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Abstract. Atrial fibrillation (AF) is the most common type of heart
arrhythmia. AF is highly associated with other cardiovascular diseases,
such as heart failure, coronary artery disease and can lead to stroke.
Unfortunately, in some cases people with atrial fibrillation have no
explicit symptoms and are unaware of their condition until it is dis-
covered during a physical examination. Thus, it is considered a priority
to define highly accurate automatic approaches to detect such a pathol-
ogy in the context of a massive screening.

For this reason, in the recent years several approaches have been
defined to automatically detect AF. These approaches are often based
on machine learning techniques and—most of them—analyse the heart
rhythm to make a prediction. Even if AF can be diagnosed by analysing
the rhythm, the analysis of the morphology of a heart beat is also impor-
tant. Indeed, during an AF events the P wave could be absent and fib-
rillation waves may appear in its place. This means that the presence of
only arrhythmia could be not enough to detect an AF events.

Based on the above consideration we have presented Morphythm, an
approach that use machine learning to combine rhythm and morpholog-
ical features to identify AF events. The results we achieved in an empiri-
cal evaluation seems promising. In this paper we present an extension of
Morphythm, called Local Morphythm, aiming at further improving
the detection accuracy of AF events. An empirical evaluation of Local
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Morphythm has shown significantly better results in the classification
process with respect to Morphythm, particularly for what concerns the
true positives and false negatives.

Keywords: Healthcare · Atrial fibrillation · Decision support system ·
Machine learning

1 Introduction

During the last few years has occurred a rapid technological evolution in the
scientific field of the Internet of Medical Things (IoMT) and Wireless Body Area
Network (WBAN). The main demands for these systems can be summarised
as follows: (i) reducing the healthcare costs while keeping the quality of the
services and (ii) promoting wellness programs to shift the health expenditure
from treatment to prevention [3].

All the efforts in this field by the scientific research communities has made
it possible to obtain electronic devices of minimal size and wearable [31]. This
has created a fertile ground for telemedicine. Telemedicine can be commonly
defined as the use of advanced telecommunications technologies for the purpose
of supporting many medical activities. In the last years, this industry has grown
and most US health institutions and hospitals are currently employing such kind
of technology [12].

In this context, medical activities become responsible—beyond the knowl-
edge and clinical skills—in handling an ample amount of data related to the
patient health. Thus, appropriate elaboration of the clinical data are required to
facilitate the work of experts and promote a policy of welfare. A Decision Sup-
port System (DSS) is the key component of an effective telemedicine system.
Such a component is basically a layer of software that latently and continuously
analyze the acquired data aimed at providing recommendations, even at patient-
level, to the medical experts for the identification of a risky situation or for the
diagnosis of a specific pathology [38].

In this paper we present an approach that could be integrated in a DSS of a
telemedicine system aiming at supporting the identification of atrial fibrillation
(AF) episodes through the analysis of ECG. AF is the most common sustained
arrhythmia and is associated with significant morbidity and mortality [10]. We
decided to focus on AF detection because of the incidence statistics of such a
pathology. Indeed, around one third of all ischemic strokes are caused by AF
[14] and the early phase of appearance is a particularly high-risk period for the
development of stroke [34]. In addition, AF is often asymptomatic. Thus, it is
crucial to detect onset episodes of AF with high accuracy to allow a proper
intervention of cardiologist [18].

The detection of AF episodes generally involves two electrocardiogram (ECG)
sources of information: (i) beat morphology, because during an AF episode, it is
possible to observe fluctuating wave forms instead of P waves and (ii) rhythm,
because during an AF episode it is possible to observe an irregularity of heart
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rate. The fact that an ECG recording of the episode is a diagnostic criterion can
make the process cumbersome, especially if the arrhythmia is paroxysmal and
not easily provoked during a recording session. In order to capture the episode, an
extended recording time (at least 24 h) through an Holter monitoring is required
[2]. These recordings from wearable ECG devices introduce an amount of data
which results complicated for the physician to inspect and analyze. This recall
the need of semi-automatic approaches to determine onset and duration of AF
episodes.

