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Preface

The series of scientific conferences Information Technologies and Mathematical
Modelling (ITMM) was started in 2002. In 2012, the series acquired international
status, and selected revised papers have been published in Communications in Com-
puter and Information Science since 2014. The conference series was named after
Alexander Terpugov, one of the first organizers of the conference, an outstanding
scientist of the Tomsk State University and a leader of the famous Siberian school on
applied probability, queueing theory, and applications.

Traditionally, the conference has about ten sections in various fields of mathematical
modelling and information technologies. Throughout the years, the sections on prob-
abilistic methods and models, queueing theory, and communication networks have
been the most popular ones at the conference. These sections gather many scientists
from different countries. Many foreign participants come to this Siberian conference
every year because of our warm welcome and serious scientific discussions. In 2020,
the ITMM conference was held using technologies for online conferences due to the
pandemic of COVID-19.

This volume presents selected papers from the 19th ITMM conference. The papers
are devoted to new results in queueing theory and its applications. Its target audience
includes specialists in probabilistic theory, random processes, and mathematical
modeling as well as engineers engaged in logical and technical design and operational
management of data processing systems, communications, and computer networks.

December 2020 Alexander Dudin
Anatoly Nazarov

Alexander Moiseev
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Some Special Features of Finite-Source
Retrial Queues with Collisions,

an Unreliable Server and Impatient
Customers in the Orbit

János Sztrik(B) and Ádám Tóth

Faculty of Informatics, University of Debrecen, Debrecen, Hungary
{sztrik.janos,toth.adam}@inf.unideb.hu

Abstract. The goal of the paper is to study a finite-source retrial queu-
ing system with collisions and customers’ impatience behavior in the
orbit. The situation when an incoming customer from the orbit or from
the source finds the server busy causes a collision and both requests are
directed toward the orbit. It is assumed that every request in the source
is eligible to generate customers whenever the server is failed but these
requests immediately go into orbit. A customer after some waiting in the
orbit can depart without fulfilling its service requirement these are the so-
called impatient/reneging/abandoned customers. In that case it returns
to the source. A customer who is under service when the server fails is
also sent to the orbit. The source, service, retrial, impatience, operation
and repair times are supposed to be independent of each other. The nov-
elty of the investigation is to carry out a sensitivity analysis comparing
various distributions of impatience time of customers on the performance
measures such as mean number of customers in the orbit, mean waiting
time of an arbitrary, successfully served and reneging customers, proba-
bility of abandonment, server utilization, etc.

Keywords: Finite-source queuing system · Retrial queues ·
Collisions · Server breakdowns and repairs · Impatient customers ·
Stochastic simulation

1 Introduction

Impatience of the customers is a natural phenomenon and an interesting topic
in queueing theory. The process of reneging and balking is extensively studied
by many researchers, for example in [1–10,13,14,20,24]. Whenever an arriving
customer decides not to enter the system, which is called balking while in reneg-
ing a customer in the system after waiting for some time leaves the system

The research of both authors was supported by the construction EFOP-3.6.3-VEKOP-
16-2017-00002. The project was supported by the European Union, co-financed by the
European Social Fund.

c© Springer Nature Switzerland AG 2021
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without being served. In our investigated model reneging customers are con-
sidered. Queuing systems with repeated calls may competently describe major
telecommunication systems, such as telephone switching systems, call centers,
CSMA-based wireless mesh networks in frame level. The main feature of retrial
queueing system is that customers remain in the system even if it is unable
to find idle service unit and after some random time it attempts to reach the
service facility again. Speaking of communication systems where the available
channels or other facilities are very limited thus users (sources) usually need to
fight for these resources. This results a high possibility of conflict because sev-
eral sources may launch uncoordinated attempts producing collisions. In these
cases the loss of transmission takes place and it is necessary to ensure of the
process of retransmission. So evolving efficient procedures for preventing conflict
and corresponding message delay is essential. In case of a collision both calls,
the one under service and the newly arriving one go to the orbit. A review of
results on finite-source retrial queues with collision and unreliable server has
been published in [18]. In many papers of retrial queueing literature the service
unit is assumed to be available steadily. But these assumptions are quite unreal-
istic because in real life applications of these systems can break down, different
types of problems can arise like power outage, human error or other failures.
Various factors have effect on the transmission rate of the wireless channel in a
wireless communication scenario and these are apt to suffer transmission failure,
interruptions throughout transferring the packets. Investigating retrial queueing
systems with random server breakdowns and repairs has a great importance as
the operation of non-reliable systems modifies system characteristics and per-
formance measures. In this paper, we assume that in the case of a failure of the
server, the request generation from the source continues and calls go to the orbit.
Moreover, a customer who is under service when the server fails is also sent to
the orbit.

The novelty of this investigation is to carry out sensitivity analysis using dif-
ferent distributions of impatient calls on performance measures. Different Figures
help to understand the special features of the system. The model is a general-
ization of [21] and a continuation of the works [12,22].

The aim of the present paper is to show some special features of finite-source
retrial queuing systems with impatient customers in the orbit. In general we
could see that the steady-state distribution of the number of customers in the
service facility can be approximated by a normal distribution with given mean
and variance. By the help of stochastic simulation several systems are analyzed
showing directions for further analytic investigations. Tables and Figures are
collected to illustrate unexpected properties of these systems.

2 System Model

A retrial queueing system of type M/M/1//N is considered with a non-reliable
server and impatient customers. In the finite-source N customers reside and each
of them is able to generate calls towards the server with rate λ/N so the inter-
request time is exponential with parameter λ/N . A customer cannot generate a
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new call until the previous call returns to the source. Every incoming customer
has a random impatience time which determines how much time the customer
spends in the orbit without getting its service requirement. Exceeding this time
results that the customer no longer waits for the service unit and departs with-
out being served properly. This random time follows gamma, hypo-exponential,
hyper-exponential, Pareto and lognormal distribution with different parameters
but with the same mean value. If an arriving customer either from the source
or from the orbit finds the server in idle state its service starts immediately.
The service times of the customers is assumed to be exponentially distributed
with parameter μ. After its successful service customers return to the source.
Encountering the service unit in a busy state the arriving customer causes a
collision with the call under service and both enter the orbit. After an exponen-
tially distributed time with parameter σ/N customers located in the orbit make
another attempt to get into the service. The server is not reliable so from time
to time can break down. The lifetime is an exponentially distributed random
variable with parameter γ0 in case of an idle server and γ1 when the server is
busy. The repair process starts immediately upon the breakdown which also fol-
lows an exponential distribution with parameter γ2. If server failure takes place
during the service of a customer it is transferred to the orbit. Furthermore, in
the case of a failure, we can distinguish two options. Namely, the failure either
stops entering new customers from the source or allows them to go to the orbit.
Usually, we treat the system with the latter option if the other one is not stated.
The source, service, retrial, impatience, operation, and repair times are supposed
to be independent of each other.

3 Simulation Case Studies

The simulation approach is a very important method that helps us in perfor-
mance modeling when the system is too complicated to investigate with the
help of other standard methods, like analytical, numerical, or asymptotic ones.
For the interested readers we list some of the most important works, such as
[11,15–17,19,23].

In this section first, we deal with exponentially distributed impatience time
which helps us to check our simulation results with the help of those we got using
MOSEL (MOdeling, Specification, and Evaluation Language), published in [12].
As soon as we realized that the simulation program operates correctly we can
investigate the effect of the distribution of impatience time on the performance
measures as we will do in the second part. One of the advantages of the simula-
tion that we can make a difference between abandoned and successfully served
requests as we show in our examples. Reading the papers dealing with abandon-
ment we noticed that mainly the distribution of the customers in the system has
been investigated and then using the Little-formula the mean response time of
an arbitrary customer has been obtained. There are no performance measures
for different types of customers.
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3.1 Exponentially Distributed Impatience Times

In these cases we would like to show the effect of the impatience rate on the
distribution of the number of customers in the system. All the random variables
mentioned above are exponentially distributed (Table 1).

Table 1. Different impatience rates

N λ/N σ/N γ0 γ1 γ2 μ τ

Case 1 100 0.01 0.1 0.1 0.1 1 1 1E−10

Case 2 100 0.01 0.1 0.1 0.1 1 1 0.000001

Case 3 100 0.01 0.1 0.1 0.1 1 1 0.0001

Case 4 100 0.01 0.1 0.1 0.1 1 1 0.001

Case 5 100 0.01 0.1 0.1 0.1 1 1 0.01

Case 6 100 0.01 0.1 0.1 0.1 1 1 0.1

Case 7 100 0.01 0.1 0.1 0.1 1 1 1

Case 8 100 0.01 0.1 0.1 0.1 1 1 5

The results are understandable and illustrate what we expected, namely the
higher the impatience rate the less the number of customers in the system see
Fig. 1. However, we are able to give other measures which show some unexpected
features of the system. It should be mentioned that we need some special param-
eter set up so that these cases should happen. We have some experience to find
this setup from our previous works.

Fig. 1. Distribution of number of customers for different impatience rates

In the following we give detailed estimations for the different type of cus-
tomers, namely successfully served and abandoned requests. In our opinion only
the simulation can help us to receive these measures. In Tables 2, 3, 4 we can
see some special features of these systems for which the notations are given in
Table 5.
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Table 2. Estimations 1

E(NS) E(O) E(T) E(TS) E(TA) E(W) E(WS) E(WA) E(WAO)

Case 1 57.9829 57.5627 137.9729 137.9729 0.0000 136.9730 136.9730 0.0000 0.0000

Case 2 57.9771 57.5570 137.9197 137.9182 148.6876 136.9203 136.9188 147.7836 20.1735

Case 3 57.4366 57.0166 134.9306 134.7932 145.0371 133.9441 133.8056 144.1288 20.3340

Case 4 52.9963 52.5786 112.7086 111.5587 121.8498 111.8203 110.6612 121.0345 19.9312

Case 5 30.2477 29.8485 43.3468 39.3924 48.6341 42.7747 38.7689 48.1307 16.3978

Case 6 6.3188 5.9797 6.7437 3.6688 8.4876 6.3818 3.1664 8.2053 6.3764

Case 7 0.9897 0.6868 0.9996 0.5514 1.1972 0.6937 0.0633 0.9716 0.9432

Case 8 0.4365 0.1398 0.4384 0.4849 0.4187 0.1404 0.0030 0.1987 0.1974

Table 3. Estimations 2

E(ST) E(STS) E(STA) E(STSI) E(STSUI) Pa Pao Us UsS UsA

0.9999 0.9999 0.0000 0.8606 0.1394 0.0000 0.0000 0.4202 0.4200 0.0000

0.9994 0.9994 0.9040 0.8603 0.1394 0.0001 0.0739 0.4201 0.4200 0.0001

0.9866 0.9876 0.9083 0.8474 0.1403 0.0134 0.0777 0.4200 0.4149 0.0052

0.8883 0.8975 0.8152 0.7489 0.1487 0.1117 0.0906 0.4177 0.3749 0.0428

0.5721 0.6235 0.5034 0.4095 0.2140 0.4279 0.1874 0.3992 0.2489 0.1504

0.3619 0.5024 0.2823 0.1118 0.3907 0.6381 0.4272 0.3391 0.1703 0.1688

0.3059 0.4881 0.2256 0.0162 0.4718 0.6940 0.5318 0.3029 0.1479 0.1553

0.2980 0.4819 0.2200 0.0039 0.4780 0.7020 0.5426 0.2968 0.1431 0.1538

It is easy to check that the mean response/waiting and total service time of
an arbitrary customer can be obtained by the help of law of total expectation.
Furthermore, the Little-formulas are also valid.

Let us make some comments concerning the results. If we take a closer look
at the mean waiting time of an abandoned customer E(WA) and the conditional
mean waiting time E(WAO) of those abandoned customers who never left the
orbit we can see one of the unexpected features. Namely, one might think that
they should be around the mean of the assumed impatience time, in this case
1/τ . But as we can observe the estimations are much less in the rows 2 − 5 of
Table 2. Our explanation is the following: since the impatience rates are small the
customers abandon very rarely and in the realizations only the short durations
happen. Thus the sample mean of these few durations cannot be considered as
the true estimation of the hypothetical expectation E(WAO).

