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Abstract. In our paper, the waiting time analysis of a M/M/1 retrial
queueing system is presented and the asymptotic distribution of the num-
ber of returns of the tagged request to the orbit is driven since they
are connected to each other. The research was conducted by the use of
asymptotic analysis method. Two different cases are considered. First we
conduct analysis under a heavy load condition and then under a low rate
of retrials condition. Two different characteristic functions of the wait-
ing time were obtained. The analysis was carried out using asymptotic
distributions of the number of requests in the orbit under a heavy load
condition and a low rate of retrials condition, which were also obtained.
To show the effectiveness of asymptotic results for the considered retrial
queuing system, the approximation of the distribution of the number of
returns of the tagged request to the orbit in prelimit situation, numerical
illustrations and results are given.

Keywords: Retrial queue · Asymptotic analysis · Waiting time ·
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1 Introduction

Retrial queue (RQ) systems are adequate models of processes arising from real
world applications. Main fields where such models are used are telecommunica-
tion networks, computer networks, call centers, wireless communication systems,
cognitive networks, cloud computing. An extensive review of recent developments
and methods related to RQ systems one can find in, for example, Artalejo, Falin
[2], Artalejo, Gomez-Corral [3], Gomez-Corral, Phung-Duc [16], Falin, Temple-
ton [13], Kim, Kim [17], Nobel [24], Phung-Duc [26].

The waiting time distribution, the time a request spends in the orbit, is very
complicated problem in the retrial queue system theory. Different approaches to
the investigation of the waiting time can be found in Artalejo, Chakravarthy,
Lopez-Herrero [1], Artalejo, Gomez-Corral [4], Choi, Chang [6], Falin, Artalejo
[8], Gharbi, Dutheillet [14], Sudyko, Nazarov, Sztrik [27], Tóth, Bérczes, Sztrik
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[28], Zhang, Feng, Wang [29] for finite retrial group of sources and Chakravarthy,
Dudin [7], Falin, Fricker [9], Falin [1,10,12], Gomez-Corral, Ramalhoto [15],
Neuts [20], Nobel, Tijms [25], Lee, Kim, Kim [18] for infinite number of sources.

Since a request waiting time distribution and the number of returns distribu-
tion are connected to each other, in this paper we investigate both of them. We
use the method of asymptotic analysis under a heavy load condition and a low
rate of retrials condition following approach applied in, for example, Moiseeva,
Nazarov [19], Nazarov, Moiseeva [21], Nazarov, Semenova [22], Nazarov, Sztrik,
Kvach [23].

The rest of the paper is organized as follows. In Sect. 2 the RQ-system math-
ematical model and the waiting time characteristic function are presented. In
Sect. 3 we derive Kolmogorov’s equations for the system states. Section 4 is con-
nected with the asymptotic analysis of the distribution of the number of requests
in the orbit, which is needed for further research. In Sect. 5 asymptotic analy-
sis of characteristic functions for the number of request returns to the orbit is
provided. In Sect. 6 the asymptotic distribution of the waiting time in the orbit
is derived for two different conditions. In Sect. 7 we found the approximation of
the waiting time distribution in prelimit situation. Also, several sample results
obtained by numerical methods showing that proposed approximation is effec-
tive. The paper ends with a Conclusion.

2 Mathematical Model

Let us consider a M/M/1 retrial queuing (RQ) system. The system input receives
a Poisson flow of requests which is given by a scalar intensity λ. When incoming
request arrive at the system the server can be idle or busy. In the first case this
request occupies the server and the service starts immediately. Served request
leaves the system. In second case, the request joins to the orbit. Each request
from the orbit after a random delay retries to get accesses to the server. At the
retrial moment server again can be idle or busy. In the first case this request
occupies the server for a random service time; otherwise, it instantly returns to
the orbit for a next random delay. Service time and random delay time are inde-
pendent and exponentially distributed with parameters μ and σ, respectively.

