwich the
functional. By this we mean the following: Two sets A,B sandwich the functional
G(u) if G(u) is bounded from below on one of them and bounded from above on
the other, e.g., if

a0 := sup
A

G <∞, b0 := inf
B

G > −∞. (5)

We would like to find sets A and B such that (5) will imply

∃u : G(u) ≥ b0, G′(u) = 0. (6)

This is too much to expect, since even semi-boundedness alone does not imply the
existence of a critical point. Consequently, we weaken our requirements and look for
sets A,B such that (5) implies the existence of a critical sequence (4) with a ≥ b0.

This leads to

Definition 1 We shall say that the set A forms a sandwich with the set B if (5)
implies (4) with a ≥ b0 for every C1-functional G(u).

Of course, (4) is a far cry from (6), but if, e.g., the sequence (4) has a convergent
subsequence, then (4) implies (6). Whether or not this is true depends on the
functional G(u).

3 The Finite Dimensional Case

It appears that the only way we can check to see if two sets form a sandwich, is to
require that one of them is contained in a finite-dimensional subspace. The reason
is that in order to verify the definition, we need to invoke the Brouwer fixed point
theorem.

The following three results hold when a subspace N is finite dimensional.

Theorem 2 Let N be a finite dimensional subspace of a Banach space E, and for
each R > R0, let *R(p) be an open bounded set in N containing a point p such
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that d(∂*R(p), p)→∞ as R →∞. Let F be a continuous map of E onto N such
that F = I on N. Assume also that

d(AR, F
−1(p))→∞, R →∞,

where AR = ∂*R(p). Let G be a C1-functional on E such that

−∞ < b0 = inf
B

G, sup
AR

G ≤ a0 <∞, (7)

for R > R0, where AR = N\*R(p) and B = F−1(p). Then for each ρ ∈ Q there
is a sequence {uk} ⊂ E such that

G(uk)→ c, b0 ≤ c ≤ a0, ρ(d(uk, B))‖G′(uk)‖ → 0. (8)

Corollary 3 Let N be a finite dimensional subspace of a Hilbert space E and let
M = N⊥. For G ∈ C1(E,R), assume

a0 = sup
N

G <∞, b0 = inf
M

G > −∞. (9)

Then for each ρ ∈ Q there is a sequence {uk} ⊂ E such that

G(uk)→ c, b0 ≤ c ≤ a0, ρ(d(uk,M))‖G′(uk)‖ → 0. (10)

Theorem 4 Let N be a finite dimensional subspace of a Hilbert space E with
complement M ⊕ {v0}, where v0 is an element in E having unit norm, and let δ
be any positive number. Let ϕ(t) ∈ C1(R) be such that

0 ≤ ϕ(t) ≤ 1, ϕ(0) = 1,

and

ϕ(t) = 0, |t | ≥ 1.

Let

F(v+w+sv0) = v+[s+δ−δϕ(‖w‖2/δ2)]v0, w ∈ M, v ∈ N, s ∈ R. (11)

Let G be a C1-functional on E such that (5) holds with A = [N ⊕ {v0}]\BR0 and
B = F−1(δv0) = {w + rv0 : w ∈ M, r = δϕ(‖w‖2/δ2)}. Then for each ρ ∈ Q
there is a sequence {uk} ⊂ E such that

G(uk)→ c, b0 ≤ c ≤ a0, ρ(d(uk, B))‖G′(uk)‖ → 0. (12)
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However, there are many applications for which we would like to obtain critical
points in infinite-dimensional situations. It is not obvious how to proceed. It is
not clear that we can obtain similar results for such situations. We now describe
one method that works in the infinite-dimensional case. It involves adjusting the
topology of the underlying space. In order to deal with the infinite dimensional
situation, we are forced to make several adjustments. We must restrict the functional
G and the mapping F and use a more general index for verification. The restrictions
that we have chosen do not apply when one of the subspaces is finite dimensional.
While we could not use the Brouwer index, we were able to use the Leray–
Schauder index in its place. Thus the new theorems that we prove reverts to the
old theorems when one of the subsets is finite dimensional. For this purpose we use
flows described in the next section.

4 Flows

Let Q be a set of positive functions ρ(t) on [0,∞), which are

(a) locally Lipschitz continuous,
(b) nondecreasing
(c) satisfy

∫ ∞

0

dt

ρ(t)
= ∞. (13)

Moreover, Q is to satisfy

ρ1, ρ2 ∈ Q .⇒ max(ρ1, ρ2) ∈ Q,

and contain functions of the form

(1+ |t |)β, β ∈ R.

Let Q 
= φ be a subset of a Banach space E, and let 3Q be the set of all
continuous maps σ = σ(t) from E × [0, 1] to E such that

1. σ(0) is the identity map,
2. for each t ∈ [0, 1], σ(t) is a homeomorphism of E onto E,
3. σ ′(t) is piecewise continuous and satisfies

‖σ ′(t)u‖ ≤ Cρ(d(σ (t)u,Q)), u ∈ E, (14)

for some ρ ∈ Q. If Q = {0}, we write 3 = 3Q. The mappings in 3Q are called
flows. We note the following.
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Remark 5 If σ1, σ2 are in 3Q, define σ3 = σ1 ◦ σ2 by

σ3(s) =
{
σ1(2s), 0 ≤ s ≤ 1

2 ,

σ2(2s − 1)σ1(1), 1
2 < s ≤ 1.

Then σ3 ∈ 3Q, and σ3(1) = σ2(1)σ1(1).

Proof The first two properties are obvious. To check the third, note that

σ ′3(s) =
{

2σ ′1(2s), 0 ≤ s ≤ ( 1
2 )−,

2σ ′2(2s − 1)σ1(1), ( 1
2 )+ ≤ s ≤ 1.

Thus, if

‖σ ′i (t)u‖ ≤ Ciρi(d(σi(t)u,Q)), u ∈ E, i = 1, 2, (15)

then

‖σ ′3(s)u‖ ≤
{

2‖σ ′1(2s)u‖, 0 ≤ s ≤ ( 1
2 )−,

2‖σ ′2(2s − 1)σ1(1)u‖, ( 1
2 )+ ≤ s ≤ 1,

or

‖σ ′3(s)u‖ ≤
{

2C1ρ(d(σ3(s)u,Q)), 0 ≤ s ≤ ( 1
2 )−,

2C2ρ(d(σ3(s)u,Q)), ( 1
2 )+ ≤ s ≤ 1,

where ρ = max(ρ1, ρ2). We can now take C3 = 2 max(C1, C2). ��
The following theorem can be found in [21, 22].

Theorem 6 Let g(t, x) be a continuous map fromR×X toX, whereX is a Banach
space. Assume that for each point (t̂ , x̂) ∈ R × X, there are constants K, b > 0
such that

‖g(t, x)−g(t, y)‖ ≤ K‖x−y‖, |t− t̂ | < b, ‖x−x̂‖ < b, ‖y−x̂‖ < b, (16)

and

‖g(t, x)‖ ≤ ρ(d(x,Q)), x ∈ X, t ∈ [t0,∞), (17)

where Q is a subset of X, with ρ nondecreasing or bounded. Assume

∫ u0

0

dτ

ρ(τ)
=

∫ ∞

u0

dτ

ρ(τ)
= ∞ (18)
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where u0 > 0. Then for each x0 ∈ X and t0 ∈ R there is a unique solution x(t) of
the equation

dx(t)

dt
= g(t, x(t)), t ∈ [t0,∞), x(t0) = x0. (19)

Moreover, x(t) depends continuously on x0 and satisfies

u1(t) ≤ d(x(t),Q) ≤ u2(t), t ∈ [t0,∞), (20)

where u1(t) is the solution of

u′(t) = −ρ(u(t)) (21)

in [t0,∞) satisfying u(t0) = u0 = d(x0,Q), and u2(t) is the solution of

u′(t) = ρ(u(t)) (22)

in [t0,∞) satisfying u(t0) = u0 = d(x0,Q).

5 The Infinite Dimensional Case

We now describe a sandwich theory that works in the infinite-dimensional case.
Let N be a closed, separable subspace of a Hilbert space E. We can define a new

norm |v|w satisfying |v|w ≤ ‖v‖ ∀v ∈ E and such that the topology induced by
this norm is equivalent to the weak topology of N on bounded subsets of N . We
construct the norm so that vj → v weakly in N implies |vj −v|w → 0. Conversely,
if ‖vj‖, ‖v‖ ≤ C for all j > 0 and |vj − v|w → 0, then vj → v weakly in N .

We adjust our assumptions on G and F for the infinite dimensional case of
dimN = ∞, but they reduce to the same assumptions that are made in the finite
dimensional case dimN <∞.

Our requirements on G are given by

Definition 7 Let N be a closed separable subspace of a Hilbert space E. A
functional G(u) on E will be called an N-weak-to-weak continuously differentiable
functional on E if

|vn − v|w → 0 (23)

implies that there is a renamed subsequence satisfying

G(vn)→ G(v), |G′(vn)−G′(v)|w → 0. (24)
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This means that G is a continuous functional on Ew, continuously differentiable
on E and such that

vn = Pun → v weakly in E, wn = (I − P)un → w strongly in E (25)

implies that there is a renamed subsequence satisfying

G′(vn + wn)→ G′(v + w)weakly in E, (26)

where P is the projection of E onto N.

Note that every C′ functional is N-weak-to-weak continuously differentiable when
dimN <∞.

Concerning the mapping F we define

Definition 8 Let N be a closed separable subspace of a Hilbert space E. We shall
call a map F of E onto N an N-weakly continuous mapping if F is a | · |w-continuous
map from E onto N satisfying

• FN = I ; F maps any finite dimensional subspace of N containing p into itself;
it maps bounded sets into bounded sets;

• There exists a fixed finite-dimensional subspace E0 of E such that
F(u− v)− (F (u)− F(v)) ∈ E0, ∀ u, v ∈ E;

• F maps finite-dimensional subspaces of E to finite-dimensional subspaces of E;

Note that every continuous map F of E onto N satisfying FN = I is N-weakly
continuous when N is finite dimensional.

We have

Theorem 9 Let N be a closed separable subspace of a Hilbert space E. For each
R > R0, let *R(p) be an open, convex, bounded set in N containing a point p such
that d(∂*R(p), p)→∞ as R →∞. Let F be a N-weakly continuous mapping of
E onto N such that F = I on N. Assume also that

d(AR, F
−1(p))→∞, R →∞,

where AR = ∂*R(p). Let G be a N-weak-to-weak continuously differentiable
functional on E such that

−∞ < b0 = inf
B

G, sup
AR

G ≤ a0 <∞, (27)

for R > R0, where AR = N\*R(p) and B = F−1(p). Then for each ρ ∈ Q there
is a sequence {uk} ⊂ E such that

G(uk)→ c, b0 ≤ c ≤ a0, ρ(dw(uk, B))‖G′(uk)‖ → 0. (28)
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Note that when dimN <∞, Theorem 9 reduces to Theorem 2.

Corollary 10 Let N be a closed separable subspace of a Hilbert space E, and let
M = N⊥. For G a N-weak-to-weak continuously differentiable functional on E

assume

a0 = sup
N

G <∞, b0 = inf
M

G > −∞. (29)

Then for each ρ ∈ Q there is a sequence {uk} ⊂ E such that

G(uk)→ c, b0 ≤ c ≤ a0, ρ(dw(uk,M))‖G′(uk)‖ → 0. (30)

Note that when dimN <∞, Corollary 10 reduces to Corollary 3.

Corollary 11 Let N be a closed, separable subspace of a Banach space E, and for
each R > R0 let *R(p) be an open, convex, bounded set in N containing a point p.
Let G be a an N-weak-to-weak continuously differentiable functional on E, and let
F be an N-weakly continuous mapping. Assume

dR = dw(A
R, F−1(p))→∞, R →∞,

where AR = N\*R(p). Assume

−∞ < b0 = inf
B

G, sup
AR

G ≤ a0 <∞, (31)

for R > R0. Then for each sequence νk ≥ 2dk − ε there is a β > 0 and a sequence
{uk} ⊂ E such that

G(uk)→ c, b0 ≤ c ≤ b1, (νk + |uk|w)‖G′(uk)‖ ≤ β. (32)

Theorem 12 Let N be a closed separable subspace of a Hilbert space E with
complement M ⊕ {v0}, where v0 is an element in E having unit norm, and let δ
be any positive number. Let ϕ(t) ∈ C1(R) be such that

0 ≤ ϕ(t) ≤ 1, ϕ(0) = 1,

and

ϕ(t) = 0, |t | ≥ 1.

Let

F(v+w+sv0) = v+[s+δ−δϕ(‖w‖2/δ2)]v0, w ∈ M, v ∈ N, s ∈ R. (33)
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Let G be a N-weak-to-weak continuously differentiable functional on E such that
(5) holds with A = [N ⊕ {v0}]\BR0 and B = F−1(δv0) = {w+ rv0 : w ∈ M, r =
δϕ(‖w‖2/δ2)}. Then for each ρ ∈ Q there is a sequence {uk} ⊂ E such that

G(uk)→ c, b0 ≤ c ≤ a0, ρ(dw(uk, B))‖G′(uk)‖ → 0. (34)

Note that when dimN <∞, Theorem 12 reduces to Theorem 4.

Corollary 13 Let N be a closed, separable subspace of a Hilbert space E with
orthogonal complementM⊕{v0}, where v0 is an element inE having unit norm and
orthogonal to both M and N, and let δ < R be positive numbers. Let ϕ(t) ∈ C1(R)

be such that

0 ≤ ϕ(t) ≤ 1, ϕ(0) = 1,

and

ϕ(t) = 0, |t | ≥ 1.

Let

F(v+w+sv0) = v+[s+δ−δϕ(‖w‖2/δ2)]v0, w ∈ M, v ∈ N, s ∈ R. (35)

LetG be a an N-weak-to-weak continuously differentiable functional on E. Assume

−∞ < b0 = inf
B

G, sup
A

G = b1 <∞, (36)

holds with A = [N ⊕ {v0}], AR = A ∩ ∂BR and B = F−1(δv0) = {w + rv0 : w ∈
M, r = δϕ(‖w‖2/δ2)}. Then for each sequence νk → ∞ there is a β > 0 and a
sequence {uk} ⊂ E such that

G(uk)→ c, b0 ≤ c ≤ b1, (νk + |uk|w)‖G′(uk)‖ ≤ β. (37)

6 Applications

Let A,B be positive, self-adjoint operators on L2(*) with compact resolvents,
where * ⊂ R

n (* may be unbounded). Let F(x, v,w) be a Caratheódory function
on *× R

2 such that

f (x, v,w) = ∂F/∂v, g(x, v,w) = ∂F/∂w (38)

are also Caratheódory functions satisfying
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|f (x, v,w)| + |g(x, v,w)| ≤ C0(|v| + |w| + 1), v,w ∈ R. (39)

We wish to solve the system

Av = −f (x, v,w) (40)

Bw = g(x, v,w). (41)

The reason for the minus sign is because it leads to a variational problem
involving infinite dimensional subspaces. The plus sign leads to a minimization
problem.

Let λ0(μ0) be the lowest eigenvalue of A(B).
Theorem 14 Assume

2F(x, s, 0) ≥ −λ0s
2 −W1(x), x ∈ *, s ∈ R, (42)

where W1(x) ∈ L1(*). In addition, assume that the eigenfunctions of λ0 and μ0
are bounded and 
= 0 a.e. in *, and there is a q > 2 such that

‖w‖2
q ≤ Cb(w), w ∈ M. (43)

Assume

2F(x, 0, t) ≤ μ(x)t2, x ∈ *, t ∈ R (44)

where

μ(x) ≤
≡ μ0, x ∈ *, (45)

and for some δ > 0,

2F(x, s, t) ≤ μ0t
2 − λ0s

2, |t | + |s| ≤ δ. (46)

Also

H(x, s, t) ≤ W(x) (47)

and

H(x, s, t)→−∞ as |s| + |t | → ∞, (48)

where W(x) ∈ L2(Rn) and

H(x, s, t) = f (x, s, t)s + g(x, s, t)t − 2F(x, s, t). (49)
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Then the system (40) (41) has a nontrivial solution.

Proof Let D = D(A1/2) × D(B1/2). Then D becomes a Hilbert space with norm
given by

‖u‖2
D = (Av, v)+ (Bw,w), u = (v,w) ∈ D. (50)

We define

G(u) = b(w)− a(v)− 2
∫

*

F(x, v,w)dx, u ∈ D (51)

where

a(v) = (Av, v), b(w) = (Bw,w). (52)

Then G ∈ C1(D,R) and

(G′(u), h)/2 = b(w, h2)− a(v, h1)− (f (u), h1)− (g(u), h2), (53)

where we write f (u), g(u) in place of f (x, v,w), g(x, v,w), respectively. It is
readily seen that the system (40), (41) is equivalent to

G′(u) = 0. (54)

We let N be the set of those (v, 0) ∈ D and M the set of those (0, w) ∈ D. Then
M,N are orthogonal closed subspaces such that

D = M ⊕N. (55)

If we define

Lu = 2(−v,w), u = (v,w) ∈ D (56)

then L is a selfadjoint bounded operator on D. Also

G′(u) = Lu+ c0(u) (57)

where

c0(u) = −(A−1/2f (u),B−1/2g(u)) (58)

is compact on D. This follows from (39) and the fact that A and B have compact
resolvents. It also follows that G′ has D − weak − to − weak continuity. For if
uk → u weakly, then Luk → Lu weakly and c0(uk) has a convergent subsequence.
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Let N ′ be the orthogonal complement of N0 = {ϕ0} in N , where ϕ0 is the
eigenfunction of A corresponding to λ0. Then N = N ′ ⊕ N0. Let M0 be the
subspace of M spanned by the eigenfunctions of B corresponding to μ0, and let
M ′ be its orthogonal complement in M . Since N0 and M0 are contained in L∞(*),
there is a positive constant ρ such that

a(y) ≤ ρ2 ⇒ ‖y‖∞ ≤ δ/4, y ∈ N0 (59)

b(h) ≤ ρ2 ⇒ ‖h‖∞ ≤ δ/4, h ∈ M0 (60)

where δ is the number given in (46). If

a(y) ≤ ρ2, b(w) ≤ ρ2, |y(x)| + |w(x)| ≥ δ (61)

we write w = h+ w′, h ∈ M0, w
′ ∈ M ′ and

δ ≤ |y(x)| + |w(x)| ≤ |y(x)| + |h(x)| + |w′(x)| ≤ (δ/2)+ |w′(x)|. (62)

Thus

|y(x)| + |h(x)| ≤ δ/2 ≤ |w′(x)| (63)

and

|y(x)| + |w(x)| ≤ 2|w′(x)|. (64)

Now by (46) and (64)

G(y,w) = b(w)− a(y)− 2
∫

*

F(x, y,w) dx (65)

≥ b(w)− a(y)−
∫

|y|+|w|<δ

{μ0w
2 − λ0y

2}dx

− c0

∫

|y|+|w|>δ

(|y| + |w| + 1)2 dx

≥ b(w)− a(y)− μ0‖w‖2 + λ0‖y‖2 − c1

∫

2|w′|>δ

|w′|qdx

≥ b(w′)− μ0‖w′‖2 − c2b(w
′)q/2

≥
(

1− μ0

μ1
− c2b(w

′)(q/2)−1
)

b(w′), a(y) ≤ ρ2, b(w) ≤ ρ2
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where μ1 is the next eigenvalue of B after μ0. If we reduce ρ accordingly, we can
find a positive constant ν such that

G(y,w) ≥ νb(w′), a(y) ≤ ρ2, b(w) ≤ ρ2. (66)

I claim that either (40) (41) has a nontrivial solution or there is an ε > 0 such that

G(y,w) ≥ ε, a(y)+ b(w) = ρ2. (67)

For suppose (67) did not hold. Then there would be a sequence {yk,wk} such that
a(yk)+b(wk) = ρ2 and G(yk,wk)→ 0. If we write wk = w′k+hk,w

′
k ∈ M ′, hk ∈

M0, then (66) tells us that b(w′k) → 0. Thus a(yk) + b(hk) → ρ2. Since N0,M0
are finite dimensional, there is a renamed subsequence such that yk → y in N0 and
hk → h in M0. Thus G(y, h) = 0. By (59) and (60), ‖y‖∞ ≤ δ/4 and ‖h‖∞ ≤ δ/4.
Consequently (46) implies

2F(x, y, h) ≤ μ0h
2 − λ0y

2. (68)

Since

G(y, h) = b(h)− a(y)− 2
∫

*

F(x, y, h)dx = 0, (69)

we have
∫

*

{2F(x, y, h)+ λ0y
2 − μ0h

2}dx = 0. (70)

In view of (68), this implies

2F(x, y, h) ≡ μ0h
2 − λ0y

2. (71)

For ζ ∈ C∞0 (*) and t > 0 small we have

2[F(x, y + tζ, h)− F(x, y, h)]/t ≤ −λ0[(y + tζ )2 − y2]/t. (72)

Taking t → 0, we have

f (x, y, h)ζ ≤ −λ0yζ. (73)

Since this is true for all ζ ∈ C∞0 (*), we have

f (x, y, h) = −λ0y = −Ay. (74)

Similarly,
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2[F(x, y, h+ tζ )− F(x, y, h)]/t ≤ μ0[(h+ tζ )2 − h2]/t (75)

and consequently

g(x, y, h)ζ ≤ μ0hζ (76)

and

g(x, y, h) = μ0h = Bh (77)

We see from (74) and (77) that (40) (41) has a nontrivial solution. Thus, we may
assume that (67) holds.

Next, we note that there is an ε > 0 depending on ρ such that

G(0, w) ≥ ε, b(w) ≥ ρ > 0.

To see this, suppose that {wk} ⊂ M is a sequence such that

G(0, wk)→ 0, b(wk) ≥ ρ.

If

bk = b(wk) ≤ C,

this implies

b(wk)− μ0‖wk‖2 → 0

and
∫

[μ0 − μ(x)]w2
kdx → 0,

since

G(0, w) ≥ b(w)− μ0‖w‖2 +
∫

[μ0 − μ(x)]w2dx, w ∈ M.

If we write wk = w′k + hk,w
′
k ∈ M ′, hk ∈ M0 as before, then this tells us that

b(w′k) → 0. Since M0 is finite dimensional, there is a renamed subsequence such
that hk → h. But the two conclusions above tell us that h = 0. Since b(h) ≥ ρ,

we see that ε > 0 exists for any constant C. If the sequence {bk} is not bounded, we
take w̃k = wk/b

1/2
k . Then
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G(0, wk)/bk ≥ b(w̃k)− μ0‖w̃k‖2 +
∫

[μ0 − μ(x)](w̃k)
2dx.

Next we note that there is a ν > 0 such that

G(0, w) ≥ νb(w), w ∈ M. (78)

Assuming this for the moment, we see that

b0 := inf
B

G ≥ ε1 > 0 (79)

where

B = {w ∈ M : b(w) ≥ ρ2} ∪ {u = (sϕ0, w) : s ≥ 0, w ∈ M, ‖u‖D = ρ}, (80)

and ε1 = min{ε, νρ2}. By (14) there is an R > ρ such that

sup
AR

G ≤ a0 <∞, (81)

where AR = N\BR . By Theorem 9 there is a sequence {uk} ⊂ D such that (34)
holds with c ≥ ε1. To complete the proof, we show that the sequence uk is bounded
in D and has a convergent subsequence. To see this, assume that rk = ‖uk‖D →∞,

and let ũk = uk/rk. Then ‖ũk‖D = 1, and there is a renamed subsequence such that
ũk → ũ, weakly in D, strongly in L2(*), and a.e. in *. Since,

b(wk)+ a(vk) = (g(uk), wk)− (f (uk), vk),

we have

b(w̃k)+ a(ṽk) ≤ C‖ũk‖2.

Hence,

1 = ‖ũk‖2
D ≤ C‖ũk‖2 → C‖ũ‖2.

Consequently, ũ 
≡ 0.
Let *0 be the subset of * on which ũ 
= 0. Then

|uk(x)| = rk|ũk(x)| → ∞, x ∈ *0. (82)

If *1 = * \*0, then we have
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∫

*

H(x, uk) dx =
∫

*0

+
∫

*1

≤
∫

*0

H(x, uk) dx +
∫

*1

W1(x)dx →−∞.

(83)
But

∫

*

H(x, uk) dx = G(uk)− (G′(uk), uk)

and

|(G′(uk), uk)| ≤ (νk + |uk|w)‖G′(uk)‖ ≤ β.

Thus

|
∫

*

H(x, uk) dx| ≤ K.

This contradicts (83), and we see that rk = ‖uk‖D is bounded. Hence, there is a
renamed subsequence converging weakly to a function u ∈ D. Since

(G′(uk), h)/2 = b(wk, h2)−a(vk, h1)− (f (uk), h1)− (g(uk), h2)→ 0, h ∈ D,

(84)
we have

(G′(u), h)/2 = b(w, h2)− a(v, h1)− (f (u), h1)− (g(u), h2) = 0, h ∈ D.

(85)
This shows that (40) and (41) hold. Since c 
= 0 and G(0) = 0, we see that u 
= 0,
and we have a nontrivial solution of the system (40) (41).

It therefore remains only to prove (78). Clearly ν ≥ 0. If ν = 0, then there is a
sequence {wk} ⊂ M such that

G(0, wk)→ 0, b(wk) = 1. (86)

Thus there is a renamed subsequence such that wk → w weakly in M , strongly in
L2(*) and a.e. in *. Consequently

∫

*

[μ0 − μ(x)]w2
k dx ≤ 1−

∫

*

μ(x)w2
k dx ≤ G(0, wk)→ 0 (87)

and

1 =
∫

*

μ(x)w2dx ≤ μ0‖w‖2 ≤ b(w) ≤ 1 (88)

which means that we have equality throughout. It follows that we must have w ∈
E(μ0), the eigenspace of μ0. Since w 
≡ 0, we have w 
= 0 a.e. But
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∫

*

[μ0 − μ(x)]w2dx = 0 (89)

implies that the integrand vanishes identically on *, and consequently μ(x) ≡ μ0,
violating (45). This establishes (78) and completes the proof of the theorem. ��

7 Infinite Dimensional Splitting

Let N be a closed, separable subspace of a Hilbert space E. We can define a new
norm |v|w satisfying |v|w ≤ ‖v‖ ∀v ∈ N and such that the topology induced by this
norm is equivalent to the weak topology of N on bounded subsets of N . This can be
done as follows: Let {ek} be an orthonormal basis for N . Define

(u, v)w =
∞∑

k=1

(u, ek)(v, ek)

2k
, u, v ∈ N.

This is a scalar product. The corresponding norm squared is

|v|2w =
∞∑

k=1

|(v, ek)|2
2k

, v ∈ N.

Then |v|w satisfies |v|w ≤ ‖v‖, v ∈ N . If vj → v weakly in N , then there is a
C > 0 such that

‖vj‖, ‖v‖ ≤ C, ∀j > 0.

For any ε > 0, there exist K > 0,M > 0, such that 1/2K < ε2/(8C2) and
|(vj − v, ek)| < ε/2 for 1 ≤ k ≤ K, j > M. Therefore,

|vj − v|2w =
∞∑

k=1

|(vj − v, ek)|2
2k

≤
K∑

k=1

ε2/4

2k
+

∞∑

k=K+1

4C2

2k

≤ ε2

4

∞∑

k=1

1

2k
+ 4C2

2K

∞∑

k=1

1

2k

≤ ε2

2
+ ε2

2
.
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Therefore, vj → v weakly in N implies |vj − v|w → 0.
Conversely, let ‖vj‖, ‖v‖ ≤ C for all j > 0 and |vj − v|w → 0. Let ε > 0

be given. If h =
∞∑

k=1

αkek ∈ N, take K so large that ‖hK‖ < ε/(4C), where

hK =
∞∑

k=K+1

αkek. Take M so large that |vj − v|2w < ε2/(4
K∑

k=1

2k|αk|2) for all

j > M . Then

|(vj − v, h− hK)|2 = |
K∑

k=1

αk(vj − v, ek)|2

≤
K∑

k=1

2k|αk|2
∞∑

k=1

|(vj − v, ek)|2
2k

< ε2/4

for j > M . Also, |(vj − v, hK)| ≤ 2C‖hK‖ < ε/2. Therefore,

|(vj − v, h)| < ε, ∀j > M,

that is, vj → v weakly in N .
For u = v + h, u1 = v1 + h1 ∈ E = N ⊕N⊥ with v, v1 ∈ N, h, h1 ∈ N⊥, we

define the scalar product (u, u1)w = (v, v1)w + (h, h1). Thus, the corresponding
norm satisfies |u|w ≤ ‖u‖ ∀u ∈ E. Clearly, when dimN <∞, the norms ‖ · ‖ and
| · |w are equivalent.

We denote E equipped with this scalar product and norm by Ew. It is a scalar
product space with the same elements as E. In particular, if (un = vn + wn) is

‖ · ‖-bounded and un
|·|w→ u, then vn ⇀ v weakly in N , wn → w strongly in N⊥,

un ⇀ v + w weakly in E.
For u ∈ E and Q ⊂ E, we define

dw(u,Q) = inf
v∈Q |u− v|w.

Let L be a bounded, convex, closed subset of N . Then L is | · |w-compact. In
fact, since L is bounded with respect to both norms | · |w and ‖ · ‖, for any vn ∈ L,
there is a renamed subsequence such that vn ⇀ v0 weakly in E. Then v0 ∈ L since
L is convex, and on the bounded set L the | · |w-topology is equivalent to the weak

topology. Thus, vn
|·|w→ v0 and L is | · |w-compact.

Let L be a compact subset of Ew. We define 3w(L) to be the set of all σ(t) ∈
3 : [0, 1] × E #→ E such that
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1. σ(t) is | · |w-continuous.
2. σ(0)u = u, u ∈ E.

3. There is a finite dimensional subspace Ef of E such that dimEf > 0 and
σ(t)u− u ∈ Ef , (t, u) ∈ I × L.

Here we use Ef to denote various finite-dimensional subspaces of E when exact
dimensions are irrelevant. Note that 3w(L) is not empty since σ(t) ≡ 1 is a member.

We let 3wQ denote the set of those σ ∈ 3w which satisfy

|σ ′(t)u|w ≤ Cρ(dw(σ (t)u,Q)), u ∈ E, (90)

where Q ⊂ E.

We have

Lemma 15 If L is compact in Ew and σ ∈ 3w(L), then

L̃ = {σ(t)L : t ∈ I }

is compact in Ew.

Proof Suppose {tk} ⊂ I, {uk} ⊂ L are sequences. Then there are renamed
subsequences such that

tj → t0, |uk − u0|w → 0.

Thus I×L is a compact subset of I×Ew. By definition, there is a finite dimensional
subspace Ef containing the set {σ(t)u − u, t ∈ I, u ∈ L}. Since this set is
bounded, every sequence has a convergent subsequence. Since every sequence in L

has a convergent subsequence, the same must be true of L̃. ��
Lemma 16 If σ1, σ2 ∈ 3w(L), then σ3 = σ1 ◦ σ2 ∈ 3w(L).

Proof By the definition of 3w(L), for any (s0, u0) ∈ I × L, there is a | · |w-
neighborhood U(s0,u0) such that {u−σ1(t)u : (t, u) ∈ U(s0,u0)∩L} ⊂ Ef . Note that,

L ⊂
⋃

(s,u)∈L
U(s,u). Since L is | · |w-compact, L ⊂

j0⋃

i=1

U(si ,ui ) where (si, ui) ∈ L.

Consequently, {u− σ1(t)u : (t, u) ∈ L} ⊂ Ef . The same is true of σ2. Since

σ3(s) =
{
σ1(2s), 0 ≤ s ≤ 1

2 ,

σ2(2s − 1)σ1(1), 1
2 < s ≤ 1,

u− σ3(t)u ∈ Ef as well. ��
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8 Some Lemmas

Before giving the proof of Theorem 9, we prove a few lemmas.

Lemma 17 Let N be a closed, separable subspace of a Banach space E, and let *
be a bounded, convex, open subset of N containing a point p. Let F be an N-weakly
continuous mapping. Assume

σ(t)∂* ∩ F−1(p) = φ, 0 ≤ t ≤ 1,

for some σ ∈ 3w(*). Then

σ(t)* ∩ F−1(p) 
= φ, 0 ≤ t ≤ 1.

Proof Assume that there is a σ ∈ 3w(*) such that

σ(t)∂* ∩ F−1(p) = φ, 0 ≤ t ≤ 1, (91)

and

σ(t)* ∩ F−1(p) = φ, 0 ≤ t ≤ 1,

or, equivalently,

F(σ(t)*) ∩ {p} = φ, 0 < t ≤ 1. (92)

Let

γ (t)x = Fσ(t)x, (t, x) ∈ I ×*.

Then γ (t) ∈ C(I ×*,Ew ∩N) and

γ (t)x 
= p, x ∈ ∂*, t ∈ [0, 1]. (93)

Also

γ (0)x = Fx = x, x ∈ *. (94)

By hypothesis, there exists a fixed finite-dimensional subspace E0 of E such that
F(u− v)− (F (u)− F(v)) ∈ E0, ∀ u, v ∈ E. Take u = σ(t)x, v = x. Since *

is compact in Ew and σ ∈ 3w(*), there is a finite dimensional subspace E1 of E
such that dimE1 > 0 and σ(t)u− u ∈ E1, (t, u) ∈ I ×*. Hence

γ (t)x = P0(Fσ(t)x − Fx − F [σ(t)x − x])
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+ FP1[σ(t)x − x] + x

= x − ϕ(t)x, (t, x) ∈ I ×*,

where ϕ(t)x = −P0(Fσ(t)x − Fx − F [σ(t)x − x]) − FP1[σ(t)x − x], and the
P0, P1 are projections onto the finite dimensional subspaces E0, E1. Thus, ϕ(t) is
a compact map from I ×* to I ×Ef . In view of (91), the Leray–Schauder degree
i satisfies

i(γ (t),*, p) = i(γ (0),*, p) = 1

for all t ∈ [0, 1]. But this contradicts (92). Hence

σ(t)* ∩ F−1(p) 
= φ, 0 ≤ t ≤ 1.

��
Lemma 18 Let N be a closed separable subspace of a Hilbert space E, and let
* be a bounded, convex, open subset of N containing a point p. Let G be a an N-
weak-to-weak continuously differentiable functional onE, and let F be an N-weakly
continuous mapping. Assume that d = d(A,B) > 0, and

−∞ < b0 := inf
B

G, b1 := sup
*

G <∞,

where A = ∂* and B = F−1(p). If * ⊂ BR, let B̃ = B ∩ Bν, where

β

∫ ν

R

dt

ρ(t)
> b1 − b0, β

∫ d

0

dt

ρ(t)
> b1 − b0

for some ρ ∈ Q and β > 0. Then there is a sequence {uk} ⊂ E such that

G(uk)→ c, b0 ≤ c ≤ b1, ρ(dw(uk, B̃))‖G′(uk)‖ ≤ β. (95)

Proof If the lemma were false, then there would be a δ > 0 such that

ρ(dw(u, B̃))‖G′(u)‖ > β (96)

when

u ∈ U = {u ∈ E : b0 − 3δ ≤ G(u) ≤ b1 + 3δ}. (97)

For u ∈ Ê = {u ∈ E : G′(u) 
= 0}, let h(u) = G′(u)/‖G′(u)‖. Then by (96)

(G′(u), h(u)) > β/ρ(dw(u, B̃)), u ∈ U. (98)
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For each u ∈ U there is an Ẽ neighborhood W(u) of u such that

(G′(v), h(u)) > β/ρ(dw(v, B̃)), v ∈ W(u) ∩ U. (99)

For otherwise there would be a sequence {vk} ⊂ U such that

|vk − u|w → 0 and (G′(vk), h(u)) ≤ β/ρ(dw(vk, B̃)). (100)

Since G is an N-weak-to-weak continuously differentiable functional on E, we
would have

(G′(vk), h(u))→ (G′(u), h(u)) ≤ β/ρ(dw(u, B̃)), (101)

by (24) in view of (100). This contradicts (98). Thus (99) holds.
Let Ũ be the set U with the inherited topology of Ẽ. It is a metric space, and

W(u) ∩ Ũ is an open set in this space. Thus, {W(u) ∩ Ũ}, u ∈ Ũ , is an open
covering of the paracompact space Ũ (cf., e.g., [7] ). Consequently, there is a locally
finite refinement {Wτ } of this cover. For each τ there is an element uτ such that
Wτ ⊂ W(uτ ). Let {ψτ } be a partition of unity subordinate to this covering. Each ψτ

is locally Lipschitz continuous with respect to the norm |u|w and consequently with
respect to the norm of E. Let

Y (u) =
∑

ψτ (u)h(uτ ), u ∈ Ũ . (102)

Then Y (u) is locally Lipschitz continuous with respect to both norms. Moreover,

‖Y (u)‖ ≤
∑

ψτ (u)‖h(uτ )‖ ≤ 1 (103)

and

(G′(u), Y (u)) =
∑

ψτ (u)(G
′(u), h(uτ )) ≥ β/ρ(dw(u, B̃)), u ∈ Ũ . (104)

Reduce δ to satisfy

β

∫ d

δ

dt

ρ(t)
≥ b1 − b0 + δ.

Let

Q0 = {u ∈ E : b0 − 2δ ≤ G(u) ≤ b1 + 2δ},
Q1 = {u ∈ E : b0 − δ ≤ G(u) ≤ b1 + δ},
Q2 = E \Q0,
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η(u) = dw(u,Q2)/[dw(u,Q1)+ dw(u,Q2)].

It is easily checked that η(u) is locally Lipschitz continuous (with respect to the Ew

norm) on E and satisfies

⎧
⎪⎪⎨

⎪⎪⎩

η(u) = 1, u ∈ Q1,

η(u) = 0, u ∈ Q̄2,

η(u) ∈ (0, 1), otherwise.

(105)

Let

W̃ (u) = −η(u)Y (u)ρ(dw(u, B̃)).

Then

‖W̃ (u)‖ ≤ ρ(dw(u, B̃)) ≤ ρ(d(u, B̃)), u ∈ Ũ .

By Theorem 6, for each v ∈ U there is a unique solution σ(t)v of

σ ′(t) = W̃ (σ (t)), t ∈ R
+, σ (0) = v. (106)

Take

T =
∫ d

δ

dt

ρ(t)
≥ (b1 − b0 + δ)/β. (107)

Let

K = {(u, t) : u = σ(t)v, v ∈ *̄, t ∈ [0, T ]}.

Then K is a compact subset of Ẽ×R. To see this, let (uk, tk) be any sequence in K.

Then uk = σ(tk)vk, where vk ∈ *̄. Since * is bounded, there is a subsequence such
that vk → v0 weakly in E and tk → t0 in [0, T ]. Since *̄ is convex and bounded,
v0 is in *̄ and |vk − v0|w → 0. Since σ(t) is continuous in Ẽ × R, we have

uk = σ(tk)vk ⇀ σ(t0)v0 ∈ K.

Each u0 ∈ U has a neighborhood W(u0) in Ẽ and a finite dimensional subspace
S(u0) such that Y (u) ⊂ S(u0) for u ∈ W(u0) ∩ U. Since σ(t)u is continuous
in Ẽ × R, for each (u0, t0) ∈ K there is a neighborhood W(u0, t0) ⊂ Ẽ × R

and a finite dimensional subspace S(u0, t0) ⊂ E such that zt (u) ⊂ S(u0, t0) for
(u, t) ∈ W(u0, t0), where
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zt (u) := u− σ(t)u =
{∫ t

0 Y (σ(s)u)ρ(dw(σ (s)u, B̃))ds, u ∈ U,

0, u 
∈ U.
(108)

Since K is compact, there is a finite number of points (uj , tj ) ⊂ K such that K ⊂
W = ∪W(uj , tj ). Let S be a finite dimensional subspace of E containing p and
all the S(uj , tj ) and such that FS 
= {0}. Then for v ∈ *̄ and t ∈ [0, T ] we have
zt (v) ∈ S. Thus σ ∈ 3w(*).

We also have

dG(σ(t)v)/dt = −η(σ (t)v)(G′(σ (t)v), Y (σ (t)v))ρ(dw(σ (t)v, B̃)) (109)

≤ −βη(σ).

Let v ∈ *. If there is a t1 ≤ T such that σ(t1)v /∈ Q1, then

G(σ(T )v) ≤ G(σ(t1)v) ≤ b0 − δ. (110)

On the other hand, if σ(t)v ∈ Q1 for all t ∈ [0, T ], then we have by (109)

G(σ(T )v) ≤ b1 − βT ≤ b0 − δ.

Hence

G(σ(T )v) ≤ b0 − δ, v ∈ *. (111)

Let u1(t) be the solution of

u′(t) = −ρ(u(t)), t ∈ [0, T ], u(0) = d = d(A, B̃).

By Theorem 6,

d(σ (t)v, B̃) ≥ u1(t), t ∈ [0, T ], v ∈ A.

But

∫ d

u1(t)

dτ

ρ(τ)
= t, t ∈ [0, T ].

Consequently,

u1(t) ≥ u1(T ) ≥ δ, t ∈ [0, T ],

since
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T =
∫ d

δ

dt

ρ(t)
≥ (b1 − b0 + δ)/β.

Thus,

d(σ (t)v, B̃) ≥ δ, t ∈ [0, T ], v ∈ A.

Consequently, σ(t)v ∩ B̃ = φ, t ∈ (0, T ]. This means that

σ(t)v ∩ B̃ = φ, v ∈ A, t ∈ (0, T ].

Hence,

σ(t)A ∩ B̃ = φ, t ∈ (0, T ], (112)

and

sup
σ(T )A

G ≤ b0 − δ.

Let u2(t) be the solution of

u′(t) = ρ(u(t)), t ∈ [0, T ], u(0) = R.

By Theorem 6,

‖σ(t)v‖ ≤ u2(t), t ∈ [0, T ], v ∈ A.

Now it follows from the choice of ν and the fact that A ⊂ BR, that

∫ u2(T )

R

dt

ρ(t)
= T ≤

∫ ν

R

dt

ρ(t)
.

Thus,

‖σ(t)v‖ ≤ ν, v ∈ A, t ∈ [0, T ].

Hence,

σ(t)A ∩ [B\B̃] = φ, t ∈ [0, T ]. (113)

If we combine this with (112), we obtain

σ(t)A ∩ B = φ, t ∈ [0, T ]. (114)
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But σ ∈ 3w(*). By Lemma 17, this implies

σ(t)* ∩ B 
= φ, 0 < t ≤ T .

Thus, there is a u ∈ * such that σ(T )u ∈ B. But that would mean that G(σ(T )u) ≥
b0, contradicting (111). This completes the proof. ��
Lemma 19 Let N be a closed separable subspace of a Hilbert space E, and let
* be a bounded, convex, open subset of N containing a point p. Let G be a an N-
weak-to-weak continuously differentiable functional on E. Let F be an N-weakly
continuous mapping. Assume d = d(A,B) > 0, and

−∞ < b0 := inf
B

G, b1 := sup
*

G <∞,

where A = ∂* and B = F−1(p). If * ⊂ BR, let ν > 0, β > 0 be such that

β ln
2ν + d

2ν
> b1 − b0, β ln

3ν

2ν + R
> b1 − b0. (115)

Then there is a sequence {uk} ⊂ E such that

G(uk)→ c, b0 ≤ c ≤ b1, (ν + |uk|w)‖G′(uk)‖ ≤ β. (116)

Proof We take ρ(s) = 2ν + s. Then Lemma 18 requires (115) to hold. Since

|u|w ≤ ν + dw(u, B̃), u ∈ E,

(116) follows from (95). ��
Lemma 20 Let N be a closed separable subspace of a Hilbert space E, and let*n

be a sequence of bounded, convex, open subsets of N containing a point p. Let G
be a an N-weak-to-weak continuously differentiable functional on E. Let F be an
N-weakly continuous mapping. Assume dn = d(An, B)→∞, and

−∞ < b0 := inf
B

G, b1 := sup
n

sup
*n

G <∞,

where An = ∂*n and B = F−1(p). Assume that *n ⊂ BRn, and there are
νn > 0, β > 0 be such that

β ln
2νn + dn

2νn
> b1 − b0, β ln

3νn
2νn + Rn

> b1 − b0. (117)

Then there is a sequence {un} ⊂ E such that
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G(un)→ c, b0 ≤ c ≤ b1, (νn + |un|w)‖G′(un)‖ ≤ β. (118)

Proof By Lemma 19, for each νn there is a sequence satisfying

G(uk)→ c, b0 ≤ c ≤ b1, (νn + |uk|w)‖G′(uk)‖ ≤ β. (119)

Pick one member. ��
Lemma 21 Let N be a closed, separable subspace of a Banach space E, and for
each R > R0 let *R(p) be an open, convex, bounded set in N containing a point p.
Let G be a an N-weak-to-weak continuously differentiable functional on E, and let
F be an N-weakly continuous mapping. Assume

dR = dw(A
R, F−1(p))→∞, R →∞,

where AR = N\*R(p). Assume

−∞ < b0 = inf
B

G, sup
AR

G ≤ a0 <∞, (120)

for R > R0. Then for each sequence νk ≥ 2dk − ε there is a β > 0 and a sequence
{uk} ⊂ E such that

G(uk)→ c, b0 ≤ c ≤ b1, (νk + |uk|w)‖G′(uk)‖ ≤ β. (121)

Proof Take νn = 2Rn = 2(dn + ε). Apply Lemma 20. ��
Lemma 22 Let N be a closed, separable subspace of a Hilbert space E with
orthogonal complementM⊕{v0}, where v0 is an element inE having unit norm and
orthogonal to both M and N, and let δ < R be positive numbers. Let ϕ(t) ∈ C1(R)

be such that

0 ≤ ϕ(t) ≤ 1, ϕ(0) = 1,

and

ϕ(t) = 0, |t | ≥ 1.

Let

F(v+w+sv0) = v+[s+δ−δϕ(‖w‖2/δ2)]v0, w ∈ M, v ∈ N, s ∈ R. (122)

LetG be a an N-weak-to-weak continuously differentiable functional on E. Assume

−∞ < b0 = inf
B

G, sup
A

G = b1 <∞, (123)
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holds with A = [N ⊕ {v0}], AR = A ∩ ∂BR and B = F−1(δv0) = {w + rv0 : w ∈
M, r = δϕ(‖w‖2/δ2)}. Then for each sequence νk → ∞ there is a β > 0 and a
sequence {uk} ⊂ E such that

G(uk)→ c, b0 ≤ c ≤ b1, (νk + |uk|w)‖G′(uk)‖ ≤ β. (124)

Proof Note that F is an N -weakly continuous mapping. Let

*R = {v + sv0 : |v|2w + s2 < R2, v ∈ N},

AR = {v + sv0 : |v|2w + s2 = R2, v ∈ N}

and

B = F−1(δv0) = {w + rv0 : w ∈ M, r = δϕ(‖w‖2/δ2)}.

Then,

dw(AR,B)2 = inf |v + sv0 − w − rv0|2w
= |v|2w + ‖w‖2 + (s − r)2

= R2 − s2 + ‖w‖2 + s2 − 2sδϕ(‖w‖2/δ2)+ δ2ϕ(‖w‖2/δ2)2

≥ R2 − 2Rδϕ(‖w‖2/δ2)+ δ2ϕ(‖w‖2/δ2)2

= [R − δϕ(‖w‖2/δ2)]2

≥ (R − δ)2 →∞, R →∞.

The hypotheses of Lemma 21 are satisfied. ��
Proof of Theorem 9 Apply Lemma 18. ��
Proof of Theorem 11 Apply Lemma 21. ��
Proof of Corollary 13 Apply Lemma 22. ��
Proof of Theorem 2 Apply Theorem 9 ��
Proof of Theorem 4 Apply Theorem 12. ��
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Canonical Systems of Partial Differential
Equations

Martin Schechter

Abstract We use critical point theory to find solutions of the nonlinear steady state
Schrödinger equations arising in the study of photonic lattices.

1 Introduction

Systems of partial differential equations arise in many investigations in the physical
sciences. Depending on the application and on the questions asked, different types
of systems emerge. Usually, if one is interested in finding steady states solutions, the
resulting system is elliptic in nature. Such systems may display severe difficulties
when one tries to solve them. Most of the time they admit a trivial solution, where
all of the unknown functions are identically zero. However, the physical application
requires a solution which is not identically zero. In such cases, the methods of
solution may be very difficult. In particular, one has to show that the solution
obtained is not trivial. The system that we study is not only deceptive, but it is
almost impossible to tell if one has solved the whole system or only parts of the
system. I call it “canonical.” I shall elaborate on this later.

Many general systems are the form

A v = f (x, v,w), x ∈ Q ⊂ R
n, (1)

Bw = g(x, v,w), x ∈ Q ⊂ R
n, (2)

where A ,B are linear partial differential operators. I call this system “deceptive”
if (v, 0) is a solution of (1) and (2) whenever v satisfies

A v = f (x, v, 0), x ∈ Q ⊂ R
n, (3)
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or (0, w) is a solution whenever w satisfies

Bw = g(x, 0, w), x ∈ Q ⊂ R
n. (4)

In this case it is very difficult to determine if both components of a solution are
nontrivial.

The particular system I have chosen consist of nonlinear Schrödinger equations
arising in optics (cf. [16]) describing the propagation of a light wave in induced
photonic lattices. They can be written in the form

iVt +ΔV = PV

1+ |V |2 + |W |2

iWt +ΔW = PW

1+ |V |2 + |W |2

for the periodic wave functions V (x, t),W(x, t) over a periodic bounded spacial
domain Ω ⊂ R

2, where P,Q are parameters (cf. [2, 21]). To find a steady state
solution, we look for solutions of the form

V (x, t) = eiλt v(x), W(x, t) = eiλtw(x),

where λ is a real constant. This leads to the following system of equations over a
periodic domain Ω ⊂ R

2 :

Δv = Pv

1+ v2 + w2 + λv, (5)

Δw = Qw

1+ v2 + w2
+ λw, (6)

where P,Q, λ are parameters. The solutions v,w are to be periodic in Ω with the
same periods. One wishes to obtain intervals of the parameter λ for which there
are nontrivial solutions. This will provide continuous energy spectrum that allows
the existence of steady state solutions. This system was studied in [2], where it was
shown that

1. If P,Q, λ are all positive, then the only solution is trivial.
2. If P < 0 and 0 < λ < −P, then the system (5) and (6) has a nontrivial solution.
3. If P,Q > 0, there is a constant δ > 0 such that the system (5) and (6) has a

nontrivial solution provided 0 < −λ < δ.

4. All of these statements are true if we replace P by Q.

Wave propagation in nonlinear periodic lattices has been studied by many reseachers
(cf., e.g., [1–11, 17, 20–23] and their bibliographies.)
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In the present paper, we wish to cover some remaining situations not mentioned
in [2] as well as extending their results to higher dimensions. We shall show that
there are many intervals of the parameters in which nontrivial solutions exist. Our
results are true in any dimension.

In stating our results, we shall make use of the following considerations. Let Ω
be a bounded periodic domain in R

n, n ≥ 1. Consider the operator−Δ on functions
in L2(Ω) having the same periods as Ω. The spectrum of −Δ consists of isolated
eigenvalues of finite multiplicity:

0 = λ0 < λ1 < · · · < λ� < · · · ,

with eigenfunctions in L∞(Ω). Let λ�, � ≥ 0, be one of these eigenvalues, and
define

N =
⊕

λ≤λ�
E(λ), M = N⊥.

As noted in [2], to prove the existence of a nontrivial solution of system (5) and (6),
it suffices to obtain a nontrivial solution of either

Δv = Pv

1+ v2 + λv, (7)

or

Δw = Qw

1+ w2 + λw. (8)

This stems from the fact that (v, 0) is a solution of (5) and (6) if v is a solution of (7)
and (0, w) is a solution of (5) and (6) if w is a solution of (8). The author is unaware
if such solutions are desirable from the physical point of view. However, we have
been able to find values of P,Q, λ for which the system (5) and (6) has a solution
(v,w) where v 
= 0, w 
= 0.

We shall prove

Theorem 1 If 0 < λ < −P or 0 < λ < −Q, then (5) and (6) has a nontrivial
solution.

Theorem 2 If 0 < −λ < P or 0 < −λ < Q, then (5) and (6) has a nontrivial
solution.

Theorem 3 If P > 0,Q > 0, σ = −λ > 0, and either 0 ≤ σ − P < λ1 < σ or
0 ≤ σ −Q < λ1 < σ, then (5) and (6) has a nontrivial solution.