In Table 3 the mean total service time of a successful customer E(STS)
decreases but the mean of the uninterrupted service time of a successful request
increases. We have similar explanation, namely as more and more request aban-
dons the system less and less customer needs service. Thus the number of col-
lisions decreases and as a consequence the uninterrupted service times increase
but their mean is less than the expectation of the hypothetical service time since
only the shorter durations are considered. The behavior of the probabilities are
reasonable, but again the utilization of the server with respect to the abandoned
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Table 4. Estimations 3

Var(NS) Var(T) Var(TS) Var(TA) Var(W) Var(WS) Var(WA) Var(ST)

40.007 21911.908 21911.908 0.000 21657.862 21657.862 0.000 1.000

40.124 21881.572 21881.345 23376.692 21627.907 21627.682 23112.600 0.999

40.251 20963.887 20960.814 21088.319 20719.418 20716.321 20844.001 0.975

40.608 14752.973 14728.385 14854.131 14571.818 14547.085 14672.623 0.805

32.106 2326.767 2264.987 2360.505 2287.902 2225.639 2321.008 0.386

7.570 65.502 44.016 69.292 63.994 41.980 67.298 0.233

0.980 0.999 0.387 1.141 0.867 0.118 0.945 0.205

0.344 0.215 0.235 0.204 0.036 0.001 0.039 0.199

Table 5. Notation for the estimations

E(NS): mean number of customers in the system

E(T): mean sojourn time of an arbitrary customer

E(TS): mean sojourn time of a successfully served customer

E(TA): mean sojourn time of a reneging customer

E(O): mean number of customers in the orbit

E(W): mean waiting time of an arbitrary customer

E(WS): mean waiting time of a successfully served customer

E(WA): mean waiting time of a abandoned customer

E(ST): mean total service time of an arbitrary customer

E(STS): mean total service time of a successfully served customer

E(STA): mean total service time of a reneging customer

Pa: probability of abandonment

Us: server utilization

Var(NS): variance of number of customers in the system

Var(T): variance of sojourn time of an arbitrary customer

Var(TS): variance of sojourn time of a successfully served customer

Var(TA): variance of sojourn time of a reneging customer

Var(W): variance of waiting time of an arbitrary customer

Var(WS): variance of waiting time of a successfully served customer

Var(WA): variance of waiting time of a reneging customer

Var(ST): variance of total service time of an arbitrary customer

Var(STS): variance of total service time of a successful customer

Var(STA): variance of total service time of an abandoned customer

Pao: conditional probability that an abandoned customer never
leaves the orbit

E(WAO): mean waiting time of an abandoned customer who
never leaves the orbit

E(STSI): mean total interrupted service time of a successful customer

E(STSUI): mean total uninterrupted service time of a successful customer

UsA: server utilization of an abandoned customer

UsS: server utilization of a successfully served customer
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customers UsA is surprising. We cannot explain why at the beginning it increases
then decreases.

3.2 Generally Distributed Impatience Times

Our aim is to examine how the different distributions of impatience of calls have
an effect on the performance measure when the mean and variance are equal,
respectively. The investigations are divided into two parts depending on the
squared coefficient of variation.

Squared Coefficient of Variation is Greater than One
In the first part Table 6 shows the parameters of distinct distributions. The
parameters are chosen in such a way that the squared coefficient of variation
would be greater than one. For comparison hyper-exponential, gamma, lognor-
mal and Pareto distributions are used besides the case when the impatience
time is constant. Our simulation program is equipped with random number gen-
erators and these functions need input parameters which are different in every
distribution.

Numerical values of model parameters are the following:

N = 100 λ/N = 0.01 γ0 = 0.1 γ1 = 0.1 γ2 = 1 σ/N = 0.1 μ = 1

Table 6. Parameters of impatience distributions, squared coefficient of variation is
greater than one

Distribution Gamma Hyper-exponential Pareto Lognormal

Parameters α = 0.390625 p = 0.33098 α = 2.1792 m = 5.57973

β = 0.0007813 λ1 = 0.00132 k = 270.56302 σ = 1.12684

λ2 = 0.00268

Mean 500

Variance 640000

Squared coefficient of variation 2.56

Figure 2 shows the comparison of steady-state distribution of the number of
customers in the system. Taking a closer look on the results all the curves cor-
respond to a normal distribution, the explanation can be found in paper [18].
However, this figure clearly displays the contrast among the applied distribu-
tions. Although the shape of the curves is almost the same the average number
of customers in the system varies a little bit especially in case of Pareto distri-
bution and when the impatience time of calls is constant the mean is greater
compared to the others.

The mean response time of different types of customer is shown in function
of arrival intensity on Figs. 3, 4, 5. Figure 4 illustrates how the mean response
time of impatient customers changes. The mean waiting time in the orbit should
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Fig. 2. Comparison of steady-state distributions

Fig. 3. Mean response time vs. arrival intensity using various distributions

be constant, due to the constant impatient time of a customer. Of course, Fig. 5
can be obtained with the help of the law of total expectation, too. Interestingly,
differences can be observed even though the first two moments are equal, respec-
tively. Results clearly illustrate the effect of various distributions. Highest values
are experienced at gamma distribution in the case of successful customers, but
in the case of impatient calls, constant impatience time gives the greatest values.
Despite the increasing arrival intensity the maximum property characteristic of
finite-source retrial queueing systems occurs under suitable parameter settings
as we mentioned in [18].

Figure 6 demonstrates how the probability of abandonment of a customer
changes with the increment of the arrival intensity. Under probability of aban-
donment we mean the probability of that a customer leaves the system without
getting its full service requirement (through the orbit). After a slow increase of
the value of this performance measure it stagnates which is true for every used
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Fig. 4. Mean response time vs. arrival intensity using various distributions

Fig. 5. Mean response time vs. arrival intensity using various distributions

distributions of impatience of calls but they differ significantly from each other.
At gamma distribution the tendency of leaving the system earlier is much higher
than the others especially compared to at constant mean of impatience of calls.
Here the disparity is much higher among the applied distributions compared to
the previous Figures. An explanation of this feature could be the following: if
the squared coefficient of variation is greater than one the gamma distribution
takes small values with great probability, so the customers leave the system quite
early and thus the probability of abandonment is high.

Figure 7 is related to the total utilization of server versus arrival intensity.
Total utilization contains every service time including the interrupted ones no
matter whether a call departed from the service unit or from the orbit. By
examining closely the Figure we find prominent results when gamma distribution
is applied and regarding the others the received values are almost identical. With
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Fig. 6. Probability of abandonment of a customer vs. arrival intensity using various
distributions

Fig. 7. Total utilization of server vs. arrival intensity using various distributions

the increment of arrival intensity the total utilization of the service unit increases
as well. Here the explanation is the same as in the previous Figure, that is there
are less customers in the system and hence the utilization is the smallest.

Squared Coefficient of Variation is Less than One
We carried the simulation in the case when the squared coefficient of variation
is less than one, the mean is the same as before. The differences are noticeable
but not as big as in the previous cases.

After viewing the above outcomes and figures we are intrigued to know how
the operation of the system changes if another parameter setting is used. To do so
we modify the parameters in order the squared coefficient of variation to be less
than one so hyper-exponential is exchanged for hypo-exponential distribution.
Table 7 contains the modified parameter setting of distribution of impatience of
calls. Other parameters remain unchanged (see Table 6).
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Table 7. Parameters of impatience distributions, squared coefficient of variation is less
than one

Distribution Gamma Hypo-exponential Pareto Lognormal

Parameters α = 1.47059 μ1 = 0.01 α = 2.5718 m = 5.9552

β = 0.002941 μ2 = 0.0025 k = 305.5844 σ = 0.72027

Mean 500

Variance 170000

Squared coefficient of variation 0.68

First, Fig. 8 represents the steady state distribution of the number of cus-
tomers in the system. Analyzing the curves in more detail they are much closer
to each other as on Fig. 2. Differences appear among the applied distributions
with this parameter setting, too. As regard to the values with these parameters
the mean number of customer is higher in case of every distribution. We think
that this feature is due to the smaller variance of impatience time and customers
stay in the orbit for a longer time since in the realization of the simulation there
are less early abandonment.

Fig. 8. Comparison of steady-state distributions

The next Figures show the mean response time of different types of customers
in function of arrival intensity. Examining Figures the same tendency can be seen
as on the previous corresponding Figures but differences can still be discovered
especially in case of gamma distribution. These Figures also reveal that successful
customers on the average spend less time in the system compared to the previous
parameter setting but the impatient and arbitrary ones spend longer time in the
system (Figs. 9, 10 and 11).
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Fig. 9. Mean response time vs. arrival intensity using various distributions

Fig. 10. Mean response time vs. arrival intensity using various distributions

Figure 12 demonstrates the probability of abandonment of a customer ver-
sus arrival intensity. Not surprisingly after seeing the previous two Figures the
difference of achieved values are relatively far from each other, disparity is still
present among the applied distributions. We can observe that the probability of
abandonment is less than in the case of previous case, see Fig. 6. Our explanation
is the same as in the case of number of customers in the system.

Lastly, on Fig. 13 the running parameter (value of x-axis) is the arrival inten-
sity and value of y-axis is the total utilization of the server. Among the lines
there are not so significant differences, they coincide with each other meaning
that the utilization is almost the same except in case of Pareto and gamma
distribution where the utilization of service unit is significantly less.
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Fig. 11. Mean response time vs. arrival intensity using various distributions

Fig. 12. Probability of abandonment of a customer vs. arrival intensity using various
distributions

Fig. 13. Total utilization of server vs. arrival intensity using various distributions
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4 Conclusion

In this paper a finite-source retrial queueing system is presented with a non-
reliable server, collisions and impatient customers. The obtained results fully
demonstrated how essential is the distribution of impatience of calls because
it has a great influence on the system characteristics despite the fact that the
mean and the variance are the same, respectively. Figures in connection sev-
eral performance measures, for example the probability of abandonment clearly
assure this phenomenon. Results evidently indicated the distinction is noticeable
and significant among the performance measures when the squared coefficient of
variation is greater than one and moderate when it is less than one. In the future
we would like to deal with more distributions to expand our investigation and
examine the performance measures when the distribution of service time is not
exponential. We also would like to analyze systems of two-way communications
with impatient customers.
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Abstract. A novel flexible discipline for providing priority in a single-
server queue is applied to the system where the service can be unreliable
what results in the loss of a customer or repetition of its service. Accord-
ing to this discipline, arriving customers are stored in the finite buffers
dedicated to the customers of the corresponding type if the buffer is not
full. After the staying in the corresponding buffer during the exponen-
tially distributed time, the customers try to enter the main buffer of a
finite capacity which is common for both types of customers. If this main
buffer is full, the customer returns to the dedicated buffer and repeats
the attempts to enter the main buffer later. Customers staying in the
dedicated buffers are impatient and can go away from the system after
a certain patience period duration of which has an exponential distribu-
tion. Customers of both types, which succeed to enter the main buffer,
are picked up for the service in the order of their admission to this buffer.
Providing the preference to priority customers is managed via the cor-
responding choice of capacities of the dedicated buffers and the rate of
trials to transfer to the main buffer. Performance measures of this sys-
tem are obtained under the assumption that the arrival flows of two
types of customers are defined by the Markov arrival processes and the
service time has the distribution of phase-type with failures type. Some
aspects relating to an optimal choice of the parameters of the system are
discussed via numerical experiments.

Keywords: Fair priority · Markov arrival process · Impatience ·
Phase-type distribution with failures

1 Introduction

Queueing theory is a powerful tool for performance evaluation, resource planning,
and scheduling in various areas including various telecommunication systems and
networks, information and health care systems, transportation, etc. Despite the
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very quick development of new equipment and technologies in these networks
and systems, the demand for service also quickly grows and the problem of the
effective use of the available resources remains to be very important. Since the
users are usually quite heterogeneous in respect to the most critical indicators
of their service, there is an opportunity to provide some priority to the classes of
users having more strict requirements, e.g., to the latency, jitter, loss probability,
etc., and the corresponding financial resources to pay for better quality of service.
Therefore, although the theory of priority queues is already quite old and well
developed, see, e.g., classical books [6,8], new models and new challenges arise
in various real-world systems. This stimulates the continuation of research in the
theory of priority queues.

In priority queues, all arriving customers are divided into several classes and
customers from the different classes have a different treatment in the system.
For simplicity, we will speak about two classes. Users from one class are called
the priority customers while the users from the second class are considered non-
priority users. The priority can work at the stage of the user arrival to the system
and decision making whether to admit this customer to the system or drop it
and (or) at the moment of service completion when it is necessary to decide user
of which type will be picked up for the next service first. More flexible priority
schemes, so-called dynamic priorities, take into account at the decision moment
both the established in advance priorities of classes and lengths of queues of
two types. However, this flexibility (and overall quality of service) is achieved
at the expense of permanent monitoring the system states which can be costly.
In contrast to them, the so-called static priorities, take into account only the
established in advance priorities.

There are two kinds of static priorities: preemptive and non-preemptive pri-
orities. The preemptive priority assumes that service of a non-priority customer
is interrupted when a priority customer arrives at the system. E.g., the arrival
of a primary user having a license for service in the radio system interrupts
the service of a cognitive user that occupied a temporarily available server. The
non-preemptive priority suggests that service of a non-priority customer is not
interrupted when a priority customer arrives at the system. The priority plays a
role only at the moment of starting a new service. E.g., the arrival of a handover
user into the cell of a mobile communication network does not interrupt service
of an ordinary user. But the handover user has the preference in access to the
server that becomes idle.

