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Preface

The present book includes extended and revised versions of a set of selected papers
from the 13th International Joint Conference on Biomedical Engineering Systems and
Technologies (BIOSTEC 2020), held in Valetta, Malta, from the 24th to the 26th of
February. BIOSTEC is composed of five co-located conferences, each specialized in a
different knowledge area, namely BIODEVICES, BIOIMAGING, BIOINFOR-
MATICS, BIOSIGNALS, and HEALTHINF.

BIOSTEC 2020 received 363 paper submissions from 56 countries, of which only 7%
are included in this book. This reflects our care in selecting those contributions. These
papers were selected by the chairs and their selection is based on a number of criteria that
include the classifications and comments provided by the program committee members,
the session chairs’ assessment, and the program chairs’ meta review of the papers that
were included in the technical program. The authors of selected papers were invited to
submit a revised, extended, and improved version of their conference paper, including at
least 30% new material.

The purpose of the BIOSTEC joint conferences is to bring together researchers and
practitioners, including engineers, biologists, health professionals, and
informatics/computer scientists. Research presented at BIOSTEC includes both theo-
retical advances and applications of information systems, artificial intelligence, signal
processing, electronics, and other engineering tools in areas related to advancing
biomedical research and improving healthcare.

The papers selected to be included in this book contribute to the understanding of
relevant trends of current research in the biomedical engineering field. This book
contains chapters describing novel trends in biodevices and biosignals as well as a set
of papers describing the current research on medical image analysis. Some book
chapters devoted to bio-informatics focus on cutting-edge methods for predicting
crucial dynamical properties of biochemical pathways and addressing the structure
prediction problem for multiple RNAs. Finally, the health informatics contributions are
the majority, accounting for almost half the chapters, and they express a high
heterogeneity. The most frequent topics include eHealth applications, data mining, and
predictive applications that embed some form of machine learning. However, also
usability studies and certification issues are covered by some chapters: this can be taken
as a sign of lively multidisciplinarity and of increasing attention to human-centered
design and research.



We would like to thank all the authors for their contributions and also the reviewers,
who have helped to ensure the quality of this publication.

February 2020 Xuesong Ye
Filipe Soares

Elisabetta De Maria
Pedro Gómez Vilda

Federico Cabitza
Ana Fred

Hugo Gamboa
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Abstract. Recognizing food images arises as a difficult image recogni-
tion task due to the high intra-class variance and low inter-class variance
of food categories. Deep learning has been shown as a promising method-
ology to address such difficult problems as food image recognition that
can be considered as a fine-grained object recognition problem. We argue
that, in order to continue improving performance in this task, it is neces-
sary to better understand what the model learns instead of considering it
as a black box. In this paper, we show how uncertainty analysis can help
us gain a better understanding of the model in the context of the food
recognition. Furthermore, we take decisions to improve its performance
based on this analysis and propose a new data augmentation approach
considering sample-level uncertainty. The results of our method consid-
ering the evaluation on a public food dataset are very encouraging.

Keywords: Uncertainty modeling · Food recognition · Deep learning

1 Introduction

In the present fast-paced world, unhealthy food habits are the basis of most
chronic diseases (like obesity, diabetes, cardiovascular related diseases, thyroid,
etc.). All over the world, problems regarding nutritional habits are related to
the lack of knowledge about what people are eating on a daily basis. Unhealthy
habits can more easily be prevented if they have the awareness about the nutri-
tional value of the food they consume in their daily meals (Alliance 2019). The
problem is that more than 80% of people is not completely aware of how much
they eat, what percentage of proteins, carbohydrates, salt, etc. are consumed in
every plate. Moreover, it is quite difficult for people to calculate the nutritional
aspects for every meal they consume (Sahoo et al. 2019). Manual calculation
of this information is quite time-consuming and more often results in impre-
cise methods. This creates the need for automatic systems that would be able
c© Springer Nature Switzerland AG 2021
X. Ye et al. (Eds.): BIOSTEC 2020, CCIS 1400, pp. 3–16, 2021.
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to log the food a person consumes everyday (Bruno and Silva Resende 2017).
This would enable both the patients and the health care professionals to better
manage chronic conditions related to nutrition (El Khoury et al. 2019).

Automatic food recognition is not only performed in the dietary management
of patients, but has a wide variety of applications in the food and restaurant
chains. Food detection in smart restaurants is becoming a practical application
rather than a research problem (Aguilar et al. 2018). Automatic food recognition
faces challenging computer vision and machine learning problems due to the
nature of images that are used in this task (see Fig. 1).

Fig. 1. Example of high within-class variability belong to the ravioli food class.

Deep learning algorithms have become very popular, and they own this pop-
ularity to their exceptional performance, enhanced processing abilities, large
datasets, and outstanding classification abilities compared to the traditional
machine learning methods (Subhi et al. 2019). However, despite the good perfor-
mance shown, deep learning algorithms need huge amounts of data or they are
prone to overfitting. To avoid it, one of the most difficult and general problems in
this work is getting an adequate dataset, which not only means a large dataset,
but also composed of very diverse and carefully curated samples.

Data augmentation is a popular strategy adopted to prevent deep learning
methods from overfitting. It consists in applying transformations to the original
data in order to increase the sample size and its variability. Examples of standard
transformations in images are: random crops, image flips or reflections and color
distortions. On the other hand, novel solutions have been provided by Generative
Adversarial Network-based methods (GANs), which can generate synthetic, new
and plausible images. However, the majority of data augmentation strategies
have been applied indistinctly for all the images, without taking into account
that in some cases, particular classes or images can be harder to classify and
would require more particular data augmentation methods. On the other hand,
uncertainty analysis can give us a good clue to understand what does the model
learn and from this, we can expand the dataset to overcome the deficiencies we
find. In this work, we propose to explore a combination of both fields: GANs
and uncertainty modelling, with the aim of generating new data focusing on the
samples that the model has not been able to learn well (with high uncertainty).

The major contributions of this work are as follows: a) to use Epistemic
Uncertainty to find the samples that are the hardest for the model to learn; and
b) to use Generative Adversarial Networks to perform data augmentation to
create visually similar images to the hard samples in the dataset. The rest of the
work is organized as follows. Next section details the recent relevant literature.
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Section 3 explains the proposed methodology. Experimental details are provided
in Sect. 4, followed by conclusions in the last Section.

2 Related Work

Food image analysis is an active area of research, which analyses food data from
various sources and applies it to solve different food-related tasks. Here, the most
relevant recent literature is discussed.

2.1 Food Recognition

Food recognition is a challenging computer vision task, due to the complex nature
of food images. The images could contain dishes that are mixed or could contain
many food items (Wang et al. 2019). The task is of a fine-grained nature, where
the classes have high intra-class variability and high inter-class similarity.

The initial works related to the recognition task used different hand-crafted
features such as color, texture and shape (Matsuda et al. 2012; Chen et al.
2009; Joutou and Yanai 2009; Bosch et al. 2011). These works were primarily
concerned with tackling the problem in a constrained environment. The datasets
during these studies had less number of images or classes and are restrictive in
the conditions in which the images were taken (Ciocca et al. 2017a; Matsuda et
al. 2012; Chen 2016).

With the advent of Convolutional Neural Networks (CNN), food recognition
tasks of complex nature were also tackled. CNNs were able to massively outper-
form by far the traditional food recognition algorithms. The datasets started to
have large numbers of images and a large number of dishes were being recognized
(Bossard et al. 2014; Ciocca et al. 2017b; Donadello and Dragoni 2019; Kaur et
al. 2019). Different CNNs have been successfully applied to food recognition task,
as AlexNet (Yanai and Kawano 2015), GoogLeNet (Wu et al. 2016; Meyers et
al. 2015; Liu et al. 2016a), Network-In-Networks (Tanno et al. 2016), Inception
V3 (Hassannejad et al. 2016), ResNet-50 (Ming et al. 2018), Ensemble NN (Nag
et al. 2017), Wide Residual Networks (Martinel et al. 2018), and CleanNet (Lee
et al. 2018).

Food images in the wild often contain more than one food class. There-
fore multi-label food recognition and detection have an increased complexity.
Also, different food can be located very close to each other or even mixed. In
this case, food recognition is usually preceded by food detection (Anzawa et al.
2019). Earlier works involved using colour and texture-based food segmentation
(Anthimopoulos et al. 2014). (Aguilar et al. 2019) proposed a semantic food
framework, covering food segmentation, detection and recognition. (Chen et al.
2017) focused on multi-label ingredient recognition, while a multi-task learning
has been proposed in the works of (Aguilar et al. 2019; Zhou et al. 2016).

The high inter-class similarity of the food images makes it difficult to train
models that could be used to recognize dishes in the wild. Although large datasets
are created with more classes, the images do not represent the complex nature
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of the food. Therefore, generative models could be used to create new synthetic
data that are similar to the real world data.

2.2 Generative Adversarial Network

A Generative Adversarial Network (Goodfellow et al. 2014) is a deep learning
method that generates very realistic synthetic images in the domain of interest.
In the GAN framework, two different networks compete with each other. And
these two networks work as thief (generator) and police (discriminator). The
Generator, as its name states, generates fake samples from random noise and
tries to fool the Discriminator. On the other hand, the Discriminator has the
role of distinguishing between real and fake samples.

They both compete with each other in the training phase. The steps are
repeated several times in order for the Generator and Discriminator to get better
in their respective jobs after each iteration.

One of the most popular extensions of Generative Adversarial Nets is the
conditional model. Note that in an unconditioned generative model, there is no
control over modes of the data being generated. However, in the Conditional
GAN (CGAN) (Mirza and Osindero 2014), the generator learns to create new
samples with a specific condition or set of characteristics. Such conditioning could
be based on class labels, on some part of data for inpainting like (Goodfellow et
al. 2013), or even on data from different modalities. Thus, in CGAN both the
generator and the discriminator are conditioned on some extra information y,
where y could be any kind of auxiliary information such as a label associated to
an image or more detailed tag, rather than a generic sample from an unknown
noisy distribution.

A further extension of the GAN architecture, which is built upon the CGAN
extension, is the Auxiliary Classifier GANs (ACGAN) (Odena et al. 2017). In
ACGAN, the input is the latent space along with a class label. Furthermore,
every generated sample has a corresponding class label. The Generator model
receives as input, a random point from the latent space and a class label, and
gives as output the generated image. The Discriminator model receives as input
an image and returns as output the probability that the provided image is real,
or the probability of the image belonging to each known class. As well known,
unbalanced data is a big problem for object recognition, where models tend
to classify much better in the dominant classes. In the case of the GANs, this
problem is also present producing low quality synthetic images in classes with
few samples. Some proposals have addressed this problem (Mariani et al. 2018;
Ali-Gombe and Elyan 2019), which are discussed in the following paragraphs.

In BAGAN (Mariani et al. 2018), an augmentation framework is proposed
to restore balance in unbalanced datasets by creating new synthetic images for
minority classes. The proposed approach requires two training steps: the first cor-
responds to initializing the GAN with the features learned by means of an auto-
encoder, and then the entire model is retrained. Another approach to restore
balance is MFC-GAN (Ali-Gombe and Elyan 2019). Oppositely to BAGAN,
MFC-GAN is simpler to train and just needs one training step. This model uses
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multiple fake classes to ensure a fine-grained generation and classification of the
minority class instances.

A novel method titled SINGAN (Shaham et al. 2019) has been recently pub-
lished. Differently to previous GANs, this model is an unconditional generative
model that can be learned from a single natural image. SINGAN model is trained
to capture the internal distribution of the image patches, then it generates high
quality, diverse samples that contain the same visual content as the image. The
pyramid structure of fully convolutional layers of SINGAN learns the patch dis-
tribution of the image at a different scale in each layer. This results in generating
new samples of arbitrary size and aspect ratios that have significant variability,
yet maintain both the global structure and the fine textures of the training
image.

SINGAN requires to train a separate model for each new sample that one
desires to generate from a particular image, thus, becoming a very expensive
technique. However, this can be very useful if we only need to increase a small
subset of the images. Uncertainty modeling can help us decide which subset is
best suited to improve model performance.

2.3 Uncertainty Modeling

Uncertainty can be explained simply as a state of doubt about what the model
has or has not learned from the input data. In Bayesian modeling, uncertainty
mainly can be presented in two different ways (Kendall and Gal 2017): aleatory
uncertainty, which captures noise inherent in the observations; and epistemic
uncertainty, which can be explained away given enough data. The uncertainty
can be captured from a Bayesian Neural Network (BNN). However, in a Deep
Learning scheme it becomes intractable in this way (Blundell et al. 2015; Gal and
Ghahramani 2016; Sensoy et al. 2018). Instead, variational Bayesian methods
have been adopted in the literature (Blundell et al. 2015; Gal and Ghahramani
2016; Molchanov et al. 2017; Louizos and Welling 2017), where MC-dropout (Gal
and Ghahramani 2016) is the most popular technique to estimate the uncertainty
due to its simplicity regarding to the implementation.

Recent methods of image classification have adopted this technique to esti-
mate the uncertainty in their scheme (Aguilar et al. 2019; Khan et al. 2019;
Aguilar and Radeva 2019b; Aguilar and Radeva 2019a; Nielsen and Okoniewski
2019). In the case of (Aguilar et al. 2019), the aleatory uncertainty is used in
order to weigh dynamically different kinds of losses for multi-label and single-
label food-related tasks. On the other hand, in (Khan et al. 2019), the authors
deal with the imbalanced object classification problem. They redefined the large-
margin softmax loss (Liu et al. 2016b), incorporating uncertainty at the class-
level and sample-level based on the Bayesian uncertainty measure to address the
rarity of the classes and the difficulty level of the individual samples. Regarding
(Aguilar and Radeva 2019b; Aguilar and Radeva 2019a), the analysis of the epis-
temic uncertainty has been applied for different purposes: to identify the best
data augmentation that will be applied in a particular class (Aguilar and Radeva
2019a) and to judge when a flat or hierarchical classifier is used (Aguilar and
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Fig. 2. Main scheme of the our UAGAN food recognition method.

Radeva 2019b). A work closer to our proposal, but not in the food recognition
field, is that published by (Nielsen and Okoniewski 2019), that proposes an active
learning scheme based on acquisition function sampling. This mechanism con-
siders the prediction uncertainty of the classifier to determine the GAN samples
to incorporate in the training set, which are labeled by an external oracle.

The main differences between our proposal and (Nielsen and Okoniewski
2019) are the following: a) our aim is completely different, we apply the uncer-
tainty analysis to discover complex samples to perform data augmentation, and
not to apply it after the data augmentation to select the sample that will be
used during the training, b) our training scheme is done in two phases, and not
several phases, which do not require an external oracle to do it, because the
labels are automatically assigned, and c) we adopt a GAN that generates a new
sample keeping a high quality content of the input image, instead of generating
a sample by merging different input images that in some cases can be very noisy
and insert a bias towards the most frequent content.

3 Uncertainty-Aware GAN-Augmented Food Recognition

In this section, we describe all phases involved in the Uncertainty-Aware GAN-
Augmented (UAGAN) method to perform food recognition using uncertainty
modeling and GANs. As you can see in Fig. 2, the method contemplates 3 main
phases with the following purposes: a) hard samples discovery, b) synthetic image
generation and c) final training.

3.1 Hard Sample Discovery

The first step of our proposed approach involves the analysis of the food images
of the training set, with the aims of identifying those that are difficult to classify.
To do this, our criterion is based on the analysis of Epistemic Uncertainty (EU)
through the calculation of the entropy. The samples with high uncertainty are
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those in which the model has not been able to learn well their discriminant fea-
tures and, therefore, are considered hard samples. On the other hand, we adopt
the method called MC-dropout (Gal and Ghahramani 2016) for EU estimation,
mainly due to its simple implementation. Basically, we need to add a dropout
layer before each fully connected layer, and after the training, we perform K
predictions with the dropout turned on. The K probabilities (softmax outputs)
are averaged and then the entropy is calculated to reflect the EU. Finally, the
images are ordered with respect to their EU, and we select the top n images
with higher EU to perform the next step.

3.2 Image Generation

Once the images have been chosen, the next step corresponds to increasing the
data with nearby images in terms of visual appearance. We believe that one
of the determining factors that does not allow the model to learn the features
of hard images corresponds to the fact that they differ from most images that
represent a particular class. This hard images may be present in the training
set due to the complexity of the acquisition and also after dividing the data
for the training. The latter is due to the fact that during the generation of
subsets only the sample size is considered and not the variability of the sample.
Therefore, we propose to make new images by applying small changes to the
original ones. The best method for this purpose is the recent GAN-based method
called SINGAN (Shaham et al. 2019), which can learn from a single image and
generate different samples carrying the same visual content of the input image.
In this step, we adopt the SINGAN to generate one synthetic image for each
chosen image according to the uncertainty criterion.

3.3 Final Training

Finally, in the last step, the whole CNN model is trained with both types of
images: the synthetic images obtained with SINGAN and the original images.

4 Validation

In this section, we first describe the dataset used to evaluate the proposed app-
roach, which is composed of public images of food belonging to Italian cuisine.

Next, we describe the evaluation metric and experimental setup. Finally, we
present the results obtained with the baseline methods and our proposal.

4.1 Dataset

From the dataset MAFood-121 (Aguilar et al. 2019), we use all the images of the
dishes that belong to the Italian cuisine. In total, 11 dishes were chosen, which
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are composed of 2468 images with a maximum, minimum and average of 250,
104 and 224 images, respectively. The data is distributed as 72% of the images
for training, 11% for validation and 17% for test.

4.2 Metric

In order to evaluate our proposal, we use the standard metric used for object
recognition named overall Accuracy (Acc). We evaluate our experiment 5 times
and show the result in terms of average accuracy and the respective standard
deviation.

4.3 Experimental Setup

For classification purposes, ResNet-50 (He et al. 2016) was adopted as the base
CNN architecture. We adapted this model to be able to apply MC-dropout by
removing the output layer, and instead, we added one fully connected layer of
2048 neurons, followed by a dropout layer with a probability of 0.5, and ended
up with an output layer of 11 neurons with softmax activation. For simplicity,
we call this architecture the same as the original (ResNet50). As for training,
we use the categorical cross-entropy loss and the Adam optimizer to train all
models during 40 epochs with a batch-size of 32, initial learning rate of 0.0002,
decay of 0.2 every 8 epochs and patience of 10 epochs.

Three different training strategies of the same model are used for a benchmark
purpose:

• ResNet50, baseline model training with the original images without data aug-
mentation.

• ResNet50+SDA, baseline model with standard data augmentation applying
during the training, like random crops and horizontal flips.

• UAGAN, ResNet50+SDA using the real and synthetic images.

With respect to the image generation, we use the default parameters proposed
by the authors of SINGAN.

4.4 Results

In this section, we present the results obtained by the proposed method. The
first step of our method corresponds to selecting those images difficult to classify
(with high uncertainty). After training the model with the original images, we
determine the EU and build a histogram for the training images (see Fig. 3). The
right side of the histogram corresponds to all the images considered to generate
the new ones. The criterion applied corresponds to selecting all images with EU
equal to or greater than the uncertainty calculated by the average between the
maximum and minimum uncertainty predicted for all images. A total of 120
images was selected.
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Fig. 3. Histogram for the entropy of the predicted images.

In Fig. 4, we can see the distribution of the training images along each dish,
the average entropy in all the images, the proportion of the selected images and
the average entropy for the selected images. Unlike the evidence shown in (Khan
et al. 2019) for CIFAR-10, for this type of data, the frequency of the images is
not a factor that determines a high or low uncertainty for a specific class. In
our case, we believe that uncertainty occurs due to the great variability of visual
appearance that may be present in the images belong to the same class of dish,
where the factor to consider is the diversity of the collected sample and not only
the size of the sample. To fill the gap of poorly represented sample for a class,
we duplicate the presence of images with high uncertainty through a generation
of synthetic images with the SINGAN method. In Fig. 5, some examples of the
generated images are shown.

With a total of 1889 training images, 1679 originals and 120 synthetic ones,
we train the final model. The results obtained by three different training strate-
gies of the same model are shown in the Table 1. All models were fine-tuned
from ImageNet (Krizhevsky et al. 2012) and retrained the whole network using
the target training set. For each strategy, 5 models were trained with random
initialization values and random order of images. Then, we calculated the aver-
age accuracy and the standard deviation achieved for the best model obtained
on each iteration according to the performance on the validation set. For the
results achieved, we can see that UAGAN improved the performance in terms
of accuracy with respect to the rest of strategies. Specifically, the improvement
is 3,17% on ResNet50 and 1,32% on ResNet50+SDA.
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Fig. 4. Training images vs epistemic uncertainty.

Table 1. Results obtained on the test set in term of accuracy with the standard
deviation.

Method Acc Std

ResNet50 79.15% 0,60%

ResNet50 + SDA 81.00% 0,78%

UAGAN (our proposal) 82.32% 0,96%

Fig. 5. Synthetic image generated on the selected images from the training set.

5 Conclusions

In this paper, we presented a novel method for sample-level uncertainty-aware
data augmentation composed of three phases: 1) identification of hard samples,
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by means of analysis of the epistemic uncertainty; 2) generating new data from
identified samples; and 3) performing the final training with the original and
synthetic images. We demonstrated the effectiveness of the approach proposed
on the Italian dishes from MAFood121 public dataset. The result obtained shows
that our proposal outperforms the classification by incorporating only 120 syn-
thetic images based on the uncertainty analysis (5% of the total). As future
work, we will explore both sample-level and class-level uncertainty to increase
deep learning datasets in an active learning framework.
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Abstract. Currently, there are no low-cost commercially available fluid control
valves that are suitable for a wide range of wearable robotics applications. To
address this market shortcoming, the Compact Robotic Flow Control (CRFC)
has been recently introduced. This 3-way 3-position proportional control valve
utilizing a servo to implement a choking mechanism that proportionally lessens
or widens the inlet opening takes up only 1/7th of the volume and 1/10th of the
weight of the best on-off commercially available valve unit in the same “cost”
range. It also exhibits relatively fast response times comparable to the response
time of on-off valves priced roughly 10 times more than the CRFC valve
manufacturing cost. The CRFC valve is reviewed in detail and ongoing work on
several advanced applications including wearable exosuit is discussed.

Keywords: Exosuit � Wearable robotics � Valve � Hydro muscle � Fluid
actuator

1 Introduction

Valves are necessary to operate pneumatic and hydraulic systems. The global industrial
valves market size was valued at USD 48.1 billion in 2020 and is projected to reach
USD 85.7 billion by 2025 [1].

Unfortunately, a gap exists in the current advanced valve market for valves that are
suitable for wearable robotics systems [2]. Specifically, there are no electronically-
controlled proportional flow control valves that are: small (<35 cm3), compact,
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lightweight (<30 g), cost-effective (*$10 USD), robust, easily-customizable, fast
(<70ms to fully close or open), that can support flows (*2.5 l/min and *0.2 Ml/min
for water and air respectively) and pressures (*100 PSI or 0.7 MPa).

The active exo-musculature or exosuit is a wearable soft robot actuated by a net-
work of artificial muscles [3, 4]. Different types of muscles have been used in this
milieu.

For example, Series Elastic Actuator (SEA) [5] represented by conventional linear
or rotary motorized unit in series with an elastic element has been used to achieve
variable impedance control characteristic of biological muscle [6, 7]. SEA has been
also utilized in the context of cable-driven orthotic and prosthetic devices [8–14].

Non-SEA based solutions typically utilize fluidly actuated, soft and compliant
muscles, like McKibben Muscles [15–17] or Hydro Muscles [2, 18–20]. Hydro
Muscles have excellent strain and energy efficiency properties [21] and can closely
mimic biological muscle dynamics [4]. In contrast, popular McKibben muscles
invented about sixty years prior to Hydro Muscle, are not very efficient and cannot
support a biologically realistic muscle strain [4, 19, 20].

A fluidly actuated muscle network has certain advantages over SEA based solution
in the case of a larger number of artificial muscles. Fluid systems require only one
strong (and likely heavy) motor unit, namely a pump, to provide enough force and joint
torque. In contrast, SEA based solutions require one strong motor per each “muscle”.
The mass and size requirements critically impact wearable robotic design and hence
fluidly actuated systems appear as a more promising direction. However, the fluidly
actuated devices also require appropriate valves that are cost-effective, lightweight,
compact, electronically controllable, and able to support a reasonable range of
pressures.

The Compact Robotic Flow Control (CRFC) valve [2] was created to resolve
previously mentioned valve market shortcomings and to work in conjunction with the
Hydro Muscle. When integrated with one another, Hydro Muscles and the CRFC valve
have the potential for implementation in a rehabilitative robotic system or a wearable
assistive exosuit that is lightweight, low-cost, and has capabilities for fine control and
customization.

Chronologically the research on Humanoid Walking Robot (HWR) utilizing Hydro
Muscles [22, 23] brought a full understanding of insufficiencies characterizing com-
mercially available valves. The network of 12 leg muscle groups required 12 large and
heavy on-off valves that could maintain fluid flow causing biologically realistic gait
patterns. The standalone fluidic system had an umbilical connection to the actual robot
as robot legs were not able to upkeep its heavy mass. The research on HWR, briefly
reviewed in Sect. 2 was critical for the realization of desired specifications for the
better, practical valve including specifications on its mass, size, flow, open/close
response times, and control aspects.

The CRFC valve that attained all desired specifications is reviewed in detail in
Sect. 3. In Sect. 4, novel applications of the CRFC valve that are currently in devel-
opment are discussed.

18 J. D’Agostino et al.



2 Previous Research

The inspiration for the development of the CRFC valve stemmed from the Humanoid
Walking Robot (HWR) – a biologically-inspired legged robot [22, 23]. Through fluid
actuation, the HWR can move through the stages of the human gait.

2.1 Humanoid Walking Robot: Modelling and Mechanics

The HWR was modeled using a 3B Scientific Lower Limb Skeletal Structure [24].
Lifelike degrees of freedom were possible through bungee cord ligaments that con-
nected the bones of the model [2, 22, 23].

As seen in Fig. 1, each leg of the HWR had six Hydro Muscles groups that
corresponded to the most active biological muscles used in the gait cycle. The muscles
included the gluteus maximus, iliopsoas, tensor fasciae latae, quadriceps femoris,
hamstrings, and gastrocnemius. The ischiofemoral/iliofemoral ligament and extensor
hallucis longus were also modeled using passive string structures [22, 23].

In order to direct flow in and out of the Hydro Muscles, Pneumatic Electric
Solenoid Valves [25] were used in series with manual control Elbow Pneumatic Flow
Control Valves [26]. PESVs are electronically controlled 5-way on-off pilot operated
valves [22]. Pressurized air was supplied through an air tank that operated at 100 psi
(0.69 MPa). After construction, the robot was suspended over a variable speed
treadmill for testing [27].

Fig. 1. HWR muscle model [22].
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2.2 HWR: Experiment

The Exacme 6400-0108BK Treadmill [27] was used to conduct testing. The HWR was
powered through the stages of the gait cycle while the belt operated at a speed of
0.28 m/s. IMU sensors and a high-speed camera were used to record the movements of
the HWR [22].

2.3 HWR: Results

In Fig. 2, the skeletal postures are compared to the biological postures of the gait [22].
The HWR displayed an average stride length of 0.78 m. The skeletal structure of the
HWR was able to stand upright independently but required a tethering system for
stability while walking. Based on inverted pendulum dynamics as well as the estimated
center of pressure and center of mass locations, the tethering forces were calculated to
be less than 20% of the weight of the skeletal system [22].

2.4 Previous Research: Discussion

The creation of the Humanoid Walking Robot showed that Hydro Muscles could be
used to mimic the stages of the human gait cycle on a very detailed level. Due to the
on-off nature of the digital solenoid valves used, the motions of the HWR were
somewhat rigid [2]. Additionally, the valves used for the HWR were very heavy, which
required the use of a suspension system.

The HWR showed that a biomimetic network of Hydro Muscles could be used to
mimic the stages of the gait cycle, but that the size, weight, and controllability of the
fluid control system would need to be improved for a wearable assistive device to be
developed effectively. As a remedy to these requirements, a small, lightweight, fluid
flow control valve was developed. The Compact Robotics Flow Control (CRFC) valve
is a cost-effective solution to the shortcomings of valves currently on the market. The

Fig. 2. The eight gait phases: top – numerical simulation and bottom – actual physical model in
motion [22].
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following section addresses the development, testing, and implications of the CRFC
valve.

3 CRFC Valve

The Compact Robotic Flow Control (CRFC) valve [2] was designed, manufactured,
and tested to fulfill the requirements of a wearable robotic system that utilizes fluid flow
control.

3.1 CRFC Valve: Methods

The CRFC valve is a lightweight, small, and inexpensive method of utilizing pneu-
matics and hydraulics in robotic applications that allows for precise flow control.
The CRFC valve is constructed using a servo motor that is positioned inside a 3D
printed casing, with a 3D printed servo horn CAM mount attached. Two CAM-
follower beads operate with the servo horn CAM mount (often referred to as the curved
component) to choke two latex rubber tubes wrapped in fabric with string (Fig. 5 and
6) [28]. The two tubes act as bi-directional fluid flow channels, and at any given point
in time either both are closed, or just one is closed. One tube acts as an input for fluid,
while the other acts as an output (Fig. 3).

The valve alternates between three states (see Fig. 4, top). State 2 represents the
resting state of the valve, where the servo motor has the curved component in the
upright position. In this state, both Tube A and Tube B are constricted, and no flow can
pass through. When the servo motor tilts the curved component counterclockwise, it

Fig. 3. CRFC valve: physical model (left) and CAD of motor casing (bottom right) and
attachment (top right) [2, 23].
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switches to State 1. In this state, the string wrapped around Tube A will loosen, but the
string around Tube B will continue to constrict it. Tube A will open, allowing fluid
flow through Tube A, and Tube B will stay closed, and there will be no flow through
Tube B. When the servo motor tilts the curved component clockwise, it switches to
State 3. In this state, the string wrapped around Tube B will loosen, but the string
around Tube A will continue to constrict it. Tube B will open, allowing fluid flow
through Tube B, and Tube A will stay closed, and there will be no flow through
Tube B.

The valve works by precisely controlling the opening and closing of the tubes.
There are strings looped around each tube, which when tightened or untightened
vertically, adjust the constriction of the flow. The strings are attached to a corre-
sponding follower bead, which rolls along the smooth path of the curved component.
When the curved component is rotated by the servo motor, the corresponding bead
rolls, which shortens the distance from the bead and the tube. This gives the string
some “slack” and allows the tube to expand due to the pressure inside the tube. This
allows the valve to adjust the amount of flow through the servo motor angle. The string
pulls the tubing upwards against the proximal portion of the casing, which is curved to
provide a more gradual decline in the choking angle while preventing fluid flow [2].

Optimized Geometric Model. The valve model is dependent on the necessary
movement of the string to allow a tube to fully open, the strain on the string on a side
that is already closed, and the desired dead-band angle for valve operation [2]. When
the curved component is rotated, the tension of the string causes the bead to roll away
from the center of rotation of the curved component, and this movement shortens the
distance between the string’s anchor position and the bead, which allows the tube to
open [2].

Fig. 4. CRFC valve: three states of the 3-port valve (top) and principle of operation, front view
(bottom). Curved element (1, 2), CAM beads (3), Connecting strings (4, 5), Casing base with
holes (6, 7), Tubes (8) [2, 23].
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The equation from Fig. 5 to find the total change in length to allow the tube to fully
open is demonstrated below:

Dl � 2bþ p
2

3 aþ bð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3aþ bð Þ aþ 3bð Þ
p

h in ob¼a

b¼0
ð1Þ

The general valve geometric model (Fig. 6, top) represents the valve in State 2,
which is when the valve is in its resting state and the curved component is at a zero-
degree angle. This model can be used to “relate string slackening, for the tube that is
opening, and string strain, for the tube that is closed, to the servo angle for a set of
specified valve parameters” [2]. In this current valve configuration, there are two
separate, symmetric, curvature radii (of which only one R is shown in Fig. 6), and a
dead band angle, which prevents the bead from rolling until points R, B, and A are
collinear [2].

The optimized geometric configuration has coinciding R’s (Fig. 6, top) positioned
on the valve symmetry axis, i.e. h0 ¼ 0�, AB axis (r2) parallel to the symmetry axis
with h1 ¼ 135�; h2 ¼ 0� h. The values for r0, r1, r2 are dependent on the dimension of
the tube, overall valve, and moment that the servo motor can produce. As this model
can be scaled, the optimization procedure can be easily reproduced with different tube
diameters, fluid pressures, and desired valve dimensions for a given servo [2].

The geometric model was optimized to: (1) Minimize the volume of the valve, and
allow that volume to be scalable, (2) the range of rotation of the servo motor can
accomplish the slack needed for the string to allow the tube to fully open, (3) minimize
the torque generated on the closed side, (4) account for servo motor error by including a

Fig. 5. Tube choking - simplified elliptical model [2, 23].

Fig. 6. The general valve geometric model [2, 23].
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dead band range in which there is no unwanted flow, but does not compromise the
general control of the valve, (5) the torque needed to close the tube for whatever the
desired pressure may be does not exceed the capabilities of the servo motor.

3.2 CRFC Valve: Experiments

For the following experiments, the specifications and components for the valve used
were consistent, however, they are not the only configuration that could be used, and
many aspects of the valve can be adjusted to accommodate a variety of devices and
situations.

The servo motor used is rated at .08 s/60° at 6 V, .215 Nm, and is priced at around
$10 USD [29]. Due to the specifications of the servo motor, the CRFC valve can
process over 0.69 MPa (100 psi) of fluid pressure.

The latex tubing used is 5 mm in diameter, and 1 mm thick. Due to the soft and
flexible nature of the tube, without any covering, the tube would be able to balloon
outwards and burst when pressurized, and the friction of the string around the tube would
be able to damage the tube. To prevent this, kite fabric was wrapped around the tube.

The dimensions of the CRFC valve used in these experiments are 6.00 cm �
5.00 cm � 1.75 cm, however, due to the L-shape of the valve it’s volume only takes up
2=3 of that, measuring at a volume of only 35.00 cm3 and a total mass, including the
servo used, of only 28 g. The curvature radius of the curved component was 20 mm,
and its total operational angle span to control the flow was 42° of rotation.

1) Response Time: To find the system response time for the CRFC valve, end-stops
were used and positioned at the maximum of the CRFC valve’s operational angle,
42°, and the neutral position of the valve. An internal timer was activated or stopped
when the end-stops were triggered, which would time the movement of channel
open and channel close rated at 100 psi of fluid pressure. This test was conducted
ten times for both water and air.

2) Flow Rate: To test the relationship between the servo angle and the flow rate,
steady-state flow rate readings were taken at 6-degree increments from the neutral
position at 0°, where the tube being measured was fully closed, to the maximum
operating angle of 42°, where the tube being measured was fully open. For the air
tests, a compressed air reservoir at 100 psi was used and connected to the CRFC
valve inlet, and then a digital anemometer was used at the outlet. For the water tests,
a 12 V diaphragm pump connected to the CRFC valve inlet, and then a digital
paddle-wheel flow meter was used at the outlet.

3) Hydro Muscle Speed: The CRFC valve angle’s relationship with the elongation
speed of a Hydro Muscle was determined by finding the rate of elongation at
various rotation speeds and angles of the CRFC valve, and finding the time for a
10.4 cm Hydro Muscle to elongate fully from a contracted state.

4) Controllability: To test the controllability of the CRFC valve with water or air, the
test setup (Fig. 7) can be seen below:

24 J. D’Agostino et al.



The test setup involved a Hydro Muscle moving a simple ‘leg’ along with the
desired sine wave angular trajectory over a period of time. The ‘leg’ angular dis-
placement values were provided by a potentiometer. The same test was performed with
a 5-way pneumatic solenoid valve, which utilized a custom, pseudo-analog, PWM loop
with a cycle time of 5 ms and a tuned P-controller [2].

For the water test, a 12 V pump was used with an accumulator and was kept at
steady fluid pressure in a closed-loop hydraulic system. For the air test, the air com-
pressor used was kept at a constant pressure of 0.69 MPa (100 psi), and the exhaust
was vented into the ambient space.

3.3 CRFC Valve: Results

1) Response Time: The average CRFC valve response times for water at 0.69 MPa
(100 psi) were 75 ms and 70 ms for open to closed and then closed to open
respectively. The average CRFC valve response times for air at the same pressure
were 70 ms and 65 ms for open to closed and closed to open respectively.
According to information obtained directly from the manufacturer, the specified
solenoid valve has a response time between one and two seconds to fully shift
between closed and open states [2] (Table 1).

Fig. 7. Test setup for controllability of CRFC valve with 3D printed rigid element [2, 23].

Table 1. CRFC valve response time for full state transition [2, 23].

Response Open to Closed Closed to Open

Water 75 ms 70 ms
Air 70 ms 65 ms
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2) Flow Rate: The flow rate vs. Servo angle (Fig. 8).

Fig. 8. Flow vs. angle; water (bottom) and air (top) [2, 23].

Fig. 9. Hydro Muscle speed vs. servo angle [2, 23].
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3) Hydro Muscle Speed: The results of the test relating the CRFC valve angle to the
speed of elongation of a Hydro Muscle had an R2-value of 0.967 (Fig. 9).

4) Controllability: The controllability test results (Fig. 10).

Fig. 10. Controllability tests: water CRFC valve (top), air CRFC valve (middle), air solenoid
valve (bottom) [2, 23].
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3.4 CRFC Valve: Similar Works

There are several ways of how flow control valves can be categorized. For example,
valves can be classified as those with and those without an actuation mechanism,
typically consisting of only mechanical elements, within the fluid conduit.

Ball valves and butterfly valves are standard examples of valves with the
mechanical elements within the fluid conduit (submerged into fluid) [30]. For example,
for ball valve, rotation of a ball with single or plurality of cylindrical holes within the
ball allows for control of flow through single or plurality of possible fluid channels
connecting various ports. The problem with this type of valve is that space between the
ball and fluid conduit (e.g. pipe) needs to be tightly sealed as not to allow the passage
of fluid outside of the ball. This is typically introduced with an elastic gasket which
necessary introduces a large amount of friction such that a large portion of the energy
used to turn the ball is lost on friction and it takes a large amount of torque to
counteract friction and turn the ball. As a result, this class of flow control valves is not
very energy efficient, it requires a strong motor to operate the valve, and therefore
valves are typically very large and heavy. Heavy and non-compact valves are not
suitable for many present-day robotics applications like wearable robotics.

The other class of fluid control valves has mechanical and/or pneumatic elements
on the outside of the fluid conduit [30]. Here the fluid conduit is deformed in a
controlled manner such to impede or allow flow. Diaphragm valve, pinch valve, and
peristaltic (or roller) pump/valve are standard examples of this class of valves. Their
mechanisms typically either detach mechanically/elastically sealed conduit to allow
flow or vice versa press fluid conduit and create a seal to stop flow. In the former main
resistive force is due to the fluid conduit that resists this deformation (this resistive
force is by definition very large as it resists the fluid pressure even when no external
actuation is present). In the latter, the main resistive force is directly due to fluid
pressure. The actuator mechanism needs to perform work against this fluid pressure-
induced force. Clearly, the smaller this force and displacement defining 0% to 100%
flow range the smaller the work motor must perform and hence more energy efficient
actuator. Moreover, large resistive force requires a large and heavy motor unit that is
not suitable for many present-day robotics applications like wearable robotics.

The presented CRFC valve [2, 30] is best classified as the latter class of valves as
the actuation mechanism is not submerged inside the fluid and the valve mechanism
press and deform fluid conduit from the outside. The presented CRFC valve addresses
challenges related to energy efficiency and the amount of force required for a complete
seal and/or full opening by minimizing the fluid pressure-induced force. This is the
result of the minimization of the fluid conduit wall area that is subject to an external
force. Force is then equal to area multiplied with pressure. A very thin cord looped
around a rubber (typically latex) tube is lengthwise actuated and this actuation cause
squeezing of the tube. The rubber tube is covered with an inelastic element that
prohibits ballooning of the rubber tube and provides a protective layer such that the thin
cord does not cut through the rubber tube. The rubber tube is on one side also pressed
against a slightly curved rigid wall on the outside of the rubber tube; as experimentally
determined this curved extension stipulates the closing of the tube with less external
cord tension force. Hence, the presented art is a very energy-efficient valve, requiring
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only a small amount of force to operate. Therefore, a small, lightweight, and cost-
effective motor is only needed to provide fine fluid control. Similar as pinch valves, due
to the high elasticity of the rubber that also helps to resist abrasion, this valve (although
primarily designed for fluids, i.e. various gasses and liquids) can be also used on solids
such as granules, powders, pellets, chippings, fibers, slivers, any kind of slurries and
aggressive products.

3.5 CRFC Valve: Discussion

The commercially available valves used for the HWR discussed in Sect. 2 were heavy,
large, and could only operate in on-off states. These aspects introduced major limiting
factors for applications already discussed, and so the CRFC valve was made as a
solution to the previous flow management system.

The CRFC valve used for the experiments was extremely small, lightweight,
inexpensive, can be used in both pneumatic and hydraulic applications, and could
utilize variable flow control.

In comparison to the original valve, the CRFC valve used was 1/7th the volume,
1/10th the weight, and costs only $10 USD to produce [30].

As seen by response times found in experiment 1, the CRFC can easily operate
under both air and water conditions with minimal difference between the mediums with
only 65 ms for air and 70 ms for water. This response time makes it optimal for
robotics applications, specifically wearable robotic applications as a skeletal biological
muscle takes about 250 ms to reach peak force.

As can be seen in experiment 2, the CRFC valve allows for roughly proportional
continuous fine flow control before saturation and demonstrates a large flow of >2.5
L/min and >L/min for water and air respectively, for the specific tubing used in the
tests. The flow can be easily adjusted by utilizing different sized tubing. The dead-band
angle for the CRFC valve tested was 6°, which was found to be an optimal range for
the specific servo motor inaccuracies.

The CRFC valve angle relationship with the speed of the elongation of the tested
Hydro Muscle was largely linear, with an R2-value of .967. This linear relationship can
be attributed to the optimized geometric model and allows for much more biologically
accurate movement potential than the original on-off solenoid valve.

Despite the type of fluid being used with the CRFC valve influencing the response
time of the system, the valve still demonstrated controlled flow and achieve the tra-
jectories set out by experiment 4. The test involving the water system could be
improved with a higher quality diaphragm pump, as oscillatory behavior was observed
from it and induced this behavior throughout the system. Because of this, it is likely
that with improved components, the valve would demonstrate even more controllability
than what was seen here.

Based on the fine flow control of fluids of the current CRFC valve, this design
clearly has the potential to create robotic systems that are controllable and could
demonstrate biologically accurate movement.
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4 Current Development for CRFC Valve Applications

From here, further work was done to apply the design of the HWR and the CRFC valve
to assist in our plans for a wearable exosuit as discussed in Sect. 4.1.

In addition, work has been done to apply the CRFC valve to relevant issues we face
today, such as an inexpensive solution to oxygen concentrators and ventilators. With
the emergence of Covid-19, oxygen concentrators are in high demand, but are
expensive. According to the World Health Organization, a stationary oxygen con-
centrator can range from $1100 USD to $4000 USD, while a portable oxygen con-
centrator can range from $3,995 USD to $5,700 USD [31].

4.1 Wearable Exosuit: Objectives

As opposed to the HWR discussed in Sect. 2, this wearable exosuit would be used for a
person instead of the lower legs of a skeleton model. Also, the wearable exosuit would
utilize the CRFC valve as opposed to the Solenoid Valve discussed in Sect. 2.1
and 3.4.

The current goal for the exosuit is to create a portable system that would assist the
user’s legs to lower the metabolic cost for a walking gait cycle. The next step would be
to adjust this system to lower the metabolic cost for a running gait cycle as well.

Wearable Exosuit: Key Similarities and Differences to Consider. The current
development for the wearable exosuit has utilized the research done previously for the
HWR discussed in Sect. 2.

Like the HWR, the wearable exosuit will use Hydro Muscles in place of the most
active biological muscles during regular gait cycle: iliopsoas, tensor fasciae latae,
quadriceps femoris, gluteus maximus, hamstrings (biceps femoris and semitendinosus),
and gastrocnemius. The wearable exosuit will also follow the same actuation pattern
and general placement of the Hydro Muscles as the HWR.

While we can draw a significant amount of insight from the research done for the
HWR, the wearable exosuit has differences that need to be considered. The HWR was
only actuating the lower limbs of a skeleton model, which greatly differs in weight than
that of an actual person. The HWR could also screw in attachment points into the
skeletal model for the Hydro Muscles, while the wearable exosuit will need to utilize
different methods of attachment to the user as will be discussed in the next section. The
wearable exosuit will be able to benefit from the user’s own stability, while the HWR
had to be tied to a wooden platform above it since it could not stand on its own. The
wearable exosuit will be portable, as the user will be able to carry the power supply,
valves, and potential other components discussed in Sect. 4.1.4. Another important
consideration is the difference in the joint torques needed to actuate the joints in the
skeleton model compared to a person. The peak joint torques for a walking gait cycle at
1.2 m/s in the hips, knees, and ankles, were 1.5 Nm/kg, .6 Nm/kg, and .9 Nm/kg
respectively [3].
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Wearable Exosuit: Securement. To help secure the wearable exosuit to the user,
Velcro braces are being considered. There would be braces in four locations: an above
the hip brace (AHB), a below the hip brace wrapped around the upper thighs (BHB), an
above the knee brace (AKB) and a below the knee brace (BKB). These braces are
indicated by the blue lines in Fig. 11.

These braces would be able to cover all the attachment points needed for the Hydro
Muscles to pull against. There will be a strap above the ankle to allow the strings of the
Hydro Muscle replacing the gastrocnemius a point to thread through.

However, due to the natural curvature of the legs, any force executed by the Hydro
Muscles onto these braces will cause them to shift up and down the leg depending on
the location. To prevent this, straps running along the sides of the legs, connecting to
each of the braces are being considered. These straps would connect as follows: over
the shoulders to the AHB, from the AHB to the BHB, from the BHB to the AKB, from
the AKB to the BKB, and then finally from the BKB to wrap around underneath the
heel of the user’s foot. These straps are indicated by the black lines in Fig. 12.

This connection between the braces will prevent the movement of the braces along
the user’s legs, without needing to tighten the braces themselves.

Fig. 11. Placement of Braces and Straps [32].
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Wearable Exosuit: Component Carrying Methods. The extra weight of the exosuit
system in addition to the user’s own weight will also affect the required joint torques
during the gait cycle.

The weight of all the components should be equally distributed across the front and
the back of the user. To do this, a combination of a vest, a belt, and a backpack will
allow the user to maintain balance in both directions.

4.2 Oxygen Concentrators and Ventilators: Demand Due to Recent
Events

There exists number of other potential applications of the CRFC valve. For example,
the recent COVID-19 pandemic caused an urgent need for large quantities of low-cost,
medical grade oxygen concentrators and ventilators that are easy to manufacture. To
address this global emergency several co-authors (M.P., E.C., and M.B.) employed the
CRFC valve to design a new type of oxygen concentrator [33] that can be also used as
an integral element of an automated ventilator. This design was included in the RepRap
Ltd repository [34] containing useful links and notes on oxygen concentrators from all
around the globe. Subsequently several companies contacted the co-authors with
interest to use this design; most recently interest has been expressed by Sentient
Bionics [35] based in Australia aiming to assist growing number of patients in
Indonesia. Here we briefly overview the proposed oxygen concentrator design.

Oxygen Concentrators and Ventilators: Proposed Design. Oxygen concentration
techniques can be based on air separation processes such as cryogenic techniques and
membrane separation techniques that are typically preferred for larger scale industrial
applications. For smaller scale applications other techniques are better suited [36] like

Fig. 12. Placement of Hydro Muscles [32].
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pressure swing adsorption (PSA) method reviewed in [37] and pressure/vacuum swing
adsorption (PVSA) method [38].

The proposed device, depicted in Fig. 13, inputs ambient air and outputs high-O2-
concentrated air by utilizing pressure vacuum swing adsorption (PVSA) method.
Nitrogen is first adsorbed by Zeolite at high pressure. The leftover high-O2-
concentrated air is then passed to output. Nitrogen subsequently detaches from Zeolite
by use of very low pressure (below atmospheric pressure) and high-nitrogen-
concentrated air is vented out as exhaust.

Another approach popular for low scale portable devices is a pressure swing
adsorption (PSA) method. The PSA method differs from the PVSA method as there is
no application of very low pressure. Hence, PSA method requires more time for Zeolite
to ‘regenerate’, that is for nitrogen to detach. Further still, the PSA method may leave
more nitrogen trapped inside Zeolite micro-cracks after ‘regeneration’ is completed;
this in turn affects the Zeolite’s ability to capture more nitrogen during the next cycle.
Hence, a device based on the PVSA method can have shorter cycle time and may
provide better oxygen concentration.

The novelty of the proposed device is that it requires only one Zeolite molecular
sieve instead of the commonly used pair. This is possible as very little time is required
to complete an entire cycle for the PVSA method. This in turn allows for much simpler
and more cost-effective device architecture requiring only 2 three-way valves instead of
the typical 6 solenoid valves.

Another advantage of this device architecture is that it allows for quick real time
control, that is stabilization of volume and/or pressure inside the variable volume
and/or pressure oxygen storage, Fig. 13, anticipated to be an intermediary between
oxygen concentrator and either (1) the patient breathing air directly or (2) the rest of the
ventilator, for example, in the form of motorized Bag-Valve-Mask (BVM) type
resuscitator. An additional pressure/volume sensor may be required to monitor the
pressure/volume inside oxygen storage. For example, if there is accumulation/lack of
oxygen the pressure may increase/decrease and the motorized low/high pressure pump
will automatically slow down/speed up. The operation principle of the proposed device
is as follows:

Step 1. Valve 1 BC open, valve 2 closed, pump closing, high pressure
Step 2. Valve 1 closed, valve 2 DF open, high-O2-concentration output
Step 3. Valve 1 BC open, valve 2 closed, pump opening, low pressure
Step 4. Valve 1 AB open, valve 2 closed, atmospheric pressure inside pump
Step 5. Valve 1 BC open, valve 2 DE open, pump closing, high-nitrogen-
concentration output
Step 6. Valve 1 AB open, valve 2 closed, pump opening, atmospheric pressure
inside pump
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While there are several potentially good solutions for low/high pressure pumps, the
simple motorized bellows pump is envisioned to be used here (Fig. 14). As discussed
in more detail in “Low-cost Oxygen Concentrator, helping during the crisis,” 2020,
there is a * $100 motor solution that can be used to provide oxygen supplies to a
number of patients (4 to 20) simultaneously and thus lower the overall manufacturing
costs per patient. The pump speed can be finely tuned to provide optimal performance
for the Oxygen Concentrator.

The device proposed here is anticipated to output high-O2-concentrated air with a
flow rate that should be at least in the regular range of 5 to 8 liters per minute per
patient, that is 5.0 to 8.0 � 10�3m3=min or 0.8 to 1.3 � 10�4m3=s. This flow rate
should be sufficient for a patient inhaling high-O2-concentrated air directly from the
device (with intermediary variable volume and/or pressure oxygen storage). In the case
of high-O2-concentrated air even 4 liters per minute should be sufficient.

In the case of a motorized Bag-Valve-Mask (BVM) type resuscitator one may
require factoring 2 or even 3 larger flows due to leaks and contamination with ambient
air. Hence this universal device should preferably be capable of outputting up to
20 liters per minute, that is 3:2� 10�4m3=s.

Based on calculations presented in “Low-cost Oxygen Concentrator, helping during
the crisis,” 2020 [33] a single low cost motor can produce up to 80 liters of high-O2-

Fig. 13. Simple, easy-to-manufacture, low-cost Oxygen Concentrator anticipated to generate
90–95% medical-grade oxygen in a continuous fashion. The device can be employed as it is, or it
may be part of a medical-grade ventilator. Its operation is based on a pressure vacuum swing
adsorption (PVSA) method. Device consists of: 1 Zeolite molecular sieve, 1 low/high pressure
pump, 2 CRFC “smiley” 3-way valves, (Arduino type) controller, tubing and tube connectors
[39]. Manufacturing cost is estimated at not more than several hundred USD for system that
could provide oxygen supply for in between 4 and 20 patients.
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concentrated air per minute which should be sufficient for 4 to 20 patients depending on
how device is exactly used.

Furthermore, the Oxygen Concentrator may output high-O2-concentrated air after
oxygen storage at desired pressure and in desired volume portions at desired time
intervals if additional structure is added.

5 Conclusions

The Compact Robotic Flow Control (CRFC) valve, reviewed in detail here, was cre-
ated to resolve market shortcomings in the context of valves suitable for the wearable
and stand-alone robotics applications. Compared to other similar valves currently on
the market, the CRFC valve allows for finer control and it is lighter, more compact, and
less expensive. The CRFC valve also exhibits relatively fast response times with very
little difference between water and air mediums.

The only commercially available, electronically controlled valves in the same
“cost” range as the CRFC valve that can support similar flows (*2.5 l/min and *
0.2 Ml/min for water and air respectively) and pressures (*100 PSI or 0.7 MPa) are

low/high pressure pump

B
motor and 
2 bar linkage 

B
motor

low/high pressure pump

Option 1 

Option 2

Fig. 14. Option 1: The pump motor may rotate in a single direction if added with a 2-bar linkage
mechanism (similar to slider-crank) with one end attached to the main crankshaft bearing and the
other end attached to one arm of the bellow pump. Option 2: the pump motor can be directly
attached to one arm of the bellow pump requiring alternating direction of rotation; two switch
sensors can be used to trigger change of direction and subsequent action of the 2 three-way
valves.
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simple on-off solenoid valves, for example, an electronically controlled, 5-way on-off
solenoid, pilot operated valve [25] in series with a manual flow control valve [26]. In
contrast, the CRFC valve’s servo motor finely controls orifice size in a continuous
fashion. Further, the CRFC valve occupies < 35 cubic centimeters (*2.1 cubic inches)
volume and has a mass of only 28 g (*0.06lb); it takes up only 1/7th of the volume
and 1/10th of the weight of the best on-off commercially available valve unit [3, 25, 26]
in the same “cost” range. Finally, the CRFC valve exhibits relatively fast response
times with very little difference between water and air mediums; the CRFC response
time to fully close or to fully open is * 65 ms, which is comparable to the response
time of on-off valves priced roughly 10 times more than the manufacturing cost of the
CRFC valve.

The CRFC valve is a 3-way 3-position valve and utilizes a servo to implement a
choking mechanism that proportionally lessens or widens the inlet opening of the latex
tubing through which fluid flows.

The curved element attached to the servo is used similarly to a cam mechanism,
with two spherical cam followers (beads). The two tubes serving as the flow channels,
allow for bi-directional fluid flow. Of the two tubes, at least one or both are closed at
any given point in time. One tube serves as a fluid input for an attached system, and the
other tube is the release tube.

The CRFC valve can be configured to open or close the fluid tubes by any degree
between fully closed and fully open. The degree of opening can be directly controlled
by the rotation angle of the servo motor. The servo increases or decreases tension in the
strings constricting flow through the fluid tubes. With an increase in tension, the
opening size becomes smaller, and with a decrease in tension, the opening gets larger.
The fluid flow is linearly related to the size of the opening and is, therefore, propor-
tional to the angular rotation of the servo.

This highly efficient and affordable valve currently uses low-cost materials such as
a 3D-printed casing, thin surgical latex tubing, canvas fabric, and a micro servo. It has a
total mass of 28 g. The estimated average cost of the CRFC valve is around $10 USD
[3, 28]. The CRFC valve can be also easily customized for a large range of various
applications; it can be made of different materials, re-dimensioned, and utilize a variety
of servo motor units.

Similar as pinch valves, due to the high elasticity of the rubber that also helps to
resist abrasion, the CRFC valve (although primarily designed for fluids, i.e. various
gasses and liquids) can be also used on solids such as granules, powders, pellets,
chippings, fibers, slivers, any kind of slurries and aggressive products.

The CRFC valve can be used in fluid applications in wearable assistive, rehabili-
tation, and augmenting technologies, general robotics, aerospace and automotive
industries, medical devices, pharmaceutical industry, pneumatic and hydraulic
machines, agriculture, civil engineering, oil and gas, energy and power, water and
wastewater treatment, etc. [3, 28].

The CRFC valve can work in junction with the Hydro Muscle. When integrated,
Hydro Muscles and the CRFC valve may be utilized as modular building blocks for
robots that can be rapidly assembled and utilized as either perform-alone or wearable
robotic systems. The synergy of the CRFC valve with the cost-effectiveness, energy
efficiency, and excellent strain properties of the Hydro Muscle opens a door into a new
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age of fascinating, useful, and accessible/affordable fluid-operated wearable robotic
solutions.

Now that the CRFC valve has been developed, future work will be focused on
constructing the proposed wearable exosuit with the CRFC valves as discussed in
Sect. 4.1. Other applications for the CRFC valve will also be explored, as an example,
the oxygen concentrator and ventilator discussed in Sect. 4.2.
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Abstract. Pupillometry allows a quantitative measurement of PLR and
has been mainly used to assess patient’s consciousness and vision func-
tion. The analysis of pupil light reflex (PLR) has been showing a renewed
interest since the discovery of intrinsically photosensitive retinal ganglion
cells (ipRGCs), that are sensitive to the blue light, as they have an impor-
tant role in pupil response to a stimulus. Some researches have studied
pupillometry, particularly chromatic pupillometry that uses blue and red
stimuli, to be a screening tool for neuro-ophthalmological diseases. Auto-
mated pupillometers have been widely used, however they are either not
portable or expensive, reason why this technique has been mainly used in
academic research. A smartphone-based pupillometer could be a promis-
ing equipment to overcome these limitations and to be a widespread
screening tool, due to its low price, portability and accessibility. This
work shows our latest advances towards the development and valida-
tion of an Android system for pupillometry measurements. Pupillomet-
ric data was collected with the smartphone application in a group of five
healthy individuals and used to test our proposed data processing algo-
rithms. These tests showed that the data processing methods that we are
proposing, although promising, did not behave as expected, indicating
that new approaches, better validations and corrections should be made
in the future to get a stable software for pupil detection. Nevertheless,
preliminary pupillometric data indicate that this system has the poten-
tial to work as an inexpensive, easy-to-use and portable pupillometer.

Keywords: Pupil · Pupillometry · Smartphone ·
Neuro-ophthalmology · Neuro-ophthalmological diseases

1 Introduction

Pupil’s main function is to control the quantity of light that enters the retina, by
its constant size adjustments [16]. The way the pupil reacts to a certain stimulus
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is known as Pupil Light Reflex (PLR) which is regulated by the autonomic
nervous system. PLR describes how the pupil rapidly constricts after a stimulus
and sequentially dilates to its normal size. This response has been studied and
used over the years to assess a subject’s consciousness and visual system function.

Until recently, it was thought that PLR was primarily driven by rods and
cones [1]. However, this perception changed with the discovery of intrinsically
photosensitive retinal ganglion cells (ipRGCs) in the early 2000’s [15,21]. These
cells are a small percentage of the retinal ganglion cells (RGCs) (around 0.2%
� 3000 cells) [5] and contain melanopsin photopigment that renders them pho-
tosensitive, particularly to the absorption of blue light [9]. Thereby, several stud-
ies [2,9,17,24,25] have shown that PLR consists in a combination of rod, cones
and ipRGCs responses.

The discovery of ipRGCs in humans renewed the interest in PLR and pupil-
lometry as it can be a non-invasive technique to assess the visual system func-
tion. With ipRGCs particularly sensitive to blue light [9] and considering that the
exposure to different wavelengths stimulates differently each type of photorecep-
tor [3], colored stimuli started to gain interest in pupillometry. Referred as chro-
matic pupillometry, normally uses red or blue light stimuli, allowing the study of
damages in rods, cones and ipRGCs [26]. Several studies have also shown pupil-
lometry potential in relation to neuro-ophthalmological diseases, such as Parkin-
son [6,10,11,31], Alzheimer [6,13], Glaucoma [5,12,23,27] or Multiple Sclero-
sis [4], using both chromatic or white light stimuli. Thus, pupillometry has been
showing potential to be used as a screening tool for this type of diseases.

The evaluation of a subject’s PLR is usually referred as pupillometry, tra-
ditionally assessed by the clinicians with a penlight. Quantitative pupillometry,
using a device normally referred as pupillometer, allows to objectively measure
how pupil reacts to a certain stimulus. Since Lowenstein et al. [20] photoelec-
tric pupillograph, several pupillometry equipments have been developed. This
type of devices have evolved over the years allowing not only continuous video
recording but also automatic data analysis. Pupillometers usually use infrared
cameras, which give better image contrast and reduce the influence of external
lights in pupil size. This characteristic is a main advantage of these pupillome-
ters, as they allow more precise measurements of pupil size. However they are
either expensive, not portable or both, which makes them hard to be widespread
as a clinical tool for diseases screening and monitoring.

Smartphones interest for application in the medical field has been increasing
over the years, as they have technological capabilities progressively similar to
computers, are portable, accessible and have affordable prices. When compared
to traditional pupillometry equipments, smartphones overcome their limitations,
being a possible technology to develop a widespread tool for pupillometry.

Using a mobile phone for pupillometric measurements started in 2013 by
Kim et al. [19], whose work used the smartphone camera for acquisition with an
attached optical apparatus. This device had four infrared light emitting diodes
(LEDs) three to improve the quality of the acquired images and a white one
to work as stimulus. In this study, post processing and analysis of the acquired
data was made in MATLAB R© (Mathwords Inc., Natick, MA).
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Shin et al. [28] also have used a smartphone to acquire pupillometric measure-
ments, but instead of recording a video, this group acquired 5 steady pictures in
different momentums of the experiment: before the flash, during the light stim-
ulus and the last three after the stimulus. These images were not automatically
post-processed and analyzed, instead a clinician evaluated them according to
pupil size and compared the results with a penlight measurement in the same
subjects and conditions. Although the smartphone usage in this case was only
for the eye photographies, their results shown similar results for the smartphone
application and the penlight experiment made by the clinician.

In 2018, an iPhone-based pupillometer was proposed by McAnany et al. [22],
named Sensitometer, which uses the rear-facing camera and flash light to acquire
a video of the pupil during constriction and redilation phases after the stimulus.
This proposed system provides real time measurements of PLR, with all the
acquisition and processing done in the iPhone. Results were compared with an
infrared camera that was simultaneously recording pupil’s response to the light
stimulus and they were statistically correlated.

Recently, our team proposed an all-in-one smartphone-based pupillometer
using a medium range Android device to acquire and process pupil response
videos [29]. This proposed system uses the rear-facing camera and flash light of
the smartphone to work as stimulus. Data processing is also performed in the
smartphone, being all integrated in the same application. An algorithm for data
processing was also proposed, based on Contrast Limited Adaptive Histogram
Equalization (CLAHE) to increase image contrast and ElSe algorithm [7] for
pupil detection. It is important to notice that the system was thought to allow
chromatic pupillometry with a simple usage of a standard colored cellophane
paper to work as filter to be applied in the flash light, which is relevant for
neuro-ophthalmological diseases screening as previously referred.

This first proposal of the system [29] had only some preliminary results, with
the application of the pupil detection algorithm to around 40 eye images, but
no further testing and validation was performed. In the present work, data from
5 healthy individuals was acquired following a chromatic pupillometry protocol
based in Park et al. [25] discoveries, to validate the acquisition part of the system.
The data was then post-processed with the main goal to validate the algorithms
proposed in [29] for pupil detection. This study also aims to understand the influ-
ence of CLAHE parameters in pupil detection by ElSe algorithm. Therefore, the
data processing algorithms were applied to several frames from the videos acquired
from the participant subjects. Basically, this work is a continuation of the work
presented in [29] towards the validation of this smartphone-based pupillometer.

Thus, the main goal of the present work is to validate the proposed all-in-one
smartphone-based pupillometer in healthy subjects. It is also intended to validate
a medium range Android smartphone as a device for chromatic pupillometry
allowing acquisition and running data processing algorithms.

2 Methods

This project intends to validate the low cost pupillometer system developed by
our team as proposed in Sousa et al. [29]. The main goal is to use a medium
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range Android smartphone to acquire video of pupil response to a chromatic
stimulus and post-process it to get the common parameters of PLR.

2.1 Study Participants

Five participants with no known visual abnormalities have been selected. All par-
ticipants underwent a standard ophthalmic screening test to measure vision acu-
ity, by autorefractor and Early Treatment Diabetic Retinopathy Study (ETDRS)
2 m exams, and intraocular pressure (IOP).

Pupillometry measurements were only made in the left eye in each subject,
for the different conditions and types of experiments. All the recorded videos
and participants data was anonymized and codified.

This study was approved by the Hospital Santa Maria ethics committee, and
a written informed consent was obtained from all the individual participants.

2.2 Pupillometry System

The main goal of the proposed system is to use a medium range Android smart-
phone to allow acquisition and processing of pupillometric data, without the
need of other equipments. For this purpose an Android application was devel-
oped that could support the desired functions. The device used in this study
is a Nokia 7 Plus (Nokia Corporation, HMD Global, Finland), with Android
operation system, version 9 Pie. This smartphone has front and two rear facing
cameras but for this study only rear facing cameras were used, particularly due
to the flash light that is linked to them, needed for light stimulus.

This system, summarized in Fig. 1, has two main sections: acquisition and
data processing. As an all-in-one system, it contemplates different programming
languages working together such as Java and C++, that communicate through
Java Native Interface (JNI) framework which enables the integration of C or
C++ code in Java Android application.

Fig. 1. Proposed system architecture, adapted from [29].

The acquisition part is mainly formed by the smartphone camera, the flash
light and the application that controls their functioning. To do so, the Cam-
era2 API is the Android interface used that allows proper control of smartphone
cameras and flash and adjustment of the recording characteristics. The appli-
cation that was developed for this system access the rear-facing cameras, starts
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recording, flashes a light stimuli automatically at a certain instant and stores
the recorded video for post-processing. Recording duration and flash instant
are parameters configurable in the application, allowing different experiments in
terms of acquisition protocol.

The rear-facing flash allows a white light stimuli, however chromatic pupil-
lometry is desired in this system to assess the influences of rods, cones and
ipRGCs in pupil light reflex, as previously mentioned. To achieve this chromatic
light stimuli, a standard grade cellophane paper is used as filter in front of the
flash light, in both blue and red colors. Flash spectrum was acquired with a
spectrometer in previous work, as referred in [29], indicating that these filters
should be enough to get the desired light wavelengths in blue and red spectra.

2.3 Data Processing

Fig. 2. Data processing algorithms flowchart, as referred in [29].
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The second main section of this system is the data processing, that allows data
extraction of the pupil videos. This process was developed using OpenCV for
image processing, in both Java and C++, integrated in the Android application
developed by the team. In this case, video processing is composed by getting all
the frames, in each frame get the eye region and apply a pupil detection algorithm
that will return its location and size. Having the pupil properly detected allows
to build a graphic of the variation of the pupil size through time for a given
experiment, which is used to understand PLR and compare between different
experiments and protocols.

To detect the eye in each frame, OpenCV Haar-cascade eye detector, based
in Viola and Jones Haar-cascade object detection algorithm [30], was used to
reduce the area for pupil detection. The detected region area was verified and
the regions with an area smaller area were automatically discarded, due to the
cases where Haar-cascade algorithm fails to detect the eye.

Pupil detection in each eye frame is then the next data processing step. Each
eye cropped image is converted to gray scale and image processing algorithms
are applied to achieve the desired pupil detection. In [29] our team have proposed
the application of Contrast Limited Adaptive Histogram Equalization (CLAHE)
and then ElSe algorithm, developed by Fuhl et al. [7] for pupil detection is real
world scenarios. A summary of this process is shown in Fig. 2.

Even though in our previous work [29] CLAHE didn’t seem to make a dif-
ference in the pupil detection, as the results were similar to the images without
any CLAHE application, the dataset used was small to take that conclusion.
Therefore, we have tested again the influence of CLAHE in pupil detection in
our system. With the goal to enhance image contrast, CLAHE is used as a way
to overcome the low contrast between iris and pupil in images acquired by non-
infrared cameras, such as the smartphone one. This method overcome simple
histogram equalization or adaptive histogram equalization for iris recognition in
Hassan et al. study [14]. OpenCV CLAHE function has two main parameters,
the clipLimit, that represents the threshold from which the histogram is clipped
and redistributed, and the tileGridSize, related to the tile size that the input will
be sliced for the algorithm application. In the present work these two parameters
of CLAHE were tested in order to better understand how this value influences
the pupil detection in the videos acquired with our system. Tests were made
with OpenCV CLAHE function default values, clipLimit = 4.0 and tileGridSize
= (8,8), and clipLimit = 10.0 and tileGridSize = (10,10), that leads to a higher
increase of the contrast in the images. This tests were made in 1071 eye frames
acquired from different individuals.

After image enhancement, pupil detection is the main concern in this process.
Although it is an apparently easy task, as the pupil is the black round area of the
image, some difficulties need to be overcome such as low contrast between pupil
and iris, blur, reflexes, illumination issues and other scenarios. Many algorithms
have been developed over the years to achieve a proper pupil detection and ElSe
algorithm, by Fuhl et al. [7], was considered the gold standard [8]. ElSe, that
stands for Ellipse Selection, is an open source algorithm developed in C# that
was targeted and tested in images acquired with infrared cameras in real world
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scenarios. As the name implies, this algorithm tries to find in a gray scale image
the best suitable ellipse that could be the pupil. Very briefly, ElSe starts with the
application of a Canny filter to get the image edges which are then filtered with
straightening patterns. After this morphological operations, the straight lines are
discarded and least square ellipse fitting is applied to get the best ellipse, after
an ellipse evaluation to exclude unlikely pupils. If this process fails, a second
approach is tried through a coarse positioning of the pupil. Image is downscaled
and a convolution is applied with a surface and a mean filters. After multiplying
the results of the convolutions, the resultant maximum value is defined as the
starting point to be refined. This point surroundings are verified and the center of
mass of the pixels under this threshold is the new pupil position. ElSe algorithm
was tested in datasets acquired with infrared cameras, which is slightly different
from the images acquired with a smartphone camera.

After pupil detection in each frame, pupil size variation through time should
be normalized by the baseline, correspondent to the mean pupil size before the
light stimulus. Pupil normalization was made based in the equation mentioned
in [18], adapted for both pupil diameter or area variations, where 100% means
pupil in its baseline size:

pupil constriction = 100 − pupil baseline size − absolute pupil size
pupil baseline size

× 100 (1)

2.4 Chromatic Pupillometry Protocol and Preliminary Experiments

A pupillometry experiment needs to take into account a period for the pupil
adaptation to the ambient light conditions, to get a proper measurement of
PLR to the light stimulus, then recording should start for a short duration to
get pupil size baseline, then a short colored light stimulus followed by a post-
stimulus period after which the recording stops. In the present work a protocol
for chromatic pupillometry is proposed, considering these intervals and based
on the literature. Adapted from Park et al. [25] proposed pupillometry protocol,
our protocol, showed in Figure 3, records the pupil for 5 s, then flashes the light
stimulus, with 1 s duration, and continues recording for 30 s to get the pupil
redilation phase. In the beginning of the experiment subjects were 7 min in the
light ambient conditions, which in this case was a mesopic environment, to pupil
adaptation. There was 5 min pause without recording, in the same light condi-
tions, between experiments. This chromatic pupillometry protocol was applied
in each participant, first for red light stimulus followed by the blue stimulus.

Fig. 3. Proposed protocol for chromatic pupillometry. Schema adapted from [29].
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Fig. 4. Apparatus used to fix the smartphone in front of individual’s face and to have
a controlled ambient light.

The smartphone was fixed in a support in front of subject’s face, which was
resting in a face support common in ophthalmology equipments. The apparatus is
shown in Fig. 4. During the acquisition time, subject’s were focusing their vision
in the center of an image usually used in autorefractors to avoid accommodation.
In this way, the individuals eyes were focusing in that point, without moving all
around, and the proximity of the smartphone to their face’s and eye sight was
overcome.

To each recorded video the data processing algorithm was applied in order to
evaluate its efficiency in videos acquired with this proposed pupillometric system
and in the light conditions they were acquired.

3 Results and Discussion

3.1 Study Participants

Five participants were included in this study, their demographic and ophthalmic
characteristics are shown in Table 1. This group has an average age of 19.8, in a
range of 18 to 23 years old. They present no known vision abnormalities or other
kind of diseases, meaning it is considered a healthy group of participants. They
were all cooperative and felt no discomfort during the experiments.

Table 1. Demographic characteristics of study participants.

Characteristics Healthy participants data

Age 19.8 ± 2

Gender (F:M) 4:1

IOP (left eye) 13.9 ± 4.9



Towards the Development and Validation of a Smartphone 47

(a) Successful pupil detection. (b) Failed pupil detection.

Fig. 5. Examples of detection in images with default (clipLimit = 4.0 and tileGridSize
= (8,8)) CLAHE parameters.

3.2 Data Processing Results and Discussion

The first validation of this system was in the acquisition part, with the proper
working of the smartphone application during the recording period in the five
participants. The application performed as expected, automatically applying the
flash light at the desired instant and stopping the record 30 s after that. Each
video was stored in the smartphone for post processing.

Video data processing was made as suggested in the flowchart presented in
Fig. 2, testing different values of CLAHE, as referred in Sect. 2.3.

To test the detection algorithm and the influence of CLAHE parameters, 1071
frames from different subjects were analyzed with both default values (clipLimit
= 4.0 and tileGridSize = (8,8)) and clipLimit = 10.0 and tileGridSize = (10,10).
Some examples of images with successful and failed detection for both default
values and 10.0 for CLAHE parameters are shown in Figs. 5 and 6, respectively.
Pupil detection was manually verified. It is considered a success, cases in which
the algorithm finds the center and the contours of the pupil correctly. A summary
of number of successes and failures in the tested eye images is presented in
Table 2.

In 1071 eye images tested, the algorithm had low success, being the error
88.4% for default CLAHE parameters and 93.6% for the others. This results were
really low and not as expected. Although considering that ElSe algorithm [7] was
tested in images acquired with infrared cameras, as the algorithm was developed
for real world scenarios we were expecting better results, as the testing dataset
of Fuhl et al. [7] had several images with poor quality, many reflexes and glares.
However just applying CLAHE for image enhancement and then ElSe algorithm
does not seem to be enough for our system.
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Table 2. Results of variation in CLAHE parameters in pupil detection.

cutLimit tileGridSize Frames with success Frames failed

4.0 (8,8) 124 = 11.6% 947 = 88.4%

10.0 (10,10) 69 = 6.4% 1002 = 93.6%

Total frames 1071 1071

(a) Successful pupil detection. (b) Failed pupil detection.

Fig. 6. Examples of detection in images with clipLimit = 10.0 and tileGridSize =
(10,10) CLAHE parameters.

3.3 Preliminary Pupillometry Results

As observed in last Sect. 3.2, the algorithm for pupil detection that our team
proposed in [29] is not working in all frames and does not present enough sta-
bility for the acquisitions made with the participants. As the algorithms did not
perform as expected, difficulties in constructing a PLR graphic, with pupil size
variation in function of time, were suffered.

Nevertheless, with the goal and effort to see the typical pupillometry curve,
the video of one of the participants in the case of a blue stimulus was used for
some other try. After some enhancement of the results, we tried to filter some
wrong measurements, for example, if the center of the pupil was much deviated
from the previous one or the pupil didn’t have a circular shape values were
discarded. A median filter and a smoothing were applied. After doing this, the
results were plotted in function of time and we obtained a graphic like the one
shown in Fig. 7.

Even though the noticeable imperfections in the resultant graph and a decay
in the pupil size between 15 and 25 s that is abnormal in a healthy patient
and must be related to errors in pupil detection, one can see the expected PLR
behavior: fast pupil constriction after the light stimulus until around half the size
and a redilation after that. This constriction until around 50% of the baseline is
concordant with what Park et al. [25] show in their study for 1 s flash stimulus
for a healthy individual.
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Fig. 7. Graphic showing some preliminary filtered results for one of the participants in
the case of blue light stimulus. The vertical red line represents the flash instant. (Color
figure online)

Despite the clear need for improvements in terms of data processing and pupil
detection, it is visible that this system is in the right track to be a pupillometer
tool. This preliminary pupillometric results showed that the rear-facing flash of
the smartphone is capable enough of causing pupil reaction and the Nokia 7 Plus
camera has enough quality for the acquisition process.

4 Conclusion

The possibilities of applications and usage for smartphones in the medical field
are huge, due to their low price, easy access, portability and being used by
everyone all over the world. This are great advantage in terms of pupillometry,
that could allow to have a widespread screening and monitoring tool in diseases
such as Parkinson’s, Glaucoma or Alzheimer’s, as previously mentioned.

Although there are some studies using a smartphone for pupillometry mea-
surements, the system we proposed, first mentioned in [29] and the target of
the present work, uses a medium range Android device and allows chromatic
pupillometry which is necessary for diseases screening due to different color sen-
sitivities of rods, cones and ipRGCs. We were able to prove functioning of the
acquisition part of the system, showing that the Nokia 7 Plus flash light and
camera are a sufficient equipment for pupillometric measurements. As for the
data processing stage of the system, we are not yet with a stable and efficient
method, particularly in the pupil detection part of the algorithm. There is a
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need to improve the algorithm that was proposed in [29] and further explored in
this work, to define validations to automatically verify if the pupil was properly
detected and possibly to develop alternative algorithms in case it fails.

The data acquired in this experiment allowed to have a proper knowledge
of the acquired videos quality, the possible existant reflexes in each frame, as
the smartphone is in front of subject’s face and reflects in the eye, and other
constraints. It also will allow the team to continue developing and improving the
algorithms for pupil detection, clearly needed to properly validate the system as
a whole.

Further work is then to improve the algorithms of pupil detection, so that
this system can be prepared to severe illumination conditions and reflexes in the
pupil. It is also important to make tests in different ambient light conditions
to validate the algorithms and the system as a whole so that it can be used in
different scenarios.

Finally, after the enhancement in data processing system and to proper val-
idate the protocol in healthy individuals, the next steps include the validation
of this smartphone-based pupillometer in patients with neuro-ophthalmological
diseases. The main interest is to validate that this is an interesting and potential
tool for early screening pathologies such as Parkinson’s, Alzheimer’s or Glau-
coma.

Despite the need of improvements and more validation, the present work
added some validation steps needed to show the potential of the proposed system.
Smartphones seem to be promising devices for pupillometry, particularly to take
this technique more close to clinical application, to be used as a screening tool
for neuro-ophthalmological diseases.
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Abstract. Currently, the production of Advanced Therapy Medicinal Products
is highly sensitive to any contamination sources and therefore takes place in
clean and sterile environments. Several days are required for each production,
making these products extremely expensive. Throughout the process, numerous
quality controls must be performed. This is especially true during the expansion
phase in order to monitor cell growth and to detect any contamination. Biore-
actor’s content must periodically be sampled to perform these controls. Two
major drawbacks can be identified: a delayed knowledge of the quality control
result and an additional risk of new contaminations due to sampling. In this
work, we present optical spectroscopy methods which can be used to drastically
reduce the risk of contamination. They provide a real time control of what
happens in the bioreactor in a closed system manner. Cell concentrations are
measured with an accuracy below 5% and contamination can be detected about
3 h after it occurred. The real time operation leads to several tens of thousand
dollars’ savings because it allows stopping the production as soon as a problem
arises. Consequently, the price of these products should be greatly reduced and
they may be proposed to more patients.

Keywords: Optical spectroscopy � Advanced therapy medicinal product � Cell
growth monitoring � Contamination detection

1 Introduction

New treatment solutions for patients with no further therapeutic options have recently
emerged. They are called ATMPs (Advanced Therapy Medicinal Products). Some of
them are based on the use of “drug” cells derived from genetic modification or tissue
and cell engineering. Cells acquire new physiological functions, biological character-
istics or reconstruction properties to the expense of substantial manipulations. Indeed,
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natural processes of the body such as the use of stem cells for tissue regeneration,
lymphocytes for cancer immunotherapy or apoptotic cells for anti-inflammatory pur-
poses have inspired studies concerning these new biological drugs.

However, the production of these drugs requires the implementation of complex
technologies of cell sorting, amplification, genetic transduction, amplification-division,
activation, and this at several stages of production in sterile clean room type envi-
ronment and in complex facilities. Also, the time needed to complete the production
and the complex quality control processes further increase the fabrication costs.
A schematic description of the fabrication process of CAR-T cells is given in Fig. 1
(adapted from [18]). It also applies to other ATMP productions.

Basically, the patient’s blood is sampled and cells of interest (T cells for Fig. 1) are
extracted/isolated and transduced to acquire the desired therapeutic properties. At this
step, only well-transduced T cells are conserved. Now, these genetically modified cells
are amplified/expanded in a bioreactor for a period that can extend up to 1 week.
Eventually, the ATMP can be either injected to the patient or cryo-preserved before
injection. Among others, one of the main constraints that must be addressed is the
following.

Working in a controlled environment and preserving the closed system as necessary
is crucial to meet the requirement of no contamination of the products. Frequently, the
absence of containers, reagents or materials adapted to the protocol makes it difficult.
Quality controls (red stars in Fig. 1) imply repeated samplings during the production,
especially to control cell multiplication (expansion phase) and to detect any possible
bacterial contamination (throughout the process). This increases the risk of contami-
nation, the time of completion and requires increased traceability. Because these
evaluations are time consuming, the production process still continues in parallel. In
some cases, the production is stopped after several days when a contamination is
detected. Obviously, this actually increases the cost and delay or even stop the delivery
of the drug to the patient.

Fig. 1. Fabrication process of CAR-T cells. Adapted from [18].
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The work presented in this paper addresses the constraint of closed system and real
time control of what happens in the bioreactor during the expansion phase. The goal is
to provide an easygoing/soft/simple method to monitor the cell growth and to detect
contaminations as early as possible. In-line or real time measurement techniques have
been widely studied either for cell culture or contaminant development monitoring,
very rarely for both.

Various spectroscopic coupled to chemometric techniques were presented in
Teixeria review [14] concerning cell culture. In addition, other methods based on
ultrasonic measurements [12] or capacitive techniques [7] have been proposed.
Impedance monitoring, either in a bulk system [1] or in a microfluidic chip [8] has also
been presented. But, in these references, indications whether or not the proposed
method can be adapted in a closed system configuration were not discussed.

Concerning bacteria detection or monitoring, different sensors have been proposed
to detect Escherichia coli (hereafter E. coli) by Ikonen [5]. Modified Field Effect
Transistors have been experimented to detect the same bacteria [15]. Detecting several
contaminants with a single device is challenging. However, it has been demonstrated
by using optical absorption spectroscopy [16], fiber optic Fourier Transform Infra-Red
spectroscopy [4], quartz crystal sensors [3] and electrochemistry [13]. More generally,
recent reviews concerning electrochemical biosensors [2] and impedimetric
immunosensors [9] for pathogen detection have been published.

Simultaneous cell monitoring and contaminant detection has only been the subject
of very few papers. For example, Liu proposed advanced signal processing applied to
Raman spectroscopy [10]. Together with normal condition monitoring, authors
demonstrated the detection of growth problems 5 h after they stopped feeding the cells.
They also detected effects of contamination with their monitoring algorithm. However,
the nature of the contamination and the time required to detect it was not specified.

In this paper, we propose a proof of concept based on different optical spectroscopy
methods to continuously monitor the evolution of cell concentration in a bioreactor and
to issue an alarm signal shortly after a contamination occurred. The next section
describes the experimental set-up, biological samples used in this study and spec-
troscopy methods employed. Section 3 presents the results obtained using several ways
of exploiting information contained in transmission or absorption spectra of solution
containing cells or bacteria (lymphocyte B cell and E. coli). Optical characterizations of
the concentrations are based on colorimetric estimations of lymphocyte and E. coli
solutions. These methods, together with the measurement of the maximum of the
absorption spectra, can be used to monitor cell growth in real time. Other methods can
be used for early detection of contamination. They are based on spectra shape analysis
and Principal Component Analysis (PCA) respectively. Short discussions of these early
results and aspects concerning socio-economic impacts will be given in Sect. 4.

2 Materials and Methods

For this proof of concept, measurements are not performed in a closed system con-
figuration. Adaptation of the method in this particular environment is shortly discussed
in Sect. 4.
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2.1 Lymphocytes and E. Coli Preparation

Lymphocyte cell lines (Ramos, ATCC, USA) were cultured in X-Vivo (Lonza,
Switzerland) with 5% FBS (Gibco™ 10270106) and 10% streptomycine/penicillin
(100 µg/mL + 100 UI/mL, CABPES01-0U, Eurobio) in a humidified 37 °C, 5% CO2

incubator. Cells were recovered after 2–3 days culture by centrifugation at 700 g,
10 min, 25 °C. Different cell concentrations (104 � [1, 2, 4, 6, 8, 10, 20, 30, 40, 50,
60, 70, 80, 90, 100] cells/mL) were prepared after dilution in autoclaved PBS 1x pH7.4
(Sigma, USA).

Escherichia coli DH5a (NEB, USA) were cultured in Luria Bertani overnight at
37 °C, 180 rpm in a MaxQ incubator. They were recovered by centrifugation at
5000 g, 15 min, 20 °C and re-suspended in autoclaved PBS 1x pH7.4 (Sigma, USA).
Optical density of the re-suspension was measured in a spectrophotometer Shimadzu at
595 nm. Afterwards, different bacteria concentrations (106 � [1, 2, 4, 6, 8, 10, 20, 30,
40, 50, 60, 70, 80, 90, 100] bacteria/mL) were prepared for experiments.

2.2 Experimental Set-Up

The extremely simple experimental set-up is schematically presented in Fig. 2. The set-
up was composed of a white light source (Ocean Optics HL 2000) connected to a
cuvette holder (Avantes CUV-UV/VIS) via conventional step index optical fibers
(Thorlabs M25L01). After propagation through the cuvette, light was launched into a
spectrometer for transmission/absorption spectra acquisition (Ocean Optics QE-Pro).
Fluorimeter polymethacrylate cuvettes were filled up to 3 mL with solutions of cells or
bacteria (Sigma-Aldricht C0793-100EA). Spectra were measured using the specific
feature available in the SpectraSuite software from Ocean Optics. Reference was
obtained with a cuvette filled with PBS only. After transfer to PC, data processing was

Fig. 2. Description of the experimental set-up.
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performed using MATLAB™ R2014b version. Spectra were truncated between
450 nm and 1120 nm in order to remove noisy data due to the transmission calculation
in the SpectraSuite software.

2.3 Color Based Analysis of Transmission Spectra

The associated colors of the solutions were computed from transmission measurements.
They do not actually correspond to the true colors of the solutions as discussed in
Sect. 4. However, they are expressed in different color spaces in order to study the
evolution of colorimetric parameters with species concentrations.

Tristimulus values (CIE XYZ) were calculated from spectral distribution with a
CIE 1931 standard colorimetric standard observer 2° and a CIE standard illuminant
D65. Color of the sample expressed in tristimulus color space was then converted in
other color spaces: CIELAB (CIE Lab 1976), sRGB (standard RGB) and HSV. HSV
coordinates were determined from sRGB. Color space conversion were performed
using the open source Python package “Colour” dedicated to color science [11].

2.4 Analysis of Absorption Spectra

Absorption spectra used in Sect. 3.3 were slightly smoothed using a cubic spline
algorithm in order to maximize the R2 of the spectra fittings. Principal Component
Analysis was performed with smoothed and normalized spectra.

In this work, so-called “contaminated spectra” presented below are artificial and
made by adding spectra of lymphocytes and E. coli. This aspect will be discussed in
Sect. 4.

3 Experimental Results

3.1 Measuring Concentrations of Both Species with Colorimetric
Description of Transmission Spectra

Examples of transmission spectra recorded with lymphocytes and E. coli for different
concentrations are given in Fig. 3. Transmission data are used because they are more
consistent with a colorimetric description of the spectra than absorption data.

As previously mentioned, colors of the solution are described in several color
spaces. Among them, we arbitrarily chose the following color spaces: XYZ, Lab,
sRGB and HSV. The goal is to describe each parameter of these color spaces as a
function of species concentration. Figure 4 shows the evolution of these colorimetric
components as a function of the lymphocyte concentrations. In this figure, “star
markers” correspond to experimental values. When the experimental data can be used
to determine species concentrations, mathematical fitting of the experimental data is
performed and displayed as continuous lines in the figure. In other cases, fitting is not
performed.
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XYZ components of the transmission spectra can easily be described by an
exponential function. However, and as it is depicted on the Fig. 4 with the light red
areas, fitting XYZ only works in a reduced range: [1 � 105–9 � 105] cell/mL. For low
concentrations, transmission is of the order of 100% and no real difference can be
observed in the transmissions spectra corresponding to these concentrations.

Fig. 3. Examples of transmission spectra of lymphocytes and E. coli. (a) Lymphocytes at
6 � 104 and 5 � 105 cell/mL, (b) E. coli at 8 � 106 and 1 � 107 bact/mL.

Fig. 4. Evolution of the colorimetric components with lymphocyte concentrations. (a) XYZ
space, (b) Lab space, (c) sRGB space and (d) HSV space. (Color figure online)
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Conversely, for high concentrations, the transmission approaches 0% and no coherent
information can be extracted from the spectra.

The situation is slightly different for the Lab components. Here, only the “L”
component is useful. It can be described with a linear regression. The “a” component is
almost zero for any lymphocyte concentration and contains no exploitable information.
The “b” component shows a non bijective evolution with the concentration. Therefore,
it cannot be used to compute lymphocyte concentrations. For these two components, no
attempts were made to describe their behavior. For the Lab space again, the useful
measurement range is [1 � 105–9 � 105] cell/mL.

The 3 components of the sRGB space can be used to compute the concentration
using linear regressions in the above mentioned useful range. The HSV space only
shows 2 exploitable components: “S” and “V”. They are described with linear
regression in the same useful range.

The same analysis can be conducted with transmission spectra of E. coli. The result
is given in Fig. 5. In this case, much less components can be used to compute bacteria
concentrations. Indeed, for the XYZ and sRGB spaces, the evolutions of the compo-
nents with the concentrations are non-bijective. This is also the case for the “L” and
“V” components in corresponding color spaces. Concentrations can only be computed
from the behavior of “b” and “S”. Evolutions of the components with the concentration

Fig. 5. Evolution of the colorimetric components with E. coli concentrations. (a) XYZ space,
(b) Lab space, (c) sRGB space and (d) HSV space. (Color figure online)
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are linear. Again, the useful range of the usable colorimetric components is [1 � 105–
9 � 105] bact/mL.

In order to define components offering the best accuracy when computing the
concentration, we calculated the R2 of each possible fitting. This is summarized in
Table 1.

R2 values are all relatively high. The highest values are obtained with the “L”
component of the lymphocyte transmission spectra (R2 = 0.9939) and with the “b”
component of the E. coli transmission spectra (R2 = 0.9904). For these two examples,
fitting functions Llym Cð Þ for the lymphocyte L component and bE:coli Cð Þ for the E. coli
“b” components are given by:

Llym Cð Þ ¼ m1:Cþm2 ð1Þ

bE:coli Cð Þ ¼ n1:Cþ n2 ð2Þ

Where m1 = −6.735 � 10–5, m2 = 93.56, n1 = 1.147 � 10–7 and n2 = 0.1295.

Table 1. Summary of the methods used to describe the evolution of the lymphocyte and E. coli
concentrations, type of function used to fit the experimental data, values of the fitting R2 and
useful ranges. “pol deg 2”: second order polynomial function, “exp”: exponential function,
“linear”: linear regression. NA: not applicable. Light red highlighted rows correspond to non-
exploitable components.

Lymphocytes E. coli 

Metho
d

Fit
type R2 Range 

(cell/mL) Method Fit
type R2 Range 

(bact/mL)
X exp 0,9881 1×105 - 9×105 X NA NA NA 

Y exp 0,988 1×105 - 9×105 Y NA NA NA 

Z exp 0,9873 1×105 - 9×105 Z NA NA NA 

L linear 0,9939 1×105 - 9×105 L NA NA NA 

a NA NA NA a NA NA NA 

b NA NA NA b linear 0,9904 1x107 - 9×107

R linear 0,9903 1×105 - 9×105 R NA NA NA 

G linear 0,992 1×105 - 9×105 G NA NA NA 

B linear 0,9936 1×105 - 9×105 B NA NA NA 

H NA NA NA H NA NA NA 

S linear 0,9662 1×105 - 9×105 S linear 0,9901 1x107 - 9×107

V linear 0,9936 1×105 - 9×105 V NA NA NA 
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Using Eqs. (1) and (2) allows estimating the species concentrations as presented in
Fig. 6. Blue diamonds correspond to the real concentrations and red crosses correspond
to the concentrations calculated using Eqs. (1) and (2). Standard deviations reported in
the figure correspond to 1.89 � 104 cell/mL for the lymphocytes (3.8% at the center of
the concentration range) and 2.37 � 106 bact/mL for E. coli (4.7% at the center of the
concentration range).

STDs obtained using fitting equations corresponding to exploitable color spaces
shown in Table 1 are reported in Table 2.

Fig. 6. Calculating the species concentrations from colorimetric parameters. (a) Lymphocytes
concentrations using the “L” component in the Lab color space. (b) E. coli concentrations using
the “b” component in the same color space. (Color figure online)

Table 2. Values of the Standard Deviation for the different fitting possibilities.

Lymphocytes E. coli 

Method Fit type STD
(cell/mL) Method Fit type STD

(bact/mL) 
X exp 4,19×104 X NA NA 
Y exp 3,84×104 Y NA NA 
Z exp 4,27×104 Z NA NA 
L linear 1,89×104 L NA NA 
a NA NA a NA NA 
b NA NA b linear 2,37×106

R linear 2,39×104 R NA NA 
G linear 2,17×104 G NA NA 
B linear 1,94×104 B NA NA 
H NA NA H NA NA 
S linear 4,51×104 S linear 2,41×106

V linear 1,94×104 V NA NA 

Optical Spectroscopy Methods 61



To summarize this section, concentrations of lymphocytes and E. coli can be
measured over a large concentration range using the color associated to transmission
spectra ([1 � 105–9 � 105] cell/mL). Table 2 shows that the “L” component of the
Lab color space leads to the lowest STD for cell concentration measurements
(1.89 � 104 cell/mL, i.e. 3.78% at the center of measurement range). For E. coli the
lowest STD is obtained with the “b” component of the same Lab color space
(2.37 � 106 bact/mL, i.e. 4.74% at the center of measurement range). Aspects con-
cerning the use of colorimetric analysis of transmission spectra will be shortly dis-
cussed in Sect. 4.

Often in biology laboratories, concentration is measured using the absorption of a
solution at a fixed wavelength. Measured solutions are diluted in order to obtain optical
densities in a range which ensures a reliable measurement. In the next section, we show
how the information contained in the whole absorption spectrum can be used to
measure concentrations. This will also introduce Sect. 3.3 where the possibility to
exploit the shapes of absorption spectra can be used to detect culture contaminations.

3.2 Measuring Concentrations with the Shapes of the Absorption Spectra

Examples of absorption spectra recorded with lymphocytes and E. coli for different
concentrations are given in Fig. 7.

The shapes of spectral absorptions of the two species are completely different. The
idea is, for each species, to model the evolution of the shapes of absorption spectra as a
function of concentration and to use this mathematical description to calculate the
concentration in species from any measured spectrum.

Indeed, the ulterior motive is to measure the absorption spectrum of the contents of
the bioreactor continuously. For each recorded spectrum, the idea is to analyze the
shape, to separate the part due to the contribution of lymphocytes from that due to
E. coli and to calculate their respective concentrations. This would allow detecting a
possible contamination in real time and stopping the fabrication of the ATMPs

Fig. 7. Examples of absorption spectra of lymphocytes and E. coli. (a) Lymphocytes at 4 � 105

and 5 � 105 cell/mL, (b) E. coli at 2 � 107 and 3 � 107 bact/mL.
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extremely early, i.e. before a large amount of money is lost and possibly reducing the
final cost of the drug.

First, it is necessary to determine the evolution of the spectra of the two species as a
function of the concentration. This is achieved using spectra mathematical fitting. We
found a general equations which can be used for each of the species. We found that an
exponential based function can be used to fit absorption spectra of lymphocytes while
those of E. coli can be fitted with a 3rd order polynomial function. We then have:

Speclym k;Cð Þ ¼ p1:exp � k� p2
p3

� �2
 !

þ p4 ð3Þ

SpecE:Coli k;Cð Þ ¼ q1k3 þ q2k2 þ q3kþ q4 ð4Þ

Here, k is the wavelength, C is the concentration. The concentration dependence
exists through the “pi” and “qi” parameters which can be expressed as follows.

p1 Cð Þ ¼ a1:exp � C � a2
a3

� �2
 !

ð5Þ

p2 Cð Þ ¼ b1:Cþ b2 ð6Þ

p3 Cð Þ ¼ c1:C2 þ c2:Cþ c3 ð7Þ

p4 Cð Þ ¼ d1:C2 þ d2:Cþ d3 ð8Þ

q1 Cð Þ ¼ e1:C2 þ e2:Cþ e3 ð9Þ

q2 Cð Þ ¼ f 1:C2 þ f 2:Cþ f 3 ð10Þ

q3 Cð Þ ¼ g1:C2 þ g2:Cþ g3 ð11Þ

q4 Cð Þ ¼ h1:C2 þ h2:Cþ h3 ð12Þ

Coefficients used in Eqs. (5) to (12) are given in Table 3.

Table 3. Coefficients used in Eqs. (5) to (12).

p1(C) a1 = 14.32 a2 = 4.1 � 105 a3 = 6.145 � 105

p2(C) b1 = 7.21 � 10–5 b2 = 647
p3(C) c1 = 1 � 10–10 c2 = −1.9 � 10–5 c3 = 325.7
p4(C) d1 = −5 � 10–11 d2 = 1.3 � 10–3 d3 = 6.791
q1(C) e1 = 1.2 � 10–23 e2 = −1.6 � 10–15 e3 = 1.2 � 10–9

q2(C) f1 = −3.3 � 10–20 f2 = 5.1 � 10–12 f3 = −1.7 � 10–6

q3(C) g1 = 2.8 � 10–17 g2 = −5.5 � 10–09 g3 = −8.3 � 10–4

q4(C) h1 = −1 � 10–14 h2 = 2.4 � 10–6 h3 = 1.234
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Figures 8 and 9 show the evolutions of the pi and qi functions and Eqs. (5) to (12)
are recalled in the figures.

Obviously, pi and qi data can hardly be fitted with mathematical function. Only p4
and q4 data can efficiently be modelled (this aspect will be discussed in Sect. 4).
Despite this, shapes of the absorption spectra can be modelled with a relatively good

Fig. 8. Evolution of the pi functions with the lymphocyte concentration (left hand side).
Examples of experimental absorption spectra fitted with the Speclym k;Cð Þ function (right hand
side).

Fig. 9. Evolution of the qi functions with the E. coli concentration (left hand side). Examples of
experimental absorption spectra fitted with the SpecE:Coli k;Cð Þ function (right hand side).
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accuracy. For the lymphocytes, the STD is of the order of 0.3%. For the E. coli
however, the STD is larger: between 4% to 6%.

Functions Speclym k;Cð Þ and SpecE:Coli k;Cð Þ are represented in Fig. 10.

These functions are used to calculate species concentrations from the shapes of the
experimental absorption spectra. The result is shown in Fig. 11.

The standard deviation for the lymphocytes is 1.69 � 104 cell/mL. This is lower
than what was obtained using the “L” components in the Lab color space (1.89 � 104

cell/mL). For E. coli obviously, we failed measuring concentrations from the shape of
the absorption spectra. Indeed, the standard deviation (1.31 � 107 bact/mL) is more
than 5 times larger than what was obtained using the “b” component in the Lab color
space (2.37 � 106 bact/mL). Therefore, the initial idea consisting in studying the shape
of an absorption spectrum in real time in order to early detect any contamination seems
impossible when trying to compute the actual concentrations values.

Fig. 10. Theoretical evolutions of the absorption spectra with species concentrations.
(a) Lymphocytes, (b) E. coli. Adapted from [17].

Fig. 11. Calculating the species concentrations from the shapes of the absorption spectra.
(a) Lymphocytes concentrations. (b) E. coli concentrations. Adapted from [17].
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We now consider the evolution of the maxima of the lymphocyte absorption spectra
with concentration. This evolution can be modelled with a second order polynomial
function as depicted in Fig. 12(a). Here again, the useful range is [1 � 105–9 � 105]
cell/mL. Maxima of the absorption spectra can be modelled as follows.

Maxlym Cð Þ ¼ s1:C2 þ s2:Cþ s3 ð13Þ

Where: s1 = −7.557 � 10–11, s2 = 1.527 � 10–4 and s3 = 16.74.
Calculation of lymphocyte concentrations from the evolution of the spectra maxima

is shown in Fig. 12(b). Here, a standard deviation as low as 1.39 � 104 cell/mL
(2.78% at the center of the range) is obtained. This is the lowest values obtained so far
in this study.

To summarize Sects. 3.1 and 3.2, concentrations of either lymphocyte or E. coli can
be measured using white light spectroscopy. The best way to monitor lymphocyte
concentration is to consider the evolution of the maxima of the absorption spectra.
Concerning E. coli, the best method consists in measuring the “b” component in the
Lab color space from the transmission spectra. Surprisingly, the evolution of the shape
of the lymphocyte absorption spectra does not lead to a better accuracy than the simple
measure of the absorption maximum.

However, estimating the shape of the absorption spectra can be used for another
purpose. Indeed, the above described methods can be used to monitor the evolution of
the concentrations of both species when only one species is present. When considering
spectra of lymphocyte and E. coli mixtures, it is extremely difficult to separate their
respective contributions. The problem becomes insoluble when several types of
pathogens are considered.

We recall that the main goal is to measure the lymphocytes concentrations in a
close–system environment and in real time. The goal is also to be able to detect any
possible contamination in the same experimental environment. This can be achieved by
considering things differently. This is the subject of the next section.

Fig. 12. Calculating the lymphocyte concentrations from the absorption maxima. (a) Evolution
of the maxima with the lymphocyte concentrations. (b) Fitting concentrations using a second
order polynomial function.
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3.3 Monitoring Cell Concentrations and Detecting Contaminations:
A New Approach

Fitting the Shape of the Absorption Spectra. As long as everything is normal (no
contamination) during the expansion phase, cell concentration can be monitored using
methods described above. Also, we know the equation which describes the shape of the
absorption spectra (Eq. (5)). In case of contamination, the shape of the spectrum
resulting from the contribution of the lymphocytes and the contaminant differs from the
ones corresponding to lymphocyte alone. In this situation, Eq. (5) should no longer be
usable to fit the shape of absorption spectrum.
Practically, during the expansion phase, absorption spectra are recorded and fitted with
a function representing the shapes of the lymphocyte spectra when they are alone. At
this stage, only the shape of the spectra is analyzed. Therefore, Eq. (5) can be used in a
simpler way than what is presented in Sect. 3.2 where coefficients are expressed as a
function of the concentration. This function is called Abslym kð Þ. Here, the function only
depends on the wavelength and coefficients are adjusted only to obtain the highest R2.
Therefore, an accurate fitting (high R2) using Abslym kð Þ means no contamination,
lymphocyte concentration is calculated using Eq. (13), content of the bioreactor is
adjusted according to this concentration and fabrication continues. Conversely, an R2

value less than a threshold to be determined is the sign of a contaminated culture.
Fabrication must then be stopped. Figure 13 explain this process.

As concentrations are not calculated, only the shape of the recorded spectrum is
fitted. The following equation can efficiently be used.

Abslym kð Þ ¼ a:exp � k� b
c

� �2
( )

þ d ð14Þ

Here, constraints were put to coefficients a, b, c and d. Otherwise, the fitting
algorithm (“trust region” in Matlab™ Curfitting toolbox) always finds a set of
parameters to describe even contaminated spectra. The fitting bounds and starting
points are summarized in Table 4.

Fig. 13. In-line process to detect contaminations and to adjust the bioreactor composition as a
function of the lymphocyte concentration.
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Figure 14 shows examples of absorption spectra fittings using Eq. (14). Spectra
were slightly smoothed as mentioned above.

In Fig. 14(a) fitting is performed with pure lymphocytes at 2 � 105 cell/mL. The
R2 value is quite high: R2 = 0.9986. Indeed, with pure lymphocyte spectra, R2 coef-
ficients are always greater than 0.99 in the above mentioned useful range [1 � 105–
9 � 105].

In Fig. 14(b) fitting is performed with the same lymphocyte concentration con-
taminated with 2 � 107 E. coli/mL. In this case and because the contamination
modifies the shape of the recorded spectrum, R2 decreases to 0.9737. Note that the so-
called “contaminated spectra” are artificial and obtained by adding absorption spectra
of both species as described in Sect. 2.4.

For different lymphocyte concentrations in the useful range, Fig. 15 shows the
evolution of R2 with increasing concentrations of E. coli. Each curve corresponds to
one lymphocyte concentration. It is observed that, for any lymphocyte concentrations,
the contamination detection limit is of the order of 2.5.107 bact/mL. For this, we set a
positivity threshold R2 = 0.988 (arrows in the figure). Knowing that E. coli divides
every 20 min and considering that the contamination is due to 1000 bact/mL, the
warning signal can be issued 4 h 52 min post contamination.

Table 4. Lower bounds, upper bounds and starting points used to fit absorption spectra with
Eq. (14).

Coefficient Lower bound Upper bound Starting point

a (%) 0 200 100
b (nm) 600 750 675
c (nm) 0 500 250
d (%) 0 200 100

Fig. 14. Examples of spectra fitting using Eq. (14). (a) Lymphocyte concentration = 2 � 105

cell/mL, R2 = 0.9986. (b) Lymphocyte concentration = 2 � 105 cell/mL, E. coli concentra-
tion = 2 � 107 bact/mL, R2 = 0.9737.
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Using Principal Component Analysis. Analyzing the shape of the absorption spectra
allows detecting a contamination when 2.5.107 bact/mL are present in the bioreactor.
But it is possible to further reduce the time required to issue the alert signal using
Principle Component Analysis (PCA). In what follows, spectra are smoothed and
normalized as mentioned above. PCA is conducted in two steps.

The first step consists in verifying that populations of both lymphocytes and E. coli
can be distinguished. Figure 16(a) shows that plotting PC2 vs. PC1 allows separating
biological populations. The black line represents the frontier between these popula-
tions. It is defined by either the analysis of the mean and variance of the two distri-
butions or the minima of the coordinates of lymphocytes (circles) and maxima of
E. coli (crosses). Taking into account these data, a straight line which separates the
PC1-PC2 domain in two zones is defined [6].

The second step consists in checking where a so-called “contaminated spectrum” is
located in the PC1-PC2 space. Indeed, the 30 data used to generate Fig. 16(a) form a
base for the pure lymphocyte and pure E. coli populations. Contaminated spectra
correspond to all possible combinations of lymphocyte spectra added to E. coli spectra.
They are processed one by one. Each contaminated spectrum is considered as a 31rst
data in the above mentioned base before a new PCA is performed. This is iterated for
the 225 possible combinations. Indeed, in this PCA study, all E. coli spectra are
considered and not only those corresponding to concentrations above 1 � 107 bact/mL
as it was the case up to now. The result is shown in Fig. 16(b) with the contaminated
spectra marked with red squares.

Fig. 15. Evolution of the R2 coefficient with the concentration in E. coli for different lymphocyte
concentrations. The legend corresponds to lymphocyte concentrations in cell/mL [17].
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Contaminated spectra of contaminated culture are all situated in the E. coli region.
This means that the bacteria detection limit is at least 1 � 106 bact/mL (the minimum
E. coli concentration considered in this study). The warning signal can now be issued
only 3 h 19 min after a contamination with 1000 bact/mL occurred. Therefore, the in-
line process proposed in Fig. 13 can now be modified as presented in Fig. 17.

4 Discussion

4.1 Technical Aspects

Figures 4, 5, and 6 show that analyzing transmission spectra using the associated color
proves to be efficient to measure both species concentrations. Indeed, according the
results obtained in this study, this is the best way to measure E. coli concentration in
real time and possibly in a closed system environment. In a general manner (for both
lymphocyte and E. coli), we note that the “H” (Hue) and “a” (scale between green and
red) parameters remain constant while the “b” (from blue to yellow) evolves very little.
This means that the color of the solutions is not changing (or very little) with the
concentration. The “L” (Luminance) and “V” (Value) parameters decrease with the

Fig. 16. Principal Component Analysis. Blue circles: lymphocytes, green crosses: E. coli, red
squares: contaminated cultures and black line: separation between lymphocytes and E. coli.
(a) ACP for pure lymphocyte and E. coli. (b) The same as (a) with contaminated cultures. (Color
figure online) Adapted from [17].

Fig. 17. In-line process to detect contaminations and to adjust the bioreactor composition based
on Principal Component Analysis.
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concentration. This indicates that the intensity of the transmitted light decreases with
the concentration. Although the color is not changing the associated color is reinforced
with the concentration. This is observed with the increase of the “S” (Saturation
parameter. “L” decreases but the color remains almost constant: this is confirmed by the
fact that the “RGB” parameters decrease almost the same way with the concentration.
Also, the relative values of the “RGB” parameters are constant which is consistent with
a constant “H” parameter.

However, it is somehow inappropriate to talk of color when working with trans-
mission spectra of biological solutions. Indeed, measuring the true color of the solu-
tions would imply using a calibrated light source and studying the spectrum of the light
reflected by the sample solution. Determining the true color of the solutions is not our
purpose. Decomposition of the measured spectra in different color spaces is only a
mathematical means of determining concentrations. For example, we also studied the
entropy of the spectra. Estimating the quantity of information contained in the spectra
using their entropy makes possible to measure concentration but in a reduced useful
range which will not be presented in this paper.

Figures 8, 9, 10, 11 and 12 show that, during ATMPs production, analyzing the
shape absorption spectra of lymphocytes allows monitoring the expansion phase.
However, looking closer at Figs. 8 and 9 shows that most of the coefficients used to
describe the shape of the absorption spectra cannot be efficiently fitted with mathe-
matical functions. Indeed, for lymphocytes, only the p4 function can be efficiently
described (this is the same for E. coli considering q4). This means that a better con-
centration determination could be obtained using p4 only instead of the whole spectrum
shape. This was not investigated in this study but looking at Eq. (4), we understand that
this p4 function somehow represents the baseline of the recorded spectra. Functions p2
and p3 describe the shape of the spectra while p1, together with p4 contribute to the
amplitude of the spectra. This is why indeed, measuring the concentration using the
maxima of the absorption spectra (Eq. (13)) is particularly accurate (Fig. (12)).

This does not mean that the shape itself contains no useful information. It also
provides powerful a tool to issue an alert signal less than 5 h after a contamination with
1000 bact/mL occurred as it is shown in Fig. (15). Principal Component Analysis can
be used to reduce the time required to issue a warning signal (Figs. (16)) the drawback
being that it cannot be used to measure lymphocyte concentrations.

So-called “contaminated spectra” are artificial. They do not correspond to real
lymphocyte and E. coli mixtures. These spectra consist of the addition of lymphocytes
and E. coli spectra. Therefore, a bias could be introduced in the results presented here
because adding absorption spectra may lead to artificial absorptions greater than 100%.
The method described in Sect. 3.3 is still valid because only the shape is considered
and not the actual value of the maximum absorptions. We recall that the R2 coefficient
is only used to issue an alert signal. Equation depicted in Fig. 10(a) remains valid to
monitor the expansion phase as long as no contamination occurs. Because it is per-
formed using normalized spectra, results obtained using Principal Component Analysis
are not affected. However, an ongoing and more realistic study involves real spectra
recorded with real mixture of lymphocytes and E. coli.

Although they are not the only ones, we mentioned methods based on spectro(photo)
metry in the introduction. One, based on Fourier Transform Infrared Spectroscopy
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(FTIR), was used to identify four types of bacteria [4]. This was not performed in
solution but onto a sensor’s surface. Also, Principal Component Analysis was used by
the authors to successfully separate types of bacteria, to discriminate between Gram+

and Gram− bacteria and to analyze mixtures. Another cited work presents the use of
several sensors (Turbidity, particle counting, temperature, pH and spectrophotometry) to
detect contaminants in drinking water [5]. However, methods described in this paper
seem to be extremely difficult to automate. Also in this paper, analysis was performed
using only 2 wavelengths which drastically reduces the amount of available information.
Note that 2 reduced wavelength ranges were used by Hassan [4].

It should be noted that in our work, we exploit the total amount of information
contained in the whole 450 nm to 1120 nm wavelength range (except for associated-
color investigations) which represents over 900 data per spectrum with the spec-
trometer we used. Also, because measurements are performed in a cuvette and not on a
biosensor’s surface, the method can easily be used to provide a real time analysis of
what happens in the bioreactor, in a closed-loop environment and without the need for
any biosensor cleaning and/or regeneration.

From a practical point of view indeed, white light spectroscopy and conventional
cuvettes makes possible an easy adaptation in a closed system configuration as illus-
trated in Fig. 18.

In this work, only a contamination due to E. coli is considered. Cases of other
bacteria or other types of containments like yeasts and fungi are currently being
investigated. But as long as the shapes of the absorption spectra of contaminants are
different enough from the ones of lymphocytes, the methods presented here should still
be valid.

4.2 Socio-Economic Impacts

The expansion phase lasts several days and each day increases the price of ATMPs.
The quality control imposes regular samplings, themselves risk of contamination.

Fig. 18. Possible integrations of the method in a closed system environment. (a) Using a
derivation. (b) Using a sterilized reflection probe coupled to a mirror. Adapted from [17].
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Being able to monitor cell expansion and to perform quality controls without sampling
is particularly interesting. In this way, expansion phase can be stopped rapidly which
reduces the global cost of ATMPs. In this work, methods able to issue a warning signal
about 3 h after a contamination with 1000 E. coli/mL are described.

ATMPs are likely to create a real therapeutic revolution in the coming years
because they are designed to treat patients with pathologies that are currently incurable.
It is right now difficult to estimate the number of pathologies that these medicines from
the living can address and the number of patients likely to benefit.

Only a few ATMPs are available on the market. The enormous production cost also
led to marketing authorization cancellation of some of them (Glybera, Sipuleucel-T,
ChondoCelect). At the date of manuscript writing, only the following treatments are
available (note the price for a single treatment):

• KYMRIAH ($ 475,000)
• YESCARTA ($ 373,000)
• Strimvelis ($ 594,000)

Included in these costs are losses due to fabrications, which are found to be con-
taminated during the final conformity test and those due to late-stage fabrication stops
due to the scheduling of controls at precise times. Having a real-time and closed system
monitoring and quality control method is of great interest in terms of research,
industrial manufacturing and more importantly in terms of benefit to the patients.

5 Conclusion

In this paper, we have presented spectroscopic methods to continuously perform a
quality control during the expansion phase of ATMP production. These methods are
based on analyzing the transmission or absorption optical spectra of the content of a
bioreactor. Colorimetric based techniques can be used to monitor lymphocyte multi-
plication during the expansion phase of ATMP production. They can also be used to
monitor E. coli proliferation in other applications. However, the colorimetric method
cannot be used to simultaneously monitor the concentration of lymphocytes and bac-
teria when a contamination occurs.

The originality of this work is that we do not need to measure the contaminant
concentration but only to detect its presence. Consequently, spectral shape analysis can
be used not only to monitor the lymphocytes multiplication but also to issue an alert
signal about 4 h 52 min post contamination. Warning can even be issued earlier by
using Principal Component Analysis. The warning signal can then be issued 3h19min
post contamination. However, Principal Component Analysis cannot be used alone as it
fails to measure lymphocyte concentrations when no contamination is detected. Note
that the warning delays are calculated for a contamination due to 1000 E. coli/mL.
Advantages of such methods can be summarized as follows.

• Regular sampling of the content of the bioreactor is no longer required. This further
reduces the risk of sampling related contaminations.
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• The use of planned sampling at a fixed date and time without even knowing whether
contamination is avoided.

• The goal being to stop the production as soon as a contamination is detected and not
to identify the pathogen responsible for it, this identification can be performed later.

As long as the culture is normal, the lymphocyte expansion is monitored in real
time. Because contamination is detected extremely early the production can be stopped
instantly which greatly contribute to reduce the production cost.

Indeed, in order to guarantee access of ATMPs to the largest number of patients, a
new conception of the current mode of production and qualification of these living
drugs is necessary. Currently, our studies are focused on the validation of these above
described methods considering other types of pathogens.
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Abstract. Even in modern dermatology clinics, the determination of the
severity of ultraviolet (UV)-induced erythema and assessment of individual
photosensitivity based on the calculation of minimal erythema dose (MED) is
still performed visually, which is subjective, and associated with high variability
of the results and frequent errors when it done be untrained personnel. The
application of non-invasive quantitaitve methods such as laser fluorescence
spectroscopy (LFS) and optical tissue oximetry (OTO) could be a solution of
these problems. In is well known that acute UV skin damage is associated with
structural alterations, vasodilatation and inflammatory response. Moreover,
porphyrins which have well-known autofluorescent properties play a role in the
chemoattraction of immune cells to the area of local inflammation caused by
UV. Using LFS in the preclinical part of the study on ICR mice (N = 25) time-
dependent dynamic changes in the fluorescence parameters of porphyrins were
found. Optical parameters were in a good agreement with histological findings.
Statistically significant correlation was found between the severity of inflam-
matory infiltrate and the tissue content index (η) of porphyrins. During the
clinical part of the study on healthy volunteers (n = 14) the analysis of
endogenous fluorescence and microcirculation characteristics by LFS and OTO
revealed the correlation relationship between the intensity of endogenous
fluorescence of porphyrins and oxygen consumption with a dose of UV radia-
tion. The correlation of the porphyrins fluorescence with a dose of UV was also
demonstrated. Overall results have fundamental value and should be investi-
gated and applied in clinical practice to objectively assess and predict MED.
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1 Introduction

Nowadays, the problem of precise assessment of the effects of ultraviolet radiation
(UVR) on human skin is being actively discussed in photobiological studies. Tradi-
tionally, the extent of UV exposure applied to a biological organism in vivo is deter-
mined based on minimal erythema dose (MED) - amount of UV radiation required to
cause a faint skin redness (erythema) with diffuse borders on untanned skin several
hours (traditionally, 24 h) after exposure [2]. MED is usually measured in mJ/cm2. The
determination of photosensitivity using MED to date is widely implemented in scientific
and clinical practice. For instance, when starting a course of phototherapy (in order to
treat dermatoses such as psoriasis, morphea or atopic dermatitis) initial doses of UVA
and UVB are determined based on the patient’s MED [1]. Moreover, MED assessment
is used in cosmetic industry to calculate sun protecting factor (SPF) and applied as
essential diagnostic method in follow-up of patients with photodermatoses [3].

It is important to point that MED represents the degree of individual’s acute
response to the UVR which is described as nonspecific skin damage, associated with
structural, vascular and immunological changes in the epidermis and dermis, and is
clinically manifested as UV-erythema [4]. The cascade of immune reactions,
molecules-mediators involved in the damage to the epidermis and vasodilatation, as
well as the course of structural changes in the skin induced by acute UV exposure, are
being actively investigated but yet no fully understood [5].

Even today MED is routinely determined visually, which is a is subjective and
connected with errors due to high intrarater and interrater variability. Some authors
point that MED reading is a serious challenge because traditional visual method lacks
accuracy, quantification, reproducibility and [6]. Falk M. and Ilias M. showed that the
agreement between observers was excellent for skin UV-erythema with a sharp border,
but a significant inter-observer variability was detected for zones of skin hyperemia
with diffuse and indistinct borders. Moreover, mistakes can occur during the visual
assessment of the Fitzpatrick skin phototype especially in tanned patients or in indi-
viduals with dark skin when the evaluation is made by untrained observer [7].

Unfortunately, there are some adverse effects connected with incorrect estimation
of MED: for instance, it could cause the overvaluation of the starting dose of UV in the
phototherapy course and consequently lead to such complications as dry skin, erythema
and burn, hyperpigmentation, herpes simplex reactivation and to worsening of the
underlying dermatosis. On the other hand, described adverse reactions lead to a delay
in the UV-treatment course, extra clinic appointments and additional economic losses.
There is a further problem with the increasing risk of malignant cutaneous tumors and
premature photoaging. The existing association between UV-erythema and molecular
changes in the deoxyribonucleic acid (DNA) was described in literature, highlighting
oncogenic risks [8].

The majority of available techniques aimed at detecting UV-induced erythema and
MED (biochemical, molecular, pathomorphological) are invasive, time-consuming and
not sensitive enough to early alterations [9]. A possible solution to these problems
could be found in non-invasive optical methods. According to the literature such
approaches as colorimetry [10], diffuse reflectance spectroscopy [11], laser doppler
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flowmetry [7], laser doppler visualization [12], optical coherent tomography [13] and
confocal microscopy [14].

However, described methods also have serious limitations: some of them are dif-
ficult to master and operate, it is hard to achieve quantitative data, they mostly were
used solely but not in combination with each other and the majority of them are not
implemented in clinical particle and were used only for scientific purposes. In the
abovementioned studies optical measurements were performed on fully developed UV
erythema 24 h after the irradiation not allowing to predict erythema formation and
MED. Moreover, existing methods don’t reflect all dynamic skin changes involved in
UV-induced skin damage pathogenesis. Some pathophysiologic markers of UV-
induced skin damage were out of the scope of previous works.

One approach to solve these problems involves the use of laser fluorescence
spectroscopy (LFS) and optical tissue oximetry (OTO) in MED assessment. Molecular
markers which are accountable for oxidative stress, proteolysis, inflammation and
hypoxia – processes, involved in the pathogenesis of UV-induced skin damage, - could
be assessed by OTO and LFS in red and green spectrum range [15]. Several studies
report the application of LPF and OTO in investigation of local inflammation [16],
radiation skin damage [17] and skin fibrosis [18] in vivo. Additionally, some authors
used LFS to skin alternations in course of chronic UV damage and photoaging [9, 19].
In one study it was found that fluorescence parameters correlated with tryptophan
expression and cell proliferation and may indicate the presence of “sunburn cells” in
the epidermis [9].

In our previous research we tried to assess the applicability and prospects of LFS
and OTO in the assessment MED in healthy volunteers at different time periods after
UV irradiation [20]. For this study, it was of interest to investigate changes in
inflammatory and immune response in experimental model of acute UV-skin damage in
mice using LFS and OTO and found the link between fluorescence characteristics and
histology. The overall goal of this work was to analyze and compare preclinical and
clinical data connected with quantitative assessment of UV-erythema and MED.