Theorem 4 If P > 0,Q > 0, σ = −λ > 0, and either λ� ≤ σ − P < λ�+1 < σ

or λ� ≤ σ −Q < λ�+1 < σ then (5) and (6) has a nontrivial solution.

Theorem 5 If P > 0, Q = 0, λ = −λ� < 0, −Δw = λ�w and
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λ� < P

∫

Ω

1

1+ w2 /|Ω|,

then (5) and (6) has a nontrivial solution. If w 
= 0, then the solution has both
components nonzero.

Theorem 6 If Q > 0, P = 0, λ = −λ� < 0, −Δv = λ�v and

λ� < Q

∫

Ω

1

1+ v2 /|Ω|,

then (5) and (6) has a nontrivial solution. If v 
= 0, then the solution has both
components nonzero.

2 Some Lemmas

In proving our results we shall make use of the following lemmas (cf., e.g., [12, 14,
15, 18]). For the definition of linking, cf. [12].

Lemma 1 Let M,N be closed subspaces of a Hilbert space E such that one of
them is finite dimensional and E = M ⊕N . Take B = ∂Bδ ∩M, and let w0 be any
element in ∂B1 ∩M . Take A to be the set of all u of the form

u = v + sw0, v ∈ N, s ∈ R,

satisfying the following

(a) ‖v‖E ≤ R, s = 0
(b) ‖v‖E ≤ R, s = 2R0
(c) ‖v‖E = R, 0 ≤ s ≤ 2R0,

where 0 < δ < min(R,R0). Then A and B link each other.

Lemma 2 The sets ‖u‖E = R > 0 and {e1, e2} link each other provided ‖e1‖E <

R and ‖e2‖E > R.

Lemma 3 If G(u) ∈ C1(E,R) satisfies

α = inf
E

G > −∞, (9)

then there is a sequence {uk} such that

G(uk)→ α, (1+ ‖uk‖E)‖G′(uk)‖ → 0. (10)

Lemma 4 If A links B, and G(u) ∈ C1(E,R) satisfies
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a0 = sup
A

G ≤ b0 = inf
B

G, (11)

then there is a sequence {uk} such that

G(uk)→ c ≥ b0, (1+ ‖uk‖E)‖G′(uk)‖ → 0. (12)

We let E be the subspace of H 1,2(Ω) consisting of those functions having the
same periodicity as Ω with norm given by

‖w‖2
E = ‖∇w‖2 + ‖w‖2.

Assume P 
= 0,Q 
= 0, λ 
= 0. Let

a(u) = 1

P
[ ‖∇v‖2 + λ ‖v‖2] + 1

Q
[ ‖∇w‖2 + λ ‖w‖2], v, w ∈ E (13)

and

G(u) = a(u)+
∫

Ω

ln(1+ u2) dx. (14)

We have

Lemma 5 If G(u) is given by (14), then every sequence satisfying (10) has a
subsequence converging in E. Consequently, there is a u ∈ E such that G(u)=c
and G′(u) = 0.

Proof The sequence satisfies

G(uk) = 1

P
‖∇vk‖2 + λ

P
‖vk‖2 + 1

Q
‖∇wk‖2 + λ

Q
‖wk‖2 (15)

+
∫

Ω

ln{1+ |uk|2} dx → c,

(G′(uk), q)/2 = 1

P
(∇vk,∇g)+ λ

P
(vk, g) (16)

+ 1

Q
(∇wk,∇h)+ λ

Q
(wk, h)

+
∫

Ω

ukq

1+ u2
k

dx → 0, q = (g, h),

(G′(uk), vk)/2 = 1

P
(∇vk,∇vk)+ λ

P
(vk, vk) (17)
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+
∫

Ω

ukvk

1+ u2
k

dx → 0.

and

(G′(uk), wk)/2 = 1

Q
(∇wk,∇wk)+ λ

Q
(wk,wk) (18)

+
∫

Ω

ukwk

1+ u2
k

dx → 0.

Thus,

∫

Ω

H(x, uk) dx → c, (19)

where

H(x, t) = ln(1+ t2)− t2

1+ t2
. (20)

Let ρk = ‖uk‖H , where

‖u‖2
H =

1

|P | [‖∇v‖
2 + |λ| ‖v‖2] (21)

+ 1

|Q| [‖∇w‖
2 + |λ| ‖w‖2], u = (v,w) ∈ E.

Assume first that ρk → ∞. Let ũk = uk/ρk. Then ‖ũk‖H = 1. Hence, there is a
renamed subsequence such that ũk ⇀ ũ in E, and ũk → ũ in L2(Ω) and a.e. Now

‖uk‖2
H =

1

|P | [‖∇vk‖
2 + |λ| ‖vk‖2] + 1

|Q| [‖∇wk‖2 + |λ| ‖wk‖2]. (22)

By (17) and (18),

‖uk‖2
H ≤ |(G′(uk), vk)|/2+ |(G′(uk), wk)|/2

+ |λ| − λ

|P | ‖vk‖2 + |λ| − λ

|Q| ‖wk‖2

+
∫

Ω

u2
k

1+ u2
k

dx.

Hence,
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1 = ‖ũk‖2
H ≤ [|(G′(uk), vk)|/2+ |(G′(uk), wk)|/2]/ρ2

k + C‖ũk‖2. (23)

In the limit we have,

1 ≤ C‖ũ‖2.

This shows that ũ 
≡ 0. Let Ω0 be the subset of Ω where ũ(x) 
= 0. Then |Ω0| 
= 0.
Thus

∫

Ω

H(x, uk) dx =
∫

Ω0

H(x, uk) dx +
∫

Ω\Ω0

H(x, uk) dx

≥
∫

Ω0

H(x, uk) dx →∞.

This contradicts (19). Thus, the sequence satisfying (10) is bounded in E. Hence,
there is a renamed subsequence such that uk ⇀ u0 in E, and uk → u0 in L2(Ω)

and a.e. Taking the limit in (17), we obtain

(G′(u0), q)/2 = 1

P
(∇v0,∇g)+ λ

P
(v0, g) (24)

+ 1

Q
(∇w0,∇h)+ λ

Q
(w0, h)

+
∫

Ω

u0q

1+ u2
0

dx = 0, q = (g, h),

Thus, u0 satisfies G′(u0) = 0. Since u0 ∈ E, it satisfies

(G′(u0), u0)/2 = 1

P
(∇v0,∇v0)+ λ

P
(v0, v0) (25)

+ 1

Q
(∇w0,∇w0)+ λ

Q
(w0, w0)

+
∫

Ω

u2
0

1+ u2
0

dx = 0

Also, from the limit in (17), we have

lim
1

P
‖∇vk‖2 = lim(G′(uk), vk)/2

− lim[ λ
P
‖vk‖2 +

∫

Ω

v2
k

1+ u2
k

dx]
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=− [ λ
P
‖v‖2 +

∫

Ω

v2

1+ u2
dx]

= 1

P
‖∇v‖2,

with a similar statement for ‖∇w‖2. Consequently, ∇uk → ∇u in L2(Ω). This
shows that G(uk)→ G(u0). Hence, G(u0) = c.

Lemma 6 If G′(u) = 0, then (v,w) is a solution of (5) and (6).

Proof From (24) we see that

|(∇u,∇q)| ≤ C‖q‖, q ∈ E.

From the fact that the functions and Ω are periodic with the same period, it follows
that u ∈ H 2,2(Ω) and satisfies (5) and (6) (cf., e.g., [13]).

Lemma 7
∫

Ω

ln(1+ u2)dx/‖u‖2
H → 0, ‖u‖H →∞. (26)

Proof Suppose uk ∈ H is a sequence such that ρk = ‖uk‖H → ∞. Let ũk =
uk/ρk. Then ‖ũk‖H = 1. Hence, there is a renamed subsequence such that ũk ⇀ ũ

in H, and ũk → ũ in L2(Ω) and a.e. Now

ln(1+ u2
k)

ρ2
k

= ln(1+ u2
k)

u2
k

ũ2
k → 0 a.e.

and it is dominated a.e. by ũ2
k → ũ2 in L1(Ω). Thus

∫

Ω

ln(1+ u2
k)

ρ2
k

dx → 0.

Since this is true for any sequence satisfying ‖uk‖H →∞, we see that (26) holds.

Corollary 1 If

I (u) = ‖u‖2
H −

∫

Ω

ln(1+ u2) dx,

then

I (v)→∞ as ‖v‖H →∞. (27)

Proof We have
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I (u)/‖u‖2
H = 1−

∫

Ω

ln(1+ u2)dx/‖u‖2
H → 1, ‖u‖H →∞

by Lemma 7. This gives (27).

Lemma 8
∫

Ω

[u2 − ln(1+ u2)]dx/‖u‖2
H → 0, ‖u‖H → 0. (28)

Proof Suppose uk ∈ H is a sequence such that ρk = ‖uk‖H → 0. In particular,
there is a renamed subsequence such that uk → 0 a.e. Let ũk = uk/ρk. Then
‖ũk‖H = 1. Hence, there is a renamed subsequence such that ũk ⇀ ũ ∈ H, and
ũk → ũ in L2(Ω) and a.e. Now

u2
k − ln(1+ u2

k)

ρ2
k

≤ u2
k

1+ u2
k

ũ2
k → 0 a.e.

and it is dominated a.e. by ũ2
k → ũ2 in L1(Ω). Thus

∫

Ω

u2
k − ln(1+ u2

k)

ρ2
k

dx → 0.

Since this is true for any sequence satisfying ‖uk‖H → 0, we see that (28) holds.

3 Proofs of the Theorems

Proof of Theorem 1 We let E be the subspace of H 1,2(Ω) consisting of those
functions having the same periodicity as Ω with norm given by

‖w‖2
E = ‖∇w‖2 + ‖w‖2.

Let u = (v,w), where v,w ∈ E and u2 = v2 + w2. If q = (g, h), we write
uq = vg + wh. Define

‖u‖2
H =

1

|P | [‖∇v‖
2 + |λ| ‖v‖2] (29)

+ 1

|Q| [‖∇w‖
2 + |λ| ‖w‖2], v, w ∈ E.

Assume that P,Q, λ do not vanish. Then ‖u‖2
H is a norm on H = E × E having a

scalar product (u, h)H .

Let
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I (u) = ‖u‖2
H −

∫

Ω

ln(1+ u2) dx. (30)

Then,

(I ′(u), q)/2 = (u, q)H −
∫

Ω

uq

1+ u2 dx, q ∈ H. (31)

If I ′(u) = 0, then

Δv = −|P |v
1+ |v|2 + |w|2 + |λ|v, (32)

Δw = −|Q|w
1+ |v|2 + |w|2 + |λ|w. (33)

This is equivalent to (5) and (6) if P < 0,Q < 0, λ > 0. To prove the theorem, we
must show that there is a nontrivial solution of I ′(u) = 0 when either 0 < λ < −P
or 0 < λ < −Q.

Assume 0 < λ < −P. We show that I (u) has a minimum u 
= 0.
Let the sequence uk ∈ H satisfy

I (uk)↘ α = inf
H

I

(which may be −∞). By (27), ρk = ‖uk‖H is bounded. Hence, there is a renamed
subsequence such that uk ⇀ u0 in H, and uk → u0 in L2(Ω) and a.e. Since

‖uk‖2
H − 2([uk − u0], u0)H = ‖u0‖2

H + ‖uk − u0‖2
H ,

we have

I (u0) ≤ ‖uk‖2
H − 2([uk − u0], u0)H

−
∫

Q

ln(1+ u2
0)dx

= I (uk)− 2([uk − u0], u0)H

−
∫

Q

[ln(1+ u2
0)− ln(1+ u2

k)]dx

→ α.

Thus,

α ≤ I (u0) ≤ α,
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showing that α is finite and that u0 is a minimum. Thus, I ′(u0) = 0 and u0 is a
solution of

Δv = −|P |v
1+ |v|2 + |w|2 + λv, (34)

Δw = −|Q|w
1+ |v|2 + |w|2 + λw. (35)

Next, we show that u0 
= 0. We do this by showing that α < 0. Consider a constant
function u = (s, 0). Then,

I (u) = [ λ

|P | s
2 − ln(1+ s2)]|Ω|, s ∈ R.

This has a negative minimum if λ < |P |. Thus I (u0) = α < 0. Since I (0, 0) = 0,
we see that u0 
= 0. However, u0 satisfies (34) and (35), not (5) and (6). To rectify
the situation, we merely note that the same method produces a negative minimum
v0 for I (v, 0), and (v0, 0) is a nontrivial solution of (5) and (6). This completes the
proof for the case 0 < λ < −P. The case 0 < λ < −Q is treated similarly.

Proof of Theorem 2 Assume 0 < σ < P, 0 < σ < Q, and let a(u) and G(u) be
given by (13) and (14), respectively. Then G′(u) = 0 iff u = (v,w) is a solution of
(5) and (6). We search for a nontrivial solution.

Let ρk = ‖uk‖H , where

‖u‖2
H =

1

|P | [‖∇v‖
2 + |λ| ‖v‖2] (36)

+ 1

|Q| [‖∇w‖
2 + |λ| ‖w‖2], u = (v,w) ∈ E.

Assume that ρk → 0. Let ũk = uk/ρk. Then ‖ũk‖H = 1. Hence, there is a renamed
subsequence such that ũk ⇀ ũ in E, and ũk → ũ in L2(Ω) and a.e. We have

G(uk)/ρ
2
k =

1

P
‖∇ṽk‖2 + λ+ P

P
‖ṽk‖2

+ 1

Q
‖∇w̃k‖2 + λ+Q

Q
‖w̃k‖2

+
∫

Ω

[ln{1+ |uk|2} − u2
k] dx/ρ2

k .

Since P > σ and Q > σ, we see in view of Lemma 7 that there are positive
constants ε, η such that

G(u)/‖u‖2
H ≥ ε, ‖u‖H ≤ η.



620 M. Schechter

Let A be the set of those u ∈ H such that ‖u‖H = η. Consider a constant function
u = (s, 0). Then,

G(u)/s2 = [ λ
P
+ s−2 ln(1+ s2)]|Ω| → λ

P
|Ω| < 0, s →∞.

Hence, there is a u ∈ H such that ‖u‖H > η and G(u) < εη2. Since G(0, 0) = 0,
there is a u ∈ H such that ‖u‖H < η and G(u) < εη2. The theorem now follows
from Lemmas 2, 4, and 5.

Proof of Theorem 3 Assume P > 0,Q > 0, λ < 0 and σ = −λ > max[P, λ1].
Let

a(u) = 1

P
[ ‖∇v‖2 − σ ‖v‖2] + 1

Q
[ ‖∇w‖2 − σ ‖w‖2], v, w ∈ E (37)

and

G(u) = a(u)+
∫

Ω

ln(1+ u2) dx. (38)

Then G′(u) = 0 iff u satisfies (5) and (6).
First, we note that

G(u) ≤ 0, u ∈ N,

if σ ≥ P, σ ≥ Q. To see this, let u = (c, d) ∈ N. Then

a(c, d) = − σ

P
c2|Ω| − σ

Q
d2|Ω|

and
∫

Ω

ln(1+ c2 + d2)dx ≤ (c2 + d2)|Ω|.

Thus,

G(u) ≤ [1− σ

P
]c2|Ω| + [1− σ

Q
]d2|Ω|.

This means that

G(u) ≤ 0, u ∈ N, (39)

provided σ ≥ P, σ ≥ Q.
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Next, let ψ be an eigenfunction of−Δ corresponding to the eigenvalue λ1. If we
take u = (ψ + c, ψ + d), we have

a(u) = 1

P
[ ‖∇(ψ + c)‖2 − σ ‖(ψ + c)‖2]

+ 1

Q
[ ‖∇(ψ + d)‖2 − σ ‖(ψ + d)‖2],

and this gives

a(u) = 1

P
[(λ1 − σ) ‖ψ‖2 − σc2] + 1

Q
[(λ1 − σ) ‖ψ‖2 − σd2],

which will be negative if σ > λ1. Moreover,

∫

Ω

ln(1+ 2ψ2 + c2 + d2)dx/‖u‖2
H → 0, ‖u‖H →∞.

This follows from the fact that
∫

Ω

ln(1+ u2)dx/‖u‖2
H → 0, ‖u‖H →∞ (40)

(Lemma 7). Consequently,

lim sup
‖(ψ+c,ψ+d)‖H→∞

G(ψ + c, ψ + d) < 0 (41)

provided σ > λ1.

Next, let u = (v,w) be any function in M. Then ‖∇u‖2 = ‖∇v‖2 + ‖∇w‖2 ≥
λ1‖v‖2 + λ1‖w‖2 = λ1‖u‖2. Then

a(u)+ ‖u‖2 ≥ 1

P
[1− σ − P

λ1
] ‖∇v‖2 + 1

Q
[1− σ −Q

λ1
] ‖∇w‖2.

Thus, there is an ε > 0 such that

a(u)+ ‖u‖2 ≥ 2ε‖∇u‖2, u ∈ M, (42)

when σ − λ1 < min[P,Q].
Now

∫

Ω

[u2 − ln(1+ u2)]dx/‖u‖2
H → 0, ‖u‖H → 0 (43)

by Lemma 8. If we combine (42) and (43), we see that there is an ε > 0 such that
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G(u) ≥ ε‖∇u‖2, u ∈ M, (44)

when ‖∇u‖2 is small and σ − λ1 < min[P,Q].
Take A = ∂(N ⊕ {ψ}), B = ∂Bδ ∩ M. By (39), (41), and (44) one can

apply Lemma 1 to obtain (10) and then Lemma 5 to conclude that (5) and (6) has
a nontrivial solution. To see this, note that a0 = 0 < ε ≤ b0, showing that the
solution u0 satisfies G(u0) ≥ ε > 0. Since G(0) = 0, we see that u0 
= 0. If
max[P, λ1] < −λ < P + λ1 is true, but max[Q,λ1] < −λ < Q + λ1, is not,
we can apply the argument used in the proof of Theorem 1. The same is true in the
other direction. This completes the proof.

Proof of Theorem 4 First, we note that

G(u) ≤ 0, u ∈ N, (45)

if σ ≥ λ� +max[P,Q]. To see this, let u = (v,w) ∈ N. Then ‖∇u‖2 = ‖∇v‖2 +
‖∇w‖2 ≤ λ�‖v‖2 + λ�‖w‖2 = λ�‖u‖2. Then

G(u) ≤ 1

P
[λ� − σ + P ] ‖v‖2 + 1

Q
[λ� − σ +Q] ‖w‖2 ≤ 0.

Next, let g be an eigenfunction of −Δ corresponding to the eigenvalue λ�+1. If
we take u = (g + v, g + w), we have

a(u) = 1

P
[ ‖∇(g + v)‖2 − σ ‖(g + v)‖2]

+ 1

Q
[ ‖∇(g + w)‖2 − σ ‖(g + w)‖2],

and this gives

a(u) = 1

P
[(λ�+1 − σ) ‖g‖2 + (λ� − σ)‖v‖2]

+ 1

Q
[(λ�+1 − σ) ‖g‖2 + (λ� − σ 2)‖w‖2],

which will be negative if σ > λ�+1. Moreover, by Lemma 7,

∫

Ω

ln(1+ 2g2 + v2 + w2)dx/‖u‖2
H → 0, ‖u‖H →∞. (46)

Consequently, (46) holds provided σ > λ�+1.

Next, let u = (v,w) be any function in M. Then ‖∇u‖2 = ‖∇v‖2 + ‖∇w‖2 ≥
λ�+1‖v‖2 + λ�+1‖w‖2 = λ�+1‖u‖2. Then
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a(u)+ ‖u‖2 ≥ 1

P
[1− σ − P

λ�+1
] ‖∇v‖2 + 1

Q
[1− σ −Q

λ�+1
] ‖∇w‖2.

Thus, there is an ε > 0 such that

a(u)+ ‖u‖2 ≥ 2ε‖∇u‖2, u ∈ M, (47)

when σ − λ�+1 < min[P,Q].
Now by Lemma 8,

∫

Ω

[u2 − ln(1+ u2)]dx/‖u‖2
H → 0, ‖u‖H → 0. (48)

If we combine (47) and (48), we see that there is an ε > 0 such that

G(u) ≥ ε‖∇u‖2, u ∈ M, (49)

when ‖∇u‖2 is small and σ − λ�+1 < min[P,Q].
By (45), (46), and (49) one can apply Lemma 1 to obtain (10) and then Lemma 5

to conclude that (5) and (6) has a nontrivial solution u0 taking A = ∂(N⊕{g}), B =
∂Bδ∩M. Then a0 = 0 < ε ≤ b0, showing that G(u0) ≥ ε > 0. Since G(0, 0) = 0,
we see that u0 
= 0. If λ� < σ−P < λ�+1 < σ is true, but λ� < σ−Q < λ�+1 < σ

is not, we can apply the argument used in the proof of Theorem 1. The same is true
in the other direction. This completes the proof.

Proof of Theorem 5 If w = 0, this follows from Theorem 1 since 0 < λ� < −P .
Otherwise, let

Iw(v) = 1

P
‖∇v‖2 − λ�

P
‖v‖2 +

∫

Ω

ln{1+ v2 + w2} dx, v ∈ H. (50)

Then,

(I ′w(v), g)/2 = 1

P
(∇v,∇g)− λ�

P
(v, g)+

∫

Ω

vg

1+ v2 + w2 dx. (51)

If I ′w(v) = 0, then u = (v,w) satisfies

Δv = Pv

1+ v2 + w2 − λ�v, (52)

Δw = −λ�w, (53)

which is (5) and (6) for the case Q = 0, λ = −λ�. If we can find a solution
v 
= 0 of I ′w(v) = 0, then we shall have a solution u = (v,w) of (5) and (6) with
v 
= 0, w 
= 0. This was done in Theorem 3 of [19].

The proof of Theorem 6 is similar to that of Theorem 5 and is omitted.
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The Semi-discrete Method for the
Approximation of the Solution of
Stochastic Differential Equations

Ioannis S. Stamatiou

Abstract We study the numerical approximation of the solution of stochastic dif-
ferential equations (SDEs) that do not follow the standard smoothness assumptions.
In particular, we focus on SDEs that admit solutions which take values in a certain
domain; examples of these equations appear in various fields of application such
as mathematical finance and natural sciences among others, where the quantity of
interest may be the interest rate, which takes non-negative values, or the population
dynamics which takes values between zero and one. We review the Semi-Discrete
method (SD), a numerical method that has the qualitative feature of domain
preservation among other desirable properties.

1 Introduction

We are interested in the numerical approximation of stochastic differential equations
(SDEs) that admit solutions in a certain domain and do not satisfy the usual
assumptions. Such equations appear in mathematical finance, e.g. interest rate
models, but also in other fields of applications such as natural and social sciences.
Generally speaking, explicit solutions of these SDEs are unknown, so numerical
methods have to be used to simulate them. While numerical methods exist that
converge strongly to the true solution of SDEs with non-standard coefficients, few
of them are able to maintain the solution process domain. Implicit methods can in
some cases succeed in that direction, but they are usually more time-consuming. Let
us state the problem in mathematical terms.

Throughout, let T > 0 and (Ω,F , {Ft }0≤t≤T ,P) be a complete probability
space, meaning that the filtration {Ft }0≤t≤T is right continuous and F0 includes all
P-null sets. We are interested in the following SDE in integral form
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Xt = X0 +
∫ t

0
a(s,Xs)ds +

∫ t

0
b(s,Xs)dWs, t ∈ [0, T ], (1)

where Wt,ω : [0, T ]×Ω → R
m is an m-dimensional Wiener process adapted to the

filtration {Ft }0≤t≤T , the drift coefficient a : [0, T ] × R
d → R

d and the diffusion
coefficient b : [0, T ] × R

d → R
d×m are measurable functions such that (1) has a

unique strong solution and X0 is independent of all {Wt }0≤t≤T . SDE (1) has non-
autonomous coefficients, i.e. a(t, x), b(t, x) depend explicitly on t. More precisely,
we assume the existence of a predictable stochastic process X : [0, T ] ×Ω → R

d

such that, c.f. [22, Def. 5.2.1], [24, Def. 2.1],

{a(t, Xt )} ∈ L 1([0, T ];Rd), {b(t, Xt )} ∈ L 2([0, T ];Rd×m)

and

P

[

Xt = X0 +
∫ t

0
a(s,Xs)ds +

∫ t

0
b(s,Xs)dWs

]

= 1, for every t ∈ [0, T ].

The drift coefficient a is the infinitesimal mean of the process (Xt ) and the
diffusion coefficient b is the infinitesimal standard deviation of the process (Xt ).

SDEs like (1) have rarely explicit solutions so numerical approximations are
required for path simulations of the solution process Xt(ω).

We are interested in strong approximations (mean-square) of (1), in the case of
nonlinear drift and diffusion coefficients. Strongly converging numerical schemes
have applications in many areas, such as simulating scenarios, filtering or visu-
alizing stochastic dynamics (c.f [20, Sec. 4] and references therein), they are of
theoretical interest (they provide basic insight into weak-sense schemes) and usually
do not require simulations over long-time periods or of a significant number of
trajectories. In the same time we aim for numerical methods that preserve the
domain of the original process, or as we say possess an eternal life time.

Definition 1 (Eternal Life Time of Numerical Solution) Let D ⊆ R
d and

consider a process (Xt ) well defined on the domain D, with initial condition
X0 ∈ D and such that

P({ω ∈ Ω : X(t, ω) ∈ D}) = 1,

for all t > 0. A numerical solution (Ytn)n∈N has an eternal life time if

P(Ytn+1 ∈ D
∣
∣Ytn ∈ D) = 1.

Let us consider the following nonlinear model both in the drift and diffusion
coefficient:

xt = x0 +
∫ t

0
(αxs − βx2

s )ds +
∫ t

0
σx

3/2
s dWs, t ∈ [0, T ], (2)
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where x0 is independent of {Wt }0≤t≤T , x0 > 0 a.s. and σ ∈ R. SDE (2) is referred to
as the 3/2-model [18] or the inverse square root process [1] and is used for modeling
stochastic volatility. The conditions α > 0 and β > 0 are necessary and sufficient
for the stationarity of the process (xt ) and such that neither zero nor infinity is
attainable in finite time [1, App. A].

A “good” numerical scheme for the approximation of the solution of an SDE that
takes positive values, as (2), should preserve positivity, c.f. [2, 21]. The explicit Euler
scheme does not have that property, since its increments are conditionally Gaussian
and therefore there is a positive probability of producing negative values. We refer,
among other papers, to [23] that considers Euler type schemes, modifications of
them to overcome the above drawback, and the importance of positivity.

SDE (2) is a special case of super-linear models of the form (1) where one of the
coefficients a(·), b(·) is super-linear, i.e. when we have that

a(x) ≥ |x|
β

C
, b(x) ≤ C|x|α, for every |x| ≥ C, (3)

or

b(x) ≥ |x|
β

C
, a(x) ≤ C|x|α, for every |x| ≥ C, (4)

where β > 1, β > α ≥ 0, C > 0.
Another issue that arises at the numerical approximation of super-linear problems

like (3) or (4), is that the moments of the scheme may explode, see [19, Th. 1]. A
method that overcomes this drawback is the tamed Euler method, which reads in a
general from

YN
n+1(ω) := YN

n (ω)+ aΔ(Y
N
n (ω)) ·Δ+ bΔ(Y

N
n (ω))ΔWn(ω), (5)

for every n ∈ {0, 1, . . . , N − 1}, N ∈ N and all ω ∈ Ω where ΔWn(ω) :=
W(n+1)T

N
(ω) −WnT

N
(ω) are the increments of the Wiener process, YN

0 (ω) := x0(ω)

and the control functions are such that aΔ → a and bΔ → b as Δ → 0, c.f
[20, (4)], [31, Rel. (3.1)], [27], for various choices of aΔ and bΔ. These balanced
type schemes are explicit, do not explode in finite time and converge strongly to the
exact solution. Nevertheless, in general they do not preserve positivity. We should
also mention here other interesting implicit methods, c.f. [26] and [25], which are
unfortunately time-consuming.

We study SDEs of the general type (1) with solutions in a certain domain and
our aim is to construct explicit numerical schemes which on the one hand, converge
strongly to the solution process and on the other, preserve the domain of the original
SDE.

The semi-discrete (SD) method, originally proposed in [7], has all the above
properties and more, that is:

• it is explicit in general and therefore does not require a lot of computational time,
• it does not explode in non-linear problems, see [8, Sec. 3], [15, Sec. 4], [11]
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• it strongly converges to the exact solution of the original SDE, [7, Sec. 3], [10–
15, 28, 29]

• has the qualitative property of domain preservation, [7, Sec. 3.2], [10, 12–14],
[15, Sec. 4], [11, 28, 29]

• preserves monotonicity, [7, Sec. 3.1]
• preserves the a.s. asymptotic stability of the underlying SDE, [16].

2 The Semi-discrete Method: Setting and General Results

We address first the scalar differential equation (1), that is the one-dimensional case
(d = 1), which we rewrite here

xt = x0 +
∫ t

0
a(s, xs)ds +

∫ t

0
b(s, xs)dWs, t ∈ [0, T ]. (6)

Consider the equidistant partition 0 = t0 < t1 < . . . < tN = T with step-size
Δ = T/N. We assume that there is a unique strong solution a.s. to the following
SDE

yt = ytn+
∫ t

tn

f (tn, s, ytn , ys)ds+
∫ t

tn

g(tn, s, ytn , ys)dWs, t ∈ (tn, tn+1], (7)

for every n ∈ N, n ≤ N − 1, with y0 = x0. Here, the auxiliary functions f and g

satisfy the following assumption.

Assumption 2.1 Let f (s, r, x, y), g(s, r, x, y) : [0, T ]2 × R
2 → R be such that

f (s, s, x, x) = a(s, x), g(s, s, x, x) = b(s, x), where f, g satisfy the following
conditions:

|f (s1, r1, x1, y1)−f (s2, r2, x2, y2)| ≤ CR (|s1−s2|+|r1−r2|+|x1−x2|+|y1 − y2|)
|g(s1, r1, x1, y1)−g(s2, r2, x2, y2)| ≤ CR (|s1−s2|+|r1−r2|+|x1−x2|+|y1 − y2|

+ √|x1 − x2|
)
,

for any R > 0 such that |x1|∨|x2|∨|y1|∨|y2| ≤ R, where the constant CR depends
on R and x ∨ y denotes the maximum of x, y.

We consider the following interpolation process of the semi-discrete approxima-
tion, in a compact form,

yt = y0 +
∫ t

0
f (ŝ, s, yŝ , ys)ds +

∫ t

0
g(ŝ, s, yŝ , ys)dWs, (8)
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where ŝ = tn when s ∈ [tn, tn+1). In that way we may compare with the exact
solution xt , which is a continuous time process. The first and third variable in f, g

denote the discretized part of the original SDE. We observe from (8) that in order to
solve for yt , we have to solve, in general, an SDE and not an algebraic equation.
We can reproduce the Euler scheme if we choose f (s, r, x, y) = a(s, x) and
g(s, r, x, y) = b(s, x). The semi-discrete method (8) can be appropriately modified
to produce an implicit scheme that is explicitly and easily solved if necessary (see
[11, 14, 29]).

In the case of superlinear coefficients the numerical scheme (8) converges to the
true solution xt of SDE (6) and this is stated in the following, see [15, Th. 2.1].

Theorem 1 (Strong Convergence) Suppose Assumption 2.1 holds and (7) has a
unique strong solution for every n ≤ N − 1, where x0 ∈ L p(Ω,R). Let also

E( sup
0≤t≤T

|xt |p) ∨ E( sup
0≤t≤T

|yt |p) < A,

for some p > 2 and A > 0. Then the semi-discrete numerical scheme (8) converges
to the true solution of (6) in the L 2-sense, that is

lim
Δ→0

E sup
0≤t≤T

|yt − xt |2 = 0. (9)

Theorem 1 is an extension of [8, Th. 1] to time-dependent coefficients which
covers super-linear diffusion coefficients, like for example of the form b(t, x) =
β(t) · x3/2. In all other cases we may assume the usual local Lipschitz assumption
for both f and g.

We understand by the general form of decomposition (7) that we may produce
many different semi-discrete numerical schemes. In a sense the method is problem
dependent, since the form of the drift and diffusion coefficients, a and b, of
the original SDE suggest the way of discretization. We will see in the following
Sections 3 and 4 applications of the semi-discrete method which all have in common
the qualitative property of domain preservation.

Relation (9) does not reveal the order of convergence. In order to show the order
of convergence, we work with a truncated version of the SD method, see [30].

We choose a strictly increasing function μ : R+ → R+ such that for every
s, r ≤ T

sup
|x|≤u

(|f (s, r, x, y)| ∨ |g(s, r, x, y)|) ≤ μ(u)(1+ |y|), u ≥ 1. (10)

The inverse function of μ, denoted by μ−1, maps [μ(1),∞) to R+. Moreover,
we choose a strictly decreasing function h : (0, 1] → [μ(1),∞) and a constant
ĥ ≥ 1 ∨ μ(1) such that

lim
Δ→0

h(Δ) = ∞ and Δ1/6h(Δ) ≤ ĥ for every Δ ∈ (0, 1]. (11)
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Let Δ ∈ (0, 1] and fΔ, gΔ defined by

φΔ(s, r, x, y) := φ

(

s, r, (|x| ∧ μ−1(h(Δ)))
x

|x| , y
)

, (12)

for x, y ∈ R where we set x/|x| = 0 when x = 0. Using the truncated auxiliary
functions fΔ and gΔ we may redefine SDEs (7) and (8), which now read

yΔt = yΔtn +
∫ t

tn

fΔ(tn, s, y
Δ
tn
, yΔs )ds +

∫ t

tn

gΔ(tn, s, y
Δ
tn
, yΔs )dWs, t ∈ (tn, tn+1],

(13)
and

yΔt = y0 +
∫ t

0
fΔ(ŝ, s, y

Δ
ŝ
, yΔs )ds +

∫ t

0
gΔ(ŝ, s, y

Δ
ŝ
, yΔs )dWs. (14)

respectively, with y0 = x0 a.s.

Assumption 2.2 Let the truncated versions fΔ(s, r, x, y), gΔ(s, r, x, y) of f, g

satisfy the following condition (φΔ ≡ fΔ, gΔ)

|φΔ(s1, r1, x1, y1)−φΔ(s2, r2, x2, y2)|≤h(Δ)
(
|s1−s2|+|r1−r2|+|x1−x2|+|y1−y2|

)

for all 0 < Δ ≤ 1 and x1, x2, y1, y2 ∈ R, where h(Δ) is as in (11).

Let us also assume that the coefficients a(t, x), b(t, x) of the original SDE satisfy
the Khasminskii-type condition.

Assumption 2.3 We assume the existence of constants p ≥ 2 and CK > 0 such
that x0 ∈ L p(Ω,R) and

xa(t, x)+ p − 1

2
b(t, x)2 ≤ CK(1+ |x|2)

for all (t, x) ∈ [0, T ] × R.

Under the local Lipschitz and the Khasminskii-type condition SDE (6) has a
unique solution and finite moment bounds of order p, c.f. [24], i.e. for all T > 0,
there exists a constant A > 0 such that sup0≤t≤T E|xt |p < A. We rewrite the main
result [30, Th. 3.1].

Theorem 2 (Order of Strong Convergence) Suppose Assumption 2.2 and
Assumption 2.3 hold and (13) has a unique strong solution for every n ≤ N − 1,
where x0 ∈ L p(Ω,R) for some p ≥ 14 + 2γ. Let ε ∈ (0, 1/3) and define for
γ > 0

μ(u) = Cu1+γ , u ≥ 0 and h(Δ) = C +√lnΔ−ε, Δ ∈ (0, 1],



The Semi-discrete Method for the Approximation of the Solution of SDEs 631

where Δ ≤ 1 and ĥ are such that (11) holds. Then the semi-discrete numerical
scheme (14) converges to the true solution of (6) in the L 2-sense with order
arbitrarily close to 1/2, that is

E sup
0≤t≤T

|yΔt − xt |2 ≤ CΔ1−ε . (15)

3 Applications of the Semi-discrete Method: Mathematical
Finance

3.1 3/2-Model

Let us first consider the more general 3/2-model (2) with super-linear drift and
diffusion coefficients, see [15, Sec. 4.1],

xt = x0 +
∫ t

0
(k1(s)xs − k2(s)x

2
s )ds +

∫ t

0
k3(s)x

3/2
s φ(xs)dWs, t ∈ [0, T ],

(16)
where φ(·) is a locally Lipschitz and bounded function with locally Lipschitz
constant C

φ
R, bounding constant Kφ , x0 is independent of all {Wt }0≤t≤T , x0 ∈

L 4p(Ω,R) for some 2 < p and x0 > 0 a.s., E(x0)
−2 < A, k1(·), k2(·), k3(·) are

positive and bounded functions with k2,min > 7
2 (Kφk3,max)

2. It holds that xt > 0
a.s. The following semi-discrete numerical scheme,

yt = y0 +
∫ t

0
(k1(s)− k2(s)yŝ)ysds +

∫ t

0
k3(s)

√
yŝφ(yŝ)ysdWs, (17)

where ŝ = tn, when s ∈ [tn, tn+1), produces a linear SDE with solution

yt = x0 exp
{∫ t

0

(

k1(s)−k2(s)yŝ − k2
3(s)

yŝφ
2(yŝ)

2

)

ds+
∫ t

0
k3(s)

√
yŝφ(yŝ)dWs

}
,

(18)
where yt = yt (t0, x0). We call (18) an exponential semi-discrete approximation
of (16). The exponential semi-discrete numerical scheme (18) converges to the
true solution of (16) in the mean square sense, is positive and has finite moments
E(sup0≤t≤T (yt )p) for appropriate p, see [15, Sec. 4.1]. See also the very recent
work [17], a combination of the Lamperti transformation with the SD method,
named LSD method.
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3.2 CEV Process

The following SDE

xt = x0 +
∫ t

0
(k1 − k2xs)ds +

∫ t

0
k3(xs)

qdWs, t ∈ [0, T ], (19)

where k1, k2, k3 are positive and 1/2 < q < 1 is known as a mean-reverting
CEV process. Equation (19) may represent the instantaneous volatility or the
instantaneous variance of the underlying financially observable. Here the diffusion
coefficient is sub-linear. Feller’s test implies that there is a unique non-explosive
strong solution such that xt > 0 a.s. when x0 > 0 a.s. c.f. [22, Prop. 5.22]. The
steady-state level of xt is k1/k2 and the rate of mean-reversion is k2.

Here we examine two versions of an implicit SD scheme that are solved
explicitly. In [14], we propose

yt = x0 +
∫ t

0
(k1 − k2(1− θ)yŝ − k2θỹs) ds + k3

∫ t

0
(yŝ)

q− 1
2
√
ysdWs

+
∫ tn+1

t

(

k1 − k2(1− θ)ytn −
(k3)

2

4(1+ k2θΔ)
(ytn)

2q−1 − k2θyt

)

ds, (20)

for t ∈ (tn, tn+1] where

ŝ=tj , s ∈ (tj , tj+1], j=0, . . . , n, s̃=
{
tj+1, for s ∈ [tj , tj+1],
t, for s ∈ [tn, t], j=0, . . . , n−1

and θ ∈ [0, 1] represents the level of implicitness. After rearranging

yt (q)=yn+
∫ t

tn

(k3)
2

4(1+ k2θΔ)2 (ytn)
2q−1ds+ k3

1+ k2θΔ
(ytn)

q− 1
2

∫ t

tn

sgn(zs)
√
ysdWs,

(21)
with solution

yt (q) = (zt )
2, zt := √yn + k3

2(1+ k2θΔ)
(ytn)

q− 1
2 (Wt −Wtn), (22)

where yn is

yn := ytn

(

1− k2Δ

1+ k2θΔ

)

+ k1Δ

1+ k2θΔ
− (k3)

2

4(1+ k2θΔ)2 (ytn)
2q−1Δ.

The SD method (22) is positive by construction and under some conditions on the
coefficients ki, the level of implicitness θ and the step-size Δ, it strongly converges
to the solution of (19) with a logarithmic rate if also E(x0)

p < A for some p ≥ 4
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and with a polynomial rate of convergence of magnitude 1
2 (q− 1

2 ) if x0 ∈ R, see [14,
Th.1 and Th.2]. The other version of the implicit SD scheme, see [12], is written in
each sub-interval,

ỹt (q) = ỹn +
∫ t

tn

q(k3)
2

2
(ỹs)

2q−1ds + k3

∫ t

tn

sgn(̃zs)(ỹs)
qdWs (23)

with solution

ỹt (q) = |̃zt |1/(1−q), z̃t := (ỹn)
1−q + k3(1− q)(Wt −Wtn), (24)

where

ỹn := ỹtn (1− k2Δ)+ k1Δ− q(k3)
2Δ

2
(ỹtn )

2q−1.

The SD method (24) is again positive by construction and under some conditions
on the coefficients ki, the level of implicitness θ and the step-size Δ, it strongly
converges to the solution of (19) with a polynomial rate of convergence of
magnitude q(q − 1

2 ) if x0 ∈ R. See also how LSD performs [17].

3.3 CIR/CEV Delay Models with Jump

Here we study a general model of type (19) including delay and jump terms. In
particular we consider the following stochastic delay differential equation (SDDE)
with jump,

xt=
⎧
⎨

⎩

ξ0 +
∫ t

0 (k1 − k2xs−)ds +
∫ t

0 k3b(xs−τ )xαs−dWs +
∫ t

0 g(xs−)dÑs, t ∈ [0, T ],

ξ(t), t ∈ [−τ, 0],
(25)

where xs− = limr↑s xr , the coefficient b ∈ C (R+,R+)1 and is assumed to be
γ -Hölder continuous with γ > 0, the jump coefficient g : R #→ R is assumed
deterministic for simplicity, the function ξ ∈ C ([−τ, 0], (0,∞)) and τ > 0
is a positive constant which represents the delay. Process Ñ(t) = N(t) − λt a
compensated Poisson process with intensity λ > 0 independent of Wt. (25) has a
unique and nonnegative solution and under some conditions on ‖ξ‖ and the step-size
Δ the following scheme strongly converges to the solution of (25) with polynomial
or logarithmic rate, see [29],

1C (A,B) the space of continuous functions φ : A #→ B with norm ‖φ‖ = supu∈A φ(u).
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{
ytk+1− = (ztk+1)

2,

ytk+1 = ytk+1− + g(ytk+1− )ΔÑk,
(26)

where

zt =
√

ytk

(

1− k2Δk

1+ k2θΔk

)

+ k1Δk

1+ k2θΔk

− (k3)2

4(1+ k2θΔk)2

b2(ytk−τ )

(1+ b(ytk−τ )Δ
m
k )

2 (ytk )
2α−1Δk

+ k3

2(1+ k2θΔk)

b(ytk−τ )

1+ b(ytk−τ )Δ
m
k

(ytk )
α− 1

2 (Wt −Wtk )

yt = ξ(t) when t ∈ [−τ, 0] and for k = 0, 1, . . . , nT − 1, and Δk = tk+1 −
tk,ΔÑk := Ñ(tk+1) − Ñ(tk) = ΔNk − λΔk and θ ∈ [0, 1] represents the level of
implicitness, with m = 1/4. The SD scheme (26) combines the semi-discrete idea
with a taming procedure. For the case α = 1/2, known as the CIR model, where no
delay and jump terms, see also [7, 11] and the application of the LSD method [17].
For extensions of the SD method to the two-factor CIR, see [10].

3.4 Aït-Sahalia Model

Let

xt = x0 +
∫ t

0
(
a1

xs
− a2 + a3xs − a4x

r
s )ds + σ

∫ t

0
xρs dWs, (27)

where x0 > 0, the coefficients ai are nonnegative and r > 1, ρ > 1. SDE (27),
known as the Aït-Sahalia model, is used as an interest rate model and satisfies xt > 0
a.s. The approximation of (27), by a combination of the splitting step method and
the semi-discrete method, is proposed in [13]. In fact the SD approximation for the
transformed process zt = x2

t takes place first with dynamics given by

zt = z0+
∫ t

0
(2a1zs−2a2

√
zs+2a3zs−2a4z

(r+1)/2
s +σ 2zρs )ds+2σ

∫ t

0
z
(ρ+1)/2
s dWs.

(28)
Splitting (28) in each subinterval with t ∈ [tn, tn+1] as

z1(t) = z2(tn)+
∫ t

tn

(ln(4/3)z1(s)− 2a2

√
z1(s))ds (29)

z2(t) = z1(tn+1)+
∫ t

tn

(2a1 + (2a3 − ln(4/3))z2(s)− 2a4z
(r+1)/2
2 (s)+ σ 2z

ρ
2 (s))ds

+2σ
∫ t

tn

z
(ρ+1)/2
2 (s)dWs, (30)
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where z2(0) = x0 suggests that we may take the solution of (29)

z1(t) =
(

2a2

ln(4/3)
+

(√
z2(tn)− 2a2

ln(4/3)

)(
4

3

)(t−tn)/2
)2

(31)

and approximate (30) with

z̃2(t) = z1(tn+1)+ 2a1Δ

+
∫ t

tn

(
2a3 − ln(4/3)− 2a4̃z

(r−1)/2
2 (ŝ)+ σ 2̃z

(ρ−1)/2
2 (ŝ)

)
z̃2(s)ds

+2σ
∫ t

tn

z̃
(ρ−1)/2
2 (ŝ)̃z2(s)dWs. (32)

We end up with the following SD numerical scheme for the transformed process zt

z̃n+1 =
⎛

⎝2a1Δ+
(

2a2

ln(4/3)
+

(√
z̃n − 2a2

ln(4/3)

)(
4

3

)Δ/2
)2

⎞

⎠

× exp{(2a3 − ln(4/3)− 2a4̃z
(r−1)/2
n − σ 2̃zρ−2

n )Δ+ 2σ z̃(ρ−1)/2
n ΔWn} (33)

and then take yn = √̃
zn for the approximation of the original Aït-Sahalia model,

which is positive, strongly convergent with finite moment bounds, when r+1 > 2ρ,
with ρ ≥ 2, see [13]. See also the performance of LSD [17].

4 Applications of the Semi-discrete Method: Population
Dynamics and Biology

4.1 Wright-Fisher Model

The next class of SDEs appears in population dynamics to describe fluctuations
in gene frequency of reproducing individuals among finite populations [5] and ion
channel dynamics within cardiac and neuronal cells, (cf. [3, 4, 6] and references
therein),

xt = x0 +
∫ t

0
(k1 − k2xs)ds + k3

∫ t

0

√
xs(1− xs)dWs, (34)

where ki > 0, i = 1, 2, 3. If x0 ∈ (0, 1) and (k1 ∧ (k2 − k1)) ≥ (k3)
2/2, then

0 < xt < 1 a.s. The process
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yt = ytn +
∫ tn+1

tn

(

k1 − (k3)
2

4
+ ytn

(
(k3)

2

2
− k2

))

ds +
∫ t

tn

(k3)
2

4
(1− 2ys)ds

+k3

∫ t

tn

√
ys(1− ys) sgn(zs)dWs, (35)

for t ∈ (tn, tn+1], with y0 = x0 a.s. and zt = sin
(
k3ΔWt

n + 2 arcsin(
√
yn)

)
, where

yn := ytn +
(
k1 − (k3)

2

4 + ytn

(
(k3)

2

2 − k2

))
·Δ has the following solution

yt = sin2
(
k3

2
ΔWt

n + arcsin(
√
yn)

)

, (36)

which has the pleasant feature that yt ∈ (0, 1) when y0 ∈ (0, 1). Process (36) is
well defined when 0 < yn < 1, which is achieved for appropriate Δ. To simplify
conditions on the parameters and the step size d we may adopt the strategy presented
in [28] considering a perturbation of order Δ in the initial condition. Here we used
an additive discretization of the drift coefficient and the eternal life time SD scheme
(36) strongly converges to the solution of (34), see [28]. Moreover, in [28], an
application of the SD method to an extension of the Wright-Fisher model to the
multidimensional case is treated, producing a strongly converging and boundary
preserving scheme.

4.2 Predator-Prey Model

The following system of SDEs, c.f. [20],

X
(1)
t = X

(1)
0 +

∫ t

0
(aX(1)

s − bX(1)
s X(2)

s )ds +
∫ t

0
k1X

(1)
s dW(1)

s ,

X
(2)
t = X

(2)
0 +

∫ t

0
(cX(1)

s X(2)
s − dX(2)

s )ds +
∫ t

0
k2X

(2)
s dW(2)

s ,

where a, b, c, d > 0 and k1, k2 ∈ R with independent Brownian motions
W

(1)
t ,W

(2)
t was studied in [9]. Under some moment bound conditions for (X(i)

t ), i =
1, 2 and when X

(1)
0 > 0 and X

(2)
0 > 0 then X

(1)
t > 0 and X

(2)
t > 0 a.s. Transforming

the second equation Z
(2)
t = ln(X(2)

t ) produces the following system

X
(1)
t = X

(1)
0 +

∫ t

0
(a − beZ

(2)
s )X(1)

s ds +
∫ t

0
k1X

(1)
s dW(1)

s ,

Z
(2)
t = Z

(2)
0 +

∫ t

0
(cX(1)

s − d − (k2)
2)ds + k2W

(2)
t ,
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which is approximated by the following SD scheme

Y
(1)
t = X

(1)
0 +

∫ t

0
(a − beY

(2)
ŝ )Y (1)

s ds +
∫ t

0
k1Y

(1)
s dW(1)

s ,

Y
(2)
t = Y

(2)
0 +

∫ t

0
(cY

(1)
ŝ
− d − (k2)

2)ds + k2W
(2)
t ,

which reads

Y
(1)
tn+1

= Y
(1)
tn

exp{(a − beY
(2)
tn − (k1)

2

2
)Δ+ k1ΔW(1)

n }

Y
(2)
tn+1

= Y
(2)
tn
+ (cY

(1)
tn
− d − (k2)

2)Δ+ k2ΔW(2)
n .
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Homotopic Metric-Interval
L-Contractions in Gauge Spaces

Mihai Turinici

Abstract A functional version—under the lines in Leader [Math. Japonica, 24
(1979), 17–24]—is given for the 1967 contraction mapping principle in Gheorghiu
[Stud. Cerc. Mat., 19 (1967), 119–122]. As a by-product of this, an appropriate
functional extension is proposed for the homotopic fixed point result in gauge spaces
due to Frigon [L. Notes Nonlin. Anal., 16 (2017), 9–91].

1 Introduction

Let X be a nonempty set. Call the subset Y of X, almost-singleton (in short:
asingleton), provided [y1, y2 ∈ Y implies y1 = y2]; and singleton if, in addition, Y
is nonempty; note that in this case Y = {y}, for some y ∈ X.

Further, let d : X × X → R+ := [0,∞[ be a metric over X; and take some
T ∈ F (X). [Here, given the nonempty sets A and B, F (A,B) stands for the class
of all functions from A to B; when A = B, we write F (A,A) as F (A)]. Denote
Fix(T ) := {z ∈ X; z = T z}; any point of it will be called fixed under T . These
points are to be determined in the context below (cf. Rus [50, Ch 2, Sect 2.2]):

(pic-1) We say that T is fix-asingleton, if Fix(T ) is an asingleton; and fix-singleton,
if Fix(T ) is a singleton

(pic-2) We say that x ∈ X is a Picard point (modulo (d, T )) when (T nx; n ≥ 0)
is d-Cauchy. If this property holds for all x ∈ X, we say that T is a Picard
operator (modulo d)
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(pic-3) We say that x ∈ X is a strongly Picard point (modulo (d, T )) when
(T nx; n ≥ 0) is d-convergent with limn(T

nx) ∈ Fix(T ). If this property
holds for all x ∈ X, we say that T is a strongly Picard operator (modulo d).

In this perspective, a basic answer to the posed question [referred to as Banach
contraction principle; in short: (B-cp)], may be stated as follows. Given k ≥ 0, let
us say that T is (Banach) (d; k)-contractive, provided

(B-contr) d(T x, T y) ≤ kd(x, y), for all x, y ∈ X.

Theorem 1 Suppose that T is (d; k)-contractive, for some k ∈ [0, 1[. In addition,
let X be d-complete. Then,

(11-a) T is fix-singleton: Fix(T ) = {z}, for some z ∈ X

(11-b) T is a strongly Picard operator (modulo d): T nx
d−→ z, ∀x ∈ X.

This result, obtained in 1922 by Banach [7], found a multitude of applications
in operator equations theory; so, it was the subject of many extensions. Essentially,
there are two main directions of doing this.