We assume the system being in stationary mode. Let’s define W – waiting
time of the tagged request in the orbit as the length of the interval from the
moment the request arrives in the system till the start of the service. Let’s denote
by ν̃ the number of transitions of the tagged request to the orbit. Also we denote
by r the probability that the server is busy at the moment the request arrives
at the system. Obviously ν̃ = 0, with the probability (1 − r) that the request
finds the server idle at the moment of the arrival to the system. In addition, we
denote by ν(t) the number of returns of the tagged request to the orbit from the
moment t until the start of the service. Using above notations:

ν̃ =
{

0, with probability (1 − r),
1 + ν(t), with probability r.
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The characteristic function for W can be written as follows:

G(u) = E
{
ejuW

}
= (1 − r) + r

∞∑
n=0

E
{
ejuW /ν = 1 + n

}
P {ν(t) = n}

= (1 − r) + r

∞∑
n=0

(
σ

σ − ju

)1+n

P {ν(t) = n} .

(1)

The aim of our study is to find the asymptotic distribution of W the waiting time
of the tagged request in the orbit. As can be seen from (1), for that purpose it
is enough to find the probability r and the probability distribution P {ν(t) = n}
under limiting conditions. First, we conduct our research under a heavy load
condition and then under a low rate of retrials condition. As a result, two different
asymptotic distributions of W were obtained.

3 Kolmogorov’s Equations

Let’s denote by i(t) the number of requests in the orbit at time t and by k(t) -
the state of the server at time t:

k(t) =
{

0, if the server is idle,
1, if the server is busy.

The system state at time t can be described by means of a markov chain
{k(t), i(t)} with stationary probability distribution:

Pk(i) = P {k(t) = k, i(t) = i}
Probability distribution Pk(i) satisfy the following Kolmogorov equations:

(λ + iσ)P0(i) = μP1(i),
(λ + μ)P1(i) = λP0(i) + (i + 1)σP0(i + 1) + λP1(i − 1).

(2)

Steady-state partial characteristic functions Hk(u) for i(t) can be written in the
following form:

Hk(u) =
∞∑

i=0

ejuiPk(i), (3)

where j =
√−1 is the imaginary unit.

According to (2) and (3) we obtain the system of equations for Hk(u):

−λH0(u) + jσ
∂H0(u)

∂u
+ μH1(u) = 0,

−(λ + μ)H1(u) + λH0(u) − jσe−ju ∂H0(u)
∂u

+ λejuH1(u) = 0.
(4)

Steady-state characteristic functions for ν(t) can be written in the following
form:

G(u) = E
{

ejuv(t)
}

=
∞∑

i=0

[G0(i, u)P0(i) + G1(i, u)P1(i)].
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Let’s consider:

Gk(i, u, t) = E
{

ejuv(t)/k(t) = k, i(t) = i
}

,

where Gk(i, u, t) - conditional partial characteristic functions for ν(t). Taking
into account that the system is in a stationary mode, for Gk(i, u) we obtain the
system of inverse Kolmogorov equations:

− (λ + iσ)G0(i, u) + λG1(i, u) + (i − 1)σG1(i − 1, u) + σ = 0, (5)

− (λ + μ + σ)G1(i, u) + μG0(i, u) + λG1(i + 1, u) + ejuσG1(i, u) = 0. (6)

4 Asymptotic Analysis of the Number of Requests
in the Orbit

Heavy Load Condition. Denote ρ = λ
μ , ε = 1 − ρ, making substitutions

u = εw, H0(u) = εF0(ω, ε), H1(u) = F1(ω, ε) and deviding (4) by μ we get:

F1(w, ε) − (1 − ε)εF0(w, ε) + j
σ

μ

∂F0(w, ε)
∂w

= 0,

(1 − ε)εF0(w, ε) +
[
(1 − ε)(ejwε − 1) − 1

]
F1(w, ε)

−j
σ

μ
e−jwε ∂F0(w, ε)

∂w
= 0.

(7)

The beforelimited characteristic function under a heavy load condition can be
determined approximately by the equation: H(u) = H0(u) + H1(u) ≈ h(w) =
F1(w).

Step 1. Let ε → 0 in (7). Denote

lim
ε→0

Fk(ω, ε) = Fk(ω).

For functions Fk(w) we obtain the system of equations:

F1(w) + j
σ

μ

∂F0(w)
∂w

= 0,

−F1(w) − j
σ

μ

∂F0(w, ε)
∂w

= 0.

This system consists of two equivalent equations.

Step 2. Let’s rewrite Fk(w, ε) from (7) as follows:

Fk(w, ε) = Fk(w) + εfk(w) + o(ε2),
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and devide equations of the system (7) by ε. With respect to step 1 results and
after taking ε → 0, we obtain:

f1(w) − F0(w) + j
σ

μ

∂f0(w)
∂w

= 0,

−F1(w) + f1(w) + j
σ

μ

∂f0(w)
∂w

+
σ

μ
w

∂F0(w)
∂w

= 0.