A lot of effort in the research community has been devoted to the defini-
tion of methods to automatically detect AF. These are often based on Machine
Learning techniques and—most of them—are based only on the analysis of R-R
intervals (RRI), i.e., they just exploit the rhythmic source of information. Even
if the accuracy of such approach is generally very high in terms of accuracy
(more than 95%), the proposed approach still misclassifies fibrillant heart beat
signals as non-fibrillant [41]. This suggests that there is still room for improve-
ment. Especially, our conjecture is that by combining morphological and rhythm
features is possible to improve the accuracy of approaches based on just one of
the two source of information.

Based on the above consideration, in a previous work we have presented
Morphythm [23], a new approach based on machine learning techniques
where morphological and rhythmic information are fused together. Morphythm
showed surprising results, especially for what concerns two vital aspects of the
medical classification: increment of true positives and reduction of false nega-
tives.

In this paper we present an extension of Morphythm aiming at further
improving its accuracy. We first performed a rigorous feature engineering pro-
cess in order to identify the features that contribute the most to the prediction
of AF events. Then, we experimented most advanced machine learning tech-
niques, including artificial neural network and deep learning techniques. Finally,
we integrated in Morphythm the concept of”local” prediction, successfully used
in other context [28]. Especially, instead of producing a single prediction model,
the new version of Morphythm, called Local Morphythm, automatically
build several prediction models based on the characteristics of the ECGs in the
training set. In particular, the training set is clustered in order to put together
ECGs that exhibits similar characteristics. Then, for each cluster, Local Mor-
phythm builds a prediction model. When a new data point is provided, Local
Morphythm first selects the most suitable model based on the characteristics
of the new data point, and then it performs the prediction applying the selected
model.

The rest of the paper is structured as follows: Sect. 2 provides details on AF
and on automatic detectors of AF. Section 3 presents Local Morphythm, our
novel approach for AF detection, while Sect. 4 reports the design and the results
of the empirical study we conducted to evaluate Local Morphythm. Finally,
Sect. 5 concludes the paper and provides suggestions for possible future research
directions.
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2 Background and Related Work

2.1 Atrial Fibrillation

Normally, the heart contracts and relaxes to a regular beat. In atrial fibrillation,
the upper chambers of the heart (the atria) beat irregularly (quiver) instead
of beating effectively to move blood into the ventricles1. If the ECG recording
is available, AF is diagnosed by whenever an irregular heartbeat presents the
following characteristics: the absence of P waves (with disorganized electrical
activity in their place) and irregular R–R intervals due to irregular conduction
of impulses to the ventricles [15].

The prevalence of atrial fibrillation (AF) is increasing all over the world
and it is becoming one of the most important clinical issues for industrialised
countries [15,42]. AF is a crucial risk factor for the occurrence of stroke. Beyond
stroke, AF can lead also to congestive heart failure. Furthermore, hypertension,
diabetes and heart failure are some of the most common comorbidities [24,39].
In addition, AF presents a sever influence on the global health conditions of
individuals who contract it [20].

To produce a diagnosis of AF, a cardiologist checks the clinical history of
the patient and the ECG signal, by at least observing a single lead during the
revealing of the episode [15]. Unfortunately, AF is often paroxysmal, i.e., there
are recurrent episodes that stop on their own in less than seven days [15], and
asymptomatic. For these reasons, the screening of such a pathology needs to
become a priority.

2.2 Automatic Detection of Atrial Fibrillation

In recent years, the scientific research has provided several works aiming at
automatically detect AF episodes. Most of them have shown important results
by exploiting only the analysis of heart rhythm, assumed as the observation of
the distances between two successive R peaks (RRI, RR intervals) [8,30,37,40].
Indeed, the detection methods based on RRI produce relatively more precise
identification of AF since the R-wave peak of QRS complex is the most prominent
characteristic feature of an ECG recording and the least susceptible to various
kinds of noise [19,21,25,26].