2 Materials and Methods

2.1 Animals and Ultraviolet Irradiation

The preclinical part of the research was carried out on male ICR mice aged 6–8 weeks
(N = 25) weighing 28–35 g. The animals were kept under standard vivarium condi-
tions at a temperature of 21–23 °C, humidity 50–65%, 14-h daylight. They received
balanced granular food that did not contain fluorophores and had free access to
drinking water. The animal quarantine period was 10 days. The experiment was con-
ducted in compliance with the welfare of animals used in experiment (Declaration of
Helsinki), EU Directive 86/609/EEC on the protection of animals used in experiments,
and European Convention for the Protection of Vertebrate Animals Used for Experi-
mental and other Scientific Purposes (ETS 123) Strasbourg, 1986).

78 M. Makmatov-Rys et al.



In all experimental animals acute UVB-induced erythema was initiated using «Dr.
Honle Dermalight» 500-1 series (manufactured by Dr. Honle Medical Technology
GmbH, Germany), equipped with Phillips UV-B Narrowband PL lamps with a
wavelength of 311 nm. The intensity of the UV lamps was measured at each stage of
the experiment using a Waldmann Variocontrol spectroradiometer (UV-meter). Pre-
liminary, 48 h before the irradiation, mice were denuded in the dorsal area (using veet
depilatory cream). During the UV exposure, all animals were anesthetized to avoid
unnecessary stress and movements.

In the course of the study mice were divided into 5 subgroups of 5 animals each.
The intact subgroup (control, N = 5) was not irradiated. Other subgroups were exposed
to an UVB irradiation in dose of 2 MED (1392 mJ/cm2) in the dorsal area. The
distance between the surface of the skin and light source was 10 cm, the exposure
period was 16 min Previously, in pilot experiments we’ve determined the MED for
ICR mice using the method described by Gyöngyösi [21]. Finally, 24 h after irradia-
tion, mice were visually examined in the back region and photographed.

2.2 Volunteers and Ultraviolet Irradiation

The clinical part of the study was conducted on a group of healthy volunteers (n = 14,
8 male and 6 female) aged 26 ± 3 years with Fitzpatrick skin phototypes II and III.
Using traditional method (described by [2]. MED was estimated in all participants.
Measurements were conducted on the skin of the upper back region or on abdominal
skin. UVB irradiation was performed using light source «Dr. Honle Dermalight]2 500-
1 series (manufactured by Dr. Honle Medical Technology GmbH, Germany), equipped
with Phillips UV-B Narrowband PL lamps with a wavelength of 311 nm. During MED
assessment hypoallergenic test patch (Daavlin DosePatch) with six square windows (a
square size of 1 cm2) was applied to the skin of the back or abdomen; the distance
between UV source and surface of the skin was 30 cm. Before each session of irra-
diation UV intensity of lamps was measured using a Waldmann Variocontrol spec-
troradiometer (UV-meter). The dose of UV radiation was increased stepwise from
window to window depending on the individual’s phototype according to reference
tables [22]. Thus, skin regions in the square cells were cumulatively exposed to UV
radiation doses in range from 100 to 770 mJ/cm2. Then, 24 h after UV-B exposure, the
participants went through the visual assessment of MED performed by 2 observers. The
erythema reaction was graded using a visual rating scale [23]. Based on the results of
the visual examination, the square zone of skin with redness corresponding to the MED
(barely noticeable erythema) was determined and the dose of UVB was calculated.
Detailed characteristics of MED and phototype of the participants are presented in our
previous study [20].

2.3 Optical Measurements and Data Processing

Optical diagnostics was conducted before UVB irradiation (intact skin) and 0.5, 3, 6,
24 h after it, on the dorsal denuded skin of experimental animals (preclinical part) and
on the skin in each of 6 square windows and on the contralateral area in healthy
volunteers (clinical part). The parameters of endogenous porphyrins fluorescence was
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evaluated by LFS and local blood flow characteristics was measured by OTO. Both
methods are implemented in the LAKK-M system (SPE ‘LAZMA’ Ltd, Russia). The
principal scheme of the device was described in our previous paper [20]. The process of
registering optical parameters is presented in Fig. 1.

The choice of the above mentioned time points was based on an analysis of the
literature on the pathogenesis of the of acute UV damage [8, 24].

The spectra of secondary radiation (backscattered and fluorescence) were recorded
from each region of interest after selected (at wavelength of ke = 635 nm or ke =
535 nm) low-power laser source irradiates the tissue.

Porphyrin has a two-hump fluorescence spectrum with maxima at wavelengths of
625–630 and 700–710 nm [25]. In the waveband of 650 - 750 nm, porphyrins are the
major contributor to the endogenous fluorescence spectrum of biological tissue, but at
k = 625–630 nm porphyn fluorescence is most expressed.

The porphirin fluorescence intensities If were estimated at kf = 710 to verify theirs
presence and at kf = 630 nm to quantitative assessment, respectively. Despite the fact
that other fluorophores (for example, lipofuscin) can also fluoresce in the range of 625–
630 nm, we believe that their contribution to the total intensity is minor.

To estimate the fluorescence quantitatively in mice skin, the tissue content index of
fluorophore ηf was used, which is calculated by the formula:

gf ¼
If � b

If � bþ Ibs
ð1Þ

where If is the intensity at kf of a particular fluorophore, Ibs is the intensity at ke
used to excite fluorescence, b is the attenuation coefficient of the used optical filter,
b�1000.

Fig. 1. The process of optical measurements on the abdomen skin in healthy volunteers (left)
and on the dorsal skin in ICR mice (right) after the UVB-irradiation.
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In the case of studies involving volunteers, the individual variability of the content
of fluorophores in intact tissue plays a significant role. To minimize its influence we
normalized the fluorescence to the intact region:

l kfð Þ ¼ I kfð Þ= I0 kfð Þ ð2Þ

where I(kf) is the fluorescence intensity from the iradiated area, I0(kf) is the
fluorescence intensity from the intact area.

To evaluate the local blood flow, blood filling volume (Vb) and tissue oxyhe-
moglobin saturation (StO2) were recorded for each region of interest for 20 s. Then,
according to the time-averaged data the specific oxygen consumption of the tissues
U characterized by the oxygen intake per tissue blood flow volume unit was calculated
by the following formula [27]:

U ¼ SpO2 � StO2
� �

=Vb ð3Þ

where SpO2 is the functional pulse saturation of the oxyhaemoglobin fraction in the
arterial peripheral blood. It was assumed equal to 98%.

2.4 Morphology and Staining

In order to investigate structural alteration in epidermis ad dermis caused by acute UV
exposure all experimental animals were sacrificed before, 0.5, 3, 6, and 24 h after
irradiation with subsequent biopsy of the dorsal skin (skin flap 1.0 cm2), material
sampling and pathomorphogy (hematoxylin and eosin (H&E) strain). For each histo-
logical sample, the number of inflammatory cells (polymorphonucleocytes) was
counted in 10 high-power fields (hpf). Further, the immune infiltrate was graded as -
pronounced (400–600 cells), moderate (200–400 cells), weak – (less than 200 cells).

2.5 Statistical Analysis

Statistical analysis was performed in Microsoft Excel 2016 and Statistica 12 (Statsoft
inc., USA). The analysis of dynamic changes in the optical parameters described above
was carried out using the Wilcoxon test. The relationship between the obtained optical
data and the dose of UV radiation was evaluated using the Spearman rank correlation
coefficient. The probability of an error of the first kind was considered statistically
significant to be less than 5% (p < 0.05).

3 Results and Discussion

3.1 Preclinical Study

Grouped-averaged fluorescence spectra assessed from on the dorsal skin of ICR mice
before and in various time points after UV-irradiation are depictured in Fig. 2.
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According to the results of LFS, dynamic changes in the fluorescence parameters of
porphyrins over time were noted. The results of optical measurements are presented in
the Fig. 3. Peak values of the tissue content index (η) of porphyrins were found after
3 h after UV exposure. Then a gradual decrease in η of porphyrins was observed - after
24 h its values closely approached normal levels (as in unirradiated skin).

Fig. 2. Group-averaged fluorescence spectra for intact (without UV-exposure, 0 h) and
irradiated skin 0,5, 3, 6, 24 h after UV-exposure. Excitation wavelength ke = 535 nm.

Fig. 3. Dynamic changes in the tissue content index of porphyrins, ke = 535 nm.
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During the analysis of pathomorphological samples, dynamic structural, vascular and
inflammatory changes at the different time points after UV exposure we detected. It was
evident that 30 min after irradiation, the first signs of an acute inflammatory response
were noted: vasodilation, an influx of neutrophilic leucocytes. At the point of 3 h, the
inflammatory response reached its peak: abundant neutrophilic infiltration developed,
and after 6 h the immune infiltrate became less pronounced and had mixed structure
(neutrophils and histiocytes) and single «sunburn cells» were noted. After 24 h, the
stabilization of the inflammatory reaction was observed: lymphocytic-histiocytic infil-
trate was widely distributed in the skin, specific signs of UV damage appeared («sunburn
cells», vacuolization of the basal cell layer) and were also uniformly distributed in the
thickness of the epidermis. Figure 4 show the histological changes that occurred 3 h after
UV exposure compared with unirradiated skin (hematoxylin and eosin staining).

Fig. 4. Morphology of unirradiated dorsal skin of ICR mice (0), and animal skin 0,5, 3, 6, 24 h
after UV-exposure (H&E stain, magnification of x 400).
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Using Pearson correlation coefficient, we found a statistically significant relation-
ship between the severity of inflammatory immune infiltrate and the tissue content
index (η) of porphyrins (r = 0.912, p = 0.031).

The obtained preclinical data have certain fundamental value and could have
potential clinical implementation. A number of studies have shown that porphyrins,
nitrogen-containing orange-red fluorescent pigments, accumulate in inflamed tissues
after mechanical, chemical, and radiation damage [16, 17]. In experiments conducted by
Schneckenburger and colleagues using the LFS method, the accumulation of porphyrins
in the area of artificially-induced skin inflammation in Wistar rats was shown [26]. It is
believed that the source of porphyrins in tissues can be free heme, the concentration of
which increases sharply in tissues due to hemolysis or excessive damage to cells induced
by internal or external (e.g. high dose UV- exposure) stimuli. Hypotheses are put
forward that porphyrin molecules play a role of chemoattractants and engage immune
cells to come the site of inflammation and contribute to the formation of infiltrate [28].

Described association between fluorescence parameters of porphyrins and immune
infiltrate can be explained from pathogenetic point of view: porphyrins, that are released
from damaged and destructed skin cells and accumulated in area of UV-irradiated skin,
play a role pf chemoattractants for neutrophilic granulocytes. It was found that the peak
of neutrophilic infiltration 3 h after UV exposure coincided with the peak porphyrins
fluorescence. In addition, a marked increase in porphyrins fluorescence may be asso-
ciated with the pronounced vasodilation observed in the UV-injured skin.

3.2 Clinical Study

Examples ofmeasuredfluorescence spectra from the intact (non-irradiated) and irradiated
skin sites at ke = 535 nm after 24 h after the UV-irradiation is shown in the Fig. 5.

Fig. 5. The example of the fluorescence spectra in intact and irradiated skin after 24 h after UVB
exposure; ke = 535 nm.
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Correlation analysis was performed and associations were revealed between the
dose of UV applied to square windows and the specific oxygen consumption of the
tissues (U) normalized to intact skin 3 h (Spearman correlation coefficient [r] = −0.297;
p = 0.01) and 24 h (r = −0.307; p = 0.0004) after the irradiation (Fig. 6). Moreover, a
correlation was reveled between the degree of UV dose and the fluorescence intensity of
porphyrins ke = 535 nm 6 h after UV irradiation normalized to intact skin (r = −0.249,
p = 0.01).

Abovementioned clinical results show the fluctuations in optical markers in the
course of acute UV-induced skin damage and are consistent with preclinical data. Thus,
the changes in U index reflects an alterations in the metabolic state epidermal and
dermal cells altered by acute UV exposure. Moreover, high-dose UV radiation cause
vascular endothelial damage, vasodilatation and mast cell degranulation and the release
of vasoactive substances - nitric oxide, histamine, arachidonic acid derivatives, which
also contribute to the formation of infiltrate from immune cells in the affected area [8].
One study showed that peak infiltration of leucocytes after UVB irradiation occurs at
4–6 h and the response concludes after 48 h [29]. It has also been shown that with
increasing intensity and dose of UV radiation, skin damage becomes more pronounced
[24].

In addition, according to the results of the study, it was found that normalized
fluorescence intensity and tissue content index in all irradiated skin sites regularly
changed stepwise over time. The most significant increase in the intensity of fluores-
cence of porphyrins in green light (ke = 535 nm), normalized to intact skin in all 6 cells
was observed 24 h compared with 0,5 h after UV exposure (Fig. 7).

Fig. 6. Correlation relationships between U and UV dose 3 (left) and 24 h (right) after
irradiation (1 - lowest dose, 6 - highest dose).
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These results allow us to hypothesize that UV exposure affects the metabolism and
accumulation of porphyrins in the skin and these patterns could be used in the future
studies aimed to create new method of non-invasive quantitative method of MED
assessment.

It is necessary to discuss major limitation of our research. In current study vol-
unteers were not divided by the anatomical zone where the phototest was carried out
and their diet and constitution of were not considered. We didn’t divide participants
according to the special skin characteristics (oily, seborrheic. Acne-prone skin). For
instance, the number of studies showed that the presence of enlarged pores and
comedones is associated with increased synthesis of porphyrins by Cutibacterium acnes
and increased fluorescence intensity of porphyrins [30].

Also, since this study involved young patients of approximately the same age, it is
also necessary to conduct the similar studies with subjects of different age groups.
Lipofuscin age pigments accumulate in cells with age, also has fluorescent properties
[31]. Therefore, it is necessary to evaluate its contribution to the total skin spectrum and
the possibility of reliable identification of porphyrins in older people.

Subjects with darker skin phototypes (IV-VI) were not included in study popula-
tion. It is known that melanin content is significantly higher in the skin of subjects with
darker skin type [32]. Melanin is known to absorb the radiation of the visible spectrum,
which reduces the registered signal significantly. In these cases, increasing the power of
the laser radiation may increase the signal-to-noise ratio and solve the problem. But in

Fig. 7. The dynamics of the porphyrin’s intensity normalized to intact tissue in skin sites
irradiated with stepwise increasing doses of UVB (6 – lowest dose, 1 – highest dose) in 4 time
points after UV-exposure; ke = 535 nm (cited from [20]).
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further studies it is important to estimate the minimum laser power for skin phototypes
IV-VI at which peaks of endogenous fluorophores can be distinguished.

4 Conclusions

To summarize, current study achieved several valuable results. First of all, in pre-
clinical experiment it was shown that LFS and OTO can be applied for non-invasive
quantification of UV-induced inflammatory response in the skin. Moreover, prospec-
tive markers of UV-damage (such as porphyrins, local blood flow characteristics) were
described. During clinical part of the study interrelations were found between the dose
of UV radiation, specific oxygen consumption of the tissues and porphyrins fluores-
cence parameters. These results demonstrate that the integrated application of the LFS
and OTO methods for objective non-invasive assessment of erythema is pathophysi-
ologically relevant and has prospects for further investigation in larger clinical studies.
To gain more precise data, it is important to analyze optical parameters of the skin of
different anatomical zones irradiated with UV (for example, back and abdomen) in a
larger group of volunteers of different age groups including individuals with darker
skin phototypes. It is interesting to additionally consider factors reflecting tissues
biological age, local/systemic conditions and their influence on MED. Further, these
developments may become the basis for the development of diagnostic systems for
assessment of MED. Future device for this purpose should include a bunch of non-
invasive methods and allow to gain quantitative data about the individual’s skin
characteristics and implement predictive algorithms.
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Abstract. 3-D visualisation of cellular structures within the placenta is
important for advancing research into the factors determining fetal growth,
which are linked to chronic disease risk and quality of lifelong health. 2-D
analysis can be challenging, and spatial interaction between structures can be
easily missed, but obtaining 3-D structural images is extremely labour-intensive
due to the high level of rigorous manual processing required. Deep neural
networks are used to automate this previously manual process to construct fast
and accurate 3-D structural images, which can be used for 3-D image analysis.
The deep networks described in this chapter are trained to label both single cell,
a fibroblast and a pericyte, and multicellular, endothelial, structures from within
serial block-face scanning electron microscopy placental imaging. Automated
labels are equivalent, pixel-to-pixel, to manual labels by over 98% on average
over all cell structures and network architectures, and are able to successfully
label unseen regions and stacks.

Keywords: 3-D image processing � Deep learning � Placenta

1 Introduction

Previous work has been done on the automated 3-D labelling of fibroblasts and
endothelial cells in scanning electron microscopy (SEM) imaged placentae via deep
learning, specifically a U-Net architecture and trained on unlabelled-labelled pairs of 2-
D image sections [1]. This chapter enhances this work with additional analysis of these
techniques, a wider range of uses and comparing the performance of networks trained
on 50%, 20% and 10% of images within a 3-D serial block-face scanning electron
microscopy (SBFSEM) stack.

The placenta is the barrier interface between a mother and the fetus, mediating the
transfer of nutrients and simultaneously performing as a barrier for the transfer of
molecules that are toxic to the fetus. Poor placental function can impair fetal growth
and development, affecting an individual’s health over their whole life [2]. 3-D imaging
approaches allow a much more effective characterisation of spatial heterogeneity of
structures or proteins than 2-D techniques can provide [3]. Serial block-face scanning
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electron microscopy (SBFSEM) has emerged as an important tool revealing the
nanoscale cellular and a cellular structures of the placenta in 3-D. While this technique
is able to reveal novel structures and the spatial relationships between cells, it is limited
by the time it takes to manually label the features of interest, which necessitates the
labelling of hundreds of serial sections. This can take weeks if not months of dedicated
time to label a single SBFSEM stack. Developing a deep learning-based approach
dramatically speeds up this labelling process and enables more quantitative analytical
approaches.

A deep neural network is trained on stacks of unlabelled and their associated
labelled image pairs of a fibroblast, pericyte or endothelial cells within SBFSEM-
imaged placental tissue. The network is subsequently used to generate automated labels
on unlabelled images that were not used during training and therefore unseen by the
network. Visual comparison between the automated labelling, achieved via the neural
network, and manual labelling of the fibroblast shows excellent agreement, with
quantitative analysis showing high pixel-to-pixel comparison accuracy. This deep
learning approach enables the labelling of a variety of features, in this case, both single
and multicellular, within the SBFSEM stacks, with the future possibility of other cell
and tissue types, such as osteoblasts within bone, and different 3-D imaging techniques.

2 3-D Imaging of Placentae

2.1 Placenta

The placenta is a fetal organ which forms the interface with the mother. The placenta
feeds the fetus, cleans its blood and secretes hormones which adapt the mother’s
physiology to support the pregnancy [3]. Placental function determines fetal growth,
with poor placental function compromising development of the fetus predisposing it to
perinatal and postnatal diseases [4]. It can therefore be considered a cornerstone of the
reproductive success, especially as it is important for health in later life, as poor fetal
growth is associated with higher chromic disease rates throughout life [5].

To fully investigate placental function, an understanding of its structure, physiology
and biochemistry is required. The placentas of growth restricted fetus show alterations
in structure and reduced transport capacity and these changes are thought to underlie
the poor fetal growth. However the relationship between structure and transport is
poorly understood. While changes in structure have been observed progress under-
standing how structure determines function has been limited by lack of good tools to
study structure in 3-D [6].

While the overall structure of the placenta is well understood, this is not true of
cellular anatomy is poorly understood especially at the ultrastructural level. Further-
more, while there has been much research into trophoblast, other cell types like
fibroblasts, pericytes and endothelial cells have received less attention. In order to
understand the function of the placenta it is necessary to understand the anatomy and
spatial relationships of all placental cell types [7].
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2.2 3-D Imaging

Studying the anatomy of the placenta has previously relied on 2-D images, which can
be supported by SEM and vascular casting data for 3-D interpretation [5, 8]. The
underlying 3-D structures within the placenta have also been developed from 2-D
images using stereology [6]. However, these approaches are limited in the information
they provide about placental structure, such as visual data illustrating the spatial
relationship between cells, and whether there is regional heterogeneity in structure or
even protein localisation [4].

3-D imaging has the potential to make more complex spatial information about the
placental structures obtainable, including factors like villous and vascular branching. The
associations between structures can be more clearly identified and it is possible to
determine structures that are not readily visualised from 2-D imaging techniques, such as
thin stellate processes of stromal fibroblasts embedded within surrounding features [2].

There are multiple techniques available for imaging biological tissue in 3-D, such
as micro-computed tomography (micro-CT), where X-rays at multiple angles are used
to construct a microscale resolution 3-D image, and SBFSEM, which is capable of
producing nanoscale resolution 3-D images [9]. The latter is possible by taking a
standard 2-D SEM image of a plastic-embedded contrast-enhanced tissue and then
removing a thin slice of tissue from the top of the block using an ultramicrotome
slicing. This creates a new surface typically 50 nm below the previous surface,
although slices as thin as 10 nm are possible. Another 2-D SEM image is then taken of
the new surface and these steps repeated until a large stack of 2-D images is obtained
and then computationally joined into a 3-D image stack, with the z-resolution limited
by the depth of the ultrathin slices removed at each step [10].

SBFSEM imaging has been used to identify novel structures in the human placenta,
displaying the 3-D structures of different cell types, and the interaction between cell
structures and their surrounding environment, including the positional interplay
between cells [2, 11, 12]. However, while some cell types and structures can be
relatively easily computationally rendered into 3-D through optimised heavy metal
staining techniques [13], for many tissue samples, 3-D visualisation from a SBFSEM
image stack is a time-consuming and hence expensive task. While application of
conventional image segmentation for 3-D medical image data can be combined to more
quickly extract important feature information, these approaches require intensive data
processing or a distinctive contrast in features within the tissue sample, which can be
difficult and sometimes impossible to obtain in SBFSEM images of tissue [14, 15].

For data and resolution to be maintained, each 2-D SEM image within the 3-D
SBFSEM stack needs to be manually labelled to extract the desired feature(s). As it
takes several minutes to an hour for an expert to accurately label each slice, due to the
complexity of the images, and each stack can contain several thousand slices, this
labelling can take a month, if not more, of dedicated work to complete. The complexity
of the SBFSEM stacks means that standard programmatical rules cannot achieve
computer automation of labelling. However, recent advances in the field of deep
learning can provide a way to optimise the labelling process and dramatically reduce
the time taken from several months to only hours to extract a labelled 3-D feature.
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3 Deep Learning

3.1 ConvNets

Deep learning is a subsection of artificial neural networks, a common machine learning
architecture, which have long been used for both medical tasks, such as optimal
matching of patients and donors of kidney transplants for improvement of long-term
survival [16]. In addition such networks have been used for the creation of patient-
specific predictions for osteoarthritis [17], and for imaging tasks, such as those by
Google for assigning keywords to an image for automatic image tagging [18] or
detection of pollution particles in real-time through variations in light [19].

While a neural network must have an input layer and an output layer, the number of
layers in-between is highly adjustable. These middle layers, generally known as hidden
layers, are where most of the data transformations happen. The first hidden layer will
process information directly from the input layer. However, the second hidden layer
will process information only from the first hidden layer, which means the second can
operate at a comparatively more abstract level. A third hidden layer may be more
abstract still. Deep learning allows a machine to be supplied with unprocessed input
data and uncover the representation needed for solutions at every layer, without rep-
resentation design or interference from human engineers: the machine learns what
features of the input data are relevant for itself at each layer.

As a result, deep learning is highly proficient with image-based problems [20].
While it can be susceptible to misclassification of images with relatively small per-
turbations of the input data [21], it is beating records in image recognition [20, 22, 23]
and is highly adaptable to a range of applications, from general medical diagnostics
[24–26] to identifying cancer [27, 28].

One type of deep network frequently utilised for a range of imaging tasks are
Convolutional networks (ConvNets) [29–37]. From original models in 1990 for
handwritten number recognition [38] to newer developments capable of ImageNet
classification (15 million images with over 22000 categories) [20], this architecture
dominates the imaging field [23]. An intrinsic part to ConvNets are the convolutional
and pooling layers. These layers are partially inspired from archetypal concepts of
simple and complex cells in visual neuroscience [39, 40]. The general architecture is
similar to the hierarchy in the visual cortex ventral pathway, necessary for visual
perception [41, 42].

To process an image, it is important to extract features only visible through the
positional arrangement of the pixels. This is done by the convolution layer. A weight
matrix, an array of numbers, convolves the image to extract specific features without
losing important spatial data. A pooling matrix reduces the size of the image – the
number of parameters. Consequently, this results in fewer parameters for the network
to consider. A weight combination may extract a variety of features, with one focused
on colour, another on edges and another blurring unimportant noise from the image, for
example. As ConvNets are a type of deep learning, the weights are learned by the
ConvNet and altered by the ConvNet to minimise loss. This means that it discovers
what should be considered features and which features to focus on without human
intervention. The deeper the network, the more complex the features extracted,
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therefore the more suited the ConvNet can be to a given problem. The role of the
pooling layer is to merge semantically similar features and create invariance to small
shifts and distortions, as well as reducing the size of the data. There are several
variations on pooling but all variants will reduce the number of trainable parameters for
the ConvNet.

3.2 U-Nets

ConvNets are not an all-purpose solution to image problems. Image-to-image trans-
lation requires a more advanced architecture – conditional generative adversarial net-
works (GANs) [43]. When a ConvNet is designed to minimise the difference between
expected and generated pixels, blurry images will likely be produced due to the
averaging of all statistically likely outputs [44]. To prevent this outcome, competition is
added to the AI architecture in the form of a discriminator, trained solely on whether
the generated output is thought to be real or fake: blurry images are swiftly eliminated
as a viable output as they are evidently fake. A widely used architecture is the U-Net,
where a generator works in parallel to a discriminator, which only focuses on small
sections of the image, to produce a highly effective image-to-image network with
multiple applications [45, 46].

U-Net architecture is an adaption of ConvNets first used for Biomedical Image
Segmentation [47], and an improvement on the current Fully Convolutional Networks
[48]. Capable of producing accurate predictions with relatively fewer training images,
the large number of feature channels make it ideal for complex and high resolution
situations, as the network only uses the valid part of each convolution without any fully
connected layers. The name comes from the architectural design. Consisting of two
paths, a contracting path of convolutions and max pooling, where the spatial infor-
mation is reduced as feature information is increased, and an expanding path of up-
convolutions and concatenations, joining sections together, combining spatial infor-
mation with high-resolution features from the contracting path. While uses in GAN
architecture broaden the uses of U-Nets, they remain prevalent in the biomedical field,
with uses in cell counting, detection, and morphometry [49]. These new U-Net models
utilise a cloud-based setup, completely eliminating the need for researchers to acquire
potentially expensive graphics-processing units (GPUs) and allow for constant addi-
tions to the training data, adapting the U-Net and giving continual improvements.

Deep learning has already been applied in image processing and image labelling
processes for enhancing microscopy resolution [19] and here this approach is devel-
oped for the automated feature labelling of cells, including fibroblasts and endothelial
cells, in SBFSEM images of placentas. The purpose of this work is to fully automate
the labelling of fibroblasts across all 2-D SEM images in a 3-D stack (roughly one
thousand in total) so that data visualisation in 3-D can be more easily accomplished and
utilised. Automation requires training a neural network to label the z-stack images
without human involvement, such that the labels can then be isolated and converted
using standard imaging software into 3-D projections, without requiring months of
image processing.
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4 Method

Labelling a desired feature from within a 3-D SBFSEM image was split into multiple
steps, as seen in Fig. 1. The first step (1) was to isolate a 2-D section of the larger 3-D
image for inputting into a deep network. The network was then trained to generate the
same 2-D section containing an automated label of the desired feature (2). The third
step (3) was to isolate the automated label from the 2-D section so that it could be
collected with all other sections. The final step (4) was to project the collection of
extracted labels into 3-D, resulting in a completely labelled feature (a 3-D projection),
which can then be easily manipulated in standard imaging software (built-in functions
in ImageJ were used) for simpler visual analysis of the feature.

A 3-D stack of SBFSEM-imaged placental tissue resulted in a sequence of high-
resolution 2-D images of a placenta, and each z-stack position referenced a different
depth within the 3-D stack. Three stacks were used in this chapter, with the first used
for labelling fibroblasts and pericytes and consisted of over 1000 z-positions, of which
943 were used, and the second and third were used for the labelling of endothelial cells
and consisted of 370 and 140 z-positions respectively. For labelling fibroblasts, the
network was trained on 50% of the stack and then tested on the remaining 50%. To
increase the amount of training data available to the network, image augmentation was
utilised. This involved resizing the 2-D images into 2000 by 2000, cropping the resized
images into a minimum of eight 512 by 512 images and then resizing again into 256 by
256. The reduction in resolution resulted in the network taking only six hours on an
NVIDIA TITAN Xp GPU to perform 100 epochs (the network had every training
image input 100 times).

Fig. 1. Automation process for extracting desired 3-D features from a 3-D image dataset. Step 1
was isolation of a single unlabelled SEM image from a larger 3-D SBFSEM stack. Step 2 was
inputting that image into a trained network to generate an automated labelled image. Step 3 was
the extraction of the automated label from the SEM image, which was collected with all other
automated labels. Step 4 was the 3-D projection, using the built-in functions in ImageJ, of the
collection of automated labels.
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The network consisted of a U-Net architecture, shown in Fig. 2. The encoder-
decoder structure utilised standard backpropagation, but was also paired with a dis-
criminator, which would have a random input of either an automated or manually
labelled image. The discriminator would then determine whether it had been shown an
automated image or manually labelled image. Both discriminator error, whether it
could distinguish between automated or manual images, and generator error, com-
paring the automated and manually labelled image, were used to improve the network
output after every training image (batch size was one image).

The U-Net contained 17 layers and each layer contained a convolution/
deconvolution with a stride of 2, a 4 by 4 kernel size and used rectified linear unit
activation functions. The effective size of the image was therefore resized from 256 by
256 to 1 by 1 before being resized back up to 256 by 256. The skip connections
between the encoder and decoder allowed for spatially relevant information to pass
across the architecture and resulted in more realistic output images. The discriminator
was formed of a 4 layer convolutional network, which led to a single output, via a
sigmoid activation function that labelled an image either automated or manually
generated. Pixel-to-pixel comparison error (also known as the L1 loss) was given a

Fig. 2. Diagram of the network architecture used for automated labelling. It was based on a U-
Net framework consisting of an encoder-decoder pair, which resized the image through multiple
convolutional and deconvolutional/up-convolutional layers and utilised skip connections
between mirror layers.
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weighting of 100 times the discriminator error, and this weighted error function was
then used via standard backpropagation for the network to “learn” (the weights in the
network altered to produce an output resulting in less error from this function).

Testing the network was similar in process to training the network shown in Fig. 1.
However, the images input to the network were unseen and not part of the training
dataset. Unlike in step 4 in Fig. 1, where the labels were 3-D projected, the automated
labels were extracted and then compared to the corresponding manual labels so the
difference could be analysed for each z-stack position (each 2-D SEM image within the
3-D SBFSEM stack). Post individual analysis, the automated labels were then projected
in 3-D for a final visual comparison between automated and manual labelling. While
this last step provided less quantitative analysis, deciding whether the network gen-
erated a realistic looking 3-D structure was an important final test for determining
whether the network provides an automation method capable of being safely utilised in
real-world situations.

The networks were given no background information of SBFSEM techniques or
additional data beyond the unlabelled-labelled pairs, therefore the technique would not
be limited to SBFSEM and could be applied to other 3-D imaging techniques.

5 Single Cell Labelling

5.1 Fibroblast

Fibroblast labelling was previously successfully automated [1], but this work was
analysed in more detail for technique transfer and automated labelling of different 3-D
single cell structures. The same error method was applied, where each individual pixel
within a generated image was considered correct if it matched the same corresponding
pixel value in the corresponding manually labelled image. A labelled pixel had the
(RGB) value [0,0,255], visualised as blue on a standard three channel image, and any
deviation from this value was not considered to be a labelled pixel. Therefore, a
network-generated output that differed value by a single pixel value, for example
[0,0,254], was an unlabelled pixel or incorrectly labelled. In other words, a pixel
difference of ±1 or greater in any of the three colour channels was considered incorrect
when comparing automated and manual labels.

The total correlating pixels, the pixels that matched values for the same pixel
position, as a percentage of total pixels in the extracted label was graphically depicted,
shown in Fig. 3, by dark blue markers. One marker corresponded to one label com-
parison at each z-stack position which was unused in the training data, and therefore
unseen by the network. The purple line that intersected the blue markers was the mean
average pixel correlation over ten images, and the larger purple region showed the
standard deviation, also across ten images, throughout the stack. The red markers
showed the precision of each z-stack position (the ratio of correctly automated labelled
pixels to the total labelled pixels); the orange markers showed the recall, also known as
sensitivity, for each position (the ratio of correctly automated labelled pixels to the
manually labelled pixels); the yellow markers showed the specificity (correct auto-
mated unlabelled pixels as a ratio to manually unlabelled pixels) and the light green
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markers showed the accuracy (the ratio of correctly automated labelled and unlabelled
pixels to every pixel within the image). The F1 value, the harmonic mean average of
precision and recall, was shown in dark green.

The areas where the total number of corresponding pixels was highest, roughly the
first 100 positions and the last 200 positions, had corresponding pixels of over 99.95%.
This was also the region where the F1 value is lowest. This was because there were no
manually labelled fibroblast pixels in these regions. However, the network still gen-
erated a few areas of labelled pixels because there were other fibroblasts besides the
manually labelled feature-fibroblast in these regions. While the network was only
trained to label the manually labelled fibroblast, some confusion over the partially
labelled training data lead to an automation method unable to generate 100% accuracy
in these regions. This 0.05% uncertainty was eliminated with a fully labelled dataset,
shown in Sect. 5.2. The incompletely labelled dataset was the reason why there was
such a large difference between specificity and recall. The accuracy and specificity
were close to 1 (perfect value) across the entire dataset and false positives occurred in
less than 0.2% of all unlabelled pixels. Specificity and recall were closer in value

Fig. 3. Graph comparing automated and manual fibroblast labelling for individual z-stack
positions. Precision (red), recall (orange), specificity (yellow), accuracy (light green) and F1
(dark green) are all measured using the standard 0–1 value of the primary axis on the left-hand
side. The correct total as a percentage (blue), or the total correlating pixels, and the rolling mean
and standard deviation over ten positions (purple) are plotted against the secondary axis on the
right-hand side. (Color figure online)
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towards the centre of the z-stack because the singularly labelled fibroblast dominated
the SBFSEM stack and the likelihood of other unlabelled fibroblasts being present was
reduced.

The recall (the measure of how well the network has automatically labelled the
pixels that were labelled manually) had two regions of large variation. The first region
was where the fibroblast started to appear within the stack and there were very few
pixels to label, and the second was where the fibroblast stopped appearing and, once
again, the labelled pixel regions were a lot smaller. The precision also deviated around
these areas for the same reason. Some variation in automated and manually labelled
regions was due to subjective boundaries in which areas of the SEM images can be
defined as fibroblast or not. These boundary regions were up to roughly ten pixels in
size so, in areas of low quantity of labelled pixel, the percentage of corresponding
pixels fluctuates and precision lowers. The smaller areas of variation, the dip between
positions 300 and 400, are areas where the fibroblast labelling took up the highest
proportion of image space compared to other regions in the SBFSEM stack. Therefore,
there was a higher number of boundary regions and greater variability in the results.
The standard deviation was only higher for the area around position 600. When
inspected, this was due to two specific positions, 590 and 610, having much fewer
correlating pixels. The position with the lowest correlating pixel percentage in this
region, 590, was extracted for further visual comparison, as shown in Fig. 4.

The large green areas in the comparison image highlighted the difference between
the automated and manually labelled image. These green pixels were where the
automated image had labelled the fibroblast correctly, but the manual label was only
outlined in this region and the filling of this labelled section had been missed. This
showed that this automation method can not only be used to label 3-D stacks much
faster than possible manually but can also be used as a method for checking manually
labelled 3-D images for unfinished labels, which could have been missed by standard

Fig. 4. A visual analysis of z-position 590. The input is the 2-D image extracted from the larger
3-D SBFSEM stack. The automated image is the network generated image with automated
labelling. The manual image is the manually labelled image for the same position, which was
used to test the network. The comparison image shows a visualisation of correlating pixels
between the automated and manual labels. Blue indicates labelled pixels in both images and
black are unlabelled pixels in both images, while red indicates pixels only labelled in the manual
image and green indicates pixels only labelled in the automated image. (Color figure online)
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manual quality checks due to the high number of 2-D images within the larger 3-D
stack.

Other visual analysis was completed for additional positions. Positions 278 and 398
were chosen for being areas of relatively lower correlating pixel percentage, both below
99.65%, while 498 was additionally chosen for being a position of relatively higher
correlating pixel percentage, above 99.8%, (shown in Fig. 5). As with Fig. 4, Fig. 5
consisted of the 2-D unlabelled image input to the network, the automated labelled
output image, the manually labelled image, and a comparison between the extracted
labels of the automated and manually labelled images.

Comparison images were used because differences between the automated and
manually labelled images were difficult to see clearly. The vast majority of pixels, over
99.5%, were black (correct negative) or blue (correct positive), which were the colours
for no difference between the automated and manual images. Black pixels outnumbered

Fig. 5. A visual analysis of three z-positions throughout the stack, 278, 398, and 498. The input
are the 2-D images extracted from the larger 3-D SBFSEM stack. The automated image are the
network generated images with automated labelling. The manual images are the manually
labelled images for the same position. The comparison image shows a visualisation of correlating
pixels between the automated and manual labels. Blue indicates labelled pixels in both images
and black are unlabelled pixels in both images, while red indicates pixels only labelled in the
manual image and green indicates pixels only labelled in the automated image. (Color figure
online)
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other colours and were the reason why overall error was low, less than 0.05%, across
the stack, as the network correctly did not label areas which did not contain the desired
feature – the labelled fibroblast. The green pixels (false positives), areas with automated
labelling but without manual labelling, and the red pixels (false negative), the opposite,
were in regions next to the labelled fibroblast, which could have been a result of
uncertainty in the network and inaccuracies in human labelling. This showed that the
network was capable of labelling the correct general shape of the fibroblast and provide
the vital information required for a 3-D model. Figure 6 confirmed this, as it compared
the 3-D projected automated and manually labelled fibroblast without any computa-
tional clean-up or post-network-generated output alterations. Computational alterations
would include ignoring labelled pixels outside regions of interest and clumps of
labelled pixels below a certain size threshold. There were small areas of false positives,
shown by the regions of blue at various sporadic positions but mostly on the bottom
right of the automated projection. The inclusion of fibroblasts in the stack that were not
manually labelled was the likely cause of this comparative over-labelling. There were
also small areas of false negatives, where detail on the edge of the fibroblast was lost.
This boundary region was subject to the most variability and a wider range of training
data would likely overcome this source of error.

5.2 Pericyte

Pericytes are found wrapped around the endothelial cells which form the walls of blood
vessels. Pericytes are believed to control vasculature stability and permeability. Peri-
cytes communicate with endothelial cells through both direct physical contact and
paracrine signalling (cell-to-neighbouring cell communication) [50, 51].

Fig. 6. Comparison of 3-D projections of automated and manually labelled fibroblast. Both were
formed through projecting a collection of extracted 3-D labels via built-in ImageJ software. No
computational or manual clean-up was done to alter the network generated labelling.
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The method for labelling pericytes were identical to the method used for labelling
fibroblasts, with a U-Net structure trained on manually labelled images within the same
SBFSEM stack. However, the method was advanced in this section to determine if
fewer images can be used to train a network without compromising accuracy. There-
fore, the network was trained on only odd images (1 in 2), as with the fibroblast. Then
the network was trained on 1 in 5 images, followed by 1 in 10. The remaining images
were used for testing in each of the three networks to determine an optimal labelling
amount for a single stack on an untrained network, where lowering manual labelling
time was balanced against a reliable network output.

The total corresponding pixels, the percentage of pixels which were equal in value
for both the extracted automated and manually labelled image, were plotted for each of
the three networks, shown in Fig. 7. The blue pixels showed the testing of the network
trained on 1 in 2 images of the 3-D SBFSEM stack and tested on the remaining images.
The red and green pixels showed the testing of the networks trained on 1 in 5 and 1 in
10 images respectively. There was very little difference between the red and blue
markers, with on average total correlating pixels for all tested positions differing by
only 0.01%. The difference between the blue and green markers was on average six
times greater than between blue and red.

In contrast to the partially labelled fibroblast dataset, where only one fibroblast was
labelled in the stack containing multiple fibroblasts, there was only a single dominant
pericyte labelled in the stack. This resulted in areas where the network was confident,
when trained on 1 in 5 or more images throughout the stack, that there was no pericyte,

Fig. 7. Comparison graph for the testing of three networks trained to label pericytes. One is
trained on 1 in 2 (blue), another trained on 1 in 5 (red) and the final on 1 in 10 images throughout
the z-stack (green). (Color figure online)
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and there are 100% corresponding pixels. This confirmed that there would be
improvement in automated labelling of fibroblasts with a fully labelled training dataset.
However, the network trained on 1 in 10 images throughout the stack was not capable
of producing a labelled image that matched the manual label image at the level of
100%, and was considered a cut-off to training further networks on fewer images. To
analyse the increase in pixel difference further, a visual comparison was conducted,
shown in Fig. 8.

Three positions were chosen, the z-positions 278, 398 and 498, which were areas of
lower pixel correlation and the same positions as analysed for previous fibroblast
feature extraction. Each network has small areas of difference when compared to
manual labelling. The 1 in 2 network produced images which most closely matched the
manual images, with some detail lost in boundary regions. This could be improved with
a wider range of training data than a single stack, or more fine-tuning of the error
function which altered the backpropagation and training of the network. The 1 in 5
network produced small black regions for all images, which did not contain red pixels
and so would not have been classed as a labelled region, and the 1 in 10 image
produced small blocks of randomised red, cyan and grey pixels, typically 10 to 20
pixels across, on apparently random areas of the image, which did contain red pixels
and so would be classed as a labelled region. Both were likely due to overfitting, where

Fig. 8. A visual analysis of three z-positions throughout the stack, 278, 398, and 498 for
labelling pericytes. The inputs are the 2-D images extracted from the larger 3-D SBFSEM stack.
The automated images are the network-generated images with automated labelling for networks
trained in 1 in 2, 1 in 5 and 1 in 10 images. The manual images are the manually labelled images
for the same position.
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the networks were less confident on the greater variation between testing and training
data, and the lower amount of training data available to the networks hindered more
adequate training. Training data comprising multiple labelled stacks would likely
improve this overfitting in the 1 in 5 and 1 in 10 networks.

Not all additional pixel difference seen between 1 in 10 and 1 in 2 was due to
overfitting-symptomatic pixel generation on small sections of the image. Most clearly
seen for position 278 and 498, there were fewer labelled pixels as the networks
decreased in training images available to them. Concentrating on 278, 1 in 2 contained
almost all the labelled pixels as in the manual image. However, 1 in 5 lost some of the
finer labelling, where the cell structure was thinnest, and 1 in 10 lost the entire upper
labelled area. While Fig. 3 and Fig. 7 showed a network could be used to successfully
automate the labelling process for feature extraction of a variety of single cell struc-
tures, with a pixel correlation between manual and automated labelling of over 99.5%,
Fig. 8 arguably showed training on one stack required over 1 in 10 images to be
manually labelled to maintain confidence in the resulting automated 3-D projection.
Yet a variety of data, or more accurate human labelling would likely result in a more
successful result for a scenario of 1 in 10 or fewer images used for network training,
which was determined to be true in the next section.

6 Multi-cellular Structures

6.1 Endothelial Cells

The automation method of using a deep neural network to label a single cell, a
fibroblast and pericyte, required a U-Net architecture. However, labelling larger
structures, such as a multi-cellular ring of endothelial cells, required use of a W-Net [1],
an architecture of serial U-Nets. Unlike the U-Net, which had 17 layers, the W-Net had
33 layers and contained two encoder-decoder pairs. The image was effectively resized
down to 1 by 1 and upsized to 256 by 256 twice as data was processed through the
network. The discriminator remained unchanged. Increasing the number of layers
within the network increased the complexity of the network and therefore the amount
of time in which the network needed to train. Approximately 24 h were required to
train the W-Net, 50 epochs, compared to only *6 h for the U-Net, even while all other
parameters remained unchanged. Increases to number of layers, as opposed to increases
in filter number, did not require an increase in the necessary GPU size requirements for
the network to train and run.

The labelling of endothelial cells was conducted on a different set of SBFSEM
stacks to the labelling of single cellular structures. This was to determine the adapt-
ability of the network and therefore general usability. 50% of the images were extracted
for testing, as was an additional 10% block in the centre of the stack. There was also a
block of images that were not manually labelled at the end of the stack, beyond what
the network would have seen in training. This was to determine how well the network
could adapt to more varied input data without causing overfitting due to a lack of
adequate training data, shown in Fig. 8.
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A visual analysis of the automated endothelial labelling in comparison to manually
labelled images showed promising results, shown in Fig. 9. The comparison showed
that (as was the case for a single cell structure) the network was capable of matching
the over 98% of pixels to the manually labelled image, shown by the blue and black
pixels. Compared to the single cell structures, less detail in the boundary region
appeared lost in the automation process. This was likely due to both the increase in
layers allowing for greater complexity in network-generated output and the clear
boundary of a blood vessel compared to the more complex regions of placental tissue.
However, the boundary region was still not without subjective manual labelling, and
close examination of the comparison images showed the location of the red and green
pixels, where the automated and manual labelling differed, were virtually all around
endothelial sections.

Fig. 9. A visual analysis of three z-positions throughout the stack, 002, 102, and 202. The inputs
are the 2-D images extracted from the larger 3-D SBFSEM stack. The automated images are the
network-generated images with automated labelling. The manual images are the images labelled
by human experts for the same position. The comparison image shows a visualisation of
correlating pixels between the automated and manual labels. Blue indicates labelled pixels in
both images and black are unlabelled pixels in both images, while red indicates pixels only
labelled in the manual image and green indicates pixels only labelled in the automated image.
(Color figure online)
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When the corresponding pixel percentage for every position in the stack was
plotted (shown in Fig. 10) the rolling mean (the mean over ten positions centred at the
plotted position) was almost 2% lower for the endothelial cells than for fibroblast and
pericyte labelling. This was a direct result of the large boundary regions, especially
large due to the increased labelling per image from the larger structure and also from
the higher magnification on this stack. However, the precision (red markers) and recall
(orange markers) were all much higher in value and more stable than for the single cell
analysis in Fig. 3, never dropping below 0.75. This is a consequence of labelled
regions being present in every portion of the stack, and the labelled regions were much
larger than for the single cells. However, these relatively high and stable values also
showed how successful the network was at automated endothelial labelling. The high
specificity (yellow markers) showed the network was correctly ignoring undesired
features and the accuracy (light green markers) remained above 0.96 for all regions of
the stack throughout testing, even for the central extracted region.

Fig. 10. Graph comparing automated and manual endothelial labelling for individual z-stack
positions. Precision (red), recall (orange), specificity (yellow), accuracy (light green) and F1
(dark green) are all measured using the standard 0–1 value of the primary axis on the left-hand
side. The correct total as a percentage (blue), or the total correlating pixels, and the rolling mean
and standard deviation over ten positions (purple) are plotted against the secondary axis on the
right-hand side. (Color figure online)
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The centrally extracted region, positions 158–187, was the cause of the dip in both
precision and recall, and therefore F1, but also in the total correlating pixels (dark blue
markers), which was plotted against the secondary axis on the right-hand side. The
mean over ten images (the purple line) and the standard deviation (the surrounding
purple region) showed that, even though the percentage of corresponding pixels
dropped by roughly 0.5%, the deviation between results was stable, without becoming
larger towards the centre of the extracted region. This showed that the network was
equally as capable of labelling images 15 positions away as 5 positions away. It can
then be hypothesised that the network would be capable of successfully labelling stacks
with fewer than 1 in 15 images manually labelled, as long as there were enough total
images in the training set to avoid overfitting.

There are two positions on the graph that clearly showed increased deviation and
reduced the mean for the surrounding regions. The first was position 040 and the
second was position 298. These images were extracted for further analysis, shown in
Fig. 11. The latter, 298, was the result of a similar manual labelling fault as in Fig. 4,
where the manual labelling for that image was incomplete and it had been missed in
standard human quality checking mechanisms, shown by the large green region in the
comparison image. The endothelial cell was correctly labelled by the network but not
manually, which made a sizable difference in the number of pixels that did not cor-
respond and gave an (incorrectly) high false positive reading for position 298.

Fig. 11. A visual analysis of z-positions 040 and 298 showing automation outperforming
manual labelling. The input is the 2-D image extracted from the larger 3-D SBFSEM stack. The
automated image is the network-generated image with automated labelling. The manual image is
the manually labelled image for the same position, which was used to test the network. The
comparison image shows a visualisation of correlating pixels between the automated and manual
labels. Blue indicates labelled pixels in both images and black indicates unlabelled pixels in both
images, while red indicates pixels only labelled in the manual image and green indicates pixels
only labelled in the automated image. (Color figure online)
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The low percentage in corresponding pixels for position 040 was also due to a
mistake in manual labelling but in a way more difficult to spot when quality checking
manual labelling. The bottom half of the manual label was done relatively well, and the
automated labelling matched this, shown by the large number of blue pixels in the
comparison image. The large number of red pixels, an (incorrect) false negative, was the
result of an inaccurate manual labelling which over-labelled the endothelial cells and led
to an incorrect increase of labelling into the surrounding regions. The automated
labelling was not similarly incorrect. Deep neural networks therefore have the ability to
outperform manual labelling, even when trained on imperfect manually labelled data.

6.2 Labelling the Unseen

For automation to be easily used in a wider setting, the network must be able to label
stacks, which it had not been trained on. Testing this was done in two stages. First, the
network was input an image roughly 40 positions away from the training data, from the
same stack which it had been trained on. Second, the network had an input of a
completely unseen stack, in which it would also output labelled endothelial cells. For
this to be achievable, the stack used for training data was augmented to contain a
variety of contrast and brightness combinations to match the different variables at
which an SBFSEM stack could be subjected when being produced. The result of these
tests is shown in Fig. 12.

Fig. 12. Automated labelling outputs from the network for different input images. The first
column shows the input and corresponding automated labelling for an unseen area of the stack
used to train the network, 40 images away from the last “seen” image. The second and third
column show the inputs and corresponding automated labelling for different positions in a
completely unseen stack.
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The first test, labelling an image from an unseen area of the stack 40 images away
from the training data and therefore from the last “seen” image, produced a realistic
appearing image with the endothelial cells fully labelled and minimal false positives.
The second test produced a more interesting result, with the endothelial correctly
labelled even with the stack and magnification being completely unseen by the net-
work. This automated labelling of an unseen region and unseen stack shows that the
network can be trained on previously labelled data to accurately automate the labelling
of new and unseen 3-D stacks, potentially without any manual labelling being required.
The inclusion of additional techniques, such as super-resolution techniques [52] or
arrow detection [53], or other recent advances in region-of-interest labelling or
upscaling in medical images, could be combined with this neural network labelling
approach to both improve the mean accuracy of automated labelling but also to increase
the range of features which could be extracted, with the aim of a single manual arrow
on a feature of interest leading to an accurate and complete labelled stack.

7 Conclusion

The placenta is the interface between the mother and the fetus, mediating the transfer of
nutrients, while acting as a barrier to the transfer of toxic molecules. Poor placental
function can impair fetal growth and development, and affect its health across the
lifecourse. SBFSEM has emerged as an important tool revealing the nanoscale structure
of cellular placental structures in 3-D, and how the structures interact. While this
technique is revealing novel structures, as well as the spatial relationships between
cells, it is limited by the time it takes to manually label the structures of interest in
hundreds of serial sections. This is restricting the ability to model the placenta com-
putationally. Developing a machine learning-based approach dramatically speeds up
this process, from several weeks to a few minutes to label an entire stack, and enables
more quantitative analytical approaches.

The correlating pixels across all features and all network architectures averaged
greater than 98%. This gave an effective error of less than 2%, with the ability to be
lower with perfected training data across a wider range of SBFSEM stacks, with as few
as 1 in 15 labelled manually. Training a network took 6–24 h, and testing a single
image took less than a second, which was much faster than the month of dedicated time
it took to manually label the individual stacks used in this chapter. This method did not
sacrifice data and resolution for an increase in processing time, as the only data loss
(resizing of the image) was due to restrictions of the GPU size available. GPU
dependent, there is no need to limit the input resolution of standard SBFSEM generated
images for this labelling technique. Inclusion of medical-imaging region-of-interest
labelling in future work could provide consistent maximum accuracy with even fewer
manual data processing steps.

Deep neural networks can be trained on stacks of unlabelled and their associated
labelled images of a single desired cell type within placental tissue. This machine
learning approach enabled can label different structures, with not only fibroblasts,
pericytes and endothelial cells within the placenta a possibility, but also other cell and
tissue types, such as osteoblasts within bone. There is potential therefore for
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automation of any labelled feature. The networks were given no information of
SBFSEM besides the unlabelled-labelled pairs, therefore the technique is not limited to
SBFSEM and could be applied to other 3-D imaging techniques.
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Abstract. Malignant Pleural Mesothelioma (MPM) is a rare cancer
associated with exposure to asbestos fibres. It grows in the pleural space
surrounding the lungs, exhibiting an irregular shape with high surface-
to-volume ratio. Reliable measurements are important to assessing treat-
ment efficacy, however these tumour characteristics make manual mea-
surements time consuming, and prone to intra- and inter-observer vari-
ation. Previously we described a fully automatic Convolutional Neural
Network (CNN) for volumetric measurement of MPM in CT images,
trained and evaluated by seven-fold cross validation on 123 CT datasets
with expert manual annotations. The mean difference between the man-
ual and automatic volume measurements was not significantly differ-
ent from zero (27.2 cm3; p = 0.225), the 95% limits of agreement were
between −417 and +363 cm3, and the mean Dice coefficient was 0.64.
Previous studies have focused on images with known MPM, sometimes
even focusing on the lung with known MPM. In this paper, we investigate
the false positive detection rate in a large image set with no known MPM.
For this, a cohort of 14,965 subjects from the National Lung Screening
Trial (NLST) were analysed. The mean volume of “MPM” found in these
images by the automated detector was 3.6 cm3 (compared with 547.2 cm3

for MPM positive subjects). A qualitative examination of the one hun-
dred subjects with the largest probable false detection volumes found
that none of them were normal: the majority contain hyperdense pathol-
ogy, large regions of pleural effusion, or evidence of pleural thickening.
One false positive was caused by liver masses. The next step will be
to evaluate the automated measurement accuracy on an independent,
unseen, multi-centre data set.
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1 Introduction

Mesothelioma is the cancer associated with exposure to asbestos fibres. In around
90% of cases the cancer develops in the pleural space surrounding the lungs [4],
where it is known as Malignant Pleural Mesothelioma (MPM). Many European
countries have restricted the use of asbestos, however the delayed onset of the
disease (in extreme cases more than 70 years after exposure [5]) means that the
rate of cases has only recently begun to slow. In countries with no legislation
preventing the use of asbestos, mortality rates from mesothelioma continue to
increase [1].

Care for patients diagnosed with MPM is likely to be palliative—current
treatments for the disease are often ineffective, and only around 7% of subjects
survive five or more years beyond their initial diagnosis. The volume of the
mesothelioma tumour is a key feature for determining response to treatment.
However, it is extremely difficult to measure the tumour because of its shape
and appearance.

An automated detector that is both fast and accurate could have a num-
ber of practical applications, including helping to assess the right treatment
regime for each patient, or as a measure of efficacy in a clinical trial, or as an
automated incidental finding integrated in a radiology reading system. However,
to be effective, automated incidental findings require low false alarm rates, or
they will distract and annoy, rather than support, the radiologist. In this paper
we assess both measurement accuracy and false positive detection rates for the
automated MPM detector.

1.1 Tumour Measurement

Although volume is the most representative tumour size measurement, it is com-
mon practice to use surrogate metrics which can be performed much faster. In
contrast to mesothelioma, most tumours can be assumed to be roughly spheri-
cal. This allows a simple diameter measurement to be used to accurately track
tumour volume over time. This is used by the RECIST (Response Evaluation
Criteria in Solid Tumours) score [22], that is routinely used, for example, in the
measurement of lung nodules.

MPM tumours, however, are not remotely spherical. They develop in the
tight pleural space around the lungs, growing with an irregular shape having a
high surface area-to-volume ratio. The routine surrogate metric for MPM mea-
surement is the modified RECIST (or mRECIST) score [8]. It requires tumour
thickness measurements at multiple locations, perpendicular to the lung wall.
The sum of these thickness measurements taken at two time points are used to
generate the mRECIST report, which categorises the tumours as either [11]:
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– Complete Response (CR), indicating a disappearance of all known disease;
– Partial Response (PR), indicating a 30% or more decrease in the mRECIST

score;
– Stable disease/No change, indicating that no new lesions have appeared, and

the mRECIST score has not significantly changed;
– Progressive Disease (PD), indicating a 20% or more increase in the mRECIST

score, or the appearance of new lesions.

The mRECIST score has poor intra- and inter-annotator agreement [27]. A
major component of the variability arises from the choice of the line locations.
However, Armato et al. [3] showed that even when multiple experts are given
the coordinates for the line centres, significant variability in the mRECIST score
remains due to variation in the choice of line angle. A further component of the
measurement variability arises from interpretation of the images. Labby et al.
[17] describe a 95% confidence interval between five observers spanning 311%
and 111% for single time-point area measurements of baseline and response
images respectively. The research suggests that CT images of MPM are inher-
ently ambiguous.

Although tumour volume is the most representative measurement, such mea-
surements are too time-consuming for routine care and the mRECIST measure-
ment remains the clinical standard due to its feasibility.

1.2 Overview of Existing Measurement Tools

Several semi-automated approaches have been developed to decrease the time
required to interpret CT images. Some target the measurement of pleural thick-
ening, while others specifically target MPM tumour measurements. Pleural effu-
sion is a common confounding feature when measuring MPM. In CT images,
the MPM and effusion can have overlapping CT (Hounsfied Unit) values [20],
making differentiation technically challenging. For any measurements of tumour
volume progression, this distinction is necessary because any volume of fluid and
tumour are unrelated.

Gudmundsson et al. [13] describe the use of deep CNNs to segment pleu-
ral thickening (which can include MPM tumour, pleural effusion, and pleural
plaques) from CT images. The images are pre-processed to remove the patient
couch and air. Images are then passed to one of two U-Nets, dependent on
the laterality of the disease, which must be manually identified. Median area
Dice coefficients ranging from 0.662 to 0.800 are achieved across two test sets
(totalling 131 slices from 43 patients). The two test sets were manually annotated
for MPM tumour (rather than pleural thickening) by 3 and 5 observers, provid-
ing inter-observer Dice coefficients ranging from 0.648 to 0.814, which are similar
to those achieved by the automated method. As this approach does not aim to
distinguish effusion from tumour, the authors describe that 7 out of 15 outlier
slices where the method over-predicts tumour area contain pleural effusion. This
is explored and addressed in their later publications [12,14], where they train
the CNNs to exclude pleural effusion from the segmentation, and examine per-
formance across two test sets—one of which selected to contain slices showing
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pleural effusion. Training the algorithm to distinguish pleural effusion improved
average area Dice coefficients (0.499 to 0.690 in the pleural effusion test set).

Chen et al. [9] describe semi-automated measurement of tumour volume in
CT images by a random walk segmentation. The random walk segmentation
is initialised by 20–30 manually placed seed points per slice within the MPM
tumour area. For each slice, this requires expert interaction lasting around 20–
30 s. Across a test set of 15 subjects, a mean Dice coefficient of 0.825 is achieved.

Sensakovic et al. [23] semi-automate the measurement of a pleural volume.
The method first segments the lung parenchyma and hemi-thoratic cavity. User
input is required for segmentation around the liver boundary. Based on the
segmentations, the pleural volume is derived. Evaluation of the method is at a
CT slice level, where a median area Jaccard index of 0.484 is achieved over 31
patients (which is equivalent to a Dice coefficient of 0.652). The median Jaccard
index for the same slices annotated by three observers is 0.517 (equivalent to a
Dice coefficient of 0.682).

Brahim et al. [7] detect the thoracic cavity, and use texture analysis to locate
regions of MPM tumour. They achieve a Dice coefficient of 0.88 across a test set
of 10 CT images.

This manuscript builds on our previous work [2], which described the pre-
liminary findings from an internal validation study of our fully automatic, deep
learning-based volumetric segmentation tool, based on 123 CT scans and expert
annotations (from 108 patients). This manuscript contributes an extended anal-
ysis of the specificity of the technique, using a large, independent dataset from
the National Lung Screening Trial (NLST) study to examine the false positive
detection rate in a dataset where true MPM is unlikely.

2 Method

An automated detector has been developed for the segmentation of MPM tumour
from CT images as part of a retrospective cohort study funded by the Cancer
Innovation Challenge (Scottish Health Council), which will conclude in 2020
following the analysis of 403 patients with MPM.

2.1 Data

123 volumetric CT datasets from 108/403 subjects recruited to the
DIAPHRAGM and PRISM research studies were used to train and cross-validate
the automated method, all of which had a confirmed histological diagnosis of
MPM. A further subset of CT datasets from the NLST archive were utilised to
test the automated detector.

PRISM. (Prediction of ResIstance to chemotherapy using Somatic copy number
variation in Mesothelioma) [6] is a retrospective cohort study to determine a
genomic classifier that predicts chemo-resistance in MPM. The study involves
retrieval of tumour blocks pre- and post-chemotherapy from 380 subjects across
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five UK centres. 123 CT images from 85/380 PRISM subjects are included in
this study (43 images acquired pre-treatment, and 80 images acquired post-
treatment), from centres in Glasgow.

DIAPHRAGM. (Diagnostic and Prognostic Biomarkers in the Rational Assess-
ment of Mesothelioma) [26] was a 3 year prospective observational study, which
involved 747 patients from 23 UK sites. Subjects were recruited to the study
upon first presentation of MPM. A suncohort of 23/747 subjects from Glasgow
centres (who had both MRI and CT images) were selected. All the selected
images were acquired pre-treatment. Contemporaneous MRI images are useful
in disambiguating some confounding features in CT images.

NLST. (National Lung Screening Trial) [19] was a multicentre study which
aimed to compare low-dose CT with chest radiography for lung cancer screening.
The study targeted older (55–74 years) ex- and current smokers. 46,613 CT
images from 14,965 subjects are used to test detector specificity.

The images from the DIAPHRAGM study were acquired earlier in develop-
ment of MPM with respect to those from the PRISM study, and consequently
the tumour volumes tend to be smaller and thinner in the DIAPHRAGM study.
Slices from a PRISM and DIAPHRAGM dataset are compared in Fig. 1.

Fig. 1. Two axial CT slices from two subjects in the cohort, with manually derived
MPM tumour segmentation shown in red. Top: A slice from a CT image taken in the
DIAPHRAGM study. Bottom: A slice from a CT image taken in the PRISM study. The
unsegmented areas (in grey) represent adjacent pleural fluid. Figure from [2]. (Color
figure online)

Ground Truth Generation. A respiratory clinician with training in image
analysis and mesothelioma identification manually segmented the MPM tumour
in 123 CT images from the PRISM and DIAPHRAGM studies. Tumour seg-
mentation was performed in the axial plane using Myrian software (Intrasense,
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Paris). Segmentations were performed in all slices containing tumour for 80/123
images. For 43/123 images a more sparse annotation was performed where
every fifth slice was annotated. Consecutive slices are highly correlated—both
in appearance and in terms of the tumour characteristics. Annotating a subset
of slices allowed a greater number of subjects to be included in the training
set, increasing the diversity of this cohort. Although beneficial to training the
algorithm, a sparser annotation resulted in datasets which could not be used
to evaluate volume accuracy, and were not included in the evaluation of the
algorithm.

Ground Truth Inter-slice Consistency Processing. The MPM tumour was
manually segmented in the axial plane. A free-hand segmentation was required
to capture the complex shape of the tumour, and inevitably this leads to some
annotation inconsistencies between slices. These appear as a discontinuities of
the tumour segmentation in the orthogonal, sagittal and coronal planes, con-
trasting with the continuous nature of the tumour viewed in the axial plane of
annotation (Fig. 1). For many measurements inconsistencies of this nature are
negligible, however for MPM measurement the between-slice inconsistency can
have a significant effect on volumetric measurements. To improve between-slice
consistency, a three-dimensional binary closing operation (Fig. 3) was performed
using an 11× 11× 11 voxel structuring element. A limitation of this approach is
that any genuine holes in the tumour smaller than five voxels will be removed.

2.2 Cross-Validation

The algorithm was evaluated by k-fold cross validation, where a setting of k = 7
was found to provide robust group statistics for each test set, whilst maximis-
ing the amount of training data at each fold. As described in Sect. 2.1, 43/123
datasets were sparsely annotated, and could not be used to evaluate volumetric
accuracy. These datasets were used in the training set for all seven folds. The
80/123 datasets with full annotation were randomly assigned to seven folds, to
provide a validation set of 11 or 12 datasets per fold. The 68 or 69 remaining
datasets are further sub-divided by a 30:70 split, where 30% is used to determine
the best model and select an optimal model threshold (referred to as the inter-
nal validation set), and 70% is used as the training set, to which the 43 sparsely
annotated datasets are added.

Neighbouring CT slices are highly correlated, and including all the slices
from a CT images biased the algorithm towards maximising performance on the
images with the greatest number of slices. To counter this, fully segmented CT
images were also subsampled to 100 slices when training the algorithm.

Performance Metrics. Absolute volume correspondence and segmentation
accuracy are used to evaluate agreement between the automated method and
manual observer. Given only single time-point images were available in this pre-
liminary evaluation, we were unable to evaluate volume change accuracy.
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Bland-Altman analysis [18] is used to evaluate volumetric agreement between
the automated and manual segmentations. This plots the difference of two mea-
surements against the mean of the two measurements, together with the mean
difference and the 95% limits of agreement. The following summarises the volu-
metric agreement statistics:

1. The mean difference (or bias) between the two measurement methods
2. A test for whether the mean difference between the two measurement methods

is significantly different from zero, determined using a two-sided paired t-test
(MATLAB statistics toolbox, Mathworks, Natick).

3. The 95% limits of agreement [18].
4. A test whether the difference between the measurement methods increases

(or decreases) as the tumour volume increases. This was determined from
the slope of a least squares regression fit to the points in the Bland-Altman
plot. Specifically, it tests whether the slope is statistically different from a
zero gradient, based on t-statistics (MATLAB statistics toolbox, Mathworks,
Natick).

The Dice Score is used to measure region overlap between the manual and
automated measurements. Although volumetric agreement is the primary prop-
erty of interest, it does not show whether the same regions have been delineated,
or whether the regions intersect. The Dice score provides a measure of these
properties.

2.3 Algorithm

To automatically segment MPM tumour, a Convolutional Neural Network
(CNN) was trained.

Architecture. The CNN was a U-Net architecture [21]—similar to the method
used by Gudmundsson et al. [13,14]. Our network (Fig. 2) takes three axial slices
at a time, and predicts a segmentation at the central of these slices. The encoder
is pre-trained in a VGG classifier on the ImageNet challenge data [16]. For
pre-training, the three-channel input was used to consume three-colour natu-
ral images.

All network activations are rectified linear units, aside from the ultimate
layer of the network, which was a softmax activation. Dropout (with a rate of
0.2) [25] was used to prevent over-fitting and batch normalisation [15] was used
at the locations illustrated in Fig. 2 to improve the training characteristics. The
network was implemented and trained using the Keras framework [10].

Image Pre-processing: CT image intensities input to the network are clipped
to [−1050, +1100] Hounsfield Units, and normalised to range [−1, +1]. The
images are retained at their original resolution (which is typically within the
range 0.71 mm to 1.34 mm).



Estimating the False Positive Prediction Rate 123

Fig. 2. A schematic of the U-Net model architecture. The blue boxes represent a stack
of convolutional filters, with the number of filters per stack shown to the left of each
box. All filters have a dimensionality of 3 × 3. Green and orange boxes represent
dropout and batch normalisation layers respectively. The blue arrows represent skip
connections by feature concatenation. Figure from [2]. (Color figure online)

Training. The network was trained for 30 epochs, after which the best per-
forming model is selected across the epochs. This model was chosen based on
highest average voxel-level accuracy for the internal validation set. For training,
the Adam optimiser was used, with a cyclic learning rate [24], where the learning
rate (lr) has been set to oscillate between lr = 0.0001 and lr = 0.003, with a
full cycle duration of one epoch. A batch size of 8 slices (with context) per batch
allowed the model (10,019,874 parameters) to train on the available GPU.

Despite MPM tumour segmentation being a binary classification task, cat-
egorical cross-entropy was used as the objective function. Therefore, the out-
put of the network was two-channel: one for tumour segmentation, and one for
background segmentation. This objective function was found to improve con-
vergence with respect to binary cross-entropy. The slices during training were
randomly ordered, and it was possible that the class balance in the first batch
was highly unbalanced. When batches were predominantly tumour negative in
the first few batches, weights near the decoder of the network were optimised to
zero, and training stopped as errors could no longer back-propagated. Categori-
cal cross-entropy was used to overcome this, a non-zero signal is always required
in one of the two output channels, regardless of the class balance of the example
slice/batch. This regularising effect of categorical cross-entropy increased exper-
iment repeatability between runs and folds of analysis.

Binarisation. The output of the CNN was a probability map, showing the
probability of MPM tumour at every voxel in the input CT slice. This output
was binarised by applying a threshold. The optimal threshold for the CNN was
chosen to maximise the mean Dice coefficient between the binarised prediction
and manual annotations in the internal validation set. The optimal threshold
varied slightly between models—different training datasets had varying levels of
complexity, resulting in models which predicted in varying probability ranges.
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The internal validation sets at each fold also contained different disease charac-
teristics, which added variance to the optimal threshold between folds.

Tumour Volume. For validation, the algorithm was used to segment the MPM
tumour in every slice of the input CT images. Tumour volume was then calcu-
lated [2]:

M(x, y, z) =

{
1 ∀P (x, y, z) > t

0 ∀P (x, y, z) ≤ t
(1)

where M describes a segmentation image of same dimensionality as the input
CT image, with each voxel assigned a binary value of one to indicate MPM
tumour and zero elsewhere. M was calculated by evaluating the probability map
(P (x, y, z)) with respect to the optimal threshold, t. This binary segmentation
was then converted into a measurement of tumour volume (V ) [2]:

V = SxSySz

X∑
x=0

Y∑
y=0

Z∑
z=0

M(x, y, z), (2)

where Sx, Sy and Sz denote the image voxel sizes in x,y and z respectively.

2.4 False Positive Rate Estimation

NLST Study Data. The National Lung Screening Trial (NLST) study enrolled
53,454 persons at high risk for lung cancer between 2002 and 2004 from 33 centres
in the United States. The study had two arms, comparing chest X-rays and CT
imaging for detecting lung cancer. 26,722 participants were enrolled in the CT
arm of the study. Of these, 14,965 subjects are used to provide a further testing
set for the automated mesothelioma detector. The subset of NLST images was
selected to include subjects with reported lung abnormalities and lung nodules.
The NLST study was not focused on mesothelioma, and it is unlikely that many
images in the study contain mesothelioma (it was not indicated as an incidental
finding for any images in the study). Hence this dataset is used to analyse the
specificity of the automated detector across a large and independent cohort. Since
imaging alone cannot give a definite diagnosis of mesothelioma—the appearance
of the tumour in CT images is similar to many other findings—biopsy is often
the only definitive test. For this reason, it is possible that images acquired for
the NLST study contain one or more subjects with mesothelioma.

Time-Points. The CT images acquired for the NLST study spanned three annual
time-points. Participation was terminated upon either: a) completion of the third
time point, b) subject drop out, or c) a significant finding impeding the ability
to complete the study. In this analysis, images from all the available time points
were included in the analysis.
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Study Findings. As a part of the NLST study, a variety of findings of relevance
were recorded. For the purposes of this analysis, hyperdense pathologies which
have a bright appearance in CT images are of relevant—such findings are most
likely to be confused with MPM by the automated detector. The specific NLST
findings of interest are listed in Table 1. Note that since the NLST study recorded
findings by subject rather than by image, not all of the images from a subject
with a positive finding will necessarily contain evidence of the specific finding(s).

Table 1. List of NLST study findings considered positive in the false positive detection
rate analysis.

NLST findings of interest

Pleural thickening or effusion

Non-calcified hilar/mediastinal adenopathy or mass

Chest wall abnormality

Consolidation

Emphysema

Reconstruction Kernel: The CT images acquired for the NLST study were recon-
structed using “hard” (sharp) kernels, “soft” kernels. For some subjects images
were reconstructed from the same acquisition data using both types of kernel.
CT manufacturers offer a variety of different reconstruction kernels, described
by their own naming conventions. Table 2 lists the kernels by CT manufacturer
that were considered hard for the purposes of this study. In total, this resulted
20,139 hard image reconstructions and 26,474 soft image reconstructions.

2.5 Experiments

The convolutional neural network was trained seven times on seven folds of the
training dataset, as described in Sect. 2.2. The seven resulting CNN models were
combined into an ensemble to generate the final volume measurement result, by
calculating the mean of the volumes from the seven models. The results obtained
by this method were:

1. Compared with those obtained from the individual seven models for all sub-
jects with histologically confirmed MPM (DIAPHRAM and PRISM),

2. Stratified by whether hyperdense pathology is present (NLST),
3. Stratified by hard/soft kernel reconstructions (NLST).

The 100 cases where the algorithm finds the largest volumes of tumour were
qualitatively analysed.
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Table 2. List of CT reconstruction kernels considered “hard” and “soft” in this study.
Kernels names used to reconstruct two or more images are listed.

Manufacturer Hard kernel names Soft kernel names

GE LUNG and BONE STANDARD, BODY
FILTER/STANDARD and BODY
FILTER/BONE

Philips D and B A, C and EC

Siemens B50f, B60f, B80f and B45f B30f, B20f, B31f, B30s, B50s, B70f,
B31s, B40f, B60s and B35f

Toshiba/Canon FC51, FC53 FC01, FC30, FC50, FC02, FC10,
FC82 and FC11

3 Results

Manual annotation time varied between subjects, taking approximately 2.5 h per
image. Automated measurements required approximately 60 s per image, using
an Nvidia 1080Ti graphics processing unit (GPU), 32 GB of RAM and a 12-core
Intel Xeon CPU (3.40 GHz).

3.1 Inter-slice Consistency Processing

Three-dimensional binary closing was proposed to increase between-slice man-
ual segmentation consistency (c.f. Sect. 2.1). This processing increased detected
plural volume from 301.1 cm3 (standard deviation 263.9 cm3) to 514.7 cm3 (stan-
dard deviation 336.1 cm3) over the cohort. Figure 3 shows a typical binary clos-
ing result, and highlights the additional voxels added by the closing operation.
Visually, the closed version appears more contiguous and physically plausible.

3.2 Volumetric Agreement

The cohort mean predicted volume was 547.2 cm3 (standard deviation 290.9 cm3)
across seven-folds of analysis.

Raw Manual Annotations. The mean tumour volume in the raw manual
segmentations is 405.1 cm3 (standard deviation 271.5 cm3), which is significantly
lower than the automatically detected volume. The Bland-Altman plot in Fig. 4
shows a minor, though statistically significant, trend where the volume error
increases slightly with tumour volume (p < 0.001). This indicates that on aver-
age, the algorithm over-segments the tumour compared with the raw ground
truth (here the manual measurement is without the binary closing operation to
increase consistency between slices).
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Fig. 3. A CT coronal view of a subject with MPM, showing the right lung. The white
annotation indicates the location of tumour, as drawn by an expert annotator in the
axial plane, which follows the bounds of the pleural cavity, surrounding a region of
pleural effusion. Red shows the regions which are closed by a binary closing operation.
Figure from [2]. (Color figure online)

Closed Manual Annotations. Binary closing increased the mean tumour vol-
ume of the manual segmentations to 574.4 cm3 (standard deviation 327.1 cm3).
The Bland-Altman plot in Fig. 5 shows that using closed manual annotations
gives a mean difference of −27.2 cm3, which is not significantly different from
zero mean difference (p = 0.225). To facilitate comparison to other methods, the
results are equivalent to 95% limits of agreement which span 129.2% of the total
tumour volume.

Four measurement differences in Fig. 5 are outliers (outside of the 95% limits
of agreement): three of these are where the algorithm predicts a higher vol-
ume of tumour than recorded by the observer. Inspection of these cases showed
extremely narrow tumour in these images. The algorithm often identifies the bulk
of the tumour mass (where it is thicker and more visible), but does not prop-
agate the tumour into the rind-like surface which, although narrow, encloses
a significant proportion of the lung surface area. This is potentially where the
slice-based nature of the approach limits performance. A fully 3D CNN app-
roach may offer higher accuracy in such cases. Inspection of the remaining out-
lier (under-segmentation by the algorithm) showed tumour which was unusually
thick compared with the other images in the training cohort. For this case, it
is likely the algorithm failed to generalise to this degree of tumour thickness,
unseen during training.
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Fig. 4. Bland-Altman plot of the algorithm-annotator agreement for tumour volume
measurements, across 80 subjects. The central dashed line indicates a mean difference
of 142.2 cm3 over-segmentation by the algorithm. Outer dashed lines indicate upper
and lower 95% limits of agreement of [−224.1, +508.5] cm3 respectively. Figure from
[2].
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Fig. 5. Bland-Altman plot of the algorithm-annotator agreement for tumour volume
measurements across 80 subjects, using cleaned ground truth. The central dashed line
indicates a mean difference of −27.2 cm3 under-segmentation by the algorithm. Outer
dashed lines indicate upper and lower 95% limits of agreement of [−414.2, +360.5] cm3

respectively. Figure from [2].
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3.3 Region Overlap (Dice Score)

The mean overall Dice coefficient was 0.64 (standard deviation 0.12) using the
binary closed ground truth. In comparison, the Dice score was 0.55 (standard
deviation also 0.12) using the raw ground truth, confirming higher voxel-wise
correspondence following binary closing to improve inter-slice consistency. Dice
coefficients varied between subjects and between analysis folds. Due to the wide
range of tumour shapes and volumes in this dataset (c.f. Sect. 2.1), some test
sets simply contained more difficult cases. Figure 6 shows the ground truth and
predicted tumour for a subject from the PRISM sub-cohort.

Fig. 6. A CT slice from a subject positive for MPM. Top: Image overlaid with the
ground truth segmentation (in red). Bottom: The corresponding predicted segmenta-
tion from one of the seven-fold models. Figure from [2]. (Color figure online)

3.4 False Positive Rate Estimation

Using the ensembled algorithm, prediction time increased to around 120 s per
image, using an Nvidia 1080Ti graphics processing unit (GPU), 32 GB of RAM
and a 12-core Intel Xeon CPU (3.40 GHz).

Comparison to MPM Positive Images. For the NLST dataset, which should
contain little or no mesothelioma, in the vast majority of images the automated
detector segmented very little. Figure 7 shows the predicted volumes for the
NLST hard kernel images, together with the mesothelioma positive volumes
from the DIAPHRAM and PRISM studies. The average volume measurement
from the hard kernel NLST images is 3.6 cm3 (standard deviation 6.5 cm3). In
contrast the mean automated volume measurement in the DIAPHRAGM and
PRISM datasets was 547.2 cm3 (standard deviation 290.9 cm3).
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Stratification by NLST Finding. Of the hard kernel images, 11,157 were
finding positive and 8,982 were finding negative (see Table 1 for details of the
positive and negative groups).

Across the hard kernel image reconstructed images there was a small but
significant (p < 0.001) difference between the algorithm predictions for finding
positive and finding negative images. The mean segmented volume in finding
negative images was 2.9 cm3 (s.d. 3.4 cm3, median 2.0 cm3). For the finding pos-
itive images this increased to 4.1 cm3 (s.d. 8.2 cm3, median 2.2 cm3). Given that
the finding positive subjects may have up to two time-points where no pathol-
ogy was present, as the pathology finding is per subject rather than per image,
an overlap of the groups is to be expected. Figure 8a shows predicted volumes
for the NLST datasets, stratified by whether the image was graded as finding
negative or finding positive.

Effect of Reconstruction Kernel. Of the soft kernel images, 14,763 were
finding positive and 11,711 were finding negative.

Fig. 7. A histogram of predicted MPM volumes across CT images from the NLST
study with reference to the volume results from the multi-fold analysis across images
from the PRISM and DIAPHRAM studies. The NLST images are reconstructed using
hard kernels. For the volume measurements, a logarithmic scale is used.

For the soft kernel reconstructions the mean detected volume was 10.1 cm3

(s.d. 13.8 cm3), an increase compared with the mean volume of 3.6 cm3 for the
hard kernels. Figure 9 shows the distribution of detected volumes for all the
images reconstructed with the soft and hard kernels. Figure 10 shows a direct
comparison between the hard and soft kernel image segmentations, where the
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softer kernel results in a thicker segmentation. The figure also provides an exam-
ple of how the appearance of the images may change between the reconstruction
kernel used.

Using the soft kernel images, differentiation by bright pathology finding is
less clear. The mean segmented volume in finding negative images was 9.0 cm3

(s.d. 8.8 cm3, median 6.5 cm3). For the finding positive images this increased
to 11.0 cm3 (s.d. 16.7 cm3, median 7.1 cm3). Although remaining statistically
significant (p < 0.001), this difference is less apparent than for hard kernel
images (Fig. 8b).

In general across the images, a softer kernel results in a thicker segmenta-
tion. Due to the nature of the segmented regions, any volume measurements
are extremely sensitive to this thickness change. In some cases (and as shown
in Fig. 9), a difference in volume arises because new regions were segmented—
sometimes regions which are segmented in hard kernel images extend further in
the equivalent soft kernel images. This may be due to an increased ambiguity—
areas which the algorithm could differentiate in hard kernel images may be less
distinguishable in soft kernel images. This may also arise because of a minimum
tumour thickness which the algorithm can segment (this is discussed further in
Sect. 4.1).

Observation of Outliers. Using both hard and soft kernel reconstructed
images, 94/100 upper outliers were for subjects reported to have a bright pathol-
ogy finding. Many images show evidence of pleural thickening and considerable
pleural effusion. Examples of 9/100 outliers are provided in Fig. 11. The train-
ing data only contains unilateral examples of MPM, however it is likely the
algorithm has not fit to this aspect of the data. Several of the upper outliers
in Fig. 11 show subjects with pathologies in both lungs which have been iden-
tified by the algorithm. By design, the algorithm had sufficient receptive field
to encompass the entire image, and had the capability to use information in
one lung to guide any tumour delineation in the other, however the unilateral
nature of the disease in the training data appears not to have been learned. It
is likely the algorithm would generalise to measurement of bilateral examples of
MPM, although such cases are exceptionally rare. The remaining 6/100 images
with no reported bright pathology finding associated were abnormal. For one,
the automated method segmented volume in the liver. Generally, the algorithm
segmented more around the diaphragm, and this region was where false positives
were most frequent. This is a region where axial slices are particularly difficult
to interpret, and where more extensive 3-D information could help disambiguate
the images.
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Fig. 8. Comparison of predicted MPM volumes reconstructed by hard 8a and soft 8b
kernels. Subjects are stratified into finding positive and finding negative. Note that
different axis limits are used for the hard and soft kernel subplots.

4 Discussion

Although there is no curative treatment for MPM, tumour volume measure-
ments would support clinicians to find the most effective care for each patient,
and could enable more powerful clinical trials. Manual measurements of volume
are too time-consuming to be routine, and still suffer from uncertainty. Some
of this uncertainty arises from ambiguous features in the images—many struc-
tures appear very similar to MPM tumour in CT images. Manual measurements
require significant clinical expertise to disambiguate the images, the expert uses
an understanding of anatomy and experience of how the tumour develops. The
distillation of such complex domain knowledge makes the application of tradi-
tional image analysis techniques complex. Such tasks, however, are where deep
learning is readily applied.

Distilling expertise does not overcome the inherent uncertainty in annotating
a tumour of this shape, with an unusually high surface-to-volume ratio. The
large proportion of edge voxels means that any volume measurement is highly
sensitive to the edge dilatation of the tumour segmentations - changing the
boundary by half a voxel can change volume measurements by up to 60% (based
on the analysis of tumour shapes from the DIAPHRAGM study). This poses
many technical challenges—for the automated method, we have shown that in
the regime of narrow segmented regions in MPM negative subjects, the choice
of reconstruction kernel consistently impacts measurements.
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Fig. 9. A histogram of MPM volume predictions across the NLST dataset, stratified
by hard or soft image reconstruction kernel.

4.1 Critical Analysis

Generally, the literature shows significant variability in MPM tumour measure-
ments. Sensakovic et al. [23] found an inter-observer mean Dice coefficient of
0.68 across slices from 31 subjects. Gudmundsson et al. [14] achieve a mean
Dice coefficient of 0.690 on slices which are selected to contain pleural effusion.
This mean Dice coefficient increases to 0.780 on a second test set, containing
different disease characteristics. Over full volume images from 15 subjects, Chen
et al. [9] achieve a Dice score of 0.825. Our mean volumetric Dice coefficient of
0.64 is lower than that achieved by Chen et al. Some of the difference may arise
from the semi-automated nature of their approach, however on some images we
achieve similarly high Dice coefficients. Across our cohort, higher Dice scores
were achieved for images where the tumour was thicker—these are images which
are inherently easier to annotate, both manually and automatically, and a higher
Dice coefficient is more easily achieved. Although these comparisons provide
interesting context, we can only draw limited conclusions without a like-for-like
comparison between methods on the same cohort.

Further large scale analysis across data from an independent study indicates
that the algorithm is robust to the majority of negative cases. This is a one-
sided analysis, and does not provide a measure of sensitivity, however analysis
of outliers shows the algorithm is providing plausible output. Where the pre-
dicted volumes are highest, the algorithm confounds other bright pathologies
with MPM tumour—most of the outliers are unhealthy, and many have images
similar in appearance to those from MPM positive subjects. We would not expect
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Fig. 10. Top row: a comparison of corresponding hard-kernel (left) and soft-kernel
(right) reconstructed images from the NLST study, with an overlay the segmentation
produced by one of the 7-fold models. Bottom row: A cropped region corresponding
to the green box in the top row, showing the smoother appearance of the soft kernel
reconstructed images. (Color figure online)

the algorithm to be capable of distinctions between many pathologies and MPM
tumour based on the images alone.

The analysis suggests that the choice of CT reconstruction kernel is signifi-
cant where there is little or no MPM present. Smoother images may increase the
ambiguity in delineation at the edges of the tumour, and given the algorithm has
only been trained on positive cases, it is likely to be biased towards inclusion
of these ambiguous regions. As mentioned in Sect. 3.4, for some cases using a
softer image reconstruction results in additional segmented areas, which could
be due to an increased image ambiguity in these regions, or because a larger
spatial extent is more likely to be detected by the algorithm. By its design, the
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Fig. 11. A selection of images from the NLST study for which the algorithm predicted
a relatively high volume of MPM tumour. The images are overlaid with segmentations
by a random selection of the 7-fold models.

CNN outputs smooth and continuous probability maps. After thresholding, it
is unlikely that segmented regions will be narrower than a few voxels. Gener-
ally, for measurements of MPM tumour this is not a problem, however for the
NLST cohort images that show pleural thickening, it is possible that a thick-
ened pleura is thinner than the algorithm can segment. In CT images, a healthy
pleura is invisible, and a thickness of even one or two voxels may be significant.
Expanding a region of bright pleural thickening (or other pathological regions)
in the images by using a softer kernel may slightly increase the thickness of these
regions, allowing them to be detected by the algorithm. We note that inspec-
tion of several outliers in the cross-validation on MPM positive subjects did
show undetected, thin tumour regions (Sect. 3.2). It is possible that for these
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outliers, the choice of reconstruction kernel would also impact any automated
measurements. To overcome this, an algorithm which segments the images at an
increased resolution may be more appropriate.

Of the images from the PRISM and DIAPRAGM studies, 107/123 were
reconstructed using soft kernels. This leaves 16/123 hard kernel images, and
meaningful statistics could not be derived to measure how the manual anno-
tations were impacted by reconstruction kernel. It may be that the algorithm
is biased by reconstruction kernel imbalance in the training data—it is possible
that segmenting greater volumes would be measured as higher segmentation per-
formance for subjects with known MPM. This cannot be determined by analysis
of cases with no known MPM.

For the task of MPM segmentation on histologically confirmed cases, where
the disease characteristics can vary dramatically between subjects, as well as
between time-points and observers, performance of an algorithm depends heav-
ily on the training and testing cohort. An increased variance between subjects
means that a large and diverse test set is required to truly establish whether
any automated method can generalise to unseen cases. A potential limitation
of this work is that we have demonstrated the performance of the algorithm
on 80 subjects which have not undergone treatment for the disease, all from
imaging centres based in Glasgow, all annotated by a single observer. Images
from a further 14,965 subjects from 33 different centres have provided an insight
into some aspects of algorithm performance on independent images. However,
to truly understand performance, more images containing MPM tumour (with
ground truth segmentations) are required. We have used an unusually large
cohort with full volume annotation of MPM tumour, however a large, indepen-
dent and varied test set by multiple observers is still necessary to truly determine
the performance of this algorithm.

4.2 Future Work

Multi-fold analysis can only tell us so much about algorithm performance, given
the data on which the analysis is based is not completely independent from what
was used to develop the algorithm. An independent test set from a multiple insti-
tutions will provide a more unbiased indication of performance. Some aspects of
performance on independent images have been measured using images from the
NLST study, but other aspects of performance cannot be tested on images which
contain no tumour. The algorithm is currently being evaluated on the remaining
unseen evaluation datasets, which are histologically confirmed as MPM posi-
tive, acquired from multiple institutions (only 123/403 datasets were used in the
internal validation). This will provide a more detailed, realistic and unbiased
assessment of algorithm performance.

5 Conclusion

An internal validation to explore the utility of a deep leaning algorithm for vol-
umetric segmentation of MPM in CT images has been performed. It was found
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that inter-slice consistency of manual annotations was improved by binary clos-
ing. There was no significant mean difference between the manual and automatic
measurements following binary closing of the manual annotations. Images from
an independent study with no known MPM were used as a further test set, and
the majority of the volumes predicted to contain the highest volume of tumour by
the algorithm are from subjects which were positive for other bright pathologies.
To our knowledge, this is the first volumetric evaluation of a fully automated
system to segment pleural volume. Future work will involve testing the method
on the remaining evaluation set. The algorithm has potential application to rou-
tine care (for tumour assessment, to guide patient therapy), and the assessment
of tumour development in clinical trials.
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Abstract. Automatic detection of brain anomalies in MR images is
challenging and complex due to intensity similarity between lesions and
healthy tissues as well as the large variability in shape, size, and location
among different anomalies. Even though discriminative models (super-
vised learning) are commonly used for this task, they require quite
high-quality annotated training images, which are absent for most med-
ical image analysis problems. Inspired by groupwise shape analysis, we
adapt a recent fully unsupervised supervoxel-based approach (SAAD)—
designed for abnormal asymmetry detection of the hemispheres—to
detect brain anomalies from registration errors. Our method, called
BADRESC, extracts supervoxels inside the right and left hemispheres,
cerebellum, and brainstem, models registration errors for each super-
voxel, and treats outliers as anomalies. Experimental results on MR-
T1 brain images of stroke patients show that BADRESC outperforms
a convolutional-autoencoder-based method and attains similar detection
rates for hemispheric lesions in comparison to SAAD with substantially
fewer false positives. It also presents promising detection scores for lesions
in the cerebellum and brainstem.

Keywords: Brain anomaly detection · Supervoxel segmentation ·
One-class classification · Registration errors · MRI

The authors thank CNPq (303808/2018-7), FAPESP (2014/12236-1) for the financial
support, and NVIDIA for supporting a graphics card.

c© Springer Nature Switzerland AG 2021
X. Ye et al. (Eds.): BIOSTEC 2020, CCIS 1400, pp. 140–164, 2021.
https://doi.org/10.1007/978-3-030-72379-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72379-8_8&domain=pdf
http://orcid.org/0000-0002-2894-3911
http://orcid.org/0000-0002-2914-5380
http://orcid.org/0000-0003-0750-0502
https://doi.org/10.1007/978-3-030-72379-8_8


Combining Registration Errors and Supervoxel Classification 141

Fig. 1. Axial slices of three stroke patients from the ATLAS dataset [19] with lesions
(ground-truth borders in red) that significantly differ in location, shape, and size.
Figure referenced from [23]. (Color figure online)

1 Introduction

Quantitative analysis of MR brain images has been used extensively for the
characterization of brain disorders, such as stroke, tumors, and multiple sclerosis.
Such methods rely on delineating objects of interest—(sub)cortical structures or
lesions to solve detection and segmentation simultaneously. Results are usually
used for tasks such as quantitative lesion assessment (e.g., volume), surgical
planning, and overall anatomic understanding [7,17,35]. Note that segmentation
corresponds to the exact delineation of the object of interest, whereas detection
consists of finding the rough location of such objects (e.g., by a bounding box
around the object), in case they are present in the image.

The simplest strategy to detect brain anomalies consists of a visual slice-by-
slice inspection by one or multiple specialists. This process is very laborious,
time-consuming, easily prone to errors, and even impracticable when a large
amount of data needs to be processed. Continuous efforts have been made for
automatic anomaly detection that delineates anomalies with accuracy close to
that of human experts. However, this goal is challenging and complex due to
the large variability in shape, size, and location among different anomalies, even
when the same disease causes these (see, e.g., Fig. 1). These difficulties have
motivated the research and development of automatic brain anomaly detection
methods based on machine learning algorithms.

Most automatic methods in the literature rely on supervised machine learn-
ing to detect or segment brain anomalies. They train a classifier from training
images—which must be previously labeled (e.g., lesion segmentation masks) by
experts—to delineate anomalies by classifying voxels or regions of the target
image. Traditional image features (e.g., edge detectors and texture features)
and deep feature representations (e.g., convolutional features) are commonly
used [3,13,30,34,35]. Some works propose a groupwise shape analysis based on
estimating the deformation field between a target image and a template (refer-
ence image) after image registration [13,34].

However, these methods commonly have three main limitations. First, they
require a large number of high-quality annotated training images, which is
absent for most medical image analysis problems [1,15,40]. Second, they are
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only designed for the lesions found in the training set. Third, some methods
still require weight fine-tuning (retraining) when used for a new set of images
due to image variability across scanners and acquisition protocols, limiting its
application into clinical routine.

All the above limitations of supervised methods motivate research on unsu-
pervised anomaly detection approaches [4,8,14,23–25,33]. From a training set
with images of healthy subjects only, these methods encode general knowledge
or assumptions (priors) from healthy tissues, so that an outlier who breaks such
general priors is considered anomaly [14]. As unsupervised brain anomaly detec-
tion methods do not use labeled samples, they are less effective in detecting
lesions from a specific disease than supervised approaches trained from labeled
samples for the same disease. For the same reason, however, unsupervised meth-
ods are generic in detecting any lesions, e.g., coming from multiple diseases, as
long as these notably differ from healthy training samples.

Since many neurological diseases are associated with abnormal brain asym-
metries [43], an unsupervised method called Supervoxel-based Abnormal Asym-
metry Detection (SAAD) [24] was recently proposed to detect abnormal asymme-
tries in MR brain images. SAAD presents a mechanism for asymmetry detection
that consists of three steps: (i) it registers all images to the same symmet-
ric template and then computes asymmetries between the two hemispheres by
using their mid-sagittal plane (MSP) as reference; (ii) a supervoxel segmentation
method, named SymmISF, is used to extract pairs of symmetric supervoxels from
the left and right hemispheres for each test image, guided by their asymmetries.
Supervoxels define more significant volumes of interest for analysis than regular
3D patches; and (iii) each pair generates a local one-class classifier trained on
control images to find supervoxels with abnormal asymmetries on the test image.
SAAD was further extended to detect abnormal asymmetries in the own native
image space of each test image [25].

Although SAAD claims to obtain higher detection accuracy even for small
lesions compared to state-of-the-art detection methods, its analysis is limited to
asymmetric anomalies in the brain hemispheres, ignoring lesions in the cerebel-
lum and brainstem. Moreover, if the same lesion is localized in both hemispheres
roughly in the same position (e.g., some cases of multiple sclerosis), it is not
detected due to the lack of asymmetries.

Inspired by groupwise shape analysis, in this work, we present BADRESC,
an unsupervised method for Brain Anomaly Detection based on Registration
Errors and Supervoxel Classification in 3T MR-T1 images of the brain. After
registering a target image to a standard template with only healthy tissues by
deformable registration, BADRESC assumes that registration errors for anoma-
lies are considerably different from the registration errors for healthy tissues.
Thus, BADRESC adapts the SAAD framework as follows. First, it replaces the
asymmetry maps with registration errors. A robust preprocessing is considered
to improve the quality of image registration. Second, it then analyses four macro-
objects of interest—right and left hemispheres, cerebellum, and brainstem—by
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extracting supervoxels for each one separately. Finally, each supervoxel generates
a local one-class classifier for healthy tissues to detect outliers as anomalies.

This work is an extension of a previous one presented in [23], which originally
introduced BADRESC. While considering the same macro-objects of interest and
datasets, our contributions include:

– a more detailed explanation of BADRESC’s steps, especially supervoxel seg-
mentation (Sect. 2 and Appendix A);

– an extended evaluation that considers another unsupervised baseline (like
ours), which consists of a convolutional-autoencoder-based approach; and

– more evaluation metrics: Dice, mean recall, and three other false-positive
metrics.

Experimental results on 3D MR-T1 brain images of stroke patients confirm
the accuracy of BADRESC to detect hemispheric lesions with only a few false
positives. Additionally, BADRESC presents promising results for the detection
of lesions in the cerebellum and brainstem.

This paper is organized as follows. Section 2 introduces preliminary concepts
on supervoxel segmentation and the considered framework used by BADRESC.
Section 3 presents BADRESC. Section 4 presents experiments, while Sect. 5
reports and discusses results. Section 6 concludes the paper and discusses some
possible future directions.

2 Iterative Spanning Forest (ISF)

One crucial step of our proposed method consists of extracting supervoxels inside
each macro-object of interest for subsequent analysis. Supervoxels are groups of
voxels with similar characteristics resulting from an oversegmentation of a 3D
image or region of interest. We call superpixels for 2D images. They preserve
intrinsic image information (e.g., the borders of tissues and lesions) and are used
as an alternative to patches to define more meaningful VOIs for computer-vision
problems [37,45] and some medical image applications [35,44]. Supervoxels are
a better alternative than 3D regular patches for our target problem, as (i) they
better fit lesions and tissues, and (ii) their voxels contain minimum heterogeneous
information.

In this work, we rely on the Iterative Spanning Forest (ISF) framework [42]
for supervoxel segmentation. ISF is a recent approach for both superpixel and
supervoxel segmentation that has shown higher effectiveness than several state-
of-the-art counterparts, especially when used for 3D MR image segmentation
of the brain [42]. ISF consists of three key steps: (i) seed sampling followed by
multiple iterations of (ii) connected supervoxel delineation based on the image
foresting transform (IFT) algorithm [11] (Appendix A), and (iii) seed recompu-
tation to improve delineation. We next present the theoretical background for
ISF as well as its algorithm.



144 S. B. Martins et al.

2.1 Theoretical Background

Let the pair Î = (DI , �I) be a d-dimensional multi-band image, where DI ⊂ Zd

is the image domain, and �I : DI → R
c is a mapping function that assigns a

vector of c real-valued intensities �I(p)—one value for each band (channel) of the
image—to each element p ∈ DI . For simplicity, assume that the term voxels
represents the d-dimensional-image elements.

An image can be interpreted as a graph GI = (DI ,A), whose nodes are the
voxels, and the arcs are defined by an adjacency relation A ⊂ DI ×DI , with A(p)
being the adjacent set of a voxel p. In this work, we consider the 6-neighborhood
adjacency for ISF. We refer to Appendix A for more details about image graphs,
paths, and connectivity functions.

For a given initial seed set S, labeled with consecutive integer numbers
{1, 2, · · · , |S|}, and a connectivity function f , ISF computes each supervoxel as a
spanning tree rooted at a single seed, such that seeds compete among themselves
by offering lower-cost paths to conquer their most strongly connected voxels. We
use the following connectivity function f given by

f(〈q〉) =
{

0, if q ∈ S,
+∞, otherwise,

f(πp · 〈p, q〉) = f(πp) +
[
α · ‖�I(q) − �I(R(p))‖

]β

+ ‖q − p‖,

(1)

Fig. 2. The impact of the factors α and β for superpixel segmentation by ISF. Each
superpixel is represented by a different color. For all cases, we performed ISF on the
same 2D brain image with 10 iterations and identical 30 initial seeds selected by grid
sampling. (Color figure online)
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where ‖�I(t) − �I(R(p))‖ is the Euclidean distance between the intensity vectors
at voxels R(p) and q, ‖q − p‖ the Euclidean distance between the voxels p and
q, 〈q〉 is a trivial path, πp · 〈p, q〉 the extension of a path πp with terminus q
by an arc 〈p, q〉, and R(p) the starting node (seed) of πp. The factors α and
β serve to control a compromise between supervoxel boundary adherence and
shape regularity. Although the authors of ISF have fixed α = 0.5 and β = 12
during the experiments [42], such factors are problem-dependent and should be
optimized to yield more accurate supervoxels. Figure 2 shows the impact of α
and β for the superpixel segmentation of a 2D brain image.

2.2 The ISF Algorithm

Algorithm 1 presents a pseudo code for the Iterative Spanning Forest framework.
At each iteration (Lines 2–4), ISF performs connected supervoxel delineation on
the image I based on IFT (Line 3)—as described by Algorithm 2 (Appendix A)—
from a given seed set S ′, adjacency relation A, and the connectivity function f
described by Eq. 1. The seed set at Iteration 1 is the initial seed set S (Line 1).
Next, the seed set is recomputed by the function SeedRecomputation to improve
delineation (Line 4). This process continues until reaching N iterations. The
algorithm returns the optimum-path forest (predecessor map), root map, path-
cost map, and the supervoxel label map. Figure 3 illustrates the execution of
ISF.

Algorithm 1. Iterative Spanning Forest.

Input: Image Î = (DI , �I), adjacency relation A, connectivity function f , initial
seed set S ⊂ DI , and the maximum number of iterations N ≥ 1.

Output: Optimum-path forest P , root map R, path-cost map C, and
supervoxel label map L.

Aux: Seed set S ′, and the variable i.

1 S ′ ← S
2 for i ← 0 to N − 1 do

3 (P, R, C, L) ← IFT (Î , A, f, S ′) /* see Alg. 2 */

4 S ′ ← SeedRecomputation(Î , S ′, P, R, C)

5 return (P, R, C, L)

In this work, we adopted a seed-recomputation strategy proposed by Vargas-
Muñoz et al. [42], as detailed next. At each iteration, we promote the centroids
from the obtained supervoxels—i.e., their geometric centers—to be the seeds of
the next iteration. If a given centroid ci is out of its supervoxel Li—due to the
non-convex shape of Li—we select the voxel of Li that is the closest to ci. We
refer to Vargas-Muñoz et al. [42] for more specific details.
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Fig. 3. Example of the ISF execution (10 iterations with α = 0.5 and β = 12) on a 2D
brain image. (a)–(b) Four iterations of ISF. For each iteration, we show its input seeds
(red points) and the resulting obtained superpixels (each color represents a different
superpixel). Iteration 0 shows the initial seed set obtained by grid sampling; the other
seed sets are obtained by seed recomputation. As the insets show, most seeds do not
change positions over iterations. (Color figure online)

A crucial step for the success of ISF consists of performing a robust initial seed
estimation. This step, however, is problem-dependent, so that simple and general
strategies—e.g., a grid sampling in the input image—can provide unsatisfactory
results (e.g., undersegmentating a lesion). Section 3.3 details our strategy to
select the initial seed for our problem.

3 Description of BADRESC

Figure 4 presents the pipeline of BADRESC which consists of five steps: 3D
image preprocessing, image registration, registration error computation, super-
voxel segmentation, and classification. We next describe all these steps to detect
anomalies in the brain hemispheres, cerebellum, and brainstem.
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Fig. 4. Pipeline of BADRESC [23]. The upper blue part is computed offline. The
bottom orange part is computed for each test image. The template (reference image)
is used in both parts (Steps 1, 2, 3, 5, 6, 7, and 8). (Color figure online)

3.1 3D Image Preprocessing and Registration

MR images are affected by image acquisition issues such as noise and intensity
heterogeneity. This makes their automated analysis very challenging since inten-
sities of the same tissues vary across the image. To alleviate these and make
images more similar to each other, we use typical preprocessing steps known in
the literature [16,21,24], as shown in Fig. 5.

For each 3D image (Fig. 5a), we start performing noise reduction by median
filtering, followed by MSP alignment, and bias field correction by N4 [41]. As
voxels from irrelevant tissues/organs for the addressed problem (e.g., neck and
bones) can negatively impact the image registration and intensity normalization,

(a) (b) (c) (d) (e)

Fig. 5. 3D image preprocessing and registration steps. (a) Axial slice of a raw test 3D
image. The dashed line shows its mid-sagittal plane (MSP) and the arrow indicates a
stroke lesion. (b) Test image after noise filtering, MSP alignment, bias field correction,
and brain segmentation. (c) Axial slice of the symmetric brain template (reference
image). (d) Histogram matching between (b) and the template (intensity normaliza-
tion). (e) Final preprocessed image after non-rigid registration and histogram matching
with the template.
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we use AdaPro [22] to segment the regions of interest: right and left hemispheres,
cerebellum, and brainstem (Fig. 5b).

To attenuate differences in brightness and contrast among images, we apply
a histogram matching between the segmented images and the template. This
operation only considers the voxels inside the regions of interest (Fig. 5d). We
then perform deformable registration to place all images in the coordinate space
of the ICBM 2009c Nonlinear Symmetric template [12]. Since the image regis-
tration technique has a critical impact on the analysis, we use Elastix [18], a
popular and accurate image registration method.1 Finally, we perform another
histogram matching between the registered images and the template (Fig. 5e).

Fig. 6. Registration error computation. (a) Axial slice of the brain template. (b)
Euclidean Distance Transform (EDT) normalized within [0, 1] computed for the brain
segmentation mask defined for the template. Brain borders are shown only for illus-
tration purposes. (c) Common registration errors for control images. (d) Axial slice
of a test stroke image after preprocessing and registration in (a). The arrow indicates
the stroke lesion. (e) Registration errors. (f) Attenuation of (e) for the cortex based
on the EDT. (g) Final registration errors for the test image: positive values of the
subtraction between (f) and (c). Figure referenced from [23].

3.2 Registration Error Computation

When registering images to a standard template with only healthy tissues,
we expect that registration errors (REs)—i.e., voxel-wise absolute differences

1 We used the par0000 files available at http://elastix.bigr.nl/wiki/index.php.

http://elastix.bigr.nl/wiki/index.php
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between the registered image and the template—are lower and present a differ-
ent pattern compared to anomalies (Fig. 6e). However, some healthy structures
in the cortex, such as gyri and sulci, present high REs due to their complex
shapes and very large variability between subjects—observe the cortex of the
template and the registered image in Figs. 6a and d; note its resulting REs in
Fig. 6e. As such, we need to apply some attenuation-process to avoid detecting
false positives in this region.

Let T be the template (Fig. 6a) and MT its predefined brain segmenta-
tion mask for the right hemisphere, left hemisphere, cerebellum, and brainstem
(background voxels have label 0 and each object has a different label). Let
X = {X1, · · · ,Xk} be the set of k registered training images (output of Step 2
in Fig. 4) and I the test image after preprocessing and registration (output of
Step 6 in Fig. 4; see also Fig. 6d).

Firstly, we compute the Euclidean Distance Transform (EDT) for each object
of MT and normalize the distances within [0, 1] to build the map E (Fig. 6b).
Next, we obtain the set of registration errors RX for all X by computing the
voxel-wise absolute differences between X and T (Fig. 4, Step 3; see also Fig. 6e).
For each training image Xi ∈ X, we attenuate REs in its cortex such that for
each voxel v ∈ Xi,

f(v) = 1 − (E(v) − 1)λ

AXi
(v) = RXi

(v) · f(v),
(2)

where E(v) is the euclidean distance for the voxel v, f(v) is its attenuation
factor within [0, 1], λ is the exponential factor of the function, and AXi

is the
map with the attenuated REs for Xi. In this work, we considered λ = 4. Thus,
REs of voxels close to the brain borders are extremely attenuated, whereas those
from voxels far from the borders are slightly impacted (Fig. 6f). A downside of
this approach is that subtle lesions in the cortex tend to be missed due to the
lack of REs.

In order to even ignore REs caused by noises or small intensity differences in
regions/tissues far from the cortex, we create a common registration error map
AX by averaging the attenuated REs from AX (output of Step 4 in Fig. 4; see
also Fig. 6c). Finally, we repeat the same steps to compute the attenuated REs
for the test image I and then subtract AX from them. Resulting positive values
form a final attenuated registration error map AI for I (output of Step 7 in
Fig. 4; see also Fig. 6g).

3.3 Supervoxel Segmentation

The direct comparison between the registered image and its template, or even
between large 3D regular patches, is not useful as it will not tell us where small-
scale REs occur—a similar parallel is done for asymmetries in [25]. Conversely,
a voxel-wise comparison is risky, since individual voxels contain too little infor-
mation to capture REs. These difficulties motivate the use of supervoxels as the
unit of comparison (Step 8 in Fig. 4).
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Inspired by the SymmISF method [24] used in SAAD for symmetrical super-
voxel segmentation, we propose a new technique that extracts supervoxels in the
brain guided by registration errors, as shown in Fig. 7. Our supervoxel segmen-
tation is also based on the recent Iterative Spanning Forest (ISF) framework [42]
for superpixel segmentation (Sect. 2) and has three steps: (i) seed estimation;
(ii) connected supervoxel delineation (multiple iterations); and (iii) seed recom-
putation to improve delineation, as follows.

seed
estimation

ISF
concatenate
volumes

template
(reference image)

registration errors seeds

supervoxels

preprocessed
test volume
(3D image)

2-band
stacked volume

Fig. 7. Pipeline of the proposed supervoxel segmentation. The method stacks the input
preprocessed test 3D image (segmented objects are colored) with the template to build
a 2-band volume. An initial seed set is obtained from the registration errors of the
test image. For each object of the segmentation brain mask, the ISF framework [42]
estimates supervoxels inside the object from the initial seeds. Resulting supervoxels
are combined and relabeled to form the final label map. (Color figure online)

Recall a template T , its predefined brain segmentation mask MT (objects
of interest), a preprocessed 3D test image I registered on T , and its attenuated
registration error map AI . Equivalently to SymmISF, we find initial seeds by
selecting one seed per local maximum in AI (see the seeds in Fig. 7). We compute
the local maxima of the foreground of a binarized AI at γ × τ , where τ is Otsu’s
threshold [28]. The higher the factor γ is, the lower is the number of components
in the binarized AI . We extend the seed set with a fixed number of seeds (e.g.,
100) by uniform grid sampling the regions with low REs of the binarized image,
resulting in the final seed set S.

By stacking I and T as the input 2-band volume (Fig. 7), we perform ISF
inside each object of interest in MT , separately, from the initial seeds. The results
are label maps wherein each supervoxel is assigned to a distinct number/color.
We then combine and relabel the resulting supervoxels to build the final super-
voxel map L (output of Step 8 in Fig. 4).
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3.4 Feature Extraction and Classification

Our feature extraction and classification steps are very similar to those of
SAAD [24], as detailed next. BADRESC relies on an outlier detection approach
that designs a set of specialized one-class classifiers (OCCs) specific for each test
3D image, as shown in Fig. 8. For each 3D test image, each supervoxel in L is
used to create a specialized one-class classifier (OCC) using as feature vector the
normalized histogram of the attenuated registration errors (REs) in AI (Step 9
in Fig. 4). Classifiers are trained from control images only, thus locally mod-
eling normal REs for the hemispheres, cerebellum, and brainstem. BADRESC
uses the one-class linear Support Vector Machine (oc-SVM) for this task [20].

Fig. 8. One-class classifier (OCC) training to detect abnormal registration errors. For
each supervoxel from a given test 3D image, BADRESC trains an OCC from the
training normal registration errors previously computed.

Fig. 9. Detection of abnormal registration errors of a test 3D image by supervoxel
classification. For each supervoxel, BADRESC uses the corresponding OCC to classify
the registration errors inside it.
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Finally, BADRESC uses the trained OCCs to find supervoxels with abnormal
REs in I (Step 10 in Fig. 4). Figure 9 illustrates the supervoxel classification.

When dynamically designing specialized one-class per-supervoxel classifiers
for each test image, BADRESC implicitly considers the position of the super-
voxels when deciding upon their registration errors. The central premise for this
is that a single global classifier cannot to separate normal and anomalous tissues
by only using texture features.

4 Experiments

To assess the performance of BADRESC, we conducted a set of experiments.
This section describes the MR-T1 image datasets, baselines, and the evaluation
protocol considered for the experiments. All computations were performed on
the same Intel Core i7-7700 CPU 3.60 GHz with 64 GB of RAM.

4.1 Datasets

To evaluate BADRESC, we need datasets with volumetric MR-T1 brain images
(i) from healthy subjects for training, and (ii) with lesions of different appearance
(especially small ones) and their segmentation masks. First, we considered the
CamCan dataset [39], which has 653 MR-T1 images of 3T from healthy men and
women between 18 and 88 years. As far as we know, CamCan is the largest public
dataset with 3D images of healthy subjects acquired from different scanners. To
avoid noisy data in the training set, we removed some images with artifacts
or bad acquisition after a visual inspection in all MR-T1 images, yielding 524
images.2

For testing, we chose the Anatomical Tracings of Lesions After Stroke
(ATLAS) public dataset release 1.2 [19] in our experiments. ATLAS is a chal-
lenging dataset with a large variety of manually annotated lesions and images of
1.5T and 3T acquired from different scanners. It contains heterogeneous lesions
that differ in size, shape, and location (see Fig. 1). All images only have a mask
with the stroke region, ignoring other possible anomalies caused by those lesions.
Current state-of-the-art segmentation results [31] for ATLAS from a supervised
method based on U-Net are inaccurate yet (Dice score of 0.4867).

Since the considered training images have a 3T field strength, we selected
all 3T images from ATLAS for analysis (total of 269 images). All images were
registered into the coordinate space of ICBM 2009c Nonlinear Symmetric tem-
plate [12] and preprocessed as outlined in Sect. 3.1.

4.2 Baselines

We compared BADRESC against two baselines: (i) the SAAD method proposed
in [24], which in turn was also evaluated with the ATLAS dataset as reported

2 A link to all these images will be added in the camera-ready paper.
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in [24], and (ii) the convolutional-autoencoder-based approach (CAE) from Chen
et al. [8], which is, as far as we know, the current state-of-the-art unsupervised
method for the ATLAS dataset.

We considered the 2D axial slices of all preprocessed training images to train
CAE, which has the following architecture: three 2D convolutional layers with
16, 8, and 8 filters of patch size 3 × 3, respectively, followed by ReLU activation
and 2D max-pooling in the encoder, and the corresponding operations in the
decoder. The Nadam gradient optimizer [38] minimized the mean squared error
between reconstructed and expected 2D axial slices during training. The method
detects anomalies by thresholding the residual image of the input image vs its
reconstruction to obtain a binary segmentation, similarly to Baur et al. [4] and
Chen et al. [8]. We followed Baur et al. [4] by selecting two thresholds as the
90th and 95th percentile from the histogram of reconstruction errors on the
considered training set, resulting in the brightness of 194 and 282, respectively.
For simplicity, we call CAE-90 and CAE-95 for the versions with the 90th and
95th percentile, respectively.

For a fair comparison, we evaluated SAAD for all 3T images that only contain
lesions in the hemispheres. Additionally, we evaluated BADRESC and CAE
for all considered testing images, including the ones with stroke lesions in the
cerebellum and brainstem. We used the following parameters for BADRESC,
empirically obtained from the observation on a few training control images:
α = 0.06, β = 5.0, γ = 3, histograms of 128 bins, and ν = 0.01 for the linear
oc-SVM.

4.3 Quality Metrics

Although BADRESC detects anomalies regardless of their types or diseases,
we can compute quantitative scores only over those lesions that are labeled in
ATLAS, which are a subset of what BADRESC can detect. Thus, we propose a
set of metrics to evaluate detection quality, as follows. We start computing the
detection rate based on at least 15% overlap between supervoxels detected by the
methods and lesions labeled in ATLAS (Tables 1 and 2, row 1). We then com-
puted the true positive rate (recall) that measures the percentage of lesion voxels
correctly classified as abnormal (Tables 1 and 2, row 2). Although our focus is
on detecting abnormal asymmetries, we also measured the Dice score between
lesions and the detected supervoxels to check BADRESC’s potential as a seg-
mentation method (Tables 1 and 2, row 3). However, observe that true anomalies
detected by our method that are not annotated as lesions in the ground-truth
masks will be incorrectly considered as false-positive and, thus, underestimat-
ing the Dice score. We could then consider only supervoxels overlapped with
the annotated lesions to compute Dice scores, but this would be unfair to the
considered baselines.

We provided false-positive (FP) scores in terms of both voxels and supervox-
els regarding the ground-truth stroke lesions of ATLAS. Hence, some anomalies
with no labeled masks in ATLAS are considered FP. This is the best we can do
in the absence of labeled masks for all kinds of abnormalities in this dataset. We
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computed the mean number of FP voxels, i.e., incorrectly classified as abnormal
(Tables 1 and 2, row 4). We normalized this count with respect to all classi-
fied voxels (Tables 1 and 2, row 5), i.e., the total number of voxels inside the
right hemisphere for SAAD and all voxels from the hemispheres, cerebellum, and
brainstem for BADRESC and CAE.

At the next level, we estimated FP supervoxels as those whose voxels overlap
less than 15% with ground-truth lesion voxels. We computed the mean number
of FP supervoxels and their proportions to the total number of supervoxels
(Tables 1 and 2, rows 6 and 7). The first metric gives us an estimation of the
visual-inspection user effort. The second metric checks how imprecise detection
is regarding the total number of regions that the user has to analyze visually.

When visually analyzing FP supervoxels, it is harder to check many discon-
nected supervoxels spread across the brain than a few connected ones. Hence, we
gauge visual analysis user-effort by evaluating the two metrics outlined above
on the level of connected FP supervoxel components (Tables 1 and 2, rows 8
and 9). Finally, we also computed the mean processing times of each method
(Tables 1 and 2, row 10) for preprocessed images, thus excluding the mean time
of the preprocessing step (Sect. 3.1), which is 90 s on average.

5 Evaluation Results

Table 1 summarizes quantitative results of the baselines for stroke lesions in the
hemispheres, while Fig. 10 presents some corresponding visual results. CAE-
90 presents considerably higher detection scores (0.953) than SAAD (0.845)
and BADRESC (0.82). However, these impressive results are misleading as
CAE reports considerably more false-positive voxels than SAAD (about 6.75×),
being drastically worse than BADRESC (about 48×)—compare rows 4 and 5 in
Table 1. For instance, CAE-90 misclassifies 23.7% of the hemispheres as abnor-
mal, which is far from being reasonable and hinders the visual analysis (we
expect just a small portion of the brain, e.g., 1%). These high FP rates explain
the poor Dice scores for CAE in Table 1, which in turn are compatible with the
ones reported in [8].

Additionally, CAE is speedy (running time about 2 s per image) and yields
very noisy disconnected regions, especially in regions with transitions between
white and gray matter (e.g., the cortex), that hinder the subsequent visual
inspection (see the results in Fig. 10). Even though the number of FP voxels
decrease for a higher threshold, the detection score can be hugely impacted;
for example, the threshold at the 95th percentile approximately halves both the
detection score and FP voxels rates compared with the results for the 90th per-
centile in Table 1. CAE might present better results by using a considerable large
training set and/or some additional post-processing, but this is not considered
in [4,8]. CAE presents better results for other medical imaging modalities, such
as CT and T2 [4,8].

SAAD reports a better detection rate and mean recall for hemispheric lesions
than BADRESC, although the difference between such scores is not accentuate—
e.g., SAAD has a detection rate of 0.845 while BADRESC has 0.82. BADRESC,
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Fig. 10. Comparative results between the baselines for stroke lesions in the hemi-
spheres. For each image (axial slice), we present an inset surrounding the lesion whose
border color indicates if the lesion was detected (green) or missed (red). (Color figure
online)

in turn, reports a better Dice score (0.17) than SAAD (0.12). However, as out-
lined in Sect. 4.3, this score is underestimated since real unlabeled anomalies
detected by the methods are considered false-positive. If we considered only
supervoxels overlapped with the annotated lesions, such a Dice score leverages
to 0.42. While still low, this score is not far from state-of-the-art results (Dice
score 0.4867) on the ATLAS dataset from a supervised method based on U-
Net [31]. Interestingly, our method is noticeably superior to CAE, which is an
unsupervised method (like ours), reporting Dice scores of 0.015.
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Table 1. Quantitative comparison between the baselines for images from the ATLAS
dataset with stroke lesions in the hemispheres. Top part: higher values mean better
accuracies. Bottom part: lower values mean better accuracies. The abbreviation k
denotes thousands.

Table 2. Quantitative comparison between CAE and BADRESC for images from the
ATLAS dataset with stroke lesions in the cerebellum and brainstem. Top part: higher
values mean better accuracies. Bottom part: lower values mean better accuracies.
The abbreviation k denotes thousands.
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Fig. 11. Comparative results between CAE and BADRESC for stroke lesions in the
cerebellum and brainstem. For each image (axial slice), we show an inset surrounding
the lesion whose border color indicates if the lesion was detected (green) or missed
(red). (Color figure online)

When analyzing supervoxels, both SAAD and BADRESC output more mean-
ingful regions for visual analysis than CAE—compare the detected regions in
Fig. 10. They can accurately detect small asymmetric lesions in the hemispheres
(Fig. 10, Image 1) since asymmetries and registration errors successfully empha-
size such lesions (see these for Image 1 in Fig. 10). SAAD cannot detect lesions
with low asymmetries, while BADRESC does not have this limitation—compare
the results, asymmetries, and registration errors for Image 2 in Fig. 10. However,
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both methods are ineffective in detecting tiny anomalies (Fig. 10, image 3) since
asymmetries and registration errors cannot highlight such anomalies.