The preemptive priority creates ideal conditions for service of the priority
users that may practically ignore the existence of non-priority customers. How-
ever, this type of priority is rather unfair to non-priority customers whose waiting
time can be very long. Therefore, various disciplines that are more benevolent
concerning non-priority customers are invented. E.g., these can be the disciplines
when one non-priority customer can receive service after service of the certain
number of priority customers in turn or in the case when all priority customers
finish the service, not only one but several non-priority customers can receive
service in turn. Sometimes, the possibility of an increase of the priority of a
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customer is allowed if its waiting time becomes too long, see, e.g., [9,11,13,14].
Another way to provide more fair priority was offered in [5]. There, before accep-
tance to the main buffer, from which the customers are picked up for service,
customers of both types attend the dedicated finite auxiliary buffers (storages).
Each customer from these buffers can transit to the main buffer after a random
amount of time having an exponential distribution with the rate depending on
the type of the customer. The degree of the preference given to the priority
customers can be smoothly varied via the proper choice of the capacities of the
dedicated buffers and the rates of transitions from them into the main buffer.
Analysis of this discipline as implemented in [5] under assumptions that the
arrival flow of customers is defined by the Marked Markov arrival process, the
main buffer has an infinite capacity and the service time of all customers has
phase-type (PH) distribution.

In this paper, we suggest that arrivals are defined by two independent Markov
arrival processes, the main buffer has a finite capacity and the service times have
so-called phase-type with failures (PHF ) distribution (see, [3]) that supposes
possibilities of incorrect service of a customer with options to lose the customer
or repeat its service from the early beginning or from a certain phase of the
underlying process of service at which the breakdown occurred.

The outline of the presentation of the results in this paper is the follow-
ing. In Sect. 2, the mathematical model is completely described. The process of
system states is formally defined in Sect. 3. This process is a multi-dimensional
continuous-time Markov chain. The generator of this Markov chain is derived.
Expressions for the key performance measures of the system are given in Sect. 4.
The results of numerical experiments are presented in Sect. 5. Section 6 concludes
the paper.

2 Mathematical Model

We consider a queueing system the structure of which is presented in Fig. 1.

R

Fig. 1. Queueing system under study



Improved Priority Scheme for Unreliable Queueing System 19

The system has one server and a finite main buffer of capacity R. Customers
of two types arrive at the system. The arrival flow of type-1 customers is defined
by the MAP (Markov Arrival Process), see, e.g., [2,12,15]. This process is coded
as MAP1 and is defined by the irreducible continuous-time Markov chain νt, t ≥
0, having a finite state space {1, 2, ...,W1} and the matrices D

(1)
0 and D

(1)
1 . The

matrix D
(1)
1 consists of the intensities of transitions of the chain νt that are

accompanied by the arrival of a customer. The non-diagonal entries of the matrix
D

(1)
0 define the intensity of the corresponding transition of the chain νt without

the generation of customers, and the modules of the negative diagonal entries
define the rates of the exit of the process νt from the corresponding states. The
matrix D(1)(1) = D

(1)
0 + D

(1)
1 is the infinitesimal generator of the Markov chain

νt.
The arrival flow of type-2 customers is also defined by the Markov arrival

process. It coded as MAP2 and is defined by the irreducible continuous-time
Markov chain vt, t ≥ 0, having a finite state space {1, 2, ...,W2} and the gener-
ator D(2)(1) = D

(2)
0 + D

(2)
1 .

The average intensity of type-l, l = 1, 2, customers (fundamental rate) λl is
defined by the formula

λl = θlD
(l)
1 e

where θ1 and θ2 are the row vectors of the stationary probabilities of the Markov
chains νt and vt correspondingly. The vector θl, l = 1, 2, is the unique solution
to the system

θlD
(l)(1) = 0, θle = 1.

Here and throughout this paper, e is a column vector of appropriate size
consisting of ones, and 0 is a row vector of appropriate size consisting of zeroes.

We assume that each type customers are placed upon arrival into the dedi-
cated finite buffer (storage). The storage for type-l, l = 1, 2, customers has the
finite capacity Nl. If the storage is full at a customer arrival epoch, the cus-
tomer leaves the system permanently (is lost). Customers of the first (second)
flow transfer from the storage, independently of all other customers staying in
the storage, to the finite main buffer after a random amount of time that is
exponentially distributed with the parameter γ1(γ2). We assume that γ1 > γ2.
It means that customers from the first flow more quickly transfer to the main
buffer what creates for them a priority over customers from the second flow. If
the main buffer is full at the moment when a customer of any type from the
storage tries to enter into it, this customer is returned into the corresponding
storage.

The customers staying in each storage are assumed to be impatient. A type-l
customer leaves the storage (is lost) independently of all other customers staying
in the storage after an exponentially distributed with the parameter αl, αl ≥
0, l = 1, 2, amount of time.

After entering the main buffer, the customers of both types are assumed
to become identical. The service time of an arbitrary customer has a PHF
distribution, see [3]. The PHF type distribution of the service time is defined by
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a continuous-time Markov chain mt, t ≥ 0, with M transient states {1, . . . , M}
and two absorbing states M + 1 and M + 2. The initial state of the process mt

is chosen among the transient states in accordance with a stochastic row vector
β = (β1, . . . , βM ). The intensities of the transition of the process mt between
transient states are defined by the matrix S.

The intensities of the transition to the first absorbing state M +1 are defined
by the entries of the column vector S1. We assume that the transition to the first
absorbing state corresponds to successful service completion. The transition to
the second absorbing state M +2 means that a failure occurs. The intensities of
such transition are given by the entries of the column vector S2. Here S1 +S2 =
−Se.

We suppose, that if during the service of a customer failure occurs, then with
probability q1 the customer leaves the system forever (is lost); with probability
q2, the service of the customer starts from the early beginning, and with proba-
bility 1−q1−q2 the service of the customer resumes from the state of the process
mt where the failure occurred.

The customers staying in the main buffer are assumed to be impatient. Each
customer, which is not picked up for service, leaves the buffer independently
of all other customers after an exponentially distributed with the parameter ϕ
amount of time.

To avoid starvation of the server and improve the performance of the system,
we assume that if at a service completion moment, the buffer is empty, but the
first storage is not empty, a type-1 customer is immediately picked up from the
storage and starts service. If there is no type-1 customer in the storage, but
there are type-2 customers in the second storage, the type-2 customer is picked
up from this storage and immediately starts service. If both storages are empty,
the server stays idle until the first arrival of any type customer, who immediately
starts service without visiting storage.

It is worth noting that the considered system can be also interpreted as an
unreliable single-server system with a finite buffer, customer retrials, two sepa-
rate finite orbits for retrying customers and instantaneous search of a customer
in the orbits in the case when the server becomes idle and the main buffer is
empty.

3 Process of System States

Let, during the epoch t, t ≥ 0,

• it, it = 0, R + 1, be the number of customers in the main buffer and on the
server,

• n
(l)
t , n

(l)
t = 0, Nl, be the number of customers in the lth storage, l = 1, 2,

• νt, νt = 1,W1, be the state of the underlying process of the MAP1,
• vt, vt = 1,W2, be the state of the underlying process of the MAP2,
• mt, mt = 1,M, be the state of PHF service process.



Improved Priority Scheme for Unreliable Queueing System 21

The Markov chain ξt = {it, n
(1)
t , n

(2)
t , νt, vt, mt}, t ≥ 0, is a regular irre-

ducible continuous-time Markov chain. It has the following finite state space:(
{0, 0, 0, ν, v}

)⋃(
{i, n(1), n(2), ν, v, m}, i = 1, R + 1, n(1) = 0, N1, n(2) = 0, N2,

m = 1, M

)
, ν = 1, W1, v = 1, W2.

Let us enumerate the states of the Markov chain ξt in the lexicographic order
and refer to the set of states of the chain having value i of the first component
of the Markov chain as level i, i = 0, R + 1.

Let Q be the generator of the Markov chain ξt, t ≥ 0.

Lemma 1. The generator Q has the following block-tridiagonal structure:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q0,0 Q0,1 O O O . . . O O
Q1,0 Q1,1 Q+ O O . . . O O
O Q2,1 Q2,2 Q+ O . . . O O
O O Q3,2 Q3,3 Q+ . . . O O
...

...
...

...
...

. . .
...

...
O O O O O . . . QR,R Q+

O O O O O . . . QR+1,R QR+1,R+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The non-zero blocks Qi,j , i, j = 0, R + 1, containing the intensities of the
transitions from level i to level j have the following form:

Q0,0 = D
(1)
0 ⊕ D

(2)
0 ,

Q1,1 = I(N1+1)(N2+1) ⊗ (D(1)
0 ⊕ D

(2)
0 ⊕ S)

+Z1 ⊗ IN2+1 ⊗ D
(1)
1 ⊗ IW2M + IN1+1 ⊗ Z2 ⊗ IW1 ⊗ D

(2)
1 ⊗ IM

− (α1 + γ1)A1 ⊗ I(N2+1)W1W2M − (α2 + γ2)IN1+1 ⊗ A2 ⊗ IW1W2M

+α1A1E1 ⊗ I(N2+1)W1W2M + α2IN1+1 ⊗ A2E2 ⊗ IW1W2M

+ (E1 ⊗ IN2+1 + F ⊗ E2) ⊗ IW1W2 ⊗ (S1 + q1S2)β

+ I(N1+1)(N2+1)W1W2 ⊗ (q2S2β + (1 − q1 − q2)diag{(S2)l, l = 1,M}),

Qi,i = I(N1+1)(N2+1) ⊗ (D(1)
0 ⊕ D

(2)
0 ⊕ S)

+Z1 ⊗ IN2+1 ⊗ D
(1)
1 ⊗ IW2M + IN1+1 ⊗ Z2 ⊗ IW1 ⊗ D

(2)
1 ⊗ IM

− (i − 1)ϕI(N1+1)(N2+1)W1W2M

− (α1 + γ1)A1 ⊗ I(N2+1)W1W2M − (α2 + γ2)IN1+1 ⊗ A2 ⊗ IW1W2M

+α1A1E1 ⊗ I(N2+1)W1W2M + α2IN1+1 ⊗ A2E2 ⊗ IW1W2M
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+ I(N1+1)(N2+1)W1W2 ⊗ (q2S2β + (1 − q1 − q2)diag{(S2)l, l = 1,M}), i = 2, R,

QR+1,R+1 = I(N1+1)(N2+1) ⊗ (D(1)
0 ⊕ D

(2)
0 ⊕ S)

+Z1 ⊗ IN2+1 ⊗ D
(1)
1 ⊗ IW2M + IN1+1 ⊗ Z2 ⊗ IW1 ⊗ D

(2)
1 ⊗ IM

− (i − 1)ϕI(N1+1)(N2+1)W1W2M

−α1A1 ⊗ I(N2+1)W1W2M − α2IN1+1 ⊗ A2 ⊗ IW1W2M

+α1A1E1 ⊗ I(N2+1)W1W2M + α2IN1+1 ⊗ A2E2 ⊗ IW1W2M

+ I(N1+1)(N2+1)W1W2 ⊗ (q2S2β + (1 − q1 − q2)diag{(S2)l, l = 1,M}),

Q0,1 = c1 ⊗ c2 ⊗ (D(1)
1 ⊕ D

(2)
1 ) ⊗ β,

Qi,i+1 = Q+ = γ1A1E1 ⊗ I(N2+1)W1W2M

+ γ2IN1+1 ⊗ A2E2 ⊗ IW1W2M , i = 1, R,

Q1,0 = (c1)T ⊗ (c2)T ⊗ IW1W2 ⊗ (S1 + q1S2),

Qi,i−1 = I(N1+1)(N2+1)W1W2 ⊗ (S1 + q1S2)β

+ (i − 1)ϕI(N1+1)(N2+1)W1W2M , i = 2, R + 1,

where
I is the identity matrix, and O is a zero matrix. If the dimension of the

matrix is not clear from the context, it can be indicated as subscript;
A1 = diag{0, 1, . . . , N1}, where diag{0, 1, . . . , a} is the diagonal matrix with

the diagonal entries {0, 1, . . . , a};
A2 = diag{0, 1, . . . , N2};
El, l = 1, 2, is the square matrix of size Nl + 1 with all zero entries except

the entries (El)k,k−1, k = 1, Nl, which are equal to one;
Zl, l = 1, 2, is the square matrix of size Nl + 1 with all zero entries except

the entries (Zl)k,k+1, k = 0, Nl − 1, and (Zl)Nl,Nl
, which are equal to one;

F is the square matrix of size N1 + 1 with all zero entries except the entry
(F )0,0, which is equal to one;

cl, l = 1, 2, is the row vector of size Nl + 1 with all zero entries except the
entry (cl)0, which is equal to one;

⊗ and ⊕ are the symbols of the Kronecker product and the sum of matrices;
see, e.g., [7].