(I) The initial metric d remains as it is, but the contractive condition is taken in the
implicit way

(i-contr) F(d(T x, T y), d(x, y), d(x, T x), d(y, T y), d(x, T y), d(T x, y))≤0,

for all x, y ∈ X, xRy

where F : R6+ → R is a function and R ⊆ X × X is a relation over X. When
the function F appearing here admits the explicit form

F(t1, t2, t3, t4, t5, t6) = t1 −G(t2, t3, t4, t5, t6), (t1, t2, t3, t4, t5, t6) ∈ R6+

(where G : R5+ → R+ is a function), one gets the explicit functional version of
this (functional) contraction

(e-contr) d(T x, T y) ≤ G(d(x, y), d(x, T x), d(y, T y), d(x, T y), d(T x, y)),

for all x, y ∈ X, xRy.

In particular, when R = X×X (the trivial relation over X), some outstanding
explicit results have been established in Boyd and Wong [11], Reich [48],
and Matkowski [40]; see also the survey paper by Rhoades [49]. And, for the
implicit setting above, certain technical aspects have been considered by Leader
[39] and Turinici [54]. On the other hand, when R is a (partial) order on X,
some appropriate extensions of Matkowski fixed point principle we just quoted
were obtained in the 1986 papers by Turinici [60, 61]; two decades later, these
results have been re-discovered—at the level of (Banach) contractive maps—by
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Ran and Reurings [47]; see also Nieto and Rodriguez-Lopez [45]. Further, an
extension—to the same framework—of Leader’s contribution was performed
in Agarwal et al. [2] and Turinici [65]. Finally, when R is a (general) relation,
some results in this direction were obtained by Jachymski [34], within a graph
setting, and by Samet and Turinici [51] under a general perspective.

(II) The initial metric d is substituted by a separated family D = (dλ; λ ∈ Λ) of
semimetrics on X; and the contractive condition is to written as

(G-contr) dλ(T x, T y) ≤ kλdϕ(λ)(x, y), for all x, y ∈ X, and all λ ∈ Λ;
where (kλ; λ ∈ Λ) is a family of positive numbers and ϕ : Λ → Λ is a
mapping. The first fixed point principle in this direction was obtained in 1967
by Gheorghiu [25]. Further refinement of it were obtained in Gheorghiu and
Rotaru [27]; see also Gheorghiu [26]. Note that, by the very intricate form of
contractive condition, genuine functional extensions of this principle were not
yet obtained.

Recently, an interesting application of Gheorghiu contraction principle to the
homotopic fixed point theory was obtained in Frigon [23]. It is our aim in the
following to state a functional refinement of this result. We use here a metrical
maximality principle as well as a metric interval, in contrast with—respectively—
the Zorn-Bourbaki maximal one [9] and the standard (real) interval considered in
that paper. Further aspects will be delineated elsewhere.

2 Conv-Cauchy Structures

Throughout this exposition, the axiomatic system in use is Zermelo-Fraenkel’s
(abbreviated: ZF); cf. Cohen [16, Ch 2]. The notations and basic facts to be
considered are standard. Some important ones are described below.

(A) Let X be a nonempty set. By a relation over X, we mean any (nonempty)
part R ⊆ X × X; then, (X,R) will be referred to as a relational structure.
For simplicity, we sometimes write (x, y) ∈ R as xRy. Note that R may be
regarded as a mapping between X and exp[X] (=the class of all subsets in X).
In fact, denote for x ∈ X:

X(x,R) = {y ∈ X; xRy} (the section of R through x);
then, the desired mapping representation is [R(x) = X(x,R), x ∈ X].

A basic example of relational structure is to be constructed as below. Let
N = {0, 1, . . .} be the set of natural numbers, endowed with the usual addition
and (partial) order; note that

(N,≤) is well ordered: any (nonempty) subset of N has a first element.
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Further, denote for p, q ∈ N , p ≤ q,

N [p, q] = {n ∈ N;p ≤ n ≤ q}, N]p, q[= {n ∈ N;p < n < q},
N [p, q[= {n ∈ N;p ≤ n < q}, N]p, q] = {n ∈ N;p < n ≤ q};

as well as, for r ∈ N ,

N [r,∞[= {n ∈ N; r ≤ n}, N ]r,∞[= {n ∈ N; r < n}.

By definition, N [0, r[= N(r,>) is referred to as the initial interval (in N )
induced by r . Any set P with P ∼ N (in the sense: there exists a bijection
from P to N ) will be referred to as effectively denumerable. In addition, given
some natural number n ≥ 1, any set Q with Q ∼ N(n,>) will be said to be
n-finite; when n is generic here, we say that Q is finite. Finally, the (nonempty)
set Y is called (at most) denumerable iff it is either effectively denumerable or
finite.

Let X be a nonempty set. By a sequence in X, we mean any mapping x :
N → X, where N = {0, 1, . . .} is the set of natural numbers. For simplicity
reasons, it will be useful to denote it as (x(n); n ≥ 0), or (xn; n ≥ 0); moreover,
when no confusion can arise, we further simplify this notation as (x(n)) or (xn),
respectively. Also, any sequence (yn := xi(n); n ≥ 0) with

(i(n); n ≥ 0) is divergent (i(n)→∞ as n→∞)

will be referred to as a subsequence of (xn; n ≥ 0). Note that, under such a
convention, the relation “subsequence of” is transitive; i.e.:

(zn)=subsequence of (yn) and (yn)=subsequence of (xn)

imply (zn)=subsequence of (xn).

(B) Remember that, an outstanding part of (ZF) is the Axiom of Choice (abbrevi-
ated: AC); which, in a convenient manner, may be written as

(AC) For each couple (J,X) of nonempty sets and each F : J → exp(X),

there exists a (selective) function f : J → X [f (ν) ∈ F(ν),∀ν ∈ J ].

Here, exp(X) stands for the class of all nonempty elements in exp[X]. Sometimes,
when the index set J is denumerable, the existence of such a selective function may
be determined by using a weaker form of (AC), called: Dependent Choice principle
(in short: DC). Call the relation R over X, proper when

(X(x,R) =)R(x) is nonempty, for each x ∈ X.
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Then, R is to be viewed as a mapping between X and exp(X); and the couple
(X,R) will be referred to as a proper relational structure. Further, given a ∈ X, let
us say that the sequence (xn; n ≥ 0) in X is (a;R)-iterative, provided

x0 = a, and (xn; n ≥ 0) is R-increasing [xnRxn+1 (i.e.: xn+1 ∈ R(xn)), ∀n].

Proposition 1 Let the relational structure (X,R) be proper. Then, for each a ∈ X

there is at least an (a,R)-iterative sequence in X.

This principle—proposed, independently, by Bernays [8] and Tarski [53]—is
deductible from (AC), but not conversely; cf. Wolk [69]. Moreover, by the devel-
opments in Moskhovakis [44, Ch 8], and Schechter [52, Ch 6], the reduced system
(ZF-AC+DC) it comprehensive enough so as to cover the “usual” mathematics; see
also Moore [43, Appendix 2].

A basic consequence of (DC) is the so-called Denumerable Axiom of Choice [in
short: AC(N)].

Proposition 2 Let F : N → exp(X) be a function. Then, for each a ∈ F(0) there
exists a function f : N → X with f (0) = a and (f (n) ∈ F(n), ∀n).
Proof Denote Q = N × X; and let us introduce the (proper) relation R over it,
according to:

R(n, x) = {n+ 1} × F(n+ 1), n ≥ 0, x ∈ X.

By an application of (DC) to the proper relational structure (Q,R) the conclusion
follows; we do not give details.

As a consequence of the above facts,

(DC) .⇒ (AC(N)) in (ZF-AC); or, equivalently:

(AC(N)) is deductible in the system (ZF-AC+DC).

The reciprocal of the written inclusion is not true; see Moskhovakis [44, Ch 8, Sect
8.25] for details.

(C) In the following, the concept of conv-Cauchy structure over a metric space is
introduced.

Let X be a nonempty set. Further, let d : X ×X→ R+ be a mapping with

(m-1) d is triangular: d(x, z) ≤ d(x, y)+ d(y, z), ∀x, y, z ∈ X

(m-2) d is reflexive-sufficient: d(x, y) = 0 iff x = y

(m-3) d is symmetric: d(x, y) = d(y, x), for all x, y ∈ X.

We then say that d(., .) is a metric on X; and the couple (X, d) will be then referred
to as a metric space.
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Given the sequence (xn) in X and the point x ∈ X, we say that (xn), d-converges

to x (written as: xn
d−→ x), provided d(xn, x)→ 0 as n→∞; i.e.,

∀ε > 0, ∃i = i(ε) : i ≤ n .⇒ d(xn, x) < ε; or, equivalently:

∀ε > 0, ∃i = i(ε) : i ≤ n .⇒ d(xn, x) ≤ ε.

The set of all such points x will be denoted limn(xn); when it is nonempty, then (xn)

is called d-convergent. By this very definition, we have the properties:

(conv-1) ((
d−→) is hereditary)

xn
d−→ x implies yn

d−→ x, for each subsequence (yn) of (xn)

(conv-2) ((
d−→) is reflexive)

(∀u ∈ X): the constant sequence (xn = u; n ≥ 0) fulfills xn
d−→ u.

As a consequence, (
d−→) has all properties required in Kasahara [36]; in addition—

as d is triangular symmetric—the following extra property is holding here

(conv-3) (
d−→) is separated (referred to as d is separated):

limn(xn) is an asingleton, for each sequence (xn) in X.

The introduced concepts allow us to give a useful property.

Proposition 3 The mapping (x, y) #→ d(x, y) is d-Lipschitz, in the sense

(23-1) |d(x, y)− d(u, v)| ≤ d(x, u)+ d(y, v), ∀(x, y), (u, v) ∈ X ×X.

As a consequence, this map is d-continuous; i.e.,

(23-2) xn
d−→ x, yn

d−→ y imply d(xn, yn)→ d(x, y).

Further, call (xn), d-Cauchy when d(xm, xn)→ 0 as m, n→∞, m < n; that is,

∀ε > 0, ∃j = j (ε) : j ≤ m < n .⇒ d(xm, xn) < ε; or, equivalently:

∀ε > 0, ∃j = j (ε) : j ≤ m < n .⇒ d(xm, xn) ≤ ε.

The class of all such sequences will be denoted as Cauchy(d). As before, from this
very definition one has the properties

(Cauchy-1) (Cauchy(d) is hereditary)
(xn) is d-Cauchy implies (yn) is d-Cauchy, for each subsequence (yn)

of (xn)
(Cauchy-2) (Cauchy(d) is reflexive)

(∀u ∈ X): the constant sequence (xn = u; n ≥ 0) is d-Cauchy.

Hence, Cauchy(d) is a Cauchy structure, under the lines in Turinici [64].
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Now—according to the quoted work—term the couple ((
d−→), Cauchy(d)), a

conv-Cauchy structure induced by d. The following regularity conditions about this
structure are to be (optionally) considered

(CC-1) d is regular: each d-convergent sequence in X is d-Cauchy
(CC-2) d is complete: each d-Cauchy sequence in X is d-convergent.

Clearly, the former of these is always obtainable, via d=triangular symmetric; but
the latter one is not in general valid.

(D) In the following, some d-Cauchy criteria will be stated.
Let us say that the sequence (xn; n ≥ 0) is d-asymptotic, provided

rn := d(xn, xn+1)→ 0 as n→∞.

Clearly, each d-Cauchy sequence is d-asymptotic too; the reciprocal of this is not
in general true. This tells us that the d-Cauchy criteria we are looking for are to be
sought in the class of d-asymptotic sequences. To get concrete examples of such
properties, we need some conventions and auxiliary facts.

Given the d-asymptotic sequence (xn; n ≥ 0) and the number ε > 0, let us say
that i ∈ N is ε-regular, provided

i ≤ n implies d(xn, xn+1) < ε.

The class Z (ε) of all these ranks is nonempty; so that

(∀ε > 0) : Z(ε) = min Z (ε) is well defined, as an element of N;
with, in addition: d(xn, xn+1) < ε, for all n ≥ Z(ε).

Define the subsets of N ×N

(≤;N) = {(m, n) ∈ N ×N;m ≤ n}, (<;N) = {(m, n) ∈ N ×N;m < n};

these are just the graph over N of the relations (≤) and (<), respectively.
Further, let us say that the subset Θ of R0+ :=]0,∞[ is (>)-cofinal in R0+, when

for each ε > 0, there exists θ ∈ Θ with ε > θ.

Given this subset, define (as before)

(≥;Θ) = {(β, γ ) ∈ Θ ×Θ;β ≥ γ }, (>;Θ) = {(β, γ ) ∈ Θ ×Θ;β > γ };
these are just the graph over Θ of the relations (≥) and (>), respectively. In addition,
for each (β, γ ) ∈ (>;Θ), denote

B(β, γ ) = {n ∈ N(2,≤); 3−n < min{β − γ, γ };
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clearly, B(β, γ ) is nonempty and hereditary:

i ∈ B(β, γ ) and i ≤ j imply j ∈ B(β, γ ).

In this case, it makes sense denoting

b(β, γ ) = minB(β, γ ), (β, γ ) ∈ (>;Θ).

If no confusion arise, we write b(β, γ ) as b, for simplicity; hence, by definition

(b ≥ 2 and) k ∈ N(b,≤) implies 3−k < min{β − γ, γ }.

From the perspective of our initial problem, the points β ∈ Θ appearing here
must be chosen according to some admissible properties. Some conventions are in
order. Let (xn) be a sequence in X. We say that β ∈ Θ is (xn)-admissible, when

(rela-be) E(j ;β) := {(m, n) ∈ (<;N); j ≤ m < n, d(xm, xn) > β} 
= ∅, ∀j .

The class of all these points will be denoted as adm(Θ; (xn)).
Proposition 4 Let (xn) be a sequence in X that is not d-Cauchy; and Θ be a (>)-
cofinal part of R0+. Then, necessarily,

(24-1) adm(Θ; (xn)) is (nonempty and) (>)-cofinal in R0+
(24-2) for each β ∈ adm(Θ; (xn)) and each γ ∈ Θ , we have (β, γ ) ∈ (>;Θ) iff

(β, γ ) ∈ (>; adm(Θ; (xn))).
Proof

(i): By definition, the d-Cauchy property of our sequence writes:

∀ε ∈ R0+, ∃a ∈ N,∀(m, n) ∈ (<;N) : a ≤ m < n .⇒ d(xm, xn) ≤ ε.

As Θ is a (>)-cofinal part in R0+, this property may be also written as

∀θ ∈ Θ, ∃α ∈ N,∀(m, n) ∈ (<;N) : α ≤ m < n .⇒ d(xm, xn) ≤ θ.

The negation of this property means: there exists β ∈ Θ such that

E(j ;β) := {(m, n) ∈ (<;N); j ≤ m < n, d(xm, xn) > β} 
= ∅,∀j ;

which shows that β ∈ adm(Θ; (xn)). Moreover, as

(∀j) : β1 ≥ β2 implies E(j ;β1) ⊆ E(j ;β2)

it is clear that (under our standard notations)
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β ∈ adm(Θ; (xn)) implies Θ(β,>) ⊆ Θ(β,≥) ⊆ adm(Θ; (xn));

and proves (by means of (>)-cofinal property of Θ) the first conclusion.
(ii): Evident, in view of the preceding stage.

Finally, the following conventions are needed. For each sequence of ranks
(λ(k); k ≥ 0) in N(1,≤), define the property

(λ(k); k ≥ 0) is strictly ascending : i < j implies λ(i) < λ(j);
hence, (λ(k)) is divergent (lim

k
λ(k) = ∞).

On the other hand, for each sequence (rn) in R and each point r ∈ R, let us write

rn → r + (also written as: lim
n
(rn) = r + ) if rn → r and (rn > r,∀n)

rn →→ r + (also written as: lim
n
(rn) = r ++) if rn → r and (rn > r,∀∀n).

Here, given a property π(k) depending on k ∈ N , let us say that it holds for nearly
all k [written: (π(k), ∀∀k)] provided

there exists c = c(π) ∈ N such that (π(k) is true, for all k ≥ c).

In particular, given the sequence (wk; k ≥ 0) in X, the subset Y of X, and the
property [π(k) holds iff wk ∈ Y ], we introduce the convention

(π(k) holds for nearly all k) is referred to as ((wk) is nearly in Y ).

The following result, referred to as Boyd-Wong non-Cauchy Criterion (in short:
(BW-n-CC)) is now available.

Theorem 2 Let the sequence (xn; n ≥ 0) in X be such that

(21-i) (xn; n ≥ 0) is d-asymptotic (rn := d(xn, xn+1)→ 0 as n→∞)
(21-ii) (xn; n ≥ 0) is not d-Cauchy.

Further, let the subset Θ of R0+ be (>)-cofinal in R0+; hence (see above)

admc(Θ; (xn)) (=the class of (xn)-admissible couples) is nonempty.

Then, for each couple (β, γ ) ∈ (>; adm(Θ; (xn))) (with the associated rank b =
b(β, γ )), and each strictly ascending rank sequence (λ(k); k ≥ 0) inN(1,≤), there
exists a rank sequence (J (k); k ≥ 0) in N(1,≤) and a couple of rank sequences
(m(k); k ≥ 0) and (n(k); k ≥ 0) in N(1,≤), so that
(21-a) k + 1 ≤ J (k) ≤ m(k) < m(k)+ 3λ(k) < n(k), ∀k
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(21-b) J (k) ≤ m(k) < m(k)+ 2λ(k) < n(k)− 1 < n(k), and
d(xm(k), xn(k)) > γ , d(xm(k), xn(k)−1) ≤ 3−b−k + γ , ∀k,

(21-c) Uk := d(xm(k), xn(k))→ γ+ as k →∞
(21-d) for each couple of rank sequences (μ(k)) and (ν(k)) in N with

(μ(k), ν(k) ≤ 3λ(k),∀k), Vk := d(xm(k)+μ(k), xn(k)+ν(k)) → γ+ as
k →∞

(21-e) for each couple of ranks (i, j) in N ×N with
(i, j ≤ 3λ(0)), Sk := d(xm(k)+i , xn(k)+j )→ γ+ as k →∞

(21-f) for each couple of ranks (i, j) in N ×N , one has
Tk := d(xm(k)+i , xn(k)+j ); k ≥ 0)→→ γ+ as k →∞.

Proof Let the couple (β, γ ) ∈ (>; adm(Θ; (xn))) be fixed in the sequel; so, [β ∈
adm(Θ; (xn)) and β, γ ) ∈ (>;Θ)]; remember that the first property means

(rela-1) E(j) := {(m, n) ∈ (<;N); j ≤ m < n, d(xm, xn) > β} 
= ∅, ∀j .

Further, take a strictly ascending rank sequence (λ(k); k ≥ 0) in N(1,≤). With the
aid of these data, define the rank sequence (J (k); k ≥ 0) in N(1,≤), according to

(J (k) = 1+ k + Z(3−2b−k/λ(k)); k ≥ 0);

where b = b(β, γ ) (see above) and the mapping ε #→ Z(ε) is introduced by the
d-asymptotic property of (xn). Then, denote

(A(k) = E(J (k)); k ≥ 0); hence, by definition,

A(k) := {(m, n) ∈ (<;N); J (k) ≤ m < n, d(xm, xn) > β}, k ≥ 0;
with, in addition: A(k) is a nonempty relation over N, for each k ≥ 0.

By the triangle inequality (and the choice of b)

(∀k) : (m, n) ∈ A(k) implies

d(xm+s , xn+t ) ≥ d(xm, xn)− d(xm, xm+s)− d(xn, xn+t ) >

β − 3−2b−k+1 − 3−2b−k+1 > β − 3−b−k > γ,∀s, t ∈ N [0, 3λ(k)];

which tells us that

(∀k) : B(k) := {(m, n) ∈ (<;N); J (k) ≤ m < n,

d(xm+s , xn+t ) > γ,∀s, t ∈ N [0, 3λ(k)]} is a nonempty relation over N.

Having this precise, denote for each k ≥ 0

m(k) = min Dom(B(k)), n(k) = minB(k)(m(k)).
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By this very definition, we get

(pro-1) (∀k): k + 1 ≤ J (k) ≤ m(k) < n(k),
(pro-2) (∀k): d(xm(k)+s , xn(k)+t ) > γ , ∀s, t ∈ N [0, 3λ(k)].
We claim that the couple (β, γ ) ∈ (>; adm(Θ; (xn))), the rank sequence (J (k))

in N(1,≤), and the couple of rank-sequences [(m(k)), (n(k))] fulfill all desired
conclusions.

(i): By (pro-1), it is clear that the first, second, and third relation of (21-a) holds.
(ii): Suppose by contradiction that

(m(k) <)n(k) ≤ m(k)+ 3λ(k), for some k ≥ 0.

By m(k) ≥ J (k) ≥ Z(3−2b−k/λ(k)), the triangle inequality, and the choice
of b,

d(xm(k), xn(k)) ≤ 3−2b−k+1 < 3−b−k < γ ;
in contradiction with (pro-2); whence, the fourth relation in (21-a) holds too.

(iii): The first and second part of (21-b) are directly obtainable from the preceding
stage and (pro-2), respectively. Concerning the third part of (21-b), let k ≥ 0
be arbitrary fixed. By definition, n(k) is the minimum of all ranks p ∈ N with

(m(k), p) ∈ B(k); that is:

J (k) ≤ m(k) < p and d(xm(k)+s , xp+t ) > γ,∀s, t ∈ N [0, 3λ(k)].

As m(k) < m(k) + 2λ(k) < n(k) − 1, we must have (by this minimal
property)

(pro-3) d(xm(k)+s , xn(k)−1+t ) ≤ γ , for some s, t ∈ N [0, 3λ(k)].
But, in view of (pro-2) once again,

(pro-4) d(xm(k)+u, xn(k)−1+v) > γ , ∀u ∈ N [0, 3λ(k)], ∀v ∈ N [1, 3λ(k)].
This, combined with (pro-3), tells us that, necessarily,

(pro-5) d(xm(k)+s , xn(k)−1) ≤ γ , for some s ∈ N [0, 3λ(k)].
By m(k) ≥ Z(3−2b−k/λ(k)), the triangle inequality, and b ≥ 2, we then have

d(xm(k), xn(k)−1) ≤
d(xm(k), xm(k)+s)+ d(xm(k)+s , xn(k)−1) ≤ 3−2b−k+1 + γ ≤ 3−b−k + γ

and the last conclusion of (21-b) follows.
(iv): From these facts and triangular inequality,

γ < d(xm(k), xn(k)) ≤ d(xm(k), xn(k)−1)+ rn(k)−1 ≤ 3−b−k+γ+rn(k)−1, ∀k.
Passing to limit in this double inequality gives (21-c).
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(v): By the very definition of [(μ(k)), (ν(k))], and (pro-2),

Vk > γ , for all k ≥ 0; so, the first half of (21-d) holds.

Moreover, from a metrical property of d, the very definition of (m(k); k ≥ 0)
and (n(k)); k ≥ 0), and the choice of b

|d(xm(k), xn(k))− d(xm(k)+μ(k), xn(k)+ν(k))| ≤
d(xm(k), xm(k)+μ(k))+ d(xn(k), xn(k)+ν(k)) ≤
3−2b−k+1 + 3−2b−k+1 < 3−2b−k+2 ≤ 3−b−k, for all k ≥ 0.

Passing to limit in the relation between the first and the last member of this
relation gives the second half of (21-d).

(vi): By the strict ascending property of (λ(k); k ≥ 0), the sequences (μ(k) =
i; k ≥ 0) and (ν(k) = j ; k ≥ 0), fulfill (μ(k), ν(k) ≤ 3λ(k), ∀k); and this,
along with the preceding stage, yields the desired conclusion.

(vii): Let (i, j) ∈ N×N be given. By the strict ascending property of (λ(k); k ≥ 0),
there exists an index L = L(i, j) ∈ N with

i, j ≤ 3λ(k), for all k ≥ L.

Then, define the couple of sequences (μ(k); k ≥ 0) and (ν(k); k ≥ 0) as

(μ(k) = ν(k) = 0; k ≤ L); (μ(k) = i, ν(k) = j ; k > L).

Clearly, (μ(k), ν(k) ≤ 3λ(k), ∀k); and this, along with the preceding stage, yields

T ∗k = d(xm(k)+μ(k), xn(k)+ν(k))→ γ + as n→∞.

It will now suffice observing that

Tk = T ∗k , for all k > L (hence, for all k ≥ L+ 1)

to get the written conclusion. The proof is complete.

In particular, when Θ = R0+ and (λ(k) = 1 + k; k ≥ 0), the obtained statement
covers the 1969 one in Boyd and Wong [11]; so, it is natural that this result be
referred to in the proposed way. Further aspects may be found in Reich [48]; see
also Khan et al. [37].
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3 Admissible Real Functions

In the following, some classes of admissible real functions are introduced. Their
usefulness will become clear from our next developments.

(A) Denote for simplicity

• F0(R+)=the subclass of all ϕ ∈ F (R+), with ϕ(0) = 0
• F0(re)(R+)=the subclass of all ϕ ∈ F0(R+),

with the regressive property: ϕ(t) < t , ∀t ∈ R0+
• F0(in)(R+)=the subclass of all increasing functions ϕ ∈ F0(R+)
• F0(re, in)(R+) = F0(re)(R+) ∩F0(in)(R+).

For each ϕ ∈ F0(re)(R+), let us introduce the sequential properties

(M-a) ϕ is Matkowski admissible:
for each (tn) in R0+ with (tn+1 ≤ ϕ(tn),∀n) we have limn tn = 0

(n-d-a) ϕ is non-diagonally admissible:
there are no sequences (tn; n ≥ 0) in R0+
and no elements ε ∈ R0+ with tn → ε+, ϕ(tn)→ ε+

(MK-a) ϕ is Meir-Keeler admissible:
∀ε > 0, ∃δ > 0, such that ε < s < ε + δ .⇒ ϕ(s) ≤ ε.

The relationships between these properties are discussed in the statement below

Theorem 3 For each ϕ ∈ F0(re)(R+), we have in (ZF-AC+DC)

(M-a) .⇒ (n-d-a) .⇒ (MK-a) .⇒ (M-a).

Hence, for each ϕ ∈ F0(re)(R+), the properties (M-a), (n-d-a), and (MK-a) are
equivalent to each other.

Proof There are three cases to be discussed.

(i) Suppose that ϕ is Matkowski admissible; we assert that ϕ is non-diagonally
admissible. For, if ϕ is not endowed with such a property, there must be a
sequence (tn; n ≥ 0) in R0+ and a number ε > 0, such that

tn → ε + and ϕ(tn)→ ε + , as n→∞.

Put i(0) = 0. As ε < ϕ(ti(0)) and tn → ε+, we have that

A(i(0)) := {n > i(0); tn < ϕ(ti(0))} is not empty;

hence, i(1) := min(A(i(0))) is an element of it, and ti(1) < ϕ(ti(0)).

Likewise, as ε < ϕ(ti(1)) and tn → ε+, we have that
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A(i(1)) := {n > i(1); tn < ϕ(ti(1))} is not empty;
hence, i(2) := min(A(i(1))) is an element of it, and ti(2) < ϕ(ti(1)).

This procedure may continue indefinitely; and yields (without any choice
technique) a strictly ascending rank sequence (i(n); n ≥ 0) (hence, i(n)→∞
as n → ∞) for which the attached subsequence (sn := ti(n); n ≥ 0) of (tn)
fulfills

sn+1 < ϕ(sn)(< sn), for all n.

On the other hand, by this very subsequence property,

(sn > ε,∀n) and lim
n

sn = lim
n

tn = ε.

The obtained relations are in contradiction with the Matkowski property of ϕ;
hence, the working condition cannot be true; and we are done.

(ii) Suppose that ϕ is non-diagonally admissible; we show that, necessarily, ϕ is
Meir-Keeler admissible. For, if ϕ is not endowed with such a property, we must
have (for some ε > 0)

H(δ) := {t ∈ R0+; ε < t < ε + δ, ϕ(t) > ε} is not empty, for each δ > 0.

Taking a strictly descending sequence (δn; n ≥ 0) in R0+ with δn → 0, we
get by the Denumerable Axiom of Choice (AC(N)) [deductible, as precise, in
(ZF-AC+DC)], a sequence (tn; n ≥ 0) in R0+, so as

(∀n) : tn is an element of H(δn);

or, equivalently (by the very definition above and ϕ=regressive)

(∀n) : ε < ϕ(tn) < tn < ε + δn;
hence, in particular: ϕ(tn)→ ε + and tn → ε + .

But, these relations are in contradiction with the non-diagonal admissible
property of our function; hence, the assertion follows.

(iii) Suppose that ϕ is Meir-Keeler admissible; we have to establish that ϕ is
Matkowski admissible. Let (sn; n ≥ 0) be a sequence in R0+ with the property
(sn+1 ≤ ϕ(sn); n ≥ 0). Clearly, (sn) is strictly descending in R0+; hence,
σ := limn sn exists in R+. Suppose by contradiction that σ > 0; and let
ρ > 0 be given by the Meir-Keeler admissible property of ϕ. By the above
convergence relations, there exists some rank n(ρ), such that

n ≥ n(ρ) implies σ < sn < σ + ρ.
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But then, under the notation (tn := ϕ(sn); n ≥ 0), we get (for the same ranks)

σ < sn+1 ≤ tn < sn < σ + ρ;

in contradiction with the Meir-Keeler admissible property. Hence, necessarily,
σ = 0; and conclusion follows. The proof is complete.

In the following, some important examples of such objects will be given.
For any ϕ ∈ F0(re)(R+) and any s ∈ R0+, put

Λ+ϕ(s) = inf
ε>0

Φ(s+)(ε); where Φ(s+)(ε) = supϕ(]s, s + ε[), ε > 0.

From the regressive property of ϕ, these quantities are finite; precisely,

0 ≤ Λ+ϕ(s) ≤ s, ∀s ∈ R0+.

The following completion of this will be useful.

Proposition 5 Let ϕ ∈ F0(re)(R+) and s ∈ R0+ be arbitrary fixed. Then,

(31-1) lim supn(ϕ(tn)) ≤ Λ+ϕ(s), for each sequence (tn) in R0+ with tn → s+
(31-2) there exists a sequence (rn) in R0+ with rn → s+ and ϕ(rn)→ Λ+ϕ(s).

Proof Denote, for simplicity,

α = Λ+ϕ(s); hence, α = inf
ε>0

Φ(s+)(ε), and 0 ≤ α ≤ s.

(i): Given ε > 0, there exists a rank p(ε) ≥ 0 such that s < tn < s + ε, for all
n ≥ p(ε); hence

lim sup
n

(ϕ(tn)) ≤ sup{ϕ(tn); n ≥ p(ε)} ≤ Φ(s+)(ε).

Passing to infimum over ε > 0, yields (see above)

lim sup
n

(ϕ(tn)) ≤ inf
ε>0

Φ(s+)(ε) = α; and the claim follows.

(ii): Define (βn := Φ(s+)(2−n); n ≥ 0); this is a descending sequence in R+, with

(βn ≥ α, ∀n) and inf
n
βn = α; hence lim

n
βn = α.

By these properties, there may be constructed a sequence (γn; n ≥ 0) in R, with

γn < βn, ∀n; lim
n

γn = lim
n

βn = α.



654 M. Turinici

(For example, we may take (γn = βn − 3−n; n ≥ 0); we do not give details). Let
n ≥ 0 be arbitrary fixed. By the supremum definition, there exists rn ∈]s, s + 2−n[
such that ϕ(rn) > γn, ∀n; moreover (again by definition), ϕ(rn) ≤ βn. The obtained
sequence (rn; n ≥ 0) fulfills rn → s+ and ϕ(rn)→ α; wherefrom, all is clear.

We may now pass to the announced examples of such functions.

Example 1 Call ϕ ∈ F0(re)(R+), Boyd-Wong admissible [11], if

Λ+ϕ(s) < s, for all s > 0.

In particular, this holds provided

ϕ is upper semicontinuous at the right on R0+ : Λ+ϕ(s) ≤ ϕ(s), ∀s ∈ R0+.

Moreover, the written property is fulfilled when

ϕ is continuous at the right on R0+;
for, in such a case, [Λ+ϕ(s) = ϕ(s), ∀s ∈ R0+].

Under these conditions, we have (cf. Meir and Keeler [42]):

(∀ϕ ∈ F0(re)(R+)) : ϕ is Boyd-Wong admissible implies

ϕ is Meir-Keeler admissible [or, equivalently: Matkowski admissible].

In fact, suppose that ϕ ∈ F0(re)(R+) is Boyd-Wong admissible; and fix some
γ > 0. As Λ+ϕ(γ ) < γ , there exists β = β(γ ) > 0 such that

Φ(γ+)(β) < γ ; wherefrom, γ < t < γ + β implies ϕ(t) < γ ;

and this gives the desired property.
Concerning the reverse inclusion, let us consider the function ϕ ∈ F0(re)(R+),

according to (for some r > 0):

(ϕ(t) = t/2, if 0 ≤ t ≤ r), (ϕ(t) = r, if t > r).

Clearly, ϕ is Matkowski admissible, as it can be directly seen. On the other hand,

Λ+ϕ(r) = r; whence, ϕ is not Boyd-Wong admissible;

proving that the reverse inclusion is not in general valid. For an extended example
of this type, see Turinici [55] and the references therein.

Example 2 According to its definition, the Matkowski admissible property of some
ϕ ∈ F0(re, in)(R+) writes (cf. Matkowski [41])

ϕn(t)→ 0 as n→∞, for all t > 0.
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[Here, for each n ∈ N , ϕn stands for the n-th iterate of ϕ]. This, by a previous
equivalence result, tells us that ϕ is Meir-Keeler admissible. A different way of
proving this may be described as follows (cf. Jachymski [33]):

Assume that ϕ ∈ F0(re, in)(R+) is Matkowski admissible. If the underlying
property fails, then (for some γ > 0):

∀β > 0, ∃t ∈]γ, γ + β[, such that ϕ(t) > γ.

As ϕ is increasing, this yields

ϕ(t) > γ,∀t > γ ; hence, by induction: ϕn(t) > γ,∀n ∈ N,∀t > γ.

Taking some t > γ and passing to limit as n→∞, one gets 0 ≥ γ ; contradiction.
A sufficient condition for this property is to be obtained from the result above,

by simply noting that

(∀ϕ ∈ F0(re, in)(R+)) : Λ+ϕ(s) = ϕ(s + 0), ∀s ∈ R0+.

Precisely, we have the practical characterization

(∀ϕ ∈ F0(re, in)(R+)) : ϕ is Boyd-Wong admissible iff

ϕ is strongly regressive [ϕ(s + 0) < s, for all s > 0].

Example 3 Call ϕ ∈ F0(re)(R+), Geraghty admissible [24] provided

each sequence (tn) in R0+ with ϕ(tn)/tn → 1 fulfills tn → 0.

The connection between this property and the preceding ones is described as:

(for each ϕ ∈ F0(re)(R+)) :
ϕ is Geraghty admissible implies ϕ is Boyd-Wong admissible.

In fact, suppose that ϕ ∈ F0(re)(R+) is not Boyd-Wong admissible. From a
previous relation, there exists some s ∈ R0+ with Λ+ϕ(s) = s. Combining with a
preceding auxiliary fact, there exists a sequence (rn; n ≥ 0) in R0+ with

rn → s + and ϕ(rn)→ s; whence ϕ(rn)/rn → 1;

i.e.: ϕ is not Geraghty admissible. The obtained contradiction proves our claim.
Concerning the reverse inclusion, note that, for the (continuous) Boyd-Wong

admissible function [ϕ(t) = t (1−e−t ), t ≥ 0] in F0(re, in)(R+), and the sequence
(tn = n+ 1; n ≥ 0) in R0+, we have

ϕ(tn)/tn → 1; but, evidently, tn →∞.

Hence, ϕ is not Geraghty admissible; so that the reciprocal is not in general true.
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(B) A basic application involving these concepts may be described as below. Fix
some ω ∈ F0(re, in)(R+) and let ω∗ ∈ F (R+) be defined as

(ω∗(t) = t − ω(t); t ∈ R+) [in short: ω∗ = I − ω]; called: the complement of ω.

We say that ω is complementary coercive, in case

ω∗ is coercive: ω∗(t)→∞ as t →∞; or, equivalently:

{t ∈ R+;ω∗(t) ≤ a} is bounded, for each a ≥ 0.

Note that, under such a condition, the function γ ∈ F (R+) given as

γ (s) = supA(s) where A(s) = {t ∈ R+; t ≤ ω(s + t)}, s ∈ R+

[referred to as the right complementary inverse (in short: rc-inverse) associated to
ω] is well defined. In fact, it will suffice noting that, for each s ∈ R+,

A(s) = {t ∈ R+;ω∗(s + t) ≤ s}; whence, A(s) is bounded in R+.

Clearly, γ (0) = 0. In addition, by the properties of ω, we have

(p-1) (Increasing): s1 ≤ s2 implies A(s1) ⊆ A(s2); whence γ is increasing
(p-2) (Representation formula): γ (s) ≤ ω(s + γ (s)), for each s ∈ R+.

In fact, let t ∈ A(s) be arbitrary fixed; hence, t ≤ ω(s + t). By the definition of
supremum, (t ≤ ω(s + γ (s)), ∀t ∈ A(s)); wherefrom (again by the underlying
definition) the conclusion follows.

Further properties of γ (.) are available under extra properties of ω(.).

Proposition 6 Suppose that, in addition,

ω is strongly regressive: ω(t + 0) < t,∀t > 0.

Then (in addition to the above)

( lim
t→0+ γ (t) =)γ (0+ 0) = 0; that is: sn → 0 implies γ (sn)→ 0.

Proof As γ is increasing, δ := γ (0+0) exists. Assume by contradiction that δ > 0.
Let (sn) be a strictly descending sequence in R0+ with sn → 0; whence, γ (sn)→ δ.
From the preceding representation formula

γ (sn) ≤ ω(sn + γ (sn)), for all n.

As n → ∞, we have sn + γ (sn) → δ+; so that, passing to limit in this relation
yields δ ≤ ω(δ + 0) < δ; contradiction. Hence, γ (0+ 0) = 0, as claimed.
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Sometimes, we may ask for the associated rc-inverse γ (.) a property like

γ is strongly regressive: γ (t + 0) < t, for all t ∈ R0+;
the initial function ω will be referred to as rc-regressive in such a case. A useful
answer in this direction is obtained by imposing regularity conditions upon

(η(t) = ω(2t); t ≥ 0) [the double f unction attached to ω].
Note that, by the increasing property of ω (and η)

(∀t > 0) : η(t + 0) = inf
s>0

η(t + s) = inf
s>0

ω(2t + 2s) = ω(2t + 0);

this will be useful in the sequel.

Theorem 4 Let the function ω ∈ F0(re, in)(R+) be such that

(32-i) the double function η is strongly regressive (η(t+0) < t , ∀t > 0); expressed
as: ω is double strongly regressive

(32-ii) the double function η is complementary coercive (η∗ := I − η is coercive);
expressed as: ω is double complementary coercive.

Then,

(32-a) its associated complement ω∗ := I − ω is coercive; so, the right comple-
mentary inverse

γ (s) = supA(s) where A(s) = {t ∈ R+; t ≤ ω(s + t)}, s ∈ R+

is well defined as an element of F0(R+)
(32-b) The right complementary inverse γ (.) fulfills

(p-1) γ is increasing and γ (s) ≤ ω(s + γ (s)), for all s ∈ R+
(p-2) γ is zero-continuous: γ (t)→ 0 = γ (0+ 0) as t → 0

(32-c) Finally, we have the properties

(p-3) γ is strongly regressive; hence, in particular, regressive
(p-4) γ is complementary coercive: γ ∗ := I − γ is coercive.

Proof By a preceding relation,

(∀t > 0) : ω(t + 0) < t/2; whence, t − ω(t) > t − t/2 = t/2;
proving that ω is complementary coercive: ω∗ := I − ω is coercive.

(i): Clearly, the right complementary inverse γ : R+ → R+ is well defined.
(ii): The properties (p-1) and (p-2) of γ are directly obtainable by the preceding

facts, in view of

ω is double strongly regressive implies ω is strongly regressive.
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(iii): Fix s > 0; and let (sn) be a strictly descending sequence with

sn → s + as n→∞; so that, γ (sn)→ r := γ (s + 0) as n→∞.

From the above representation formula,

(rep-seq) γ (sn) ≤ ω(sn + γ (sn)), ∀n.

Denote for simplicity u = s + r . By the posed hypotheses,

sn + γ (sn)→ u+; whence ω(sn + γ (sn))→ ω(u+ 0)

Passing to limit in (rep-seq) gives (as ω is double strongly regressive)

r ≤ ω(u+ 0) < (1/2)u = (1/2)(s + r); wherefrom, r < s;

and the conclusion follows.
(iv): Let a ≥ 0 be arbitrary fixed. We have to establish that

A := {t ∈ R+; t ≤ γ (t)+ a} is bounded.

But, according to definition (and the properties of ω and γ )

A ⊆ {t ∈ R+; t ≤ ω(t + γ (t))+ a} ⊆ {t ∈ R+; t ≤ ω(2t)+ a} =
{t ∈ R+; t ≤ η(t)+ a} = {t ∈ R+; η∗(t) ≤ a};

and this, combined with the last subset being bounded, ends our argument.

The obtained properties of the right complementary inverse γ ∈ F (R+)
associated to ω are basic tools for getting a lot of relative type statements involving
real sequences, to be needed further. For simplicity reasons, we will express these
as generic results (without explicitly mentioning the conditions under which these
properties were derived).

Theorem 5 Let the sequences (an; n ≥ 0) and (bn; n ≥ 0) in R+, and the function
ϕ ∈ F0(re, in)(R+) be such that

(33-i) an ≤ bn + ϕ(an), for all n.

In addition, suppose that

(33-ii) ϕ is strongly regressive (ϕ(t + 0) < t , ∀t > 0)
(33-iii) ϕ is complementary coercive (ϕ∗ := I − ϕ is coercive).

Then, necessarily,

(33-a) (bn) is bounded implies (an) is bounded
(33-b) (bn) is zero-convergent implies (an) is zero-convergent.
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Proof

(i): By definition, β := sup{bn; n ≥ 0} exists in R+. This, by the imposed
hypothesis, yields

(∀n) : an ≤ β + ϕ(an); that is ϕ∗(an) ≤ β.

Combining with the coerciveness of ϕ∗, yields the desired fact.
(ii): Suppose that (bn) is zero-convergent. In particular, (bn) is bounded; hence,

by the preceding stage, (an) is bounded too. By a standard result, (an) has
convergent subsequences. Let (ai(n); n ≥ 0) be one of these; hence, ai(n) → a

as n→∞, for some a ∈ R+. Suppose by contradiction that a > 0. Passing to
limit as n→∞ in

ai(n) ≤ bi(n) + ϕ(ai(n)), n ≥ 0

one derives (by the strongly regressive property of ϕ)

a ≤ ϕ(a + 0) < a; absurd; whence, a = 0.

In other words, all convergent subsequences (ai(n); n ≥ 0) of (an) fulfill
ai(n) → 0 as n → ∞. This necessarily gives an → 0 as n → ∞; and the
conclusion follows.

A bi-dimensional version of this result may be stated as follows. By a pseudo-
metric over N , we mean any mapping a : N ×N → R+. If, in addition,

a(., .) is reflexive: a(n, n) = 0, ∀n

we say that a(., .) is a r-pseudometric. Given the r-pseudometric a(., .), call it
Cauchy, in case of [a(n,m)→ 0 as n,m→∞, n ≤ m]; and asymptotic, provided
[a(n, n+ 1)→ 0 as n→∞]. Clearly,

a(., .) is Cauchy implies a(., .) is asymptotic;

the reciprocal is not in general true.

Theorem 6 Let the r-pseudometrics a(., .) and b(., .) over N and the function ϕ ∈
F0(re, in)(R+) be such that

(34-i) a(n,m) ≤ b(n,m)+ ϕ(a(n,m)), for all n,m ∈ N , n ≤ m.

In addition, suppose that

(34-ii) ϕ is strongly regressive (ϕ(t + 0) < t , ∀t > 0)
(34-iii) ϕ is complementary coercive (ϕ∗ := I − ϕ is coercive).
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Then, necessarily,

(34-a) b(., .) is asymptotic implies a(., .) is asymptotic
(34-b) b(., .) is Cauchy implies a(., .) is Cauchy.

Proof There are two steps to be passed.

Step 1. Suppose that

b(., .) is asymptotic [(βn := b(n, n+ 1); n ≥ 0) fulfills βn → 0].

We have to establish that

a(., .) is asymptotic [(αn := a(n, n+ 1); n ≥ 0) fulfills αn → 0].

This, however, by the sequential condition

(seq) αn ≤ βn + ϕ(αn), for all n ∈ N ,

is deductible from the preceding statement; so that, our claim follows.
Step 2. Now, let us show that

b(., .) is Cauchy implies a(., .) is Cauchy.

The last property means (by definition)

∀ε > 0, there exists j (ε), such that j (ε) ≤ n ≤ m implies a(n,m) ≤ ε;

or, equivalently [passing to the successor J (ε) := j (ε) + 1 and remembering that
a(., .) is r-pseudometric]

∀ε > 0, there exists j (ε), such that j (ε) < n < m implies a(n,m) ≤ ε.

The negation of this means: there exists ε > 0, such that

C(j) = {(n,m) ∈ N ×N; j < n < m, a(n,m) > ε} 
= ∅,∀j.
Denote, for each j

n(j) = min Dom(C(j)),m(j) = minC(j)(n(j)).

Fix j (0) ∈ N . By this construction, there exists a couple of ranks (j (1) = n(j (0)),
j (2) = m(j (0)) with j (0) < j (1) < j (2), a(j (1), j (2)) > ε. Further, given this
index j (2) there exists a couple of ranks (j (3) = n(j (2)), j (4) = m(j (2)) with
j (2) < j (3) < j (4), a(j (3), j (4)) > ε. The procedure may continue indefinitely
(without any choice techniques); and yields a strictly ascending sequence of ranks
(j (n); n ≥ 0) [hence, j (n)→∞ as n→∞], with

αn := a(j (2n+ 1), j (2n+ 2)) > ε,∀n.
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On the other hand, by the Cauchy property

βn := b(j (2n+ 1), j (2n+ 2))→ 0, as n→∞.

This, in combination with the sequential condition

(seqq) αn ≤ βn + ϕ(αn), for all n ∈ N

gives a contradiction with respect to the preceding statement. Hence, necessarily,
a(., .) is Cauchy; as claimed.

An interesting question is that of such conclusions being retainable when one of
the basic hypotheses about ϕ is to be dropped. The answer to this is negative, in
general; we do not give details.

4 Topological Preliminaries

In the following, some basic concepts and results involving topological structures
are given, with a special emphasis on gauge spaces.

Let N = {0, 1, . . .} denote the set of natural numbers. Given p ≥ 1, each set M
equivalent with N(p,>) := {0, . . . , p − 1} (in the sense: there exists a bijection
between M and N(p,>)) is called p-finite. For completeness, we accept that the
empty set ∅ is 0-finite. Finally, let us say that the set M is finite, provided it is
q-finite, for some q ∈ N .

Let E be a nonempty set. Remember that exp[E] denotes the class of all subsets
in E. Given the subset D ⊆ exp[E] of (i.e.: a family of subsets in E), remember
that its union ∪D is introduced, axiomatically, as

z ∈ ∪D iff z ∈ H, for some H ∈ D; hence, in particular, ∪ ∅ = ∅.

On the other hand, whenever D is nonempty, then ∩D is introduced as

z ∈ ∩D iff z ∈ H, for each H ∈ D .

Finally, when D = ∅, we put ∩D = E. We must stress that this last definition is
entirely locally; i.e.: it is restricted to the ambient set E and the class exp[E].
(A) [General aspects]

Let X be a nonempty set. We say that the family G ⊆ exp[X] is

semi-normal, if ∅ ∈ G ; normal, if {∅, X} ⊆ G .

By a topology on X, we mean any normal family T ⊆ exp[X], with the
properties (cf. Bourbaki [10, Ch I, Sect 1])
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(top-1) the union of any subset in T belongs to T
(top-2) the intersection of any finite subset of T is in T .

In this case, the couple (X,T ) will be called a topological space. Any D ∈ T
will be called open; and its complement X \ D is termed closed (with respect
to T ).

An equivalent way of introducing such a concept is the complementary one.
Let us say that the normal family S ⊆ exp[X] is a cotopology on X, when

(cotop-1) the intersection of any subset in S belongs to S
(cotop-2) the union of any finite subset of S is in S .

In this case, the couple (X,S ) will be called a cotopological space.
Given the topology T on X, the (normal) family S ⊆ exp[X] introduced

as [E ∈ S iff X \E ∈ T ] is a cotopology on X. This will be referred to as the
cotopology induced by the topology T ; denoted as: S = X \T . Conversely,
given the cotopology S on X, the (normal) family T ⊆ exp[X] introduced as
[D ∈ T iff X \ D ∈ S ] is a topology on X. This will be referred to as the
topology induced by the cotopology S ; denoted as: T = X \S .

(B) [Topological constructions]
Let X be a nonempty set. There are several ways of constructing a topology

on X; the basic ones are described below.

(I) We say that the selfmap A #→ Klo(A) of exp[X] is a (Kuratowski) closure over
X, provided (cf. Kuratowski [38, Ch I, Sect 4])

(Klo-1) ∅ = Klo(∅), X = Klo(X)

(Klo-2) A ⊆ Klo(A), for each A ∈ exp[X]
(Klo-3) Klo(A ∪ B) = Klo(A) ∪ Klo(B), ∀A,B ∈ exp[X]
(Klo-4) Klo(Klo(A)) = Klo(A), for each A ∈ exp[X].
Note that, as a direct consequence of (Klo-3),

(Klo-incr) A ⊆ B implies Klo(A) ⊆ Klo(B).

In fact, let A,B ∈ exp[X] be such that A ⊆ B. As B = A ∪ (B \ A), we must
have [Klo(B) = Klo(A) ∪ Klo(B \ A) ⊇ Klo(A)]; wherefrom, the assertion
follows.

Let T be a topology over X. Define a selfmap A #→ cl(A) of exp[X], as:

(∀A ∈ exp[X]) : cl(A)=the intersection of all G ∈ exp[X] with A ⊆ G=closed.

It is not hard to see that all properties (Klo-1)-(Klo-4) hold; whence, A #→
cl(A) is a Kuratowski closure over X; referred to as the closure operator
induced by T . Conversely, suppose that A #→ Klo(A) is a Kuratowski closure.
Then, the (normal) class S = {E ∈ exp[X];E = Klo(E)} is a cotopology
over X (see above); so that, T = X \ S is a topology over X in the above
discussed sense. Moreover, with respect to this topology, we have

cl(A) = Klo(A), for each A ∈ exp[X].
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(II) Suppose that, to each x ∈ X we attached a class W (x) ⊆ exp[X] (referred to
as: neighborhoods system of x) such that the family (W (x); x ∈ X) fulfills

(ns-1) for each x ∈ X and each W ∈ W (x), we have x ∈ W

(ns-2) (∀x ∈ X): A ∈ W (x) and A ⊆ B imply B ∈ W (x);
hence, in particular, X ∈ W (x)

(ns-3) (∀x ∈ X): W1,W2 ∈ W (x) imply W1 ∩W2 ∈ W (x)

(ns-4) for each x ∈ X and each A ∈ W (x) there exists D ∈ W (x) such that
A ∈ W (y), for each y ∈ D (hence, A ⊇ D).

We then say that (W (x); x ∈ X) is a neighborhoods system over X. A concrete
example is to be given as follows. Let T be a topology over X. Given x ∈ X, let us
say that Y ∈ exp[X] is a T -neighborhood of x, provided

x ∈ D ⊆ Y, for some D ∈ T ;
the class of all sets will be denoted as V (x). It is not hard to see that all properties
(ns-1)-(ns-4) hold; whence, (V (x); x ∈ X) is a neighborhoods system over X;
referred to as the neighborhoods system generated by T . Concerning the reciprocal
question, the following statement holds (cf. Costinescu [17, Ch II, Sect 1]):

Proposition 7 Suppose that (W (x); x ∈ X) is a neighborhoods system over X;
and put T = the set of all D ∈ exp[X] with (D ∈ W (x), ∀x ∈ D). Then,

(41-1) T is (a normal family and) a topology over X
(41-2) with respect to this topology, (V (x) = W (x), for all x ∈ X).