BADRESC is a bit faster and reports seven times fewer false-positive (FP)
voxels than SAAD (Table 1, rows 4, 5, and 10): an average of 9000 FP
voxels against approximately 64000, respectively. Concerning FP supervoxel
scores, BADRESC is consistently better than SAAD (scores roughly three times
higher)—compare rows 6–9 in Table 1. For instance, SAAD incorrectly classifies
58.87 supervoxels on average, which consists of 20% of all analyzed supervoxels
and 8% of the analyzed voxels in the hemisphere respectively. BADRESC, in
turn, reports an average of 21.46 FP supervoxels, which corresponds to 10% of
analyzed supervoxels and only 0.5% of voxels in the whole brain. When group-
ing connected detected supervoxels, BADRESC reports only 16 FP supervoxels.
Hence, a user will need far less effort and time to visually analyze results from
BADRESC than from SAAD.

BADRESC is less accurate when detecting lesions in the cerebellum and
brainstem (detection rate of 0.683) than in the hemispheres, as shown in Table 2
and Fig. 11. Some of these lesions are indeed challenging, especially in the cere-
bellum, whose appearances are similar to their surrounding tissues (Fig. 11,
Image 6). BADRESC reports similar FP scores to those of hemispheric lesions,
which confirms the stability of the method (compare rows 4–9 for BADRESC
in Figs. 10 and 11). The considered registration-error attenuation (Eq. 2 with
α = 4) seems to be very strong for the cerebellum and brainstem, which impairs
the representation of the lesions. However, as SAAD cannot detect lesions in
the cerebellum and brainstem, BADRESC is a more interesting solution to be
further investigated and improved, especially in such macro-objects of interest.

6 Conclusion

We presented a new unsupervised method for brain anomaly detection that
combines registration errors and supervoxel classification. Our approach, named
BADRESC, adapts a recent supervoxel-based approach (SAAD) to detect out-
liers as anomalies from registration errors in the hemispheres, cerebellum, and
brainstem. This work is an extension of a previous one, which originally intro-
duces BADRESC. Its main contributions include a more detailed explanation
of the method, especially concerning supervoxel segmentation, and an extended
evaluation (more baselines and evaluation metrics).

BADRESC was validated on 3T MR-T1 images of stroke patients with anno-
tated lesions, outperforming a convolutional-autoencoder-based approach, and
attaining similar detection accuracy to SAAD for lesions in the hemispheres
and substantially fewer false positives. BADRESC also detects lesions in the
cerebellum and brainstem with promising results.

For future work, we intend to improve BADRESC by optimizing its param-
eters and using additional visual analytics techniques to improve seeding and
further investigate other anomaly features and classifiers to yield better detec-
tion rates, especially for the cerebellum and brainstem.
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A Appendix

Image Foresting Transform

The Image Foresting Transform (IFT) is a methodology for the design of image
operators based on optimum connectivity [11]. For a given connectivity function
and a graph derived from an image, the IFT algorithm minimizes (maximizes) a
connectivity map to partition the graph into an optimum-path forest rooted at
the minima (maxima) of the resulting connectivity map. The image operation
resumes to a post-processing of the forest attributes, such as the root labels,
optimum paths, and connectivity values. IFT has been successfully applied in
different domains, such as image filtering [10], segmentation [6,22,36], superpixel
segmentation [5,24,42], pattern classification [2,29], and data clustering [27,32].
This appendix presents preliminary concepts and introduces the IFT algorithm.

Preliminary Concepts

Image Graphs. A d-dimensional multi-band image is defined as the pair
Î = (DI , �I), where DI ⊂ Zd is the image domain—i.e., a set of elements (pix-
els/voxels) in Zd—and �I : DI → R

c is a mapping function that assigns a vector
of c intensities �I(p)—one value for each band (channel) of the image—to each
element p ∈ DI . For example, for 2D RGB-color images: d = 2, c = 3; for 3D
grayscale images (e.g., MR images): d = 3, c = 1. We represent a segmentation
of Î by a label image L̂ = (DI , L), wherein the function L : DI → {0, 1, · · · ,M}
maps every voxel of Î to either the background (label 0) or one of the M objects
of interest.

Most images, like the ones used in this paper, typically represent their
intensity values by natural numbers instead of real numbers. More specifically,
�I : DI → [0, 2b − 1], where b is the number of bits (pixel/voxel depth) used to
encode an intensity value.

An image can be interpreted as a graph GI = (DI ,A), whose nodes are the
voxels and the arcs are defined by an adjacency relation A ⊂ DI × DI , with
A(p) being the adjacent set of a voxel p. A spherical adjacency relation of radius
γ ≥ 1 is given by

Aγ : {(p, q) ∈ DI × DI , ‖q − p‖ ≤ γ}. (3)

The image operators considered in this paper use two types of adjacency rela-
tions: A1 (6-neighborhood) and A√

3 (26-neighborhood), as illustrated in Fig. 12.

Paths. For a given image graph GI = (DI ,A), a path πq with terminus q is a
sequence of distinct nodes 〈p1, p2, · · · pk〉 with 〈pi, pi+1〉 ∈ A, 1 ≤ i ≤ k − 1, and
pk = q. The path πq = 〈q〉 is called trivial path. The concatenation of a path πp

and an arc 〈p, q〉 is denoted by πp · 〈p, q〉.

Connectivity Function. A connectivity function (path-cost function) assigns
a value f(πq) to any path πq in the image graph GI = (DI ,A). A path π∗

q ending
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Fig. 12. Examples of adjacency relation for a given voxel p (red). (Color figure online)

at q is optimum if f(π∗
q ) ≤ f(τq) for every other path τq. In other words, a path

ending at q is optimum if no other path ending at q has lower cost.
Connectivity functions may be defined in different ways. In some cases, they

do not guarantee the optimum cost mapping conditions [9], but, in turn, can
produce effective object delineation [26]. A common example of connectivity
function is fmax, defined by

fmax(〈q〉) =
{

0 if q ∈ S,
+∞ otherwise.

fmax(πp · 〈p, q〉) = max{fmax(πp), w(p, q)},

(4)

where w(p, q) is the arc weight of 〈p, q〉, usually estimated from Î, and S is the
labeled seed set.

The General IFT Algorithm

For multi-object image segmentation, IFT requires a labeled seed set S = S0 ∪
S1 ∪ · · · SM with seeds for object i in each set Si and background seeds in S0, as

Fig. 13. Multi-object image segmentation by IFT. (a) Axial slice of a brain image with
seeds S0 for the background (orange), S1 for the right ventricle (red), and S2 for the
left ventricle (green). (b) Gradient image for (a) that defines the arc weights for seed
competition. Arcs have high weights on object boundaries. (c) Resulting segmentation
mask for the given seeds and arc weights. Red and green voxels represent object voxels,
whereas the remaining ones are background. (Color figure online)
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illustrated in Fig. 13. The algorithm then promotes an optimum seed competition
so that each seed in S conquers its most closely connected voxels in the image
domain. This competition considers a connectivity function f applied to any
path πq.

Defining Πq as the set of all possible paths with terminus q in the image
graph, the IFT algorithm minimizes a path cost map

C(q) = min
∀πq∈Πq

{f(πq)}, (5)

by partitioning the graph into an optimum-path forest P rooted at S. That is,
the algorithm assigns to q the path π∗

q of minimum cost, such that each object i
is defined by the union between the seed voxels of Si and the voxels of DI that
are rooted in Si, i.e., conquered by such object seeds.

Algorithm 2 presents the general IFT approach. Lines 1–7 initialize maps,
and insert seeds into the priority queue Q. The state map U indicates by U(q) =

Algorithm 2. The General IFT Algorithm.

Input: Image Î = (DI , I), adjacency relation A connectivity function f , and
seed set S ⊂ DI labeled by λ.

Output: Optimum-path forest P , root map R, path-cost map C, and label map
L.

Aux: Priority queue Q, state map U , and variable tmp.

1 foreach q ∈ DI do
2 P (q) ← ∅, R(q) ← q
3 C(q) ← f(〈q〉), L(q) ← 0
4 U(q) ← White
5 if q ∈ S then
6 insert q into Q
7 L(q) ← λ(q), U(q) ← Gray

8 while Q �= ∅ do
9 Remove p from Q such that C(p) is minimum

10 U(p) ← Black
11 foreach q ∈ A(p) such that U(q) �= Black do
12 tmp ← f(π∗

p · 〈p, q〉)
13 if tmp < C(q) then
14 P (q) ← p, R(q) ← R(p)
15 C(q) ← tmp, L(q) ← L(p)
16 if U(q) = Gray then
17 update position of q in Q

18 else
19 insert q into Q
20 U(q) ← Gray

21 return (P, R, C, L)
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White that the voxel q was never visited (never inserted into Q), by U(q) = Gray
that q has been visited and is still in Q, and by U(q) = Black that q has been
processed (removed from Q).

The main loop (Lines 8–20) performs the propagation process. First, it
removes the voxel p that has minimum path cost in Q (Line 9). Ties are broken
in Q using the first-in-first-out (FIFO) policy. The loop in Lines 11–20 then
evaluates if a path with terminus p extended to its adjacent q is cheaper than
the current path with terminus q and cost C(q) (Line 13). If that is the case, p
is assigned as the predecessor of q, and the root of p is assigned to the root of
q (Line 14), whereas the path cost and the label of q are updated (Line 15). If
q is in Q, its position is updated; otherwise, q is inserted into Q. The algorithm
returns the optimum-path forest (predecessor map), root map, path-cost map,
and the label map (object delineation mask).
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Abstract. Collecting and integrating information from different data
sources is a successful approach to investigate complex biological phe-
nomena and to address tasks such as disease subtyping, biomarker pre-
diction, target, and mechanisms identification. Here, we describe an inte-
grative framework, based on the combination of transcriptomics data,
metabolic networks, and magnetic resonance images, to classify differ-
ent grades of glioma, one of the most common types of primary brain
tumors arising from glial cells. The framework is composed of three main
blocks for feature sorting, choosing the best number of sorted features,
and classification model building. We investigate different methods for
each of the blocks, highlighting those that lead to the best results. Our
approach demonstrates how the integration of molecular and imaging
data achieves better classification performance than using the individual
data-sets, also comparing results with state-of-the-art competitors. The
proposed framework can be considered as a starting point for a clinically
relevant grading system, and the related software made available lays the
foundations for future comparisons.

Keywords: Data integration · Glioma grade classification · Metabolic
networks · Omics imaging · Transcriptomics

1 Introduction

Gliomas are a type of neuroepithelial tumors that originate from glial cells and
are the most common primary tumors of the central nervous system. Recent
technological advances allow us to identify and characterize, with an increasing
level of detail, the risk factors and the molecular basis underlying this aggres-
sive and invasive class of tumors. According to the WHO 2016 classification
system, five glioma subtypes are recognized based on histological and molecu-
lar parameters and graded from I (low-grade LGG) to II-IV (high-grade HGG).
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Nonetheless, the different subtypes and grades still present high phenotype and
survival variability [37]. As for all cancer types, the greatest scientific challenge
concerns the discovery of specific risk factors and early diagnostic markers. Early
and precise diagnosis also has a crucial role in terms of treatment planning.

Surgical resection with subsequent radiotherapy and chemotherapy is the
main treatment strategy for HGGs, and the incorrect diagnosis of HGGs as
LGGs would lead to less aggressive treatment decisions [47]. Glioblastoma Mul-
tiformae (GBM) is a grade IV glioma and is characterized by high aggressiveness
and poor prognosis. Nowadays, treatment options are still quite limited in the
case of GBM diagnosis with poor outcomes. The therapy failures are due to late
symptom onset and consequent delay in diagnosis and treatment. In this con-
text, an accurate diagnosis cannot prescind from quantitative estimations [24].
The last decade has seen radiomics [28,29], which involves the extraction of
high-throughput quantitative features from clinical images, as a rapidly evolv-
ing field. It allows the non-invasive quantification of tumor phenotypes, providing
clinically significant diagnostic and prognostic imaging biomarkers [10]. Glioma
grade classification using radiomic features from Magnetic Resonance Imaging
(MRI) or other biomedical imaging techniques have been investigated in several
studies [9,10,14,26,30,47,50–52].

Advanced omics technologies have enabled high-throughput biomolecular
data acquisition and characterization. This has also made way to a new inter-
disciplinary field dealing with the integrated analysis of features extracted
from medical images and multi-omics data. This field has been named imag-
ing genomics [22,23,31] or radiogenomics [1,18,42], while we refer to it as omics
imaging [3], as it better captures the essence of the integrated study of a wide
range of omics (genomics, transcriptomics, proteomics, other omics) and med-
ical imaging (structural, functional, and molecular) data. This approach has
the potential to get novel insights about tumor molecular-morphology relation-
ship, decipher disease behavior, and also identify clinically important molecu-
lar/imaging biomarkers [39]. Omics imaging studies in recent years have exam-
ined the association between GBM imaging phenotypes and gene-expression pat-
terns, [7,44] or the prediction of GBM patient survival (e.g., [13,17]). However,
to the best of our knowledge, only our previous study [32] analyzed the prob-
lem of integrating omics and imaging data for glioma grade classification. We
showed that a suitable combination of both these kinds of data could provide
more accurate classification results than their separate use. In that classification
framework, our implementation choices have been guided by the established lit-
erature, rather than by their specific suitability for the problem at hand.

Here, we investigate whether the adoption of different classifier models, fea-
ture sorting, or feature selection algorithms may lead to better results for inte-
grating multimodal data for glioma grade classification. Specifically, the main
contributions can be summarized as a set of extended investigations on

– three methods for sorting features based on their importance for classification;
– two optimization criteria for choosing the best number of sorted features

through cross-validation;
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– three classification methods for evaluating testing performance.

Moreover, average performance results obtained by repeated application of the
proposed framework on random partitions of the input data are compared to
those obtained with a single training/test set, so as to analyze punctual perfor-
mance results and the significance of the extracted features. Finally, we make
the software and extracted data publicly available so as to lay the foundations
for future comparisons.

2 Evaluation Framework

Figure 1 shows the adopted framework for classification evaluation, in the follow-
ing referred to as CEF. The input data (either O, I, or OI features) is partitioned
into a training and a testing set; the partitioning is chosen randomly, taking care
to have the same distribution of samples over classes, both in training and test
set. The training set is used to sort the features according to their decreasing
importance for classification (SortFeatures module). Then, the optimal number
NoF of sorted features is estimated (SelectOptNum module), and the first NoF
sorted features are used to train a classification model M (ClassModel module).
Finally, the model M trained using the training dataset is used to classify the
test set and to estimate the related performance (Eval module). The described
classification and evaluation procedure is repeated a number numIter of times
(in the experiments, numIter is set to 100), each time randomly permuting the
data so as to obtain different train/test subdivisions. Overall performance values
are obtained as the average of those obtained at each iteration (i.e., for each of
the partitions).

The main modules of the evaluation framework are briefly described in the
following.

2.1 Feature Sorting Methods

Feature selection is a dimensionality reduction technique, whose aim is to choose
a small subset of the relevant features from the original features by removing
irrelevant, redundant, or noisy features [36]. It usually leads to higher learning
accuracy, lower computational cost, and better model interpretability. Based on
the searching strategy, feature selection methods can be classified as wrapper
methods, that require the application of a classifier to evaluate the quality of
selected features, filter methods, that select the most discriminating features
directly from data, wrapper methods, that use the intended learning algorithm
itself to evaluate the features, and embedded methods, that perform feature
selection in the process of model construction, while learning optimal parameters.

In [32], we adopted the recursive feature elimination (RFE) [20] using Sup-
port Vector Machines (SVM) [48], a wrapper method that provides a ranked
list of features ordered according to their relevance. Here, we also consider two
other methods for sorting features according to their decreasing relevance for
classification.
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Fig. 1. CEF evaluation framework for classification.

Feature weighting using Neighborhood Component Analysis (NCA) [49] is
a non-parametric and embedded method for selecting features with the goal
of maximizing the prediction accuracy of a classification algorithm. Based on
nearest neighbor feature weighting, it learns a feature weighting vector by max-
imizing, through a gradient ascent technique, the expected leave-one-out classi-
fication accuracy with a regularization term.

We further rank the features based on a class separability criterion based on
entropy (ENTR), assessing the significance of every feature for separating two
labeled groups. The relative entropy, also known as Kullback-Leibler distance or
divergence, measures the distance between two probability distributions. There-
fore it can be used to measure how different are the probability density functions
of a feature in two classes.

2.2 Selection of the Optimal NoF

One of the usual means for deciding the number NoF of sorted features to be
selected is to arbitrarily fix a threshold on the weight of the sorted features,
taking only the first of them whose weight surpasses the threshold. Instead, in
[32], the optimal NoF is automatically selected through k-fold cross-validation
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(CV) of a classifier trained using the first NoF sorted features of the training
data; the optimal value is chosen as the one that maximizes the AUC across the
numIter iterations of the process.

To better highlight the relationship between the classifier AUC value and
error rate [12], here, we also consider the choice of NoF as the one that minimizes
the loss across the iterations.

Both in [32] and here, to better handle class unbalancing of the considered
dataset, oversampling in the training folds of the CV procedure is performed to
balance the minority and majority classes. This is achieved using the adaptive
synthetic sampling approach for imbalanced learning (ADASYN) method [21]. It
adopts a weighted distribution for different minority class samples with reference
to their level of difficulty. In this way, improvement during the learning procedure
is twofold: first, a reduction of the bias introduced by the class imbalance, and,
second, a shift of the classification decision boundary toward the more difficult
samples.

2.3 Classifier Models

In [32], we adopted the k-Nearest Neighbor (kNN) [15] as a classification model
trained on training data. Using kNN, each sample is classified by a majority
vote of its neighbors, being assigned to the class most common amongst its k
nearest neighbors measured by a distance function. In our case, k = 1, so that
each sample is simply assigned to the class of its nearest neighbor.

Here, we consider two other classifiers. The first is a classification ensemble
(in the following referred to as Ensemble), i.e., a predictive model composed of a
weighted combination of multiple classification models. The Ensemble model is
built by boosting classification trees via LogitBoost [16]. It includes a structural
model for boosting, on the logistic scale, composed of different base learners
providing additive components. An optimized set of learners works better than
one. This configuration demonstrates that, in an empowerment situation where
all basic learners are not equivalent, there is no unique optimal choice for all
application contexts. This aspect explains many of the properties of boosting.

The second classifier (in the following referred to as Fitclinear) is a linear
classifier. It trains linear classification models for binary class learning with high-
dimensional, full or sparse predictor data. Moreover, it minimizes the objective
function using techniques that reduce computing time (e.g., stochastic gradi-
ent descent). Here, we adopted a logistic regression model and the logit score
transform function, 1/(1 + e−x).

3 Experimental Results

3.1 Data

RNA sequencing data was obtained from the NCI’s Genomic Data Commons
portal (https://portal.gdc.cancer.gov). This included FPKM (fragments per

https://portal.gdc.cancer.gov
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kilobase per million reads mapped) normalized gene counts from The Cancer
Genome Atlas (TCGA) brain cancer projects TCGA-Glioblastoma Multiforme
and TCGA-Low Grade Glioma (TCGA-GBM and TCGA-LGG). The TCGA-
GBM contains 161 samples, and the TCGA-LGG contains 511 samples (refer
to the TCGA column in Table 1). The brain tissue metabolic model [2] used
in this study was downloaded from the Metabolic Atlas repository (https://
metabolicatlas.org/). Sample-wise weighted and directed metabolic networks
were constructed by combining the gene expression data and tissue-specific
metabolic model, as in [19]. The nodes in the network represent the metabo-
lites, while product-reactant metabolite pairs involved in the same reaction are
connected by edges. These edges are weighted with the expression values of the
enzymes corresponding to the reactions catalyzing the interacting metabolite
couples. The simplification of the edges in the multigraphs is performed by tak-
ing the average of the enzyme expression of multiple edges connecting two nodes
in the same reaction and then adding the means of different reactions. The result-
ing simple graphs contain 8458 edges, further reduced to 1375 by removing those
edges with weights common to all samples, and are used in the experiments as
omics features (O).

Table 1. Number of samples for each class (GBM and LGG) in the omics data (TCGA),
the imaging data (TCIA1 publicly available, TCIA2 available on demand), their inter-
sections (Set1 and Set2), and the union of these intersections (SetU).

TCGA TCIA1 TCIA2 Set1 Set2 SetU

GBM 161 102 33 21 9 30

LGG 511 65 43 63 41 104

Total 672 167 76 84 50 134

MRI pre-operative scans for a subset of patients from the TCGA-GBM and
TGCA-LGG projects are available in The Cancer Imaging Archive (TCIA, can-
cerimagingarchive.net) [11]. Also available in the TCIA archive, are imaging
features extracted from the TCGA-GBM and TGCA-LGG imaging collections
by Bakas et al. [4–6] and are those used in our study (I). The authors selected a
subset of radiological data that included pre-operative MRI baseline scans from
the T1-weighted pre-contrast (T1), T1-weighted post-contrast (T1-Gd), T2, and
T2- FLAIR (Fluid Attenuated Inversion Recovery) modalities. Pre-processing of
MRI volumes and segmentation of glioma sub-regions was followed by volumetric
feature extraction. This resulted in a panel of more than 700 features, with quan-
titative information regarding intensity, volumes, morphology, histogram-based,
and textural parameters, as well as spatial information and parameters extracted
from glioma growth models. The imaging features have been computed by the
authors for 135 TCGA-GBM and 108 TGCA-LGG subjects. Among them, those
for 102 GBM and 65 LGG samples (see column TCIA1 in Table 1) are publicly
available through TCIA, while the remaining features (see column TCIA2 in

https://metabolicatlas.org/
https://metabolicatlas.org/
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Table 2. Performance measures used in the experiments.

Name Formula Description

Accuracy Acc =
TP + TN

TP + FN + FP + TN
Percentage of correctly classified samples

Specificity Spec =
TN

TN + FP
Percentage of negative samples correctly
identified

Sensitivity
(or Recall
or TPR)

Sens =
TP

TP + FN
Percentage of positive samples correctly
classified

Precision Prec =
TP

TP + FP
Percentage of positive samples correctly
classified, considering the set of all the
samples classified as positive

F-measure Fβ =
(1 + β2) · Prec · Sens

(β2 · Prec) + Sens
Compromise between sensitivity and
precision, weighted by β ∈ R

+. In the
experiments, β = 1

Adjusted
F-measure

AGF =
√

F2 · InvF0.5 Addresses imbalanced data, giving more
weight to patterns correctly classified in
the minority class [33]

G-mean Gm =
√

Sens · Spec Geometric mean of the accuracy of both
classes

Area Under
the ROC
Curve

AUC=

∫ 1

0
Sens(x)dx, x = 1−Spec Uses the ROC curve to exhibit the

trade-off between the classifier’s TP and
FP rates

Table 1), are available only upon demand, as they have been used as test dataset
for the MICCAI Brain Tumor Segmentation 2018 challenge (BraTS 2018)1.

Matching the subject IDs of omics and imaging data, we obtained a total
of 30 GBM and 104 LGG samples having both omics and imaging features (see
SetU column in Table 1). This set is given by the union of the training set Set1
and the testing Set2, obtained by matching TCGA with TCIA1 and TCIA2
samples, respectively. In the following, we consider omics, imaging, and omics
imaging features (denoted as O, I, and OI, respectively) for the matched samples
belonging to sets Set1, Set2, and SetU.

3.2 Performance Measures

We consider the performance metrics summarized in Table 2, defined in terms of
the number of true positives (TP), true negatives (TN), false positives (FP) and
false negatives (FN). Here, the majority class (LGG) is assumed as the negative
class, while the minority class (GBM) is assumed as the positive class.

For all the metrics, higher values indicate better performance results. While
all of them contribute to investigating the performance results, in our analyses,

1 https://www.med.upenn.edu/sbia/brats2018.html.

https://www.med.upenn.edu/sbia/brats2018.html
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Fig. 2. Varying the feature sorting method: average performance on the I (left column),
O (center column), and OI (right column) datasets using ENTR (left bars), NCA
(center bars), and RFE (right bars) feature sorting and three classifiers (a) kNN, (b)
Ensemble, (c) Fitclinear.
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Fig. 3. Varying the optimization criterion for CV-based selection of NoF : average
performance on the I (left column), O (center column), and OI (right column) datasets
using AUC maximization (left bars) and Loss minimization (right bars).

we mainly refer to Acc, Gm, AUC, and AGF, as they better balance the contri-
bution of the two unbalanced classes to the overall performance. Nonetheless, we
provide values for all the metrics in our web pages, so as to make them available
for future comparisons.

3.3 Performance Results in SetU

The CEF framework described in Sect. 2 has been evaluated on I, O, and OI
features of SetU, varying the method for sorting features (Sect. 2.1), the criterion
for computing the optimal number of features (Sect. 2.2), and the classifier model
(Sect. 2.3).

The framework has been implemented in Matlab; all its scripts are made
publicly available through our web pages. For feature sorting, we adopted the
Matlab functions fscnca for NCA and rankfeatures for ENTR, while we used
our implementation of RFE. The classifier models were built using the fitcknn,
fitcensemble, and fitclinear Matlab functions and evaluated through the
predict function. The number numIter of iterations of the entire procedure
was fixed to 100.

In Fig. 2, we report the average performance obtained by CEF varying
the feature sorting method. Here, we observe that, generally, a) performance
obtained using only I features is always lower than that achieved using O and
OI features; b) best performances are obtained when sorting features based on
ENTR in the case of I and O features and RFE in the case of OI features, and
this holds whichever is the adopted classifier.
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Fig. 4. Varying the classifier: average performance on the I (left column), O (center
column), and OI (right column) datasets using the kNN (left bars), Ensemble (center
bars), and Fitclinear (right bars) classifiers, with features sorted by (a) ENTR, (b)
NCA, and (c) RFE.
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Table 3. Summary of the compared methods for glioma grade classification.

1st author year [Ref] # HGG # LGG Data & source Method

Law, 2003 [30] 120 40 Perfusion MR,

proton MR

spectroscopy

Logistic regression and ROC analysis

of relative cerebral blood volume

(rCBV) and metabolite ratios (m.r.)

Zacharaki, 2009 [51] 52 22 MRI, perfusion

MRI

SVM-RFE to select a subset from

161 imaging features + weighted

SVM classifier

Ertosun, 2015 [14] 48 52 Digital

pathology

images (WSI)

[27]

DL: Ensemble of CNNs

Togao, 2016 [47] 29 16 IntraVoxel

Incoherent

Motion (IVIM)

MRI

ROC analysis to evaluate the

diagnostic accuracy of various

parameters (the best is the volume

fraction within a voxel of water

flowing in perfused capillars)

Chen, 2018 [9] 220 54 MRI [35] Multiscale 3D CNN segmentation +

SVM-RFE radiomics features

selection + XGboost classifier

Cho, 2018 [10] 210 75 MRI [35] MRMR algorithm to select 5 among

468 radiomics features, used to build

3 different classifier models

Khawaldeh, 2018 [26] 213 235 MRI [11,43] DL: based on AlexNet, trained using

single 2D MRI slices. Three class

classification problem (including 139

healthy samples)

Yang, 2018 [50] 61 52 MRI ClinicalTri-

als.gov

DL: transfer learning from 2D

GoogLeNet (manually specified

ROIs)

Zhuge, 2020 [52] 210 105 MRI [6,35] DL: 3D segmentation + 2D R-CNN

on the slice with largest tumor area

or 3DConvNet on the 3D

segmentation

Figure 3 compares average performance results obtained using the two opti-
mization criteria for choosing NoF , with NCA feature sorting and kNN classifier.
It can be observed that no substantial difference can be found between results
obtained by the two optimization criteria. This holds true also using other fea-
ture sorting methods and different classifiers (not shown here).

Average performance results obtained using the three different classifiers with
features sorted by ENTR, NCA, and RFE methods are reported in Fig. 4. Here,
it can be observed that Fitclinear leads to the best performance for all the types
of data, regardless of the method adopted for sorting features.

3.4 Comparisons with Existing Classification Methods

Several methods have been proposed in the literature for the classification of
glioma grades, exploiting various types of imaging sources. Some of them are
summarized in Table 3, where we report bibliographic information (name of the
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Table 4. Performance (%) of methods for glioma grade classification.

Method Acc Sens Spec AUC

Law et al. [30], only rCBV 95.0 57.5

Law et al. [30], rCBV+m.r 93.3 60.0

Zacharaki et al. [51] 87.8 84.6 95.5 89.6

Ertosun et al. [14] 96.0 98.0 94.0

Togao et al. [47] 96.6 81.2 95.0

Chen et al. [9] 91.3 91.3 95.0

Cho et al. [10] 88.5 95.1 70.2 90.3

Khawaldeh et al. [26] 91.3 87.5 95.3

Yang et al. [50] 94.5 96.8

Zhuge et al. [52], 2D R-CNN 96.3 93.5 97.2

Zhuge et al. [52], 3DConvNet 97.1 94.7 96.8

Maddalena et al. [32] I 80.5 69.5 83.7 76.6

Maddalena et al. [32] O 95.1 90.7 96.5 93.6

Maddalena et al. [32] OI 95.0 91.1 96.1 93.6

CEF I 85.1 71.4 89.1 90.6

CEF O 96.5 94.2 97.2 99.4

CEF OI 96.0 92.9 96.9 99.1

first author, year, and reference), the number of samples for the high-grade and
low-grade glioma classes, the type of imaging data (eventually with reference
to their source), and a very short description of the adopted method (here,
DL stands for Deep Learning, one of the most recent, but now widespread,
approaches).

In Table 4, we compare the performance of these methods (as reported by
the authors themselves), bearing in mind that each has been validated by its
authors on a different set of data. For direct comparison, we also report the best
average performance results achieved for each of the data sources (I, O, and OI)
in [32] and with CEF (Fitclinear classifier with ENTR feature sorting for I and
O features and RFE feature sorting for OI features). Overall, we can conclude
that the proposed approach based on using O and OI features shows average

Table 5. Best test performance on Set2.

Acc Sens Spec Prec F1 Gm AUC AGF

I 88.0 88.9 87.8 61.5 72.7 88.4 91.5 88.2

O 96.0 100.0 95.1 81.8 90.0 97.5 100.0 97.4

OI 98.0 100.0 97.6 90.0 94.7 98.8 100.0 98.7
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Fig. 5. Varying the feature sorting method on Set2: performance on the I (left column),
O (center column), and OI (right column) datasets using ENTR (left bars), NCA
(center bars), and RFE (right bars) feature sorting and three classifiers (a) kNN, (b)
Ensemble, (c) Fitclinear.
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Fig. 6. Varying the optimization criterion for CV-based selection of NoF on Set2:
performance on the I (left column), O (center column), and OI (right column) features
using AUC maximization (left bars) and Loss minimization (right bars).

performance similar to or higher than most of the compared methods in terms
of all the considered performance metrics. Moreover, the performance achieved
with CEF surpasses that of the previous evaluation framework [32] in terms of
all the metrics. However, contrary to our previous experience, it appears that,
on average, omics features alone lead to better results than integrated omics
and imaging features when using the best combination of feature sorting and
classification methods. This point deserves further analysis, carried out in the
following section.

3.5 Performance Results in Set2

Besides testing the performance in a generally agreed way, as an average over
repeated training/test partitioning of the data (as done in Sects. 3.3 and 3.4), we
want to verify the suitability of the adopted approach in a specific application,
to better speculate in a real case scenario. Therefore, here, we consider a single
iteration of our classification framework, where a classification model is learned
solely on the Set1 training set and evaluated on the Set2 test set.

Figures 5, 6 and 7 report performance results on the I, O, and OI features of
Set2, with training performed solely on Set1. As in Sect. 3.3, we vary the feature
sorting method (Fig. 5), the optimization criterion for CV-based selection of
NoF (Fig. 6), and the classification model (Fig. 7). Contrary to the average
performance computed in the previous sections, best testing performances are
obtained when sorting features based on RFE for most of the cases. ENTR
and NCA are better suited for O data with the Ensemble classifier (Fig. 5-(b),
center), while RFE leads to the best overall performance for OI data with the
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Fig. 7. Varying the classifier on Set2: performance on the I (left column), O (center
column), and OI (right column) features using the kNN (left bars), Ensemble (center
bars), and Fitclinear (right bars) classifier classifiers, with features sorted by (a) ENTR,
(b) NCA, and (c) RFE.
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Table 6. Omics features annotation.

Feature Reaction Enzymes symbol Subsystem

m00247c m00569c HMR 4371 PGAM2, PGAM1, BPGM,
PGAM4

Glycolysis

m01688c m01680c HMR 4570,
HMR 6623,
HMR 7851

NME family, TK1,
SLC25A19

Purine, Pyrimidine, Transp.
mitochondrial

m01306c m00669c HMR 3777 BCAT1 Valine, leucine, and isoleucine

m01694l m01679l HMR 8217 GLA Sphingolipid

m01913s m01910s HMR 4416 GLA, GLB1, RPL36A Galactose

m01734r m01896r HMR 7274 ALG3 N-glycan

m00826m m02189m HMR 3769
HMR 3770

IVD, ACADSB Valine, leucine, and isoleucine;
Glycine, serine and threonine

m02832r m01230r HMR 6650 RBP2, RBP1 Retinol

m01869g m01870g HMR 7329 MGAT4C N-glycan

m01690c m01939c HMR 4391 TPI1, TPI1P2 Glycolysis

m02579c 2579s HMR 5023 RHAG Transp. extracellular

m01673c m01755c HMR 4641 TK1 Nucleotide

m01673c m01680c HMR 6623 TK1 Pyrimidine

m02845c m02806c HMR 4052 PRPS2, PRPS1 Pentose phosphate path.

m02870c m02926c HMR 4077 SMS, SRM Arginine and proline

m01045c m01700c HMR 4644 TYMS Pyrimidine

m02122m m00053m HMR 3156 ACADSB β oxidation of even-chain FA
(mitochondrial)

m01637m m01642m HMR 6612,
HMR 6615,
HMR 7854

DTYMK, NME family,
SLC25A19

Pyrimidine, Transport mitochondrial

m01747m m01642m HMR 6612,
HMR 7848

DTYMK, SLC25A19 Pyrimidine, Transport mitochondrial

m02344c 2344s HMR 0190 CA family, NAE1, ABCA1,
AP1G1

Transport extracellular

m00809c m00968c HMR 1500 HSD17B7 Cholesterol biosynthesis 1 (Bloch
pathway)

m01939c m00247c HMR 4373 GAPDH, GAPDHS Glycolysis

m00267l m00266l HMR 7916 GGH Folate metabolism

m01427c m02730c HMR 0607 CDS2, CDS1 Glycerophospholipid

m01637m m01752m HMR 6612 DTYMK Pyrimidine

m02008l m01910l HMR 0832 GLB1 Glycosphingolipid

m03108r m03106r HMR 7278,
HMR 8248

ALG5, UGCG N-glycan, Sphingolipid

m02583c m00536c HMR 7676 NNMT Nicotinate and nicotinamide
metabolism

m02139l m01973l HMR 7573 GUSB Heparan sulfate degradation

m02870c m01116c HMR 4075 SRM Arginine and proline

m01972l m01430l HMR 0787 GBA, SAPCD1 Glycosphingolipid

m01990c m01992c HMR 5397 GBE1 Starch and sucrose

m02133c m02471c HMR 3917
HMR 4699

MTR, BHMT2, BHMT Cysteine, methionine; Glycine,
serine, threonine

m02658c m02812c HMR 4212 ODC1 Arginine and proline

m01868g m01869g HMR 7328 MGAT5 N-glycan metabolism

m00240c m02392c HMR 0031 PLIN family, FITM1,
BSCL2, CIDEA, FITM2

Pool reactions

m01965c m01965g HMR 7675 SLC2A1 Transp. Golgi

m01821s m01822s HMR 3991 CP, HSP3, FXN, FTH1,
FTMT, FTH1P5

Porphyrin

m01307c m02335c HMR 5131 AARS1, AARS2 Aminoacyl-tRNA biosynthesis

m00351c m00349c HMR 8710 RDH5 Retinol

m00554c m00555c HMR 6587 PIK3C3 Inositol phosphate

m02026c m02366c HMR 1081 LTC4S Leukotriene

m02409p m02348p HMR 3033
HMR 3034

SLC25A20, CROT,
SLC25A29

Carnitine shuttle (peroxisomal)
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Table 7. Selected features using ENTR for feature sorting on OI data.

Mode on SetU On Set1

TEXTURE GLRLM ET T1Gd SRE SPATIAL Cere

TEXTURE GLRLM ET T2 SRE TEXTURE GLSZM NET T1Gd LZHGE

TEXTURE GLSZM NET T1Gd LZHGE TEXTURE GLCM ET T2 Energy

TEXTURE GLRLM ET FLAIR SRE TEXTURE GLCM ET T1Gd Energy

TEXTURE NGTDM ET T1Gd Coarseness TEXTURE GLRLM ET T2 SRE

TEXTURE GLSZM ET T1Gd ZSV TEXTURE GLSZM ET FLAIR GLV

TEXTURE GLSZM ET FLAIR GLV TEXTURE GLRLM ET T1Gd SRE

TEXTURE GLRLM ET T2 RP TEXTURE GLOBAL ET T1Gd Kurtosis

TEXTURE GLSZM ET T2 ZSV TEXTURE GLRLM ET FLAIR SRE

TEXTURE GLRLM ET T1 SRE TEXTURE GLSZM ET T2 GLV

TEXTURE GLSZM ET T1 ZSV TEXTURE GLSZM ET T1Gd ZSV

TEXTURE GLSZM ET T2 GLV TEXTURE GLSZM ET T1 GLV

m02579c 2579s TEXTURE GLRLM ET T2 RP

TEXTURE GLRLM ET T1Gd RP TEXTURE GLSZM ET T1 ZSV

TEXTURE NGTDM ET T1 Coarseness TEXTURE NGTDM ET T1Gd Coarseness

TEXTURE GLSZM ET T1 GLV TEXTURE GLRLM ET T1Gd RP

TEXTURE GLCM ET T1Gd Energy TEXTURE GLCM ET FLAIR Energy

TEXTURE GLCM ET T2 Energy TEXTURE GLSZM ET T1Gd GLV

TEXTURE NGTDM ET T2 Coarseness TEXTURE GLRLM ET T1 SRE

TEXTURE GLRLM ET FLAIR RP TEXTURE GLSZM NET T1 LZHGE

TEXTURE GLSZM NET T2 LZE TEXTURE GLSZM NET T2 LZLGE

TEXTURE GLSZM ET T1Gd GLV TEXTURE NGTDM ET T2 Coarseness

TEXTURE GLSZM NET T2 LZLGE TEXTURE GLRLM ET FLAIR RP

TEXTURE GLCM ET FLAIR Energy TEXTURE NGTDM ET T1 Coarseness

TEXTURE GLOBAL ET T1Gd Kurtosis m02579c 2579s

TEXTURE GLCM ET T2 Entropy

TEXTURE GLRLM ET T2 RLN

TEXTURE GLSZM ET FLAIR ZSV

TEXTURE GLRLM ET T1Gd RLN

SPATIAL Cere

Ensemble classifier (Fig. 5-(b), right). Also NCA with the Fitclinear classifier
leads to high performance for OI data (Fig. 5-(c), center).

As in the case of the whole SetU, no substantial difference can be perceived
when varying the optimization criterion. This can be observed in Fig. 6, reporting
performance results using RFE feature sorting and the kNN classifier.

Ensemble is the classifier model leading to the best performance in the case of
I features (left column of Fig. 7), whichever sorted, while Fitclinear leads to the
best performance for O features (center column of Fig. 7). In the case of OI data
(right column of Fig. 7), each classifier leads to the highest performance with
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different feature sorting methods. The overall highest performance is achieved
with RFE sorting on OI data using the Ensemble classifier (right plot of Fig.
7-(b)). The best test performance on Set2 for each type of feature is reported in
Table 5. This is achieved using RFE for feature sorting and Ensemble (for I and
OI features) or Fitclinear (for O features) classifiers.

Table 8. Selected features using NCA for feature sorting on OI data.

Mode on SetU On Set1

m00247c m00569c m00247c m00569c

m01688c m01680c m01688c m01680c

VOLUME ET over TC m01306c m00669c

VOLUME NET over TC VOLUME ET OVER WT

m01694l m01679l m01694l m01679l

m01913s m01910s m01734r m01896r

m00826m m02189m m01913s m01910s

m02832r m01230r m01869g m01870g

m01690c m01939c m00826m m02189m

m02579c 2579s m01673c m01755c

VOLUME ET OVER WT m01673c m01680c

m02845c m02806c m02870c m02926c

m01734r m01896r m01045c m01700c

VOLUME ET OVER BRAIN m02122m m00053m

m01637m m01642m m02832r m01230r

m01747m m01642m TEXTURE GLCM ET T2 Variance

m02344c 2344s m00809c m00968c

m01306c m00669c m01690c m01939c

m01869g m01870g m01747m m01642m

m01939c m00247c VOLUME NET over TC

VOLUME ET VOLUME ET over TC

m00267l m00266l m01427c m02730c

m01673c m01680c m02845c m02806c

m01673c m01755c m01637m m01752m

m02008l m01910l m03108r m03106r

m02583c m00536c TEXTURE GLRLM ET T2 LRHGE

m02870c m02926c TEXTURE GLCM ET T2 AutoCorrelation

VOLUME ET OVER NET m02139l m01973l

TEXTURE NGTDM ET T2 Busyness m02870c m01116c

m03108r m03106r m01939c m00247c

Comparing performance results on Set2 with average results obtained on
SetU (Sect. 3.3), we conclude that 1) the performance obtained using I features
alone is always lower than that achieved using O and OI features; 2) for I features,
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ENTR on average, but RFE in Set2, are the feature sorting methods of choice,
regardless of the adopted classifier; 3) for O features, best results are obtained
using ENTR on average, but RFE in Set2, except if used in conjunction with
the Ensemble classifier (where ENTR and NCA provide better sorted features);
4) for OI features, RFE appears as the feature sorting method to choose, both
on average and in Set2. In Set2, also NCA leads to effective sorted features when
coupled with kNN and Fitclinear classifiers; 5) no substantial difference can be
found between results obtained by the two optimization criteria for CV-based
selection of the optimal number of sorted features, and this holds true regardless
the feature sorting methods and classifier methods.

3.6 Analysis of the Selected Features

Table 7 reports the names of the features selected using the ENTR feature sort-
ing method on OI data. Specifically, the left column reports the names of the
thirty OI features most frequently selected in the training set of each of the 100
iterations of the CEF evaluation procedure on SetU. The right column reports
the names of the NoF=25 OI features selected when training the classification
model on the Set1 dataset (with NoF automatically computed by CV). Most of
the compared features (96% of them) appear in both the columns. All the fea-
tures, except one, belong to the imaging data and mainly deal with MRI image
texture, as can be deduced by their names provided by the authors [5,6]. Only
one of the selected features (m02579c 2579s, named according to the acronyms
of the involved metabolites) belongs to the omics data. The integration of omics
data into a metabolic model scaffold allowed us to build sample-specific networks
from which to extract relevant biological information. The metabolites connec-
tion weighted by enzymes expression values, through the gene-protein-reaction
relationship (GPR) annotations, represents the structure of the networks, as well
as the features extracted by the different methods applied in this work. From the
metabolites couple, various information can be recovered and exploited to furnish
novel insights about candidate biomarkers and therapeutic targets. Indeed, the
metabolic annotations can concern the compounds, the whole reaction with its
related subsystem, and finally, the enzymes involved in catalyzing the reaction
itself. For each extracted feature, the above-mentioned annotations are reported
in Table 6.

In [32], we analyzed the first three most recurrent features obtained from
omics and omics imaging over 50 iterations of the evaluation procedure (namely,
m00247c m00569c, m02579c 2579s, and m01972l m01430l). They were exactly
the same, confirming their strong discriminative power. The only omics feature
selected in this case is one of the three, and its biological relevance associated
with cellular growth, death, apoptosis has already been discussed in [32].

Analogously, Table 8 reports the names of the features selected using the
NCA feature sorting method on OI data. Many of the compared features (66.67%
of them) appear in both the columns. Here, only seven (left column) or six
(right column) imaging features have been selected, related to imaging volumes
and texture. Concerning omics features, in total, 17 metabolite couples are the
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same in both columns, out of 23 for the right one and out of 24 for the left
one. The enzymes and reactions related to these common features are mostly
involved in Glycolysis/Gluconeogenesis, Nucleotide, Branched-chain amino acid,
and Sphingolipid metabolism. All these biological processes are known to be
involved in cancer cell survival and invasion. Glycolysis, nucleotide, and amino
acids metabolism are key factors for the higher energetic demand of cells aimed
at incessantly proliferating. It is worth to cite PGAM1, the brain isoform of
the phosphoglyceric acid mutase, which catalyzes the reaction 1,3-bisphospho-
D-glycerate → 2,3-bisphospho-D-glycerate (m00247c m00569c), since its abun-
dance has been correlated to aggressiveness and poor prognosis of tumors [45].
Sphingolipids are highly abundant in the brain, as they are part of the myelin
sheaths of nerve axons and are largely involved in cellular signaling triggered by
external stimuli. Their metabolism represents, indeed, a novel resource for the
treatment of GBM, as well as neurodegenerative disorders [41,46].

For the case of RFE feature sorting on OI data, Table 9 reports the names of
the selected features. Many of the compared features (61.11% of them) appear in
both the columns. Only three (left column) or four (right column) imaging fea-
tures have been selected, related to imaging volumes, texture, histograms, and
spatial properties. Intersecting the omics features of the left columns in Table 8
and Table 9, thirteen of them are commons, and again processes like Glycolysis,
Amminoacids, and Nucleotides metabolism are enriched. The first metabolite
couple (m00247c m00569c), common to both the columns, is the same found
using NCA feature sorting (see Table 8). The unique features extracted by the
RFE sorting are also worth to be mentioned. In particular, iron regulation of
the porphyrin metabolism, here charged by the reactions involving the metabo-
lites couple m01821s m01822s and the enzymes CP, HSP3, FXN, FTH1, FTMT,
FTH1P5, is increasingly being associated with high tumor grade and poor sur-
vival in GBM [25,40]. The Leukotriene metabolism, here represented by the
connection between Glutathione and Leukotriene C4 (m02026c m02366c) from
the reaction HMR 1081 (GSH[c] + leukotriene A4[c] → leukotriene C4[c]), has
a role in the progression of several types of cancers as an inflammatory path-
way and the expression of its products and related proteins is upregulated in
glioma cells [38]. Cancer cells, moreover, exploit the fine carnitine system as a
key resource for the metabolic plasticity, through the involvement of its carriers,
such as SLC25A20, SLC25A29 and CROT, here catalyzing the reactions involv-
ing the link m02409p m02348p [34]. In both NCA and RFE selection, features
concerning the retinol metabolism are present. Gliomas show an imbalance in
retinoid receptor expression that increases the endogenous production of retinoic
acid (RA) in glia. Different types of alterations regarding the RA synthesis have
been found in glioblastoma and, as novel insights from integrative approaches,
may contribute to reconsider current RA treatment strategies [8]. Furthermore,
the couple m02579c 2579s (found using ENTR feature sorting, see Table 7) is
also here selected in both the columns.
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Table 9. Selected features using RFE for feature sorting on OI data.

Mode on SetU On Set1

m00247c m00569c m00247c m00569c

m02579c 2579s m01673c m01755c

m01972l m01430l m02344c 2344s

m02344c 2344s VOLUME ET OVER BRAIN

m01688c m01680c m02026c m02366c

m01690c m01939c m02870c m02926c

m01990c m01992c m01972l m01430l

m02133c m02471c m02658c m02812c

VOLUME ET OVER WT m01990c m01992c

m02658c m02812c VOLUME ET

m01673c m01755c m02870c m01116c

m01868g m01869g TEXTURE GLSZM NET T2 SZLGE

m02845c m02806c m02579c 2579s

m01913s m01910s m01673c m01680c

m00809c m00968c m00240c m02392c

SPATIAL Insula m01673m m01680m

m00240c m02392c m02409p m02348p

m01965c m01965g HISTO ED T2 Bin3

m01939c m00247c

m00267l m00266l

VOLUME ET

m00826m m02189m

m01821s m01822s

VOLUME ET OVER BRAIN

m01673c m01680c

m02832r m01230r

VOLUME ET OVER NET

m01307c m02335c

m00351c m00349c

m00554c m00555c

4 Discussion and Conclusion

We investigated how the adoption of different classifier models or feature selec-
tion algorithms and the integration of imaging and omics data affect the per-
formance results for the classification of glioma grades. Our analysis confirms
that the performance obtained using only I features is always lower than that



186 L. Maddalena et al.

achieved using O and OI features. Moreover, it highlights that feature sorting
methods should be chosen depending on the type of data (e.g., ENTR or RFE for
I features, ENTR, RFE, or NCA for O features, RFE or NCA for OI features).
This is not a limitation, as the choice can be performed automatically, based
on cross-validated results on training data. Both the optimization criteria for
CV-based selection of the optimal number of sorted features can be considered,
as they lead to similar performance results. Finally, Fitclinear and Ensemble
proved to be the preferred classifiers.

Performance results for a specific training/test setting allowed us to analyze
punctual performance results and the significance of the extracted features, also
from the biological point of view.

We are confident that making the software and the extracted data publicly
available, as we did, can lay the foundations for future comparisons.

Availability

Matlab scripts are made available through our webpages. Extracted omics fea-
tures for Set1 and Set2 are also made available. Imaging features for Set1 are
already publicly available, while Set2 is available on demand.
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1 Introduction

RNA-RNA interactions play an important role in both eukaryotic [17] and pro-
caryotic [14] gene regulation. In eukaryotes, RNA interference involves the bind-
ing of small RNAs from diverse sources to longer RNAs, usually leading to
degradation. Post-transcriptional gene silencing by microRNAs is just one of
the many variations on this theme. Both small interfering RNAs (siRNAs) and
long non-coding RNAs (lncRNAs) are also involved in the regulation of splicing
and the biogenesis of other RNAs, including microRNAs. RNA sponges, usually
lncRNAs, sequester specific miRNAs to revert their silencing effects. The bind-
ing of lncRNAs such as TINCR to an mRNA can also contribute to the control
of translation. In procaryotes, a large number of diverse and often lineage spe-
cific small RNAs (sRNAs) act as regulators of translation by binding to their
target mRNAs inducing structural changes. In all these cases the RNAs interact
by forming intermolecular base pairs. Such hetero-duplexes also form between
spliceosomal RNAs during the assembly of the spliceosome and are crucial for the
correct splicing. The maturation of ribosomal RNAs (rRNAs) and spliceosomal
RNAs (snRNAs) requires chemical modifications, most of which are introduced
by snoRNPs, which rely on the specific binding of small nucleolar RNAs (sno-
RNAs) with their rRNA or snRNA target.

An abundance of RNA-RNA interactions was recently reported by transcrip-
tome-wide experiments [16]. This was not entirely unexpected as much earlier
computations studies already found statistical evidence for extensive RNA-RNA
interaction networks [38]. It is likely, therefore, that complexes composed of more
than two RNAs may play important roles similar to the well-established protein
complexes. In addition, higher order complexes have already be considered exten-
sively in synthetic biology [8,21]. The prediction and analysis of multi-component
RNA complexes thus has become an important task in computational biology,
in particular in the context of strand displacement systems [3].

Many aspects of RNA structures, including their thermodynamic proper-
ties are well represented by their secondary structures, i.e., discrete base pairs.
These already capture the dominating stabilizing and destabilizing contribution:
the stacking of base pairs with in helical stem regions and the conformational
entropy loss of unpaired regions relative to unconstrained RNA chains. These
energetic contributions are compiled in the “loop-based” standard energy model
[39]. Most computational studies of RNA structure exclude pseudoknots [31].
That is, secondary structures are not allowed to contain two base (i, j) and (k, l)
such that i < k < j < l. This condition makes it possible to obtain efficient
dynamic programming algorithms. Both the ground state structures [44] and
the partition function of the equilibrium ensemble of secondary structures [28]
can be computed in cubic time and quadratic space.

The formation of base pairs in a complex of two or more RNA molecules
follows the same physical principles as the folding of a single, contiguous RNA
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chain. The same energy model (with a few simple extensions briefly discussed
below) therefore applies to RNA-RNA interactions. However, complexes of mul-
tiple RNA strands fall into a class of structures that includes pseudoknot-like
structures and thus is difficult to handle computationally. The pairwise case is
captured well by the RIP model of [1]. Assuming that so-called tangle-structures
do not occur, the RIP model is still amenable to dynamic programming solu-
tions, although at the cost of O(n6) time and O(n4) space, for both ground-state
structures and equilibrium base-pairing probabilities [9,20]. An extension to the
multi-strand case was introduced in [29].

The full RIP model is computationally too demanding for most applica-
tions, hence approximations and simplifications are usually employed. Exam-
ples include a greedy, helix-based approach that allows essentially unrestricted
matchings [6] and formalization as a constrained maximum weight clique prob-
lem [23]. An alternative is to assume a single, dominating interacting region,
which is often – but not always – a plausible approximation, in particular if one
of the partners is small as in the case miRNAs. In this scenario the energy of
the interaction can decomposed into unfolding energies for the interaction sites
on each partner and the hybridization energy of the exposed interaction regions
[4,7,30]. A similar approach can be taken when interactions need to conform to
specific patterns, is in the case of H/ACA snoRNAs binding to their targets [37].

In this contribution we consider a simplified model that excludes all pseudo-
knot-like structures. Conceputally, this amounts to computing a conventional,
pseudoknot-free secondary on the concatenation of the interacting RNA strands,
although with a suitably modified energy model (see below). Although some
important types of interactions, in particular kissing-hairpins [13], cannot be
modeled in this way, it is still a useful approximation in many situations. For
N = 2 strands, this model has been analyzed in detail in [2,5,10]. For N > 2,
the ground-state folding problem still remains essentially unchanged. The only
necessary adaptation is a modification of the energy model to assign different
energy contributions to substructures (“loops”) that contain one or more nicks,
as we shall the call the breakpoints between strands. Kinetic simulations of multi-
strand cofolding have been studied in [32]. For N = 2, the order of the strands
does not matter. In fact, it is easy to see that every crossing-free set of base pairs
on AB translates to a crossing-free set of pairs on the alternative order BA.
This is no longer true for N > 2, however. We now have to consider the different
permutations of the RNA strands. For connected structures, two permutations of
the RNA strands either form the same set of crossing-free secondary structures (if
one is a cyclic permutations of the other), or their sets of crossing-free secondary
structures are disjoint [12]. As a consequence, it is necessary to compute the
structures for all permutations (with a fixed first strand to exclude the equivalent
cyclic permutations). Since the ensembles of (connected) structures are disjoint,
one can perform these computations independently. An implementation for the
general case is available in NUPACK [43].

The binding energies between strands in heteropolymeric structures are
intrinsically concentration dependent because the number of particles changes
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when polymeric structures are formed [10]. Partition function computations
therefore need to handle complexes separately that are composed of different
combinations of strands. RNAcofold [5] initially ignores this issue and first com-
putes a partition function ZAB that includes both connected structures (in which
the strands A and B are linked by at least one base pair) and conformation is
which the monomers A and B form independent structures. The correct parti-
tion function is then obtained as ZAB − ZAZB . This approach seems to become
tedious for higher-order interactions. NUPACK [12] instead considers only con-
nected structures. It turns out that this leads only to a small modification of
McCaskill’s algorithm. While this avoids the complications arising from discon-
nected structures, it leads to more complicated outside recursions for computa-
tions of base pairing probabilities even though this step still follows the idea of
McCaskill’s outside recursions [28].

The key issue is that the computation of the probability of the base pair
(k, l) needs to consider the case that (k, l) resides in a loop L with closing pair
(i, j) that harbors exactly one nick. If the loop L were to contain two or more
nicks, the structure would be disconnected, and hence excluded. Controlling the
number nicks in the loop is conceptually simple. In practice, however, it is not
trivial to handle without additional effort because all partition function variables
computed in the inside recursions, outlined in Sect. 2, only cover connected sub-
structures, and hence the cases with a nick in the exterior loop need to be han-
dled separately. In Sect. 3 we show how this can be achieved efficiently. Section 5
briefly summarizes details and features of the implementation of RNAmultifold
in the ViennaRNA package. Benchmarking data are provided in Sect. 6. Since
RNA complex formation is inherently concentration dependent, Sect. 7 briefly
describes how this issue is handled in RNAmultifold. Section 8 showcases the
interactions between spliceosomal RNAs. Finally in Sect. 9 we address some
questions and extensions that have been left open for future research and briefly
discuss the limits of the approach taken in this contribution.

2 Inside Recursion

Our goal is to compute the partition function of an ensemble of connected,
crossing-free secondary structures of N ≥ 1 RNA strands with a total length
n. We assume that the strands are given in a particular order π. Nucleotide
positions are order consecutively from 1 to n is this order of strands. For fixed
π, a structure is crossing-free if, given a base pair (i, j), another base pair with
i < k < j is allowed only if i < l < j. The set of crossing free structures remain
the same under circular permutations and are disjoint for any other permutation
of the strands [12]. The probability pk,l that (k, l) forms a base pair is therefore
a weighted sum of of the base pairing probabilities pk,l[π] of all permutations π
that fix the first strand. The contribution of each permutation π is proportional
to its partition function Q[π] [12], i.e., we have

pk,l =
∑

π

w(π)pk,l[π] with w(π) = Q[π]/Q , (1)
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where Q :=
∑

π Q[π] is the total partition function of the complex. From an
algorithmic point of view it therefore suffices to solve the folding problem for
a fixed permutation π. We may therefore assume that the strands are indexed
consecutively as s = 1, . . . , N .

Complexes that contain the same RNA strand more than once imply symme-
tries that complicate the problem and need to considered at different levels [12].
Copies of the same RNA sequence are not distinguishable. In the general case,
therefore, we have to interpret π not a permutation of the integers 1, 2, . . . , N ,
but as the permutations of the letters in a word (with the first letter fixed), where
letters correspond to strands accounting for the composition of the complex. We
write Π(κ) for the set of distinguishable non-cyclic permutations of the strands.
For instance, we Π(′AAB′) = {AAB} and Π(′ABAB′) = {AABB,ABAB}.

A related issue arises from secondary structures with r-fold rotational sym-
metry. Again, these are indistinguishable if they are formed over sequences with
the same rotational symmetry. In the dynamic programming algorithm they can-
not be separated from the non-symmetric structures. Algorithmically, therefore,
they are over-counted by a factor of r, corresponding to an energy contribution of
−RT ln r. The same symmetry also reduces the distinguishable conformations by
a factor of r, thus incurring an entropic penalty of +RT ln r, exactly compensat-
ing the algorithmic overcounting [12]. As a consequence, the issue of rotational
symmetry can be ignored in partition function calculations. We note that this
not true for energy minimization. Since rotationally symmetric structures are
destablized by the small – but not negligible – free energy contribution RT ln r
that cannot be accounted for in the dynamic programming algorithm, the predic-
tion of a symmetric ground state may be incorrect and the correct groundstate
is the most stable non-symmetric structure, see [19] for details. Symmetries of
the secondary structures also map nicks onto each other, r must be a divisor
of N and in particular no symmetries are possible for N = 1, where the end of
molecule is the only nick.

The standard energy model for RNA secondary structures [39] distinguishes
three types of “loops”: Hairpin loops contain no further interior base pairs. Inte-
rior loops, which contain stacked base pairs as the special case without inter-
vening unpaired bases, contain exactly one interior base pair. Multi-branch loops
(multi-loops for short) contain two more consecutive base pairs in their interior.
Energy contributions for hairpin and interior loops are tabulated as function of
closing (and interior) base pair and the sequence(s) of the unpaired stretches.
In contrast, a linear approximation is used for multiloops to keep the number of
parameters manageable and to ensure that the dynamic programming recursions
can evaluated in cubic time and quadratic space.

McCaskill’s original approach [28] to computing partition functions and the
generalization to multi-strand problems considers all structures. Designed for
single, contiguous sequences, of course all these structures are trivially connected.
It is thus legitimate to re-interpret the variables appearing in McCaskill’s algo-
rithms as partition functions over connected structures only. As noted in [12]
this implies that for N > 1 care has to be taken to enforce connectedness.
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Qi+1, Q +1,j−1ω(s) ω(s)

(s)ω (s+1)αi j

Fig. 1. Nicked loop case in the inside recursion. The RNA sequences are shown
as horizontal line, base pairs as arcs. Here, the base pair (i, j) connects two connected
components separated by a single nick between ω(s) and α(s + 1) = ω(s) + 1. Nicked
loops are exterior. The connected secondary structures on the intervals [i+1, ω(s)] and
[α(s + 1), j − 1] therefore contribute independently. As limiting cases, the nick may be
adjacent to i or j, in which case one of the two intervals [i + 1, ω(s)] = [i + 1, i] or
[α(s + 1), j − 1] = [j, j − 1] is empty. By definition it then contributes as factor of 1 to
the partition function. Figure from [26].

The notation in the contribution follows previous presentations of the
ViennaRNA package [18,25,27]. We write Qij for the partition function over all
crossing-free connected structures on the interval [i, j]. The partition function
over all crossing-free connected structures on the interval [i, j] that are enclosed
by the base-pair (i, j) are denoted by QB

ij . The additive approximation of mul-
tiloop energies implies that the partition function of a multiloop can be decom-
posed into multiplicative contributions, one for the its closing base pairs (i, j),
a term QM

i+1,u describing the left part of loop containing at least one stem, and
a term Q1

u+1,j−1 covering the rightmost component containing exactly one stem
whose outer-most base pair starts a position u+1. For a detailed description we
refer to [28].

In order to handle connectedness we first note that if a structure on [i, j] to
which the closing pair (i, j) is added is already connected, then the recursions
are the same as in McCaskill’s original algorithm. The difference for N > 1
thus comes from the situations in which (i, j) connects two distinct components.
Since the variables Qij , QB

ij , QM
i+1,u, and Q1

u+1,j−1 all refer to connected struc-
tures only, the latter case has to be included as additional alternative in the
decomposition of QB

ij [12]. It pertains to “loops” enclosed by (i, j) in which
exactly one nick is “exposed”, i.e., not covered by another base pair. From an
energetic point of view, such a loop is external, i.e., it does not incur the usual
destabilizing entropic contributions. The situation is outlined in Fig. 1.

We will need a bit of notation. Denote by ω(s) the 3’-most nucleotide position
of strand s. The contribution of “nicked loops” is then given by

QN
ij =

∑

s:i≤ω(s)≤j

e−εij/RT Qi+1,ω(s)Qω(s)+1,j−1 (2)

with the additional constraint that either both i and i + 1 as well as j − 1 and j
must be on the same strand, or the nick is adjacent to the base (i, j), in which
case either i = ω(s) and j−1 and j are on a common strand, or j−1 = ω(s) and
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i and i + 1 are on a common strand. The energy contribution εij of the nicked
loop comprises only the dangling end terms, see [39] for details.

3 Outside Recursion

In order to compute the base pairing probability pk,l[π] we need to evaluate the
ensemble of secondary structures that contain the base pair (k, l). All such struc-
tures are combinations of a secondary structure on [k, l] and a partial secondary
structure outside on [1, k] ∪· [l, n]. The non-crossing condition ensures that the
inside and outside structures can be combined freely, with additive energies and
thus multiplicative partition functions [28]. In fact, the “outside ensembles” can
be constructed as complements of “inside ensembles” in a systematic manner
[35]. A secondary structure containing (k, l) is connected if and only if both the
substructures inside and outside of (k, l) are connected, where connectedness of
the outside partial structure means that it is connected once the pair (k, l) is
added. Denote by Q̂k,l[π] the partition function over all connected partial sec-
ondary structures outside of the base pair (k, l). The partition function over all
connected structures that contain the pair (k, l) is then simply Q̂k,l[π]QB

k,l[π] and
we obtain the base pairing probabilities for a given permutation of the strands
as

pk,l[π] = Q̂k,l[π]QB
k,l[π]/Q[π] (3)

where Q[π] = Q1,n[π] is the partition function over all connected secondary
structures. The base pairing probabilities for a N -ary complex of interaction
RNAs [12] therefore can be computed as

pk,l =
∑

π

w(π)pk,l[π] =
1
Q

∑

π

Q̂k,l[π]QB
k,l[π] . (4)

The decomposition in Eq. (4) shows that we can compute the pk,l[π] indepen-
dently for each permutation π. We therefore drop the reference to π in the
following.

The ensemble of outside structures described by Q̂k,l consists of three mutu-
ally exclusive subsets of structures [28]: (1) structures in which (k, l) is not
enclosed by any other base pair with partition function Q̄k,l and (2) structures
in which (k, l) is enclosed by another base pairs (i, j). The latter can be subdi-
vided further depending on whether the loop enclosed by (i, j) contains (2a) no
nick or (2b) exactly one nick. The corresponding partition functions are denoted
by Q̆k,l and Q̈k,l, respectively. Recall that two or more nicks in a loop imply
that the secondary structure is not connected. The recursions for Q̄k,l and Q̆k,l

are identical to the ones developed in [28]. Since these recursions have been dis-
cussed repeatedly in the literature, we do not repeat the details here. It is worth
noting, however, that a näıve implementation of the recursions for Q̄k,l and Q̆k,l

requires O(n4) time. It is not difficult, however, to reduce the time complexity
to cubic with the help of auxiliary arrays of size O(n) [25,28].
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The focus of this contribution is the additional multi-strand case, i.e., the
partition function Q̈k,l. In order to avoid boundary cases we allow also terms of
Qi,i−1 = 1 denoting denoting empty intervals [25]. Note, however QB

i,j = 0 unless
i < j, and the terms also vanish if |j − i| < 3 unless there is a nick between i and
j since a hairpin loop contains a minimum of three unpaired bases. Thus the
minimum span of a base pair within a single RNA strand is |j − i| = 4. There is
no distance constraint across nicks, however. We write α(s) and ω(s) to denote
its 5’-most and 3’-most nucleotide position for strands s. Recall that strands
are numbered consecutively w.r.t. the given order π. Thus α(s + 1) = ω(s) + 1.
Furthermore, we write σ(i) = s if and only if α(s) ≤ i ≤ ω(s), i.e., if position
i occurs in strand s. Finally, we will need the same-strand indicator function
defined by ξi = 1 if σ(i) = σ(i + 1) and ξi = 0 otherwise, as well as its
complement ξ̄i := 1 − ξi.

To compute Q̈k,l we have to consider the relative position of focal base pair
(k, l), the enclosing base pair (i, j) and the nick. There are two mutually exclusive
cases: (1) the nick is located 3’ (right) of (k, l), i.e., between l and j and (2) the
nick is located 5’ (left) of (k, l), i.e., between i and k. In either case the secondary
structure enclosed by [i, j] is divided into two independent parts by the nick, i.e.,
their partition functions can be computed separately, and we obtain

Q̈k,l = Q̈3′
k,l + Q̈5′

k,l with (5)

Q̈3′
k,l =

∑

1≤i<k
l<j≤n

Q̂i,jQi+1,k−1

∑

s|l<α(s)≤j

Ql+1,α(s)−1Qα(s),j−1 (6)

Q̈5′
k,l =

∑

1≤i<k
l<j≤n

Q̂i,jQl+1,j−1

∑

s|i≤ω(s)<k

Qi+1,ω(s)Qω(s)+1,k−1 (7)

The evaluation of a single entry Q̈k,l according to Eqs. (6) or (7) requires O(n2N)
operations for N strands with a total length n. The overall running time of
O(n4N) by far exceeds the cubic time complexity of all other parts of the par-
tition function algorithm. The additional factor nN is a serious practical bur-
den. In the following section we show that time complexity can be reduced by
rearranging these recursions in such a way that the recomputation of certain
intermediate results can be avoided.

4 Computing Q̈k,l in Cubic Time

The key observation is that fixing the position l and computing the values of
Q̈k,l consecutively for all k, we can pre-compute and store contributions that
depend only on l and are required for all k. Again we have to consider nicks to
the left and to right of (k, l) separately. Fixing the second index k in Q̈5′

k,l, Eq.
(7), only affects the number of choices for i and s. Moreover, for each strand
s the choices of i are also fixed because i of the fixed upper bound i ≤ ω(s).
This suggests to pre-compute parts of the outside contribution for every s with
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|
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Fig. 2. Auxiliary arrays for computing base pair probabilities for the nicked-
loop case. On top the two arrays Q̈5′

k,l and Q̈3′
k,l are sketched, showing the focal base

pair (k, l), the enclosing pair (i, j), the position of the nick, and the partition function

terms contributing to the loop. The two auxiliary arrays Y 5′
s,l and Y 3′′

s,k (3rd and 4th
line) collect contributions that are independent of the choice of i and j, thus reducing
the effort to a sum over the strands s. Parts of these contributions are still re-computed
repeatedly when iterating over the l and k. Y 5′′

s,j and Y 3′
s,i (5th and 6th line) store these

parts for reuse. Figure adapted from [26].

ω(s) < l and all possible choices of i and j. More precisely, we define, for each l,
the auxiliary array

Y 5′
s = ξl

∑

j>l

ξj−1Ql+1,j−1

(
Q̂ω(s),j +

∑

i<ω(s)

ξi · Q̂i,j · Qi+1,ω(s)

)
. (8)

A graphical representation of the contributions captured by Y 5′
s is provided in

Fig. 2. The auxiliary array (which can be overwritten as the outer loop progresses
from value of l to the next, has size O(N) and each entry is computed in O(n2)
according to Eq. (8), resulting in a total effort of O(n2N). Equation (7) can now
be rewritten as

Q̈5′
k,l = ξ̄k−1Y

5′
σ(k−1) + ξk−1

∑

s|ω(s)<k

Qω(s)+1,k−1Y
5′
s . (9)
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Each of the O(n2) entries now requires O(nN) operations. Although we have
achieved a reduction of the effort by a factor of n, the effort still exceeds the out
goal of cubic time complexity.

A further improvement can be obtained by observing that parts of the sums
required to compute Y 5′

s for a given l can be re-used when Y 5′
s is computed

for l − 1 because consecutive entries differ only by a single extra value of j. To
make use of this observation we need to replace Y 5′

s by Y 5′
s,l, i.e., an array of size

O(nN) that retains the Y 5′
s as l changes, together with an additional auxiliary

array of the same size:

Y 5′
s,l = ξl

(
Y 5′′

s,l+1 +
∑

j>l+1

Ql+1,j−1 · Y 5′′
s,j

)
(10)

Y 5′′
s,j = ξj−1

(
Q̂ω(s),j +

∑

i<ω(s)

ξiQ̂i,j · Qi+1,ω(s)

)
. (11)

Since Y 5′′
s,j is independent of l and k we can now re-use the stored contributions

for every pair (k, l). Proper care has to be taken to properly interleave the com-
putations of Y 5′′

s,j with the part of the computation that loops over variable l

because Q̂i,j only become available for l < j. This does not affect the effort
required to pre-fill the array Y 5′′

s,j , which is still O(n2N). Hence, the time com-
plexity for the evaluation of one entry of Q̈5′

k,l reduces to O(n). The overall time
complexity to compute (9) thus becomes O(n2N) time and O(nN) space.

Let us now turn the second case, a nick located 3′ of base pair (k, l). Concep-
tually, we can use the same re-arrangement and pre-computation as for 5’ nicks;
the details differ, however. We start by observing that fixing the value of the
index k affects the possible choices of i only. The contributions to the left of the
nick, however, do not contain a re-usable factor independent of k because the
(i) recursion the involves the full contribution of Qi+1,k−1 and (ii) the strand-
changes we need to consider only depend on the current value of l. Instead, there
are contributions on the right hand side that can be pre-computed. Define the
auxiliary array

Y 3′
s,i = ξi

(
Q̂i,α(s) +

∑

j>α(s)

ξj−1Q̂i,jQα(s),j−1

)
(12)

of size O(nN). We observe that Y 3′
s,i is independent of both k and l and thus

they can be pre-computed and then re-used for any pair (k, l). Substituting Eq.
(12) into Eq. (6) yields

Q̈3′
k,l = ξk−1

∑

i<k

ξiQi+1,k−1

(
ξ̄lY

3′
σ(l+1),i + ξl

∑

s|α(s)>l

Ql+1,α(s)−1Y
3′
s,i

)
. (13)
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The O(n2) values of Q̈3′
k,l therefore can be evaluated in total time O(n3N) the

expense of storing the nN auxiliary values Y 3′
s,i. This does not meet our goal of

cubic time complexity, however. A further reduction can be achieved by observ-
ing that the order of summation in Eq. (13) can be changed to make the inner
sum independent of l. This suggests to introduce the auxiliary array

Y 3′′
s,k = ξk−1

∑

i<k

ξiQi+1,k−1Y
3′
s,i (14)

of size O(nN). Figure 2 gives a graphical representation of the class of structures
contributing to Y 3′′

s,k . The array can be computed from all positions k all strands
s in O(n2N) time. Substituting the auxiliary terms Eq. (14) into Eq. (6) yields
a recursion similar to Eq. (9):

Q̈3′
k,l = ξ̄lY

3′′
σ(l+1),k + ξl

∑

s|α(s)>l+1

Ql+1,α(s)−1Y
3′′
s,k . (15)

Assuming that the O(nN) values of Y 3′′
s,k are stored, it can be evaluated in

O(n2N) total time. As for the 5’ nicks, proper interleaving into the recursion is
necessary because Y 3′

s,i depends on Q̂i,j . To this end, we fill Y 3′
σ(l+1),i for all i if

ξl = 1 and subsequently re-compute Y 3′′
s,k .

In order to achieve cubic running time we have introduced four auxiliary
arrays of size O(nN), Y 5′

s,j , Y 5′′
s,j , Y 3′

s,i, and Y 3′′
s,i , each of which can be filled in total

time O(n2N). The matrix Q̈3′
k,l of course does not need to be stored. Instead,

the value of Q̈3′
k,l can immediately be added to the other contributions of Q̂k,l

and only the latter, or base pairing probabilities pk,l, need to be committed
to memory. The extra effort for the outside recursion thus matches the extra
effort for the inside recursion of the multi-strand folding problem. The number
of strands will be much smaller than the total sequence length, N � n, in
any reasonable application scenario. The additional space and time resources
required for the multi-strand version of McCaskill’s partition function algorithms
therefore are asymptotically negligible compared to the single-strand case.

5 Implementation

RNAmultifold is part of the ViennaRNA package [18,25], release 2.5.0a2. It
provides access to both minimum energy and partition function calculations
for arbitrary numbers of strands N . The user can choose to either evaluate a
single permutation of the given strands, all permutations corresponding to a
given connected complex, or all connected complexes with up to N constituents.
Figure 3 shows the base pairing probabilities of a toy example.
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Fig. 3. Toy example with N = 4 strands (orange, cyan green and yellow) each of length
20, i.e., total length n = 80. The dot plot representation (left) shows the base pairing
matrix for a fixed permutation π of the four strands in its upper right half. The lower
left half shows the minimum free energy (MFE) structure for the same permutation.
The area of each “dot” is proportional to pij [π]. Thick lines separate the four strand.
The corresponding MFE structure is shown to the right.

A well-known practical issue for the implementations of partition function
algorithms are overflow and underflow errors arising from the fact that par-
tition functions consist of exponential terms that quickly grow beyond the
range of floating point number as the system size n increases. The ViennaRNA
package addresses this problem by working with rescaled terms of the form
qij := Qij/ζj−i+1. The scaling constant ζ is an estimate for the position-wise
multiplicatice contribution to Q, i.e., n

√
Q = exp(−g/RT ), where g = G/n is an

estimate for the free energy of folding per nucleotide position [18]. This approach
is sufficient to keep qij and the corresponding restricted partition functions suffi-
ciently close to 1 to avoid overflows for sequence length at least up to 104, which
appears sufficient for practical applications. A very good estimate is to use the
scaled ground state energy g = E∗/n. The value of E∗ can be computed without
numerical problem since the minimum energy computation is implemented using
integer arithmetic [18].
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The ViennaRNA package provides a flexible framework to handle constraints.
It distinguishes soft constraints, which are implemented as additional pseudo-
energy contributions associated with an unpaired base, a base pairs, or an loop,
and hard constraints corresponding to forbidden or enforced base pairs [27]. A
useful observation in this context is that hard constraints that enforce base pairs
between strands can lead to forbidden permutations for N > 2: the observation
that connected structures are crossing-free in only a single non-cyclic permuta-
tion also pertains to constraints. Three or more strands that are connected by
hard constraints thus have feasible non-crossing structure only in a single per-
mutation. All other permutations are excluded already during the preprocessing
of the hard constraints. We note in passing that RNAmultifold also handles
intra-strand G-quadruplexes in the same way as in a single RNA molecule [24].
Both RNA and DNA parameters can be used as in other components of the
ViennaRNA package.

6 Benchmarking

We designed a benchmark data set aiming to minimize sequence-specific varia-
tions between instances with different numbers of strands. To this end we gener-
ated 10 random sequences for each length n and subdivided these into a different
number N of separate strands. From the theoretical considerations in the Sect.
4 we expect that both memory consumption and running time should becomes
independent of N for large values of the total sequence length n. Empirically, we
found that the number of strands has a significant influence only for very short
sequences with an average length of individual strands smaller than about 20 nt.

Figure 4 shows that RNAmultifold consistently outperforms NUPACK 3.2.2
[43]. For large sequences, the inside recursion of RNAmultifold is about 35×
and the outside recursion is about 50–65× faster. The memory requirements of
RNAmultifold are about 7× lower.

Both RNAfold and RNAcofold are contained in the ViennaRNA package and
use identical energy parameters. The results of RNAmultifold and RNAfold
(N = 1) as well as RNAcofold (N = 2) coincide within the expected numer-
ical inaccuracies. These programs do not show significant differences in memory
consumption. RNAfold is 10–15% faster than RNAmultifold. The outside recur-
sion of RNAmultifold, however, is about two times faster than the corresponding
part of RNAcofold. We do not show these small differences separately in Fig. 4.
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Fig. 4. Comparison of the performance measures for NUPACK (version 3.2.2) and
RNAmultifold for different values of the total sequence length n and number N of
strands. For each data point, 10 random instances were averaged. The theoretical
asymptotic complexities O(n3) for running time and O(n2) for memory consumption
are shown as thin gray lines. Figure adapted from [26].

7 Concentration Dependence

The formation of an RNA duplex is associated with an additional entropic con-
tribution ε0 for the initiation of helix formation. In the standard energy model,
this term is already subsumed in the loop energies [33,39] and therefore does not
appear for N = 1. In the case of RNA-RNA interactions, however, an initiation
term must be associated with each nicked loop. Since a connected structure with
N strands always has exactly N − 1 nicks, all connected structures in a complex
with given composition are receive a contribution of (N − 1)ε0, which cancels
in Eq. (1) and thus can be ignored in the context of a fixed interaction com-
plex. They do, however, play a role when complexes with a different number of
constituents are compared. The partition function of the ensemble of connected
structures of a complex κ composed of N (not necessarily distinct) RNA strands
including the initiation correction is

Zκ = e−(N−1)ε0/RT
∑

π∈Π(κ)

Q[π] (16)

The stability of RNA-RNA complex is inherently concentration dependent.
The easiest way to see this is to note that the association (and its reverse, the
dissociation) of a complex

A1A2...Ak + B1B2...Bl � A1A2...AkB1B2...Bl (17)
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changes the number of particles. The equilibrium constant for this reversible
reaction is K = ZA1A2...AkB1B2...Bl

/ZA1A2...Ak
ZB1B2...Bl

, see e.g. [5,10,12].
According to the law of mass action we can express the equilibrium constant
for formation of κ from its constituent strands A1, A2,. . . , AN as

Kκ =
Zκ

ZA1ZA2 . . . ZAN

=
[κ]

[A1] [A2] · · · [AN ]
, (18)

where [. . . ], as usual in the chemical literature, denotes the concentration of a
complex or individual strand.

We introduce the membership matrix A whose entries Aα,κ count the number
of strands of type α in complex κ. Assume that our systems contains the total
concentration cα of strand α. The concentration [α] of a strand α that is not
contained in a complex is thus

[α] = cα −
∑

κ

Aα,κ[κ] (19)

Since the system (17) of reversible reactions in particular can be endowed with
mass action kinetics, there is a unique equilibrium point [34]. Alternatively, this
can be proved starting from the partition function of the grand-canonical ensem-
ble [12]. In the same contribution it is shown that the equilibrium concentrations
can be computed by maximizing a function h [12, equ. (3.7)], which in our nota-
tion reads

h(�λ) =
∑

α

(λαcα − Zαeλα) −
∑

κ

Zκ exp

(
∑

α′
λα′Aα′,κ

)
(20)

Since the partition function for large molecules are in an “inconvenient” numer-
ical range, we use the transformation Lα := λα + ln Zα to express the objective
function in terms of the equilibrium constants and maximize:

h(�L) =
∑

α

(cαLα − eLα) −
∑

κ

Kκ exp

(
∑

α′
Lα′Aα′,κ

)
, (21)

where we have omitted the constant term −∑
α cα ln Zα since it does not affect

the maximum. The equilibrium concentrations can then be obtained from [12,
equ. (3.12)], which we can rewrite as

[α] = eLα [κ] = Kκ

∏

α

[α]Aα,κ (22)

Note that the second equation recovers the law of mass action, Eq. (18). It is not
difficult to obtain explicit expressions for the gradient and the Hessian of h (see
Appendix). As suggested in [12], we use the Trust Region Method implemented
as find min trust region() in dlib [22]. Our implementation of h(�L) and
its partial derivatives makes extensive use of the “log-sum-exp trick” to avoid
overflow and underflow problems.
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Writing c =
∑

α cα for the total concentration of RNA strands we can
also compute the concentration-dependent probability of observing a base-pair
between position i in strand α and position j in strand β by summing the [κ]pij/c
over all complexes κ (and strand α in case α = β). If α and β appear more than
once in a given complex, the base pairing probabilities need to be averaged over
different combinations of interacting copies of α and β within each given complex.

8 Spliceosomale RNAs: A Showcase Applications

The spliceosome is highly dynamic, complex machinery comprising a multitude
of proteins as well as the five spliceosomal snRNAs (U1, U2, U4, U5, U6). During
the splicing reaction, its composition and internal structure, which also involves
direct base pairing interactions between the snRNAs, is drastically rearranged [41].
Neglecting the mRNA target, the effect of RNA protein binding, and any chem-
ical modifications of the snRNAs, we predict the formation of (parts of) the pre-
catalytic spliceosome complex B, in particular its predecessor, the U4/U6.U5 tri-
snRNP. To that end, we consecutively increased the concentrations of the indi-
vidual snRNAs from an initial 0.05μM to 10μM in the order U6, U4, U5, and
U2. Figure 5 shows the equilibrium concentrations of the snRNA complexes. We
observe the formation of U4/U6 as soon as their constituents are available in suffi-
cient concentrations. Upon adding U5, the U4/U6 complex becomes less favorable,
instead the triplex U4/U6.U5 dominates the ensemble. Increasing the concentra-
tion of U2 afterwards, however, does not seem to affect the equilibrium concentra-
tion of U4/U6.U5 nor do we observe any appreciable increase in the concentration
of the U4/U6.U5 + U2 tetraplex. Instead, U2 tends to form homo-tetramers. This
discrepancy of the prediction with respect to the accepted model of splieceoso-
mal complex formation might be attributed to our simplified model that omits the
effect of chemical modifications of the snRNAs, and the impact of protein binding.

U6/U6

U2/U2/U2/U2

U5

Fig. 5. Concentration dependence of the complexes formed by the human U6, U4, U5,
and U2 spliceosomal snRNAs. The concentration of each snRNAs is increased from
0.05μM to 10μM in each sub-panel and then fixed at 10μM for the rest of the simula-
tion. We observe the formation of the U4/U6 dimer complex and the U4/U6.U5 triplex.
Increasing the concentration of U2 does not yield any noticable amounts of a U4/U6.U5
+ U2 tetraplex. Instead, U2 tends to form homomultimers, possibly due to the lack of
protein binding and chemical modifications of the snRNAs in our simplified model.
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The base pairing probabilities pk,l can be used to obtain further derived quan-
tities such as expected number NAB of base pairs connecting any two strands
A and B in a complex [12]. Since RNAmultifold provides access to the full
framework for handling constraints in the ViennaRNA package [27], we easily
can use hard constraints to exclude base pairs between certain strands. This
provides a convenient thermodynamic estimate for the importance of a binary
interaction in the complex. Denoting by Q the unconstrained partition function
writing QA|B for the partition function with the constraint that no base pairs
can be formed between A and B. The contribution of the A-B interaction to the
complex stability can then be measures by the partial opening energy

ΔGA|B = RT ln Q − RT ln QA|B ≥ 0. (23)

U2 U44.4931

U5
2.3147

U6

0.0337

0.0014

11.9961

6.9295

Fig. 6. Importance of binary interactions in the U2 + U4/U6.U5 snRNA complex
expressed as ΔGA|B in kcal/mol. The most stabilizing interactions are U4/U6 followed
by U5/U6. Interactions of U2 with any snRNA other than U4 do not play an important
role in the overall stability of the full tetraplex.

As an example, we again use the four snRNAs U2, U4, U5, and U6 and com-
pute ΔGA|B for each pair of interaction in the quaternary complex, see Fig. 6.
The largest stabilizing contributions of any complex formed by the four snRNAs
can be attributed to U4/U6 and U5/U6 interactions. While still noticable, the
interaction between U2 and U4 only contributes a small amount to the over-
all energy of the complex. In particular, the interactions of U2 with any other
snRNA appears energetically negligible.

9 Concluding Remarks and Future Challenges

RNAmultifold extends the ViennaRNA to handling the multi-strand RNA folding
problem. For a fixed permutation π of the strands it computes the partition
function (inside recursion) and the base pairing probabilities (outside recursion)
in O(n3) time and O(n2). Our implementation has negligible overhead compared
to RNAfold and RNAcofold. The performance compares favorably with NUPACK,
at present the only competing software, saving nearly an order of magnitude in
memory and about a factor of 50 in running time.
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The ViennaRNA package provides access to multi-strand folding at three dif-
ferent levels of abstraction. First, computations can be conducted for fixed π
as described at length in Sects. 2–6. The interface at the low level is useful in
particular when large complexes are considered for which the set of permuta-
tions Π is too large to enumerate exhaustively. For smaller problems, functions
are available that autonomously handle a complex with a given composition,
returning e.g. aggregated base pairing probabilities, Eq. (1). At the top level, a
mixture of strands and a list of allowed complexes can be defined to compute
concentration-dependent observables.

Nevertheless, some issues remain open for future research. Some functionali-
ties of the ViennaRNA are not yet available for multi-strand folding. Some of these
features are straightforward extension of the partition function algorithms, and
will become available with the next major release. This concerns in particular
stochastic backtracking to sample individual structures with Boltzmann proba-
bilities [11,36] and extensions of the RNA folding grammar necessary to handle
multiple ligand binding sites [15] again making use of the constraints framework
described in [27]. Since the symmetry effects compensate for partition functions,
no symmetry corrections apply in the sampling process. The enumeration of sub-
optimal structures [42] is an extension of MFE folding algorithm [42]. Here we
will have to take special care to properly treat the energy penalties associated
with structures with symmetries that appear in particular in homo-dimers and
-multimers [19].

A closer inspection of the folding recursions for different permutations π
and π′ reveals that parts of the arrays that need to be computed the forward
recursions are identical. This suggests to avoid the recomputation to reduce the
computational efforts. For larger numbers of strands and/or complexed com-
posed of many strands it will be necessary to develop approximations that make
it possible to decide without detailed computations which complexes and which
permutations of strands within a complex need to be considered and which ones
can be neglected.

RNAmultifold handles only pseudo-knot-free structures and thus excludes
certain modes of RNA-RNA interactions such as kissing hairpins that are rele-
vant both in biological and technological systems. While a large class of strand-
displacement systems are pseudo-knot free, many of the sensor and signal ampli-
fication systems reviewed in [40] go beyond this paradigm. A simple extension
of the approach taken here to pseudoknotted structures does not seem possible,
however. Since there is no analog of the partitioning of connected structures
into disjoint classes depending on the permutations of the strands, the entire
“concatenation-like” paradigm becomes untenable. A possible alternative might
be to used RNAup/intaRNA-like methods [4,7,30] to compute individual, localized
interactions between entire complexes and to construct a network of exchange
reactions between complexes. Such an approach, however, is very different from
considering the full ensemble of all structures.



Efficient Algorithms for Co-folding of Multiple RNAs 211

Availability

RNAmultifold can be downloaded as part of ViennaRNA Package 2.5.0a2 from
www.tbi.univie.ac.at/RNA.

Appendix

Gradient and Hessian of h

Efficient optimization of h, Eq. (21), required the gradient and the Hessian of h,
which we give here for convenience:

∂h

∂Lα
= cα − eLα −

∑

κ

Aα,κKκ exp

(
∑

α′
Lα′Aα′,κ

)

∂2h

∂Lα∂Lβ
= −δαβeLα −

∑

κ

Aα,κAβ,κKκ exp

(
∑

α′
Lα′Aα′,κ

) (24)

We note that the Hessian is negative definite since the sum can be written as
−MM+ with Mα,κ = Aα,κ

√
Kκ exp

(
1
2

∑
α′ Lα′Aα′,κ

)
.
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Abstract. Dynamical properties of biochemical pathways are often
assessed by performing numerical (ODE-based) or stochastic simulations.
These methods are often computationally very expensive and require reli-
able quantitative parameters, such as kinetic constants and initial con-
centrations, to be available. Biochemical pathways are often represented
as graphs, in which nodes and edges give a qualitative description of
the modeled reactions, while node and edge labels provide quantitative
details such as kinetic and stoichiometric parameters.

In this paper we propose the use of a neural network for graphs to
predict dynamical properties of biochemical pathways by relying only
on the structure of their graph representation (expressed in terms of
Petri nets). We test our new methodology on a dataset of 706 pathways
downloaded from the BioModels database, focusing on the dynamical
property of concentration robustness. The proposed model allows us to
predict robustness directly from the pathway structure, by avoiding the
burden of performing numerical or stochastic simulations. Moreover, once
trained, the model could be applied to predicting robustness properties
for pathways in which quantitative parameters are not available.

Keywords: Systems biology · Deep graph networks · Pathway
modelling · Robustness · Deep learning

1 Introduction

Biochemical pathways (or networks) are complex dynamical systems in which
molecules interact with each other through chemical reactions. In these reac-
tions, molecules can take different roles: reactant, product, promoter or inhibitor.
Chemical kinetics laws, such as the law of mass action, allow describing and
analysing the dynamics of a pathway through Ordinary Differential Equations
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(ODEs). Moreover, stochastic modelling and simulation approaches, based on
Gillespie’s simulation algorithm [9] or one of its many variants, are often adopted
in the case of pathways involving molecules available in small concentrations,
which make the dynamics of reactions sensitive to random events.

A common way of representing biochemical pathway is through graphs. Most
graphical notations for pathways (see, e.g., [20,27,34]) represent molecules as
nodes and reactions as multi-edges or as additional nodes. These notations enable
network and structural analysis methods to be applied to the investigation of
properties of the pathway as a whole. Moreover, they usually allow ODEs or
stochastic models to be automatically generated in order to apply standard
numerical simulation techniques.

The dynamics of a biochemical pathway is given by the variation over time
of the concentrations of its molecules. Dynamical properties of interest usually
concern the reachability of steady states, the occurrence of oscillatory behaviors,
causalities between species, and robustness. The assessment of these properties
often requires the execution of several numerical or stochastic simulations.

This article investigates the applicability of Machine Learning (ML) to the
prediction of dynamical properties of biochemical pathways. In particular, we
assume that some dynamical properties of pathways could be correlated with
topological properties of the graphs by which such pathways are modeled. Thus,
we study the use of neural networks for graphs (belonging to the broader class
of Deep Learning [11] methods) to automatically infer those topological proper-
ties in a dataset of pathway graphs. Each graph is annotated with the desired
property, calculated through numerical simulations based on ODE models of
the associated pathways. Finally, we use the inferred topological properties to
predict the dynamical property of interest on unseen pathway graphs.

If the initial assumption of the structure-dynamics correlation is correct, the
obtained ML model could be able to predict whether the studied dynamical
property holds, thus reducing the need of performing expensive numerical or
stochastic simulations. Moreover, once trained the ML model could be applied
to predicting dynamical properties of pathways for which quantitative param-
eters are not available, that is, pathways that cannot be analyzed by applying
numerical or stochastic simulation methods.

To our knowledge, our approach is the first that addresses the open challenge
of predicting dynamical properties from the pathway structure in a general way.
Many approaches in literature applying inference methods to pathway models
mainly focus on parameter estimation or on assessing relationships between the
species involved in the pathway. Our methodology, instead, moves a step towards
a paradigmatic shift for the assessment of dynamical properties, and it could be
in principle applied to any dynamical property.

In order to test our approach, we focus on the assessment of the dynamical
property of robustness [23] on the basis of a graph representation of biochemi-
cal pathways in terms of Petri nets [34]. Robustness is the ability of a pathway
to preserve its dynamics despite the perturbation of some parameters or ini-
tial conditions. Its assessment usually requires a huge number of simulations in
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order to extensively explore the parameter space. We start from the creation
of a dataset of Petri nets obtained from curated pathway models in SBML for-
mat downloaded from the BioModels1 database [28]. Robustness indicators of
these pathways (to be used as labels in the dataset) have been computed by per-
forming ODE-based simulations using the libRoadRunner Python library [39].
In particular, given a pathway model and a pair of molecular species (called
input and output species), the computed robustness value measures how much
the concentration of the output species at the steady state is influenced by per-
turbations of the initial concentration of the input species. This is a notion of
concentration robustness [37] which is to some extent correlated with the notion
of global sensitivity [42].

The predictive task this study addresses is to classify whether an output
species is robust to perturbations in the initial concentration on the input or
not, for a given pathway network. To do so, we first create a dataset of pathway
subgraphs, where each subgraph contains the input and output nodes, as well as
all the other nodes in the original pathway that influence the reaction dynamics.
Each subgraph is labeled by a binary indicator obtained by thresholding the
actual robustness value associated to the input/output pair, as calculated via
numerical simulations. We use this dataset to train a neural network for graphs
composed of two modules: a Deep Graph Network (DGN) [1] to automatically
extract structural information correlated with the robustness in the form of
a vector; and a Multi-Layer Perceptron predictor [15] which takes as input the
vectorial representation inferred by the DGN, and classifies the example as robust
or not. In our experiments, we assess the predictive ability of the model under
various performance metrics, showing that the model is able to predict robustness
with reasonable accuracy.

This paper is a revised and extended version of [3]. With respect to [3],
we have tested our methodology on a dataset with significantly larger graphs:
we passed from a limit size of 40 nodes to 100. This is an important improve-
ment that allows us to evaluate the scalability of the approach to complex path-
way models whose dynamics is in often difficult to predict. Moreover, we have
deepened the analysis of the performance of the neural network for graphs by
considering additional performance metrics. We also widened the range of the
neural network hyper-parameter selection, increasing the number of configura-
tions explored by 50% with respect to the original work. Lastly, we have added
a case study of pathway model taken from the BioModels database in order to
illustrate the methodology and test it on a real example.

The paper is structured as follows. Section 2 contains background notions
about Petri nets modeling of pathways, robustness properties, and Deep Graph
Networks. In Sect. 3 we describe our methodology, defining the predictive task
and providing details of the Deep Graph Network model. Section 4 describes
the experimental setup. In Sect. 4.3 we discuss the results of our experiments.
Finally, in Sect. 5 we draw our conclusions and discuss future work.

1 BioModels: https://www.ebi.ac.uk/biomodels/.

https://www.ebi.ac.uk/biomodels/


218 M. Podda et al.

2 Background

Before describing our methodology, we provide in this section some necessary
background notions about the modeling of biochemical pathways with Petri nets,
the dynamical property of concentration robustness and the class of Neural Net-
works for graphs (Deep Graph Networks) that we will use.

2.1 Petri Nets Modeling of Biochemical Pathways

Biochemical pathways are essentially sets of chemical reactions of the form

�1S1 + . . . + �ρSρ
k−→ �′

1P1 + . . . + �′
γPγ

where Si, Pi are molecules (reactants and products, respectively), �i, �
′
i ∈ IN are

stoichiometric coefficients expressing the multiplicities of reactants and products
involved in the reaction, and k ∈ IR≥0 is the kinetic constant, used to compute
the reaction rate according to standard chemical kinetic laws such as the law of
mass action.

Moreover, in biochemical pathways reactions often include in their descrip-
tion some molecules, called modifiers that, although not consumed nor produced
by the reaction, act either as promoter (increase the reaction rate) or as inhibitor
(decrease the reaction rate). These molecules are hence not listed among reac-
tants and products, but have a role in the kinetic formula (that in this case could
no longer follow the mass action principle). Modifiers are used, for instance, also
in the SBML language [16], a standard XML-based modeling language for bio-
chemical pathways.

In Fig. 1a we show a table describing a biochemical pathway as a set of reac-
tions (first column), some of which include a modifier (second column), namely
A for the third reaction and F for the sixth. Each reaction is associated with
its kinetic formula (third column), that, for simplicity, we be referenced in the

Fig. 1. Example of biochemical pathway: list of reactions with information on modifiers
and kinetic formulas and corresponding ODE model.
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following through an alias of the form ri (reported in the table). From the kinetic
formulas of the two reactions with modifiers, it is clear that A acts as a promoter
(the rate is proportional to the concentration of A) and that F acts as inhibitor
(the rate is inversely proportional to the concentration of F ). Kinetic formu-
las can then be used to construct a system of Ordinary Differential Equations
(ODEs) as shown in Fig. 1b.

A graphical representation of biochemical pathways can be given in terms
of Petri nets [8,34]. Petri nets have been originally proposed as a formalism
of the description and analysis of concurrent systems [33], but later have been
adopted for the modeling of other kinds of systems, such as biological ones.
Several variants of Petri nets exist. For the aim of this work we consider a
version of continuous Petri nets [8] with promotion and inhibition arcs and
general kinetic functions. We call this variant pathway Petri nets.

A pathway Petri net is essentially a bipartite graph with different types
of arcs and with labels in both edges and arcs. According to standard Petri
nets terminology, the two types of edges are called places and transitions. The
dynamics (or semantics) of a Petri net in a continuous setting is described by a
system of ODEs with one equation for each place. In the case of pathways, such
a system of ODEs corresponds exactly to the one that can be obtained from
the modeled chemical reactions (as in Fig. 1b). A state of a pathway Petri net
(called marking) is then an assignment of positive real values to the variables of
the ODEs. We denote with M the set of all possible markings.

A pathway Petri net can be defined as a tuple N = (P, T, f, p, h, v,m0) where:

– P and T are finite, non empty, disjoint sets of places and transitions, respec-
tively;

– f : ((P × T ) ∪ (T × P )) → N
≥0 defines the set of directed arcs, weighted by

non-negative integer values;
– p, h ⊆ (P × T ) are the sets of promotion and inhibition arcs;
– v : T → Ψ , with Ψ = M → R

≥0, is a function that assigns to each transition
a function corresponding to the computation of a kinetic formula to every
possible marking m ∈ M ;

– m0 ∈ M is the initial marking.

The visual representation of a pathway Petri net is shown in Fig. 2, that is
the net corresponding to the pathway in Fig. 1a. Places P and transitions T
of a pathway Petri net represent molecules and reactants, and are depicted as
circles and rectangles, respectively. In the figure, places contain the name of
the corresponding molecule. Directed arcs f , depicted as standard arrows, con-
nect reactants to reactions and reactions to products. The weight of such arcs
(omitted if 1) correspond to the stoichiometric coefficient of the connected reac-
tant/product. If 0 the whole arc is omitted. Promotion and inhibition arcs, p
and h, connect molecules to the reactions they promote or inhibit, respectively,
and they are depicted as arrows ended by a filled dot or a T. Kinetic formulas
of reactions (for simplicity, their aliases defined in Fig. 1a) are depicted inside
the rectangles of the corresponding Petri net transitions. We assume molecules
connected through promotion arcs to give a positive contribution to the value of
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the kinetic formula, while molecules connected through inhibition arcs to give a
negative (inversely proportional) contribution. Finally, the initial marking m0 is
not depicted in the figure: it has to be described separately.

Fig. 2. Pathway Petri net corresponding to reactions in Fig. 1a.

2.2 Concentration Robustness

Robustness is the ability of a system to maintain its functionalities again external
and internal perturbations [23]. It is a property observed in many biological
systems. A general formalization of the notion of robustness has been proposed
by Kitano in [24]. Such a formalization focuses on a specific functionality of
the system and on a notion of viability of such a functionality measuring of the
ability of the systems (e.g. a cell) to carry it out. This could be expressed, for
instance, in terms of the synthesis/degradation rate or concentration level of
some target substance, in terms of cell growth rate, or in terms of any other
suitable quantitative indicator. Kitano’s notion of robustness R of a system s
with regard to a specific functionality a and against a set of perturbations P is
then defined as:

Rs
a,P =

∫
P

ψ(p)Ds
a(p)dp

In this definition, ψ(p) is the probability for perturbation p to take place, and
Da(p) is a relative evaluation function for functionality a under perturbation
p. More precisely, function Da(p) gives the viability of a under perturbation
p relative to the viability of the same functionality in normal conditions. By
assuming that in the absence of perturbations functionality a is carried out in
an optimal way, we have Da(p) = 0 for perturbations causing the system to fail
in a, Da(p) = 1 in the cases of no or irrelevant perturbations (i.e. having no
influence), and 0 < Da(p) < 1 in the case of relevant perturbations.

Kitano’s formulation of robustness has been improved in [35], where function-
alities to be maintained are described as linear temporal logic (LTL) formulas
and the impact of perturbations is measured through a notion of violation degree
measuring the distance between the dynamics of the perturbed system and the
LTL formula. Many more specific definitions exist, which differ either in the
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class of biological systems they apply to, or in the way the functionality to be
maintained is expressed [25].

In the case of biochemical pathways, a common formulation of robustness,
that can be reduced to the more general formulations in [24] and [35], can be
expressed in terms of maintenance of the concentration levels of some species.
In particular, the notion of absolute concentration robustness proposed in [37],
compares the concentration level of given species at the steady state against
perturbations in the kinetic parameters or in the initial concentration of some
other species.

A generalization of absolute concentration robustness, called α-robustness,
has been proposed in [31], where concentration intervals are considered both for
the perturbed molecules (input species) and for the molecules whose concentra-
tion is maintained (output species). Roughly speaking, a biochemical pathway is
α-robust with respect to a given set of initial concentration intervals if the con-
centration of a chosen output molecule at the steady state varies within an inter-
val of values [k−α/2, k+α/2] for some k ∈ R. A relative version of α-robustness
can be obtained simply by dividing α by k. The notion of α-robustness is related
with the notion of global sensitivity [42] which typically measures the average
effect of a set of perturbations.

Assessment of robustness properties is usually obtained by performing
exhaustive (in the parameter space) numerical simulations [18,35]. In some par-
ticular cases there exist sufficient conditions on the biological network structure
that can avoid simulations to be performed [37]. Moreover, the assessment of
monotonicity properties in the dynamics of the network may allow the number
of simulations to be significantly reduced [12].

Fig. 3. The steps by which a Deep Graph Network layer is applied to a generic graph
node. In a), an example graph is shown, with the embedding of the processed node v
shaded in green, and its neighbor embeddings shaded in blue. In b), the three embed-
dings of the neighbors of v are passed to a function γ, which aggregates them into a
neighborhood embedding (shaded in blue). In c), the current node embedding and the
neighborhood embedding are combined by a function ω to produce the updated node
embedding (in orange). In this last step, we omit the multiplication of the embedding
with a weight matrix and the application of an activation function for simplicity. The
letter � is used to index the layers. (Color figure online)
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2.3 Deep Graph Networks

Graphs allow the encoding of relational information in an expressive and con-
cise way. However, the processing of graphs in ML requires to address several
challenges, due to their nature. In fact, graphs have a discrete structure, and
their size is variable. As such, to be exploited by many classes of ML models
such as neural networks, graphs need to be transformed into real-valued vectors.
Of course, this transformation cannot simply be arbitrary: given an associated
predictive task, the mapping needs to be meaningful and functional to solving
it. Deep Graph Networks (DGNs) [1] are neural network architectures able to
learn the required graph-to-vector transformations adaptively from data.

The studies on the adaptive processing of graphs with neural networks orig-
inate from the seminal works on Recursive Neural Networks (RecNNs) in the
nineties (see e.g. [2,6,40] and the references therein), which found application
in the treatment of trees and, later, were extended to more complex structures
such as directed acyclic graphs [13,30]. RecNNs, however, can be applied only
to a restricted set of classes of graphs, since they cannot handle graph cycles in
general. The first two models that allow the treatment of cycles were the Graph
Neural Network (GNN) model [36] and the Neural Network for Graphs (NN4G)
model [29]. While the former uses a state transition system to handle cycles,
the latter breaks down the mutual dependencies introduced by cycles using a
layering architecture. Below, we review how a DGN works from the perspective
introduced by the NN4G, which was recently rediscovered (see e.g. [4,22,32]),
and is currently the main modeling paradigm for learning in graph domains.

The core idea of DGNs is to associate a state vector h to all the nodes of the
graph. These state vectors are usually called node embeddings. The values of a
node embedding are updated according to the graph structure; more specifically,
the update is calculated as a function of the current node embedding and the
embeddings of the node neighbors. In DGN literature, this operation is referred
to as applying a DGN layer to the node2. This process can be iterated arbitrarily
many times by composing (“stacking”) a series of DGN layers; at each new layer,
the current node state is given by its embedding computed at the previous layer.

We shall now describe how a DGN layer is applied to a node in detail with
the help of Fig. 3. Let us assume a graph such as in Fig. 3a. Furthermore, let us
assume that we have already applied � DGN layers to node v (our focus node),
as well as to the neighbors of v: u1, u2 and u3. To apply the � + 1 layer to v,
its embedding needs to be updated according to the graph structure. This is
accomplished in two step:

– aggregation (Fig. 3b): a neighborhood function N (v) selects the neighbors of
v according to some criteria. The set of selected neighbor embeddings is then

2 This definition of layer is adapted from the Deep Learning literature, where a layer
is a parameterized function applied to an input, whose parameters are learned from
data [11].
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passed through a permutation-invariant function3 γ. The end result is a neigh-
borhood vector h�

N (v), which represents the aggregated state of the neighbor-
ing nodes of v;

– combination (Fig. 3c): in this phase, the embedding h�
v of the current node,

and the neighborhood vector h�
N (v) are combined together by a function ω to

update the node embedding.

Altogether, the application of a DGN layer to the node is summarized by:

h�+1
v = σ(w�+1 · ω(h�

v,h�
N (v))),

where σ is a (possibly non-linear) function called unit activation function, and w
is a vector of weights, whose values are optimized (usually trained with gradient
descent) to best approximate the relationship between the input graph and the
target property. Notice that each new layer reuses the embedding updated by
the previous layer as its input. The process is bootstrapped by setting the initial
embedding h0

v as a vector of node descriptors (features). The layering mechanism
effectively allows to pass information across the graph following its structure. In
fact, as the number of layers increases, node embeddings acquire information
coming from nodes farther away through their neighbors. In particular, in the
�-th layer, nodes can access information pertaining to nodes up to � hops4 (for
a formal treatment, see [29]).

Conveniently, a DGN layer can be applied simultaneously to all the nodes in
the graph. This corresponds to visiting each graph node in any order. Once a
layer is applied, the information contained in the node embeddings is aggregated
to produce a single embedding representing the entire graph. Specifically, one
can compute h�

G, the graph embedding associated to the �-th DGN layer, as:

h�
G = τ({h�

v | v ∈ VG}).

Here, τ is another permutation-invariant function called readout, this time
applied to the node set of the graph. Ultimately, stacking L DGN layers pro-
duces L different graph embeddings; each of them summarizes the information
obtained from a progressively “broader” view of the graph. These layer-wise
graph embeddings are then usually concatenated and fed to common ML algo-
rithms, to be used for downstream tasks such as regression or classification. Note
that by choosing different γ, ω and τ , different DGN variants are obtained. For
example, γ and τ can be vector sum, while ω can be simple vector concatenation,
or a more complex function approximated by a neural network. Details specific
to our implementation are discussed in Sect. 4.1.

3 Methods

In this section we describe our methodology by starting from graph preprocessing
and dataset construction, and by giving the model definition.
3 A function f on an input set x is invariant with respect to a permutation π iff

f(x) = f(π(x)). Note that, in the case of DGNs, the input set x is a set of node
embeddings.

4 A hop is defined as the shortest unweighted path between two nodes.
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3.1 Graph Preprocessing

Pathway Petri nets representations of biochemical pathways are the basis for the
creation of a dataset of graphs, which will be the input of our neural network
for graphs. In order to let the ML method focus on the topological properties of
the graphs, we made some critical choices. In particular, we decided to omit the
following information from the Petri nets:

– kinetic formulas;
– multiplicities of reactants and products (i.e. arc labels);
– the initial marking m0.

Consequently, by considering again the biochemical pathway presented in Fig. 1
we have that, by removing the mentioned information from its Petri net, we
obtain the result shown in Fig. 4.

Fig. 4. Pathway Petri net obtained by omitting kinetic formulas and arc labels from
the one in Fig. 2.

In order to be used by the neural network for graphs, we reformulate the
“cleaned” Petri nets models of pathways into standard graphs. Hence, we
represent a biochemical pathway as a directed graph G = 〈VG, EG〉, where
VG = {v1, v2, . . . , vn} is a set of nodes, and EG = {〈u, v〉 | u, v ∈ V } is
a set of edges. Furthermore, we define the neighborhood function of a node
v as N (u) = {v | (u, v) ∈ EG} for each node u ∈ VG. Nodes can be
of two types: molecules, denoted V G

mol, and reactions, denoted V G
react, with

VG = V G
mol ∪V G

react and V G
mol ∩V G

react = ∅. Edges can be of three types: standard,
denoted EG

std, promoters, denoted EG
pro, and inhibitors, denoted EG

inh. Again,
EG = EG

std ∪ EG
pro ∪ EG

inh and EG
std ∩ EG

pro ∩ EG
inh = ∅.

Given a pathway Petri net N = (P, T, f, p, h, v,m0) the corresponding graph
G can be obtained by setting V G

mol = P , V G
react = T , EG

std = {〈u, v〉 ∈ (P × T ) ∪
(T × P ) | f(〈u, v〉) > 0}, EG

pro = p, EG
inh = h. By construction, the obtained

graph turns out to be bipartite. For graphs obtained in this way we adopt the
same visual representation that we introduced for pathway Petri nets without
kinetic formulas and arc multiplicities (see Fig. 4).

Let us define G′, an enriched version of G, as follows: initially, VG′ = VG,
EG′ = EG. Then, if 〈u, v〉 ∈ EG

std is a standard edge connecting a molecule to
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a reaction, we augment EG′ adding the same edge but with reversed direction.
Formally, we define EG′

std = EG
std ∪ {〈v, u〉 | 〈u, v〉 ∈ EG

std, u ∈ V G
mol, v ∈ V G

react}.
Note that we do not reverse neither standard edges from reactions to molecules,
nor promotion and inhibition edges.

Fig. 5. Enriched version of the graph in Fig. 4.

Figure 5 shows the enriched version G′ of the graph G obtained from the
Petri net in Fig. 4. It now represents influence relationships between molecules
and reactions. There is an edge (of any type) from a molecule to a reaction if
and only if a perturbation in the concentration of the molecule determines a
change in the reaction rate (that should be computed from the omitted kinetic
formula). Similarly, there is an edge from a reaction to a molecule if and only if
a perturbation in the reaction rate determines a change in the dynamics of the
concentration of that molecule. This is intuitive for edges connecting reactions
to products: the dynamics of the product accumulation is determined by the
reaction rate. As regards the reversed edges we added in the enriched graph,
they are motivated by the fact that a perturbation in the reaction rates deter-
mines a variation in the reactants consumption. The enriched graph essentially
corresponds to the influence graph that could be computed from the Jacobian
matrix containing the partial derivatives of the system of ODEs of the modelled
pathway [5].

Fig. 6. Examples of subgraphs of the graph in Fig. 4 induced by different input/output
node pairs (u, v) = (I, O).

Since we want to assess a property, concentration robustness, which expresses
a relationship between an input and an output molecules of a given pathway,
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we can, through the enriched graph G′, determine which portion of the graph
modelling the pathway is relevant for the assessment of the property. Given a
graph G, and a pair of nodes u and v, we define Suv = 〈VSuv

, ESuv
〉, the subgraph

of G induced by the input/output node pair (u,v), informally as follows: Suv is
the smallest subgraph of G whose node set contains u, v, as well as nodes in
every possible oriented path from u to v in G′. We remark that Suv is a subgraph
of G, although it is computed on the basis of the paths in G′. Figure 6 shows
some examples of induced subgraphs extracted from the graph in Fig. 4. Induced
subgraphs will allow us to apply the ML approach only on the portions of the
graph relevant for the property, by getting rid of unnecessary nodes and edges.

3.2 Data Set

Our dataset originates from 706 SBML models of biochemical pathways down-
loaded from the BioModels database [26]. They correspond to the complete set
of manually curated models present in the database at the time we started the
construction of the dataset5. From these models, we built the associated Petri
nets representations, which were saved as graphs in DOT format6. For the trans-
lation of the SMBL models into (pathway) Petri nets we developed a Python
script that, for each reaction in the SMBL model extracts reactants, products
and modifiers. It also checks the kinetic formula in order to determine whether
each modifier is either promoter or an inhibitor. Subsequently, empty graphs
(not containing any node) and duplicates were discarded. After this phase, the
final graph dataset consisted of 484 pathway Petri networks. These were trans-
lated into graphs compliant with the notation described in Sect. 3.1, and the
corresponding induced subgraphs for each input/output combination of interest
were extracted. With respect to our previous work, we increased the maximum
allowed size of the extracted induced subgraphs from 40 to 100 nodes. As a con-
sequence, the dataset size changed from 7013 induced subgraphs in the original
study to 44928 in this one, accounting for an approximate six-fold increase.

The robustness values to be used as labels of the induced subgraphs have
been computed by following the relative α-robustness approach. The dynamics
of each biochemical pathway has been simulated by applying a numerical solver
(the libRoadRunner Python library) to its ODEs representation. Reference ini-
tial concentrations of involved molecules have been obtained from the original
SBML model of each pathway. Moreover, 100 simulations have been performed
for each molecule of the pathway by perturbing its initial concentration in the
range [−20%,+20%]. The termination of each simulation has been set to the
achievement of the steady state, with a timeout of 250 simulated time units.7

For each couple of input/output molecules, we computed the width α of the

5 May 2019.
6 The DOT graph description language specification, available at: https://graphviz.

gitlab.io/ pages/doc/info/lang.html.
7 The concentration values obtained at the end of the simulation are considered as

steady state values also in the cases in which the timeout has been reached.

https://graphviz.gitlab.io/_pages/doc/info/lang.html
https://graphviz.gitlab.io/_pages/doc/info/lang.html
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range of concentrations reached by the output molecules by varying the input
(α-robustness). A relative robustness α has then been obtained by dividing α by
the concentration reached by the output when the initial concentration of the
input is the reference one (no perturbation). Finally, a robustness value r ∈ [0, 1]
to be used in the dataset has been computed by comparing α (a relative repre-
sentation of the output range) with 0.4 (a relative representation of the initial
input range, that is 40%). Formally:

r = 1 − min(1,
α

0.4
)

3.3 Model

Before training the ML model, a series of steps are needed in order to transform
the available data in a way that allows them to be consumed by a neural network
for graphs classifier. After the processing described in Sect. 3.1, we are given a set
of graphs G = {G1, G2, . . . , GN}, one for every pathway Petri network available.
Each graph G ∈ G is associated to a set of tuples of the form

{(Suv, r) | u, v ∈ V G
mol, r ∈ [0, 1] ⊆ R}.

Here, u and v are graph nodes, Suv is the subgraph induced by input node u and
output node v, and r is the associated concentration robustness calculated as
explained in Sect. 3.2. For the purposes of this work, we seek to predict whether
the output species is robust to perturbations of the input species or not. This
corresponds to attaching a binary label to each subgraph Suv: 1 if v is robust
to perturbations on u, or 0 otherwise. To obtain such labels, we discretize the
robustness values into binary indicators as follows:

y =

{
1 if r > 0.5
0 otherwise.

As additional notation, we refer to the label 1 as the “positive class”, and to the
label 0 as the “negative class”. After the discretization step, each graph G ∈ G
is now associated to the following set of tuples:

TG = {(Suv, y) | u, v ∈ V G
mol, y ∈ {0, 1}}.

We construct our final dataset D, on which the neural network for graphs is
trained, as the union of all the tuple sets for each original graph of G:

D =
⋃

G∈G
TG.

We can now formulate the predictive task informally as follows: given a previ-
ously unseen induced subgraph, we would like to predict its associated robustness
indicator with reasonable accuracy. More specifically, we want to learn a func-
tion f(Suv) = ŷ that given an induced graph Suv, predicts a robustness value
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ŷ ∈ [0, 1], which ideally is as close as possible to the ground truth robustness
indicator y. In ML terms, this is achieved by training our model to minimize the
following binary cross-entropy [19] (BCE) objective function:

BCE(D) = − 1
|D|

∑
(Suv,y)∈D

y log(ŷ) + (1 − y) log(1 − ŷ),

In this work, we propose to approximate f using a Deep Neural Network
composed of two modules. The first module is a DGN with L layers, that receives
an induced subgraph Suv as input, and produces L graph embeddings h�

Suv
,

with � = 1, . . . , L as output. The second module is an MLP classifier, which
takes as input the concatenation of the L graph embeddings, and outputs values
ŷ ∈ (0, 1), representing the probability of v being robust to perturbations in
u in the induced subgraph Suv. The corresponding predicted indicator can be
obtained simply rounding this probability to the nearest integer. More formally,
we implement f as:

f(Suv) = MLP(h1
Suv

; . . . ;hL
Suv

),

where h�
Suv

are graph embeddings produced by the �-th DGN layer, and the
symbol “;” denotes vector concatenation. The weights of the model are learned
through gradient descent. Figure 7 shows a high-level overview of our model.

Fig. 7. A high-level overview of our model to predict robustness. For ease of visualiza-
tion, we limit ourselves to the case where L = 3, and the MLP has only one hidden
layer. The big black arrow connecting the layers indicates that the node embeddings
computed at layer � are reused as initial states in the subsequent layer �+1. Note how
each layer computes its own different graph embedding (where color intensity is used
as a proxy for value magnitude).
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4 Experiments

In this section, we provide all the necessary details concerning our experimental
procedures. In particular, in Sect. 4.1, we describe the architecture of the Deep
Neural Network in detail, while in Sect. 4.2, we discuss the assessment protocol
by which we evaluated the proposed model on the predictive task. Finally, in
Sect. 4.3, we report and comment on the experimental results.

4.1 Deep Neural Network Implementation

Before training the model, we set the initial node embeddings h0 to binary
feature vector of size three. For each node, the three positions encode:

– whether the node is a molecule species (1) or a reaction (0);
– whether the node is an input species (1) or not (0);
– whether the node is an output species (1) or not (0).

As regards the DGN, we use element-wise mean as the aggregation function
γ, and vector sum as the combining function ω, according to the formulation
in [22,29]. To account for the different edge types representing the interactions
between species and reactions, we used the following DGN layer:

h�+1
v = σ(

∑
e∈E

w�
e · ω(h�

v, h�
N (v,e))),

In the above formula, E = {standard, promoter, inhibitor} is the set of possible
edge types, while N (v, e) is an edge-aware neighborhood function that selects
only nodes connected to v by an edge of type e ∈ E . This is equivalent to perform-
ing neighborhood aggregation separately for each edge type; the corresponding
results are multiplied by a specific edge-type weight matrix and summed together
before being passed to the activation function. This way, the network learns the
contribution of the different edge types separately. We used Rectified Linear
Units [10] (ReLU) as activation function σ, followed by a batch normalization
layer [17].

As regards the MLP used for the downstream classification, it is composed
of two hidden layers: the first has 128 units, while the second layer has 64. As
activation function we choose ReLU for the hidden layers, while for the output
layer we used a sigmoid function that maps its input to the (0, 1) range. To
prevent overfitting, the hidden layers are also regularized via Dropout [41], with
drop probability of 0.1.

To train the network, we used the Adam optimizer [21] with an initial learning
rate of 0.001, annealed every 50 epochs by a factor of 0.6. We trained with a
batch size of 512 for a maximum of 1000 epochs, stopping training whenever 100
epochs passed without improvement on the validation accuracy. Other relevant
network hyper-parameters such as the number of DGN layers and the dimension
of the node embeddings were chosen via model selection, which we describe in
detail in the following section.

The model has been implemented in Python, using the PyTorch Geometric
library. All experiments were conducted on a single Tesla M40 GPU machine.
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4.2 Performance Evaluation

To assess the performance of the proposed model, we use an evaluation frame-
work based on 5-fold Cross-Validation (CV). Initially, we divide the dataset in
five partitions of equal size. One of them is used as test set, and the other
four are used as outer training set. The outer training set is split further into
inner training set (80% of partition size) and validation set (20% of partition
size) with the purpose of selecting, out of a set of candidates, the configuration
of hyper-parameters that will best generalize on unseen data. Each candidate
hyper-parameter configuration is trained on the inner training set, and its per-
formance is assessed on the validation set. After all the candidates have been
trained, the configuration with the best accuracy on the validation set is selected.
This configuration is used to train a model on the outer training set (holding
out another 10% of partition size for validation purposes), whose performance
is assessed on the test set. The whole process is repeated five times, each time
using a different combination of test and outer training folds. Finally, the five
different test accuracies are averaged together to produce an estimate of the out-
of-sample performance of the model. Note that, with this schema, the test data
is never used for training purposes; thus, the resulting estimator is unbiased. In
Fig. 8, we provide a high-level sketch of the evaluation procedure.

Fig. 8. The schematics of the evaluation framework. The dataset is divided in 5 non-
overlapping folds of equal size. One of them is used as test set, the other four are used as
outer training set. The outer training set is further divided into inner training set and
validation set. This inner dataset is used to train all the candidate hyper-parameter
configuration, selecting the one that achieves the best accuracy on the validation set.
The winning configuration is ultimately trained on the outer training set and tested on
the test set. At the end of the process, the five test accuracies are averaged to obtain
the final model assessment. (Color figure online)

We optimized the following hyper-parameters: the number of units, i.e. the
dimension of the node embeddings (choosing among 64 and 128), the number
L of DGN layers (choosing in the set {1, . . . , 12}), and the type of readout
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function τ (choosing among element-wise sum, max and mean). In comparison
with our original work [3], the size of the possible hyper-parameter configuration
candidates has been increased by 50% (from 48 to 72 candidate configurations).
Similarly, the total number of single experiments (model training) needed to
carry on the model selection has increased from 240 to 360.

