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Abstract. The simplest class of structures formed by N ≥ 2 interacting
RNAs consists of all crossing-free base pairs formed over linear arrange-
ments of the constituent RNA sequences. For each permutation of the N
strands the structure prediction problem is algorithmically very similar
– but not identical – to folding of a single, contiguous RNA. The differ-
ences arise from two sources: First, “nicks”, i.e., the transitions from one
to the next piece of RNA, need to be treated with special care. Second,
the connectedness of the structures needs to guaranteed. For the forward
recursions, i.e., the computation of folding energies or partition functions,
these modifications are rather straightforward and retain the cubic time
complexity of the well-known folding algorithms. This is not the case for
a straightforward implementation of the corresponding outside recursion,
which becomes quartic. Cubic running times, however, can be restored by
introducing linear-size auxiliary arrays. Asymptotically, the extra effort
over the corresponding algorithms for a single RNA sequence of the same
length is negligible in both time and space. An implementation within
the framework of the ViennaRNA package conforms to the theoretical
performance bounds and provides access to several algorithmic variants,
include the handling of user-defined hard and soft constraints.
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1 Introduction

RNA-RNA interactions play an important role in both eukaryotic [17] and pro-
caryotic [14] gene regulation. In eukaryotes, RNA interference involves the bind-
ing of small RNAs from diverse sources to longer RNAs, usually leading to
degradation. Post-transcriptional gene silencing by microRNAs is just one of
the many variations on this theme. Both small interfering RNAs (siRNAs) and
long non-coding RNAs (lncRNAs) are also involved in the regulation of splicing
and the biogenesis of other RNAs, including microRNAs. RNA sponges, usually
lncRNAs, sequester specific miRNAs to revert their silencing effects. The bind-
ing of lncRNAs such as TINCR to an mRNA can also contribute to the control
of translation. In procaryotes, a large number of diverse and often lineage spe-
cific small RNAs (sRNAs) act as regulators of translation by binding to their
target mRNAs inducing structural changes. In all these cases the RNAs interact
by forming intermolecular base pairs. Such hetero-duplexes also form between
spliceosomal RNAs during the assembly of the spliceosome and are crucial for the
correct splicing. The maturation of ribosomal RNAs (rRNAs) and spliceosomal
RNAs (snRNAs) requires chemical modifications, most of which are introduced
by snoRNPs, which rely on the specific binding of small nucleolar RNAs (sno-
RNAs) with their rRNA or snRNA target.

An abundance of RNA-RNA interactions was recently reported by transcrip-
tome-wide experiments [16]. This was not entirely unexpected as much earlier
computations studies already found statistical evidence for extensive RNA-RNA
interaction networks [38]. It is likely, therefore, that complexes composed of more
than two RNAs may play important roles similar to the well-established protein
complexes. In addition, higher order complexes have already be considered exten-
sively in synthetic biology [8,21]. The prediction and analysis of multi-component
RNA complexes thus has become an important task in computational biology,
in particular in the context of strand displacement systems [3].

Many aspects of RNA structures, including their thermodynamic proper-
ties are well represented by their secondary structures, i.e., discrete base pairs.
These already capture the dominating stabilizing and destabilizing contribution:
the stacking of base pairs with in helical stem regions and the conformational
entropy loss of unpaired regions relative to unconstrained RNA chains. These
energetic contributions are compiled in the “loop-based” standard energy model
[39]. Most computational studies of RNA structure exclude pseudoknots [31].
That is, secondary structures are not allowed to contain two base (i, j) and (k, l)
such that i < k < j < l. This condition makes it possible to obtain efficient
dynamic programming algorithms. Both the ground state structures [44] and
the partition function of the equilibrium ensemble of secondary structures [28]
can be computed in cubic time and quadratic space.

The formation of base pairs in a complex of two or more RNA molecules
follows the same physical principles as the folding of a single, contiguous RNA
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chain. The same energy model (with a few simple extensions briefly discussed
below) therefore applies to RNA-RNA interactions. However, complexes of mul-
tiple RNA strands fall into a class of structures that includes pseudoknot-like
structures and thus is difficult to handle computationally. The pairwise case is
captured well by the RIP model of [1]. Assuming that so-called tangle-structures
do not occur, the RIP model is still amenable to dynamic programming solu-
tions, although at the cost of O(n6) time and O(n4) space, for both ground-state
structures and equilibrium base-pairing probabilities [9,20]. An extension to the
multi-strand case was introduced in [29].

The full RIP model is computationally too demanding for most applica-
tions, hence approximations and simplifications are usually employed. Exam-
ples include a greedy, helix-based approach that allows essentially unrestricted
matchings [6] and formalization as a constrained maximum weight clique prob-
lem [23]. An alternative is to assume a single, dominating interacting region,
which is often – but not always – a plausible approximation, in particular if one
of the partners is small as in the case miRNAs. In this scenario the energy of
the interaction can decomposed into unfolding energies for the interaction sites
on each partner and the hybridization energy of the exposed interaction regions
[4,7,30]. A similar approach can be taken when interactions need to conform to
specific patterns, is in the case of H/ACA snoRNAs binding to their targets [37].