Combining resulting equations of steps 1 and 2, we get the following system:

F1(w) + j
σ

μ

∂F0(w)
∂w

= 0,

f1(w) − F0(w) + j
σ

μ

∂f0(w)
∂w

= 0,

−F1(w) + f1(w) + j
σ

μ

∂f0(w)
∂w

+
σ

μ
w

∂F0(w)
∂w

= 0.

Solving the obtained system as it is shown in [19] the following expression can
be got:

h(w) = (1 − jw)−(μ+σ
σ ), (8)

where h(w) is a characteristic function of gamma distribution γ (x) with param-
eters β = μ+σ

σ and α = 1.

Low Rate of Retrials Condition. Making substitutions σ = ε, u = εw,
Hk(u) = Fk(ω, ε) in (4), we obtain:

−λF0(ω, ε) + j
∂F0(ω, ε)

∂ω
+ μF1(ω, ε) = 0,

−(λ + μ)F1(ω, ε) + λF0(ω, ε) − je−jεω ∂F0(ω, ε)
∂ω

+ λejεωF1(ω, ε) = 0.
(9)

Step 1. Let ε → 0 in (9). Denote

lim
ε→0

Fk(ω, ε) = Fk(ω).

For functions Fk(w) we obtain the system of equations:

−λF0(ω) + j
∂F0(ω)

∂ω
+ μF1(ω) = 0,

λF0(ω) − j
∂F0(ω)

∂ω
− μF1(ω) = 0.

Note that equations of this system are equivalent.
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Step 2. Adding equations in system (9), we get:

j(1 − e−jεω)
∂F0(ω, ε)

∂ω
+ λ(ejεω − 1)F1(ω, ε) = 0.

Let’s decompose exponential function and rewrite above expression:

j(jεω + o(ε))
∂F0(ω, ε)

∂ω
+ λ(jεω + o(ε))F1(ω, ε) = 0.

Taking ε → 0, we obtain:

j
∂F0(ω)

∂ω
+ λF1(ω) = 0.

Combining with the result of Step 1, we get the system similar to system obtained
in [22]:

−λF0(ω) + j
∂F0(ω)

∂ω
+ μF1(ω) = 0,

j
∂F0(ω)

∂ω
+ λF1(ω) = 0.

(10)

Lets find the solution in the following form:

Fk(ω) = R(κ)ejwk, (11)

where R(κ) = P (k = κ) - stationary probabilities of Markov chain k(t), κ = 0, 1.
Substituting (11) in (10), we obtain a homogeneous system of two equations

for the probability distribution R(k):

−(λ + κ)R(0) + μR(1) = 0
−κR(0) + λR(1) = 0.

(12)

Equation
λ(λ + κ) − μκ = 0 (13)

determines the value of κ for (11). Solving (13) we obtain:

κ =
λ2

μ − λ
(14)

Taking into account the normalization condition R(0) + R(1) = 1 and (12) the
probability distribution R(k) can be calculated as:

R(0) =
μ − λ

μ
,R(1) =

λ

μ
.

5 Asymptotic Analysis of the Number of Returns
of the Tagged Request to the Orbit

Heavy Load Condition. Denote ρ = λ
μ , ε = 1 − ρ, making substitutions

u = εw, iε = x, Gk(i, u) = gk(x,w, ε) and multiplying (5) by ε we obtain:

−(ελ + σ)g0(, w, ε) + ελg1(, w, ε) + (x − ε)σg1(−ε, w, ε) + εσ = 0

−(λ + μ + σ(1 + ejεw))g1(, w, ε) + μg0(, w, ε) + λg1(+ε, w, ε) = 0
(15)
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Step 1. Let ε → 0 in (15). Denote

lim
ε→0

gk(x,w, ε) = gk(x,w).

We obtain the following system for gk(x,w):

−xσg0(x,w) + xσg1(x,w) = 0,
−(μ + σ)g1(x,w) + (μ + σ)g0(x,w) = 0.

(16)

Note that equations of this system are equivalent and g0(x,w) = g1(x,w) =
g(x,w).