A variant of this construction is to be described as follows. Suppose that, to
each x ∈ X we attached a class W ∗(x) ⊆ exp[X] (referred to as: neighborhoods
subsystem of x) such that the family (W ∗(x); x ∈ X) fulfills the properties

(nss-1) for each x ∈ X and each W ∗ ∈ W ∗(x), we have x ∈ W ∗
(nss-2) (∀x ∈ X): for each W ∗

1 ,W
∗
2 ∈ W ∗(x) there exists W ∗

3 ∈ W ∗(x),
such that W ∗

1 ∩W ∗
2 ⊇ W ∗

3
(nss-3) for each x ∈ X and each A∗ ∈ W ∗(x) there exists D∗ ∈ W ∗(x),

such that for each y ∈ D∗, there exists B∗y ∈ W ∗(y) with A∗ ⊇ B∗y .

We then say that (W ∗(x); x ∈ X) is a neighborhoods subsystem over X. A concrete
example is to be given as follows. Let T be a topology over X; and, for each x ∈ X,
let V (x) be the neighborhoods system over X generated by T . Then, for each
x ∈ X, let the subset V ∗(x) of V (x) be taken as

for each V ∈ V (x) where exists V ∗ ∈ V ∗(x) with V ⊇ V ∗.

Then, (V ∗(x); x ∈ X) is a neighborhoods subsystem over X; referred to as: the
neighborhoods subsystem over X generated by T . For example, (V ∗(x); x ∈ X)

may be taken as the open neighborhoods subsystem over X generated by T :

V ∗(x) = {D ∈ T ; x ∈ D}, x ∈ X.
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Conversely, let (W ∗(x); x ∈ X) be a neighborhoods subsystem over X. Then, the
class (W (x); x ∈ X) introduced as

(∀x ∈ X) : W ∈ W (x) iff W ⊇ W ∗, for some W ∗ ∈ W ∗(x)

is a neighborhoods system over X, as it can be directly seen. By a preceding
statement, there exists a (uniquely determined) topology T over X such that
W (x) = V (x) (the neighborhood system on X generated by T ). But then,
(W ∗(x); x ∈ X) is a neighborhoods subsystem on X generated by T .

(III) Let us say that the subset B ⊆ exp[X] is a basis for T , provided

each D ∈ T is the union of a subset in B.

In particular, this means that B ⊆ T ; but, in general, we cannot have B = T .
A useful characterization of this concept is to be obtained by means of neighbor-

hood subsystems generated by T . Let B ⊆ T be a family of open sets. Denote

B(x) = {B ∈ B; x ∈ B}, x ∈ X.

We have (see Costinescu [17, Ch II, Sect 2] for details)

Proposition 8 Let B ⊆ T be a family of open sets. The following are equiva-
lent:

(42-1) B is a basis for the topology T
(42-2) (B(x); x ∈ X) is a neighborhoods subsystem over X generated by T :

for each x ∈ X and each V ∈ V (x) there exists B ∈ B(x) with V ⊇ B.

Let B ⊆ exp[X] be a class of sets. We may ask of to what extent there exists
a topology T on X such that B is the basis for T . To this end, note that if B ⊆
exp[X] is a basis for the topology T , then (by the properties of (B(x); x ∈ X))

(s-dir) B is strongly directed: for each B1, B2 ∈ B and each
x ∈ B1 ∩ B2 there exists B3 ∈ B such that x ∈ B3 ⊆ B1 ∩ B2

(B-total) B is total: X = ∪B (∀x ∈ X, ∃B ∈ B such that x ∈ B).

Theorem 7 Let the subset B ⊆ exp[X] be strongly directed, total; and put

T =the class of all D ∈ exp[X] with D=union of a subset in B.

Then,

(41-a) T is (a normal family and) a topology on X

(41-b) B is a basis of the topology T .

Proof (cf. Engelking [22, Ch 1, Sect 1.2]). There are two steps to be passed.

Step 1. Clearly, T is a normal family, by the total property. In addition, each
union of elements in T belongs to T . It remains to establish that the intersection
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of any finite subset in T belongs to T ; this, clearly, amounts to

D1,D2 ∈ T imply D1 ∩D2 ∈ T .

Let D1,D2 ∈ T be given. For the arbitrary fixed x ∈ D1 ∩ D2, there exist
B1, B2 ∈ B such that x ∈ B1 ⊆ D1, x ∈ B2 ⊆ D2; hence, x ∈ B1 ∩ B2 ⊆
D1 ∩ D2. From the strongly directed property, there exists B3 ∈ B such that
x ∈ B3 ⊆ B1 ∩ B2 ⊆ D1 ∩ D2. This, along with the arbitrariness of x in
D1 ∩D2, tells us that

D1 ∩D2=union of a subset in B; whence, D1 ∩D2 ∈ T ;

so that, T is a topology on X.
Step 2. By the preceding step, (B = ∪{B} ∈ T , ∀B ∈ B); and this, along with

definition of T , gives the desired conclusion.

(IV) Given the topology T over X, let us say that the family A ⊆ exp[X] is a
subbasis of it, when

the class B of intersections of finite subsets in A is a basis for T .

Clearly, this in particular means that A ⊆ B. Moreover, as ∪A = ∪B and
∪B = X, we have ∪A = X; i.e.: A is total.

Conversely, let A ⊆ exp[X] be a class of sets. As before, we may ask whether
there exists a topology T on X such that A is a subbasis for T . By the above
developments, this happens when

B= the class of intersections of finite subsets in A

is endowed with the properties

(s-dir) B is strongly directed: for each B1, B2 ∈ B and each
x ∈ B1 ∩ B2 there exists B3 ∈ B such that x ∈ B3 ⊆ B1 ∩ B2

(B-total) B is total: X = ∪B (∀x ∈ X, ∃B ∈ B such that x ∈ B).

The former of these is evident (in our case), via

B1, B2 ∈ B implies B1 ∩ B2 ∈ B.

So, it remains to verify the latter; which, under ∪A = ∪B, means

(A-total) A is total: X = ∪A (∀x ∈ X, ∃A ∈ A such that x ∈ A).

Summing up, the following answer to the posed question is available.

Theorem 8 Let the family A ⊆ exp[X] be total; and put
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T = {D ∈ exp[X];D = union of intersections of finite subsets in A }.

Then,

(42-a) T is (a normal family and) a topology on X

(42-b) A is a subbasis of the topology T .

(C) [Comparison criteria]
In the following, some elementary facts involving comparison of topologies

will be discussed.

Given the couple of topological spaces (X,T ) and (Y,S ), let us say that f :
X→ Y is (T ,S )-continuous, when

for each G ∈ S we have f−1(G) ∈ T .

Note that, an equivalent characterization of this property is by means of cotopolo-
gies; precisely, f : X→ Y is (T ,S )-continuous, iff

for each H ∈ Y \S we have f−1(H) ∈ X \T .

This concept may be used towards the comparison of topologies. Some prelimi-
naries are needed. Let X be a nonempty set. Given the topologies T , S over X, let
us introduce the relation

T ⊆ S : each T -open set is S -open.

This will be referred to as: T is coarser than S ; or: S is finer than T .
Let iX : X → X stand for the identity selfmap (iX(x) = x; x ∈ X). The

following result is now immediate; so, we do not give details.

Proposition 9 For the topologies T , S over X, the following are equivalent:

(43-1) T is coarser than S (i.e.: S is finer than T )
(43-2) the identical application iX : X→ X is (S ,T )-continuous.

This characterization is a handy tool for constructing topologies on a (nonempty)
set X. Given a nonempty index set Λ, let ((Yλ,Sλ); λ ∈ Λ) be a family of
topological spaces, and (fλ : X → Yλ; λ ∈ Λ) be a family of maps. We are
interested to determine the (minimal) topology T over X with respect to which

fλ is (T ,Sλ)-continuous, for each λ ∈ Λ.

As we shall see, this topology is to be introduced by the subbase

A = ∪{f−1
λ (Sλ); λ ∈ Λ}; where, by definition,

f−1
λ (Sλ) = {f−1

λ (Eλ);Eλ ∈ Sλ}, λ ∈ Λ.
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In fact, A is total (X = ∪A ); because [∅, X ∈ f−1
λ (Sλ), for each λ ∈ Λ]. By the

preceding statement, A is a subbase of a topology T over X, represented as

T = {D ∈ exp[X];D = union of intersections of finite subsets in A }.

The obtained topology is the desired one. Precisely, we have

Theorem 9 Under the above conventions,

(43-a) fλ is (T ,Sλ)-continuous, for each λ ∈ Λ

(43-b) If the topology Z over X fulfills [fλ is (Z ,Sλ)-continuous, ∀λ ∈ Λ] then,
necessarily, T ⊆ Z (T is coarser than Z ).

Remark 1 The following alternate representation of this topology is useful in many
concrete cases. For each λ ∈ Λ, let S ∗

λ be a subbasis of Sλ; note that, by definition,
S ∗

λ is total. Then, let us denote

A ∗ = ∪{f−1
λ (S ∗

λ ); λ ∈ Λ}; where, by definition,

f−1
λ (S ∗

λ ) = {f−1
λ (E∗λ);E∗λ ∈ S ∗

λ }, λ ∈ Λ.

From the above observation, A ∗ is total too; so, the formula

T ∗ = {D ∈ exp[X];D = union of intersections of finite subsets in A ∗}

defines a topology over X. We claim that, necessarily,

T = T ∗; i.e.: T ⊆ T ∗ and T ∗ ⊆ T .

The latter inclusion is clear, in view of A ∗ ⊆ A ; so, it remains to establish the
former inclusion. This, in turn, reduces to

(f-int) each intersection of a finite subset in A belongs to T ∗;

for, in such a case,

D ∈ T implies D=union of elements in T ∗; whence D ∈ T ∗.

Now, (f-int) means, ultimately: A,B ∈ A implies A ∩ B ∈ T ∗. To verify this, let
A,B ∈ A ; hence,

A = f−1
λ (Gλ), B = f−1

μ (Hμ), where λ,μ ∈ Λ,Gλ ∈ Sλ,Hμ ∈ Sμ.

Take some x ∈ A ∩ B. As fλ(x) ∈ Gλ, there exists G∗λ=intersection of a finite
subset in S ∗

λ , such that fλ(x) ∈ G∗λ ⊆ Gλ. Likewise, as fμ(x) ∈ Hμ, there exists
H ∗

μ=intersection of a finite subset in S ∗
μ , such that fμ(x) ∈ H ∗

μ ⊆ Hμ. Combining
these, yields
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x ∈ f−1
λ (G∗λ) ∩ f−1

μ (H ∗
μ) ⊆ A ∩ B; with

f−1
λ (G∗λ) ∩ f−1

μ (H ∗
μ)=intersection of a finite subset in A ∗;

and this, by the arbitrariness of x ∈ A ∩ B, gives

A ∩ B=union of intersections of finite subsets in A ∗; so, A ∩ B ∈ T ∗.

Further aspects may be found in Dugundji [20, Ch IV, Sect 1].

A basic particular case of these developments corresponds to the choice

Yλ = X, fλ = iX, for all λ ∈ Λ.

Precisely, let Λ be a nonempty index set; and (Sλ; λ ∈ Λ) be a family of topologies
over X. We have

Theorem 10 Under the described setting, there exists a unique topology T overX
having as subbase the class of sets A = ∪{Sλ; λ ∈ Λ}, and representable as

T = {D ∈ exp[X];D = union of intersections of finite subsets in A }.

Moreover, the following properties hold:

(44-a) Sλ ⊆ T , for each λ ∈ Λ

(44-b) If the topology Z over X fulfills (Sλ ⊆ Z , ∀λ ∈ Λ) then, T ⊆ Z .

In other words:

(44-c) T = sup{Sλ; λ ∈ Λ} (in the inclusion sense).

Remark 2 The following alternate representation of this topology is useful in many
concrete cases. For each λ ∈ Λ, let S ∗

λ be a subbasis of Sλ; note that, by definition,
S ∗

λ is total. Then, denote A ∗ = ∪{S ∗
λ ; λ ∈ Λ}. From the above observation, A ∗

is also total; so, the formula

T ∗ = {D ∈ exp[X];D = union of intersections of finite subsets in A ∗}
defines a topology over X. We claim that, necessarily,

T = T ∗; i.e.: T ⊆ T ∗ and T ∗ ⊆ T .

The latter inclusion is clear, in view of A ∗ ⊆ A ; so, it remains to establish the
former inclusion. This, in turn, reduces to

(f-int-id) each finite intersection of elements in A belongs to T ∗;

for, in such a case,

D ∈ T implies D=union of elements in T ∗; whence D ∈ T ∗.
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Now, (f-int-id) means, ultimately: A,B ∈ A implies A ∩ B ∈ T ∗. To verify this,
let A,B ∈ A ; hence,

A = Gλ,B = Hμ, where λ,μ ∈ Λ,Gλ ∈ Sλ,Hμ ∈ Sμ.

Take some x ∈ A ∩ B. As x ∈ Gλ, there exists G∗λ=intersection of a finite subset in
S ∗

λ , such that x ∈ G∗λ ⊆ Gλ. Likewise, as x ∈ Hμ, there exists H ∗
μ=intersection of

a finite subset in S ∗
μ , such that x ∈ H ∗

μ ⊆ Hμ. Combining these, yields

x ∈ G∗λ ∩H ∗
μ ⊆ A ∩ B; with G∗λ ∩H ∗

μ=intersection of a finite subset in A ∗;

and this, by the arbitrariness of x ∈ A ∩ B, gives

A ∩ B=union of intersections of finite subsets in A ∗; so, A ∩ B ∈ T ∗.

(D) [Basic concepts]
In the following, some completions of the above facts will be provided. Let

(X,T ) be a topological space.

Given A ∈ exp[X], let us say that x ∈ X is interior to A, when A ∈ V (x);
clearly, x ∈ A. The class of all these points will be denoted as int(A) (the interior
of A). A global characterization of this operator is given as

int(A)=the union of all D ∈ T with D ⊆ A.

Given A ∈ exp[X], let us say that x ∈ X is adherent to A, when V ∩ A 
= ∅, for
all V ∈ V (x); clearly, x ∈ A in not in general true. The class of all these points is
just cl(A) (the closure (or, adherence) of A); clearly, int(A) ⊆ cl(A).

The introduced operators A #→ int(A) and A #→ cl(A) (from exp[X] to itself)
are duals, in the sense

X \ int(A) = cl(X \ A), X \ cl(A) = int(X \ A), A ∈ exp[X].

This means that each property involving int(.) has a dual property involving cl(.),
and vice versa; we do not give details.

Given A ∈ exp[X], we say that x ∈ X is boundary to A, when x ∈ cl(A)∩cl(X\
A); as before, such a point need not be in A. The class of all these writes

bd(A) = cl(A) ∩ cl(X \ A) = cl(A) \ int(A) (the boundary of A);

clearly, bd(A) ⊆ cl(A). As a consequence of this,

cl(A) = (cl(A) \ int(A)) ∪ int(A) = bd(A) ∪ int(A), A ∈ exp[X].
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Let again (X,T ) be a topological space. Define the properties

(H-sep) (X,T ) is (Hausdorff) separated: ∀x, y ∈ X with x 
= y,
there exist V ∈ V (x), W ∈ V (y) with V ∩W = ∅

(q-comp) (X,T ) is quasi-compact:
X = ∪G for G ⊆ T implies X = ∪H , where H =finite part of G .

When both these properties hold, we say that (X,T ) is compact. The basic
properties of these concepts are well known; so, further details are not provided.

(E) [Metrical structures]
Some basic applications of these facts are to be given in a metrical context.

(I) Let M be a nonempty set. Given the map (=pseudometric) d : M ×M → R+,
consider the properties

(m-1) d is reflexive: d(x, x) = 0, for all x ∈ X

(m-2) d is triangular: d(x, y) ≤ d(x, z)+ d(z, y), ∀x, y, z ∈ X

(m-3) d is symmetric: d(x, y) = d(y, x), for all x, y ∈ X

(m-4) d is sufficient: d(x, y) = 0 implies x = y.

When (m-1)-(m-3) hold, we say that d(., .) is a semimetric on M; and (M, d) is
called a semimetric space. On the other hand, when (m-1)-(m-4) hold, we say
that d(., .) is a metric on M; and (M, d) is called a metric space.

Let (M, d) be a semimetric space. The topology to be considered here is
generated by the family of open spheres in M . Precisely, given a ∈ M , ρ > 0,
denote

M(a, ρ)(d) = {x ∈ M; d(a, x) < ρ}, M[a, ρ](d) = {x ∈ M; d(a, x) ≤ ρ};

these will be referred to as the open (respectively, closed) sphere with center a ∈ M

and radius ρ > 0. (Clearly, both these spheres are nonempty; because a ∈ M is an
element of them).

Define the family of (nonempty) sets

W ∗(a)(d) = {M(a, ρ)(d); ρ > 0}, a ∈ M.

It is not hard to see that (W ∗(a)(d); a ∈ M) is a neighborhoods subsystem over M .
Its attached family of (nonempty) sets (W (a)(d); a ∈ M) defined as

(∀a ∈ M) : W ∈ W (a)(d) iff W ⊇ W ∗, for some W ∗ ∈ W ∗(a)(d)

is a neighborhoods system over M . By a preceding statement, there exists a unique
topology T (d) over M such that

W (a)(d) is just the T (d)-neighborhoods system of a, for each a ∈ M.
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According to its definition, we have, for each nonempty D ∈ T (d) and each a ∈ D,

D ∈ W (a)(d); so, there exists ρ > 0 such that M(a, ρ)(d) ⊆ D.

Moreover, B∗(d) = {W ∗(a)(d); a ∈ M} is a subbasis of T (d); so,

(for each D ∈ T (d)) : D=union of intersections of finite subsets in B∗(d).

In particular, B∗(d) ⊆ T (d); whence,

M(a, ρ)(d) is open, for each a ∈ M,ρ > 0.

On the other hand, by the semimetrical properties of d,

(∀a ∈ M,∀ρ > 0) : Me(a, ρ)(d) := {x ∈ M; d(a, x) > ρ} is open;

whence, M[a, ρ](d) = M \Me(a, ρ)(d) is closed.

Finally, when no confusion can arise, it would be convenient to drop the index (d)

from all notations above.

(II) Let (M, d) be a metric space. The (topological) compactness property of this
space was already introduced. A related notion is the following. Let us say that
(M, d) is sequentially compact, provided

(s-comp) each sequence in M has a convergent subsequence.

Proposition 10 The following is valid, in (ZF-AC+DC)

(M, d) is compact iff (M, d) is sequentially compact.

The verification is very similar with the one in Costinescu [17, Ch VII, Sect 3].

(III) Let (P, d) and (Q, e) be a couple of metric spaces; and f : P → Q be a
mapping. Let us say that f is sequentially continuous, when

∀ sequence (xn) in P and ∀ element x ∈ P : xn
d−→ x implies f (xn)

e−→ f (x).

Proposition 11 We have, in (ZF-AC+DC),

f is continuous iff f is sequentially continuous.

Proof

(i): Suppose that f is continuous (after the general definition); and let the sequence

(xn) in P and the point x ∈ P be such that xn
d−→ x. Let ε > 0 be arbitrary

fixed. By the topological definition of continuity, there exists δ > 0 such
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that f (P (x, δ)) ⊆ Q(f (x), ε). Further, given this δ > 0, there exists (by
hypothesis) an index n(δ) ∈ N such that n ≥ n(δ) implies xn ∈ P(x, δ).
Combining these gives

n ≥ n(δ) implies f (xn) ∈ Q(f (x), ε);

and this, by the arbitrariness of ε > 0, tells us that f (xn)
e−→ f (x).

(ii): Suppose that f is sequentially continuous; but f is not continuous (after the
topological definition): there exists ε > 0 such that

(∀δ > 0) : H(δ) := f (P (x, δ)) \Q(f (x), ε) is nonempty.

Let (δn; n ≥ 0) be a strictly descending sequence in R0+ with δn → 0. (For, example,
one may take (δn = 2−n; n ≥ 0); but this is not the only possible choice). By the
Denumerable Axiom of Choice (AC(N)) (deductible in (ZF-AC+DC)), there may
be determined a sequence (xn) in P with

(∀n) : xn ∈ H(δn) (that is; xn ∈ P(x, δn) and f (xn) /∈ Q(f (x), ε)).

By the first half of this relation, xn
d−→ x; so that, by the sequential continuity,

f (xn)
e−→ f (x); wherefrom:

there exists some index n(ε) ≥ 0, with f (xn) ∈ Q(f (x), ε),∀n ≥ n(ε).

This, however, is in contradiction with the second half of underlying relation; and
then, the conclusion follows.

(IV) Let again (P, d) and (Q, e) be a couple of metric spaces; and f : P → Q be
a mapping. Let us say that f is uniformly continuous, when

∀ε > 0, ∃δ > 0, such that d(x, y) ≤ δ implies e(f (x), f (y)) ≤ ε.

In this case, we may construct a mapping ψ : R+ → R+ ∪ {∞}, according to

ψ(t) = sup{e(f (x), f (y)); d(x, y) ≤ t}, t ∈ R+.

This will be referred to as the uniform continuity modulus of f ; the class of all these
will be denoted as Fu(R+, R+ ∪ {∞}). Clearly,

(uc-1) ψ is increasing and zero-continuous [ψ(0) = 0 = ψ(0+ 0)],
(uc-2) e(f (x), f (y)) ≤ ψ(d(x, y)), ∀x, y ∈ P ;

since the verification is immediate, we do not give details.
A basic example of this type is to be obtained in the compactness context.
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Theorem 11 Suppose that (P, d) is sequentially compact. Then, the generic
inclusion is valid, in (ZF-AC+DC):

(∀f ∈ F (P,Q)) : f is continuous implies f is uniformly continuous.

Proof Suppose that f is continuous, but not uniformly continuous. There exists
then ε > 0, such that

C(δ) := {(x, y) ∈ P × P ; d(x, y) ≤ δ, e(f (x), f (y)) > ε} 
= ∅, for each δ > 0.

Let (δn; n ≥ 0) be a sequence in R0+ with δn → 0. (For example, we may take (δn =
2−n; n ≥ 0); hence, this is not depending on (AC)). From the Denumerable Axiom
of Choice (AC(N)) (deductible, as precise, in (ZF-AC+DC)), we get a sequence
((xn, yn); n ≥ 0) in P × P , such that

(xn, yn) ∈ C(δn),∀n; that is: d(xn, yn) ≤ δn, e(f (xn), f (yn)) > ε,∀n.

From the sequential compactness of (P, d), there exists subsequences (x∗n), (y∗n) of
(xn) and (yn) respectively, and elements x∗, y∗ ∈ P , such that (from the first part
of this relation)

d(x∗n, y∗n) ≤ δn,∀n, xn d−→ x∗, y∗n
d−→ y∗; whence, x∗ = y∗.

Combining with the second part of the same relation, we get (by a limit process)

0 = e(f (x∗), f (y∗)) ≥ ε; contradiction.

Hence, our working assumption is not acceptable; and the conclusion follows.

(F) [Gauge spaces]
Let X be a nonempty set; and Λ be some (nonempty) index set. For each

λ ∈ Λ, let dλ : X×X→ R+ be a semimetric over X; and T (dλ) stand for the
associated topology (see above).

Technically speaking, these data generate two basic structures on X.

(I) The former of these is represented by the supremum topology of the family
{T (dλ); λ ∈ Λ}. Precisely, note that for each λ ∈ Λ,

Aλ = {X(x, ρ)(dλ); x ∈ X, ρ > 0} is a subbase of T (dλ);

hence, in particular, Aλ is total. Denote further

A = ∪{Aλ; λ ∈ Λ}; clearly, A is total too.
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By a preceding result, the formula

T = {D ∈ exp[X]; D = union of intersections of finite subsets in A }

defines a topology over X. This, as precise, is just the supremum topology of
the family {T (dλ); λ ∈ Λ}. Let cl(.) stand for the associated closure operator.
Note that, according to its definition, we have for each (nonempty) subset Y
of X

(g-int) x ∈ int(Y ) iff there exists an intersection W of a finite subset in A
with x ∈ W ⊆ Y

(g-clo) x ∈ cl(Y ) iff each intersection W of a finite subset in A
with x ∈ W fulfills W ∩ Y 
= ∅.

(II) The latter of these is represented by the (sequential) conv-Cauchy structure
induced by the family D = (dλ; λ ∈ Λ) of these semimetrics.

Take an arbitrary sequence (xn; n ≥ 0) in X. Given λ ∈ Λ, the dλ-convergence

of this sequence towards an x ∈ X [depicted as: xn
dλ−→ x], means:

dλ(xp, x)→ 0 as p→∞
(i.e.: ∀ε > 0, ∃i = i(λ, ε), such that i ≤ p .⇒ dλ(xp, x) ≤ ε).

If this holds for all λ ∈ Λ, then (xn; n ≥ 0) is said to D-converge towards x [written

as: xn
D−→ x]. The set of all such points x will be denoted as D − limn(xn); when

it is nonempty, then (xn; n ≥ 0) is called D-convergent. On the other hand, given
λ ∈ Λ, the dλ-Cauchy property of (xn; n ≥ 0) means:

dλ(xp, xq)→ 0 as p, q →∞, p ≤ q

(i.e.: ∀ε > 0, ∃j := j (λ, ε), such that j ≤ p ≤ q .⇒ dλ(xp, xq) ≤ ε).

If this holds for each λ ∈ Λ, we say that (xn) is D-Cauchy; the class of all
such sequences will be denoted as Cauchy(D). By definition, the triple (X,Λ;D)

endowed with the conv-Cauchy structure ((
D−→), Cauchy(D)) and the regularity

condition

D is suff icient : x, y ∈ X and (dλ(x, y) = 0,∀λ ∈ Λ) imply x = y

is called a gauge space. Note that, in this setting, any D-convergent sequence is
D-Cauchy too; the reciprocal is not in general valid.

Using the previous conventions, we may introduce a D-closure operator A #→
Dcl(A) from exp[X] to itself, as: for each A ∈ exp[X],

y ∈ Dcl(A) iff y = D − lim
n
(yn), for some sequence (yn) in A.
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It is not hard to see that A #→ Dcl(A) is a semi-closure over X, in the sense

(Dcl-1) (identity) ∅ = Dcl(∅), X = Dcl(X),
(Dcl-2) (progressiveness) Y ⊆ Dcl(Y ), ∀Y ∈ exp[X],
(Dcl-3) (additivity) Dcl(U ∪ V ) = Dcl(U) ∪ Dcl(V ), ∀U,V ∈ exp[X].
Note that, as a direct consequence of these, we also have

(Dcl-4) (monotonicity) Y1 ⊆ Y2 implies Dcl(Y1) ⊆ Dcl(Y2).

Further, call A ∈ exp[X], D-closed provided A = Dcl(A); note that in this case,

the D-limit of each sequence in A belongs to A.

Denote, for simplicity

K [D]=the class of all D-closed subsets in X.

Clearly, K [D] ⊆ exp[X] is a normal family, with the finite union property

(K-D-1) the union of any finite subset of K [D] is in K [D].
However, the arbitrary intersection property

(K-D-2) the intersection of any subset in K [D] belongs to K [D]
is not in general true; so that, K [D] is not a cotopology on X; we then say that
K [D] is an almost cotopology on X. Equivalently, this tells us that

T [D] = X \K [D] (in the sense: Z ∈ T [D] iff X \ Z ∈ K [D])

is a normal family with the finite intersection property

(T-D-1) the intersection of any finite subset of T [D] is in T [D].
However, the arbitrary union property

(T-D-2) the union of any subset in T [D] belongs to T [D]
is not in general true; so that, T [D] is not topology on X; we then say that T [D] is
an almost topology on X [referred to as the gauge almost topology]. An explanation
of this bad property is due to the closure operator A #→ Dcl(A) being not involutive;
i.e., a property like

(Dcl-inv) Dcl(Dcl(A)) = Dcl(A), for each A ∈ exp[X]
is not in general true; so that, A #→ Dcl(A) is not a closure over X according to
Kuratowski [38, Ch I, Sect 4]. Further aspects of this problem may be found in
Engelking [22, Ch 1, Sect 1.2].

Finally, let us compare the supremum topology T = sup{T (dλ); λ ∈ λ} with
the gauge almost topology T [D]. In this direction, we have the properties
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(p-1) (∀Y ∈ exp[X]): Dcl(Y ) ⊆ cl(Y )
(p-2) T ⊆ T [D]; i.e.: Y=closed (open) implies Y=D-closed (D-open).

In fact, letting x ∈ Dcl(Y ), there exists a sequence (xn) in Y with

xn
D−→ x; hence, xn

dλ−→ x, for each λ ∈ Λ.

Let W = ∩{X(x, ρi)(dλ(i)); i ∈ I } be a finite intersection (of open spheres) that
includes x; where, I is a (nonempty) finite index set. By the above convergence
property, there must be some index n(x), such that

{xn; n ≥ n(x)} ⊆ W ; whence, Y ∩W 
= ∅.
This yields x ∈ cl(Y ); and proves the first property. As a consequence,

Y=closed implies cl(Y ) = Y ⊆ Dcl(Y ) ⊆ cl(Y ); hence, Y=D-closed;

wherefrom, the second property holds too.

5 Gheorghiu Functional Contractions

Let X be a nonempty set; and Λ be some nonempty (index) set. For each λ ∈ Λ, let
dλ : X ×X→ R+ be a semimetric over Xλ; and T (dλ) stand for the associated to
dλ topology over X.

Technically speaking, these data generate two basic structures on X.

(I) The former of these is represented by the supremum topology of the family
{T (dλ); λ ∈ Λ}. For the moment, this topology is not essential for us; however,
in the homotopical fixed point theory, a limited use of it will be made in the
reasonings to be developed.

(II) The latter of these is represented by the (sequential) conv-Cauchy structure
induced by the family D = (dλ; λ ∈ Λ) of these semimetrics. This, essentially,
may be described in the following way.

Take an arbitrary sequence (xn; n ≥ 0) in X. Given λ ∈ Λ, the dλ-convergence

of this sequence towards an x ∈ X [depicted as: xn
dλ−→ x], means:

dλ(xp, x)→ 0 as p→∞
(i.e.: ∀ε > 0, ∃i = i(λ, ε), such that i ≤ p .⇒ dλ(xp, x) ≤ ε).

If this holds for all λ ∈ Λ, then (xn; n ≥ 0) is said to D-converge towards x [written

as: xn
D−→ x]. The set of all such points x will be denoted as D − limn(xn); when

it is nonempty, then (xn; n ≥ 0) is called D-convergent. On the other hand, given
λ ∈ Λ, the dλ-Cauchy property of (xn; n ≥ 0) means:
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dλ(xp, xq)→ 0 as p, q →∞, p ≤ q

(i.e.: ∀ε > 0, ∃j := j (λ, ε), such that j ≤ p ≤ q .⇒ dλ(xp, xq) ≤ ε).

If this holds for each λ ∈ Λ, we say that (xn; n ≥ 0) is D-Cauchy. Note that any
D-convergent sequence is D-Cauchy too; the reciprocal is not in general valid. By
definition, the triple (X,Λ;D) endowed with this conv-Cauchy structure and with
the regularity condition

D is suff icient : x, y ∈ X and (dλ(x, y) = 0,∀λ ∈ Λ) imply x = y

is called a gauge space.
Let (X,Λ;D) be a gauge space. Remember that the subset Y of X, is called

asingleton, if [y1, y2 ∈ Y imply y1 = y2]; and singleton if, in addition, Y is
nonempty; note that, in this case Y = {y}, for some y ∈ X.

Further, let T : X→ X be a selfmap of X. As usual, Fix(T ) := {z ∈ X; z = T z}
stands for the set of all fixed points of T in X. These are to be determined in the
context below, comparable with the one in Rus [50, Ch 2, Sect 2.2]:

(gpic-1) We say that T is fix-asingleton, if Fix(T ) is an asingleton; and fix-
singleton, if Fix(T ) is a singleton

(gpic-2) We say that x ∈ X is a Picard point (modulo (D, T )), when the iterative
sequence (T nx; n ≥ 0) is D-Cauchy. If this property holds for all x ∈ X,
we say that T is a Picard operator (modulo D)

(gpic-3) We say that x ∈ X is a strongly Picard point (modulo (D, T )), when
(T nx; n ≥ 0) is D-convergent with limn(T

nx) ∈ Fix(T ). If this property
holds for all x ∈ X, we say that T is a strongly Picard operator (modulo
D).

The sufficient (regularity) conditions for such properties are being founded on
orbital concepts (in short: o-concepts). Given x ∈ X, let us say that the sequence
(zn; n ≥ 0) in X is T -orbital with respect to x, when (zn = T nx; n ≥ 0); if
x ∈ X is generic, we then say that (zn; n ≥ 0) is a T -orbital (or, equivalently: an
o-sequence).

(greg-1) Call X, (o;D)-complete, provided (for each o-sequence) D-Cauchy .⇒
D-convergent

(greg-2) We say that T is (o;D)-continuous, if [(zn)=o-sequence and zn
D−→ z]

imply T zn
D−→ T z.

As a completion of these, we must now formulate the metrical contractive
conditions upon our data. Let Ω = (ωλ; λ ∈ Λ) be a family over F (R+). Then, let
us introduce the mappings: for each x, y ∈ X, and each λ ∈ Λ

M1(x, y; T ; dλ) = dλ(x, y),

M2(x, y; T ; dλ) = max{dλ(x, T x), dλ(y, T y)},
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M3(x, y; T ; dλ) = (1/2)[dλ(x, T y)+ dλ(y, T x)],
M(x, y; T ; dλ) = max{M1(x, y; T ; dλ),M2(x, y; T ; dλ),M3(x, y; T ; dλ)}.

We say that T is (Ω,M)-contractive, if

dλ(T x, T y) ≤ ωλ(M(x, y; T ; dλ)), ∀x, y ∈ X,∀λ ∈ Λ.

The deep part of the main result to be stated is an auxiliary fact involving almost
Picard properties over semimetric structures. Some preliminaries are needed.

Let X be a nonempty set; and d : X × X → R+ be a semimetric over X; the
couple (X, d) will be referred to as a semimetric space. Further, take some T ∈
F (X). In the following, sufficient conditions are given so that

(AP) T is almost Picard (modulo d); in the sense
(ap-1) (∀x ∈ X): the iterative sequence (T nx; n ≥ 0) is d-Cauchy

(ap-2) (∀x ∈ X, ∀z ∈ X): T nx
d−→ z implies d(z, T z) = 0.

The conditions in question are to be written as follows. Let the functional classes

F0(R+),F0(re)(R+),F0(in)(R+),F0(re, in)(R+)

be introduced as before. Then, let us define the mappings: for each x, y ∈ X,

M1(x, y; T ; d) = d(x, y),

M2(x, y; T ; d) = max{d(x, T x), d(y, T y)},
M3(x, y; T ; d) = (1/2)[d(x, T y)+ d(y, T x)],
M(x, y; T ; d) = max{M1(x, y; T ; d),M2(x, y; T ; d),M3(x, y; T ; d)}.

Given ω ∈ F (R+), we say that T is (ω,M)-contractive, provided

d(T x, T y) ≤ ω(M(x, y; T ; d)),∀x, y ∈ X.

The following almost Picard type statement involving these data is available.

Theorem 12 Suppose that the selfmap T is (ω,M)-contractive, where the function
ω ∈ F0(re, in)(R+) fulfills

ω is Meir-Keeler admissible; or, equivalently: Matkowski admissible.

Then, T is an almost Picard operator (see above).

A direct verification was provided in Leader [39]. For completeness reasons, we
will however develop the argument, with certain modifications.
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Proof Fix some point x0 ∈ X, and put (xn = T nx0; n ≥ 0).

Step 1. From the contraction hypothesis, we have

d(xn+1, xn+2) ≤ ω(max{d(xn, xn+1), d(xn+1, xn+2), (1/2)d(xn, xn+2)}),∀n.

In view of

1/2)d(xn, xn+2) ≤ max{d(xn, xn+1), d(xn+1, xn+2)},∀n,

the underlying relation becomes

d(xn+1, xn+2) ≤ ω(max{d(xn, xn+1), d(xn+1, xn+2)}),∀n.

If, for some n, one has

d(xn+1, xn+2) > d(xn, xn+1)(≥ 0),

then, by the above relation (and regressiveness of ω)

d(xn+1, xn+2) ≤ ω(d(xn+1, xn+2)) < d(xn+1, xn+2); a contradiction.

Hence, necessarily,

d(xn+1, xn+2) ≤ d(xn, xn+1); whence, d(xn+1, xn+2) ≤ ω(d(xn, xn+1)), ∀n;

and this (along with ω being Matkowski admissible) yields

(xn) is d-asymptotic: rn := d(xn, xn+1)→ 0 as n→∞.

Step 2. Let ε > 0 be arbitrary fixed; and δ > 0 be attached to it, by the Meir-
Keeler admissible property of ω:

ε < t < ε + δ implies ω(t) ≤ ε; or, equivalently

t < ε + δ implies ω(t) ≤ ε (as ω=regressive, ω(0) = 0);

clearly, without loss, one may assume that δ < ε. By the d-asymptotic property
we just established, there exists a rank n(δ), such that

(d-asy) (∀n ≥ n(δ)): d(xn, xn+1) < δ/4; hence, d(xn, xn+2) < δ/2.

We prove by induction that, for each j ≥ 1, the following relation holds

(d-C;j) d(xn, xn+j ) < ε + δ/2, ∀n ≥ n(δ);

wherefrom, (xn; n ≥ 0) is d-Cauchy. The case j ∈ {1, 2} is evident, by the
evaluation (d-asy). Assume that (d-C;j) holds for all j ∈ {1, . . . , p}, where
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p ≥ 2; we must establish that (d-C;p+1) holds too. Let n ≥ n(δ) be arbitrary
fixed. From the inductive hypothesis (and our asymptotic relation)

d(xn, xn+p), d(xn+1, xn+p) < ε + δ/2

d(xn, xn+1), d(xn+p, xn+p+1) < δ/4 < ε + δ/2.

This, along with the triangular inequality, gives us

d(xn, xn+p+1) ≤ d(xn, xn+p)+ d(xn+p, xn+p+1) < ε + 3δ/4;
so that, by definition, M(xn, xn+p; T ; d) < ε + δ.

Combining with contractive hypothesis and Meir-Keeler property of ω, gives

d(xn+1, xn+p+1) = d(T xn, T xn+p) ≤ ω(M(xn, xn+p; T ; d)) ≤ ε;

wherefrom (again by the triangular inequality)

d(xn, xn+p+1) ≤ d(xn, xn+1)+ d(xn+1, xn+p+1) < ε + δ/4 < ε + δ/2;

and our claim follows.
Step 3. Suppose that z ∈ X is such that

xn
d−→ z (i.e.: d(xn, z)→ 0), as n→∞.

We claim that, necessarily, d(z, T z) = 0. Suppose not: b := d(z, T z) > 0. From
the contractive condition,

d(xn+1, T z) ≤ ω(M(xn, z; T ; d)),∀n.

By the convergence and d-asymptotic properties, there exists a rank n(b), with

(∀n ≥ n(b)) : d(xn, z), d(xn, T xn), d(T xn, z) < b/2;
whence, M1(xn, z; T ; d) < b/2,M2(xn, z; T ; d) = b.

This, along with the triangle inequality, gives

(∀n ≥ n(b)) : d(xn, T z) ≤ d(xn, z)+ d(z, T z) < 3b/2;
wherefrom M3(xn, z; T ; d) < b,M(xn, z; T ; d) = b.

Replacing these into the contractive condition, we derive

d(xn+1, T z) ≤ ω(b),∀n ≥ n(b).
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Passing to limit as n→∞ gives (by a previous auxiliary fact)

b ≤ ω(b) < b; contradiction.

Hence, our initial assumption about z cannot be true; so that, d(z, T z) = 0. The
proof is thereby complete.

Remark 3 Remember that ω ∈ F0(re)(R+) is Matkowski admissible, when

ω is Boyd-Wong admissible: Λ+ω(s) < s,∀s ∈ R0+.

In particular, when ω ∈ F0(re, in)(R+), this last condition means

ω is strongly regressive [ω(s + 0) < s, for all s > 0].

It is worth noting that, under the Boyd-Wong property, there is a specific way
of completing the second part of statement above. For technical reasons, we will
describe it in what follows.

Suppose that the d-asymptotic sequence (xn) is not d-Cauchy; and fix some
couple (β, γ ) ∈ (>; adm(R0+; (xn))) as well as the rank sequence (λ(k) = 1; k ≥
0). By a previous auxiliary statement, there exist b ∈ R0+, a rank sequence
(J (k); k ≥ 0) in N(1,≤) and a couple of rank-sequences (m(k); k ≥ 0), (n(k); k ≥
0), with

(p-1) k + 1 ≤ J (k) ≤ m(k) < m(k)+ 3λ(k) < n(k), ∀k ≥ 0
(p-2) ∀p, q ∈ N [0, 3λ(0)], uk(p, q) := d(xm(k)+p, xn(k)+q)→ b+ as k →∞.

From the contractive hypothesis,

uk(1, 1) ≤ ω(vk),∀k; where, by definition

vk = max{uk(0, 0), rm(k), rn(k), (1/2)[uk(0, 1)+ uk(1, 0)]}, k ≥ 0.

By the above convergence properties,

vk → b + as k →∞; because uk(0, 0), uk(0, 1), uk(1, 0)→ b + as k →∞.

Passing to lim sup as k →∞, in the previous relation, gives (cf. a preceding result)

b ≤ Λ+ω(b) < b; contradiction.

Hence, our working assumption is not acceptable; and the conclusion follows.

Under these preliminaries, we may now pass to our basic fixed point result in this
exposition.

Theorem 13 Suppose that T is (Ω,M)-contractive, where Ω = (ωλ; λ ∈ Λ) is a
family over F0(re, in)(R+), fulfilling

(∀λ ∈ Λ): ωλ is Meir-Keeler admissible

(or, equivalently: Matkowski admissible).
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In addition, let X be (o;D)-complete. Then,

(52-a) T is fix-asingleton
(52-b) T is strongly Picard (modulo D).

Proof There are several steps to be passed.

Part 1 We prove that T is fix-asingleton. Let z1, z2 ∈ Fix(T ) be arbitrary fixed.
By the contractive condition,

dλ(z1, z2) ≤ ωλ(dλ(z1, z2)), λ ∈ Λ.

This, by the regressive property of the functions in Ω , gives

dλ(z1, z2) = 0, ∀λ ∈ Λ; wherefrom (as D is sufficient) z1 = z2.

Part 2 Take some x0 ∈ X, and put (xn := T nx0; n ≥ 0); clearly, (xn) is orbital.
By the preceding semimetric statement, one derives that

(52-c) (xn) is D-Cauchy (i.e.: dλ-Cauchy, for each λ ∈ Λ).

Part 3 Summing up, (xn; n ≥ 0) is an orbital D-Cauchy sequence. As X is (o;D)-
complete, there must be some (uniquely determined) z ∈ X, with

xn
D−→ z (hence, xn

dλ−→ z, for each λ ∈ Λ).

Again by the preceding semimetric statement, we get

(52-d) dλ(z, T z) = 0, for each λ ∈ Λ.

This, along with D=sufficient, gives z = T z; i.e.: z ∈ Fix(T ).

In particular, when when Λ is a singleton, this main result covers the one in
Leader [39]. Passing to the general case, note that our main result includes the trivial
quasi-order version of the related 2017 one in Turinici [67]; and has large overlaps
with the fixed point result in Agarwal et al. [1]. In fact, it is not difficult to get a
quasi-order version of our main result so as to include both these statements; we do
not give details. An interesting problem to be posed is that of this statement having
Maia type extensions like in Gheorghiu [26]; further aspects will be discussed
elsewhere. Some applications of such results to integral equations may be found
in Gheorghiu and Turinici [28] or Cherichi and Samet [15]; see also the Angelov’s
monograph [4, Ch II, Sect 2.2].

6 Homotopic Fixed Points

Let X be a nonempty set; and Λ be some nonempty (index) set. For each λ ∈ Λ,
let dλ : X × X → R+ be a semimetric over X; and T (dλ) stand for the associated
topology. Remember that there are two basic structures on X to be used further.
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(I) The former of these is represented by the supremum topology of the family
{T (dλ); λ ∈ Λ}. Precisely, note that for each λ ∈ Λ,

Aλ = {X(x, ρ)(dλ); x ∈ X, ρ > 0} is a subbase of T (dλ);

hence, in particular, Aλ is total. Denote further

A = ∪{Aλ; λ ∈ Λ}; clearly, A is total too.

By a preceding result, the formula

T = {D ∈ exp[X]; D = union of intersections of finite subsets in A }

defines a topology over X. This, as precise, is just the supremum topology of
the family {T (dλ); λ ∈ Λ}. Note that, according to its definition, we have for
each (nonempty) subset Y of X and each x ∈ X,

(g-int) x ∈ int(Y ) iff there exists an intersection W of a finite subset in A
with x ∈ W ⊆ Y

(g-clo) x ∈ cl(Y ) iff each intersection W of a finite subset in A
with x ∈ W fulfills W ∩ Y 
= ∅.

(II) The latter of these is represented by the (sequential) conv-Cauchy structure
induced by the family D = (dλ; λ ∈ Λ) of these semimetrics. This, essentially,
may be described in the following way.

Take an arbitrary sequence (xn; n ≥ 0) in X. Given λ ∈ Λ, the dλ-convergence

of this sequence towards an x ∈ X [depicted as: xn
dλ−→ x], means:

dλ(xp, x)→ 0 as p→∞
(i.e.: ∀ε > 0, ∃i = i(λ, ε), such that i ≤ p .⇒ dλ(xp, x) ≤ ε).

If this holds for all λ ∈ Λ, then (xn; n ≥ 0) is said to D-converge towards x [written

as: xn
D−→ x]. The set of all such points x will be denoted as D − limn(xn); when

it is nonempty, then (xn; n ≥ 0) is called D-convergent. On the other hand, given
λ ∈ Λ, the dλ-Cauchy property of (xn; n ≥ 0) means:

dλ(xp, xq)→ 0 as p, q →∞, p ≤ q

(i.e.: ∀ε > 0, ∃j := j (λ, ε), such that j ≤ p ≤ q .⇒ dλ(xp, xq) ≤ ε).

If this holds for each λ ∈ Λ, we say that (xn; n ≥ 0) is D-Cauchy. Note that any
D-convergent sequence is D-Cauchy too; the reciprocal is not in general valid. By
definition, the triple (X,Λ;D) endowed with this conv-Cauchy structure and the
regularity condition
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D is suff icient : x, y ∈ X and (dλ(x, y) = 0,∀λ ∈ Λ) imply x = y

is called a gauge space.
Suppose that we fixed such a structure. Define a D-closure operator A #→ Dcl(A)

from exp[X] to itself, as: for each A ∈ exp[X],

y ∈ Dcl(A) iff y = D − lim
n
(yn), for some sequence (yn) in A.

It is not hard to see that A #→ Dcl(A) is a semi-closure over X, in the sense

(Dcl-1) (identity) ∅ = Dcl(∅), X = Dcl(X),
(Dcl-2) (progressiveness) Y ⊆ Dcl(Y ), ∀Y ∈ exp[X],
(Dcl-3) (additivity) Dcl(U ∪ V ) = Dcl(U) ∪ Dcl(V ), ∀U,V ∈ exp[X].
Note that, as a direct consequence of these, we also have

(Dcl-4) (monotonicity) Y1 ⊆ Y2 implies Dcl(Y1) ⊆ Dcl(Y2).

Unfortunately, A #→ Dcl(A) is not involutive; i.e.,

(Dcl-inv) Dcl(Dcl(A)) = Dcl(A), for each A ∈ exp[Y ]
is not in general true; so that, A #→ Dcl(A) is not a closure over X according to
Kuratowski [38, Ch I, Sect 4].

Further, let us say that A ∈ exp[X] is D-closed, provided A = Dcl(A); note that

the D-limit of each sequence in A belongs to A.

Having these precise, let (J, g) be a metric space; and (≤) be a (partial) order
over J ; the triple (J, g,≤) will be then referred to as an ordered metric space. Let
(<) stand for the attached strict order:

t < s iff t ≤ s and t 
= s [clearly, (<) is irreflexive and transitive].

Call r ∈ J , (≤)-maximal provided

J (r,≤) = {r}; or, equivalently, J (r,<) = ∅;

the class of all these will be denoted as max(J,≤). The negation of this property
(J (r,<) 
= ∅) will be referred to as r is (≤)-nonmaximal; denote the class of all such
points as nmax(J,≤). The following properties upon (J, g,≤) will be admitted:

(Jgle-1) (J, g,≤) is conv-bd-regular: each ascending sequence (tn) in J

is g-convergent (hence, g-Cauchy) in J , with tn ≤ limn(tn), ∀n
(Jgle-2) (J, g,≤) is nonmaximal accessible:

each r ∈ nmax(J,≤) is the g-limit of some sequence (pn) in J (r,<).
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Further, take a mapping (t, x) #→ H(t, x) = H(t)x from J×X into X; hence,

(s-map) H(t) is a selfmap of X, for each t ∈ J .

Given the subset U ∈ exp(X), the family Ψ = (ψλ; λ ∈ Λ) over F (R+), and
the family Ω = (ωλ; λ ∈ Λ) over F (R+), let us say that H is a (Ψ,Ω;M;U)-
homotopic mapping, when the following conditions hold

(hom-1) H is first variable Ψ -contractive:
dλ(H(t, x),H(s, x)) ≤ ψλ(g(t, s)), for all t, s ∈ J and all x ∈ U

(hom-2) H is second variable Ω-contractive:
dλ(H(t, x),H(t, y)) ≤ ωλ(M(x, y;H(t); dλ)), ∀t ∈ J , ∀x, y ∈ U .

Here, letting d be any semimetric over X and T : X→ X be any selfmap of X, we
introduced the mappings (M1,M2,M3,M) as: for each x, y ∈ X,

M1(x, y; T ; d) = d(x, y),

M2(x, y; T ; d) = max{d(x, T x), d(y, T y)},
M3(x, y; T ; d) = (1/2)[d(x, T y)+ d(y, T x)],
M(x, y; T ; d) = max{M1(x, y; T ; d),M2(x, y; T ; d),M3(x, y; T ; d)}.

Finally, let the functional classes

F0(R+),F0(re)(R+),F0(in)(R+),F0(re, in)(R+)

be introduced as before. Given ω ∈ F0(re, in)(R+), let (η(t) = ω(2t); t ≥ 0)
stand for the double function attached to it; clearly, η ∈ F0(in)(R+). The conditions
to be considered are essentially related to this last function; precisely

(s-reg) η is strongly regressive (η(t + 0) < t , ∀t > 0);
referred to as: ω is double strongly regressive

(c-co) η is complementary coercive [η∗ = I − η is coercive];
referred to as: ω is double complementary coercive.

Denote for simplicity

J (H ;U) = {t ∈ J ;Fix(H(t)) ∩ U 
= ∅}.
We say that the homotopic map H is transversal, provided

J (H ;U) 
= ∅ implies J (H ;U) ∩max(J,≤) 
= ∅;
or, in other words: the generic property (involving points of J )

P(t) : Fix(H(t)) ∩ U is nonempty

may jump from the points of J to the points of max(J,≤).
The following homotopic fixed point theorem is available.
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Theorem 14 Let the ordered metric space (J, g,≤) with
(61-i) (J, g,≤) is conv-bd-regular and nonmaximal accessible

and the subset U ∈ exp(X) be such that the map (t, x) #→ H(t, x) = H(t)x in
F (J ×X,X) is (Ψ,Ω;M;U)-homotopic, where the family Ψ = (ψλ; λ ∈ Λ) over
F (R+), and the family Ω = (ωλ; λ ∈ Λ) over F0(re, in)(R+), fulfill

(61-ii) (∀λ ∈ Λ): ψλ is zero-continuous (ψλ(t)→ 0 = ψλ(0) as t → 0)
(61-iii) (∀λ ∈ Λ): the double function (ηλ(t) = ωλ(2t); t ≥ 0) is strongly

regressive and complementary coercive.

In addition, suppose that

(61-iv) X is D-complete and U is D-closed
(61-v) J (H ;U \ int(U)) = ∅; i.e.: Fix(H(t)) ∩ (U \ int(U)) = ∅, for all t ∈ J .

Then, the homotopic map H is transversal in (ZF-AC+DC); i.e.,

(61-a) J (H ;U) 
= ∅ implies J (H ;U) ∩max(J,≤) 
= ∅.
Proof There are several steps to be passed.

Step 1. By the Zorn-Bourbaki metric maximality principle (ZB-m-mp) (see
below), max(J,≤) is nonempty. Moreover, by the posed hypothesis, J (H ;U)

is nonempty. We claim that

(61-b) the ordered metric subspace (J (H ;U), g,≤) is conv-bd-regular.