In the work by Hochstadt et al. [18], around 18 thousand consecutive RR
interval measurements were recorded in 20 patients, including about 12 thou-
sand RR intervals during AF and 6,087 RR intervals during sinus rhythm. The
automatic algorithm—based on Lorenz-plot—used by the authors distinguished
AF from sinus rhythm with a sensitivity of 100% and specificity of 93.1%.

In the study by Andersen et al. [2], a novel approach for AF detection based
on Inter Beat Intervals (IBI) extracted from long term electrocardiogram (ECG)
recordings is presented. For this purpose, five time-domain features have been
extracted from the IBIs and a Support Vector Machine (SVM) has been used for

1 https://bit.ly/3dvrXJX.

https://bit.ly/3dvrXJX
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classification. The proposed approach has shown a significantly reduced compu-
tation time without loss of performance, if compared to a consolidated baseline.

Afdala et al. [1] test the ability of simply involving the Shannon entropy in
the detection of Atrial Fibrillation episodes. In their research study, they used
data from a well-known public data set (Physionet MIT-BIH AFDB) and, as
performance, they observed that Shannon entropy has the highest accuracy if a
threshold of 0.5 is set.

In the work by Chen et al. [5], a new feature extraction method based on
RR interval is proposed with the aim at describing an heart rhythm which
will be submitted to a classification experiment. As descriptors, they used the
robust coefficient of variation (RCV), the distribution shape of RR interval is
described with the skewness parameter (SKP), and the complexity of RR interval
is described with the Lempel-Ziv complexity (LZC). Finally, the feature vectors
have been used as input into the support vector machine (SVM) classifier model
to achieve automatic classification and detection of atrial fibrillation. Also in
this case, the MIT-BIH atrial fibrillation database was used to verify the data.
The final classification results showed a sensitivity of 95.81%, a specificity of %
and an accuracy equal to 96.09%.

In the next subsection, the method chosen as baseline—and embedded in
Morphythm and consequently in the new approaches proposed in this paper—
is described by providing the main ideas and highlighting the computational
steps.

The Method Proposed by Zhou et al. [41]. This section provides details on
the method proposed by Zhou et al. [41], i.e., our baseline in the evaluation of
Local Morphythm. Such an approach consists in the following steps:

– the HR sequence is converted to a symbolic sequence in a fixed interval;
– a probability distribution is constructed from the word sequence which is

transformed from the symbolic sequence;
– a coarser version of Shannon entropy is employed to quantify the information

size of HR sequence using the probability distribution of word sequence;
– discrimination of the heart beat type (AF or no-AF) using a threshold.

Step 1: Converting the HR Sequence. The first step of the method regards the
generation of a symbolic dynamic starting from the analysis of a sequence of
heart beat (hrn). Especially, the authors encode the information included in
hrn to a sequence of fewer symbols, where each symbol aims at representing an
instantaneous state of heart beating. The mapping function is the following:

syn =

{
63, if n hr ≥ 315
�hrn�, other cases

where [�·�] represents a floor operator.

Step 2: Building the Symbolic Sequence. The authors apply a 3-symbols template
in order to explore the entropic properties of the symbolic series syn. Thus, to
examine the chaotic behavior, the word value can then be calculated as:
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wvn = (syn−2 × 212) + (syn−1 × 26) + syn

Step 3: Computing the Entropy. The authors define a coarser version of Shannon
entropy H

′′
(A) to quantitatively calculate the information size of wvn. In this

study, the dynamic A comprises of 127 consecutive word elements from wvn−126

to wvn, as proposed in the function below:

H
′′
(A) = − k

Nlog2N

k∑
i=1

pilog2pi

where N and k are total number of the elements and characteristic elements in
space A, respectively.