In this contribution we consider a simplified model that excludes all pseudo-
knot-like structures. Conceputally, this amounts to computing a conventional,
pseudoknot-free secondary on the concatenation of the interacting RNA strands,
although with a suitably modified energy model (see below). Although some
important types of interactions, in particular kissing-hairpins [13], cannot be
modeled in this way, it is still a useful approximation in many situations. For
N = 2 strands, this model has been analyzed in detail in [2,5,10]. For N > 2,
the ground-state folding problem still remains essentially unchanged. The only
necessary adaptation is a modification of the energy model to assign different
energy contributions to substructures (“loops”) that contain one or more nicks,
as we shall the call the breakpoints between strands. Kinetic simulations of multi-
strand cofolding have been studied in [32]. For N = 2, the order of the strands
does not matter. In fact, it is easy to see that every crossing-free set of base pairs
on AB translates to a crossing-free set of pairs on the alternative order BA.
This is no longer true for N > 2, however. We now have to consider the different
permutations of the RNA strands. For connected structures, two permutations of
the RNA strands either form the same set of crossing-free secondary structures (if
one is a cyclic permutations of the other), or their sets of crossing-free secondary
structures are disjoint [12]. As a consequence, it is necessary to compute the
structures for all permutations (with a fixed first strand to exclude the equivalent
cyclic permutations). Since the ensembles of (connected) structures are disjoint,
one can perform these computations independently. An implementation for the
general case is available in NUPACK [43].

The binding energies between strands in heteropolymeric structures are
intrinsically concentration dependent because the number of particles changes
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when polymeric structures are formed [10]. Partition function computations
therefore need to handle complexes separately that are composed of different
combinations of strands. RNAcofold [5] initially ignores this issue and first com-
putes a partition function ZAB that includes both connected structures (in which
the strands A and B are linked by at least one base pair) and conformation is
which the monomers A and B form independent structures. The correct parti-
tion function is then obtained as ZAB − ZAZB . This approach seems to become
tedious for higher-order interactions. NUPACK [12] instead considers only con-
nected structures. It turns out that this leads only to a small modification of
McCaskill’s algorithm. While this avoids the complications arising from discon-
nected structures, it leads to more complicated outside recursions for computa-
tions of base pairing probabilities even though this step still follows the idea of
McCaskill’s outside recursions [28].

The key issue is that the computation of the probability of the base pair
(k, l) needs to consider the case that (k, l) resides in a loop L with closing pair
(i, j) that harbors exactly one nick. If the loop L were to contain two or more
nicks, the structure would be disconnected, and hence excluded. Controlling the
number nicks in the loop is conceptually simple. In practice, however, it is not
trivial to handle without additional effort because all partition function variables
computed in the inside recursions, outlined in Sect. 2, only cover connected sub-
structures, and hence the cases with a nick in the exterior loop need to be han-
dled separately. In Sect. 3 we show how this can be achieved efficiently. Section 5
briefly summarizes details and features of the implementation of RNAmultifold
in the ViennaRNA package. Benchmarking data are provided in Sect. 6. Since
RNA complex formation is inherently concentration dependent, Sect. 7 briefly
describes how this issue is handled in RNAmultifold. Section 8 showcases the
interactions between spliceosomal RNAs. Finally in Sect. 9 we address some
questions and extensions that have been left open for future research and briefly
discuss the limits of the approach taken in this contribution.

2 Inside Recursion

Our goal is to compute the partition function of an ensemble of connected,
crossing-free secondary structures of N ≥ 1 RNA strands with a total length
n. We assume that the strands are given in a particular order π. Nucleotide
positions are order consecutively from 1 to n is this order of strands. For fixed
π, a structure is crossing-free if, given a base pair (i, j), another base pair with
i < k < j is allowed only if i < l < j. The set of crossing free structures remain
the same under circular permutations and are disjoint for any other permutation
of the strands [12]. The probability pk,l that (k, l) forms a base pair is therefore
a weighted sum of of the base pairing probabilities pk,l[π] of all permutations π
that fix the first strand. The contribution of each permutation π is proportional
to its partition function Q[π] [12], i.e., we have

pk,l =
∑

π

w(π)pk,l[π] with w(π) = Q[π]/Q , (1)
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where Q :=
∑

π Q[π] is the total partition function of the complex. From an
algorithmic point of view it therefore suffices to solve the folding problem for
a fixed permutation π. We may therefore assume that the strands are indexed
consecutively as s = 1, . . . , N .

Complexes that contain the same RNA strand more than once imply symme-
tries that complicate the problem and need to considered at different levels [12].
Copies of the same RNA sequence are not distinguishable. In the general case,
therefore, we have to interpret π not a permutation of the integers 1, 2, . . . , N ,
but as the permutations of the letters in a word (with the first letter fixed), where
letters correspond to strands accounting for the composition of the complex. We
write Π(κ) for the set of distinguishable non-cyclic permutations of the strands.
For instance, we Π(′AAB′) = {AAB} and Π(′ABAB′) = {AABB,ABAB}.

A related issue arises from secondary structures with r-fold rotational sym-
metry. Again, these are indistinguishable if they are formed over sequences with
the same rotational symmetry. In the dynamic programming algorithm they can-
not be separated from the non-symmetric structures. Algorithmically, therefore,
they are over-counted by a factor of r, corresponding to an energy contribution of
−RT ln r. The same symmetry also reduces the distinguishable conformations by
a factor of r, thus incurring an entropic penalty of +RT ln r, exactly compensat-
ing the algorithmic overcounting [12]. As a consequence, the issue of rotational
symmetry can be ignored in partition function calculations. We note that this
not true for energy minimization. Since rotationally symmetric structures are
destablized by the small – but not negligible – free energy contribution RT ln r
that cannot be accounted for in the dynamic programming algorithm, the predic-
tion of a symmetric ground state may be incorrect and the correct groundstate
is the most stable non-symmetric structure, see [19] for details. Symmetries of
the secondary structures also map nicks onto each other, r must be a divisor
of N and in particular no symmetries are possible for N = 1, where the end of
molecule is the only nick.