The Markov chain ξt, t ≥ 0, is irreducible and has a finite state space. Thus,
the following limits (stationary probabilities) exist:

π(0, 0, 0, ν, v) = lim
t→∞ P{it = 0, n

(1)
t = 0, n

(2)
t = 0, νt = ν, vt = v},

π(i, n(1)
t , n

(2)
t , ν, v,m)

= lim
t→∞ P{it = i, n

(1)
t = n(1), n

(2)
t = n(2), νt = ν, vt = v, mt = m},
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i = 1, R + 1, n(1) = 0, N1, n(2) = 0, N2, ν = 1,W1, v = 1,W2,m = 1,M.

Let us form the row vectors πi, i = 0, R + 1, of these probabilities enumer-
ated in the direct lexicographical order of components n(1), n(2), ν, v,m.

It is well known that the probability vectors πi, i ≥ 0, satisfy the following
system of linear algebraic equations:

(π0,π1, . . . ,πR+1)Q = 0, (π0,π1, . . . ,πR+1)e = 1

called equilibrium or Chapman–Kolmogorov equations.
This system is the finite one and there are several numerically stable methods

for its solving that effectively use the sparse structure of the generator, see, e.g.,
[1,4,10].

4 Performance Measures

Having computed the vectors of the stationary probabilities πi, i = 0, R + 1, it
is possible to compute a variety of the performance measures of the system.

The average number of customers in the system is computed by:

L =
R+1∑
i=1

N1∑
n1=0

N2∑
n2=0

(i + n1 + n2)π(i, n1, n2)e.

The average number of customers in the main buffer is computed by:

N buf =
R+1∑
i=2

(i − 1)πie.

The average number of customers in the first storage is computed by:

Nstor
1 =

R+1∑
i=1

N1∑
n1=1

n1π(i, n1)e.

The average number of customers in the second storage is computed by:

Nstor
2 =

R+1∑
i=1

N1∑
n1=0

N2∑
n2=1

n2π(i, n1, n2)e.

The loss probability of an arbitrary type-1 customer upon arrival due to the
first storage overflow is computed by:

P ent−loss
1 =

1
λ1

R+1∑
i=1

N2∑
n2=0

π(i,N1, n2)(D
(1)
1 ⊗ IW2M )e.
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The loss probability of an arbitrary type-2 customer upon arrival due to the
second storage overflow is computed by:

P ent−loss
2 =

1
λ2

R+1∑
i=1

N1∑
n1=0

π(i, n1, N2)(IW1 ⊗ D
(2)
1 ⊗ IM )e.

The loss probability of an arbitrary type-1 customer due to impatience in
the first storage is computed by:

P imp−loss
1 =

1
λ1

R+1∑
i=1

N1∑
n1=1

n1α1π(i, n1)e =
α1

λ1
Nstor

1 .

The loss probability of an arbitrary type-2 customer due to impatience in
the second storage is computed by:

P imp−loss
2 =

1
λ2

R+1∑
i=1

N1∑
n1=0

N2∑
n2=1

n2α2π(i, n1, n2)e =
α2

λ2
Nstor

2 .

The intensity of the output flow of successfully served customers is computed
by:

λout =
R+1∑
i=1

πi(e(N1+1)(N2+1)W1W2 ⊗ S1).

The intensity of the output flow of customers lost due to failures is computed
by:

λfail =
R+1∑
i=1

πi(e(N1+1)(N2+1)W1W2 ⊗ q1S2).

The probability of an arbitrary customer loss is computed by:

Ploss = 1 − λout

λ1 + λ2
. (1)

The probability of an arbitrary type-1 customer loss from the first storage is
computed by:

P loss
1 = P ent−loss

1 + P imp−loss
1 .

The probability of an arbitrary type-2 customer loss from the second storage
is computed by:

P loss
2 = P ent−loss

2 + P imp−loss
2 .

The intensity of the input flow of customers into the system (to the main
buffer or directly to the server) is computed by:

λin = (1 − P loss
1 )λ1 + (1 − P loss

2 )λ2.
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The probability that an arbitrary customer leaves the main buffer due to
impatience is computed by:

P imp−loss =
1

λin
ϕ

R+1∑
i=2

(i − 1)πie.

The probability of an arbitrary customer who enters the system loss due to
failure is computed by:

P fail−loss =
λfail

λin
.

Instead of using formula (1) for the computation of the probability Ploss of
an arbitrary customer loss, the following formula can be used:

Ploss =
λ1P

loss
1 + λ2P

loss
2 + λin(P imp−loss + P fail−loss)

λ1 + λ2
.

The existence of two different formulas for the probability Ploss can help in
the validation of the correctness of calculation of the stationary distribution of
the Markov chain ξt.

5 Numerical Examples

Let us assume that the first arrival flow of customers MAP1 is defined by the
following matrices:

D
(1)
0 =

(−10 0
0 −2

)
, D

(1)
1 =

(
9 1

0.1 1.9

)
.

The average rate of customers in MAP1 is λ1 = 2.72727. The coefficient of
correlation of successive inter-arrival times in this arrival process is 0.147027,
and the squared coefficient of variation is 1.52893.

The second arrival process MAP2 is defined as follows:

D
(2)
0 =

(−0.35 0
0.07 −5.6

)
, D

(2)
1 =

(
0.28 0.07
0.07 5.46

)
.

The average intensity of customers is λ2 = 2.07667. The coefficient of corre-
lation is 0.334815, and the squared coefficient of variation is 7.20778.

We assume that the capacity of the first storage is N1 = 10 and the capacity
of the second storage is N2 = 15. The intensities of impatience in the first and
second storages are equal to α1 = 0.06 and α2 = 0.02, and the intensity ϕ of
impatience in the main buffer is equal to 0.02.

The PHF service process is defined by the row vector β = (0.4, 0.4, 0.2),
column vectors S1 = (5.5, 11, 4)T , S2 = (0.5, 1, 1)T , the sub-generator S =⎛
⎝

−9 2 1
1 −15 2
1 2 −8

⎞
⎠ , and the probabilities q1 = 0.2, q2 = 0.4.
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Fig. 2. Dependence of the probability P loss
1 on γ2 and R

Fig. 3. Dependence of the probability P loss
2 on γ2 and R

The probability of successful service of an arbitrary customer is equal to
0.892453, and the probability that a failure occurs during the service is 0.107547.

Let us assume that the intensity γ1 is equal to 1 and vary the intensity γ2
over the interval [0.1, γ1) with a step of 0.1. We also vary the capacity of the
buffer R over the interval [1, 20] with a step of 1.

Figure 2 and 3 illustrate the dependence of the probability P loss
1 of an arbi-

trary type-1 customer loss from the first storage and loss probability P loss
2 of a

type-2 customer from the second storage on the parameters γ2 and R.
As it is seen from Fig. 2, the loss probability P loss

1 increases with grows of
γ2. This is because as γ2 grows, more type-2 customers enter the buffer, and
the buffer becomes full more often. If the buffer is full, customers cannot enter
it. This implies the increase in the number of type-1 customers in Storage-1,
which increases the probability P ent−loss

1 of losing a type-1 customer at the
entrance of the system and the loss probability P imp−loss

1 of an arbitrary type-1
customer due to impatience from the first storage. The dependence of the loss
probability P loss

1 on R is not monotonic for larger values of γ2. As one can
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see, for example, for γ2 = 0.9, at first, the probability P loss
1 increases with R

and then decreases. This fact can be explained as follows. For small values of
R, for example, for R = 1, a situation when at the end of service the buffer
turns out to be empty (for example, because the only customer in it left because
of impatience) occurs rather often. In this case, customers of the first type (if
any) are always selected for service. As R grows, the probability that the buffer
will be empty at the service completion epoch decreases significantly, which, at
the initial stages, leads to an increase in the probability P loss

1 . With a further
increase of the parameter R, the probability of P loss

1 decreases because the buffer
is less often full, and customers leave the first storage faster.

As one can see from Fig. 3, the loss probability P loss
2 decreases with an

increase of γ2 and R. The increase of the parameters γ2 and R obviously increases
the rate of the transfer of type-2 customers to the main buffer and improves the
chances for type-2 customer to enter the storage at an arrival moment.

Figures 4 and 5 illustrate the dependence of the probability P imp−loss of loss
of an arbitrary customer from the buffer due to impatience and the probability
P fail−loss of a customer loss due to failure on the parameters γ2 and R.

Pimp-loss

Fig. 4. Dependence of the probability P imp−loss on γ2 and R

Pfail-loss

Fig. 5. Dependence of the probability P fail−loss on γ2 and R
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As it is seen from Fig. 4, the loss probability P imp−loss increases with an
increase of γ2 and R. This is because the growth of γ2 and R implies an increase
in the number of customers in the buffer. Thus, more customers leave the buffer
due to impatience. The probability P fail−loss slightly decreases with increase of
γ2 and R. It can be explained by the fact that with growth in γ2 and R the part
of customers who leave the buffer due to impatience grows.

Figure 6 illustrates the dependence of the loss probability Ploss on γ2 and R.

Fig. 6. Dependence of the probability Ploss on γ2 and R

In the considered example, the probability Ploss decreases with increase in
γ2 and R. Our results allow us to quantify this dependence.

Let us assume that the quality of system operation is described by the fol-
lowing economical cost criterion:

J(γ2, R) = aλout − bλ1P
loss
1 − cλ2P

loss
2 − dλinP imp−loss − eλinP fail−loss − fR

where a is the profit obtained by the system for one successful service, b is a
charge paid by the system for the loss of a priority customer from the first
storage, c is a charge paid for the loss of a non-priority customer from the
second storage, d is a charge paid for the loss of a customer from buffer due to
impatience, e is a charge paid for the loss of a customer due to failure occurrence,
and f is a cost of maintenance of one place in the main buffer per unit of time.

We fix the following values of cost coefficients in the cost criterion: a =
4, b = 12, c = 6, d = 15, e = 1, f = 0.05. The following Fig. 7 illustrates the
dependence of the cost criterion J(γ2, R) on the parameters γ2 and R. As it is
seen from this figure, the maximal value of the economic criterion is J∗(γ2, R) =
14.282. It is achieved when R = 8 and γ2 = 0.3.
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J( ,R)2

Fig. 7. Dependence of the cost criterion J(γ2, R) on γ2 and R.

6 Conclusion

We considered a discipline of service of two competitive flows of customers at the
single-server device with a finite buffer. The first flow is assumed to be a priority
flow. To avoid shortcomings of the standard priority schemes (preemptive pri-
ority can cause high monopolization of the server and discriminate low priority
customers while the non-preemptive priority can provide not enough privilege
to high priority customers), we propose the new scheme. This scheme does not
use the information about the lengths of queues and suggests some kind of ran-
domization in decision making. The scheme is rather flexible because the degree
of the privilege of high-priority customers depends on many parameters that
are subject to control. These parameters include the capacities of the buffers
for different types of customers, the rate of transition from these buffers to the
main buffer, the rates of customers dropping from the buffers (due to impatience,
obsolescence, or departure of the moving user from the coverage area, etc.), the
capacity of the main buffer and the rate of dropping customers from this buffer.
The existence of so many factors having an impact on performance measures of
the system makes challenging various optimization problems.
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Abstract. The current paper presents a Cognitive Radio Network with
impatient customers and unreliable servers by the help of a finite-source
retrial queueing system. We consider two types of customers (primary
and secondary) assigned to two interconnected frequency bands. A first
frequency band with a priority queue and a second frequency band with
an orbit are reserved for Primary Users (PUs) and Secondary Users
(SUs), respectively. If the servers are busy, both customers (licensed
and unlicensed) enter either the queue or orbit. Before they enter orbit,
the secondary customers receive a random retrial time according to the
exponential distribution, i.e. the waiting time before the next retry. Unli-
censed users (impatient) are obliged to leave the system as soon as their
total waiting time exceeds a random maximum waiting time. It should
be noted, that the secondary service unit of our system is subject to
random breakdowns and repairs. The novelty of this work consists in
the investigation of the abandonment and secondary server unreliabil-
ity impact on various performance measures of the system (Cognitive
Radio Network), such as the mean response and waiting time of users,
the probability of abandonment of SU, etc. Several figures illustrate the
problem in question through simulation.