Step 2. Let’s rewrite gk(x,w, ε) from (15) as follows:

gk(x,w, ε) = g(x,w) + εfk(x,w) + o(ε), (17)

and then rewrite (15):

−(ελ + xσ)g0(x,w, ε) + (ελ + xσ) g1(x,w, ε)

− ε
∂ [xσg1(x,w, ε)]

∂x
+ εσ = O(ε2),

− (μ + σ)g1(x,w, ε) + μg0(x,w, ε)

+ ε
∂ [λg1(x,w, ε)]

∂x
+ ejεwσg1(x,w, ε) = O(ε2).

(18)

Substituting decomposition (17) in (18), taking ε → 0 and after performing some
actions on the equations, we get the following system:

x [f1(x,w) − f0(x,w)] = g(x,w) + x
∂g(x,w)

∂x
− 1,

[f1(x,w) − f0(x,w)] = jw
σ

μ
g(x,w) +

∂g(x,w)
∂x

− σ

μ
f1(x,w).

Adding equations in the system (18) and taking ε → 0, we get the following
expression:

(x − μ

σ
) [f1(x,w) − f0(x,w)] = (1 − jw) g(x,w) +

(
x − μ

σ

) ∂g(x,w)
∂x

− 1.

Combining obtained expressions we get the system of three equations:

x [f1(x,w) − f0(x,w)] = g(x,w) + x
∂g(x,w)

∂x
− 1,

[f1(x,w) − f0(x,w)] = jw
σ

μ
g(x,w) +

∂g(x,w)
∂x

− σ

μ
f1(x,w),

(x − μ

σ
) [f1(x,w) − f0(x,w)] = (1 − jw) g(x,w) +

(
x − μ

σ

) ∂g(x,w)
∂x

− 1.
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Eliminating f1(x,w), f0(x,w) from this system, we obtain the equation for the
function g(x,w), solving which we find:

g(x,w) =
μ
σ

μ
σ − jw

, (19)

where g(x,w) is a conditional characteristic function of exponential distribution
with parameter α = μ

σ .
Let’s pass from the conditional characteristic function g(x,w) to the charac-

teristic function g(w):

g(w) =

+∞∫
0

g(x,w)γ (x) dx.

It is easy to show that the inverse Fourier transform has the form of the proba-
bility distribution density of the limiting value of ν(t):

P (z) =

∞∫
0

γ (x)
μ

xσ
exp

{
− μ

xσ
z
}

dx. (20)

Low Rate of Retrials Condition. Making substitutions σ = ε, iε = x,
Gk(i, u) = gk(x, u, ε) in (5), (6) we obtain:

−(λ + x)g0(x, u, ε) + λg1(x, u, ε)
+ (x − ε)g1(x − ε, u, ε) + ε = 0,

−(λ + μ + ε)g1(x, u, ε) + μg0(x, u, ε)

+λg1(x + ε, u, ε) + ejuεg1(x, u, ε) = 0.

(21)

Step 1. Let ε → 0 in (21). Denote

lim
ε→0

gk(x,w, ε) = gk(x,w).

We obtain the following system for gk(x,w):

−(λ + x)g0(x, u) + (λ+)g1(x, u) = 0,
−μg1(x, u) + μg0(x, u) = 0.

This system consist of two equivalent equations and g0(x,w) = g1(x,w) =
g(x,w).

Step 2. Let’s rewrite gk(x,w, ε) from (21) as follows:

gk(x,w, ε) = g(x,w) + εfk(x,w) + o(ε), (22)
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and then rewrite (21):

−(λ + x)g0(x, u, ε) + λg1(x, u, ε) + xg1(x, u, ε)

− ε
∂ [xg1(x, u, ε)]

∂x
+ ε = o(ε),

−(λ + μ + ε)g1(x, u, ε) + μg0(x, u, ε) + λg1(x, u, ε)

+ ε
∂ [λg1(x, u, ε)]

∂x
+ ejuεg1(x, u, ε) = o(ε).

(23)

Substituting decomposition (22) in (23), taking ε → 0 and after performing some
actions on the equations, we get the following system:

(λ + x)(f1(x, u) − f0(x, u)) =
∂ [xg(x, u)]

∂x
− 1

μ(f1(x, u) − f0(x, u)) =
∂ [λg(x, u)]

∂x
+ (eju − 1)g(x, u).