We assess the performances of the proposed model under various metrics.
As usual for classification tasks, we use accuracy to measure the predictive per-
formance of the proposed neural network. However, in our case, accuracy is
affected by class imbalance (83% of the subgraphs belong to the positive class).
Therefore, we also report five additional performance metrics to take this issue
into account. These metrics are based on the notions of True Positives (TP),
which indicate the ground truth examples correctly predicted by the classifier,
and False Positives (FPs), which are negative examples wrongly predicted as
positives by the classifier. True Negatives (TN) and False Negatives (FN) have
symmetrical semantics. The reported metrics are thus the following:

– Sensitivity, defined as TP/(TP + FN);
– Specificity, defined as TN/(TN + FP ).

All these metrics have been weighted by weighted by class proportions. Finally,
we also compute the Area Under the Receiver Operating Characteristics (AU-
ROC) curve [14], which quantifies the ability of the classifier to discriminate
between negative and positive examples.

Table 1. Results of the 5-fold CV evaluation on the performance metrics of choice
(weighted by class frequency). We report the global results as well as the results strati-
fied by number of nodes per subgraph. For each stratification, we also report the related
support (i.e. the average number of graphs in the strata).

Strata Support Accuracy Sensitivity Specificity AU-ROC

1–10 243 ± 19 0.729 ± 0.020 0.851 ± 0.073 0.526 ± 0.113 0.820 ± 0.034

11–20 711 ± 30 0.843 ± 0.006 0.919 ± 0.021 0.629 ± 0.050 0.892 ± 0.008

21–30 526 ± 19 0.921 ± 0.008 0.969 ± 0.010 0.740 ± 0.052 0.954 ± 0.015

31–40 967 ± 27 0.889 ± 0.012 0.937 ± 0.005 0.757 ± 0.040 0.950 ± 0.009

41–50 1512 ± 21 0.928 ± 0.004 0.970 ± 0.008 0.635 ± 0.064 0.944 ± 0.011

51–60 1679 ± 28 0.921 ± 0.004 0.971 ± 0.006 0.588 ± 0.038 0.950 ± 0.005

61–70 1439 ± 23 0.947 ± 0.005 0.982 ± 0.006 0.644 ± 0.058 0.967 ± 0.005

71–80 1159 ± 28 0.941 ± 0.006 0.980 ± 0.010 0.712 ± 0.087 0.972 ± 0.007

81–90 372 ± 20 0.957 ± 0.008 0.998 ± 0.002 0.037 ± 0.075 0.925 ± 0.010

91–100 378 ± 14 0.850 ± 0.017 0.964 ± 0.024 0.536 ± 0.061 0.888 ± 0.026

Overall 8985± 1 0.913± 0.003 0.965± 0.006 0.646± 0.042 0.948± 0.004
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4.3 Results

The results of our experiments are reported in Table 1, where we average the
metrics across the 5 test folds. In our analysis, we also stratify the performances
by number of nodes, in order to understand how model performances vary in
relation to the size of the input graph. It can be seen how our model accurately
predicts robustness: in particular, we report an overall accuracy of 0.913±0.003,
as well as an AU-ROC of 0.948 ± 0.004. The model shows very high sensitivity
(0.965 ± 0.006) but a lower specificity (0.646 ± 0.042); this is a consequence
of class misproportion between negative (less frequent) and positive examples,
indicating that it is “harder” for the model to predict input/output pairs that
are not robust. Notice the very narrow standard deviations in all measurements,
which indicate stable predictions across the different folds. To corroborate this
finding, in Fig. 10 we show the ROC curves obtained on the test sets, where
performances remain again consistent on all the five fold.

(a) (b)

Fig. 9. a) Rolling mean accuracy showing increase in performance as the number of
graph nodes grows, using a window of size twenty. b) Confusion matrix. The entries
are computed as the mean of the five test folds. (Color figure online)

In Fig. 9b, we show the confusion matrix averaged over the five test folds. The
results also highlight that the model performs well under all the considered data
stratification. In particular, it performs better when dealing with graphs with
at least 20 nodes. To visualize this trend, in Fig. 9a we show how the accuracy
improves as the number of nodes of the considered graphs increases, by plotting
the rolling accuracy on a window size of 20.

4.4 Case Studies

The lower prediction accuracy in the case of small graphs (1–10 nodes) can be
explained by observing that we trained the model on a dataset of graphs in which
kinetic, stoichiometric and initial concentration parameters have been omitted.
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Fig. 10. ROC curves for each of the five test folds. The black dashed line shows the
performance of a null classifier that always predicts one class. (Color figure online)

The smaller is the graph, the higher is, in general, the influence on its dynamics
of these parameters.

For example, let us consider, as a first case study, the biochemical pathway
introduced in Fig. 1 and the corresponding graph depicted in Fig. 4. Moreover, let
us consider the following kinetic and initial concentration (marking) parameters:

k1 = 1.0 k3 = 0.01 k5 = 0.01 k7 = 0.3 k2 = 5.0 k4 = 0.1 k6 = 5.0
m0(A) = 50 m0(B) = 50 m0(C) = 100 m0(D) = 100

m0(E) = 0 m0(F ) = 0 m0(G) = 100 m0(H) = 0

Table 2. Robustness values computed by numerical simulation of the ODEs in Fig. 1b.
Input molecules with initial concentration equal to 0 are omitted. Output molecules
with identical robustness values are merged.

Input Output

A B C/D E/F G/H

A 1.0 0.73 0.99 1.0 1.0

B 1.0 0.73 0.99 1.0 1.0

C 1.0 1.0 0.0 0.99 0.99

D 1.0 1.0 0.0 0.99 0.99

G 1.0 1.0 1.0 1.0 0.5

On the basis of numerical simulations of the ODEs in Fig. 1b we obtained, by
varying the initial concentration of each molecule in the interval [−20%,+20%]
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Table 3. Probabilities of robustness obtained from the model for some relevant
input/output combinations.

Input Output Probability

B A 0.3798 ± 0.1249

A F 0.7254 ± 0.1802

A H 0.8835 ± 0.0499

C F 0.0793 ± 0.1084

G H 0.2351 ± 0.0054

the robustness values presented in Table 2. In Table 3, we list the average and
standard deviations of the 5 different models evaluated in Sect. 4.2, when tasked
to predict the robustness probabilities of some relevant input/output combi-
nations. We remark that values in the two tables are not directly comparable:
those in Table 2 are exact robustness values of this specific example while those in
Table 3 are probabilities of the robustness values to be greater than 0.5 (averaged
across 5 models). In this specific case, the prediction turns out to be accurate
in the case of input/output pairs corresponding to big induced subgraphs. This
happens in the cases of input A with output F or H. The prediction seems not
correct in the case of input C and output F : the models gives a small prob-
ability while ODEs simulations give 0.99. We notice that the robustness value
of this input/output combination is actually sensitive to the perturbation of
parameters that have been omitted in the dataset. In particular, if the initial
concentration of C, which was omitted in the dataset, was 80 instead of 100, the
robustness value with input C and output F would become 0.5 rather than 0.99.
The prediction turns out to be wrong also in the case of input B and output
A. The probability is under 0.5, when numerical simulations say that robustness
computed with this combination of input and output is 1. Also in this case the
robustness is influenced by parameters that are not taken into account in the
dataset, such as kinetic formulas and the label of the arc entering in node B.
Finally, in the case of input G and output H the prediction gives a small prob-
ability of robustness and indeed the actual measured value is borderline (0.5).
More in general, we observe a slight decrease in performance with respect to
our previous work [3], where the predictions on this specific example of pathway
were more accurate. Due to the higher heterogeneity of the extended dataset, it
is possible that the model has learned to be more accurate on larger graphs, at
the expense of performances of smaller ones.

As a second case study, let us consider the SBML model of the EGF pathway
proposed by Sivakumar et al. in [38]. Such an SBML model is available in the
BioModels database, where it is referenced as BIOMD0000000394. A graphical
representation of the pathway automatically generated by the CellDesigner tool
[7] is depicted in Fig. 11. This representation of the pathway can be trivially
translated into a Pathway Petri net. We choose to adopt this representation for
this case study for the sake of readability.
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Fig. 11. Sivakumar et al. [38] model of the EGF pathway. Image generated form the
SMBL file in the BioModels database using the CellDesigner tool. (Color figure online)

This pathway model describes, in a simplified way, the transduction of the
EGF signal, and the consequent activation of the mitogenesis and cell differentia-
tion processes (modelled as an abstract species in the pathway). The EGF signal
protein, if available in the cell environment, can be perceived by the receptor pro-
tein EGFR, which then initiates a cascade of reactions inside the cell, ultimately
leading to the activation of mitogenesis and differentiation. The first steps of the
pathway are presented by the formation of a rather big complex involving an
activated EGFR dimer and a number of other proteins (depicted as a big box in
the upper-left corner of Fig. 11). The formation of such a complex is described
in a very simplified way in this pathway model, by concentrating everything in
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only two reactions. The big complex then promotes a cascade of reactions inside
the cell, this time modelled more in detail.

Numerical simulations say that the robustness of the mitogenesis and dif-
ferentiation (abstract) species, considered as output, with respect to EGF and
EGFR, considered as input, turns out to be very high (>0.995) in both cases.
This is actually expected in a signal transduction pathway, since it behaves as an
amplifier that must be able to activate the target cell process despite of pertur-
bations in the signal and receptor concentrations. On the other hand, if we look
at the robustness of the first portion of the pathway up to the creation of the
big complex, we can then observe a different behavior. By considering the big
complex as output, we still obtain a very high robustness (>0.999) with respect
to input EGF, but a robustness value of only 0.19 when the input is EGFR.
Again, this is not surprising, since EGF is actually in this pathway is modelled
as a promoter of the first reaction (i.e., it is not consumed) while EGFR is a
reactant a it will be included in the big complex.

In this case, the model correctly captured the different roles of EGF and
EGFR. Indeed, in the case of EGF as input and the big complex as output, the
model gives 0.9474± 0.014 as probability of robustness, whereas it gives 0.145±
0.121 with EGFR as input species. The model captured also the robustness in
the whole model, namely when either EGF or EGFR are considered as input,
and the abstract mitogenesis and differentiation as output. It gives probability
0.973 ± 0.005 with EGF as input and 0.970 ± 0.008 with EGFR as input.

5 Conclusions

The experimental results we obtained show that our model can infer topological
properties of graphs which correlate with dynamical properties of the corre-
sponding biochemical pathways. Such results are promising and let us believe
that the approach deserves further investigation. Indeed, the assessment of new
connections between structural and dynamical properties of biochemical path-
ways, and the development of automatic methods for their inference, could lead
to new and more efficient ways of studying the functioning of living cells.

In our opinion, the proposed approach has two potentially impacting factors.
First, predicting dynamical properties using neural networks for graphs is usu-
ally faster than performing numerical simulations. Once the model is trained,
the network can be tested on novel subgraphs in milliseconds. In contrast, the
numerical simulations we performed took times in the order of minutes, up to
dozens of minutes or hours for the larger pathways. While it is true that the
training process is time-consuming, it has to be performed only once. Hence,
the cost of training is easily amortized as the size of the dataset grows, both in
terms of number of pathways involved, and their size. Second, our approach is
purposely based on relying on a restricted set of pathway features; the pathway
structure, the input/output species, and the type of nodes and arcs in the related
graph. Other features, like arc multiplicity, are not considered in our approach;
this allows its applicability in cases where this minimal set of features is the only
known information about the pathway.
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The efficiency of our approach is based on the aim of replacing numerical
simulations with the assessment of structural properties of pathways. Such an
assessment is performed by the neural network for graphs. It is difficult to imag-
ine how the same assessment could be done through an algorithm on graphs
since the structural properties to be assessed are not known in advance, but
inferred.

One important aspect to research in future works concerns model explain-
ability. While being reliable as predictors, neural networks for graphs require
additional effort in understanding the underlying function (from pathway struc-
ture to prediction) that they approximate. To this aim, generative models of
pathways are a promising direction of research we intend to explore, as they can
be helpful to study properties of the model and to provide explanations to the
decisions taken by it.

Furthermore, we will consider enriching the dataset with information we have
omitted in the present study. In particular, we may include arc labels (multiplic-
ities of reactants/products) in order to evaluate their significance. Moreover, we
may include something about kinetic formulas, such as their parameters (prop-
erly normalized). The latter addition could, in principle, improve the accuracy
of the model on small subgraphs, but its effect on the accuracy of big ones has
to be carefully evaluated.

Lastly, we plan to apply the approach to the assessment of other dynamical
properties such as other notions of robustness as well as, for example, mono-
tonicity, oscillatory and bistability properties.
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Abstract. The importance of Neurologists support system for EEG-
based diagnosis of epilepsy as well as maintenance of EEG records of
epileptic patients has risen with the passing time as the data from the
patients and their numbers have increased. Requirements from such a
system dealing with epileptic patient EEG files include accuracy in local-
ization of epileptic events, customization of the system according to neu-
rologists style of diagnosis, summarization of important events, less stor-
age space, good fidelity of stored signal for later use, computational effi-
ciency and finally a user friendly system interface. This work presents
the extended i-NSS system with new experimental results on a com-
bined scheme for classification and compression of EEG data. The same
wavelet-transformed data used for classification is lossy encoded using
either Huffman and Arithmetic coding techniques. This synergy not only
decreases the overall computational effort, but also allows maintaining
the classification fidelity of reconstructed signal greater than 99% with
the classification results obtained on the original data. The proposed
summarization and data reduction modes also allow selective archiving
and retrieval of data. The classifier output apart from providing labelled
EEG data also allows intelligent reduction of data and adaptive com-
pression of EEG signal epochs according to its event labelling. The lat-
ter option can maintain low distortion levels (5–6% average PRD) for
epileptic events at high overall compression ratios between 4–5. Results
are presented on CHBMIT scalp EEG database.
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1 Introduction

Electroencephalography (EEG) is extensively used for diagnosis of common neu-
rological disorders like Epilepsy and Sleep disorders. Epilepsy is a recurring neu-
rological disorder, which is characterized by excessive neural activity yield in
the brain. Almost 1% of the human population suffers from epilepsy [1]. Epilep-
tic seizures are accompanied by unique patterns in EEG, and therefore EEG is
widely used to detect and locate the epileptic seizure and zone. It also helps to
characterize the type of epilepsy. EEG signals are non-stationary. Usually the
spectral content of the EEG is used for diagnosis which is considered in various
frequency bands [10]: δ (0.4–4 Hz), θ (4–8 Hz), α (8–12 Hz) and β (12–30 Hz).
δ (delta) are more prominent during deep sleep, θ (theta) waves are prominent
during drowsiness, and α (alpha) waves are more prominent when a person is
relaxed and closes his eyes, β (beta) waves are dominant during active thinking.
Clinical findings of many disorders and seizures are indicated in terms of changes
in these frequency bands of EEG [2].

Diagnostic procedures for epileptic patients may involve generating a huge
amount of EEG data for inspection by a neurologist. Diagnosis at a clinic or hos-
pital may typically involve several sessions of EEG recordings of duration 40 min
to an hour. If these shorter recordings fail to capture a seizure, prolonged EEG
up to 72 h can be conducted [3]. Recently portable, wearable and implantable
EEG devices with wireless transmission capabilities are also being employed for
advanced diagnosis, patient monitoring and treatment of epilepsy [4]. Unaided
manual analysis is thus becoming a daunting task for a neurologist [6] given
the increase in availability of data and the patient load. Prior manual marking
of EEG by the technicians makes the busy clinician heavily dependent on the
expertise of the technicians.

Computer-aided EEG analysis assists the Neurologists in two ways: Firstly, it
provides an effective and user-friendly interface to examine and mark the multi-
channel EEG data. Simultaneous examination of multiple channels also helps
the clinicians to diagnose whether the epilepsy is generalized or focal. Secondly,
it may automatically highlight the candidate EEG signal intervals depicting
the epileptic patterns. If done accurately, it significantly reduces the data to
be analyzed and lessen the fatigue upon the Neurologists. Currently available
commercial tools for epilepsy are not user-friendly and if flexible require a prior
understanding of signal processing techniques for utilizing its full functionalities.
This brings their configuration into the hands of the technicians [5] rather than
the clinician himself [6–10]. The results are, therefore, prone to misinterpretation
and over-interpretation making the Neurologists inclined not to use these auto-
matic tools. Last but not the least, these tools are generally not customizable as
per clinician’s approach and style of analysis.

The increasing availability of EEG data also calls for developing efficient
means of storage and retrieval. For this purpose intelligent reduction and com-
pression has gained significance. It applies to transmission of EEG data also
where reduction in bandwidth and energy can result. However, the reduction
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and compression should preserve the most important events in good detail and
introduce no significant artifacts leading to mistake in diagnosis.

Traditionally, the researchers have treated the task of EEG classification and
that of reduction and compressions separately and many approaches to these
ends have been proposed. However, this does not optimize overall computational
efficiency and also does not minimizes the possibility that the introduced distor-
tion and compression artifacts of the reconstructed signal will adversely affect the
original classification results of EEG data. A synergy in the two approaches is,
therefore, desirable. Some work like [13] and [14] have performed data reduction
based on classification. These approaches employ very simple and less power-
ful methods of classification and compression, respectively, and the resulting
encoded format does not allow any choices.

Based on all such considerations, one such initiative has been undertaken
in our group under the Intelligent Neurologist Support System (i -NSS) project
in which we have developed a joint intelligent compression and data reduction
methodology. We have exploited wavelet transform and have shown its efficacy
simultaneously for both tasks: Classification and compression (along with reduc-
tion). This paper updates about the recent extensions in i -NSS with new exper-
iments and results. The rest of the paper is organized as follows: Sect. 2 briefly
reviews the on going i -NSS project. Section 3 discusses the architecture of the i -
NSS along with the recent extensions; Sect. 4 presents our experimental paradigm
and our recent results. Section 5 holds discussion on the future prospects of our
i -NSS project. Section 6 concludes the work.

2 The i -NSS Project

The initial scope of i -NSS project has been to develop a support system for Neu-
rologists for reviewing EEG of epilepsy patients suffering from absence seizure
and to provide automatic markings of potential epileptic events corresponding
to Absence Seizures comprising 3 Hz Spike-and-Wave patterns. The system pro-
vides personalization to a Neurologist style and assessment through re-marking
and re-training by the neurologist on the corrected events.

The progress made in the project has been covered in various papers pub-
lished from time to time. [6] provides the overview of the technical approach,
its user-interface and the support available to the neurologists. [16] presents its
extension as an adaptive system that can be re-trained by the neurologists using
corrective markings. In this context it discussed the potential of three classifiers
that include Quadratic Discriminant Analysis (QDA), Artificial Neural Network
(ANN) and Support Vector Machine (SVM) and shown the superiority of the
latter. A recent paper [17] discusses its further extension how the patient data
can be summarized, reduced and efficiently compressed maintaining excellent
fidelity of the signal allowing its later use after decompression for the purpose
of automatic classification or manual inspection by the neurologist.

In [17] we reported our key extension of a compression branch in the i -
NSS system and demonstrated the usefulness of synergy between the process



246 N. A. Khan et al.

of compression and classification. The achieved compression performance is still
equivalent to the state-of-the art methods though the synergy has led to efficient
processing. The presented methodology first uses the classifier of the i -NSS sys-
tem explained in [6] to automatically label the epileptic and non-epileptic epochs.
This labeled EEG data is then efficiently compressed for storage or transmission
in one of the multiple modes. The archiving is possible at different compression
rates versus distortion levels depending on the requirement. System also allows
data reduction and archiving of just the labeled epileptic seizures events that are
of main interest to the neurologist. Non-epileptic epochs in the i -NSS classified
data may be either be left out entirely or included at a coarser resolution as per
neurologist’s requirements.

In this work we first provide an overview of the extended system and report
new performance results based on extensive testing on original and reconstructed
data. Our earlier paper [16] discussed the classification performance of three
types of classifiers: SVM, QDA, and ANN. SVM was chosen as a working clas-
sifier because of its best performance. In this work we have also experimented
with more classifiers k Nearest Neighbor (KNN), Linear Discriminant Analysis
(LDA), Decision Tree (DT) and shown that recognition performance of SVM
is still superior. We have also conducted experiments with reconstructed signal
and shown that reconstructed signal accuracy of classification is not dependent
on classifier choice and remains equally good to the original data. Compared to
[17], the reported results also cover the utilization of separate classifiers for each
channel. The dataset used is also larger than [17]. The paper also covers more
details of i -NSS project and discusses its future prospects.

3 Architectural Overview of the Extended i -NSS

Figure 1 shows the complete architecture of the proposed extended i -NSS sys-
tem. After a common initial processing of data, the processing is divided in
classification and compression branches. Processing at each step is explained as
follows:

The process starts with selection of the EEG data file and a specific channel
to process as the proposed algorithm works channel-wise. The next step is to
extract a one second epoch. The epoch used are non-overlapping and contigu-
ous. Classification and Compression is based on this unit of EEG sampled-data
present in a epoch. Discrete Wavelet Transform (DWT) coefficients are calcu-
lated for each epoch in the next step. For every epoch, we applied multi-level
DWT upto level 8 as the spectral content we re interested in lies between 0–30 Hz
[12]. Daubechies-4 (db4) is used as mother wavelet. The detailed coefficients lev-
els of the DWT are determined with respect to sampling frequency. The detailed
levels are adjusted on the run according to the sampling frequency such as that
we may get if not exact then at least the closest separate frequency bands i.e.
Delta (δ: 0.4–4 Hz), Theta (θ: 4–8 Hz), Alpha (α: 8–12 Hz) and Beta (β: 12–30
Hz) component of the signal. Any detailed coefficients that does not contain
frequency component from a frequency range of 0–30 Hz were discarded [16]. So,
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considering the fact of this frequency range, we are left with 5 DWT levels (3–7)
of the data.

After calculating the DWT coefficients for each epoch, the proposed algo-
rithm now divides into two branches which are explained separately as follows:

3.1 Classification Branch

This branch is dedicated for classifying the EEG data as epileptic or non-
epileptic. The first step of this process is to calculate the statistical features.
Instead of using all the detailed coefficients obtained from the DWT, we cal-
culate the Mean, Standard Deviation and Power of every epoch for 5 selected
DWT levels as suggested by [16]. Calculating Power, Mean absolute values and
Standard deviations of 5 DWT levels (3–7), we obtain 15 features. Taking Ratio
of Means of consecutive DWT levels (2–8) provide 6 features. So we have total
21 features. In order to normalize the whole data to one single level, Z-score
normalization is used on these 21 statistical features in the next step [16].

In order to improve the performance of classifier, we applied Principal Com-
ponent Analysis (PCA) technique that first reduces the dimensionality of the
feature space for classification. The algorithm works on the principle of main-
taining the data having maximum variance. So as a result we only contain the
feature components which projected 93% of the total variance. So the 21 statisti-
cal features obtained from the previous step are now reduced to only 9 features.

These 9 features are now used for classifying the signal epoch as epileptic or
non-epileptic. We have applied multiple classification algorithms to categorize
the data as epileptic or non-epileptic. The list includes SVM, KNN, LDA and
DT. Performance of these classifiers with parameter details is discussed in next
section.

3.2 Compression Branch

This branch is devoted for compressing the EEG data. The first step in data
compression process is the Data Selection stage. The same DWT coefficients
computed for epochs for classification now labeled as epileptic or non-epileptic
is utilized. They are selected or discarded for compression according to the test
cases of data reduction and compression involved. For complete EEG compres-
sion case or adaptive compression all coefficients are utilized. For summarization
and compression case, unwanted coefficients (like that of non-eplipetic intervals)
are to be discarded.

The next step allows Quantization and Thresholding of these coefficients.
The selected DWT coefficients are first thresholded using a single specified value
or in case of adaptive mode using two (or more) threshold levels. Values below
the used threshold are set to zero. By varying the level of threshold to be set, we
can increase or decrease the number of wavelet coefficients being discarded. This
controls the compression and also as consequence the accuracy of the recon-
structed signal. For adaptive case, the classification labels are also utilized to
select the right level of threshold for that interval. This is discussed further
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Fig. 1. Work flow architecture of the proposed algorithm [17].
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in a later sections. The thresholded coefficients are then quantized for binary
encoding.

Binary Encoding is the last stage of the process. We used both the Huff-
man and Arithmetic encoders separately. The binary coding was done using the
standard built in functions of MATLAB library.

4 Results and Discussions

4.1 Dataset

In order to evaluate the performance of the proposed algorithm and to explore
the merit of relation between compression and classification of EEG signals, the
EEG data from Children’s Hospital Boston dataset (CHBMIT) is used. The
dataset consist of EEG recordings from paediatric subjects with unmanageable
seizures. These recordings of 23 cases were gather round from 22 subjects (5
males, ages 3–22; and 17 females, ages 15–19). The EEG recordings were sam-
pled 256 Hz. The International 10–20 electrode placement was used for recording
EEG using 23 channels. The datasets is about generalized absence seizure cat-
egorized by 3 Hz spike and wave epileptic pattern in for every channel [16]. So
the performance evaluation of the proposed algorithm in terms of classifying the
epileptic and non-epileptic data corresponds to only one category of epilepsy
which is absence seizure.

4.2 Performance Metrics

In this paper, we are using multiple metrics to evaluate the effectiveness of the
proposed classification and compression methodologies. Performance evaluation
in terms of classifying the EEG data as epileptic or non-epileptic, we are using
the classification Accuracy, Specificity and Sensitivity. Accuracy, Specificity and
sensitivity of the classifier are defined as (1), (2), and (3), respectively.

Accuracy =
Number of true Labels

Total number of Labels
(1)

Specificity =
TN

TN + FP
(2)

Sensitivity =
TP

TP + FN
(3)

Where TN corresponds to True negative, FP is False positive, TP is True
positive and FN is False negative. The performance measures for compression
algorithms are Compression Ratio (CR), Percentage Root Mean Square Distor-
tion (PRD). CR is defined as the ratio of the size of original data to that of the
compressed data.

CR =
LO

LC
(4)
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Fig. 2. Classification accuracy of single and separate classifiers.

where LO and LC corresponds to the size of EEG signal in bytes before
and after compression, respectively. PRD is the standard measure to determine
distortion between two signals, defined as

PRD =

√
√
√
√

∑N
n=1(x[n] − x′[n])2
∑N

n=1(x[n])2
(5)

Here x[n] presents the original EEG signal whereas x′[n] corresponds to the
compressed EEG signal. N is the numbers of samples. Finally, the Similarity
Index (SI) between original and decompressed EEG is calculated by dividing
the number of classification labels of decompressed signal similar to the labels
obtained for original EEG data by total number of classification labels given as

SI =
Number of similar Labels

Total number of Labels
(6)

Another performance evaluation metric is the Data Reduction (DR), which
is used for the case where we are summarizing the epileptic events by discard-
ing non-epileptic epochs and compressing epileptic epochs. DR is measured as
(Fig. 2):

DR =
Number of original epochs

Number of remaining epochs
(7)
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4.3 Experiments on Classification

In this work on extended i -NSS we present experimental results for classification
using two training approaches and three new classifiers i.e. KNN, LDA and DT
in addition to our original choice of SVM from our previous work. In the first
approach a single shared classifier is used for all channels trained with EEG data
from all channels. In the second approach we have separate classifiers for each
channel.

For our current experiments we have used a portion of the CHBMIT dataset.
The CHBMIT dataset is very biased towards non-epileptic events as compared
to epileptic ones. Many EEG files are without any seizure event. To experiment
with data balancing technique, we selected all the files of dataset that contained
at least one epileptic seizure event. Within these files, the 1-sec epochs were
randomly selected with non-epileptic and eplipetic epochs balanced in ratio of
67% to 33% respectively. Although we have applied some data balancing but
still the ratio of non-epileptic events is higher. As a result, we have a total
30,165 epochs for classification. We used 10-fold cross validation scheme for
performance evaluation of the proposed classification algorithm. We divided the
data into ten parts out of which nine are used for training and one part is used for
testing the classifier predictions. The process is repeated 10 times and after every
iteration, testing data part is replaced with the new one. Purpose of using 10-fold
cross validation is to reduce bias in the data. So using this method provides the
advantage that each data points will be tested only once but processed in the
training for 9 times.

We used MATLAB Classification Toolbox for classifiers. The choices of clas-
sifier configuration parameters are as follows: The Kernel function for SVM is
linear with box-constraint of 0.75. The solver parameter is Sequential Minimal
Optimization (SMO). In case of KNN, the Nearest-neighbors search method is
‘kdtree’ and number of nearest neighbors is one. The distance weighting function
is ‘equal’ which assign equal weight to each neighbor. For LDA classifier, we are
using ‘IterationLimit’ value of 100 for maximum number of iterations for batch
processing and Solver for optimization is CGS (Collapsed Gibbs Sampling). Ver-
bose is enabled with value 1. Hyperparameters to optimize DT are ‘auto’ and
the predictor selection parameter is ‘allsplits’.

Figure 1 shows the results obtained by these two approaches for SVM, KNN,
LDA and DT. A significant increase in classification accuracy of all the listed
classifiers can be seen in Fig. 1 on employing separate classifier approach. This
is in line with our earlier reported results.

Table 1 shows the Average Accuracy, Sensitivity and Specificity of the pro-
posed algorithm for different classifiers. The highest performance among all the
utilized classifiers is achieved by SVM that is followed by LDA. Also channel-
wise classification accuracy for SVM classifier is presented in Table 2. In this
table accuracy obtained by using a single shared classifier for all the channels
is compared when separate classifiers for each channel are utilized. As expected
the performances in the second case is superior. Table 3, Table 4 and Table 5
presents both of these cases for KNN, LDA and DT respectively.
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Table 1. Average accuracy, sensitivity and specificity of classifiers with separate clas-
sifier for every channel.

Classifier Average accuracy (%) Average sensitivity (%) Average specificity (%)

SVM 94.1 87.2 96.1

KNN 91.4 79.3 89.3

LDA 92.5 83.9 94.3

DT 88.5 81.8 92.2

4.4 Experiments on Compression and Summarization

This section discusses our experiments on compression and summarization and
explains how co-operation in classification can lead to intelligent compression.
Though Neurologists requirement may vary, we will discuss three typical modes.
We used EEG data from the same dataset for compression that we used for
classification part.

Table 2. Channel wise classification accuracy of SVM.

Channel Accuracy (%) using single classifier Accuracy (%) using separate classifier

FP1F7 87.5 88.6

F7T7 89.9 92.4

T7P7 94.2 94.6

P7O1 92.8 96.3

FP1F3 91.6 92.6

F3C3 92.8 97.6

C3P3 90.9 93.1

FP2F4 88.4 88.6

F4C4 91.2 96.4

C4P4 92.5 94.7

P4O2 89.9 93.9

FP2F8 93.7 95.6

F8T8 92.6 97.8

T8P8 94.7 95.4

P8O2 90.1 96.2

FZCZ 91.8 93.9

CZPZ 89.9 90.1

P7T7 93.3 91.7

T7FT9 95.7 93.9

FT9FT10 92.8 96.8

FT10T8 94.8 97.2

T8P8 91.8 94.8

Average 91.8 94.1
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Table 3. Channel wise classification accuracy of KNN.

Channel Accuracy (%) using single classifier Accuracy (%) using separate classifier

FP1F7 83.2 87.8

F7T7 87.6 88.3

T7P7 89.4 90.7

P7O1 86.8 89.3

FP1F3 91.7 94.8

F3C3 79.3 89.5

C3P3 74.8 82.1

FP2F4 83.0 91.2

F4C4 87.6 96.8

C4P4 89.3 90.9

P4O2 90.8 92.5

FP2F8 81.6 93.4

F8T8 75.8 87.9

T8P8 79.5 92.8

P8O2 92.9 93.1

FZCZ 85.4 89.9

CZPZ 89.1 94.5

P7T7 74.2 90.2

T7FT9 91.4 97.1

FT9FT10 87.3 90.8

FT10T8 93.7 95.5

T8P8 91.8 91.8

Average 85.7 91.4

Compression of Raw EEG Data. This is the simplest mode of compression
where all unlabeled EEG data is compressed indiscriminately. Level 8 DWT
coefficients are calculated prior to thresholding.

Figure 3 shows an epoch of a single channel non-epileptic EEG for raw and
decompressed EEG data. The EEG epoch is taken from the first file of ‘Patient
1’ of the dataset. The channel is ‘FP1F7’ and the epoch is the first one. The
decompressed epoch here is obtained by Arithmetic compression scheme with
threshold levels 0 (PRD = 2.55), 2 (PRD = 5.06) and 4 (PRD = 6.87). We can see
from the figure that both the raw and decompressed waveforms are quite similar
perceptually. This is important so that the Neurologists assessment should not
change on reconstructed data. Figure 3 shows the same scenario for an epileptic
epoch with threshold levels 0 (PRD = 2.43), 2 (PRD = 4.32) and 4 (PRD = 5.56).
This epileptic epoch corresponds to the third file of Patient 1. Epoch number is
3000 and the channel is ‘FP1F7’.

Table 6 presents average CR and PRD of Arithmetic compression for multiple
threshold levels. Table 6 witnesses the fact that increasing the threshold level
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Table 4. Channel wise classification accuracy of LDA.

Channel Accuracy (%) using single classifier Accuracy (%) using separate classifier

FP1F7 89.2 89.7

F7T7 88.5 89.3

T7P7 90.0 91.6

P7O1 92.8 93.4

FP1F3 87.2 91.2

F3C3 91.7 92.1

C3P3 87.9 94.6

FP2F4 86.6 88.9

F4C4 91.9 91.9

C4P4 92.0 94.6

P4O2 89.3 95.8

FP2F8 91.9 93.5

F8T8 84.2 86.9

T8P8 89.8 93.9

P8O2 94.3 95.8

FZCZ 85.9 87.7

CZPZ 91.8 95.3

P7T7 86.6 90.1

T7FT9 93.3 93.8

FT9FT10 90.1 92.6

FT10T8 91.4 96.7

T8P8 94.9 94.9

Average 90.1 92.5

increases the CR but also the PRD. This implies that for a higher value of CR,
distortion in the signal also increases so that we have to tradeoff between CR
and PRD. Ratio of CR and PRD is also provided in the table. Here we can see
that for a higher value of CR, PRD is also high but the ratio between these
two metrics decreases for higher values of CR. This means the tradeoff is better
for lower threshold values. Table 7 presents the same results as in Table 6 but
for Huffman encoding scheme. Comparing the results shown in both the tables,
we conclude that Arithmetic encoding scheme achieved better results in terms
of CR versus PRD for lower threshold values but this preference recedes to
equivalence on choice of higher thresholds for more compression. In Table 11 we
have presented CR and PRD of a few existing EEG compression techniques. The
comparison shows that the performance of our compression scheme is towards
the better side.

Table 8 shows results of SI (Similarity Index) in percentage between the clas-
sification results of original EEG data and the decompressed data using Arith-
metic compression scheme for different classifiers. All the results presented in this
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Table 5. Channel wise classification accuracy of DT.

Channel Accuracy (%) using single classifier Accuracy (%) using separate classifier

FP1F7 87.6 88.5

F7T7 85.1 91.7

T7P7 85.8 89.3

P7O1 82.0 86.9

FP1F3 80.9 83.4

F3C3 84.8 91.5

C3P3 78.6 83.1

FP2F4 76.0 90.6

F4C4 77.6 85.8

C4P4 79.3 91.3

P4O2 80.2 89.1

FP2F8 80.4 94.2

F8T8 82.0 84.2

T8P8 83.3 86.3

P8O2 86.7 93.9

FZCZ 80.8 87.4

CZPZ 77.0 82.6

P7T7 77.1 86.5

T7FT9 85.8 91.1

FT9FT10 84.0 87.3

FT10T8 88.5 93.9

T8P8 88.5 88.5

Average 82.3 88.5

table are obtained by using threshold level zero. SVM achieved highest similarity
for Arithmetic coding among all the listed classifiers followed by LDA having
quite similar results as SVM. Table 9 discusses the same results as Table 8 but for
Huffman encoding scheme. Similarity for SVM, KNN and LDA are comparable
in both encoding modes and for DT it is somewhat higher using Huffman cod-
ing. Overall we see that similarity in classification for original and reconstructed
remains close to 100% (very few changes in decisions) irrespective of classifier
type.

Table 10 presents the SI of SVM classifier with different threshold levels.
Though SI decreased somewhat with increase in threshold level it. Still hovers
around 100% (Fig. 4).
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Fig. 3. Raw and decompressed EEG of a single channel for non-epileptic epoch.

Fig. 4. Raw and Decompressed EEG of a single channel for epileptic epoch.

Adaptive Compression of EEG on Prepared Summary. In this case dif-
ferent EEG intervals undergo compression at different rates. We cover one option
here but different variants of adaptive compression are possible. After, the clas-
sification branch categorizes the epochs as epileptic or non-epileptic, the idea
is to compress the epileptic epochs at the lowest threshold of 0 for maintaining
highest quality. Furthermore, the non-epileptic epochs are compressed at the
highest threshold level of 4 to provide more compression. The main goal is to
make the quality of signal indifferent intervals adaptive to the importance of
the signal and minimizes the chances of any adverse effect on the neurologist’s
decision. Tables 12 and 13 present the results obtained for Huffman and Arith-
metic compression schemes applied on EEG data. The epileptic epochs are still
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Table 6. CR and PRD of Huffman compression for SVM with different threshold
levels.

Serial No Threshold level Average CR Average PRD (%) CR/PRD

1 0 3.65 4.31 0.84

2 1 4.06 5.83 0.69

3 2 4.86 7.80 0.62

4 3 5.06 9.11 0.55

5 4 5.34 10.68 0.50

Table 7. CR and PRD of Arithmetic compression for SVM with different threshold
levels.

Serial no Threshold level Average CR Average PRD (%) CR/PRD

1 0 3.72 3.81 0.97

2 1 4.29 5.36 0.80

3 2 4.67 7.26 0.64

4 3 5.38 8.08 0.66

5 4 6.18 12.05 0.49

Table 8. Similarity index of Arithmetic compression for classifiers with threshold
level 0.

Classifier Average similarity% Max similarity%

SVM 99.1 99.8

KNN 98.2 99.3

LDA 99.0 99.6

DT 96.7 99.1

Table 9. Similarity index of Huffman compression for classifiers with threshold level 0.

Classifier Average similarity% Max similarity%

SVM 99.2 99.7

KNN 97.8 99.8

LDA 99.4 99.9

DT 98.2 99.7

maintained at an acceptable PRD though the overall average compression ratio
is maintained high (see Table 6 for reference). For this mode it is advisable to
train the classifier for higher sensitivity (so that no true positive undergoes a
high distortion despite increase of false positives). The neurologists on inspection
can successfully eliminate a false positive stored with low distortion [5].
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Table 10. Similarity index of SVM with different threshold levels for Arithmetic com-
pression.

No Threshold Average similarity% Max similarity%

1 0 99.1 99.8

2 1 99.1 99.9

3 2 98.9 99.8

4 3 98.8 99.5

5 4 98.4 99.3

Table 11. Comparison of compression and distortion results with existing approaches
[17].

Ref Technique CR PRD (%)

[15] JPEG 2000 5 10

[19] JPEG 2000 arithmetic code 5 7

[20] Biorthogonal 4.4 DWT; SPIHT 5 7

[21] SPIHT 6 7

[22] Biorthogonal 4.4 DWT; SPIHT 7 10

[23] CDF 9/7 DWT 8 10

[25] DWT with adaptive arithmetic coding 11 10

[26] Channel Clustering 1.89 –

Table 12. Adaptive compression results using Huffman scheme[17].

Mean Max Min

CR 5.042 5.842 3.953

PRD (%) 10.72 19.92 6.256

PRD epileptic epochs only (%) 5.6054 7.8447 3.4437

PRD non-epileptic epochs only (%) 11.3604 19.2689 6.7594

Table 12 presents the achieved CRs and PRDs in this mode in terms of Mean,
Max and Min values for Huffman compression scheme. Table 13 shows the same
results for Arithmetic compression scheme. Though as per Table 10, automatic
classification decisions on reconstructed signal are not likely to change at the
used distortion levels still maintaining the low PRD for epileptic events keeps
the fidelity of signal high enough for no perceivable difference during manual
inspection thus reassuring the correctness of earlier classification results.

Summarization and Compression. A summary of EEG is very useful for
Neurologists for quick review of epileptic events and their statistics. This mode
allows saving of all the epochs labeled as epileptic events and discarding the non-
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Table 13. Adaptive compression results using Arithmetic scheme[17].

Mean Max Min

CR 5.208 6.123 4.072

PRD (%) 10.77 19.93 6.256

PRD epileptic epochs only (%) 5.63 7.84 3.44

PRD non-epileptic epochs only (%) 11.33 19.26 94.69

Table 14. Data reduction ratio[17].

Serial Noe

1 6.2

2 6.5

3 7.1

4 7.6

epileptic epochs. Rest of the data is then compressed. The compression versus
distortion performance is nearly the same as in Table 1 and Table 2. Compression
after selective data reduction effectively reduces the overall file size as compared
to the raw EEG compression file. Table 14 shows the data reduction ration (DR)
for different threshold levels. Experiment with re-classification of decompressed
data generated singular all epileptic classification labels as expected.

5 Discussion and Future Prospects

i -NSS is an ongoing alive project with the expectation to report more develop-
ments in future. The performance results both for classification and compression
has been reported in our earlier publications [6,16,17] and the current one that
has been shown to be state-of-the-art. The system was initially deployed as an
analysis tool for Punjab Institute of Mental Health (PIMH) and our earlier pub-
lication [6,16] also presented results on PIMH database. We would be going for
more extensive clinical feedback in near future. The key focus in this regard
would be to formalize a new EEG summarization and compression format that
can be used to store the compressed data, classification information along with
clinical annotations for storage and later retrieval according to various cases dis-
cussed in this paper. One of non-trivial work would be the incorporation of the
artefact reduction and filtering tool in the EEG signal before the actual analysis
processing. For further performance improvement of our system, we intend to
try out other wavelet families for analysis and Deep Learning approaches for
classification. On the compression side we like to exploit lossless methods as well
that keep the PRD still below 10%.

The expectation with automatic and semi-automatic support system is now
increasing towards the requirement of supporting the neurologist in diagnosis
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of the epilepsy type and identifying specific epileptic patterns appearing in the
EEG. There are almost ten types of epileptic patterns as mentioned by Noachtar
et al. patterns like spikes, sharp wave, benign epileptic discharges of childhood,
spike-wave complexes, slow spike-wave complexes, 3-Hz spike-wave complexes,
polyspikes, hypsarrhythmia, seizure pattern, status pattern are considered as
epileptic [6]. One challenge to move in this direction is that no open dataset
is available to support this research and would require simultaneous effort of
building a pre-marked data to this effect. Long-term prospects of this tool lay
in extending the system for other neurological disorders. This especially include
EEG analysis in diagnosis of Sleep Apnea, which is also a common Neurological
disorder encountered by the Neurologists. In recent years, research regarding the
development and utilization of biomarkers for diagnosis and even early diagnosis
of Alzheimer/Parkinson disease is picking up while some work on EEG analysis
for Autism can also be found in literature [4]. As databases are still rare for these
diseases, the tool can aid neurologists to gather and build databases of potential
biomarkers for research in this area.

6 Conclusion

In this paper we have provided a comprehensive view for our ongoing i -NSS
project and updated the progress made in this regard. We also discussed the
future prospects of this on going work to extend it as a general clinician and
a research tool for the neurologists. The recently extended i -NSS system not
only can be used to support Neurlogists regarding initial diagnosis of commonly
occurring epilepsy type, Absence Seizure, but is also being extended for sup-
porting Neurologists in management of data of epileptic patients. In this regard
cases have been experimented with to summarize EEG file events, reduce data
and store it in a lossless compressed form.

For this extended system, we have explored the synergy between classification
and compression of epileptic EEG data. This is meant to make the processing
efficient and maintain the fidelity of the signal with original classification and
visual validation by the Neurologists. It successfully eliminates the need of tak-
ing DWT twice on the same data as would be required for separate compression
and classification task. The i -NSS incorporated in our framework performed dual
task. Firstly, it helped in intelligent compression of data by providing classifi-
cation labels for epileptic and non-epileptic data. We have used Arithmetic and
Huffman for encoding purpose and have achieved comparable compression and
reconstruction quality results. However, we have observed that optimal efficiency
may require a mix use of both approaches depending on the desired CR (Com-
pression ratio) and PRD (Percentage Root Mean Square Distortion). Moreover,
classification performed on decompressed signals yield nearly same results as
of the classification of raw EEG signals. The classification fidelity achieved is
greater than 99% based on this synergy between classification and compression.
This implies that artefacts produced in the signal due to compression do not
affect signal quality. It was found that by using the labels for classification from
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i -NSS we may improve our compression results. For example, in adaptive mode,
when we used the labels for epochs and compressed the epileptic epochs at low
and non-epileptic epochs at high threshold, we observed that we can maintain
low PRD of 5–6% for epileptic events at high overall compression ratios between
4–5. Firstly, this means that we can efficiently use the classification results to
reduce and compress the data. Secondly, it can also provide us with classified
data for storage of selective data that is deemed significant by the user. The
novel shared scheme employed, in which classification and compression of EEG
data simultaneously takes place, results in decrease in computational complexity
and increase in efficacy of the system.

In the coming future we are planning deployment of our system with the
clinicians for extensive field-testing. For that we intend to first complete the
development work on the format of compressed EEG data files supporting the
aforementioned cases. Another challenge will be incorporation of pre-processing
for effective filtering or suppressing the real-life EEG artifacts.
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Abstract. The detection of the idle state is a key feature in develop-
ing asynchronous steady-state visual evoked potential (SSVEP)-based
brain-computer interfaces (BCIs). Despite the large number of success-
ful SSVEP detection methods, only a few studies have explicitly included
the detection of the idle state. This work demonstrates the feasibility of
a novel autoregressive multiple model (AR-MM) probabilistic framework
for the detection of SSVEPs and the idle state. In a MM framework an
SSVEP is identified by selecting one of the candidate models, each rep-
resenting a particular SSVEP class, that best represents the dynamics of
the data. An average classification accuracy of 78.94 ± 10.28% and an
information transfer rate (ITR) of 28.85 ± 9.39 bpm are obtained for the
6-class SSVEP dataset in a longitudinal study. Furthermore, this work
quantifies the performance of the AR-MM framework, that provides a
measure of probability, for idle state detection. An average area under
curve (AUC) of 0.83 is achieved with different threshold settings for idle
state detection. The idle state could be detected with 81% average accu-
racy when considering maximum idle state and non-idle state detection
rates. The results, obtained from a single-channel analysis, validate that
the AR-MM framework is a good candidate for SSVEP detection and
also for the idle state detection when compared with two multivariate
methods, the canonical correlation analysis (CCA) and its extension, the
filter bank canonical correlation analysis (FBCCA). With only a pair of
electrodes required for the AR-MM approach, this is more practical for
daily use of BCI applications, where a minimal amount of channels are
desirable.
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1 Introduction

Steady-state visually evoked potentials (SSVEPs) are electrical potentials evoked
in the brain in response to a repetitive visual stimulus that is flickering at a spe-
cific frequency [54]. This neural response consists of oscillatory activity at the
fundamental frequency and harmonics of the visual stimulus, and is prominent
in the occipital region of the brain. SSVEPs have been used in non-invasive elec-
troencephalogram (EEG)-based brain-computer interfaces (BCIs) by uniquely
associating the brain patterns, generated in response to the flickering visual
stimuli, to specific commands to control an application [5,31,34,56].

An SSVEP-based BCI may be asynchronous (self-paced), giving the user the
flexibility of voluntarily issuing a command at any time instant independently
of any cues, unlike synchronous (cue-based) BCIs [8]. This requires more com-
plex SSVEP detection techniques because the BCI must be able to distinguish
between an SSVEP response and background or noise EEG. The former refers
to an intentional control (IC) state [16], also referred to as the work state [41],
where the user requests control of the system by attending to a stimulus. The
latter refers to a non-intentional control (NC) state [57], also typically referred
to as the idle state [45], no control state [8] or rest state [19], which occurs while
the user is not attending to any of the stimuli. Compared to the vast number of
SSVEP detection methods developed, there are a limited number of studies that
are focused on the detection of the idle state in SSVEP-based BCIs. The two
main idle state detection techniques are the threshold-based approach for reject-
ing/confirming idle states, and alternatively the training of a supervised classifier
with control and idle states [19]. The determination of an idle state has also been
addressed by the use of an on/off BCI switch, or by setting a time threshold that
limits the execution of a control state until this is validated. A detailed review of
the different idle state detection methods applied to asynchronous SSVEP-based
BCIs found in the literature is given in Sect. 2.

This work investigates multiple models (MMs) as an alternative approach
to current SSVEP detection methods. The concept of MMs in adaptive control
was primarily introduced to efficiently deal with large and abrupt time-varying
parameters of control systems [28,32]. Some control systems may have various
behaviours suited for different environments. These systems should be able to
recognize the specific environment and adapt in a rapid and efficient manner to
these time-varying environments [40]. The basic assumption of MMs techniques
is that a system may be represented by a finite number of models known a priori.
However, at a particular time instant only one model or a mixture of the models is
expected to provide a correct representation of the system. The problem of state
estimation is reduced to the search of which model from the set of known models
best represents the actual system at any given time [17]. The same concept has
been applied as a classification technique to time series data and particularly of
interest to biosignal data [6,13,42,44,47,50,65]. An SSVEP response consists of
an oscillatory activity at a specific frequency that is well defined and distinct
from background EEG activity. In an SSVEP-based BCI, as a user attends to
different flickering stimuli, the EEG data recorded is expected to change from
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Fig. 1. Expert models each representing different SSVEP classes.

one state to another, representing distinct oscillatory activities in response to the
different flickering visual stimuli. In this work it is shown that a MM framework
is able to capture the different states of the EEG data.

In a MM approach different models may be trained to represent the different
states of the data, each referred to as an expert model [25]. For an SSVEP-based
BCI, each expert model would represent an SSVEP class that is attributed to a
specific flickering stimulus, as shown in Fig. 1. This means that an SSVEP class
can be identified by selecting one of the candidate models that best represents
the current state of the data. In this work, each expert model is represented as a
linear Gaussian state space model [20] with an autoregressive process. The use
of parametric models, particularly autoregressive (AR) models and its variants,
have been successfully applied to the analysis of EEG signals. For example,
AR models have been used in spectral estimation [10,27,46,52], artifact/noise
rejection [1,9,18,21,22,24,55] and for the estimation of the cortical functional
connectivity [3]. In BCI related literature AR features are also commonly used
directly for classification [26,48,51,66], however in this work AR models are
used for prediction. The residual between the actual and predicted data is used
to determine which model best represents the data. This residual is incorporated
within a probabilistic framework in order to provide a probabilistic decision for
classification [6].

A novel autoregressive multiple model (AR-MM) probabilistic framework has
been presented for the detection of SSVEPs in BCIs in our previous work [62].
The proposed framework was compared to a number of other SSVEP detec-
tion techniques using a 12-class SSVEP dataset from 10 subjects [36]. The
results obtained revealed that the univariate AR-MM probabilistic approach
can yield a significant improvement in performance compared to power spectral
density analysis (PSDA), a standard single-channel SSVEP detection method.
The method was also compared to two state-of-the-art multivariate methods,
specifically the canonical correlation analysis (CCA) and its extension, the fil-
ter bank canonical correlation analysis (FBCCA) methods. The results showed
only a slightly lower performance compared to the CCA and FBCCA methods,
specifically of 2.29% and 3.73%, respectively, with the advantage of requiring
only a single-channel for SSVEP detection.
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In this study, an extension of the investigation on the proposed AR-MM
framework is presented, with the following goals:

(i) To demonstrate the feasibility of the AR-MM probabilistic framework for
SSVEP detection on a larger dataset, which includes 6 SSVEP classes and
an idle class, with data recorded from 10 subjects and repeated over three
different days, such that the variation in performance is also investigated
longitudinally.

(ii) To quantify the performance of the AR-MM framework with the inclusion of
idle state detection, specifically demonstrating that the framework provides
a measure of probability for each SSVEP class, which can be used as a
measure of certainty in the decision making process of idle state detection.

(iii) To compare the performance of the single channel AR-MM framework for
idle state detection with the performance of two standard multi-channel
SSVEP detection techniques, specifically CCA and FBCCA, thus extend-
ing our previous work by demonstrating that even when incorporating the
idle state detection the performance of the AR-MM framework remains com-
parable to the multi-channel methods while being more practical for real
world BCI applications due to the lower number of required channels.

This article is organised as follows. A literature review on the different idle state
detection techniques found in SSVEP-based BCI literature is given in the next
section. Section 3 then gives a detailed mathematical description of the proposed
AR-MM probabilistic framework for SSVEP detection which is followed by an
overview of the reference SSVEP detection methods used for comparison in this
study. The dataset containing both SSVEP and idle state classes is presented in
Sect. 4 and the results obtained with the AR-MM probabilistic framework are
presented in Sect. 5 and compared to the performance of the reference methods.
Classification is initially based on SSVEP classes only and then the detection
of the idle state class is also introduced. The results are then evaluated and
discussed in Sect. 6.

2 Literature Review on Idle State Detection
in SSVEP-based BCIs

The detection of the idle state is an essential feature for asynchronous BCIs. A
literature review of the idle state detection methods applied in SSVEP-based
BCIs has been conducted and the methods have been grouped into four cate-
gories as defined below:

• The threshold-based approach is the most common method for idle state
identification in SSVEP-based BCIs [8,19,45]. This is a two-step process in
which a standard SSVEP detection technique is primarily used to extract
SSVEP features from an unlabelled trial. In the second step the features
extracted are used to determine if the EEG data corresponds to an actual
SSVEP trial or an idle state trial. Generally the feature with the largest
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value is associated with the target SSVEP class and this value is typically
significantly larger than the values of the features associated with the rest
of the non-target SSVEP classes. It is therefore assumed that in the case
of an idle state trial, (i) the largest feature value obtained is relatively less
than that typically obtained by a target SSVEP trial and (ii) that all the
features obtained have equally low values. Based on these two assumptions,
a threshold is set to distinguish between an SSVEP class and an idle state
class. In some works this is done by fixing a threshold on the maximum feature
value, which specifies if this is large enough to be considered as an SSVEP
class or otherwise [8,67]. In other works a threshold on the difference among
all the feature values is set to determine the confidence level of selecting a
target SSVEP class [2,35,57,64]. The features obtained in the first step may
be projected into a probability space before a threshold is set on the original
features [8,33]. The selection of the thresholds may be fixed [8], subject-
specific [64] or adaptive [2]. These thresholds vary significantly the level of
sensitivity and specificity of the BCI system. Depending on the application,
different rate of false positives with respect to false negatives may be preferred
[45,67].

• Another idle state identification approach is that of a BCI with a trained
classifier that is able to distinguish an idle state class from SSVEP classes
[19]. This means that labelled idle state data and SSVEP state data are used
for training. In case of an unlabelled trial, SSVEP features are first extracted
using a standard SSVEP detection technique and then these features are fed
to a supervised classifier. Binary classifiers such as the support vector machine
(SVM) [53,63], k-means cluster analysis [49], and linear discriminant analysis
(LDA) [41] trained to discriminate between idle state class and one SSVEP
class have been implemented. In the case of multiple SSVEP classes, a second
classification criteria is taken after results are obtained from the multiple
binary classifiers. Alternatively, multiclass classifiers have also been applied
in which case the classifier is specifically trained to discriminate the idle class
from several other SSVEP classes [1,16,58,60].

• A different approach that has been used involves the introduction of an on/off
switch, sometimes also referred to as a brain switch, that switches the BCI
system on and off. A dedicated SSVEP flickering stimulus may be used to
control the on/off state of the BCI, that is the start/stopping of the rest
of the flickering stimuli corresponding to the different BCI commands [14,
29,45]. In this way, the idle state identification problem is only encountered
when starting the BCI, during which only one stimulus corresponding to
the BCI switch is flickering. Once the system is activated it works only in
synchronous mode. Alternatively, hybrid BCI switches that combine SSVEPs
with an additional physiological signal have also been developed [7,23], in
which case the idle state detection is completely avoided.

• Another indirect approach to tackle non-intentional control states is achieved
by the setting of a time threshold that limits the issuing of a control state.
In this way a control signal is executed only if the identification of the same
SSVEP class is maintained for a determined period of time. Otherwise the
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system remains in a no control state. This technique has been used to reduce
false negatives [15,43] or to adjust the individual SSVEP detection time in a
dynamic stopping approach [39].

In this work a threshold-based approach is taken to distinguish the idle state
from the SSVEP classes in the AR-MM probabilistic framework. The separabil-
ity between idle state and non-idle state features is first evaluated using the area
under the receiver operating characteristics (AUROC) curve and this is com-
pared to the separability obtained using the CCA and FBCCA methods. This
gives an overall indication of the measure of separability between features with-
out the subjective selection of a threshold value. The detection of the idle state
was then evaluated in terms of classification accuracy where different thresholds
were chosen to find the best compromise between the idle state and non-idle
state detection rates.

3 Methodology

3.1 Autoregressive Multiple Modelling (AR-MM) Probabilistic
Framework

In this section, a mathematical description of the AR-MM probabilistic frame-
work specifically applied to detect SSVEPs from a single channel of EEG data is
presented. In this multiple model approach, different expert models, which are
assumed to be autoregressive, represent different SSVEP classes. An unknown
SSVEP class is then identified by selecting one of the candidate models that best
represents the dynamics of the EEG data.

Let Y T = y1, ..., yT be a sequence of EEG data having dynamics that depend
upon the sequence of p-dimensional latent state variables XT = x1, ...,xT . Thus
the joint distribution between XT and Y T of a linear Gaussian state space model
that follows a Bayesian network is given by [20]:

p(XT ,Y T ) = p(x1)
T∏

t=2

p(xt|xt−1)
T∏

t=1

p(yt|xt) (1)

where p(·) denotes the probability density function and xt is assumed to be a
continuous real-valued hidden state variable. Assuming linearity and Gaussian-
ity, the state space model is represented by the following state and measurement
equations:

xt = Φxt−1 + wt (2)

yt = Htxt + vt (3)

where yt is the observed EEG data from a single channel at time t, xt =
[−a1, ...,−ap]� is the hidden state vector made up of p autoregressive parame-
ters, Ht = [yt−1, ..., yt−p] is the observation vector made up of p past EEG data
samples, Φ represents the state transition matrix, and wt and vt are two inde-
pendent Gaussian noise processes assumed to have zero mean and covariance Q
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and variance R, respectively. In this work, Ht is taken to consist of the past p
narrow band pass filtered EEG data, specifically filtered around the first H har-
monic frequency components corresponding to the SSVEP class being modelled
by that state space model, and yt is made up of unfiltered EEG data at time t.
Apart from the unknown AR parameters xt, the unknown parameters that char-
acterise the model are collectively represented by Θ = [R,Q,Φ,μ,Σ], where μ
represents the initial hidden state vector and Σ its corresponding covariance.

In a MM system, a set of N expert models each represented by unique state
space Eqs. (2) and (3) and having system parameters Θi for i = 1, ..., N , need to
be trained. The training process to learn these system parameters Θ is described
in the next section. Once the different models are trained to represent each of
the classes in the system, a probabilistic approach may be used to identify which
of the candidate models best represents the data.

Under this framework, the posterior probability for each model M i given Y t,
which represents the observed EEG data up till time t, is given by Bayes’ rule
as follows [17]:

Pr(M i|Y t) = Pr(M i|yt,Y t−1) =
p(yt|M i,Y t−1)Pr(M i|Y t−1)

∑N
j=1 p(yt|M j ,Y t−1)Pr(M j |Y t−1)

(4)

where Pr(M i|Y t−1) is the prior probability and p(yt|M i,Y t−1) is the likelihood
function. The likelihood function for each MM is assumed to be Gaussian with
mean ŷi

t and covariance Ci
t is estimated as follows:

p(yt|M i,Y t−1) = − 1
(2π)

1
2 |Ci

t | 1
2
exp− 1

2 (yt−ŷi
t)

′(C i
t)

−1(yt−ŷi
t) (5)

In Eq. (5), (yt − ŷi
t) represents the difference between the observation yt and

its mean estimate ŷi
t, referred to as the residual. The mean estimate of the

observation ŷi
t is given by:

ŷi
t = Hi

t x̂
i
t|t−1 (6)

where x̂i
t|t−1 denotes the conditional expectation of state xt. In Eq. (5), Ci

t is
the variance of ŷi

t estimated as follows:

Ci
t = Hi

tP
i
t|t−1H

i�
t + Ri (7)

where P i
t|t−1 denotes the corresponding state estimation error covariance.

When evaluating the posterior probability Pr(M i|Y t) in Eq. (4), the prior
probability of the model Pr(M i|Y t−1) is taken into consideration. The prior
probabilities are here set to be uniformly distributed, that is, each model has
equal chance of modelling new data. This was done by setting all prior proba-
bilities equal to 1/N , where N represents the number of models.

Given the assumption of stationarity within a fixed time window, a non-
adaptive approach is considered, where the hidden state vector and its covariance
are not updated but remain constant over time. Therefore, the initial state vector
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Fig. 2. AR-MM probabilistic framework with N expert models acting as candidates
to model the observed sequence yt. The model M∗ that has the highest posterior
probability is considered as the model that best represents the data [62].

and its corresponding covariance remain the same μ = xt and Σ = Q. Conse-
quently in Eqs. (6) and (7), the initial state vector and corresponding covariance
are used to calculate the posterior probability, x̂i

t|t−1 = μi and P i
t|t−1 = Σi for

all t. It follows that Φ = I in Eq. (2).
Under this framework, N probabilities corresponding to the N models are

obtained at each time instance with Eq. (4). The model M∗ that has the maxi-
mum a posteriori (MAP) probability is then considered as the model that best
represents the incoming data from the set of available models. Figure 2 shows a
block diagram of the AR-MM probabilistic framework.

Training for the Probabilistic AR-MM Framework. The process of learn-
ing the AR parameters xi

t and system parameters Θi in a multiple modelling
framework requires SSVEP training data for each class. Let zi be a vector of
a single channel SSVEP EEG data, with i = 1, ..., Nf representing the num-
ber of target stimulus frequencies. This data is then narrow band pass filtered
around the fundamental frequency f and the first H harmonic components cor-
responding to the SSVEP class i and is represented here by zif . The estimation
of parameters xi

t and Θi is then being carried out as follows [62]:

• The AR parameters xi
t for the expert model M i are found using the filtered

training data zif . AR parameters are estimated using Burg’s method and the
length of xi

t represents the AR model of order p which was here set to 20.
• The unknown variance R is estimated from Eq. (3), where the observa-

tion vector yt is replaced with training data zt, i.e. vt = zt − Htxt. In
this case Ht represents p past narrow bandpass filtered training data, i.e.
Ht = [zft−1 , ..., zft−p

]. The variance σi
l of the resulting vt is obtained from

each training trial of all the classes i = 1, ..., Nf , where l = 1, ..., L represents
the number of training trials. The mean variance across all the training trials
gives R, i.e. R = 1/(NfL)

∑Nf

i=1

∑L
l=1 σi

l .
• The unknown covariance Qi for model M i is estimated from Eq. (2), where

for the non-adaptive approach xi
t = xi

t−1 + wt. Therefore, the covariance of
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xi
t ∈ IRp obtained from AR parameters across different training trials gives

Qi ∈ IRp×p.
• As discussed earlier, following the non-adaptive approach, the rest of the

unknown system parameters are defined as μ = xt, Σ = Q and Φ = I.

3.2 Comparative Methods

The performance of the proposed AR-MM method is compared to a single-
channel PSDA method, as well as the CCA and FBCCA multi-channel methods.
In our previous study [62] the results obtained for the single-channel AR-MM
probabilistic framework showed significant improvement over the single-channel
PSDA method. Even more promising, the classification accuracies obtained were
only slightly lower compared to the multichannel methods, CCA and FBCCA, for
most time windows. As an extension of the previous work [62], a threshold-based
idle detection method is used for AR-MM, CCA and FBCCA and their relative
performances is compared using a new SSVEP dataset which also includes the
idle state. A brief mathematical description of CCA and FBCCA is presented
below.

Canonical Correlation Analysis (CCA). In the literature, CCA is one of
the most frequently used methods to detect SSVEPs and is generally used as
a reference method with respect to which new SSVEP methods are compared
[61]. In CCA the underlying correlation between two sets of multidimensional
variables is determined. In this case the correlation between multi-channel EEG
signals and a set of sine-cosine reference signals that model the SSVEPs evoked
by each stimulus frequency [30].

Let Y and Xf be two multidimensional variables representing the multi-
channel EEG signals of length T and a set of SSVEP reference signals of the
same length as Y , respectively. The sine-cosine reference signals Xf for the
target stimulus frequency f are defined by [4]:

Xf =

⎛

⎜⎜⎜⎜⎜⎝

sin(2πf t
Fs

)
cos(2πf t

Fs
)

...
sin(2πHf t

Fs
)

cos(2πHf t
Fs

)

⎞

⎟⎟⎟⎟⎟⎠

�

, t = 1, . . . , T (8)

where Fs is the sampling frequency, T is the number of samples and H is the
number of harmonics. In this work the number of harmonic frequency compo-
nents was set to H = 3.

CCA finds the linear combinations y = Y �Wy and xf = X�
f Wxf

, such that
the correlation between the two canonical variants y and xf is maximized [30].
The weight vectors Wy and Wxf

are found by solving the following optimization
problem [38]:
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Fig. 3. Representation of the experimental protocol. Each trial consisted of an initial
1 s interval during which all 6 stimuli were static. A visual cue then instructed the
user to direct their attention to one target stimulus highlighted in red for a stimulus
trial or to the centre of the screen for an idle trial. After this 1 s cue, all the 6 stimuli
flickered for 5 s at their respective frequency. Subjects directed their attention either
at the target stimulus, or at the centre of the screen for a stimulus or an idle trial,
respectively. This stimulus period was followed by a blank screen which indicated the
end of the trial [59]. (Color figure online)

max
W y,W xf

ρf (y, xf ) =
E[y�xf ]√

E[y�y]E[x�
f xf ]

=
E[W �

y Y Xf
�Wxf ]√

E[W �
y Y Y �Wy]E[W �

xf
XfXf

�Wxf ]

(9)
For each reference signal, a maximum canonical correlation ρf is obtained and

used as an SSVEP feature. The hypothesis is that the reference signal with the
largest correlation contains SSVEP at the same frequency as the stimulus signal.

Filter Bank Canonical Correlation Analysis (FBCCA). Various CCA
extensions have been developed in the literature [61]. The FBCCA method is
one of the CCA variants that has been shown to improve the frequency detec-
tion of SSVEPs [11]. This filter bank has also been applied to different SSVEP
detection methods as a pre-processing step before feature extraction [12,37]. The
FBCCA method decomposes SSVEPs into multiple sub-band components and
performs separate CCAs between each of the sub-band components and sine-
cosine reference signal to obtain a weighted sum of the canonical correlation
coefficients from each band.

The filter bank designed consists of K sub-bands covering multiple harmonic
frequency bands [11]. In this work the lower and upper cut-off frequencies of
the kth sub-band were set to k × 6.67 Hz 80 Hz respectively, and the number of
sub-bands was set to K = 4. The correlation values between the sub-band com-
ponents YSBk

, k = 1, ...,K from the original EEG signals Y and the reference
signals Xf corresponding to all stimulation frequencies f are estimated to form
a correlation vector ρf = [ρ1f , . . . , ρKf ]�.

A weighted sum of squares of the correlation values corresponding to all
sub-band components is then calculated as the feature for SSVEP detection as
follows [11]:

ρ̃f =
K∑

k=1

w(k) · (ρkf )2 (10)

where w(k) are the weights of the sub-band components. These weights are set
by the observation that the signal to noise ratio (SNR) of SSVEP harmonics
decreases as the response frequency increases [11]:
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w(k) = k−a + b, k = 1, ...,K (11)

where a and b are constants that maximize the classification performance and
were fixed to 1.25 and 0.25 respectively, based on the findings in [11]. The fre-
quency of the reference signals having the maximum correlation ρ̃f is then con-
sidered to be the target stimulus.

4 Materials

The dataset used in this study was originally used in our previous work in a
comparative study to analyse the effect of distractors in SSVEP-based BCIs
[59]. The segment of data with no external distractors is used for this work. Ten
healthy subjects participated in this study, which was approved by the Univer-
sity Research Ethics Committee at the University of Malta. All volunteers had
normal or corrected-to-normal vision and were free from any medication known
to affect EEG recordings. Subjects went through a screening process and were
excluded from the study if they had known neurological conditions, a history of
epilepsy, seizure, or any adverse reaction to light or pattern stimulation. Two of
the subjects had previous experience with EEG recordings, however only one of
the subjects had experience with SSVEP setups.

Each subject participated in three recording sessions, with approximately
three weeks between each session. Experiments were conducted in a quiet
research laboratory where subjects were seated approximately 1 m away from
a 15.4” LCD screen. During the experiments, subjects were instructed to direct
their attention towards one of the six flickering stimuli presented as white squares
on a black background, following the protocol shown in Fig. 3. The six stimuli
presented were 6.67 Hz, 7.50 Hz, 8.57 Hz, 10.00 Hz, 12.00 Hz and 15.00 Hz, chosen
as divisors of the display refresh rate 60 Hz. In addition to the SSVEP data, an
idle state was recorded during which the subjects were instructed to focus at
a fixation cross at the centre of the screen and ignore all the flickering stimuli.
Each stimulation frequency and idle state was presented for 10 repetitions in a
randomized order.

EEG data from eight active electrodes positioned over the occipital and pari-
etal regions at locations O1, Oz, O2, PO7, P03, POz, PO4 and PO8, with a
common ground at AFz and reference electrode at A2 were used in this analy-
sis. g.tec g.ACTIVE electrodes and two g.USBamp biosignal amplifiers with a
sampling rate 256 Hz were used to acquire the EEG data. The data was digitally
bandpass filtered between 6–80 Hz and a latency delay in the visual system of
135 ms was considered after each stimulus onset. No artifact removal was carried
out.



274 R. Zerafa et al.

Fig. 4. An example of the spectra of a set of trained AR models representing the six
SSVEP classes.

5 Results

AR Models. Six AR models were trained, one for each of the 6 SSVEP classes
in the dataset. The training data was narrow band pass filtered around the
first three harmonic frequency components H = 3 corresponding to the actual
SSVEP response such that background activity not corresponding to the SSVEP
response is filtered out and hence not modelled. An AR model of order 20 was
then fit to the data. Given the narrow band filtering done at the pre-processing
stage, this model order was found to give a good representation of the data
irrespective of the stimulus class. A set of AR parameters xi

t = {−a1, ...,−ap},
for each model i = 1, .., Nf was then obtained using Burg’s method, where
Nf = 6 is the number of stimuli classes. Figure 4 shows the spectra of 6 trained
AR models, as an example. Each trained AR model, having parameter vectors
xi
t, was then used to estimate ŷt, the predicted value of yt using Eq. (6).

SSVEP Classification Results of the AR-MM Probabilistic Frame-
work. As a first step, the classification between the SSVEP classes only is
considered and then the identification of the idle state is included in the next
section. In order to compare the performance of the AR-MM probabilistic app-
roach with that of the CCA and FBCCA methods, batch mode classification is
considered in which each trial is first segmented and then passed through the
AR-MM probabilistic process. Labelling of one trial is done by finding:

arg max
M

T∑

t=1

Pr(M i|Y t) (12)

where T is the time window considered. Different window lengths for SSVEP
detection are evaluated in this analysis. The classification accuracy was estimated



Idle State Detection with an Autoregressive Multiple Model 275

Fig. 5. Performance comparison of the AR-MM probabilistic framework, CCA and
FBCCA methods. (a) Average classification accuracy (%) and (b) ITR (bpm) across
all subjects for different time windows (s).

by considering 2 trials per class as training data to generate the AR parameters
xt of the 6 AR models, together with the noise covariances R and Q, and the
remaining 8 trials were used for testing. A minimum of 2 training trials were
necessary to estimate the covariance Q of the state vector. Cross validation was
then carried out by repeating the process five times such that all of the 10 trials
per class were considered once for training, and then an average classification
accuracy was computed. The information transfer rate (ITR) in bits per minute
(bpm) [56] is also presented as a performance measure and was calculated as:

ITR =
60
T

(
log2 Nf + P log2 P + (1 − P ) log2

(
1 − P

Nf − 1

))
(13)

where P is the classification accuracy, and T is the average time for selection in
seconds. An additional gaze shifting time of 1 s was included in the estimation
of the ITR.

Figure 5 shows the average classification accuracy (%) and ITR (bpm)
obtained with the AR-MM probabilistic framework across all subjects and ses-
sions for different data lengths from 0.5 s to 4 s, in steps of 0.5 s. The performance
of the AR-MM probabilistic approach is compared with that of the CCA and
FBCCA methods. In the case of the AR-MM probabilistic approach, the per-
formance for each bipolar channel combination was computed and the highest
performance associated with the best bipolar channel (BBC) was reported. On
the other hand, all 8 channels were used in the estimation of the CCA and
FBCCA multivariate methods.

To compare the performance of the proposed AR-MM probabilistic frame-
work with the reference SSVEP detection methods, two-way repeated measures
ANOVA were performed on the classification accuracies obtained across all the
time windows. This indicated no significant (p > 0.05) differences between the
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Fig. 6. (a) Classification accuracy (%) and (b) ITR (bmp) of the 10 subjects obtained
in the 3 sessions with the AR-MM probabilistic framework for a 2 s time window.

classification accuracies obtained by the single channel AR-MM probabilistic
framework compared to both multichannel methods, the CCA and the FBCCA
methods, for all time windows. There was also no significant (p > 0.05) differ-
ences between the classification accuracies of the CCA and the FBCCA methods.

Figure 6 provides insight on individual subjects’ performance across the 3
sessions recorded on different days with the AR-MM probabilistic framework for
a time window of 2 s. The results obtained demonstrate that there is a large
variation in performance between sessions of the same subject. In fact there is
no particular trend in which performance varied across sessions for each subject.
For example, Subject 1 obtained a consistent overall SSVEP classification accu-
racy between the 3 sessions while Subject 8 had a considerable difference in the
classification accuracy for the 3 sessions.

Since the results obtained in consecutive sessions did not show consistent
performance, the data from all 3 sessions of each subject were grouped to depict
an overall individual subject performance. Table 1 shows the average results
of each subject obtained with the AR-MM probabilistic framework for a 2 s
time window. The performance varied significantly between subjects, from a
maximum classification accuracy of 98.33% and ITR of 48.70 bpm for Subject 1,
to a minimum classification accuracy of 61.67% and ITR of 14.90 bpm for Subject
3. In fact the classification accuracy was above 80% for 6 subjects, between 70%
and 80% for 2 subjects, and between 60% and 70% for the remaining 2 subjects.

Idle State Detection. In this part of the analysis the idle state trials were
added to the SSVEP trials. The same features described in Sect. 3 were obtained
for each trial, including the idle state trials. Figure 7 shows the features obtained
by each method for each SSVEP and idle state trials.
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Table 1. AR-MM results for the 10 subjects averaged over the 3 sessions with a 2 s
window and 1 s gaze shift.

Subject Accuracy (%) ITR (bpm)

1 98.33 48.70

2 83.89 32.02

3 61.67 14.90

4 86.11 34.83

5 68.34 19.88

6 82.22 30.31

7 80.55 29.00

8 80.56 31.61

9 77.22 26.30

10 70.56 20.92

Mean ± STD 78.94 ± 10.28 28.85 ± 9.39

Fig. 7. Average SSVEP features of the (a) CCA, (b) FBCCA, and (c) AR-MM methods
obtained per class with a 2 s window.

In the case of the CCA method, a maximum canonical correlation ρf was
obtained for each class and used as a feature. Similarly, a weighted sum of squares
of the correlation values corresponding to all sub-band components ρ̃f were used
as features in the FBCCA method. Figure 7(a) and (b) show ρ̄f and ¯̃ρf that
represent the CCA and FBCCA features respectively averaged across all trials
and sessions. The features obtained with the AR-MM probabilistic framework for
each trial were Si =

∑T
t=1 Pr(M i|Y t), where T is the time window considered.

Figure 7(c) shows the mean of these features over all sessions, cross validations
and trials, i.e. S̄i = 1

30×5×8

∑30
Ns=1

∑5
Ncv=1

∑8
Ntrial=1 Si, where Ns is the number

of sessions, Ncv is the number of cross validations, and Ntrial is the number of
testing trials per class.

In the case of the AR-MM probabilistic framework, the model that has the
MAP probability at each sample is considered as the model which best represents
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Fig. 8. Average histograms presenting the distributions of diagonal vs. non-diagonal
features shown in Fig. 7 of the (a) CCA method, (b) FBCCA method, and (c) AR-MM
probabilistic framework.

the SSVEP data. The probabilities of the other five models are expected to have
a lower probability of representing the data.

Figure 7(c) shows this clearly whereby the sum of probabilities Si for each
trial are larger along the diagonals of the first six rows, corresponding to the six
SSVEP classes, then on the non-diagonals. For the idle class however, which is
represented by the 7th row in Fig. 7(c), all Si values are relatively low, meaning
that none of the trained AR models on SSVEP data may adequately represent
the idle state data. A similar trend can be observed for both the CCA and
FBCCA reference methods, in which case the correlation coefficients are consid-
ered as features. It was also observed in these figures that some features which
are not along the diagonal also had relatively high values. In these occurrences
the SSVEP classes have harmonics that coincide with those of other stimulating
frequencies. For example, the 7.50 Hz SSVEP trials have the second harmonic
which corresponds with the first harmonic of the 15.00 Hz SSVEP trials. As a
consequence the 6th feature of the 7.50 Hz SSVEP trials and the 2nd feature of
the 15.00 Hz SSVEP trials are relatively large. Likewise the 6.67 Hz SSVEP trials
have the third harmonic conflicting with the second harmonic of the 10.00 Hz
SSVEP trials.

To analyse the distribution of the diagonal and non-diagonal feature values
shown in Fig. 7, histograms were obtained for each session. Figure 8 represents
the average of 30 histograms obtained across all subjects, with each of the SSVEP
detection method, from each session. To eliminate the effect of coinciding har-
monics, these particular features in the non-diagonals were not considered in
these histograms. For each method, the two distributions can be clearly iden-
tified and distinguished, where the features in the diagonal, corresponding to
SSVEP classes, all have larger features than those found in the non-diagonal.
Based on these distributions one can choose a threshold to distinguish the low
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Fig. 9. Average ROC curves of the AR-MM probabilistic framework, CCA and FBCCA
methods obtained with varying threshold values to distinguish between SSVEP classes
and idle state classes for a 2 s time window.

feature values from the high feature values, which clearly indicate an idle state
class or an SSVEP class respectively. The selection and optimization of this
threshold value varies the performance of the idle state detection significantly.

In order to classify the idle class, the largest feature value of each unlabelled
trial was evaluated with different threshold settings. If this was larger than the
threshold set, the trial was considered as an SSVEP class, else rejected as an
idle state class. A receiver operating characteristic (ROC) curve was obtained
with each method in Fig. 9, where every point on the curve represents the non-
idle state detection rate and the idle state detection rate obtained with different
threshold values. The ROC curves are averaged across all 30 sessions. In the case
of the AR-MM method these are also averaged across all cross validated sets.
After observing the feature distributions in Fig. 8, the thresholds on the largest
feature value, that is maxS for the AR-MM method, were varied between 70 and
105 in steps of 0.1. The thresholds on the max ρ and max ρ̃ were varied in steps
of 0.01 between 0.2 and 0.9, and between 0.5 to 2.4, for the CCA and FBCCA
respectively.

The area under the ROC curve (AUC) is then used as an overall indication
and comparison of the performance of the different methods in identifying the
idle state from the SSVEP classes without a subjective selection of thresholds for
each method. The average AUCs obtained are 0.83, 0.81 and 0.84 for the AR-
MM, CCA and FBCCA methods respectively. Paired t-tests were conducted
to analyse the difference in performance between the AR-MM approach and the
two reference methods across all the sessions. These indicated that no significant
(p > 0.05) difference was found between the AUCs of the AR-MM probabilistic
framework and the CCA method, and likewise between the AUCs of the AR-MM
probabilistic framework and the FBCCA method. These results also revealed
that the AUC obtained with FBCCA method was significantly (p < 0.05) larger
than the AUC of the CCA method.
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Fig. 10. Confusion matrices showing average classification accuracies (%) for the six
SSVEP classes and idle state class with the AR-MM method for a 2 s time window
obtained with (a) a threshold that obtains the maximum non-idle and idle state detec-
tion rates and (b) a threshold that obtains maximum idle state detection rate.

The ROC curve of Fig. 9 shows the relationship between the idle state-
detection rate, showing the percentage of correctly classified idle state, with
respect to the non-idle state detection rate, showing the percentage of SSVEP
classes classified as an SSVEP class. To get the best compromise between the two
rates, the threshold value closest to the point (1,1) on the ROC curve was found
using the Euclidean distance. For the AR-MM framework, this is equivalent to
a threshold value of 84.7 which corresponds to a non-idle state detection rate of
0.7 and an idle state detection rate of 0.8. Fig. 10(a) then presents the confusion
matrix associated with this threshold value, showing that the six SSVEP classes
can be classified with an average accuracy of 61.65% whereas the idle state can
be detected with 81.00% accuracy. This confusion matrix highlights the fact
that most misclassifications of the SSVEP classes were in fact misclassified as an
idle class. This is better than having the SSVEP class misclassified to another
SSVEP class as in practice a misclassification to an idle class implies that the
BCI will take no action and the user has to initiate another control signal.

Since in practice a delayed response may be preferred to an incorrect SSVEP
class label, one may opt to choose a threshold which corresponds to an idle state
detection rate close to 100%. Specifically, for the AR-MM framework, a threshold
value of 87.8 will give an idle state detection rate close to 1 and a non-idle state
detection rate of 0.4. Figure 10(b) shows the confusion matrix for this condition
where the idle state detection accuracy is now at 99.25%, at the expense of a
low SSVEP class detection accuracy. Most significant however, is the fact that
the incorrectly classified SSVEP classes have reduced to almost zero, which may
be ideal for a practical BCI.
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6 Discussion

The results obtained in the previous section demonstrate the potential of using
the proposed AR-MM probabilistic framework for the detection of SSVEPs as
well as the idle state in BCIs.

In our previous work [62] it was shown that AR models provide a good fit
for the EEG data by capturing the dynamics of the underlying SSVEP signal.
Therefore these were used as a model structure in the proposed probabilistic
multiple modelling framework. The standard approach of using AR models in
EEG analysis is to find AR parameters for incoming EEG data to form features
which can then be used for classification. In this work however, AR expert models
were trained for each SSVEP class, each of which has a distinct frequency, and
then used for prediction on new EEG data. The residual between the true and
the reconstructed signals was used to calculate the likelihood function in the
MM framework. A probability measure for each model in representing incoming
data was then obtained at each time instance and this result was then evaluated
to find which model gave the best representation within a fixed time window,
allowing batch mode classification as done with other state-of-the-art techniques.

The performance of the AR-MM probabilistic framework in detecting
SSVEPs was compared to the multivariate CCA and FBCCA methods. It must
be highlighted that multichannel SSVEP detection methods are known to bene-
fit from an optimized combination of multiple signals. In fact it has been shown
that this results in a greater robustness against noise and hence improved perfor-
mance compared to single channel methods [4,18]. The results obtained with the
single-channel AR-MM probabilistic framework, however, show that comparable
classification performance to the two considered multi-channel methods could
be obtained. Specifically, for the 6-class SSVEP data a classification accuracy
of 78.94 ± 10.28% and an ITR of 28.85 ± 9.39 bpm averaged over 30 sessions
with a 2 s time window was obtained, which was found to be comparable to the
performance obtained with the multi-channel CCA and FBCCA methods. In all
three cases, the SSVEP classification may have suffered because the dataset had
some stimulation frequencies with coinciding harmonics. This could be rectified
by the selection of different stimulation frequencies.

Since the same experiments were repeated by each subject on three different
days, we also analysed how the SSVEP performance with the AR-MM framework
varied longitudinally to mimic the use of a BCI system in real life. Although
the results varied significantly between subjects, a significant above-chance level
performance for the six class BCI system could be obtained with all the subjects
in all the sessions. No particular trend in performance could however be seen
as the sessions progressed, with some subjects showing consistent results across
the three sessions while the performance of other subjects varied considerably
between sessions.

Furthermore, we analysed the detection of idle state in SSVEP data using the
AR-MM probabilistic framework and compared it to the multichannel reference
methods. The features obtained for the idle state class were clearly distinct
from the SSVEP classes as observed from the feature distributions of the three
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methods. Having obtained these features, a simple threshold-based approach
was adopted to identify the idle state from the SSVEP classes. This was also
done to obtain a measure of performance which could be used as a comparative
measure between the three methods. The averaged ROC curves obtained in
Fig. 9 illustrate the performance of the AR-MM framework at various thresholds
compared with the reference methods. The AUC was used to compare the degree
of separability between the detection rates of the idle state and non-idle state
obtained without selection of a particular threshold. The AR-MM framework
obtained an average AUC of 0.83, which revealed a good measure of separability
between idle state and non-idle state. In addition, based on the AUC, the AR-
MM framework gave comparable results to the AUCs of 0.81 and 0.84 for the
CCA and FBCCA methods respectively, when trying to distinguish between an
idle state and non-idle state class.

This result can also be compared to results found in the literature that sim-
ilarly used the AUC to show the general performance of idle state detection
algorithms. Du et al. [16] obtained an average AUC of 0.89 and Zhang et al. [63]
obtained an average AUC of 0.94 to identify control versus no control states.
Notably in these two particular studies, supervised classifiers were used to dis-
tinguish between the two states. In the present study the features obtained could
similarly be fed to a supervised classifier, such as an LDA or SVM, and trained
specifically to distinguish between various stimuli and idle state classes. This
could potentially improve the performance of idle state detection with the draw-
back of requiring further user training, which may effect the practicality of the
system.

The ROC curve obtained with the AR-MM method was also used to show
the performance of the idle state detection that is dependent on the selection of
the threshold value. The average classification accuracy for idle state detection
with a threshold that gave the best compromise between idle and non-idle state
detection rates was of 81.00%, while with a threshold that maximized the idle
state detection rate, the classification accuracy was of 99.25%. The choice of this
threshold value depends on the particular BCI application. In some situations,
for example a BCI game, a shorter response time is beneficial at the expense
of some SSVEPs being misclassified. In other situations, such as in a brain-
controlled wheelchair, any incorrectly classified SSVEP classes may be dangerous
[45] and hence a slower BCI response time may be preferred.

An alternative to the proposed idle state detection method could be to specif-
ically train an additional model to represent the idle state class. In future work
this would involve the investigation of which model would best fit idle state data.
Once an expert model is trained for idle state this would be one of the candidate
models that may represent the EEG data in the multiple model framework.

7 Conclusion

A univariate autoregressive multiple model (AR-MM) probabilistic framework
for the detection of SSVEPs in BCIs was presented. The success of this technique
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to detect SSVEPs has been demonstrated in this work by its implementation on
a dataset in a longitudinal study. More importantly, we focus on the detection of
the idle state, which is a necessary feature in asynchronous BCIs. The motivation
behind this analysis was that despite the large number of successful SSVEP
detection methods that have been developed, few studies have been specifically
focused on the detection of the idle state in SSVEP-based BCIs.

The proposed framework provides a measure of probability for each SSVEP
class and this was used as a measure of selectivity between an idle state class and
an SSVEP class. Compared to popular multi-channel techniques, specifically the
CCA method and FBCCA method, the results revealed that the proposed single-
channel approach could similarly discriminate reliably idle state classes from
SSVEP classes. This further highlights the practicality of this single channel AR-
MM probabilistic framework, which can also be used in real-world asynchronous
BCIs where a minimal amount of channels are advantageous.

Acknowledgements. This work was partially supported by the project BrainApp,
financed by the Malta Council for Science & Technology through FUSION: The R&I
Technology Development Programme 2016.

References

1. Abu-Alqumsan, M., Peer, A.: Advancing the detection of steady-state visual evoked
potentials in brain-computer interfaces. J. Neural Eng. 13(3), 036005 (2016).
https://doi.org/10.1088/1741-2560/13/3/036005

2. Ajami, S., Mahnam, A., Abootalebi, V.: An adaptive SSVEP-based brain-computer
interface to compensate fatigue-induced decline of performance in practical appli-
cation. IEEE Trans. Neural Syst. Rehabil. Eng. 26(11), 2200–2209 (2018). https://
doi.org/10.1109/TNSRE.2018.2874975

3. Babiloni, F., et al.: Estimation of the cortical functional connectivity with
the multimodal integration of high-resolution EEG and fMRI data by directed
transfer function. Neuroimage 24(1), 118–131 (2005). https://doi.org/10.1016/j.
neuroimage.2004.09.036

4. Bin, G., Gao, X., Yan, Z., Hong, B., Gao, S.: An online multi-channel SSVEP-
based brain-computer interface using a canonical correlation analysis method. J.
Neural Eng. 6(4), 046002 (2009). https://doi.org/10.1088/1741-2560/6/4/046002

5. Blankertz, B., et al.: The Berlin brain–computer interface: non-medical uses of
BCI technology. Front. Neurosci. 4(198), 1–17 (2010). https://doi.org/10.3389/
fnins.2010.00198. http://journal.frontiersin.org/article/10.3389/fnins.2010.00198/
abstract

6. Camilleri, T.A., Camilleri, K.P., Fabri, S.G.: Automatic detection of spindles
and K-complexes in sleep EEG using switching multiple models. Biomed. Signal
Process. Control 10, 117–127 (2014). https://doi.org/10.1016/j.bspc.2014.01.010.
https://linkinghub.elsevier.com/retrieve/pii/S1746809414000111

7. Cao, L., Li, J., Ji, H., Jiang, C.: A hybrid brain computer interface system based on
the neurophysiological protocol and brain-actuated switch for wheelchair control.
J. Neurosci. Methods 229, 33–43 (2014). https://doi.org/10.1016/j.jneumeth.2014.
03.011

https://doi.org/10.1088/1741-2560/13/3/036005
https://doi.org/10.1109/TNSRE.2018.2874975
https://doi.org/10.1109/TNSRE.2018.2874975
https://doi.org/10.1016/j.neuroimage.2004.09.036
https://doi.org/10.1016/j.neuroimage.2004.09.036
https://doi.org/10.1088/1741-2560/6/4/046002
https://doi.org/10.3389/fnins.2010.00198
https://doi.org/10.3389/fnins.2010.00198
http://journal.frontiersin.org/article/10.3389/fnins.2010.00198/abstract
http://journal.frontiersin.org/article/10.3389/fnins.2010.00198/abstract
https://doi.org/10.1016/j.bspc.2014.01.010
https://linkinghub.elsevier.com/retrieve/pii/S1746809414000111
https://doi.org/10.1016/j.jneumeth.2014.03.011
https://doi.org/10.1016/j.jneumeth.2014.03.011


284 R. Zerafa et al.

8. Cecotti, H.: A self-paced and calibration-less SSVEP-based brain-computer
interface speller. IEEE Trans. Neural Syst. Rehabil. Eng. 18(2), 127–133
(2010). https://doi.org/10.1109/TNSRE.2009.2039594. http://ieeexplore.ieee.org/
document/5378643/

9. Cerutti, S., Chiarenza, G., Liberati, D., Mascellani, P., Pavesi, G.: A parametric
method of identification of single-trial event-related potentials in the brain. IEEE
Trans. Biomed. Eng. 35(9), 701–711 (1988). https://doi.org/10.1109/10.7271

10. Chen, L.L., Madhavan, R., Rapoport, B.I., Anderson, W.S.: Real-time brain oscil-
lation detection and phase-locked stimulation using autoregressive spectral estima-
tion and time-series forward prediction. IEEE Trans. Biomed. Eng. 60(3), 753–762
(2013). https://doi.org/10.1109/TBME.2011.2109715

11. Chen, X., Wang, Y., Gao, S., Jung, T.P., Gao, X.: Filter bank canonical correla-
tion analysis for implementing a high-speed SSVEP-based brain-computer inter-
face. J. Neural Eng. 12(4), 046008 (2015). https://doi.org/10.1088/1741-2560/12/
4/046008

12. Chen, X., Wang, Y., Nakanishi, M., Gao, X., Jung, T.P., Gao, S.: High-speed
spelling with a noninvasive brain-computer interface. Proc. Natl. Acad. Sci.
112(44), E6058–E6067 (2015). https://doi.org/10.1073/pnas.1508080112

13. Chen, Z. (ed.): Advanced State Space Methods for Neural and Clinical
Data. Cambridge University Press, Cambridge (2015). https://doi.org/10.1017/
CBO9781139941433

14. Cheng, M., Gao, X., Gao, S., Xu, D.: Design and implementation of a brain-
computer interface with high transfer rates. IEEE Trans. Biomed. Eng. 49(10),
1181–1186 (2002). https://doi.org/10.1109/TBME.2002.803536

15. Diez, P.F., Mut, V.A., Avila Perona, E.M., Laciar Leber, E.: Asynchronous BCI
control using high-frequency SSVEP. J. Neuroeng. Rehabil. 8(39), 1–8 (2011).
https://doi.org/10.1186/1743-0003-8-39

16. Du, J., et al.: A two-step idle-state detection method for SSVEP BCI. In: 2019 41st
Annual International Conference of the IEEE Engineering in Medicine and Biol-
ogy Society, pp. 3095–3098. IEEE (2019). https://doi.org/10.1109/EMBC.2019.
8857024. https://ieeexplore.ieee.org/document/8857024/

17. Fabri, S.G., Kadirkamanathan, V.: Functional Adaptive Control. Communications
and Control Engineering. Springer, London (2001). https://doi.org/10.1007/978-
1-4471-0319-6
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Abstract. The industrial site, particularly assembly lines, encompass
repetitive labour processes which are considered an ergonomic risk factor
for the onset of musculoskeletal disorders. Direct assessments methods
promote faster ergonomic feedback, supporting the development of sus-
tainable working conditions. This work presents an upper-body motion
tracker framework using inertial sensors to provide direct measurements
for ergonomics research. An experimental assessment performed by 14
subjects was completed in order to evaluate the joint angle reconstruction
of the proposed method while using the measures of an optical motion
capture system as reference. This study investigated the results of three
distinct complementary sensor fusion techniques, namely the quaternion-
based complementary filter, the Mahony filter and the Madgwick filter.
Furthermore, foreseeing the possibility of magnetic disturbance in indus-
trial environments, a comparison was conducted between methods that
use magnetic data, i.e. 9-axis, and other inertial-based approaches that
do not require magnetic information, i.e. 6-axis. A quantitative analysis
was performed using two metrics, the cumulative distribution function
and the root-mean-square error, hence, providing an evaluation for the
different sensor fusion approaches. The overall results suggest that the
9-axis Madgwick filter although noisier presents a more accurate angular
reconstruction.

Keywords: Ergonomics · Industry · Musculoskeletal disorders ·
Inertial sensors · Motion capture · Sensor fusion

1 Introduction

The recent years have introduced significant changes for industries which now
aim to achieve higher levels of operational efficiency and productivity while
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enhancing the products and production lines quality and reducing costs [10,17].
The change of paradigm, motivated by the rise of Industry 4.0, is launching
smart, more flexible and collaborative factories to meet the needs of current
demands of a competitive market. Although robots are becoming more common
in manufacturing environments human input is still a critical resource, partic-
ularly in assembly lines, where dexterity and flexibility are required [25]. The
industrial site usually comprises repetitive activities and cyclical labour [25].
Nevertheless, high repetitiveness, combined with high precision demands, may
result in the frequent occurrence of non-neutral postures, as well in incremented
muscular load and mental tension. The aforementioned conditions may con-
tribute to fatigue state and prompt Work-related Musculoskeletal Disorders
(WMSDs) eventually reducing the worker or system performance and product
quality [25].

One of the main occupational safety and health problems in the European
Union is still related to the exposure of ergonomic risk factors, despite the leg-
islative efforts to prevent them [14]. During the past years, the attention to
this issue has grown stronger becoming one of the main challenges for Strate-
gic Framework on Health and Safety at Work 2014–2020, which recommends
that work organisations should give attention to the impact of changes in terms
of physical and mental health [14]. WMSDs are not only a serious widespread
work-related illness but can also affect economics, as they lead to reduction of
productivity levels at work and social expenses, e.g. sick leave costs [9,13].

In order to prevent occupational illnesses, tasks/workplace and/or equip-
ment should be designed in a way that the working person does not put much
physical stress in the body. Therefore, data must be adequately collected and
subsequently used in a risk assessment framework to identify the ongoing risk
factors. In ergonomic assessment studies, the employment of direct measure-
ments supports the use of wearable devices, such as Inertial Measurement Units
(IMUs), which are directly attached to the subject. Hence, allowing to analyse
data related to pre-production and production phases presenting not only infor-
mation about production line performance factors but also reporting operator’s
well-being in the demanding tasks [8,11]. Inertial motion tracking systems use
sensor fusion techniques to derive a single and more accurate estimate of relative
device orientation. The term sensor fusion implies combining the multiple IMU
sensor data through complex mathematical algorithms [15].

We previously reported in [23] our work towards the development of an
upper-body motion tracker framework for ergonomic risk assessment at indus-
trial environments. Angular motion measurements are an essential parameter
for ergonomic studies and the reconstruction of motion through inertial data
relies on sensor fusion approaches. In this work, we report our recent research
composed of a comparative study addressing the results of employing different
sensor fusion techniques in the upper-body motion tracker.

This paper is structured as follows: Sect. 1 presented the context and
motivation that lead to the development of this study; Sect. 2 compiles the
related work found in the literature; Sect. 3 gives an overview of the proposed
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methodology explaining the developed upper-body motion tracker framework;
In Sect. 4 we describe the experimental assessment procedures; In Sect. 5 the
experimental results are presented and discussed; finally, Sect. 6 highlights rele-
vant conclusions and points to future research directions.

2 Related Work

Over the last years, wearable inertial sensors have undergone several improve-
ments such as miniaturisation, sensor weight and manufacturing costs reduction,
connection and data processing software improvements [4,6]. These enhance-
ments have consequently increased the number of human motion studies [2,21].
Furthermore, the enhanced battery life and data bandwidth for continuous mon-
itoring over long periods along with the less interference with workers’ natural
postures, has proven inertial sensors suitable for direct measurement of postures
and movements in ergonomics studies [5,27].

Before assessing the ergonomic risk of a given activity, effort must be directed
into establishing a robust framework to identify situations that can compromise
workers safety. Several parameters, which are fundamental for ergonomic studies,
can be directly measured using inertial devices, e.g. angular trends and pose of
the limbs [8,12]. A methodology to derive such useful information can be achieved
by combining different signal sources through sensor fusion techniques. Popular
approaches are Kalman filters and Complementary filters [12].

The Kalman filter is quite often the standard approach for orientation algo-
rithms, such as in [3,7]. There are some variants of the filter, depending on
the approached problem. Some studies employed the linear Kalman filter [7]
to work on linear systems. Others, to manage nonlinearities take advantage of
the Extended Kalman filter, e.g. [24]. Alternatively, the Unscented Kalman fil-
ter, e.g. [20], also provides effectiveness under non-linear systems yet, improving
the estimation of the transformed probability density function [12]. Despite the
referred Kalman filter effectiveness, it can be complicated to implement as sug-
gested by the numerous solutions seen in the literature [18].

The Complementary filter has also been exploited in several studies, e.g. [28].
This filter has been subject to modifications as the Explicit Complementary fil-
ter, suggested by Mahony et al. [19], and the Gradient Descent Orientation filter
proposed by Madgwick et al. [18]. Both methods use quaternion algebra for ori-
entation estimation. Mahony’s algorithm corrects the measured angular velocity
using a Proportional-Integral compensator while Madgwick’s is based on a New-
ton optimisation using an analytic formulation of the gradient that is derived
from a quaternion, providing also gyroscope drift compensation. Mahony and
Madgwick filters were compared in [1] where it is observed that both filters have
an identical outcome and are efficient solutions providing alternative approaches
to Kalman filter.

Among the recent works on the use of inertial sensors in occupational
ergonomics, in [16] it is present a narrative review in which it is proposed a con-
ceptual framework named Modeling-Sensing-Analysis-Assessment-Intervention.



292 S. Santos et al.

The framework name suggests the essential phases in ergonomic researches, syn-
thesising the role of the inertial sensors. In particular, the analysis stage is con-
cerned with examining the sensor data in order to obtain measures of specific
biomechanical exposures and other work-relevant information such as frequent
postures and movements. The combination of sensors data through sensor fusion
methods is addressed during this stage. On our previous work in [23], we pre-
sented a motion tracking framework relying on inertial information to estimate
quantitative direct measurements of posture and movement for the upper-body,
aiming to identify the most contributing ergonomic risk factors.

An approach to improve the performance of an ergonomic framework relying
on direct measures is through the individual study of its components which may
help to identify potential defect causes. This work presents a more extensive
analysis regarding sensor fusion methods for the inertial upper-body motion
tracking system [23]. Therefore, our work major contribution is the comparative
study regarding different sensor fusion methods, based on complementary filter
approaches, for the upper-body motion tracker framework. The comparative
analysis takes as reference the values from the optical mocap.

3 Upper-Body Motion Tracker

The pose estimation mechanism is consistent with the detailed information
from [23]. The system was designed to have the minimum invasiveness to the
worker while maintaining an adequate cost/effectiveness result, thus allowing to
estimate low-level metrics of ergonomic risk while not requiring a large number
of sensors.

The upper-body motion tracker comprises four different segments, depicted
in Fig. 1.

Fig. 1. The anatomical segments tracked by our upper-body motion tracking frame-
work: thorax, arm, forearm and hand.
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The segments are defined as follows: (1) the thorax, i.e. the segment between
the jugular notch and the xiphoid process of the sternum, (2) the arm, i.e. the
segment between shoulder and elbow joint, (3) the forearm, i.e. the segment
between elbow and wrist joint, and (4) the hand, i.e. the segment between wrist
and distal region of the third metacarpal. An IMU device was placed and firmly
attached in each of the aforementioned segments, to collect acceleration, angular
velocity and magnetic field data.

The block diagram of the motion tracker is represented in Fig. 2. After sen-
sor acquisition, the framework comprises two major processing procedures: pre-
processing and orientation estimation. The former includes temporal synchroni-
sation and noise reduction, while the latter describes the sensor fusion approach
and other necessary considerations in order to extract segments’ orientation
information.

Fig. 2. Overview of the upper-body motion tracking framework.

3.1 Inertial Acquisition

The inertial collection comprises data from four IMUs, containing triaxial sen-
sors, i.e. accelerometer, gyroscope and magnetometer. These devices collect infor-
mation at a 100 Hz frequency and were positioned in thorax, arm, forearm and
hand the segments. Specifically, IMU 1, IMU 2 and IMU 3 were positioned at
the posterior side of the arm, forearm and hand, respectively, while IMU 4 was
placed in the thorax area. All devices had commonly the Y-axis pointing up.

3.2 Pre-processing

The pre-processing pipeline includes signal synchronisation, filtering and nor-
malisation. An unsuccessful temporal synchronisation can compromise further
results of sensor fusion and even distort subsequent signal analysis since the col-
lection of different sensors might be shifted or stretched in time. To address the
synchronisation of multiple IMU devices we assured that all sensors had equal
sampling frequency and were temporally aligned.
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The implemented synchronisation method, represented in Fig. 3 was divided
into two phases: (1) sensor level synchronisation and (2) device level synchroni-
sation.

The built-in sensors of an IMU device may sample points with different times-
tamps, i.e. tS1

Raw, t
S2
Raw, t

S3
Raw. At the sensor level synchronisation, the sampling

frequency is adjusted, assuring that all sensors, within the same device, will share
the same time domain, i.e. tD1 for the IMU device 1.

Fig. 3. Temporal synchronisation phases. Acc - accelerometer, Gyro - gyroscope, Mag
- magnetometer.

Nevertheless, different devices can still present delay relative to one another.
To solve the clock drift problem, at the device level we identify synchronisation
events, i.e. instants in time acquired at the same instant yet shifted between
different devices [22], to then calculate a common synchronised time, tGlobal, for
all devices.

Regarding noise reduction, a first-order low-pass Butterworth filter prepared
for a cutoff frequency of 1 Hz [29], was applied to raw data from accelerometers
and magnetometers. Afterwards, the data were normalised.

3.3 Orientation Estimation

In the orientation estimation stage, the pre-processed data is combined through
sensor fusion techniques which will then allow inferring the absolute or relative
limb’s orientation. Several sensor fusion methods are described in the literature,
differing in the sensors required or in the implemented algorithm methodology.

The combination of sensors’ information can be described by quaternions,
which have been widely exploited since they are a singularity-free attitude rep-
resentation, and also computationally efficient.

This study will analyse and compare three different complementary filter
approaches: (1) the quaternion-based complementary filter (QCF), described
in [23], (2) the Mahony filter [19] and (3) the Madgwick Filter [18].
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Following the sensor fusion implementation and subsequent estimation of
the segment’s quaternion, some angular motion assumptions can be determined.
It is assumed that while IMUs are firmly secured to the limb, avoiding subtle
changes in devices’ locations, their axes are aligned with the anatomical axis
of the body. Afterwards, using pure quaternions, which can express segments’
direction vectors, and linear algebra knowledge it is possible to estimate the
absolute or relative information of segments. While the absolute orientation is
defined as the angle between a segment and an anatomical plane, e.g. shoulder
flexion angle, the relative orientation, in its turn, represents the angle between
two consecutive IMUs, e.g. wrist flexion can be expressed through the relative
orientation of the hand and forearm segments. Moreover, the local axes from IMU
placed on the thorax segment allowed to define the three anatomical planes, i.e.
sagittal, coronal and transverse plane.

4 Experimental Overview

A compilation of upper-body movements was collected in a controlled environ-
ment. The collected dataset contains, on one side, information of inertial devices
and, on the other, files of an optical motion capture (mocap) system alongside
with video recordings.

The inertial estimates were compared with reference measures provided by
the optical-passive mocap, Vicon system, allowing to evaluate the performance
of the upper-body motion tracker.

The study comprised fourteen subjects, nine men and five women, which
performed a designed experimental protocol, considering a variety of different
upper-body movements. For this research we decided to track only the subjects’
dominant arm. The participants had an average age of 26 ± 3 years, presented
the right arm as the dominant one, and declared not to have any known muscu-
loskeletal problem.

Two different phases comprised the experimental protocol. The first described
a static evaluation, i.e. the participant is supposed to stand still while completing
the protocol; the second supported a dynamic evaluation, i.e. the subject was
supposed to perform a short walking exercise while performing the exercises.

Equipment and Placement. The inertial motion capture setup comprised
four sensing devices, sampling at 100 Hz, positioned at the four study seg-
ments, i.e. thorax, arm, forearm and hand. The optical mocap included ten
cameras. Markers were placed on participants following Vicon’s Upper Limb
Model Guide [26] and were tracked at 100 Hz. Vicon cameras followed calibra-
tion procedures before acquisition. In addition, two standard cameras also filmed
the whole experimental protocol. Since different equipment was used temporal
synchronisation was addressed during data analysis.

Dataset Composition. Data collection includes several movements which are
detailed in Table 1. In particular, the thorax segment considers flexion/extension
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and lateral flexion/extension; the arm segment admits flexion/extension and
abduction/adduction; finally, the forearm segment admits flexion/extension The
inertial and Vicon data were manually annotated using video.

Table 1. Movements included in the experimental protocol.

Movement Segment

Thorax Arm Forearm

Flexion

Extension

Lateral flexion

Abduction

Adduction

5 Results

The selected and applied sensor fusion method is highly relevant to reconstruct
the angular motion of the segments since it contributes to framework perfor-
mance. Hence, different sensor fusion methods were investigated, namely the
QCF, the Madgwick and Mahony filter.

An example of angular reconstruction regarding 9-axis sensor fusion tech-
niques, i.e. methods that combine the information of accelerometer, gyroscope
and magnetometer data, is represented in Fig. 4.

It can be observed that the three methods similarly reconstruct the designed
motion. Additionally, it can be observed that the movement derived from Madg-
wick’s is noisier relative to the other applied methods. During the movement
execution, the three methods measures are above the values provided by the
optical mocap.

The sensor fusion techniques presented in Fig. 4 relied on magnetic data,
which supported the algorithms to obtain an absolute orientation reference.
However, magnetometers often, influenced by buildings’ ferromagnetic construc-
tion materials, lead to inaccurate results. Herewith, we also explored and imple-
mented techniques relying solely on accelerometer and gyroscope readings, i.e.
6-axis sensor fusion. The 6-axis sensor fusion methods angular reconstruction
are depicted in Fig. 5.

It can be noticed that QCF behaviour is different from the other two meth-
ods - during the abduction, QCF measures below the reference values while
Mahony and Madgwick assign a higher value. Furthermore, Madgwick’s signal
remains noisy. Frequently, in manufacturing sites, an inhomogeneous magnetic
field is observed. Thus, algorithms should be robust presenting solutions when
the magnetometer information is unreliable. Although the 6-axis approaches are



Exploring Inertial Sensor Fusion Methods for Direct Ergonomic Assessments 297

Mahony
Madgwick
QCF
Vicon

0       20      40           60                   80                 100        120
0

20

40

60

80

100

Fig. 4. Arm abduction reconstruction using 9-axis sensor fusion methods. Red -
Mahony filter; Green - Madgwick filter; Blue - QCF; Black - Vicon. (Color figure
online)

Fig. 5. Arm abduction reconstruction using 6-axis sensor fusion methods. Red -
Mahony filter; Green - Madgwick filter; Blue - QCF; Black - Vicon. (Color figure
online)

known to be more unstable, these could provide an alternative to situations of
distorted magnetic data.

The computing time of the algorithms of both approaches, 9-axis and 6-axis,
was determined. Figure 6 presents a comparison of the computing times across
the different sensor fusion methods for the complete dataset.

As expected, the sensor fusion methods that combined the information of
three sensors, i.e. 9-axis, require more computing time when compared to meth-
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Fig. 6. Computing time across the different sensor fusion methods for the upper-body
movements dataset.

ods than only fuse accelerometer and gyroscope data, i.e. 6-axis. Besides, for the
considered dataset, the difference between these two approaches is close to 100 s.

Moreover, to assess which of the presented methods reconstructed the motion
more accurately, the angular reconstruction was compared with the measures
provided by the optical mocap. This allows performing a quantitative analysis of
the reconstruction performance, which consequently characterises the employed
sensor fusion method. For this analysis, we considered two evaluation metrics: the
Cumulative Distribution Function (CDF), i.e. the probability that a considered
variable X takes on a value less than or equal to x, and the Root-Mean-Square
Error (RMSE), which provides a measure of how well an algorithm describes spe-
cific observations. Both CDF and RMSE are described, respectively, in Eqs. (1)
and (2):

FX(x) = P(X ≤ x) (1)

where P(X ≤ x) is the probability that the considered variable X takes on a
value less than or equal to x.

RMSE =

√
√
√
√ 1

T

T∑

t=1

(yt − ŷt)2 (2)

where yt denotes the groundtruth value at time t provided by the optical mocap
and ŷt denotes the predicted value at time t estimated by the upper-body track-
ing method.

The CDF was calculated for the upper-body dataset, providing a comparison
between the different sensor fusion approaches. Figure 7 represents the CDF for
static exercises. The analysis of the static CDF suggests that the 6-axis QCF
method presents a higher error than the other 6-axis techniques. Concerning
the 9-axis sensor fusion, the Mahony filter exhibits a higher error probability.
The CDF for dynamic exercises is presented in Fig. 8. Once again, the 6-axis
QCF method presents less accurate results, yet, its 9-axis version is much more
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consistent. Moreover, all 9-axis methods behave quite similarly. It must be noted
that the dynamic motion collection is smaller than the static. Therefore, an
accurate comparison between these two motion consideration should not be per-
formed due to data imbalance in the dataset. In general, the thorax movements
are more accurately reconstructed, as opposed to the forearm’s motion.

Fig. 7. Cumulative distribution function for the absolute error of Mahony, Madgwick
and QCF across thorax, arm and forearm segments. Static trials. Top: 6-axis methods;
Bottom: 9-axis methods.

Table 2 presents the RMSE for the different sensor fusion methods regarding
both static and dynamic exercises.

Table 2. Root mean square error, in degrees, regarding the three studied sensor fusion
methods: Mahony, Madgwick and QCF. Best results for static and dynamic evaluations
are in bold.

Segment RMSE (◦)
Mahony Madgwick QCF

Static Dynamic Static Dynamic Static Dynamic

6-axis 9-axis 6-axis 9-axis 6-axis 9-axis 6-axis 9-axis 6-axis 9-axis 6-axis 9-axis

Thorax 12 13 22 23 12 12 22 22 34 21 34 22

Arm 18 18 21 20 18 15 21 21 32 18 30 27

Forearm 26 45 18 19 25 26 17 20 44 30 43 20

In general, the 9-axis QCF method, in agreement with the CDF analysis,
presents better performance than the 6-axis. Regarding the other two techniques,
both 6-axis and 9-axis, the RMSE values are quite consistent.
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Fig. 8. Cumulative distribution function for the absolute error of Mahony, Madgwick
and QCF across thorax, arm and forearm segments. Dynamic trials. Top: 6-axis meth-
ods; Bottom: 9-axis methods.

Comparing the three methods, the Madgwick filter, although noisier, is more
accurate according to Vicon results than the others. Regarding the segments
evaluation, the thorax movements are more accurate, while the forearm presents
a higher error when compared with the optical mocap reference measures.

Furthermore, the overall inspection of the RMSE results suggests that the
upper-body motion tracker has the potential to be improved. A more robust
framework should be built considering biomechanical constraints. Moreover, we
believe that the accuracy would certainly improve after some calibration pro-
cedures that we did not contemplate in this study. The angular reconstruction
algorithm is established only considering vector knowledge, and thus the incor-
rect sensing device alignment with the anatomical axis of the body might have
increased the segment’s movements reconstruction error.

6 Conclusion

WMSDs are not only an occupational health concern but also a public issue
and a demographic and social challenge, which should be addressed by devel-
oping sustainable working conditions. The arrival of the fourth industrial revo-
lution offers the means to tackle WMSDs through the use of wearable devices
in ergonomic researches. Nevertheless, to consider the use of direct measure-
ments for ergonomic assessment, proposed wearable solutions must be reliable
and accurate for not compromising the assessment and consequent intervention
phases of ergonomic studies.

This research presents a more extensive analysis of complementary sensor
fusion methods regarding the framework presented in [23]. Sensor fusion tech-
niques are processes in which data from multiple physical sensors are combined,
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hence, diminishing single sensor associated flaws. Complementary filters have the
advantage of overcoming the known problem of gyroscope drift over time which
negatively impacts the accuracy of orientation estimation algorithms. This work
contributed by highlighting the importance of sensor fusion techniques for esti-
mating relevant ergonomic parameters as angular measures.

An experimental protocol was conducted with fourteen subjects wearing iner-
tial sensors and markers from an optical mocap to collect several upper-body
movements. Calculated angular measures from the optical mocap were consid-
ered as reference. We investigated the outcomes of QCF, Madgwick and Mahony
sensor fusion methods for human motion reconstruction of the upper-body
dataset. In particular, we studied 9-axis and 6-axis approaches for the aforemen-
tioned methods, i.e. the combination of accelerometer-gyroscope-magnetometer
data and accelerometer-gyroscope fusion, respectively.

Some conclusions were drawn from the results. Concerning the computing
time, the 9-axis algorithms require more time to completely calculate the seg-
ments’ orientation for the assembled upper-body dataset than the 6-axis. Fur-
thermore, the 9-axis Madgwick method presents better overall performance,
meaning that this method results are more coherent concerning the measures
provided by the optical mocap. Yet, all 9-axis methods are in a disadvantage
in the presence of ferromagnetic materials which interfere with magnetometer
readings and consequently leads to inaccurate results. In this context, an inter-
esting finding is related to the accuracy of the 6-axis Mahony and Madgwick.
Although these approaches rely solely on two sensors, they are quite effective in
reconstructing the angular movement and also their RMSE values are consistent
with the 9-axis approaches.

As future work, we intend to improve the presented framework, by intro-
ducing calibration procedures and performing analysis regarding biomechanical
constraints. Additionally, to make the framework feasible in the manufacturing
environment, we have to take into account the possibility of magnetic distur-
bances and thus, the algorithms should be prepared to make adjustments. A
solution would be using a 6-axis sensor fusion method when magnetic data is
disturbed or even introducing different classes of tracking devices, e.g. video and
inertial, to periodically calibrate the system.
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Abstract. Epilepsy is the second most prevalent brain disorder affect-
ing approximately 70 million people worldwide. A modern approach to
developing the brain study is to model it as a system of systems, rep-
resented by a network of oscillators, in which the emergent property
of synchronization occurs. Based on this perspective, epileptic seizures
are processes of hyper-synchronization between brain areas. The paper
develops a case study with the use of Partial Directed Coherence (PDC),
Surrogate and Mutual Information (MI) to perform functional connec-
tivity analysis observing the synchronization phenomenon. The aim is
to examine the connectivity and transmission rate (R) between brain
areas—cortex, hippocampus and thalamus—during basal intervals. The
main contribution of this paper is the combination of both methods to
study the connectivity and transmission rate between brain areas. A
case study performed using 5 EEG signals from rodents showed that the
applied methodology represents another appropriate alternative to exist-
ing methods for functional analysis such as Granger Causality, Transfer
Entropy, providing insights on epileptic brain communication.

Keywords: Epilepsy · Signal processing · Partial directed coherence ·
Mutual information

1 Introduction

Epilepsy is the second most common neurological disease [28] and affects approxi-
mately 70 million people worldwide [38] representing a public health concern [26].
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It is a chronic disease of the central nervous system (CNS) that reaches peo-
ple of all ages in which it is commonly associated with social difficulties [7]
and can cause health loss such as premature mortality and residual disabil-
ity [8]. Epilepsy-based studies usually use electroencephalography (EEG) [10,23]
to check brain electrical activity, and the use of electrodes directly in brain tissue
is an important option to map the electrical activity of the brain with better
spatial resolution [6].

The latest approach to study epilepsy is the analysis of hyper-synchronisation
of brain frequencies oscillations as a feature [47]. Olamat et al. [27] performed
a nonlinear synchronisation analysis in LFP epileptic data introducing this new
perspective. Weiss et al. [45] used the concept to understand seizure genesis
and spreading in human limbic areas and Devinsky et al. [15] reported hyper-
synchronisation to discuss epilepsy epidemiology and pathophysiology. The brain
model is a complex system where each region represents a subsystem, and syn-
chronisation is an emergent property [4]. Changes in this feature during the
occurrence of epileptic seizures are an essential aspect to understand the epilep-
tic brain network and synchronisation [24]. The abnormal hyper-synchronisation
of frequencies oscillations give rise to seizures [9].

There is a hypothesis that high-frequencies oscillations have a relation with
the cortical local brain information processing, whereas low-frequencies have a
connection with more extensive cortical networks [3]. Consequently, brain inter-
actions through these areas can become complicated because of interactions
between oscillations at different frequency bands [3]. In this situation, functional
connectivity is an option to detect dependencies among neurophysiological sig-
nals [4]. There are various methods used to infer patterns of direct influences [4].
To estimate time series dependencies [20] Mutual Information is one of them [41].
It is an Information-Theoretic and nonparametric approach that measures gener-
alized interdependence between two variables [2]. This feature meets the accepted
vision that real-world time series usually are non-linear and non-stationary [43].

Although Mutual Information detects dependence on two variables, it does
not show the direction of connectivity. To assess this feature, Partial Directed
Coherence may be an option due to its consolidation as a linear model to perform
functional connectivity analysis [42]. It provides proper adherence to study the
problem [19] being more simple then nonlinear methods such as Conditional
Mutual Information which requires estimations of big order [25]. It is a frequency-
domain technique based on multivariate autoregressive (MVAR) modelling [31]
proposed by Baccalá & Sameshima [5] and widely used in neuroscience until
nowadays [11]. The main advantage is the capability to assign active connections
exhibiting the direct influences between brain areas [22] resulting in a map of its
interactions [1].

Once the application of PDC, there is an issue to handle that is the devel-
opment of criteria to evaluate the connectivity discovered among EEG time-
series [46]. The problem usually leads to the employment of arbitrarily connec-
tivity thresholds [33]. Surrogate technique emerges as an option to provide statis-
tical significance to connectivity measures [12]. The method consists in building
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a surrogate data using the original signals keeping the same power spectrum and
randomizing Fourier phases, generating uncorrelated signals. Using PDC with
Surrogate can reveal what communications remain even in this situation result-
ing in a connectivity threshold. Then it may be compared with original signals
through a hypothesis test to validate the functional analysis. It is possible to
check its use for that objective in literature since Information Theoretical meth-
ods [17,34] until Granger Causality, Directed Coherence and Partial Directed
Coherence [1].

The objective of this paper is, in performing a case study using Mutual
Information and Partial Directed Coherence, to develop functional connectiv-
ity analysis in rodents EEG signals, investigating the connectivity, the channel
capacity (C) and the transmission rate between brain areas. Also, it is applied
Surrogate method to evaluate the PDC measures.

In Sect. 2, the theory related to PDC, MI and Surrogate are presented.
Section 3 describes the EEG data used and the applied methodology. Section 4
presents the achieved results, and in Sect. 5, there is a discussion of the results.
Finally, Sect. 6 brings forward paper conclusions.

2 Theory

This section presents the leading theory required to develop this paper. At first,
the introduction of Mutual Information explaining the main concepts of chan-
nel capacity and transmission rate. Then the Partial Directed Coherence and
Surrogate methods to perform functional connectivity analysis are described.

2.1 Mutual Information

To determine the measure of how deterministic is a given variable entropy (H)
is used and defined by [14]:

H(X) = −
∑

x∈χ

p(x)logap(x) (1)

where X is a discrete random variable, p(x) = P{X = x} is the probability of X
equal to x, x ∈ χ, i.e. the probability mass function of X, and a is the logarithm
base that provides the entropy measure in bits in the case of a = 2. Given a signal
X and another signal Y , the Mutual Information may quantify the information
shared between this signals, which means how much it is possible to reduce the
uncertainty of signal X given the knowledge of signal Y [14].