Keywords: Finite source queuing systems · Simulation · Cognitive
radio networks · Performance and reliability measures · Non-reliable
servers · Impatient customers

1 Introduction

Cognitive Radio (CR) is an intelligent technology capable of overcoming the
problems of spectrum under-utilization by allowing secondary customers to
use the primary channel opportunistically without disrupting primary customer
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communications, in order to improve network performance. This intelligent tech-
nology is able to modify its transmitter parameters in compliance with the inter-
action of the environment in which it operates. The main objective of the CRN
is to use the unused portions of the primary frequency bands for the benefit of
unlicensed customers. Further details can be found in [1,4,6,9–12,17]. Several
studies and researches, such as [18,20] show that often many parts of the chan-
nels are unused in time and space by licensed users (white spaces). Secondary
users in these parts of the service unit can detect this non-use and communicate
freely without any harmful effects on the primary users. Today there are two
types of Cognitive Radio Network. The first type is called (underground) net-
work, where unlicensed users can use the primary channels simultaneously with
the licensed users under certain predetermined conditions. The second type is
referred to as (overlay) networks, in which the unlicensed users can use the pri-
mary service at any time as far as the primary unit is not occupied by licensed
users, the authors of [13,15,19,21] have introduced further information. How-
ever, the present paper deals with an overlay CR technique by modelling a CRN
system containing two finite source subsystems (primary and secondary).

In this queuing system, we take two elements into account. A first subsystem
is intended for the jobs of Primary Users (PU) with a finite number of sources.
In this part of the system, each source generates a primary call for the PUs after
an exponentially distributed time. The latter requests are forwarded to a sin-
gle server Primary Channel Service (PCS) with a preemptive discipline (FIFO
queue) to start the service, assuming that the service time is exponentially dis-
tributed. The second component of the model is created for Secondary Users
(SU) coming from a finite source and forwarded to Secondary Channel Service
(SCS), knowing that the inter-arrival and service times of secondary users are
exponentially distributed. The generated primary tasks aim to check the PCS
for accessibility. If this service unit is not occupied, the service starts imme-
diately. However, if the PCS is busy with another primary task, this last task
will join a First In First Out (FIFO) queue. However, if a second job is being
handled in the primary unit, this job is immediately disconnected and should
be routed back to the secondary Channel Service. Per the secondary channel’s
status, the aborted task either restarts the service on its original server (SCS) or
joins the retrial queue (Orbit). Besides, the secondary channel also receives low
priority requests. If the targeted unit is idle, the service may start immediately.
Otherwise, these secondary requests will attempt to join the primary unit. If
the primary unit is idle, the secondary requests will have the opportunity to
start. If not, they will automatically enter the orbit. From orbit, the postponed
requests will retry to receive service after an exponentially distributed random
interval. Further details are given in [6,13,17,21]. In this study, we assume that
impatient customers in orbit whose total waiting time exceeds a random aban-
donment time which is generally distributed have to leave the system and the
second service unit is unreliable which are the novelty of this work. Several
studies have examined the Abandonment and/or Unreliability on the basis of
different scenarios and systems. At [22] as an example, the authors have pre-
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sented a retrial queueing system with a single server which is subject to random
breakdowns and assuming that collisions may occur when a customer arrives at
a busy server which forces both jobs to join the orbit. However, to get closer to
real-life situations and involving more servers to the system, the authors of [23]
examined the abandonment concept on a Cognitive Radio Network by setting a
constant value for the maximum waiting time (abandonment time) of secondary
users. In an extended work [24], the same authors of the above-mentioned paper
assumed that the abandonment time is random, using various distributions to
investigate their influence on the main performance measures of such a system.
Other probes analysed the abandonment in other types of networks and showed
that customers can leave systems from queues, server units while receiving ser-
vices and while waiting; more details are given in [7,16]. However, in the current
paper, we assume that impatient users (secondary) are forced to leave the sys-
tem only from the orbit while waiting. Unreliability of servers was investigated
in [25,26], without taking in consideration that customers have the opportunity
to leave the system. Several figures will show the effects of the abandonment and
unlicensed server unreliability on the performance measures of the system using
simulation.

2 System Model

Figure 1 demonstrates a finite source queuing system that models the considered
cognitive radio network. Our queuing system consists of two not independent,
interconnected sub-systems. The first part is allocated to primary requests, with

Fig. 1. Finite-source retrial queuing system: Modeling the Cognitive Radio Network
with unreliability and abandonment.
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N1 the number of sources. These sources will be responsible for generating high
priority requests with an inter-request and service times that are exponentially
distributed, using parameters λ1 and μ1, respectively. All the produced requests
are directed to a single server unit (PCS) with a preemptive priority over the
secondary users. The second subsystem is devoted to the low-priority requests
with the number of sources denoted by N2, the inter-arrival times and service
times in this subsystem are assumed to be exponentially distributed as well, with
parameter λ2/N2 and μ2, respectively. Based on the state of both server (idle or
busy), the generated primary packet goes to the primary server (if the server is
idle) or joins the FIFO queue (if it is busy with a PU). However, if an unlicensed
user occupies the PCS, its service is instantly stopped and will be sent back to
the Secondary unit.

Depending on the secondary unit’s availability, the aborted task is addressed
either to the server or the retrial queue from which reties to get served from
the beginning after an exponentially distributed time with parameter ν/N2. On
the other hand, requests from SUs are directed to SCS. If it is idle, the ser-
vice begins. If not, this unlicensed task will sense the PCS. In case of an idle
status for PCS, this service may opportunistically join the high priority chan-
nel. If the PCS is engaged, the request goes to orbit. It should be noted that
Secondary Users in orbit are obliged to leave the system once their total wait-
ing time exceeds a random abandonment time which is generally distributed
(Hyper, Hypo, Gamma, Log-normal and Pareto) a rate τ . Random breakdowns
during a busy and idle state of the secondary service unit may occur after
an exponentially distributed random time with parameters γ1 and γ2, respec-
tively. The repair time is also exponentially distributed random variable with
parameter σ.

Assuming that all random variables included in the system are exponentially
distributed except the impatience time which is generally distributed random
variable, we created a stochastic simulation program written in C coding lan-
guage with SimPack [29] libraries. All the numerical results were collected by
the validation of the simulation outputs.

3 Simulation Results

In this section, several cases are analyzed using a simulation program. The advan-
tage of this later is to make difference between observations during a single run.
This difference allows us to investigate the performance measure of two types
of cognitive customers (SUs), those who leave the system with successful ser-
vice and those who abandon the system without a service due to their limited
waiting time. Also, the difference between secondary users who left the system
with a successful service from the primary service channel and secondary users
that leave the system without service after several interruptions at the primary
service unit due to the preemptive priority of the primary customers over the
secondary ones. In order to estimate the performance measures of these cate-
gories, the batch mean value method was used in the simulation. This method is
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a common confidence interval technique used for the analysis of the steady-state
simulation output. See for example [3–5,8]. By dividing the cognitive users into
two categories (Successful and Abandon, we could generate several results. This
section of the simulation results is organized following these scenarios:

– Scenario 1: Impatience time of the customers is exponentially distributed.
– Scenario 2: Impatience time is generally distributed with C2

x > 1, using
Hyper-Exponential, Gamma, Lognormal and Pareto.

– Scenario 3: Impatience time is generally distributed with C2
x < 1, using

Hypo-Exponential, Gamma, Lognormal and Pareto.

In the above scenarios, we suppose that the interrupted secondary service
from the PCS due to PUs arrival or from the SCS due to server breakdown will
be repeated from the beginning (non-intelligent). Also, the service unit failure
will not block the system and the free sources keep generating new calls.

3.1 Impatience Time is Exponentially Distributed

In this case, we would like to analyze the main features of the system while all the
involved random inter-times are exponentially distributed random variables. The
investigation is based on increasing the rate of the impatience times distribution
τ .

For the sake of obtaining the following results, the set of parameters values
defined in Table 1 must be used.

Table 1. Different impatience rates

N2 λ2/N2 ν/N2 γ1 γ2 σ μ1, μ2 τ

Case 1 100 0.01 0.1 0.1 0.1 1 1 0.000001

Case 2 100 0.01 0.1 0.1 0.1 1 1 0.0001

Case 3 100 0.01 0.1 0.1 0.1 1 1 0.001

Case 4 100 0.01 0.1 0.1 0.1 1 1 0.01

Case 5 100 0.01 0.1 0.1 0.1 1 1 0.1

Case 6 100 0.01 0.1 0.1 0.1 1 1 1

For the numerous categories of cognitive users, including successfully served
and abandoned ones, we provide accurate estimates in the following. One of the
advantages of the simulation is to assist us to perform these measures. We could
see some characteristics of our systems in Tables 2, 3, 4, 5 for which the notations
are provided in 7. These results are the estimations mean and variance of the
measures based on two scenarios:
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– Scenario A: The arrival traffic of the primary customers is low and small
number of sources λ1 = 0.01, N1 = 10.

– Scenario B: The arrival intensity of the primary users is high and large
number of sources λ1 = 0.1, N1 = 100.

Table 2. Estimation of the expectations for scenario A

E(TS) E(WS) E(T ) E(W ) E(NS) E(TA) Pa

Case 1 14.0437 13.8001 14.04 13.8001 48.59 0.0000 0.0000

Case 2 14.0525 13.8165 14.05 13.8284 44.64 15.0001 0.001

Case 3 13.8333 13.5979 13.59 13.0235 38.17 15.226 0.012

Case 4 12.3461 12.1107 12.48 12.27 28.33 13.5472 0.15

Case 5 5.5598 5.3241 6.0853 5.9801 12.21 6.4914 0.56

Case 6 0.8258 0.5908 0.9654 0.3491 5.2454 0.9772 0.9217

Table 3. Estimation of the variances for scenario A

V ar(TS) V ar(WS) V ar(T ) V ar(W ) V ar(TA)

Case 1 197.227 190.66 197.227 197.227 0.0000

Case 2 197.473 190.897 197.47 190.87 185.249

Case 3 191.36 184.902 191.35 181.35 185.652

Case 4 152.42 146.67 152.48 146.66 183.52

Case 5 30.9119 28.3471 30.91 28.43 42.13

Case 6 0.6818 0.3491 0.6820 0.3491 0.955

Table 2 and 3 determine the values of the expectations and variances of dif-
ferent types of cognitive users, respectively. These results are the outputs of the
simulation while λ1 = 0.01 and N1 = 10. The rows of the tables define the
cases where the impatience rate τ is increasing. It is clearly seen that the mean
and variance values of the response, waiting and arbitrary users are decreasing
while the probability of abandonment is increasing. This later increases while
an elevation of impatience rate. Unexpectedly, the mean and variance values of
the impatient customers are increasing then decreasing during the growth of the
abandonment rate. The interpretation of this phenomenon can be as follows:
when the impatience rate is very small, the waiting time of the customers is very
long, as a result, they rarely leave the system. Therefore, the confidence interval
of the expectation for a small set of observations can be very large, thus, the
estimation is not accurate.

In Table 4 and 5, the same features as above were treated but in this case the
primary traffic more intense supposing λ1 = 0.1 and N1 = 100. The first thing we
notice comparing with Tables 2 and 3 is the efficiency of cognitive technology. It
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Table 4. Estimation of the expectations for scenario B

E(TS) E(WS) E(T ) E(W ) E(NS) E(TA) Pa

Case 1 25.0657 24.8343 25.0651 24.8338 57.28 29.5803 0.000023

Case 2 24.9055 24.66 24.8423 24.6119 57.28 26.5792 0.002

Case 3 24.2940 24.0632 24.3561 24.1307 52.26 26.9554 0.02

Case 4 20.0967 19.8643 20.4913 20.3042 30.15 22.118 0.194

Case 5 6.5178 6.2909 7.2363 7.1664 6.07 7.5563 0.61

Case 6 0.8242 0.6068 0.9743 0.3682 0.9598 0.9834 0.943

Table 5. Estimation of the variances for scenario B

V ar(TS) V ar(WS) V ar(T ) V ar(W ) V ar(TA)

Case 1 628.037 616.75 628.29 616.57 726.24

Case 2 620.037 608.519 608.59 606.84 724.40

Case 3 590.201 579.04 590.2013 579.03 726.65

Case 4 403.8815 394.591 403.8813 394.5913 489.2139

Case 5 42.4828 39.5766 42.4828 39.4741 57.0989

Case 6 0.6771 0.3682 0.6794 0.3682 0.9671

is shown that when a very small impatience rate (τ = 0.000001), the probability
of abandonment is zero in Table 2, row 1 since the licensed service channel in
scenario A is most of the time idle from primary customers. However, besides
the larger values of the mean and variance in scenario B. Same explanation
as previously for the expectation and variance waiting time of the impatient
customers (Table 6).

3.2 Impatience Time is Generally Distributed with C2
x > 1

This subsection is Scenario 2 of our investigation, we have analyzed the impact
of abandonment time distributions on the main characteristics of the system.