Thus, for the function g(x, u) we obtain the following equation:

[λ(λ + x) − μ]
∂g(x, u)

∂x
+

[
(λ + x)(eju − 1) − μ

]
g(x, u) + μ = 0 (24)

In limiting case k = iε = x and k is the solution of the Eq. (13). This equation
is equal to the coefficient of the derivative ∂g(x,u)

∂x . Then the coefficient is zero in
(24) and k = x: [

(λ + k)(eju − 1) − μ
]
g(x, u) + μ = 0.

Solving this system for g(x, u) we obtain:

g(u) =
1 − λ

μ

1 − eju λ
μ

.

Thus, probability distribution of ν(t) the number of returns of the tagged request
to the orbit is geometric

P (ν(t) = n) ≈ (1 − p)pn, (25)

where ρ = λ
μ , n = 0, 1, 2, . . .

6 Distribution of the Waiting Time in the Orbit

Using results obtained in previous sections, we derive expressions for waiting
time asymptotic distributions under considered conditions.

Heavy Load Condition. Using the found distribution density, let’s get an
approximation of the asymptotic discrete probability distribution of the number
of returns of the tagged request to the orbit:

P1(n) = P ((1 − ρ)n) ·
( ∞∑

m=0

P ((1 − ρ)m)

)−1

. (26)
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Substituting above distribution into (1), we obtain:

G(u) = E
{
ejuW

}
= (1 − r) + r

∞∑
n=0

E
{
ejuW /ν = 1 + n

}
P {ν(t) = n}

= (1 − r) + r

∞∑
n=0

(
σ

σ − ju

)1+n

P1(n).

As a result, we have found the limiting characteristic function of the waiting time
of the request in a M/M/1 RQ system under a heavy load condition. Applying
the inverse Fourier transform of the obtained G(u), we find the asymptotic dis-
tribution of the waiting time of the request in the orbit.

Low Rate of Retrials Condition. In previous section we found that proba-
bility distribution of ν(t) under low rate of retrials condition is geometric with
parameter ρ = λ

μ . Substituting this distribution in (1), we obtain:

G(u) = E
{
ejuW

}
= (1 − r) + r

∞∑
n=0

E
{
ejuW /ν = 1 + n

}
P {ν(t) = n}

= (1 − r) + r

∞∑
n=0

(
σ

σ − ju

)1+n

(1 − p)pn = (1 − r)

+ r
σ

σ − ju
(1 − p)

∞∑
n=0

(
σ

σ − ju
p

)n

= (1 − r) + r
σ(1 − p)

σ(1 − p) − ju

Obtained G(u) is the limiting characteristic function of the waiting time of the
request in a M/M/1 RQ system under a low rate of retrials condition. The
distribution of W in this case is two-phase hyper exponential distribution with
an infinite parameter in the first phase and a parameter σ(1 − p) in the second
phase.

7 Numerical Results

Probability distributions P1(n) and P (ν(t) = n) given in (26) and (25) have
been obtained by the method of asymptotic analysis under a heavy load and a
low rate of retrials conditions respectively.

We compare the resulting asymptotic distribution and the numerical solution
of the system of Eq. (5), (6) in order to investigate the applicability of these
asymptotic results for prelimit situations. Also, for that purpose Kolmogorov
distances between distributions were found:

Δ1 = max
0≤n<∞

∣∣∣∣∣∣
n∑

j=0

P1(j) −
n∑

j=0

π (j)

∣∣∣∣∣∣ ,

Δ = max
0≤n<∞

∣∣∣∣∣∣
n∑

j=0

P (j) −
n∑

j=0

π (j)

∣∣∣∣∣∣ .
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Let us denote the prelimit probability distribution of the number of returns of
the tagged request to the orbit by π(n). We obtain it by numerical methods
similar as it is shown in [27]. Using the law of total probability, π(n) can be
written in the following form:

π (n) =
∞∑

i=0

[Π0 (n, i) P0(i) + Π1 (n, i) P1(i)], (27)

where unconditional probabilities Pk(i) are solutions of (2) and normal-
ization condition. In order to find conditional probabilities Πk (n, i) =
P (ν(t) = n/k(t) = k, i(t) = i ), let’s write conditional characteristic function
Gk(i, u) as follows:

Gk(i, u) =
∞∑

n=0

ejunΠk (n, i),

and substitute this representation into inverse Kolmogorov Eq. (5), (6) for
Gk(i, u):

−(λ + iσ)
∞∑

n=0

ejunΠ0 (n, i) + λ

∞∑
n=0

ejunΠ1 (n, i)

+(i − 1)σ
∞∑

n=0

ejunΠ1 (n, i − 1) + σ = 0

−(λ + μ + σ)
∞∑

n=0

ejunΠ1 (n, i) + μ
∞∑

n=0

ejunΠ0 (n, i)

+λ

∞∑
n=0

ejunΠ1 (n, i + 1) + σ

∞∑
n=1

ejunΠ1 (n − 1, i) = 0.