The Mutual Information (MI), according to [14] is the quantification of infor-
mation shared between X and Y or mathematically defined as the measure of
the dependence between two random variables. Mathematically written as [41]:

I(X;Y ) = H(X) − H(X|Y ) =
∑

xy

p(x, y)log
p(x, y)

p(x)p(y)
(2)
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According to [14] the channel capacity (C) represents the maximum measure
of Mutual Information:

C = maxI(X,Y ) (3)

and according to [32] the channel capacity for DMI is quantified by its peak value.
Also according to [32], the transmission rate estimation (R) can be written as a
function of channel capacity and signal bandwidth (BW) in Hertz:

R = 2.BW.C (4)

If the entropy is measured in bits, the transmission rate is going to be mea-
sured as bits/s.

2.2 Partial Directed Coherence

Partial Directed Coherence is a frequency-domain approach to denote the direct
linear relationship between two different signals xi[n] and xj [n] once remarked
jointly with a set of other signals [5]. Considering X[n] the set of all observed
time series, it can be depicted as an autoregressive model as follows:

X[n] =
p∑

k=1

Akx [n − k] + E[n] (5)

where p represents the model order, E[n] is the prediction error matrix and
Ak are the coefficients matrix with aij elements in which denotes the relation
between signals at lag k. E(n) has a covariance matrix ξ and their coefficients
are usually a white noise with zero mean. This results in PDC factor (πij) and
partial coherence function (|κij [f ]|2) that indicates the strength and the direction
of communication at frequency f. They can be stated as follows [44]:

πij [f ] � Aij [f ]√
a−H

j [f ]ξ−1aj [f ]
(6)

κij [f ] = πH
i [f ]ξ−1πj [f ] (7)

H[f] is the Hermitian matrix which is equal to A
−1

[f ]. Aij [f ] is the complement
of Aij [f ] and represents the transfer function from xj [n] to xi[n] being also an
element of A[f ] matrix. Finally, aj [f ] is the j th column of A[f ] and πi[f ] is the
ith row of πij . The main problem of connectivity analysis is the evaluation of
the hypothesis below [5]:

H0 : πij [f ] = 0 (8)

H1 : πij [f ] �= 0 (9)

The rejection of the hypothesis defined in (8) suggests that there is a direct
connection from xj [n] to xi[n] in which can not be justified by the other remarked
signals at the same time [44].
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2.3 Surrogate for Hypothesis Test

The partial coherence function is κij [f ] from PDC method. This is the normal-
ized cross-spectrum that can be defined generically as follows [40]:

Γxy [f ] � Sxy[f ]√
Sx[f ]

√
Sy[f ]

(10)

where Sxy[f ] is the cross-power density spectrum between signals x and y, and
Sx[f ], Sy[f ] are the power density spectrum of each signal respectively. The
cross-spectrum can be associated with the cross-correlation function - Rxy[n1, n0]
which can be written as Rxy[l] in the case of stationarity, where l is the lag
(difference between indices n1 and n0) - through Wiener-Khinchin Theorem in
which states that Fourier Transform of Rxy[l] results in Sxy[f ]. Therefore it
is possible to infer that placing the correlation function in frequency-domain
it represents the cross-power density spectrum [40]. Following that rationale
it means that cross-correlation function measures the energy shared between
signals x and y at a given frequency f [40].

Surrogate is a method to create signals keeping the same statistical proper-
ties intended to be evaluated. Subsequently it is performed the comparison of
the statistical property to be evaluated with the data built. According to the
deviance between them, the null hypothesis is accepted or rejected. In Neuro-
science there are related literature about the use of Surrogate Data to assist
the strength just as the type of interdependency among EEG signals. Adkin-
son et al. [1] used Surrogate to validate generalized Partial Directed Coherence
measures, Faes et al. [18] used Surrogate to evaluate frequency-domain causality
in multivariate time-series and Pereda et al. [30] used the method to validate
nonlinear multivariate analysis in neurophysiological signals.

For method application, there are several techniques such as Random
Permutation (RP) Surrogates, Fourier Transform (FT), Amplitude Adjusted
Fourier Transform (AAFT) and Iterative Amplitude Adjusted Fourier Transform
(IAAFT). With regard to the IAAFT technique, it was proposed by Schreiber
and Schmitz [36], had the aim to overcome the AAFT technique bias [1] and it
has a parallelized implementation to enhance its performance [16].

To establish the number of surrogate data to be created there is a rank-order
test proposed by Theiler et al. [39] that can be used [37]. Let us consider Ψ the
probability of false rejection then the level of significance(S) can be written as:

S = (1 − Ψ) · 100% (11)

The number of surrogate data to be created(M) is defined below:

M =
K

Ψ
− 1 (12)

where K is an integer number defined by the type of test - 1 if it is one-sided and
2 in the case of a two-sided test- and Ψ is the probability of false rejection. K = 1
is a common choice due to computational effort to develop surrogate data [37].
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3 Methodology

The section details the methodology used to analyse the EEG signals, to assess
the connectivity, channel capacity and transmission rate between brain areas.
Furthermore, it describes the methods applied to acquire the EEG signals and
the computational environment.

3.1 Applied Methodology

The applied methodology is in Fig. 1 and used for all five rodents, each one
having three recordings from 3 different brain areas (cortex, hippocampus and
thalamus) totalling 15 recordings. It is analyzed the rodent’s classical EEG fre-
quency bands1 and the Kolmogorov-Smirnov test is used to compare the group
of rodents to check if there is a statistical difference between groups. Initially, the
division of the EEG signal in 10 intervals of 4096 samples. After, PDC method
is applied to investigate the connectivity among cortex, hippocampus and tha-
lamus brain areas. Using the model order of 1, the same value used in previous
work [35]. To evaluate the PDC measures, Surrogate is applied. Then the graph
of connectivity evolution during the time series is developed based on the model
of temporal series of Holme and Saramäki [21] using a surrogate data of length
35 for each signal to provide 5% of statistical analysis significance according to
Eq. 11. Finally, MI is applied to investigate the transmission rate among brain
areas completing the functional connectivity analysis. To simulate it was used
Python language running on a computer with Intel i7 6-core processor, 16 GB
of RAM and IOS operational system.

3.2 Database for Study Case

We used EEG signals database from the Laboratory of Neuroengineering and
Neuroscience from Federal University of São João Del Rei. The laboratory
employs male Wistar rats weighing between 250 and 350 grams coming from
the University Central Vivarium to acquire data and evaluate methods of thera-
peutic electrical stimulation. All described procedures are in according to ethics
committee under protocol 31/2014. Signal recording is performed with the aid
of electrodes (monopolar type and Teflon-coated stainless-steel wires) placed
directly into the right thalamus and hippocampus of rat brain through stereotac-
tic surgery [13]. In addition, two microsurgical screws (length 4.7 mm, diameter
1.17 mm, Fine Science Tools, Inc., North Vancouver, Canada) were implanted
aiming the cortical recording of the right hemisphere and to operate as reference
in frontal bone. The electrodes and screws were positioned with assistance of a
neuroanatomic atlas [29].

EEG signals for each rat were recorded and animals were filmed at the same
time to perform behavioral analysis (observe classic seizure features such as

1 Δ - 0–4Hz; θ - 4–8Hz; α - 8–14 Hz; β - 14–30 Hz; γl (low gamma): 30–60 Hz; γh (high
gamma) - 60–100 Hz; r (ripples) - 100–200Hz; and rf (fast ripples) - 200–300Hz.
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Fig. 1. The applied methodology for all rodent recordings used in this paper. Initially
the signal is divided in 10 intervals (4096 samples) and then the PDC method is applied
for each one, using Surrogate to evaluate the connectivity measures. Based on results
the graph model evolution is developed. After MI is applied to observe the transmission
rate among brain areas for all intervals using 32 bins. The choice of 32 bins was based
on literature [17] in which MI with delay was applied to evaluate neural signals. The
result of both methods development is the functional connectivity analysis of EEG
signal.

facial automatisms, myoclonic jerk, head clonus, hind and forelimb clonus, ele-
vation and fall, generalized tonic-clonic seizure) to allow their correlation with
the electrophysiological events observed during EEG recording. EEG recording
was acquired using 1 kHz sampling rate. Signals were amplified 2000 V/V and
analog filtered (anti-aliasing) at 0.3 to 300 Hz using A-M Systems (model 3500)
pre-amplifier and acquired on a National Instruments (PCI 6023E) A/D con-
verter controlled by a LabView Virtual developed at LINNce. Power grid noise
at 60 Hz frequency was suppressed with the aid of shielded twisted cables and
Faraday cage. In order to induce seizures, animals were submitted to intravenous
controlled infusion of pentylenetetrazole (PTZ), a GABAergic antagonist with,
thus, proconvulsant action.

The EEG signals for each rodent was registered and filmed at the same
time to perform behavioural analysis(observe classic seizure features such as
facial automatisms, myoclonic concussion, head myoclonus, anterior and pos-
terior limbs myoclonus, elevation and fall, generalized tonic-clonic seizure) to
allow their correlation with the electrophysiological events observed during EEG
recording. EEG recording was performed using 1 kHz sampling rate. Signals were
amplified 2000 V/V through A-M Systems (model 3500) amplification system
and digitalised on National Instruments (PCI 6023E) A/D converter controlled
by developed LINNce Virtual Instrument from LabView platform. Sequentially
they were filtered using second-order Butterworth filter (0.3 to 300 Hz band).The
power grid noise at 60 Hz frequency was conditioned with use of shielded cables
and Faraday cage.
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4 Results

A signal sample of cortex, hippocampus and thalamus used to perform the anal-
ysis is presented in Fig. 2. The figure shows the ten intervals of 4096 samples
from rodent R048 totalling 40960 samples. Cortex signal is indicated in the
blue, hippocampus in red and thalamus in orange colour.

The Kolmogorov-Smirnov test performed with rodents groups indicated that
there is no difference between the groups at the level of p-value equals 10%.
For p-value of 5% the Kolmogorov-Smirnov test was not possible to assure this
confidence level. The graphic summary of PDC results of all the five rodents is
in Fig. 4. Dashed lines represent that there is no connectivity in one or more fre-
quency bands analyzed. The connectivity measures may be checked in Tables 3,
4, 5, 6 and 7 from Appendix section. The summary table of PDC measures of all
rodents is in Table 2. Figure 3 shows an example of surrogate data generated to
evaluate the PDC measures developed to validate rodent R048 interval 1. The
rodents EEG signal 3db bandwidth were approximately equal for all observed
intervals for each rodent [41]:

– R048: Cx = 1.30 Hz, Hp = 1.49 Hz and Th = 1.23 Hz;
– R052: Cx = 1.73 Hz, Hp = 1.71 Hz and Th = 1.71 Hz;
– R064: Cx = 9.00 Hz, Hp = 10.50 Hz and Th = 8.71 Hz;
– R065: Cx = 10.00 Hz, Hp = 10.00 Hz and Th = 10.00 Hz;
– R072: Cx = 2.77 Hz, Hp = 2.75 Hz and Th = 2.74 Hz.

The MI measures (channel capacity) for each interval is presented in Tables 8,
9, 10, 11 and 12. The transmission rates are reported in Tables 13, 14, 15, 16
and 17 in Appendix. The transmission rate means with its standard deviation
is presented in Table 1. The computational time spent to perform PDC with
Surrogate for each rodent was approximately 90 min, and to perform MI was
spent approximately 60 min. Therefore the total time was 12 h.

Table 1. Transmission rate mean (μ) among brain areas. It is reported pairwise and
their respective standard deviations (σ). Due to use of base-2 log the transmission rate
is given in bits/s.

Measures Brain area

Hp → Cx Th → Cx Cx → Hp Th → Hp Cx → Th Hp → Th

μ 11.06 11.36 10.77 10.68 14.26 13.11

σ 9.43 9.21 8.28 8.30 9.49 8.07

5 Discussion

Observing the graph in Fig. 4 it is possible to note that the connectivity among
brain areas changes and sometimes not checked for all frequency bands. There
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Fig. 2. Signal from rodent R048 used in this paper. It is represented the three signals
acquired from cortex (blue), hippocampus (red) and thalamus brain areas (orange).
The first green line represent the basal interval. From the first green line until the
black line represent the infusion interval and from the second green line until the end
of recording is the seizure interval. The intervals used to apply PDC and MI is the
basal interval divided in 10 intervals of 4096 samples. (Color figure online)
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Fig. 3. Surrogate data example from interval 1 of rodent R048. Observe that power
spectrum density is approximately equal indicating that the signal remain the same
information despite phase change resulted from IAAFT algorithm which means that
method worked as expected [41].

is different connectivity for all the five rodents, and it was expected due to
the biological difference among them even being the same species of animal
and present almost the same weight. However, observing Tables 3, 4, 5, 6 and
7 in Appendix there are some patterns identified through the use of PDC: the
connectivity measures for lower frequencies usually is higher than observed for
high-frequency bands. Another feature is when there is not full connectivity
when it often happens, the high-frequency bands do not prompt communication.
When there is no connectivity in lower frequencies, it is observed the lack of
communication mainly in delta rhythm.

Generally, through PDC, it was possible to observe the functional connec-
tivity during the intervals. It was possible to check ranges in which there are
no connectivity brain areas for low or high frequencies, and there are only one
or two rhythms of them with small values of connectivity. In this situation, it
is possible to state that for low or high-frequency bands there is no connectiv-
ity even with small amounts in some frequencies. This analysis becomes more
evident when observing Table 2. The standard deviation observed for rodents
connectivity means is not high neither low contributing to the idea that even
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Fig. 4. Partial Directed Coherence results for rodent R048(a), R052(b), R064(c),
R065(d) and R072(e). Dashed lines represent that there are no connectivity in one
or more frequency bands analyzed. Please check Tables 3, 4, 5, 6 and 7 in Appendix
to verify connectivity measures. Cortex signal is repeated just to turn the connectivity
representation more clear.
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Table 2. Connectivity measures resulted from PDC method. It is reported the con-
nectivity mean (μ) among brain areas with their respective standard deviation (σ)
considering all the classical EEG frequencies.

Brain area Measures Frequency

Delta Theta Alpha Beta Low
gamma

High
gamma

Ripple Fast
ripple

Hp → Cx μ 0.79 0.82 0.70 0.58 0.50 0.46 0.44 0.50

σ 0.29 0.25 0.18 0.14 0.16 0.18 0.17 0.19

Th → Cx μ 0.35 0.53 0.50 0.43 0.37 0.35 0.34 0.33

σ 0.49 0.29 0.24 0.21 0.20 0.21 0.21 0.19

Cx → Hp μ 0.70 0.70 0.71 0.79 0.85 0.83 0.75 0.66

σ 0.31 0.21 0.16 0.12 0.12 0.11 0.10 0.09

Th → Hp μ 0.88 0.79 0.64 0.50 0.40 0.39 0.39 0.37

σ 0.46 0.37 0.25 0.16 0.11 0.10 0.09 0.08

Cx → Th μ 1.14 1.18 1.11 0.95 0.74 0.58 0.47 0.42

σ 0.50 0.38 0.24 0.17 0.18 0.16 0.13 0.10

Hp → Th μ 1.04 0.94 0.81 0.80 0.95 0.91 0.73 0.66

σ 0.49 0.35 0.23 0.16 0.11 0.12 0.12 0.13

being from the same species, the rodents are slightly different physiologically
presenting different connectivity measures.

Surrogate method evaluated the connectivity measures as desired, giving
a threshold measure to assess the presence or absence of connectivity for fre-
quency bands during the intervals. Observing the connectivity measures in the
case of uncorrelated signals, Surrogate provided the statistical significance for
PDC measures. Figure 3 showed an example of surrogate data created for rodent
R048 to evaluate interval 1 PDC connectivity measures. As expected, the power
spectrum density remained the same as the original signal indicating that the
IAFFT method worked, changing the signal phase to create uncorrelated signals
preserving the same information among them.

The transmission rate among brain areas was different for each rodent as
also expected due to the physiological difference among them even being the
same species. However, for each rodent, it is possible to check a transmission
rate in mean approximately equal among brain areas. This result report that the
brain presents a basal state of synchrony compliant with the modern theory that
brain present network synchrony and epilepsy is a hypersynchrony phenomenon.
The transmission means reported in Table 1 it is possible to observe that there
is a slight difference in transmission rate mean among brain areas. A relative
higher standard deviation indicating that there is a significant difference when
comparing rodent’s transmission rate even Kolmogorov-Smirnov test assuring
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their similarity. More transmission rate evaluation from the set of rodents used
in this paper was already published in Tsukahara et al. [41].

The channel capacity observed shows that signal frequency is essential to
define the transmission rate. More information results in signals with larger
bandwidth increasing the transmission. It is a crucial point to understand the
hyper synchronism observed during epilepsy seizure.

The PDC method provided the functional connectivity analysis showing the
direction of communication during the intervals, and the MI method completed
the understanding of providing the transmission rate in each situation. Together
both ways depicted the brain areas communication dynamics providing some
insights about the process.

6 Conclusions

The combination of PDC and MI to perform a functional connectivity analy-
sis with rodents EEG presented insights about the communication among brain
areas during the basal interval, which is before epileptic seizures. Communication
dynamics among rodents were different; however, giving some patterns in com-
mon. During the basal interval, the central communication performed presents
in lower frequencies, and high-frequency bands present a lower communication
strength. Mainly the absence of ripples and fast ripples frequencies transmis-
sion and during the intervals evolution, it is common to observe that there is
not a full communication through all frequency bands. The transmission rate
investigated through MI revealed that there is a common mean of transmission,
and when observing all the intervals, it is possible to check their oscillation. As
expected again, it is found different transmission rates for each rodent due to the
physiological difference among rodents even them being the same species. Ths
result completes the idea that there is a natural brain synchronization among
Cortex, Hippocampus and Thalamus contributing to the notion that epilepsy
might be a hyper synchronization phenomenon. Therefore the case study results
reported that combining PDC and MI seems suitable to observe communication
dynamics and perform functional connectivity analysis presenting the connec-
tivity direction among brain areas and quantifying its volume of information
transited between them.
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A Appendix

Table 3. Connectivity measures developed from PDC method, after the validation
with Surrogate for rodent R048. Red measures represents that there is no connectivity
between brain areas. The measures are split in intervals and reported pairwise.

Brain areas Frequency band
Connectivity measures

Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6 Interval 7 Interval 8 Interval 9 Interval 10

Hp→Cx

Delta 0.16 0.43 0.43 0.24 0.40 -0.33 0.13 0.04 0.33 -0.05

Theta 0.06 0.06 0.28 0.08 0.44 -0.17 0.31 0.08 0.33 0.00

Alpha 0.06 -0.01 0.18 0.00 0.37 -0.09 0.23 0.05 0.17 0.00

Beta 0.08 -0.04 0.14 -0.05 0.21 -0.06 0.19 0.03 0.04 0.00

Low Gamma 0.09 -0.05 0.12 -0.07 0.07 -0.05 0.17 0.03 -0.03 0.00

High Gamma 0.10 -0.05 0.12 -0.07 0.01 -0.05 0.17 0.03 -0.05 0.00

Ripple 0.11 -0.06 0.14 -0.07 -0.02 -0.05 0.17 0.04 -0.06 0.01

Fast Ripple 0.13 -0.06 0.18 -0.07 -0.02 -0.04 0.18 0.06 -0.06 0.02

Th→Cx

Delta 0.16 -0.22 0.03 -0.25 0.14 0.57 0.01 0.36 -0.36 0.16

Theta 0.08 -0.07 -0.02 -0.09 0.26 0.29 0.03 0.17 -0.10 0.07

Alpha 0.02 -0.03 -0.04 -0.01 0.29 0.11 0.00 0.02 0.00 0.00

Beta -0.01 -0.02 -0.05 0.02 0.18 0.00 -0.01 -0.06 0.04 -0.03

Low Gamma -0.02 -0.01 -0.05 0.03 0.06 -0.06 -0.01 -0.10 0.05 -0.04

High Gamma -0.02 -0.01 -0.05 0.04 0.00 -0.08 -0.01 -0.12 0.05 -0.04

Ripple -0.02 -0.01 -0.05 0.04 -0.04 -0.09 -0.01 -0.12 0.05 -0.04

Fast Ripple -0.02 0.00 -0.05 0.05 -0.06 -0.09 -0.01 -0.11 0.05 -0.04

Cx→Hp

Delta 0.29 0.19 0.38 0.34 0.33 0.41 0.34 0.19 0.25 0.60

Theta 0.18 0.16 0.37 0.30 0.29 0.31 0.25 0.11 0.24 0.30

Alpha 0.12 0.13 0.32 0.23 0.23 0.19 0.13 0.10 0.16 0.14

Beta 0.09 0.11 0.27 0.18 0.16 0.12 0.06 0.10 0.08 0.06

Low Gamma 0.08 0.11 0.24 0.15 0.12 0.09 0.02 0.10 0.05 0.02

High Gamma 0.08 0.11 0.23 0.15 0.11 0.09 0.00 0.10 0.04 0.01

Ripple 0.07 0.11 0.21 0.14 0.10 0.08 0.00 0.10 0.04 0.00

Fast Ripple 0.07 0.11 0.18 0.13 0.09 0.08 0.00 0.10 0.04 0.00

Th→Hp

Delta 0.15 0.37 0.42 0.23 0.08 0.13 0.12 0.45 0.02 0.55

Theta 0.08 0.18 0.15 0.10 0.12 0.19 0.08 0.20 0.12 0.42

Alpha 0.02 0.08 0.06 0.03 0.13 0.10 0.06 0.06 0.09 0.22

Beta 0.00 0.02 0.02 0.00 0.09 0.04 0.06 -0.01 0.06 0.13

Low Gamma -0.02 -0.01 0.01 -0.02 0.05 0.00 0.06 -0.04 0.05 0.10

High Gamma -0.02 -0.02 0.00 -0.03 0.03 -0.01 0.06 -0.05 0.04 0.09

Ripple -0.02 -0.03 0.00 -0.03 0.03 -0.01 0.06 -0.05 0.04 0.08

Fast Ripple -0.02 -0.04 0.00 -0.03 0.03 -0.01 0.06 -0.04 0.04 0.07

Cx→Th

Delta 0.08 -0.21 0.25 0.12 0.32 0.17 0.32 -0.38 0.20 -0.06

Theta 0.06 -0.08 0.27 0.14 0.29 0.20 0.21 -0.22 0.21 0.01

Alpha 0.05 0.00 0.27 0.13 0.22 0.14 0.12 -0.10 0.13 0.02

Beta 0.05 0.05 0.24 0.11 0.13 0.08 0.06 -0.05 0.05 0.02

Low Gamma 0.05 0.07 0.22 0.10 0.08 0.06 0.04 -0.02 0.00 0.02

High Gamma 0.05 0.07 0.21 0.10 0.06 0.06 0.04 -0.01 -0.03 0.02

Ripple 0.05 0.07 0.19 0.10 0.06 0.06 0.04 -0.01 -0.03 0.01

Fast Ripple 0.05 0.07 0.17 0.09 0.05 0.05 0.05 -0.01 -0.04 0.01

Hp→Th

Delta 0.08 0.11 0.28 0.51 0.16 -0.21 0.13 -0.32 0.34 0.12

Theta -0.06 -0.02 0.18 0.22 0.22 -0.09 0.21 -0.21 0.40 0.03

Alpha -0.03 -0.04 0.12 0.08 0.23 -0.03 0.15 -0.08 0.23 -0.02

Beta 0.04 -0.05 0.10 0.00 0.15 -0.01 0.11 0.02 0.09 -0.04

Low Gamma 0.08 -0.06 0.09 -0.04 0.07 0.00 0.10 0.06 0.00 -0.04

High Gamma 0.10 -0.06 0.09 -0.05 0.03 0.00 0.10 0.08 -0.03 -0.04

Ripple 0.11 -0.06 0.10 0.06 0.01 0.00 0.10 0.09 -0.05 -0.04

Fast Ripple 0.14 -0.06 0.13 0.07 0.00 -0.01 0.10 0.11 -0.05 -0.03
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Table 4. Connectivity measures developed from PDC method, after the validation
with Surrogate for rodent R052. Red measures represents that there is no connectivity
between brain areas. The measures are split in intervals and reported pairwise.

Brain areas Frequency band
Connectivity measures

Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6 Interval 7 Interval 8 Interval 9 Interval 10

Hp→Cx

Delta 0.29 -0.17 -0.04 0.07 0.10 0.19 -0.05 0.27 0.31 -0.04

Theta 0.37 0.09 0.17 0.19 0.26 0.16 0.10 0.19 0.13 0.20

Alpha 0.28 0.12 0.19 0.15 0.21 0.09 0.20 0.16 0.06 0.23

Beta 0.21 0.13 0.2 0.12 0.12 0.06 0.25 0.15 0.04 0.24

Low Gamma 0.19 0.13 0.2 0.12 0.07 0.05 0.27 0.15 0.04 0.24

High Gamma 0.18 0.13 0.21 0.12 0.05 0.05 0.28 0.15 0.04 0.25

Ripple 0.20 0.15 0.22 0.13 0.06 0.06 0.30 0.16 0.05 0.26

Fast Ripple 0.24 0.10 0.26 0.17 0.07 0.09 0.35 0.20 0.08 0.31

Th→Cx

Delta 0.32 -0.31 0.06 -0.14 0.40 -0.03 -0.55 0.52 0.18 0.31

Theta 0.40 0.17 0.24 0.24 0.35 0.23 -0.04 0.42 0.06 0.47

Alpha 0.36 0.27 0.26 0.30 0.27 0.26 0.14 0.23 0.00 0.37

Beta 0.31 0.30 0.26 0.31 0.25 0.27 0.20 0.09 -0.02 0.20

Low Gamma 0.29 0.31 0.26 0.31 0.24 0.26 0.22 0.03 -0.02 0.07

High Gamma 0.27 0.30 0.26 0.29 0.23 0.25 0.22 0.01 -0.02 0.01

Ripple 0.25 0.27 0.23 0.26 0.21 0.22 0.20 0.00 -0.03 -0.02

Fast Ripple 0.20 0.22 0.19 0.21 0.17 0.18 0.16 -0.02 -0.04 -0.04

Cx→Hp

Delta 0.19 -0.18 0.17 0.29 0.14 0.05 0.17 0.20 0.26 0.25

Theta 0.12 0.02 0.16 0.15 0.18 0.11 0.17 0.25 0.24 0.27

Alpha 0.06 0.03 0.08 0.06 0.15 0.07 0.13 0.21 0.21 0.22

Beta 0.03 0.04 0.03 0.02 0.08 0.03 0.08 0.14 0.18 0.18

Low Gamma 0.02 0.04 0.01 -0.01 0.03 0.02 0.06 0.11 0.16 0.16

High Gamma 0.02 0.04 0.01 -0.02 0.00 0.02 0.05 0.10 0.16 0.15

Ripple 0.02 0.04 0.01 -0.02 -0.02 0.02 0.05 0.09 0.15 0.13

Fast Ripple 0.02 0.04 0.01 -0.02 -0.03 0.02 0.05 0.09 0.14 0.11

Th→Hp

Delta 0.07 0.08 0.08 0.4 0.47 0.46 -0.02 0.5 0.48 0.53

Theta 0.12 0.26 0.18 0.3 0.29 0.36 0.11 0.4 0.24 0.54

Alpha 0.16 0.25 0.19 0.26 0.22 0.26 0.16 0.23 0.11 0.41

Beta 0.18 0.24 0.19 0.24 0.19 0.22 0.17 0.11 0.06 0.24

Low Gamma 0.19 0.23 0.19 0.24 0.19 0.21 0.18 0.06 0.05 0.11

High Gamma 0.18 0.22 0.19 0.23 0.18 0.2 0.17 0.04 0.04 0.06

Ripple 0.17 0.2 0.17 0.2 0.16 0.17 0.16 0.03 0.04 0.04

Fast Ripple 0.14 0.17 0.14 0.16 0.14 0.14 0.13 0.02 0.03 0.02

Cx→Th

Delta 0.47 0.33 0.36 0.10 0.10 0.10 0.18 0.17 0.33 0.31

Theta 0.28 0.13 0.20 0.12 0.22 0.18 0.22 0.28 0.30 0.37

Alpha 0.14 0.05 0.08 0.05 0.22 0.09 0.16 0.24 0.21 0.28

Beta 0.05 0.03 0.00 0.00 0.14 0.01 0.08 0.13 0.11 0.16

Low Gamma 0.00 0.02 -0.04 -0.03 0.08 -0.03 0.02 0.05 0.06 0.09

High Gamma -0.02 0.02 -0.05 -0.04 0.05 -0.05 -0.01 0.02 0.05 0.07

Ripple -0.04 0.02 -0.06 -0.05 0.05 -0.06 -0.02 0.01 0.04 0.05

Fast Ripple -0.04 0.02 -0.07 -0.05 0.06 -0.06 -0.03 0.00 0.03 0.03

Hp→Th

Delta 0.51 0.49 0.33 0.44 0.09 0.34 0.61 0.26 0.41 0.00

Theta 0.48 0.39 0.25 0.34 0.25 0.25 0.38 0.17 0.24 0.17

Alpha 0.33 0.23 0.2 0.21 0.20 0.13 0.28 0.16 0.12 0.21

Beta 0.23 0.16 0.19 0.16 0.11 0.08 0.24 0.16 0.06 0.22

Low Gamma 0.19 0.13 0.19 0.15 0.05 0.07 0.23 0.17 0.05 0.23

High Gamma 0.19 0.13 0.19 0.15 0.04 0.07 0.24 0.18 0.05 0.23

Ripple 0.20 0.15 0.21 0.16 0.04 0.08 0.25 0.19 0.06 0.25

Fast Ripple 0.24 0.19 0.25 0.19 0.06 0.11 0.30 0.23 0.09 0.30
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Table 5. Connectivity measures developed from PDC method, after the validation
with Surrogate for rodent R064. Red measures represents that there is no connectivity
between brain areas. The measures are split in intervals and reported pairwise.

Brain areas Frequency band
Connectivity measures

Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6 Interval 7 Interval 8 Interval 9 Interval 10

Hp→Cx

Delta 0.00 -0.01 -0.08 -0.02 0.08 0.16 0.00 0.06 -0.05 -0.01

Theta 0.00 0.00 -0.07 -0.01 0.09 0.16 0.01 0.06 -0.05 -0.01

Alpha 0.01 0.02 -0.05 -0.01 0.09 0.16 0.03 0.06 -0.04 -0.01

Beta 0.02 0.06 0.00 0.01 0.09 0.16 0.09 0.07 -0.01 0.00

Low Gamma 0.03 0.14 0.12 0.03 0.11 0.14 0.22 0.11 0.05 0.02

High Gamma 0.02 0.15 0.17 0.05 0.11 0.07 0.26 0.10 0.09 0.04

Ripple 0.01 0.09 0.11 0.04 0.07 0.02 0.16 0.06 0.06 0.03

Fast Ripple 0.00 0.06 0.07 0.02 0.05 0.00 0.10 0.04 0.04 0.02

Th→Cx

Delta -0.02 0.06 0.10 0.02 0.19 0.16 -0.13 -0.05 0.19 0.18

Theta -0.01 0.05 0.10 0.01 0.18 0.15 -0.11 -0.05 0.17 0.17

Alpha 0.00 0.04 0.10 -0.01 0.17 0.11 -0.07 -0.05 0.15 0.14

Beta -0.01 0.01 0.09 -0.04 0.11 0.04 -0.03 -0.04 0.07 0.06

Low Gamma -0.02 0.01 0.10 -0.06 0.02 -0.02 0.02 -0.02 0.00 -0.02

High Gamma -0.01 0.06 0.13 -0.05 0.00 -0.02 0.07 0.00 -0.01 -0.04

Ripple 0.02 0.08 0.14 -0.02 0.01 -0.02 0.10 0.02 0.01 -0.02

Fast Ripple 0.04 0.08 0.13 -0.01 0.02 -0.01 0.11 0.04 0.02 -0.01

Cx→Hp

Delta 0.08 0.29 0.03 0.25 0.28 -0.02 0.12 -0.29 0.09 0.25

Theta 0.09 0.26 0.03 0.22 0.24 -0.02 0.12 -0.28 0.07 0.2

Alpha 0.12 0.20 0.01 0.18 0.18 -0.01 0.13 -0.26 0.03 0.12

Beta 0.17 0.10 -0.02 0.08 0.05 -0.01 0.14 -0.21 -0.05 0.02

Low Gamma 0.22 0.02 -0.04 -0.02 -0.05 -0.01 0.15 -0.13 -0.09 -0.04

High Gamma 0.22 -0.01 -0.03 -0.06 -0.08 -0.01 0.14 -0.07 -0.08 -0.05

Ripple 0.18 -0.01 -0.02 -0.05 -0.06 -0.01 0.12 -0.04 -0.05 -0.04

Fast Ripple 0.14 -0.01 -0.01 -0.04 -0.05 -0.01 0.09 -0.02 -0.03 -0.03

Th→Hp

Delta 0.58 0.47 0.67 0.00 0.06 0.60 0.55 0.90 0.37 0.48

Theta 0.52 0.44 0.66 -0.01 0.05 0.56 0.51 0.75 0.36 0.46

Alpha 0.38 0.36 0.62 -0.02 0.04 0.46 0.41 0.51 0.31 0.40

Beta 0.20 0.18 0.49 -0.04 0.00 0.27 0.20 0.23 0.20 0.26

Low Gamma 0.09 0.02 0.27 -0.03 -0.03 0.13 0.04 0.09 0.06 0.11

High Gamma 0.07 0.02 0.15 0.02 0.02 0.11 0.04 0.07 0.04 0.09

Ripple 0.10 0.01 0.07 0.07 0.07 0.12 0.04 0.10 0.06 0.12

Fast Ripple 0.13 0.00 0.02 0.08 0.09 0.11 0.02 0.11 0.07 0.14

Cx→Th

Delta 0.30 -0.05 -0.02 0.06 0.36 -0.15 -0.22 0.09 0.20 0.22

Theta 0.28 0.02 0.05 0.09 0.36 -0.11 -0.18 0.10 0.24 0.24

Alpha 0.24 0.10 0.12 0.15 0.37 -0.05 -0.12 0.12 0.30 0.26

Beta 0.16 0.16 0.19 0.25 0.37 0.01 -0.05 0.15 0.38 0.27

Low Gamma 0.06 0.18 0.21 0.30 0.34 0.05 0.00 0.18 0.40 0.27

High Gamma 0.00 0.16 0.19 0.27 0.28 0.06 0.02 0.17 0.35 0.24

Ripple -0.03 0.11 0.15 0.19 0.20 0.05 0.02 0.12 0.25 0.19

Fast Ripple -0.03 0.08 0.11 0.13 0.14 0.04 0.02 0.09 0.17 0.14

Hp→Th

Delta 0.02 0.10 0.13 0.40 0.46 -0.10 -0.11 0.08 0.48 0.27

Theta 0.09 0.12 0.14 0.42 0.46 -0.04 -0.06 0.13 0.48 0.28

Alpha 0.20 0.19 0.16 0.45 0.48 0.05 0.01 0.23 0.49 0.31

Beta 0.43 0.37 0.25 0.57 0.54 0.26 0.17 0.45 0.54 0.44

Low Gamma 0.73 0.64 0.51 0.71 0.68 0.62 0.45 0.70 0.67 0.69

High Gamma 0.71 0.60 0.58 0.62 0.63 0.66 0.53 0.63 0.61 0.67

Ripple 0.46 0.37 0.34 0.40 0.40 0.40 0.34 0.40 0.38 0.40

Fast Ripple 0.29 0.23 0.21 0.26 0.25 0.25 0.21 0.26 0.24 0.25
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Table 6. Connectivity measures developed from PDC method, after the validation
with Surrogate for rodent R065. Red measures represents that there is no connectivity
between brain areas. The measures are split in intervals and reported pairwise.

Brain areas Frequency band
Connectivity measures

Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6 Interval 7 Interval 8 Interval 9 Interval 10

Hp→Cx

Delta 0.16 -0.16 0.14 0.36 0.18 0.37 0.11 0.23 0.28 0.28

Theta 0.13 -0.16 0.09 0.29 0.16 0.32 0.08 0.20 0.24 0.26

Alpha 0.08 -0.13 0.03 0.19 0.12 0.22 0.04 0.14 0.16 0.22

Beta 0.01 -0.08 -0.03 0.10 0.09 0.12 0.02 0.06 0.04 0.13

Low Gamma -0.03 -0.04 -0.05 0.06 0.08 0.05 0.02 0.01 -0.04 0.03

High Gamma -0.03 -0.02 -0.05 0.06 0.09 0.04 0.03 0.01 -0.06 -0.01

Ripple 0.00 0.00 -0.03 0.07 0.11 0.05 0.05 0.02 -0.05 -0.02

Fast Ripple 0.03 0.02 0.00 0.09 0.15 0.07 0.07 0.04 -0.03 -0.02

Th→Cx

Delta 0.08 0.05 -0.20 0.05 0.02 -0.14 -0.12 -0.33 -0.22 -0.30

Theta 0.08 0.03 -0.17 0.02 0.02 -0.13 -0.11 -0.30 -0.20 -0.29

Alpha 0.07 0.01 -0.12 0.00 0.04 -0.11 -0.09 -0.23 -0.16 -0.25

Beta 0.05 0.00 -0.05 -0.02 0.05 -0.07 -0.06 -0.11 -0.08 -0.17

Low Gamma 0.02 -0.01 0.01 -0.02 0.04 -0.03 -0.04 -0.02 -0.01 -0.09

High Gamma 0.01 -0.01 0.03 -0.02 0.01 -0.02 -0.03 0.01 0.02 -0.04

Ripple 0.01 -0.01 0.02 -0.02 -0.01 -0.02 -0.02 0.02 0.03 -0.02

Fast Ripple 0.01 -0.01 0.01 -0.02 -0.01 -0.02 -0.02 0.01 0.03 -0.01

Cx→Hp

Delta 0.24 -0.08 -0.04 -0.12 0.08 -0.04 0.00 0.16 -0.12 -0.11

Theta 0.30 -0.04 -0.01 -0.06 0.19 0.06 0.07 0.19 -0.06 -0.08

Alpha 0.41 0.08 0.06 0.08 0.34 0.22 0.20 0.24 0.06 -0.01

Beta 0.54 0.30 0.21 0.29 0.55 0.40 0.42 0.32 0.23 0.11

Low Gamma 0.60 0.48 0.33 0.42 0.66 0.49 0.57 0.36 0.34 0.21

High Gamma 0.57 0.51 0.35 0.43 0.62 0.47 0.56 0.36 0.35 0.24

Ripple 0.47 0.42 0.31 0.36 0.48 0.38 0.45 0.30 0.31 0.22

Fast Ripple 0.36 0.32 0.24 0.28 0.35 0.29 0.34 0.24 0.25 0.18

Th→Hp

Delta -0.09 -0.08 -0.26 0.09 -0.27 -0.13 -0.01 -0.17 -0.09 -0.24

Theta -0.07 -0.06 -0.23 0.08 -0.25 -0.11 -0.01 -0.15 -0.07 -0.23

Alpha -0.03 -0.02 -0.16 0.08 -0.19 -0.08 0.01 -0.10 -0.04 -0.21

Beta 0.02 0.03 -0.05 0.07 -0.06 -0.01 0.04 -0.01 0.01 -0.14

Low Gamma 0.06 0.08 0.06 0.06 0.07 0.04 0.04 0.05 0.06 -0.06

High Gamma 0.07 0.08 0.10 0.05 0.10 0.05 0.04 0.06 0.07 -0.02

Ripple 0.06 0.07 0.08 0.03 0.07 0.04 0.03 0.05 0.07 0.00

Fast Ripple 0.04 0.05 0.06 0.02 0.05 0.03 0.02 0.04 0.06 0.00

Cx→Th

Delta 0.79 0.44 0.71 0.64 0.62 0.67 0.68 0.71 0.66 0.66

Theta 0.73 0.45 0.71 0.64 0.60 0.64 0.67 0.71 0.64 0.65

Alpha 0.59 0.49 0.69 0.62 0.53 0.56 0.63 0.67 0.59 0.62

Beta 0.36 0.48 0.57 0.49 0.38 0.37 0.51 0.50 0.44 0.51

Low Gamma 0.16 0.36 0.34 0.28 0.19 0.17 0.32 0.26 0.25 0.32

High Gamma 0.08 0.22 0.15 0.15 0.08 0.05 0.20 0.11 0.13 0.17

Ripple 0.05 0.13 0.04 0.07 0.02 0.00 0.12 0.03 0.06 0.07

Fast Ripple 0.04 0.08 -0.01 0.03 0.00 -0.02 0.09 0.00 0.03 0.03

Hp→Th

Delta 0.26 0.31 0.30 0.04 0.25 -0.01 -0.15 0.47 0.28 0.41

Theta 0.20 0.24 0.25 0.01 0.20 -0.03 -0.17 0.44 0.26 0.39

Alpha 0.10 0.13 0.15 -0.04 0.12 -0.06 -0.18 0.35 0.20 0.33

Beta 0.00 0.03 0.04 -0.05 0.03 -0.07 -0.14 0.20 0.12 0.21

Low Gamma -0.06 -0.03 -0.03 -0.03 -0.01 -0.05 -0.09 0.08 0.08 0.09

High Gamma -0.06 -0.05 -0.05 -0.02 -0.02 -0.03 -0.06 0.02 0.08 0.03

Ripple -0.03 -0.04 -0.05 0.00 0.00 -0.02 -0.04 0.01 0.09 0.02

Fast Ripple 0.00 -0.03 -0.04 0.01 0.02 -0.01 -0.02 0.01 0.10 0.02
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Table 7. Connectivity measures developed from PDC method, after the validation
with Surrogate for rodent R072. Red measures represents that there is no connectivity
between brain areas. The measures are split in intervals and reported pairwise.

Brain areas Frequency band
Connectivity measures

Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6 Interval 7 Interval 8 Interval 9 Interval 10

Hp→Cx

Delta 0.03 0.27 0.47 0.65 0.10 0.36 0.47 0.09 0.32 0.32

Theta 0.06 0.31 0.49 0.62 -0.03 0.35 0.46 0.12 0.36 0.33

Alpha 0.09 0.34 0.45 0.55 -0.06 0.34 0.42 0.16 0.41 0.35

Beta 0.11 0.30 0.31 0.40 0.00 0.33 0.31 0.21 0.42 0.35

Low Gamma 0.10 0.22 0.18 0.22 0.06 0.33 0.20 0.21 0.33 0.30

High Gamma 0.11 0.18 0.13 0.13 0.09 0.33 0.16 0.20 0.25 0.23

Ripple 0.13 0.19 0.12 0.11 0.11 0.33 0.16 0.21 0.21 0.19

Fast Ripple 0.17 0.22 0.14 0.12 0.15 0.35 0.19 0.23 0.21 0.19

Th→Cx

Delta 0.10 0.11 -0.03 0.67 -0.13 0.36 0.32 0.34 0.42 0.34

Theta 0.10 0.10 0.02 0.60 0.05 0.28 0.28 0.32 0.46 0.32

Alpha 0.11 0.12 0.07 0.54 0.15 0.17 0.23 0.26 0.53 0.29

Beta 0.11 0.17 0.11 0.43 0.20 0.06 0.21 0.19 0.53 0.25

Low Gamma 0.11 0.21 0.12 0.35 0.22 0.00 0.20 0.16 0.40 0.20

High Gamma 0.12 0.23 0.13 0.32 0.23 -0.02 0.21 0.16 0.27 0.16

Ripple 0.14 0.25 0.14 0.32 0.24 -0.01 0.23 0.17 0.20 0.15

Fast Ripple 0.17 0.26 0.17 0.32 0.26 0.01 0.26 0.20 0.19 0.17

Cx→Hp

Delta 0.01 0.15 0.03 -0.21 -0.25 0.25 -0.06 0.44 0.18 0.53

Theta 0.04 0.14 0.06 -0.18 -0.15 0.24 -0.03 0.45 0.20 0.54

Alpha 0.07 0.14 0.12 -0.11 -0.03 0.23 0.05 0.46 0.24 0.55

Beta 0.10 0.16 0.17 0.03 0.09 0.22 0.15 0.47 0.30 0.56

Low Gamma 0.12 0.18 0.19 0.15 0.16 0.21 0.23 0.40 0.32 0.50

High Gamma 0.14 0.19 0.20 0.21 0.19 0.21 0.26 0.32 0.31 0.39

Ripple 0.17 0.21 0.22 0.25 0.22 0.22 0.28 0.27 0.29 0.28

Fast Ripple 0.21 0.23 0.24 0.27 0.25 0.24 0.30 0.26 0.28 0.22

Th→Hp

Delta -0.13 -0.09 0.25 -0.02 -0.27 0.27 0.14 -0.24 -0.27 0.17

Theta -0.10 -0.04 0.23 0.08 -0.04 0.22 0.12 -0.20 -0.23 0.18

Alpha -0.07 0.03 0.18 0.14 0.08 0.14 0.11 -0.13 -0.14 0.19

Beta -0.01 0.11 0.11 0.18 0.13 0.06 0.10 -0.02 -0.04 0.19

Low Gamma 0.05 0.15 0.07 0.19 0.15 0.02 0.11 0.05 0.04 0.15

High Gamma 0.08 0.17 0.06 0.20 0.16 0.01 0.11 0.08 0.07 0.12

Ripple 0.11 0.19 0.07 0.21 0.18 0.02 0.14 0.10 0.09 0.11

Fast Ripple 0.14 0.20 0.09 0.22 0.19 0.04 0.16 0.12 0.11 0.12

Cx→Th

Delta 0.43 0.09 -0.17 -0.13 -0.05 0.39 0.52 -0.32 -0.19 0.19

Theta 0.39 0.10 -0.11 -0.11 -0.05 0.38 0.50 -0.29 -0.16 0.20

Alpha 0.31 0.14 -0.01 -0.05 0.01 0.35 0.46 -0.22 -0.10 0.22

Beta 0.20 0.18 0.11 0.06 0.10 0.31 0.37 -0.07 0.01 0.24

Low Gamma 0.14 0.21 0.17 0.16 0.18 0.28 0.30 0.08 0.12 0.23

High Gamma 0.14 0.23 0.20 0.21 0.21 0.28 0.28 0.17 0.20 0.21

Ripple 0.17 0.25 0.22 0.25 0.24 0.29 0.29 0.21 0.25 0.19

Fast Ripple 0.21 0.28 0.25 0.28 0.27 0.31 0.31 0.24 0.27 0.19

Hp→Th

Delta 0.36 0.48 0.19 0.59 0.09 0.64 0.17 -0.02 -0.31 -0.38

Theta 0.39 0.50 0.22 0.54 -0.07 0.59 0.17 -0.01 -0.25 -0.34

Alpha 0.39 0.48 0.22 0.48 -0.11 0.49 0.17 0.03 -0.15 -0.25

Beta 0.29 0.36 0.16 0.34 -0.04 0.36 0.15 0.09 -0.02 -0.09

Low Gamma 0.18 0.21 0.10 0.18 0.04 0.29 0.14 0.14 0.08 0.04

High Gamma 0.13 0.15 0.08 0.10 0.08 0.28 0.15 0.16 0.12 0.12

Ripple 0.14 0.14 0.08 0.08 0.11 0.28 0.18 0.19 0.15 0.16

Fast Ripple 0.17 0.16 0.10 0.10 0.15 0.29 0.20 0.22 0.19 0.19
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Table 8. Channel capacity for rodent R048 for each interval observed. They represent
the MI values among brain areas and they are reported below pairwise.

Cx → Hp Cx → Th Hp → Th

Interval1 1.35 1.06 1.76

Interval2 1.74 1.42 1.84

Interval3 1.51 1.18 1.70

Interval4 0.85 0.91 1.46

Interval5 1.53 1.36 2.07

Interval6 0.72 0.90 0.87

Interval7 2.38 2.34 2.76

Interval8 1.61 1.60 1.72

Interval9 0.76 0.78 1.69

Interval10 1.60 1.67 2.04

Table 9. Channel capacity for rodent R052 for each interval observed. They represent
the MI values among brain areas and they are reported below pairwise.

Cx → Hp Cx → Th Hp → Th

Interval1 1.27 1.49 2.06

Interval2 1.12 1.07 1.69

Interval3 1.57 1.31 1.85

Interval4 2.64 2.67 3.11

Interval5 1.78 2.06 2.16

Interval6 1.56 1.42 1.69

Interval7 0.88 0.85 1.99

Interval8 1.43 1.37 1.88

Interval9 1.21 1.17 2.00

Interval10 1.98 2.13 2.42

Table 10. Channel capacity for rodent R064 for each interval observed. They represent
the MI values among brain areas and they are reported below pairwise.

Cx → Hp Cx → Th Hp → Th

Interval1 0.39 0.50 1.36

Interval2 0.36 0.34 1.35

Interval3 0.32 0.40 1.54

Interval4 0.33 0.36 1.31

Interval5 0.42 0.51 1.43

Interval6 0.41 0.52 1.26

Interval7 0.40 0.48 1.17

Interval8 0.31 0.26 1.22

Interval9 0.43 0.48 1.54

Interval10 0.35 0.38 1.25
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Table 11. Channel capacity for rodent R065 for each interval observed. They represent
the MI values among brain areas and they are reported below pairwise.

Cx → Hp Cx → Th Hp → Th

Interval1 1.40 1.33 1.19

Interval2 1.33 1.42 0.98

Interval3 1.13 1.05 0.87

Interval4 1.27 1.39 0.96

Interval5 1.5 1.22 1.10

Interval6 1.17 1.10 0.79

Interval7 1.32 1.24 1.01

Interval8 1.73 1.22 1.07

Interval9 1.35 0.95 0.89

Interval10 1.17 1.07 0.83

Table 12. Channel capacity for rodent R072 for each interval observed. They represent
the MI values among brain areas and they are reported below pairwise.

Cx → Hp Cx → Th Hp → Th

Interval1 2.14 2.45 2.33

Interval2 2.21 2.71 2.15

Interval3 2.23 1.91 1.73

Interval4 2.47 2.59 2.29

Interval5 1.95 2.71 1.79

Interval6 1.86 1.82 1.84

Interval7 2.61 1.91 1.84

Interval8 2.56 2.78 2.26

Interval9 2.50 2.56 2.04

Interval10 2.66 2.75 2.21

Table 13. Transmission rate for rodent R048. The measures are reported in bits/s.
They are reported for each interval and pairwise according to the brain areas.

Cx → Hp Hp → Cx Cx → Th Th → Cx Hp → Th Th → Hp

Interval1 3.52 4.03 2.77 2.77 5.26 4.34

Interval2 4.53 5.19 3.68 3.68 5.48 4.52

Interval3 3.92 4.5 3.07 3.07 5.07 4.19

Interval4 2.2 2.52 2.37 2.37 4.34 3.59

Interval5 3.99 4.57 3.55 3.55 6.18 5.10

Interval6 1.87 2.15 2.34 2.34 2.58 2.13

Interval7 6.19 7.1 6.08 6.08 8.22 6.79

Interval8 4.18 4.79 4.16 4.16 5.12 4.23

Interval9 1.98 2.27 2.03 2.03 5.03 4.15

Interval10 4.17 4.78 4.35 4.35 6.07 5.01
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Table 14. Transmission rate for rodent R052. The measures are reported in bits/s.
They are reported for each interval and pairwise according to the brain areas.

Cx → Hp Hp → Cx Cx → Th Th → Cx Hp → Th Th → Hp

Interval1 4.39 4.33 5.17 5.11 7.05 7.05

Interval2 3.87 3.83 3.69 3.65 5.8 5.8

Interval3 5.43 5.36 4.54 4.49 6.32 6.32

Interval4 9.13 9.03 9.25 9.14 10.64 10.64

Interval5 6.15 6.08 7.11 7.03 7.37 7.37

Interval6 5.40 5.34 4.91 4.86 5.77 5.77

Interval7 3.05 3.02 2.96 2.92 6.82 6.82

Interval8 4.94 4.88 4.75 4.69 6.44 6.44

Interval9 4.20 4.15 4.06 4.01 6.85 6.85

Interval10 6.87 6.79 7.37 7.29 8.26 8.26

Table 15. Transmission rate for rodent R064. The measures are reported in bits/s.
They are reported for each interval and pairwise according to the brain areas.

Cx → Hp Hp → Cx Cx → Th Th → Cx Hp → Th Th → Hp

Interval1 7.09 8.27 9.08 8.79 28.58 23.71

Interval2 6.56 7.65 6.09 5.89 28.3 23.48

Interval3 5.73 6.68 7.23 7.00 32.42 26.89

Interval4 6.00 7.00 6.42 6.21 27.53 22.84

Interval5 7.57 8.84 9.24 8.94 30.03 24.91

Interval6 7.42 8.66 9.40 9.09 26.44 21.93

Interval7 7.24 8.45 8.59 8.31 24.52 20.34

Interval8 5.49 6.41 4.71 4.56 25.59 21.23

Interval9 7.81 9.11 8.61 8.33 32.35 26.84

Interval10 6.34 7.40 6.84 6.62 26.26 21.79

Table 16. Transmission rate for rodent R065. The measures are reported in bits/s.
They are reported for each interval and pairwise according to the brain areas.

Cx → Hp Hp → Cx Cx → Th Th → Cx Hp → Th Th → Hp

Interval1 27.93 27.93 26.61 26.61 23.88 23.88

Interval2 26.61 26.61 28.47 28.47 19.64 19.64

Interval3 22.61 22.61 21.04 21.04 17.49 17.49

Interval4 25.33 25.33 27.82 27.82 19.27 19.27

Interval5 30.05 30.05 24.36 24.36 21.93 21.93

Interval6 23.43 23.43 21.91 21.91 15.72 15.72

Interval7 26.46 26.46 24.77 24.77 20.11 20.11

Interval8 34.63 34.63 24.35 24.35 21.41 21.41

Interval9 27.03 27.03 19.05 19.05 17.81 17.81

Interval10 23.32 23.32 21.49 21.49 16.59 16.59
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Table 17. Transmission rate for rodent R072. The measures are reported in bits/s.
They are reported for each interval and pairwise according to the brain areas.

Cx → Hp Hp → Cx Cx → Th Th → Cx Hp → Th Th → Hp

Interval1 11.85 11.76 13.58 13.43 12.81 12.76

Interval2 12.26 12.17 15.03 14.87 11.8 11.76

Interval3 12.34 12.25 10.58 10.46 9.54 9.50

Interval4 13.69 13.59 14.34 14.19 12.57 12.52

Interval5 10.80 10.72 15.01 14.85 9.85 9.81

Interval6 10.32 10.24 10.08 9.97 10.11 10.08

Interval7 14.48 14.38 10.56 10.45 10.1 10.07

Interval8 14.16 14.06 15.39 15.22 12.44 12.39

Interval9 13.86 13.76 14.2 14.05 11.21 11.17

Interval10 14.71 14.60 15.25 15.08 12.17 12.13
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Abstract. The objective of the study was to compare the physical character-
istics of the diseases of each patient participating in the MRCP exam and to
carry out a detailed analysis between the score obtained by the medical evalu-
ation, the averages obtained by the Image J® software curve. Participated in the
study 64 patients (31 women, 33 men). Determination of the sequences and the
procedure for the patients was defined by two radiologists from the clinic. Thus,
they also analyzed the images acquired from the research, called evaluator 1
(E1) and 2 (E2). For this study, the images and scores assigned by E2, obtained
with a manufactured contrast were chosen for a subset of 14 patients (21.87%)
of 64. 4 being score 2 (100%) (1 woman and 3 men); 5 patients with score 3
(12.82%) (3 women and 2 men) of 39 total; and 5 (23.81%) were score 4 (2
women and 3 men) of 21 total. In the selected images, a line or rectangle was
used in the region of the common bile duct. The relevance of this work is in the
development of a protocol applied to available software for the identification of
diseases through changes in average values of gray levels in chosen regions of
organs.

Keywords: Magnetic resonance cholangiopancreatography � Comparison
image � Image J � Curve averages in the region � Gray levels

1 Introduction

Magnetic Resonance Imaging (MRI) is a technique that uses high magnetic fields,
allows detailing of the human body in its anatomy and physiology, does not expose the
patient to ionizing radiation and is currently, alongside Multislice Computed Tomog-
raphy, one of the few methods that provide images in the three orthogonal planes
(axial, coronal and sagittal) without repositioning the patient [1–3]. An example of a
diagnostic procedure in MRI is the Magnetic Resonance Cholangiopancreatography
(MRCP or MRC) exam indicated to evaluate patients with suspected pancreatic
alterations, disease or biliary complications, lithiasis (colitis and choledocholithiasis),
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for liver donors [4–7] and allows anatomical detailing of the accessory digestive organs
(pancreas and gallbladder) (see Fig. 1).

MRCP is based on T2 weighted images, which significantly reduces the residual
signal of parenchymal structures and remains only with the hyperintense (white in the
image) of structures with liquid content [2]. Figure 2 indicates the arrows for essential
organs in the visualization of the image in the MRCP exam with administration of the
oral contrast agent, gallbladder (1), the common bile duct (2) and pancreatic duct (3).
The stomach (represented by the star) and the duodenum (represented by the circle)
have been completely deleted (not shown in the picture).

Fig. 1. Anatomical image of the gallbladder, pancreas and ducts, authorization [8].

Fig. 2. CPRM image acquisition from a research volunteer using oral contrast agent, where the
main organs are indicated by arrows: gallbladder (1), the common bile duct (2), pancreatic duct
(3), the stomach is represented by the star and the duodenum represented by the circle.
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The scan protocol may vary depending on the clinical service routine or the
anatomical region to be emphasized. [9] cite that due to the high prevalence of hepatic
or pancreatic parenchymal abnormalities in patients with changes in the bile and
pancreatic ducts, the MRCP sequence can be part of a liver or pancreas protocol,
services that include the complete abdomen examination. Variations in strongly T2
weighted sequence in two dimensions (2D), starting with multiplane acquisition locator
and multiple thin slices following: Half Single Shot Turbo Echo Acquisition (HASTE);
Single Shot Fast Spin Echo (SS-FSE); Single Shot Turbo Spin Echo (SS-TSE), the
patient must be breath-holding during data acquisition, and the cut plane is the coronal
with a cut thickness of 3 mm, with fat suppression, to improve the quality of maximum
intensity. In the SS-FSE sequence, oral contrast is used to change relaxation times. Two
types of oral contrast agent can be used in MRCP: natural and commercial [10, 11]. If a
contrast enhances the signal from an anatomical region, it works as a positive contrast
(hypersignal). But if a contrast eliminates the signals from certain anatomical regions, it
works as a negative contrast (hyposignal). Oral contrasts administered at appropriate
concentrations appear brilliant in T1-weighted images, as they shorten the T1 time of
the tissues that absorb it. Contrasts can also shorten T2, causing hyposignal in the T2-
weighted image.

The negative effect of contrast in MRCP is to eliminate the signs from the stomach
and duodenum (Fig. 2) in order to better visualize anatomical structures such as the
pancreas, gallbladder and the common bile duct [7, 9, 12].

The objective of the study was to compare the physical characteristics of the
diseases of each patient participating in the MRCP exam and to carry out a detailed
analysis between the score obtained by the medical evaluation, the averages obtained
by the Image J® software curve and the existing diseases [12, 13]. For this study, only
the commercial contrast agent administered to MRCP patients was considered.

2 Materials and Methods

The study was approved by UTFPR Ethics Committee and obtained authorization
under the registration of CAAE 02.520.512.0.0000.5547.

2.1 MRCP Technique

Subjects. The research participants were selected at the Clinical Hospital of the
Federal University of Paraná (UFPR), which provides general care in Curitiba-PR,
where referrals are made via Health Units, receiving patients from the Metropolitan
Region of Curitiba and from the entire State of Paraná, Brazil [12]. The research was
started and concluded in about eight months, in the outpatient clinics for non-alcoholic
steatopathy, alcoholic liver disease and fatty and biliary disease.
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There was clearance for the follow-up of consultations and subsequent invitation to
research participants (designated as patients) at the time of the consultations. Patients
who agreed to participate received the Free and Informed Consent Form (ICF) and the
appropriate guidance on the MR examination, as well as the contraindications [7, 12].
If the patient had any contraindication for the exam, or could not attend the two days of
examination, it was excluded. Patients received confirmation and reinforcement of the
guidelines two days before the scheduled date [14]. Participated in the study 64 patients
(31 women, 33 men), and each participant received an identification to assist in
research and preserve its anonymity. For this research, gender, followed by the order of
exams, e.g., F1, M2 was used for standardization. They performed MRCP exams in 2
days, being instructed to perform a 3 hour fast, at the Diagnostic Imaging Clinic in
Curitiba, Paraná, Brazil [12, 15].

Image Acquisition. The image acquisition protocol was exactly the same as the clinic
already used for MRCP, starting with: locator (LOC) in three orthogonal planes (PL);
following SS-FSE in apnea and; then axial lava (Liver Acquisition Volume Acceler-
ation) T1 without fat and; finally, radial cholangio [15–17]. In addition to this protocol,
multiple thin slices were acquired in the coronal plane: HASTE, TSE, followed by
thick radial slices in FSE / TSE also in strong weighting in T2. The acquisitions were
always made in the Coronal plans using 2D Fast Imaging Employing Steady-State
(FIESTA), Axial 2D FIESTA (with fat saturation) Array Spatial Sensitivity Encoding
Technique (ASSET) and the sequence of radial cholangio was the same for both days,
in order to compare the effectiveness of contrasts [12, 18]. The images were obtained in
1.5T MRI system from General Electric Company (GE), model HDXT with 12
channels with the Full Fov coil, during the acquisition of the images, GE Healthcare
Advantage workstation running Centricity DICOM Viewer version 3.0 software in the
Clinic above [12, 16].

On the first day, the total abdomen sequence was performed, followed by MRCP,
with the administration of commercial contrast (called A). On the second day, only the
MRCP sequence was used, with administration of natural contrast (called B). The dose
of each contrast was 200 mL divided into 2 portions of 100 mL, one dose was given
after the anamnesis and another 10 min later [12, 16]. For each patient who completed
the MRCP protocol, a report was issued by the clinic’s doctors. The images of the two
exams served for certification and identification of diseases.

2.2 Analysis of Images

The determination of the sequences and the procedure for the patients was defined by
two radiologists from the clinic, responsible for carrying out these exams. Thus, they
also analyzed the images acquired from the research, called evaluator 1 (E1) and 2 (E2)
[12].
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When the exams were completed, the images were saved in the PACS (Pic-
ture Archiving and Communication System) [12, 19] and made available on file system
to each evaluator that could access and analyze the quality image with contrasts
administrated (manufactured and natural), evaluating and using a scale from 1 to 4.
Score 1 means that there is a hyperintensity signal of stomach and duodenum and it is
not possible to evaluate these structures. Score 2: assessment occurs when there is a
partial view of the structures. In score 3, hyperintensity signal does not hinder the
analysis of the structures, and score 4 means that there is no signal hyperintensity for
stomach and duodenum, which makes clearer the MRCP image [6, 7, 20].

The Image J® software (2019) is an image processing and analysis program with
free download [21], it allows application in different areas, mainly health, as it is easy
to use, it allows tools and image processing in several formats. Examples of these tools
include histograms, measurements of areas, densities and others [22]. In this work, the
Image J® software was employed to analyze and compare the image quality of the
patients by separating a common bile duct region (according to its position, it is
noteworthy that in some patients the location and size were varied), with the same
dimension (selection rectangle with size approximately 58.00 mm � 5.60 mm
(length)) for 12 patients and in 2 of these a line measuring 58.00 mm (length and
height) was used [12, 16, 23].

In addition, the Image J® software analyzes a region demarcated in the image [24],
using the plot profile tool, and thus obtaining values referring to the gray shades in axis
(Y), by the distance in (mm) axis (X) plotted on a graph. In this work 91 points were
used (example of Fig. 3), selecting the size mentioned above, where the central point
was number 46, which should present the maximum value of the gray levels [7]. In
Fig. 3, the numbers indicate: 1. Region do duodenum; 2. Region of the common bile
duct and 3. Region of pancreas.
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Fig. 3. Regions contiguous to the choledochal duct separated into: 1. Region of the duodenum;
2. Region of the common bile duct and 3. Region of the pancreas, from the radial cholangio
examination of patient F36 with contrast A, acquired by the software Image J®.
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3 Results

Analysis of Images. In the evaluation of medical images, each evaluator chose, among
the sequences of images, two of them, one for each type of contrast administered (A
and B), which identified with quality the region of the bile ducts and assessing whether
the contrasts erased the signal of the stomach and duodenum, in order to allow a
clinical analysis, making a report issue possible [7, 12].

In this study, the images and scores assigned by E2 (because he/she more reliable
compared to E1) of the commercial contrast were chosen for a subset of 14 patients
(21.87%) of 64. The selection of patients was carried out at random, as the purpose was
to consider the image note, the diseases associated and a quantitative analysis of gray
levels by the Image J® software. 4 notes being 2 (100%) (1 woman and 3 men); 5
patients with a score of 3 (12.82%) (3 women and 2 men) out of 39; and 5 (23.81%)
patient with a score of 4 (2 women and 3 men) out of 21. In the selected images, a line
or rectangle was used in the region of the bile duct, according to the sizes mentioned
above (item 2.2), applying Image J®. Figure 4 illustrates some of these images, with
score 2 (F36 and M63); 3 (F17 and M55) and 4 (F28 and M3).

For numerical analysis, as shown in Fig. 3, the average gray level for region 1 was
used, this region is between 0 and 25.13 mm, with a value of 262.83; for region 2 in the
range between 25.13 to 42.53 mm, the average of this range is 429.23 and for region 3
between 42.53 to 58 mm, the average is 39.12.

Figure 5 shows the curves obtained by Image J® for gray levels in relation to the
distance for the 4 images obtained with E2 score 2, considering the following patients:
F36, M37, M54 and M63, as well as the mean value. It can be seen in the Fig. 5 that
the averages for regions 1, 2 and 3 of the F36 curve were 262.83, 429.23 and 39.12,
respectively. For the M37 the values were: 151.00, 252.25 and 157.48. In the M54 the
values were: 111.86, 143.51 and 91.41. For M63 the averages were: 93.68, 210.95 and
107.01. The average values obtained by means of the curves (Ave) were 154.84,
258.98 and 98.76.

When consulting themedical reports, it is emphasized that in F36 the comments were:
status after cholecystectomy, and a small fluid collection around the distal choledoccus
(location applied to Image J®, as shown in Fig. 4). Hepatocarcinoma (HCC) was
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suspected in M37, in addition to portal hypertension and moderate ascites, showing that
areas chosen by Image J® are altered. Patient M54 presented dilation of the common bile
ducts and probable stone, accentuating the values of the curve. InM63, the medical report
showed ascites, liver changes with changes to the right of the duct (region 3).

Fig. 4. Images of patients from the cholangio radial sequence of scores 2 (F36 and M63), 3 (F17
and M55) and 4 (F28 and M3) acquired with manufactured contrast obtained with evaluator 2.
The rectangles in the images (M63, F17, M55 and F28) and lines (F36 and M3) indicate the area
of the common bile duct, chosen for the Image J® software.
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Statistical analysis was performed and the box plots are shown in Fig. 6, with the
maximum and minimum values (x), intermediate values (25 and 75%) and average
value (represented by the square in the figure) for the average values of regions 1, 2 and
3, following Fig. 3 and 5 for the images chosen by E2 of the 4 patients who obtained
score 2. For region 1, the maximum value is for patient F36, and the others have a
lower values than the average. In region 2, F36 maintains the highest average, again the
other patients have a lower values than the average. And for region 3, patient M37 has
the highest average and F36 the lowest average.
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Fig. 5. The curves represent the levels of gray in relation to the distance for the A contrast, of the
radial images of cholangio of the common bile duct of 4 patients with score 2, obtained with the
Image J® software, as well as the average values.

Fig. 6. Box plot of maximum, minimum, intermediate and, average value of regions 1, 2 and 3
of the 4 patients with score 2.
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Figure 7 shows the curves obtained by Image J® of gray levels in relation to the
distance for the 5 images obtained with score 3 of E2, for the following patients: F1,
F17, F38, M25 and M55 in addition to the mean values. It can be seen in the Fig. 7 that
the averages for regions 1, 2 and 3 of the F1 curve were: 39.15, 396 and 75.61,
respectively. For F17 there are 39.36, 528.58 and 39.42. For patient F38, 34.15, 234.70
and 51.64 were found. For the M25, the values were: 36.25, 197.23 and 63.42. Finally,
for the M55: 28.99, 90.39 and 41.14. The average values obtained by means of the
curves (Ave) were 35.58, 289.38 and 54.24.

When consulting the medical reports, it was noted that F1 did not show changes in
her examination. In F17, the medical report indicates slight changes in the size of the
pancreas (as shown in Fig. 4). Patient F38 has post-cholecystectomy status. In M25, a
small amount of free perihepatic fluid and calculous cholecystopathy were found. And
M55 showed ascites, areas of ectasia and segmental stenosis involving the right and left
hepatic ducts (according to Fig. 4).

The statistical analysis was performed and the box plots are shown in Fig. 8, with
the maximum and minimum values (x), intermediate values (25 and 75%) and average
value (represented by the square in the figure) for the average values of regions 1, 2 and
3, following Fig. 3 and 7 for the images chosen by E2 for the 5 patients who obtained
score 3. For region 1, the maximum value is from patient F17 (39.15), and the mini-
mum value is again M55 (28.99), with a difference in gray levels of 10.34. In region 2,
F17 maintains the highest average and the minimum value is again M55. And for
region 3 the highest value is for patient F1 (75.61) and the lowest value is for F17
(39.42).
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Fig. 7. The curves represent the levels of gray in relation to the distance for the A contrast, of the
radial images of cholangio of the common bile duct of 5 patients with score 3, obtained with the
Image J® software, as well as the average values.
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Figure 9 shows the curves obtained by Image J® of gray levels in relation to the
distance for the 5 images obtained with score 4 of E2, for the following patients: F28,
F58, M3, M27 and M42 and the mean values. It can be seen in the figure that the
averages for regions 1, 2 and 3 of the F28 curve were: 153.58, 167.65 and 62.39,
respectively. For F58, there are 54.18, 349.51 and 48.73. For patient M3, 34.09, 88.02
and 35.71 were found. For the M27, the values were: 37.63, 202.21 and 46.39. Finally,
for the M42: 37.51, 99.55 and 38.95. The average values obtained by means of the
curves (Ave) were 63.4, 181.39 and 46.38. When consulting the medical reports, it was
noted that F28 had post-cholecystectomy status, and in region 1 (as shown in Fig. 4),
the commercial contrast administered did not erase the bowel signal, which caused a
value well above the average (153.8 for 63.4). In F58, the report does not indicate
changes. Patient M3 presented amputation of the common hepatic duct with moderate
dilation of the right and left hepatic ducts and their branches. Suspected central
cholangiocarcinoma (according to Fig. 4). At M27, he presented post-cholecystectomy
status. The M42 patient had no change in his examination.

Statistical analysis was performed and the box plots are shown in Fig. 10, with the
maximum and minimum values (x), intermediate values (25 and 75%) and average
value (represented by the square in the figure) for the average values of regions 1, 2 and
3, following Fig. 3 and 9 for the images chosen by E2 of the 5 patients who obtained
score 4. For region 1, the maximum value is from patient F28 (153.58), and the
minimum value is from M3 (34.09). In region 2, F58 maintains the highest average
(349.51) and the minimum value is again M3 (88.02). And for region 3 the highest
value is from patient F28 (62.39) and the lowest value is from M42 (38.95).

Fig. 8. Box plot of maximum, minimum, intermediate and, average value and average of regions
1, 2 and 3 of the 5 patients with score 3.
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After presenting Fig. 5, 7 and 9, the average curves of each of are highlighted,
joining them in Fig. 11. In this Fig. All the 14 patients were considered in the study,
distributed them among notes 2, 3 and 4 obtained by Image J®. For score 2, the
averages for regions 1, 2 and 3 were: 154.84, 258.98 and 98.76. The values for score 3
were 35.58, 289.38 and 54.24. For score 4, the mean values were 63.4, 181.39 and
46.38. As shown in Fig. 11, in regions 1 and 3 the highest averages are for score 2. In
region 2 the highest average is for score 3. One can see that the lowest averages were in
region 1 of score 3, and in region 2 and 3 for score 4.
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Fig. 9. The curves represent the levels of gray in relation to the distance for the A contrasts, of
the radial images of cholangio of the common bile duct of 5 patients with score 4, obtained with
the Image J® software, as well as the average values.

Fig. 10. Box plot of maximum, minimum, intermediate and, average value of regions 1, 2 and 3
of the 5 patients with score 4.
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4 Discussion

The images acquired in the MCRP sequence were evaluated by E2 giving notes from 1 to
4. There was a total of 64 patients, with score 2 there were 4 patients, with score 3 there
were 39 and with score 4 there were 21 patients [16]. Of these, 14 patients were selected,
subdivided as follows: 4 patients with score 2, 5 patients with score 3 and 5 patients with
score 4. For a more detailed comparison of the physical characteristics of the diseases of
each patient participating in the research, an analysis between the score, the averages
obtained by the Image J® curve and existing diseases was performed [22, 24].

In Fig. 3, the three regions are predominantly observed, and in region 1 a lower
average value is expected, because the oral contrast agent should erase the signal from
the duodenum. Region 2 is the common bile duct, where the signal must be more
intense (since this location is of interest to MRCP). In region 3, the mean value should
be lower, as the sign of the pancreas must be erased; it only appears when there are
physiological changes.

For score 2, the average values for regions 1 and 3 were 154.84 and 98.76, denoting
the presence of related diseases such as: small fluid collection around the distal bile
duct (F36), moderate ascites (M37) and M54 presented dilation of the pathways bile
ducts and probable stones in the bile duct. Region 2 showed a variation in the average
gray levels from 143.51 in patient M54 to 429.23 in patient F36, with the other patients
presenting with values below the average of 258.99. The standard deviation of the gray
levels averages in regions 1, 2 and 3 was 75.86, 122.02 and 48.74, respectively, with a
greater variation in the gray values due to the presence of the diseases previously
described.

For score 3, the mean value for region 1 was 35.58, with the highest value for
patient F17, with 39.36 and the lowest value for patient M55, with 28.99 and the

0

100

200

300

400

500

600

0 20 40 60

G
ra

y 
le

ve
ls

 

Width distance (mm) 

Sc2
Sc3
Sc4

Fig. 11. Curves of the mean values for the 14 patients distributed between scores 2, 3 and 4 with
overlapping.
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standard deviation was 4.27. For region 2, the mean value is 289.38, with a maximum
mean for patient F17 with a value of 528.58 and a minimum mean of 90.39 for patient
M55, with a standard deviation of means of 172.96. For region 3, the mean value is
54.24, with a maximum value of 75.61 for patient F1 and a minimum value of 39.42
and standard deviation of 15.32. Here in the F17 medical report there are slight changes
in the size of the pancreas. With patient F38 having post-cholecystectomy status. In
M25, a small amount of free perihepatic fluid and calculous cholecystopathy were
found. And for M55, the report shows ascites, areas of ectasia and segmental stenosis
involving the right and left hepatic ducts.

For score 4, the mean value of region 1 was 63.4, with the highest value for patient
F28, with 153.58 and the lowest value for patient M3, with 34.08, with other patients
having values lower than the mean, and the standard deviation was 51.01. For patient
F28, the natural contrast was not able to decrease the intestinal signal, which raised the
average for region 1 above all other averages for the other 4 patients. For region 2, the
variation in the average gray levels varied from a minimum of 88.02 for patient M3 and
a maximum of 349.50 for patient F58 and an average value of 181.39 with a standard
deviation of 105.23. For region 3, the mean was 46.43, with a minimum value of 35.71
for patient M3 and a maximum value of 62.38 for patient F28, with a standard devi-
ation of 10.37. Due to the position of the common bile duct, with a lateral view, a line
was chosen in the figure by the evaluator E2 (patient M3), instead of using a rectangle.
If a rectangle were chosen, it would be along the common bile duct. In this way the line
crosses the bile duct up and down. When consulting the medical reports, it was noted
that F28 had post-cholecystectomy status. In F58, the medical report does not indicate
changes. Patient M3 presented amputation of the common hepatic duct with moderate
dilation of the right and left hepatic ducts and their branches. Suspected central
cholangiocarcinoma (according to Fig. 4). At M27, he presented post-cholecystectomy
status. Patient M42 showed no changes in his exam.

It was proved that the mean values for the score 2 curves are higher, being 4.35
times higher than the average of score 3, in region 1. In region 3, score 2 is 2.12 times
higher than score 4. That is, the signal intensity always stands out, due to the diseases
existing in those patients. In region 1, the mean of score 4 is 78% higher than the mean
of score 3. This is due to the image signal from patient F28 has not been properly
erased (contrast or patient changes). In region 3, the mean of score 3 is 16.8% higher
than the mean of score 4, due to the enhancement of the pancreatic duct.

The study limitation is due to the pandemic situation and the difficulty of
exchanging information with the radiologist, because the clinic is restricting the access
of people. In this study, the image database, the reports made available and the
researchers experience were considered.

5 Conclusions

This study intended to present an area yet little explored, using Image J® software
obtain gray level curves, in the issuance of medical reports describing the existing
diseases in patients and the attribution of scores to images indicating how good they are
for the emission of the medical report in MRCP exams using a commercial contrast.
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From the evaluation of the averages found and the scores assigned, score 2 pre-
sented the highest averages of gray levels, compared to the averages of scores 3 and 4,
because the existing diseases in these patients prevent the organ signal to be erased.
This is true for both region 1 and region 3. For scores 3 and 4 the difference in averages
between them is less than the average. There was a greater decrease in the signal in
regions 1 and 3 for scores 3 and 4. For region 1, the mean of the signal of score 3 is less
than the mean of score 4 and in region 3, the mean of score 4 was less than the mean of
score 3. The medical evaluation has a certain degree of subjectivity that could not be
solved in this initial quantitative assessment.

The relevance of this work is in the development of a protocol applied to available
software that assists in the identification of diseases through changes in average levels
of gray levels in chosen regions of organs.

Future work should improve the delimitation of regions close to the common bile
duct that would facilitate the identification of existing diseases or anatomical changes.
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Abstract. To manage their disease, diabetic patients need to control the blood
glucose level (BGL) by monitoring it and predicting its future values. This allows
to avoid high or low BGL by taking recommended actions in advance. In this
paper, we conduct a comparative study of two emerging deep learning tech-
niques: Long-Short-Term Memory (LSTM) and Convolutional Neural Networks
(CNN) for one-step and multi-steps-ahead forecasting of the BGL based on
Continuous Glucose Monitoring (CGM) data. The objectives are twofold: 1)
Determining the best strategies of multi-steps-ahead forecasting (MSF) to fit the
CNN and LSTM models respectively, and 2) Comparing the performances of the
CNN and LSTM models for one-step and multi-steps prediction. Toward these
objectives, we firstly conducted series of experiments of a CNN model through
parameters selection to determine its best configuration. The LSTM model we
used in the present study was developed and evaluated in an earlier work.
Thereafter, five MSF strategies were developed and evaluated for the CNN and
LSTM models using the Root-Mean-Square Error (RMSE) with an horizon of
30 min. To statistically assess the differences between the performances of CNN
and LSTM models, we used the Wilcoxon statistical test. The results showed
that: 1) no MSF strategy outperformed the others for both CNN and LSTM
models, and 2) the proposed CNN model significantly outperformed the LSTM
model for both one-step and multi-steps prediction.

Keywords: Convolutional Neural Network � Long-Short-Term Memory
network � Multi-step-ahead forecasting � Blood glucose � Prediction � Diabetes

1 Introduction

The diabetes mellitus disease occurs when the glucose metabolism is defected. Type 1
and Type 2 of diabetes mellitus (named T1DM and T2DM respectively) are the main
types of diabetes. T1DM is due to a shortage in the insulin produced by the pancreas
while T2DM is due to an inappropriate use of the produced insulin [1]. This chronic
illness may cause serious health complications such as neuropathy, nephropathy,
blindness and others [1]. Diabetic patients can prevent or delay the occurrence of these
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complications by managing their disease and maintaining their blood glucose level
(BGL) within the normal range. This can be achieved by monitoring the BGL manually
via sticks or automatically via continuous glucose monitoring (CGM) sensors and then
predicting the future values of BGL. If the predicted values tend to be outside the normal
range, the diabetic patient can act in advance toward avoiding high or low BGL [1, 2].

Several data mining techniques were investigated for the BGL prediction counting
machine learning and statistical techniques [2]. Nevertheless, machine learning and
especially deep learning techniques are gaining more interest as they are achieving
promising results due to their aptitude to learn the data characteristics and select
relevant features automatically [3, 4]. LSTM and CNN are among those emerging deep
learning techniques.

BGL prediction can be considered as a time series prediction problem where the
past values are provided by a CGM device. Time series forecasting can be: 1) a one-
step ahead forecasting (OSF) when the prediction targets the next value, or 2) a multi-
steps ahead forecasting (MSF) when the prediction targets the next H values, where H
is the prediction horizon [5]. Five MSF strategies were proposed in literature [5–7]:
Recursive, Direct, MIMO (for Multiple-Input Multiple-Output), DirRec that consoli-
dates Direct and Recursive, and DirMO that consolidates Direct and MIMO. The
studies [5] and [6] compared the performances of these five strategies using Neural
Networks (NNs). The study [8] compared Recursive and Direct strategies using LSTM
NNs and CNNs, while the study [9] compared Recursive and MIMO strategies using
Recurrent NNs. The study [7] was the first to conduct an exhaustive comparison of the
five MSF strategies using the LSTM. All these comparisons concluded that no strategy
is better that the others in all contexts. However in [7], authors noticed that non-
recursive strategies tend to be better than recursive ones.

In the present study, we evaluated and compared two deep learning models: CNN
and LSTM to predict BGL based on CGM data in the context of OSF and MSF with an
horizon of 30 min, which is good enough to avoid likely increase or decrease of the
BGL [9]. The LSTM model we used has been developed and evaluated in our earlier
work [3], while the present study develops and evaluates the CNN model using a 1D
convolutional layer, followed by a Flatten layer and 2 Dense layers for OSF and MSF
strategies. Thereafter, we compare the performances of both CNN and LSTM. All the
evaluations and comparisons of CNN and LSTM models carried out in this study used
the Root-Mean-Square Error (RMSE) and the Wilcoxon statistical test to statistically
assess the differences between the performances of CNN and LSTM models.
According to authors’ knowledge, no study was conducted focusing on the same
objectives, which motivates the current work.

This comparative study discusses five research questions (RQs):

• (RQ1): What is the best configuration of the proposed CNN model?
• (RQ2): Is there a MSF strategy that outperforms the others using the CNN model?
• (RQ3): Is the CNN model more accurate than the LSTM one in OSF?
• (RQ4): Is the CNN model more accurate than the LSTM model in MSF?
• (RQ5): Is the outperformance of a model for OSF maintained for MSF?

This paper is organized into 7 sections. Section 2 gives an overview of the MSF
strategies as well as the CNN and LSTM techniques. Section 3 highlights related work.
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In Sect. 4, the experimental design is detailed. Section 5 reports and discusses the
results obtained. Threats to validity are presented in Sect. 6 and finally, conclusion
along with future works are presented in Sect. 7.

2 Background

This section presents an overview of the MSF strategies. Thereafter, we present the two
deep learning architectures LSTM and CNN we used in this study.

2.1 MSF Strategies

Let y1 to yN be the N past values of a time series. The time series prediction can be
performed for: 1) a single period by determining the next value yN+1 which is called
one-step ahead forecasting (OSF), or 2) multiple periods by determining yN+1 to yN+H
which correspond to the H next values, this is called multi-step ahead forecasting
(MSF) [5]. The MSF problem is more difficult than the OSF one. In fact, the former is
confronted to the accumulation of errors, the decreasing of accuracy and the increasing
of uncertainty [5, 6].

To perform the MSF, five strategies can be used. These strategies are [5, 6]: 1)
Recursive (or iterative), 2) Direct (or independent), 3) MIMO (Multi-input Multi-
output), 4) DirREC combining Direct and Recursive, and 5) DirMO combining Direct
and MIMO. Table 1 presents these five MSF strategies including a brief description,
number of models developed and the characteristics of each MSF strategy.

Table 1. MSF strategies.

Strategy Description Number of
models

Characteristics

Recursive
(or iterative)

Prediction is iteratively performed
using an OSF model. Each
predicted value is used as part of
input values to predict the next
one

One model with
single output

Intuitive and simple
Risk of errors’ accumulation

Direct
(or
independent)

Prediction for each step is
independently performed from the
others

H models: each
one with a
single output for
each step

No errors’ accumulation
Dependencies between the
estimated values may not be
treated

MIMO Prediction is performed by one
model that returns the predicted
values in a vector

One model with
multiple output

The stochastic dependencies
between the predicted values
are preserved. No prediction
flexibility

DirRec For each step, the prediction is
done by a corresponding model
based on the past values and the
predictions of previous steps

H models with
single output

Using the previous estimations
for each step while having more
flexibility by using different
models

DirMO The prediction horizon is divided
in B blocks with the same size;
each block is predicted based on a
MIMO model

B models with
multiple output

Provide a trade-off between the
high stochastic dependency of
MIMO and the flexibility of
Direct
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Considering a time series TS, let H be the prediction horizon, d is the sampling
horizon, yi and byi are the observed and predicted values at the time i respectively, t is
the time of the prediction, and s is an integer varying from 1 to H representing a step in
the prediction horizon.

In the Recursive strategy, we start by training an OSF model M, and each value is
predicted using Eq. (1).

ŷtþ s ¼
M yt�dþ 1; . . .; ytð Þ if s ¼ 1
M yt�dþ s; . . .; yt; ŷtþ 1; . . .; ŷtþ s�1ð Þ if 2� s� d
M ŷtþ s�N; . . .; ŷtþ s�1ð Þ if s[ d

8<
: ð1Þ

For the Direct strategy,Hmodels are trained. LetMs be the model trained for the step
s. The predicted value for that step is calculated using the modelMs as shown in Eq. (2).

bytþ s ¼ Ms yt�dþ 1; . . .; yt
� �

1� s�H ð2Þ

The MIMO strategy introduced in [10] considers a Multiple-Output representing a
vector of the predicted values. Thus, one model M is trained to predict this vector using
Eq. (3).

½bytþ 1; . . .;bytþH � ¼ M yt�Nþ 1; . . .; yt
� � ð3Þ

DirRec strategy provides forecasts iteratively using H models with different input
size [11]. Let Ms be the model trained for the step s, Ms provides the value of the step
s using the d past values and the predicted values for the previous steps based on Eq. (4).

ŷtþ s ¼ Ms yt�dþ 1; . . .; ytð Þ if s ¼ 1
Ms yt�dþ 1; . . .; yt; ŷtþ 1; . . .; ŷtþ s�1ð Þ if 2� s�N

�
ð4Þ

DirMO strategy divides the prediction horizon in B blocks with the same size
n where B = H/n [12]. Each block b is directly predicted using a MIMO model Mb as
shown in Eq. (5).

½bytþ b�1ð Þ�nþ 1; . . .;bytþ b�n� ¼ Mb yt�dþ 1; . . .; yt
� � ð5Þ

2.2 LSTM

Hochreiter & Schmidhuber [13] introduced a novel architecture of recurrent Neural
Networks (RNNs), called LSTM NNs, in order to solve the problem of vanishing or
exploding gradient met in the traditional RNNs. LSTM is a recurrent neural network
that contains memory cells. The memory cell has a cell state preserved over time and a
gate structure containing three gates: input gate, forget gate and output gate. These
gates serve for controlling and regulating the information through the memory cell.
With this structure, the LSTM NNs can catch long term dependencies and treat serial
data such as video, speech and time series [3, 13].
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Figure 1 shows the structure of a memory cell [3] and Table 2 presents information
on the memory structure. The following notations are used:

t: time or sequence number.
Xt: input vector for t.
Yt: output vector for t.
ht: hidden vector for t.
Ct: cell state for t.
Wi, Wf, Wo and Wc: weight matrices corresponding to each component.
bi, bf, bo and bc: bias vectors corresponding to each component..
it, ft, and ot: results of the input, forget and output gates respectively.

Note that r and tanh are the sigmoid and the hyperbolic tangent functions of
Eq. (6) and Eq. (7) respectively used as activation functions.

r xð Þ ¼ ex

1þ ex
ð6Þ

tanhðxÞ ¼ ex � e�x

ex þ e�x
ð7Þ

Fig. 1. Memory cell structure [3].

Table 2. LSTM memory structure.

Component Role Equation

Input gate Getting the information to be retained it ¼ r Wi � ht�1;Xt½ � þ bið Þ
Forget gate Getting the information to be ignored ft ¼ r Wf � ht�1;Xt½ � þ bf

� �
Output gate Calculating the output and updating the

hidden vector
ot ¼ r Wo � ht�1;Xt½ � þ boð Þ
ht ¼ ot � tanhðCtÞ

Cell state Maintaining the information through cells Ct ¼ ft � Ct�1 þ it � ~Ct

Where
~Ct ¼ tanh Wc � ht�1;Xt½ � þ bcð Þ
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2.3 CNNs

The origins of the CNNs go back to the neocognitron model proposed in [14]. CNNs
are based on the concept of simple and complex cells [15] that was inspired from the
animal visual cortex. However, the first successful of CNNs was done by LeCun et al.
in [16] who trained CNNs by the Backpropagation algorithm.

A CNN is a feed-forward NN whose main layer is a convolutional one performing a
convolution operation. This latter consists of applying and sliding a filter over the input
data through an elementwise multiplication [17–19]. The connection weights represent
the kernel of the convolution.

The dimension of the filter depends on the type of input data. In fact, 1D is used for
sequential data such as text and time series, 2D is used for images and 3D for videos
[4]. Multiple filters can be used to be able to extract more useful features [18].

In the case of time series, the convolution is applied using Eq. (8).

Ct ¼ f x � Xt:tþ l�1 þ bð Þ8t 2 1; T � lþ 1½ � ð8Þ

where Ct is the t
th element of C, the vector resulting from the convolution, X is the time

series with length T, x is a 1D filter with length l, b is the bias parameter and
f represents the activation function [18].

3 Related Work

Statistical methods and in particular autoregressive ones were widely used for pre-
diction in diabetes including BGL prediction [2]. However, a growing trend has been
observed for the use of machine learning techniques in BGL prediction and Diabetes in
general [2, 9, 20]. In fact, [2] reviewed the data mining predictive techniques in
diabetes self-management including BGL prediction, and reported that 57.98% of the
selected studies used machine learning techniques while 50% investigated non machine
learning techniques. Note that BGL was the most investigated task in diabetes self-
management with 47.37% of the selected studies [21]. This interest in using machine
learning techniques for BGL prediction is due to: 1) the availability of patients’ data,
and 2) the ability of machine learning techniques to solve complex tasks in dynamic
knowledge and environment [20]. However, the use of deep learning techniques is still
at its infancy in the BGL prediction: in fact, [20] reported that the deep neural networks
were investigated in only 1% of the selected studies.
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Furthermore, deep learning techniques were successfully used in image recognition
[22, 23], object detection [24], and sequential data processing such as speech [25] and
in many other fields [4]. Their success is due to their ability to automatically learn the
data representation from raw data and extract the relevant features [4]. In the context of
BGL prediction, deep learning techniques especially LSTM and CNN were investi-
gated and promising results were obtained [3, 26, 27].

Table 3 presents an overview of a set of selected studies dealing with deep learning
for BGL prediction, including technique and architecture used, type of forecasting,
horizon used and their findings.

The main findings are:

• BGL prediction using deep learning techniques provided promising results.
• The most investigated deep learning techniques were RNNs, CNN and LSTM.
• CGM data were the most frequently used.
• A horizon of 30 min was the most frequently used. However, we notice that in

general the prediction horizon ranged from 5 min to 60 min.
• Direct was the most often used MSF strategy.

Table 3. BGL prediction using deep learning technique: An overview.

Reference Technique Architecture Type of
forecasting

HP
(mn)

Findings

Mhaskar &
al., 2017 [28]

Deep NN 2 layers Not
specified

30 Deep NN performed better than a
shallow NN

Mirshekarian
& al., 2017
[29]

LSTM 5 units LSTM Layer MSF with
Direct
strategy

30,
60

LSTM performed similar to a SVR
model, and was better than physician
predictions

Doike & al.,
2018 [30]

Deep
RNN

3 hidden layers using 2000
units, one unit input layer and
one unit output layer

MSF using
Direct

30 BGL prediction was used for the
prevention of hypoglycemia achieving
80% as accuracy

Fox & al.,
2018 [9]

Deep
RNN

2 layers using GRU cells MSF with
MIMO and
Recursive

30 MIMO outperformed Recursive

Sun & al.,
2018 [26]

LSTM – LSTM Layer
– Bidirectional LSTM layer
– 3 fully connected layers

MSF with
Direct
strategy

15,
30,
45,
60

LSTM performed better than ARIMA
and SVR baseline methods

Xie & Wang,
2018
[8]

- LSTM
- CNN

– The LSTM uses 3 LSTM
layers

– The CNN uses 2 Temporal
CNN layers

MSF using
Direct and
Recursive

30 For LSTM, Direct strategy has
performed better than the Recursive
one
No conclusion for CNN

Zhu & al.,
2018 [27]

CNN 3 dilated CNN blocks with
5 layers

Not
specified

30 Prediction of the BGL was treated as a
classification task

El Idrissi &
al., 2019 [3]

LSTM – LSTM Layer
– 2 fully connected layers

One-step
ahead

5 The LSTM model proposed
significantly outperformed an existing
LSTM model and an AutoRegressive
model

El Idrissi &
al., 2020 [7]

LSTM – LSTM Layer
– 2 fully connected layers

MSF with
the five
strategies

30 None strategy significantly
outperformed others
Non-recursive strategies tend to be
better than recursive ones
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4 Experimental Design

This section presents the empirical design of our study, including (1) description of the
dataset, the performance criterion and the statistical tests used, and (2) experimental
process we followed to evaluate and compare the performances of CNN and LSTM
models.

4.1 Dataset, Performance Measurement and Statistical Tests

As the current research is based on the study conducted in [7], the experiments are done
on the same datasets used in [7]. These datasets are for 10 T1DM patients extracted
from the dataset DirecNetInpatientAccuracyStudy available at the site [31]. Each
dataset is related to a patient and contains his/her BGL measurements every 5 min
using a CGM device. Note that these patients are taken randomly and a pre-processing
of data was required to remove redundant records and outliers between successive
records. The datasets of the Ten patients is described in Table 4.

In order to assess the performance of the investigated models, we used the per-
formance measurement RMSE (root-mean-square error) [2] which is calculated by
means of Eq. (9).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðŷi�yiÞ2

r
ð9Þ

where yi and byi represent the measured and the estimated value respectively and
n represents the size of the considered sample. The RMSE value ranges in the interval
[0, +∞[. Note that the performance is higher when the RMSE value tends to 0.

For the statistical tests, we used the Wilcoxon statistical test which is a non-
parametric test used to assess if the difference between the performances of two models
is significant. This test is performed considering the null hypothesis (NH) that there is
no difference between the compared models. The p-value of the considered NH is
calculated: if the p-value is less than a certain significance level a, the difference is
considered statistically significant [32].

In the case we need to have a ranking of the models, the sum of ranking differences
(SRD) is used. It calculates the ranking of the models by summing up the difference
between their ranking and an ideal ranking for the considered cases. The ideal ranking
can be a reference model or the best known model. If such a model does not exist, the
ideal ranking can be defined based on the minimum, the maximum or the average of the
models for each case [33].
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4.2 Experimental Process

The experimental process we followed consists of four steps: 1) Data preparation, 2)
Construction of the CNN and LSTM models, 3) Evaluation of the MSF strategies for
the CNN and LSTM models, and 4) Comparison of the CNN and the LSTM models.

• Step 1: Data Preparation

When using a model, the data should be arranged in a way to fit the model’s
requirements. Let X = {s(ti)} be a time series where s(ti) is the BGL recorded at time ti
and d the sampling horizon, the time series X is decomposed into couples (Xi, yi) where
Xi and yi are the input and the output data respectively. For OSF, yi is the next value
following the values of the vector Xi. For the MSF strategies, Table 5 presents the
decomposition done for each MSF strategy to perform a 30 min ahead prediction.

• Step 2: Construction of the CNN and LSTM Models

The CNN model we propose for the BGL prediction is a sequential one, the first layer
is a 1D convolutional layer, followed by a Flatten layer and 2 Dense layers. To
determine the best configuration using this architecture, we used a Search Grid (SG) on
two hyper-parameters: kernel size and the number of filters. Table 6 shows the
parameters’ ranges of kernel size and number of filters. Similar strategy was used in [3,
34]. This step is composed of two sub-steps which are:

• Step 2.1: For each value of the number of filters and each patient, the CNN model is
trained and tested. Based on the SRD method, the best value of the number of filters
is selected.

• Step 2.2: For each value of the kernel size and each patient, the CNN model with
the best number of filters of Step 1.1 is trained and tested. Based on the SRD
method, the best value of the kernel size is selected.

Table 4. Ten patients’ data description. The BGL is in mg/dl.

Patients P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Number
of records

766 278 283 923 562 771 897 546 831 246

Min BGL 40 57 103 40 50 62 42 43 40 72
Max
BGL

339 283 322 400 270 400 400 310 400 189

Mean
BGL

114.78 120.96 185.89 188.44 179.71 187.45 210.26 152.88 157.50 116.51
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For the LSTM model, we used the same architecture of [7], which is composed of
one LSTM layer followed by two dense layers. It was first proposed in [3] where the
best configuration was determined by tuning 3 hyper-parameters which are: 1) LSTM
units, 2) dense units, and 3) sequence input length. This model significantly outper-
formed the LSTM proposed by [26] as well as an AutoRegressive model.

• Step 3: Evaluation of MSF Strategies for the LSTM and CNN Models

The objective of this step is to evaluate the performances of the MSF strategies for the
two models: CNN and LSTM. Therefore, the performance of each strategy is evaluated
for each patient using the RMSE criterion. The models are trained on 66% of the
dataset (training dataset) and evaluated on 34% of the dataset (testing dataset). If a
difference between the performances is noticed, the statistical tests are applied to
statistically assess the observed differences.

• Step 4: Comparison of the LSTM and CNN Models

At this step, the performances of CNN and LSTM for OSF and for each of the five
MSF strategies are compared. The differences between the performances are statisti-
cally assessed through the Wilcoxon test. Therefore, we consider six NHs which are:

• NH1: The CNN model does not outperform the LSTM model for OSF.
• NH2: The CNN model does not outperform the LSTM model for MSF using Direct

strategy.
• NH3: The CNN model does not outperform the LSTM model for MSF using

MIMO strategy.

Table 5. Data preparation for MSF strategies. HP: Horizon of Prediction; mn: minutes.

MSF
Strategy

Context Decomposition

Recursive HP = 5 mn Xi = {s(ti-d+1),…, s(ti)}; yi = s(ti+1)
Direct HP = 30 mn Xi = {s(ti-d+1),…, s(ti)}; yi = s(ti+6)
MIMO Multiple output for

HP = 30 mn
Xi = {s(ti-d+1),…, s(ti)}; yi = {s(ti+1),…, s(ti+6)}

DirRec 6 models Mj with
HP = 5 mn,
j goes from 1 to 6

For each Mj:
Xi = {s(ti-d-j+2),…, s(ti)}; yi = s(ti+1)

DirMO Number of blocks = 2
So, 2 models are trained

For M1:
Xi = {s(ti-d+1),…, s(ti)}; yi = {s(ti+1),…, s(ti+3)}
For M2:
Xi = {s(ti-d+1),…, s(ti)}; yi = {s(ti+4),…, s(ti+6)}

Table 6. Search Grid parameters.

Parameter Signification Search space

Number of filters Number of sliding windows {2, 5, 10, 15, 20, 25}
Kernel size Dimension of the sliding windows {2, 3, 4, 5, 10}
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• NH4: The CNN model does not outperform the LSTM model for MSF using
Recursive strategy.

• NH5: The CNN model does not outperform the LSTM model for MSF using
DirRec strategy.

• NH6: The CNN model does not outperform the LSTM model for MSF using
DirMO strategy.

5 Results and Discussion

This section presents and discusses the results of the empirical evaluations carried out
in the present study. The experimentations were conducted using a tool developed
under Windows 10 using Python-3.6 and the framework Keras 2.2.4 with, as backend,
Tensorflow 1.12.0.

5.1 Construction of the CNN and LSTM Models

The proposed CNN is a sequence of a 1D convolutional layer, a Flatten layer and 2
Dense layers. After preparing the data to fit the required input and output for OSF, we
carried out a set of experiments to answer the RQ1 by varying the two hyper-
parameters: 1) the number of filters, and 2) the kernel size.

Figure 2 presents the RMSE obtained for each patient and for each number of filters
in Table 6. We observe that with 20 filters, the model achieves the best RMSE.
Furthermore, the model with 20 filters is ranked first according to the SRD method. The
results of the SRD are presented in Table 7 (the ideal ranking is obtained by consid-
ering the minimum performance). Therefore, we chose the number of filters equal to 20.

0
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1 2 3 4 5 6 7 8 9 10 Pa
tie

nt
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RMSE (mg/dl)

FN=2 FN=5 FN=10
FN=15 FN=20 FN=25

Fig. 2. RMSE values vs filters’ number (FN) of CNN.
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The same experiments were conducted by varying the kernel size according to the
values in Table 6. The results of these experiments are shown in Fig. 3. As there is no
clearly dominant value, the models are ranked using the SRD method. Table 8 gives
the results of SRD which show that a kernel size equals to 2 provides the best ranking.

Table 7. SRD considering the variation of filters’ number (FN).

Patients FN = 2 FN = 5 FN = 10 FN = 15 FN = 20 FN = 25 Min

P1 5 4 3 0 2 1 1
P2 5 4 2 3 0 1 1
P3 0 1 5 4 2 3 1
P4 1 0 4 2 5 3 1
P5 4 3 2 1 0 5 1
P6 5 4 2 0 2 1 1
P7 0 2 3 5 4 1 1
P8 5 3 2 1 0 4 1
P9 5 0 4 1 2 3 1
P10 5 4 2 1 0 3 1
SRD 35 25 29 18 17 25 10

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 Pa
tie

nt
s 

RMSE (mg/dl)

KS=2 KS=3 KS=4 KS=5 KS=10

Fig. 3. RMSE values vs kernel size (KS) of CNN.
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To sum up the results of RQ1, a number of filters equals to 20 and a kernel size
equals to 2 give the best configuration of our CNN. This CNN variant will be used in
the next steps of our experimental process.

For the LSTM model, we adopt the one used in [7]. It is composed of an LSTM
layer and 2 dense layers with 50 LSTM units, 30 Dense units and 10 as a sequence
input length based on the tuning conducted in [3].

5.2 Evaluation of MSF Strategies for the CNN and LSTM Models

a) CNN Evaluation

For each of the five MSF strategies, using the corresponding data obtained in Step 1,
we train and validate the required CNN model(s) based on the configuration that we got
in Step2. Figure 4 presents the performance in terms of RMSE of the five MSF
strategies for the ten patients.

Figure 4 shows that there is no significant difference between the performances of
the five strategies. Furthermore, considering the average of RMSE values, the means
are 31.48, 30.84, 31.60, 30.22 and 31.10 for Direct, MIMO, Recursive, DirRec and
DirMO respectively. Therefore, there is no need to perform a statistical test. We
conclude that no MSF strategy outperforms the others using the proposed CNN.
Besides, the five strategies are giving similar performances.

Table 8. SRD considering the variation of kernel size (KS).

Patients KS = 2 KS = 3 KS = 4 KS = 5 KS = 10 Min

P1 0 1 2 3 4 1
P2 1 4 0 3 2 1
P3 1 2 3 4 0 1
P4 1 3 4 0 2 1
P5 0 1 2 4 3 1
P6 1 0 3 4 2 1
P7 0 1 3 4 2 1
P8 0 2 1 4 3 1
P9 1 3 2 0 4 1
P10 2 3 0 1 4 1
SRD 7 20 20 27 26 10
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b) LSTM Evaluation

In [7], the authors carried out an exhaustive comparison of the five MSF strategies
using the LSTM model. In fact, for each MSF strategy with the LSTM, the data were
prepared for the required models as presented in Step1. Then, each model was trained
and validated using RMSE for each of the 10 patients. Fig. 5 presents the results
obtained in [7].

As reported in [7], no MSF strategy significantly outperforms the others. However,
Fig. 5 shows that strategies without recursion: Direct, MIMO and DirMO outper-
formed, in general, strategies with recursion which are Recursive and DirRec. In fact,
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Fig. 4. RMSE values of CNN using the five strategies.
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Fig. 5. RMSE values of LSTM using the five strategies [7].

360 T. El Idrissi and A. Idri



the reported averages of RMSE were 36.30, 34.06 and 35.47 for Direct, MIMO and
DirMO respectively; while for Recursive and DirRec, the RMSE averages were 43.76
and 42.92 respectively [7].

5.3 Comparing the CNN and LSTM Models

To compare the performances of the CNN and LSTM models, we present the results
obtained in Step 2 and 3 for the OSF and for each of the MSF strategies. The results are
shown in Fig. 6. Figure 6.A presents the results of OSF for both CNN and LSTM,
while Fig. 6.B, to Fig. 6.F present the results of CNN and LSTM using Direct, MIMO,
Recursive, DirRec and DirMO strategies respectively.

Figure 6 shows that CNN outperformed LSTM in OSF and MSF for all the
strategies. To statistically assess these findings, the p-values are calculated for the six
NHs of Step 4 and presented in Table 9.

Fig. 6. CNN vs LSTM for one-step ahead forecasting (A) and multi-steps ahead forecasting (B
to F).

Table 9. p-value of the NHs.

NH NH1 NH2 NH3 NH4 NH5 NH6

p-value 0.00932 0.02202 0.02852 0.00512 0.00512 0.00512
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The statistical tests were Two-tailed with 0.05 as a significance level. All the p-
values of Table 9 are lower than 0.05, thus the CNN significantly outperformed the
LSTM for OSF and for all the MSF strategies which answers the RQ3 and RQ4.

For the RQ5, we notice from Fig. 6, that CNN is maintaining its outperformance
over LSTM for OSF and all the MSF strategies.

5.4 Discussion

In [7], a comparative study was conducted between the MSF strategies using the LSTM
model. As an extension of this work, we conducted a similar comparative study using a
CNN model. Then, we compared the performances of the CNN and LSTM models for
the OSF and the five MSF strategies. For the LSTM model, we used the same archi-
tecture used in [7] with one LSTM layer and two dense layers. Whereas, for the CNN
model, we proposed a new one with one 1D convolutional layer, one Flatten layer and
2 Dense layers.

The first objective was to get the best configuration of the proposed CNN through
the tuning of the two hyper-parameters: kernel size and the number of filters. Figure 2
and Fig. 3 show that each of these parameters has an influence on the model’s accu-
racy. Therefore, a careful choice of these parameters is crucial when building a CNN
model and other models [7, 19]. Our CNN model performed well in comparison to the
performances found in literature and reported in [2]. Indeed, the minimum, maximum
and mean of RMSE values for our CNN are 3.66, 16.4 and 8.68 respectively. Fur-
thermore, these results are promising as regards the use of CNN in time series pre-
diction and sequential data in general even though the CNN was traditionally
conceived for image processing [4].

The second objective focuses on the evaluation of MSF strategies for the LSTM
and CNN models. Toward this aim, five strategies for MSF were developed and
compared using the RMSE for both LSTM and CNN. For the LSTM and as reported in
[7], none of the five strategies is significantly performing better than the others,
however, the non-recursive strategies tend to be better than recursive ones. This trend is
not noticed for the CNN: in fact, this latter gives similar performances using these five
strategies. Thus, further experiments should be carried out in order to refute or confirm
this finding for CNN. In the case of confirmation, other criteria, such as simplicity and
computational time, should be taken into consideration to decide on the strategy to use.

The third objective of this study was to perform a comparison between CNN and
LSTM. Toward this objective, the performances of the CNN and the LSTM were
compared for both OSF and MSF based on the RMSE, then the significance of per-
formance differences are assessed using the Wilcoxon test. The results show that CNN
significantly outperformed the LSTM for both OSF and MSF strategies. This can be
explained by: 1) the CNN are using a small number of parameters since it uses shared
weights [4], 2) there is no recurrent connections in the CNN, contrary to LSTM, which
makes the process of training faster [19], and 3) the use of multiple filters in CNN helps
to extract more useful features [18].

Finally, the outperformance of the CNN over the LSTM in OSF is maintained for
MSF using the five strategies, which is promising as it gives some confidence in case
we enlarge the prediction horizon.
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6 Threats to Validity

Four threats to our study’s validity are considered which are: 1) Internal validity, 2)
External validity, 3) Construct validity, and 4) Statistical validity.

6.1 Internal Validity

This threat to validity takes in consideration the evaluation approach. This latter should
be appropriate so as the findings of the study are valid. Toward that aim, all the models
were trained and tested in different datasets. In fact, 66% of each dataset was used in
the training phase while the remaining 34% was used for the evaluation phase.

6.2 External Validity

This concerns the perimeter of the study and its ability to be generalized. To ensure
this, we took in a random way the datasets of ten patients from a public dataset. These
datasets have different sizes. In fact, the records’ number varies from 246 to 923. These
datasets were previously used by [3, 7]. Note that in [2], it was reported that, in some
studies, only one dataset was used.

6.3 Construct Validity

The performance is the main criterion to compare the considered models, thus it is
essential to use a performance measurement that indicates how far the models are
performant. In our study, we used the RMSE since it is a performance measurement
used commonly in the BGL prediction [2].

6.4 Statistical Validity

In this study, we aim at determining the best model among the proposed ones through
their performance’s comparison. When a difference between two models is noticed, it is
essential to assess statistically this difference. Therefore, we used the Wilcoxon sta-
tistical test. Besides, the SRD method is used for ranking.

7 Conclusion and Future Work

In this study, we conducted a comparison between MSF strategies using CNN and
LSTM models. For the LSTM model, we used the one that has been developed and
evaluated in [3] and [7]. While, for the CNN, we considered the following architecture:
1D convolutional layer, a flatten layer and two dense layers which was tuned based on
the two hyper-parameters: number of filters and kernel size. Then, a performance
comparison was conducted considering the CNN model and the LSTM model for one-
step ahead forecasting and multi-steps ahead forecasting using the five identified MSF
strategies.
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The main outcomes of this work were: 1) No MSF strategy outperforms the others
for CNN nor LSTM, 2) The proposed CNN significantly outperformed the LSTM
model for both one-step and multi-steps prediction.

These propitious results motivate further researches in the use of the CNN model
taking into consideration different challenges such as: tuning other hyper-parameters,
considering other input data such as activities and medication and exploring a larger
prediction horizon.
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Abstract. The internet of medical things (IoMT) is a relatively new
territory for the internet of things (IoT) platforms where we can obtain
a significant amount of potential benefits with the combination of cogni-
tive computing. Effective utilization of the healthcare data is the critical
factor in achieving such potential, which can be a significant challenge
as the medical data is extraordinarily heterogeneous and spread across
different devices with different degrees of importance and authority. To
address this issue, in this paper, we introduce a cognitive internet of
medical things architecture with a use case of early sepsis detection using
electronic health records. We discuss the various aspects of IoMT archi-
tecture. Based on the discussion, we posit that the proposed architecture
could improve the overall performance and usability in the IoMT plat-
forms in particular for different IoMT based services and applications.
The use of an RNN-LSTM network for early prediction of sepsis accord-
ing to Sepsis-3 criteria is evaluated with the empirical investigation using
six different time window sizes. The best result is obtained from a model
using a four-hour window with the assumption that data is missing-
not-at-random. It is observed that when learning from heterogeneous
sequences of sparse medical data for early prediction of sepsis, the size of
the time window has a considerable impact on predictive performance.

Keywords: IoT · Cognitive computing · Internet of Medical Things ·
Edge computing · Early prediction · Machine learning · Deep learning ·
Health informatics · Healthcare analytics

1 Introduction

The internet of medical things (IoMT) can be summarized as a coalition of
different healthcare related physical entities to perform the tasks of healthcare
applications [18]. Healthcare information is connected, utilizing various network
technologies [7]. The goal here is to develop an integrated healthcare system that
is more dynamic, less costly, and more individual patient-centric compared to
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the traditional healthcare systems now [9]. Unnecessary hospital visits could be
restricted, and exchanging sensitive and critical healthcare information can be
exchanged among different healthcare institutions in a realtime fashion, which
is extremely important in treating critical patients and immediate interventions
[16]. It must be noted that, by promoting IoMT, we do not intend to replace the
current healthcare systems; instead, we are proposing an external mechanism for
exchanging and analyzing medical data in a robust and secured fashion [4]. We
hope to ensure an improved diagnosis, which will provide better treatment and
management opportunities for different stakeholders in healthcare systems.

The key challenges to make healthcare data more useful are the robust inte-
gration of different medical devices, and efficient management in the inventory
sectors [13]. The architectural flexibility should be taken into account to solve
these challenges in the IoMT systems design. With the ever-increasing availabil-
ity of big (medical) data nowadays, the principal question we should address is
how data can be converted into information on a realtime basis and with minimal
human processing as possible? We must not exhaust the healthcare professionals
with a plethora of information, instead, with the help of artificial intelligence,
deep learning, machine learning, data analytics, and data visualization, IoMT
systems should suggest only the most essential physiological anomalies, salient
trends, and early prediction of the critical cases if possible [8]. If these can be
done efficiently, then the current diagnosis processes can be done relatively fast,
and it will ensure that the existing workflow in the healthcare institutes remains
the same.

Efficient interoperability among various IoMT equipment can ensure robust
and realtime data transmission [3,5]. Cognitive computing can help us in this
regard as it can improve the current internet of things (internet of medical
things in our case) with the utilization and application of self-learning and self-
adaptation mechanisms [1,24]. These mechanisms ensure scalability and provide
deep insights regarding the relevant extraction of data [23]. Therefore, with the
effective utilization of the cognitive internet of medical things (CIoMT) archi-
tecture, intelligent service, and autonomous operation execution could be viable.
The self-learning based on interactions with different devices and new data
provides the opportunity to improve the overall system gradually and gradu-
ally accumulate and analyze information from all possible angles with mini-
mal human interaction. This information accumulation and analysis are vital in
healthcare applications, as well as symptom-related information, different hered-
itary, and demography-related information can also provide insights while diag-
nosing patients [26]. CIoMT, with the integration of machine learning analytics
and data visualization components along with a clinical decision support tool,
can ease this diagnosis process. One trendy example of this clinical decision
support tool is early sepsis detection [11,12,25].

Sepsis is a medical condition due to the body’s reaction or response to an
infection. It can be attributed as one of the primary reasons for hospital mor-
bidity and mortality [30]. Early appropriate antimicrobial treatment is the key
to survival here [10], immediate decision-making is vital, which depends on the
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early detection of sepsis in patients. Mortality increases by 7.6% for delay of
every hour in antimicrobial treatment after the sepsis onset [21], and mortality
decreases with fast antimicrobial treatment response [27]. Diagnosis early detec-
tion of sepsis remains a challenge as standardization of diagnostic tests is yet to
be well-acknowledged [30], and sepsis detection symptoms can also be associated
with other clinical conditions [20].

Recently supervised machine learning is widely used for early detection of
sepsis using large-scale annotated medical data [6,11,12,25]. In this study, we
used long short-term memory based recurrent neural network (RNN-LSTM)
[17] for early prediction of sepsis learning from electronic health records (EHR)
data. EHR data are obtained from different medical facilities as they keep the
patient records in a digital format. The data is extremely heterogeneous, includ-
ing patient demographic information, diagnoses, laboratory test results, medica-
tion prescriptions, clinical notes, and medical images. Data quality, annotation
of class labels, and extreme heterogeneity make it very difficult to create machine
learning and deep learning-based models based on EHR data [34]. We investi-
gated different temporal representations which divide the longitudinal EHR data
into time windows of different sizes. Previous works use the time window size
of length one without providing empirical justification. We posit that window
size should have an insightful impact on the length of the sequence and the
amount of missing data in that sequence. Therefore handling the length of the
window size and missingness should be investigated. If we increase the length
of the window size, we need to think of effective summarization techniques and
superior missingness handling techniques. We analyzed these aspects to provide
an effective decision support tool for early sepsis detection with the proposed
CIoMT architecture. Our contribution can be summarized as follows,

– A cognitive internet of medical things (CIoMT) architecture is proposed to
deploy the early sepsis detection clinical supporting tool on a realtime basis.
We posit that, through the effective utilization of this architecture, the detec-
tion process will be robust, fast, and, thus, more effective in realtime cases.

– An RNN-LSTM model is used to model the different representations of longi-
tudinal EHR data and predict early sepsis detection. We have observed that
the time window size has a notable impact on overall predictive performance.

– Missingness is considered a random (data missing-at-random) and a non-
random (data missing-not-at-random) phenomenon. We used standard aver-
aging technique for the random case and generative adversarial imputation
nets (GAIN) [35] for non-random case to model the missingness. We have
observed that better performance is achieved using the later approach.

This study can be viewed as an extension of the works described in [2]. The
novelty in this study compared to [2] are as follows,

– An additional cognitive internet of medical things (CIoMT) architecture is
proposed to deploy the early sepsis detection clinical supporting tool.

– A completely different dataset [19] is used for all the experiments.
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– Generative adversarial imputation nets (GAIN) [35] is used for non-random
case to model the missingness instead of the non-random-placeholder impu-
tation approach used in [2].

Fig. 1. Knowledge-centric cognitive IoMT architecture.

2 Cognitive IoMT Architecture for Early Sepsis
Detection

Inspired by [33] we are proposing the knowledge-centric cognitive architecture
described in Fig. 1. In this architecture, the cognitive computing system’s central
element is in the cyber world that connects the physical world with the social
world. The cognitive computing system is made of three components.

– Sensing Components. Acquire the critical information relevant to the con-
text of the IoMT devices, and allows the elaboration of the physical world’s
meta-model.

– Modeling and Reasoning. Use the sensed information to build models,
which will serve afterward to elaborate physical and semantic reasoning.

– Machine Learning. Advanced learning algorithms build on the existing
semantic models to provide systems with self-learning capabilities.

From the IoMT perspective, the primary focus should be given in successful
acquisition, aggregation, and transmission of medical data from different sources.
Medical data can come from different sources, along with EHRs. Figure 2 is
illustrating the different kinds of medical data. It is vital to create a robust
IoMT architecture to ensure this.
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Fig. 2. Different kinds of medical data.

Figure 3 is describing such robust CIoMT architecture. By using edge and
cloud frameworks, the successful integrated medical data can be analyzed using
data and process cognitive engines. The knowledge-centric implementation of
data and process engines is described in Fig. 1.

3 EHR Data

We used EHRs from the MIMIC-III (Multiparameter Intelligent Monitoring in
Intensive Care) database, version 1.4 [19]. It comprises over 58,000 hospital
admissions of over 45,000 patients between June 2001 and October 2012.

3.1 Data Selection

Acknowledging the suggestions from [30], patients older than 15 years were
selected up to first sepsis onset, discharge, or death and before it of maximum
48 h. We denote one such instance in the dataset as a care episode as maximum
48 h before the first sepsis onset time.

3.2 Sepsis Definition

Sepsis is defined by the Sepsis-3 clinical criteria [28,30]. Sepsis-3 criteria is the
combination of suspected infection, and organ dysfunction [28,30]. If at least two
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Fig. 3. Proposed CIoMT architecture.

doses of antimicrobial treatment are newly administered within a certain period
and any culture is taken, then this is considered as suspected infection. The condi-
tions are as follows, If antimicrobial treatment was initiated first, cultures had to
be collected within 24 h. If cultures were collected first, antimicrobial treatment
had to be started within 72 h after the cultures. An increase in sequential organ
failure assessment (SOFA) score [32] by greater than or equal to 2 points com-
pared to the baseline is defined as Organ dysfunction. It is measured 48 h before
to 24 h after the onset of suspected infection. The latest value measured before
the 72-h time window is defined as the baseline SOFA score. This is assumed to
be 0 in patients not known to have a pre-existing organ dysfunction.

The first time-window when both organ dysfunction and suspected infection
criteria are met is regarded as the sepsis onset time. We use a fixed-length time
window to represent the temporality of EHR data. Therefore, we denote time
zero as the particular time window in which sepsis onset occurs.

3.3 Care Episode Representation

Care episodes are transformed into sequences based on a given window (bin) size
to account for the temporality of the data. Six different window sizes: 1, 2, 3, 4,
6, and 8 h are chosen to conduct experiments. Figure 5 provides an illustration
regarding the implementation of a care episode based on different time windows.
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Fig. 4. Distribution of sequence length (top) and episode-wise missing rate with dif-
ferent time window sizes (bottom).

A time window can have multiple values for a particular variable, or it can
be missing entirely. The average value is chosen from multiple such values in
a time window. To handle the missing data, an essential decision is needed
to be taken regarding the randomness in missing values. It could be missing-
at-random or missing not-at-random [31]. We accounted for both possibilities.
Missing data imputation is carried out using a generative adversarial network
(based) technique [35] when data is assumed to be missing not-at-random. The
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Fig. 5. Representation of a care episode of total length 24 h using different time win-
dows.
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following simple imputation strategy was carried out when data is assumed to be
missing-at-random; the present value for a particular feature is carried forward
to subsequent windows until another observed value is encountered, which is
then carried forward on. It is imputed as a global mean of all the values in the
data of a feature if there is no value for that given feature in a care episode.

Distribution of care episode lengths with different time window sizes and the
episode-wise missing rate is shown in Fig. 4. We can observe a high variance
in sequence length and missingness. We can also observe that the smaller time
windows generate longer sequences and a higher rate of missingness compared
to the larger time windows.

3.4 Feature Selection

Features are collected as demographic, vital, and lab data from the EHRs. Table 1
provides a list of all the features used in this study. We have excluded the
variables which have a more than ninety percent missingness in the data in
every time window based data.

4 Methods

Two deep learning methods are used in this study. Using hierarchical represen-
tations of input features, from lower-level compositions to higher-level composi-
tions, a deep learning model learns from the input data features. This type of
abstraction at multiple levels automatically allows learning features using the
complex formation of functions, which map the input to the output straightfor-
wardly without any need for human feature engineering [14].

A generative adversarial imputation network (GAIN) [35] is used to impute
the missing data assuming it is missing not-at-random. We used a long short-
term memory based recurrent neural network (RNN-LSTM) [17] to model the
different representations of longitudinal EHR data and predict-early detection
of sepsis.

4.1 Generative Adversarial Imputation Nets (GAIN)

GAIN [35] is a generalization of the generative adversarial networks (GAN)
[15]. In GAIN, the generator aims to impute missing data accurately, and the
discriminator aims to minimize the classification loss. In turn, the generator
tries to maximize the misclassification rate of the discriminator. Thus it adapts
the standard GAN architecture and provides additional information as ‘hints’
to ensure that the desired target is the result of this adversarial process. It has
been observed that GAIN provides favorable results even when the input data
contains missing values in a significant portion [35].
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Table 1. List of the input features.