Table 6. Estimation of the variances for scenario A

Notation Definition

E(TS), Var(TS) Mean and variance response time of successful cognitive users

E(WS), Var(WS) Mean and variance waiting time of successful cognitive users

E(T), Var(T) Mean and variance response time of arbitrary cognitive users

E(W), Var(W) Mean and variance waiting time of arbitrary cognitive users

E(NS) Mean number of secondary customers in the system

E(TA), Var(TA) Mean and variance waiting time of impatient customers

Pa Probability of abandonment
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In this scenario, we consider that the impatience time is hyper-exponentially,
gamma, Pareto and, lognormally distributed random variable with the same
mean and same variances. In order to calculate the shape, rate, and scale of
these distributions, see [28]. Table 7 defines the numerical values of distribution
parameters.

The inter-events times are generated using several methods of random num-
bers generator. These methods require input parameters which in our case are
the rates of the distributions. The numerical values of these parameters are
defined in Table 8.

Table 7. Parameters of the distributions

Distribution Gamma Hyper-exponential Pareto Lognormal

Parameters α = 0.390625 p = 0.33098 α = 2.1892 m = 5.5797

β = 0.0007813 λ1 = 0.00132 k = 270.5630 σ = 1.12684

λ2 = 0.00268

Mean 500

Variance 640000

C2
x 2.56

Table 8. Numerical values of the parameters

N1 N2 λ1 λ2/N2 μ1 μ2 ν/N2 τ γ1 γ2 σ2

10 100 0.01 x - axis 4 4 0.01 0.002 0.01 0.01 1

Comments
In all the obtained results, it should be noticed that beside the abandonment
time, all the inter-event times in the system are supposed to be exponentially
distributed random variables.

Figure 2 illustrates the impact of the impatience time distributions on the
mean sojourn time of the cognitive users that leave the system after a successful
service while increasing the secondary arrival intensity. The Pareto distribution
gives the smallest value of the mean response while the gamma distribution gives
the greatest value. This relative difference could be explained by the help of the
density function of each distribution. Also, if we read the papers that investigated
a single server finite-source retrial queueing system with the abandonment of
customers, we notice that the relative difference of the mean values between
the lognormal and the hyper-exponential distributions is smaller then the one
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Fig. 2. The impact of the impatience time distributions on the mean sojourn time of
successful cognitive users vs secondary request generation rate

Fig. 3. The impact of the impatience time distributions on the mean sojourn time of
impatient cognitive users vs secondary request generation rate
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Fig. 4. The impact of the impatience time distributions on the mean sojourn time of
arbitrary cognitive users vs secondary request generation rate

Fig. 5. The mean number of cognitive users in the system vs secondary arrival intensity
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obtained in Fig. 1. This difference is obviously due to the introduction of a second
server and a cognitive characteristic to the secondary customers which make the
system more complex. However, the maximum property of the mean response
time that was noticed in [27] is obtained.

Figure 3 shows the effect of the abandonment time distributions on the mean
response time of the secondary customers that leave the system without getting
served. The result shows that while increasing the request generation intensity,
the value of the mean increases. The aim of making a difference between suc-
cessful and impatient customer is obtained in this figure, we see that the Pareto
distribution gives the greatest value of the mean, while for this feature, the
lognormal distribution shows the smallest value.

With the help of the law of total expectation, it is easy to calculate the mean
of arbitrary users. Figure 4 illustrates the effect of the impatience time distribu-
tion on the mean response time of an arbitrary user while the secondary request
generation rate is increasing. The mean value of arbitrary users depends on the
probability of success and the probability of abandonment. As the gamma distri-
bution gives a small value of the impatience time, it involves a high probability
of abandonment, thus, the value of the mean response time of arbitrary users is
the greatest as shown in the figure.

Figure 5 illustrates the mean number of secondary customers in the func-
tion of the second generation request rate while the impatience time is generally
distributed. The effect of the distributions can be seen when the system is low
loaded. When the arrival intensity increases, the mean number of cognitive cus-
tomers increases, and the distributions have no more impact on its value.

3.3 Impatience Time is Generally Distributed with C2
x < 1

In Scenario 3 of our investigation, we set the parameters of the used distribution
in a way their squared coefficient of variation becomes less than one. For this
case, we use the two phases of hypo-exponential distribution. The aim is to
analyze their effects on the main performance measures of the system. The new
set of the distribution parameters and the numerical values of the simulation
input parameters are shown in Table 9 and Table 10, respectively.

Table 9. Parameters of the distributions

Distribution Gamma Hypo-exponential Pareto Lognormal

Parameters α = 1.47059 λ1 = 0.01 α = 2.5718 m = 5.9552

β = 0.002941 λ2 = 0.0025 k = 305.5844 σ = 0.72027

Mean 500

Variance 170000

C2
x 0.68
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Fig. 6. The effect of the impatience time distributions on the mean sojourn time of
successful cognitive users vs secondary request generation rate

Fig. 7. The effect of the impatience time distributions on the mean sojourn time of
arbitrary cognitive users vs secondary request generation rate

Table 10. Numerical values of the parameters

N1 N2 λ1 λ2/N2 μ1 μ2 ν/N2 τ γ1 γ2 σ2

10 100 0.01 x - axis 4 4 0.01 0.002 0.01 0.01 1
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Fig. 8. The mean number of cognitive users in the system vs secondary arrival intensity

Comments
In terms of arrival intensity, Fig. 6 and Fig. 7 display the mean residence time
of successful and arbitrary customers, respectively. The same pattern can be
seen in the analysis of the outputs as in the previous corresponding figures, but
variations can also be seen, especially in case of the gamma distribution. These
statistics also indicate that, relative to the previous parameter setting, successful
and arbitrary users spend less time on the system on average.

Lastly, Fig. 8 illustrates the mean number of secondary customers in the
system in the function of the secondary arrival intensity. Among a highly loaded
system, the figure shows no impact of the distribution on the mean number of
customers, but as a low loaded system, a slight difference can be investigated.
Also, relative to the previous set of parameters with the corresponding figure,
there are fewer customers in the system when the squared coefficient of variation
of the distributions is less than one.

4 Conclusion

In this paper, a finite-source cognitive radio network was modelled with the help
of a retrial queueing system with impatient customers and a secondary server
non-reliable. The results have demonstrated the impact of the abandonment
time distribution on the mean and variance of the main characteristic of such a
complex system. The efficiency of the primary service channel and of the cogni-
tive property at the secondary users was also demonstrated. Using simulation,
we succeeded to separate the secondary customers into three categories (impa-
tient/successful/arbitrary) and analyze their performances separately. Based on
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this work, our perspective for the future is to introduce intelligent cognitive users
which mean that a secondary user will continue the interrupted (due to primary
arrival or server breakdown) service and he will not repeat it from the beginning
and demonstrate the distribution of the customers (primary and secondary) in
such a system while both subsystems are non-independent. Also, with the help
of simulation, we can investigate separately the customers that leave the system
successfully from the primary service channel and their mean interrupted service
time.
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Abstract. We consider a retrial queueing system with limited processor
sharing which can be used for modeling the operation of a cell of fixed
capacity in a wireless cellular network with two types of customers (han-
dover and new customers). Customers of two types arrive at the system
according to the Marked Markovian Arrival Process (MMAP). Arriv-
ing customers of each type follow a bandwidth sharing policy. In period
when the number of customers of definite type in the system exceeds a
threshold (different between new and handover customers) newly arriv-
ing customers of one type (handover customers) are considered to be
lost while the customers of another type (new customers) go to orbit of
infinite size. From the orbit, they try their attempts to reach a server in
exponentially distributed time.

We describe the system operation by multi-dimensional Markov chain,
calculate the steady state distribution and main performance measures
of the system. Illustrative numerical examples are presented.

Keywords: Queueing system · Two type of customers · Limited
processor sharing · Ergodicity condition · Steady state distribution ·
Performance measures

1 Introduction

The discipline of processor sharing is characterized by the fact that several (pos-
sibly all) users of a service resource can receive service simultaneously. This
discipline is often used in computer systems and telecommunication networks
for various purposes. In particular, this discipline is used in scheduling prob-
lems in multiprogrammed computer systems, in mobile cellular communication
networks, in caching popular multimedia content, etc. There are a large num-
ber of works devoted to the study of the functioning of real systems, where the
processor sharing discipline is used. For examples and links see articles [1–5].

The models considered in the listed works do not take into account the com-
plex nature of traffic in modern telecommunication networks and systems. They
assume that the flows of customers are stationary Poisson, and the service times
have an exponential distribution. These restrictions are removed in works where
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Markovian arrival process (MAP ) is considered as an input flow, and service
times are distributed according to the phase type (PH) distribution, see the
papers [6,7].

At the same time, there remains a problem associated with the heterogeneity
of the input flow, indicated, in particular, in [2]. With such a flow, customers
of different types can have different distributions of service time and share the
processor resource in different proportions. In addition, we take into account the
retrial phenomenon which is typical for computer systems and telecommunica-
tions networks.

Queuing systems with repeated customers (retrials) differ from classical sys-
tems with buffers and systems with losses in the following respect. An arriving
customer, which meets all service facilities busy, does not queue and does not
leave the system forever, but goes to the so-called “orbit” that is a virtual place
for such customers, from where it attempts to get service at random times. Note
that retrial queueing systems theory is much less developed than loss or buffer
systems theory. This is due to the fact that the random processes describing the
operation of such systems are more complex in structure due to spatial inhomo-
geneity what greatly complicates their analytical study.

A good mathematical model for heterogeneous correlated traffic is a Marked
Markovian arrival process (MMAP ). In this paper we investigate a retrial queu-
ing system with MMAP of customers of two types, various schemes for dividing
the processor between customers of different types and restrictions on the num-
ber of customers of each of types on the server. We describe the system operation
by multi-dimensional Markov chain, calculate the steady state distribution and
the main performance characteristics of the system.

2 Mathematical Model

We consider a single-server queueing system without a buffer. Customers of two
different types arrive at the system in the Marked Markovian arrival process
(MMAP ). For the reader’s convenience, we give below the brief description of
the MMAP .

In general case, MMAP can model the arrival process of customers of K
different types. In the MMAP , customers arrive under control of the regular
irreducible Markov chain νt, t ≥ 0, which takes values in the set {0, 1, 2, . . . ,W}.
This chain is called as an underlying process of the MMAP . The underlying
process stays in the state ν during an exponentially distributed time interval
with parameter λν , ν = 0,W . After that with probability pk(ν, ν′) the under-
lying process enters the state ν′ with generation of a customer of kth type,
k ∈ {1, 2, . . . ,K}, or, with probability p0(ν, ν′), it goes to the state ν′ without
generating a customer. For the indicated probabilities, natural constraints are

satisfied: p0(ν, ν) = 0,
K∑

k=1

W∑

ν′=0

pk(ν, ν′) = 1, ν = 0,W .

Thus, the MMAP is given by the parameters W + 1; K; λν , ν = 0,W ;
pk(ν, ν′), k = 1,K, ν, ν′ = 0,W . It is convenient to storage all information about
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the MMAP as a set of matrices Dk, k = 1,K, of order (W + 1) × (W + 1) with
entries

(Dk)ν,ν′ = λνpk(ν, ν′), ν, ν′ = 0,W , k = 1,K,

(D0)ν,ν′ =
{

λνp0(ν, ν′), ν �= ν′, ν, ν′ = 0,W ,
−λν , ν = ν′ = 0,W .

It is easy to see that the entries of the matrices Dk, k = 1,K, are the
rates of transitions of the process νt accompanied by generating a customer
of the k-th type. The off-diagonal entries of the matrix D0 define the rates of
transitions of the process νt without generation of customers and the moduli of
diagonal entries of this matrix give the rates of exit of the process νt from the
corresponding states. A natural requirement for the matrices Dk, k = 1,K, is
that not all of them are zero. When this requirement is met, the matrix D0 is
irreducible and, moreover, stable. The matrices Dk, k = 1,K, can be specified

by their matrix generating function D(z) =
K∑

k=0

Dkzk, |z| < 1. Note that the

value of this function at the point z = 1 is an infinitesimal generator of the
underlying process νt, t ≥ 0. Stationary distribution of this process, the row
vector θ, is defined as the unique solution of the system of linear algebraic
equations θD(1) = 0,θe = 1. Hereafter 0 is a row vector consisting of zeros, e
is a column vector consisting of ones.

The arrival rate of customers of type k in the MMAP is given by the formula

λk = θDke, k = 1,K.

The variance of inter-arrival times of customers of type k is calculated by the
formula

vk =

2θ(−D0 −
K∑

l=1,l �=k

Dl)−1e

λk
−

(
1
λk

)2

, k = 1,K.