To this end, let (rn) be an ascending sequence in J (H ;U); hence

((rn)=ascending and) Fix(H(rn)) ∩ U is nonempty, for each n.

By the Denumerable Axiom of Choice (deductible, as above said, in (ZF-AC+DC)),
there exists a sequence (xn) in U , with

(∀n): xn ∈ Fix(H(rn)); that is: xn = H(rn)xn.

As (J, g,≤) is conv-bd-regular, there exists r∞ := limn(rn) in J with (rn ≤ r∞,
∀n). We now claim that r∞ ∈ J (H ;U); and, from this, all is clear. Remember that,
by a previous auxiliary fact, we have that, for each λ ∈ Λ,

(p-1) right complementary inverse (γλ(s) = sup{t ∈ R+; t ≤ ωλ(s + t)}, s ∈ R+)
belongs to F0(re, in)(R+)

(p-2) moreover, γλ is strongly regressive (γλ(s + 0) < s, ∀s > 0) as well as
complementary coercive (γ ∗λ := I − γλ is coercive).

For the arbitrary fixed λ ∈ Λ and each couple of ranks (n,m) with n ≤ m, we have
(by the contractive conditions)

(61-c) dλ(xn, xm) = dλ(H(rn)xn,H(rm)xm) ≤
dλ(H(rn)xn,H(rm)xn)+ dλ(H(rm)xn,H(rm)xm) ≤
ψλ(g(rn, rm))+ dλ(H(rm)xn,H(rm)xm).
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Let us now evaluate the last expression. By definition (and preceding facts)

M1(xn, xm;H(rm); dλ) = dλ(xn, xm),

M2(xn, xm;H(rm); dλ) = max{dλ(xn,H(rm)xn), d(xm,H(rm)xm)} =
dλ(xn,H(rm)xn) = dλ(H(rn)xn,H(rm)xn) ≤ ψλ(g(rn, rm)),

M3(xn, xm;H(rm); dλ) = (1/2)[dλ(xn,H(rm)xm)+ dλ(xm,H(rm)xn)] =
(1/2)[dλ(xn, xm)+ dλ(H(rm)xm,H(rm)xn)].

Denote for each couple (n,m),

aλ(n,m) = dλ(xn, xm), bλ(n,m) = ψλ(g(rn, rm)),

Cλ(n,m) = dλ(H(rm)xn,H(rm)xm)

By the above evaluations,

M(xn, xm;H(rm); dλ) ≤ aλ(n,m)+ bλ(n,m)+ Cλ(n,m)

wherefrom (as ωλ is increasing)

Cλ(n,m) ≤ ωλ(M(xn, xm;H(rm); dλ)) ≤
ωλ(aλ(n,m)+ bλ(n,m)+ Cλ(n,m)), for n ≤ m.

Combining with the complementary coerciveness of ωλ, gives

Cλ(n,m) ≤ γλ(aλ(n,m)+ bλ(n,m));
and this, along with (61-c), implies

aλ(n,m) ≤ bλ(n,m)+ γλ(aλ(n,m)+ bλ(n,m));
wherefrom (by a simple addition)

aλ(n,m)+ bλ(n,m) ≤ 2bλ(n,m)+ γλ(aλ(n,m)+ bλ(n,m)).

As (rn) is g-Cauchy and ψλ is zero-continuous, it is clear that bλ(., .) (hence,
2bλ(., .) as well) appears as Cauchy. This, along with γλ being strongly regressive
and complementary coercive tells us (by a preceding auxiliary fact) that aλ(., .) +
bλ(., .) is Cauchy too; wherefrom

(∀λ ∈ Λ): dλ(xn, xm) = aλ(n,m)→ 0 as n,m→∞, n ≤ m;

proving that (xn) is D-Cauchy; so that (by the properties of (X,U))

xn
D−→ x∞ as n→∞, for some x∞ ∈ U.
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Step 2. For each λ ∈ Λ and each n ∈ N , we have (by the contractive
conditions)

(61-d) dλ(x∞,H(r∞)x∞)− dλ(x∞, xn) ≤
dλ(xn,H(r∞)x∞) = dλ(H(rn)xn,H(r∞)x∞) ≤
dλ(H(rn)xn,H(r∞)xn)+ dλ(H(r∞)xn,H(r∞)x∞) ≤
ψλ(g(rn, r∞))+ dλ(H(r∞)xn,H(r∞)x∞).

Let us now evaluate the last expression. By definition (and preceding facts)

M1(xn, x∞;H(r∞); dλ) = dλ(xn, x∞),

M2(xn, x∞;H(r∞); dλ) = max{dλ(xn,H(r∞)xn), dλ(x∞,H(r∞)x∞)} =
max{dλ(H(rn)xn,H(r∞)xn), dλ(x∞,H(r∞)x∞)} ≤
max{ψλ(g(rn, r∞)), dλ(x∞,H(r∞)x∞)},
M3(xn, x∞;H(r∞); dλ) = (1/2)[dλ(xn,H(r∞)x∞)+ dλ(x∞,H(r∞)xn)] ≤
dλ(xn, x∞)+ (1/2[dλ(x∞,H(r∞)x∞)+ dλ(H(rn)xn,H(r∞)xn)] ≤
dλ(xn, x∞)+ (1/2)[dλ(x∞,H(r∞)x∞)+ ψλ(g(rn, r∞))] ≤
dλ(xn, x∞)+max{ψλ(g(rn, r∞)), dλ(x∞,H(r∞)x∞)}.

Denote, for n ∈ N

Eλ = dλ(x∞,H(r∞)x∞), aλ(n) = ψλ(g(rn, r∞)),

bλ(n) = dλ(xn, x∞), cλ(n) = aλ(n)+ bλ(n)+ Eλ.

By the above evaluations,

M(xn, x∞;H(r∞); dλ) ≤ bλ(n)+max{aλ(n), Eλ};
whence, M(xn, x∞;H(r∞); dλ) ≤ cλ(n);

and this, along with ωλ=increasing, gives

dλ(H(r∞)xn,H(r∞)x∞) ≤ ωλ(M(xn, x∞;H(r∞); dλ)) ≤ ωλ(cλ(n)).

Combining with (61-d), one gets

(61-e) (∀n): Eλ ≤ aλ(n)+ bλ(n)+ ωλ(cλ(n)); wherefrom
cλ(n) ≤ 2(aλ(n)+ bλ(n))+ ωλ(cλ(n)).

As 2(aλ(n) + bλ(n)) → 0 if n → ∞ and ωλ is strongly regressive and
complementary coercive, one gets (by a previous auxiliary fact)

(∀λ ∈ Λ) : cλ(n)→ 0 as n→∞; so that, Eλ = 0.
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This, by definition, yields

dλ(x∞,H(r∞)x∞) = 0,∀λ ∈ Λ; whence, x∞ = H(r∞)x∞;

telling us that r∞ ∈ J (H ;U).

Step 3. Summing up, the Zorn-Bourbaki metric maximality principle (ZB-m-mp)
applies to (J (H ;U), g,≤). Hence, for the fixed q0 ∈ J (H ;U) (assured by
hypothesis), there exists an ascending sequence (qn) in J (H ;U), with

q∗ := lim
n
(qn) exists in J (H ;U) and q∗ ∈ max(J (H ;U),≤);

that is: q∗ ≤ r ∈ J (H ;U) implies q∗ = r.

Note that, as q∗ ∈ J (H ;U), one has

y∗ = H(q∗)y∗, for some y∗ ∈ U.

We show that, necessarily, q∗ ∈ max(J,≤). Assume not: J (q∗,<) is not empty. By
the imposed hypotheses

there exists a sequence (pm;m ≥ 0) in J (q∗,<) with lim
m

(pm) = q∗.

On the other hand (again by hypothesis)

y∗ ∈ Fix(H(q∗)) ∩ U implies y∗ /∈ U \ int(U); so that, y∗ ∈ int(U);

where int(.) means: the interior with respect to the supremum topology T (see
above). From the definition of underlying topology, there exists a finite part Λ∗ of
Λ and a number s = s(Λ∗) in R0+, such that

V := ∩{X[y∗, s](dλ); λ ∈ Λ∗} ⊆ U.

We now claim that there exists some index i = i(V ∗; s), such that

ym := H(pm)y ∈ V , for all m ≥ i, y ∈ V.

In fact, for each λ ∈ Λ∗, m ∈ N , y ∈ V we have (in view of ωλ=increasing)

(61-f) dλ(ym, y
∗) = dλ(H(pm)y,H(q∗)y∗) ≤

dλ(H(pm)y,H(q∗)y)+ dλ(H(q∗)y,H(q∗)y∗) ≤
ψλ(g(pm, q

∗))+ dλ(H(q∗)y,H(q∗)y∗).
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Let us now evaluate the last expression. By definition (and preceding facts)

M1(y, y
∗;H(q∗); dλ) = dλ(y, y

∗) ≤ s

M2(y, y
∗;H(q∗); dλ) = max{dλ(y,H(q∗)y), dλ(y∗,H(q∗)y∗)} =

dλ(y,H(q∗)y) ≤ dλ(y, y
∗)+ dλ(H(q∗)y,H(q∗)y∗) ≤

s + dλ(H(q∗)y,H(q∗)y∗),

M3(y, y
∗;H(q∗); dλ) = (1/2)[dλ(y,H(q∗)y∗)+ dλ(y

∗,H(q∗)y)] =
(1/2)[dλ(y, y∗)+ dλ(H(q∗)y,H(q∗)y∗)] ≤ (1/2)[s + dλ(H(q∗)y,H(q∗)y∗)].

This yields directly

M(y, y∗;H(q∗); dλ)) ≤ s + dλ(H(q∗)y,H(q∗)y∗);

wherefrom (as ωλ is increasing)

dλ(H(q∗)y,H(q∗)y∗) ≤ ωλ(M(y, y∗;H(q∗); dλ)) ≤
ωλ(s + dλ(H(q∗)y,H(q∗)y∗)).

As ωλ is strongly regressive and complementary coercive, one gets (see above)

dλ(H(q∗)y,H(q∗)y∗) ≤ γλ(s);

and this, along with (61-f), yields

dλ(ym, y
∗) ≤ ψλ(g(pm, q

∗))+ γλ(s).

In view of

γλ(s) < s, lim
m

ψλ(g(pm, q
∗)) = 0,∀λ ∈ Λ∗,

there must be some index i = i(V ∗; s), such that

ψλ(g(pm, q
∗))+ γλ(s) < s,∀m ≥ i,∀λ ∈ Λ∗.

But then, from the preceding evaluation,

ym := H(pm)y ∈ V , for all m ≥ i, y ∈ V,

and our assertion follows.
By the obtained facts, H(pi) is a Ω-contractive selfmap of the D-closed subset

V of U , with (cf. the hypotheses)

(∀λ ∈ Λ) : ωλ is strongly regressive; hence, Boyd-Wong admissible.
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Combining with our basic fixed point result it follows that, for the starting point
y∗ ∈ V , there exists another point z∗ ∈ V with

z∗ = lim
n

H(pi)
ny∗, and z∗ = H(pi)z

∗ (whence, pi ∈ J (H ;U)).

This, in view of q∗ < pi , contradicts the maximality of q∗ in J (H ;U). Hence,
necessarily, q∗ ∈ max(J,≤); and the conclusion follows.

A basic particular case of these developments corresponds to

(∀λ ∈ Λ) : ωλ(t) = kλt, t ∈ R+, for some kλ ∈ R+.

Precisely, let (J, g,≤) be an ordered metric space; and take a mapping (t, x) #→
H(t, x) = H(t)x from J × X into X. Given the (nonempty) subset U ∈ exp(X),
the family Ψ = (ψλ; λ ∈ Λ) over F (R+), and the family k = (kλ; λ ∈ Λ) over R+
suppose that the following conditions hold

(homm-1) H is first variable Ψ -contractive:
dλ(H(t, x),H(s, x)) ≤ ψλ(g(t, s)), for all t, s ∈ J and all x ∈ U

(homm-2) H is second variable k-contractive:
dλ(H(t, x),H(t, y)) ≤ kλM(x, y;H(t); dλ), for all t ∈ J and all
x, y ∈ U .

We then say that H is a (Ψ, k;M;U)-homotopic mapping.
The following (linear) homotopic fixed point theorem is available.

Theorem 15 Let the ordered metric space (J, g,≤) with
(62-i) (J, g,≤) is conv-bd-regular and nonmaximal accessible

and the subset U ∈ exp(X) be such that the map (t, x) #→ H(t, x) = H(t)x from
J ×X into X be (Ψ, k;M;U)-homotopic, where the family Ψ = (ψλ; λ ∈ Λ) over
F (R+) and the family k = (kλ; λ ∈ Λ) over R+ are such that

(62-ii) (∀λ ∈ Λ): ψλ is zero-continuous (ψλ(t)→ 0 = ψ(0) as t → 0)
(62-iii) (∀λ ∈ Λ): kλ is double subunitary (0 ≤ kλ < 1/2).

In addition, suppose that

(62-iv) X is D-complete and U is D-closed
(62-v) J (H ;U \ int(U)) = ∅; i.e.: Fix(H(t)) ∩ (U \ int(U)) = ∅, for all t ∈ J .

Then, the homotopic map H is transversal in (ZF-AC+DC); i.e.,

J (H ;U) 
= ∅ implies J (H ;U) ∩max(J,≤) 
= ∅.

In particular, when the data (X,U) and (J, g,≤) are taken as

(p-1) X is D-complete and U is T -closed
(p-2) J = [0, 1], (g,≤)=the usual metric and ordering in R
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the obtained result is comparable with a similar one due to Ariza-Ruiz and Jimenez-
Melado [5, 6]; which, in turn, extends a related one in Frigon [23]. Concerning this
aspect, two remarks are in order.

(I) The first variable contraction upon H considered in the quoted papers is

(∀λ ∈ Λ): dλ(H(t, x),H(s, x)) ≤ |ϕλ(t)− ϕλ(s)|,
for all t, s ∈ J and all x ∈ U , where ϕλ : J → R is continuous.

But, in view of any continuous function on the compact J = [0, 1] being
uniformly continuous, we must have, ∀λ ∈ Λ,

|ϕλ(t)− ϕλ(s)| ≤ ψλ(|t − s|), t, s ∈ J,

where ψλ ∈ F (R+) is zero-continuous;

and, from this, we arrive at the posed first variable condition above.
(II) On the other hand, the linear homotopic result above holds over the reduced

system (ZF-AC+DC) by working with metrical type intervals; while, the quoted
result is holding over the complete system (ZF) and having as essential tool a
connectedness characterization of (nonempty) real intervals.

As a consequence of this, the homotopic results above include the precise one.
Note that, the metrical and order character of the interval space (J, g,≤) may be put
in an extended context, so as to include a related statement in O’Regan and Precup
[46]. Finally, one may ask whether such results are applicable to practical Ulam-
Hyers-Rassias stability for nonlinear equations over Banach spaces, under the lines
in Wang and Fečkan [68]; we conjecture that a positive answer to this is available.

7 Kang-Park Principles

Let X be a nonempty set. By a pseudometric over X we mean any map d : X×X→
R+. Fix such a map, endowed with

(ref) d is reflexive: d(x, x) = 0,∀x ∈ X;

we then say that it is a r-pseudometric on X. Further, let (3) be a quasi-order (i.e.:
reflexive and transitive relation) over X; the triple (X, d,3) will be referred to as a
quasi-ordered r-pseudometric space. Given M ∈ exp(X), call z ∈ X,

(max-1) (d,3)-maximal over M , if (u, v ∈ M , z ≤ u ≤ v) .⇒ d(u, v) = 0
(max-2) (3)-maximal over M , if (u ∈ M , z ≤ u) .⇒ d(z, u) = 0.

It is our aim in the following to give sufficient conditions for such properties. Then,
an application is given to Ekeland variational principles.



Homotopic Metric-Interval L-Contractions in Gauge Spaces 693

(A) Call the sequence (xn) in X, d-Cauchy when d(xm, xn) → 0 as m, n → ∞,
m ≤ n; that is

∀ε > 0, ∃n(ε), such that n(ε) ≤ p ≤ q .⇒ d(xp, xq) ≤ ε;
or, equivalently (by the reflexive property)

∀ε > 0, ∃n(ε), such that n(ε) < p < q .⇒ d(xp, xq) ≤ ε;

and d-asymptotic, if limn d(xn, xn+1) = 0; that is

∀ε > 0, ∃n(ε), such that n(ε) ≤ p .⇒ d(xp, xp+1) ≤ ε.

Then, let us consider the global conditions

(C-reg) (M, d,3) is Cauchy regular:
each (3)-ascending sequence in M is d-Cauchy

(A-reg) (M, d,3) is asymptotic regular:
each (3)-ascending sequence in M is d-asymptotic.

As each d-Cauchy sequence is d-asymptotic too, it follows that (C-reg).⇒ (A-reg).
The reverse implication also holds, in the sense

Proposition 12 We have, in (ZF-AC),

(A-reg) .⇒ (C-reg); whence, (A-reg) ⇐⇒ (C-reg).

Proof Suppose that (A-reg) holds; but some (3)-ascending (xn) is not entitled with
the d-Cauchy property; i.e. (for some ε > 0)

C(n) = {(p, q) ∈ N ×N; n < p < q, d(xp, xq) > ε} 
= ∅,∀n.

Denote, for simplicity

p(n) = min Dom(C(n)), q(n) = max(C(n)(p(n)), n ∈ N;

clearly, no choice techniques are used in this construction. Fix some rank i(0). By
this assumption, there exist i(1) = p(i(0)), i(2) = q(i(0)) with i(0) < i(1) < i(2),
d(xi(1), xi(2)) > ε. Further, given the rank i(2), there exist i(3) = p(i(2)), i(4) =
q(i(2)) with i(2) < i(3) < i(4), d(xi(3), xi(4)) > ε, and so on. By induction, we get
a (3)-ascending subsequence (yn = xi(n)) of (xn) with d(y2n+1, y2n+2) > ε, for all
n. This contradicts (A-reg); hence the claim.

By definition, either of these conditions will be referred to as: (M, d,3) is
regular. A basic consequence of this property is the following.
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Proposition 13 We have, in (ZF-AC+DC)

(M, d,3) is regular implies
(M, d,3) is weakly regular: ∀x ∈ M,∀ε > 0, ∃y = y(x, ε) ∈ M(x,3),
such that: (u, v ∈ M,y 3 u 3 v) .⇒ d(u, v) ≤ ε.

Proof Assume this would be false; that is (for some x ∈ M , ε > 0)

for each y ∈ M(x,3) there exist u, v ∈ M with y 3 u 3 v, d(u, v) > ε.

This, by definition, yields (for the same (x, ε)):

∀y ∈ M(x,3), ∃ (u, v) ∈ (3) : y 3 u, d(u, v) > ε;

where (3) := {(a, b) ∈ M ×M; a 3 b}. Put Q := {(a, b) ∈ (3); x 3 a}; and fix a
couple (y0, y1) ∈ Q; for example, y0 = y1 = x. Define a relation R = R(ε) on Q

as

(a1, b1)R(a2, b2) if and only if b1 3 a2, d(a2, b2) > ε.

From the imposed condition, Q((a, b),R) 
= ∅, ∀(a, b) ∈ Q. So, by (DC), it
follows that, for the starting point w0 = (y0, y1) in Q there exists a sequence (wn :=
(y2n, y2n+1); n ≥ 0) in Q with

wnRwn+1, for all n; hence, by definition,

y2n+1 3 y2n+2, d(y2n+2, y2n+3) > ε, for all n.

As a consequence, (yn; n ≥ 0) is (3)-ascending and not d-asymptotic; in
contradiction with the regularity of (M, d,3); hence the claim.

Starting from the quasi-order (3), let us introduce a quasi-order convergence
B = B(3) over X as follows: given the sequence (xn) in X and the point x ∈ X,

xn
B−→ x if ∃m(x) ∈ N , such that n ≥ m(x) implies xn ≤ x;

also referred to as: x is a B-limit of (xn). The class of all these will be denoted
as B − limn(xn); when it is nonempty, we say that (xn) is B-convergent. Given
Y ∈ exp[X], let us say that w ∈ X is a (B,3)-adherence point of it when

w ∈ B − lim
n
(zn), for some (3)-ascending sequence (zn) of Y ;

the class of all these will be denoted as ocl(Y ). It is not hard to see that Y #→ ocl(Y )
is a semi-closure over X, in the sense
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(ocl-1) ocl(∅) = ∅, ocl(X) = X,
(ocl-2) ocl(U ∪ V ) = ocl(U) ∪ ocl(V ), ∀U,V ∈ exp[X]
(ocl-3) Y ⊆ ocl(Y ), ∀Y ∈ exp[X].
Unfortunately, Y #→ ocl(Y ) is not involutive; i.e.,

(ocl-inv) ocl(ocl(Y )) = ocl(Y ), for each Y ∈ exp[X]
is not in general true; so that, Y #→ ocl(Y ) is not a closure over X according to
Kuratowski [38, Ch I, Sect 4]. In this context, let us say that Y ∈ exp[X] is o-closed,
provided Y = ocl(Y ); note that, in this case,

the B-limit of each (3)-ascending sequence in Y is included in Y.

Putting these together, the following maximal principle (referred to as: Kang-
Park pseudometric maximal principle; in short: (KP-p-mp)) is available.

Theorem 16 Let the quasi-ordered r-pseudometric space (X, d,3) and the subset
M ∈ exp(X) be such that

(71-i) (M, d,3) is regular: each (3)-ascending sequence in M is d-Cauchy
(71-ii) (M, d,3) is B-complete:

each ascending d-Cauchy sequence in M is B-convergent (in X).

Then, the conclusion below holds in (ZF-AC+DC)

∀u ∈ M, ∃v ∈ ocl(M), with u 3 v and v is (d,3)-maximal over M.

Proof By an auxiliary fact above, (M, d,3) is weakly regular. Hence, given u ∈ M ,
one may construct a (3)-ascending sequence (un) in M with

u 3 u0, and [(∀n), (∀y, z ∈ M)]: un 3 y 3 z .⇒ d(y, z) ≤ 2−n.

In particular, this tells us that (un) is d-Cauchy (in M). Combining with the
completeness hypothesis, there exists v ∈ ocl(M) such that

un
B−→ v; whence, un ≤ v,∀n.

This, via inclusion above, tells us that v is (d,3)-maximal over M .

Formally, this result is comparable with the 1990 one in Kang and Park [35].
However, its basic lines were already set up in the papers by Turinici [58, 62]. Note
that, both these results extend the 1976 Brezis-Browder ordering principle [12].
Further aspects may be found in Altman [3].

Technically speaking, the completeness hypothesis above is not very appropriate
for the local version of Kang-Park pseudometric maximal principle (KP-p-mp);
because, for many subsets M ∈ exp(X), the points in ocl(M) may be pretty far
from the ones in M . To remove this inconvenient, we need some preliminaries.
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Define a d-convergence structure on X under the precise way. Given Y ∈ exp[X],
let us say that w ∈ X is a (d,3)-adherence point of it when

w ∈ d − lim
n
(zn), for some (3)-ascending sequence (zn) of Y ;

the class of all these will be denoted as docl(Y ). It is not hard to see that Y #→
docl(Y ) is a semi-closure over X, in the sense

(docl-1) docl(∅) = ∅, docl(X) = X,
(docl-2) docl(U ∪ V ) = docl(U) ∪ docl(V ), U,V ∈ exp[X]
(docl-3) Y ⊆ docl(Y ), ∀Y ∈ exp[X].
Unfortunately, Y #→ docl(Y ) is not involutive; i.e.,

(docl-inv) docl(docl(Y )) = docl(Y ), for each Y ∈ exp[X]
is not in general true; so that, Y #→ docl(Y ) is not a closure over X according to
Kuratowski [38, Ch I, Sect 4]. Further, let us say that Y ∈ exp[X] is do-closed,
provided Y = docl(Y ); note that, in this case,

the d-limit of each (3)-ascending sequence in Y is included in Y.

The following version of the statement above (referred to as: Kang-Park strong
pseudometric maximal principle; in short: (KP-sp-mp)) is now available.

Theorem 17 Let the quasi-ordered r-pseudometric space (X, d,3) and the subset
M ∈ exp(X) be such that

(72-i) (M, d,3) is regular: each (3)-ascending sequence in M is d-Cauchy
(72-ii) (M, d,3) is (d,B)-complete: each ascending d-Cauchy sequence

(xn) in M is d-convergent and B-convergent (in X) with (in addition)
(d − limn(xn)) ∩ (B − limn(xn)) 
= ∅.

Then, the conclusion below holds in (ZF-AC+DC)

∀u ∈ M, ∃v ∈ docl(M), with u 3 v and v is (d,3)-maximal over M.

A basic particular case of these corresponds to d=metric on X.

(I) As a first consequence of this choice, we have

(∀M ∈ exp(X),∀z ∈ M) : z is (d,3)-maximal over M iff

z is (3)-maximal over M [z 3 w ∈ M implies z = w].
In fact, the left to right inclusion follows via z 3 z 3 w and z,w ∈ M imply
z = w. On the other hand, the right to left inclusion is immediate, by the very
definition of (3)-maximal element, combined with

z 3 u 3 v .⇒ (z 3 u and z 3 v).

(II) A second consequence of the same choice is contained in
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Proposition 14 Suppose that (X, d,3) is regular. Then, necessarily,

(3) is antisymmetric; hence, an ordering.

Proof (cf. Hamel [30, Ch 4, Sect 4.1]) Let u, v ∈ X be such that u 3 v and v 3 u.
The sequence (y2n = u, y2n+1 = v; n ≥ 0) is ascending; hence, d-asymptotic by
hypothesis. This yields d(u, v) = 0; whence (as d=metric), u = v.

(III) For the last consequence of our choice let us introduce the usual d-closure
operator Y #→ dcl(Y ), as:

z ∈ dcl(Y ) iff z = lim
n
(yn), for some sequence (yn) in Y.

Note that, an equivalent way of describing this operator is

z ∈ dcl(Y ) iff ∀ε > 0, ∃y = y(ε) ∈ Y : d(z, y) < ε.

Starting from this, it is not hard to see that Y #→ dcl(Y ) has the properties

(dcl-1) dcl(∅) = ∅, dcl(X) = X,
(dcl-2) dcl(U ∪ V ) = dcl(U) ∪ dcl(V ), U,V ∈ exp[X]
(dcl-3) Y ⊆ dcl(Y ), ∀Y ∈ exp[X]
(dcl-4) dcl(dcl(Y )) = dcl(Y ), for each Y ∈ exp[X];
so, Y #→ dcl(Y ) is a closure over X according to Kuratowski [38, Ch I, Sect 4]. In
this case, Y ∈ exp[X] is called d-closed, provided Y = dcl(Y ).

Putting these together, gives the following maximal statement (referred to as:
Zorn-Bourbaki metric maximal principle; in short: (ZB-m-mp)).

Theorem 18 Let the ordered metric space (X, d,3) and the subsets M,Y ∈
exp(X) be such that

(73-i) M ⊆ Y and Y is d-closed (Y = dcl(Y ))
(73-ii) (Y, d,3) is (conv,B)-regular: each (3)-ascending

sequence (xn) in Y is d-convergent in X and xn 3 limn(xn), ∀n.
Then, the conclusion below holds in (ZF-AC+DC)

for each u ∈ M there exists some other point v ∈ Y , with u 3 v and

v is (3)-maximal over M: v 3 y ∈ M imply v = y.

Proof By the posed hypothesis,

(73-a) (Y, d,3) is regular: each (3)-ascending sequence in Y is d-Cauchy.

Moreover, under the same condition, it is clear that

(73-b) (Y, d,3) is (d,B)-complete: each (3)-ascending d-Cauchy sequence
(xn) in Y is d-convergent in X and limn(xn) ∈ B − limn(xn).
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Putting these together, we have that the Kang-Park strong pseudometric maximal
principle (KP-sp-mp) is applicable here. Hence, for the starting u ∈ M ⊆ Y there
exists some other point v ∈ docl(Y ) with

u 3 v and v is (d,3)-maximal over Y.

But, evidently, docl(Y ) ⊆ Y (as Y=d-closed); and this yields

v ∈ Y ; hence (see above) v is (3)-maximal over Y.

As a direct consequence of definition, we get

v 3 y ∈ M .⇒ v 3 y ∈ Y ; whence v = y;

and the proof is complete.

This result may be viewed as a metrical variant of the Zorn-Bourbaki maximal
principle [9]. An early version of it was formulated in Turinici [57]; note that it
includes the one due to Dancs et al. [18]. Further aspects may be found in the related
papers by Turinici [56, 59].

(B) A basic application of these facts is to (local) variational principles. Let X be a
nonempty set; and d(., .) be a metric on X; the couple (X, d) will be referred
to as a metric space. Further, let the function ϕ : X → R ∪ {∞} be such that
the following admissible conditions hold:

(adm-1) ϕ is inf-proper (Dom(ϕ) 
= ∅ and inf[ϕ(X)] > −∞)
(adm-2) ϕ is d-lsc: [ϕ ≤ t] := {x ∈ X;ϕ(x) ≤ t} is d-closed, ∀t ∈ R.

The following variational statement (referred to as: Ekeland variational princi-
ple on metric spaces; in short: (EVP-m)) is available.

Theorem 19 Let the metric space (X, d) and the function ϕ : X → R ∪ {∞} be
taken according to

(X, d) is complete and ϕ is admissible.

Further, take some u ∈ Dom(ϕ). Then, in the reduced system (ZF-AC+DC), there
exists v ∈ Dom(ϕ), with

(74-a) d(u, v) ≤ ϕ(u)− ϕ(v) (hence ϕ(u) ≥ ϕ(v))
(74-b) d(v, x) > ϕ(v)− ϕ(x), for each x ∈ X \ {v}.
Proof Denote X[u] = {x ∈ X;ϕ(u) ≥ ϕ(x)}; note that, by the posed conditions,
X[u] is a nonempty closed subset of X, with X[u] ⊆ Dom(ϕ). Let (3) be the
relation on X defined as

x 3 y iff d(x, y)+ ϕ(y) ≤ ϕ(x).
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Clearly, (3) appears as a quasi-order on X; moreover, (3) is antisymmetric (hence
an order) on Dom(ϕ); hence, on X[u] as well. Let also B stand for the order
convergence structure (over X). We claim that the Zorn-Bourbaki metric maximal
principle (ZB-m-mp) is applicable over the ordered metric space (X[u], d,3),
under the choice M = Y = X[u]; and this will complete the argument. In fact,
let (xn) be a (3)-ascending sequence in X[u]:
(74-c) d(xn, xm) ≤ ϕ(xn)− ϕ(xm), if n ≤ m.

The sequence (ϕ(xn)) is descending bounded from below; hence a Cauchy one.
This, along with the preceding relation, shows that (xn) is a (3)-ascending d-
Cauchy sequence in X[u]. By the completeness hypothesis (and closeness of X[u])
it follows that x := limn(xn) exists in X[u]; moreover,

ϕ(xn) ≥ ϕ(x), for all n [as ϕ is d-lsc].

Finally, take some rank n. From (74-c) (and the triangular property)

d(xn, x) ≤ d(xn, xm)+ d(xm, x) ≤ ϕ(xn)− ϕ(x)+ d(xm, x), ∀m ≥ n;

wherefrom (passing to limit as m→∞)

d(xn, x) ≤ ϕ(xn)− ϕ(x) (i.e.: xn 3 x), ∀n;

and our claim follows. Summing up, the Zorn-Bourbaki metric maximal principle
(ZB-m-mp) is indeed applicable to our data. According to the quoted result, we have
that, for the starting u ∈ X[u], there exists another point v ∈ X[u], with

(74-d) u 3 v and v is (3)-maximal on X[u]: v 3 w ∈ X[u] implies v = w.

The first half of this gives our first conclusion. Concerning our second conclusion,
suppose by absurd that

d(v, y) ≤ ϕ(v)− ϕ(y) (i.e.: v 3 y), for some y ∈ X, y 
= v.

As u 3 v, one gets u 3 y; hence, y ∈ X[u]. This, under the second half of (74-d),
yields v 3 y ∈ X[u]; hence, v = y; a contradiction; so that, we are done.

Remark 4 A local version of this result is immediately obtainable from the Zorn-
Bourbaki metric maximal principle (ZB-m-mp) by simply taking the couple (M, Y )

appearing there as (Mu, Yu), where

Mu := M ∩X[u], Yu := dcl(M) ∩X[u];

here M ∈ exp(X) and u ∈ M ∩ Dom(ϕ) are fixed elements.

This principle, due to Ekeland [21], found some basic applications to control
and optimization, generalized differential calculus, critical point theory and global
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analysis; we refer to the quoted paper for a survey of these. So, it cannot be
surprising that, soon after its formulation, many extensions of (EVP-m) were
proposed. For example, the dimensional way of extension refers to the ambient
space (R) of ϕ(X) being substituted by a (topological or not) vector space. An
account of the results in this area is to be found in Goepfert et al. [29, Ch 3]. The
metrical extension of the same consists in conditions imposed upon our metric being
relaxed. Some of these extensions were already stated; for the remaining ones, we
refer to Hyers, Isac and Rassias [31, Ch 5]; see also Turinici [63].

By the developments above, we therefore have the implications:

(DC) .⇒ (KP-p-mp) .⇒ (KP-sp-mp) .⇒ (ZB-m-mp) .⇒ (EVP-m).

So, we may ask whether these may be reversed. Clearly, the natural setting for
solving this problem is the strongly reduced system (ZF-AC).

Let X be a nonempty set; and (≤) be a (partial) order on it. We say that (≤)
has the inf-lattice property, provided: x ∧ y := inf(x, y) exists, for all x, y ∈ X.
Remember that z ∈ X is a (≤)-maximal element if X(z,≤) = {z}; the class of all
these points will be denoted as max(X,≤). Call (≤), a Zorn order when

max(X,≤) is nonempty and cof inal in X

(for each u ∈ X there exists a (≤)-maximal v ∈ X with u ≤ v).

Further aspects are to be described in a metric setting. Let d(., .) be a metric over
X; and ϕ : X→ R+ be some function. Then, the natural choice for (≤) above is

x ≤(d,ϕ) y iff d(x, y) ≤ ϕ(x)− ϕ(y);

referred to as the Brøndsted order [13] attached to (d, ϕ). Denote

X(x, ρ) = {u ∈ X; d(x, u) < ρ}, x ∈ X, ρ > 0

[the open sphere with center x and radius ρ]. Call (X, d), discrete when

for each x ∈ X there exists ρ = ρ(x) > 0 such that X(x, ρ) = {x}.

Note that, under such an assumption, any function ψ : X → R is continuous over
X. However, this is not extendable to the d-Lipschitz property

|ψ(x)− ψ(y)| ≤ Ld(x, y), x, y ∈ X, for some L > 0;

hence, all the more, to the d-nonexpansive property (L = 1).
Now, the statement below is a particular case of (EVP-m):
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Theorem 20 Let the metric space (X, d) and the function ϕ : X→ R+ satisfy

(75-i) (X, d) is discrete bounded and complete
(75-ii) (≤(d,ϕ)) has the inf-lattice property
(75-iii) ϕ is d-nonexpansive and ϕ(X) is countable.

Then, (≤(d,ϕ)) is a Zorn order.

We shall refer to it as: the discrete Lipschitz countable version of (EVP-m) (in
short: (EVP-m-dLc)). Clearly, (EVP-m) .⇒ (EVP-m-dLc). The remarkable fact is
that this last principle yields (DC); and completes the circle between all these.

Proposition 15 We have the inclusion (EVP-m-dLc) .⇒ (DC) [in the strongly
reduced system (ZF-AC)]. So (by the above),

(74-1) the maximal/variational principles (KP-p-mp), (KP-sp-mp), (ZB-m-mp) and
(EVP-m) are all equivalent with (DC); hence, mutually equivalent

(74-2) each intermediary maximal/variational statement (VP) with (DC) .⇒ (VP)
.⇒ (EVP-m) is equivalent with both (DC) and (EVP-m).

For a complete proof, see Turinici [66]. In particular, when the inf-lattice,
nonexpansive, and countable properties are ignored in (EVP-m-dLc), the last result
above reduces to the one in Brunner [14]. Note that, in the same particular
setting, a different proof of the underlying inclusion was provided in Dodu and
Morillon [19]; see also Schechter [52, Ch 19, Sect 19.51]. For a number of finite
dimensional stability criteria involving the maximal points in question, we refer to
the monograph by Hyers et al. [32, Ch 11].
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Iaşi (Sect. I-a, Mat) 28, 11–16 (1982)
59. M. Turinici, A generalization of Altman’s ordering principle. Proc. Amer. Math. Soc. 90, 128–

132 (1984)
60. M. Turinici, Fixed points for monotone iteratively local contractions. Dem. Math. 19, 171–180

(1986)
61. M. Turinici, Abstract comparison principles and multivariable Gronwall-Bellman inequalities.

J. Math. Anal. Appl. 117, 100–127 (1986)
62. M. Turinici, Pseudometric extensions of the Brezis-Browder ordering principle. Math.

Nachrichten 130, 91–103 (1987)
63. M. Turinici, A monotone version of the variational Ekeland’s principle. An. Şt. Univ. Al. I.
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Analytic Methods in Rhoades
Contractions Theory

Mihai Turinici

Abstract A lot of implicit analytic methods is proposed for the study of Rhoades
contractions over a class of relational metric spaces, via regulated functions.
Technical connections with some particular statements in the area due to Vujaković
et al. (Mathematics 767:8 (2020)) are also discussed.

1 Introduction

Let X be a nonempty set. Call the subset Y of X, almost singleton (in short:
asingleton), provided [y1, y2 ∈ Y implies y1 = y2]; and singleton if, in addition, Y
is nonempty; note that in this case Y = {y}, for some y ∈ X. Further, take a metric
d : X × X → R+ := [0,∞[ over X; the couple (X, d) will be referred to as a
metric space. Finally, let T ∈ F (X) be a selfmap of X. [Here, for each couple A,B

of nonempty sets, F (A,B) denotes the class of all functions from A to B; when
A = B, we write F (A) in place of F (A,A)]. Denote Fix(T ) = {x ∈ X; x = T x};
each point of this set is referred to as fixed under T . The determination of such
points is carried out in the context below, comparable with the one in Rus [32, Ch
2, Sect 2.2]:

pic-1) We say that T is a Picard operator (modulo d) if, for each x ∈ X, the
iterative sequence (T nx; n ≥ 0) is d-Cauchy

pic-2) We say that T is a strong Picard operator (modulo d) if, for each x ∈ X,
(T nx; n ≥ 0) is d-convergent with limn(T

nx) ∈ Fix(T ).
pic-3) We say that T is fix-asingleton if Fix(T ) is asingleton; and fix-singleton,

provided Fix(T ) is singleton.
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Concerning the existence and uniqueness of such points, a basic result (referred
to as: Banach fixed point theorem; in short: (B-fpt)) may be stated as follows. Call
the selfmap T , (d;α)-contractive (where α ≥ 0), if

(con) d(T x, T y) ≤ αd(x, y), for all x, y ∈ X.

Theorem 1 Suppose that T is (d;α)-contractive, for some α ∈ [0, 1[. In addition,
let X be d-complete. Then, T is a strong Picard operator and fix-asingleton (or,
equivalently: fix-singleton).

This result, established in 1922 by Banach [2], found some important applica-
tions to the operator equations theory. Consequently, a multitude of extensions for
(B-fpt) were proposed. From the perspective of this exposition, the set implicit ones
are of interest. Denote, for x, y ∈ X

Q1(x, y) = d(x, T x),Q2(x, y) = d(x, y),

Q3(x, y) = d(x, T y),Q4(x, y) = d(T x, y),

Q5(x, y) = d(T x, T y),Q6(x, y) = d(y, T y),

Q(x, y) = (Q1(x, y),Q2(x, y),Q3(x, y),Q4(x, y),Q5(x, y),Q6(x, y)).

Then, the underlying contractions may be written as

(i-s-con) Q(x, y) ∈ Υ, for all x, y ∈ X with xRy;

where Υ ⊆ R6+ is a (nonempty) subset and R is a relation over X. In particular,
when Υ is the zero-section of a certain function F : R6+ → R; i.e.,

Υ = {(t1, . . . , t6) ∈ R6+;F(t1, . . . , t6) ≤ 0},

the implicit contractive condition above has the functional form:

(i-f-con) F(Q(x, y)) ≤ 0, for all x, y ∈ X with xRy.

The natural case discussed in the immense majority of papers is R = X × X

(the trivial relation over X). Concerning the “genuine” implicit case, some recent
contributions in the area may be found in Akkouchi [1], Berinde and Vetro [3],
Nashine et al. [22], or Popa and Mocanu [26]. We stress that in almost all papers
based on implicit techniques—including the ones we just quoted—it is claimed that
the starting point in the area is represented by the contribution due to Popa [25].
Unfortunately, this claim is not true: fixed point results based on implicit techniques
were obtained more than two decades ago in two papers by Turinici [36, 37]. But,
we must note that some partial aspects of the set-implicit theory have been discussed
in the (classical by now) 1969 Meir-Keeler fixed point principle [18].
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On the other hand, for the explicit case, some basic contributions were obtained
in Boyd and Wong [5], Leader [16], Reich [29], or Matkowski [17]; see also the
survey paper by Rhoades [30].

Having these precise, it is our aim in the following to give a lot of fixed point
results—involving six-dimensional contractive conditions—for selfmaps acting
upon relational metric spaces. Precisely, as a by-product of our developments, two
classes of fixed point statements were build up for contractive conditions of the type
discussed in the papers by Rhoades [31] and Dutta and Choudhury [12]; namely:

(RDC) ψ(u ◦Q(x, y)) ≤ ψ(v ◦Q(x, y))− ϕ(w ◦Q(x, y)), x, y ∈ X, xRy,

where (ψ, ϕ) is a functional couple over F (R0+, R), (u, v,w) is a triple of functions
over F (R6+, R+), and R is a relation over X. Note that, the fixed point results of the
first class involve contractions like before based on ψ being a regulated function—
hence, not in general increasing. Then, as another by-product of these, some fixed
point results are given for a class of contractive maps introduced by Cosentino and
Vetro [9] and refined by Vujaković et al. [44]. Finally, as a special application of the
used asymptotic techniques, an almost regulated version is given for the standard
result in the area due to Wardowski [46]. Some anticipative type variants of these
results, including the 2015 contribution in the area due to Dung and Hang [11] will
be discussed elsewhere.

2 Dependent Choice Principle

Throughout this exposition, the axiomatic system in use is Zermelo-Fraenkel’s
(abbreviated: ZF), as described by Cohen [8, Ch 2]. The notations and basic facts
to be considered in this system are more or less standard. Some important ones are
described below.

(A) Let X be a nonempty set. By a relation over X, we mean any nonempty
part R ⊆ X × X; then, (X,R) will be referred to as a relational structure. For
simplicity, we sometimes write (x, y) ∈ R as xRy. Note that R may be regarded
as a mapping between X and exp[X] (=the class of all subsets in X). In fact, denote
for x ∈ X:

X(x,R) = {y ∈ X; xRy} (the section of R through x);

then, the desired mapping representation is [R(x) = X(x,R), x ∈ X].
A basic example of relational structure is to be constructed as below. Let

N = {0, 1, . . .} be the set of natural numbers, endowed with the usual addition
and (partial) order; note that

(N,≤) is well ordered: any (nonempty) subset of N has a first element.
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Further, denote for p, q ∈ N , p ≤ q,

N [p, q] = {n ∈ N;p ≤ n ≤ q}, N ]p, q[= {n ∈ N;p < n < q},
N [p, q[= {n ∈ N;p ≤ n < q}, N]p, q] = {n ∈ N;p < n ≤ q};

as well as, for r ∈ N ,

N [r,∞[= {n ∈ N; r ≤ n}, N ]r,∞[= {n ∈ N; r < n}.
By definition, N [0, r[= N(r,>) is referred to as the initial interval (in N )

induced by r . Any set P with P ∼ N (in the sense: there exists a bijection from P

to N ) will be referred to as effectively denumerable. In addition, given some natural
number n ≥ 1, any set Q with Q ∼ N(n,>) will be said to be n-finite; when n is
generic here, we say that Q is finite. Finally, the (nonempty) set Y is called (at most)
denumerable iff it is either effectively denumerable or finite.

Let X be a nonempty set. By a sequence in X, we mean any mapping x : N → X,
where N = {0, 1, . . .} is the set of natural numbers. For simplicity reasons, it will
be useful to denote it as (x(n); n ≥ 0), or (xn; n ≥ 0); moreover, when no confusion
can arise, we further simplify this notation as (x(n)) or (xn), respectively. Also, any
sequence (yn := xi(n); n ≥ 0) with

(i(n); n ≥ 0) is divergent (i(n)→∞ as n→∞)

will be referred to as a subsequence of (xn; n ≥ 0). Note that, under such a
convention, the relation “subsequence of” is transitive; i.e.:

(zn) = subsequence of (yn) and (yn) = subsequence of (xn)

imply(zn) = subsequence of (xn).

(B) Remember that, an outstanding part of (ZF) is the Axiom of Choice
(abbreviated: AC); which, in a convenient manner, may be written as

(AC) For each couple (J,X) of nonempty sets and each function
F : J → exp(X), there exists a (selective) function
f : J → X, with f (ν) ∈ F(ν), for each ν ∈ J .

Here, exp(X) stands for the class of all nonempty elements in exp[X]. Sometimes,
when the index set J is denumerable, the existence of such a selective function may
be determined by using a weaker form of (AC), called: Dependent Choice principle
(in short: DC). Call the relation R over X, proper when

(X(x,R) =)R(x) is nonempty, for each x ∈ X.

Then, R is to be viewed as a mapping between X and exp(X); and the couple
(X,R) will be referred to as a proper relational structure. Further, given a ∈ X, let
us say that the sequence (xn; n ≥ 0) in X is (a;R)-iterative, provided
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x0 = a, and (xn; n ≥ 0) is R-increasing :
xnRxn+1 (i.e.: xn+1 ∈ R(xn)), for all n.

Proposition 1 Let the relational structure (X,R) be proper. Then, for each a ∈ X

there is at least an (a,R)-iterative sequence in X.

This principle—proposed, independently, by Bernays [4] and Tarski [35]—is
deductible from (AC), but not conversely; cf. Wolk [47]. Moreover, by the devel-
opments in Moskhovakis [20, Ch 8], and Schechter [33, Ch 6], the reduced system
(ZF-AC+DC) it comprehensive enough so as to cover the “usual” mathematics; see
also Moore [19, Appendix 2].

A basic consequence of (DC) is the so-called Denumerable Axiom of Choice [in
short: AC(N)].

Proposition 2 Let F : N → exp(X) be a function. Then, for each a ∈ F(0) there
exists a function f : N → X with f (0) = a and f (n) ∈ F(n), ∀n ≥ 0.

Proof Denote Q = N × X; and let us introduce the (proper) relation R over it,
according to:

R(n, x) = {n+ 1} × F(n+ 1), n ≥ 0, x ∈ X.

By an application of (DC) to the proper relational structure (Q,R) the conclusion
follows; we do not give details.

As a consequence of the above facts,

(DC) .⇒ (AC(N)) in (ZF-AC); or, equivalently :
(AC(N)) is deductible in the system (ZF-AC+ DC).

The reciprocal of the written inclusion is not true; see Moskhovakis [20, Ch 8, Sect
8.25] for details.

3 Conv-Cauchy Structures

Let X be a nonempty set. Further, let d : X ×X→ R+ be a mapping with

(m-1) d is triangular: d(x, z) ≤ d(x, y)+ d(y, z), ∀x, y, z ∈ X

(m-2) d is reflexive-sufficient: d(x, y) = 0 iff x = y

(m-3) d is symmetric: d(x, y) = d(y, x), for all x, y ∈ X.

We then say that d(., .) is a metric on X; and the couple (X, d) will be referred to
as a metric space.
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(A) We introduce a d-convergence and d-Cauchy structure on X as follows.
Given the sequence (xn) in X and the point x ∈ X, we say that (xn), d-converges to

x (written as: xn
d−→ x), provided d(xn, x)→ 0 as n→∞; i.e.,

∀ε > 0, ∃i = i(ε) : i ≤ n .⇒ d(xn, x) < ε;
or, equivalently:

∀ε > 0, ∃i = i(ε) : i ≤ n .⇒ d(xn, x) ≤ ε.

The set of all such points x will be denoted limn(xn); when it is nonempty, then (xn)

is called d-convergent. By this very definition, we have the properties:

(conv-1) ((
d−→) is hereditary)

xn
d−→ x implies yn

d−→ x, for each subsequence (yn) of (xn)

(conv-2) ((
d−→) is ref lexive)

(∀u ∈ X) : the constant sequence (xn = u; n ≥ 0) fulfills xn
d−→ u.

As a consequence, (
d−→) has all properties required in Kasahara [14]; in addition—

as d is triangular symmetric—the following extra property is holding here

(conv-3) (
d−→) is separated (referred to as d is separated):

limn(xn) is an asingleton, for each sequence (xn) in X.

The introduced concepts allow us to give a useful property.

Proposition 3 The mapping (x, y) #→ d(x, y) is d-Lipschitz, in the sense

(31-1) |d(x, y)− d(u, v)| ≤ d(x, u)+ d(y, v), ∀(x, y), (u, v) ∈ X ×X.

As a consequence, this map is d-continuous; i.e.,

(31-2) xn
d−→ x, yn

d−→ y imply d(xn, yn)→ d(x, y).

Further, call the sequence (xn), d-Cauchy when d(xm, xn) → 0 as m, n → ∞,
m < n; that is,

∀ε > 0, ∃j = j (ε) : j ≤ m < n .⇒ d(xm, xn) < ε;
or, equivalently:

∀ε > 0, ∃j = j (ε) : j ≤ m < n .⇒ d(xm, xn) ≤ ε.
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the class of all these will be denoted as Cauchy(d). As before, from this very
definition one has the properties

(Cauchy-1) (Cauchy(d) is hereditary)
(xn) is d-Cauchy implies (yn) is d-Cauchy,
for each subsequence (yn) of (xn)
(Cauchy-2) (Cauchy(d) is reflexive)
(∀u ∈ X): the constant sequence (xn = u; n ≥ 0) is d-Cauchy.

Hence, Cauchy(d) is a Cauchy structure, under the lines in Turinici [38].

Now—according to the quoted work—term the couple ((
d−→), Cauchy(d)), a

conv-Cauchy structure induced by d. The following regularity conditions about this
structure are to be (optionally) considered

(CC-1) d is regular: each d-convergent sequence in X is d-Cauchy
(CC-2) d is complete: each d-Cauchy sequence in X is d-convergent.

Clearly, the former of these is always obtainable, via d=triangular symmetric; but
the latter one is not in general valid.

(B) In the following, some d-Cauchy criteria will be stated. Some preliminaries
are needed.

Let us say that (xn; n ≥ 0) is d-asymptotic, provided

rn := d(xn, xn+1)→ 0 as n→∞.

Clearly, each d-Cauchy sequence is d-asymptotic too; the reciprocal of this is not
in general true. This tells us that the d-Cauchy criteria we are looking for are to be
sought in the class of d-asymptotic sequences. Precisely, suppose that the following
inclusion is valid

(for each d-asymptotic sequence (xn)) :
(xn) is not d-Cauchy implies (xn) has the property π.

Then, the d-Cauchy criterion in question writes

(for each d-asymptotic sequence (xn)) :
(xn) is not endowed with the property π implies (xn) is d-Cauchy.

To get concrete examples of such properties, we need some other conventions. Given
the d-asymptotic sequence (xn; n ≥ 0) and ε > 0, let us say that i ∈ N is ε-regular,
provided

i ≤ n implies d(xn, xn+1) < ε.
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The class Z (ε) of all these numbers is nonempty; so that

(∀ε > 0) : Z(ε) = min Z (ε) is well defined, as an element of N;
with, in addition: d(xn, xn+1) < ε, for all n ≥ Z(ε).

Further, note that by this very definition,

(∀h ≥ 1) : Γn(h) := max{d(xn, xn+i ); i ∈ N [0, h]} < ε,

for all n ≥ Z(ε/h); whence, Γn(h)→ 0 as n→∞.

Define the subsets of N ×N

(≤;N) = {(m, n) ∈ N ×N;m ≤ n}, (<;N) = {(m, n) ∈ N ×N;m < n};

these are just the graphs of the relations (≤) and (<) introduced over N .
Further, let us say that the subset Θ of R0+ :=]0,∞[ is (>)-cofinal in R0+, when

for each ε > 0, there exists θ ∈ Θ with ε > θ .
Finally, given the sequence (rn; n ≥ 0) in R and the point r ∈ R, let us write

rn → r + (also written as: lim
n

rn = r+),
if rn → r and rn > r, for all n ≥ 0.