The standard energy model for RNA secondary structures [39] distinguishes
three types of “loops”: Hairpin loops contain no further interior base pairs. Inte-
rior loops, which contain stacked base pairs as the special case without inter-
vening unpaired bases, contain exactly one interior base pair. Multi-branch loops
(multi-loops for short) contain two more consecutive base pairs in their interior.
Energy contributions for hairpin and interior loops are tabulated as function of
closing (and interior) base pair and the sequence(s) of the unpaired stretches.
In contrast, a linear approximation is used for multiloops to keep the number of
parameters manageable and to ensure that the dynamic programming recursions
can evaluated in cubic time and quadratic space.

McCaskill’s original approach [28] to computing partition functions and the
generalization to multi-strand problems considers all structures. Designed for
single, contiguous sequences, of course all these structures are trivially connected.
It is thus legitimate to re-interpret the variables appearing in McCaskill’s algo-
rithms as partition functions over connected structures only. As noted in [12]
this implies that for N > 1 care has to be taken to enforce connectedness.
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Qi+1, Q +1,j−1ω(s) ω(s)

(s)ω (s+1)αi j

Fig. 1. Nicked loop case in the inside recursion. The RNA sequences are shown
as horizontal line, base pairs as arcs. Here, the base pair (i, j) connects two connected
components separated by a single nick between ω(s) and α(s + 1) = ω(s) + 1. Nicked
loops are exterior. The connected secondary structures on the intervals [i+1, ω(s)] and
[α(s + 1), j − 1] therefore contribute independently. As limiting cases, the nick may be
adjacent to i or j, in which case one of the two intervals [i + 1, ω(s)] = [i + 1, i] or
[α(s + 1), j − 1] = [j, j − 1] is empty. By definition it then contributes as factor of 1 to
the partition function. Figure from [26].

The notation in the contribution follows previous presentations of the
ViennaRNA package [18,25,27]. We write Qij for the partition function over all
crossing-free connected structures on the interval [i, j]. The partition function
over all crossing-free connected structures on the interval [i, j] that are enclosed
by the base-pair (i, j) are denoted by QB

ij . The additive approximation of mul-
tiloop energies implies that the partition function of a multiloop can be decom-
posed into multiplicative contributions, one for the its closing base pairs (i, j),
a term QM

i+1,u describing the left part of loop containing at least one stem, and
a term Q1

u+1,j−1 covering the rightmost component containing exactly one stem
whose outer-most base pair starts a position u+1. For a detailed description we
refer to [28].

In order to handle connectedness we first note that if a structure on [i, j] to
which the closing pair (i, j) is added is already connected, then the recursions
are the same as in McCaskill’s original algorithm. The difference for N > 1
thus comes from the situations in which (i, j) connects two distinct components.
Since the variables Qij , QB

ij , QM
i+1,u, and Q1

u+1,j−1 all refer to connected struc-
tures only, the latter case has to be included as additional alternative in the
decomposition of QB

ij [12]. It pertains to “loops” enclosed by (i, j) in which
exactly one nick is “exposed”, i.e., not covered by another base pair. From an
energetic point of view, such a loop is external, i.e., it does not incur the usual
destabilizing entropic contributions. The situation is outlined in Fig. 1.

We will need a bit of notation. Denote by ω(s) the 3’-most nucleotide position
of strand s. The contribution of “nicked loops” is then given by

QN
ij =

∑

s:i≤ω(s)≤j

e−εij/RT Qi+1,ω(s)Qω(s)+1,j−1 (2)

with the additional constraint that either both i and i + 1 as well as j − 1 and j
must be on the same strand, or the nick is adjacent to the base (i, j), in which
case either i = ω(s) and j−1 and j are on a common strand, or j−1 = ω(s) and



Efficient Algorithms for Co-folding of Multiple RNAs 199

i and i + 1 are on a common strand. The energy contribution εij of the nicked
loop comprises only the dangling end terms, see [39] for details.

3 Outside Recursion

In order to compute the base pairing probability pk,l[π] we need to evaluate the
ensemble of secondary structures that contain the base pair (k, l). All such struc-
tures are combinations of a secondary structure on [k, l] and a partial secondary
structure outside on [1, k] ∪· [l, n]. The non-crossing condition ensures that the
inside and outside structures can be combined freely, with additive energies and
thus multiplicative partition functions [28]. In fact, the “outside ensembles” can
be constructed as complements of “inside ensembles” in a systematic manner
[35]. A secondary structure containing (k, l) is connected if and only if both the
substructures inside and outside of (k, l) are connected, where connectedness of
the outside partial structure means that it is connected once the pair (k, l) is
added. Denote by Q̂k,l[π] the partition function over all connected partial sec-
ondary structures outside of the base pair (k, l). The partition function over all
connected structures that contain the pair (k, l) is then simply Q̂k,l[π]QB

k,l[π] and
we obtain the base pairing probabilities for a given permutation of the strands
as

pk,l[π] = Q̂k,l[π]QB
k,l[π]/Q[π] (3)

where Q[π] = Q1,n[π] is the partition function over all connected secondary
structures. The base pairing probabilities for a N -ary complex of interaction
RNAs [12] therefore can be computed as

pk,l =
∑

π

w(π)pk,l[π] =
1
Q

∑

π

Q̂k,l[π]QB
k,l[π] . (4)

The decomposition in Eq. (4) shows that we can compute the pk,l[π] indepen-
dently for each permutation π. We therefore drop the reference to π in the
following.