Vital Laboratory

Systolic Blood Pressure Albumin

Diastolic Blood Pressure Bands (Immature Neutrophils)

Bicarbonate

Mean Blood Pressure Bilirubin

Respiratory Rate Creatinine

Heart Rate Chloride

SpO2 (Pulsoxymetry) Sodium

Temperature Celsius Potassium

Cardiac Output Lactate

Tidal Volume Set Hematocrit

Tidal Volume Observed Hemoglobin

Tidal Volume Spontaneous Platelet Count

Peak Inspiratory Pressure Partial Thromboplastin Time

Total Peep Level INR (Standardized Quick)

O2 flow Blood Urea Nitrogen

FiO2 (Fraction of Inspired Oxygen) White Blood Cells

Demographic Creatine Kinase

Gender Creatine Kinase MB

Admission Age Fibrinogen

Ethnicity Lactate Dehydrogenase

Admission Type Magnesium

Admission Location Calcium (free)

pO2 Bloodgas

pH Bloodgas

pCO2 Bloodgas

SO2 Bloodgas

Glucose

Troponin T

Prothrombin Time (Quick)

4.2 RNN-LSTM Model

RNN-LSTM models can retain information from previous inputs in their internal
memory. If needed, it also can learn from a very distant past if the information
is relevant by using different gated cells (input, forget, and output) where these
cells determine what information to store and what information to erase [17].
Therefore, we consider this model for performing the task to predict sepsis as
early as possible based on current and past information in a given care episode.
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This choice is also relevant from a clinical perspective, as typically clinical mea-
surements and observations closer to the outcome are of higher importance.

4.3 Experimental Setup

We split the dataset into 80% for training, 10% for tuning, and 10% for testing
and evaluating the tuned models. We stratify the data in each split using an equal
probabilistic distribution concerning both class and sequence length; therefore,
we discarded care episodes of a sequence length with five or fewer instances. We
labeled positive classes or cases as care episodes in which Sepsis-3 criteria were
fulfilled and comprise data from admission to sepsis onset.

Due to two approaches to handling missing values: mean imputation, and
GAN imputation, we created twelve different versions of the dataset based on
six different time window sizes (1h, 2h, 3h, 4h, 6h, and 8h). The model predicts a
probability score regarding the presence or absence of sepsis in the patient based
on current and previous information in the care episode in each time window.

We used the area under the receiver operating characteristic curve (AUROC)
to evaluate the model performance. AUROC is the probability that the model
will assign a larger score to the positive than to the negative episode.

Table 2 presents the hyper-parameters of the RNN-LSTM model, and the
GAIN model. We chose one hundred data points to tune these parameters to
search the space more effectively instead of doing a grid search in some restricted
hyperparameter space. We used an oversampling method to make the distribu-
tion even (50% positive, and 50% negative) in each minibatch. We selected the
tuning set with the model with the best AUROC and used the specific hyper-
parameters of that model to evaluate the test set.

We evaluate earliness as the average prediction times relative to sepsis onset
(in hours) for true positives with the standard decision threshold of >0.5 as a
single positive prediction per care episode, retaining the first one and ignoring
predictions in subsequent windows. We used three evaluation settings here:

1. <12 h before sepsis onset
2. <24 h before sepsis onset
3. <48 h before sepsis onset

Our motivation to use different settings is to restrict extremely early evalu-
ations as they may not be that much clinically relevant.

4.4 Experiments

We carried out a series of experiments using an RNN-LSTM model for early
prediction of sepsis, centered around the use of different time window sizes for
representing the temporally evolving EHR data. We posit that the time window
size affects (i) sequence length and (ii) missingness. We investigated the impact
of these factors on the predictive performance of the RNN-LSTM model with two
different approaches to handle the missing values. We conducted the following
five experiments.
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Table 2. Neural Network Parameters.

Name Values/Range

Alpha 0, 10−4

Beta one 0, 1−10−1

Beta two 0, 1−10−3

Hidden layers 2, 3, 4

Neurons 64, 128, 256

Drop out 0, 10, 20, 30, 40, 50, 60, 70

Epochs 1,2

Mini-batch 100

Classification function log-softmax

Optimizer Adam optimizer

GAIN alpha 0.1, 1, 10, 100

GAIN mini-batch 512

GAIN hint rate 0.9

GAIN total iterations 15000

Experiment 1: Different Time Window Sizes. We investigated the impact
of using different window sizes on the predictive performance of the resulting
model.

Experiment 2: Handling Missing Values. We investigated two imputation
techniques for the missing data. For the missing not-at-random case, we used a
GAN based imputation technique (GAN imputation). For the missing-at-random
case, we used a simple imputation strategy based on carrying forward existing
values and globally mean-imputing values that are absent at the beginning of a
care episode (mean imputation). We evaluated these two approaches for each of
the six time window sizes, i.e., with different degrees of missingness.

Experiment 3: Performance at Different Time Points. We evaluate the
predictive performance in terms of AUROC at different time points relative to
sepsis onset, starting from 24 h before onset.

Experiment 4: Evaluation of Earliness. Earliness is regarded as the time
points true positive predictions are made relative to sepsis onset, for the best
LSTM model. We showed this with a combination of overall AUROC scores for
the particular time window size.

Experiment 5: Performance with Different Sequences Lengths. We ana-
lyzed the predictive performance in terms of area under the precision-recall curve
(AUPRC) score on care episodes of different sequence lengths. We tried to learn
how the best model copes with heterogeneous care episodes in terms of length
of hospital stay with this experiment.
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Table 3. Earliness performance in average hours before sepsis onset combined with
AUROC, using test dataset, GAN and mean imputation of missing values, using dif-
ferent time window sizes.

Window size GAN imputation Mean imputation

Average earliness AUROC Average earliness AUROC

<12 h <24 h <48 h <12 h <24 h <48 h

1 2.11 3.25 4.92 87.28 4.06 7.83 6.18 84.48

2 1.19 1.19 1.62 86.65 3.6 6.47 4.25 81.39

3 0.72 1.52 1.88 86.75 1.07 1.4 2.8 79.94

4 0.64 0.88 1.98 88.54 0.97 0.97 2.13 82.28

6 0.12 0.12 0.12 83.02 0.92 2.57 4.4 53.36

8 0.3 0.3 0.3 78.07 0 3.08 3.08 58.98

5 Results

In this section, We present the results of the above experiments in terms of (i)
predictive performance at different time points, (ii) earliness of true positive
predictions, and (iii) predictive performance for episodes of different sequence
lengths.

5.1 Temporal Analysis

We present the overall predictive performance without a specific decision thresh-
old, in terms of AUROC, of the different models at different time points relative
to sepsis onset – from as early as 24 h to sepsis onset time in Fig. 6. As can be
seen, the RNN-LSTM models’ performance naturally drops further from sepsis
onset and does so quite rapidly. The RNN-LSTM models with GAN imputation
generally perform better up to six hours before the sepsis onset time. The best
results come from using a four-hour time window, with GAN imputation: at
sepsis onset, the AUROC is 88.54%. The size of the window has a significant
impact on the predictive performance of the resulting models. In general, assum-
ing that data is missing not at random leads to better predictive performance
compared to assuming that data are missing at random. However, the difference
is generally smaller compared to the size of the time window.

5.2 Earliness

We show the average distribution of earliness (in hours) for true positive pre-
dictions of the models with different time window sizes and GAN and mean
imputation in Table 3. Earliness results are reported for the three evaluation
settings (<12 h, <24 h, and <48 h). The best result comes from a 1-h time win-
dow size in the mean imputation approach, 6.18 h before the sepsis onset time
with a <48 h setting. We also present the overall AUROC scores of the models.
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Fig. 6. AUROC for each model, using test dataset, as a function of the number of
hours prior to sepsis onset/discharge. The models are colored according to the legend
in the top plot.

5.3 Episode Sequence Length

We evaluate the model’s predictive performance concerning sequence length as
using different time window sizes has a significant impact on the length of
sequences that constitute the care episodes. In Fig. 7, the AUPRC score cal-
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Fig. 7. Prediction performance of the best RNN-LSTM model (4 h time window, GAN
imputation, evaluation setting <48 h) for episodes with different sequence lengths using
the test dataset. Each bin is created such that it contains at least 10 test instances.
The analysis is carried out using AUPRC score.

culated as a local scope of evaluation (described in Sect. 4.4) at the sepsis onset
time (time zero) of our best model is shown. The care episodes in the test set
are binned in such a way that each bin contains at least 10 test instances. In
general, the model performs better on longer care episodes.

6 Discussion

We can categorize the current IoMT architectures into three primary layers,
collection, transmission, and analysis. The collection layer collects and integrates
information mostly through the sensors using a body area network (BAN). The
gateway then sends the information to the cloud using the transmission layer.
Finally, the analysis layer (usually located in the cloud) stores, visualizes, and
analyzes the data and sends feedback regarding the analysis [16].

Although the IoMT devices have brought convenience to all the stakeholders
in the healthcare sectors, some potential problems can be observed,

– Communication latency can increase significantly during the medical data
sending time from BAN sensors to the cloud. This latency could be a problem
when immediate intervention or response is required, such as early sepsis
detection tasks [29].

– There is a possibility of wastage of resources if the IoMT architecture is fixed
or static. It is also relatively difficult to make it more personalized according
to the patient’s or stakeholders customized needs [29].
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Cognitive computing [1,23,24] with the successful integration of machine
learning, deep learning, artificial intelligence, and natural language processing is,
therefore, a promising choice for effective disease detection, pattern recognition,
and deploying realtime automated decision support tools using medical data. We
can also address the problems mentioned above with the successful integration
of edge-based architectures as it has shown promising results [29].

To solve the above problems and thoroughly combine the various advantages
of cognitive computing and edge computing, in this paper, we propose cognitive
computing-based IoMT architecture for providing a decision support tool to
detect sepsis early.

Rather than proposing a novel deep learning model, in this study, the key aim
was to investigate time window size, and imputation of missing value to evaluate
whether the empirical difference can improve the performance or not. Current
state-of-the-art models [11,12,25] use one-hour time window. They treat missing
data as missing-at-random without providing any theoretical or empirical jus-
tification. Therefore, extensive investigation into these matters was carried out.
The effect of different sequence lengths in the prediction performance was also
investigated.

We demonstrate the impact of the time window size on the predictive per-
formance of the model. Therefore time window size selection should be justi-
fied either empirically or from a clinical point of view while designing a predic-
tion model. It has been observed that the overall best predictive performance is
achieved using a four hour time window.

It should be noted that data in the clinical setting is often should be consid-
ered as missing-not-at-random, which is not reflected in the previous studies as
missingness is considered as a random phenomenon there and therefore modeled
using the multitask gaussian process (MGP) adapters [11,12,25]. We can obtain
important information about the condition of the patient or the treating physi-
cian’s assessment in the form of missingness. How a missing value should be taken
care of can also depend on different healthcare institutions’ practices. If one is
taken regularly in one place, and in another place, that value is only measured if
it is urgent, then the missingness of that value should not be imputed globally.
Our primary observation supports this notion as using generative adversarial
networks (GAN) based technique provides better performance.

Previous studies [11,12,25] use the AUROC evaluation metric to predict the
performance, which is a common practice in deep learning. AUROC is measured
on a continuum of threshold values for the classification of patients into sepsis
and no sepsis, providing a global view of predictive performance. If we want to
deploy the model in a realtime setting, then we should tune the model according
to the circumstances and prerequisites of the medical institution in which it
will be used. We should optimize the decision threshold according to one or
more performance metrics. This optimization should be based on clinical needs.
False-positive tolerance is one important such example. In our study, a decision
threshold of >0.5 for positive predictions was used, and it was only allowed
one positive prediction per episode. We should also explore alternative ways not
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limiting to using a different decision threshold only. We may allow the model to
make multiple predictions and silence the model for some period following a false
positive, manually, by a clinical expert. We can also observe from the result that
when evaluating the model from a general perspective and when employing the
model in a specific manner, the optimal window sizes are different. Therefore,
window size also needs to be considered in this case.

In the future, we will try to modify the neural network-based architecture
based on the insights we obtained from this study, as described above. The
explainability of the model is a crucial issue here as this can be utilized by
different stakeholders [22]. In the future, we will also explore this explainability
issue.

7 Conclusions

We proposed a cognitive internet of medical things architecture and discussed
the different implementing and usability related aspects of it with a use case of
early sepsis detection using electronic health records. We posited through our
discussion that this architecture could provide better results in various health-
care sectors for different use cases. Missingness and different time window sizes
in EHR data were investigated for the early sepsis detection task with an RNN-
LSTM based deep learning model. We observed that improvement in the pre-
dictive performance could depend on the appropriate time window. It was also
observed that missingness considered as a random phenomenon and subsequent
modeling of it using generative adversarial networks could provide better predic-
tive performance. In the future, we will try to implement the cognitive internet
of medical things architecture to demonstrate its practicality and usability.
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Abstract. In recent years, Component-based Automation Systems have
been increasingly used in office buildings and the residential context,
which enabled innovative solutions in areas like Building Automation
Systems and Health Smart Homes. However, with an abundance of het-
erogeneous automation components available, the engineering process
is becoming increasingly complex and needs to rely on computer-based
tool support. Expressive formal models of component functionality are a
prerequisite for component selection and early-on interoperability assess-
ment. This paper extends a flexible framework of semantic annotations
(tags) and investigates different algorithms for interoperability evalua-
tion. Based on their individual characteristics, suitable application areas
for these algorithms are identified and discussed in the context of auto-
mated engineering. Thus, a pairwise comparison and a reasoning-based
algorithm provide a cornerstone for the proliferation of computer-based
design algorithms to carry out complex planning tasks in the future.

Keywords: Ambient assisted living · Health smart home · Building
automation systems · Interoperability · Automated engineering

1 Introduction

Advanced technology in Component-based Automation Systems (CBAS) offer
great opportunities for a variety of application areas, including Building Automa-
tion Systems (BAS) and Health Smart Homes (HSH), which are a key concept
for realizing personalized health care in order to cope with future challenges for
health care systems [17]. However, with an abundance of heterogeneous com-
ponents available, the engineering process of CBAS is becoming increasingly
complex and requires computer-based support [14,25]. In this context, special
attention has to be paid to interoperability of components. Yet, achieving inter-
operability is a complex problem [24] in itself, resulting in high follow-up costs
when neglected in the design phase. For the U.S. building industry alone, NIST
reported annual costs of $ 15.8 billion due to incompatible components [12]. To
detect potential interoperability issues as early as possible, it is necessary to
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include the semantics of information exchanged by components in their func-
tional models, enabling a conceptual interoperability assessment at design time.
While syntactical interoperability can be achieved by middleware approaches
and standardizing the data types of programming languages or the payloads of
communication protocols, semantic information describing the actual meaning of
data is often neglected. Accordingly, the semantics of data is nowadays often not
formally specified, despite its importance in achieving semantic interoperability
in both design and operation phase. As a consequence, no automated processing
of the meaning of data is possible, hampering the proliferation of automated
engineering solutions.

To enable expressive modeling of semantic data types, an extensible seman-
tic annotation framework (SAF) has been proposed in previous research [27].
But usage of a more expressive semantic modeling framework raises the issue,
how interoperability for semantic specifications can be assessed, if a näıve com-
parison of simple semantic types is no longer possible. To this end, this work
provides a further consolidation of the SAF and investigates different approaches
on how interoperability can be determined for more expressive semantic frame-
works. This paper is an extended version of the original conference paper [27].
It has been modified and extended by proposing several new algorithms for
interoperability evaluation, investigating the trade-off between their expressive-
ness and performance, and inferring suitable application areas for the different
approaches. Conversely, the initial work in [27] contains a detailed description
of the creation process of SAF. All in all, this paper proposes the following main
contributions:

1. Extension of the semantic annotation framework from [27] by investigating
semantic types and their usage in the functional standard VDI 3813-2 [23].

2. Proposal of different algorithms for interoperability evaluation for expressive
semantic type declarations.

3. Discussion of suitable application areas for the individual algorithms.

This paper is structured as follows: The next section presents information
on the background of automated engineering approaches and discusses related
work for semantic frameworks. Section 3 describes the extension to the semantic
framework from [27]. Several algorithms suitable for interoperability evaluation
for tag-based semantic models are proposed in Sect. 4. The algorithms are vali-
dated and their performance is evaluated in Sect. 5, which also includes a discus-
sion of their potential application areas. Finally, the paper is summarized and
further research areas are discussed by Sect. 6.

2 Background and State of the Art

2.1 Engineering of Building Automation Systems and Health Smart
Homes

In order to achieve the high level of customization required in HSH [17] and
BAS, computer-based tool support is necessary. Therefore, automated engineer-
ing approaches for CBAS have been a research topic for the domains of BAS
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and HSH. Dibowski et al. proposed a prototype of an automated engineering
approach in the domain of room automation [9], using the abstract functionality
standard VDI 3813 [23] as key vocabulary for functionality. Similarly, [29] for-
mally defines the HSH engineering task as well as an approach and prototype for
automated engineering of HSH, motivated by the prototype of Dibowski et al.
[9]. Both approaches are based on functional component models and a common
vocabulary of functionality. The role of automated interoperability evaluations
can best be put into context, when considering these automated engineering
approaches in detail. To this end, common tasks in the engineering process will
be introduced below.

Fig. 1. Tasks for the engineering of Building Automation Systems and Health Smart
Homes according to [26].

The automated engineering approaches try to match desired functionality
specified by planners in a system specification with functionality provided by
automation components, yielding several candidate system designs. Figure 1
depicts the main tasks during the process of automation engineering according
to [26]. In order to come up with possible design candidates, suitable components
contributing to the required functionality need to be selected from a data base
of all available products (1. Component Selection). Subsequently, the planner’s
system specification is used to identify, which communication relations amongst
the components should be established (2. Data Flow Identification). Each of
these identified data flows should then be examined to determine, if the corre-
sponding components are interoperable (3. Interoperability Assessment), i.e. if
the exchanged data can correctly be understood and used. Finally, it needs to be
determined whether each component is provided with the information required
to perform its functionality (4. Operability Assessment). If a design candidate is
still considered viable after these steps, it is a possible solution for the planner’s
system specification.

Such automated engineering approaches rely on a common vocabulary for a
shared understanding of functionality and information types. A previous lit-
erature analysis revealed that for HSH there is currently no comprehensive
standard available [28]. Since HSH is an interdisciplinary domain, prototypi-
cal approaches may resort to the BAS aspects of HSH functionality. In case
of BAS, this shared understanding can be provided by the functional standard
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VDI 3813 [23], which introduces standard functionality and information types
available in room automation systems on an abstract and technology-neutral
level. As representation for functionality, it defines function blocks and the infor-
mation required and provided by them. However, the semantic data types of the
VDI 3813 [23] are limited to a pre-defined set of 46 semantic types. A semantic
type is labeled with one mnemonic name consisting of two parts hinting at the
type of information represented and its meaning (e.g. A SUN representing the
angle of the sun’s position). Thus, a coarse structure for attributing semantics
to the information is available; yet, the two parts are often not clearly delimi-
tated and especially the second part is used inconsistently to indicate meaning,
types of information, representations, or origins of information. Further details
are often only explained as unstructured text. The validity of interoperability
assessment based solely on the data type names is therefore limited.

2.2 Component and System Information Models

In the aforementioned prototype of Dibowski et al. [9], the tasks 1. to 3. from
Sect. 2.1 have been implemented. Different levels of interoperability are compre-
hensively discussed in a follow-up work [8], encompassing technical, syntactic,
semantic, conceptual, and experiential interoperability. A detailed assessment of
interoperability plays a vital role in automated design approaches, as interop-
erability can filter out a great number of false positive design candidates [8].
However, the semantic data types used in the prototypical component models
were limited to a fixed set of complex composite structures. Interoperability
evaluations on the semantic level were restricted to a comparison of these com-
plex types. Therefore, the semantic models scale badly due to a high effort of
vocabulary maintenance.

The work of [11] is one example of further approaches aiming at modeling
components to facilitate the design process. However, none reached a level of
detail or maturity comparable to the approach of Dibowski et al. [8,10].

As a different approach, system information models provide means to for-
malize specific technical system configurations. Many approaches exist for dif-
ferent domains, such as building automation [3] and smart homes [13]. Examples
include DomoML [21], the SSN-Ontology [5], DogOnt [2], ThinkHome Ontology
[16], AAL-Onto [25], or SAREF [6]. They focus on the detailed modeling of envi-
ronment and context on a coarse level of granularity; however, they do not model
sufficient information to attribute semantics to information for design purposes.

Similarly, abstract reference models such as the UniversAAL platform [22]
provide a conceptual framework for systems in general, but remain too coarse
on the aspect of data type semantics. The ISO/IEEE 11073 standards family
[15] offers a detailed nomenclature for health information, yet largely focuses on
communication in a hospital setting.
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2.3 Tag-Based Semantic Frameworks

Another class of approaches for modeling systems and semantics of data are
tagging approaches, which define semantic annotations (tags) as an easy-to-use
means for modeling semantics.

The most prominent example is Project Haystack1, which is based on a
community-managed vocabulary of about 230 tags. This vocabulary is also avail-
able as an ontology [4]. This enables to create a system model organized along
the hierarchies of site, equipment and (data) point. Some implicit semantics can
be inferred from the modeled equipment types, such as discharge air temp
sensor. However, fine-grained modeling of exchanged information is not in focus
of this approach.

The flexibility of Haystack has inspired further work in the domain of IoT,
e.g. the extended data model BACnet XD by the BACnet group [3], the KNX
Information Model by the KNX Association [19], or [20] towards integration of
IoT and building systems. The latter uses annotations to translate KNX system
models into web service information models by means of a common meta model,
which is available as an XML schema.

To improve the applicability of tagged system models, BRICK [1] introduced
a metadata schema for buildings aimed at enabling applications such as model-
predictive control or fault detection and diagnosis. BRICK offers an ontology of
entities (Point, Equipment, Location, Measurement) and their relationships in
order to model building automation systems and components.

These approaches aim at facilitating building analytics by adding semantic
information to models of building systems. While capturing the systems’ struc-
ture and metadata, they are focused on the operation phase and do not intend
to use the semantic information in the design phase. In contrast to the avail-
able coarse granularity of data semantics, design tasks require a higher level of
expressiveness such as shown by [26], especially for interoperability assessments.

3 Semantic Annotation Framework

3.1 Semantic Data Models in HSH Context

In order to put semantic data types into context, a conceptual framework of the
assistance system aspects of HSH will be used. Based upon the conceptual core
framework from [28] and the UniversAAL reference model [22], the concepts and
relationships of the assistance systems are depicted in Fig. 2 in UML notation.

The classes on the left model Automation Components as structures for
equipment, which contains a software application, modeled by Device Appli-
cation. The software application provides a certain functionality modeled by
Function, as part of the commonly used vocabulary of functionality. The classes
on the right side – Communication Relation and Semantic Data Type – are
used to model the interconnections of components in the automation system.

1 http://project-haystack.org/.

http://project-haystack.org/
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Fig. 2. Conceptual Model of Automation Systems in CBAS context.

More specifically, the components are communicating with each other in order
to fulfill their functionality. A communication relation models one of the infor-
mation exchanges for a set of “linked” components. Each communication rela-
tion is used to exchange a specific type of information between the components’
software applications. On the other hand, these software applications need to
provide information about their software interfaces. More specifically, they need
to model required data types on the input side as well as provided data types on
the output side.

The key concept of interoperability can now be investigated: the software
applications exchanging information in the context of a specific communication
relation need to adhere to its semantic data type. More specifically, the data
types of the provided and the required side need to be compatible with each
other. This is the case, if in a communication relation every provided semantic
type is understood at the receiving end.

3.2 Summary of Initial Semantic Annotation Framework

In order to provide a more expressive and flexible framework for annotating
semantic information, SAF as a multi-dimensional tag-based semantic frame-
work was conceived in [27] by investigating and structuring the semantic data
type labels of the VDI 3813 [23]. The main idea for structuring the SAF [27] was
based on describing semantics along several different, non-overlapping informa-
tion dimensions. This is motivated by a variety of approaches of semantic system
modeling for building analytics, such as the Semantic Sensor Network Ontol-
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Fig. 3. Model of the Semantic Annotation Framework as created in [27].

Table 1. The following meta-characteristics were used for identifying and grouping
dimensions.

Name Explanation

Entity What is the information referring to?

Context In which context is the information generated and used?

Realization How is the information encoded?

ogy, the semantic tagging approach Project Haystack, and the BRICK metadata
schema (cf. Sect. 2.3).

Those approaches provide detailed system models by modeling entities and
their relationships. We aimed to translate such expressiveness to the semantic
information modeling by providing different aspects of semantics. The resulting
composite semantic model allows for expressing information in much more detail
than semantic models consisting of only one semantic label.

Following the structuring approach outlined above, Fig. 3 depicts a model
of the initial SAF. A Semantic Data Type is composed of several differ-
ent Semantic Aspects, which each are annotated with Semantic Tags. When
regarded as a taxonomy, the aspects are taxonomy dimensions with the different
annotations making up the characteristics of these dimensions.

The SAF was initially created following an established and reproducible
method for taxonomy creation by Nickerson et al. [18], which is documented in
more detail in [27]. In several iterations, different aspects of the semantic types
used in the VDI 3813-2 [23] were analysed and clustered in order to form the inde-
pendent taxonomy dimensions. These different aspects are explained in Table 1.
As demanded by the taxonomy creation method [18], they were incorporated
as meta-characteristics for guiding the identification process of the dimensions.
In several iterations of increasing refinement, the initial 46 semantic types were
consolidated and extended to encompass 75 semantic types at the end. All in
all, the initial framework consisted of seven dimensions and a total of 63 charac-
teristics. In order to accommodate new innovations or developments, as well as
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to be transferred to similar domains, each tag dimension can be extended with
further characteristics.

The results from [27] propose a structure for semantic annotation frameworks
that provide more expressive semantic data models, are able to comprehensively
be used throughout different phases of the engineering process, and being exten-
sible towards adjacent domains, such as HSH.

3.3 Refined Semantic Annotation Framework

Based on the SAF from [27], further refinements have been conducted in this
paper. Extending the initial work, which was mainly focused on the semantic
types’ names explicitly mentioned in the standard VDI 3813-2 [23], potentially
different manifestations of a semantic type could be investigated by modeling all
data points of all functional blocks defined by the VDI 3813-2 [23].

Since this is the most specific context of semantics, some additional semantic
types could be distinguished by these analyses. Six new semantic types related to
alarm managements were added and modes for control of energy, climatisation,
and ventilation systems have been streamlined.

In addition, the Variable Type dimension was consolidated (cf. Fig. 4).
It is aligned with the different roles of information in closed- as well as open-
loop control systems. The central component is the controller, which is able to
process measured Values, computed States, as well as Setpoints and Commands

Fig. 4. The different Variable Types (bold in boxes) in a generic control system. The
functionalities are displayed as function blocks according to [23].
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generated by users or computation. Furthermore, Alarm type information is also
supported.

The dimension Trigger Type has been renamed to Priority to incor-
porate the notion of different types of sources – automatic, management (for-
merly associated to Location) and manual. Finally, the dimensions Reference

Type and Representation have been consolidated and detailed. As discussed
in the initial work of [27], no further dimensions needed to be added to incorpo-
rate the more detailed analyses.

In its final version, the SAF now encompasses seven dimensions with 70
characteristics, as is depicted in Table 2. Since the described entities constitute
the greatest variability of concepts, the dimensions Feature of Interest and
Physical Quality contain the majority of characteristics, with 20 and 27 char-
acteristics, respectively. Dimensions regarding the context or realization aspects
are more generic and require a less diverse set of characteristics (cf. Fig. 5).

3.4 Health Smart Home Tag Extension and Case Study

Unlike the domain of building automation, Health Smart Homes are much more
diverse and there is no consolidated standard available that describes the com-
mon functionality as an agreed-upon vocabulary [28]. Thus, extending the SAF
to HSH is currently not feasible in a comprehensive manner. Nevertheless –
although the functionalities of this domain are not yet consolidated – exemplary
extensions could be made to indicate the applicability of the SAF for the domain
of Health Smart Homes. In order to do this, only the dimensions of the entities

Table 2. The updated semantic annotation framework for the room automation
domain.

Dimensions Characteristics

Entity Feature of Interest air calendar climatisation contact

controller drive fan hvac

lamella lamp light room

shading sun sunblind valve

ventilation water weather window

Physical Quality activation angle.azimuth angle.elevation color

date dewpoint flow frost

humidity illuminance intrusion level

mode.climaCtrl mode.energyCtrl mode.roomUsage mode.ventCtrl

occupancy position position.maint position.prot

precipitation pressure quality rotation

temperature time velocity

Context Location equipment indoor outdoor

Variable Type alarm command setpoint state

value

Realization Priority automatic management manual

Reference Type absolute delta offset percentage

step

Representation binary continuous interval nominal

ordinal quantified ratio
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Fig. 5. Structure of the semantic annotation framework showing the number of tags
(characteristics) in each aspect (dimension).

aspect (Feature of Interest, Physical Quality) needed to be extended.
Table 3 depicts additional characteristics that have been proposed in [27] for
some examples of HSH functionality.

Table 3. Extension to the semantic annotation framework to also address exemplary
health smart home functionality.

Dimensions Characteristics

Feature of

Interest

energy food medication occupant occupant.body

Physical

Quality

activity
height

amount
pulse

consumptn.current
rate

consumptn.total
type

HbA1c
weight

In this paper, a case study with functionalities from both BAS as well as HSH
will be shown (cf. Fig. 6). This example is focused on night-time fall prevention
and sleep monitoring, which records phases of activity and could be useful for
e.g. monitoring early dementia patients. The case study consists of a motion
detector installed in the hallway leading to the bedroom, the lamps in this hall-
way, some computation capacity for the processing of data, and an electronic
“sleep diary” used to record disturbances and disruptions of the resident’s sleep
during the night. Based on the motion signals from the motion detector, the cur-
rent occupancy state of a hallway is computed by the functionality Occupancy
Evaluation. This occupancy state is used to automatically switch on the hallway
lights (Automatic Lighting) to prevent falls, while a phase of interrupted sleep
is recorded in the sleep diary by the function Sleep Monitoring.
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Fig. 6. Example of Room Automation and Health Smart Home Functionality. A pres-
ence detector is used to compute the current occupancy state of a hallway (Occupancy
Evaluation). This state is used to automatically switch on the lights (Automatic Light-
ing) and to record phases of interrupted sleep (Sleep Monitoring).

Table 4. Tags of the data points in the case study.

Data Point Feature of Interest Physical Quality Variable Type Locality Priority

1: P AUTO room occupancy value indoor automatic

2: P MAN room occupancy command indoor manual

3: P ACT room occupancy state indoor –

4: P AUTO room occupancy state – –

5: L SET lamp activation command – –

6: P ACT room occupancy state – –

7: D ACT TM calendar time value – management

8: B LOG occupant activity state – –

Albeit being a small example, this case study is valuable in studying the
interworking aspects of functionality from BA and HSH. As can be seen from
Fig. 6, eight data points (indicated by a name and a number) are available in the
example. Each data point is annotated with tags from the SAF as depicted in
Table 4. Since the exemplary functions are defined on a vendor- and technology-
neutral basis (similar to the VDI 3813-2 [23]), the dimensions Reference Type

and Representation were left out for the sake of brevity. Besides the three
different controller functionalities, the case study also contains data sources (i.e.
motion detector and clock) and data sinks (i.e. lamp actuator and sleep diary),
which will not be in the focus of the study.

The functionality Occupancy Evaluation is used for a central computation of
the hallway’s actual occupancy state. This computed state is then sent to the
functionalities Automatic Lighting and Sleep Monitoring and acts as a trigger for
their respective behavior. Thus, two of the communication relations contained
in the example are considered in more detail. Specifically, the communication
relation from the occupancy evaluation to automatic lighting (communication
relation 1: data point 3: P ACT to 4: P AUTO) and sleep monitoring (commu-
nication relation 2: data point 3: P ACT to 6: P ACT), respectively, are used
for transmission of the hallway’s current occupancy state.



396 B. Wollschlaeger et al.

Communication relation 1 illustrates that only comparing the name of the
data points is not sufficient for determining interoperability. Instead, when look-
ing at the tags, it becomes clear that they are a more suitable means for assessing
the compatibility of two data points. It also is apparent from Table 4 that not
each dimension is specified and the number of tags associated to a data point
may vary (even more so, if the additional two dimensions Reference Type

and Representation are taken into account).
As stated in Sect. 2.1, interoperability evaluation is a vital step in course of

BAS and HSH engineering. The importance of interoperability evaluations is
even bigger in context of automated design approaches, as these try to come
up with a selection of interacting components as design proposals, which still
need to be evaluated with regard to their feasibility and validity. For this task,
algorithms for interoperability evaluations for tag-based semantic definitions are
required. The next section will propose several algorithms, before their suitability
is evaluated in Sect. 5.

4 Algorithms for Interoperability Evaluation

4.1 General Interoperability Definition

As discussed in [27], the SAF allows for an improved interoperability assess-
ment by lifting the assessment from a mere comparison of names to the level
of expressive semantics and subsumption hierarchies. This detailed comparison
enables to spot further interoperability issues – otherwise, issues will not have
been predicted and only noticed after installation, incurring high revision costs.

The downside of a more expressive semantic framework is the more difficult
interoperability assessment compared to mere string comparisons. In order to
assess the performance impact and the suitability of the annotation framework,
potential algorithms for interoperability evaluation need to be proposed and
their characteristics need to be investigated.

To formalize this understanding, let sem() be a function that returns the set
of semantics associated to a data point. Furthermore, let DP be the set of data
points and typename() be a function that returns the name of the data point
type. Data points in the roles source and target will be referred to as o and
i, respectively. Then, we can define a function interop() indicating the general
(binary) interoperability of two data points by:

interop ::DP × DP → B

interop(o, i) ⇐⇒ sem(o) ⊆ sem(i)
(1)

Let Tag be the set of all tags and tags ::DP → P(Tag) be a function that
returns the set of all tags associated to a data point. With these definitions in
place, we can define the following interoperability algorithms2.

2 Note that the presented formalizations are no algorithms per se, but rather a declar-
ative notation that can easily be converted into an imperative algorithm.
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4.2 Shallow Name Comparison

The Shallow Name Comparison determines (semantic) compatibility of two data
points by directly comparing the associated semantic type names. As this is the
state of the art evaluation of compatible semantic types, it can be regarded
as a baseline for the following interoperability evaluation algorithms. The algo-
rithm does not require the existence of semantic tags and is therefore universally
applicable. Since the semantic type names are evaluated without respect to their
structure, this algorithm boils down to a simple string matching (cf. the formal-
ization in Eq. (2)). Thus, it is expected to be very efficient, but with a reduced
correctness (e.g. communication relation 1 of the case study would wrongly be
classified as invalid by the shallow name comparison).

interopshallow(o, i) ⇐⇒ typename(o) = typename(i) (2)

4.3 Pairwise Name Comparison

The Pairwise Name Comparison is the first of the presented algorithms that
is able to make use of the more expressive semantic definition by means of
semantic tags. It requires a set of tags being annotated to data points. The tags
will be interpreted on an equal level, i.e. each tag is viewed as an additional
specification/restriction of the data point semantics. Complex tag expressions,
such as defining alternative tags, are not supported by this algorithm.

For this structural limitation, the algorithm can efficiently check the different
tag dimensions for compatibility. Since the output data point’s semantics needs
to be a subset of the input data point’s semantics, the output semantics might
be more specific than the input semantics. In other words, the output can have
additional tags, while the input cannot have tags in dimensions not contained
in the output semantics. Then, each dimension can be inspected independently
to check, if the respective tags of output and input are equal.

As the tag dimensions are non-overlapping, this iterative approach can be
abstracted to aggregating the tags of each data point in an individual tag set
and checking the subset relation of these two sets. The subset relations of the
sets of semantics (sem()) on the one hand and of the sets of tags (tags()) on
the other hand are inverse to each other, since specifying a tag is equivalent to
narrowing down the semantics. This is indicated by the formalization in Eq. (3).

interoppairwise(o, i) ⇐⇒ tags(o) ⊇ tags(i) (3)

4.4 Classification Approach

In general, it can also be conceived that tags can be combined to form more
complex tag expressions, e.g. by using conjunctive and disjunctive operators. If
considering such more complex combinations of tags, computing the subset rela-
tion is much less straight-forward. In this case, semantic reasoning can be applied
for declarative interoperability evaluation approaches. However, to be able to
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compare the algorithms introduced in this section, the reasoning approaches are
presented for the structural limitations mentioned in the previous Sect. 4.3, while
keeping in mind that the following two approaches are more generally applicable.

The reasoning approaches make use of formalizations of tags in description
logic (DL) as both individuals and concepts. A tag individual represents the
actual tag that is linked to a data point via a role hasTag. On the other hand, tag
concepts represent a class of individual tags with the meaning of the respective
tag. Using hierarchies of tag concepts, inheritance relations amongst the tags
may be specified (cf. relation parentTag in Fig. 3). In order to represent the
combined semantics of a set of tags (or a tag expression), the tag concepts can be
combined to DL class expressions. Each class expression for a specific semantics
represents a declarative notion of the class of all data points annotated with this
specific semantics. Based on these classes of data points, different “questions”
to the reasoner may be used to determine interoperability. The following two
approaches will be discussed: Firstly, the Classification Approach is an instance
checking decision problem, asking the reasoner if an output data point can be
classified as belonging to the class of data points with semantics of the input
data points. Secondly, the Subsumption Approach checks, if the class of data
points with output semantics is a subset of the class of data points with input
semantics.

For the presentation of the two approaches, the following transformation
functions are introduced, making use of the role hasTag associating the concept
of a data point DataPoint with the concept of tags. The transformation function
transClExp() in Eq. (4) computes the DL class expression for the semantics of
a data point. Since the tag dimensions are non-overlapping, the general role
hasTag can be used in constructing the DL class expression:

transClExp ::DP → ClExpr

transClExp(dp) = (dp .= DataType � (�t∈tags(dp)(∃hasTag.t)))
(4)

On the other hand, the transformation function transIndv() in Eq. (5) com-
putes the set of assertional axioms for representing the corresponding data point
individual as additions to the ABox A part of the knowledge base KB = (T ,A).
Therefore, the function transIndv() makes sure that a data point is correctly
represented in the knowledge base:

transIndv ::DP → P(A)
transIndv(dp) = {dp : DataPoint} ∪ {(dp, t) : hasTag | ∀t ∈ tags(dp)}

(5)

With these definitions in place, the Classification Approach converts the
semantic type of the output data point into an individual that has the rela-
tion hasTag linking to its respective tags. Then, it needs to be investigated, if
the semantic type of the output data point is an instance of the class modeled by
the DL class expression for the input semantic type. The Classification Approach
can then be written for an initial knowledge base KB = (T ,A) as follows:
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KB′ = (T ,A ∪ transIndv(o))
interopclassification(o, i) ⇐⇒ ∃I s.th. I |= (o : transClExp(i))

(6)

Equation 6 depicts the two steps required for the Classification Approach:
First, the knowledge base must be extended to contain the assertions for the
output data point. Then, it can be checked, whether the output data point
individual is an instance of the input data point class expression. In terms of DL
semantics, this is related to finding at least one interpretation I under which
the concept assertion o : transClExp(i) holds for the knowledge base KB′.

4.5 Subsumption Approach

Similarly, the Subsumption Approach can be defined. In this case, the semantic
types of both output and input data points are modeled as class expressions. In
order to determine interoperability, it needs to be checked if the class expression
of the input data point subsumes the class expression of the output data point,
i.e. if the class expression of the output data point is a subclass of the class
expression of the input data point. Equation 7 reflects this definition, using again
an interpretation I for the knowledge base KB:

interopsubsumption(o, i) ⇐⇒ ∃I s.th. I |= (transClExp(o) � transClExp(i))
(7)

5 Validation and Performance Evaluation

5.1 Test Cases

In order to test the validity and performance of the proposed algorithms against
the baseline (Shallow), different test scenarios have been constructed to investi-
gate a variety of real-world situations, including differing numbers of tags and
different degrees of abstraction. Table 5 summarizes the used scenarios for the
test cases and indicates, which sets of tags for the test scenarios can be taken
from the case study example from Sect. 3.4. For the test scenarios, we investi-
gated the data point’s semantic tags irrespective of whether it is an input or an
output data point.

5.2 Test Setup

During a test session, each algorithm proposed in Sect. 4 was tested with the
test cases from Sect. 5.1 and the algorithms’ correctness and performance were
measured. To mitigate the effects of test overhead on the performance measure-
ments, each algorithm was executed 200 times for each test case. The algorithms
Shallow and Pairwise required very little computation time, which increased
the distortion due to the finite resolution of the time measurement facilities.
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Table 5. Overview of Test Scenarios.

ID Explanation Expected Result Example from Table 4

TC1 Same sets of tags true DP 3 and DP 3

TC2 Same number of tags, no matches false DP 5 and DP 8

TC3 Same number of tags, two mismatches false DP 1 and DP 2

TC4 Output more general than Input false DP 4 and DP 3

TC5 Input more general than Output true DP 3 and DP 4

Thus, for these algorithms, an additional factor of 1,000 was introduced, so that
these algorithms were executed 200,000 times per test case. Each test session
was repeated until 100 test iterations have been carried out.

The tests were performed on a Windows 10 computer with an Intel R© CoreTM

i5-7200U CPU and 20 GB of RAM using Java 1.8, the OWL API library3 and
HermiT4 as a reasoner.

5.3 Validation of Correctness

With the exception of the baseline algorithm, Shallow, all other algorithms
yielded correct results for all test scenarios. The algorithm Shallow incorrectly
classified TC5 as invalid, but classified the other test scenarios correctly. This
behavior has been expected as the Shallow approach is only able to identify
exact type matches, whereas TC5 is a scenario with the output semantics being
more specific than the input semantics.

This also means that already the lightweight SAF with a DL expressivity
of ALC is able to compute the interoperability evaluation for a variety of test
scenarios. In conclusion, each of the algorithms Pairwise, Classification, and
Subsumption provides a better correctness than the baseline algorithm.

5.4 Performance Evaluation

When selecting the best-suited interoperability algorithm, the performance
impact of this algorithms has to be taken into account, besides its providing
correct results. The results of the conducted performance tests are depicted as
box plots in Fig. 7 and Fig. 8 (log-scaled), aggregated for the algorithms and test
cases.

The baseline algorithm, Shallow, performs very well below a fraction of a
microsecond. It can also be seen that the Pairwise algorithm is comparable to
the baseline algorithm with a mean execution time of well below 10 µs. The algo-
rithms relying on semantic reasoning require roughly four orders of magnitude
more computation time (i.e. between 30 ms and 50 ms). Among the reasoning

3 OWL API version 5.1.12, https://github.com/owlcs/owlapi.
4 HermiT OWL reasoner version 1.4.5.519, http://www.hermit-reasoner.com/.

https://github.com/owlcs/owlapi
http://www.hermit-reasoner.com/
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Fig. 7. Results of the performance measurements for each defined algorithm and the
different test cases.

Fig. 8. Results of the performance measurements for each defined algorithm and the
different test cases in logarithmic scale.

approaches, Subsumption seems to perform slightly better than Classification,
which needs more computation time and also features more outliers.
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Figure 8 reveals that the different test scenarios do not seem to have any
significant impact on the algorithms’ performance, with the exception of the
baseline algorithm. However, since this algorithm takes very little time for com-
putation, the observable differences amongst the test scenarios may be attributed
to measurement inaccuracies.

5.5 Discussion and Application Areas

The baseline algorithm Shallow has proven to be the most efficient one; yet,
it does not yield the correct results in all cases. This downside is expected to
become more relevant, if the flexibilities offered by the SAF should be used.
Annotating semantic models by fine-grained tags enables a more expressive
semantic definition. However, once semantics cannot be reduced to a uniform
and standardized name, the Shallow algorithm will no longer be applicable.

The Pairwise approach as a component-based and thus more fine-grained
approach is able to cope with the flexibility of the tag-based semantic frame-
work. Performance-wise, it is slightly less efficient than the baseline algorithm.
But, with computation times of less than 10µs it still is a viable candidate for
interoperability evaluation on a restricted time budget (e.g. during automated
computation of design candidates).

The Classification approach applies reasoning and solves an instance check-
ing decision problem for each interoperability evaluation. While yielding correct
results, it is the least efficient algorithm. Similarly, the Subsumption approach
yields correct results, but comes with a huge performance impact. As discussed
before, both algorithms were tested in scenarios with restrictions of the tag-
ging structure. However, these algorithms would also be able to provide cor-
rect results for more complex tagging structures. Moreover, the implementation
of both approaches is much more complex, as libraries for ontology processing
and reasoning need to be used. There might still be optimization potential left,
such as using pre-processing techniques in order to reduce the actual computa-
tion time for the interoperability evaluation. The Subsumption approach seems
promising in this regard, since it does not need to change the knowledge base
and might be easier to optimize.

In conclusion, the approaches Pairwise and Subsumption seem to provide
the best trade-off between correctness and performance (Pairwise) or flexibility
(Subsumption), respectively. In order to determine the most suitable application
areas for the algorithms, the different tasks requiring interoperability evaluation
need to be considered.

Firstly, interoperability needs to be assessed in the automated design app-
roach during generating and evaluating design candidates (cf. step 3 of Fig. 1).
This task needs – amongst others – to perform a massive number (up to billions)
of assessments in a short time (several minutes). Thus, a single interoperability
evaluation has a very strict and small time budget. In this case, the Pairwise
approach seems to be most suitable.

Secondly, interoperability (in its more general form of compatibility) also
needs to be assessed during the specification of the functional component mod-
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els, which is done by the component manufacturer during product development.
Thus, there is no strict time limit nor the need for a massive number of assess-
ments. Instead, this task calls for a flexible manner of annotating semantics to
make the component model specification process more efficient and robust, e.g.
by reducing the semantic specification effort or providing suggestion mechanisms
based on the detailed semantic understanding of the data types. This combina-
tion of circumstances favors the Subsumption approach due to its flexibility. In
addition, the Pairwise approach might also be suitable for this task.

6 Conclusion and Future Work

In this paper, we proposed an update to a previously developed extensible seman-
tic annotation framework that is able to add a significant level of semantic expres-
siveness to information types exchanged in information systems such as building
automation systems and health smart homes.

With its aspect-oriented approach and the definition of different dimensions
of semantic annotations, the approach is able to specify semantics in detail, sur-
passing the expressiveness capabilities of using mere data type names to encode
semantics. Since multiple dimensions can be taken into account, the framework
also allows for a seamless semantic data modeling from abstract specification to
detailed component modeling, starting from a few dimensions to fully encompass
all aspects of semantic data.

Furthermore, we proposed several algorithms for assessing interoperability
based on the semantic annotation framework. These algorithms were tested
against the state-of-the-art baseline and potential application areas have been
discussed. Thus, we were able to provide the foundation for improving the qual-
ity of interoperability assessments in context of automated design approaches
and for streamlining the process of specifying semantic models for automation
components by enabling auxiliary suggestion functionalities.

As next steps, we intend to investigate how more complex semantic expres-
sions can be annotated to data points to increase the flexibility during the task
of functional component modeling. To account for real-world uncertainty, an
investigation into more nuanced (i.e. probabilistic) notions of interoperability
and individual compatibility rules for different dimensions seems to be another
promising step. Non-standard DL reasoning approaches such as those presented
in [7] might provide a valuable starting point for suitable interoperability eval-
uation mechanisms.

Furthermore, once a consolidation of functionality and data types is achieved
for the whole domain of HSH, we plan to extend the framework so that it encom-
passes HSH as a whole. In order to integrate the SAF with existing tagging
approaches, ontology matching and merging approaches might be a viable tool
to consolidation of interdisciplinary semantic vocabularies (e.g. the nomenclature
of health informatics provided by the IEEE 11073).

We consider the increased semantic expressiveness offered by the annotation
framework as well as the possible algorithms for interoperability evaluation as
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vital for increasing the degree of automation of the design process of BAS and
HSH and as an enabler for an increased proliferation of building automation and
assistive technology applications in the future.
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Abstract. Recent technological advances in medical informatics led
to the adoption of new technologies in pathology clinical area. Digi-
tal pathology is allowing the acquisition, storage, and distribution of
pathological digital samples, which are gathered by scanners and dis-
played in network workstations. This paper discusses the opportunities
and challenges of digital pathology, and how it is changing education,
training, and medical practice nowadays. A new paradigm of collabora-
tive telepathology is proposed through a cloud-based architecture, fully
compliant with the DICOM standard, that integrates a cross-platform
pathology viewer, collaborative tools, virtual work-spaces, and personal
storage areas. Data management and privacy are ensured through the
implementation of a role-based access control mechanism. The solution
was designed to serve distinct use cases, including telepathology and e-
academy.

Keywords: Access control · WSI · Collaborative · Digital pathology ·
PACS · DICOM

1 Introduction

The introduction of digital medical imaging in healthcare started when digital
computers took the first steps in the seventies [25]. Later on, a new branch of
medical imaging started emerging, digital pathology. Digital pathology became
popular in the last years due to technological developments and to the trend
regarding the adoption of digital scanners. This new branch has risen with the
incorporation of digital methods to deal with pathological data. It comprises the
acquisition, management, distribution, and visualization of microscopic images
and their associated metadata. The processing of digital images is performed by
digital pathology scanners which produce the Whole-Slide Images (WSI) [27].
WSI are acquired through the image digitization of microscope glass slides by
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high-resolution scanners [27,28,37]. The specially designed scanners apply mul-
tiple magnifications and focal planes, producing high-resolution digital images
that can aggregate several gigabytes of data [16].

Digital pathology is quickly replacing the conventional light microscopy,
potentiating new applications in education, training and diagnosis [37,40].
Opposing a traditional pathology environment, the specimen storage is cheaper
as the samples do not require specialized protection carried out by trained staff.

The advantages of this emerging modern branch of medical imaging are
tremendous. On one hand, there are breakthroughs regarding the production
and clinical environments such as the process of storing and remote viewing,
annotation, and reporting. The digital pathology allows the physician to per-
form diagnosis in almost any place with an internet connection. Furthermore,
it leads to improvements in the diagnostic accuracy, integration with hospital
information systems, and availability of distributed work processes as collabo-
rative work and telepathology [7,28]. Besides, unlike the traditional pathology
slides, the whole-slide images do not deteriorate over time and it is possible to
assure homogeneity of the display quality of the images [17].

The introduction of WSI and digital pathology turns the medical diagnosis
faster and simpler as the physician may navigate and dynamically view the
virtual slide in their workstation, panning and zooming whenever it is necessary
and appropriate [8]. Professional WSI viewers can be integrated into the hospital
diagnosis network and be accessed within the network or made available for
research, remote diagnosis, and consultation (second opinions, among others)
[8,29]. Some authors such as Pantanowitz et al. and Chordia et al. in [9,29]
report a crescent need for telepathology and digital pathology in the daily routine
practice. In [9], 98% out of 247 interrogated histo-pathologists felt the need
for telepathology and digital pathology. However, only 34% declared the use
of telepathology in medical practice. These survey results reveal demand for
solutions of telepathology and collaborative platforms not only for clinical but
also for educational purposes.

WSI allows the introduction of new educational methods to teach histology
and pathology in the academia that was not possible until nowadays [30,37]. The
educational workflow of pathology may be highly simplified by the introduction
of the digital capabilities as what was before a slide, can now be accessed simul-
taneously by as many teachers and students as virtually possible. Additionally,
it is only required to hold a computer or a smartphone to operate the image,
contrasting with the traditional physical specimen which could only be handled
by an operator at a time.

The availability of a slide in the digital format allows the remote access from
anywhere and from any device instantly, including previous examinations that
could be hard to find in the traditional physical archives. Yet, platforms such as
these demand strong access security since they can be operated in open networks
and by many people. Many of the cases require confidentiality considering the
sample private data related to the patient and the regulations in force [1]. The
addition of security protocols and measures takes a big part in the design of such
solutions.
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Fig. 1. Collaborative web pathology viewer screenshot. This screenshot shows the mul-
titude of features supported, as ruler (in red), free form annotation (on purple), text
annotation, chat, color and light adjustments, among others. (Color figure online)

Finally, the development of a proper user interface to aid in the adoption of
these new technologies is one of the improvements that can help the teaching and
collaborative diagnosis nowadays. The integration of new features impossible to
include in the traditional methods became a reality, as the presence of a thumb-
nail to allow a fast and immediate panning, the possibility of annotate regions
of interest directly in the sample and live discussion platform, for instance.

This paper proposes a collaborative pathology viewer1 fully compatible with
the Digital Imaging and Communications and Medicine (DICOM) standard. It
extends [26], deploying a new refactored and improved viewer, with backend
mechanisms improved in terms of performance, security, access control, and user
experience. The deployed solution integrates a pure web solution supporting a
pathology viewer (screenshot in Fig. 1) with an advanced security layer specially
designed for DICOM compliant PACS archives [21]. The integration of both
systems culminates in a secure platform where owners of the studies may give
and revoke permissions to groups of users or individuals. The solution is deployed
in an open-source PACS archive named Dicoogle [43].

The collaborative viewer supports new features like an image handling tool-
box, shared pointers, and synchronized actions. The web pathology viewer back-
end archive was redesigned to support an innovative virtual multi-repository
concept. Data security and privacy are ensured through the integration of an
accounting mechanism specifically developed for medical imaging environments,
allowing the creation of personal virtual archives. Some of the new features are,
for instance, the restriction of access to only particular studies within a group

1 Demo Video: https://www.youtube.com/watch?v=Mmsb25edcOo.

https://www.youtube.com/watch?v=Mmsb25edcOo
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domain, among others described below. The introduction of the virtual archive
feature allows the centralization of the storage. Thus, a PACS archive may serve
distinct healthcare institutions simultaneously where each resource has specific
permission policies giving the holder institution. In this, we discuss how cru-
cial and pertinent the introduction of a platform as the one presented in the
universities and clinical institutions is, regarding the digital and global world.

2 Background

2.1 PACS and DICOM Integration

Picture Archiving and Communication System (PACS) is a set of distinct hard-
ware equipment and its running software connected in a network. It orchestrates
the relationship between the software and hardware, the storage, and the dis-
tribution of medical data in a healthcare clinic or department. The workflow
is typically divided into acquisition, distribution, and visualization of medical
images [34].

The implementations of such systems have risen with the movement towards
digital trend [3] and have deeply relied on the launch of the DICOM standard
[24]. DICOM is one of the most popular standards in the medical imaging field
[38] and provides a guide to support interoperability between multiple vendor
equipment and systems [5].

DICOM was launched aiming to create a standard format for guidelines of
how to handle and store radiology images [18], reflecting the real-world workflows
in healthcare institutions. However, the release of new supplements keep DICOM
standard constantly, keeping it updated, therefore fulfilling the users’ needs over
time.

Since the launch date, the adoption of DICOM among vendors was a success
and supplementary modalities were added to the standard, for instance, nuclear
medicine or breast tomosynthesis [3] and, in the recent past, microscopy with the
release of the supplement 122 of the standard [11]. Later on, the DICOM stan-
dard committee released the supplement 145 [10]. Boosted by the development
of whole-slide scanners [7], the additions and innovations of this supplement
addressed the pathology in the digital form.

DICOM structures the data and associated metadata in its information
model denominated DIM [33]. The organization is hierarchical and Patient-
oriented [41]. The metadata associated depends on the acquisition modality.
i.e., the required metadata fields in a computed tomography are distinct from
the ones requested for digital pathology.

Nonetheless, supplements 122 and 145 disrupted the conventional patient-
centric information model. WSI are classified by specialists as specimen cen-
tric [12,13] considering that the specimen is the relevant object. Nowadays,
throughout these supplements, the DICOM standard integrates digital pathol-
ogy required components and protocols as the data elements, the definition of the
preparation workflow, acquisition, handling, and storage of whole-slide images
[3,14].
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2.2 Digital Pathology Visualization

Whole-slide scanners produce big amounts of data. In fact, the amount of data
generated represents one of the biggest challenges in the displaying of whole-slide
images [26]. The final scanned whole-slide image may have several gigapixels
[36]. The specially designed scanners apply huge amounts of zoom so they can
reproduce the physical specimen. The scanning of such a big area increases the
number of pixels in the digital image. Proportional to the number of image size
in pixels, also the file size increases.

The current personal computers and workstations’ characteristics are still
very limited and are not adequate to display locally this type of medical image
[19]. Hence, DICOM standard digital pathology working group proposed a solu-
tion based on a pyramid approach. Figure 2 shows an example of this solution.
The base-level image represents the full resolution scanned from the whole-slide
scanners. The remaining levels are the same specimen with different levels of
zoom applied, thus, more compressed stages.

Fig. 2. DICOM supplement 145 proposes storing Whole-Slide Images in tiles from a
multi resolution hierarchy in multi-frame object. The picture shows the different base
level, intermediate levels and thumbnail in pyramid organization. Adapted from [26].

Fig. 3. Different zoom levels of an example Whole-Slide Image in the proposed viewer.
From left to right: thumbnail, first intermediate level, n intermediate level, base level.
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Nowadays, several solutions not only in the medical imaging field apply the
same approach. Solutions as Google Maps, OpenStreetMap, or Digital Catalogs
from some libraries around the world, such as the National Library of Australia,
adopted the pyramid approach for handling big sized images.

The navigation in the pyramid images is achieved using the common panning
and zooming tools. Selecting a part of the upper level and applying zoom, shows
the next level of the pyramid in a restricted area. Figure 3 represents the workflow
that may be followed by a physician while analyzing a whole-slide image, since
the selection of the region of interest in the thumbnail and intermediate levels,
until the reaching of the base level.

2.3 Dicoogle and Its Functionalities

Dicoogle2 is PACS archive built with a modular architecture [43]. Dicoogle
presents itself as a supporting platform for three different environments: clin-
ical, research, and teaching. The wide applicability of Dicoogle relies on the
plugin concept which allows that its base functionalities may be extended. The
default provided plugins are a clear example of the extensible characteristics of
Dicoogle. The default bundle provides a plugin to handle the DICOM C-Store
service, for instance, and stores the received files in the local file-system. Regard-
ing the indexing plugin, the Dicoogle team includes the Apache Lucene based
plugin that indexes all the metadata contained in the received DICOM object.

The development of these plugins is supported by a software development kit
(SDK). Dicoogle SDK emerged to facilitate the development of new features [43]
and to assure compatibility with the intrinsic features. A Dicoogle plugin may be
of many types: storage, index, query, web service, or web user interface. Storage
plugins handle the storage of DICOM objects. The index plugins are typically
bundled together with query plugins. This kind of modules are responsible for
indexing the metadata and allow the query over the index. The default Dicoogle’s
web services and web interface may also be extended using plugins of type web
service or web user interface, respectively.

2.4 Related Work

The ever-growing field of digital pathology, since the first steps, led to the devel-
opment of distinct solutions regarding the visualization of whole-slide images.
Although, most of them reproduce a representation of proprietary formats. In
the scope of digital pathology viewers, an in-depth state-of-the-art analysis was
done. Daniel et al. [13] state that digital pathology in the collaborative form can
only be done through medical informatics accepted and widespread standard.
Meanwhile, [3,13,42] authors stand that DICOM standard together with the
supplements 122 and 145 provide a proper solution for a commonly accepted
handling of whole-slide images and digital pathology.

2 Available at: http://dicoogle.com/.

http://dicoogle.com/
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Carestream Health3 [39,44] is a commercial solution for medical imaging
viewing and handling. It supports radiology and cardiology modalities. However,
The software is oriented for consulting and it does not support the collaborative
paradigm.

In [20], the authors propose a set of tools that support the digital pathology
workflow and allow the visualization of digital pathology images over the web.
The authors state that the digital pathology segment is dominated by a set of
vendors who have their proprietary format and viewing solutions. These vendors
typically supply their viewers which are only suitable for each proprietary format.

In [6], the authors introduce iPath a Web-based digital pathology platform
that allows the online presentation and discussion of cases within user groups.
However, the architecture does not follow the DICOM standard.

Moreover, efforts regarding radiology have been carried out [45]. Bankhead
et al. [2] propose an extensible software for medical imaging, powering users
with scripting tools. However, it does not address both DICOM standard and
collaborative requirements.

In [18], Godinho et al. proposed an efficient architecture for the transmission
and support of digital pathology images. The authors developed an efficient web
digital pathology viewer. The system allows communication with DICOM com-
pliant PACS archives and was implemented using Dicoogle. Despite not allowing
the collaborative scenario, the developed work may be extended to support it,
as the deployment in Dicoogle presupposes the development in a modular archi-
tecture.

Dı́az et al. propose in [15] a web-based telepathology system for pathology
collaborative work. Yet, the developed platform is not DICOM compliant. There-
fore, it does not support the communication with modalities that apply the same
standard. Additionally, this solution does not address academic scenarios.

Liu et al. [23] proposed efficient methods for a performant transmission of
medical high-resolution images in telemedicine. This method lays on a unbalance
pyramid scheme based on a geometric relationship. The effort applied in mul-
tiple components allows fast transmission. However, it is not compatible with
JPEG2000 and JPIP protocols.

3 Architecture

This paper proposes a set of modules that compose a collaborative platform
fully DICOM compliant. The platform was integrated with the Dicoogle PACS
archive, an open-source DICOM compliant PACS. The proposal features an envi-
ronment for real-time collaboration between users, providing means for fully
remote work, suitable for either educational or professional purposes.

3.1 Acquisition, Storage and Distribution

As the Dicoogle PACS archive is a DICOM compliant platform, it accepts com-
munications from other data sources that implement the same standard. Dicoogle
3 Available at https://www.carestream.com.

https://www.carestream.com
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can act as a Service Class Provider (SCP), accepting communications from third
entities like, for instance, the imaging modalities. In the digital pathology, there
are already WSI scanners able to communicate through the DICOM C-Store
command.

Figure 4 presents the workflows supported by Dicoogle. Once the WSI is
acquired from the scanner, it can be transferred to the Dicoogle archive using
distinct interfaces, including DICOM services, as STOW-RS or C-Store, or other
file-sharing mechanisms made available by Dicoogle. If the received file/object is
not in the DICOM format, Dicoogle is able to convert it to DICOM format. The
reception of the image objects triggers the generation of the intermediate and
thumbnail levels of the viewing system (see Sect. 2.2 and Fig. 2). The DICOM
objects generated, corresponding to each level of the pyramid are then stored
and indexed in the archive.

After being stored and indexed by Dicoogle, the examination is visible for
the client sessions. The information can be queried and retrieved to be displayed
in the digital pathology viewer, using the WADO-RS DICOMweb service.

3.2 Collaborative Platform

The collaborative platform architecture was constructed to be as flexible as pos-
sible foreseeing further improvements in the future. It is built using multiple
modules where each one has its unit and core functionality. This kind of archi-
tecture allows us to create, update, or delete functionalities while the remaining
modules keep their core functions.

Three major components compose the collaborative platform: the PACS
archive described in Sects. 2.3 and 3.1; a viewer that runs on any web browser,
responsible for fetching the slides of each digital pathology case study stored in
the archive; and finally, an auxiliary dashboard where the management of each
collaborative session can be performed either by the session manager/owner of
the generality of the participants, as showed in Fig. 5.

Acquisition

Dicoogle Server

Viewer

2.2. Triggers intermediate
levels generation

3. Stores intermediate levels in Dicoogle

4. Query

2.1. DICOM 
conversion

2.2. Triggers 
intermediate

levels generation

5. Retrieval

1. Storage

Intermediate levels generation

Conversion
 to DICOM

Fig. 4. Workflow of the acquisition, storage and distribution of pathology slide.
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Fig. 5. Example of the main dashboard of the collaborative platform. Pathobox Demo
available at: http://demo.dicoogle.com/pathobox.

WADO-RS

Collaborative
Platform Server

RBAC
Database

Dicoogle

Users and 
Sessions Database

Collaborative Platform
Management Interface

Digital Pathology Viewer

HTTP

Web Socket

Digital
Pathology
Plugin

Fig. 6. System general architecture. Dicoogle and its plugins serve the Web Viewer
with the WSI. Simultaneously, the viewer is connected to the collaborative platform
server via WebSocket to retrieve the session details and the user’s permissions. The
collaborative platform management interface provides a dashboard to manage all the
sessions, users, and groups. Adapted from [26].

Figure 6 represents the interactions between each component. The extension
of the Dicoogle PACS archive to support the collaborative digital pathology
viewer took from the base the work developed by Godinho et al. [18]. The pre-
sented work compiled both the Dicoogle PACS archive and the viewer. To sup-
port real-time collaboration between users, those elements were redesigned and
new mechanisms and algorithms were developed.

http://demo.dicoogle.com/pathobox
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The handling of the synchronization of events across all participant users is
achieved with the integration of TogetherJS4, an open-source technology that
provides real-time collaboration features. This tool is responsible for managing
the web viewer sessions.

The integration of the collaborative platform is independent of the web
viewer. The integrated collaborative platform is a layer above the previously
developed pathology viewer. Therefore, the actions taken across by multiple
users throughout a session may be turned into an abstract action. I.e., the inte-
gration of the collaborative platform is independent of the source viewer where
the data is originated. Thus, it is suitable for integration with other viewers.

3.3 Management of Sessions

The developed collaborative platform is responsible for the creation of the vir-
tual working sessions and the managing of the participating users, as well as
the attribution of the respective permissions. A virtual working session is a col-
laborative session created for one particular WSI stored in the PACS archive.
The changes and adjustments to the WSI in the session are kept in the session
persistence. Therefore, the WSI DICOM object is kept original.

A session consists of its creator or owner, a list of users and permissions
applied to each one. Furthermore, the session is applied to an image, and stores
a list of events that happened in that particular session. Additional stored infor-
mation also allows the web viewer to handle the session.

One single image can have multiple sessions associated with it, with each ses-
sion having its own users and events. Furthermore, one user may create multiple
sessions using the same image. The unique identification of each session allows
the creation of a unique URL generated so a user may join a session. Those
unique URLs are created using the unique identifier of the session and the user
ID of the allowed user to join. The system may, consequently, keep tracking and
logging of the users who joined and participated in the session.

Figure 7 shows an example of the creation of a session. The session creation
process was developed to simplify the invitation of other users. The invitation
may occur by e-mail or by the sharing of a public link. In the case of the invi-
tation by e-mail, the users are given a unique URL with personalized permis-
sions. However, using the public link, the session join will be anonymous and
the permissions to handle the image and participate in the session are limited.
A maximum number of users per session may be set.

The web links allow access to a session without having to use the platform
itself. Only the creator has to be logged into the platform, because of the need to
proceed to initial configurations of the session. For automation of the workflow,
the session emails are used as identifiers to distinguish the participants in the
session. The usage of emails allows the sharing of the web links of the session
automatically, turning the process of the invitation of new users transparent and
agile for the session creator.

4 Available at https://togetherjs.com/.

https://togetherjs.com/
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Fig. 7. Creation of a working session example with a limited window time access per-
mission.

The sending of the session invitation links through email is naturally secured
if using the proper mechanisms available, like SSL. Additionally, signing mech-
anisms as a digital signature may sign the email, so only the end-user, and
theoretically, the e-mail owner has access to the collaborative working session.

The unique identification of each one of the web links allows the joining in the
session even though the invited user does not have an account in the collaborative
platform. As long as the email invited by the session creator matches the email
used to sign in, the access is granted.

Regarding the viewer, the fetching is made via WADO-RS. The users access
the platform through the unique web link. Thus, once the link contains informa-
tion about both the user and the session, the Dicoogle permissions mechanism
(more details in Sect. 3.5) checks and grants or denies access to the WSI tiles.
Simultaneously, the collaborative checks constantly if the user is still logged in
into the platform.

Since the session joining is based on the unique web links access, the concur-
rent access is restricted. There is not possible to access the same link at the same
time, resulting in the restriction of one session per user at a time. Consequently,
it is possible to have control of the number of users within a session. The user
identity is also correct, assuming that the e-mail account was not compromised
or the web link was not shared with third-parties.

Alternatively, access may be granted via a public general link that does not
contain information of the user who is accessing. This modality was created
looking for the broadcast of the session and sharing of the access to potential
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Fig. 8. Creation of a working session example in the step of inviting users.

unknown users or users whose e-mails are unknown. Yet, a limit of maximum
users who may access the platform via public weblink can be set up. Similarly, the
permissions may be personalized and the creation of the public link is optional.
However, access to the managing platform is denied since the user must be
registered to access it.

Figure 8 shows a screenshot of the step of inviting users to a session in a
Create Session workflow.

3.4 Synchronization of User Actions

The key factor of the collaborative platform in the run-time is synchroniza-
tion. The actions performed by each user, such as zooming in or changing the
saturation, for instance, have to be broadcasted for the rest of the users. This
synchronization is achieved via the TogetherJS framework. The developed struc-
ture allows the segregation between the entity that produces an event and the
entities that replicate the same event.

The generated events are persisted in a central database. This way, the col-
laborative platform assures that the users that temporarily lose the connection
may recover it and do not miss not saved work. The re-joining in the ongoing
session retrieves all the events performed until the lost of connection and the
events occurred in the downtime, keeping up the flow of the session. The storage
of the occurred events allows also the replay of the session since its beginning,
replicating the events chronologically.

Since many users may interact and handle the WSI simultaneously, the times-
tamp of the reception of the broadcasted events may differ from user to user,
resulting in inconsistent states throughout the working session. An asynchronous
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system was developed to handle this issue. Despite the existence of multiple ses-
sion states across different users, the database keeps only one final version of
those events. For instance, if a user changes the brightness five times in a row,
those five times are reduced and only the final brightness value is saved. This
way, the broadcasted events are reduced, and eventually, all users will be in the
same state.

However, only certain actions as zooming or panning the WSI create these
different states. The developed algorithm makes sure that all users are set to
the same state, without conflict, right after the panning or zooming event is
performed. For instance, when two users perform the zooming at different levels
at the same time, the users may end up on distinct zoom levels. If a third zooming
operation is executed, all the remaining users will be synchronized for that zoom
level.

A study for the evaluation of the usability impact of these inconsistencies
was conducted. The results show that the inconsistent states stay for a very
short period since the fundamental actions as color and light adjustments or
annotations do not cause those inconsistencies. Thus, the addition of a delay in
the propagation of an event was discarded. Therefore, the broadcasting of the
user actions in the form of an event is emitted instantly after their execution.

The nature of the working sessions and the dimensions of the WSI in digital
pathology may lead to huge amounts of zooming or panning type of events. Even
though the panning and zooming events are minimal, it may cause visual impact.
Despite the total of the broadcasted events to keep synchronization between
users, when the storage in the database is performed, the events are filtered to
only keep the events that lead to a noticeable visual difference from the original
state. This decision prevents heavy traffic of messages between components,
improves the performance of an ongoing working session, and the user experience
since only the relevant information is kept.

3.5 Access Control Component

This article proposes a collaborative platform architecture that supports multiple
users with associated resources, including personal data archives with sensitive
information.

The General Data Protection Regulation (GDPR), in force since May 2018,
defines clear guidelines to follow when developing and deploying software and
hardware in healthcare, so that the risk of a security breach is attenuated (art.
32) [32]. The regulation specifies that private personal data is required to be
protected from illegitimate access, destruction, damage, or accidental loss.

Following the required in the regulation, a solution of the access control mech-
anism was integrated into the collaborative platform. The integrated framework
protects the resources from unauthorized on unwanted access by providing a
resource ownership mechanism. The concept of a resource is general. I.e., an
abstract resource may be DICOM objects or institution hardware.

The framework adopted is based on the work developed by Lebre et al. [22]
mechanism where the authors introduce an RBAC (Role-Based Access Control)
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Department 
of Health Sciences

Department of
Computer Science

owns owns

Student B Student C

Professor
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Resource 1 Resource 2

Resource 3

Student A

Fig. 9. Example of a academic scenario where the access control of the proposed col-
laborative platform is suitable.

adapted for standard DICOM archives and implemented in Dicoogle. This work
is capable of managing user personal work-spaces and personalized permissions
for each user. Moreover, it associates the user permissions with the PACS archive
resources, allowing the set of permissions for each DICOM object and delegation
of rights to third parties. The delegation of rights allows, for instance, the sharing
of read or write permissions to other users.

The resulting system works as a multi-archive. The introduced framework
is supported by a persistence layer and is independent of the regular DICOM
workflows. Our solution introduces the resource ownership abstraction and allows
the control of the access to medical imaging resources as DICOM objects. The
deployment of such a framework suggests that a single PACS archive may serve
different virtual archives. This way, each study stored in the PACS archive can
be shared across different realms and users. The sharing feature applied to digital
pathology concedes various use cases, as the sharing of a WSI to a set of users
belonging to different healthcare institutions.

The integrated access control mechanism is an abstraction of real-world med-
ical imaging environments. Figure 9 shows an example of the application of an
accounting mechanism in the academic context. On it, it is represented a univer-
sity, containing two departments, Department of Computer Science and Depart-
ment of Health Sciences. Each department is the owner of resources, in this case,
DICOM objects. Also, each department has his students, Student A belongs to
both departments, Student B belongs to the Department of Computer Science,
and Student C is registered in the Department of Health Sciences. The students
may access the files of their associated facility. However, the administrator, in
the example represented as the Professor, must give the READ permission in
order for the granting to be successful.
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4 Use Cases

The introduction of the collaborative digital pathology in the medical imaging
domain carries multiple advantages. The deployment of a collaborative viewer,
on its hand, extends its utility, improving the concept of telepathology. The
WSI viewer turns itself in a workspace where several users may interact and
discuss one single sample at the same time, and even in multiple sessions at
a time. The collaborative pathology platform suits for three distinct domains:
academic, educational, and clinical [7,28,31,37,40].

Among the multiple advantages of the collaborative platform viewer in the
educational domain, the creation of collaborative classes emerge. The platform
allows the creation of user groups that may represent each class. During the
creation of the session, the session owner can invite a group of users and has
the possibility of restricting the access to s specific schedule. These sessions may
represent a case study in a class. Moreover, the session owner may also open the
virtual class to public access. Finally, the students can use the replay tool to
review the actions carried out throughout the session.

The clinical domain is, perhaps, the environment that benefits more from the
implementation of an accounting system in the collaborative digital pathology
platform. The introduction of the permission managing framework allows the
regulation, control, logging, and auditing of the access requested for the PACS
archive resources.

Using the collaborative digital pathology platform, it is possible to set up
centralized diagnosis services where the entities can upload case and request
revision services to the community. The specialist can be registered in the plat-
form or not, to perform the service. The request can be sporadic or regular. An
entity may ask for an external revision of a study, by a specialist, who can easily
join into a session through an invite (e.g. email) with an access link. Or, if the
center has only technicians, it can upload all examination to the central service
where a predefined group of physicians will review the cases. Moreover, if the
service workflow contemplates a first revision of the case and its annotation for
facilitating the specialist revision, the system offers the record and replay fea-
ture. The replay session-catch service benefits the usability of the collaborative
platform. This methodology consists of the fast replay of the relevant operations
of a working session until the present moment.

As the security is always in mind, a session administrator may revoke access
and terminate the session unilaterally. However, some security issues may occur,
as the compromising of the transport layer when sending the access links. The
sending of invites relies on the known secure protocols for message exchange
as TLS. Moreover, the session administrator who has also access rights to the
DICOM object may deny the public invitation of new users to the session.
Regarding the authentication, the registered access to the platform relies on
Google authentication as an additional security method.
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5 Conclusions

Collaborative work is a fundamental feature in the nowadays medical imaging
and diagnosis systems addressing educational and diagnosis purposes [35]. For
instance, the SARS-CoV-2 pandemic at the beginning of 2020 showed to the
world that humanity must be prepared for a generalized lock-down. The collab-
orative platforms represent a decisive role in the medical field nowadays. Digital
pathology and telepathology are an emerging modality in the clinical decision-
making laboratories and with the clinical staff supporting the development of
new tools [4].

This paper proposes and implements an architecture for real-time collabora-
tion in digital pathology. The system integrated an open-source PACS archive,
a digital pathology viewer, and a framework to handle the access control. The
concept of the developed system uses pure web technologies so the interoperabil-
ity between platforms is assured. That way, a user may use the platform either
on his smartphone, tablet, or computer, requiring only the internet connection
to fetch the digital pathology images. The events performed in the collaborative
working sessions are recorded and may be accessed later on. We analyzed the use
cases of the proposed platform and presented clear potential benefits by using
the digital pathology collaborative platform both on the educational point of
view or the clinical practice and diagnosis perspective.
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Abstract. Atrial fibrillation (AF) is the most common type of heart
arrhythmia. AF is highly associated with other cardiovascular diseases,
such as heart failure, coronary artery disease and can lead to stroke.
Unfortunately, in some cases people with atrial fibrillation have no
explicit symptoms and are unaware of their condition until it is dis-
covered during a physical examination. Thus, it is considered a priority
to define highly accurate automatic approaches to detect such a pathol-
ogy in the context of a massive screening.

For this reason, in the recent years several approaches have been
defined to automatically detect AF. These approaches are often based
on machine learning techniques and—most of them—analyse the heart
rhythm to make a prediction. Even if AF can be diagnosed by analysing
the rhythm, the analysis of the morphology of a heart beat is also impor-
tant. Indeed, during an AF events the P wave could be absent and fib-
rillation waves may appear in its place. This means that the presence of
only arrhythmia could be not enough to detect an AF events.

Based on the above consideration we have presented Morphythm, an
approach that use machine learning to combine rhythm and morpholog-
ical features to identify AF events. The results we achieved in an empiri-
cal evaluation seems promising. In this paper we present an extension of
Morphythm, called Local Morphythm, aiming at further improving
the detection accuracy of AF events. An empirical evaluation of Local
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Morphythm has shown significantly better results in the classification
process with respect to Morphythm, particularly for what concerns the
true positives and false negatives.

Keywords: Healthcare · Atrial fibrillation · Decision support system ·
Machine learning

1 Introduction

During the last few years has occurred a rapid technological evolution in the
scientific field of the Internet of Medical Things (IoMT) and Wireless Body Area
Network (WBAN). The main demands for these systems can be summarised
as follows: (i) reducing the healthcare costs while keeping the quality of the
services and (ii) promoting wellness programs to shift the health expenditure
from treatment to prevention [3].

All the efforts in this field by the scientific research communities has made
it possible to obtain electronic devices of minimal size and wearable [31]. This
has created a fertile ground for telemedicine. Telemedicine can be commonly
defined as the use of advanced telecommunications technologies for the purpose
of supporting many medical activities. In the last years, this industry has grown
and most US health institutions and hospitals are currently employing such kind
of technology [12].

In this context, medical activities become responsible—beyond the knowl-
edge and clinical skills—in handling an ample amount of data related to the
patient health. Thus, appropriate elaboration of the clinical data are required to
facilitate the work of experts and promote a policy of welfare. A Decision Sup-
port System (DSS) is the key component of an effective telemedicine system.
Such a component is basically a layer of software that latently and continuously
analyze the acquired data aimed at providing recommendations, even at patient-
level, to the medical experts for the identification of a risky situation or for the
diagnosis of a specific pathology [38].

In this paper we present an approach that could be integrated in a DSS of a
telemedicine system aiming at supporting the identification of atrial fibrillation
(AF) episodes through the analysis of ECG. AF is the most common sustained
arrhythmia and is associated with significant morbidity and mortality [10]. We
decided to focus on AF detection because of the incidence statistics of such a
pathology. Indeed, around one third of all ischemic strokes are caused by AF
[14] and the early phase of appearance is a particularly high-risk period for the
development of stroke [34]. In addition, AF is often asymptomatic. Thus, it is
crucial to detect onset episodes of AF with high accuracy to allow a proper
intervention of cardiologist [18].

The detection of AF episodes generally involves two electrocardiogram (ECG)
sources of information: (i) beat morphology, because during an AF episode, it is
possible to observe fluctuating wave forms instead of P waves and (ii) rhythm,
because during an AF episode it is possible to observe an irregularity of heart
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rate. The fact that an ECG recording of the episode is a diagnostic criterion can
make the process cumbersome, especially if the arrhythmia is paroxysmal and
not easily provoked during a recording session. In order to capture the episode, an
extended recording time (at least 24 h) through an Holter monitoring is required
[2]. These recordings from wearable ECG devices introduce an amount of data
which results complicated for the physician to inspect and analyze. This recall
the need of semi-automatic approaches to determine onset and duration of AF
episodes.

A lot of effort in the research community has been devoted to the defini-
tion of methods to automatically detect AF. These are often based on Machine
Learning techniques and—most of them—are based only on the analysis of R-R
intervals (RRI), i.e., they just exploit the rhythmic source of information. Even
if the accuracy of such approach is generally very high in terms of accuracy
(more than 95%), the proposed approach still misclassifies fibrillant heart beat
signals as non-fibrillant [41]. This suggests that there is still room for improve-
ment. Especially, our conjecture is that by combining morphological and rhythm
features is possible to improve the accuracy of approaches based on just one of
the two source of information.

Based on the above consideration, in a previous work we have presented
Morphythm [23], a new approach based on machine learning techniques
where morphological and rhythmic information are fused together. Morphythm

showed surprising results, especially for what concerns two vital aspects of the
medical classification: increment of true positives and reduction of false nega-
tives.

In this paper we present an extension of Morphythm aiming at further
improving its accuracy. We first performed a rigorous feature engineering pro-
cess in order to identify the features that contribute the most to the prediction
of AF events. Then, we experimented most advanced machine learning tech-
niques, including artificial neural network and deep learning techniques. Finally,
we integrated in Morphythm the concept of”local” prediction, successfully used
in other context [28]. Especially, instead of producing a single prediction model,
the new version of Morphythm, called Local Morphythm, automatically
build several prediction models based on the characteristics of the ECGs in the
training set. In particular, the training set is clustered in order to put together
ECGs that exhibits similar characteristics. Then, for each cluster, Local Mor-

phythm builds a prediction model. When a new data point is provided, Local
Morphythm first selects the most suitable model based on the characteristics
of the new data point, and then it performs the prediction applying the selected
model.

The rest of the paper is structured as follows: Sect. 2 provides details on AF
and on automatic detectors of AF. Section 3 presents Local Morphythm, our
novel approach for AF detection, while Sect. 4 reports the design and the results
of the empirical study we conducted to evaluate Local Morphythm. Finally,
Sect. 5 concludes the paper and provides suggestions for possible future research
directions.
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2 Background and Related Work

2.1 Atrial Fibrillation

Normally, the heart contracts and relaxes to a regular beat. In atrial fibrillation,
the upper chambers of the heart (the atria) beat irregularly (quiver) instead
of beating effectively to move blood into the ventricles1. If the ECG recording
is available, AF is diagnosed by whenever an irregular heartbeat presents the
following characteristics: the absence of P waves (with disorganized electrical
activity in their place) and irregular R–R intervals due to irregular conduction
of impulses to the ventricles [15].

The prevalence of atrial fibrillation (AF) is increasing all over the world
and it is becoming one of the most important clinical issues for industrialised
countries [15,42]. AF is a crucial risk factor for the occurrence of stroke. Beyond
stroke, AF can lead also to congestive heart failure. Furthermore, hypertension,
diabetes and heart failure are some of the most common comorbidities [24,39].
In addition, AF presents a sever influence on the global health conditions of
individuals who contract it [20].

To produce a diagnosis of AF, a cardiologist checks the clinical history of
the patient and the ECG signal, by at least observing a single lead during the
revealing of the episode [15]. Unfortunately, AF is often paroxysmal, i.e., there
are recurrent episodes that stop on their own in less than seven days [15], and
asymptomatic. For these reasons, the screening of such a pathology needs to
become a priority.

2.2 Automatic Detection of Atrial Fibrillation

In recent years, the scientific research has provided several works aiming at
automatically detect AF episodes. Most of them have shown important results
by exploiting only the analysis of heart rhythm, assumed as the observation of
the distances between two successive R peaks (RRI, RR intervals) [8,30,37,40].
Indeed, the detection methods based on RRI produce relatively more precise
identification of AF since the R-wave peak of QRS complex is the most prominent
characteristic feature of an ECG recording and the least susceptible to various
kinds of noise [19,21,25,26].

In the work by Hochstadt et al. [18], around 18 thousand consecutive RR
interval measurements were recorded in 20 patients, including about 12 thou-
sand RR intervals during AF and 6,087 RR intervals during sinus rhythm. The
automatic algorithm—based on Lorenz-plot—used by the authors distinguished
AF from sinus rhythm with a sensitivity of 100% and specificity of 93.1%.

In the study by Andersen et al. [2], a novel approach for AF detection based
on Inter Beat Intervals (IBI) extracted from long term electrocardiogram (ECG)
recordings is presented. For this purpose, five time-domain features have been
extracted from the IBIs and a Support Vector Machine (SVM) has been used for

1 https://bit.ly/3dvrXJX.

https://bit.ly/3dvrXJX
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classification. The proposed approach has shown a significantly reduced compu-
tation time without loss of performance, if compared to a consolidated baseline.

Afdala et al. [1] test the ability of simply involving the Shannon entropy in
the detection of Atrial Fibrillation episodes. In their research study, they used
data from a well-known public data set (Physionet MIT-BIH AFDB) and, as
performance, they observed that Shannon entropy has the highest accuracy if a
threshold of 0.5 is set.

In the work by Chen et al. [5], a new feature extraction method based on
RR interval is proposed with the aim at describing an heart rhythm which
will be submitted to a classification experiment. As descriptors, they used the
robust coefficient of variation (RCV), the distribution shape of RR interval is
described with the skewness parameter (SKP), and the complexity of RR interval
is described with the Lempel-Ziv complexity (LZC). Finally, the feature vectors
have been used as input into the support vector machine (SVM) classifier model
to achieve automatic classification and detection of atrial fibrillation. Also in
this case, the MIT-BIH atrial fibrillation database was used to verify the data.
The final classification results showed a sensitivity of 95.81%, a specificity of %
and an accuracy equal to 96.09%.

In the next subsection, the method chosen as baseline—and embedded in
Morphythm and consequently in the new approaches proposed in this paper—
is described by providing the main ideas and highlighting the computational
steps.

The Method Proposed by Zhou et al. [41]. This section provides details on
the method proposed by Zhou et al. [41], i.e., our baseline in the evaluation of
Local Morphythm. Such an approach consists in the following steps:

– the HR sequence is converted to a symbolic sequence in a fixed interval;
– a probability distribution is constructed from the word sequence which is

transformed from the symbolic sequence;
– a coarser version of Shannon entropy is employed to quantify the information

size of HR sequence using the probability distribution of word sequence;
– discrimination of the heart beat type (AF or no-AF) using a threshold.

Step 1: Converting the HR Sequence. The first step of the method regards the
generation of a symbolic dynamic starting from the analysis of a sequence of
heart beat (hrn). Especially, the authors encode the information included in
hrn to a sequence of fewer symbols, where each symbol aims at representing an
instantaneous state of heart beating. The mapping function is the following:

syn =

{
63, if n hr ≥ 315
�hrn�, other cases

where [�·�] represents a floor operator.

Step 2: Building the Symbolic Sequence. The authors apply a 3-symbols template
in order to explore the entropic properties of the symbolic series syn. Thus, to
examine the chaotic behavior, the word value can then be calculated as:
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wvn = (syn−2 × 212) + (syn−1 × 26) + syn

Step 3: Computing the Entropy. The authors define a coarser version of Shannon
entropy H

′′
(A) to quantitatively calculate the information size of wvn. In this

study, the dynamic A comprises of 127 consecutive word elements from wvn−126

to wvn, as proposed in the function below:

H
′′
(A) = − k

Nlog2N

k∑
i=1

pilog2pi

where N and k are total number of the elements and characteristic elements in
space A, respectively.

Step 4: Classification. Based on the obtained entropy value, a final beat-to-beat
classification (fibrillant or not-fibrillant) is presented by applying a threshold
discrimination. The optimal threshold was empirically identified at 0.639.

3 The Proposed Approach: An Overview

This section describes Local Morphythm, an evolution of the approach
recently proposed by Laudato et al. [23], called Morphythm. Local Mor-

phythm is able—given a heart beat signal—to classify it as fibrillating or not
fibrillating.

As well as Morphythm, Local Morphythm uses supervised machine
learning techniques2 to combine rhythmic and morphological features extracted
from an ECG and predict whether or not a heart beat is fibrillating or not
fibrillating. However, in Local Morphythm, (i) a rigorous feature engineering
process and (ii) a local prediction strategy have been adopted in order to identify
respectively the features that best contribute to the prediction of AF episodes
and to evaluate if a local approach may be preferred instead of a global one.

3.1 Pre-processing

Before extracting features, the ECG data have to be pre-processed according to
[33] and [6]. The main steps involved in this phase are: (i) the detrend of the
ECG signal, (ii) the application of a filtering stage (where a low and high pass
filters have been applied to get rid of baseline wander and discard high frequency
noise, respectively) and (iii) the normalization of the samples.

Once executed the previous steps, the Pan-Tompkins [33] QRS-detection
method has been applied with the aim at segmenting the ECG in heart beat
signals. In this work, as heart beat, it is intended the signal included between
two successive R peaks. Such an interpretation is very suitable for AF detection,
because it highlights the atrial activity.
2 In the Local Morphythm evaluation, we experimented several supervised machine

learning technique.
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3.2 Feature Extraction and Selection

As the name suggests, Local Morphythm embeds features extracted from
both the heart rhythm and the morphology of a heart beat. Rhythmic features
are based on one or more heart beats and they aim at capturing aspects that
mostly regard the regularity of the heart beat signal. Zhou et al. [41] state that
the detection methods based on RRI are more useful to produce a precise and
accurate identification of AF because the R-wave peak of the QRS complex is the
most prominent characteristic feature of an ECG recording. Such a characteristic
is less subject to noise [26].

Even if the acquisition of rhythmic features can be very reliable, such features
can only help detecting arrhythmia, which is just one of the possible signs of AF.
Thus, morphological features are necessary to detect anomalies in the shape of
a single heart beat signal and could be particularly useful to corroborate the
warnings raised by analysing the rhythm.

Thus, similarly to Morphythm, also in Local Morphythm we consider
both rhythm and morphological features. Especially, we consider the same set
of features used in Morphythm [23]:

– Rhythmic Features: we used two features based on the observation of a sin-
gle heart beat signal, i.e., Heart Beat Length (HBL) and Heart Beat Discrete
Length (HBDL), and two additional rhythmic features that consider the infor-
mation of a sequence of consecutive heart beats, i.e., Heart Beat Regularity
(HBR) and Entropy, as defined by [41]. HBL represents how long a single
heart beat signal lasts. HBDL is a classification of the heart beat signal in
three classes, based on its length: a beat is (i) short if it takes less than 0.5 s,
(ii) long if it takes more than 1.2 s, and (iii) regular otherwise. HBR is based
on HBDL. It considers a rhythmic pattern of 10 consecutive discrete heart
beats lengths. Once obtained the pattern, we compute HBR simply counting
the number of regular heart beats.

– Morphological Features: given a sequence of samples provided for a heart beat
signal, we computed several features: (i) the Mean Signal Intensity (MSI),
(ii) the Signal Intensity Variance (SIV), (iii) the Signal Intensity Entropy
(SIE). MSI, SIV and SIE are features obtained by measuring respectively the
mean, the variance and the entropy [29] of all the samples acquired in a heart
beat signal. To try to enrich the knowledge of classifiers, we also used the
segmented version of these last features: we divided proportionally the heart
beat signal in 10 segment and for each portion we evaluated the MSI, SIV and
SIE. Finally, we included the features obtained by (i) the application of the
Fast Fourier Transform on 32 points and (ii) the estimation of the coefficients
of the Auto-Regressive model of order 16.

For each heart beat signal we extract a total number of 76 different features
(eight rhythm features and 68 morphological features). In order to select the
most appropriate features for the detection of AF events we used the Weka Info-
GainAttributeEval as Attribute Evaluator and Ranker as Search Method. The
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Table 1. Features ranking using Information Gain.

Rank InfoGain Attribute Type

1 0.86 Entropy from Zhou et al. [41] Rhythmic

2 0.20 Entropy from the rhythmic pattern Rhythmic

3 0.18 Heart beat absolute length Rhythmic

4 0.14 Coeff. no. 10 from AR model Morphological

5 0.13 Coeff. no. 11 from AR model Morphological

6 0.12 Coeff. no. 7 from AR model Morphological

7 0.11 Coeff. no. 12 from AR model Morphological

8 0.11 Coeff. no. 1 from AR model Morphological

9 0.11 Coeff. no. 8 from AR model Morphological

10 0.11 Coeff. no. 9 from AR model Morphological

11 0.11 Coeff. no. 3 from AR model Morphological

12 0.10 Coeff. no. 6 from AR model Morphological

13 0.10 Coeff. no. 2 from AR model Morphological

14 0.10 Coeff. no. 4 from AR model Morphological

15 0.10 Coeff. no. 3 from FFT model Morphological

16 0.10 Coeff. no. 31 from FFT model Morphological

. . . . . . . . . . . .

75 0.03 Entropy of Sample Amplitudes Morphological

76 0.01 Length discrete class Rhythmic

former basically evaluates the worth of an attribute by measuring the informa-
tion gain with respect to the class, while the latter ranks attributes by their
individuals evaluations.

The feature selection process has been conducted on the MIT-BIH AF
Database [16], a commonly used benchmark which contains recordings of 25
patients. Each recording in the data set lasts 10 h and contains two ECG signals
sampled at 250 samples per second (12-bit resolution). Due to the embedding
of morphology descriptors, the feature selection process has been performed on
the AFDB2, i.e., the AFDB without records 00735 and 03665 because, for such
records, only information on the rhythm is available [16] and without 04936 and
05091 because—as others have shown [25]—the records 04936 and 05091 include
many incorrect manual AF annotations.

The outcome of the features selection process is reported in Table 1. From
the analysis of the results achieved, we observe that:

– rhythmic information in AF episodes detection represent the main contribu-
tion in terms of information gain;

– morphological features of an ECG can provide a contribution in terms of
information gain for the automatic classification of heart beats. Specifically,
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Fig. 1. Workflow of Local Morphythm.

these features refer to the middle and the last part of the signal, where the
fibrillating rhythm appears and where the P-wave can exhibit its changes.

By selecting a fixed threshold of 0.12, we obtain a selection of a group of six
features containing a balanced number of morphological and rhythmic features.
Thus, we decided to incorporate in Local Morphythm the first six features
reported in Table 1.

3.3 Making the Prediction

The main difference between Local Morphythm and Morphythm regards
the way as the prediction is performed. In Morphythm, as in any canonical
approach based on supervised machine learning techniques, a training set is
used to build a (global) prediction model. Such a model is used on all the new
data points where a prediction is required. Especially, when a new heart beat
signal is provided, Morphythm first computes the features on this new heart
beat signal and then uses the prediction model to determine whether or not the
heart beat is fibrillating or not fibrillating.

However, the heart beat signals in the training set could be quite different
each other. The heterogeneity of the training set might negatively impact the
accuracy of the prediction model [28]. In order to mitigate such a problem, in
Local Morphythm we integrated a local prediction strategy [28].

Local Morphythm first clusters the training set into homogeneous sets of
heart beat signals. Then, it builds for each cluster a specific prediction model
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Fig. 2. Results of the Calinski-Harabasz score in order to determine the best value of
k for the k-means clustering algorithm. The higher the value of the score the higher
the overall quality of the clustering.

using a supervised machine learning technique. In this way, Local Morphythm

does not have just one global prediction model, but it has a set of prediction
models that are particularly suitable for specific heart beat signals.

When a new heart beat signal is provided, Local Morphythm first com-
putes the features on this new heart beat signal and then it identifies the cluster
of heart beat signals more similar to the new heart beat signal. Once identified
such a cluster, Local Morphythm uses the model associated to the identified
cluster of heart beat signals to noindent predict whether or not the new heart
beat is fibrillating or not fibrillating. The workflow of Local Morphythm is
depicted in Fig. 1.

In order to cluster the training set, we have exploited the k-means clustering
algorithm [27]. This method follows a simple way to classify a given data set
through a certain number of clusters fixed a priori. The main idea is to define k
centroids, one for each cluster. The main steps are described below:

– Place K points into the space represented by the objects that are being clus-
tered. These points represent initial group centroids.

– Assign each object to the group that has the closest centroid.
– When all objects have been assigned, recalculate the positions of the K cen-

troids.
– Repeat Steps 2 and 3 until the centroids no longer move. This produces a

separation of the objects into groups from which the metric to be minimized
can be calculated.

We have determined the optimal value of k using the Variance Ratio Criterion
(also known as Calinski-Harabasz score) [4]. Especially, we have performed the
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clustering of the heart beats by using different values of k from 1 to 25. For each
cluster we have computed the Calinski-Harabasz score in order to determine
the value of k that determines the clustering with the highest score. The plot
in Figure shows that the highest Calinski-Harabasz value occurs with k = 16.
This number has also been confirmed by involving the Silhouette method [36],
an alternative method for the identification of the best k value (Fig. 2).

4 Empirical Evaluation

This section reports the empirical evaluation we conducted to evaluate the accu-
racy of Local Morphythm.

4.1 Design of the Study

The goal of this study is to evaluate the accuracy of Local Morphythm is
classifying AF events in a patient. The perspective is both (i) of a researcher
who wants to understand if a local prediction strategy to combine rhythmic
and morphological features is worthwhile for detecting AF events, and (ii) of
a practitioner who wants to use the most accurate and precise approach in
a telemedicine application for the detection of AF events. Thus, the study is
steered by the following research question:

To what extent, a local prediction model—based on the combination of
rhythmic and morphological information—improves the automatic detec-
tion of AF episodes?

The context of this study is represented by the MIT-BIH AF Database [16],
and specifically the AFDB2, i.e., the AFDB without records 00735 and 03665
because, for such records, only information on the rhythm is available [16]. Also,
records 04936 and 05091 were excluded due to many incorrect manual AF anno-
tations [25].

In the context of our study, we also experimented a large set of machine
learning techniques. Indeed, for the classification performances, we have involved
in our experiments—beyond the Random Forest [17], J48 [35], Logistic [9],
AdaBoost M1 [13] and RepTree [11] already used by Laudato et al. to evalu-
ate Morphythm [23]—Neural Networks [22], Multi Layer Perceptron [32], JRip
[7] and SGD (which implements stochastic gradient descent for learning various
linear models)3.

As validation technique, we have chosen the Leave One Person Out Cross
Validation (L1PO-CV). L1PO-CV means that one person at a time is left out
from the training set, so that the training set contains no data specific to the
individual who is being tested (the classifier was not tuned with the test data
of that person). This is possible since each data segment is associated with an
anonymous label corresponding to an individual.

3 https://weka.sourceforge.io/doc.stable-3-8/weka/classifiers/functions/SGD.html.

https://weka.sourceforge.io/doc.stable-3-8/weka/classifiers/functions/SGD.html
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To answer our research questions we compared:

– True Positives (TP), i.e.,, the number of instances classified as fibrillating by
the approach and that were actually fibrillating;

– True Negatives (TN), i.e.,, the number of instances classified as not fibrillating
by the approach and that were actually not fibrillating;

– False Positives (FP), i.e.,, the number of instances classified as fibrillating by
the approach and that were actually not fibrillating;

– False Negatives (FN), i.e.,, the number of instances classified as not fibrillat-
ing by the approach and that were actually fibrillating.

In the context of telemedicine a high number of TP is desirable, because it
indicates the number of AF episodes correctly detected. Also, it is desirable to
have an approach that does not lose any AF episode: thus, keeping the number
of FN low is very important.

4.2 Analysis of the Results

Table 2 compares the prediction accuracy, in terms of TP, TN, FP, and FN,
achieved by Local Morphythm, Morphythm, and the approach proposed by
Zhou et al. [41], the most accurate approach in the literature for the detection
of AF events.

From the analysis of the results emerges that for both the approaches Mor-

phythm and Local Morphythm the best overall accuracy is achieved when
SGD is used as machine learning techniques.

Using such a technique, Local Morphythm is able to achieve the best
results in terms of both TP and FN. Specifically, Local Morphythm is able
to identify 8,340 TP more than the baseline (approach by Zhou et al.) and 1,114
TP more than Morphythm. Also, Local Morphythm is able to retrieve less
FN with respect to both the baseline and Morphythm, i.e., −5,533 and −569,
respectively.

However, the approach proposed by Zhou et al. [41] is still the best in terms of
TN and FP. Specifically, Local Morphythm and Morphythm generate 6,052
and 6,064 FP more than the approach by Zhou, respectively. In terms of TN,
instead Local Morphythm and Morphythm retrieves less TN as compared
to the baseline, i.e., −8,859 and −8,326, respectively.

By looking at the results achieved at patient level, i.e., by considering a single
recording, we observe that Local Morphythm sensibly outperforms—in terms
of every metrics—both the baseline and Morphythm for 5 out of 21 recordings
(around 24%). Examples of such an improvement is reported in Table 3, where
it is possible to observe the classification performances of Local Morphythm

with respect to the baseline and Morphythm.
In addition, if we focus the attention on just TP and FN, Local Mor-

phythm outperforms both the other approaches baselines in 8 out of 21 record-
ings (around 38% of the data set).

For the remaining recordings, the value of all the evaluation metrics are
almost balanced, in the sense that no significant improvement can be observed.
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Table 2. Comparison of Local Morphythm with Morphythm (with the same fea-
tures selection strategy used in Local Morphythm) and the approach proposed by
Zhou et al. [41]. In boldface the best results achieved by these methods.

Approach TP TN FP FN

Zhou et al. on AFDB2 457,001 554,247 15,513 12,966

Morphythm—Random Forest 459,211 534,822 34,489 11,205

Local Morphythm—Random Forest 458,980 534,824 34,501 11,422

Morphythm—J48 449,471 512,763 54,209 23,284

Local Morphythm—J48 446,947 513,453 55,259 24,068

Morphythm—Logistic 463,730 545,621 22,184 8,192

Local Morphythm—Logistic 464,623 545,624 22,003 7,477

Morphythm—AdaBoost M1 461,635 549,572 16,188 12,332

Local Morphythm—AdaBoost M1 461,214 547,589 18,287 12,637

Morphythm—RepTree 451,962 522,829 42,931 22,005

Local Morphythm—RepTree 452,231 522,819 42,899 21,778

Morphythm—3-layers LSTM NN 462,730 545,621 22,484 8,892

Local Morphythm—3-layers LSTM NN 460,076 546,799 23,081 9,771

Morphythm—3-layers Conv. NN 461,319 546,032 23,260 9,116

Local Morphythm—3-layers Conv. NN 459,660 546,020 23,695 10,352

Morphythm—MultiLayer Perceptron 457,595 544,031 26,964 11,137

Local Morphythm—MultiLayer Perceptron 457,606 544,017 26,992 11,112

Morphythm—JRip 452,966 522,840 42,121 21,800

Local Morphythm—JRip 451,599 523,296 42,571 22,261

Morphythm—SGD 464,227 545,921 21,577 8,002

Local Morphythm—SGD 465,341 545,388 21,565 7,433

Table 3. Example of records on which Local Morphythm outperforms both Mor-

phythm and the approach by Zhou et al. [41] in terms of all the considered evaluation
metrics.

Record Interval TP TN FP FN

04043 Zhou et al. [41] 8,690 44,299 3,063 5,862

Best Morphythm– Logistic 9,608 43,565 3,797 4,944

Local Morphythm– AdaBoost M1 10,090 44,991 2,371 4,462

06426 Zhou et al. [41] 52,104 815 1,229 1,006

Best Morphythm– Logistic 52,633 629 1,415 477

Local Morphythm– SGD 52,576 901 1,143 534

The only recording with abnormal classification performances is the recording
08378 where Local Morphythm presents a significant loss in terms of TP
and FN with respect to the other two approaches. This suggests that on this
particular recording the local prediction strategy is not worthwhile because very
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Fig. 3. Average distance between a generic recording i and all the other recordings but
08378 compared to the distance between recording i and 08378.

likely such a recording exhibits characteristics that are quite different from the
other recordings in the data set.

In order to validate such a conjecture we compare the average distance
between each recording and all the others but 08378 and the distance between
each recording and recording 08378. In order to compute the distance between
two recordings we considered them as mono dimensional vectors (by selecting the
first ECG channel available for each recording) and then compute the Euclidean
distance between the two vectors.

The analysis is depicted in Fig. 3. As we can see, the distance between the
recording 08378 and a generic recording i is much higher that the average dis-
tance between the recording i and all the other recordings but 08378. Such a
result confirms our conjecture that the recording 08378 is quite different from
the others recording; thus, in this specific case, the local prediction strategy does
not provide any benefits as compared to the other two approaches.

Once this recording is excluded from the data set, the classification accuracy
of Local Morphythm improves even more. Indeed, Local Morphythm—
especially when using the Logistic and the SGD algorithms—avoids a loss of
around 1,5 thousands heart beats classified as TP and FN.

5 Conclusion and Future Work

In this paper we presented an extended version of the approach proposed by
Laudato et al. [23], named Morphythm, where rhythmic and morphological
features are combined together in order to improve the classification accuracy
of AF episodes. The new approach, called Local Morphythm integrates a
more rigorous feature engineering process as compared to Morphythm and
more advanced machine learning techniques, including artificial neural networks.
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We also extended Morphythm by integrating in the approach the strategy of
“local” prediction, successfully used in other contexts [28]. Especially, instead of
producing a single prediction model, Local Morphythm automatically builds
several prediction models based on the characteristics of the ECGs in the train-
ing set. In particular, the training set is clustered in order to put together ECGs
that exhibits similar characteristics. Then, for each cluster, Local Morphythm

builds a prediction model. When a new data point is provided, Local Mor-

phythm first selects the most suitable model based on the characteristics of the
new data point, and then it performs the prediction applying the selected model.

An experimentation conducted on the MIT-BIH AF Database [16] indicates
that Local Morphythm is able to increase the TP and reduce the FN as
compared to Morphythm and the approach by Zhou et al. [41], one of the best
approaches in the literature for the detection of AF episodes. Future work will be
devoted on the one hand on the replication of the experimentation on other data
sets in order to corroborate the results achieved on the MIT-BIH AF Database
and on the other hand on the application of a local prediction technique in the
context of automatic detection of other types of arrhythmia.
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Abstract. mHealth applications provide a huge potential to integrate
neuropsychological rehabilitation into the everyday life of patients with
executive dysfunctions by supporting them in daily activities and achiev-
ing personal goals. In the context of intervention studies it is important
to gain insight in the usage of these applications by patients as an addi-
tional measurement beside neuropsychological pre- and post-tests. On
the other hand, measuring usage of mobile applications constitutes a
privacy risk for users. In this article the neuropsychological intervention
study is described and a concept for privacy-preserving metrics with a
focus on data minimization is derived from research questions. These
considerations are then incorporated in a thorough privacy by design
and privacy by default design process for the mHealth app.

Keywords: mHealth · Data minimization · Privacy by design ·
Privacy by default · Data aggregation · Metrics · Privacy design
strategies · Neuropsychology · Empirical study

1 Introduction

In the therapy of patients that have an impairment of executive function (EF)
after traumatic brain injury often Goal Management Training (GMT) [4,27,43]
is used effectively. These patients have deficits concerning “the selection and
execution of cognitive plans, their updating and monitoring, the inhibition of
irrelevant responses and problems with goal-directed behaviour usually result
in disorganized behaviour, impulsivity and problems in goal management and
self-regulation” [11, p. 17]. GMT is based on the central idea to divide goals into
sub-goals until single tasks are identified. This central idea of GMT was realized
as the mHealth application RehaGoal for mobile systems such as smartphones,
smartwatches and tablets [15,36].

Since the RehaGoal app accompanies patients during daily activities, privacy
is a central requirement in the design and development process of the application
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and also in mechanisms to support intervention studies. This is addressed by a
privacy by design and privacy by default approach as demanded in the General
Data Protection Regulation (GDPR) [12] based on privacy protection goals [20]
(confidentiality, integrity and availability, transparency, unlinkability and inter-
venability) and privacy design strategies [8]. In addition privacy patterns [9] are
employed to realize specific aspects in the design process.

In this paper the concept of a neuropsychological intervention study based
on an mHealth app addressing executive dysfunctions is presented with corre-
sponding research questions. Based on the RehaGoal app developed as a flexible
digitized version of the goal management training, an approach for a thorough
privacy by design and privacy by default strategy is presented in detail.

In Sect. 3 the study design is described. First preliminary results are stated in
[13]. Detailed results of the study are currently analyzed and will be published
later on. Based on the description of the goals of the study Sect. 4 describes
derived research questions as a basis for the definition of metrics which are
briefly summarized in Sect. 5. The metric language and metric architecture is
discussed in detail in [13]. Afterwards the privacy by design process with a focus
on privacy design strategies is described Sect. 6.

2 Related Work

mHealth applications are employed in various medical and psychological areas.
Measurements on mental health and the mental state of patients are investigated
in [18,25,38]. Beside typical medical application e.g. in the area of diabetes [7],
aspects such as stress are measured [16].

Typically in a first step, raw data is gathered and then transformed by data
mining approaches [35]. In this area privacy-sensitive deep learning techniques,
e.g. based on differential privacy [33] or federated learning approaches using a
cryptographic protocol for secure aggregation [5] are described in literature but
are typically until now not broadly used in this area.

Privacy by design and data minimization were generally not prioritized
based on the results of several investigations concerning security and privacy
of mHealth apps [22,26,32,34,39,45]. Issues reported were among others the
transmission of strong identifiers as email address and device IDs and health
related data. The use of third-party advertising or analytics solutions, insecure
storage, data leakage or weak server side controls were identified. Standard secu-
rity measurements as end-to-end encryption are not mentioned.

3 Neuropsychological Study Based on mHealth App

3.1 Study Design and Assessment Tools

During the pilot study phase, we decided to test the RehaGoal App and the study
design in a multiple case study (Fig. 1). As a first step in the study all participants
underwent a neuropsychological pre-testing. These included the following tasks
or questionnaires on attention, executive function and working memory:
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– Working memory (test battery to assess attention): This task examines the
control of information flow and the updating of information in working mem-
ory [2,3,48].

– Go-NoGo (test battery to assess attention): The Go/No-go test is used to
measure under time pressure the participants capacity to respond (“go”) to
only one particular stimulus and withhold responses (“no-go”) to all other
stimuli [42,48].

– Tower of London: The Tower of London (TOL) is a transformation task
used to assess the participants ability to plan several moves ahead in order
to reach a goal (problem-solving ability) [46].

– Semantic-categorical and formal-lexical word fluency (Regensburg Word Flu-
ency Test (RWT)): The RWT evaluates the formal-lexical word fluency as
well as the semantic-categorical verbal fluency of the participants [1].

– Dysexcutive Questionnaire (Behavioural Assessment of Dysexecutive Syn-
drome (BADS)): The Dysexcutive Questionnaire (DEX) is a questionnaire
designed to assess everyday changes to cognition, emotion, and behaviour of
the participants [47].

– Zoo Map Test (BADS): The Zoo Map Test of the BADS battery is applied to
measure planning ability as well as problem solving ability of the participants
[47].

– Modified Six Elements Test (BADS): The Modified Six Elements Test of
the BADS battery is applied to measures the abilities of planning, prob-
lem solving, prospective memory, organizing and to monitor participants own
behaviour [47].

– The Digit Span test forward span and backward span (Wechsler Adult Intelli-
gence Scale and the Wechsler Memory Scales): The Digit Span Test Forward
span captures participants attention efficiency and capacity. The Backward
span is an executive task and measures the working memory [21]

– Trail Making Test A/B: The Trail Making Test (TMT) A and B provides
information on visual search, scanning, speed of processing, mental flexibility,
and executive functions of the participants [40].

– Goal Attainment Scaling: Goal attainment scaling (GAS) is a technique for
evaluating individual progress toward goals. GAS provides a judgement on
the quality of the tasks that needs to be performed [24].

The neuropsychological pre-testing was followed by a group-based instruction
to Goal Management Training and an individual instruction to the RehaGoal
App. The participants were encouraged to use the RehaGoal App for five weeks
in their everyday life to achieve their individual goals. Subsequently, the neu-
ropsychological post-testing was performed (Fig. 1). Finally, the participants
completed a partly standardized questionnaire (based on the System Usabil-
ity Scale by John Brooke [6]), in which they were asked about their experience
and opinions regarding the usage of the RehaGoal App.
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Fig. 1. Study design schema.

The obtained results should provide indications whether:

Q1 The participants improve through the interventions
=⇒ Determination by neuropsychological pre- and post-testing

Q2 The RehaGoal App is able to support the participants in their everyday life
to achieve their self-defined goals.
=⇒ Determination of the improvement by using GAS.

Q3 The RehaGoal App should be improved in participants’ perspective.
=⇒ Determination by using a questionnaire on the App.

Q4 The study is also appropriate to be conducted for bigger investigated groups.
=⇒ Implementation of the intervention within a group.

3.2 Participants

The inclusion criterion required the participant to have an impairment of exec-
utive function (EF) after traumatic brain injury. EF is an umbrella term that
refers to a wide range of higher cognitive functions used to accomplish goals in
a shifting environment. It serves as a general term and includes constructs such
as planning, inhibition, cognitive flexibility, impulse control, creativity, working
memory and action initiation. EF coordinate the intermediate steps of action
planning and provide alternatives in case of complications [37]. Participants were
excluded from the study if they had a neurodegenerative disorder or acute brain
injury, were unable to understand speech and/or had substance abuse problems,
severe psychiatric problems, severe cognitive comorbidity.

3.3 Intervention

Following the pre-testing, the participants received instruction into a technique
for defining goals and breaking down overarching goals into sub-goals called
Goal Management Training (GMT). GMT is a neurorehabilitation intervention
developed by Robertson [41] and demonstrated efficacy in improving executive
functions in acquired brain injury [29]. GMT focuses on improving patients orga-
nizational and goal-directed behaviours on a global level [28]. The participants
received a total of five GMT sessions in a group setting with the following topics
and contents:

Session 1: Errors in action
General introduction, define goals, absence of mind, errors in action, increase
awareness for the consequences of action
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Session 2: Automatic pilot behaviour
Define the autopilot (difference between habit and control), errors through
the autopilot, stop the autopilot

Session 3: Get your goals in focus
Define the mental blackboard (working memory), use “STOP” for checking
the mental blackboard, practice mindfulness

Session 4: Take decisions
Examples of concurrent goals, understanding the emotional response to con-
current goals (including indecision), To-Do lists in the “STOP”-“STATE”
cycle

Session 5: Divide tasks into subtasks and monitor (“STOP”)
Establish goal hierarchies, “STOP”-“STATE”-“SPLIT” cycle, identify errors
in “STOP”-“STATE”-“SPLIT” cycle, Use “STOP” to monitor the ongoing
action towards the formulated goal

Subsequently, the RehaGoal App was introduced in a separate session and
installed onto participants mobile devices (smartphone or tablet). The RehaGoal
App provides an uncomplicated option to divide tasks into sub-goals and/or sub
actions, which then can be executed in smaller steps [36]. It contains a therapist
and a patient view (Fig. 2 and 3), which are structured as following:

Fig. 2. Therapist view in the RehaGoal App.

Therapist View. In the therapist view, the basic structure of the workflows
is displayed in an editor based on Google Blockly (Fig. 2). Using a variety of
predefined blocks from a modular system the therapist is able to arrange tasks
(and their sub actions with their respective sub-goals) sequentially in a modelled
workflow for the patient. This allows an individual and easy creation of workflows
that are able to map the daily life tasks of the patient.
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Fig. 3. Patient view to complete subgoals on a mobile device.

Patient View. The patient view of the RehaGoal App contains several informa-
tional sections and displays the previously (in the therapist view) created tasks
of a workflow in an easy-to-understand and organized form. The main part of the
view shows the current (active) task including possible choices where applicable.
The other sections display the previous and next task to provide context to the
patient.

Other features of the app include a reminder function, a task log and text-
to-speech voice output for patients with limited or no reading ability. Together
with the participants, a behavioural analysis was conducted to identify critical
situations and/or tasks in which the app might be able to assist them. For these
situations and/or tasks, individual workflows were then modeled for each partic-
ipant. Those included workflows for shopping, cleaning the apartment or using
public transportation to visit a friend. After the phase of using the RehaGoal
App ended, the neuropsychological post-testing was performed and the partici-
pants completed a questionnaire about their experience and opinions regarding
the usage of the mobile application.

4 Research Questions as a Basis for Metric Development

The RehaGoal App, as an mHealth application, is used as an intervention, since
participants are encouraged to train daily life tasks with the help of it. Through
the collection of usage information, so-called metrics, it strengthens the results
of the study in addition to neuropsychological diagnostics.
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Table 1. Research questions and associated metrics [13].

Category Research question Metrics

Therapeutic

Results (TR)

TR1: Does the number of workflow executions correlate with

changes in the goal attainment scale/neuropsychological

tests/subjective well-being?

m1

TR2: Does the repeated application of a workflow correlate
with less assisted executions over time?

m2, m2a

TR3: Does the number of completed workflow executions
correlate with changes in the goal attainment
scale/neuropsychological tests/subjective well-being?

m3

TR4: Does the repeated completion of a workflow correlate
with less assisted executions over time?

m4, m4a

TR5: Does the number of canceled workflow executions
correlate with changes in the goal attainment
scale/neuropsychological tests/subjective well-being?

m5

TR6: Does the repeated cancellation of workflows correlate
with less assisted workflow executions over time?

m6, m6a

TR7: Does the repeated completion of a workflow correlate
with the time taken for the execution of it?

m7

TR8: How does the amount of reminders per task change over
consecutive executions?

m9, m9a,
m9b,
m9c private

Usability &
Therapeutic
Results
(UTR)

UTR1: Does the usage of TTS correlate with the number of
completed/canceled workflows?

m17–m21

Usability &
Workflow
Design (UW)

UW1: What could be possible reasons for the active
cancellation of a workflow?

m8

UW2: How far are workflows executed when they are
canceled? Are workflows canceled at specific tasks?

m22

UW3: Does the type of presentation correlate with changes in
the time taken for completing a task?

m23–m28

Usability (U) U1: Are reminders closed once the task has been completed or
as soon as the dialog appears on the device?

m10, m11,
m11 private

U2: How often was the scheduling feature used (and therefore
possibly better integrated)?

m12

U3: Is the scheduling feature canceled less over time? (and
therefore possibly better integrated)?

m13

U4: How are schedules used? How many (different) workflows
are scheduled?

m14

U5: How are schedules used? How many workflows were
executed before canceling a schedule?

m15

U6: How is the distribution of the number of workflows in
completed schedules?

m16

U7: How many (different) workflows are executed in a
completed schedule?

m15, m16
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As a first step towards a privacy by design process for the design of privacy-
respecting metrics, research questions needed to be formulated based on the
goals of the study. Then these research questions have been used as a basis to
derive necessary metrics to answer research questions. Not only specific metrics
regarding the target group are recorded, but also general metrics regarding the
usage of the app. In consideration with the data minimization principle, only
metrics were recorded which served the purpose of answering Q1–Q4 (see page
3). The research questions are summarized in Table 1.

The application of the metrics in the RehaGoal App provides the opportu-
nity to collect additional participants data. It should be emphasized that by
using the app it is also possible to determine how these are related to the neu-
ropsychological test results, the GAS or the questionnaires. For instance, it is
reasonable to check whether the workflows were started (TR1, TR2) finished
(TR3, TR4) or canceled (TR5, TR6) several times, since the data here is use-
ful to assess if the participants planning ability improved due to the repeated
use of the workflows. More precisely, whether the participants are able to rec-
ognize workflows as an assistance for themselves and process them sequentially.
Furthermore, it provides information on workflows that were actively used and
whether certain workflows/tasks are repeatedly canceled (UW1, UW2). The time
required to complete the workflows is important because traumatic brain injury
patients tend to perform their tasks very quickly and therefore are more prone
to errors (TR7). It is also possible to determine whether the time to completion
decreases or increases during the process and further whether the way workflows
are presented influences the duration of completion (UW3).

The reminder function was implemented in the RehaGoal App as the par-
ticipants repeatedly got lost in their tasks or forgot what stage of the task they
had reached. It is therefore also reasonable to determine how often the reminder
appears on the participants screen and if its frequency decreases over time (TR8).

Furthermore, the handling of this function by the participants is also of
interest, more precisely whether they will immediately click away the reminder
after appearing on screen or wait until the completion of the task (U1).

Additional metrics were recorded on the usage of the voice output and the
scheduling. The voice output is important for participants who have partially or
completely lost their ability to read after the trauma, as well as for participants
who prefer not to read while performing a task. In this context, it is useful
to examine whether the voice output has an influence on the completion or
cancellation of workflows (UTR1).

The scheduling allows participants to perform several tasks sequentially. It
is important to determine if and how this feature is used (U2 - U7).
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5 Metric Language and Study Export

Table 2. Terminology (excerpt) [13].

Term Explanation

Assignment Inside a metric definition: The names of the keys under which
values of a metric should be grouped. For example [‘workflow’,

‘execution’] would mean that the metric records separate
snapshots for every combination of workflow(Id) and execution(Id).
Furthermore these concrete values are stored in the corresponding
snapshot

Execution A workflow is being executed, when it is being performed by a
human assisted by the application. From the start of a workflow to
the completion or cancellation counts as being part of the execution

Metric Measures or computes a certain value in the context of a given
assignment. Metrics may aggregate several measurements into a
single value, store each measurement separately and can also trim
the accuracy of a value before it is stored

Metric Type Currently four different types are defined: number metrics (integer
and floating point metrics) measuring primitive values, duration
metrics measuring the time difference between two record points,
and meta metrics, which compute a value based on another metric

Recording A metric is recorded when it is triggered by a record point and
measures or computes a value which is then stored in the metric
database

Record Point Named event in the program source code which may trigger the
recording of several metrics. Apart from a required assignment, an
optional (dynamic) value may be provided

Schedule A schedule consists of multiple workflows which should be
executed in a given order. It can be created dynamically by the
user when needed

Snapshot A snapshot consists of one or more measurements aggregated into a
single value, sometimes including additional information necessary
for updating the aggregate or (trimmed) timestamps. Furthermore
each snapshot stores its assignment and a sequential index

Task Simple step in a workflow, which is not being broken down into
steps any more

Workflow Representation of a task consisting of many steps performed by
human, modeled using a block-based visual programming language

In order to collect measurements about the application usage in a privacy-
preserving way, we decided to follow a data minimization approach. The data
collection was based on research questions defined in advance (Sect. 4). Further-
more we decided to avoid the collection of raw data as much as possible and to
instead aggregate the data as soon as possible, i.e. already on the participant’s
device. If achievable, the aggregate is also computed in an incremental fashion,
i.e. intermediate values for previous aggregates cannot be reconstructed once
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the aggregate has been updated, or in other words we do not keep a list of all
intermediate measurements but only the last aggregate and/or helper values for
tracking the aggregation in a numerically stable way.