Step 4: Classification. Based on the obtained entropy value, a final beat-to-beat
classification (fibrillant or not-fibrillant) is presented by applying a threshold
discrimination. The optimal threshold was empirically identified at 0.639.

3 The Proposed Approach: An Overview

This section describes Local Morphythm, an evolution of the approach
recently proposed by Laudato et al. [23], called Morphythm. Local Mor-
phythm is able—given a heart beat signal—to classify it as fibrillating or not
fibrillating.

As well as Morphythm, Local Morphythm uses supervised machine
learning techniques2 to combine rhythmic and morphological features extracted
from an ECG and predict whether or not a heart beat is fibrillating or not
fibrillating. However, in Local Morphythm, (i) a rigorous feature engineering
process and (ii) a local prediction strategy have been adopted in order to identify
respectively the features that best contribute to the prediction of AF episodes
and to evaluate if a local approach may be preferred instead of a global one.

3.1 Pre-processing

Before extracting features, the ECG data have to be pre-processed according to
[33] and [6]. The main steps involved in this phase are: (i) the detrend of the
ECG signal, (ii) the application of a filtering stage (where a low and high pass
filters have been applied to get rid of baseline wander and discard high frequency
noise, respectively) and (iii) the normalization of the samples.

Once executed the previous steps, the Pan-Tompkins [33] QRS-detection
method has been applied with the aim at segmenting the ECG in heart beat
signals. In this work, as heart beat, it is intended the signal included between
two successive R peaks. Such an interpretation is very suitable for AF detection,
because it highlights the atrial activity.
2 In the Local Morphythm evaluation, we experimented several supervised machine

learning technique.
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3.2 Feature Extraction and Selection

As the name suggests, Local Morphythm embeds features extracted from
both the heart rhythm and the morphology of a heart beat. Rhythmic features
are based on one or more heart beats and they aim at capturing aspects that
mostly regard the regularity of the heart beat signal. Zhou et al. [41] state that
the detection methods based on RRI are more useful to produce a precise and
accurate identification of AF because the R-wave peak of the QRS complex is the
most prominent characteristic feature of an ECG recording. Such a characteristic
is less subject to noise [26].

Even if the acquisition of rhythmic features can be very reliable, such features
can only help detecting arrhythmia, which is just one of the possible signs of AF.
Thus, morphological features are necessary to detect anomalies in the shape of
a single heart beat signal and could be particularly useful to corroborate the
warnings raised by analysing the rhythm.

Thus, similarly to Morphythm, also in Local Morphythm we consider
both rhythm and morphological features. Especially, we consider the same set
of features used in Morphythm [23]:

– Rhythmic Features: we used two features based on the observation of a sin-
gle heart beat signal, i.e., Heart Beat Length (HBL) and Heart Beat Discrete
Length (HBDL), and two additional rhythmic features that consider the infor-
mation of a sequence of consecutive heart beats, i.e., Heart Beat Regularity
(HBR) and Entropy, as defined by [41]. HBL represents how long a single
heart beat signal lasts. HBDL is a classification of the heart beat signal in
three classes, based on its length: a beat is (i) short if it takes less than 0.5 s,
(ii) long if it takes more than 1.2 s, and (iii) regular otherwise. HBR is based
on HBDL. It considers a rhythmic pattern of 10 consecutive discrete heart
beats lengths. Once obtained the pattern, we compute HBR simply counting
the number of regular heart beats.

– Morphological Features: given a sequence of samples provided for a heart beat
signal, we computed several features: (i) the Mean Signal Intensity (MSI),
(ii) the Signal Intensity Variance (SIV), (iii) the Signal Intensity Entropy
(SIE). MSI, SIV and SIE are features obtained by measuring respectively the
mean, the variance and the entropy [29] of all the samples acquired in a heart
beat signal. To try to enrich the knowledge of classifiers, we also used the
segmented version of these last features: we divided proportionally the heart
beat signal in 10 segment and for each portion we evaluated the MSI, SIV and
SIE. Finally, we included the features obtained by (i) the application of the
Fast Fourier Transform on 32 points and (ii) the estimation of the coefficients
of the Auto-Regressive model of order 16.