The ensemble of outside structures described by Q̂k,l consists of three mutu-
ally exclusive subsets of structures [28]: (1) structures in which (k, l) is not
enclosed by any other base pair with partition function Q̄k,l and (2) structures
in which (k, l) is enclosed by another base pairs (i, j). The latter can be subdi-
vided further depending on whether the loop enclosed by (i, j) contains (2a) no
nick or (2b) exactly one nick. The corresponding partition functions are denoted
by Q̆k,l and Q̈k,l, respectively. Recall that two or more nicks in a loop imply
that the secondary structure is not connected. The recursions for Q̄k,l and Q̆k,l

are identical to the ones developed in [28]. Since these recursions have been dis-
cussed repeatedly in the literature, we do not repeat the details here. It is worth
noting, however, that a näıve implementation of the recursions for Q̄k,l and Q̆k,l

requires O(n4) time. It is not difficult, however, to reduce the time complexity
to cubic with the help of auxiliary arrays of size O(n) [25,28].
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The focus of this contribution is the additional multi-strand case, i.e., the
partition function Q̈k,l. In order to avoid boundary cases we allow also terms of
Qi,i−1 = 1 denoting denoting empty intervals [25]. Note, however QB

i,j = 0 unless
i < j, and the terms also vanish if |j − i| < 3 unless there is a nick between i and
j since a hairpin loop contains a minimum of three unpaired bases. Thus the
minimum span of a base pair within a single RNA strand is |j − i| = 4. There is
no distance constraint across nicks, however. We write α(s) and ω(s) to denote
its 5’-most and 3’-most nucleotide position for strands s. Recall that strands
are numbered consecutively w.r.t. the given order π. Thus α(s + 1) = ω(s) + 1.
Furthermore, we write σ(i) = s if and only if α(s) ≤ i ≤ ω(s), i.e., if position
i occurs in strand s. Finally, we will need the same-strand indicator function
defined by ξi = 1 if σ(i) = σ(i + 1) and ξi = 0 otherwise, as well as its
complement ξ̄i := 1 − ξi.

To compute Q̈k,l we have to consider the relative position of focal base pair
(k, l), the enclosing base pair (i, j) and the nick. There are two mutually exclusive
cases: (1) the nick is located 3’ (right) of (k, l), i.e., between l and j and (2) the
nick is located 5’ (left) of (k, l), i.e., between i and k. In either case the secondary
structure enclosed by [i, j] is divided into two independent parts by the nick, i.e.,
their partition functions can be computed separately, and we obtain

Q̈k,l = Q̈3′
k,l + Q̈5′

k,l with (5)

Q̈3′
k,l =

∑

1≤i<k
l<j≤n

Q̂i,jQi+1,k−1

∑

s|l<α(s)≤j

Ql+1,α(s)−1Qα(s),j−1 (6)

Q̈5′
k,l =

∑

1≤i<k
l<j≤n

Q̂i,jQl+1,j−1

∑

s|i≤ω(s)<k

Qi+1,ω(s)Qω(s)+1,k−1 (7)

The evaluation of a single entry Q̈k,l according to Eqs. (6) or (7) requires O(n2N)
operations for N strands with a total length n. The overall running time of
O(n4N) by far exceeds the cubic time complexity of all other parts of the par-
tition function algorithm. The additional factor nN is a serious practical bur-
den. In the following section we show that time complexity can be reduced by
rearranging these recursions in such a way that the recomputation of certain
intermediate results can be avoided.

4 Computing Q̈k,l in Cubic Time

The key observation is that fixing the position l and computing the values of
Q̈k,l consecutively for all k, we can pre-compute and store contributions that
depend only on l and are required for all k. Again we have to consider nicks to
the left and to right of (k, l) separately. Fixing the second index k in Q̈5′

k,l, Eq.
(7), only affects the number of choices for i and s. Moreover, for each strand
s the choices of i are also fixed because i of the fixed upper bound i ≤ ω(s).
This suggests to pre-compute parts of the outside contribution for every s with
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|
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|

Fig. 2. Auxiliary arrays for computing base pair probabilities for the nicked-
loop case. On top the two arrays Q̈5′

k,l and Q̈3′
k,l are sketched, showing the focal base

pair (k, l), the enclosing pair (i, j), the position of the nick, and the partition function

terms contributing to the loop. The two auxiliary arrays Y 5′
s,l and Y 3′′

s,k (3rd and 4th
line) collect contributions that are independent of the choice of i and j, thus reducing
the effort to a sum over the strands s. Parts of these contributions are still re-computed
repeatedly when iterating over the l and k. Y 5′′

s,j and Y 3′
s,i (5th and 6th line) store these

parts for reuse. Figure adapted from [26].