The following result, referred to as Boyd-Wong Criterion is now available.

Theorem 2 Let the sequence (xn; n ≥ 0) in X be such that

(31-i) (xn; n ≥ 0) is d-asymptotic (rn := d(xn, xn+1)→ 0 as n→∞)
(31-ii) (xn; n ≥ 0) is not d-Cauchy.

Further, let the subset Θ of R0+ be (>)-cofinal in R0+; and h ≥ 1 be some rank.
There exist then a number γ ∈ Θ , a rank J := J (γ, h) ≥ 1, and a couple of
rank-sequences (m(k); k ≥ 0), (n(k); k ≥ 0), with

(31-a) J + k ≤ m(k) < m(k)+ 3h < n(k), ∀k
(31-b) J + k ≤ m(k) < m(k)+ 2h < n(k)− 1 < n(k), and d(xm(k), xn(k)) > γ ,

d(xm(k), xn(k)−1) ≤ Γm(k)(3h)+ γ , ∀k
(31-c) Uk := d(xm(k), xn(k))→ γ+ as k →∞
(31-d) ∀s, t ∈ N [0, 3h]: Vk(s, t) := d(xm(k)+s , xn(k)+t )→ γ+ as k →∞
(31-e) ∀p, q ∈ N : Vk(p, q) := d(xm(k)+p, xn(k)+q)→ γ as k →∞.

Proof By definition, the d-Cauchy property of our sequence writes:

∀ε ∈ R0+, ∃a ∈ N,∀(m, n) ∈ (<;N) : a ≤ m < n .⇒ d(xm, xn) ≤ ε.

As Θ is a (>)-cofinal part in R0+, this property may be also written as

∀θ ∈ Θ, ∃α ∈ N,∀(m, n) ∈ (<;N) : α ≤ m < n .⇒ d(xm, xn) ≤ θ.
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The negation of this property means: there exists β ∈ Θ such that

(rela-1) E(j) := {(m, n) ∈ (<;N); j ≤ m < n, d(xm, xn) > β} 
= ∅, ∀j.

As (xn; n ≥ 0) is d-asymptotic, we must have (under d=metric)

d(xn, xn+i )→ 0 as n→∞, for each i ≥ 0.

Let the number γ ∈ Θ be given according to

β > 3γ (possible, since Θ is (>)-cofinal in R0+).

Further; let us take

(rela-2) J (γ, h) = Z(γ/3h); hence, in particular

Γn(3h) := max{d(xn, xn+i ); i ∈ N [0, 3h]} < γ, ∀n ≥ J (γ, h).

Denote for simplicity J = J (γ, h) and

(A(k) = E(J + k); k ≥ 0); hence, by definition,

A(k) := {(m, n) ∈ (<;N); J + k ≤ m < n, d(xm, xn) > β}, k ≥ 0;
with, in addition: A(k) is nonempty, for each k ≥ 0.

By the triangle inequality, we have for each (m, n) ∈ A(k)

d(xm+s , xn+t ) ≥ d(xm, xn)− d(xm, xm+s)− d(xn, xn+t ) >

β − γ − γ = β − 2γ > γ,∀s, t ∈ N [0, 3h];

which tells us that

B(k) := {(m, n) ∈ (<;N); J + k ≤ m < n, d(xm+s , xn+t ) > γ,∀s, t ∈ N [0, 3h]}

is nonempty, for all k ≥ 0.
Having this precise, denote for each k ≥ 0

m(k) = min Dom(B(k)), n(k) = minB(k)(m(k)).

By this very definition, we get

(pro-1) J + k ≤ m(k) < n(k), ∀k ≥ 0
(pro-2) d(xm(k)+s , xn(k)+t ) > γ , ∀s, t ∈ N [0, 3h], ∀k ≥ 0.

We claim that the couple (γ, J ) and the couple of rank-sequences (m(k); k ≥ 0)
and (n(k); k ≥ 0) fulfill all conclusions in the statement.
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i): By (pro-1), it is clear that the first and the second relation of (31-a) holds.
Concerning the third relation of the same, suppose by contradiction that

(m(k) <)n(k) ≤ m(k)+ 3h, for some k ≥ 0.

Then by (rela-2) (and m(k) ≥ J )

d(xm(k), xn(k)) ≤ Γm(k)(3h) < γ ;

in contradiction with (pro-2); whence, the third relation in (31-a) holds too.
ii): The first and second relation of (31-b) are directly obtainable from the

preceding stage and (pro-2), respectively. Concerning the third relation of (31-b),
let k ≥ 0 be arbitrary fixed. By definition, n(k) is the minimum of all ranks p ∈ N

with

(m(k), p) ∈ B(k); that is:

J + k ≤ m(k) < p and d(xm(k)+s , xp+t ) > γ,∀s, t ∈ N [0, 3h].

As m(k) < m(k)+ 2h < n(k)− 1 we must have (by this minimal property)

(pro-3) d(xm(k)+s , xn(k)−1+t ) ≤ γ, for some s, t ∈ N [0, 3h].

But, in view of (pro-2) once again,

(pro-4) d(xm(k)+u, xn(k)−1+v) > γ, for all u ∈ N [0, 3h], v ∈ N [1, 3h].

This, combined with (pro-3), tells us that, necessarily,

(pro-5) d(xm(k)+s , xn(k)−1) ≤ γ, for some s ∈ N [0, 3h].

By the triangular inequality, we have (under the precise index s)

d(xm(k), xn(k)−1) ≤ d(xm(k), xm(k)+s)+ d(xm(k)+s , xn(k)−1) ≤ Γm(k)(3h)+ γ ;

and the last conclusion of (31-b) follows.
iii): By the very definition of (B(k); k ≥ 0),

Uk > γ, for all k ≥ 0.

Moreover, taking the triangular inequality into account,

γ < d(xm(k), xn(k)) ≤ d(xm(k), xn(k)−1)+ rn(k)−1 ≤ Γm(k)(3h)+ γ + rn(k)−1,∀k.

Passing to limit in this double inequality gives (31-c).
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iv): Let s, t ∈ N [0, 3h] be arbitrary fixed. By the very definition of (B(k); k ≥ 0),

Vk(s, t) > γ, for all k ≥ 0.

Moreover, from a metrical property of d,

|d(xm(k), xn(k))− d(xm(k)+s , xn(k)+t )| ≤ d(xm(k), xm(k)+s)+ d(xn(k), xn(k)+t ) ≤
Γm(k)(3h)+ Γn(k)(3h) < 2γ, for all k ≥ 0.

Passing to limit in the relation between the first and the third member of this relation
gives (31-d).

v): Fix p, q ∈ N . From the metrical property of d we just evoked,

|d(xm(k), xn(k))− d(xm(k)+p, xn(k)+q)| ≤ d(xm(k), xm(k)+p)+ d(xn(k), xn(k)+q) ≤
Γm(k)(p)+ Γn(k)(q), for all k ≥ 0.

Passing to limit in the relation between the first and the third member of this relation
and noting that

Γm(k)(p)→ 0 and Γn(k)(q)→ 0 as k →∞

gives the last conclusion (31-e). The proof is complete.

Remark 1 A natural problem to be posed is that of the last conclusion above being
retainable in terms of right convergence; that is,

∀p, q ∈ N : Vk(p, q) := d(xm(k)+p, xn(k)+q)→ γ + as k →∞.

This is not in general true; because, fixing some rank i, and putting p = n(i)−m(i),
we have

d(xm(i)+p, xn(i)) = 0 < γ ;

so that, a relation like d(xm(k)+p, xn(k))→ γ+ as k →∞ is not possible.
This contradicts an affirmation in Vujaković et al. [44, Lemma 1]; but, fortu-

nately, it has no impact upon the remaining statements in that paper.

By definition, the quadruple [γ ; J ; (m(k); k ≥ 0); (n(k); k ≥ 0)] given by this
result will be referred to as a Boyd-Wong (Θ, h)-system attached to (xn). In this
case, the result above may be expressed as below.

Theorem 3 Let the sequence (xn; n ≥ 0) inX be d-asymptotic. Then, the following
conditions/properties are equivalent

(32-a) (xn; n ≥ 0) is not d-Cauchy
(32-b) for each (>)-cofinal subset Θ of R0+ and each h ≥ 1, there is at least one

Boyd-Wong [Θ,h]-system attached to (xn).
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Proof By the preceding result, the first condition includes the second one. Con-
versely, if the second condition holds then, under the choice Θ = R0+ and h = 1,
there must be one Boyd-Wong [Θ,h]-system attached to (xn); hence, in particular

lim
k

d(xm(k), xn(k)) = γ+, where γ > 0.

This necessarily gives us that (xn; n ≥ 0) is not d-Cauchy; for otherwise—under a
d-Cauchy condition upon our starting sequence—it follows that

lim
k

d(xm(k), xn(k)) = 0;

in contradiction with the limiting property above.

In particular, when Θ = R0+, the obtained statement covers the 1969 one in
Boyd and Wong [5]; so, it is natural that this result be referred to in the proposed
way. Further aspects may be found in Reich [29]; see also Khan et al. [15].

4 Statement of the Problem

Let (X, d) be a metric space. For each relation A on X and each (nonempty) subset
Z of X, let us introduce the convention

(A ;Z) = A ∩ (Z × Z) (the restriction of A to Z).

In particular, A is identical with (A ;X).
Let T ∈ F (X) be a selfmap of X. In the following, sufficient conditions are

given for the existence and/or uniqueness of elements in Fix(T ).
4-I) The proposed problem will be developed in the setting of

(it-seq) the fixed points of T are ultimately chosen among the limit points (if any)
T ωx0 := limn(T

nx0), where x0 ∈ X is arbitrary fixed.

(Here, ω is the first transfinite ordinal). To do this, a lot of technical facts about
iterative processes is needed.

Let x0 be some point in X. By an orbital (or: iterative) sequence attached to x0
(and T ), we mean any sequence X0 := (xn; n ≥ 0) (or, simply, X0 = (xn)) defined
as (xn = T nx0; n ≥ 0). When x0 is generic here, the resulting object will be referred
to as an orbital sequence (in short: o-sequence) on X.

Fix in the following such an object X0 = (xn). Then, denote

[X0] = {xn; n ≥ 0} (the trajectory attached to X0 = (xn))

[[X0]] := cl([X0]) (the complete trajectory attached to X0 = (xn)).
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Proposition 4 Under these conventions,

[[X0]] = [X0] ∪ {z}, whenever z := lim
n
(xn) exists.

Proof Denote for simplicity U0 = [X0], V0 = [[X0]]; hence, V0 = cl(U0). Clearly,
V0 ⊇ U0∪{z}. Suppose that there exists v ∈ V0 that is outside U0∪{z}. By the limit
definition, there exists σ > 0 such that

X(v, σ ) := {x ∈ X; d(v, x) < σ } is disjoint from U0 ∪ {z}.
In particular, this tells us that v cannot belong to cl(U0) = V0; contradiction.
Consequently, V0 = U0 ∪ {z}; and we are done.

4-II) Passing to the basic part of our setting, denote for x, y ∈ X

Q1(x, y) = d(x, T x), Q2(x, y) = d(x, y),

Q3(x, y) = d(x, T y), Q4(x, y) = d(T x, y),

Q5(x, y) = d(T x, T y), Q6(x, y) = d(y, T y),

Q(x, y) = (Q1(x, y),Q2(x, y),Q3(x, y),Q4(x, y),Q5(x, y),Q6(x, y)).

Further, let us construct the family of functions [for x, y ∈ X]

B0(x, y) = min{Q2,Q5}(x, y),
B1(x, y) = min{Q1,Q2,Q5,Q6}(x, y)
B2(x, y) = min{Q2,Q3,Q4,Q5}(x, y),
B3(x, y) = min{Q1,Q2,Q3,Q4,Q5,Q6}(x, y),

and introduce the relations (over X)

(rela-B) (Bi > 0) = {(x, y) ∈ X ×X;Bi(x, y) > 0}, i ∈ {0, 1, 2, 3}.
Finally, let Υ be a nonempty subset of R6+; and let R = R(Υ ) stand for the relation

R = Q−1(Υ ); hence, Q(R) ⊆ Υ.

Technically, the couple (Υ,R) will suffice for setting up a class of (implicit) fixed
point statements over the ambient space based on the contractive property

(R-contr) T is (d,R;Υ )-contractive, provided

Q(x, y) ∈ Υ,∀(x, y) ∈ R; that is: Q(R) ⊆ Υ.

The starting point of it is the construction of an orbital sequence X0 = (xn) with
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(R-asc) X0 = (xn) is R-ascending: xnRxn+1, for all n.

The general aspects of this method will be discussed elsewhere. Here, we will
consider a particular case of it—that, in fact, includes a large number of such
contractions—based on the restrictive condition

(B1-adm) R is B1-admissible : (B1 > 0) ⊆ R.

This tells us that, in place of our general contraction, we study its restrictive part

(B1-contr) T is (d, (B1 > 0);Υ )-contractive, provided

Q(x, y) ∈ Υ,∀(x, y) ∈ (B1 > 0).

Another condition to be used, in certain moments of our exposition, is

(B0-adm) R is B0-admissible: (B0 > 0) ⊆ R;

with the associated (stronger) contractive condition

(B0-contr) T is (d, (B0 > 0);Υ )-contractive, provided

Q(x, y) ∈ Υ,∀(x, y) ∈ (B0 > 0).

This, as we will see, has an impact upon the uniqueness property.
Returning to the B1-admissible setting we stress that, in this case, our initial

objective of constructing a R-ascending orbital sequence is directly attainable, in
terms of the coarser relation (B1 > 0). This may be carried out as follows. Call the
orbital sequence X0 = (xn), (B1 > 0)-ascending provided

(xn) is (B1 > 0)-ascending : xn(B1 > 0)xn+1, for all n.

Note that, by the very choice of this relation, our convention writes

B1(xn, xn+1) > 0, for all n; referred to as: (xn) is B-ascending.

We then say that the o-sequence X0 = (xn) has the Ba-property; or, equivalently,
that X0 = (xn) is (Ba-o). The possibility o reaching such a property is a consequence
of the reasoning below. Given the orbital sequence X0 = (xn), we have two
alternatives.

Alt-1) The orbital sequence X0 = (xn) is telescopic, in the sense there exists
h ≥ 0, such that d(xh, xh+1) = 0; i.e.: xh = xh+1.

By the iterative definition of our sequence, one derives

xh = xn, for all n ≥ h; whence, z := xh is an element of Fix(T ).



Analytic Methods in Rhoades Contractions Theory 719

Consequently, this case is completely clarified from the fixed point perspective.

Alt-2) The orbital sequence X0 = (xn) is non-telescopic, in the sense
d(xn, xn+1) > 0, for all n.

Note that, in this case,

(B1(xn, xn+1) > 0,∀n); hence, X0 = (xn) is (Ba-o).

Summing up, the orbital sequences to be used in the sequel are endowed with the
(Ba-o) property. In this case, the basic directions under which the investigations be
conducted are described in the list below.

(pic-1) We say that the (Ba-o) sequence X0 = (xn) is semi-Picard (modulo
(d,R; T )) when (xn) is d-asymptotic

(pic-2) We say that the (Ba-o) sequence X0 = (xn) is Picard (modulo (d,R; T ))
when (xn) is d-Cauchy

(pic-3) We say that the (Ba-o) sequence X0 = (xn) is strongly Picard (modulo
(d,R; T )) when xω := limn(xn) exists with xω ∈ Fix(T )

(pic-4) Call the subset Y of X, R-almost-singleton (in short: R-asingleton)
provided y1, y2 ∈ Y , y1Ry2 .⇒ y1 = y2; and R-singleton when, in addition, Y
is nonempty. Then, let us say that

(fix-R-asing) T is fix-R-asingleton, if Fix(T ) is R-asingleton
(fix-R-sing) T is fix-R-singleton, in case Fix(T ) is R-singleton.

Likewise (cf. a previous convention), we say that

(fix-asing) T is fix-asingleton, if Fix(T ) is asingleton
(fix-sing) T is fix-singleton, in case Fix(T ) is singleton.

As a completion of these, we list the sufficient conditions to be used for getting
such properties.

(reg-1) We say that X is (Ba-o,d)-complete, provided: for any (Ba-o) sequence
Y0 = (yn; n ≥ 0), one has: (yn) is d-Cauchy implies (yn) is d-convergent

(reg-2) We say that T is (Ba-o,d)-continuous, if: for any (Ba-o) sequence Y0 =
(yn; n ≥ 0), one has: yn

d−→ z implies Tyn
d−→ T z.

4-III) To solve our posed problem along the precise directions, a lot of
convergence type requirements is needed for the six-dimensional (geometric)
contractive conditions we just introduced; these are strongly connected with the
related developments in Turinici [40]. Letting X0 = (xn) be a (Ba-o) sequence in
X, denote

[X0] = {xn; n ≥ 0}, [[X0]] = cl([X0]).

(I) The first condition upon our data is of asymptotic type. Two variants of it are
of interest.

I-a) Call Υ , asymptotic on [X0] when
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(asy) for each sequence (rn) in R0+ and each sequence (pn) in R+ with
((rn, rn, pn, 0, rn+1, rn+1) ∈ Q(B1 > 0; [X0]) ∩ Υ and |pn − rn| ≤ rn+1,
∀n), we have rn → 0; hence, pn → 0 as well.

I-b) Call Υ , descending asymptotic on [X0] when

(desc-asy) for each sequence (rn) in R0+ and each sequence (pn) in R+ with
((rn, rn, pn, 0, rn+1, rn+1) ∈ Q(B1 > 0; [X0]) ∩ Υ and |pn − rn| ≤ rn+1, ∀n),
we have that (rn)=strictly descending and rn → 0; hence (via (0 < rn − rn+1 ≤
pn ≤ rn + rn+1, ∀n), (pn) is a sequence in R0+ with (in addition) pn → 0.

Clearly, the inclusion below holds

Υ is descending asymptotic on [X0] implies Υ is asymptotic on [X0].
However, as we will see, the immense majority of contractive conditions is based
on the descending asymptotic hypothesis; and not on the asymptotic one.

(II) The second condition to be considered is related to right properties.
Take some point c = (c1, . . . , c6) in R6+. We say that the sequence (tn :=
(tn1 , . . . , t

n
6 ); n ≥ 0) in R6+ is right at c, if

(r-c) (tni → ci, as n→∞,∀i) and (tni → ci+, as n→∞, when ci > 0).

Given b > 0, let us say that Υ is nright at b on [X0], if

(nright) for each sequence (tn; n ≥ 0) in Q(B3 > 0; [X0])∩Υ , the right property
at (0, b, b, b, b, 0) is not true.

The class of all these b > 0 will be denoted as nright(Υ ; [X0]). In this case, define

(a-n-r) Υ is almost nright on [X0], if Θ := nright(Υ ; [X0]) is (>)-cofinal in R0+
(for each ε ∈ R0+ there exists θ ∈ Θ with ε > θ )

(n-r) Υ is nright on [X0], if Θ := nright(Υ ; [X0]) is identical with R0+.

(III) The third condition involves point properties. Take some point c =
(c1, . . . , c6) in R6+. We say that the sequence (tn := (tn1 , . . . , t

n
6 ); n ≥ 0) in R6+

is point at c, if

(p-c) [tni → ci as n→∞,∀i], and [tn6 = c6,∀n].

Given b > 0, let us say that Υ is npoint at b on [[X0]], if

(npoint) for each sequence (tn; n ≥ 0) in Q(B3 > 0; [[X0]]) ∩ Υ , the point
property at (0, 0, b, 0, b, b) is not true.

The class of all these b > 0 will be denoted as npoint(Υ ; [[X0]]). Then, define

(a-n-p) Υ is almost npoint on [[X0]], if Θ := npoint(Υ ; [[X0]]) is (>)-cofinal in
R0+

(n-p) Υ is npoint on [[X0]], if Θ := npoint(Υ ; [[X0]]) is identical with R0+.
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(IV) The fourth condition to be posed is normality. Given a > 0, let us say that

(norm) Υ is normal at a, when (0, a, a, a, a, 0) ∈ Υ

(n-norm) Υ is nnormal at a, when (0, a, a, a, a, 0) /∈ Υ .

The class of all nnormal a > 0 will be denoted as nnorm(Υ ). Then, define

(a-n-n) Υ is almost nnormal, if Θ := nnorm(Υ ) is (>)-cofinal in R0+
(n-n) Υ is nnormal, if Θ := nnorm(Υ ) is identical with R0+.

Some concrete examples of such objects will be given a bit further.

5 Main Result

Let (X, d) be a metric space. Further, let T ∈ F (X) be a selfmap of X. As precise,
we are interested to determine sufficient conditions for (uniqueness and) existence of
elements in Fix(T ), via contractive type requirements involving iterative processes
X0 = (xn) starting from an element x0 of X, and their associated sets

[X0] = {xn; n ≥ 0}, [[X0]] = cl([X0]).

The basic directions and regularity conditions (relative to X0) under which the
problem of determining fixed points of T is to be solved were already listed; and the
contractive type framework (involving X0) was settled.

We are now in position to state our main result in this exposition.

Theorem 4 Let the subset Υ ∈ exp(R6+) and its attached relation R be such that
(T is (d,R;Υ )-contractive, and)

(51-i) R is B1-admissible: (B1 > 0) ⊆ R
(51-ii) Υ is asymptotic and almost nright on [Y0], for each (Ba-o) sequence Y0 =

(yn).

Further, assume that X is (Ba-o,d)-complete; and let X0 = (xn) be a (Ba-o)
sequence. Then,

(51-a) X0 = (xn) is Picard (modulo (d,R; T ))
(51-b) X0 = (xn) is strongly Picard (modulo (d,R; T )), whenever T is (Ba-o,d)-

continuous
(51-c) X0 = (xn) is strongly Picard (modulo (d,R; T )), whenever Υ is npoint

on [[X0]]
(51-d) T is fix-R-asingleton (hence, fix-R-singleton, under any of these

extra requirements) when, in addition to the conditions above, Υ is nnormal
((0, a, a, a, a, 0) /∈ Υ , ∀a > 0)

(51-e) T is fix-asingleton (hence, fix-singleton, under any of these extra require-
ments) when, in addition to the conditions above, R is B0-admissible and Υ is
nnormal.
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Proof There are some steps to be passed.
Step 1. Denote for simplicity

(rn = d(xn, xn+1); n ≥ 0), (pn := d(xn, xn+2); n ≥ 0).

From the triangular inequality,

(rela-1) (∀n) : |pn − rn| ≤ rn+1.

Moreover, we have by definition

(∀n) : B1(xn, xn+1) = min{rn, rn+1} > 0; whence, (xn, xn+1) ∈ R;

if we remember that R is B1-admissible. The contractive condition is applicable to
the couples (xn, xn+1), for all n; and gives (under these notations)

(rela-2) (rn, rn, pn, 0, rn+1, rn+1) ∈ Q(B1 > 0; [X0]) ⊆ Υ, for all n.

By (rela-1)+(rela-2) (and the asymptotic property of Υ ), one derives

rn → 0 as n→∞; so that,
X0 = (xn) is semi-Picard (modulo (d,R; T )).

Step 2. Summing up, X0 = (xn) is (Ba-o) and d-asymptotic. On the other hand,
as Υ is almost nright, Θ := nright(Υ ; [X0]) appears as (>)-cofinal in R0+. We show
that, under these conditions,

X0 = (xn) is d-Cauchy; hence,
X0 = (xn) is Picard (modulo (d,R; T )).

Suppose that this is not true; and fix some index h ≥ 1. By a preliminary statement,
there exist a number γ ∈ Θ , a rank J := J (γ, h) ≥ 1, and a couple of rank-
sequences (m(k); k ≥ 0), (n(k); k ≥ 0), with

(prop-1) J + k ≤ m(k) < m(k)+ 3h < n(k), ∀k
(prop-2) ∀s, t ∈ N [0, 3h]: Vk(s, t) := d(xm(k)+s , xn(k)+t )→ γ+ as k →∞.

By the (Ba-o) and d-asymptotic properties of X0 = (xn),

(prop-3) (tk1 := rm(k); k ≥ 0) and (tk6 := rn(k); k ≥ 0) are sequences in R0+ with
tk1 , t

k
6 → 0 as k →∞.

Moreover, taking (prop-2) into account, yields

(tk2 := Vk(0, 0); k ≥ 0), (tk3 := Vk(0, 1); k ≥ 0), and

(tk4 := Vk(1, 0); k ≥ 0), (tk5 := Vk(1, 1); k ≥ 0)

are sequences in R0+ with tk2 , t
k
3 , t

k
4 , t

k
5 → γ + as k →∞;
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hence, putting these together,

(t-right) the vectorial sequence (tk := (tk1 , t
k
2 , t

k
3 , t

k
4 , t

k
5 , t

k
6 ); k ≥ 0)

is right at (0, γ, γ, γ, γ, 0).

Concerning the contractive property of the same object (tk; k ≥ 0), note that by
(prop-2) and (prop-3),

(∀k) : B3(xm(k), xn(k))=min{rm(k), Vk(0, 0), Vk(0, 1), Vk(1, 0), Vk(1, 1), rn(k)}>0;

whence, tk ∈ Q(B3 > 0; [X0]) ⊆ Υ .
This, via (t-right), contradicts the choice of γ as element of Θ :=

nright(Υ ; [X0]). Hence, our working assumption is not acceptable; and the assertion
follows.

Step 3. From these developments, we have, as X is (Ba-o,d)-complete

X0 = (xn) is d-convergent: xn
d−→ z0 as n→∞, for some z0 ∈ X.

We now claim that z0 is a fixed point of T . Two possible cases—treated in the steps
below—are to be discussed.

Step 4. Suppose that T is (Ba-o,d)-continuous. Then,

un := T xn
d−→ T z0 as n→∞.

On the other hand, (un = xn+1; n ≥ 0) is a subsequence of (xn; n ≥ 0); whence

un
d−→ z0 as n→∞.

Combining with d=separated, yields z0 = T z0.
Step 5. Suppose that Υ is npoint on [[X0]]. Three alternatives occur.
Alter-1) Suppose that

(Tz-rela-1) H1 := {n ∈ N; xn = T z0} is unbounded (in N).

By a direct procedure (avoiding any use of (AC)) there may be obtained a strictly
ascending sequence of ranks (i(n); n ≥ 0), such that

an := xi(n) = T z0, for all n.

But, (an; n ≥ 0) is a subsequence of (xn; n ≥ 0); so that limn(an) = z0. Passing to
limit in the relation above, gives z0 = T z0.

Alter-2) Suppose that
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(Tz-rela-2) H2 := {n ∈ N; T xn = T z0} is unbounded (in N).

By the same procedure (avoiding any use of (AC)) there may be obtained a strictly
ascending sequence of ranks (j (n); n ≥ 0), such that

bn := T xj(n) = T z0, for all n.

But, (bn = xj (n)+1; n ≥ 0) is a subsequence of (xn; n ≥ 0); so that limn(bn) = z0.
Passing to limit in the relation above, gives z0 = T z0.

Alter-3) Suppose that

both subsets H1 and H2 are bounded (in N ).

This tells us that

∃i = i(z0) ∈ N, such that:

n ≥ i implies T xn 
= T z0 (hence, xn 
= z0) and xn 
= T z0.

Denote for simplicity (un = xn+i; n ≥ 0); clearly, by the preceding relation,

(non-id) (∀n) : T un 
= T z0 (hence, un 
= z0) and un 
= T z0.

Again combining with the (Ba-o) property of X0 = (xn), one derives

(posi-1) (∀n) : Q1(un, z0) = d(un, T un) > 0,

Q2(un, z0) = d(un, z0) > 0, Q3(un, z0) = d(un, T z0) > 0,

Q4(un, z0) = d(T un, z0) > 0,Q5(un, z0) = d(T un, T z0) > 0.

Suppose by contradiction that

(posi-2) b := d(z0, T z0) > 0 [whence, Q6(xn, z0) = b > 0,∀n].

We show that this is not compatible with Υ being npoint at b.
From the preceding observations, we have

(∀n) : B3(un, z0) = min{Q1, . . . ,Q6}(un, z0)} > 0;
whence, Q(un, z0) ∈ Q(B3 > 0; [[X0]]) ⊆ Υ.

Let us evaluate the left part of this last relation. From the preceding facts

(tn1 := d(un, T un); n ≥ 0), (tn2 := d(un, z0); n ≥ 0),

(tn3 := d(un, T z0); n ≥ 0), (tn4 := d(T un, z0); n ≥ 0),
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(tn5 := d(T un, T z0); n ≥ 0), are sequences in R0+ with

(tn1 , t
n
2 , t

n
3 , t

n
4 , t

n
5 )→ (0, 0, b, 0, b) as n→∞.

At the same time,

(tn6 := d(z, T z) = b; n ≥ 0) is a constant sequence (with tn6 → b);

so, putting these together,

(Rela-1) (tn := (tn1 , . . . , t
n
6 ); n ≥ 0) is point at (0, 0, b, 0, b, b).

Finally, by simply replacing in the contractive condition above,

(Rela-2) (∀n) : tn ∈ Q(B3 > 0; [[X0]]) ⊆ Υ.

This, via (Rela-1), contradicts the fact that b ∈ npoint(Υ ; [[X0]]). Hence, the
assumption b > 0 cannot be accepted; and then, b = 0; that is: z0 ∈ Fix(T ).

Step 6. Take the points z1, z2 ∈ Fix(T ), according to

z1Rz2; and (by contradiction) z1 
= z2 (hence, a := d(z1, z2) > 0).

As (z1, z2) ∈ R, the contractive condition applies to (z1, z2); and gives

Q(z1, z2) ∈ Υ ; that is: (0, a, a, a, a, 0) ∈ Υ ;

a contradiction with respect to the nnormal property of Υ . Hence, our working
condition is not accepted; and the assertion follows.

Step 7. Take the points z1, z2 ∈ Fix(T ), according to

z1 
= z2 (hence, a := d(z1, z2) > 0).

This yields

B0(z1, z2) = a > 0; whence, (z1, z2) ∈ R;

if we note that R is B0-admissible. Consequently, the contractive condition applies
to (z1, z2); and gives

Q(z1, z2) ∈ Υ ; that is: (0, a, a, a, a, 0) ∈ Υ ;

a contradiction with respect to the nnormal property of Υ . Hence, our working
condition is not accepted; and the assertion follows.
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Note that, multivalued extensions of this result are possible, under the lines
in Nadler [21]. On the other hand, an extended setting of these developments is
possible, under the lines discussed in the 2001 PhD Thesis by Hitzler [13, Ch 1,
Sect 1.2]; see also Pasicki [24]. Further aspects were delineated in Turinici [41].

6 Analytic Methods in RDC-Theory

As an application of the developments above, some analytic methods in the fixed
point theory for Rhoades-Dutta-Choudhury contractions are being discussed.

Let (X, d) be a metric space. Further, let T ∈ F (X) be a selfmap of X.
As precise, we are interested to determine sufficient conditions for (uniqueness
and) existence of elements in Fix(T ), via contractive type requirements involving
iterative processes X0 = (xn) starting from an element x0 of X, and their associated
sets

[X0] = {xn; n ≥ 0}, [[X0]] = cl([X0]).

The basic directions and regularity conditions (relative to X0) under which the
existence/uniqueness problem involving points of Fix(T ) is to be solved were
already listed; and the contractive type framework (involving X0) was settled. As
a by-product of these, we established our main result in this exposition, Theorem 4.
It is our aim in the following to show that, starting from this principle, it is possible
to describe the basic lines for a kind of analytical approach in treating fixed points of
contractions over metric spaces of the type introduced by Rhoades [31] and refined
by Dutta and Choudhury [12].

(A) Roughly speaking, the approach to be considered requires an appropriate
description of contractive conditions to be used. Denote, for x, y ∈ X

Q1(x, y) = d(x, T x), Q2(x, y) = d(x, y),

Q3(x, y) = d(x, T y), Q4(x, y) = d(T x, y),

Q5(x, y) = d(T x, T y), Q6(x, y) = d(y, T y),

Q(x, y) = (Q1(x, y),Q2(x, y),Q3(x, y),Q4(x, y),Q5(x, y),Q6(x, y)).

Then, let us construct the family of functions [for x, y ∈ X]

B0(x, y) = min{Q2,Q5}(x, y),
B1(x, y) = min{Q1,Q2,Q5,Q6}(x, y),
B2(x, y) = min{Q2,Q3,Q4,Q5}(x, y),
B3(x, y) = min{Q1,Q2,Q3,Q4,Q5,Q6}(x, y),
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and put, for simplicity,

(Bi > 0) = {(x, y) ∈ X ×X;Bi(x, y) > 0}, i ∈ {0, 1, 2, 3}.
Let (ψ, ϕ) be a pair of functions over F (R0+, R). Further, let (u, v,w) be a triple

of functions over F (R6+, R+), and define the couple of subsets

Υ0 = {t ∈ R6+; u(t), v(t), w(t) > 0},
Υ = {t ∈ Υ0;ψ(u(t)) ≤ ψ(v(t))− ϕ(w(t))}.

Finally, define the couple of relations over X

R = Q−1(Υ0), R∗ = Q−1(Υ ).

The obtained relations allow us defining two contractive conditions upon our data.
The former of these is a functional contractive condition, written as:

(fct-contr) T is (d,R;ψ, ϕ; u, v,w)-contractive, if

ψ(u ◦Q(x, y)) ≤ ψ(v ◦Q(x, y))− ϕ(w ◦Q(x, y)), when (x, y) ∈ R.

The latter of these appears as a set contractive condition and writes

(set-contr) T is (d,R;Υ )-contractive:

Q(x, y) ∈ Υ, if (x, y) ∈ R; that is Q(R) ⊆ Υ.

The connection between these is described in

Proposition 5 Under the above developments, one has

T is (d,R;ψ, ϕ; u, v,w)-contractive iff T is (d,R;Υ )-contractive.

Proof Two steps must be passed.
Step 1. Suppose that the functional contractive property (fct-contr) is holding;

and let the couple (x, y) ∈ R be arbitrary fixed. For the moment,

(x, y) ∈ R implies t := Q(x, y) ∈ Υ0; that is: u(t) > 0, v(t) > 0, w(t) > 0.

Moreover, by the very definition of contractive property,

ψ(u(t)) ≤ ψ(v(t))− ψ(w(t)); that is: t := Q(x, y) ∈ Υ.

This, by the arbitrariness of the couple (x, y) ∈ R, shows that the set contractive
property holds; and the left to right inclusion follows.

Step 2. Suppose that the set contractive property (set-contr) is holding; and let
the couple (x, y) ∈ R be arbitrary fixed. For the moment,

(x, y) ∈ R implies t := Q(x, y) ∈ Υ0; that is: u(t) > 0, v(t) > 0, w(t) > 0.



728 M. Turinici

Moreover, by the very definition of Υ ,

ψ(u(t)) ≤ ψ(v(t))− ψ(w(t)); where t := Q(x, y).

This tells us that the couple (x, y) fulfills the functional contractive property; and
proves the right to left inclusion.

In other words the functional contractive condition (fct-contr) is equivalent with
the set-contractive condition (set-contr); to which the methods of the main result are
applicable. Technically speaking, an effective application of the main result to the
set contractive problem (set-contr) amounts to verifying the (sufficient) asymptotic,
right, point, and normality properties upon Υ , in terms of its components; that is: the
relation R, the pair (ψ, ϕ), and the triple (u, v,w). Some preliminaries are needed.

For each function ψ ∈ F (R0+, R), and each a > 0, define

ψ is right regulated at a:
ψ(a + 0) = limt→a+ ψ(t) (the right limit of ψ at a) exists (in R)
ψ is left regulated at a:
ψ(a − 0) = limt→a− ψ(t) (the left limit of ψ at a) exists (in R)
ψ is regulated at a: both ψ(a + 0) and ψ(a − 0) exist (in R)
ψ is continuous at a: ψ is regulated at a and ψ(a + 0) = ψ(a − 0) = ψ(a).

The class of all such a will be indicated, respectively, as

rreg(ψ)= the right regulated domain of ψ ,
lreg(ψ)= the left regulated domain of ψ ,
reg(ψ)= the regulated domain of ψ ,
cont(ψ)= the continuous domain of ψ .

In this case, we say that

(a-r-reg) ψ is almost right regulated, if Θ := rreg(ψ) is (>)-cofinal in R0+
(r-reg) ψ is right regulated, if Θ := rreg(ψ) is identical with R0+
(a-l-reg) ψ is almost left regulated, if Θ := lreg(ψ) is (>)-cofinal in R0+
(l-reg) ψ is left regulated, if Θ := lreg(ψ) is identical with R0+
(a-reg) ψ is almost regulated, if Θ := reg(ψ) is (>)-cofinal in R0+
(reg) ψ is regulated, if Θ := reg(ψ) is identical with R0+
(a-cont) ψ is almost continuous, if Θ := cont(ψ) is (>)-cofinal in R0+
(cont) ψ is continuous, if Θ := cont(ψ) is identical with R0+.

Remark 2 The class of almost right regulated functions is pretty large. This is
shown in example below:

Let (an; n ≥ 0) be a strictly descending sequence in R0+ with

an → 0 as n→∞; whence: Θ := {an; n ≥ 0} is (>)-cofinal in R0+.
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Then, let ψ : R0+ → R be a function with

(r-lim) ψ(ai + 0) exists, for all i ∈ N.

In this case, ψ appears as an almost right regulated function. Note that, (r-lim)
requires this behavior of ψ in the right neighborhoods of points in Θ; which means
that, in the remaining points of R0+, the behavior of ψ is completely arbitrary.

In other words, the class of almost right regulated functions may contain many
functions in F (R0+, R) with an arbitrary behavior over large subsets of R0+.

Remark 3 The class of almost continuous functions is pretty large too, in view of

(for each ψ ∈ F (R0+, R)):
ψ is increasing or continuous implies ψ is almost continuous.

In fact, the affirmation concerning continuity is clear. On the other hand, the
affirmation concerning increasing property is again clear, by a result in Natanson
[23, Ch 8, Sect 1]. For, when ψ is increasing, there exists (by the quoted result) a
denumerable part Δ of R0+, with

Θ := R0+ \Δ ⊆ cont(ψ);

and this along with Θ being (>)-cofinal, proves the claim.

Remark 4 Concerning the algebraic properties of such functions, the class of right
regulated functions is invariant with respect to linear combinations and products:

ψ1, ψ2=right regulated imply α1ψ1 + α2ψ2 (where α1, α2 ∈ R)
and ψ1ψ2 are right regulated too.

This property is no longer true for the class of almost right regulated functions, in
view of immediate fact

the (>)-cofinal in R0+ property is not invariant to intersections: if Θ1 and Θ2 are

(>)-cofinal in R0+, then Θ1 ∩ θ2 need not be (>)-cofinal in R0+;

just let Θ1 and Θ2 be the class of all rationals and irrationals of R0+, respectively.
However, when one of these functions is continuous, this happens, in the sense

ψ1 = almost right regulated and ψ2 = continuous, imply

α1ψ1 + α2ψ2 (where α1, α2 ∈ R) and ψ1ψ2 are almost right regulated.

Further aspects involving the concepts in question may be found in the 1960
monograph by Dieudonné [10, Ch VII, Sect 6].
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Concerning these concepts, the following auxiliary fact is to be noted. Let ψ :
R0+ → R be a regulated function. Denote, for each b, c > 0

(r-osc-bc) osc(+)(ψ; b, c) = ψ(b + 0)− ψ(c + 0)

(the right oscillation of ψ at (b, c))

(osc-bc) osc(ψ; b, c) = max{ψ(u)− ψ(v); u ∈ {b + 0, b, b − 0},
v ∈ {c + 0, c, c − 0}}
(the oscillation of ψ at (b, c)).

Clearly, by the regulated hypothesis, these are finite real numbers. With an extra
care, this definition may be extended to the case of b = 0. Precisely, assume that

(reg-ext) ψ is extended regulated: ψ is regulated, and ψ(0+ 0) exists.

A strong variant of this is

ψ is strong extended regulated:
ψ is regulated, and zero abrupt: ψ(0+ 0) = −∞.

For example, the extended regulated property holds under ψ=increasing. However,
the strong extended regulated property is not assured, in this general way; so, to get
it, we must impose this property in a mandatory way.

Having these precise, suppose that ψ is extended regulated. We may then define
for each c > 0,

(r-osc-0c) osc(+)(ψ; 0, c) = ψ(0+ 0) − ψ(c + 0); the right oscillation of ψ at
(0, c)

(osc-0c) osc(ψ; 0, c) = max{ψ(0 + 0) − ψ(v); v ∈ {c + 0, c, c − 0}}; the
oscillation of ψ at (0, c).

In the same general context, given the function ϕ : R0+ → R and the point a ≥ 0,
let us introduce properties (where b ≥ 0, c > 0):

(r-bd-osc-bca) (ψ, ϕ) is right bounded oscillating at (b, c; a): for each sequence
(tn) in R0+ with tn → a+, we have lim supn(ϕ(tn)) > osc(+)(ψ; b, c)

(bd-osc-bca) (ψ, ϕ) is (bilateral) bounded oscillating at (b, c; a): for each
sequence (tn) in R0+ with tn → a, we have lim supn(ϕ(tn)) > osc(ψ; b, c).

Proposition 6 Let (ψ, ϕ) be a couple of functions over F (R0+, R), with

ψ is extended regulated

and (a, b, c) be a triple of points with a, b ≥ 0, c > 0. The following are valid
(62-1) If the couple (ψ, ϕ) is right bounded oscillating at (b, c; a), then there are

no sequences (tn), (sn) and (rn) in R0+, such that

tn → a+, sn → b+, rn → c + and ϕ(tn) ≤ ψ(sn)− ψ(rn), for all n
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(62-2) If the couple (ψ, ϕ) is bounded oscillating at (b, c; a) where b > 0, then
there are no sequences (tn), (sn) and (rn) in R0+, such that

tn → a, sn → b, rn → c and ϕ(tn) ≤ ψ(sn)− ψ(rn), for all n

(62-3) If the couple (ψ, ϕ) is bounded oscillating at (0, c; a), then there are no
sequences (tn), (sn) and (rn) in R0+, such that

tn → a, sn → 0+, rn → c and ϕ(tn) ≤ ψ(sn)− ψ(rn), for all n.

Proof There are three parts to be passed.
Part 1. Suppose, by contradiction that there are sequences (tn), (sn) and (rn) in

R0+, such that

(rela-1) tn → a+, sn → b+, rn → c + and ϕ(tn) ≤ ψ(sn)− ψ(rn),∀n.

Passing to lim sup as n→∞ in this relation, gives

lim supn ϕ(tn) ≤ ψ(b + 0)− ψ(c + 0);
whence (by the imposed conventions): lim supn ϕ(tn) ≤ osc(+)(ψ; b, c);
absurd, by the oscillation type condition.

Part 2. Suppose, by contradiction that (under b > 0) there are sequences (tn)

(sn) and (rn) in R0+, such that

(rela-2) tn → a, sn → b, rn → c and ϕ(tn) ≤ ψ(sn)− ψ(rn), for all n.

Let E ∈ {(>), (=), (<)} be some relation. By definition, the unique limit of the
sequence (ψ(cn)) when cn → c and (cnE c,∀n) is denoted as ψ(cE ). Clearly,

ψ(cE ) = ψ(c + 0), when E is (>),

ψ(cE ) = ψ(c), when E is (=),
ψ(cE ) = ψ(c − 0), when E is (<).

By the total property of the ordering in R, there exists a couple of relations E1,E2 ∈
{(>), (=), (<)} with

H1 := {n ∈ N; snE1b},H2 := {n ∈ N; rnE2c} are infinite.

As H1 := {n ∈ N; snE1b} is infinite, there exists a strictly ascending sequence
of ranks (i(n)) such that si(n)E1b, ∀n. Without loss—passing to a subsequence if
necessary—one may assume (i(n) = n; n ≥ 0); so that (by the above)

(rela-3) tn → a, sn → b, (snE1b,∀n), rn → c

and ϕ(tn) ≤ ψ(sn)− ψ(rn), for all n.
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As H2 := {n ∈ N; rnE2c} is infinite, there exists a strictly ascending sequence
of ranks (j (n)) such that rj (n)E2c, ∀n. Without loss—passing to a subsequence if
necessary—one may assume (j (n) = n; n ≥ 0); so that (by the above)

(rela-4) tn → a, sn → b, (snE1b,∀n),
rn → c, (rnE2c,∀n), and ϕ(tn) ≤ ψ(sn)− ψ(rn), for all n.

Passing to lim sup as n→∞ in this last relation, gives

lim supn ϕ(tn) ≤ ψ(bE1)− ψ(cE2);
whence (by the imposed conventions): lim supn ϕ(tn) ≤ osc(ψ; b, c);
absurd, by the oscillation type condition.

Part 3. Suppose by contradiction that (under b = 0) there are sequences (tn),
(sn) and (rn) in R0+, such that

(rela-5) tn → a, sn → 0+, rn → c and ϕ(tn) ≤ ψ(sn)− ψ(rn), for all n.

Let the preceding notations be in force. By the total property of the ordering in R,
there exists a relation E ∈ {(>), (=), (<)} with

H := {n ∈ N; rnE c} is infinite.

There exists then a strictly ascending sequence of ranks (i(n)) such that ri(n)E c,
∀n. Without loss—passing to a subsequence if necessary—one may assume (i(n) =
n; n ≥ 0); so that (by the above)

(rela-6) tn → a, sn → 0+, rn → c(rnE c,∀n),
and ϕ(tn) ≤ ψ(sn)− ψ(rn), for all n.

Passing to lim sup as n→∞ in this last relation, gives

lim supn ϕ(tn) ≤ ψ(0+ 0)− ψ(cE );
whence (by the imposed conventions): lim supn ϕ(tn) ≤ osc(ψ; 0, c);

absurd, by the oscillation type condition.
The proof is complete.

(B) We may now pass to the specific objective of our developments: to determine
the (sufficient) asymptotic, right, point, and normality properties upon Υ , in terms
of its components; that is: the pair (ψ, ϕ) and the triple (u, v,w). Two more basic
conventions are in order.

Let (ξ, η, ζ ) be a triple of functions with ξ ∈ F (R0+), η, ζ ∈ F (R+); in
particular, one may take ξ = I (the identity function (I (t) = t; t ∈ R0+)); as
well as η = 0 and/or ζ = 0 (the identically zero function (0(t) = 0; t ∈ R+)).

Conv-1) We say that (u, v,w) is right asymptotic of type (ξ, η, ζ ), when
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(r-asy) ∀ sequence (tn; n ≥ 0) in Q(B3 > 0; [X0]) ∩ Υ , and ∀b > 0: (tn; n ≥
0) has the right property at (0, b, b, b, b, 0) implies u(tn) → ξ(b)+, v(tn) →
η(b)+, w(tn)→ ζ(b)+.

Conv-2) We say that (u, v,w) is point asymptotic of type (ξ, η, ζ ), when

(pt-asy) ∀ sequence (tn; n ≥ 0) in Q(B3 > 0; [[X0]]) ∩ Υ, and ∀b > 0 :
(tn; n ≥ 0) has the point property at (0, 0, b, 0, b, b)

implies u(tn)→ ξ(b), v(tn)→ η(b),w(tn)→ ζ(b).

The following statement is an essential step towards the precise objective.
Denote, for each couple α, β ∈ R,

co(α, β)=the convex cover of {α, β};
that is: the interval [min{α, β},max{α, β}].
Theorem 5 Let (ψ, ϕ) be a couple of functions over F (R0+, R), with

(61-i) ϕ is strictly positive (ϕ(R0+) ⊆ R0+).

Further, let (u, v,w) be a triple of functions over F (R6+, R+), such that (under the
precise notations)

(61-ii) R is B1-admissible: (B1 > 0) ⊆ R.

Then,

61-a) Υ is descending asymptotic on [X0], provided
(61-a-i) ψ is right regulated,

and there exists a continuous strictly increasing λ ∈ F (R0+), with

(61-a-ii) (u, v,w) is strongly λ-iterative, in the sense: for each sequence (rn) in
R0+ and each sequence (pn) in R+ with (An := (rn, rn, pn, 0, rn+1, rn+1) ∈
Q(B1 > 0; [X0])∩Υ , and |pn− rn| ≤ rn+1, for all n), we have un := u(An) =
rn+1, vn := v(An) = max{rn, rn+1}, wn := w(An) ∈ co(λ(rn), λ(rn+1)), ∀n

(61-a-iii) (ψ, ϕ) is right bounded oscillating at (b, b; λ(b)), for each b > 0
61-b) Υ is descending asymptotic on [X0], provided
(61-b-i) ψ is increasing (hence right regulated),

and there exists a continuous strictly increasing λ ∈ F (R0+), with

(61-b-ii) (u, v,w) is weakly λ-iterative, in the sense: for each sequence (rn) inR0+
and each sequence (pn) inR+ with (An := (rn, rn, pn, 0, rn+1, rn+1) ∈ Q(B1 >

0; [X0]) ∩ Υ , and |pn − rn| ≤ rn+1, for all n), we have un := u(An) = rn+1,
vn := v(An) ≤ max{rn, rn+1}, wn := w(An) ∈ co(λ(rn), λ(rn+1)), ∀n

(61-b-iii) (ψ, ϕ) is right bounded oscillating at (b, b; λ(b)), for each b > 0
61-c) Υ is almost nright on [X0], provided
(61-c-i) ψ is almost right regulated
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and there exists μ ∈ F (R+), such that:

(61-c-ii) (u, v,w) is right asymptotic of type (I, I, μ)
(61-c-iii) (ψ, ϕ) is right bounded oscillating at (b, b;μ(b)), for each b ∈ rreg(ψ)

61-d) Υ is npoint (hence, almost npoint) on [[X0]], provided
(61-d-i) ψ is extended regulated

and there exists a triple (ξ, η, ζ ) with ξ ∈ F (R0+), η, ζ ∈ F (R+), such that:

(61-d-ii) (u, v,w) is point asymptotic of type (ξ, η, ζ )
(61-d-iii) (ψ, ϕ) is bounded oscillating at (η(b), ξ(b); ζ(b)), ∀b > 0
61-e) Υ is nnormal, provided (u, v,w) is invariant, in the sense u(0, a, a, a, a,

0) = a, v(0, a, a, a, a, 0) = a, w(0, a, a, a, a, 0) = a, ∀a > 0.

Proof The argument consists in a number of parts.
Part 1. [Υ is descending asymptotic on [X0] under the first lot of conditions].
Let the sequence (rn) in R0+ and the sequence (pn) in R+ be such that

(∀n) : An := (rn, rn, pn, 0, rn+1, rn+1) ∈ Q(B1 > 0; [X0]) ∩ Υ,

and |pn − rn| ≤ rn+1.

As (u, v,w) is strongly λ-iterative,

(∀n) : un := u(An) = rn+1, v
n := v(An) = max{rn, rn+1},

wn := w(An) ∈ co(λ(rn), λ(rn+1)).

By the very representation of Υ , we must have

(iter-1) (∀n) : ψ(rn+1) ≤ ψ(max{rn, rn+1})− ϕ(wn),

where wn ∈ co(λ(rn), λ(rn+1)).

If the alternative below holds

(alter-1) rn ≤ rn+1, for some n

then, by the above relation

ϕ(wn) ≤ 0; in contradiction with ϕ = strictly positive.

Hence, necessarily,

(alter-2) rn > rn+1,∀n; that is: (rn) is strictly descending.

As a first consequence of this, one has that (iter-1) becomes

(iter-2) (∀n) : ψ(rn+1) ≤ ψ(rn)− ϕ(wn), where wn ∈ [λ(rn+1), λ(rn)].
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As a second consequence of this, r := limn(rn) exists in R+. Suppose by
contradiction that r > 0. As (rn) is strictly descending,

rn → r+; hence λ(rn)→ λ(r)+, wn → λ(r)+

(cf. the choice of λ(.) and (wn)). By (iter-2), we get

(iter-3) (0 <)ϕ(wn) ≤ ψ(rn)− ψ(rn+1),∀n.

Passing to lim sup as n→∞, one gets

0 ≤ lim sup
n

ϕ(wn) ≤ ψ(r + 0)− ψ(r + 0) = 0; that is: lim
n

ϕ(wn) = 0;

in contradiction with (ψ, ϕ) being right bounded oscillating at (r, r; λ(r)). Hence,
r = 0; and the assertion follows.