Our strategy included the translation of the research questions into multiple
so-called metrics [13]. A metric in our case is a formal description of a mea-
surement. This includes what kind of data is being measured (numeric value,
duration, value derived from another metric), when it is measured and more,
such as how long data should be kept, how it should be aggregated, or to what
accuracy a value is stored.

To implement this concept (Fig. 4 and Table 2), we created a domain specific
language for the description of such metrics. This offers a number of benefits:
Firstly, we can inscribe certain questions regarding privacy into the language,
in order to design a scheme for privacy-preserving metrics. Secondly, since this
language is designed to be rather descriptive, it is easy to read and to under-
stand, and it is possible to generate textual, human-readable descriptions from
it. Thirdly, such a language helps to support software quality, for example the
DRY (don’t repeat yourself) principle is implemented, as the strategies for e.g.
aggregation, management of temporary values etc. has only to be implemented
once. This can also yield a better error avoidance, since mistakes can only be
made in a descriptive language, while the imperative code backing the metric
computation has only to be tested once by good software engineering practices.

Fig. 4. Privacy-Preserving metric concept.
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Our concept is centered around so-called record points, which can also be seen
as events or certain locations in the application’s source code. These are used to
trigger one or more metrics, which can then record values and update existing
aggregates (e.g. average). Each metric has a type, which can be either numeric
(for example counting the number of occurrences, or receiving a measurement
from an external source), a duration (measuring the duration between two record
points), or a metric derived from one or multiple values recorded by another
metric (meta metric). The accuracy of recorded values can (and should) be
limited, by specifying the steps to round to (e.g. 5 s steps for a duration or an
accuracy of 0.5 for a numeric metric).

Furthermore timestamps are optional and limited in precision. They are only
required if the metric is aggregated over a certain time frame. For example a
metric which should compute an average per week, always stores the start of the
week associated to that metric value (such that the week for which the value
was computed can be identified).

Other important properties regarding aggregation are the operation (e.g.
mean, max, min, variance, median) and the time frame over which is being
aggregated (which may also be the whole collection period).

The time frame also relates to the scope of the aggregation. For example a
metric may be recorded per workflow, such that every workflow may get e.g.
its own average value for that metric. Another example could be the minimal
duration of an (atomic) task per execution and workflow. The latter example
would produce minimum aggregates for each execution of every workflow, which
would be different than asking for e.g. the minimum task duration per workflow
(more coarse), or the minimum task duration per execution (same granularity,
however without being grouped by workflow). We call this concept the assign-
ment of a metric. It is also a required information without using the aggregation
feature, since it determines what metadata is stored related to a recorded value
of a metric (e.g. for which workflow is this value being measured?).

Furthermore recorded values (snapshots) can be limited to a certain amount,
after which the oldest snapshot is overwritten. In that case the snapshot limit
is also related to the assignment. This feature is mostly intended for use during
therapy, e.g. such that old values from weeks ago are automatically deleted. In
the study use case, the time period of recording is already limited, therefore it
is not used during the study.

Some metrics (meta metrics) depend on other metrics and can only be com-
puted at a certain point, for example once a workflow has finished. This can
cause a certain amount of fine granular temporary data to gather. To prevent
such excess data from being stored for longer than necessary, each metric can
also specify when its values can be deleted, e.g. as they have been aggregated
into a meta metric. Furthermore such temporary metrics are marked as private,
which means they will never be exported for study evaluation, even if values
were not deleted on the device for some reason.

Incomplete duration measurements (which are based on two record points:
start and stop) can occur, if the stop event is never encountered. For example the
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duration of a completed workflow cannot be computed, if the workflow is aborted
instead of being finished. In that case the metric language allows to specify events
at which incomplete duration measurements can be safely deleted. In such case
these measurements are also never exported.

To start the recording of metrics in the first place, the device has to enter
a valid study. Studies are embedded in the application’s code and consist of a
name, a start and end date, as well as a PBKDF2-key which is used to verify
a study password. Studies can only be entered with the knowledge of the corre-
sponding study password and our internal policy ensures that the password is
only known by study personnel. The start and end dates prevent that metrics
are recorded while the study is not active, i.e. before it has started or after the
study has finished. Without deliberate modification of the application/device,
these protections therefore ensure that metrics are only collected on devices
which are legitimately part of the study and only as long as needed.

When the study is finished, the recorded data can be exported from the device
with the participant’s consent. The data is always exported in an encrypted form,
which is only decipherable by the study evaluation person (i.e. not even adminis-
trators or developers), due to public-key cryptography using OpenPGP. Integrity
can also be verified later on by a digital signature by the participant’s device.
This ensures that even if the export is transmitted over an insecure channel, the
personal data cannot be read by unauthorized persons and manipulations can be
detected. The public key used for encryption is embedded in the application and
the public key used for the signature is exported from the device when it is first
set up for the study use (i.e. before data is recorded). At the end of the study
the data is currently transferred to a separate study laptop, however for larger
studies it would in principle be possible as well to transmit it over the internet.
In comparison the usual way of only relying on transport encryption using TLS,
could still allow administrators or cloud providers to decrypt the data, while in
our case this is not possible without knowledge of the private study operator
key, which is stored offline in a secure location.

6 Implementation of Privacy Design Strategies

Our privacy by design process is based on both the privacy protection goals
(PPG) [20] and privacy design strategies (PDS) [8]. Therefore we analyzed our
(continually developing) requirements to these models respectively, in order to
derive principles which could be followed for an implementation. When multiple
options were available, we usually decided in favour of stronger data minimiza-
tion and unlinkability, except in cases where the overhead in development and
usability would have been disproportionate compared to the benefit regarding
privacy in the context described in Sect. 3. Utilizing privacy patterns was help-
ful for the implementation, which are often already categorized according to the
PDS in pattern catalogues.

In retrospect, we primarily focused on the goals unlinkability and data mini-
mization in our project. While transparency and intervenability were also kept in



454 A. Gabel et al.

mind, they were assigned a lower priority, since it turned out that we could keep
most data on the users device during normal usage, therefore being under control
of the user. The only exception to such case were workflows shared through the
online feature, which however is optional, as workflows may also be shared via
file transfer instead. With regards to the study, transparency and intervenability
became more important goals.

The following subsections will introduce the purpose of individual tactics
for each privacy design strategy and state the corresponding privacy protection
goals, following an overview of how those tactics have been implemented within
the context of the application and the study use case. Each entry further provides
an assessment of possible solutions which have not been, or could not been
implemented given the use case. To provide a broader sense typical risks are
addressed, if applicable.

6.1 MINIMISE

The MINIMISE strategy is about data minimization and purpose limitation. It
consists of the tactics EXCLUDE (“refraining from processing a data subject’s
personal data“), SELECT (“decide on a case by case basis on the full or partial
usage of personal data“), STRIP (“removing unnecessary personal data fields”)
and DESTROY (“completely removing a data subject’s personal data”) [8].
Concentrating on data minimization aspects, we mostly applied the SELECT
and DESTROY tactics. By specifying research questions in advance and col-
lecting only what is deemed to be necessary for answering those, we SELECT
the kind of data that is required. Furthermore e.g. fields such as the timestamp
are only recorded if necessary for the use-case and only to the required preci-
sion (see below). A different approach would be to instead collect all potentially
useful data in the beginning and process it afterwards, to find out what seems
necessary and what kind of questions may be answered using such data, which
is more the data scientist’s way of research. It may provide much more insight,
however it is significantly more risky to collect, because unintended questions
that might even be out of scope of the research project, may be answered as
well. With more data collected, it gets also more difficult to estimate how this
data could possibly be (mis)used. Using the data minimization approach instead
provides a certain risk limitation.

Furthermore the possibility to opt-in into study mode, as well as making it
optional to share workflows via our server during normal use fall into this tac-
tic. Using opt-out instead, or making it non-optional to collect data or share
workflows with our server, would introduce additional risks and responsibility
while providing no or only a minor benefit (e.g. workflows could be made auto-
matically available on all devices of a user, if she/he is logged in with the same
credentials). Opt-in is also preferable from a user’s perspective, as it provides
more control about what data is being shared and sharing has to be explicitly
decided. Data is only recorded during the predefined study period, afterwards
recording of further data is disabled automatically. Additional data collection is
simply not necessary, may be non-lawful and could increase the risk of misuse.
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Even if the data is only stored on the participant’s device, there is still a certain
risk that it may be exfiltrated later on by an unauthorized party.

Considering the DESTROY tactic, we are deleting unnecessary data once
it is dispensable on the users device, e.g. private metrics, which are used to
derive public meta metrics, are deleted once they have been aggregated locally.
Additionally, incomplete metrics such as time measurements, which have been
started but not finished, are deleted automatically when they cannot be com-
pleted any more. Deletion of incomplete time measurements is especially impor-
tant, as the temporary timestamps are very accurate (in order to introduce no
additional error), while the final duration metrics are trimmed to the speci-
fied precision. Without this, accurate timestamps about some activities would
be stored (possibly permanently) on the device (for example the accurate time
when a workflow has been started, which is used later on in order to calculate
the (inaccurate) average duration of a workflow). Also non-aggregated private
metrics may include very fine granular event information, which is only needed
temporarily in order to derive certain aggregates, therefore it is also important
to delete them as soon as possible.

However, there is no automatic data deletion at the end of the study on the
users device, instead the application data has to be removed manually (e.g. by
application removal). An option would have been to delete data once it has been
exported for the study team, however this would have come with the risk of losing
study data, if for some reason the exported and encrypted data was destroyed or
lost. Furthermore we intended to allow multiple exports during the study, which
would not have been possible if the metric data was deleted after an export, as
previous aggregates would be lost and the new values will only consist of data
recorded after export, making it difficult to merge multiple exports later on.
Collected pseudonymous study data is deleted according to a policy established
in the application for ethics approval. Information enabling re-identification of
pseudonyms is deleted once the study ends. Shared workflows, which were stored
on the server are deleted when a study ends, however neither a policy nor an
automatic process for how long workflows should be stored on the server apart
from studies has been implemented yet. Currently, due to our data minimization
approach, there is also no information stored about when a workflow has been
uploaded. An alternative approach could be to store an inaccurate date about
when a certain workflow was uploaded, in order to automatically delete older
workflows after a certain period, without a larger impact on privacy through
timestamps.

Regarding the STRIP tactic, an additional possibility would be to integrate
the Strip Invisible Metadata[9] pattern in order to further reduce the amount
of information which can be derived from pictures embedded into a workflow.
Without this pattern it is possible that creators of a workflow can be re-identified
by the metadata included in an image (such as Location information, device
name and others). This has not been implemented yet, since the pictures are
usually created by a therapist and therefore provide less detailed information
about the study participant.
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6.2 HIDE

Next up is the HIDE strategy, which is e.g. about unlinkability and confiden-
tiality. It consists of the tactics RESTRICT (“preventing unauthorized access
to personal data”), MIX (“processing personal data randomly within a large
enough group to reduce correlation”), OBFUSCATE (“preventing understand-
ability of personal data to those without the ability to decipher it”) and DISSO-
CIATE (“removing the correlation between different pieces of personal data”)
[8].

Concerning the study, primarily the OBFUSCATE and DISSOCIATE tac-
tics were used in our case. Depending on the size of the study, however, this may
be different. For example in larger studies MIX may become more important,
as anonymity of participants may be considered more important and possible
to implement through a large enough group of participants. We apply OBFUS-
CATE by encrypting the study export for the study evaluating person with
hybrid encryption (end-to-end encryption based on OpenPGP) before it is moved
to external storage or transmitted. This prevents interpretation of exported data
by anyone but the study evaluation person. We decided to use OpenPGP, since
it has already been audited and the standard is well-established. Note that the
application itself still stores the data unencrypted in its private application stor-
age. While storage encryption would possibly offer additional confidentiality, it
also requires the entry of a user-specific password (or other form of key) to be
effective, e.g. every time the app starts, which reduces usability, especially for a
set of people in our target group.

Instead of requiring names or other personally identifiable information, we
use pseudonyms for linking the different datasets (i.e. neuropsychological test
results to the automatically recorded metrics). The use of a pseudonym can be
seen as applying the DISSOCIATE tactic, as it is a way to prevent linking other
personal data to the pseudonymous data. There are many ways to generate
and assign a pseudonym to a person (Pseudonymous Identity pattern [9,19]),
however we decided to use a per-user on-device generated OpenPGP Key ID as
the in-application pseudonym. Therefore it can be effectively treated as random
and does not contain additional information like sequence number of pseudonym
generation, date/time of generation or encoded personal identifiable information
(e.g. initials, year of birth etc.). This can be seen as another approach to data
minimization, as well as unlinkability. Alternatively using encoded personally
identifiably information in the pseudonym, especially without proper encryption,
may allow trivial re-identification, even for external persons who have gained
access to a list of pseudonyms and suspect that a certain person is engaged in
the study. Hence, even without re-identification, the data could be linked to
other (possibly publicly available) datasets. For example using an email address
(even if it is not based on a name) as a pseudonym could make it rather trivial
for external entities to link entries in a given dataset to the study dataset.

Greater linkability also increases the risk of re-identifiability, since it produces
a bigger picture of the person like puzzle pieces plugging together, and some
linkable datasets of few external parties may already have established the link



Privacy by Design for Neuropsychological Studies 457

to the person. In case of data leakage or even misuse by an authorized person,
private data of a person could become public or used for unintended purposes.
In case of highly sensitive data, such as health data, this is even more critical.

We use two different pseudonyms per study participant, one when collecting
the neuropsychological test data and another one for the automatic data col-
lection using metrics. The pseudonym used for neuropsychological tests is also
generated randomly. Later on these have to be linked, however this is not neces-
sary until the actual evaluation will be conducted. It is therefore an advantage
to use multiple pseudonyms per participant, as it prevents linkability between
the datasets for people without knowledge of the link. In theory we could use
even more pseudonyms, e.g. different pseudonyms for pre- and post-tests. This
would provide even more unlinkability, however it would also make the process
more complex. The use of different pseudonyms can be seen as application of
the Minimal Pseudonym Scope pattern [14]. This brings up the question of how
the pseudonyms are actually linked afterwards, when the study is evaluated. A
simple solution for smaller studies, which we also use, are pseudonym tables,
which map one pseudonym to another. This table should be kept separately
from the data. Note, that this table is not used for re-identifying a participant,
or linking the pseudonym back to an actual person, but rather to link multiple
pseudonyms of a participant. This could also be realized by using encrypted
identifiers as pseudonyms, where one identifier may have multiple ciphertext
pseudonyms. The pseudonym table or cryptographic keys, could also be managed
by a trusted third party, such that only authorized persons may link multiple
pieces of data according to a policy.

Alternatively the Pseudonym Converter pattern [14] could be applied to let
a separate entity, the Converter, link multiple pieces of data (e.g. test data
and metrics), which can provide better privacy especially across organizations.
However in this case there is no gain from applying this pattern, since at the end
all links between the different pieces of data (pre-test, post-test, metrics) have to
be resolved for the study evaluation person. However if the evaluation would only
need partial data, or a subset of data, the utilization of that pattern will provide
better privacy. Given that in case of a leak of the different datasets (e.g. pre-tests
and post-tests), their pseudonyms will not be linkable without the help of the
converter. Furthermore the evaluation person can only link data for which the
converter has performed the pseudonym conversion. Especially for large systems,
where data from different sources (e.g. eHealth systems consisting of multiple
hospitals, general practitioners, patients and research facilities) should be only
linkable when necessary, but unlinkable by default, this pattern might be useful.

It should be noted, that the entity which assigns pseudonyms to participants
also usually has the ability to re-identify them, store the association or encode
information for re-identification in the pseudonyms, even if this is against the pol-
icy. Therefore patterns such as Data-owner based pseudonymisation [14] (DISSO-
CIATE) or Data hidden from pseudonymiser [14] (OBFUSCATE) could be used
to mitigate this risk. In Data-owner based pseudonymisation, the pseudonym is
generated by the user or the user’s device, therefore the pseudonym and associ-
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ated data stays in control of the user upfront. It then depends on the way data
is transmitted to a recipient (e.g. study team) and the included metadata to
determine how much information about the pseudonym can be learned by the
recipient (see MIX).

The Data hidden from pseudonymiser pattern prevents leaking data to the
entity that assigns pseudonyms by applying cryptographic methods, such as
secret sharing or encryption, which is especially useful in larger systems/studies,
in order to separate pseudonym association from working with pseudonymous
data.

We currently also have a “coding table” to store the association between
the neuropsychological pseudonym and the identity, therefore providing re-
identifiability. This is currently only used so that a participant may delete their
data by request. In principle it would be possible to implement the deletion
requests without the re-identifiability. For example the application could include
a function to request data removal from the server, which would then send
the participant’s pseudonym (possibly including a digital signature to provide
non-repudiation) to the study team. As this pseudonym can be linked to all
data stored by the study team, this would effectively implement a data removal
request.

The Recoverable Identity pattern [14] also describes different ways to imple-
ment re-identifiability, which provide better security/privacy guarantees in com-
parison to a naive implementation. For example the introduction of a trusted
third party, or the use of a thresholded secret sharing scheme can provide better
separation of powers and stronger enforcement of a policy for re-identification.

Unfortunately due to small number of participants and the study personnel
(including evaluation person) knowing the participants (e.g. which workflows
they performed) it is very likely that pseudonymous data may be re-identified
by them, which cannot be prevented without losing too much data utility. A
way to limit the impact of this (with higher cost for personnel) would have been
to introduce a separation between the persons who interact with the patients
during intervention and collect the data, and the person who is in charge of the
evaluation.

Regarding the RESTRICT tactic, we could additionally implement a pass-
word/PIN in order to use the application, however as already mentioned this
might not be usable for our target group, therefore we decided against it. On
our side, the study evaluation device and decryption keys are properly secured
by passwords and physical access control.

As already noted in our use case, anonymity for participants is very hard to
achieve (especially without considerable data utility loss), since the study person-
nel interacts directly with the participants and the group of participants is also
very small. Furthermore linkability between different datasets (neuropsychologi-
cal pre-test, post-test and metrics) is required and therefore the data has to be at
least pseudonymous. However in larger studies or datasets, anonymity or stronger
pseudonymity may be achievable, by applying patterns from the MIX strategy.
Especially metadata during transmission of pseudonymous or anonymous study
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data has to be reduced. For example transmitting study data over the internet
includes an IP address (which could be mitigated with the Anonymization Net-
work pattern [14]) and time information among other metadata, which could be
used for re-identification. A simple way to hide the identities when transmitting
pseudonymous data is to collect data of multiple participants at a trusted party
(e.g. a therapist who is responsible for multiple patients) and then sending the
data in batch (possibly in regular time intervals) to the recipient. This hides
metadata such as time information of patient visits as well as IP addresses or
browser metadata of patients, without requiring complex technology. A rather
complex approach for hiding a patient’s data, for example when asking for test
results or a diagnosis, would be to send multiple fake, indistinguishable from
real, data records to a server, including the real patient’s data and hiding it in
the noise, i.e. applying the Use of dummies pattern [9].

Depending on the type of data, it may be harder to generate fake records,
indistinguishable from real (e.g. pictures), however with the recent advances [23]
in Generative Adversarial Networks (GANs) [17], future work could support
such cases. A more simplified version of this pattern would only consider leaking
metadata through the network, e.g. the fact that a device is sending data to a
certain server.

6.3 SEPARATE

The SEPARATE strategy is about “preventing correlation as much as possible
by distributing or isolating”. It consists of the tactics DISTRIBUTE (“partition-
ing personal data so that more access is required to process it”) and ISOLATE
(“processing parts of personal data independently, without access or correlation
to related parts”) [8].

Storing data such as workflows and metrics by default in a decentralized
manner only on the participants’ devices can be seen as application of the ISO-
LATE tactic by using the Personal Data Store pattern [9]. Furthermore the
computation of metric results directly within the participants’ devices, i.e. local
aggregation, can be seen as use of the User data confinement pattern [9].

Instead of an on-device aggregation, we could aggregate the data on a cen-
tralized server. However this would imply that updates from the device have to
be sent regularly to the server. These updates might then include the raw values
over a certain time period, which at least would temporarily leave unnecessary
raw data on that server.

6.4 ABSTRACT

The ABSTRACT strategy (previously AGGREGATE ) targets “limiting detail
as much as possible by summarizing or grouping”. It consists of the tactics SUM-
MARIZE (“extracting commonalities in personal data by finding and processing
correlations instead of the data itself”) and GROUP (“inducing less detail from
personal data prior to processing, by allocating into common categories”) [8].
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Our implementation was mainly based on the GROUP tactic. Values mea-
sured by our metrics are often trimmed to a low precision. Also timestamps
are reduced in precision, e.g. for some measurements only the week in which a
metric was recorded is stored. Lastly all values are aggregated on the partic-
ipant’s device (User data confinement pattern [9]), instead of raw data being
stored and possibly transmitted for study evaluation. The aggregation is also
performed incrementally (updating the previous aggregate value directly), if
possible, i.e. raw values are not stored unless absolutely necessary. By using
only very low precision timestamps (e.g. day or week resolution), the risk to
leak detailed information about the participant’s daily structure and routines
can be reduced. In contrast utilizing precise timestamps and recording of more
atomic events (such as most interactions with the device), this risk will be sig-
nificantly higher. Furthermore it may also simplify linking to other datasets. For
example if it is known that the person was performing some activity during a
certain time-frame, he/she may be ruled out from other activities/places during
that time. Such precise event information (e.g. every click in the app) could be
used to create profiles, which could be used to match users with similar click
behaviour to other applications and therefore additionally restricting the set of
possible users.

To further increase privacy aspects, methods from the field of Statistical Dis-
closure Control (SDC) may be applied, particularly before publishing datasets.
For example trimming the accuracy to discrete steps, as it is possible with our
metric language, can be seen as the use of binning, which is one of the generaliza-
tion methods of SDC. However, before publishing datasets, it is still necessary to
verify that the risk of re-identification is low enough, i.e. that the dataset can be
considered anonymous. Different models for measuring anonymity are available,
such as k-anonymity [44], l-diversity [31], t-closeness [30] or differential privacy
[10].

6.5 INFORM

The INFORM strategy provides transparency regarding data collection, pro-
cessing and retention to the user. It consists of the tactics SUPPLY, NOTIFY
and EXPLAIN. SUPPLY provides the user with resources about the processing
of personal data, NOTIFY alerts the user about new information regarding the
processing of personal data (e.g. data breaches or changes to data processing),
while EXPLAIN provides concise and understandable detail on personal data
processing [8].

Regarding the SUPPLY tactic, we inform users during their Informed Con-
sent (additionally provided in easy German language). A privacy policy has been
integrated into the application for general use (apart from the extended study
use case), which includes an overview of how data is processed, along with a
contact address such that users may exercise their rights.

To provide information about shared workflows, a separate dashboard could
be introduced, or it could be visualized within the table of workflows that a
certain workflow has been shared.
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In addition information about metrics could be displayed through a privacy
dashboard. This has not been implemented yet since the information is already
included in the informed consent process. However, our metric language has been
designed such that metrics can be specified in a descriptive manner, therefore it
is possible to automatically generate human readable textual descriptions from
the definitions. Additionally each metric has a descriptive name that by itself
should state the scope of what is being recorded.

Considering the EXPLAIN tactic, a meaningful option would be to visualize
the metric recording and study export process, in order to describe what kind of
data does get transferred, along with what actions we take in order to preserve
privacy and security properties. Metrics could e.g. be visualized as a data flow
graph. However, considering that a part of our target group has congenital brain
deficits, creating an understandable representation becomes much harder.

6.6 CONTROL

The CONTROL strategy implements intervenability for the data subjects. It
includes the tactics CONSENT (“only processing the personal data for which
explicit, freely-given, and informed consent is received”), CHOOSE (“allowing
for the selection or exclusion of personal data, partly or wholly, from any pro-
cessing”), UPDATE (“providing data subjects with the means to keep their
personal data accurate and up to date”), as well as RETRACT (“honoring the
data subject’s right to the complete removal of any personal data in a timely
fashion”) [8].

As already mentioned, we utilize Informed Consent, e.g. when participants
are asked whether they would like to participate in our study. Within the doc-
ument it is clearly stated that consent should be freely-given, without the fear
of repercussions for not participating or leaving the study prior to the intended
end. Consent in easy language allows potential participants with intellectual dis-
abilities (to a certain degree) to also understand the important facts about the
study and their choice.

Participants may therefore CHOOSE whether they would like to participate
in the study or not. There are, however, no further gradations of data collection
within the study to assure comparability. Hereafter metrics could be used as part
of the general therapy, to deduce information about its success by transmitting
those to the therapist. Selecting what kind of data will be provided for the
therapist provides further means for the participant, e.g. to choose a set of
metrics or a “tracking level” of how much information should be provided. In
case of workflow sharing, every user can optionally share workflows with other
users through either our server or via file transfer. It is not required to store
workflows on a cloud service by default.

The RETRACT tactic is implemented in part by allowing participants to
locally delete workflows. Furthermore all study data regarding a participant
(personal data/entry in coding table, entry in pseudonym mapping table, neu-
ropsychological pre and post tests, collected metrics including encrypted data,
shared workflows) can be deleted, if a participant decides to leave the study.
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During the study we discussed a technical option to exit the study, i.e. stop
recording of metrics and potentially even delete already recorded data by e.g.
pressing a button. However, a part of our team was concerned that this button
(or even a different UX pattern) is hit accidentally or without further reflection
and with no possibility of undo, therefore it was decided against it. The idea
was instead, that users should address the study team, or alternatively uninstall
the application altogether from the device (which would delete all recorded data
and users will also not be able to join the study again). The study team can also
assist the participant in deleting the data from their device and uninstalling the
application, if required. Currently because of our coding table we only require a
participant’s name in order to delete all associated data, however this could be
implemented differently e.g. using only a pseudonym instead (see Subsect. 6.2).
Metric results can only be deleted locally by uninstalling the application (and
possibly removing already performed study export files), and not partly or wholly
within the application.

6.7 ENFORCE

The ENFORCE strategy encompasses the creation, maintenance and uphold-
ing of policies and technical controls regarding storage, collection, retention,
sharing, changes, breaches or operation on personal data. It consists of the tac-
tics CREATE (“acknowledging the value of privacy and deciding policies which
enable it, and processes which respect personal data”), MAINTAIN (“consid-
ering privacy when designing or modifying features, and updating policies and
processes to better protect personal data”) and UPHOLD (“ensuring that poli-
cies are adhered to by treating personal data as an asset, and privacy as a goal
to incentivize as a critical feature”) [8].

For the CREATE tactic, the study mode of our application has to be acti-
vated manually, i.e. the process of joining it is based on the opt-in scheme. This
requires a password to be entered, which is unique per study. The password is
only known to our staff, therefore it is required that both the physical device and
a staff member is present in order to enter study mode. This prevents accidental
study mode activation by users and therefore additional tracking. However, it
has to be ensured through non-technical means, that the user actually consents
to the data recording. The password is not stored in plaintext within the appli-
cation due to security reasons, but rather only a PBKDF2-derived key which
can be used to verify the password. This ensures that even if the application
is reverse engineered, the password cannot easily be derived and circumvented
without manipulation of the application.

The use of an offline, securely stored study laptop, as well as storing study-
related documents in a safe can be seen as additional measures to enforce this
tactic.

Necessary security updates are done on a regular basis, in order to MAIN-
TAIN our privacy and security standards. During development, new features will
be discussed and checked for potential privacy implications in the team. Upon
introducing new features within the existing application, each merge request will
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be reviewed by a different developer, in order to follow a four-eye-principle. Our
privacy policies and mindset are also agreed upon in our cooperation contracts,
as well as in the application for ethics approval (UPHOLD).

The ENFORCE strategy gets more important, once the scope of the project
and size thereof expands, or further gets incorporated within an organization.

6.8 DEMONSTRATE

The DEMONSTRATE strategy was established in order for the data controller
to be able to show that the legal requirements are implemented as required. It
can be accomplished through the tactics LOG (“tracking all processing of data,
without revealing personal data, securing and reviewing the information gath-
ered for any risks”), AUDIT (“examining all day to day activities for any risks
to personal data, and responding to any discrepancies seriously.”) and REPORT
(“analyzing collected information on tests, audits, and logs periodically to review
improvements to the protection of personal data”).

For the AUDIT tactic, especially in larger projects or commercial ones, it
is important to perform audits regularly, regarding security and privacy. It is
important to build-up and refresh knowledge on best-practices regarding secu-
rity and privacy, in order to comply with them. Privacy and security should
be treated like other qualities of good products and could be marketed as an
advantage in comparison to competitors.

Regarding the LOG tactic, due to our strict data minimization approach, our
logging is rather minimal. We collect e.g. requests to our servers for downloading
the software or exchanging workflows. These logs are stored only in-memory and
are never written to disk, and are therefore very constrained in their storage
duration.

Our software development practices also include automated integration tests
as part of a continuous integration, which covers most of the functionality of
the application. This includes some tests for vulnerabilities in areas such as
parsing, which are known as a common source for vulnerabilities in software.
Additionally, automated checks are done to REPORT, whether there are known
security vulnerabilities in one of our dependencies, in which case the developers
can act in a timely manner in order to update them.

7 Conclusion

In the context of a neuropsychological study including the use of an mHealth
application it was shown how privacy by design and privacy by default principles
could be included in application development and study design as a guiding prin-
ciple to protect fundamental rights and freedoms of natural persons as demanded
by the GDPR. This reduces also the risks for using the mHealth application
afterwards in daily life activities.

Future work includes the utilization of the metrics concept in further appli-
cations. It is intended to foster communication between patient and therapist
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and to integrate gamification elements to enhance the motivation of patients.
This will be accompanied by elements to foster transparency and intervenability
via a privacy dashboard.
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Fimm, Psychologische Testsysteme (2017)

https://doi.org/10.1142/S0218488502001648
http://www.worldscientific.com/doi/abs/10.1142/S0218488502001648


Food Data Normalization Using Lexical
and Semantic Similarities Heuristics

Gordana Ispirova1,2(B) , Gorjan Popovski1,2 , Eva Valenčič1,2,3 ,
Nina Hadzi-Kotarova4, Tome Eftimov1 , and Barbara Koroušić Seljak1
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Abstract. Food is one of the main health and environmental factors
in today’s society. With modernization the food supply is expanding and
food-related data is increasing. This type of data comes in many differ-
ent forms and making it inter-operable is one of the main requirements
for using in any kind of analyses. One step towards this goal is data
normalization of data coming from different sources. Food-related is col-
lected regarding various aspects – food composition, food consumption,
recipe data, etc. The most commonly encountered form is food data
related to food products, which in order to serve its purpose – sales and
profits, is often distorted and manipulated for marketing plans of pro-
ducers and retailers. This causes the data to be often misinterpreted.
There exist some studies addressing the problem of heterogeneous data
by data normalization based on lexical similarity of the food products’
English names. We took this task a step further by considering data
in non-English, low-resourced language – Slovenian. Working with such
languages is challenging, as they have very limited resources and tools
for Natural Language Processing (NLP). In our previously published
work we considered different heuristics for matching food products: one
based on lexical similarity [23], and two semantic similarity heuristics,
i.e. based on word vector representations (embeddings). These data nor-
malization approaches are evaluated once on a data set with 439 ground
truth pairs of food products, obtained by matching their EAN barcodes.
In this work, we extend this approach by introducing a new semantic
similarity heuristic, based on sentence vector embeddings. Additionally,
we extend the evaluation by taking real-world examples and tasking a
subject-matter expert to rate the relevance of the top three matches
for each example. The results show that using semantic similarity with
the sentence embedding method yields best results, achieving 88% accu-
racy for the ground truth data set and 91% accuracy from the human
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expert evaluation, while the lexical similarity heuristic provides compar-
ing results with 75% and 85% accuracy.

Keywords: Food data normalization · Food data linking · Food
semantics · Word embeddings

1 Introduction

Working in the era of big data, there is an enormous amount of data that is avail-
able in almost every domain. This data is not only characterized by its quantity,
but also by its nature, type and format, but also by the velocity and ambiguity
at which it is generated and processed. In the last two decades, working with
such data in most cases involves utilization of artificial intelligence (AI) meth-
ods. Such methods require information from different data sources in order to
make a prediction or a decision. However, before starting to work on predictive
modelling, the attributes that are shared across different data sources should be
interlinked to make the data sets inter-operable. This is possible, by applying so
called data normalization [28], which is the process of linking the same concepts
across different data sets.

The Biomedical domain is well-researched regarding interoperability, having
the Unified Medical Language System (UMLS) [3] publicly available. UMLS
integrates and distributes key terminology, classification and coding standards to
promote the creation of more effective and inter-operable biomedical information
systems and services [29]. Additionally, it provides tools for lexical similarities
to allow normalization of biomedical concepts to the standards that are part of
UMLS [2]. There are also different natural language processing (NLP) workshops
that are organized as a part of various international conferences, where the main
focus is on developing automatic methods based on NLP and Machine Learning
(ML) to support normalization of biomedical concepts such as genes, proteins,
phenotype information, drugs, diseases, treatments, etc. [16,20].

In recent years, some work has been performed on the normalization of food-
related data, which is heterogeneous with respect to types and formats. We
should emphasize that the Food domain is still low-resourced in comparison to
the Biomedical domain. There are several food ontologies that can be used for
food data normalization, such as FoodOn [12], OntoFood and SNOMED CT [6].
A recently published study [27] showed that their coverage is limited, since all
of them were developed to address some specific problems. Moreover, there is
a semantic resource known as FoodOntoMap [26] where for each food concept,
that was extracted from 1000 recipes, semantic tags from four food resources
and ontologies (i.e. Hansard, SNOMED CT, FoodOn, OntoFood) are assigned.
FoodOntoMap also provides links between different food ontologies that can be
used for developing applications that support understanding of relations between
food systems, human health, and the environment. This methodology is general
and can be applied to any ontology that has a NER (Named Entity Recognition)
method. Another semi-automatic system for classifying and describing English



470 G. Ispirova et al.

food names according to FoodEx2 [7] is StandFood [9], which was developed for
the normalization of food-related data.

Food data is gathered for different aims and using different methodologies,
e.g. food consumption data, food composition data, recipe data, to mention but
few of them. Food product data is a type of food composition data, which is often
misinterpreted due to the vast and very competitive marketing scene. Different
manufacturers and retailers represent the food products in different ways to their
customers to better market the product to their consumers. Additionally, this
misinterpretation can be due to the variety of diet styles that people adhere to.

In our previous work, we explored methods that can be used for the normal-
ization of food concepts specified in the Slovenian language [23]. A large subset
of food concepts were extracted from data on food products from two food
retailers. To link the food products, we proposed heuristics based on lexical and
semantic similarities. The lexical similarity was based on the syntactic and mor-
phological similarity, while the semantic similarity relied on word embeddings
(i.e. Word2Vec [18] and GloVe [21]). In this work, we extend our previous study
by including and evaluating paragraph embeddings (i.e. Doc2Vec [19]) that can
be used for semantic similarity. We compared the study results with our pre-
vious results, and additionally, an evaluation by a subject-matter expert was
performed to find out which of the heuristics provides the results most similar
to the expert’s knowledge.

The remainder of the paper is organized as follows: Sect. 2 provides an
overview of the related work. Next, in Sect. 3, our proposed methodology is
explained in detail, followed by an insight into the data used in Sect. 4. Then,
the experimental results and discussion are presented in Sect. 4, closing with
Sect. 6 where conclusions and some directions for future work are presented.

2 Related Work

Working with textual data is especially challenging due to its variability, which
by the nature of language, depends on how people express themselves. Many
Artificial Intelligence (AI) studies and applications involve combining different
data sets that contain information about the same concepts, which are often rep-
resented in different ways. To combine this information, first the same concepts
across the different data sets should be linked. To achieve this, text normalization
methods should be applied. Text normalization methods are based on different
types of text similarity measures, which provide a metric of similarity between
two sequences of text, i.e. strings. Similarity can be measured with regard to two
criteria: i) how distant two texts are both in surface form (i.e. lexical similarity)
and ii) meaning (i.e. semantic similarity).

2.1 Lexical Similarity

Lexical similarity can be expressed on two levels: i) the character level and ii) the
word (i.e. token) level. These measures do not take into account the meaning
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behind the words or the context of a phrase, but they focus on overlapping
characters or words in the pair of strings being compared.

There exist several lexical similarity measures such as theLevenshtein dis-
tance, the Optimal String Alignment distance, the Damerau-Levenshtein dis-
tance, the longest common substring, the q-gram, the cosine distance, the Jac-
card distance, the Jaro distance, the Jaro-Winkler distance, and the skip-grams.
More details about these are presented in [13]. In the food and nutrition domain,
methods based on lexical similarities that can be used for normalization based
of food and nutrient names in English, have already been proposed [8–10,13].
These methods apply: (i) standard text similarity measures and (ii) a modified
version of Part of Speech (POS) tagging probability-weighted method [9,10].

2.2 Semantic Similarity

Semantic similarity is a metric that determines the similarity between two strings
considering their semantic meaning. It is closely related to representation learn-
ing, where each text (e.g., word, sentence, or paragraph) is represented as a
vector of continuous numbers. These vectors are known as embeddings and cap-
ture the context of a word in a piece of text, as well as semantic and syntactic
similarity, relation with other words, etc.

To calculate the similarity between two words, two sentences, or two para-
graphs, we estimate similarity between their vectors (i.e. embeddings). To per-
form this, the cosine similarity between the embeddings is calculated, in order
to provide the information about the angle between their vectors. The cosine
distance between two vectors x and y can be calculated using the following
equation:

cos(x,y) =
xy

||x||2||y||2 . (1)

This value for the cosine similarity lies in the range [−1, 1], where one means
the highest similarity between the texts, and -1 means the highest degree of
dissimilarity. When the cosine distance is 0, it means that the vectors are
orthogonal.

Word Embeddings. Word embeddings are vector representations that are
learned for each word in a textual corpus. The two most commonly used word
embedding methods are:

1. Word2Vec – One method for learning word embeddings is Word2Vec [18,19],
where the authors presented a model for learning high-quality distributed
vector representations that capture a large number of precise syntactic and
semantic word relationships. This is the first work of this kind and it paved
the way for all the work in the field of representation learning that followed.
Word2Vec is a shallow neural network architecture, consisting of one hidden
layer and one output layer. The Word2Vec model consists of two different
architectures:
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(a) Continuous Bag-of-Words architecture – This architecture aims to predict
the current word based on the input context. There is a center word that
should be predicted based on the words that surround it – context words.
The one–hot encoded context word vectors are the input to this model.
The number of dimensions of the vectors is the vocabulary size V of the
corpus. The main goal is to maximize the conditional probability of the
output word.

(b) Skip-gram architecture – This architecture is the opposite of the CBOW
architecture. In this scenario we know the center word and we are trying
to predict the preceding and succeeding words, i.e. its context. The skip-
gram architecture as output will give C number of V dimensional vectors,
where C is defined as the number of context words which we want the
model to return and V is total vocabulary size. The skip-gram model is
trained to minimize the summed prediction error and gives better word
vectors when C is increased.

If we compare the two architectures, CBOW is simpler and faster to train,
but skip-gram performs better with words that do not appear frequently in
the data set.

2. GloVe – Another method for learning word embeddings is GloVe [22]. It is
an unsupervised learning algorithm based on aggregated global word-word
co-occurrence statistics from a given corpus, which are then used to learn
word embeddings. The learned word embeddings are linear substructures of
the word vector space.

Sentence Embeddings. The main difference between sentence embeddings
and word embeddings is that the sentence embeddings are learned for sentences,
paragraphs, and even whole documents, and not for individual words. The first
such model was presented in [19].
1. Doc2Vec – In [19] the authors propose an unsupervised paragraph embedding

method, called Doc2Vec, which creates vector representations of documents,
regardless of their length. Doc2Vec works by concatenating the paragraph
vector and word vectors in a sliding window fashion, and predicting the next
word. The algorithm used for training is based on gradient decent. This algo-
rithm also takes into account the order of words and their context.

Doc2Vec was inspired by the Word2Vec model. The first approach is an exten-
sion of the CBOW model with an additional vector (Paragraph ID) added.
This means that it uses additional document-unique features to predict the
word. When training the word vectors, the document vector is trained as well.
This model is called Distributed Memory version of Paragraph Vector (PV-
DM). The word vectors represent the concept of a word, while the document
vector represent the concept of a document.

The second algorithm is similar to the skip-gram model and is called Dis-
tributed Bag of Words version of Paragraph Vector (PV-DBOW).



Food Data Normalization Using Lexical and Semantic Similarities Heuristics 473

While the PV-DM method considers the concatenation of the paragraph vec-
tor with the word vectors to predict the next word in a text window, in
the PV-DBOW method the context words in the input are ignored, and the
model predicts words randomly sampled from the paragraph in the output. In
Doc2Vec each paragraph vector is a combination of two vectors: one learned
by the standard paragraph vector with distributed memory (PV-DM) and one
learned by the paragraph vector with distributed bag of words (PV-DBOW).
The authors also state that though the PV-DM model is superior and usually
will achieve state of the art results by itself, they recommend a combination
of the two models.

3 Methodology

In this section, we present both methodologies used for food data normalization,
i.e. based on lexical and semantic similarity.

3.1 Lexical Similarity

For calculating lexical similarity between two food entities, we used our previ-
ously proposed approach [9,13,25] based on POS tagging combined with proba-
bility theory. If D1 is one text segment (in our case food entity) and D2 is another
text segment, we first apply POS tagging and assign to each of the words in the
text segments an appropriate Part-Of-Speech tags such as: nouns (NN, NNS,
NNP, NNPS), verbs (VB, VBD, VBG, VBN, VBP, VBZ), adjectives (JJ, JJR,
JJS), cardinal numbers (CD), etc. [17]. Let us define the following sets:

Yi,j = {tokens, from, Di, that, belong, to, one, word, class}, (2)

where j = 1, 2 . . . , n. The possible word classes are: nouns, adjectives, verbs,
adverbs, prepositions, determiners, pronouns, conjunctions, modal verbs, parti-
cles, and numerals. Therefore, for all word classes for each text segment there
is a set of tokens. For example, Yi,j can be a set of all tokens from Di that are
tagged as nouns. In such case, the set consists of all tokens that are tagged as
NN, NNS, NNP, and NNPS. Given that we are dealing with significantly short
text segments, not all of the sets for the word classes will have elements in them,
and more importantly not all of them are significant for the specific problem.
The set of nouns is crucial because nouns carry most of the information in the
text, while all other word classes (adjectives, verbs, numbers, etc.) give an addi-
tional explanation. After extracting the set word classes that are significant,
lemmatization [14] is applied to each of them. To find string similarity between
both pieces of text, a probability event is defined as a product of independent
events

X = N
k∏

j=1

Zj , (3)
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where N is the similarity between the sets of nouns found in both pieces of text,
k is the number of additional word classes that are selected and are significant
for the domain, and Zj is the similarity between the sets of word class j, found
in both text. The additional word classes can be adjectives, verbs, etc.

Because these events are independent, the probability of the event X can be
calculated as

P (X) = P (N)
k∏

j=1

P (Zj). (4)

To calculate it, the probabilities of the independent events need to be defined.
Because the problem looks for the similarity between two sets, we use the Jac-
card index J , which is used in statistics for comparing similarity and diversity of
sample sets [15]. For the similarity between the nouns, the Jaccard index is used,
while for the similarity between the additional word classes the Jaccard index
in combination with Laplace probability estimate [4] is used. This is because in
some short segments of text, the additional class sets can be empty, i.e. not con-
tain any words. We do this to avoid probabilities equal to zero. The probabilities
are calculated as

P (N) = |N1∩N2|
|N1∪N2| ,

P (Zj) = |Zj1∩Zj2 |+1

|Zj1∪Zj2 |+2 . (5)

By substituting Eqs. 5 into Eq. 4, we obtain a weight for the matching pair.
Addressing the food domain, or specifically on the food matching problem,

let D1 and D2 be the (in our case Slovenian, but could also be any language)
names of two selected food products. As previously mentioned, the nouns carry
most of the information, while the additional word classes that describe the food
domain are adjectives, which explain the food item in more detail (e.g., frozen,
fresh), and the verbs, which are generally related with the method of preparation
(e.g., cooked, dried). Let us define

Ni = {nouns extracted from Di},
Ai = {adjectives extracted from Di}, (6)

Vi = {verbs extracted from Di} (7)

where i = 1, 2 . . . , n.
To find the similarity between the names of food products, an event is defined

as a product of two other events

X = N · (A + V ), (8)

where N is the similarity between the nouns found in N1 and N2, and A+ V is
the similarity between the two sets of adjectives and verbs handled together as
A1 + V1 and A2 + V2. The adjectives and verbs are handled together to avoid
different forms with the same meaning. Additionally, lemmatization is applied
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for each extracted noun, verb and adjective, and the similarity event uses their
lemmas.

Because these two events are independent, the probability of the event X
can be calculated as

P (X) = P (N) · P (A + V ). (9)

The probabilities are calculated as

P (N) = |N1∩N2|
|N1∪N2| ,

P (A + V ) = |(A1∪V1)∩(A2∪V2)|+1
|(A1∪V1)∪(A2∪V2)|+2 (10)

By substituting Eqs. 10 into Eq. 9, we obtain a weight for each matching pair.

3.2 Semantic Similarity

For mapping the food products from both data sets by using semantic similarity,
we explore two different embedding approaches: word embedding techniques -
that generate vectors on the word level, and sentence embedding that generate
vectors on the sentence/paragraph level.

In the training phase, ss in the Slovenian language one word can have different
grammatical cases, we use the lemmas of the words contained in the names of the
food products. This means that even if multiple words have different grammatical
cases, their lemma will be the same if they are derived from the same root.

Let us have fp as the name of a food product, which is consisted of n words:

fp =
{
word1, word2, ..., wordn

}
(11)

Then after lemmatization we have:

fp =
{
lemma1, lemma2, ..., lemman

}
(12)

Heuristics for Merging Word Embeddings to Compute Para-
graph/Sentence Embeddings. On word level we used two word embedding
techniques – Word2Vec [18] and GloVe [22]. After applying the two algorithms,
we obtained vector representations for each lemma in the food product name
(Eq. 12):

E[lemmaa] =
[
xa1, xa2, ..., xad

]
(13)

a ∈ {1, ..., n}, and d is the dimension of the generated word vectors. Because
with Word2Vec and GloVe we obtain vector representations for separate words,
and the text segments we want to normalize are consisted from multiple words,
we need to establish a heuristic for merging the separate word vectors for all the
lemmas of a name, in order to obtain the vector representation for the whole
food product name. For this purpose we chose the following two heuristics:
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1. Average – The vector representation for the food product is calculated by
averaging the vector representations of each lemma:

Eaverage[fp] =
[xa1 + ... + xn1

n
, ...,

xad + ... + xnd

n

]
(14)

2. Sum – The vector representation for the food product is calculated by sum-
ming the vector representations of each lemmas:

Esum[fp] =
[
xa1 + ... + xn1, ..., xad + ... + xnd

]
(15)

When the heuristics for merging the separate vector representations are
applied we perform the matching by calculating the cosine similarity between
the vector representations of the food products by substituting Eq. 14 or Eq. 15
in Eq. 1:

cos(E[fp1],E[fp2]) =
E[fp1]E[fp2]

||E[fp1]||2||E[fp2]||2 , (16)

where E[fp1] and E[fp2] are embedding vectors of two food products obtained
either considering average or sum as a combining heuristic.

1. Word2Vec embeddings – When generating the Word2Vec embeddings, we
considered different values for the dimension size and sliding window size.
Values for the sliding window were chosen to be [2, 3, 5], while the dimen-
sions were [100, 200], we also considered the two types of feature extraction
available by Word2Vec – Bag of Words and skip-gram. By combining these
parameter values, 12 Word2Vec models were trained, plus considering the
heuristics for combining, a total of 24 models.

2. GloVe embeddings – Same as the Word2Vec parameter choice, the same val-
ues were used for the numeric parameters of GloVe, i.e. [2, 3, 5] for the
sliding window and [100, 200] for the dimension size. Thus, six GloVe models
were trained, when paired with the merging heuristics results in a total of 12
models.
The sliding windows for both methods were chosen according to the average
number of words per food product, which was approximately nine.

Doc2Vec Paragraph Embeddings. The second approach of generating vec-
tor embeddings for the food product names is using the Doc2Vec algorithm. If
fp is the food product name with all the words lemmatized (Eq. 12) then the
generated vector representation from Doc2Vec is as follows:

EDoc2V ec[fp] =
[
x1, x2, ..., xd

]
(17)

Where d is the predefined dimension of the vectors. The similarity between two
food products taking into account the Doc2Vec embeddings of the food products
names is calculated by substituting Eq. 17 in Eq. 1:

cos(EDoc2Vec[fp1],EDoc2Vec[fp2]) =
EDoc2Vec[fp1]EDoc2Vec[fp2]

||EDoc2Vec[fp1]||2||EDoc2Vec[fp2]||2 .
(18)
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Same as the two chosen word embedding methods, we considered different
dimension sizes and sliding window sizes, specifically [2, 3, 5] for the sliding
window and [100, 200] for the dimension size. We also considered the two types
architectures in the Doc2Vec model – PV-DM and PV-DBOW, and we used
the non-concatenative mode (separate models for the sum option, and separate
for the average option) because if we used the concatenation of context vectors
rather than sum/average the result would be a much-larger model. Taking into
account all these parameters there are 24 Doc2Vec models trained in total.

4 Data

The data used in our experiments contains food product data from two different
food retailers (for convenience and anonymity let us name them: Retailer1 and
Retailer2). The data about each food product includes food product name in
Slovenian, the EAN barcode, the food label, the lists of ingredients and allergens
(if provided by the retailer), and the name of the producer. Because we are
concentrating on the normalization of food data based on text similarity we
are going to use the (Slovenian) names of the food products to match the data
from the different retailers. The number of food products in the two data sets is
different. Retailer1 had 1836 available food products, while Retailer2 had 6587.
It is important to note that the food names were similar, but not the same (e.g.
bread is named by one retailer as “bel kruh”, i.e. “white bread” in English, and
by another retailer as “pšenični kruh, bel”, i.e. “wheat bread, white”).

4.1 Data Pre-processing

Prior to applying the algorithms for obtaining semantic similarity or calculating
lexical similarity, the data is pre-processed. The first step is lemmatization of
the names of the food products, while the second step is assigning POS tags
on the lemmatized food product names. Since we are working with words in
Slovenian, the POS tagger used is a model specifically trained for the Slovenian
language [11]. This tagger outputs the tagged tokens as tripples: word form,
lemma, and morph-syntactic description or tag. We use the lower case lemmas
for each word. The data consists of words spanning across multiple morphological
types. However, only the lemmas nouns, adjectives, and verbs convey semantic
information. Hence, these are the only three types that are considered while
calculating lexical similarity and training the vector embedding models.

5 Evaluation

In this section we describe the two different approaches of evaluating the food
data normalization methods. In the first approach we evaluate based on the
ground truth data set. Because the ground truth data set comprises of only 439
instances, we included a second type of evaluation – subject-matter evaluation,
where a domain expert evaluated a subset of 100 instances from the ones that
are not part of the ground truth data set, i.e. for the ones that do not have EAN
codes.
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5.1 Experiments and Results

In order to produce a data set consisting of ground-truth values, we matched the
food products by using their corresponding EAN codes, i.e. we can consider the
pair with the same EAN code as a perfect match, as EAN codes are the same
for the same products, regardless of where they are retailed. The format of this
type of data set is shown in Table 1.

Table 1. Ground truth data set format.

Food product name
from Retailer1

EAN code Food product name
from Retailer2

fp11 bc1 fp21
...

...
...

fp1n bcn fp2n

Where fp1x, x ∈ 1, ...n are the food product names from Retailer1 and
analogously fp2x, x ∈ 1, ...n from Retailer2, and bc is the matching EAN code.
There are 439 pairs with a matching EAN code, i.e. n = 439.

Because of the imbalance between the data sets from the two retailers, i.e.
the data set with food products from Retailer1 is significantly smaller than the
data set from Retailer2, in order to evaluate the data normalization methods
we decided to consider the following scenario:

1. For every food product from Retailer1 calculate the similarity with every
food product from Retailer2:

– according to Eqs. 9 and 10 for lexical similarity;
– according to Eq. 16 for every Word2Vec and Glove model;
– according to Eq. 18 for every Doc2Vec model.

2. Take the five most similar food products.
3. Check if one of the five corresponds to the food product matched by the EAN

code in the ground truth data set (Table 1):
– Positive - if the food product with the same EAN code is in the top five

matches;
– Negative - if the food product with the same EAN code is not in the top

five matches.

After evaluating all the models, the results from the best models according to
dimensionality, sliding window and architecture (for Word2Vec and Doc2Vec) are
presented in Table 2 and the accuracy for the best models in Table 3. For all the
embedding methods the best models were with dimensionality d = 200 and used
a sliding window of s = 5. For the Word2Vec method the CBOW architecture
provided better results, and for the Doc2Vec the PV-DM architecture was the
best trained model. In Table 4 examples from the evaluation based on the ground
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Table 2. Evaluation results for the best models.

Model Positives Negatives

Word2Vec average 271 168

Word2Vec sum 271 168

GloVe average 238 201

GloVe sum 238 201

Doc2Vec average 384 55

Doc2Vec sum 385 54

Lexical 329 110

Table 3. Accuracy for the best models.

Model Accuracy

Word2Vec average 0.62

Word2Vec sum 0.62

GloVe average 0.54

GloVe sum 0.54

Doc2Vec average 0.87

Doc2Vec sum 0.88

Lexical 0.75

truth data set are presented. The food product name in English in the examples
is Emmental cheese snack and the food product matches that are in bold are the
matches that are positive, i.e. have the same EAN code from the ground truth
data set. For this particular example, we can see that the Doc2Vec sum model
gave the correct match as the first one, the lexical similarity model as the second
match, the Word2Vec sum model as the third match, and the GloVe model did
not provide the correct match at all. A side note here is that all the models for
this example provided matches that are somewhat relevant to the product, i.e.
they are all a type of cheese.

5.2 Subject-Matter Evaluation

The second approach for evaluating the methods for food data normalization is
to include a subject-matter expert, i.e. nutritionist for manual evaluation. This is
done because the ground-truth data set contains only 439 instances, and for the
rest 1397 instances from Retailer1 the EAN codes are not available, therefore
we are unable to conduct the same type of evaluation. Additionally, subject-
matter expert evaluation provides a real-world testing case, where a human
evaluates whether the matching is relevant The human expert evaluation was
done according to the following steps:
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Table 4. Examples from the evaluation based on EAN code matches (bolded matches
correspond to a EAN code match between that match and the food product).

(a) Word2Vec sum model

Food product: Sir Ementaler snack listici 150g

Match 1: Rezani sir v listicih snack kaeserei champignon 150g

Match 2: Topljeni sir v listicih snack kaeserei champignon 150g

Match 3: Topljeni sir ementaler v listicih Kaeserei Champignon 150g

Match 4: Topljeni sir v listicih ementalec mercator 150g

Match 5: Topljeni sir v listicih klasik mercator 150g

(b) GloVe sum model

Food product: Sir Ementaler snack listici 150g

Match 1: Poltrdi sir gauda rezine 150g

Match 2: Svezi sir mascarpone antiche latterie 250g

Match 3: Sir gauda starana veerger kaas 200g

Match 4: Ovcji poltrdi sir rezine el pastor 70g

Match 5: Poltrdi sir tilzit rezine 150g

(c) Lexical model

Food product: Sir Ementaler snack listici 150g

Match 1: Topljeni sir v listicih snack kaeserei champignon 150g

Match 2: Topljeni sir ementaler v listicih Kaeserei Champignon 150g

Match 3: Rrezani sir v listicih snack kaeserei champignon 150g

Match 4: Pasta snack z brokolijem in sirom knorr 69g

Match 5: Topljeni sir v listicih klasik mercator 150g

(d) Doc2Vec sum model

Food product: Sir Ementaler snack listici 150g

Match 1: Topljeni sir ementaler v listicih Kaeserei Champignon 150g

Match 2: Sir Ementaler Meggle listici 150g

Match 3: Topljeni sir Bel Ami Meggle 140g

Match 4: Topljeni sir Emmental Creme Lactalis President 125g

Match 5: Sir gauda starana Veerger Kaas 200g

1. For a random subset 100 food product from Retailer1 that do not have
EAN codes available, calculate the similarity with every food product from
Retailer2:

– according to Eqs. 9 and 10 for lexical similarity;
– according to Eq. 16 for every Word2Vec and Glove model;
– according to Eq. 18 for every Doc2Vec model.

2. Take the three most similar food products.
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3. Human expert evaluates each of the three most similar food products as:
– negative - not a match;
– positive - branded product match (total match);
– positive - product match (from nutritional aspect).

In the subject-matter evaluation we included the best performing models
from each method according to the first type of evaluation (Table 3), i.e.:
Word2Vec CBOW, GloVe, Doc2Vec PV-DM, both heuristics – average and sum,
with dimensionality d = 200, and a sliding window of s = 5.

In Table 5 the results from the subject-matter expert evaluation are pre-
sented, while in Table 6 the accuracy for each model is presented. From the
tables it is evident that, asis the case with the evaluation on the ground-truth
data set, that the model with the best results is the Doc2Vec PV-DM sum model.
We can also see that we achieved comparative results considering the lexical sim-
ilarity. This is because the subject-matter expert considered matches also based
on the nutritional value of the products. Namely, two products may not be from
the same brand and not have the same EAN code, but can be the same type of
product, same flavour, same ingredients, etc., therefore we can notice improve-
ment in the lexical similarity model performance compared to the previous type
of evaluation. Examples from the data set for subject-matter evaluation are given
in Table 7.

Table 5. Subject-matter expert evaluation results.

Model Branded product
match

Product match Total Positives Negatives

Word2Vec average 3 18 21 79

Word2Vec sum 5 21 26 74

GloVe average 5 13 18 82

GloVe sum 3 14 17 83

Doc2Vec average 73 18 91 9

Doc2Vec sum 75 16 91 9

Lexical 76 9 85 15

The food product names in English in the examples is Feta cheese, and
the top three matches from the Word2Vec and GloVe models do not have any
matches, i.e. all of them are of match type no match. Semantically, Match 2
for Word2Vec and Match 1 for GloVe are both types of cheeses, however they
are of different nature and have different nutritional contents. Moving on to
the lexical model, it produces one match of each type (branded product match,
product match and no match). Finally, the best results were obtained by the
Dov2Vec model, providing excellent results with one branded product match and
two instances of type product match.
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Table 6. Model accuracy from subject-matter expert evaluation.

Model Accuracy

Word2Vec average 0.26

Word2Vec sum 0.26

GloVe average 0.18

GloVe sum 0.17

Doc2Vec average 0.91

Doc2Vec sum 0.91

Lexical 0.85

Table 7. Examples from the data set for human-expert evaluation.

(a) Word2Vec sum model

Food product: Sir Feta Kolios 200g

Match 1 (no match): Omaka iz parmezana Dukat 200g

Match 2 (no match): Sir Emmental Portion President 250 g pakirano

Match 3 (no match): Sveze polnomastno mleko 3,2 m. m. Mu 1l

(b) GloVe sum model

Food product: Sir Feta Kolios 200g

Match 1 (no match): Sir Edamec Zdenka rezine 200g

Match 2 (no match): Puding s smetano bela cokolada Dany 200g

Match 3 (no match): Nepasirana skuta 35 m. m. Mu Cuisine 1kg

(c) Lexical model

Food product: Sir Feta Kolios 200g

Match 1 (branded product match): Svezi feta sir v slanici Kolios 200 g pakirano

Match 2 (product match): Sir feta v slanici Roussas 400 g pakirano

Match 3 (no match): Sir Edamec Mercator 300g

(d) Doc2Vec sum model

Food product: Sir Feta Kolios 200g

Match 1 (branded product match): Svezi feta sir v slanici Kolios 200 g pakirano

Match 2 (product match): Sir feta v slanici Roussas 400 g pakirano

Match 3 (product match): Sir feta Zop Roussas 200g

6 Conclusions

Representation learning together with word and sentence embeddings have
emerged as a novel way of language modeling and feature learning techniques. We
explore the idea of using these techniques for data normalization of food-related
data.
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The term food-related data is very broad, and in this work we focus on match-
ing food products represented by non-English (Slovenian) short text description
from two different online grocery stores. The matching of the food products is
done according to two different heuristics:

1. Matching food products considering lexical similarity – calculating a similar-
ity by a modified version of our previously proposed approach [9,13];

2. Matching food products considering semantic similarity – calculating a sim-
ilarity or matching score which is the cosine similarity of the learned word
and sentence embedding vectors.

We previously delved into this idea [24] using only word embeddings, gener-
ated using the Word2Vec and GloVe methods, and here we extended the it by
introducing sentence embeddings with the Doc2Vec method.

To evaluate our data normalization approach, we considered two different
aspects:

1. Automated evaluation based on a ground-truth data set of food product
matched by their EAN codes – for each pair in the ground-truth data set,
we took the first product, found the five top matches based on the proposed
heuristics and checked if the second product of the pair, i.e. the match based
on the EAN code is in the top five matches.

2. Subject-matter evaluation – data sets from each model, with the top three
matches for 100 randomly selected examples that do not have EAN codes
available were evaluated by a domain expert - a nutritionist.

The EAN code evaluation follows the same method as in our previously
published paper [24], while in this work we extend the evaluation by including
subject-matter expert evaluation.

The results from the automated evaluation and the subject-matter evaluation
show that sentence embeddings outperform word embeddings in the task of data
normalization for food-related data. The Doc2Vec method provides better results
in both cases, with 88% accuracy for the evaluation based of the ground truth
data set, and 91% accuracy for the human-expert evaluation data set. The lexical
similarity model gave good results in both cases, achieving 75% accuracy in the
evaluation based on the ground truth data set, and 85% accuracy for the human-
expert evaluation data set.

Taking into consideration the results from this study, for future work we
plan to proceed in the direction of data normalization of food data presented in
a multilingual setting. Going in this direction we intent to use Multilingual Word
Embeddings (MWEs) [1,5], which represent words from multiple languages in a
single distributional vector space.
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Abstract. This paper describes an approach to personalized muscu-
loskeletal modelling, in which the muscle represented by its triangu-
lar mesh is subject to deformation, based on a modified position-based
dynamic (PBD) method, followed by decomposition of its volume into a
set of muscle fibres. The PBD was enhanced by respecting some muscle-
specific features, mainly its anisotropy. The proposed method builds no
internal structures and works only with the muscle surface model. It runs
in real-time on commodity hardware while maintaining visual plausibil-
ity of the resulting deformation. For decomposition, the state-of-the-art
Kukačka method is used. Experiments with the gluteus maximus, gluteus
medius, iliacus and adductor brevis deforming during the simulation of
the hip flexion and decomposed into 100 fibres of 15 line segments show
that the approach is capable of achieving promising results comparable
with those in the literature, at least in the term of muscle fibre lengths.

Keywords: Position based dynamics · Musculoskeletal system ·
Muscle deformation · Muscle fibres · Personalised model

1 Introduction

For decades, musculoskeletal modelling has been an important topic of research
interest because of its ability to estimate internal loading on the human skeleton,
which cannot be measured in-vivo. These estimations are useful, e.g., for preop-
erative surgical planning and postoperative assessment in orthopaedic surgery,
rehabilitation procedures, prosthesis design, or prevention of injuries in profes-
sional sport.

Musculoskeletal models used in common practice (see, e.g., [1,2,6,8,11]) rep-
resent a muscle (or even a group of muscles) as one or more Hill-type one-
dimensional structures, commonly referred as lines of action or fibres, connecting
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the origin and insertion points of the muscle, i.e., the sites at which the muscle
is attached to the bone by a tendon, and passing through a couple of predefined
via points, fixed to the underlying bone, or wrapping around predefined para-
metric objects (e.g. spheres, cylinders, or ellipsoids). Due to apparent difficulties
with the specification of the locations of insertion, origin, and via points, it is
common that there are no more than three fibres per muscle and they penetrate
the bones in some poses. Figure 1 shows an example of models of this kind. An
advantage of this approach, which makes it so popular, is its simplicity and rapid
processing speed.

Fig. 1. Musculoskeletal models used in common practice: left – Anybody (http://
www.anybodytech.com/) default model, middle – OpenSim (https://simtk.org/home/
opensim) gait2392 model, right – LHDL model [22].

As acquiring complete patient-specific or subject-specific data is nearly
impossible due to technological limitations of scanning devices, these muscu-
loskeletal models have anatomical parameters derived from cadaver experiments.
However, to answer specific subject-related questions, it is generally believed
that a patient-specific or subject-specific model is needed. The current practice
is, therefore, to take some of these generic models and adapt it to get a person-
alized model, which most typically consists of a non-uniform scaling (see, e.g.,
[38]) and a change of optimum fibre length.

Bolsterlee et al. [3] pointed out that many parameters in a model are inter-
related. Adapting the model to the subject by scaling improves the anatomical
resemblance between the model and the subject but may not improve force
prediction. Unfortunately, it is not known how to adapt the other parameters.
Several studies, e.g., [10,12,31], warn that attachment sites of muscles show
high inter-subject variability, which may considerably affect muscle moment-
arms because it has been shown that small differences in location of muscle
attachment points often affect muscle force predictions to a great extent (see
e.g., [4]).

http://www.anybodytech.com/
http://www.anybodytech.com/
https://simtk.org/home/opensim
https://simtk.org/home/opensim
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Valente et al. [34] showed that representing a muscle, especially, a complex
one, e.g., the gluteus medius, by a single line segment can produce errors up to
75% suggesting thus that the number of fibres in musculoskeletal models being in
used might not be enough. Recently, Weinhandl & Bennett [37] confirmed that
high number of fibres are required for the muscle surrounding the hip joint to
provide an accurate estimation of joint contact forces. Modenese et al. [26] found
out that representing the muscles surrounding the hip joint by fibres with none
or a few via points only may limit the accuracy of hip contact force predictions.

To reduce the human effort associated with the construction of subject-
specific musculoskeletal models, some researchers proposed algorithms to gen-
erate the fibres automatically providing that the surface model of a muscle is
available [18,20,30]. The problem is how to update the shape of these fibres in
reaction to the movement of bones. One approach to this problem is to express
their vertices to be relative to the vertices of the surface mesh of the muscle,
first, and then use some of the existing algorithms for surface mesh deformation
proposed in the context of musculoskeletal modelling, e.g., [9,16,17,32].

In our conference paper [9], we proposed a new algorithm for muscle mesh
deformation, based on position-based dynamics [28], and demonstrated its fea-
tures on three hip muscles deforming during flexion of the right leg. In this paper,
which is an extended version of that paper, we newly include:

– a description of the implementation details of our algorithm such as its ini-
tialization for muscle deformation, constraints calculations,

– a proposal of alternative algorithms for detecting the muscle points that
should move with the bones,

– new experiments demonstrating the sensitivity of the results on its various
parameters (e.g., anisotropy, number of iterations, resolution of the mesh),

– new experiments showing the lengths of fibres generated in the volume of hip
muscles, and comparing them with those obtained by other approaches.

2 Position-Based Dynamics

Position-based dynamics (PBD), which is the core part of our approach, was
firstly introduced in [28] as a fast, stable, and controllable alternative to mass-
spring systems used in computer graphics algorithm. Since then, it has been
further developed (e.g., [25] proposed recently some speed and accuracy improve-
ments) and has found many (close to) real-time applications, not only in com-
puter graphics, e.g., for simulations of cloth or fluids [33], but even in other
domains. For example, Kotsalos et al. use PBD to model blood cells [24].

PBD represents a dynamic object, e.g., a muscle, by a set of N points, having
associated mass and velocity, and a set of M constraints restricting the free-
dom of the movement of these points during the simulation. In their paper [28],
Müller et al. presented the restraints to maintain distances among the points,
the shape of the object and its volume, and to avoid collisions with other objects,
however, one can use any constraint that is meaningful in their application con-
text. Mathematically speaking, assuming that every point has the same mass,



Muscle Deformation Using Position Based Dynamics 489

the PBD method solves Eq. 1 that describes a movement of a single point pi

restricted by a constraint function C with cardinality n, where Δpi denotes the
difference in position of ith point and �pi

C is the gradient of the function C
with respect to point pi.

Δpi = − �pi
C (p1, . . . ,pn)

∑n
j=1

∣
∣�pj

C (p1, . . . ,pn)
∣
∣2

· C (p1, . . . ,pn) (1)

2.1 Distance Constraint

Distance constraint is restricting each model point to change the distance from
the others in its neighbourhood. It is described by Eq. 2, where d is the original
distance between points p1 and p2.

C (p1,p2) = |p1 − p2| − d (2)

At this point, the gradient of this function has to be determined. Calculation
procedure of determining the gradient of the vector norm is shown in (3).

�p1C (p1,p2) = �p1 (|p1 − p2| − d)

=

[
∂(p1x−p2x)

2

∂p1x

∂(p1y−p2y)
2

∂p1y

∂(p1z−p2z)
2

∂p1z

]

2 |p1 − p2|
=

p1 − p2

|p1 − p2| = u

�p2C (p1,p2) =
p2 − p1

|p1 − p2| = −u

(3)

Coincidentally, the result is the unit directional vector u of given edge.

2.2 Volume Constraint

Volume constraint restricts the object to change its volume during the simulation
process. Assuming that this object is a triangular mesh model, the constraint
function is:

C (p1, . . . ,pn) =
m∑

i=1

(
pti1

·
(
pti2

× pti3

))
− V0 (4)

where m is the number of triangles forming the mesh, V0 is its original volume,
and ptij

is jth vertex of triangle i.
To obtain complete gradient of volume constraint function, all triangles are

treated independently and their results are just summed together:

�pi
C (p1, . . . ,pn) =

t∑

h=1

pj × pk; i �= j �= k (5)
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2.3 Local Shape Constraint

Above described constraints are not enough to prevent the triangular mesh model
from becoming noisy, full of unrealistic spikes. One possible solution to this
problem is to use the distance constraint not only to keep the distances between
adjacent points but also between the pairs of points lying on the opposite sides
of the model. This would, however, need to create a 3D mesh model first, which
would be quite complex to do. Another option is to ensure that the local shape is
maintained. To achieve this, the dihedral angles between neighbouring triangles
should stay the same during deformation.

Equation 6 presents the local shape constraint function of triangles p1,p2,p3

and triangle p2,p1,p4 sharing points p1 and p2. In this equation, n1 and n2 are
normal vectors of these triangles and ϕ0 is the original dihedral angle between
them. Gradients are defined in (7).

C (p1,p2,p3,p4) = arccos (n1 · n2) − ϕ0

= arccos
(

(p2 − p1) × (p3 − p1)
|(p2 − p1) × (p3 − p1)|2

· (p2 − p1) × (p4 − p1)
|(p2 − p1) × (p4 − p1)|2

)

− ϕ0

(6)

d =n1 · n2
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3
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2
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�p′
1
C = −

4∑

i=2

�p′
i
C

(7)

3 Our Approach

The requested inputs of our approach are 1) a set of bones, each of which is rep-
resented by a triangular mesh and has an associated time-dependent transforma-
tion describing its movement, and 2) a muscle, also represented by a triangular
mesh. We note that the first input is standard when creating any subject-specific
musculoskeletal model. A muscle model is obtainable with a little effort from the
medical images by segmentation (similarly as models of bones). Optionally, the
user may specify a set of muscle fibres, represented by polylines, obtained, e.g.,
by Kohout & Kukačka [19], Kohout & Cholt [21], or Otake et al. [30] method.
Furthermore, the user may also specify a set of attachment areas that describes
the sites where the muscle attaches to the bones. As the muscle attachment sites
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Fig. 2. Gluteus Maximus deformed by our approach: a) the input (origin and insertion
attachment sites denoted by red and blue spheres), b) bones move from their initial
rest-pose to the current pose (wireframe), c) the muscle surface adapted to the change
of bones by PBD, d) the output. (color figure online)

are not apparent from the medical images, these are traditionally identified man-
ually by an expert, typically as a set of landmarks fixed to the bones. Figure 2a
shows an example of a typical input.

At each vertex of the muscle mesh, we create one PBD point with the mass
being 1.0 and the initial velocity 0. For each pair of PBD points corresponding to
the vertices connected in the muscle mesh by an edge, we establish the distance
constraint (see Sect. 2.1) modified to support the anisotropic feature of muscles
– see Sect. 3.1. Similarly, we create the local shape constraint (see Sect. 2.3) and
the volume constraint (see Sect. 2.2). We note that we do not create any distance
constraint between points of opposite sides of the muscle to avoid an unnatural
change of the muscle shape during the simulation but rely solely on the latter
two restraints in that.

We distinguish between two classes of PBD points: fixed and moveable, auto-
matically detected as described in Sect. 3.3. A fixed point is bound to a single
bone and moves with it at the beginning of the PBD simulation. The movement
of the fixed points violates the equilibrium of the entire system, as described by
the constraints, and the PBD attempts to restore it by updating, iteratively, the
position of the moveable points while avoiding the penetration with the moved
bones using the mechanism for collision detection and response described in
Sect. 3.2 – see Fig. 2b,c.

Providing that the muscle fibres are specified, we compute the mean value
coordinates of every vertex of polylines representing the fibres in the domain
described by the triangular mesh of the muscle using the algorithm by Ju et al.
[15]. Mathematically speaking, this operation maps the position of a muscle fibre
vertex from E3 to En, where n is the number of vertices of the muscle mesh.
When the muscle surface deforms, the inverse mapping provides new positions
of fibre vertices within the deformed domain (see Fig. 2d):
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v′
i =

n∑

j=1

wj · p′
j (8)

In the equation above, v′
i denotes the i-th fibre vertex, wj are its mean value

coordinates and p′
j is the position of the deformed muscle vertex pj .

The entire algorithm written in pseudocode is in Algorithm1 and 2.

3.1 Anisotropy

The PBD algorithm has been originally proposed in the computer graphics field
to model isotropic materials (e.g., cloths). However, muscles are anisotropic
(may behave differently in two distinct directions), so it is appropriate to take
anisotropy into account. The main idea is that muscle surface is stiffer in the
direction perpendicular to the muscle fibres and more flexible in the direction
parallel to these fibres. Mathematically speaking, we multiply the distance con-
straint (see Eq. 2) with the result of the following equation:

Algorithm 1. Pre-processing stage of our algorithm.
1: procedure Init(M, SB , SF , SA) � M is a muscle triangular mesh, SF is a

set of muscle fibres, SB is a set of bones,
and SA is a set of attachment areas

2: for all vertices vi ∈ SF do
3: wi = computeMV C(vi, M) � compute the mean value coordinates
4: end for

5: for all bones B ∈ SB do
6: generateCollisionDataStructure(B) � see Section 3.2
7: end for

8: for all vertices pi ∈ M do
9: xi = pi, vi = 0, mi = 1 � initialize a PBD point

10: end for

11: detect fixed points � see Section 3.3

12: for all edges ei ∈ M do
13: generateDistanceConstraint(ei) � compute the original distance d
14: if SF = ∅ then
15: ki = 1 � no anisotropy used
16: else
17: ki = computeAnisotropyStiffness(ei) � see Section 3.1
18: end if
19: generateLocalShapeConstraint(ei) � compute the dihedral angle ϕ0

20: end for

21: generateV olumeConstraint(M) � compute the original volume V0

22: end procedure



Muscle Deformation Using Position Based Dynamics 493

Algorithm 2. Runtime stage of our algorithm.
1: procedure Execute(simFrame) � simFrame is the index of simulation frame
2: for all bones B ∈ SB do � see also Algorithm 1
3: T = getTransform(B, simFrame) � get the transformation matrix
4: transformMesh(B, T )
5: end for

6: for all PBD points i do
7: if isFixed(i) then
8: B = getAttachmentBoneForPoint(i)
9: pi = transformPoint(xi, getTransform(B, simFrame))

10: else
11: vi = vi+ Δt · fext (xi) /mi � update velocities by external forces
12: vi = vi · cdamp � apply some damping
13: pi = xi + Δt · vi

14: end if
15: end for

16: loop solverIterations times
17: for all edges ei ∈ M do
18: projectDistanceConstraintWithAnisotropy(ei, ki) � updates pi

19: end for
20: projectV olumeConstraint()
21: for all edges ei ∈ M do
22: projectLocalShapeConstraint(ei)
23: end for
24: for all vertices i do
25: for all bones B ∈ SB do
26: T = getTransform(B, simFrame)

27: generateCollisionConstraints(B, T−1,xi,pi)
28: end for
29: projectCollisionConstraints()
30: end for
31: end loop

32: for all verticies i do
33: if NotIsF ixed(i) then

34: vi = pi−xi

Δt � compute the velocity
35: xi = pi � update the position
36: end if
37: end for

38: for all vertices pi ∈ M do
39: pi = xi � update the muscle mesh
40: end for
41: for all vertices vi ∈ SF do
42: vi = reconstructPositionFromMV C(wi, M)
43: end for
44: end procedure
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ki = 1 − ui · vi (9)

The direction of ith edge is described by normalized vector ui, vi denotes
tangential direction normal vector of nearest fibre on the surface. If both vectors
are collinear, the result ki will be zero, meaning no distance is preserved. If these
two vectors are perpendicular, then k1 is equal to one and edge length will be
preserved.

3.2 Collision Handling

The moving muscle and bones should not intersect each other. From several
approaches to this issue we considered (see our conference paper [9]), we have
opted for voxelization because of its simplicity and processing speed. In this
approach, the bounding box of a bone is divided into a uniform grid of nx ×ny ×
nz equally sized cells. For each triangle in the bone mesh, we detect the cells
intersected by it and mark them as the boundary. Assuming that the mesh is
closed, we mark the cells that are inside the bone using the flood-fill algorithm
with 8-directions. All other cells are outside. Figure 3 shows the visualization of
boundary cells when the constants nx, ny, and nz are equal and when they are
automatically determined from the sizes of the bounding box so that the overall
number of cells is roughly equal to some given constant nmax.

Fig. 3. Voxel representation of pelvis and femur. From left to right: nx = ny = nz = 64
(262 144 cells, 256 KB min), nmax = 262 144 – pelvis = 47 × 64 × 85 (255 680 cells,
250 KB min) femur = 42× 176× 34 (251 328 cells, 245 KB min), nmax = 8 · 262 144 =
2 097 152 – pelvis = 95×128×171 (2 079 360 cells, ≈2 MB min) femur = 85×352×69
(2 064 480 cells, ≈2 MB min).

During the simulation, the algorithm identifies the cell in which a PBD point
pi lies. If this cell is outside the bone, the point does not collide with the bone.
Otherwise, its position needs to be updated. Two scenarios have to be distin-
guished. In the first one, the muscle moves (e.g. because of surrounding forces)
and hits a bone. As it is, the previous position of this point (xi) is outside the
bone. The algorithm, therefore, traverses the collision data structure along the
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line segment from pi to xi until it does not find an outside cell. If this cell is
the cell of xi, pi moves back to xi; otherwise, it moves to the point on the line
segment where the traversal stopped.

In the second scenario, a bone moves into the muscle. Therefore, even the
previous position of the point (xi) no longer lies outside the bone. We propose
a solution where pi moves to xi transformed by the same transformation that
caused the collision.

3.3 Detecting the Fixed Points

Assuming that the muscle is, in fact, a musculotendon unit, i.e., its surface
touches the bones at the attachment sites, there are three approaches to detecting
the muscle points that should be fixed to some bone and move with it, each of
which has its pros and cons. In our previous work [9], we used the constructed
data structure for collision detection also for the identification of the fixed points.
However, recent analysis shows that this algorithm may inappropriately fix also
the points that are close to some bone but should slide along it – see Fig. 4. That
is the real reason for the unacceptable behaviour of the iliacus muscle during the
flexion of the right leg reported in the original paper.

We, therefore, have experimented with another approach. We fix all points
lying in the proximity of some bone, i.e., having their distances to the surface
of a bone smaller or equal to a predefined threshold. An obvious choice is to
compute the average length of edges in the muscle mesh and use it as this
threshold. Figure 5, however, shows that the results are not very different from
the results obtained by the original algorithm. Specification of the threshold
value by the user may help. Nevertheless, this is very sensitive. For example,

Fig. 4. Muscle vertices (red cubes) of Iliacus fixed to some bone, i.e., preserving their
relative position to the bone during the simulation, as identified by the original CD-
based algorithm (nx = ny = nz = 64) causing an unsatisfactory result of the deforma-
tion (right). (Color figure online)
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while 1 mm threshold seems perfect for gluteus maximus, for iliacus, a value less
than 0.5 mm is needed to get something at least reasonable.

The third approach exploits the idea that muscle attachment areas are typi-
cally required for the construction of muscle fibres and, the user, therefore, have
them readily available also for detection of the fixed points. We assume that an
attachment area is defined by a set of landmarks that are fixed to a bone and,
furthermore, they are specified in an order such that interconnecting every pair
of adjacent landmarks by a line segment would produce a closed non-intersecting
poly-line corresponding to the boundary of the attachment area. Following the
idea described by Kohout & Kukačka in [19], we detect the patch on the mus-
cle having the boundary corresponding to the boundary of the attachment area
projected onto the muscle surface and fix all the points of this patch. As Fig. 5
demonstrates, this approach provides us with the best results.

4 Experimental Results

In this paper, a subset of a comprehensive female cadaver anatomical dataset
(81 y/o, 167 cm, 63kg) is used. Specifically, pelvic and femur bones together with
several muscles from the pelvic region have been selected.

Fig. 5. Muscle vertices (red cubes) of gluteus maximus (top) and iliacus (bottom) fixed
to some bone, i.e., preserving their relative position to the bone during the simulation,
as identified by the original CD-based algorithm (nx = ny = nz = 64), the muscle-bone
proximity algorithm with the thresholds: average edge length, 0.5 mm, and 1 mm, and
by the algorithm using muscle attachment areas input data. (Color figure online)
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Fig. 6. Gluteus maximus (19 752 triangles (�)), gluteus medius (10 622 �), iliacus
(13 858 �), and adductor brevis (17 124 �) decomposed into a set of 100 fibres
composed of 15 line segments.

The complete data are publicly available in LHDL dataset [36] and has been
selected because it includes high-quality surface meshes of bones and muscles.
Furthermore, the dataset was improved by removing non-manifold edges, dupli-
cated vertices and degenerate triangles followed by surface smoothing in both
muscle and bone models using MeshLab [5]. The dataset also contains mus-
cle attachment areas and geometrical paths of superficial fibres obtained from
dissection [35].

To decompose the muscles into fibres, we use the Kohout & Kukačka method
[19] with a slight modification: establishing the inter-contour correspondence
is done by minimizing the sum of square distances between the corresponding
points. This modification increases the robustness of the method even in cases
when the user-specified number of straight-line segments per fibre is low.

We decomposed the surface meshes of gluteus maximus, gluteus medius, ilia-
cus and adductor brevis into models of 100 fibres using a template with parallel
fibres composed of 15 line segments – see Fig. 6. The decomposition took less
than 50 ms in all cases on HP EliteDesk 800 G3 TWR (Intel Core i7-7700K @
4.2 GHz, 64 GB RAM, Windows 10 64-bit).

Simulations of hip flexion (0◦ to 90◦) were performed in steps of 2◦ via
inverse kinematics. Inverse kinematics means that the location and movement
of all bones are known, and muscle actual shape has to be determined according
to these situations. We note this is exactly the opposite to what can be seen in
real situation, where muscles control bone movement.
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The default parameters in all our experiments were: nmax = 8 ·64 ·64 ·64, the
damping constant cdamp = 0.99, anisotropy on, local shape constraint stiffness =
0.9 (i.e., the solver was allowed to violate this constraint to preserve the volume
and avoid the penetration between the muscle and bones).

4.1 Number of Solver Iterations

In the first experiment, we investigated the influence of the number of iterations
of constraint projections (see the loop on line 16 in Algorithm2) on the quality of
the results and overall time required for the simulation. From Fig. 7, it is apparent
that the average displacement of points between individual iterations quickly
decreases. In a few iterations, it drops below 0.1 mm; with just 10 iterations it
is below 0.01 mm.

Average time required by one simulation step (Algorithm 2) on HP EliteDesk
800 G3 TWR (Intel Core i7-7700K @ 4.2 GHz, 64 GB RAM, Windows 10 64-bit)
using our, mostly unoptimized, C++ implementation is in Table 1.

Table 1. Times needed for one simulation step on average for adductor brevis using
various number of PBD solver iterations (NoIters).

NoIters 1 3 5 10 25 50 100

Time [ms] 53.04 62.55 74.66 104.96 193.66 441.72 658.71
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Fig. 7. The average displacement of points of adductor brevis between individual itera-
tions of the PBD solver during the hip flexion. Note the logarithmic scale on the y-axis.
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Figure 8 brings a visual comparison of the results obtained using a various
number of iterations. An unrealistic bending of the muscle is apparent, especially
when using a few iterations only. This behaviour has three reasons. First, the
speed of the femur bone is quite high; it is 2◦ per simulation step, which repre-
sents the movement of the fixed points of 3.78–6.75 mm. Next, at the beginning
of the simulation, the moving femur hits an unfixed part of the muscle giving
it a large velocity pulling it in the direction opposite to the natural movement.
Finally, the muscle mesh contains 17126 triangles, i.e., it is pretty accurate, and,
therefore, a lot of iterations are required to propagate the movement from the
points on the femur to those on the pelvis.

Hence, we reduced the number of triangles using the quadric edge collapse
decimation implemented in MeshLab software down to 3000 (L1) and 1000
(L2). Not only visual realism improves, as Fig. 9 illustrates, but also the overall
required time decreases since there are less PBD points and consequently also
fewer constraints to satisfy. For L2 mesh, 1000 iterations need 349.80 ms per
simulation step on average, which is even faster than 100 iterations for the orig-
inal, high-resolution mesh. Naturally, this higher number of iterations improves
visual appearance considerably. We note, however, that increasing the number
of iterations further, e.g., to 10000, does not bring any substantial change.

4.2 Fixed Points

Figure 8 also demonstrates the effect of the algorithm used to detect the points
to fix on the results of the deformation. Due to inaccuracies during the extraction
of the musculotendon unit, only a very small part of the adductor brevis muscle
is touching the femur. When using the original algorithm, which exploits the
collision detection mechanism, a significant area on the muscle is, therefore, not
fixed. As a result, the deformation algorithm produces the mesh with an unreal-
istic sharp spike. There is no such issue with the detection algorithm exploiting
the knowledge of muscle attachment areas.

A different case happens with the iliacus muscle – see Fig. 10. Despite the
relatively high resolution of the voxel data structure, many muscle points in
proximity of the femur ball are fixed incorrectly to the femur. As a result, this
part of the muscle moves unrealistically into the narrow space between the femur
and pelvis. Using the attachment areas improves the situation but only slightly
because the points in the proximity of the femur ball typically collide with the
coarse voxel representation of the femur and they are, therefore, transformed
using the same transformation. After turning this collision handling mechanism
off, the algorithm provides us with acceptable results with a small muscle-bone
penetration.
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Fig. 8. Adductor brevis at flexion of 40◦ using 1, 3, 5, 10 or 100 PBD solver iterations
(from left to right) with anisotropy off (odd rows) and on (even rows) when fixing the
points by the original CD-based algorithm with nmax = 8 · 262 144 (the first two rows)
and by the algorithm using muscle attachment areas (the last two rows).

4.3 Anisotropy, Volume and Other Constraints

The impact of the anisotropy on the results is apparent in Fig. 8. Surprisingly, it is
barely observable. Most probably, this is because the other constraints (especially
the volume constraint) play a dominant role. Volume preservation constraint was
tested by determining ratio between both original and actual volumes. Figure 11
show us the volume preservation results. As we can see, the volume is well
preserved (the error is less than 1% in all cases). Other quantitative tests, e.g.,
preservation of the dihedral angles between two adjacent triangles and average
edge extension, are presented in our original conference paper [9].

4.4 Muscle Fibre Lengths

Last but not least, we analyzed the lengths of fibres reconstructed at the end of
the deformation step. To remove any noise that might be present in the data, we
performed a smoothing process, repeated five times, that updates the length li
according to the equation: l′i = (li−1 + 4 · li + li+1)/6. The results are present in
Figs. 12, 13, and 14. Both gluteus maximus and gluteus medius behave during the
hip flexion as expected. The lengths of all the gluteus maximus fibres increase.
In the case of the gluteus medius, only the surface fibres extend, while the deep
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Fig. 9. Adductor brevis at flexion of 40◦ using 100 PBD solver iterations, anisotropy
on, fixing the points at muscle attachment areas when a surface mesh with 17 124,
3 000, and 1 000 triangles is used.

Fig. 10. Iliacus at flexion of 40◦ using 5 PBD solver iterations, anisotropy on, fixing
the points by the original CD-based algorithm with nmax = 8 ·262 144 (left) and by the
algorithm using muscle attachment areas with (middle) and without (right) collision
handling when a bone hits the muscle.
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Fig. 11. Volume preservation during hip flexion using 3 PBD solver iterations.
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Fig. 12. Total length of each individual fibre during simulation in the gluteus maximus
muscle. The visual results at 20◦, 50◦, and 70◦ are shown for illustration.

fibres contract. For the iliacus muscle, we can observe an unrealistic increase in
the lengths when the flexion is greater than 70◦, which is caused by the above-
described issue of pushing a part of the muscle into the joint space.

4.5 Deformation Speed

The proposed method was designed to be not only precise, but mainly, fast.
It was implemented in C++ using VTK toolkit. Its current version is publicly
available at https://github.com/cervenkam/muscle-deformation-PBD.

Using the collision detection structure with nx = ny = nz = 64 and three
PBD solver iterations, we measured the processing speed of our implementation.
All tests were performed on Intel R© CoreTM i7-4930K 3.40 GHz CPU, Radeon
HD 8740 GPU and WDC WD40EURX-64WRWY0 4TB HDD. The results, given
in FPS (Frames Per Second), i.e., the number of simulation steps per second,
are listed in Table 2. As it can be seen, the FPS strictly depends on number of
triangles (Spearman’s ρ = −1). The more triangles is used, the slower the method

https://github.com/cervenkam/muscle-deformation-PBD
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Fig. 13. Total length of each individual fibre during simulation in the gluteus medius
muscle. The visual results at 20◦, 50◦, and 70◦ are shown for illustration.

Table 2. FPS of each simulation.

Deforming object Triangle count FPS

Gluteus maximus 19752 33.85

Abductor brevis 17124 35.89

Iliacus 13858 47.21

Gluteus medius 10622 57.12

is. Even though the program is mostly unoptimized and runs sequentially at the
moment, the FPS is sufficient for considered purposes in general.

5 Discussion

In the past, several algorithms for the deformation of the surface mesh of a
muscle were proposed. Most of these algorithms, however, have unreal require-
ments on the input, e.g., [16,17] rely on existence of a muscle skeleton (centroid)
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Fig. 14. Total length of each individual fibre during simulation in the iliacus muscle.
The visual result at 20◦, 50◦, and 70◦ are shown for illustration. For clarity, we do not
show the fibres. Readers are referred to Fig. 10 to see the produced fibres of the iliacus
muscle.

having known a physiologically correct deformation, or they ignore important
physiological properties such as impenetrability with bones and other muscles
(e.g., [17,32]), muscle volume preservation, and anisotropy of muscles during
their contraction.

Romeo et al. [32] independently to our work developed an approach similar
to ours. The main differences are as follows. First, the authors build a complex
internal muscle structure to better preserve the shape and volume of the mus-
cle, while we work with the surface geometry only. Next, they do not include
any mechanism to prevent penetration of muscles and bones, relying thus on
manually defined various mesh-to-mesh constraints, which not only complicates
the setup but also does not guarantee impenetrability. We implemented a simple
and fast collision handling that avoids muscle-bone penetration in most cases.
Finally, their aim is to have a visually plausible skin deformation but what is
going on inside the body is not of their interest. We, on the other hand, focus
on the representation of muscles for mechanical assessments.
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Janak et al. [14] proposed a technique based on the mass-spring system to
deform the fibres while preventing their penetration with bones and fibres of
other muscles. To get reasonable results, a lot of particles are required, which
causes high time and memory complexity. More importantly, the muscle volume
is not preserved. This could be probably solved using the approach described in
[13], however, it would increase computational time dramatically. Finally, our
experiments show that although this method retains the smooth shape of iliacus
muscle during flexion, it twists the part of the muscle close to the insertion. This
is because, unlike our approach, the particles are in the entire volume of the
muscle, which results in a model that is much more rigid, and as anisotropy is
not exploited, rigid in all directions. Our method supports anisotropy, preserves
the volume and runs in a fraction of time while requiring no extra parameter or
input in comparison with this method.

The most complex way to solve muscle dynamics is by using the finite element
method (FEM). This approach is physically the most accurate one if the muscle
is well discretized (see e.g., [7]). However, computational complexity is high,
meaning the FEM-based methods are unsatisfactorily slow. Therefore, it is quite
impractical for real-time application or even clinical assessments. Next issue is
a difficult set up of FEM methods, making them unsuitable for personalised
musculoskeletal method deformation. Despite these facts, these methods can be
seen in the movie industry, see e.g. Ziva VFX1 plugin for Maya, and in muscle
physiology research, see e.g. [29] or [23]. In comparison with these methods, our
method is quite simple to set up and runs fast providing the promising results
in most cases.

Recently, Modenese & Kohout [27] presented a simple method that calcu-
lates the kinematic position of a vertex of the fibre as a linear combination of
the transformations of its rest-pose position with respect to the bones with the
attachment sites of the muscle this fibre belongs to, whereas the blending weight
is chosen as a function of the relative distance of this vertex from the origin
point of the fibre with one user-specific parameter to minimize the penetration
of the fibre with bones. Using the approach described in [18] to highly discretize
the muscles of pelvic region (up to 100 fibres of 15 line segments), the fibres’
moment arms of hip flexion, adduction, and internal rotation were validated
against measurements and models of the same muscles from the literature with
promising outcomes. Nevertheless, extending the method for muscles wrapping
around multiple bones, such as rectus femoris, is not straightforward. Further-
more, a muscle-bone penetration cannot be avoided and in the case of the iliacus
muscle, the fibres are also unrealistically pushed into the hip joint. Similarly to
[14], the volume of a muscle cannot be preserved.

We compared the length of the fibres produced by Modenese & Kohout [27]
with those produced by our approach using the same data. Figure 15 shows a
good match between the results for the gluteus medius and the iliacus. A signifi-
cant difference is apparent for the gluteus maximus. The range of lengths of our
fibres is much bigger than theirs, whereas our fibres tend to be longer. One of

1 https://zivadynamics.com/.

https://zivadynamics.com/
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Fig. 15. Comparison of the lengths of the fibres of the gluteus maximus (left), gluteus
medius (middle), and iliacus (right) muscle produced by our approach (red) and by
the approach described in [27] (blue). (Color figure online)

the reasons for this difference is that our approach guarantees impenetrability
between muscle and bones. As a result, all the fibres have to wrap around the
joint and, naturally, they must be longer than the fibres produced by the other
approach, where some fibres penetrate the femur in extreme positions. The vol-
ume preservation constraint prevents the flattening of the muscle at the greater
trochanter of the femur, which means that the surface fibres are more distant
from the bone than in the other approach. Consequently, they are longer.

There are some limitations of the proposed approach. First of all, the exper-
iments have shown that detecting the muscle points that should move with
bones exploiting the information about attachment areas of the muscle is supe-
rior in most cases when compared with proximity or collision-based detection.
The muscle attachment sites, however, cannot be extracted automatically from
the medical images and their manual specification, by an expert in anatomy,
is time-consuming. Nevertheless, Fukuda et al. [10] proposed an approach to
the automatic estimation of the muscle attachments that is based on apply-
ing a non-rigid transformation of the surface model of a normalized (average)
bone with a normalized attachment site specified onto the surface model of the
subject-specific bone. When the normalized attachment site is obtained from a
probabilistic atlas built as suggested by the authors, the estimations are quite
accurate, with dice coefficients reaching up to 70%.

Next, the proposed collision handling is inaccurate, which leads to an appear-
ance of sharp spikes on the surface of the muscle, especially, when using a coarse
voxel representation of bones. Naturally, as the memory complexity of this repre-
sentation grows cubically, it is obvious that using a refined voxel representation
is impractical. In the scenario when a bone moves into a muscle, setting the
velocities of the colliding points to zero instead of using the formula on line 34
(in Algorithm 2) could help.

Finally, the results are very sensitive to the settings of the parameters. Fortu-
nately, as the simulation runs in real-time, even using an unoptimized sequential
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implementation, the user may tune the values of these parameters until they are
satisfied with the visual output of our approach.

6 Conclusion and Future Work

The presented approach is capable of performing a visually plausible and physi-
cally correct real-time deformation of muscles represented by triangular meshes
in most cases we tested. The main issue is with the iliacus muscle, which (when
deformed) looks unrealistic. Nevertheless, the qualitative and quantitative results
(e.g., the length of the fibres produced in the volume of the deformed muscle)
are comparable with the other state-of-the-art methods. In the future, the ilia-
cus muscle deformation will be further analyzed and the issue with muscle tissue
entering the joint is to be solved.

The implementation is written in C++ and partially included in OpenSim
(a state-of-the-art simulation software) as a plugin. Its source code is available
at https://github.com/cervenkam/muscle-deformation-PBD.

Acknowledgment. Authors would like to thank their colleagues and students for
valuable discussion, worthful suggestions and constructive comments. Authors would
like to thank also anonymous reviewers for their hints and notes provided.

References

1. Arnold, E.M., Ward, S.R., Lieber, R.L., Delp, S.L.: A model of the lower
limb for analysis of human movement. Ann. Biomed. Eng. 38(2), 269–
279 (2009). https://doi.org/10.1007/s10439-009-9852-5. http://www.ncbi.nlm.nih.
gov/pmc/articles/PMC2903973/

2. Audenaert, A., Audenaert, E.: Global optimization method for combined spherical-
cylindrical wrapping in musculoskeletal upper limb modelling. Comput. Methods
Programs Biomed. 92(1), 8–19 (2008). https://doi.org/10.1016/j.cmpb.2008.05.
005. http://www.ncbi.nlm.nih.gov/pubmed/18606476

3. Bolsterlee, B., Veeger, D.H.E.J., Chadwick, E.K.: Clinical applications of muscu-
loskeletal modelling for the shoulder and upper limb. Med. Biol. Eng. Comput.
51(9), 953–963 (2013). https://doi.org/10.1007/s11517-013-1099-5

4. Carbone, V., van der Krogt, M., Koopman, H., Verdonschot, N.: Sensitivity of
subject-specific models to errors in musculo-skeletal geometry. J. Biomech. 45(14),
2476–2480 (2012). https://doi.org/10.1016/j.jbiomech.2012.06.026

5. Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F.,
Ranzuglia, G.: MeshLab: an open-source mesh processing tool. Comput-
ing 1, 129–136 (2008). https://doi.org/10.2312/LocalChapterEvents/ItalChap/
ItalianChapConf2008/129-136

6. Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp, E.L., Rosen, J.M.: An inter-
active graphics-based model of the lower extremity to study orthopaedic surgical
procedures. IEEE Trans. Biomed. Eng. 37(8), 757–767 (1990). https://doi.org/10.
1109/10.102791

7. Delp, S.: Three-dimensional representation of complex muscle architectures and
geometries 1. Ann. Biomed. Eng. 33, 1134 (2005). https://doi.org/10.1007/s10439-
005-1433-7

https://github.com/cervenkam/muscle-deformation-PBD
https://doi.org/10.1007/s10439-009-9852-5
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2903973/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2903973/
https://doi.org/10.1016/j.cmpb.2008.05.005
https://doi.org/10.1016/j.cmpb.2008.05.005
http://www.ncbi.nlm.nih.gov/pubmed/18606476
https://doi.org/10.1007/s11517-013-1099-5
https://doi.org/10.1016/j.jbiomech.2012.06.026
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.1109/10.102791
https://doi.org/10.1109/10.102791
https://doi.org/10.1007/s10439-005-1433-7
https://doi.org/10.1007/s10439-005-1433-7


508 J. Kohout and M. Červenka
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Abstract. This paper presents findings of a research project undertaken to
assess four national health information systems in Ireland and their compliance
with nationally agreed health information standards. The review was undertaken
in the Health Research Board (HRB) which is a State-funded agency with
responsibility for the collection, analysis and reporting of national health data.
The aim of the review was to identify the extent to which the HRB was com-
pliant with the national standards for health information agreed by Ireland’s
health information regulatory body, the Health Information and Quality
Authority (HIQA). The methods used focused on the application of a self-
assessment tool (SAT) to the HRB’s health information systems. This involved
documentary analysis of written materials about the systems from both primary
and secondary data sources. The findings show high levels of compliance with
the standards identified but that some areas need to be addressed to ensure that
all aspects of the standards are met. The research shows the value of having
nationally agreed standards for health information that can be applied to a
diverse range of health data sources and systems.

Keywords: National health information systems � Data quality � National
standards � Ireland

1 Introduction

The recognised importance of information and data within the health care area in the
last number of years has led to the emergence of a separate, related discipline, that of
health informatics which has been described as ‘a multi-disciplinary, multi-dimensional
field that seeks to facilitate the effective collection, management and use of information
in the health care environment’ [1]. In the last three decades this has developed as
expectations have grown about the role that health information and technology can play
in improving health care outcomes.

With the increasing interest in health information has been a focus on the need to
improve the quality and effectiveness of the data. HIQA [2] has identified that there are
four key overarching objectives relating to health information which emphasize the
need for improvement: 1) health information should be used to deliver and monitor safe
and high quality care for everyone; 2) health information should be of the highest
quality and where appropriate collected as close as possible to the point of care; 3)
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health information should be collected once and used many times and 4) data collection
should be fit for purpose and cost-effective.

Building on best practice internationally, this paper presents the findings of a
review of four national health information systems using a self-assessment tool
(SAT) [3] which was developed by Ireland’s health information regulatory body, the
Health Information and Quality Authority and which have since become an agreed set
of information management standards for evaluating national health and social care
data collections [4]. HIQA, in developing the tool notes: ‘safe, reliable health and social
care depends on access to, and use of, data and information that is accurate, valid,
reliable, timely, relevant, legible and complete’ [3]. Initial results from the assessment
were presented at the BIOSTEC Healthinf conference in February 2020 [5] but this
paper draws from the broader context for health information in Ireland and attempts to
locate the findings of the review into a broader discussion about the need for data
quality guidelines at a national level.

The value of having key standards for monitoring data quality is well-recognised in
the literature [6–8]. In other jurisdictions, a number of evaluations of public health
surveillance systems have been undertaken [9–11] which Ngugi et al. [10] suggest is
‘to ensure that problems of health importance are being monitored efficiently, effec-
tively, and regularly’ (p. 304).

In recent years, several guidelines and tools have been developed to assist the
managers of health information systems to ensure good information governance and
data quality are at the heart of their processes [12–14]. In Ireland in recent years, HIQA
developed its self-assessment tool (SAT) built largely on a review of international
evidence for use on national health information systems. This assessment tool is in
process of being rolled out within the major Irish health and social care data collections
[15–18].

The research questions for the study were:

a) Do the Health Research Board’s (HRB) systems comply with the HIQA standards?
If so,

b) What areas is there most/least compliance?
c) What does a SAT tell us about improving and shaping health information data

quality into the future?

The paper explores the role that national standards, that are informed by interna-
tional best practice, can play in assisting national bodies in their achievement of better-
quality data. The perceived benefits have been identified in research [19] as better data
which in turn results in improved service planning at the national and local level, safer,
better care for patients and service users and improved population health.

2 Background

2.1 Health Information in Ireland

The management and delivery of health information in Ireland is the responsibility of
several agencies including the Health Research Board (HRB). The information systems
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managed by the HRB and others have developed over a long period in an ad hoc
manner usually in response to particular policy developments or service needs. As a
result, there is no single or standardised approach to the management and delivery of
health information and there is no scope for data sharing and data linkage. Previous
research [19, 20] has highlighted that Ireland lags behind its international counterparts
in relation to health information policy and practice.

2.2 Health Information and the HRB

The HRB is a public service body under the remit of the Department of Health in
Ireland. It collects data in the areas of drugs and alcohol (the National Drug Treatment
Reporting System (NDTRS) and the National Drug-related Deaths Index (NDRDI)); in
relation to disability (the National Ability Supports System (NASS)) and mental health
(the National Psychiatric In-patient Reporting System (NPIRS)).

Data collection in the HRB began in the 1960s in the mental health area, and
systems to collect drug treatment and disability data were developed in the 1990s and a
drug-related deaths index was set up in 2005. Appendix 1 presents a summary over-
view of the four systems. A staff complement of twenty-five is employed to work on
the health information systems and is made up of researchers, data analysts and data
administrators. The annual budget for the health information area is around €2 million.
All the systems generate data at a national level to assist with service planning and
monitoring of key policies in the mental health, disability and drugs areas and annual
reporting is a feature at national, EU and international levels.

2.3 Data Quality: Audit and Evaluation

To ensure data quality, it has been recommended that a process of audit and evaluation
needs to be included as an integral part of any information system [4]. Over the last
number of years, the HRB has given some attention to this area of its work and one of
the organisation’s strategies proposed that all systems would be evaluated during the
strategy period [21]. The level of investment in evaluation and audit has, however, been
poor. In the last five-year period, only one of the HRB’s information systems was
formally externally evaluated and in the last ten-year period, only one other was
audited [22, 23], hence the need to undertake to review the systems.

2.4 Data Quality: The Role of HIQA

The Health Information and Quality Authority (HIQA) is the independent statutory
authority in Ireland that was established to promote safety and quality in the provision
of health and social care services for the benefit of the health and welfare of the public
in Ireland. One of its key strategic roles relates to health information governance:
‘advising on the efficient and secure collection and sharing of information … about the
delivery and performance of Ireland’s health and social care services’ [24].

Its role in health information centres on provision of advice about the efficient and
secure collection and sharing of health information, setting standards, evaluating
information resources and publishing information on the delivery and performance of
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Ireland’s health and social care services. Much of HIQA’s recent endeavours in its
health information function has been on developing resources for the managers of
health information systems that are designed to support the implementation of common
standards in relation to information governance and data quality [11, 12].

The SAT devised by HIQA is based on six broad themes which are then broken
down into ten standards (see Table 1) [3].

The themes and standards were developed in consultation with key stakeholders in
the health information area in Ireland and by using international evidence of good
practice [5, 10]. The details of the standards and how to apply them are set out in the
self-assessment tool.

3 Methods

The method adopted was documentary analysis where key documents for each of the
systems were reviewed and the SAT was completed based on this written evidence as
well as staff knowledge about practices within each system. A project team was formed
to oversee the research and to ensure a standardised approach to the completion of the
SAT. The project team was chaired by a staff member from HIQA and consisted of
HRB staff working in each of the four systems as well as the HRB’s Head of National
Health Information Systems who oversaw the research. Staff worked in teams of two to
complete the SAT; each team had a staff member that was very familiar with the system
under review.

Written materials were consulted for each of the HRB’s four national health
information systems and the self-assessment pro forma was completed for each system.
Sources of data reviewed included primary sources such as protocols for data collection
and collation, data validation and reporting and secondary sources such as external
reviews of the systems and research undertaken with system users. The project took
3 months to complete.

Table 1. Themes and national standards.

Theme Standard

Person-centred Arrangements to protect privacy of people
Governance, leadership and management Effective governance

Publicly available statement of purpose
Compliance with relevant legislation

Use of data Compliance with health information standards
Monitors quality of data
Effective and appropriate dissemination strategies

Information governance Effective information governance
Workforce Workforce to deliver objectives
Use of resources Effective allocation of resources

Source: Craig, 2020
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4 Findings of the Self-assessment

The findings of the assessment are presented below using the thematic headings as set
out in the SAT.

4.1 Person-Centredness

The first standard relates to person-centredness and centres on how organisations like
the HRB take steps to protect the privacy of the individuals about whom data are
collected [3]. One of the best ways of exhibiting this is that data subjects are made
aware of what is being collected and how it is likely to be used. This is generally
achieved in the organisation’s statement of information practice and by the organisation
undertaking privacy impact assessments on a regular basis.

The research findings in relation to this standard found that there were privacy
policies in place in the HRB and that there was a clear statement of information practice
that had been worked on by the staff working in the health information area. Infor-
mation leaflets are available to data subjects that tell them how their information will be
used. The research found, however, that although these statements, policies and leaflets
have been developed, they are not widely promoted by the organisation and that, for
example, placing them on the organisation’s website would ensure their wider
circulation.

4.2 Governance, Leadership and Management

The research examined the governance, leadership and management arrangements that
were in place at the level of the organization. Good practice in this area points to the
need for a designated member of staff at a sufficiently senior level in the organization
that has overall responsibility for the data collection and that a statement of purpose
exists for each information system. Each system should also have its own management
structure and stakeholder engagement.

The study rated the HRB’s national health information systems highly in this area,
but that practice was not consistent across all of the systems. Only two of the four
systems had a formalised approach to stakeholder engagement.

The findings highlighted that the HRB does not currently publish reports on the
effectiveness of the national data collections although all publications from these
systems make reference to the quality of the data, their coverage and completeness. The
research recommended that the organisation needs to develop its own metrics for
assessing data quality.

While statements of purpose have been developed for each of the HRB’s four
information systems, there was no evidence of them being reviewed or updated on a
regular basis. In addition, the study pointed to the need for staff engagement on key
pieces of legislation such as data protection.
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4.3 Use of Data

Within its information management standards, HIQA [4] recommends that the use of
the information is optimized to achieve the best value for money and to maximize
social gain. This includes ensuring accuracy, completeness, legibility, relevance, reli-
ability and timeliness of the data. HIQA also recommends that data dictionaries be
published and that a framework for data quality should be agreed with stakeholders. It
also refers to the value of incorporating international classifications to enable cross-
country comparisons.

All but one of the HRB’s information systems include the International Classifi-
cation of Disease (ICD) to record diagnosis. A data dictionary is also available for each
system, but the assessment found that it should be made more widely available.

Similarly, within the HRB, there is a recognition of the need for quality data in all
the information systems and considerable time and effort go in to ensuring the quality
of the data. However, there is no formalized data quality framework in place. There is
evidence that some internal audit of systems has been undertaken and two of the HRB’s
systems commissioned external evaluations, but this was some time ago and many of
the recommendations have not been implemented. The SAT findings highlight the need
to invest in more evaluation at the level of the information system.

The assessment found that, although the HRB’s compliance in this area is high,
more is needed, for example, to support users of the data. In addition, the HRB needs to
develop data quality statements and should develop a calendar for the year setting out
when reports from the systems will be available. The assessment also found that users
of the data would benefit from training on the use of the data. In addition, a log of all
requests for data received is in existence but is not recording the timeliness of the
response to requests.

4.4 Information Governance

The assessment also reviewed the HRB’s information governance within its informa-
tion systems or how it incorporates processes to promote security and privacy in the
collection and reporting of data. This may include, for example, obtaining consent from
the data subject where it is necessary, having statements of information practices,
arrangements around the appropriate sharing of information and ongoing audit on
information governance practice.

The assessment found that there are ongoing efforts within the HRB to ensure good
information governance but that more work is required on information governance
audits and training for staff on information governance issues.

As noted earlier, the four systems managed by the HRB have a publicly available
statement of purpose, setting out how the objectives of each system are achieved. The
statement is maintained by the staff responsible for managing each system and is
reviewed regularly to ensure that it is fit-for-purpose. All statements are published in
HIQA’s catalogue of health and social care data collections [21].
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4.5 Workforce

A key consideration in the management of health information is having staff with
appropriate skills and expertise, HIQA defines the workforce standard to include all of
those who work in or for the national health information system and recommends that
staff with specialist skills and qualifications are needed and that there is good workforce
planning to deal with expected and unexpected events. It is about having the ‘right
people with the right knowledge’ [2].

Within the HRB, workforce planning is undertaken annually in consultation with
the organisation’s parent body, the Department of Health. In addition, an annual
training programme is devised and agreed to reflect necessary organisational and
individual training and upskilling needs.

4.6 Use of Resources

HIQA defines resources as including human, physical, financial and ICT resources [2]
and recommends that organisations involved in the collection and reporting of health
data should strive to ensure that its resources are adequate to ensure the sustainability,
continual relevance and maximum impact of the data for which they are responsible.

The assessment of the HRB’s health information systems found that there are
adequate levels of input into the planning and management of the necessary resources.
This is particularly the case in relation to skills audit, succession planning and staff
training and development.

5 Discussion

Through an examination of each of the themes set out in the SAT, the evaluation
process highlighted several issues. First, regarding effective arrangements in place to
protect the privacy of people about whom it holds information, compliance is high.
However, there is a need to ensure greater transparency with stakeholders and with
users of the data. On effective governance, leadership and management arrangements,
the HRB also rated highly in the assessment. However, two of the systems do not have
oversight committees and all four do not currently have formalised arrangements in
place with data providers. In addition, the NHIS does not currently publish reports on
the effectiveness of the national data collections it holds although all NHIS publications
refer to the quality of the data contained within.

Privacy and confidentiality were seen to be important to the HRB in the assessment,
but the findings showed that, again, more transparency is needed on how statements of
purpose are reviewed. In general, there was high levels of compliance with legislation
such as data protection legislation, but the assessment highlighted that more proactive
identification of risks and issues in upcoming legislation was needed.
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The SAT examines the extent to which health information systems have interna-
tional classifications so as to allow for some comparison across countries. The
assessment found that all but one HRB system have incorporated international clas-
sifications. In addition, whilst a data dictionary is in place for each system it is not
currently made publicly available, but the SAT recommends that is should be.

Data quality is recognized as a core feature of health information systems in
HIQA’s SAT. The assessment found that there is a recognition of the need for quality
data in all the HRB systems and considerable time and effort go in to ensuring the
quality of the data collected. However, there is no formalized data quality framework in
place. In addition, some work on audit and evaluation has been undertaken internally
but there has been less activity on commissioning external audit and evaluation.

With regard to dissemination of data there is a high level of compliance in the HRB
but the research found that a more formalized approach could be applied to record
timeliness of responses to requests for data, training for users of the data, data quality
statements and notifying, in advance, on an annual basis what publications will be
available.

Similarly, there are high levels of compliance with the standard on information
governance, but more work is required on information governance audits and training
for staff.

Finally, high levels of compliance were found regarding the workforce in the HRB
and its suitability to the work in hand as well as in relation to the allocation and use of
resources including ICT.

The completion of the SAT was recognised by those involved as a valuable
exercise in ensuring that the national standards as set by HIQA need to an integral part
of the work of the HRB in its management of health data. Those involved agreed the
need for an improvement plan to address the areas of weakness that the process has
revealed. The improvement plan contained several recommended actions including:

• Publishing statements of information practice for each of the four systems on the
HRB’s website.

• Setting up oversight committees for the two systems that don’t currently have this
oversight in place.

• Putting in place formalised agreements with data providers.
• Reporting system performance/effectiveness in all publications.
• Developing an annual process to review statements of purpose.
• Identifying a process for reviewing upcoming legislation relevant to the HRB data

collections.
• Publishing data dictionaries for each system.
• Formalizing a data quality framework for the information systems that incorporates

the elements of good practice already applied to the data and including more
detailed data quality statements in each HRB publication.
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• Planning for further internal and external audit of the data and consider the use of
the data quality framework dimensions as an audit framework.

• Using the organization’s website monitoring to record access to health information
publications.

• Developing metrics to monitor the use of the data such as tracking the number of
times data are accessed on the HRB’s website.

• Providing training to data users around the value of the HRB’s data.
• Monitoring the timeliness of response to all requests for data received by the HRB.
• Developing an annual calendar on publication of reports from the HRB’s systems.
• Devising a schedule for internal and external audit of the HRB systems.
• Devising a training programme for staff on information governance.

6 Conclusions

This study set out to undertake an assessment of the HRB’s health information systems
using a self-assessment tool developed by HIQA, the body charged with the regulation
and improvement of health data in Ireland. The research questions were:

a) Do the HRB systems comply with the HIQA standards? If so,
b) What areas is there most/least compliance?
c) What does a SAT tell us about improving and shaping health information data

quality into the future?

Overall, the findings indicate that there is compliance with the standards across all
four systems but that practices can vary from system to system. Overall, the study
highlights the value of having agreed national standards for health information systems
that are based on international best practice. Of key importance to any health infor-
mation system is the focus on data quality and the need for a data quality framework.

The review of the HRB’s health information systems was undertaken internally
over a short period of time. Since then, HIQA has begun its inspection of other national
information systems including those for cancer screening and health in-patient
reporting. The results of these inspections are published on HIQA’s website and much
can be learned from the practice of other bodies involved in the collection and man-
agement of health data. Ultimately, the aim is to improve the health information
landscape in Ireland from a piecemeal one where variable practice is applied, to a much
more integrated one where national standards are applied and are assessed regularly for
their relevance. The findings of this assessment show the value of this standardised
approach to the data quality improvement process.
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Abstract. Personalised treatment is usually needed for hospitalised
patients afflicted by secondary illnesses that demand daily medication.
Even though clinical guidelines were designed to consider those circum-
stances exist, current decision-support features fail to assimilate detailed
relevant patient information. This creates opportunities for the devel-
opment of systems capable of performing a real-time evaluation of such
data against existing knowledge and providing recommendations during
clinical treatments. Herein, we describe a proposal for a new feature to
be integrated with electronic health record (EHR) systems which can
enrich the health treatment process through the automatic extraction
of information from patient medical notes and the aggregation of this
novel information in clinical protocols. The purpose of this work is to
exploit the historical component of the patient trajectory to improve the
performance of clinical decision support systems.

Keywords: EHR · CDSS · NLP · Clinical notes · Clinical
decision-making · Treatment guidance

1 Introduction

Throughout the years technology and its breakthroughs have proved fruitful for
the field of medicine and health care, fostering an enhanced quality of life for
the general population. Tools and data sources originated from the fusion of
technology with medicine have led to improvements in disease prevention, diag-
nosis and treatment, and can play a vital role in clinical pipelines by assisting
physicians in tasks such as clinical decision making and patient follow-up. More-
over, the increased access to medical data enables the shift towards the more
patient-centric view of personalised medicine.
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Technology brought scale along with diversity to medical data, comprising
numerous data types such as laboratory analysis, medical imaging or genomic
data, which must be stored and organised. Electronic health records (EHRs)
provide an electronic infrastructure to aggregate administrative and medical data
from various sources and to centralise information at the patient level [9,16],
enabling the documentation of a patient’s health status throughout time and
representing the patient trajectory. Furthermore, EHRs can be important in
supporting the medical act since by having a longitudinal view of the patient
medical history accessible in a single structure, they can provide physicians with
important contextual information.

EHR information can vary in type and structure, and considering the latter
EHRs can contain structured and unstructured data. Structured data can be
found in forms, and it is typical in patient demographics data where patient
information is organised in form fields, but can also be found in certain medical
reporting forms where codes from coding standards such as ICD (International
Classification of Diseases) [37], SNOMED-CT (Systematized Nomenclature of
Medicine - Clinical Terms) [31] or RxNorm [23] can be used. These standards
accomplish the process of structuring text data by performing a mapping from
medical concepts on symptoms, diagnosis, treatments and procedures, to unique
identifying codes which can be easily processed. Despite their utility, coding
standards do also have limitations hindering their use, namely the amount of
time needed by clinical staff to sift through the standards to select the most
suitable code, or the ambiguity or lack of specificity in certain terms.

On the other hand, unstructured data such as free text is commonly found
in clinical notes such as patient discharge reports, progress notes or clinical
appointment reports. Free text is written in natural language thus overcoming
the limitations of structured text as it provides a flexible convoy for physicians to
record comprehensive descriptions of the patient health status. Such descriptions
contain the context and rationale behind the selected diagnosis or treatment,
thus containing valuable information for the processes of clinical decision making
and patient follow-up.

As a result of the above, free text in clinical notes accounts for a large
amount of the data contained in EHRs, being particularly evident in chronic
diseases where clinical notes dominate over structured data [27]. In fact, the
importance of free text extends beyond that, being acknowledged that clinical
free text can often encompass information otherwise not obtainable from other
data sources [15], but much of this potential remains underexplored owing to
the nature of clinical text that renders it particularly challenging to process
and explore [24]. Historically, relevant data has been extracted from free text
through manual review from clinical experts, a process that inherently faces
scalability and cost issues when considering the increasing rate of generation
of novel medical data [27]. Nonetheless, during the past years there has been a
continuous growth in interest in this domain, with some research efforts having
already been made on fields such as clinical natural language processing (NLP)
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to develop solutions for annotating and summarising relevant data in clinical
notes [26].

In spite of the many opportunities that stemmed from the increased involve-
ment of technology in healthcare, many challenges did also surface. For instance,
the increased availability of medical data, which can aid physicians in their deci-
sions, also led to a heavier burden for physicians who must search through larger
amounts of less relevant data to find information of their actual interest. An illus-
trative example of this can be found in clinical notes, where the increased easi-
ness of replicating information through actions such as copy-paste has resulted
in more redundant information (which can sometimes even be erroneous), hence
resulting on lower data quality which can ultimately compromise the quality of
the medical act [8,30].

It comes naturally that solutions such as clinical decision support systems
(CDSSs) can play an important role if they manage to assimilate the large
amounts of existing EHR data and provide physicians with only key informa-
tion for patient diagnosis and prognosis. However, to do so these systems must
deal with the natural challenges associated with medical data, namely its high
heterogeneity and poor quality (data is frequently incomplete, noisy and sparse)
which are worsened by non-standardised physician practices [13].

Concerning data sources, these systems can explore single and multi modality
- the latter combining various sources and being reckoned as a particularly chal-
lenging task [20] - and also structured and/or unstructured data. While struc-
tured data is more frequently used since it is generally more straightforward
to exploit, the inclusion of EHR unstructured data such as clinical notes can
provide key content to improve the performance of previously existing systems.
However, applications with free text are still relatively scarce.

Shifting from a data to a medical process perspective, clinical practice guide-
lines (CPGs) consist of systematically developed statements which were created
to assist physicians by providing recommendations for diagnosis and treatment
guidance [21]. In spite of the relevance of their goal, CPGs failed to achieve
the expected impact on health care which can be explained by certain factors,
namely the lack of time by physicians to learn them or the fact that CPGs lack
manageable workflows which could effectively help putting recommended tasks
to practice. EHR-based CDSSs can assist in treatment guidance, but to succeed
they should integrate detailed relevant patient data, perform an on the fly eval-
uation against prior knowledge and provide recommendations which physicians
can act upon [32].