For each heart beat signal we extract a total number of 76 different features
(eight rhythm features and 68 morphological features). In order to select the
most appropriate features for the detection of AF events we used the Weka Info-
GainAttributeEval as Attribute Evaluator and Ranker as Search Method. The
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Table 1. Features ranking using Information Gain.

Rank InfoGain Attribute Type

1 0.86 Entropy from Zhou et al. [41] Rhythmic

2 0.20 Entropy from the rhythmic pattern Rhythmic

3 0.18 Heart beat absolute length Rhythmic

4 0.14 Coeff. no. 10 from AR model Morphological

5 0.13 Coeff. no. 11 from AR model Morphological

6 0.12 Coeff. no. 7 from AR model Morphological

7 0.11 Coeff. no. 12 from AR model Morphological

8 0.11 Coeff. no. 1 from AR model Morphological

9 0.11 Coeff. no. 8 from AR model Morphological

10 0.11 Coeff. no. 9 from AR model Morphological

11 0.11 Coeff. no. 3 from AR model Morphological

12 0.10 Coeff. no. 6 from AR model Morphological

13 0.10 Coeff. no. 2 from AR model Morphological

14 0.10 Coeff. no. 4 from AR model Morphological

15 0.10 Coeff. no. 3 from FFT model Morphological

16 0.10 Coeff. no. 31 from FFT model Morphological

. . . . . . . . . . . .

75 0.03 Entropy of Sample Amplitudes Morphological

76 0.01 Length discrete class Rhythmic

former basically evaluates the worth of an attribute by measuring the informa-
tion gain with respect to the class, while the latter ranks attributes by their
individuals evaluations.

The feature selection process has been conducted on the MIT-BIH AF
Database [16], a commonly used benchmark which contains recordings of 25
patients. Each recording in the data set lasts 10 h and contains two ECG signals
sampled at 250 samples per second (12-bit resolution). Due to the embedding
of morphology descriptors, the feature selection process has been performed on
the AFDB2, i.e., the AFDB without records 00735 and 03665 because, for such
records, only information on the rhythm is available [16] and without 04936 and
05091 because—as others have shown [25]—the records 04936 and 05091 include
many incorrect manual AF annotations.

The outcome of the features selection process is reported in Table 1. From
the analysis of the results achieved, we observe that:

– rhythmic information in AF episodes detection represent the main contribu-
tion in terms of information gain;

– morphological features of an ECG can provide a contribution in terms of
information gain for the automatic classification of heart beats. Specifically,
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Fig. 1. Workflow of Local Morphythm.

these features refer to the middle and the last part of the signal, where the
fibrillating rhythm appears and where the P-wave can exhibit its changes.

By selecting a fixed threshold of 0.12, we obtain a selection of a group of six
features containing a balanced number of morphological and rhythmic features.
Thus, we decided to incorporate in Local Morphythm the first six features
reported in Table 1.

3.3 Making the Prediction

The main difference between Local Morphythm and Morphythm regards
the way as the prediction is performed. In Morphythm, as in any canonical
approach based on supervised machine learning techniques, a training set is
used to build a (global) prediction model. Such a model is used on all the new
data points where a prediction is required. Especially, when a new heart beat
signal is provided, Morphythm first computes the features on this new heart
beat signal and then uses the prediction model to determine whether or not the
heart beat is fibrillating or not fibrillating.

However, the heart beat signals in the training set could be quite different
each other. The heterogeneity of the training set might negatively impact the
accuracy of the prediction model [28]. In order to mitigate such a problem, in
Local Morphythm we integrated a local prediction strategy [28].