Part 2. [Υ is descending asymptotic on [X0] under the second lot of conditions].
Let the sequence (rn) in R0+ and the sequence (pn) in R+ be such that

(∀n) : An := (rn, rn, pn, 0, rn+1, rn+1) ∈ Q(B1 > 0; [X0]) ∩ Υ,

and |pn − rn| ≤ rn+1.

As (u, v,w) is λ-iterative,

(∀n) : un := u(An) = rn+1, v
n := v(An) ≤ max{rn, rn+1},

wn := w(An) ∈ co(λ(rn), λ(rn+1)),

By the very representation of Υ (and ψ=increasing)

(iter-4) (∀n) : ψ(rn+1) ≤ ψ(vn)− ϕ(wn) ≤ ψ(max{rn, rn+1})− ϕ(wn),

where wn ∈ co(λ(rn), λ(rn+1)).

By the strict positive condition upon ϕ and ψ=increasing, this yields

(∀n) : ψ(rn+1) < ψ(max{rn, rn+1}); whence rn+1 < rn;

which tells us that (rn) is strictly descending. As a first consequence of this, one has
that (iter-4) becomes

(iter-5) (∀n) : ψ(rn+1) ≤ ψ(rn)− ϕ(wn), where wn ∈ [λ(rn+1), λ(rn)].

As a second consequence of this, r := limn(rn) exists in R+. Suppose by
contradiction that r > 0. As (rn) is strictly descending,

rn → r+; hence λ(rn)→ λ(r)+, wn → λ(r)+
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(cf. the choice of λ(.) and (wn)). By (iter-5), we get

(iter-6) (0 <)ϕ(wn) ≤ ψ(rn)− ψ(rn+1),∀n.

Passing to lim sup as n→∞, one gets

0 ≤ lim sup
n

ϕ(wn) ≤ ψ(r + 0)− ψ(r + 0) = 0; that is : lim
n

ϕ(wn) = 0;

in contradiction with (ψ, ϕ) being right bounded oscillating at (r, r; λ(r)). Hence,
r = 0; and the assertion follows.

Part 3. [Υ is almost nright on [X0], under the precise conditions].
Take some point c = (c1, . . . , c6) in R6+. We say that the sequence (tn :=

(tn1 , . . . , t
n
6 ); n ≥ 0) in R6+ is right at c, if

(r-c) (tni → ci,∀i) and (tni → ci+, whenever ci > 0).

Given b > 0, let us say that Υ is nright at b on [X0], if

for each sequence (tn; n ≥ 0) in Q(B3 > 0; [X0]) ∩ Υ ,
the right property at (0, b, b, b, b, 0) is not true.

The class of all these b > 0 will be denoted as nright(Υ ; [X0]). In this case, we say
that Υ is

(a-n-r) almost nright on [X0], if Θ := nright(Υ ; [X0]) is (>)-cofinal in R0+ (for
each ε ∈ R0+ there exists θ ∈ Θ with ε > θ )

(n-r) nright on [X0], if Θ := nright(Υ ; [X0]) is identical with R0+.

We have to establish that the former property is retainable for our data. To do
this, we start by noting that

ψ = almost right regulated implies Θ := rreg(ψ) is (>)-cofinal in R0+.

We now claim that

Θ ⊆ nright(Υ ; [X0]); wherefrom, nright(Υ ; [X0]) is (>)-cofinal in R0+.

This amounts to establish that

for each sequence (tn := (tn1 , . . . , t
n
6 ); n ≥ 0) in Q(B3 > 0; [X0]) ∩ Υ ,

and each b ∈ Θ , the right property at (0, b, b, b, b, 0) is not true.

Suppose by absurd that there exists a (vectorial) sequence (tn := (tn1 , . . . , t
n
6 ); n ≥

0) in R6+ and some b ∈ Θ , with

(right-b-1) (∀n): tn := (tn1 , . . . , t
n
6 ) ∈ Q(B3 > 0; [X0])∩Υ ; whence, ψ(u(tn)) ≤

ψ(v(tn))− ϕ(w(tn))
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(right-b-2) (tn := (tn1 , . . . , t
n
6 ); n ≥ 0) has the right property at (0, b, b, b, b, 0);

i.e.: (tni → 0, ∀i ∈ {1, 6}), and (tni → b+, ∀i ∈ {2, 3, 4, 5}).
By the former of these properties

(∀n) : (0 <)ϕ(w(tn)) ≤ ψ(v(tn))− ψ(u(tn)).

As (u, v,w) is right asymptotic of type (I, I, μ),

u(tn)→ b+, v(tn)→ b+, w(tn)→ μ(b)+ .

Passing to lim sup as n → ∞ in this relation gives (by ϕ=strictly positive and
ψ=right regular at b)

0 ≤ lim sup
n

ϕ(w(tn)) ≤ ψ(b + 0)− ψ(b + 0) = 0; that is: lim
n

ϕ(w(tn)) = 0;

in contradiction with (ψ, ϕ)=right bounded oscillating at (b, b;μ(b)). Hence, our
working assumption cannot be true; and the assertion follows.

Part 4. [Υ is npoint on [[X0]] under the described assumptions].
Take some point c = (c1, . . . , c6) in R6+. We say that the sequence (tn :=

(tn1 , . . . , t
n
6 ); n ≥ 0) in R6+ is point at c, if

(pt-c) (tni → ci,∀i) and [tn6 = c6,∀n].

Given b > 0, let us say that Υ is npoint at b on [[X0]], if

(npoint) for each sequence (tn; n ≥ 0) in Q(B3 > 0; [[X0]]) ∩ Υ , the 6-point
property at (0, 0, b, 0, b, b) is not true.

The class of all these b > 0 will be denoted as npoint(Υ ; [[X0]]). In this case, we
say that Υ is

(a-n-p) almost npoint on [[X0]], if Θ := npoint(Υ ; [[X0]]) is (>)-cofinal in R0+
(n-p) npoint on [[X0]], if Θ := npoint(Υ ; [[X0]]) is identical with R0+.

We have to establish that the latter of these properties holds; that is,

for each sequence (tn; n ≥ 0) in R6+ and each b > 0, the point property at
(0, 0, b, 0, b, b) is not true.

Assume by contradiction that this assertion is false: there exists a (vectorial)
sequence (tn = (tn1 , . . . , t

n
6 ); n ≥ 0) in R6+ and some b > 0, with

(point-b-1) (∀n): tn = (tn1 , . . . , t
n
6 ) ∈ Q(B3 > 0; [[X0]]) ∩ Υ ; whence,

ψ(u(tn)) ≤ ψ(v(tn))− ϕ(w(tn))

(point-b-2) (tn = (tn1 , . . . , t
n
6 ); n ≥ 0) is point at (0, 0, b, 0, b, b); that is: (tni →

0, ∀i ∈ {1, 2, 4}), (tni → b, ∀i ∈ {3, 5, 6}), and (tn6 = b, ∀n).
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By the former of these properties

(∀n) : ϕ(w(tn)) ≤ ψ(v(tn))− ψ(u(tn)).

As (u, v,w) is point asymptotic of type (ξ, η, ζ )

u(tn)→ ξ(b), v(tn)→ η(b),w(tn)→ ζ(b).

Taking an auxiliary fact into account, we have that the obtained relations are
impossible via (ψ, ϕ)=bounded oscillating at (η(b), ξ(b); ζ(b)). Consequently, the
working assumption is not acceptable; and conclusion follows.

Part 5. [Υ is normal under the posed condition].
Remember that, this property means:

(0, a, a, a, a, 0) ∈ Υ is impossible, for each a > 0.

Suppose by contradiction that

there exists a > 0 with (0, a, a, a, a, 0) ∈ Υ.

In view of (u, v,w)=invariant,

u(0, a, a, a, a, 0) = a, v(0, a, a, a, a, 0) = a, w(0, a, a, a, a, 0) = a.

This firstly means

(0, a, a, a, a, 0) ∈ Υ0 (because a > 0).

Secondly, by the complete definition of Υ , we derive

ψ(u(0, a, a, a, a, 0)) ≤ ψ(v(0, a, a, a, a, 0))− ϕ(w(0, a, a, a, a, 0)).

So, again combining with (u, v,w)=invariant, we must have

ψ(a) ≤ ψ(a)− ϕ(a); that is: ϕ(a) ≤ 0;
absurd, by ϕ=strictly positive; and our claim follows.

Now, by simply combining the obtained fact with Theorem 4, one gets the
following couple of fixed point statements with a practical value. Let (ψ, ϕ) be a
pair of functions over F (R0+, R). Further, let (u, v,w) be a triple of functions over
F (R6+, R+), and define the couple of subsets

Υ0 = {t ∈ R6+; u(t), v(t), w(t) > 0},
Υ = {t ∈ Υ0;ψ(u(t)) ≤ ψ(v(t))− ϕ(w(t))}.
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Finally, define the couple of relations over X

R0 = Q−1(Υ0), R∗ = Q−1(Υ ).

The contractive property to be used here is

(fct-contr) T is (d,R;ψ, ϕ; u, v,w)-contractive, if

ψ(u ◦Q(x, y)) ≤ ψ(v ◦Q(x, y))− ϕ(w ◦Q(x, y)), when (x, y) ∈ R.

On the other hand, by the constructions above, one may consider the attached set
contractive condition

(set-contr) T is (d,R;Υ )-contractive: Q(x, y) ∈ Υ , if (x, y) ∈ R.

The connection between these conditions is expressed as

(equi) T is (d,R;ψ, ϕ; u, v,w)-contractive iff T is (d,R;Υ )-contractive.

In other words: our initial contractive condition in terms of R, (ψ, ϕ) and (u, v,w)

is equivalent with a contractive condition in terms of R and Υ .
The former of these statements (referred to as: Rhoades-Dutta-Choudhury

principle for regulated functions; in short: (RDC-reg)) is based on a regulated
condition upon ψ ; note that, in this case, ψ need not be increasing.

Theorem 6 Let the selfmap T be (d,R;ψ, ϕ; u, v,w)-contractive, where (ψ, ϕ)

is a couple of functions over F (R0+, R), with

(62-i) ψ is extended regulated and ϕ is strictly positive,

and (u, v,w) is a triple of functions over F (R6+, R+), such that (under the
notations we just proposed)

(62-ii) R is B1-admissible: (B1 > 0) ⊆ R.

Further, let X be (Ba-o,d)-complete; and let X0 = (xn) be a (Ba-o) sequence.
Then,

(62-a) X0 = (xn) is semi-Picard (modulo (d,R; T )), provided there exists a
continuous strictly increasing λ ∈ F (R0+), with

(62-a-i) (u, v,w) is strongly λ-iterative
(62-a-ii) (ψ, ϕ) is right bounded oscillating at (b, b; λ(b)), for each b > 0
(62-b) X0 = (xn) is Picard (modulo (d,R; T )), provided (in addition to the

above) there exists μ ∈ F (R+), such that
(62-b-i) the associated triple (u, v,w) is right asymptotic of type (I, I, μ)
(62-b-ii) (ψ, ϕ) is right bounded oscillating at (b, b;μ(b)), for each b > 0
(62-c) X0 = (xn) is strongly Picard (modulo (d,R; T )), whenever T is (Ba-o,d)-

continuous
(62-d) X0 = (xn) is strongly Picard (modulo (d,R; T )), whenever (in addition

to the above) there exists a triple (ξ, η, ζ ) with ξ ∈ F (R0+), η, ζ ∈ F (R+), such
that
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(62-d-i) the triple (u, v,w) is point asymptotic of type (ξ, η, ζ )
(62-d-ii) (ψ, ϕ) is bounded oscillating at (η(b), ξ(b); ζ(b)), for each b > 0
(62-e) T is fix-R-asingleton (hence, fix-R-singleton, under any of these extra

requirements) when, in addition to the conditions above, the triple (u, v,w) is
invariant

(u(0, a, a, a, a, 0) = v(0, a, a, a, a, 0) = w(0, a, a, a, a, 0) = a,∀a > 0)

(62-f) T is fix-asingleton (hence, fix-singleton, under any of these extra require-
ments) when, in addition to the conditions above,

R is B0-admissible and the triple (u, v,w) is invariant.

The latter of these (referred to as: Rhoades-Dutta-Choudhury principle for
increasing functions; in short: (RDC-incr)) is based on an increasing condition upon
the ambient function ψ .

Theorem 7 Let the selfmap T be (d,R;ψ, ϕ; u, v,w)-contractive, where (ψ, ϕ)

is a couple of functions over F (R0+, R), with

(63-i) ψ is increasing and ϕ is strictly positive

and (u, v,w) is a triple of functions over F (R6+, R+), such that (under the
notations we just proposed)

(63-ii) R is B1-admissible: (B1 > 0) ⊆ R.

Further, let X be (Ba-o,d)-complete; and let X0 = (xn) be a (Ba-o) sequence.
Then,

(63-a) X0 = (xn) is semi-Picard (modulo (d,R; T )), provided there exists a
continuous strictly increasing λ ∈ F (R0+), with

(63-a-i) (u, v,w) is weakly λ-iterative
(63-a-ii) (ψ, ϕ) is right bounded oscillating at (b, b; λ(b)), for each b > 0
(63-b) X0 = (xn) is Picard (modulo (d,R; T )), provided (in addition to the

above) there exists μ ∈ F (R+), such that
(63-b-i) the associated triple (u, v,w) is right asymptotic of type (I, I, μ)
(63-b-ii) (ψ, ϕ) is right bounded oscillating at (b, b;μ(b)), for each b > 0
(63-c) X0 = (xn) is strongly Picard (modulo (d,R; T )), whenever T is (Ba-o,d)-

continuous
(63-d) X0 = (xn) is strongly Picard (modulo (d,R; T )), whenever (in addition

to the above) there exists a triple (ξ, η, ζ ) with ξ ∈ F (R0+), η, ζ ∈ F (R+), such
that

(63-d-i) the triple (u, v,w) is point asymptotic of type (ξ, η, ζ )
(63-d-ii) (ψ, ϕ) is bounded oscillating at (η(b), ξ(b); ζ(b)), for each b > 0
(63-e) T is fix-R-asingleton (hence, fix-R-singleton, under any of these extra

requirements) when, in addition to the conditions above, the triple (u, v,w) is
invariant

(u(0, a, a, a, a, 0) = v(0, a, a, a, a, 0) = w(0, a, a, a, a, 0) = a,∀a > 0)
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(63-f) T is fix-asingleton (hence, fix-singleton, under any of these extra require-
ments) when, in addition to the conditions above,

R is B0-admissible and the triple (u, v,w) is invariant.

As already precise, an extended setting of these developments is possible, under
the lines described in the 2001 PhD Thesis by Hitzler [13, Ch 1, Sect 1.2]; see also
Turinici [41]. Further aspects will be discussed elsewhere.

7 Chandok-Choudhury Approach

Let (X, d) be a metric space. Further, let T ∈ F (X) be a selfmap of X. As precise,
we are interested to determine sufficient conditions for (uniqueness and) existence of
elements in Fix(T ), via contractive type requirements involving iterative processes
X0 = (xn) starting from an element x0 of X, and their associated sets

[X0] = {xn; n ≥ 0}, [[X0]] = cl([X0]).

Let (ψ, ϕ) be a pair of functions over F (R0+, R). Further, let (u, v,w) be a triple
of functions over F (R6+, R+), and define the couple of subsets

Υ0 = {t ∈ R6+; u(t), v(t), w(t) > 0},
Υ = {t ∈ Υ0;ψ(u(t)) ≤ ψ(v(t))− ϕ(w(t))}.

Finally, define the couple of relations over X

R = Q−1(Υ0), R∗ = Q−1(Υ ).

The starting functional contractive property to be considered is

(fct-contr) T is (d,R;ψ, ϕ; u, v,w)-contractive, if

ψ(u ◦Q(x, y)) ≤ ψ(v ◦Q(x, y))− ϕ(w ◦Q(x, y)), when (x, y) ∈ R.

On the other hand, the attached set contractive condition is

(set-contr) T is (d,R;Υ )-contractive: Q(x, y) ∈ Υ, if (x, y) ∈ R.

As precise, the connection between these conditions writes

(equi) T is (d,R;ψ, ϕ; u, v,w)-contractive iff T is (d,R;Υ )-contractive.
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For the set contractive condition, sufficient conditions were given upon R and Υ so
that the main result be applicable; these, naturally, are ultimately expressed in terms
of R, (ψ, ϕ) and (u, v,w). A by-product of these developments is the couple of
fixed point results we just exposed. It is our aim in the following to discuss a lot of
particular cases of these, with a practical meaning.

(A) For the moment, some direct constructions will be proposed.
Constr-0) Define the auxiliary system of functions (e0, e1, e2, e3, e4) over the

class F (R6+, R+), as: for each t = (t1, . . . , t6) ∈ R6+,

e0(t) = t6(1+ t4)/(1+ t3),

e1(t) = t6(1+ t1)/(1+ t2), e2(t) = t4(1+ t3)/(1+ t2),

e3(t) = max{t1, t6}, e4(t) = (1/2)(t3 + t4).

Constr-1) Further, define the triple (u1, u2, u3) over the class F (R6+, R+), as:
for each t = (t1, . . . , t6) ∈ R6+,

(u-def) u1(t) = max{t5, e0(t)}, u2(t) = max{t5, t6}, u3(t) = t5.

Constr-2) Then, let us construct the triple of functions (v1, v2, v3) over the class
F (R6+, R+), as: for each t = (t1, . . . , t6) ∈ R6+,

(v-def) v1(t) = max{t2, e1(t), e2(t)}, v2(t) = max{t2, e3(t), e4(t)},
v3(t) = t2.

Constr-3) Finally, define the triple (w1, w2, w3) of functions over F (R6+, R+),
as: for each t = (t1, . . . , t6) ∈ R6+,

(w-def) w1(t) = max{t2, e1(t)}, w2(t) = max{t2, t6}, w3(t) = t2.

Remember that, for the above explained technical reasons, we are forced to
accept a regularity condition like

R is B1-admissible: (B1 > 0) ⊆ R.

It is our aim to discuss of to what extent are the triples (u, v,w), where

u ∈ {u1, u2, u3}, v ∈ {v1, v2, v3}, w ∈ {w1, w2, w3}

compatible with the regularity conditions encountered in the couple of fixed point
statements above. The response to this question is to be precise as below.

R-1) Given the sequence (rn) in R0+ and the sequence (pn) in R+ with (An :=
(rn, rn, pn, 0, rn+1, rn+1) ∈ Q(B1 > 0; [X0]) ∩ Υ , |pn − rn| ≤ rn+1, for all n), we
have (by these definitions)
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(∀n) : e0(An) = rn+1/(1+ pn) (≤ rn+1), e1(An) = rn+1, e2(An) = 0,

e3(An) = max{rn, rn+1}, e4(An) = (1/2)pn (≤ max{rn, rn+1}).

This, along with our previous conventions, gives

(u-iter) u1(An) = rn+1, u2(An) = rn+1, u3(An) = rn+1,

(v-iter) v1(An) = max{rn, rn+1}, v2(An) = max{rn, rn+1}, v3(An) = rn,

(w-iter) w1(An) = max{rn, rn+1}, w2(An) = max{rn, rn+1}, w3(An) = rn.

As a consequence of this, we have that

(s-iter) any triple (u, v,w), where u ∈ {u1, u2, u3}, v ∈ {v1, v2}, w ∈
{w1, w2, w3} is strongly I -iterative

(iter) any triple (u, v3, w), where u ∈ {u1, u2, u3}, w ∈ {w1, w2, w3} is weakly
I -iterative.

R-2) Let the sequence (tn = (tn1 , . . . , t
n
6 ); n ≥ 0) in Q(B3 > 0; [X0]) ∩ Υ , and

the point b > 0 be such that

(tn = (tn1 , . . . , t
n
6 ); n ≥ 0) has the right property at (0, b, b, b, b, 0);

that is: (tni → 0,∀i ∈ {1, 6}), (tnj → b+,∀j ∈ {2, 3, 4, 5}).

Then, by definition,

e0(t
n) = tn6 (1+ tn4 )/(1+ tn3 )→ 0,

e1(t
n) = tn6 (1+ tn1 )/(1+ tn2 )→ 0, e2(t

n) = tn4 (1+ tn3 )/(1+ tn2 )→ b;
e3(t

n) = max{tn1 , tn6 } → 0, e4(t
n) = (1/2)[tn3 + tn4 ] → b.

This, along with our preceding conventions, yields

(u-pos) u1(t
n) = max{tn5 , e0(t

n)} → b+,
u2(t

n) = max{tn5 , tn6 } → b+, u3(t
n) = tn5 → b+,

(v-pos) v1(t
n) = max{tn2 , e1(t

n), e2(t
n)} → b+,

v2(t
n) = max{tn2 , e3(t

n), e4(t
n)} → b+, v3(t

n) = tn2 → b+,
(w-pos) w1(t

n) = max{tn2 , e1(t
n)} → b+,

w2(t
n) = max{tn2 , tn6 } → b+, w3(t) = tn2 → b + .

Here, the convergence relations involving maximum type functions are obtained as

(u1(t
n) ≥ tn5 ,∀n) and u1(t

n)→ b, tn5 → b + imply u1(t
n)→ b+;
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(u2(t
n) ≥ tn5 ,∀n) and u2(t

n)→ b, tn5 → b + imply u2(t
n)→ b+;

(v1(t
n) ≥ tn2 ,∀n) and v1(t

n)→ b, tn2 → b + imply v1(t
n)→ b+;

(v2(t
n) ≥ tn2 ,∀n) and v2(t

n)→ b, tn2 → b + imply v2(t
n)→ b+;

(w1(t
n) ≥ tn2 ,∀n) and w1(t

n)→ b, tn2 → b + imply w1(t
n)→ b+;

(w2(t
n) ≥ tn2 ,∀n) and w2(t

n)→ b, tn2 → b + imply w2(t
n)→ b + .

As a consequence of this, we have that

(r-I-I) any triple (u, v,w), where u ∈ {u1, u2, u3}, v ∈ {v1, v2, v3}, w ∈
{w1, w2, w3} is right asymptotic of type (I, I, I ).

R-3) Let the sequence (tn = (tn1 , . . . , t
n
6 ); n ≥ 0) in Q(B3 > 0; [[X0]])∩Υ , and

the point b > 0 be such that

(tn = (tn1 , . . . , t
n
6 ); n ≥ 0) has the point property at (0, 0, b, 0, b, b);

that is: (tni → 0,∀i ∈ {1, 2, 4}), (tnj → b,∀j ∈ {3, 5, 6}), (tn6 = b,∀n).

Then, by definition,

e0(t
n) = tn6 (1+ tn4 )/(1+ tn3 )→ b/(1+ b),

e1(t
n) = tn6 (1+ tn1 )/(1+ tn2 )→ b, e2(t

n) = tn4 (1+ tn3 )/(1+ tn2 )→ 0,

e3(t
n) = max{tn1 , tn6 } → b, e4(t

n) = (1/2)[tn3 + tn4 ] → b/2.

This, along with our preceding conventions, yields

(u-pt) u1(t
n) = max{tn5 , e0(t

n)} → b,

u2(t
n) = max{tn5 , tn6 } → b, u3(t

n) = tn5 → b,

(v-pt) v1(t
n) = max{tn2 , e1(t

n), e2(t
n)} → b,

v2(t) = max{tn2 , e3(t
n), e4(t

n)} → b, v3(t
n) = tn2 → 0

(w-pt) w1(t
n) = max{tn2 , e1(t

n)} → b,

w2(t
n) = max{tn2 , tn6 } → b,w3(t) = tn2 → 0.

As a consequence of this, we have that

(pt-I-I-I) any triple (u, v,w), where u ∈ {u1, u2, u3}, v ∈ {v1, v2}, w ∈ {w1, w2},
is point asymptotic of type (I, I, I )

(pt-I-I-0) any triple (u, v,w3), where u ∈ {u1, u2, u3}, v ∈ {v1, v2}, is point
asymptotic of type (I, I, 0)
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(pt-I-0-I) any triple (u, v3, w), where u ∈ {u1, u2, u3}, w ∈ {w1, w2}, is point
asymptotic of type (I, 0, I )

(pt-I-0-0) any triple (u, v3, w3), where u ∈ {u1, u2, u3}, is point asymptotic of
type (I, 0, 0).

R-4) Let a > 0 be arbitrary fixed; and put A = (0, a, a, a, a, 0). By the very
definition of these functions,

e0(A) = 0, e1(A) = 0, e2(A) = a, e3(A) = 0, e4(A) = a.

This, along with our preceding conventions, yields

(u-inv) u1(A) = a, u2(A) = a, u3(A) = a,

(v-inv) v1(A) = a, v2(A) = a, v3(A) = a

(w-inv) w1(A) = a,w2(A) = a,w3(A) = a.

As a consequence of this, we have that

(inva) any triple (u, v,w), where u ∈ {u1, u2, u3}, v ∈ {v1, v2, v3},
w ∈ {w1, w2, w3} is invariant.

As a direct consequence of these facts and Rhoades-Dutta-Choudhury principles
we just exposed, one may now derive a couple of fixed point statements with
methodological value.

The former of these, starting from Rhoades-Dutta-Choudhury principle for
regulated functions (RDC-reg) is based on a regulated condition upon ψ ; note that,
in this case, ψ need not be increasing.

Theorem 8 Let the selfmap T be (d,R;ψ, ϕ; u, v,w)-contractive, where (ψ, ϕ)

is a couple of functions over F (R0+, R), with

(71-i) ψ is extended regulated and ϕ is strictly positive
(71–ii) (ψ, ϕ) is right bounded oscillating at (b, b; b), for each b > 0,

and (u, v,w) is a triple of functions over F (R6+, R+), with

(71-iii) u ∈ {u1, u2, u3}, v ∈ {v1, v2}, w ∈ {w1, w2, w3},
such that (under the notations we just proposed)

(71-iv) R is B1-admissible.

Further, let X be (Ba-o,d)-complete; and let X0 = (xn) be a (Ba-o) sequence.
Then,

(71-a) X0 = (xn) is Picard (modulo (d,R; T ))
(71-b) X0 = (xn) is strongly Picard (modulo (d,R; T )), whenever T is (Ba-o,d)-

continuous
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(71-c) X0 = (xn) is strongly Picard (modulo (d,R; T )), whenever (in addition
to the above) one of the alternatives below is holding

(71-c-i) v 
= v3, w 
= w3, (ψ, ϕ)=bounded oscillating at (b, b; b), ∀b > 0
(71-c-ii) v 
= v3, w = w3, (ψ, ϕ)=bounded oscillating at (b, b; 0), ∀b > 0
(71-c-iii) v = v3, w 
= w3, (ψ, ϕ)=bounded oscillating at (0, b; b), ∀b > 0
(71-c-iv) v = v3, w = w3, (ψ, ϕ)=bounded oscillating at (0, b; 0), ∀b > 0
(71-d) T is fix-R-asingleton (hence, necessarily, fix-R-singleton, under any of

these extra requirements)
(71-e) T is fix-asingleton (hence, fix-singleton, under any of these extra require-

ments) when, in addition to the conditions above,

R is B0-admissible.

The latter of these, starting from Rhoades-Dutta-Choudhury principle for
increasing functions (RDC-incr) is based on an increasing assumption upon ψ .
Note that, in this setting, we have

(∀i, j, k ∈ {1, 2, 3}): T is (d,R;ψ, ϕ; ui, vj , wk)-contractive implies
T is (d,R;ψ, ϕ; u3, vj , wk)-contractive.

Theorem 9 Let the selfmap T be (d,R;ψ, ϕ; u3, v, w)-contractive, where (ψ, ϕ)

is a couple of functions over F (R0+, R), with

(72-i) ψ is increasing and ϕ is strictly positive
(72-ii) (ψ, ϕ) is right bounded oscillating at (b, b; b), for each b > 0,

and v,w are functions over F (R6+, R+), with
(72-iii) v ∈ {v1, v2, v3}, w ∈ {w1, w2, w3},
such that (under the notations we just proposed)

(72-iv) R is B1-admissible.

Further, let X be (Ba-o,d)-complete; and let X0 = (xn) be a (Ba-o) sequence.
Then,

(72-a) X0 = (xn) is Picard (modulo (d,R; T ))
(72-b) X0 = (xn) is strongly Picard (modulo (d,R; T )), whenever T is (Ba-o,d)-

continuous
(72-c) X0 = (xn) is strongly Picard (modulo (d,R; T )) whenever (in addition to

the above) one of the alternatives below is holding
(72-c-i) v 
= v3, w 
= w3, (ψ, ϕ)=bounded oscillating at (b, b; b), ∀b > 0
(72-c-ii) v 
= v3, w = w3, (ψ, ϕ)=bounded oscillating at (b, b; 0), ∀b > 0
(72-c-iii) v = v3, w ∈ {w1, w2, w3}
(72-d) T is fix-R-asingleton (hence, necessarily, fix-R-singleton, under any of

these extra requirements)
(72-e) T is fix-asingleton (hence, fix-singleton, under any of these extra require-

ments) when, in addition to the conditions above,

R is B0-admissible.
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Proof The only point to be clarified is that of the listed alternative related to v =
v3 being sufficient for deriving the strongly Picard property. To do this, the same
reasonings as the ones in the main result will be applied.

From the Picard property, we have, as X is (Ba-o,d)-complete

X0 = (xn) is d-convergent: xn
d−→ z0 as n→∞, for some z0 ∈ X.

We now claim that z0 is a fixed point of T . Three alternatives are to be discussed.
Alter-1) Suppose that

(Tz-rela-1) H1 := {n ∈ N; xn = T z0} is unbounded (in N).

By the same procedure as the one in the main result, we derive z0 ∈ Fix(T ).
Alter-2) Suppose that

(Tz-rela-2) H2 := {n ∈ N; T xn = T z0} is unbounded (in N).

By the same procedure as the one in the main result, we derive z0 ∈ Fix(T ).
Alter-3) Suppose that

both subsets H1 and H2 are bounded (in N ).

This tells us that

∃i = i(z0) ∈ N , such that:

n ≥ i implies T xn 
= T z0 (hence, xn 
= z0) and xn 
= T z0.

Denote for simplicity (un = xn+i; n ≥ 0); clearly, by the preceding relation,

(non-id) (∀n) : T un 
= T z0 (hence, un 
= z0) and un 
= T z0.

Again combining with the (Ba-o) property of X0 = (xn), one derives

(posi-1) (∀n) : Q1(un, z0) = d(un, T un) > 0,

Q2(un, z0) = d(un, z0) > 0, Q3(un, z0) = d(un, T z0) > 0,

Q4(un, z0) = d(T un, z0) > 0,Q5(un, z0) = d(T un, T z0) > 0.

Suppose by contradiction that

(posi-2) b := d(z0, T z0) > 0 [whence, Q6(un, z0) = b > 0,∀n].

From the preceding observations, we have

(∀n) : B3(un, z0) = min{Q1, . . . ,Q6}(un, z0)} > 0;
so that, (un, z0) ∈ R.
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Consequence, the function contractive condition involving the systems (ψ, ϕ) and
(u3, v3, w) applies; and gives

(∀n) : ψ(d(T un, T z0)) ≤ ψ(d(un, z0))− ϕ(w(Q(un, z0)).

By the strict positivity assumption upon ϕ, one derives

(∀n)ψ(d(T un, T z0)) < ψ(d(un, z0));
whence d(T un, T z0) < d(un, z0);

if we remember that ψ is increasing. Passing to limit as n → ∞, we get (by a
metrical property of d)

0 < d(z0, T z0) ≤ 0; a contradiction.

Hence, our working assumption relative to z0 cannot be accepted; and then, we have
b = 0; that is: z0 = T z0.

Some remarks are in order.
Rem-1) An extension of these statements to quasi-ordered spaces is immediate,

by the developments in Turinici [43]. Further aspects will be delineated elsewhere.
Rem-2) Under the formulation above, Theorem 8 contains 27 fixed point

statements. Among these, we have

(part-1) the (quasi-order) variant (u3, v1, w1) of Theorem 8 is identical with the
fixed point statement in Chandok et al. [6]

(part-2) the (quasi-order) variant (u3, v2, w2) of Theorem 8 is identical with the
fixed point statement in Choudhury et al. [7].

In order words: the quoted results admit extensions to regulated functions. Some
other variants of Theorem 8 include a number of related fixed point results described
in Radenović et al. [28]. But, most of these seem to be new, at least from the
perspective of regulated (modulo ψ) setting.

Rem-3) Under the formulation above, Theorem 9 contains 9 fixed point state-
ments. The variant (u3, v3, w3) of this statement includes the results in Wardowski
[46] and Secelean [34]; see also Vujaković et al. [44]. For a different proof of it, we
refer to the paper by Turinici [42]. The remaining variants (u3, v3, w) of the same
where w ∈ {w1, w2}, seem to be new.

Finally, note that the proposed examples do not exhaust all possible variants
described in the Rhoades-Dutta-Choudhury principles (RDC-reg) and (RDC-incr);
for, e.g., the ones concerning strongly/weakly λ-iterative properties with λ ∈
F (R0+) fulfilling λ 
= I are not present in this list of particular cases. Further
technical aspects of this case will be delineated elsewhere.
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8 Cosentino-Vetro Contractions

Let (X, d) be a metric space. Further, let T ∈ F (X) be a selfmap of X. As precise,
we are interested to determine sufficient conditions for (uniqueness and) existence of
elements in Fix(T ), via contractive type requirements involving iterative processes
X0 = (xn) starting from an element x0 of X, and their associated sets

[X0] = {xn; n ≥ 0}, [[X0]] = cl([X0]).
Let (ψ, ϕ) be a pair of functions over F (R0+, R). Further, let (u, v,w) be a triple

of functions over F (R6+, R+), and define the couple of subsets

Υ0 = {t ∈ R6+; u(t), v(t), w(t) > 0},
Υ = {t ∈ Υ0;ψ(u(t)) ≤ ψ(v(t))− ϕ(w(t))}.

Finally, define the couple of relations over X

R = Q−1(Υ0), R∗ = Q−1(Υ ).

The functional and set contractive properties to be used here are

(fct-contr) T is (d,R;ψ, ϕ; u, v,w)-contractive, if

ψ(u ◦Q(x, y)) ≤ ψ(v ◦Q(x, y))− ϕ(w ◦Q(x, y)), when (x, y) ∈ R

(set-contr) T is (d,R;Υ )-contractive: Q(x, y) ∈ Υ , if (x, y) ∈ R.

The connection between these conditions is expressed as

(equi) T is (d,R;ψ, ϕ; u, v,w)-contractive iff T is (d,R;Υ )-contractive.

For the set contractive property, sufficient conditions were given upon R and Υ

so that the main result be applicable; these, as expected, were ultimately expressed
in terms of R, (ψ, ϕ) and (u, v,w). The by-product of these developments is the
couple of Rhoades-Dutta-Choudhury fixed point results (RDC-reg) and (RDC-incr).
Some particular cases of them were just exposed. It is our aim in the following to
discuss some other particular cases of these, with a practical meaning.

(A) Let us say that v ∈ F (R6+, R+) is a Cosentino-Vetro function, when

(CV-0) v is increasing and continuous in its variables
(CV-1) v is (1, 2, 5, 6)-positive: v(a, a, 0, 0, a, a) > 0, for each a > 0
(CV-2) v is I -iterative: v(a, a, 2a, 0, a, a) ≤ a, for each a > 0
(CV-3) v is invariant: v(0, b, b, b, b, 0) = b, for each b > 0.

Fix in the following such a function; and define η ∈ F (R0+, R+) as

(E-def) η(b) := v(0, 0, b, 0, b, b), b > 0.
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Note that, by (v=increasing continuous) and the iterative condition:

(E-1) η(.) is increasing and continuous (on R0+)
(E-2) 0 ≤ η(b) ≤ v(b, b, 2b, 0, b, b) ≤ b, ∀b > 0; whence, η(0+ 0) = 0.

Unfortunately, the extremal inequalities above are not in general reducible to
equalities. Then, define the couple (u,w) of functions over the class F (R6+, R+),
as: for each t = (t1, . . . , t6) ∈ R6+,

(uw-def) u(t) = t5, w(t) = t2;
in this case, (u, v,w) will be referred to as a Cosentino-Vetro triple.

Having this precise, let us introduce the class of contractive conditions

(C-V) T is Cosentino-Vetro (d,R;ψ, ϕ; u, v,w)-contractive:

ψ(d(T x, T y)) ≤ ψ(v(Q1(x, y), . . . ,Q6(x, y))− ϕ(d(x, y)), ∀(x, y) ∈ R.

As usual, we assume that (under the notations we just proposed)

(B1-adm) R is B1-admissible: (B1 > 0) ⊆ R.

In this case, the following contractive property holds

(C-V-B1) T is Cosentino-Vetro (d, (B1 > 0);ψ, ϕ; u, v,w)-contractive:

ψ(d(T x, T y)) ≤ ψ(v(Q1(x, y), . . . ,Q6(x, y))− ϕ(d(x, y)), ∀(x, y) ∈ (B1 > 0).

We are interested of to what extent is the triple (u, v,w) compatible with
the regularity conditions encountered in Rhoades-Dutta-Choudhury principle for
increasing functions (RDC-incr). The response to this question is contained in the
developments below.

R-1) Given the sequence (rn) in R0+ and the sequence (pn) in R+ with (An :=
(rn, rn, pn, 0, rn+1, rn+1) ∈ Q(B1 > 0; [X0]) ∩ Υ , |pn − rn| ≤ rn+1, for all n), we
have (by these definitions)

(∀n) : u(An) = rn+1, w(An) = rn.

On the other hand, under the convention

αn = max{rn, rn+1}, n ≥ 0

we have, by the iterative property

(∀n) : v(An) = v(rn, rn, pn, 0, rn+1, rn+1) ≤ v(αn, αn, 2αn, 0, αn, αn) ≤ αn.

This tells us that

the triple (u, v,w) is weakly I -iterative (see above);

and explains the choosing of Rhoades-Dutta-Choudhury principle for increasing
functions (RDC-incr) as an appropriate tool for solving our problem.
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R-2) Let the sequence (tn = (tn1 , . . . , t
n
6 ); n ≥ 0) in Q(B3 > 0; [X0]) ∩ Υ , and

the point b > 0 be such that

(tn = (tn1 , . . . , t
n
6 ); n ≥ 0) has the right property at (0, b, b, b, b, 0); that is:

(tni → 0,∀i ∈ {1, 6}), (tnj → b+,∀j ∈ {2, 3, 4, 5}).

For the moment, we have by definition

u(tn) = tn5 → b+, w(tn) = tn2 → b + .

On the other hand, under the convention

βn = min{tn2 , tn3 , tn4 , tn5 }, n ≥ 0 [hence, βn → b + as n→∞],

we have (under the posed hypotheses upon v)

v(tn) ≥ v(0, βn, βn, βn, βn, 0) = βn > b, for all n,

and v(tn)→ v(0, b, b, b, b, 0) = b as n→∞;
wherefrom v(tn)→ b + as n→∞.

Putting these together, it follows that

(r-asy) the triple (u, v,w) is right asymptotic of type (I, I, I ).
R-3) Let the sequence (tn = (tn1 , . . . , t

n
6 ); n ≥ 0) in Q(B3 > 0; [[X0]])∩Υ , and

the point b > 0 be such that

(tn = (tn1 , . . . , t
n
6 ); n ≥ 0) has the point property at (0, 0, b, 0, b, b);

that is: (tni → 0,∀i ∈ {1, 2, 4}), (tnj → b,∀j ∈ {3, 5, 6}), (tn6 = b,∀n).

Then, by definition,

u(tn) = tn5 → b, v(tn)→ v(0, 0, b, 0, b, b) = η(b), w(tn) = tn2 → 0.

As a consequence of this, we have that

the triple (u, v,w) is point asymptotic of type (I, η, 0).

R-4) Let a > 0 be arbitrary fixed; and put A = (0, a, a, a, a, 0). By the very
definition of these functions,

u(A) = a, v(A) = v(0, a, a, a, a, 0) = a,w(A) = a.

And then, we have that

the triple (u, v,w) is invariant.
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As a consequence of Rhoades-Dutta-Choudhury principle for increasing func-
tions (RDC-incr), we derive the following fixed point statement (referred to as:
Cosentino-Vetro fixed point principle; in short: (CV-fpp)).

Theorem 10 Let the selfmap T be Cosentino-Vetro (d,R;ψ, ϕ; u, v,w)-
contractive, where (ψ, ϕ) is a couple of functions over F (R0+, R), with

(81-i) ψ is increasing and ϕ is strictly positive
(81-ii) (ψ, ϕ) is right bounded oscillating at (b, b; b), for each b > 0

and (u, v,w) is a Cosentino-Vetro triple over F (R6+, R+) such that (under the
notations we just proposed)

(81-iii) R is B1-admissible: (B1 > 0) ⊆ R.

Further, let X be (Ba-o,d)-complete; and let X0 = (xn) be a (Ba-o) sequence.
Then,

(81-a) X0 = (xn) is Picard (modulo (d,R; T ))
(81-b) X0 = (xn) is strongly Picard (modulo (d,R; T )), whenever T is (Ba-o,d)-

continuous
(81-c) X0 = (xn) is strongly Picard (modulo (d,R; T )), whenever (in addition

to the above)

(ψ, ϕ) is bounded oscillating at (η(b), b; 0), for all b > 0

(81-d) T is fix-R-asingleton (hence, necessarily, fix-R-singleton, under any of
these extra requirements)

(81-6) T is fix-asingleton (hence, fix-singleton, under any of these extra require-
ments) when, in addition to the conditions above,

R is B0-admissible: (B0 > 0) ⊆ R.

A basic particular case of these developments corresponds to the choice

v(t) = α1t1 + . . .+ α6t6, t = (t1, . . . , t6) ∈ R6+,

where (α1, . . . , α6) is a vector in R6+ with the properties

(Pro-1) α1 + α2 + α5 + α6 > 0,

(Pro-2) α1 + α2 + 2α3 + α5 + α6 ≤ 1,

(Pro-3) α2 + α3 + α4 + α5 = 1.

Denote further

η := α3 + α5 + α6; hence, 0 ≤ η ≤ 1.
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The contractive condition upon T becomes a linear contraction like

(CV-lin) T is linear Cosentino-Vetro (d,R;ψ, ϕ; u, v,w)-contractive:

ψ(d(T x, T y)) ≤ ψ(α1Q1(x, y)+ . . .+ α6Q6(x, y))− ϕ(d(x, y)), ∀(x, y) ∈ R.

Theorem 11 Let T be linear Cosentino-Vetro (d,R;ψ, ϕ; u, v,w)-contractive,
where (ψ, ϕ) is a couple of functions over F (R0+, R), with

(82-i) ψ is increasing and ϕ is strictly positive
(82-ii) (ψ, ϕ) is right bounded oscillating at (b, b; b) for each b > 0,

and the constant vector α = (α1, . . . , α6) in R6+ fulfilling (Pro-1)-(Pro-3), be such
that (under the notations we just proposed)

(B1-adm) R is B1-admissible: (B1 > 0) ⊆ R.

Further, let X be (Ba-o,d)-complete; and let X0 = (xn) be a (Ba-o) sequence.
Then,

(82-a) X0 = (xn) is Picard (modulo (d,R; T ))
(82-b) X0 = (xn) is strongly Picard (modulo (d,R; T )), whenever T is (Ba-o,d)-

continuous
(82-c) X0 = (xn) is strongly Picard (modulo (d,R; T )), whenever (in addition

to the above)

(ψ, ϕ) is bounded oscillating at (ηb, b; 0), for all b > 0

(82-d) T is fix-R-asingleton (hence, necessarily, fix-R-singleton, under any of
these extra requirements)

(82-e) T is fix-asingleton (hence, fix-singleton, under any of these extra require-
ments) when, in addition to the conditions above,

R is B0-admissible: (B0 > 0) ⊆ R.

Some remarks are in order.
Rem-1) An extension of these statements to quasi-ordered spaces is immediate,

by the developments in Turinici [43]. Further aspects will be delineated elsewhere.
Rem-2) The nonlinear fixed point statement expressed via Theorem 10 seems to

be new.
Rem-3 The variant (α2 = 1, αj = 0, j 
= 2) of Theorem 11 includes the

statement in this area due to Wardowski [45, 46]; see also Secelean [34]. For a
different proof of it, we refer to the paper by Turinici [42].

Rem-4) The remaining variants of Theorem 11 include a related statement due to
Cosentino and Vetro [9], and its refinement in Vujaković et al. [44]. Further aspects
may be found in Popescu and Stan [27].
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9 Wardowski Type Contractions

Let (X, d) be a metric space. Further, let T ∈ F (X) be a selfmap of X. As precise,
we are interested to determine sufficient conditions for (uniqueness and) existence of
elements in Fix(T ), via contractive type requirements involving iterative processes
X0 = (xn) starting from an element x0 of X, and their associated sets

[X0] = {xn; n ≥ 0}, [[X0]] = cl([X0]).

Let (ψ, ϕ) be a pair of functions over F (R0+, R). Further, let (u, v,w) be a triple
of functions over F (R6+, R+), and define the couple of subsets

Υ0 = {t ∈ R6+; u(t), v(t), w(t) > 0},
Υ = {t ∈ Υ0;ψ(u(t)) ≤ ψ(v(t))− ϕ(w(t))}.

Finally, define the couple of relations over X

R = Q−1(Υ0), R∗ = Q−1(Υ ).

The functional and set contractive properties to be used here are

(fct-contr) T is (d,R;ψ, ϕ; u, v,w)-contractive, if ψ(u ◦ Q(x, y)) ≤ ψ(v ◦
Q(x, y))− ϕ(w ◦Q(x, y)), when (x, y) ∈ R

(set-contr) T is (d,R;Υ )-contractive: Q(x, y) ∈ Υ , if (x, y) ∈ R.

And, the connection between these conditions is expressed as

(equi) T is (d,R;ψ, ϕ; u, v,w)-contractive iff T is (d,R;Υ )-contractive.

For the set contraction, sufficient conditions were given upon R and Υ so that the
main result be applicable; these, as expected, were ultimately expressed in terms
of R, (ψ, ϕ) and (u, v,w). The by-product of these developments is the couple
of Rhoades-Dutta-Choudhury fixed point results (RDC-reg) and (RDC-incr). Some
particular cases of them have been previously exposed.

As results from their proof, a common feature of all these is the fact that the only
asymptotic property of Υ to be used there is the descending one; and not the general
one. It is our aim in the following to show, by a standard example, that this general
condition is ultimately applicable; and yields some interesting results.

To begin with, let (ψ, ϕ) be a pair of functions in F (R0+, R); and (u, v,w) be
the triple of functions introduced as: for each t = (t1, . . . , t6) ∈ R6+

u(t) = t5, v(t) = w(t) = t2.

We have, according to our conventions

Υ0 = {t ∈ R6+; t5, t2 > 0}, Υ = {t ∈ Υ ;ψ(t5) ≤ ψ(t2)− ϕ(t2)}.
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In addition, the attached relations to be used here are (see above)

R = Q−1(Υ0), R∗ = Q−1(Υ ).

The contractive property attached to these data writes, in a shorter way

(fct-contr) T is (d,R;ψ, ϕ)-contractive, if

ψ(d(T x, T y)) ≤ ψ(d(x, y))− ϕ(d(x, y)), when (x, y) ∈ R.

As before, we impose a regularity condition like

R is B1-admissible: (B1 > 0) ⊆ R.

This, combined with the functional contractive condition, yields

(B1-contr) T is (d, (B1 > 0);ψ, ϕ)-contractive :
ψ(d(T x, T y)) ≤ ψ(d(x, y))− ϕ(d(x, y)), when (x, y) ∈ (B1 > 0);

which is exactly the contractive condition we are dealing with. Note that under the
stronger admissible assumption

R is B0-admissible:(B1 > 0) ⊆ R

the underlying contractive condition is obtainable from the standard one

(B0-contr) T is (d, (B0 > 0);ψ, ϕ)-contractive :
ψ(d(T x, T y)) ≤ ψ(d(x, y))− ϕ(d(x, y)), when (x, y) ∈ (B0 > 0).

But, the reciprocal implication is not in general valid.
To get the announced result about our introduced class of contractions, a couple

of specific conditions is needed:

(str-pos) ϕ is strictly positive: ϕ(R0+) ⊆ R0+
(r-as-pos) ϕ is right asymptotic positive: for each sequence (tn; n ≥ 0) in R0+ and

each b > 0 with tn → b+, we must have lim supn(ϕ(tn)) > 0
(tele-admi) (ψ, ϕ) is tele admissible: each sequence (tn) in R0+ with (ψ(tn+1) ≤

ψ(tn)− ϕ(tn), ∀n) fulfills limn(tn) = 0
(zero-her) (ψ, ϕ) is zero hereditary: there are no couple of sequences (tn) and

(sn) in R0+ and no points b > 0 with (ψ(tn) ≤ ψ(sn) − ϕ(sn), ∀n) and tn → b,
sn → 0.

Note that our asymptotic condition may be also written by means of the oscillation
concepts we already introduced; but this is not important for us. Moreover, under
the strict positive condition, this property is available under
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(cont) ϕ is continuous (on R0+)
(loc-incr) ϕ is locally increasing: each b ∈ R0+ has a neighborhood Vb such that

ϕ is increasing on Vb.

The following auxiliary statement is the basic step towards our objective.

Proposition 7 Let (ψ, ϕ) be a couple of functions over F (R0+, R), with

(91-I) ψ is almost right regulated (Θ := rreg(ψ) is (>)-cofinal in R0+)
(91-II) ϕ is strictly positive and right asymptotic positive
(91-III) (ψ, ϕ) is tele admissible and zero hereditary.

Then,

(91-1) Υ is asymptotic on [X0]
(91-2) Υ is nright on [X0]
(91-3) Υ is npoint on [[X0]]
(91-4) Υ is nnormal.

Proof The argument consists in a number of parts.
Part 1. (Υ is asymptotic on [X0]).
Let the sequence (rn) in R0+ and the sequence (pn) in R+ be such that

(∀n) : (rn, rn, pn, 0, rn+1, rn+1) ∈ Q(B1 > 0; [X0]) ∩ Υ, and |pn − rn| ≤ rn+1.

By the very representation of Υ , we must have

(∀n) : ψ(rn+1) ≤ ψ(rn)− ϕ(rn).

This, along with (ψ, ϕ) being tele admissible, gives rn → 0 (hence, pn → 0); and
proves the desired assertion.

Part 2. (Υ is almost nright on [X0]).
Take some point c = (c1, . . . , c6) in R6+. We say that the (vectorial) sequence

(tn := (tn1 , . . . , t
n
6 ); n ≥ 0) in R6+ is right at c, if

(r-c) (tni → ci,∀i) and (tni → ci + , whenever ci > 0).

Given b > 0, let us say that Υ is nright at b on [X0], if

(nright) for each sequence (tn; n ≥ 0) in Q(B3 > 0; [X0])∩Υ , the right property
at (0, b, b, b, b, 0) is not true.

The class of all these b > 0 will be denoted as nright(Υ ; [X0]). In this case, we say
that Υ is

(a-n-r) almost nright on [X0], if Θ := nright(Υ ; [X0]) is (>)-cofinal in R0+ (for
each ε ∈ R0+ there exists θ ∈ Θ with ε > θ )

(n-r) nright on [X0], if Θ := nright(Υ ; [X0]) is identical with R0+.
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We have to establish that the former property is retainable for our data. To do
this, we start by noting that

ψ = almost right regulated implies Θ := rreg(ψ) is (>)-cofinal in R0+.

We now claim that

Θ ⊆ nright(Υ ; [X0]); wherefrom, nright(Υ ; [X0]) is (>)-cofinal in R0+.

This amounts to establish that

for each sequence (tn := (tn1 , . . . , t
n
6 ); n ≥ 0) in Q(B3 > 0; [X0]) ∩ Υ ,

and each b ∈ Θ , the right property at (0, b, b, b, b, 0) is not true.

Suppose—by reductio ad absurdum—that there exists a (vectorial) sequence (tn :=
(tn1 , . . . , t

n
6 ); n ≥ 0) in R6+ and some b ∈ Θ , with

(right-b-1) (∀n): tn := (tn1 , . . . , t
n
6 ) ∈ Q(B3 > 0; [X0]) ∩ Υ ; whence, ψ(tn5 ) ≤

ψ(tn2 )− ϕ(tn2 )

(right-b-2) (tn := (tn1 , . . . , t
n
6 ); n ≥ 0) has the right property at (0, b, b, b, b, 0);

that is: (tni → 0, ∀i ∈ {1, 6}), and (tni → b+, ∀i ∈ {2, 3, 4, 5}).
By the former of these properties

(∀n) : (0 <)ϕ(tn2 ) ≤ ψ(tn2 )− ψ(tn5 ).