Equating coefficients of corresponding powers of the exponent the following sys-
tems of equations for probabilities Πk (n, i) were obtained:

For n = 0 :

−(λ + iσ)Π0 (0, i) + λΠ1 (0, i) + (i − 1)σΠ1 (0, i − 1) + σ = 0
−(λ + μ + σ)Π1 (0, i) + μΠ0 (0, i) + λΠ1 (0, i + 1) = 0,

(28)

For n ≥ 1 :

−(λ + iσ)Π0 (n, i) + λΠ1 (n, i) + (i − 1)σΠ1 (n, i − 1) = 0,
−(λ + μ + σ)Π1 (n, i) + μΠ0 (n, i) + λΠ1 (n, i + 1) + σΠ1 (n − 1, i) = 0.

(29)

We find exact values of Pk(i) and Πk (0, i) by solving (2) and (28) for some
given parameters λ, μ, σ using numerical methods. Then we substitute found
Pk(i) and Πk (0, i) values into (27) and get the probability π (0). Solving (29) by
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numerical methods for some given parameters λ, μ, σ we similarly find Πk (n, i)
for n = 1, 2, 3, ... (Table 2).

Table 1. The difference between the numerical distribution π (n) and asymptotic dis-
tribution P (ν(t) = n) under a low rate of retrials condition for various parameters

Parameters Δ

λ = 0.95, μ = 1, σ = 0.1 0.024

λ = 0.95, μ = 1, σ = 0.01 0.009

λ = 0.8, μ = 1, σ = 0.1 0.019

λ = 0.8, μ = 1, σ = 0.01 0.002

λ = 0.5, μ = 1, σ = 0.1 0.026

λ = 0.5, μ = 1, σ = 0.01 0.002

Table 2. The difference between the numerical distribution π (n) and asymptotic dis-
tribution P1(n) under a heavy load condition for various parameters

Parameters Δ

λ = 0.95, μ = 1, σ = 0.1 0.0095

λ = 0.95, μ = 1, σ = 1 0.0189

λ = 0.9, μ = 1, σ = 0.1 0.0196

λ = 0.9, μ = 1, σ = 1 0.0695

λ = 0.8, μ = 1, σ = 0.1 0.0416

λ = 0.8, μ = 1, σ = 1 0.2674

By substituting these values in (27) we can find the numerical probability
distribution π (n).

We consider different parameters setup of λ, μ, σ for each asymptotic distri-
bution. In Fig. 1 prelimit probabilities π (n) and asymptotic probabilities P1(n)
are compared to each other. In Fig. 2 prelimit probabilities π (n) and asymp-
totic probabilities P (ν(t) = n) are shown. Table 1 present Kolmogorov distances
between the numerical and asymptotic distributions for various parameters.
The analysis of obtained numerical results shows that under these parameters
obtained asymptotic distributions and prelimit distributions are very close to
each other and asymptotic method is very effective.
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Fig. 1. The difference between the numerical π (n) and asymptotic P1(n) distributions
under a heavy load condition, λ = 0.95, μ = 1, σ = 0.1

0 2 4 6 8 10 12 14 16 18 20
n

0

0.1

0.2

0.3

0.4

0.5

0.6
asymptotic
prelimit

Fig. 2. The difference between the numerical π (n) and asymptotic P (ν(t) = n) distri-
butions under a low rate of retrials condition, λ = 0.5, μ = 1, σ = 0.1
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8 Conclusion

In this paper was presented an asymptotic analysis of the waiting time and the
number of returns of a M/M/1 retrial queueing system. Two different cases were
considered. First we conducted analysis under a heavy load condition and then
under a low rate of retrials condition. Numerical illustrations and results show
the effectiveness of asymptotic method for the considered retrial queuing system.
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