The coefficient of correlation of the lengths of two adjacent intervals between
the arrivals of customers of type k is calculated by

c(k)cor =
[θ(D0 +

K∑

l=1,l �=k

Dl)−1

λk
Dk(D0 +

K∑

l=1,l �=k

Dl)−1e −
(

1
λk

)2]

v−1
k , k = 1,K.

More information about the MMAP can be found in [8,9].
In this paper, we assume that the system receives customers of two types in

the MMAP , i.e., K = 2.
The server can simultaneously serve up to N customers of type 1 and up to

R customers of type 2. If only one customer of type k is serviced on the server,
k = 1, 2, then its service time has the PH distribution given by the irreducible
representation (βk, Sk) and the underlying process m

(k)
t , t ≥ 0, with the state
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space {1, . . . , Mk,Mk + 1}, where the state Mk + 1 is the absorbing one. The
rates of transitions to the absorbing state are determined by the column vec-
tor S

(k)
0 = −Ske. The mean service time of type k customer is calculated as

b
(k)
1 = βk(−Sk)−1e and the service rate is equal to μk = (b(k)1 )−1. The squared

coefficient of the variation of the service time of the k type customer is given as
(cserv,k

var )2 = 2 βk(−Sk)
−2e

(βk(−Sk)−1e)2 −1. More detail about PH distribution can be found
in [9,10].

Customers of each type divide the service bandwidth assigned for them
equally. If the server simultaneously serves nk customers of type k, then the
service time of any of these customers has the PH distribution given by the
irreducible representation (βk, 1

nk
Sk) and the underlying process m

(k)
t , t ≥ 0,

with state space {1, . . . , Mk,Mk + 1} where the state Mk + 1 is absorbing. The
rates of transitions to the absorbing state are determined by the column vector
1

nk
S

(k)
0 .

If an arriving customer of type 1 sees that the system already has N cus-
tomers of type 1, then it goes to the orbit of infinite size, from where it attempts
to get service at exponentially distributed times with the parameter γ. If an
arriving customer of type 2 finds that there are already R customers of type 2
in the system, then it leaves the system forever (is lost).

3 Process of the System States

We describe the operation of the system by a regular irreducible continuous time
Markov chain

ξt = {it, nt, η
(1)
t , η

(2)
t , . . . , η

(M1)
t , rt, τ

(1)
t , τ

(2)
t , . . . , τ

(M2)
t , νt},

where, at time instant t,

• it is the number of type 1 customers in the orbit i ≥ 0;
• nt is the number of type 1 customers in the system, nt = 0, N ;
• η

(m(1))
t is the number of customers of type 1 that are served in the phase m(1),

η
(m(1))
t = 0, nt, m(1) = 1,M1;

• rt is the number of type 2 customers in the system, rt = 0, R;
• τ

(m(2))
t is the number of customers of type 2 that are served in the phase m(2),

τ
(m(2))
t = 0, rt, m(2) = 1,M2;

• νt is the state of underlying process of the MMAP , νt = 0,W .

In the sequel we will use the following notation:

• W̄ = W + 1;
• ⊗(⊕) is the symbol of the Kronecker product (sum) of matrices, see, e.g.,

[11];

• R =
R∑

r=0
CM2−1

r+M2−1;
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• diag{a1, a2, ..., an} is a block diagonal matrix in which the diagonal blocks
are equal to the elements listed in brackets, and the other blocks are zero;

• diag+{a1, a2, ..., an} (diag−{a1, a2, ..., an}) is a square block matrix in which
the off-diagonal (below-diagonal) blocks are equal to the elements listed in
brackets, and the other blocks are zero;

Cm
n =

(
n
m

)

= n!
m!(n−m)! ;

• u(1)
t = {η

(1)
t , η

(2)
t , . . . , η

(M1)
t };

• u(2)
t = {τ

(1)
t , τ

(2)
t , . . . , τ

(M2)
t }.

Using the last two notation, we can represent the Markov chain ξt, t ≥ 0, in
the form ξt = {it, nt,u

(1)
t , rt,u

(2)
t , νt}. We assume that the states of the chain are

enumerated as follows: the components it, nt, rt, νt are enumerated in the direct
lexicographic order and the states of the processes u(1)

t and u(2)
t are enumerated

in the reverse lexicographic order. Reverse lexicographic ordering is required
to describe the transition rates of the processes u(1)

t and u(2)
t using matrices

Pi(·), Ai(·, ·), and Li(·, ·) introduced in the papers [12,13]. Below we give a brief
explanation of the probabilistic meaning of these matrices.

Let us introduce the matrices S̃l =
(

0 O

S
(l)
0 Sl

)

, l = 1, 2. Then

• the matrix Lk(n, S̃l) contains the transition rates of the process u(l)
t , leading

to the service completion of one of n − k customers of the lth type (k is the
number of free channels for customers of type l, n is the total number of free
channels for customers of type l and customers of this type that are being
serviced);

• the matrix Pn(βl) contains the transition probabilities of the process u(l)
t

leading to an increase in the number of customers of the lth type on the
server from n to n + 1;

• the matrix An(k, Sl) contains the transition rates of the process u(l)
t in its

state space without increasing or decreasing the number of customers of the
lth type on the server (n is the number of customers of the lth type, k is the
total number customers of the lth type and free channels for customers of
this type).

Algorithm for calculating matrices Pi(·), Ai(·, ·), and Li(·, ·) follows from the
results by V. Ramaswami and D. Lucantoni and is described clearly step by step
in [14].

Let us introduce the notation Qi,j for the rates of the chain transitions from
states corresponding to the value i of the first component to states corresponding
to the value j of this component, i, j ≥ 0. Then the infinitesimal generator of
the chain is defined by the following theorem.
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Lemma 1. The infinitesimal generator Q of a Markov chain ξt, t ≥ 0, has the
block three-diagonal structure

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Q0,0 Q0,1 O O O . . .
Q1,0 Q1,1 Q1,2 O O . . .
O Q2,1 Q2,2 Q2,3 O . . .
O O Q3,2 Q3,3 Q3,4 . . .
...

...
...

...
...

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

where

Qi,i−1 = iγ diag+{Pn(β1), n = 0, N − 1} ⊗ IR ⊗ IW̄ , i ≥ 1,

Qi,i+1 = diag{O
C

M1−1
n+M1−1

, n = 0, N − 1, I
C

M1−1
N+M1−1

} ⊗ IR ⊗ D1, i ≥ 0,

(Qi,i)n,n−1 =
1
n

LN−n(N, S̃1) ⊗ IR ⊗ IW̄ , n = 1, N, i ≥ 0,

(Qi,i)n,n+1 = Pn(β1) ⊗ IR ⊗ D1, n = 0, N − 1, i ≥ 0,

(Qi,i)n,n = Ψn − iγI
C

M1−1
n+M1−1RW̄

+ Δi,n, n = 0, N − 1, i ≥ 0,

(Qi,i)N,N = ΨN + ΔN , i ≥ 0,

where

Ψn = I
C

M1−1
n+M1−1

⊗ diag−{ 1
r LR−r(R, S̃2), r = 1, R} ⊗ IW̄

+ 1
nAn(N,S1) ⊕ diag{0, 1

r Ar(R,S2), r = 1, R} ⊕ D0

+ I
C

M1−1
n+M1−1

⊗ diag{OR−1∑

r=0
C

M2−1
r+M2−1

, I
C

M2−1
R+M2−1

} ⊗ D2

+ I
C

M1−1
n+M1−1

⊗ diag+{Pr(β2), r = 0, R − 1} ⊗ D2.

Here Δi,n, i ≥ 0, n = 0, N − 1, ΔN are diagonal matrices that ensure that the
equality Qe = 0 holds (the sums over the rows of the generator are equal to
zero).

Proof. Proof of the lemma is carried out by analyzing the behavior of the Markov
chain ξt, t ≥ 0, during an infinitely small time interval. Let’s describe briefly the
meaning of non-zero blocks of the generator.

The block Qi,i−1, i ≥ 1, consists of the rates of transitions of the chain
accompanied by a “successful” retry from the orbit of a type 1 customer. This
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customer occupies one of the free channels reserved for customers of this type.
In this case, the number of customers of type 1 on the server increases by one,
and the number of customers in the orbit decreases from i to i − 1.

The block Qi,i+1, i ≥ 0, consists of the rates of transitions caused by the
arrival of a primary customer of type 1, which meets all the channels allocated
for this type of customers are busy and goes to the orbit. In this case, the number
of customers in the orbit increases from i to i + 1.

The block (Qi,i)n,n−1, n = 1, N, i ≥ 0, consists of the rates of transitions
caused by the end of service of one of n customers of type 1. In this case, the
number of customers of type 1 on the server decreases from n to n − 1.

The block (Qi,i)n,n+1, n = 0, N − 1, i ≥ 0, consists of the transition rates
caused by the arrival of a primary customer of type 1, which found empty chan-
nels reserved for customers of this type. In this case, the number of customers
of type 1 on the server increases from n to n + 1.

The off-diagonal entries of the block (Qi,i)n,n, n = 0, N, i ≥ 0, are the
rates of transitions that do not cause a change in the number of customers
in the orbit or a change in the number of type 1 customers on the server.
The corresponding transitions can be caused either by the end of servicing
one of the customers of type 2 (matrix I

C
M1−1
n+M1−1

⊗ diag−{ 1
r LR−r(R, S̃2), r =

1, R} ⊗ IW̄ ), or by redistributing the number of servers serving customers at
different phases and idle transitions of the underlying process of the MMAP
(the matrix 1

nAn(N,S1) ⊕ diag{0, 1
r Ar(R,S2), r = 1, R} ⊕ D0), or the arrival of

a type 2 customer that found all the channels occupied (the matrix I
C

M1−1
n+M1−1

⊗
diag{OR−1∑

r=0
C

M2−1
r+M2−1

, I
C

M2−1
R+M2−1

} ⊗ D2, or the arrival of a type 2 customer that

finds free channel for customers of this type and goes to the service (the matrix
I
C

M1−1
n+M1−1

⊗ diag+{Prβ2), r = 0, R − 1} ⊗ D2). The diagonal entries of the block

under consideration are taken with the opposite sign the rates of the chain exit
from the states corresponding to i customers in the orbit and n customers of
type 1 on the server.

For further investigation of the process ξt we will use the fact that this process
is a multidimensional asymptotically quasi-toeplitz Markov chains (AQTMC).
To prove this fact, we follow the definition of AQTMC presented in [15]. Accord-
ing the definition, a Markov chain belongs to the class of AQTMC if there exist
the following limits:

Y0 = lim
i→∞

T−1
i Qi,i−1, Y1 = lim

i→∞
T−1

i Qi,i + I, Y2 = lim
i→∞

T−1
i Qi,i+1, (1)

and the matrix Y0 + Y1 + Y2 is stochastic.
Here Ti is a diagonal matrix with diagonal entries given by modules of the

diagonal entries of the matrix Qi,i, i ≥ 0. Note that the last CM1−1
N+M1−1RW̄

diagonal entries of the matrices Ti, i ≥ 1, do not depend on i. Denote by T the
diagonal matrix formed by these entries.

After some algebra we obtain the following expressions for the matrices Yl, l =
0, 1, 2 :
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Y0 = diag+{Pn(β1), n = 0, N − 1} ⊗ IR ⊗ IW̄ , i ≥ 1,

Y1 =
(

O O O

O T−1 1
N L0(N, S̃1) ⊗ IRW̄ T−1(ΨN + ΔN ) + I

)

,

Y2 =

(
O O
O T−1(I

C
M1−1
N+M1

R ⊗ D1)

)

.

Thus, limits (1) exist. The sum Y0 + Y1 + Y2 is a stochastic matrix. Indeed,
it is obvious that the sums of the entries of the first N block rows of this matrix
are equal to one since Pn(β1)e = e. The sums over the rows of the entries of the
(N + 1)th block row of this matrix are determined by the column vector

[T−1 1
N L0(N, S̃1) ⊗ I + T−1(ΨN + ΔN ) + I + T−1(I ⊗ D1)]e

= T−1[ 1
N L0(N, S̃1) ⊗ I + ΨN + ΔN + (I ⊗ D1)]e + e = 0 + e

From the above it follows that the Markov chain ξt belongs to the class of
AQTMC.

4 Ergodicity Condition

According to [15], the condition for ergodicity of the AQTMC ξt, t ≥ 0, is
formulated in terms of matrices Y0, Y1, Y2. Using the corresponding results from
[15], and a number of algebraic transformations, we got the following statement.