Local Morphythm first clusters the training set into homogeneous sets of
heart beat signals. Then, it builds for each cluster a specific prediction model
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Fig. 2. Results of the Calinski-Harabasz score in order to determine the best value of
k for the k-means clustering algorithm. The higher the value of the score the higher
the overall quality of the clustering.

using a supervised machine learning technique. In this way, Local Morphythm
does not have just one global prediction model, but it has a set of prediction
models that are particularly suitable for specific heart beat signals.

When a new heart beat signal is provided, Local Morphythm first com-
putes the features on this new heart beat signal and then it identifies the cluster
of heart beat signals more similar to the new heart beat signal. Once identified
such a cluster, Local Morphythm uses the model associated to the identified
cluster of heart beat signals to noindent predict whether or not the new heart
beat is fibrillating or not fibrillating. The workflow of Local Morphythm is
depicted in Fig. 1.

In order to cluster the training set, we have exploited the k-means clustering
algorithm [27]. This method follows a simple way to classify a given data set
through a certain number of clusters fixed a priori. The main idea is to define k
centroids, one for each cluster. The main steps are described below:

– Place K points into the space represented by the objects that are being clus-
tered. These points represent initial group centroids.

– Assign each object to the group that has the closest centroid.
– When all objects have been assigned, recalculate the positions of the K cen-

troids.
– Repeat Steps 2 and 3 until the centroids no longer move. This produces a

separation of the objects into groups from which the metric to be minimized
can be calculated.

We have determined the optimal value of k using the Variance Ratio Criterion
(also known as Calinski-Harabasz score) [4]. Especially, we have performed the
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clustering of the heart beats by using different values of k from 1 to 25. For each
cluster we have computed the Calinski-Harabasz score in order to determine
the value of k that determines the clustering with the highest score. The plot
in Figure shows that the highest Calinski-Harabasz value occurs with k = 16.
This number has also been confirmed by involving the Silhouette method [36],
an alternative method for the identification of the best k value (Fig. 2).

4 Empirical Evaluation

This section reports the empirical evaluation we conducted to evaluate the accu-
racy of Local Morphythm.

4.1 Design of the Study

The goal of this study is to evaluate the accuracy of Local Morphythm is
classifying AF events in a patient. The perspective is both (i) of a researcher
who wants to understand if a local prediction strategy to combine rhythmic
and morphological features is worthwhile for detecting AF events, and (ii) of
a practitioner who wants to use the most accurate and precise approach in
a telemedicine application for the detection of AF events. Thus, the study is
steered by the following research question:

To what extent, a local prediction model—based on the combination of
rhythmic and morphological information—improves the automatic detec-
tion of AF episodes?

The context of this study is represented by the MIT-BIH AF Database [16],
and specifically the AFDB2, i.e., the AFDB without records 00735 and 03665
because, for such records, only information on the rhythm is available [16]. Also,
records 04936 and 05091 were excluded due to many incorrect manual AF anno-
tations [25].

In the context of our study, we also experimented a large set of machine
learning techniques. Indeed, for the classification performances, we have involved
in our experiments—beyond the Random Forest [17], J48 [35], Logistic [9],
AdaBoost M1 [13] and RepTree [11] already used by Laudato et al. to evalu-
ate Morphythm [23]—Neural Networks [22], Multi Layer Perceptron [32], JRip
[7] and SGD (which implements stochastic gradient descent for learning various
linear models)3.

As validation technique, we have chosen the Leave One Person Out Cross
Validation (L1PO-CV). L1PO-CV means that one person at a time is left out
from the training set, so that the training set contains no data specific to the
individual who is being tested (the classifier was not tuned with the test data
of that person). This is possible since each data segment is associated with an
anonymous label corresponding to an individual.