ω(s) < l and all possible choices of i and j. More precisely, we define, for each l,
the auxiliary array

Y 5′
s = ξl

∑

j>l

ξj−1Ql+1,j−1

(
Q̂ω(s),j +

∑

i<ω(s)

ξi · Q̂i,j · Qi+1,ω(s)

)
. (8)

A graphical representation of the contributions captured by Y 5′
s is provided in

Fig. 2. The auxiliary array (which can be overwritten as the outer loop progresses
from value of l to the next, has size O(N) and each entry is computed in O(n2)
according to Eq. (8), resulting in a total effort of O(n2N). Equation (7) can now
be rewritten as

Q̈5′
k,l = ξ̄k−1Y

5′
σ(k−1) + ξk−1

∑

s|ω(s)<k

Qω(s)+1,k−1Y
5′
s . (9)
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Each of the O(n2) entries now requires O(nN) operations. Although we have
achieved a reduction of the effort by a factor of n, the effort still exceeds the out
goal of cubic time complexity.

A further improvement can be obtained by observing that parts of the sums
required to compute Y 5′

s for a given l can be re-used when Y 5′
s is computed

for l − 1 because consecutive entries differ only by a single extra value of j. To
make use of this observation we need to replace Y 5′

s by Y 5′
s,l, i.e., an array of size

O(nN) that retains the Y 5′
s as l changes, together with an additional auxiliary

array of the same size:

Y 5′
s,l = ξl

(
Y 5′′

s,l+1 +
∑

j>l+1

Ql+1,j−1 · Y 5′′
s,j

)
(10)

Y 5′′
s,j = ξj−1

(
Q̂ω(s),j +

∑

i<ω(s)

ξiQ̂i,j · Qi+1,ω(s)

)
. (11)

Since Y 5′′
s,j is independent of l and k we can now re-use the stored contributions

for every pair (k, l). Proper care has to be taken to properly interleave the com-
putations of Y 5′′

s,j with the part of the computation that loops over variable l

because Q̂i,j only become available for l < j. This does not affect the effort
required to pre-fill the array Y 5′′

s,j , which is still O(n2N). Hence, the time com-
plexity for the evaluation of one entry of Q̈5′

k,l reduces to O(n). The overall time
complexity to compute (9) thus becomes O(n2N) time and O(nN) space.

Let us now turn the second case, a nick located 3′ of base pair (k, l). Concep-
tually, we can use the same re-arrangement and pre-computation as for 5’ nicks;
the details differ, however. We start by observing that fixing the value of the
index k affects the possible choices of i only. The contributions to the left of the
nick, however, do not contain a re-usable factor independent of k because the
(i) recursion the involves the full contribution of Qi+1,k−1 and (ii) the strand-
changes we need to consider only depend on the current value of l. Instead, there
are contributions on the right hand side that can be pre-computed. Define the
auxiliary array

Y 3′
s,i = ξi

(
Q̂i,α(s) +

∑

j>α(s)

ξj−1Q̂i,jQα(s),j−1

)
(12)

of size O(nN). We observe that Y 3′
s,i is independent of both k and l and thus

they can be pre-computed and then re-used for any pair (k, l). Substituting Eq.
(12) into Eq. (6) yields

Q̈3′
k,l = ξk−1

∑

i<k

ξiQi+1,k−1

(
ξ̄lY

3′
σ(l+1),i + ξl

∑

s|α(s)>l

Ql+1,α(s)−1Y
3′
s,i

)
. (13)
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The O(n2) values of Q̈3′
k,l therefore can be evaluated in total time O(n3N) the

expense of storing the nN auxiliary values Y 3′
s,i. This does not meet our goal of

cubic time complexity, however. A further reduction can be achieved by observ-
ing that the order of summation in Eq. (13) can be changed to make the inner
sum independent of l. This suggests to introduce the auxiliary array

Y 3′′
s,k = ξk−1

∑

i<k

ξiQi+1,k−1Y
3′
s,i (14)

of size O(nN). Figure 2 gives a graphical representation of the class of structures
contributing to Y 3′′

s,k . The array can be computed from all positions k all strands
s in O(n2N) time. Substituting the auxiliary terms Eq. (14) into Eq. (6) yields
a recursion similar to Eq. (9):

Q̈3′
k,l = ξ̄lY

3′′
σ(l+1),k + ξl

∑

s|α(s)>l+1

Ql+1,α(s)−1Y
3′′
s,k . (15)

Assuming that the O(nN) values of Y 3′′
s,k are stored, it can be evaluated in

O(n2N) total time. As for the 5’ nicks, proper interleaving into the recursion is
necessary because Y 3′

s,i depends on Q̂i,j . To this end, we fill Y 3′
σ(l+1),i for all i if

ξl = 1 and subsequently re-compute Y 3′′
s,k .

In order to achieve cubic running time we have introduced four auxiliary
arrays of size O(nN), Y 5′

s,j , Y 5′′
s,j , Y 3′

s,i, and Y 3′′
s,i , each of which can be filled in total

time O(n2N). The matrix Q̈3′
k,l of course does not need to be stored. Instead,

the value of Q̈3′
k,l can immediately be added to the other contributions of Q̂k,l

and only the latter, or base pairing probabilities pk,l, need to be committed
to memory. The extra effort for the outside recursion thus matches the extra
effort for the inside recursion of the multi-strand folding problem. The number
of strands will be much smaller than the total sequence length, N � n, in
any reasonable application scenario. The additional space and time resources
required for the multi-strand version of McCaskill’s partition function algorithms
therefore are asymptotically negligible compared to the single-strand case.