Furthermore, to have an increased impact in health care, CDSSs should be
deployed with slight adjustments in clinic workflow and staff duty, and should
be further explored for appointment planning instead of only providing infor-
mation towards the end of clinical appointments. Several EHR-based CDSSs
have already been tested in the past for patients suffering from illnesses such as
diabetes, hypertension and others, with the goal of improving key intermediate
clinical outcomes of chronic disease care. However, most systems failed because
they did not address many of the above-mentioned key aspects [25].
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In our previous work we explored clinical notes for extracting new informa-
tion, which was integrated in clinical protocols in an existing open-source clinical
decision support tool. The objective of this work was to leverage rich unexplored
data for reducing existing gaps in treatment prescriptions and providing better
treatment guidance [4]. This work extends that methodology and streamlines
its implementation. While we focused and validated this methodology in the
endocrinology field, with these adjustments, the work became more solid and
extensible for other medical specialties.

2 Methods and Materials

The proposed methodology uses different components which have already been
used and validated in other scenarios. This section is divided into: 1) the analysis
and description of the NLP component used to extract relevant information
from clinical notes; 2) the conversion of clinical guidelines into a computational-
friendly format; and 3) the use of clinical decision support systems for treatment
guidance combined with the information extracted from notes.

2.1 Extracting Patient Information from Clinical Notes

Clinical notes are very important for physicians as they keep record of patient
trajectories in a readily accessible format, which makes them relevant for aiding
in processes of clinical decision making and patient follow-up. The concept of
patient trajectory in clinical notes can be particularly evident as these notes
can be produced in different stages of health care (e.g. patient admission, dis-
charge, clinical appointment). In spite of storing a large amount of relevant
patient information (e.g. family history, diagnosis, medication, recommended or
followed procedure), many clinical notes are stored and left unexplored due to
the challenges associated with processing free text.

To extract information from clinical free text, a similar pipeline can be fol-
lowed to that used for common text, which can usually be divided in two steps:
NER (Named Entity Recognition) where entities such as drugs, dosages or dis-
eases are identified in the text, and NEN (Named Entity Normalization) where
identified entities can be disambiguated and normalised to unique identities. In
clinical text, NEN can explore coding standards such as ICD, RxNorm or the
UMLS (Unified Medical Language System) Metathesaurus - a thesaurus that
aggregates multiple lexical sources - to convert detected entities into normalised
text which can be stored as structured data. Furthermore, these steps can explore
different approaches to process text, namely heuristic and NLP approaches.

Structured text is easier to integrate in CDSSs and prediction modelling,
hence it is crucial to extract relevant patient information from medical narra-
tives and store it as structured data. Considering the abovementioned points,
different types of information were extracted from clinical notes. Firstly, heuris-
tics and NLP techniques were combined to extract entities related with several
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classification criteria, namely cardiovascular diseases, medication taken to pre-
vent a given disease, HbA1c values, among others [5].

Secondly, considering the family history component of clinical notes, a
methodology based on heuristics and NLP was used to extract information
regarding family members, their association to diseases and living status. Here,
clinical text was preprocessed using Stanford CoreNLP [18] dependency parsing
and co-reference resolution steps. A lexicon with possible family members was
compiled and the co-reference graph was used in combination with a rule set
to identify mentions of family members. A disease dictionary compiled from the
UMLS was used with Neji, a biomedical text annotation server [19], to identify
disease mentions. The shortest path in the dependency graph was used to asso-
ciate disease mentions to family members and to determine the living status [3].

Finally, considering the NEN component, a system was used for clinical con-
cept normalisation which used dictionary matching approaches, with exact and
partial matching mechanisms, combined with word embedding similarity to nor-
malise relevant entities in clinical notes. With this approach, identified entities
were mapped to their respective concept unique identifier (CUI) from the UMLS
Metathesaurus [29].

The above mentioned extraction methodologies were developed under the
scope of several research challenges focused on leveraging clinical text, and
were validated with datasets from the 2018 n2c2 track on cohort selection for
clinical trials, 2019 n2c2/OHNLP track on family history extraction and 2019
n2c2/OHNLP track on clinical concept normalisation [10–12].

All relevant patient information resulting from the combined use of these
strategies was organised in a data structure ready to be supplied to the CDSS
during clinical treatments.

2.2 Combining Protocols with Text Data

Clinical guidelines were developed to assist health professionals during the treat-
ment of specific pathologies. These guidelines consist of recommendations and
procedures that should be addressed during patient evaluation and treatment.
Previously, these guidelines only existed in paper format and were transmitted
through textbooks or teaching. However, with the increase of new and more per-
sonalised clinical guidelines, traditional methods became obsolete due to protocol
variance and complexity. While medical specialists can follow complex guidelines
to treat illnesses specific to their field without the need for a CDSS, general prac-
titioners following the same guidelines can greatly benefit from the assistance of
a CDSS [7]. Moreover, these systems keep the patient history in the EHR, opti-
mising treatments by reducing execution time and increasing precision. Besides,
it is easy for a computer to identify anomalies, for instance, medications that
cannot be prescribed together. Therefore, the digitisation of clinical guidelines
and the use of CDSSs is a valuable resource to simplify and optimise health care
professionals’ tasks.

The digitisation of clinical guidelines in CDSSs requires a convention in how
these guidelines should be digitally represented. Currently, this process can be
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Fig. 1. Protocol components in the digital format representation. Surrounded by the
red box is the main element for the proposed methodology. (Color figure online)

performed with existing methodologies such as the Guideline Interchange Format
version 3 (GLIF3), which is a model designed to represent shareable computer-
interpretable guidelines in the medical field. This model intends to represent
different types of guidelines by specifying them following some low-level primi-
tives, which could be applied in screening, diagnosis, and treatment in primary
or speciality unit care [6]. The process of converting treatment guidelines into a
digital format can be accomplished using only four different types of elements [1],
which are represented in the left side of Fig. 1.

The workflow begins with the Inquiry element, where the physician collects
patient information (e.g., constantly updating medical variables that influence
the treatments guidelines). Nevertheless, some of the patient information can
be collected during the treatment, since depending on patient state it may be
required to perform other measurements. Then, the Decision element, repre-
sented in the IF-THEN format, uses the collected information in a conditional
operation that returns true or false. For instance, the physician collects the
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patient’s blood glucose and based on that value the guideline will follow a differ-
ent path. Any other element can be subsequent to the Decision element, which
will create a workflow capable of fulfilling all the possibilities defined in the
guidelines.

Treatment recommendations are described using Action elements, which are
usually instructions for the procedures to perform in the treatment or the medi-
cation dosages based on patient state. Using again blood glucose as an example,
the insulin dosages for a diabetic inpatient are calculated based on that current
value, the patient’s diet, among other factors that are collected during or prior
to the treatment. The final element is the Scheduling element which determines
when the patient must be checked again by the physician or nurse. This element
ensures that the medical staff is reminded about the treatment schedules.

The proposed approach uses these elements and includes a fifth, the NLP
element (marked with a red box on the right side of Fig. 1). This element is
used to optimise time spent during treatment when the patients’ information
is collected, and was designed to access information from clinical notes. It is
capable of identifying information in the patient history that can be relevant
to mention when the system gives a treatment recommendation. Besides, this
type of element also reduces the number of inquiry elements in the protocol by
providing suggestions that were previously recorded in the clinical notes as free
text. This simplifies interactions with the system in complex protocols that may
require significant patient information that is not yet inserted in the system.

The use of the NLP element can automatically provide information to the
system that is relevant to the treatment. A possible scenario can be that of
patients who are taking medication at home and inform the clinical staff during
the admission stage about their situation. Commonly, medications being taken
and their respective dosages can have an impact on the treatments that are
prescribed. For instance, type 2 diabetic inpatients may need to be medicated
daily with insulin dosages, but depending on the insulin product used at home,
the treatment in the hospital must be adjusted.

Another scenario is the history of relatives with certain hereditary diseases.
With this information the system can alert the physician to inform the patient
about several risks based on their current condition. For instance, patients with
irregular blood pressure and diabetic family members are more prone to suffer
from diabetes or cardiac diseases in the future. This information can be provided
when measurements are done combined with the patient family history.

A final possible scenario concerns protocols for surgery preparation that,
depending on the patient state, can lead to a surgery postponement. The system
can detect that the patient took a specific medication in past visits and forgot to
mention that in a more recent appointment. However, the medication described
in their history combined with their current clinical state could indicate that the
patient is unable to withstand surgery.
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2.3 Treatment Guidance with the Assistance of a CDSS

The use of CDSSs to assist in treatment guidance has become an essential piece
in continuing care units, since it helps improving the quality of patient care
and disease prevention, and supports scientific discoveries. These systems are
usually part of the EHR features, but some standalone solutions do also exist.
However, an EHR with decision-making capabilities is not necessarily capable
of providing treatment guidance features, thus, some standalone systems were
developed. Typically, a CDSS designed for treatment assistance must be able to
manage and provide guidance to the medical staff. However, this is only possible
if the treatment guidelines are represented in a digital format.

The proposed methodology uses a standalone and open-source CDSS desig-
nated as GenericCDSS. This system is a web-based solution specifically designed
to create, manage and execute clinical protocols for guiding treatments [2]. The
tool has an easy-to-use protocol editor that allows the specialist to define the
best treatments for the diseases in their medical field. In this editor, it is simple
to prescribe recommendations based on patient status. Besides, the tool also
alerts the health professional about treatment schedules and when patients need
to be checked again, based on their current situation. During protocol execution,
the tool requests information about the patient clinical state and then provides
several recommendations about the treatment in question. To evaluate the suit-
ability of the system, four key requirements were defined:

– Protocol conversion to digital format;
– Treatment guidance;
– Automatic therapeutic recommendation;
– Patient and treatment history for future references.

The typical behaviour of this tool begins by processing the protocol according
to the workflow structure principles described in Sect. 2.2. There is an admission
stage, in which the patient is registered in the system and assigned the first
observation. In this first observation, a protocol is executed which collects infor-
mation about the patient current status and defines when the physician should
observe/treat the patient. During each protocol execution, collected information
is used to provide a set of treatment suggestions that have been defined previ-
ously. The original system input (Inquiry elements) required structured infor-
mation that could be provided in run-time. However, some of that information
can be found in the patient diary (in free text) and could be aggregated to the
protocol workflow during treatments.

Therefore, the previously defined NLP element was added to this tool, which
can access the information extracted from the clinical reports from admitted
patients. This new feature has different roles during system execution:

1. Provide suggestions for some of the required patient data that must be col-
lected during treatments;

2. Cross information with collected data to find possible undetected alerts (for
instance, incompatible medication);
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3. Present the annotated notes so that physicians can validate extracted infor-
mation in case of doubts.

The features implemented in the system allowed us to assess the impact of
enhancing treatment protocols with relevant information from clinical notes on
treatment recommendations. We observed that patient clinical state can be com-
plemented with patient history information to obtain better treatments. There-
fore, by using patient history in GenericCDSS, we were able to enrich the pro-
tocols and provide more accurate suggestions.

3 Results

In the previous sections we described in detail the different pieces of the proposed
methodology and explained the selection of each component. Figure 2 presents
the different stages of this workflow, from guideline conversion and system config-
uration to treatment guidance, using those components. However, this workflow
is divided in three temporal stages. The first stage (grey box in Fig. 2) of this
pipeline is focused on the digitisation of the clinical guidelines into the CDSS.

The second stage (orange box in Fig. 2) begins with the admission of the
patient into the health institution. This is done by a physician after the initial
triage when it is defined that the patient will be hospitalised. During patient
admission the physician collects patient information such as medication taken
at home, family history information and other clinical information relevant to
the admission. This data is inserted into the EHR and can be stored in structured
format and in free text (clinical notes).

After the patient is admitted and all additional exams are performed, the
patient is hospitalised if necessary. In parallel, the system processes the clinical
notes to supply the CDSS with additional relevant information. In this stage of
the workflow, notes relevant to the protocol are made available to the CDSS to
optimise the process, for when a treatment is required later on.

The last stage (green box in Fig. 2) of the proposed methodology is the
treatment guidance supported by the CDSS. Here, the nurse or physician can
provide the system with the necessary measurements taken from the patient,
which are mostly vital signals and variables that change over time. Clinical
information extracted from the admission notes is also provided to the CDSS,
reducing considerably the information requested by the system and warning for
possible associated risks.
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Protocol DigitisationGuideline ConversionGuideline Analysis

TreatmentsClinical NLPAdmission

Fig. 2. Methodology overview, from guideline conversion and system configuration
to treatment guidance using the GenericCDSS tool with the clinical NLP element
integrated for the analysis of clinical notes.

3.1 Guidelines Digitisation

Guidelines digitisation is crucial for the success of this methodology. Although
the system provided a user-friendly interface for this task, converting text into
a diagram may not be a trivial task for the medical specialist. Therefore, we
defined a methodology for this initial stage.

The first step consists in identifying the necessary patient variables for each
protocol. During the definition of these variables it is important to see the vari-
able type (numeric, text or choice value) and the range of possible values. Then,
for each variable, it is necessary to identify the conditions for the different inputs
received during the treatments. Based on the outputs of these conditions, actions
must be taken (for instance, a treatment recommendation). This allows the
organisation of the text into a decision-diagram, which if represented in paper
format is very difficult for a human to read during the treatments, whereas for
the computational system the responses are instantaneous.

The following example consists of the most common and simple protocol
applied in diabetic inpatients suffering from hypoglycemia. This is a fast-acting
protocol where the measurement interval is quite short, i.e. measurements ought
to be made every 15 min if patient blood glucose is below 80 mg/dl. This protocol
requires the following patient information:
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Fig. 3. Flowchart representing the hypoglycemic protocol before being inserted in the
system.

– Blood Glucose: this variable indicates if the protocol should proceed or
not. When this value is less than 80 mg/dl, the application of this protocol is
required based on the current value.

– Diet: The diet type is a condition that decides what the physician should
do in the treatment. This is a choice variable that indicates if the patient is
eating or not.

When the patient can eat and the blood glucose value is between 50 and
70 mg/dl, the patient receives one sugar packet (which contains approximately
6 grams of sugar). However, if the blood glucose value is less than 50 mg/dl, the
patient receives two sugar packets. A patient on a zero diet receives half of a 30%
Intravenous (IV) glucose ampoule and glucose serum 5% when the blood glucose
value is between 50 and 70 mg/dl, and a 30% IV glucose ampoule and glucose
serum 5% when it is less than 50 mg/dl. In addition, the need for this protocol
suggests that there is something wrong with this patient, and the endocrinologist
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Fig. 4. Protocol editor showing the hypoglycemic protocol implemented.

must be informed about the patient state to perform some adjustments in the
current therapeutic scheme.

Figure 3 presents this protocol in the flowchart format, which contains all
the possible variants for this guideline. After this initial conversion from text to
diagram, the protocol is inserted in the system following a tabular view. This
is presented in Fig. 4, where it is possible to observe the system protocol editor
with this protocol implemented.

While the presented protocol contains only two variables and a small set of
conditions, the remaining implemented protocols are much more extensive. For
instance, the protocol applied for diabetic inpatients uses 12 patient conditions
to decide upon which is the best treatment. Some of these conditions can be
extracted from information already present in the clinical notes.

3.2 Clinical Notes Format

The initial goal for the concept extraction component of this methodology was
to process clinical notes in free text without considering clinical note structure.
However, some EHRs provide these notes with an internal structure, which sim-
plifies and optimises text analysis. Therefore, we used simple rules to detect
structural segments, such as the occurrence of keywords isolated in lines that
ended with a colon. In the example presented in Fig. 5 it is possible to see
highlighted in blue the section “History of Present Illness:”. Then, the system
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Fig. 5. Small excerpt of history section from clinical note provided in the 2014 n2c2
track 2 on identifying risk factors for heart disease over time, annotated with the NLP
component described in the methodology. (Color figure online)

extracted medical concepts in the following text which, if necessary, can be pre-
sented to the physician during the treatment. This considerably reduces the
amount of text to interpret since specific sections need to be analysed instead of
a full 4-page clinical note.

In this analysis, the system detected different types of mentions, i.e. it iden-
tified sections, medications, medical observations and negations of those. These
were marked with different colours as shown in the two examples (Fig. 5 and
Fig. 6) of excerpts from one clinical note provided in the 2014 n2c2 track 2 on
identifying risk factors for heart disease over time. Green is used to highlight
medical observations that were extracted but not used in the guidelines, and
yellow represents the negations of those observations. On the other hand, in red
it is exhibited the medications which are important to analyse and may be use-
ful during the treatments. In the excerpt presented in Fig. 6, the “Medications”
section was detected and the system extracted each line under this section. Then,
it tried to detect which parts of the text refer to the drugs and dosages. The
inference of the right dosage still needs improvements due to the existing diver-
sity in its medical text representation. However, the most important information
was extracted, which is the medication in use.

Finally, it is important to consider that some clinical notes may not follow
any structure. In those cases the system does not detect sections in the text,
and the NLP component performs an analysis considering all text present in the
clinical note.
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Fig. 6. Small excerpt of medication section from clinical note provided in the 2014
n2c2 track 2 on identifying risk factors for heart disease over time, annotated with the
NLP component described in the methodology. (Color figure online)

4 Discussion

The proposed methodology was applied in the endocrinology medical field, in
which we configured the most relevant protocols that we defined in discussion
with endocrinologists from a Portuguese health institution. In this section we
select and describe one of the configured protocols, how the system performed in
the presented scenario, possible improvements during the treatment and existing
system limitations, which are mainly focused on the text extraction process.

4.1 Use Case Overview

The proposed methodology was designed to be generalisable and improve clin-
ical treatments without following the specific requirements for a given disease.
However, we explored the potential of this proposal in the diabetes scenario as
there is a lack of effective treatments in health institutions for patients with this
disease, mainly due to insufficient exploitation of decision-making systems.

Hyperglycemia is a health condition characterised by abnormally high blood
glucose, commonly due to a deficient insulin usage. Owing to the metabolic
derangements of this clinical condition, regular monitoring and administration
of the most effective treatment are major concerns for healthcare institutions.
Inpatient hyperglycemia is an event that occurs frequently, with a rate of approx-
imately 40% of all hospitalisations, therefore it is a metric that deserves special
attention from health care institutions and public health services [14].

Basal-bolus insulin therapy is usually the recommended treatment to man-
age hyperglycemia in hospitalised diabetic patients [35]. However, this therapy is
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also associated with high rates of hypoglycemia, reaching values up to 32%, with
the main reason for this occurrence being the meal insulin and food intake mis-
match [34]. Therefore, it is possible to recognise that most of the adverse medica-
tion occasions and blunders happen when insulin is prescribed or administered.
These hypoglycemia cases in non-intensive care unit settings are a concern as
they have been linked with increased hospital complications, length of stay and
mortality [17]. Several protocols have been proposed for glycemic administration
to reduce these high rates [22]. However, these procedures are frequently avail-
able on paper and difficult to follow, hindering their regular use by non-trained
professionals.

The proposed methodology aims to reduce this handicap by using a system
to support the execution of the clinical protocols, that considers the information
contained in clinical notes. The objective of the CDSS is to reduce calculation
errors, misunderstood instructions and patient data analysis that influence the
treatment decision. Therefore, we deployed the CDSS in a controlled environ-
ment and implemented some of the essential protocols being currently used at
the hospitals to treat diabetes inpatients, namely:

– Diabetic inpatients [36]
– Hypoglycemia
– Surgical diabetic inpatient
– Continuous intravenous infusion [28]

4.2 Protocol Discussion

Diabetic patients have several base treatments defined depending on their clinical
state. Different protocols exist, targeting hypoglycemic patients, hospitalised dia-
betic patients, diabetic surgical patients, diabetes in pregnant patients, ketoaci-
dosis and hyperosmolar hyperglycemia syndrome in adults and children, among
other more specific protocols. However, to provide a more in-depth description of
our methodology, we describe the impact of the most common protocol which is
used in hospitalised diabetic patients. This protocol is applied in type 2 diabetic
inpatients and has two different stages: the admission stage where medication
taken at home is converted to the medication used in the hospital; and then
during the patient’s stay after the initial set up.

The Total Daily Dosage (TDD) defines the amount of insulin that a patient
must administer and is calculated based on the patient information. It is used
as a reference for the basal or long-acting insulin dosages. However, when the
patient is taking insulin before the admission, i.e. daily dosages at home, this
information must be taken into account and protocols may need to be adjusted
accordingly. Typically, this information is provided during the admission stage
and is stored in clinical notes, which ends up not being adequately considered
in the protocols.

Insulin taken by patients at home can contain a mixture of short and long-
acting insulin in the same drug, and the percentages of each vary depending
on the drug. Therefore, interpreting which drug and dosages are being taken
during the day is essential to optimise TDD calculation. Table 1 presents the
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Table 1. Percentage of long (LA) and short-acting (SA) insulins from the most common
insulin products used by patients in a domestic setting.

Insulin products LA insulin SA insulin

Mixtard 30 Penfill 70% 30%

Insuman Comb 25 75% 25%

Humulin M3 70% 30%

NovoMix 30 70% 30%

Humalog Mix 25 75% 25%

Humalog Mix 50 50% 50%

most common insulin products that patients use at home. LA Insulin and SA
Insulin columns represent the percentages of long and short-acting insulin in each
product, respectively. Considering this information, it is possible to determine
the total of both insulins being taken by the patient and split them as the
protocol recommends.

In order to simplify the description of the system execution, the following
example is provided:

Example: A patient is taking Mixtard 30 Penfill at home, 30 units before
breakfast and 15 units before dinner. This insulin product contains 30% of
short-acting and 70% of long-acting insulin as described in Table 1. Hence,
this patient has a TDD of 45 units, more precisely 31,5 and 13,5 units of
long and short-acting insulin, respectively. Based on the protocol, this patient
needs to reduce the total amount of administered insulin, taking only 2

3 of
31,5 units of long-acting insulin at breakfast during hospitalisation, and 2

3 of
the remaining daily dosage in short-acting insulin.

Moreover, this information is spread over patient diaries, product manuals
and clinical guidelines. The system can gather all this information and, following
the provided example, can also recognise that this patient is taking Mixtard 30
Penfill at home along with the respective dosages. This section describes some
relevant aspects addressed by the proposed methodology. However, in addition
to what has been previously described, the protocol also considers patient insulin
resistance and the different sliding scales present in the protocol must be adjusted
according to patient responses and their plasma glucose values.

4.3 Validation

Methodology validation was performed in a controlled environment using the
dataset provided in the 2014 n2c2 track 2 on identifying risk factors for heart
disease risk over time. The dataset consists of 1,304 clinical narratives from 296
diabetic patients and contains 2 to 5 records per patient. These narratives contain
information about many heart disease risk factors, namely: diabetes, high blood
pressure and cholesterol levels, obesity, coronary artery disease, smoking and
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medication [33]. Since these clinical narratives contain medical information on
diabetes indicators and its respective medication, this dataset was considered
suitable to validate our methodology.

From this dataset, we selected 25 patients whose notes contained more infor-
mation to create some difficulties in the NLP methodologies (e.g. more redundant
and less concise information). Additionally, we randomly added sentences indi-
cating that the patient is taking insulin products at home, and following some
criteria, we also added information about dosages that they administered during
the day (before breakfast, lunch, dinner, meals or bedtime). Our system detected
information on medication being taken by the patient for diabetes, namely the
type of insulin (short and long-action can be identified in the clinical notes with
R and N, respectively), and units which are important for computing the TDD.

Then, we manually simulated the physician work and protocol execution dur-
ing treatments. Altogether, the proposed methodology produced positive results.
However, we noticed that the system faced some complications in the clinical
notes analysis stage. The system had issues when randomly inserted sentences
were too complex, referencing past medication that is currently not being taken
by the patient. However, we solved this issue by giving the physician the possi-
bility to consult the clinical report in run-time, identifying and validating which
were the sentences that originated that recommendation.

5 Conclusion

Clinical notes can be a major repository of relevant medical information, hence
they have been a topic of much research throughout the past years. Similarly, the
use of digital systems for decision-making and treatment guidance has also been
a subject of much research. In this work we addressed an existing opportunity to
enrich medical treatments by combining both topics, aiming to reduce existing
gaps in treatment prescriptions.

The methodology herein proposed was integrated and validated with an open-
source CDSS due to its autonomy and ease of development. However, the objec-
tive was to demonstrate the positive impact of combining these subjects and
define a supporting approach. This methodology can be explored in the different
decision-making features existent in the EHR systems available in the market.

We believe that automatically extracting patient information from physician
notes, which are stored in free text, has the potential to improve treatment
efficiency and reduce human errors. This work takes one step forward in the
reuse of clinical notes to enhance the medical decision process in real time.
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Abstract. Mobile applications are, on average, faster than mobile websites,
provide tailored content (according to the user preferences), and increase the
user call to action (by providing notifications and instant updates), leading to an
interactive user engagement. In the health care sector, it is also expected that
medical appointments booking applications enlarge the accessibility of the
health care services – providing broad access to the medical health professional
CV and making available other patients reviews of the service. The research
described in this paper presents an effort in the identification of the main uses for
mobile marketing in the health sector, by describing four major use cases,
namely: i) searching for an appointment, ii) booking a medical appointment, iii)
history of the medical appointments, iv) alerts for future appointments, and v)
mobile marketing. A mobile marketing app implementation is then described
including i) the book medical appointment process, ii) the user onboarding, iii)
the approach on prioritize search before login, iv) the mobile push notifications,
and v) the user information logging. The results achieved are assessed and
improved through an iterative testing approach, that provided important feed-
back to the development process. Additionally, user testing was performed in
four scenarios. The mobile application developed present auspicious user
experience results which promises a high adoption rate by real world users.

Keywords: Mobile health � Healthcare mobile application � Medical
appointment booking � Mobile marketing � User experience

1 Introduction

Nowadays, people are becoming more proactive and more self-conscious when it
comes to health. One way to make health services more available to the everyday user
is to use modern technologies. Customers in most industries are already used to fric-
tionless booking, whether that is getting a rideshare or booking a hotel.

Medical services applications (web platforms or mobile applications) are being
used to increase accessibility of information about healthcare providers (e.g., preview
the CV of a medical health professional, acquiring healthcare services, get other
patients reviews of the service). There are already several examples of applications that
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help solving common problems as patient’s transportation, or waiting lists for medical
appointments, or providing consumer information about health services anywhere.

Although medical booking applications exist, most are specific of one heath care
provider. Additionally, most applications are not built to a “mobile-first” approach,
taking advantage of the mobile features as location sensor and the ability to start the
interaction with the user.

This paper is focus on the development of a mobile application having mobile
marketing as the main differentiating feature of it. This mobile application is expected
to extend an online platform: MedClick (a medical care appointment booking service).

Mobile marketing supports the communication and promotion of offers to cus-
tomers using a mobile medium [9]. The main difference to regular communication with
the customers, is to not just wait for the customer to interact with the company but
provide incentives to customers use or buy products or services considering each
costumer specific needs.

The goal is to extend MedClick1 platform. MedClick provides a one-stop platform
to book a medical appointment, across multiple medical service providers. Patients can
conveniently browse all available booking options, using different filtering criteria (e.g.
date, location, price, insurance providers, customer reviews and recommendations).
The research presented in this paper extends MedClick platform with mobile marketing
features, provided in a mobile application. It is expected that the app pushes booking
appointments to patients based on the location, medical history and recent searches.

The next section presents the background research, including i) an assessment of
the major mobile development frameworks, ii) a review on mobile marketing, ii) a
description on user experience approaches on mobile and iv) an analysis of mobile
medical appointments booking applications. Section 3 describes the major use cases for
the mobile marketing application. Section 4 presents the mobile app implementation
process, which is assessed in Sect. 5. Finally, the conclusions and future work are
described in Sect. 6.

2 Related Work

This section presents the background research performed, including the mobile
development frameworks, the mobile marketing, the user experience guidelines and an
assessment of medical appointment booking applications.

2.1 Frameworks

iOS and Android are the two dominant operating systems for mobile devices [1]. In
order to ensure that mobile applications are available in these operating systems, one
may code natively for both operating systems. However, this approach is time con-
suming and requires different programing skills (e.g. XCode for iOS and Android

1 www.medclick.pt.

542 T. Fernandes and A. Vasconcelos

http://www.medclick.pt


Studio for Android). Another approach is to use cross-platform development
frameworks.

Cross-platform mobile application development frameworks have the goal of
simplify the development of cross-platform mobile applications by reducing the
development effort and the maintenance costs, therefore ensuring a shorter time-to-
market - achieving the principle of “code once, deploy everywhere”.

Adobe PhoneGap. Adobe PhoneGap [2] is a development framework to build
applications for mobile devices using CSS, HTML and JavaScript code and then
deploy it to multiple mobile platforms without losing features of a native application. In
order to achieve this, the framework provides an API (Application Programming
Interface) to access the native operating system functionalities using JavaScript. The
programmer codes the application logic using JavaScript and the PhoneGap API
handles the communication with the native operating system. The core engine for
PhoneGap is open source, under the Apache Cordova project [3]. The user interface
layer of a PhoneGap application uses a web browser view that takes up to 100% of the
screen.

Xamarin. Xamarin [4] is a cross platform development framework to build mobile
applications using C#. The framework has two major platforms: Xamarin.iOS and
Xamarin.Android. These are the C# object libraries that give developers access to iOS
SDK (Software Development Kit) and the Android SDK, respectively. With these
platforms the developer can share part of the codebase to create iOS and Android
applications, however the visual aspects must be developed specifically for each
operating system. There is also Xamarin.Forms, which gives the most development
efficiency, enabling the developer to share almost 100% of the code and user interface
between both operating systems, at the expense of application file size efficiency and
performance.

XCode and Android Studio are required for the application compilation and, as the
application grows, compilation time lasts longer.

React Native. React Native [5] is a JavaScript framework for developing mobile
applications for iOS and Android. It is based on React, Facebook’s JavaScript library
for building user interfaces, but instead of targeting the browser, it targets mobile
platforms. React Native applications are written using a mixture of JavaScript and
XML like markup, known as JSX. In order to behave like a native application, React
Native invokes the native rendering APIs in Objective-C (for iOS) or Java (for
Android). With this, the application will render using real mobile user interface
components, not web views, and will look and feel like a native mobile application [6].

The easiest way to start a React Native project is to use the Expo toolchain [7]. It
allows the programmer to start a project without installing or configuring any tools to
build native code - no XCode or Android Studio installation required. In order to use
system functionalities, Expo contains the Expo SDK, which is a native-and-JavaScript
library which provides access to the device’s system functionality (the camera, con-
tacts, local storage, and other hardware).
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2.2 Mobile Marketing

“Mobile marketing refers to the two- or multi–way communication and promotion of
an offer between a firm and its customers using a mobile medium, device, or tech-
nology” [8]. Mobile Marketing requires a mind shift in the communication with cus-
tomers. Instead of waiting for the customer, companies should provide incentives to the
customer to request the services provided [9]. In order to implement mobile marketing,
services and products are presented to consumers considering time, location and each
costumer specific needs and desires.

Location Based Services. These marketing campaigns work by giving the user pro-
motions or information based on location [10]. For a clothing brand, for example, if the
user decides to share its location to the application, the user could receive an alert when
is near one of the brand stores, offering some kind of discount. Other example is for
traffic or weather application, that can transmit information without the user having to
search for it. These alerts can be received in the application via push notification, or
SMS, or email.

Services Based on Personalized Information. These services act very similarly to the
location-based ones but instead of relying on the user’s location, they rely on the
information about the user. Using the same example of a clothing store, if the company
wants to do a promotion on a women’s item, and they have information about the
gender of its application users, they can send an alert just to the female audience about
said promotion. This way companies do not reach all customer base but avoid annoying
customers that most likely are not interested in some promotions.

Gamification. It is the use of game design elements to enhance non-game goods and
services by increasing customer value and encouraging value-creating behaviors such
as increasement of consumption, greater loyalty, engagement, or product advocacy.
One example is discounts or free products a user can receive by using the brand
application. It can be confused with loyalty programs, however gamification distin-
guishes itself by providing added social and motivational benefits through usage, like
competing with friends for goals.

Referral Marketing. Relying on probably the oldest marketing strategy, word of
mouth, referral marketing is the method of promoting products or services to new
customers through existing customers. This works by giving current customers an
incentive to invite more users to the platform/application/service. Referral programs are
a good method to define consumer satisfaction. Major advantages of referral marketing
programs as compared with traditional marketing programs include greater credibility
of friend/family member recommendations over paid advertisements [11].
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Onboarding. The concept of Onboarding comes from the human resources sphere and
it is aimed at helping newcomers adapting to a new reality and getting comfortable with
a new task.

In the context of mobile applications, user Onboarding is the process of providing
instructions and highlighting key benefits and features of the application to the user,
when the user launches the application for the first time, via a set of example screens.
This process bases itself on the premise that users won’t use your application if they
don’t understand it. This way the users feel quickly familiarized with the application
and can find more easily the features they need. Another benefit is to improve appli-
cation retention, which means users will continue to use the application over a certain
period [12].

When working on user Onboarding, it is important to establish the most relevant
features to the user because the information needs to be transmitted in the easiest and
simplest way possible. Users don’t like to spend much time learning how the product
works before actually starting to interact with it. If the amount of information that the
Onboarding tutorial tries to transmit to the user is too much, it will have the reverse
result. In other words, it can make the user more confused.

Shareable Content. Having shareable content inside the application and using social
networks is another way of marketing a mobile application, grow the brand user base
and enhance engagement. Like Referral Marketing, it also consists in word of mouth,
relying in the current users to promote and talk about the application to their friends
and followers. However, the main difference is that the current user does not receive
any incentive to share that content. Instead, the application relies on having such good
user experience and such value to the users that they would want to recommend it to
their closed ones and acquaintances.

App Store Rating. The App Store rating is essential in an application, as positive
ratings and reviews can lead to more downloads because the opinion of other customers
have a great impact on new users. Besides that, it gives the developer insight into real
world usage that helps direct future updates. One way to increase the number of App
Store ratings is to implement a nonintrusive way of asking the user for a review. The
best way to obtain positive ratings is for the user to have a great overall experience
when using the application, however, is also important to ask for feedback at appro-
priate times, preferably after the user has demonstrated engagement with the applica-
tion. It is also important not to interrupt the user and only ask for feedback when the
request makes sense. Lastly, the developer should not ask repeatedly for a review,
because it may negatively influence the user opinion of the application.

2.3 User Experience

The user interface is one of the most relevant aspects of mobile application. When it
comes to the mobile application user satisfaction, most technology firms turn towards
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the applications’ User Interface (UI) and User Experience Design (UX). The user
feelings when using the application are central for the its success.

User Testing. User testing is central for the success of most projects. Although the
designer plays an important role in defining the UI, the UX is only best assessed
through the interaction of the user (gathering insights from the users). This way it is
possible to identify UX major flaws, before the application is being massively used by
(real) costumers. User testing should be done early in the development cycle in order to
find UX problems in early development stages.

Mobile Applications User Experience Design. Although there isn’t a common def-
inition of what is a good user experience, there are several principles that contribute to
mobile apps have an adequate user experience.

Thus, designers are recommended to use the native operating system design
guidelines, which present a set of usability guidelines (focus mainly on maintaining
coherent interaction and presentation through applications over the whole platform).
For iOS Apple’s Human Interface Guidelines [13] and for Android Google’s Material
Design Guidelines [14] are the major guidelines to consider.

According to Apple, the iOS Guidelines differentiate themselves from other plat-
forms in three primary themes: Clarity, Deference and Depth. The first one makes sure
the application has legible text at every size, icons are precise and interface elements
highlight in a subtle way the important and interactive content. The second one refers to
fluid and simple interface to help the user interact with the content. Content should fill
the entire screen while blur or translucency means there is more content to be revealed.
The last one focus on depth, mainly with transitions when the user navigates through
content. They also appeal to a consistent application, that implements familiar native
interface elements, icons, text styles and uniform terminology, and keeping the user
informed all times with feedback to every user action.

On the other hand, Google didn’t create a design language only for its mobile
operating system but for all its application across all platforms. This design language is
called Material Design and it is meant to be a set of design principles that apply across
device types and arbitrary software versions. In this Material Design world, the primary
surface is a piece of paper, like a card, that can grow and shrink. Other pieces of paper
can appear on the screen but always with transition. Material Design user interfaces
exist in a 3D environment, achieving it by using light, surfaces and shadows. All
elements move horizontally, vertically and at varying depth [15].

Respecting design guidelines is not enough. Always designing for the customer
benefit is another important rule to follow. Therefore, the designer should prioritize
features (instead of just adding features). Applications should be simple, with a refined
experience around its core objectives, not putting too much information in the user
interface. “Perfection is achieved, not when there is nothing more to add, but when
there is nothing left to take away” [16].
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2.4 Medical Appointments Booking Applications

There are several applications already available to the patients, that can schedule
medical appointments. However, all have different features and characteristics. This
analysis consists of the strong and weak points of each one, highlighting them in order
to improve the solution proposed.

My CUF. My CUF [17] is an electronic health record portal for the private health care
institution CUF. It gives its users an online members area that offer several function-
alities and information about their history in CUF’s clinics and hospitals. In this
members’ area, the user can schedule new appointments or exams, having the option to
choose the health center, insurance plan, the specialty and the health professional. After
selecting those options, if there are vacancies available, the user can choose the date of
the appointment from a calendar screen with a weekly view. If not, it is presented a
screen where it is asked the preferences of the patient for a booking request.

The portal also gives access to previous appointments and exams where the patient
can see the report made by the health professional. Other functionalities include waiting
times in all CUF’s clinics and hospitals, a tab where the patient can see its medical
prescriptions, a map to check where the nearby pharmacies are, a section to review
previous appointments invoices. It also includes, in the home tab, links to the latest 3
articles of the “+Saúde”, CUF’s blog.

My CUF portal keeps track of the user history in the CUF’s hospitals and clinics and
in order to be accessible to users and patients of all age groups it has a feature to
manage multiple accounts. In this feature, the user can add and manage any descendant
so that they have a separate account with all the features while being under aged for
example. Other option is to give a third party the ability to access multiple sections of
the portal like booking appointments and exams, checking the patient history and
review prescriptions or appointment invoices. This latter option is optimal to elderly
patient or patients that are not comfortable in using new technologies but have a
relative that can take care of those tasks for them.

The My CUF portal is available online as a web portal or as an iOS or Android
application. All the functionalities are available in all platforms in a very similar user
interface. This can be an advantage because the user sees the same design layout and
has the same user experience whether on a computer or on a mobile device. However,
this can lead to a bad user experience on mobile, mainly on iOS.

In both mobile operating systems guidelines, it is recommended to use bottom
navigation bars to allow movement between primary destinations in an application [18,
19]. The reasoning behind this is that the bottom of the screen is the most comfortable
area to reach with one-handed or one-thumb interactions; therefore the bottom is place
to put important top level and frequently used actions, as: booking an appointment,
exams and user profile. In spite of this, it is also common on Android to use a tab bar at
the top of the screen, like the My CUF application uses, with “Facebook” being the
most famous application to follow this (having different designs depending on the
operating system, bottom bar on iOS and top bar on Android [20]). One of the reasons
to have the top bar on Android is the software system buttons already on the bottom of
the screen, which combined with the bottom navigation bar can make that part of the
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screen too dense and increase the chance of mistouch. So, this implantation may be
familiar on Android but not as much on iOS, being this the reason, it can cause some
confusion to longtime iOS users.

In 824 reviews on the Google Play Store it has a total score of 3.7 stars out of 5. On
the Apple App Store the application has less ratings, 55, and it has a lower score of
3.0 stars out of 5. Most of the negative written reviews are about the login process
because the user is forced to login each time the application is opened. There is an
option to set a pin code or fingerprint authentication which makes sense for an
application with sensible user data like this one, however, reviewers reported that this
functionality is not working properly.

Zocdoc. Zocdoc [21] is an online medical care appointment booking service that
provides an easy way to search for medical facilities and professionals based on
location and specialty. It acts like the previously mentioned My CUF portal but with
multiple medical care providers. In this service the patient can search for a medical
appointment specifying the specialty, location, date and insurance. It is then presented a
detailed list with the health professionals of the chosen specialty in the chosen location
with appointments available starting from the date the user input in the previous screen.
The user has the option to search through the days the health professionals have
available, to get a map view of where the health professionals’ medical facilities are
and to filter even more the options, by gender, hours of availability, language, among
others. When selecting a health professional, the application shows the user multiple
time slots to book the appointment, where are the medical facilities of the health
professional (the user can choose which one if there are more than one), patient written
reviews of the health professional with separate ratings for waiting times and bedside
manners, the health professional’s statement, the languages spoken and the education
of the health professional.

Besides the search functionality, the application also has a tab to check past and
future appointments, a tab to view all the health professionals the patient had an
appointment with, a settings tab and a well guide tab. In the latter one, the user is
presented with a series of wellness recommendations like having an eye health exam
every two years for example. This helps the user by keeping track of the dates of the
required exams and reminding the user if a new exam or appointment is recommended.

Zocdoc service is available online as a web portal or as an iOS or Android appli-
cation. It has all the functionalities available in all platforms but with interfaces that
adapt to the system. In the web, the service adapts to the screen size, showing more or
less content depending on the width and height of the browser window. In the iOS app
it has a bottom navigation bar with the main functionalities as recommended by the
operating system guidelines. In the Android app it uses the top tab bar, which can help
to prevent mistouches in the lower part of the screen in phones that have system on-
screen buttons. That’s the main difference in the application between the two mobile
operating systems, so the user should expect a native user experience in both.

With so much information presented in the web version it could be expected to have
an overcomplicated mobile application. However, despite having all functionalities,
Zocdoc achieves it in an intuitive, native and simple way, not damaging the mobile user
experience.
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In 6330 reviews on the Google Play Store it has a total score of 4.5 stars out of 5.
On the Apple App Store the application has less ratings, 3200, but it has a higher score
of 4.7 stars out of 5.

This means most users enjoy their experience while using the application and it
meets their expectations.

Knok. Knok [22] is a platform, only accessible via a mobile application on Android
and iOS, that lets its users schedule a medical appointment at their home. This allows
the users to avoid the waiting rooms in a health center and transportation problems.
Another very useful feature of this platform is the ability to choose the health pro-
fessional for the appointment. When in need of medical attention, the patient sets its
location on the application and it is presented with a list of the nearby health profes-
sionals. That was one of the main objectives of this platform, besides the easy booking
of home health appointments. Users can then check the health professional’s distance
to the given location, price of the appointment, spoken languages, rating, professional
experience, academic background and interests and choose accordingly to their needs.

The application has the same user interface in both iOS and Android, using a very
simple and minimalistic design. The ease of use of the application extends to the
interface, where most functions are on the lower part of the screen, facilitating the one-
handed or one-thumb interactions improving the user experience on both platforms.

In 46 reviews on the Google Play Store it has a total score of 4.3 stars out of 5, with
written reviews expressing how useful is the application. On the Apple App Store the
application has less ratings, only 15, but it keeps the score in 4.2 stars out of 5. This
means most users enjoy their experience while using the application and it meets their
expectations.

Joaquim Chaves Saúde. Joaquim Chaves Saúde [23] is an electronic health record
portal for the private health care institution Joaquim Chaves. It is very similar to the
previously mentioned My CUF in terms of functionality. Its main functionalities are
booking medical appointments, results of previous exams, medical history and infor-
mation about Joaquim Chaves Clinics. The booking process starts by choosing the
clinic to have an appointment. Just after selecting the clinic, the user is presented with a
lot more options like insurance, specialty, type of appointment (subsection of spe-
cialty), the health professional and the date, with the option to choose which days of the
week are preferred and at what time. In the next screen the user can book the
appointment from a calendar with a weekly view.

There is information about the health professionals of the institution, however there
is not a main tab for accessing it. To access it the user must go to the clinic’s menu,
choose a clinic and only there is presented an option to select a health professional.
From there the patient can check the health professional’s CV but there is no option to
give a rating or review.

The Joaquim Chaves Saúde portal is available online as a web portal or as an iOS or
Android application. However, not all functionalities are available in all platforms and
the design is very different from the web portal to the mobile applications. Search and
date filters are the main features of the web portal not presented on mobile. Besides the
different design, not even the menu options are the same on the different platforms, and
there are menus that are the same but have a different name. It is a good thing to be on
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all platforms possible in order to reach the highest number of users, however having
such different designs of the same platform could be confusing to the user and not
providing the best user experience.

In both mobile operating systems, the application looks the same, having some
questionable design decisions like having a “hamburger button” on the right side of the
screen to open the navigation drawer on the left [24].

In 49 reviews on the Google Play Store it has a total score of 3.1 stars out of 5. On the
Apple App Store the application has less ratings, only 16, but it has a higher score of 3.6
stars out of 5. Users seem to give either 5 stars or 1 star which could mean that there are
some critical bugs but when the application works users enjoy their experience.

Comparative Analysis. We present next a comparative analysis of the mobile medical
appointments booking applications described before, highlighting the strong and weak
points.

As described in Table 1 the service that reaches more people is Zocdoc [21], since it
is not restricted to a single healthcare provider. Zocdoc provides all major function-
alities and is available in every platform. Both My CUF [17] and Joaquim Chaves
Saúde [23], the two services that only offer appointments in their own medical facil-
ities, have the same main functionalities; the only difference is the recommendations
made to its patients and the design of the applications and web portal.

Table 1. Mobile medical appointments booking applications comparative analysis summary
[15].

Functionalities My CUF Zocdoc Knok Joaquim Chaves
Saúde

Medical
Appointment Type

In provider Multiple
provider

At
home/video

In provider

Health professional
CV

Yes Yes No Yesa

Rating No Yes Yes No
Insurance Yes Yes Yes Yes
Patient History Yes Yes Yesb Yes
Platforms Web, iOS,

Android
Web, iOS,
Android

iOS,
Android

Web, Android,
iOS

Recommendation to
users

Yesc Yes No No

aNot working in the majority of health professionals
bThere seems to be a section for it, but it shows just a blank page
cNot user specific, just general health articles
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3 Mobile Marketing in Health Use Cases

The objective of this paper is to create a mobile application for mobile marketing. This
mobile application is an extension of the MedClick online platform, a medical
appointment booking service.

MedClick is a web platform in which users schedule medical appointments based
on the date, location, price, insurance providers and customer reviews. The mobile
application is expected to integrate all the functionality of the web platform and
enhance it with mobile marketing techniques. This adds value to the whole MedClick
platform, that in this way can reach more users and in different devices, giving the user
the ability to do the same task regardless of the device used. The approach proposed
also takes advantage of the location sensors of mobile devices to support the medical
appointment search process and in providing the user with useful push notifications.

The MedClick mobile application is expected to ensure the following major
features:

• Searching for a medical appointment - The user, authenticated or not, can search for
a medical appointment by specialty, location, date, health professional, price,
insurance providers or customer reviews (see Fig. 1). It is not required authenti-
cation for this feature, to allow for a wider user base and for a better user experi-
ence, not having to login or sign up before exploring anything on the application.

• Booking a medical appointment – After reviewing all the previous point parameters,
location, date, health professional, price, insurance providers and reviews, and
selecting an available time slot for the appointment, the user is required to login or
sign up in order to book the appointment (see Fig. 2).

• History of the medical appointments – The authenticated user can review all the
previously attended appointments. This feature also includes the preview of the
future appointments so that the user can keep track and cancel them if needed.

• Alerts for future appointments – The application should send a push notification to
the user when the appointment date is close to make sure the user doesn’t forget
about it (Fig. 3).

Fig. 1. Searching for Appointment Use Case [25].
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• Mobile Marketing – Depending on the mobile marketing campaign available in the
MedClick platform, the application sends a push notification to the user (Fig. 4).

4 Mobile Marketing App

Based on the research made about cross platform mobile application frameworks, the
framework chosen was the React Native with Expo toolchain2. With Native React it is
possible to build a mobile application that is indistinguishable from a native mobile

Fig. 2. Booking Medical Appointment Use Case [25].

Fig. 3. Push Notification Use Case [25].

2 https://expo.io/.
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application built using Swift or Java because it uses the same building blocks as regular
iOS and Android applications. It will provide a superior user experience than hybrid
applications. Additionally, from a development viewpoint, that is possible using just
JavaScript code without the need to learn swift or C#. Features like hot reloading and
simpler application deployment also support this decision.

After deciding about the development framework, the approach was to wireframe
the application and all the functionalities before implementing them. Using wireframes,
it was checked if the usability guidelines were being followed.

The next step was to start developing the application. The expo toolchain makes the
initialization of the project a straightforward process. The command “expo init” gives
several options to start the project. It was chosen a template with several example
screens and tabs that were very similar to the design in the wireframes. After that it was
a matter of developing screen by screen and feature by feature, testing them when
implemented. These features include having an onboarding screen to introduce the user
to the application, prioritizing most of the interaction with the application before login
and sending push notifications to engage with the user.

Fig. 4. Application wireframe example [25].
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4.1 Book Medical Appointment Process

The medical appointment process starts in the main screen of the application, as pre-
sented in Fig. 5. This screen provides users the suggestion to book a medical
appointment.

Users have three options in this screen: choosing a specialty, choosing a health
professional or selecting the advanced search option. If the specialty option is selected,
users navigate to the screen presented in the same figure (in the right), a section list of
the specialties divided by letter and sorted alphabetically. Users can also use the search
bar to quickly find the wanted specialty.

Fig. 5. Main Search Screen (on the left) and Screen with List of Specialties (on the right) [25].

Fig. 6. Map Screen (on the left) and Screen with List of Health Professionals (on the right) [25].
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The next screen presents a map that includes the locations of the healthcare pro-
viders that have medical services of the selected specialty (Fig. 6). In this screen users
can tap on any map pin to select a healthcare provider or skip this step and choose the
health professional by name.

In the main screen (Fig. 5), if users pressed the health Providers (Doctors) instead of
the specialties, they would skip the list specialties screen and the map screen and navigate
directly to the screen where they can choose the preferred health professional (Fig. 6).

After choosing the specialty, the health provider and the health professional, it is
presented with a screen containing all the information about the health professional. In
this screen, users can view the name of the health provider, contact, location, avail-
abilities, map with providers, rating and curriculum (Fig. 7).

Fig. 7. Health Professional Information Screens [25].

Fig. 8. Appointment Confirmation Alert [25].
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When users select the desired date of the medical appointment, an alert appears on
the screen to confirm all the choices made by the user (Fig. 8).

The next screen depends if the users are already logged in or not. If they are not
logged in, a login screen is presented.

If the users are already logged in, they are redirected to the Appointments tab,
where they can review all the past and future medical appointments booked through
MedClick. An alert is shown letting the user know that the appointment is booked.

4.2 User Onboarding

Having an Onboarding screen is a very important aspect of the user experience of a
mobile application. It gives users a quick and simple introduction in the first time they
open the application, explaining its basic functionality. For this solution it was chosen a
simple swipeable card interface with four cards in total, showing just one at a time. The
four cards represent the four tabs of the application: Search, Appointments, Profile and
Notifications. In each card, the name of the tab is a small description of that section,
and contains information regarding what the users will find and can do in that section –

see Fig. 9 and Fig. 10.
This way, even before interacting with the application, the users already know what

to expect and where to find the functionality they are looking for. Only one card
appears in the screen at a time, however it is possible to see part of the next card, giving
users the idea that there are more cards to see and interact.

Fig. 9. Onboarding Screens (1/2) [25].
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Below the cards there is an always visible button to skip this introduction screen.
This gives users the chance to see all the cards or just ignore the tutorial all together,
not making them lose time with something that they are not interested in.

4.3 Prioritize Search Before Login

All medical booking applications tested (see Sect. 2), apart from Zocdoc, request the
user to login or register before even starting to use the application. This is a major
obstacle to users because when they are expecting to start to interact with the applica-
tion, and they must go through a tedious login or register process. MedClick mobile app
has the goal of providing freedom to the user to search and use all the functionalities
without the need to login or registration. This includes searching for an appointment,
either by specialty or by health professional, searching the available healthcare providers
and even receiving notifications based on the search history. This is achieved by creating
a session linked to the device token, which can give the platform the ability to analyze
the patients search history and notify them of a discounted appointment.

In the appointment tab and in the profile tab, when the user is not logged in, it is
presented a simple button in the middle of the screen asking the user to login to access
that information.

4.4 Mobile Notifications

One important aspect of the solution is the notifications functionality. There are several
scenarios where a notification should be deployed to the application:

• When users enter a predetermined area, established by the MedClick platform,
where it is available a mobile marketing campaign or some suggestion to the users
of a certain location.

Fig. 10. Onboarding Screens (2/2) [25].
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• All the search history of the users is saved on the MedClick platform, where it can
then be analyzed to send suggestions of appointments and schedules based on that
user’s history. When this happens, a notification is sent to the user.

• To remind users of upcoming medical appointments. The application sends a push
notification to the user when the appointment date is close to make sure the user did
not forget about it.

For this to happen, when the user logs in the application, it sends to the server the
token that identifies the device when receiving notifications, the ExpoPushToken. This
token is then associated to the logged user. This way, anytime a notification is triggered
to a specific user, the server knows to what device to send the notification (Fig. 11).

4.5 User Information Logging

All the requests made by the application to the platform are saved in order keep track of
the users’ habits inside the application. This way it is possible for the users to receive
notifications based on their search history, with suggestions for appointments or even
discounted appointments.

5 Results Assessment

In this section it is described the iterative testing methodology and its contribution to
the final solution. Then it is described the Focus Group Test Scenarios and its results.
Finally, the limitations of the tests are discussed.

5.1 Iterative Testing Approach

The approach developed aim at having real users testing each iteration of the appli-
cation. When testing, users will always have access to a feedback tab on the application

Fig. 11. Notification Screens [25].
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where they can give feedback about the current screen. After concluding the testing
process, it is presented a small questionnaire to the users with questions about their age,
gender, profession and education. All this information is sent to the MedClick servers,
as well as the users’ location and information about the time spent on each screen of the
application.

The test methodology was planned in order to receive real users’ feedback and to
improve the application in iterative steps. The first functionality tested was the book
appointment process. The application was sent to several users. Some flaws were
discovered very quickly. In the logs it was visible that some users were not completing
the full testing process. Additionally, others were stuck on the same screen for a long
period of time. There were also duplicated logs of users that reloaded the application
and interacted again.

In total, in this short first iteration test, it was gathered data from 11 trustworthy
tests, 8 male test users and 3 female test users, with an average age of 29,4 years. It
was concluded that with these errors leading to such a small amount of data gathered,
the testing approach should change and rely on focus group testing.

5.2 Focus Group Testing

After the first small iterative testing, it was decided to change the approach to a focus
group testing, using a small group of people to test the application (in person), in this
case, 18 people. Each person was given three test scenarios where he or she had to
perform certain tasks in both the MedClick mobile application and in two other medical
booking applications reviewed in Sect. 2, namely “My CUF” and “Joaquim Chaves
Saúde” applications. These applications were chosen because they were the most
similar ones to the proposed solution, in the Portuguese market.

To measure the impact of not having a login screen as the first interaction of the
user with the application, users had to start each test without a logged session or any
other preference in the application. Another reason for this was that neither My CUF
nor Joaquim Chaves Saúde retain the user login after exiting the application. So, to
make testing similar across all applications, login was needed in all scenarios.

Scenario 1 - Appointment Booking for a Health Professional. The first scenario
given to the test users was to book an appointment for a specific health professional.
This scenario assesses the impact of having a quick option to select the desired health
professional and test the premise that if a patient wants to have a medical appointment
with a specific health professional, all other parameters are not that relevant.
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Most users had no problems in quickly identifying the search by health professional
on the MedClick mobile application. This translated in Table 2 results, where users
were in average more than 30 s quicker to complete the task comparing to the other two
applications.

Another reason for these results were some bugs with the My CUF application that
sometimes just loads blank screens and the user must go back and try to submit the
request again for the process to continue.

Also, on the Joaquim Chaves Saúde application, even when choosing a specific
health professional, the application requires users to select the type of appointment.
This translated in an extra step users have to go through, most of times to select the
only option presented, making this action completely unnecessary.

Lastly, one feedback received multiple times was to change the alert presented to
after the login screen when login is needed. That way the last step before booking the
appointment was confirming it.

Scenario 2 - Appointment Booking by Specialty. The second test scenario was to
give users the task of booking another medical appointment but this time with the
specialty as a main focus. All other parameters such as location, health professionals,
date or others were completely optional and up to the user. This test assesses the impact
of having the specialty parameter in the first step when trying to book a medical
appointment (Table 3).

Table 2. Scenario 1 results [25].

Application Average time to
complete scenario

Standard deviation of
average times

My CUF (Health Professional Maria de
Vasconcelos)

�1 m 25 s �18 s

Joaquim Chaves Saúde (Health
Professional Maria de Fátima Miguel)

�1 m 43 s �25 s

MedClick Mobile Application (Health
Professional Maria Fernandes)

�53 s �11 s

Table 3. Scenario 2 results [25].

Application Average time to complete
scenario

Standard deviation of
average times

My CUF
(Dermatology)

�1 m 08 s �15 s

Joaquim Chaves Saúde
(Dermatology)

�1 m 11 s �18 s

MedClick Mobile Application
(Dermatology)

�1 m 04 s �14 s
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In this test scenario, results were very similar across all applications, mainly
because users had to go through every step when booking the appointment. This
confirms the importance of having an option for the user to search directly for health
professionals.

Scenario 3 – Past and Future Appointments. The third test scenario is simpler than
scenario 1 and 2. It was given to the user the simple task of checking their past and
future appointments. This scenario tests the utility of having a quick access to the
patient’s past and future appointments, accessing it via a main tab in the main screen of
the application (Table 4).

The times referring My CUF and MedClick mobile application are mainly the time
users spent logging in because both applications have the appointments tab quickly
accessible and in an intuitive manner. The MedClick mobile application has a label
below the icon on that tab, however numerous users pointed the lack of contrast
making it difficult to read and quickly identify it. Several users were completely lost in
the Joaquim Chaves Saúde application, because this tab does not have an intuitive
name and many were looking in the appointments search section, confirming that
having an option to search inside the tab with the past and future appointments is a
good idea.

Scenario 4 – User Profile Information. The fourth and last test scenario is very
similar to the third one. It is simply asked for users to review their profile information
in the application (Table 5).

Table 4. Scenario 3 results [25].

Application Average time to complete
scenario

Standard deviation of average
times

My CUF �44 s �9 s
Joaquim Chaves Saúde �1 m 08 s �15 s
MedClick Mobile
Application

�38 s �8 s

Table 5. Scenario 4 results [25].

Application Average time to complete
scenario

Standard deviation of average
times

My CUF �42 s �13 s
Joaquim Chaves Saúde �46 s �14 s
MedClick Mobile
Application

�37 s �13 s
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Once again, most of the time spent in this scenario was due to login, and in here
most users had no problems finding the profile tab and completing the task. It should be
noted that in a real-world scenario, MedClick mobile application saves the user login
when closing the application, dramatically improving these times.

5.3 Limitations

In the iterative testing approach (presented in Sect. 5.1), user created errors resulting in
false results, making hard to identify the causes of the real average time spent in each
screen (bad user experience versus user disinterest).

On the other hand, the focus group test approach was important to overcome these
limitations, but it has other limitations regarding the restricted audience.

The authors recommend that the app follows a soft-launch or pilot approach in
order to enlarge the significance of the results. With a large number of users, it is expect
to assess if the consumer prefers a web interface or a mobile app, if the mobile
application brings new users to the platform and if they engage more with the platform
(considering the marketing efforts).

6 Conclusions

The ability to provide services without human contact is mandatory for most industries.
Currently, healthcare companies, to be “in business”, must provide consumers the
ability to book medical appointments anywhere, with any device.

This paper contributes to this subject by presenting a comprehensive background
research, including i) an assessment of the major mobile development frameworks; ii)
an review on mobile marketing; ii) a description on user experience approaches on
mobile; and iv) an analysis of mobile medical appointments booking applications.

The research presented in this paper also describes the major uses for mobile
marketing in the health sector, including i) searching for appointment, ii) booking a
medical appointment, iii) history of the medical appointments, iv) alerts for future
appointments, and v) mobile marketing.

The description of the implementation of a mobile marketing app, in the context of
the health sector, is also presented by describing i) the book medical appointment
process, ii) the user onboarding, iii) the approach on prioritize search before login, iv)
the mobile notifications, and v) the user information logging.

The results achieved were assessed and improved through an iterative testing
approach, that provided important feedback to the development process. Additionally,
user testing was performed in four scenarios. The mobile application implemented
presents above average user experience results that point to high adoption rates by real
world users.

The authors suggest that, as future work, the application usability is assessed using
an online survey, like the System Usability Scale (SUS) questionnaire. Another future
research path is on assessing the impact of GDPR on mobile marketing use cases.
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Considering the results presented in this paper, the authors expect that the further
mobile marketing applications are deployed soon, and further functionalities are
developed, with a relevant impact in the health sector process.
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Abstract. Intelligent systems play an increasingly central role in health-
care systems worldwide. Nonetheless, operational friction represents an
obstacle to full utilization of scarce resources and improvement of ser-
vice standards. In this paper we address the challenge of developing data-
driven models of complex workflow systems - a prerequisite for harnessing
intelligent technologies for workflow improvement. We present a proof-of-
concept model parametrized using real-world data and constructed based
on domain knowledge from the Royal Infirmary of Edinburgh, demon-
strating how off-the-shelf process mining, machine learning and stochas-
tic process modeling tools can be combined to build predictive models
that capture complex control flow, constraints, policies and guidelines.

Keywords: Surgery · Surgical workflow · Bayesian network · Petri
nets · Simulation · Data mining · Patient flow · Process mining

1 Introduction

Surgical care is a key component of healthcare systems worldwide, saving and
improving thousands of lives every day. Over 10 million operations are performed
each year in England [34], including high-risk cases and patients that require
immediate life, limb or organ-saving interventions. Surgical care is also very
costly, with more than $400 billion spent each year in the United States on
operative procedures [1]. The number of people requiring surgery is rising every
year, often leading to long waiting times that may put patients at risk.

Ensuring efficiency, timeliness and safety are crucial for providing high-
quality service while controlling costs [16,26]. While many processes surround-
ing surgery are well structured, the dynamic nature of patient arrivals combined
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with the complexity of coordinating large numbers of specialized staff and facil-
ities, means that delays and misalignments can have cascading effects leading
to last-minute cancellations and under-utilization of expensive resources. There
is, hence, an imperative need to improve surgical workflow. Some key questions
here are: How can we improve overall surgical care performance in the most
cost-effective way? How can we plan surgical care in a way that it is tailored to
the individual patient?

There is a wealth of data being collected through hospital IT systems, which
can be used towards answering these questions. This includes operating room
management and usage data, electronic health records and surgery cancellation
data. By adopting a process-based approach, one can make sense of such com-
plex and big data and inform improvements in surgical care processes, including
intelligent surgery planning, staff scheduling and workflow management.

This paper extends previous work [6] by presenting a preliminary investi-
gation into stochastic workflow modeling and verification methods in surgical
wards, with outset in a data set following patients from admission to discharge
at the Royal Infirmary of Edinburgh in Scotland. With the aim of gaining a
comprehensive understanding of surgical workflow, we use the data to investi-
gate both system-wide surgical performance and individual patient flow. Results
from these two types of modeling can be combined to enable personalised and
efficient surgical scheduling.

In particular, we discuss how process mining methods can be used to gain
insights regarding control-flow and temporal patterns in the surgical ward.
Focusing on system-wide performance and recognizing the high level of uncer-
tainty in the surgical department, we demonstrate how Stochastic Time Petri
Nets can be used to effectively capture complex hospital policies and constraints.
The choice of Stochastic Time Petri Nets allows for simulation of different sce-
narios, thus enabling what-if analysis. This is key for investigating different, and
often competing, workflow improvement mechanisms. Focusing on individual
patient flow, we propose the use of Bayesian Networks to predict patient-specific
cycle times of individual surgical phases, from the time patients are sent for,
through anesthesia and surgery, and until they leave recovery. Aside from their
capacity to easily incorporate domain knowledge, Bayesian networks have the
advantage that they can be queried in complex ways even with incomplete evi-
dence, which is invaluable in the uncertain hospital environment. We present
and compare three probabilistic models and we evaluate them w.r.t. to predic-
tion accuracy. Crucially, we show that by incorporating a pre-processing step
based on simple clustering of flows w.r.t. cycle times, we can improve the per-
formance of our models noticeably.

The rest of the paper is structured as follows. In Sect. 2 we review existing
literature. Our subsequent analysis of the data follows the classic data analyt-
ics workflow of Describe → Diagnose → Predict. In Sect. 3 we introduce the
domain, the data set, and the data cleaning process. In Sect. 4, we present a
descriptive analysis of the data set using process mining and standard statistical
tools to identify control-flow and temporal patterns in the data. This informs the
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process of building system-wide simulation models and individual-patient pre-
dictive models, which we describe and evaluate in Sect. 5. In Sect. 6 we discuss
our results and in Sect. 7 we conclude and discuss directions for future work.

2 Related Work

The modeling of surgical workflows has received a significant amount of attention
by researchers, motivated by the prerogative to improve efficiency and resource
utilisation while ensuring adherence to service standards.

Of particular interest for the present case study is the National Theatres
Project in Scotland which outlines several areas for improvement that might
be addressed by workflow optimization. This includes “appropriately increasing
patient throughput, thereby using resources more productively and efficiently”
by reducing unutilized (operating room) hours; reducing over/under-runs, late-
starts, cancellations and delayed discharges; and avoiding unnecessary out-of-
hours and nighttime procedures [32].

Previous research on modeling surgical ward processes varies greatly in terms
of scope: from very fine-grained models of individual procedures to high-level
models of treatment pathways well beyond the context of the surgical ward itself
(e.g. from visit to a GP to follow-up evaluation and treatment). In their literature
review on the topic [26] Laylis and Jannin identify a range of granularity. At
the finest level are low-level physical movements such as tool usage patterns
based on sensor data [4], phase detection [37], automatic identification of hand
motions from video in [27] and [20]. Several investigations have been made into
the modelling of Cholecystectomies, a highly standardized procedure [10–12,31].

In [36] the authors go beyond the modeling of the surgical procedure to
include anesthesia and early recovery within the operating theatre, while [19]
considers the patient flow from admission to recovery. Activities downstream
from surgery, namely recovery in ICU wards can present a key bottleneck, as
addressed in [5]. Extending the patient pathway further, follow-up post-surgery
is incorporated in [21,28]. In general, however, most research appears to have
focused primarily on either very low-level procedure or high-level treatment path-
ways. The patient flows we consider fall in between these levels of granularity.

The use of Bayesian networks to model stays in an emergency department
is evaluated in [3]. In contrast to our approach, the view of patient flows is at
a higher level of abstraction, and the main focus is the comparison of structure
learning algorithms.

Modeling the duration of surgical procedures was investigated in [24,38] and
we are able to report findings in line with these regarding the log-normal dis-
tribution of surgical times. Surgical duration was incorporated into sequencing
and scheduling strategies in [16]. Stochastic balancing of bed capacity based on
fluctuating demand patterns was explored in [15] and length of stay patterns
in [5] while resource allocation and patient admission was addressed in [22].

More broadly, the problem of ensuring that systems fulfill a given set of
specifications has been widely addressed in model checking and process mining
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research. The systems under consideration can range from electronic circuits
and communication protocols [29,33], to business processes [14,23] and even
biological systems [17].

We can verify whether a system satisfies a property or specification by means
of state-space exploration [40] or rewrite rules [8], but often realistic models
reach a level of complexity that precludes closed-form verification. This leaves
simulation, essentially a random sampling of the model’s state space, as a next
best tool for verification and what-if analysis.

Incorporating desired constraints into a system model is straightforward [7],
and allows for correct-by-construction plan generation, but also leads to state-
space explosion. Advancements in seemingly unrelated areas such as robot
motion [18] provide evidence that this approach to intelligent planning is feasible,
even in complex domains.

3 Domain and Data Preparation

We were granted access to workflow data recorded at The Royal Infirmary of
Edinburgh in connection with cases taking place from 2010 until 2018. The
infirmary is Scotland’s largest, with 900 beds and a 24-h accident and emergency
department. The data at our disposal was recorded by the Operating Room
Scheduling Office System (ORSOS), which is one component in the institution’s
overall IT-infrastructure.

Over 1700 types of procedures are recorded in the data set, about half of
which are classified as emergency cases. Each treatment procedure is given a
unique case ID, meaning that the same patient may be associated with multiple
case IDs, even during the same stay for inpatients. Following patients’ broader
treatment patterns would be possible using this dataset, but lies beyond the
scope and focus of this paper.

Data is entered manually by surgical support personnel, with the system
requiring the entry of timestamps for each event in the patient flow. Figure
1 illustrates the proscribed sequence of events, along with an aggregation of
activities into logical phases (pre-op, anesthesia, surgery, recovery).

The system attempts to enforce a strict linear ordering of events, though this
can be overridden by personnel. If a timestamp is entered out of sequence, a
warning is given, but can be entered upon confirmation. Staff are then sent a
summary of anomalous cases for review at the end of the week.

Data Schema. In addition to timestamps for the 11 proscribed activities in
a patient flow, 34 other attributes are recorded. Attributes of note include
two different procedure coding schemes, case type (emergency/scheduled, day-
case/inpatient), NCEPOD urgency classification1, and the ASA patient condi-
tion rating.

1 NCEPOD Classification of Intervention [30].
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Some staffing details are also included, such as main and supervising surgeon
and anesthetist, as well as the consultant assigned to the case. The source of
admission (emergency room, etc.), as well as intended and actual destination
following surgery (ICU, etc.) and crucially, the operating room number, are also
included. Further details include the diabetic status of the patient, types of
anesthetics administered, whether antibiotics were administered, and whether
pre-session briefings and surgical pauses were held.

Cleaning and Preparation. A number of clearly anomalous entries are present in
the dataset, comprising roughly 10% of the 38,728 entries. Due to the relatively
small percentage of anomalies and the reasonably large dataset, we followed a
precautionary principle and simply removed entire cases containing anomalous
entries prior to further analysis and modeling. Table 1 provides an overview.

Duplicate entries may have been due to an attempt to correct a data entry
error, but we are unable to determine which entry is reliable. The column anaes-
thetic start time was the only timestamp column to contain NA values. A larger
number of cases have clearly anomalous values in the case date column, e.g.
dates much too far in the past (year 1800) or future (year 3206).

Table 1. Anomalous cases removed prior to analysis. Originally published in [6].

Anomaly Count % of Total

Duplicate entries 58 0.15

Missing values 31 0.08

Dates out-of-range 475 1.23

Zero timestamps 3089 7.98

Bad ordering 443 1.44

Total 4096 10.58

4 Analysis

4.1 Control Flow Patterns

Based on input from domain experts, we were aware of the de jure workflow,
which follows a simple linear flow of events as illustrated in Fig. 1. In addition
to the anomalies discussed in Sect. 3, process mining techniques helped reveal
further control-flow deviations, guiding the data cleaning process. In particu-
lar, we found dotted charts, directly-follows graphs and mined Petri Nets to be
particularly informative.
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Fig. 1. The de jure sequence of events recorded by the ORSOS system, representing the
intended patient flow. Activities are linearly ordered, but can occur “simultaneously”.
That is, some activities (such as Leave Operating Room) can have the same timestamp
as the “succeeding” activity (Enter Recovery), but should not occur after it. Originally
published in [6].

Dotted Chart. One simple yet powerful tool for getting a quick, preliminary
overview of process-related data is the dotted chart, which simply charts events
w.r.t. case-id across time such that dots falling along a horizontal line represent
events belonging to the same process instance (i.e. case).

Using the dotted chart in Fig. 2 we immediately identified a substantial gap
in the dataset. Furthermore, we can see that some cases have events occurring
many months, even years apart - almost certainly evidence of anomalous entries.

Directly-Follows Graph. Another simple visualization tool, directly-follows
graphs consist of nodes and directed edges, where nodes represent the events
in the log, and an edge exists between two nodes if there is at least one log
trace where the source event is followed by the target event. Figure 3 shows the
directly-follows graph obtained for our dataset, which includes node and edge
frequencies. On one hand, the event frequencies on the graph confirmed that
all events were included in each trace, in accordance with the de jure work-

Fig. 2. A dotted chart showing all events in our dataset, arranged according to case id
and timestamp. Originally published in [6].
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Fig. 3. Directly-follows graph indicating that nearly all possible pairwise event order-
ings occurred at least once in the data.
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Send for patient

Anesthetic start Into anesthetic room Enter department

Incision stop

Into operating room

Incision start

Enter recovery

Leave operating room

Ready to leave recovery

Leave recovery

Fig. 4. Petri net generated by the Alpha miner on the top 20 trace variants. Originally
published in [6].

flow. On the other hand, the graph indicated that nearly all possible pairwise
event orderings occurred at least once in the data. This is inconsistent with
the de jure workflow, and it includes several implausible event orderings. For
example, there were a remarkable 154 traces where the last event in the de jure
workflow, namely leave recovery time, occurs before the proscribed first event,
namely sent for time.

Alpha Miner. For a more nuanced view of the control-flow evidenced by the
event log, proper process mining algorithms can be used. The Alpha (α) miner
was one of the first process mining algorithms developed, and though it has
limitations regarding the variety of control constructs it is able to identify, for
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our purposes it provided interesting insights into course of events as evidenced
by the data.

Figure 4 shows the result of running the SIMPLE version of the Alpha
miner [2] from the pm4py package [9] on the top 20 sequence variants in the
log. Mining on the entire log produces a flower model - a model which permits
any behavior, in line with observation from the directly-follows graph in Fig. 3.

According to this model, several remarkable control patterns seem to be
evidenced by the most frequently occurring sequence variants. For example,
according to Fig. 4, anesthetic start is not a precondition for incision start. This
observation led us to inquire with experts at the infirmary and to more closely
investigate these cases in the dataset. Apparently, it was not uncommon for
these two events to have exactly the same timestamp: a reflection, for example,
of cases in which a surgeon administers a local anesthetic immediately prior to
a minor surgery.

This observation gives rise to a further insight: nearly all process mining algo-
rithms have a strong assumption of temporal monotonicity, i.e. events are strictly
linearly ordered such that no two events share exactly the same timestamp.
With the coarse level of temporal accuracy (1–5 min) in our dataset, exactly
co-occurring events were common. In this sense, most process mining algorithms
are unable to account for true concurrency in data.

4.2 Temporal Patterns

Beyond identifying anomalies in the data, there were few interesting control-flow
patterns to identify at the level of patient flows, since they do in fact follow a
(non-monotonic) linear process.

This left temporal patterns as the next obvious aspect to investigate, espe-
cially since both resource usage and service guidelines are largely temporally
focused (e.g. target time to theatre, anesthetist availability).

Event Aggregation. In part due to large numbers of zero-duration cycle-times due
to the phenomenon of co-occurring events, but also based on conversations with
experts, we decided to group individual events into the four phases illustrated
in Fig. 1. Aside from clearly representing logically meaningful phases, it was also
clear that this aggregation smoothed out cycle-time distributions.

On one hand, this process of aggregation arguably removes valuable informa-
tion that could inform our model, on the other, it constitutes a form of dimension-
ality reduction which helps control the complexity of our model and ultimately
improves performance in the end.

Marginal Distributions. The simplest temporal pattern at the level of patient
flows is the marginal distribution of cycle times across all patients regardless
of procedure, condition, urgency, etc. Fitting a probability distribution to the
empirical distributions of cycle time also constitutes the simplest possible pre-
dictive model, i.e. the maximum likelihood prediction based on the best-fit dis-
tribution.
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In Table 2 we show the goodness-of-fit statistics (Kolmogorov-Smirnov cri-
terion) for 7 types of distributions for both the individual events and events
aggregated into phases. Those distributions best fit to the phase data are visu-
ally depicted.

In building the stochastic Petri net described in Sect. 5, we used these
marginal distributions to parametrized transitions representing these phases.
However, our modeling tool restricted the families of probability distributions to
Exponential, Erlang and polynomials of exponentials. We illustrate our approx-
imations to the best-fit distributions in Table 2 and give the exact parametriza-
tions in Table 5.

Table 2. Red : Best fits for marginal distributions of cycle times, goodness-of-fit statistic
used is the Kolmogorov-Smirnov criterion. Blue: distributions used for modelling, in
which our tool restricted the choice of distributions to Erlang (pre-op) and polynomials
of exponentials (remaining). Originally published in [6].
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EVENT GOODNESS-OF-FIT (KS) PLOT (Best fit for aggregate)

Send for patient 0.147 0.113 0.139 0.169 0.126 0.104 0.267
Enter department 0.161 0.147 0.197 0.205 0.171 0.157 0.184
Pre-op 0.094 0.087 0.123 0.127 0.09 0.062 0.24

Into anesthetic 0.226 0.166 0.168 0.153 0.133 0.15 0.19
Anesthetic start 0.146 0.098 0.134 0.171 0.112 0.096 0.189
Anesthetic 0.124 0.077 0.106 0.188 0.132 0.106 0.244

Into theatre 0.16 0.094 0.143 0.111 0.093 0.114 0.298
Incision start 0.164 0.122 0.144 0.061 0.06 0.07 0.132
Incision stop 0.187 0.145 0.168 0.111 0.144 0.128 0.25
Surgery 0.16 0.11 0.134 0.036 0.071 0.087 0.193

Enter recovery 0.083 0.079 0.126 0.243 0.174 0.139 0.198
Ready to leave 0.285 0.277 0.266 0.184 0.144 0.144 0.22
Recovery 0.099 0.083 0.127 0.244 0.17 0.136 0.19

Mutual Information. To get an impression of which attributes might be infor-
mative independent variables in conditional distributions of cycle times, we cal-
culated estimates of pairwise mutual information. Having an eye to identifying
variables for inclusion in the Bayesian networks described in Sect. 5.2, we were
interested in mutual information between all attributes.
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As a measure of the expected decrease in uncertainty regarding the outcome
of variable X upon learning the outcome of Y , mutual information is akin to
standard correlation metrics, but well suited to hybrid (discrete/continuous)
attributes and makes no assumption regarding normality or linearity.

Recalling the definition of the Shannon entropy of a random variable X as its
expected information content, denoted H[X], we can write mutual information
directly as the decrease in entropy of X upon learning the outcome of Y . For-
mally, I(X;Y ) = H[X] − H[X|Y ]. Two completely independent variables will
have mutual information of H[X]−H[X] = 0, while for two perfectly correlated
variables it collapses to the entropy of the dependent variable H[X]−0 = H[X].

However, as an expected value (averaged over the sample space), it can hide
that specific outcomes for a variable can have a high pointwise mutual informa-
tion - which could be harnessed by a predictive model - yet disappear amongst
many uninformative outcomes. For this reason we also manually explored con-
ditional distributions for cycle times.

Conditional Cycle Time Distributions. Our investigation around the most infor-
mative features in the data set continued by exploring the conditional distribu-
tions of cycle times for the individual values attributes. By visualizing condi-
tional distributions on the same plot, one gets a quick impression of whether an
attribute is informative in this respect, or not. Even though this is a somewhat
time-consuming, brute-force approach, exploring the data in this way turned out
to be quite informative. This analysis played an important role for us in choos-
ing which variables to include in the models we present in Sect. 5.2. Examples
of some of the most informative attributes are presented in Fig. 5. For instance,
one can see that the conditional cycle time distributions for surgery differ con-
siderably based on ASA status, i.e. for normal healthy patients (ASA status 1),
for patients with severe systemic disease that is a constant threat to life (ASA
status 4) and for patients with non-assessed ASA status. The anesthetic cycle
time distributions conditioned on source of admission also differ considerably,
with patient cases coming from the High Dependency Unit spending longer on
average in Anesthesia, compared to those coming from the Admissions Unit or
some other source.

Principal Component Analysis and Patient Clusters. We explored the presence of
groupings of patients in regards to duration by a combination of visual analysis,
data transformation and clustering.

Judging by the original durations of the 4 phases of a patient’s flow, there do
not appear to be clear groupings of patients (Fig. 6a). However, after applying
principal components analysis (PCA) and plotting the data w.r.t. the four princi-
pal components, clear groupings become apparent (Fig. 6b). Since PCA assumes
normally distributed data, and since most durations more closely follow a log-
normal distribution, the data was log-transformed prior to PCA transformation.

Afterwards, k-means clustering was used to discover grouping of patients.
This derived attribute was added to the dataset and our predictive mod-
els, noticeably improving peformance. It should be noted that we retained all
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Fig. 5. Examples of conditional cycle time distributions. Top: conditioned on ASA
status. Second from top: Source of Admission. Third from top: Intended Destination.
Bottom: Case Type.

4 principal components, and thus employed PCA solely as a transformation
rather than dimensionality reduction technique, as is common. This was due to
the observation that removing those principal with lowest eigenvalues did not
improve performance. This is not unexpected, considering the small number of
dimensions.
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(a)

(b)

Fig. 6. (a) Raw durations of 4 phases plotted against each other. (b) Durations w.r.t.
principal components. Data was log-transformed prior to PCA transformation.



578 C. O. Back et al.

4.3 Arrival Rates

Many of the aspects of patient flows we have considered so far concern patterns
at the level of the individual patient. In order to model system-level dynamics it
is crucial to consider how the system is affected by multiple processes competing
for shared resources.

One key component in this analysis concerns the arrival of patients, in par-
ticular unplanned arrivals requiring immediate treatment, since this will affect
and potentially interfere other patient flows. A clearly defined policy exists for
the prioritisation of cases based on severity which can lead to cancellation of
procedures.

A common assumption in performance modelling and queuing theory is that
the number cases arriving for service within some interval follows a Poisson dis-
tribution. We found those cases arriving via the emergency room (unscheduled)
did in fact follow a Poisson distribution remarkably well (Fig. 7) whereas sched-
uled cases did not. The latter is not so surprising since the arrival of scheduled
cases is necessarily a non-random process and is adjusted to balance the arrival
of emergency cases.

Fig. 7. Daily arrivals (black) along with best-fit Poisson distribution (red). Left: emer-
gency cases. Right: scheduled cases. (Color figure online)

The close fit of daily emergency arrivals to a Poisson distribution allows
us to accurately model the remaining stochastic transition in our model (the
other representing marginal cycle times) using the closely related exponential
distribution, which captures the corresponding distribution of inter-arrival times.

5 Modeling

5.1 Stochastic Time Petri Nets for System-Wide Simulation

To model the surgical workflow, we used Stochastic Time Petri Nets (STPN)
which are essentially Petri nets in which the notion of time and uncertainty is
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incorporated by adding either a deterministic or a probabilistic delay for the fir-
ing of transitions. Specifically, transitions can be either immediate, deterministic
or stochastic (Table 3). The model was implemented in ORIS API; a software
tool for the modelling and evaluation of stochastic processes [13]. By using the
functions provided by the ORIS tool we were able to evaluate the performance
of the system by observing how different metrics change when we alternate some
of its aspects.

Table 3. Overview of transition types in Stochastic Time Petri nets.

TRANSITION REPRESENTATION DESCRIPTION

Immediate

? condition
Fires immmediately if enabled, conflicts between
competing enabled immediate transitions are resolved
using priority ranking

Deterministic

5
Fires after a fixed amount of time upon becoming
enabled

Stochastic
Fires after a delay sampled from a probability
distribution upon becoming enabled

e x

Surgical Ward Workflow Description. The scenario that is considered for this
study is the following: Emergency patients arrive in the hospital at a certain
rate to receive treatment throughout the entire 24 h period (transition arrival
in Fig. 8b) while elective ones are only allowed to arrive at the hospital during
the working hours (uniform transition arrival in Fig. 8a with enabling function
?working hours = 1). Emergency arrivals go through a checking procedure for
the determination of the severity of their condition. For the current model we
assume that about half of the cases do not require immediate intervention (uni-
form transitions emergency status and scheduled status). If it is decided that the
operation must be performed immediately, the patient moves to the Preop room
in order to get prepared for the operation (place preop room). According to the
NCEPOD urgency classification [30], target time to theater varies depending on
the case. For the purposes of this study, only one type of emergency is considered,
and the expected time to theater was set to 30 min. On the other hand, sched-
uled cases can be cancelled up to the time they are about to be placed under
anaesthesia if there are no available resources (e.g. beds, surgeons, theaters)
to continue the process (transitions cancel 1,cancel 2 ). This is not the case for
emergency patients, however, who can move from phase to phase (pre-op, anes-
thesia, surgery, recovery) if the resources for the next part of the process are
available. In this paper, we assume that a surgeon and an anesthetist is required
for the surgery. Furthermore, the anesthetist is also required during anesthesia
and recovery. Note that priority is given to emergency patients over scheduled
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(a) Template for scheduled patient flow.

(b) Template for emergency patient flow.

(c) Shared resources.

Fig. 8. Stochastic Time Petri Net used to model core aspects of patients flows.

ones when a decision has to be made regarding the entry to an operating theater
or an anesthetic room. The duration of each phase (pre-op, anesthesia, surgery,
recovery) is modelled using stochastic transitions with random firing rates fol-
lowing distributions that match our findings in Sect. 4 (Table 2). The properties
of these transitions is shown in Table 5.

To account for cancellations and delays, two places were added in the STPN,
namely cancelled cases 24h and emergencies wait cases. In the former a token is
added every time a scheduled case gets cancelled while in the latter a token is
added whenever an emergency case is waiting for more than 30 min. Both places
are reset to zero at the start of a working day. Prioritization and availability
checking were incorporated in the model by setting the proper enabling functions
and marking updates to transitions. For instance, the enabling function of the
transition enter recovery was set to bed available>0. This property of the model
prevents emergency patients to enter the recovery phase if there are no available
beds. Table 4 illustrates some examples of how our STPN captures some other
policies and guidelines.
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Table 4. Simplified examples of some of the policies, guidelines and constraints for
patient flows captured by our model, along with the fragment of the Petri net which
captures this.

POLICY/GUIDELINE PETRI NET FRAGMENT

Normal working hours are from 8-18

working
hours

outside
working
hours

10

14

Non-emergency procedures should be handled
within normal working hours

? working hours == 1

preop

Scheduled cases can be cancelled all the way up
to entering anesthetic room if all theatres are
occupied by higher priority cases

? anesthetic room > 0
AND operating theatre>0

enter
anesthetic

cancel
cancelled

cases

PRIORITY: enter anesthetic > cancel

Additional simplifying assumptions made for this first iteration of modeling
include: that anesthetic rooms and operating theatres are completely indepen-
dent, a constant number of resources are available within and outside working
hours and only one type of recovery room is present whereas in reality different
sections are present, such as ICU and high-dependency unit.

Figure 8c shows the basic outline of our model. Patient flows were modeled as
individual workflow nets in order to capture constraint violations for individual
patients. These workflow nets were then programmatically duplicated during
simulations. Due to space limitations we are unable to elaborate all details of
the model, particularly enabling/update functions and firing priorities, but the
full model can be found online2.

2 http://www.github.com/apapan08.

http://www.github.com/apapan08
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Table 5. Fitted parameters for stochastic transitions. See Table 2 for a visualization.

Transition Distribution Parameters

Emergency
arrivals

Exponential λ = 0.00487

Preop Erlang k = 3, λ = 0.16

Anesthetic Polynomial of
exponentials

1.5x2e−0.11x

−10xe−0.11x+30e−0.11x

Surgery Polynomial of
exponentials

x2e−0.0385x + xe−0.0085x

Recovery Polynomial of
exponentials

x2e−0.05x − 10xe−0.1x

+ 150e−0.1x

Simulation. Using our model, we investigated different resource capacity scenar-
ios (Table 6), with a focus on the ability of the system to fulfill two quality-of-
service indicators:

– Number of scheduled cases cancelled in 24 timeframe
– Target time to theatre <30 min for emergency cases

These are properties that are straightforward to formalize and evaluate. In
fact, any properties that can be formalized in an appropriate temporal logic
such as LTL or MITL3, which read similarly to natural language guidelines,
can be evaluated. In addition to reporting the expected values for these QoS
criteria, we included the expected resource availability over time. This helps us
to identify when, and for which resources, potential bottlenecks arise. In a more
sophisticated model, we would likely see more complex patterns resulting from
interacting processes/resources.

Table 6. Resource capacity scenarios explored in simulations.

Excess capacity Sufficient capacity Insufficient capacity

Scheduled cases/day 10 10 10

Anesthetists 10 8 4

Surgeons 8 5 3

Anesthetic rooms 8 4 2

Operating theatres 10 8 4

Recovery beds 12 6 4

We report results in terms of expected value4 across 100 simulation runs
of each scenario. That is, the number of cancelled cases or available operating
3 Linear Temporal Logic, Metric Interval Temporal Logic.
4 E[X] =

∑
x p(X = x).
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theatres at a given time, averaged over simulation runs. With this simple model,
the state of the system follows a consistent periodic fluctuation according to the
working hours (Table 7). Realistically, however, greater fluctuations would be
likely due to uneven patient inflows and staffing availability patterns over time.

5.2 Bayesian Nets for Individualised Prediction

In modeling cycle times in patient flows, our model in Table 2 considers only
marginal distributions, i.e. cycle time estimates are identical for all patients.
However, as we illustrated in Sect. 4.2, there clearly exist categories of patients
with significant variations in cycle times.

Bayesian Nets are probabilistic graphical models that capture the structure of
complex probability distributions. By exploiting conditional independence rela-
tions between variables, inference algorithms allow us to query the belief network
in a flexible manner, even with only partial information [25]. In the present con-
text, Bayesian nets allow us to take into account multiple attributes of a patient
along with the partial completion of their treatment in order to make signifi-
cantly more accurate and nuanced predictions regarding cycle time and other
aspects, such as destination.

We present the results of two Bayesian networks in predicting cycle time,
leaving as an important avenue of future research the integration of these pre-
dictive models into a more sophisticated process model which accounts individual
patient attributes. Figure 9 illustrates that Bayesian networks can be integrated
with Stochastic Petri net models to more accurately model transition distribu-
tions specifically.

The models were built and trained using algorithms implemented in the
bnlearn package for the programming language R [35]. We used our own imple-
mentation of cross-validation, in part to avoid data snooping, and added simple
smoothing procedures to account for undersampling.

Feature Selection. We evaluated two networks: a 10-variable model and a 22-
variable extension of the first. The decision of which attributes to include was
based in part on our exploration of conditional distributions in Sect. 4.2 and
pairwise mutual information described in 4.2.

One feature of note is the Cluster node in both 10 and 22 variable mod-
els. This represents the patients groups identified in 4.2. Using simple k-means
clustering, we experimented with identifying 5, 10, 15, and 20 patient clusters
which proved moderately helpful in improving performance - in particular for
predicting anesthetic cycle times using the 22-variable model.
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Table 7. Simulation results for scenarios with (top) excess capacity, (middle) sufficient
capacity, and (bottom) insufficient capacity averaged over 100 runs. Cancelled-Cases
and Emergency-Delay represent failures to meet quality of service guidelines when
the expected value exceeds 0. In other words: these are the system properties we are
interested in verifying.
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Fig. 9. Petri nets capture control-flow of a process, while Bayesian networks allow
nuanced modelling of transition distributions based on case attributes. Integrating
these two modelling perspectives is an important next step in developing data-driven,
patient centric workflow models.

Structure Learning. There are two methods for constructing the graph structure
of a Bayesian net: manually, based on expert knowledge; and automatically using
structure learning algorithms. After several attempts at building nets manually,
we found that automatically generated nets outperformed, despite sometimes
finding odd connections between variables.

We employed the score-based structure learning algorithms hill-climbing
and TABU structure-learning algorithms, using scoring functions Akaike and
Bayesian Information Criterion (AIC/BIC). This choice was due to their com-
putational tractability and suitability to the our hybrid dataset (continuous and
discrete attributes). The 22 variable graph can be seen in Fig. 10.

Evaluation. Models were evaluated based on prediction of cycle times for the
4 phases of the surgical patient flow using 10-fold cross validation. We present
mean absolute error in Fig. 11 for comprehensibility, but note that mean squared
error results closely follow the same pattern. As a baseline for comparison, results
are shown for the best-fit marginal distributions reported in Table 2.
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Fig. 10. A Bayesian belief network taking into account 22 attributes of a patient’s
treatment. Attributes prefixed by Ane. denote different types of anaesthetic. Note the
central role of the latent Cluster attribute discovered in Sect. 4.2. Originally published
in [6].

Avoiding Data Snooping. One pitfall that was important to avoid, in particular
when modelling partial executions of patient flows, was that of inadvertent data
snooping by including the Cluster attribute. When evaluating a model’s predic-
tive power on test data, the cluster should be consider an unobserved variable.

While intuitively obvious, this is a crucial methodological point, as including
it would constitute a form of data snooping since the cluster itself is in fact
derived from the target variables (cycle times). Nonetheless, the variable is able
to play a role in the Bayesian network, despite being unobserved, via conditional
dependencies between it, observed variables and unobserved target variables.
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Fig. 11. Comparison of 40 different Bayesian net models using 10 (blue) and 22 (green)
variables, but different structure learning algorithms. Results are based on 5 runs of
10-fold cross-validation for predicting cycle time of partially completed patient flows.
As a baseline comparison, the simple best-fit marginal distribution (reported in Table
2) is shown in red. Originally published in [6]. (Color figure online)

6 Discussion

The case study presented in this paper has highlighted a number of challenges
and lessons learnt that can be applied to other surgical workflow modeling
projects, as well wider data-driven healthcare improvement initiatives. First,
data quality assurance is key. One of the most immediate observations of our
analysis was presence of a good deal of anomalous data. Process mining tech-
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niques proved to be useful for detecting outliers and identifying anomalies related
to the control-flow.

Second, even though it seemed initially that there were no groupings of
patients with regards to duration, PCA revealed latent patient categories in
our data. Identifying these patient clusters improved Bayesian net prediction,
even though interpreting what these categories mean is not straightforward.

Third, we showed that a reasonably accurate predictive model of event cycle
times in the form of a simple Bayesian belief network can be built, which signif-
icantly outperforms simple marginal distribution fitting. The choice of Bayesian
networks was motivated by their flexibility and interpretability, which is of great
importance in safety-critical domains like healthcare. The ability to query these
models suggests they would be a strong component of an intelligent probabilistic
scheduling system in surgery.

Finally, Stochastic Time Petri Nets were found to be an appropriate for-
malism for capturing hospital policies and guidelines surrounding surgery, in
particular regarding timing and resource requirements. Distinguishing between
the workflows for emergency and scheduled cases was possible in a clear and
transparent way, and incorporating case prioritization was straightforward. Even
though the model presented in Sect. 5.1 is a simplified version of reality, it serves
as proof-of-concept of how real-world data can be incorporated into a model
that combines official procedures and guidelines with domain expert knowledge.
Simulating different scenarios allowed us to test the limits of the system and to
analyse the effect of varying resource allocation.

7 Conclusion and Future Work

In this paper, we presented a preliminary investigation into probabilistic work-
flow modeling, simulation and prediction methods in surgical wards. This is an
important first step towards much-needed surgical care improvement. Our anal-
ysis is focused on key surgical phases, which is a level of granularity that has
received less attention in existing literature.

Data-informed surgical care scheduling that takes into account individual
patient characteristics, resource availability and hospital policies presents a
promising approach to improving resource utilization, quality of care and, ulti-
mately, patient and staff satisfaction. We have demonstrated the value of com-
bining several data analysis paradigms, from mathematical modeling to process
mining and machine learning, towards developing a model that effectively cap-
tures the complexity of surgical processes, while allowing for experimentation
and insightful interrogation. This approach is applicable in other areas of the
healthcare system, where under-utilization of expensive resources calls for pre-
cise scheduling to minimize costs and waiting times.

Our analysis considered both system-wide surgical performance (through
Stochastic Time Petri Net modeling and simulation) and individual patient flow
(through Bayesian Net cycle time prediction). In order to integrate the two in
the future and incorporate Bayesian nets into Petri Net modeling, we propose
the use of Bayesian Stochastic Petri Nets [39].
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In the big data and precision medicine era, developing intelligent methods for
dynamic and personalized scheduling in the surgical ward is a key research direc-
tion. Extending the work presented in this paper to incorporate more detailed
information about the surgical ward is desirable, and would possibly require fur-
ther domain knowledge and dimensionality reduction, so as to deal with the huge
cardinality of some attributes. We also regard evaluation with domain experts as
an important next step, ensuring that the recommendations of a future surgical
scheduling system are understood and deemed useful by hospital staff.
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Abstract. Obesity and its numerous devastating consequences are on
the rise globally. While widespread tactics to fight against obesity often
focus on healthy eating, how the food is consumed is oftentimes over-
looked even though convincing evidence attests that merely eating slowly
and properly chewing one’s meal significantly reduces obesity. This
research introduces a method that recognizes common human actions
during mealtime—namely, food chewing, food swallowing, drink swal-
lowing, and talking. The proposed system is unobtrusive. It uses a cheap
and small bone conduction microphone to collect intra-body sound and a
smartphone that provides feedback in real-time. Our proposed approach
achieves similar performances (Accuracy = 97.5%, Specificity = 98.0%,
Precision = 83.8%, Recall = 91.7%, F1 score = 87.2%, and MCC = 0.85)
as those achieved by the most recent state of the art models even though
our system uses modest machine learning models.

Keywords: Eating quantification · Chewing · Swallowing · Sound
analysis · Activity recognition · Free-living conditions

1 Introduction

Healthy eating is often hailed as the most reliable method to fight against obesity.
However, while a healthy diet certainly plays an influential role in weight loss,
how the food is consumed is an often overlooked obesity-fighting mechanism.
Indeed, accumulating evidence shows that merely eating slowly and properly
chewing one’s meal reduce obesity significantly. For instance, an up-to-date sys-
tematic review [25] on the topic concluded that inadequate mastication highly
correlates with obesity. Likewise, a large scale study (N = 92,363 individuals)
conducted between 2005 and 2013 found that those with slow eating habits had,
among other numerous benefits, a lower BMI (22.3 ˘ 4.0), and a lower obesity
rate (21.5%). In contrast, those with fast eating habits had a much higher BMI
(25.0 ˘ 4.4) and a higher obesity rate (44.8%) [12].
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There exist diverse food intake monitoring mechanisms. The simplest strate-
gies consist of manual self-reports. However, self-report is imprecise because it
is biased and subjective [23,27]. The germane state of the art [2,24,26] proposes
wearable devices as a more accurate alternative. Unlike manual mechanisms,
wearable gadgets automatically monitor the dietary habits of the wearers; thus,
they are immune to subjective bias. Moreover, they are more convenient and can
provide real-time feedback to their users [26]. Although automatic food monitor-
ing is still an open problem to solve [3,13,24], many solutions have been intro-
duced and are extensively reviewed in e.g., [24,26]. For example, [3] proposed an
earpiece that automatically monitors eating behavior in free-living conditions.
Their system is based on an off-the-shelf contact microphone and has an F1score
that exceeds 77.5% for eating detection. Recently, [17] presented a framework for
in-the-wild modeling of eating behavior using inertial measurement unit (IMU)
signals that are recorded from smartphones. The proposed approach uses both
convolutional and recurrent layers that are trained simultaneously. This model
outperforms the state-of-the-art in detecting food bites (F1score “ 92.3%).

In our previous studies [14–16,20], we proposed a method that uses a cheap
and small bone conduction microphone to automatically monitor eating behav-
iors. Our research was, however, restricted in scope. This paper extends the
following improvements to our earlier research and to other existing relevant
studies:

1) All experiments were conducted in free-living environments (e.g., at home
when the subjects were eating with their families) to capture the complexity
of the real-world.

2) There was no constraint on the type of food to eat and the participants were
urged to have whatever they usually eat or drink.

3) The proposed approach recognizes five different eating activities (i.e., chew-
ing, food swallowing, drink swallowing, talking and other noises).

4) The previous dataset was increased by 30% of new samples.
5) The proposed approach adds features engineering process, applies a less noisy

oversampling method, adds features selection process, evaluates new classi-
fiers, and provides more detailed evaluation metrics.

6) The proposed approach achieves comparable performance (Accuracy= 97.5%,
Precision = 83.8%, Recall = 91.7%, Jaccard score = 0.89, Kappa score = 0.88,
F1 score = 87.2%, and Matthews Correlation Coefficient = 0.85) to those
achieved by the most recent state of the art model proposed in [17] even
though our proposed method uses much simpler machine learning models.

2 Methods

2.1 Data Collection

Sixteen subjects joined the experiments. All experiments were conducted in free-
living environments to capture the complexity of the real-world. For instance,
some experiments were recorded at home when the subjects were having supper
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bone conduction
microphone

smartphone for
video recording

smartphone that receives
the recorded audio

Fig. 1. Experimental setup of a typical dietary sound collection. The experiments were
conducted in a free-living environment when the subjects dinned with e.g., their family.
The dietary sounds were recorded using a bone conduction microphone. One smart-
phone was used to receive, via Bluetooth, the recorded dietary sounds. Another is used
to record a video of the subject for data annotation purposes.

with their families. Others took place in a university cafeteria during lunch with
colleagues. Additionally, there was no constraint on the type of food and the
subjects were urged to have whatever they usually eat.

The dietary sounds were recorded (Fs “ 8 kHz) using a commercial bone
conduction microphone (Motorola Finiti HZ800 Bluetooth Headset, Motorola
co. Ltd.) that is attached to a subject’s ear. The microphone sends the recorded
sounds to a smartphone via Bluetooth. The sounds are then saved for further
analysis. At the same time, another smartphone records the subject’s mouth and
throat motion as shown in Fig. 1.

2.2 Audio Data Labeling

The collected dietary sounds are segmented and then labeled using Praat1, a
free software for speech analysis in phonetics that, among others things, allows
speech labeling and segmentation. Labels were manually added by looking at
the video which were recorded when the subjects were having their meals. The
following five labels were added:

• Chewing—this label is assigned to any sound segment corresponding to when
the subjects were crushing solid food with their teeth.

• Food swallowing—when the subjects swallow the chewed solid food but not
when swallowing liquids.

• Drink swallowing—when the subjects swallow liquids but not solid foods.
• Talking—when the subjects are speaking.
• Other sounds—this label is assigned to sounds segments when other sounds

other than the aforementioned are recorded.
1 http://www.fon.hum.uva.nl/praat/.

http://www.fon.hum.uva.nl/praat/
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2.3 Feature Computation

A total of 26 features (Table 1) were extracted from the recorded dietary sounds.
The chroma features capture harmonic and melodic characteristics of music and
they are robust to changes in timbre and instrumentation. They are also used for
audio-matching. A chroma vector is a 12-element feature vector indicating how
much energy is contained in each of the 12 pitch classes (C, C#, D, D#, E, F,
F#, G, G#, A, A#, B). The 12-dimension chroma vector vc(t) is computed from
a logarithmic Short-Time Fourier Transform (STFT) power spectrum ψp(f, t) [8,
21] (Eq. (1)) and constitutes a compact representation of a sound [1].

Table 1. Summary of the extracted features [14].

Description Number of features

Mean of chroma vector 1

Root mean square energy 1

Spectral centroid 1

Spectral bandwidth 1

Spectral roll off 1

Zero crossing rate 1

Mel-frequency cepstral coefficients 20

vc(t) “
OctH∑

h“OctL

∫ 8

´8
BPFc,h(f)ψp(f, t)df (1)

BPFc,h(f) represents a band-pass filter (Eq. (3)) which passes the log-scale
frequency Fc,h (Eq. (2)) of pitch class c and is applied from low (OctL) to high
(OctH) octaves.

Fc,h “ 1200h ` 100(c ´ 1) (2)

BPFc,h “ 1
2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 ´
cos

[
2π

(
f ´

(
Fc,h ´ 100

)) ]

200

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3)

The energy Es(t) of a continuous signal x(t) and a discrete signal x(n) corre-
sponds to area under their squared magnitude (Eq. (4) and Eq. (5)). For audio
signals, that roughly corresponds to the loudness of the signal.

Es(t) “
∫ 8

´8
|x(t)|2dt (4)
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Es(t) “
8∑

n“´8
|x(n)2| (5)

The Root Mean Square Energy (RMSE) of an N samples discrete signal s(n) is
defined as the square root of the average of the sum of all samples n (Eq. (6)).

RMSE “
√

1
N

∑

N

|s(n)|2 (6)

The spectral centroid (SC) indicates which frequencies the energy of the spec-
trum is centered upon, i.e., it expresses where the center of gravity of the spectral
energy resides [1] (Eq. (7)).

fc “
∑

k S(k)f(k)∑
kS(k)

(7)

where S(k) is the spectral magnitude and f(k) is the frequency at bin k.
The Spectral bandwidth (Eq. (8)) defines the order-p spectral bandwidth and

is used to distinguish tonal sound from noise-like sounds [1].

fb “
(

∑

k

S(k) (f(k) ´ fc)
p

)1{p
(8)

where S(k) is the spectral magnitude at frequency bin k, f(k) is the frequency
at bin k, and fc is the spectral centroid. When p “ 2, this is like a weighted
standard deviation.

The Spectral roll-off (Eq. (9)) of a point i is the frequency below which a spec-
ified percentile of the total spectral energy lies. It measures the skewness of the
shape of the spectral [1,22] and can be used to differentiate voiced from unvoiced
speech because the former has its energy concentrated in high-frequencies while
the latter has more energy in its lower bands [22].

i∑

k“b1

sk “ K

b2∑

k“b1

sk (9)

where sk is the spectral value at bin k, b1 and b2 are the band edges, in bins,
over which to calculate the spectral spread. K is the percentage of total energy
contained between b1 and i.

Zero crossing rate (ZCR) (Fig. 2) indicates the number of times that a signal
crosses the horizontal axis and it provides a rough estimate of the dominant
frequency in the sound [1].

Mel frequency cepstral coefficients (MFCC) are popular feature for sound
classification. MFCC take into account humans’ perception of sound and model
the sound’s spectral energy distribution accordingly [5]. Indeed, it is reported
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(a) speaking

(b) food swallowing

Fig. 2. A typical zero crossing rate of a talking and a swallowing sound [14].

that humans’ perception of a frequency f in a sound follows a non-linear fre-
quency scale [5,18]—the scale commonly known as the “mel” scale (Eq. (10))

fmel(f) “ 2595log10

(
1 ` f

700

)
(10)

The MFFC are fundamental acoustic feature for speech and speaker recognition
applications [5] and are calculated as follows. First, a sound is windowed and
split into frames {y(n)N

n“1}. Next, an M point Discrete Fourier Transform (DFT)
is used to compute the power spectrum Y (k) of each frame y(n) (Eq. (11)).

∣∣∣Y (k)
∣∣∣
2 “

∣∣∣∣∣

M∑

n“1

y(n).e

(
´j2π.n.k

M

)∣∣∣∣∣ (11)
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Finally, the power spectrum Y (k) is converted into logarithmic domain and used
to calculate the MFFC coefficients Cm (Eq. (12)).

Cm “
√

2
Q

Q´1∑

l“0

log
[
e(l ` 1)

]
cos

[
mπ

Q

(2l ´ 1
2

)]
(12)

where 0 � m � R ´ 1, R being the desired number of ancestral features; and in
our case, R “ 20.

2.4 Feature Engineering

Two transformations was applied to the newly calculated dataset. The objective
was to change the data distribution of of some features that were heavily skewed
in order to potentially improve the performance of machine learning (ML) mod-
els. Box-Cox [4] and Yeo and Johnson [28] transformations were applied to the
skewed features.

y(λ) “
{

yλ´1
λ , when λ �“ 0

log(y), when λ “ 0
(13)

The Box-Cox transform (Eq. (13)) improves the properties of the data and results
in a symmetric dataset with a Gaussian distribution. The Yeo and Johnson (Eq.
(14)) transformation leads to similar benefits and, unlike the Box-Cox transform,
can be applied to negative values.

y(λ) “

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(y`1)λ´1
λ , when λ �“ 0, y � 0

log(y ` 1), when λ “ 0, y � 0
(1´y)2´λ´1

λ´2 , when λ �“ 2, y < 0
´log(1 ´ y), when λ “ 2, y < 0

(14)

Additionally, new features (e.g., square, square root, cubit root, logarithms and
inverse of each feature) were generate to improve the performance of the model.

2.5 Dataset Oversampling

The resulting dataset is intrinsically unbalanced (Table 2) because some dietary
sounds are produced sporadically. For example, chewing generally takes a longer
duration compared to drinking. Moreover, some people are fast eater while others
eat slow and savor their meals.

When applying ML algorithms on imbalanced datasets, the resulting mod-
els tend to downplay the importance of the minority classes. This problem is
addressed by oversampling the minority classes using the borderline-synthetic
minority over-sampling technique (Borderline-SMOTE) [10]. This method is an
extension to the synthetic minority over-sampling technique (SMOTE) [6]. For
each minority class Xj , SMOTE select one random seed sample X

′
j from its k

nearest neighbors and a new synthetic sample Xsynth is interpolated.
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Table 2. Samples of each label in the dataset.

Label Number of samples

Chewing 2001

Talking 554

Food swallowing 119

Drink swallowing 82

Other sounds 200

While the SMOTE method works well for many datasets, it creates noise
that decrease the performance of many ML models. Indeed, during training, in
attempt to achieve the best performance, most ML algorithms learn the bound-
ary of each class as exactly as possible. Consequently, the samples at the border-
line are prone to misclassifications compared to those far away from the boundary
because they are located where different classes may overlap [10]. Consequently,
the sample at the decision boundary needs a special treatment to avoid the
potential misclassifications. Unlike SMOTE—which oversamples all samples of
the minority classes—the Borderline-SMOTE oversamples only the samples of
the minority classes that are located on the boundary of the decision boundary.

Prior to applying the oversampling method, 25% of the samples in the dataset
was randomly selected and reserved for testing the performance of the ML mod-
els. The remaining 75%, the training set, was oversampled using the Borderline-
SMOTE and used to train various predictive ML models.

2.6 Feature Selection

The feature engineering resulted in a total 958 features. There is a need to reduce
this number to minimize overfitting and to avoid the curse of dimensionality.
The following feature selection approaches were applied in a sequence. First,
we removed features with unique values. These features would be practically
useless for any ML model because they have a zero variance. Second, we removed
the features that have a zero predictive importance, i.e., these features, have
no information gain according to a gradient boosting machine (GBM) learning
model. We also remove any features in the 5% lowest feature importance. Third,
we remove highly correlated features. We computed the correlation between
features and removed one feature of each pair whose correlation coefficient c >
0.9. Finally, a recursive feature elimination (RFE) [9] is used to rank and select
the most optimum number of features.

2.7 Model Training and Evaluation

A Tree-based pipeline optimization mechanism [19] was used to optimize (e.g.,
feature selection and hyperparameter tuning) the ML pipeline and to maximize
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the classification accuracy. Four auspicious pipelines based on an Extreme Gra-
dient Boosting2, a K-nearest Neighbors3, a Random Forest4 and Light Gradient
Boosting Machine5 models were evaluated. Two types of models were trained.
The first model was trained on the original dataset before re-sampling and the
second model was trained on the oversampled dataset. In all cases, the result
reported in this study are based on the performance of the models when validated
on the test set that was set aside before any oversampling.

3 Results and Discussion

Table 3 compares the performance of the models trained on the oversampled
dataset and tested on the reserved unaltered (i.e., non-resampled) test sam-
ples. Although all the models performed quite well, the RandomForest model
slightly outperformed others. All the performance reported henceforth are based
on the performance of the RandomForest pipeline. On the contrary—and as
expected—the models trained on the non-resampled dataset performed poorly
(Table 4) compared to the models trained on the oversampled dataset (Table 5).

The models trained on the non-resampled dataset have adequate perfor-
mance in predicting when the subjects were chewing or talking but have very
poor performance in predicting when the subjects were swallowing drinks or
when they were swallowing food (Table 4). On the contrary, although the model
trained on the oversampled dataset sometimes confused food and drink swallow-
ing for chewing (Fig. 4), in general, it consistently performed well (specificity >
94.0%,miss rate < 17% and F1 > 74.0%, and MCC > 0.76) in distinguishing
all classes (Table 5).

Fig. 3. Confusion matrix.

The performance of a model on an imbalanced dataset is normally evaluated
in terms of its confusion matrix (Fig. 3). To test the performance of a classifi-
cation model that is trained on an imbalanced dataset, the accuracy (Eq. (15))

2 XGB(colsample bytree “ 0.5, γ “ 0.7, depth “ 4, subsample “ 0.4).
3 KNeighbors(k neighbors “ 14, weights = “distance”).
4 RandomForest(depth “ 24, max features = “log2”).
5 LGBM(colsample bytree “ 0.7, depth “ 32, num leaves “ 70, α “ 0.5).
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Table 3. Performance of the models trained on the oversampled dataset.

XGBoost KNeighbors RandomForest LGBM

Accuracy 97.29 96.32 97.56 97.62

Balanced accuracy 90.19 89.16 91.69 90.12

Fβ(β “ 0.5) 0.83 0.79 0.85 0.84

Fβ(β “ 1) 85.47 82.64 87.27 86.37

Jaccard-score 0.88 0.84 0.89 0.89

Geometric mean 94.69 92.78 95.18 95.04

Precision 81.95 78.10 83.83 83.41

Recall 90.19 89.16 91.69 90.12

Specificity 97.88 97.12 98.08 98.02

Matthews correlation coefficient 0.83 0.79 0.85 0.84

Fig. 4. Dietary sounds class labels prediction error. The model performs well in seg-
regating the various dietary sounds labels. Nevertheless, it occasionally confuses food
and drink swallowing for food chewing.

is usually deceitful because it gives equal weight to false positives (FP) and
false negatives (FN) [11]. On the contrary, a balanced accuracy (Eq. (16)) gives
equal weight to FP and FN by computing the average of positive class instances
that are correctly predicted and that of negative instances that are correctly
classified.

accuracy “ TP ` TN

TP ` FP ` TN ` FN
(15)

balanced accuracy “ TP

2(TP ` FN)
` TN

2(TN ` FP )
(16)
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Table 4. Performance of the model trained on the non-resampled dataset.

Chewing Food swallowing Drink swallowing Talking Other sounds

Sensitivity 97.60 3.33 4.76 82.61 38.00

Specificity 64.02 99.58 100.00 98.17 97.68

Precision 85.02 25.00 100.00 91.20 54.29

Miss Rate 2.40 96.67 95.24 17.39 62.00

Accuracy 86.74 95.67 97.29 95.26 93.64

Fβ(β “ 1) 90.88 5.88 9.09 86.69 44.71

Matthews correlation coefficient 0.69 0.08 0.22 0.84 0.42

In Table 3, one must note that, while the accuracy is high (accuracy “ 97.56%),
the balanced accuracy is relatively lower (accuracy “ 91.69%), which implies
that the model performs modestly compared to what what an accuracy alone
would have suggested.

Table 5. Performance of the model trained on the oversampled dataset.

Chewing Food swallowing Drink swallowing Talking Other sounds

Sensitivity 94.40 86.67 90.48 94.93 92.00

Specificity 95.40 98.87 98.61 98.67 98.84

Precision 97.72 76.47 65.52 94.24 85.19

Miss rate 5.60 13.33 9.52 5.07 8.00

Accuracy 94.72 98.38 98.38 97.97 98.38

Fβ(β “ 1) 96.03 81.25 76.00 94.58 88.46

Matthews correlation coefficient 0.88 0.81 0.76 0.93 0.88

The strong performance of the model trained on the oversampled dataset is
further attested by its Receiver Operating Characteristic (ROC) and its Area
Under the Curve (Fig. 5). The ROC evaluates the trade-offs between the model’s
sensitivity and its specificity. It computes the model’s performance at various
error rates and helps assess the percentage of samples that will be properly pre-
dicted for a given FP/(TN+FP). Figure 5a shows that the model trained on
the non-resampled dataset performs poorly because many positive and negative
instances are incorrectly classified. It is important to note that some classes are
misclassified more than others. For instance, the model predicts reasonably well
when the subjects were talking and chewing but the model achieves a much
lower performance in predicting when the subjects were swallowing drinks. On
the contrary, as shown in Fig. 5b, the model trained on the oversampled dataset
performs much better: most of the positive instances are correctly predicted and
very few negative instances are misclassified. Furthermore, this model has a high
performance for all classes. The AUC represents the area under the entire ROC
curve. A perfect classifier would correctly classify all positive instances and mis-
classifies no negative instances. Consequently, its AUC = 1. On the contrary, the
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(a) non-resampled dataset

(b) resampled dataset

Fig. 5. Trade-off between the model’s sensitivity and specificity. The dotted line rep-
resents the performance of a classifier that generates predictions uniformly at random.
The area under the curve (AUC) expresses the relationship between false positives and
true positives. The model performed very well because it achieved a high AUC. It also
has few false positives and predicted many true positives.

worst classifier would incorrectly misclassify all positive and negative instances
and would be represented with a single point P “ (1, 0) with an AUC = 0. The
model trained on the oversampled dataset has much better performance because
its AUC > 0.98 for all classes.

The models also achieved relatively high precision and high recall. The pre-
cision (Eq. (17)) evaluates how often the samples that were predicted as positive
were actually positive. The recall (Eq. (18)) estimates how many times positive
samples were predicted as positive.

precision “ TP

TP ` FP
(17)
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recall “ TP

TP ` FN
(18)

In short, the recall measures how many proper predictions the model makes
while the precision estimates the pertinence of the predictions. For imbalanced
datasets, the most optimum model would achieve a high recall without shrinking
its precision [11]. These two objectives, however, are often antagonistic because
increasing TP of the minority classes also increases its number of FP, which
reduces the precision. Figure 6 shows the trade-offs between recall and precision.
A perfect model (area “ 1.0) would be made of two lines: a horizontal line y “ 1
and a vertical line x “ 1. Conversely, a poor classifier would only achieve a high
recall only if its precision is low. Figure 6 highlights the performance of the
oversampled model compared to that of the non-resampled model. Indeed, the
former (Fig. 6b) has a higher area and its curves are steepest when their recalls
are closer to 1.0. On the contrary, the latter (Fig. 6a) has much lower areas, and
for some classes (e.g.,food swallowing and drink swallowing) the performance is
worse than a random classifier.

The Fβ score (Eq. (19)) expresses the performance of a given classifier in
terms of the compromise between the classifier’s recall and its precision [11].

Fβ “ (1 ` β2) · precision · recall

(β2 · precision) ` recall

“ (1 ` β2) · TP

(1 ` β2) · TP ` β2 · FN ` FP

(19)

When β “ 0, the Fβ score would only consider the precision. A β > 1 gives more
weight to recall over precision. In this study, Fβ(β “ 0.5) and Fβ(β “ 1) are
considered. The former gives emphasizes precision over recall. The later gives an
equal balance between the two. As shown in Table 3, Table 4 and Table 5, the
model trained on the oversampled dataset outperformed the one trained on the
original dataset.

The Jaccard score (Eq. (20)) estimates the fraction of elements that are
shared between two sets A and B. It is a ration between the number of times a
given value occurs in both A and B to the total number of distinct items in A
and B.

J(A,B) “
∣∣A X B

∣∣
∣∣A Y B

∣∣

“
∣∣A X B

∣∣
|A| ` |B| ´ ∣∣A X B

∣∣

(20)

where X represent an intersection, Y denotes a union, and || stands for the
number of elements of the set. Consequently, in our case, it estimates the perfor-
mance of the classifiers by comparing the predicted labels to the expected label.
A perfect classifier would achieve a Jaccard score “ 1. As shown in Table 3, the
predicted labels are 89% similar to the expected labels.

Unlike the other model evaluation measures, the Matthews Correlation Coef-
ficient (MCC) (Eq. (21)) evaluates the performance of a classifier in terms of
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(a) model trained on the non-resampled dataset

(b) model trained on the resampled dataset

Fig. 6. Trade-offs between the recall and precision. The model trained on the non-
resampled dataset has a much lower performance (e.g., low area) compared to model
trained on the oversampled dataset. The latter has higher area and its curves are
steepest when their respective recalls curves are closed to 1.0.

the four sections of the confusion matrix (i.e., in terms of TP , FP , TN and
FP ).

c × s ´ ∑K
k pk × tk√(

s2 ´ ∑K
k p2

k

) ´ (
s2 ´ ∑K

k t2k
) (21)

with:

c the total number of sample correctly predicted
s the total number of samples
tk the number of time a class k truly occurred
pk the number of time class k was predicted

Compared to other model evaluation metrics, the MCC is more reliable because
it produces a high score only when the model has good performances in all
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the four categories of the confusion matrix and is considered a good evaluation
metrics even for imbalanced classes [7]. A mediocre classier has MCC values
that range between ´1 and 0 while a perfect classifier has a MCC “ `1. Table
3 and Table 5 show that the models trained on the oversampled dataset have
a good performance (MCC “ 0.85). However, the model achieved the best
performance when predicting the talking classes (MCC “ 0.93) but blunders
when predicting the drink swallowing classes (MCC “ 0.76). On the contrary,
the model trained on the non-resampled dataset has poor performance (Table
4), especially when predicting the drink swallowing classes (MCC “ 0.22).

Fig. 7. Training and test score versus the number of training samples. The solid line
indicates the mean value while the shaded area represents the standard deviation. Both
the training and the test score exhibit a low variability; thus, the model has a low bias
and a low variance. However, the test score improves with more training samples, which
implies that more training samples might lead to a better performance.

Finally, Fig. 7 shows the performance of the model with respect to the
increase in the training samples. With much fewer samples, there is a large gap
between the performance of the training and the test set. This may implies that
the model has a high variance and is over-fitting. On the contrary, increasing
the training sample closes the gap. However, with the available training samples,
the training and the test score have not converged together, which implies that
more training samples might lead to a better performance.

4 Conclusion

Predominant methods for fighting against obesity focus on healthy eating but
often ignore the importance of slowly eating and properly chewing in fighting
against obesity. This research proposed a method that recognizes common human
actions during mealtime (i.e., food chewing, food swallowing, drink swallowing,
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and talking). The proposed approach uses a cheap wearable bone conduction
microphone that records intra-body sounds that are produced when a person
eats. We conducted experiments on 16 subjects. All experiments were conducted
in free-living environments to capture the complexity of the real-world. For
instance, some dietary sounds were recorded at home when the subjects were
having supper with their families. Others were collected in a university cafete-
ria during lunch with colleagues. Additionally, there was no constraint on the
type of food and the subjects were urged to have whatever they usually eat. We
trained and tested machine learning models on the obtained dataset and found
that the proposed approach achieves similar performances as that of the most
recent state of the art models (accuracy “ 97.5%, precision “ 83.8%, recall “
91.7%, Jaccard score “ 0.89, Kappa score “ 0.88, F1 score “ 87.2% and
MCC “ 0.85) even though our system uses modest machine learning models.
Nevertheless, while the model generally performs well in distinguishing the var-
ious mealtime activities, it sometimes confused food and drink swallowing for
chewing.
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