Passing to lim sup as n→∞ in this relation gives (via ψ=right regulated at b)

0 ≤ lim sup
n

ϕ(tn2 ) ≤ ψ(b + 0)− ψ(b + 0) = 0; that is: lim
n

ϕ(tn2 ) = 0;

in contradiction with ϕ=right asymptotic positive. Hence, our working assumption
cannot be true; and the assertion follows.

Part 3. (Υ is npoint on [[X0]]).
Take some point c = (c1, . . . , c6) in R6+. We say that the sequence (tn :=

(tn1 , . . . , t
n
6 ); n ≥ 0) in R6+ is point at c, if

(pt-c) (tni → ci,∀i) and [tn6 = c6,∀n].

Given b > 0, let us say that Υ is npoint at b on [[X0]], if

(npoint) for each sequence (tn; n ≥ 0) in Q(B3 > 0; [[X0]]) ∩ Υ , the point
property at (0, 0, b, 0, b, b) is not true.

The class of all these b > 0 will be denoted as npoint(Υ ; [[X0]]). In this case, we
say that Υ is

(a-n-p) almost npoint on [[X0]], if Θ := npoint(Υ ; [[X0]]) is (>)-cofinal in R0+
(n-p) npoint on [[X0]], if Θ := npoint(Υ ; [[X0]]) is identical with R0+.
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We have to establish that the latter of these properties holds; that is,

for each sequence (tn; n ≥ 0) in R6+ and each b > 0, the point property at
(0, 0, b, 0, b, b) is not true.

Assume by contradiction that this assertion is false: there exists a sequence (tn =
(tn1 , . . . , t

n
6 ); n ≥ 0) in R6+ and some b > 0, with

(point-b-1) (∀n): tn = (tn1 , . . . , t
n
6 ) ∈ Q(B3 > 0; [[X0]]) ∩ Υ ; whence, ψ(tn5 ) ≤

ψ(tn2 )− ϕ(tn2 )

(point-b-2) (tn = (tn1 , . . . , t
n
6 ); n ≥ 0) is 6-point at (0, 0, b, 0, b, b); that is: (tni →

0, ∀i ∈ {1, 2, 4}), (tni → b, ∀i ∈ {3, 5, 6}), and (tn6 = b, ∀n).

The obtained inequality and convergence relations yield a contradiction with respect
to (ψ, ϕ) being zero hereditary. Consequently, the working assumption is not
acceptable; and conclusion follows.

Part 4. (Υ is nnormal).
Remember that, this property means:

(0, a, a, a, a, 0) ∈ Υ is impossible, for each a > 0.

Suppose by contradiction that

there exists a > 0 with (0, a, a, a, a, 0) ∈ Υ.

By the very definition of our triple,

u(0, a, a, a, a, 0) = a, v(0, a, a, a, a, 0) = a, w(0, a, a, a, a, 0) = a.

This, along with the definition of Υ , yields

ψ(a) ≤ ψ(a)− ϕ(a); that is: ϕ(a) ≤ 0;

absurd, by ϕ=strictly positive; and our claim follows.

Now, by simply combining the obtained fact with our main result, one gets the
following particular fixed point statement.

Theorem 12 Assume that T is (d,R;ψ, ϕ)-contractive, where (ψ, ϕ) is a couple
over F (R0+, R) with

(91-i) ψ is almost right regulated (Θ := rreg(ψ) is (>)-cofinal in R0+)
(91-ii) ϕ is strictly positive and right asymptotic positive
(91-iii) (ψ, ϕ) is tele admissible and zero hereditary,

and the associated relation R fulfills

(91-iv) R is (B1 > 0)-admissible: (B1 > 0) ⊆ R.

Further, assume that X is (Ba-o,d)-complete; and let X0 = (xn) be a (Ba-o)
sequence. Then,
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(91-a) X0 = (xn) is strongly Picard (modulo (d,R; T ))
(91-b) T is fix-R-asingleton (hence, fix-R-singleton)
(91-c) T is fix-asingleton (hence, fix-singleton) when, in addition to the conditions

above

R is (B0 > 0)-admissible: (B0 > 0) ⊆ R.

A basic particular cases of these developments is the one of ϕ ∈ F (R0+, R) being
a constant function. For both practical and theoretical reasons, it will be useful, in
the following, to discuss its technical aspects.

Let ψ ∈ F (R0+, R) be a function; and C > 0 be a (real) constant.
Then, let (u, v,w) be the triple of functions introduced as before: for each
t = (t1, . . . , t6) ∈ R6+

u(t) = t5, v(t) = w(t) = t2.

We have, according to our conventions

Υ0 = {t ∈ R6+; t5, t2 > 0}, Υ = {t ∈ Υ0;ψ(t5) ≤ ψ(t2)− C}.

In addition, the attached relations to be used here are (see above)

R = Q−1(Υ0), R∗ = Q−1(Υ ).

The contractive property attached to these data writes, in a shorter way

(fct-contr) T is (d,R;ψ,C)-contractive, if
ψ(d(T x, T y)) ≤ ψ(d(x, y))− C , when (x, y) ∈ R.

As before, we impose a regularity condition like

R is B1-admissible: (B1 > 0) ⊆ R.

This, combined with the functional contractive condition, yields

(B1-contr) T is (d, (B1 > 0);ψ,C)-contractive :
ψ(d(T x, T y)) ≤ ψ(d(x, y))− C, when (x, y) ∈ (B1 > 0);

which is exactly the contractive condition we are dealing with. Note that, under a
stronger regularity condition like

R is B0-admissible: (B0 > 0) ⊆ R.
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the starting functional contractive condition yields

(B0-contr) T is (d, (B0 > 0);ψ,C)-contractive :
ψ(d(T x, T y)) ≤ ψ(d(x, y))− C, when (x, y) ∈ (B0 > 0).

Moreover, in this B0-admissible setting, the following inclusion holds

(B0-B1) T is (d, (B0 > 0);ψ,C)-contractive implies

T is (d, (B1 > 0);ψ,C)-contractive.

But, the reverse inclusion does not hold, in general.
Formally, the conditions to be imposed upon the couple (ψ,C) are directly

obtainable from the ones of Theorem 12, under the choice (ϕ(t) = C; t > 0). In
particular, the strictly positive and right asymptotic conditions upon ϕ are fulfilled
here. Concerning the remaining ones, a basic instance when these hold writes

(s-zero-abr) ψ is strongly zero abrupt: for each sequence (tn) in R0+, (ψ(tn) →
−∞ iff tn → 0).

Putting these together, the following version of Theorem 12 is to be noted.

Theorem 13 Assume that T is (d,R;ψ,C)-contractive, where C > 0 is a
constant, ψ is a function in F (R0+, R) with

(92-i) ψ is almost right regulated and strongly zero abrupt,
and the associated relation R fulfills

(92-ii) R is (B1 > 0)-admissible: (B1 > 0) ⊆ R.

Further, assume that X is (Ba-o,d)-complete; and let X0 = (xn) be a (Ba-o)
sequence. Then,

(92-a) X0 = (xn) is strongly Picard (modulo (d,R; T ))
(92-b) T is fix-R-asingleton (hence, fix-R-singleton)
(92-c) T is fix-asingleton (hence, fix-singleton) when, in addition to the conditions

above

R is (B0 > 0)-admissible: (B0 > 0) ⊆ R.

Proof As precise, ϕ = C is strictly positive and right asymptotic positive. It will
suffice establishing that the remaining conditions of Theorem 12 are working here
to complete the argument.

Part 1. We claim that, necessarily,

(tele-admi) (ψ,C) is tele admissible: each sequence (tn) in R0+ with (ψ(tn+1) ≤
ψ(tn)− C, ∀n) fulfills limn(tn) = 0

In fact, let (tn) be as before. By a summation procedure, one arrives at

ψ(tn) ≤ ψ(t0)− nC, for all n.
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Passing to limit as n→∞, yields

ψ(tn)→−∞; hence, tn → 0,

if we take the strongly zero abrupt property of ψ into account; hence the assertion.
Part 2. We claim that under the admitted hypotheses

(zero-her) (ψ,C) is zero hereditary: there are no couple of sequences (tn) and
(sn) in R0+ and no points b > 0 with (ψ(tn) ≤ ψ(sn) − C, ∀n) and tn → b,
sn → 0.

Suppose by contradiction that this is not true: there exists a couple of sequences (tn)
and (sn) in R0+ and some point b > 0 with

(non-zh-1) ψ(tn) ≤ ψ(sn)− C, for all n ≥ 0
(non-zh-2) tn → b, sn → 0, as n→∞.

The second half of (non-zh-2) yields

ψ(sn)→−∞ (if we remember that ψ=strongly zero abrupt).

But then, taking (non-zh-1) into account,

ψ(tn)→−∞; hence, tn → 0, in view of ψ = strongly zero abrupt.

The obtained fact is in contradiction with the hypothesis tn → b > 0. Hence, our
working assumption cannot be accepted; and this assertion is valid too.

Summing up, conditions of Theorem 12 are fulfilled by these data; and, from
this, the conclusions in the statement follow.

A basic version of the obtained result is obtainable under the lines below. Let us
say that ψ : R0+ → R is a Wardowski function, if

ψ is increasing and ψ(0+ 0) = −∞.

By a previous observation, we have that any such function is almost right regulated.
On the other hand, by an auxiliary statement in Turinici [39], any Wardowski
function is strongly zero abrupt. By Theorem 13 we then have the following fixed
point statement with a methodological meaning.

Theorem 14 Assume that T is (d,R;ψ,C)-contractive, where C > 0 is a (real)
constant, ψ ∈ F (R0+, R) is taken so as

(93-i) ψ is Wardowski (see above)

and the associated relation R fulfills

(93-ii) R is (B1 > 0)-admissible: (B1 > 0) ⊆ R.

Further, assume that X is (Ba-o,d)-complete; and let X0 = (xn) be a (Ba-o)
sequence. Then,
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(93-a) X0 = (xn) is strongly Picard (modulo (d,R; T ))
(93-b) T is fix-R-asingleton (hence, fix-R-singleton)
(93-c) T is fix-asingleton (hence, fix-singleton) when, in addition to the conditions

above

R is (B0 > 0)-admissible: (B0 > 0) ⊆ R.

The obtained statement may be viewed as a technical improvement of the 2012
fixed point principle in Wardowski [45]; based, among others, on the extra condition

ψ is subunitary power compatible : lim
t→0+ tkψ(t) = 0, for some k ∈]0, 1[.

This improvement is essentially related to

(impr-1) the (B1 > 0) setting of Theorem 14 is an effective extension of the
(B0 > 0) setting of the quoted statement

(impr-2) the subunitary power compatible condition appearing in the quoted
article is avoided in our statement.

For a different proof of Theorem 7 we refer to the paper by Turinici [40]. Some
other partial aspects were discussed in Secelean [34].
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Nonlinear Dynamics of the KdV-B
Equation and Its Biomedical Applications

Michail A. Xenos and Anastasios C. Felias

Abstract In recent years there is an incremental degree of bridging open questions
in biomechanics with the help of applied mathematics and nonlinear analysis.
Recent advancements concerning the cardiac dynamics pose important questions
about the cardiac waveform. A governing equation, namely the KdV-B equation
(Korteweg–de Vries–Burgers),

∂u

∂t
+ γ u

∂u

∂x
− α

∂2u

∂x2 + β
∂3u

∂x3 = 0, u = u(t, x), α, β, γ ∈ R, (1)

is a partial differential equation utilized to answer several of those questions.
The cardiac dynamics mathematical model features both solitary and shock wave
characteristics due to the dispersion and dissipation terms, as occurring in the
arterial tree. In this chapter a focus is given on describing cardiac dynamics.
It is customarily difficult to solve nonlinear problems, especially by analytical
techniques. Therefore, seeking suitable solving methods, exact, approximate or
numerical, is an active task in branches of applied mathematics. The phase plane
of the KdV–B equation is analyzed and its qualitative behavior is derived. An
asymptotic expansion is presented and traveling wave solutions under both shock
and solitary profiles are sought. Numerical solutions are obtained for the equation,
by means of the Spectral Fourier analysis and are evolved in time by the Runge–
Kutta method. This whole analysis provides vital information about the KdV–B
equation and its connection to cardiac hemodynamics. The applications of KdV–
B, presented in this chapter, highlight its essence to human hemodynamics.
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1 Introduction

1.1 Background Information for KdV–B

In the last few decades, much attention from a rather diverse group of scientists
such as physicists, engineers and applied mathematicians has been attracted to two
contrasting themes: (a) the theory of dynamical systems, most popularly associated
with the study of chaos, and (b) the theory of integrable (or nonintegrable) systems
associated, among other things, with the study of solitary waves.

It is common knowledge that many physical phenomena, such as nonlin-
ear shallow-water waves and wave motion in plasma, can be described by the
Korteweg–de Vries (KdV) equation [29]. It is well known that solitons and solitary
waves are the class of special solutions of the KdV equation. In order to study
propagation of undular bores in shallow water [6, 27], liquid flow containing gas
bubbles [54], fluid flow in elastic tubes [28], crystal lattice theory, nonlinear circuit
theory and turbulence [20, 30, 51], the governing equation can be reduced to the
so-called Kortweg–de Vries–Burgers equation (KdV–B) as follows [10],

∂u

∂t
+ γ u

∂u

∂x
− α

∂2u

∂x2 + β
∂3u

∂x3 = 0, u = u(t, x), α, β, γ 
= 0. (2)

This is a nonintegrable equation in the sense that its spectral problem is nonexis-
tent [19]. Multiplying t , x and u, by constants can be used to make the coefficients
of any of the above four terms equal to any given nonzero constant. Therefore, we
focus on the case where α ≥ 0, β > 0 and γ 
= 0.

This equation is equivalent to the KdV equation with the addition of a viscous

dissipation term (α
∂2u

∂x2
). The studies of the KdV equation [29] (α = 0) and the

Burgers equation [9] (β = 0) have been undertaken, but the exact solution for the
general case of equation (2) (α ≥ 0, β > 0, γ 
= 0) has still not been completed.

1.2 Biomechanical Applications

Solitons are mathematical entities appearing as solutions of nonlinear wave equa-
tions [8]. They are waves of stable and steady form, although internal oscillations
may occur, exhibiting unique characteristics when colliding with other solitary
waves as described by Ablowitz and Segur [1]. During the last decade, soliton
profiles are found when studying nonlinear optics, condensed matter Physics and
quantum theory of matter and gravity [43]. Lately, an increasing number of studies
focuses on describing the cardiac pulse as a soliton, due to the features those two
seem to share. The pulsatility synchronization of the smooth arterial muscle allows
the consideration of solitary profiles in cardiac hemodynamics [34].
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Theoretical investigation for the blood waves have been developed by many
researchers through the use of weakly nonlinear theories. The theoretical inves-
tigation of pulse wave propagation in human arteries has a long history starting
from ancient times until today. Over the past decade, the scientific efforts have
been concentrated on theoretical investigations of nonlinear wave propagation in
arteries with a variable radius. The question “How local imperfections appeared in
the artery can disturb the arterial wall deformation?” is important for understanding
the nature and main features of various cardiovascular diseases, such as stenoses and
aneurysms. Rowlands (1982) reported some extraordinary features of the cardiac
pulse, leading to his conception of the arterial flows as a solitary motion [44]. A
few years later, Otwinowski and collaborators presented a nonlinear differential
equation whose solutions exhibited similar characteristics with those reported by
Rowlands [38].

Based on those evolutionary theories, adding the inertial behavior of blood
vessel in an one-dimensional cardiovascular model, researchers concluded that the
KdV equation is a seemingly reliable tool in modelling cardiac dynamics. It was
supported that the solitary wave formulation fits much better in describing the
arterial pulse wave experimental results than the wave equation proposed by the
majority of researchers [57]. An additional reason to support the above formulation
is the peaking and steepening features of the pressure pulse, which coincide with
the structure of soliton profiles of KdV [11].

The majority of studies on the wave propagation in blood flow is mainly based
on linear waves. The linearized theories proposed by Resal, Witzig, Womersly,
McDonald and others, consider the vessel as a straight, infinite, circular elastic tube
filled with an isotropic and Newtonian fluid, blood [55]. Blood is studied as an
incompressible fluid, a characterization justified by its compressibility being rather
insignificant, compared to the dilation of the blood vessels. In 1958, Lambert based
on the Euler equations of fluid motion, proposed the Method of Characteristics
for the calculations concerning the nonlinear blood flow. All theories presented
to model nonlinear blood flow are one-dimensional, meaning that both pressure
and flow velocity are seen as functions of the axial distance along the vessel
in time. Contributions in nonlinear modulation were done by Rudinger, Skalak,
Rockwell, Hawley and Anliker. The suggested equations are basically the equations
of continuity and motion coupled with an extra equation to describe the vessel wall
distensibility [3, 43, 45, 49]. Sakanishi and Hasegawa proposed a soliton profile
pulsatile wave modeling, based on the nonlinear elasticity of the vessel wall [46].
Yomosa and collaborators proposed a theory describing solitons in long arteries,
where the viscous effects, the reflective effects caused by the arterial branch as well
as the effects of the peripheral resistance are neglectible. For the above reasons, the
latter modulation is unable to describe the pressure drop caused when moving away
from the heart. Nevertheless, it points out that it does make some sense to attribute
the special features of the pulsatile wave, including the “sudden steepening” and the
change in the phase velocity, to the solitary profile [57]. While the pulsatile wave
travels to arteries with smaller radius, viscosity seems to play a vital role in both the
flow decay and the widening of the wave width [57].
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Antar and Demiray studied the propagation of weak nonlinear waves in a thin
elastic tube, under an initial stress distribution, due to the flow of an incompressible
viscous fluid [4]. The propagation of pressure pulses in dilatable tubes has been
studied by various researchers [22, 41]. Most of those studies, consider waves of
small width, neglecting the nonlinear characteristics and focusing on their dispersive
character [5, 12, 42]. It is widely accepted that a long-term evolution of weak nonlin-
ear waves of either dispersion or dissipation, can be modeled by nonlinear dispersive
equations. Two classical simplified and indicative examples are the Burgers equation
and the KdV equation, exhibiting balance between nonlinearity and dissipation
and nonlinearity and dispersion, respectively. On the other hand, when a balance
is exhibited among nonlinearity, dissipation and dispersion, the simplest and most
representative dispersive equation is the KdV–B equation, combining the KdV and
Burgers equations. Via asymptotic methods, the propagation of small, but with finite
width, waves in dilatable tubes has been studied sufficiently [4].

Hashizume and Yomosa showed that propagation, in the case of weak nonlinear
waves in a thin and nonlinear elastic tube for incompressible flow, is determined by
the KdV equation [57]. Erbay and collaborators, examining the propagation of weak
nonlinear waves in a thin viscoelastic tube filled with fluid, were lead to the Burgers,
KdV and KdV–B equations, depending on the parameters considered [15]. Demiray
studied the propagation of slightly nonlinear waves in thin elastic and viscoelastic
tubes for an incompressible fluid and finally concluded to the KdV and KdV–B
equations, respectively. In all the above studies, an inviscid fluid was considered and
the axial movement of the tube wall was neglected. However, regarding biological
applications, blood is an incompressible and viscous fluid. So, Antar and Demiray
formulated their mathematical model toward this direction [4].

In this chapter, an emphasis is given to the theoretical and numerical analysis
of the KdV–B equation and its applications, providing vital information about the
KdV–B equation and its connection to cardiac hemodynamics. More precisely,
in the next section the phase plane of the KdV–B equation is analyzed and its
qualitative behavior is derived. Furthermore, an asymptotic expansion is presented
and traveling wave solutions under both shock and solitary profiles are derived.
Finally, numerical solutions are obtained for the KdV–B equation, by means of
spectral Fourier analysis and are evolved in time by the well known explicit 4th
order Runge–Kutta method.

2 Phase Plane Analysis of KdV–B

In this section, the phase plane of the KdV–B equation is analyzed and its qualitative
behavior is derived and further described. The wave variable ζ is introduced as [25,
47],

ζ = x − λt, (3)
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with λ being the wave velocity. Then equation (2) using (3), can be written as,

(γ u− λ)
du

dζ
− α

d2u

dζ 2 + β
d3u

dζ 3 = 0, u = u(t, x) = u(x − λt) = u(ζ ) . (4)

The so-called traveling–wave solution, u = u(ζ ), shall be considered here. By
integrating equation (4) with respect to ζ , a nonlinear differential equation can be
obtained as follows,

d2u

dζ 2 + c1
du

dζ
+ c2u

2 + c3u = c0, (5)

where c1 = −α

β
, c2 = γ

2β
, c3 = −λ

β
and the integral constant c0 > − λ2

2β
.

In the case where c0 
= 0, a simple translation transformation,

u = u′ + c′0, c′0 =
−c3 ±

√
c2

3 + 4c0c2

2c2
,

can be made, with u′ satisfying the following equation,

d2u′

dζ 2 + c1
du′

dζ
+ c2u

′2 + (c3 + 2c2c
′
0)u

′ = 0.

Without loss of generality, we shall confine ourselves to the consideration of
c0 = 0 alone from now on. It can be further assumed that λ ≥ 0, because the
discussion on λ′ = −λ can be made in the same manner for λ < 0.

Equation (5) can be written as an autonomous system of first-order equations,

⎧
⎪⎨

⎪⎩

du

dζ
= v,

dv

dζ
= −u

β
(γ

u

2
− λ)+ α

β
v.

Now, we study the above system according to the qualitative theory of ordinary
differential equations. Initially, we find the system’s singular points, setting,

f1(u, v) = v, f2(u, v) = −u

β
(γ

u

2
− λ)+ α

β
v.

The following conditions should be met,

f1(u, v) = f2(u, v) = 0
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⇔
⎧
⎨

⎩

v = 0

−u

β
(γ

u

2
− λ)+ α

β
v = 0

⇔
{
v = 0

u = 0, u = 2λ
γ
.

Therefore, the singular points are,

{
P1 = (0, 0),

P2 = ( 2λ
γ
, 0).

Next, we are to find the eigenvalues of the linearization matrices, defined for our
singular points, as follows,

A(P1) =
⎡

⎢
⎣

∂f1

∂u

∂f1

∂v
∂f2

∂u

∂f2

∂v

⎤

⎥
⎦ , (P1) =

⎡

⎣
0 1
λ

β

α

β

⎤

⎦ ,

so, for its eigenvalues we get,

det (AP1 − sI2) = 0 ⇔ s2 − α

β
s − λ

β
= 0

⇔

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s1 =
α

β
+ 1

β

√
α2 + 4λβ

2
> 0

s2 =
α

β
− 1

β

√
α2 + 4λβ

2
< 0

.

A(P2) =
⎡

⎢
⎣

∂f1

∂u

∂f1

∂v
∂f2

∂u

∂f2

∂v

⎤

⎥
⎦ , (P2) =

⎡

⎣
0 1

−λ

β

α

β

⎤

⎦ ,

so, for its eigenvalues we get,

det (AP2 − sI2) = 0 ⇔ s2 − α

β
s + λ

β
= 0
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⇔

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s1 =
α

β
+ 1

β

√
α2 − 4λβ

2
> 0

s2 =
α

β
− 1

β

√
α2 − 4λβ

2
> 0

, α ≥ 2
√
λβ .

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s1 =
α

β
+ i

1

β

√
4λβ − α2

2

s2 =
α

β
− i

1

β

√
4λβ − α2

2

, α ∈ (0, 2
√
λβ) .

⎧
⎪⎪⎨

⎪⎪⎩

s1 = i

√
λ

β

s2 = −i
√

λ

β

α = 0 .

We conclude that (0, 0) is invariably a saddle point, whereas ( 2λ
γ
, 0) has three

cases depending on the values of α, β, λ [37],

A. a source for α ≥ 2
√
λβ,

B. a spiral source for α ∈ (0, 2
√
λβ),

C. a central point for α = 0 (KdV).

Regarding the geometric nature of the above characterizations, we have the
following [37],

1. (0, 0) being a saddle point, means that it’s an unstable node and phase trajectories
tend to move around it in hyperbolas, defined by the separatrices (i.e. straight
lines directed along the two eigenvectors of the linearization matrix).

2. (( 2λ
γ
, 0) : α ≥ 2

√
λβ) being a source, means that it’s an unstable node from

where phase trajectories diverge away without any (or relatively little) rotation.
3. (( 2λ

γ
, 0) : α ∈ (0, 2

√
λβ)) being a spiral source, means that it’s an unstable focus

where phase trajectories tend to spiral around before eventually diverge away
from it.

4. (( 2λ
γ
, 0) : α = 0) being a central point, means that the phase trajectories tend to

move in ellipses around the point, describing periodic motion of a point in the
phase space.

The phase plots of Fig. 1 depict our three cases, where we have set for convenience
γ = 1, since it is not related to any of α, β, λ in effecting the stabillity statuses.

An essential tool in studying the phase portrait of nonlinear autonomous systems,
like the above, is the Hartman–Grobman Theorem [22, 23, 37],
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Fig. 1 The point (0, 0) is invariably a saddle point whereas (2, 0) is a source point in a, a spiral
source point in b and a central point in c. (a) (α = 2, β = λ = 1). (b) (α = β = λ = 1). (c)
(α = 0, β = λ = 1)

Theorem 1 (Hartman-Grobman) Consider a two-dimensional nonlinear
autonomous system with a continuously differentiable field f̄ ,

x̄′ = f̄ (x̄)

and consider its linearization at a hyperbolic critical point x̄0 (that is the Jacobian
matrix has eigenvalues with non-zero real part),

ū′ = (Df0)(ū).

Then there is a neighborhood of the hyperbolic critical point where all the
solutions of the linear system can be transformed into solutions of the nonlinear
system by a continuous, invertible transformation.
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Remark 1 The above theorem implies that the phase portrait of the linear system
in a neighborhood of the hyperbolic critical point can be transformed to the phase
portrait of the nonlinear system by a continuous, invertible transformation. When
that happens, we say that the two phase portraits are topologically equivalent.

Additional information about the phase plane of KdV–B equation can be found
in [14].

3 Asymptotic Expansion for KdV–B

In the study of ordinary differential equations and their applications, an asymptotic
expansion is of high importance. It would be very useful to understand thoroughly
the property of the solution to the KdV–B equation. The asymptotic expansion
would provide a reliable basis for estimating the advantages and disadvantages when
seeking and applying numerical methods to our equation.

Here, by means of variable transformation and the qualitative theory of ordinary
differential equations, the asymptotic behavior of the traveling wave solutions to the
KdV–B equation is presented. The asymptotic expansion is real and continuous, if
the argument is greater than a certain value.

The following variable transformation can be made [36, 48],

u = −e−
c1(1− k)ζ

2
c1k

2

c2
y(ξ), ξ = e−c1kζ , k =

√

1− 4c3

c2
1

=
√

1+ 4βλ

α2 ≥ 1.

(6)
Equation (5) (c0 = 0), can be reduced to the Emden–Fowler equation [35],

d2y

dξ2
= ξσ y2, σ = 1− 5k

2k
. (7)

It is obvious that,

{
σ = −2, λ = 0,

σ ∈ [−5
2 ,−2), λ > 0.

(8)

Some characteristics of the KdV–B equation can be derived from equation (7).
Next we demonstrate some essential results that will help us in deriving the

asymptotic expansion of KdV–B.
First, we show that the KdV–B equation, Equation (5) has finite isolated zero

points only. Since y satisfies (7), y′′ does not change sign for ξ ∈ (0,∞), so
Equation (7) has finite zero points only, except that it identically vanishes for some
intervals. Equation (7) has finite zero points only. This indicates that the solution of
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KdV–B is consistently positive negative or zero for large arguments, which depends
upon the condition of infinite point.

Our next important tool is the Integral Rule of asymptotic formulae [31, 36, 48].

Lemma 1 (Integral Rule of Asymptotic Formulae) Let,

φ(t) ∼ f (t),

where f 
= 0 and f does not change in sign. Then,
{∫ t

t0
φ(t)dt ∼ ∫ t

t0
f (t)dt, if

∫∞
t0
|f (t)|dt = ∞,

∫∞
t

φ(t)dt ∼ ∫∞
t

f (t)dt, if
∫∞
t0
|f (t)|dt <∞.

Following the above result, we demonstrate the character of asymptotic expan-
sion [31, 36, 48].

Lemma 2 (Character of Asymptotic Expansion) If f (t) > 0 and f ′ is continu-
ous and non-negative as t ≥ t0, then,

f ′ ≤ f 1+ε

for any t ≥ t0 and for any ε > 0, except perhaps in a set of intervals of finite total
length, which depends upon ε.

The final necessary result will be Hardy’s Theorem [31, 36, 48].

Theorem 2 (Hardy) Any solution of an equation,

df

dt
= P(f, t)

Q(f, t)
,

which is continuous for t ≥ t0, is ultimately monotonic, together with all of its
derivatives, and satisfies one of the following relations,

f ∼ atbeE(t),

or

f ∼ atb(ln t)c,

where E(t) is a polynomial in time and a, b, c are constants.

Now, all the above three results can be adopted to derive the asymptotic
expansion of KdV–B, for the different values of λ.

Claim (Shu [48]) Let λ > 0. The negative asymptotic expansion of KdV–B has the
following form,
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u=− 2k2v2U∞
δ

e
− (k−1)vζ

2δ − 8k4v2U2∞
(k−1)(3k−1)δ

e
− (k−1)vζ

δ [1+O(1)], ζ→∞,

(9)

where k =
√

1+ 4λδ

v2 and U∞ > 0 is a constant.

In order to prove that, we consider λ > 0 for which σ ∈ (−5

2
,−2). If u has a

negative asymptotic expansion then y has a positive asymptotic expansion. Since,

d2y

dξ2
= ξσ y2 > 0, ξ > 0,

y′ must be strictly monotonically increasing for ξ > 0 and y must be a monotone
function for large ξ . Thus y′ has three possible cases as ξ →∞,

1. y′ → 0
2. y′ → y′0 = const > 0
3. y′ → ∞
Let us show that case (2) cannot hold.
If

y′ → y′0 = const > 0,

then,

y ∼ y′0 ξ

and from equation (7),

y′′ = y2ξσ ∼ y′20 ξσ+2 >
1

2
y′20 ξσ+2,

whose integration yields,

y′ >
y′20

2(σ + 3)
ξσ+3 →∞,

for large ξ , which leads to a contradiction. Then it will be shown that case (3) leads
to a contradiction as well.
If

y′ → ∞,
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then,

y′ > M,

for large ξ and some M > 0, and hence,

y > Mξ .

Reverting to equation (7),

y′′ = ξσ y2 > M2ξσ+2,

so,

y >
M2

(σ + 3)(σ + 4)
ξσ+4,

for large ξ . Continuing in this fashion,

y > y0 ξ
5,

can be obtained for large ξ and the constant y0. Hence, from equation (7),

y′′ = ξσ y2 >
√
y0y

3
2 ,

for large ξ . Since y′ is positive,

y′y′′ > √y0y
3
2 y′,

whose integration yields,

y′ >
2y

1
4
0√
5
y

3
4 ,

which is impossible due to Lemma (2).
Consequently, we are left with case (1). Since y′ < 0 is strictly monotone

increasing for ξ > 0, and y is strictly monotone decreasing for ξ > 0. Since y > 0
for large ξ , y has a finite limit U∞ ≥ 0 as ξ →∞. Now, let us show that U∞ 
= 0. If
U∞ = 0, y(ξ0) = δ > 0 is set to be small. Since y is strictly monotone decreasing,

δ = y(ξ0) =
∫ ∞

ξ0

(∫ ∞

t

τ σ y2dτ

)

dt < δ2
∫ ∞

ξ0

(∫ ∞

t

τ σ dτ

)

dt

or
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δ >
(σ + 1)(σ + 2)

ξσ+2
0

,

which leads to the contradiction for δ sufficiently small.
Then let,

y(∞) = U∞ > 0, y(ξ) = U∞ +O(1), ξ →∞ .

Then

y′(ξ) = −
∫ ∞

ξ

y′′dt = −
∫ ∞

ξ

tσ y2dt = U2∞
σ + 1

ξσ+1[1+O(1)]

and thus,

y(ξ) = U∞ −
∫ ∞

ξ

y′dt = U∞ + U2∞
(σ + 1)(σ + 2)

ξσ+2[1+O(1)] .

The latter proves our claim.

Claim (Shu [48]) Let λ = 0. The negative asymptotic expansion of the KdV–B
equation has the following form,

u = −2kv

ζ
e

−(k − 1)vζ

2δ , ζ →∞, (10)

where k =
√

1+ 4λδ

v2
.

For the proof, we consider λ = 0, which gives us σ = −2. If u has a negative
asymptotic expansion, y has a positive asymptotic expansion. Let ξ = es , obtaining
from equation (7),

d2y

ds2
− dy

ds
− y2 = 0. (11)

If
dy

ds
= 0 at s0, then,

d2y

ds2
= y2 > 0

and y can only have a minimum at s0. Hence, y is a monotone function for large ξ .
Thus y has three possible cases as s →∞:

1. y → 0
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2. y → y0 = const > 0
3. y →∞

Let us show that case (2) cannot hold.
If

y → y0 = const > 0,

then

d2y

ds2 −
dy

ds
∼ y2 .

Integrating, we get,

dy

ds
− y ∼ y2

0s .

Since y → y0, this implies,

dy

ds
∼ y2

0s

from which,

y ∼ 1

2
y2

0s
2,

which contradicts y → y0. Next, we will show that case (3) is impossible.
If y →∞, let,

p = dy

ds
.

Then equation (11) becomes,

p
dp

dy
− p − y2 = 0. (12)

Since y → y0, we have,

p
dp

dy
> 0 .

Now, Theorem (2) indicates that p has two possible cases for large y,

1. p ∼ aybeE(y),
2. p ∼ ayb(ln y)c,
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where E(y) is a polynomial in y and a > 0, b, c are constants. We also show that
case (1) is impossible.

If E(y)→−∞, then,

p→ 0,
dp

dy
→ 0

which leads to a contradiction by referring to equation (12).
If E(y)→∞, then,

p > y2,

for large y, which contradicts Lemma (2). Hence,

E(y) = const .

If b > 1, then,

p > y
b+1

2 ,

for large y, which is impossible due to Lemma (2).
If b ≤ 1, then,

p
dp

dy
∼ y2,

is obtained from equation (12). By integration,

1

2
p2 ∼ 1

3
y3,

is obtained, so that b = 3

2
> 1, which leads to a contradiction. Let us now show

that case (2) is also impossible.
If b > 1, then,

p > y
b+1

2 ,

for large y, which is impossible due to Lemma (2).
If b ≤ 1, then,

1

2
p2 ∼ 1

3
y3,

is obtained, so that b = 3

2
> 1, which leads to a contradiction.
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Consequently, we are left with case (1), where y → 0. Let v = 1

y
and w = dv

ds
,

obtaining from equation (12),

w
dw

dv
− 2w2

v
− w + 1 = 0. (13)

Since y → 0, v →∞ and
dv

ds
< 0, we have,

w = dv

ds
= − 1

y2

dy

ds
> 0,

is obtained. Theorem (2) indicates that w has two possible cases for large v,

1. w ∼ avbeE(v),
2. w ∼ avb(ln v)c,

where E(v) is a polynomial in v and a > 0, b, c are constants. It is now shown that
if case (3) is satisfied, E(v) = const and b = 0. Similar to above, E(v) = const

and b ≤ 1.
If b = 1, then,

dw

dv
∼ a > 0.

From equation (13), a = −1 is obtained, which leads to a contradiction.
If b ∈ (0, 1), then,

dw

ds
∼ 1,

is obtained from equation (13). By integrating, we get,

w ∼ v,

so that b = 1, which also leads to a contradiction.
If b < 0, then,

w
dw

dv
∼ −1,

is obtained from equation (13). By integrating, we get,

1

2
w2 ∼ −v,

which leads to a contradiction.



Nonlinear Dynamics of the KdV-B Equation and Its Biomedical Applications 781

Let us now show that if case (2) is satisfied, then b = c = 0. Similar to above,
either b = 1, c 
= 0 or b = 0.
If b = 1, c < 0 or c > 0, then,

dw

dv
∼ 1 or

dw

dv
∼ 2w

v
,

is obtained from equation (13). By integrating, we get,

w ∼ v or w ∼ v2,

is obtained, so that c = 0, which leads to a contradiction. Hence b = 0.
If c < 0, then,

w
dw

dv
∼ −1,

is obtained from equation (13). By integrating, we get,

1

2
w2 ∼ −v,

is obtained, which leads to a contradiction.
If c > 0, then,

dw

dv
∼ 1,

is obtained from equation (13). By integrating, we get,

w ∼ v,

so that c = 0, which leads to a contradiction.
Summing up and from equation (13), we get,

w ∼ 1,

so that,

dv

ds
∼ 1, s →∞ .

By integrating, we finally obtain,

v ∼ s,

as s →∞, so that,
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y ∼ 1

ln ξ
, ξ →∞ .

That proves our claim.

Claim (Shu [48])
Let λ > 0. The negative asymptotic expansion of KdV–B can be written in the form
(see Fig. 2),

u=− 2k2v2U∞
δ

e

−(k−1)vζ

2δ −2k4v2

δ

∞∑

i=1

(2U∞)i+1e
− (i+1)(k−1)vζ

2δ
∏i

j=1 [j (k−1)+2k] j (k−1)
, ζ →∞,

(14)

where k =
√

1+ 4λδ

v2
and U∞ > 0 is a constant.

To prove the latter, we first notice that since,

e
− (i + 1)(k − 1)vζ

2δ

exists, the infinite series converges. Let,

um = −2k2v2U∞
δ

e

−(k − 1)vζ

2δ − 2k4v2

δ

∞∑

i=1

(2U∞)i+1e
− (i + 1)(k − 1)vζ

2δ
∏i

j=1 [j (k − 1)+ 2k] j (k − 1)

Fig. 2 The graph shows the asymptotic expansion of the KdV–B equation (see Equation (14)) for
the parameters, α = 0.1, β = 0.7, γ = 1, λ = 1, U∞ = 1 and σ = −2.25. The shock wave
characteristics can be observed
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and

ym = U∞ +
m∑

i=1

2i−1u1+i∞ ξ i(σ+2

∏i
j=1 [j (σ + 2)− 1] j (σ + 2)

.

Then,

ym+1[1+O(1)] = U∞ +
∫ ∞

ξ

(∫ ∞

t

τ σ y2
m[1+O(1)]2dτ

)

dt

can be obtained for an arbitrary integer m. Since um → u as m→∞, we get,

ym → y∞, m→∞,

so that,

y∞ = U∞ +
∫ ∞

ξ

(∫ ∞

t

τ σ y2∞dτ

)

dt

and y∞ is the positive asymptotic expansion of equation (7).

4 Hyperbolic Methods for Traveling Wave Solutions of
KdV–B

Since the late 1980s, various methods for seeking explicit exact solutions to the
KdV–B equation have been independently proposed by many mathematicians,
engineers and physicists. The first analytical traveling wave solution to the Burgers-
KdV equation was obtained by Xiong [56] in 1989. Two different methods for the
construction of exact solutions to the KdV–B equation were proposed by Jeffrey
and Mohamad [26]. Wang [52] applied the homogeneous balance method to the
study of exact solutions of the compound KdV–B equation. Demiray [13] proposed
a so-called “hyperbolic tangent approach” for finding the exact solution to the KdV–
B equation, which is actually the Parkes and Duffy’s automated method [39, 40].
Recently, Feng [16–18] introduced the first-integral method to study the exact
solution of KdV–B, which is based on the ring theory of commutative algebra.
The Cauchy problem for the KdV–B equation was investigated by Bona and
Schonbek [7]. They proved the existence and uniqueness of bounded traveling wave
solutions which tend to constant states at plus and minus infinity.

We focus on deriving traveling wave solutions for KdV–B, using the Tanh and
Sech methods [21, 24, 32, 33, 53]. We start with the Tanh method, considering,

− λu+ γ
u2

2
− α

du

dζ
+ β

d2u

dζ 2 = 0, (15)
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where λ is the wave velocity, assuming that both our solution and its spatial
derivatives vanish at either plus or minus infinity.

The Tanh method uses a finite series,

u(x, t) = u(μζ) = s(y) =
M∑

m=0

amy
m, (16)

where μ is the wave number, inversely proportional to the width of the wave, and
M is a positive integer, in most cases, that will be determined. However if M is not
an integer, a transformation formula is usually used. Substituting equation (16) into
equation (15) yields an equation in powers of y.

To determine the parameter M , we usually balance the linear terms of highest
order in the resulting equation with the highest order nonlinear terms. With M

determined, we collect all coefficients of powers of y in the resulting equation where
these coefficients have to vanish.

This will give a system of algebraic equations involving the parameters am,
m = 0, . . . ,M , μ and λ. Having determined these parameters, knowing that M
is a positive integer in most cases, and using equation (16), we obtain an analytic
solution in a closed form. We introduce,

y = tanh(μζ), (17)

that leads to the change of derivatives,

⎧
⎪⎪⎨

⎪⎪⎩

d

dζ
= d

dy

dy

dz
= μ(1− y2)

d

dy
,

d2

dζ 2 =
d

dζ

d

dζ
= μ2(1− y2)

(

−2y
d

dy
+ (1− y2)

d2

dy2

)

.

(18)

Therefore, by replacing equation (16) in equation (15) and using equation (18), we
derive an equation with respect to u as follows,

− λ

(
M∑

m=0

amy
m

)

+ γ

2

(
M∑

m=0

amy
m

)2

− αμ(1− y2)
d

dy

(
M∑

m=0

amy
m

)

+ βμ2(1− y2)

(

−2y
d

dy

(
M∑

m=0

amy
m

)

+ (1− y2)
d2

dy2

(
M∑

m=0

amy
m

))

= 0 .

To determine M , we follow the procedure described above to get M = 2. This gives
the solution in the form,

s =
M∑

m=0

amy
m = a0 + a1y + a2y

2, a2 
= 0. (19)
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Substituting equation (19) into equation (15), we get,

−λ(a0 + a1y + a2y
2)+ γ

2
(a0 + a1y + a2y

2)2

− αμ(1− y2)(a1 + 2a2y)+ βμ2(1− y2)
(
−2y(a1 + 2a2y)+ 2a2(1− y2)

)
= 0.

Collecting the coefficients of different powers of y, gives the following system of
algebraic equations for λ μ, a0, a1 and a2,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2(γ a2 + 12βμ2) = 0

γ a1a2 + 2βμ2a1 + 2αμa2 = 0

−λa2 − 8βμ2a2 + γ a0a2 + γ

2
a2

1 + αμa1 = 0

−λa1 − 2βμ2a1 + γ a0a1 − 2αμa2 = 0

−λa0 + γ

2
a2

0 − αμa1 + 2βμ2a2 = 0

with solution,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

λ = ± 6
25

α2

β
,

μ = ± α
10β ,

a0 = λ
γ
+ 12βμ2

γ
,

a1 = − 12
5

αμ
γ
,

a2 = −12βμ2

γ
.

(20)

Using the trigonometric identities,
{
tanh2(θ) = 1− sech2(θ)

tanh(−θ) = −tanh(θ) , θ ∈ R

and requiring for both our solution and its spatial derivatives to vanish at plus
infinity, we get the following traveling wave solution,

u1 ∞(ζ ) = 3

25

α2

βγ

(
sech2(μζ )− 2tanh(μζ)+ 2

)
, μ, λ > 0 (21)

Requiring for both our solution and its spatial derivatives to vanish at minus infinity,
we get the following traveling wave solution,

u2 −∞(ζ ) = 3

25

α2

βγ

(
sech2(μζ )− 2tanh(μζ)− 2

)
, μ > 0, λ < 0 (22)
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Remark 2 A notable result is that our traveling wave solutions are expressed as
a composition of a bell-profile solitary wave (KdV) and a kink-profile solitary

wave (Burgers’) with velocity λ = ± 6
25

α2

β
. The shock profile is dominant here.

All those exact solutions, and others mentioned in literature, can be proved to be
algebraically equivalent to each other [18]. That is, essentially only one explicit
traveling solitary wave solution to the KdV–B equation is known which can be
expressed as a composition of a bell-profile solitary wave and a kink-profile solitary
wave. In other words, a feature of this solution is that is a linear combination of
particular solutions of the KdV equation and the Burgers equation [18, 26].

By following similar steps as with the Tanh method for traveling wave solutions
of KdV–B, the Sech method uses the variable transformation [21, 24, 53],

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y = sech(μζ), μ 
= 0,
d

dζ
= −μy√1− y2 d

dy
,

d2

dζ 2
= μ2y[(1− 2y2)

d

dy
+ (y − y3)

d2

dy2
]

(23)

and the ansatz,

u(x, t) = u(μζ) = s(y) =
2∑

m=0

amy
m. (24)

Then by replacing equation (24) in equation (15) and using equation (23), we derive
an equation with respect to u as follows,

[a2(γ
a2

2
− μα − 6βμ2)]y4 + [a1(γ a2 − αμ

2
− 2βμ2)]y3

+ [−λa2 + γ

2
a2

1 + γ a0a2 + 2αμa2

+ 4βμ2a2]y2 + [a1(−λ+ γ a0 + αμ+ βμ2)]y
+ γ

2
a2

0 − λa0 = 0.

Above, we used the first order Taylor approximation,

√

1− y2 ∼ 1− y2

2
.

Collecting the coefficients of different powers of y, gives the following system of
algebraic equations for λ μ, a0, a1 and a2,
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2(γ
a2

2
− μα − 6βμ2) = 0

a1(γ a2 − αμ

2
− 2βμ2) = 0

−λa2 + γ

2
a2

1 + γ a0a2 + 2αμa2 + 4βμ2a2

a1(−λ+ γ a0 + αμ+ βμ2) = 0
γ

2
a2

0 − λa0 = 0

with a solution being,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

λ = 2μ(α + 2βμ)

a0 = 4μ

γ
(α + 2βμ)

a1 = 0

a2 = 2μ

γ
(α + 6βμ)

, μ 
= 0 (25)

giving a solitary profile traveling wave solution,

2μ

γ

(
2(α + 2βμ)+ (α + 6βμ)sech2(μζ )

)
, μ 
= 0. (26)

Remark 3 A notable result is that the Sech method can give “purely” solitary profile
traveling wave solutions.
The following graph, Fig. 3, depicts the solutions studied in this section.

Fig. 3 u1 and u2 are two shock profile traveling waves of the KdV–B equation vanishing at plus
and minus infinity, respectively, whereas u3 is a solitary profile traveling wave solution of the KdV
equation, for the parameters, α = 1, β = 0.1, γ = 1, λ = 1
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5 Spectral Fourier Analysis for the Numerical Solution of
KdV–B

We define the Fourier and Inverse Fourier Transform of a function, say f , in the
sense that the following symbols make sense, to be [2, 31],

⎧
⎨

⎩

F [f (x)] = f̂ (k) = ∫∞
−∞ e−ikxf (x)dx,

F−1[f̂ (k)] = f (x) = 1

2π

∫∞
−∞ eikx f̂ (k)dk.

(27)

It is easy to see, integrating by parts, that regarding the nth derivative of f and its
Fourier Transform, the following results hold,

⎧
⎪⎨

⎪⎩

dnf

dxn
= (in)F−1

[
knf̂ (k)

]
,

dnf̂

dxn
= (−i)nF [xnf (x)] .

(28)

Now consider the KdV–B equation,

∂u

∂t
+ γ u

∂u

∂x
− α

∂2u

∂x2 + β
∂3u

∂x3 = 0, u = u(t, x). (29)

Rearranging the terms of equation (29), we get,

∂u

∂t
= −γ u∂u

∂x
+ α

∂2u

∂x2
− β

∂3u

∂x3
. (30)

By means of the Inverse Fourier Transform, F−1, equation (30) can be written in
the form [2, 50],

∂u

∂t
= f (t, u), (31)

where we have substituted the x-partial derivatives with,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u

∂x
= iF−1(κû),

∂2u

∂x2 = −F−1(κ2û),

∂3u

∂x3 = −iF−1(κ3û).

Now, equation (31) is suitable for applying the 4th order explicit Runge–Kutta
method, giving us the following,
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1 = un + h
6 (k1 + 2k2 + 2k3 + k4)

tn+1 = tn + h

k1 = f (tn, un)

k2 = f (tn + h
2 , un + hk1

2 )

k3 = f (tn + h
2 , un + hk2

2 )

k4 = f (tn + h, un + hk3)

, n = 0, 1, . . . (32)

For n = 0, we may choose either a soliton of the KdV equation or a similarity
solution of the viscous Burgers equation or a traveling wave solution of KdV–B.

Below we exhibit the obtained numerical results for each case separately. In
Fig. 4, the evolution of an initial solitary profile solution of the KdV equation is
depicted, where diffusive effects are absent. It can be observed that the solitary
waveform is retained. In Fig. 5, the evolution of a solitary profile solution of the
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Fig. 4 A solution of the KdV–B equation, evolving a solitary profile solution of the KdV equation,
where diffusive effects are absent (KdV case), for the parameters, λ = 1, α = 0, β = 0.7, γ = 1
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Fig. 5 A solution of the KdV–B equation, evolving a solitary profile solution of the KdV equation,
where both diffusive and dispersive effects coexist, for the parameters, λ = 1, α = 0.5, β = 0.7,
γ = 1
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KdV equation is presented, where both diffusive and dispersive effects coexist.
It is observed that the profile loses energy and reduces in amplitude drastically.
Additionally, in Fig. 6 we present the evolution of a similarity shock profile solution
of the viscous Burgers equation, where both diffusive and dispersive effects coexist.
In this case a wavefront can be observed revealing a shock-like behavior. Finally,
in Fig. 7, the evolution of a traveling shock wave profile solution of the KdV–B
equation is presented, where both diffusive and dispersive effects coexist. These
numerical solutions clearly reveal both solitary and shock wave features of the
KdV–B equation, revealing its connection to cardiac hemodynamics where all these
phenomena, such as convection, diffusion and dispersion, can be observed.

0.8

0.6

0.4

0.2

-0.2

0

3

2

t
2.5

1.5

0.5

1

0
-10 -8 -6 -4 -2 0 2 4 106 8

x

3

2

1

0
x-10

0 5 10
-5t

u(
x,
t)

Fig. 6 A solution of the KdV–B equation, evolving a similarity shock profile solution of the
viscous Burgers equation, where both diffusive and dispersive effects coexist, for the parameters,
λ = 1.8, α = 0.19, β = 0.01, γ = 3.4
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Fig. 7 A solution of the KdV–B equation, evolving a traveling wave shock profile solution of the
KdV–B equation, where both diffusive and dispersive effects coexist, for the parameters, α = 0.3,
β = 0.7, γ = 1



Nonlinear Dynamics of the KdV-B Equation and Its Biomedical Applications 791

6 Conclusions

Recent advancements concerning cardiac dynamics pose important questions
about the cardiac waveform. A governing equation, namely the KdV–B equation
(Korteweg–de Vries–Burgers), which is a partial differential equation can be utilized
to answer several of those questions. The KdV–B equation features both solitary
and shock wave characteristics due to the dispersion and dissipation terms, as also
occurring in the arterial tree. This study focuses on describing cardiac dynamics
with the applications of mathematics and nonlinear analysis. It is customarily
difficult to solve nonlinear problems, especially by analytical techniques. Therefore,
seeking suitable solving methods, such as, exact, approximate or numerical
methods, is an active task in branches of applied mathematics and nonlinear
analysis.

In this chapter, the phase plane of the KdV–B equation is analyzed and its qualita-
tive behavior is derived, depicting the stability states of the equation contributing to
the decisions made for further analytical and numerical consideration. The analysis
reveals a saddle point (0, 0), and an additional one that could be a source point or a
spiral source point or a central point depending on the equation’s parameters, α, β
and λ.

Furthermore, an asymptotic expansion is presented, providing a reliable basis for
estimating the advantages and disadvantages when seeking and applying numerical
methods to KdV–B equation. Furthermore, traveling wave solutions under both
solitary and shock profiles are obtained from the hyperbolic methods, whose
strength is their ease of use to find which solitary wave structures and/or shock-wave
(kinks) profiles satisfy nonlinear wave and evolution equations. These techniques
allow to develop algorithms for symbolic software packages, so that nonlinear
partial differential equations and difference equations, can be studied automatically
whether (or not) they possess traveling wave solutions. Additionally, numerical
solutions are obtained for the equation, by means of the Spectral Fourier analysis.
Both these solutions and the latter traveling wave solutions are evolved in time
by the Runge–Kutta method. These solutions clearly depict both solitary and
shock wave characteristics of the KdV–B equation. This analysis provides vital
information about the equation and its connection to cardiac hemodynamics.
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