5 Implementation

RNAmultifold is part of the ViennaRNA package [18,25], release 2.5.0a2. It
provides access to both minimum energy and partition function calculations
for arbitrary numbers of strands N . The user can choose to either evaluate a
single permutation of the given strands, all permutations corresponding to a
given connected complex, or all connected complexes with up to N constituents.
Figure 3 shows the base pairing probabilities of a toy example.
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Fig. 3. Toy example with N = 4 strands (orange, cyan green and yellow) each of length
20, i.e., total length n = 80. The dot plot representation (left) shows the base pairing
matrix for a fixed permutation π of the four strands in its upper right half. The lower
left half shows the minimum free energy (MFE) structure for the same permutation.
The area of each “dot” is proportional to pij [π]. Thick lines separate the four strand.
The corresponding MFE structure is shown to the right.

A well-known practical issue for the implementations of partition function
algorithms are overflow and underflow errors arising from the fact that par-
tition functions consist of exponential terms that quickly grow beyond the
range of floating point number as the system size n increases. The ViennaRNA
package addresses this problem by working with rescaled terms of the form
qij := Qij/ζj−i+1. The scaling constant ζ is an estimate for the position-wise
multiplicatice contribution to Q, i.e., n

√
Q = exp(−g/RT ), where g = G/n is an

estimate for the free energy of folding per nucleotide position [18]. This approach
is sufficient to keep qij and the corresponding restricted partition functions suffi-
ciently close to 1 to avoid overflows for sequence length at least up to 104, which
appears sufficient for practical applications. A very good estimate is to use the
scaled ground state energy g = E∗/n. The value of E∗ can be computed without
numerical problem since the minimum energy computation is implemented using
integer arithmetic [18].
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The ViennaRNA package provides a flexible framework to handle constraints.
It distinguishes soft constraints, which are implemented as additional pseudo-
energy contributions associated with an unpaired base, a base pairs, or an loop,
and hard constraints corresponding to forbidden or enforced base pairs [27]. A
useful observation in this context is that hard constraints that enforce base pairs
between strands can lead to forbidden permutations for N > 2: the observation
that connected structures are crossing-free in only a single non-cyclic permuta-
tion also pertains to constraints. Three or more strands that are connected by
hard constraints thus have feasible non-crossing structure only in a single per-
mutation. All other permutations are excluded already during the preprocessing
of the hard constraints. We note in passing that RNAmultifold also handles
intra-strand G-quadruplexes in the same way as in a single RNA molecule [24].
Both RNA and DNA parameters can be used as in other components of the
ViennaRNA package.

6 Benchmarking

We designed a benchmark data set aiming to minimize sequence-specific varia-
tions between instances with different numbers of strands. To this end we gener-
ated 10 random sequences for each length n and subdivided these into a different
number N of separate strands. From the theoretical considerations in the Sect.
4 we expect that both memory consumption and running time should becomes
independent of N for large values of the total sequence length n. Empirically, we
found that the number of strands has a significant influence only for very short
sequences with an average length of individual strands smaller than about 20 nt.

Figure 4 shows that RNAmultifold consistently outperforms NUPACK 3.2.2
[43]. For large sequences, the inside recursion of RNAmultifold is about 35×
and the outside recursion is about 50–65× faster. The memory requirements of
RNAmultifold are about 7× lower.

Both RNAfold and RNAcofold are contained in the ViennaRNA package and
use identical energy parameters. The results of RNAmultifold and RNAfold
(N = 1) as well as RNAcofold (N = 2) coincide within the expected numer-
ical inaccuracies. These programs do not show significant differences in memory
consumption. RNAfold is 10–15% faster than RNAmultifold. The outside recur-
sion of RNAmultifold, however, is about two times faster than the corresponding
part of RNAcofold. We do not show these small differences separately in Fig. 4.



206 R. Lorenz et al.

# Strands 1 2 5 10 15 20 25 30

10−2

10−1

100

101

102

103

150 300 600 900 1200 2100 3000

R
un

ni
ng

 T
im

e 
[s

]

102

103

104

105

150 300 600 900 1200 2100 3000

M
em

or
y 

C
on

su
m

pt
io

n 
[k

B
]

Total sequence length [nt]

NuPack

RNAmultifold

Fig. 4. Comparison of the performance measures for NUPACK (version 3.2.2) and
RNAmultifold for different values of the total sequence length n and number N of
strands. For each data point, 10 random instances were averaged. The theoretical
asymptotic complexities O(n3) for running time and O(n2) for memory consumption
are shown as thin gray lines. Figure adapted from [26].