3 https://weka.sourceforge.io/doc.stable-3-8/weka/classifiers/functions/SGD.html.

https://weka.sourceforge.io/doc.stable-3-8/weka/classifiers/functions/SGD.html
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To answer our research questions we compared:

– True Positives (TP), i.e.,, the number of instances classified as fibrillating by
the approach and that were actually fibrillating;

– True Negatives (TN), i.e.,, the number of instances classified as not fibrillating
by the approach and that were actually not fibrillating;

– False Positives (FP), i.e.,, the number of instances classified as fibrillating by
the approach and that were actually not fibrillating;

– False Negatives (FN), i.e.,, the number of instances classified as not fibrillat-
ing by the approach and that were actually fibrillating.

In the context of telemedicine a high number of TP is desirable, because it
indicates the number of AF episodes correctly detected. Also, it is desirable to
have an approach that does not lose any AF episode: thus, keeping the number
of FN low is very important.

4.2 Analysis of the Results

Table 2 compares the prediction accuracy, in terms of TP, TN, FP, and FN,
achieved by Local Morphythm, Morphythm, and the approach proposed by
Zhou et al. [41], the most accurate approach in the literature for the detection
of AF events.

From the analysis of the results emerges that for both the approaches Mor-
phythm and Local Morphythm the best overall accuracy is achieved when
SGD is used as machine learning techniques.

Using such a technique, Local Morphythm is able to achieve the best
results in terms of both TP and FN. Specifically, Local Morphythm is able
to identify 8,340 TP more than the baseline (approach by Zhou et al.) and 1,114
TP more than Morphythm. Also, Local Morphythm is able to retrieve less
FN with respect to both the baseline and Morphythm, i.e., −5,533 and −569,
respectively.

However, the approach proposed by Zhou et al. [41] is still the best in terms of
TN and FP. Specifically, Local Morphythm and Morphythm generate 6,052
and 6,064 FP more than the approach by Zhou, respectively. In terms of TN,
instead Local Morphythm and Morphythm retrieves less TN as compared
to the baseline, i.e., −8,859 and −8,326, respectively.

By looking at the results achieved at patient level, i.e., by considering a single
recording, we observe that Local Morphythm sensibly outperforms—in terms
of every metrics—both the baseline and Morphythm for 5 out of 21 recordings
(around 24%). Examples of such an improvement is reported in Table 3, where
it is possible to observe the classification performances of Local Morphythm
with respect to the baseline and Morphythm.

In addition, if we focus the attention on just TP and FN, Local Mor-
phythm outperforms both the other approaches baselines in 8 out of 21 record-
ings (around 38% of the data set).

For the remaining recordings, the value of all the evaluation metrics are
almost balanced, in the sense that no significant improvement can be observed.
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Table 2. Comparison of Local Morphythm with Morphythm (with the same fea-
tures selection strategy used in Local Morphythm) and the approach proposed by
Zhou et al. [41]. In boldface the best results achieved by these methods.

Approach TP TN FP FN

Zhou et al. on AFDB2 457,001 554,247 15,513 12,966

Morphythm—Random Forest 459,211 534,822 34,489 11,205

Local Morphythm—Random Forest 458,980 534,824 34,501 11,422

Morphythm—J48 449,471 512,763 54,209 23,284

Local Morphythm—J48 446,947 513,453 55,259 24,068

Morphythm—Logistic 463,730 545,621 22,184 8,192

Local Morphythm—Logistic 464,623 545,624 22,003 7,477

Morphythm—AdaBoost M1 461,635 549,572 16,188 12,332

Local Morphythm—AdaBoost M1 461,214 547,589 18,287 12,637

Morphythm—RepTree 451,962 522,829 42,931 22,005

Local Morphythm—RepTree 452,231 522,819 42,899 21,778

Morphythm—3-layers LSTM NN 462,730 545,621 22,484 8,892

Local Morphythm—3-layers LSTM NN 460,076 546,799 23,081 9,771

Morphythm—3-layers Conv. NN 461,319 546,032 23,260 9,116

Local Morphythm—3-layers Conv. NN 459,660 546,020 23,695 10,352

Morphythm—MultiLayer Perceptron 457,595 544,031 26,964 11,137

Local Morphythm—MultiLayer Perceptron 457,606 544,017 26,992 11,112

Morphythm—JRip 452,966 522,840 42,121 21,800

Local Morphythm—JRip 451,599 523,296 42,571 22,261

Morphythm—SGD 464,227 545,921 21,577 8,002

Local Morphythm—SGD 465,341 545,388 21,565 7,433

Table 3. Example of records on which Local Morphythm outperforms both Mor-
phythm and the approach by Zhou et al. [41] in terms of all the considered evaluation
metrics.

Record Interval TP TN FP FN

04043 Zhou et al. [41] 8,690 44,299 3,063 5,862

Best Morphythm– Logistic 9,608 43,565 3,797 4,944

Local Morphythm– AdaBoost M1 10,090 44,991 2,371 4,462

06426 Zhou et al. [41] 52,104 815 1,229 1,006

Best Morphythm– Logistic 52,633 629 1,415 477

Local Morphythm– SGD 52,576 901 1,143 534

The only recording with abnormal classification performances is the recording
08378 where Local Morphythm presents a significant loss in terms of TP
and FN with respect to the other two approaches. This suggests that on this
particular recording the local prediction strategy is not worthwhile because very
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Fig. 3. Average distance between a generic recording i and all the other recordings but
08378 compared to the distance between recording i and 08378.

likely such a recording exhibits characteristics that are quite different from the
other recordings in the data set.

In order to validate such a conjecture we compare the average distance
between each recording and all the others but 08378 and the distance between
each recording and recording 08378. In order to compute the distance between
two recordings we considered them as mono dimensional vectors (by selecting the
first ECG channel available for each recording) and then compute the Euclidean
distance between the two vectors.

The analysis is depicted in Fig. 3. As we can see, the distance between the
recording 08378 and a generic recording i is much higher that the average dis-
tance between the recording i and all the other recordings but 08378. Such a
result confirms our conjecture that the recording 08378 is quite different from
the others recording; thus, in this specific case, the local prediction strategy does
not provide any benefits as compared to the other two approaches.

Once this recording is excluded from the data set, the classification accuracy
of Local Morphythm improves even more. Indeed, Local Morphythm—
especially when using the Logistic and the SGD algorithms—avoids a loss of
around 1,5 thousands heart beats classified as TP and FN.

5 Conclusion and Future Work

In this paper we presented an extended version of the approach proposed by
Laudato et al. [23], named Morphythm, where rhythmic and morphological
features are combined together in order to improve the classification accuracy
of AF episodes. The new approach, called Local Morphythm integrates a
more rigorous feature engineering process as compared to Morphythm and
more advanced machine learning techniques, including artificial neural networks.
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We also extended Morphythm by integrating in the approach the strategy of
“local” prediction, successfully used in other contexts [28]. Especially, instead of
producing a single prediction model, Local Morphythm automatically builds
several prediction models based on the characteristics of the ECGs in the train-
ing set. In particular, the training set is clustered in order to put together ECGs
that exhibits similar characteristics. Then, for each cluster, Local Morphythm
builds a prediction model. When a new data point is provided, Local Mor-
phythm first selects the most suitable model based on the characteristics of the
new data point, and then it performs the prediction applying the selected model.

An experimentation conducted on the MIT-BIH AF Database [16] indicates
that Local Morphythm is able to increase the TP and reduce the FN as
compared to Morphythm and the approach by Zhou et al. [41], one of the best
approaches in the literature for the detection of AF episodes. Future work will be
devoted on the one hand on the replication of the experimentation on other data
sets in order to corroborate the results achieved on the MIT-BIH AF Database
and on the other hand on the application of a local prediction technique in the
context of automatic detection of other types of arrhythmia.
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