7 Concentration Dependence

The formation of an RNA duplex is associated with an additional entropic con-
tribution ε0 for the initiation of helix formation. In the standard energy model,
this term is already subsumed in the loop energies [33,39] and therefore does not
appear for N = 1. In the case of RNA-RNA interactions, however, an initiation
term must be associated with each nicked loop. Since a connected structure with
N strands always has exactly N − 1 nicks, all connected structures in a complex
with given composition are receive a contribution of (N − 1)ε0, which cancels
in Eq. (1) and thus can be ignored in the context of a fixed interaction com-
plex. They do, however, play a role when complexes with a different number of
constituents are compared. The partition function of the ensemble of connected
structures of a complex κ composed of N (not necessarily distinct) RNA strands
including the initiation correction is

Zκ = e−(N−1)ε0/RT
∑

π∈Π(κ)

Q[π] (16)

The stability of RNA-RNA complex is inherently concentration dependent.
The easiest way to see this is to note that the association (and its reverse, the
dissociation) of a complex

A1A2...Ak + B1B2...Bl � A1A2...AkB1B2...Bl (17)
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changes the number of particles. The equilibrium constant for this reversible
reaction is K = ZA1A2...AkB1B2...Bl

/ZA1A2...Ak
ZB1B2...Bl

, see e.g. [5,10,12].
According to the law of mass action we can express the equilibrium constant
for formation of κ from its constituent strands A1, A2,. . . , AN as

Kκ =
Zκ

ZA1ZA2 . . . ZAN

=
[κ]

[A1] [A2] · · · [AN ]
, (18)

where [. . . ], as usual in the chemical literature, denotes the concentration of a
complex or individual strand.

We introduce the membership matrix A whose entries Aα,κ count the number
of strands of type α in complex κ. Assume that our systems contains the total
concentration cα of strand α. The concentration [α] of a strand α that is not
contained in a complex is thus

[α] = cα −
∑

κ

Aα,κ[κ] (19)

Since the system (17) of reversible reactions in particular can be endowed with
mass action kinetics, there is a unique equilibrium point [34]. Alternatively, this
can be proved starting from the partition function of the grand-canonical ensem-
ble [12]. In the same contribution it is shown that the equilibrium concentrations
can be computed by maximizing a function h [12, equ. (3.7)], which in our nota-
tion reads

h(�λ) =
∑

α

(λαcα − Zαeλα) −
∑

κ

Zκ exp

(
∑

α′
λα′Aα′,κ

)
(20)

Since the partition function for large molecules are in an “inconvenient” numer-
ical range, we use the transformation Lα := λα + ln Zα to express the objective
function in terms of the equilibrium constants and maximize:

h(�L) =
∑

α

(cαLα − eLα) −
∑

κ

Kκ exp

(
∑

α′
Lα′Aα′,κ

)
, (21)

where we have omitted the constant term −∑
α cα ln Zα since it does not affect

the maximum. The equilibrium concentrations can then be obtained from [12,
equ. (3.12)], which we can rewrite as

[α] = eLα [κ] = Kκ

∏

α

[α]Aα,κ (22)

Note that the second equation recovers the law of mass action, Eq. (18). It is not
difficult to obtain explicit expressions for the gradient and the Hessian of h (see
Appendix). As suggested in [12], we use the Trust Region Method implemented
as find min trust region() in dlib [22]. Our implementation of h(�L) and
its partial derivatives makes extensive use of the “log-sum-exp trick” to avoid
overflow and underflow problems.
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Writing c =
∑

α cα for the total concentration of RNA strands we can
also compute the concentration-dependent probability of observing a base-pair
between position i in strand α and position j in strand β by summing the [κ]pij/c
over all complexes κ (and strand α in case α = β). If α and β appear more than
once in a given complex, the base pairing probabilities need to be averaged over
different combinations of interacting copies of α and β within each given complex.

8 Spliceosomale RNAs: A Showcase Applications

The spliceosome is highly dynamic, complex machinery comprising a multitude
of proteins as well as the five spliceosomal snRNAs (U1, U2, U4, U5, U6). During
the splicing reaction, its composition and internal structure, which also involves
direct base pairing interactions between the snRNAs, is drastically rearranged [41].
Neglecting the mRNA target, the effect of RNA protein binding, and any chem-
ical modifications of the snRNAs, we predict the formation of (parts of) the pre-
catalytic spliceosome complex B, in particular its predecessor, the U4/U6.U5 tri-
snRNP. To that end, we consecutively increased the concentrations of the indi-
vidual snRNAs from an initial 0.05μM to 10μM in the order U6, U4, U5, and
U2. Figure 5 shows the equilibrium concentrations of the snRNA complexes. We
observe the formation of U4/U6 as soon as their constituents are available in suffi-
cient concentrations. Upon adding U5, the U4/U6 complex becomes less favorable,
instead the triplex U4/U6.U5 dominates the ensemble. Increasing the concentra-
tion of U2 afterwards, however, does not seem to affect the equilibrium concentra-
tion of U4/U6.U5 nor do we observe any appreciable increase in the concentration
of the U4/U6.U5 + U2 tetraplex. Instead, U2 tends to form homo-tetramers. This
discrepancy of the prediction with respect to the accepted model of splieceoso-
mal complex formation might be attributed to our simplified model that omits the
effect of chemical modifications of the snRNAs, and the impact of protein binding.

U6/U6

U2/U2/U2/U2

U5

Fig. 5. Concentration dependence of the complexes formed by the human U6, U4, U5,
and U2 spliceosomal snRNAs. The concentration of each snRNAs is increased from
0.05μM to 10μM in each sub-panel and then fixed at 10μM for the rest of the simula-
tion. We observe the formation of the U4/U6 dimer complex and the U4/U6.U5 triplex.
Increasing the concentration of U2 does not yield any noticable amounts of a U4/U6.U5
+ U2 tetraplex. Instead, U2 tends to form homomultimers, possibly due to the lack of
protein binding and chemical modifications of the snRNAs in our simplified model.
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The base pairing probabilities pk,l can be used to obtain further derived quan-
tities such as expected number NAB of base pairs connecting any two strands
A and B in a complex [12]. Since RNAmultifold provides access to the full
framework for handling constraints in the ViennaRNA package [27], we easily
can use hard constraints to exclude base pairs between certain strands. This
provides a convenient thermodynamic estimate for the importance of a binary
interaction in the complex. Denoting by Q the unconstrained partition function
writing QA|B for the partition function with the constraint that no base pairs
can be formed between A and B. The contribution of the A-B interaction to the
complex stability can then be measures by the partial opening energy

ΔGA|B = RT ln Q − RT ln QA|B ≥ 0. (23)

U2 U44.4931

U5
2.3147

U6

0.0337

0.0014

11.9961

6.9295

Fig. 6. Importance of binary interactions in the U2 + U4/U6.U5 snRNA complex
expressed as ΔGA|B in kcal/mol. The most stabilizing interactions are U4/U6 followed
by U5/U6. Interactions of U2 with any snRNA other than U4 do not play an important
role in the overall stability of the full tetraplex.

As an example, we again use the four snRNAs U2, U4, U5, and U6 and com-
pute ΔGA|B for each pair of interaction in the quaternary complex, see Fig. 6.
The largest stabilizing contributions of any complex formed by the four snRNAs
can be attributed to U4/U6 and U5/U6 interactions. While still noticable, the
interaction between U2 and U4 only contributes a small amount to the over-
all energy of the complex. In particular, the interactions of U2 with any other
snRNA appears energetically negligible.

9 Concluding Remarks and Future Challenges

RNAmultifold extends the ViennaRNA to handling the multi-strand RNA folding
problem. For a fixed permutation π of the strands it computes the partition
function (inside recursion) and the base pairing probabilities (outside recursion)
in O(n3) time and O(n2). Our implementation has negligible overhead compared
to RNAfold and RNAcofold. The performance compares favorably with NUPACK,
at present the only competing software, saving nearly an order of magnitude in
memory and about a factor of 50 in running time.
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The ViennaRNA package provides access to multi-strand folding at three dif-
ferent levels of abstraction. First, computations can be conducted for fixed π
as described at length in Sects. 2–6. The interface at the low level is useful in
particular when large complexes are considered for which the set of permuta-
tions Π is too large to enumerate exhaustively. For smaller problems, functions
are available that autonomously handle a complex with a given composition,
returning e.g. aggregated base pairing probabilities, Eq. (1). At the top level, a
mixture of strands and a list of allowed complexes can be defined to compute
concentration-dependent observables.

Nevertheless, some issues remain open for future research. Some functionali-
ties of the ViennaRNA are not yet available for multi-strand folding. Some of these
features are straightforward extension of the partition function algorithms, and
will become available with the next major release. This concerns in particular
stochastic backtracking to sample individual structures with Boltzmann proba-
bilities [11,36] and extensions of the RNA folding grammar necessary to handle
multiple ligand binding sites [15] again making use of the constraints framework
described in [27]. Since the symmetry effects compensate for partition functions,
no symmetry corrections apply in the sampling process. The enumeration of sub-
optimal structures [42] is an extension of MFE folding algorithm [42]. Here we
will have to take special care to properly treat the energy penalties associated
with structures with symmetries that appear in particular in homo-dimers and
-multimers [19].

A closer inspection of the folding recursions for different permutations π
and π′ reveals that parts of the arrays that need to be computed the forward
recursions are identical. This suggests to avoid the recomputation to reduce the
computational efforts. For larger numbers of strands and/or complexed com-
posed of many strands it will be necessary to develop approximations that make
it possible to decide without detailed computations which complexes and which
permutations of strands within a complex need to be considered and which ones
can be neglected.

RNAmultifold handles only pseudo-knot-free structures and thus excludes
certain modes of RNA-RNA interactions such as kissing hairpins that are rele-
vant both in biological and technological systems. While a large class of strand-
displacement systems are pseudo-knot free, many of the sensor and signal ampli-
fication systems reviewed in [40] go beyond this paradigm. A simple extension
of the approach taken here to pseudoknotted structures does not seem possible,
however. Since there is no analog of the partitioning of connected structures
into disjoint classes depending on the permutations of the strands, the entire
“concatenation-like” paradigm becomes untenable. A possible alternative might
be to used RNAup/intaRNA-like methods [4,7,30] to compute individual, localized
interactions between entire complexes and to construct a network of exchange
reactions between complexes. Such an approach, however, is very different from
considering the full ensemble of all structures.
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Availability

RNAmultifold can be downloaded as part of ViennaRNA Package 2.5.0a2 from
www.tbi.univie.ac.at/RNA.

Appendix

Gradient and Hessian of h

Efficient optimization of h, Eq. (21), required the gradient and the Hessian of h,
which we give here for convenience:

∂h

∂Lα
= cα − eLα −

∑

κ

Aα,κKκ exp

(
∑

α′
Lα′Aα′,κ

)

∂2h

∂Lα∂Lβ
= −δαβeLα −

∑

κ

Aα,κAβ,κKκ exp

(
∑

α′
Lα′Aα′,κ

) (24)

We note that the Hessian is negative definite since the sum can be written as
−MM+ with Mα,κ = Aα,κ

√
Kκ exp

(
1
2

∑
α′ Lα′Aα′,κ

)
.
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