Theorem 1. (i) A sufficient condition for the existence of the ergodic distribu-
tion of the Markov chain ξt is the fulfillment of the inequality

ρ = λ/μ̄ < 1, (2)

where λ is the input rate,

μ̄ = y
1
N

L0(N, S̃1) e, (3)

y is the unique solution of the system of linear algebraic equations

y[AN (N,S1) + Δ̄N + L0(N, S̃1)PN−1(β1)] = 0, y e = 1, (4)

where Δ̄N , is a diagonal matrix with diagonal entries defined by the vector
−[L0(N, S̃1)e + AN (N,S1)e].

(ii) If ρ > 1, then the ergodic distribution of the Markov chain ξt does not
exist.
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Proof. (i) Carrying the matrix Y (z) = Y0 + Y1z + Y2z
2 into the normal form,

it is easy to see that this matrix at the point z = 1 is reducible with a single
irreducible stochastic diagonal block corresponding to the matrix

Ỹ (z) =

(
zT −1[ΨN + ΔN + zI

C
M1−1
N+M1−1R ⊗ D1] + zI zT −1 1

N
L0(N, S̃1) ⊗ IRW̄

PN−1(β1) ⊗ IRW̄ O

)
.

From [15], Lemma 2, it follows that the sufficient condition for the ergodicity of
the Markov chain under consideration is formulated in terms of the matrix Ỹ (z)
and has the form of the inequality

[
det(zI − Ỹ (z))

]′

z=1
> 0. (5)

Using the block structure of the matrix Ỹ (z), we can reduce the determinant in
(5) to the following form:

det(zI − Ỹ (z)) = det(zT−1) det(−z[ΨN + ΔN + zI
C

M1−1
N+M1−1R ⊗ D1]

− (
1
N

L0(N, S̃1) ⊗ IRW̄ )(PN−1(N,β1) ⊗ IRW̄ ). (6)

Using in (6) the property of the generator Qe = 0, we reduce inequality (5) to
the form

[det(−z[ΨN + ΔN + zI
C

M1−1
N+M1−1R ⊗ D1]

− (
1
N

L0(N, S̃1) ⊗ IRW̄ )(PN−1(N,β1) ⊗ IRW̄ ))]′z=1 > 0. (7)

which in turn is equivalent to

x[(ΨN + ΔN + 2I
C

M1−1
N+M1−1R ⊗ D1)]e < 0, (8)

where x is the unique solution of the system of linear algebraic equations

x[ΨN + ΔN + I
C

M1−1
N+M1−1R ⊗ D1

+ (
1
N

L0(N, S̃1) ⊗ IRW̄ )(PN−1(N,β1) ⊗ IRW̄ ))] = 0, (9)

xe = 1. (10)

Let us reduce inequality (8) to form (2), and the system of Eqs. (9), (10) to form
(4). First we consider system (9)–(10).

For further proof, it is important for us to know the entries of the matrix
ΔN . Diagonal entries of this matrix are equal to corresponding entries of the
column vector
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−[ΨN + (Qi,i)N,N−1 + (Qi,i+1)N,N ]e =

−
[

e
C

M1−1
N+M1−1

⊗ [diag−{1
r
LR−r(R, S̃2), r = 1, R}

+ diag{0,
1
r
Ar(R,S2)e, r = 1, R}]e ⊗ eW̄

+
1
N

[AN (N,S1) + L0(N, S̃1)]e ⊗ eRW̄

]

, (11)

from which it follows that the diagonal matrix ΔN has the form

ΔN =
[

I
C

M1−1
N+M1−1

⊗ Δ̄N ⊗ IW̄ + Δ̃N ⊗ IR ⊗ IW̄

]

, (12)

where Δ̄N is a diagonal matrix, the diagonal entries of which are formed by the
corresponding entries of the column vector

− 1
N

[AN (N,S1) + L0(N, S̃1)]e,

Δ̃N is a diagonal matrix, the diagonal entries of which are formed by the corre-
sponding entries of the column vector

−[diag−{1
r
LR−r(R, S̃2), r = 1, R} + diag{0,

1
r
Ar(R,S2), r = 1, R}]e.

Substitute in (9) the expression for ΨN given in the statement of the theorem
and expression (12) for ΔN . Multiplying the resulting equation on the right by
I
C

M1−1
N+M1−1

× eR ⊗ IW̄ and taking into account that

[

I
C

M1−1
n+M1−1

⊗ diag−{ 1
r LR−r(R, S̃2), r = 1, R} ⊗ IW̄

+ I
C

M1−1
n+M1−1

⊗ diag{0, 1
r Ar(R,S2), r = 1, R} ⊗ IW̄ + I

C
M1−1
N+M1−1

⊗ Δ̄N ⊗ IW̄

]

× (I
C

M1−1
N+M1−1

⊗ eR ⊗ IW̄ ) = O,

we reduce (9) to the form

x[
1
N

AN (N,S1) ⊗ eR ⊗ IW̄ +
1
N

L0(N, S̃1)PN−1(N,β1) ⊗ eR ⊗ IW̄

+ Δ̄N ⊗ eR ⊗ IW̄ + I
C

M1−1
N+M1−1

⊗ eR ⊗ (D0 + D1 + D2)] = 0. (13)

Now we represent the vector x as

x = y ⊗ z ⊗ θ, (14)
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where y is a stochastic vector of size CM1−1
N+M1−1 and z is a stochastic vector of

size R . Then (13) takes the form

y[AN (N,S1) + L0(N, S̃1)PN−1(N,β1) + Δ̄N )]
1
N

⊗ θ = 0,

whence formula (4) of the theorem follows.
Now we consider inequality (8). In this inequality

(ΨN + ΔN )e = − 1
N

L0(N, S̃1)e ⊗ eRW̄ − e
C

M1−1
N+M1

R ⊗ D1e. (15)

Substituting (15) into (8), we obtain the following inequality:

x[− 1
N

L0(N, S̃1)e ⊗ eRW̄ + e
C

M1−1
N+M1

R ⊗ D1e] < 0. (16)

Substituting the vector x of form (14) into (16), and taking into account that y
and z are stochastic vectors, and θD1e = λ1, we get

[−y
1
N

L0(N, S̃1)e ⊗ eR + λ1 ⊗ eR] = [−y
1
N

L0(N, S̃1)e + λ1] ⊗ eR < 0,

whence the required inequality (2) in the statement of the theorem follows.
The statement (ii) of the theorem follows from [15], Lemma 2.

In what follows, we will assume that inequality (2) is satisfied. Then the
ergodic distribution of the Markov chain ξt exists and coincides with the sta-
tionary distribution.

5 Stationary Distribution. Performance Measures

Let us introduce the notation for the stationary probabilities of the chain:

p(i, n, η(1), η(2), . . . , η(M1), r, τ (1), τ (2), . . . , τ (M2), ν)

= lim
t→∞ P{it, nt = n, η

(1)
t = η(1), η

(2)
t = η(2), . . . , η

(nt)
t = η(n),

rt = r, τ
(1)
t = τ (1), τ

(2)
t = τ (2), . . . , τ

(rt)
t = τ (r), νt = ν}, i ≥ 0, n = 0, N,

η(m(1)) = 1, n,m(1) = 1,M1, r = 0, R, τ
(m(2))
t = 1, r,m(2) = 1,M2, ν = 0,W .

Let us arrange these probabilities according to the order adopted above for
the states of the considered chain ξt and form the row vectors p0,p1, . . . corre-
sponding the values it of the first component of the chain.

To find these vector, we use a special algorithm for calculating the stationary
distribution of asymptotically quasi-Toeplitz Markov chains, proposed in [15].

Once the vectors pi, i ≥ 0, of the steady state probabilities are calculated,
we can find a number of stationary performance measures of the system. Below
we give expressions for most important of them.



A Retrial Queueing System with Processor Sharing 57

1. Distribution of the number of type 1 customers in the orbit pi = pie, i ≥ 0.

2. Mean number of type 1 customers in the orbit Zorbit =
∞∑

i=1

ipi.

3. Joint distribution of the number of type 1 customers on the server and states
of the MMAP

π∗
n =

∞∑

i=0

pi

[

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0T
n−1∑

m=0
C

M1−1
m+M1−1R

e
C

M1−1
n+M1−1R

0T
N∑

m=n+1
C

M1−1
m+M1−1R

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⊗ IW̄

]

, n = 0, N.

4. Distribution of the number of type 1 customers on the server

πn = π∗
neW̄ , n = 0, N.

5. Mean number of type 1 customers on the server N̄ =
N∑

n=1
nπn.

6. Probability that a primary customer of type 1 will go to service immediately
without visiting orbit

Pimm = 1 − 1
λ1

π∗
ND1e.

Explanation. In the formula the subtrahend is the ratio of the rate of pri-
mary type 1 customers that meets all the channels allocated for this type of
customers are busy and goes into the orbit and the rate of input flow of type
1 customers. Thereat, the subtrahend gives a probability that any primary
customer will go into the orbit. The probability Pimm is calculated as an
additional probability.

7. Joint distribution of the number of type 2 customers on the server and states
of the MMAP

q∗
r =

∞∑

i=0

pi

N∑

n=0

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0T
n−1∑

m=0
C

M1−1
m+M1−1

e
C

M1−1
n+M1−1

0T
N∑

m=n+1
C

M1−1
m+M1−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⊗

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0T
r−1∑

m=0
C

M2−1
m+M2−1

e
C

M2−1
r+M2−1

0T
R∑

m=r+1
C

M2−1
m+M2−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⊗ IW̄ , r = 0, R.

8. Distribution of the number of type 2 customers on the server

qr = q∗
re, r = 0, R.

9. Mean number of type 2 customers on the server R̄ =
R∑

r=1
rqr.

10. Probability that type 2 customer will be lost Ploss,2 = 1
λ2
q∗

RD2e.



58 V. Klimenok and A. Dudin

6 Numerical Results

In this section, we consider the optimization problem. From the above it follows
that the service bandwidth is divided between customers of types 1 and 2 in
the proportion μ1 : μ2. Then the optimization problem for the system under
consideration can be formulated as follows: what should this proportion be in
order the economic criterion of the quality of the system operation to reach
minimum? Let us consider the cost criterion of the form

E = c1Zorbit + c2λ2Ploss,2, (17)

where c1 is the penalty charged per unit of time for type 1 customer staying in
the orbit, and c2 is the penalty charged for the loss of type 2 customer.

Let the general bandwidth μ of the server be constant, μ = μ1 + μ2 = 50.
In this example we find the value of μ1 in this sum that minimizes the quality
criterion (17).

We consider the following input data. N = 4, R = 3, γ = 5.
The input MMAP is defined by matrices D0 and D of the form

D0 =
(−86 0.01

0.02 −2.76

)

, D =
(

85 0.99
0.2 2.54

)

.

Based on the matrix D, we define the matrices D1 and D2 as D1 = 0.7D
and D2 = 0.3D. For this MMAP λ1 = 12.4266, λ2 = 5.3257 v1 = 0.0602, v2 =
0.2859, c

(1)
cor = 0.3902, c

(2)
cor = 0.3284.

PH distribution of the service time of a single customer of type 1 has Erlang
distribution of order 2 with parameter 20. It is defined by the vector β(1) = (1, 0)

and the matrix S1 =
(−20 20

0 −20

)

.

PH distribution of the service time of a single customer of type 2 has Erlang
distribution of order 2 with parameter 80. It is defined by the vector β(2) = (1, 0)

and the matrix S2 =
(−80 80

0 −80

)

.

Table 1. The values of μ∗
1, E∗ E1, E2 for different values of c2

c2 μ∗
1 E∗ E1 E2

20 27.6147 44.5519 343.2395 103.7683

40 24.8532 69.0413 355.4567 204.4983

50 24.8532 80.2572 361.5652 254.8634

The cost criterion E as a function of bandwidth μ1 under condition μ1+μ2 =
50 is depicted in Fig. 1. This figure shows the values of the criterion under c1 = 1
and three different values of c2 = 20, 40, 50. In Table 1 we present the minimum
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points μ∗
1, minimum values E∗ of the criterion and values E1, E2 of the criterion

on the boundaries of the interval (13.8, 49.7) where we vary μ1. Note that in
the region μ1 < 12.4266 the ergodicity condition is violated. This explains our
choice of the left boundary of the interval in which we vary μ1.

Fig. 1. Cost criterion E as a function of μ1 for different cost coefficients under condition
μ1 + μ2 = 50

It is seen from Fig. 1 and from Table 1 that it is most advantageous to divide
the bandwidth approximately equally, i.e. μ1 ≈ μ2 ≈ 25. One can also see that
the relative gains from applying optimal bandwidth sharing between two types
of customers can be very large. So, in the case c2 = 20 the relative gains δ1, δ2
from the optimal value of the cost criterion E∗ in comparison with the values
E1, E2 of the criterion on the boundaries of the region μ1 ∈ (13.5, 49.5) are equal
to δ1 = E1−E∗

E∗ 100% = 680%, δ2 = E2−E∗
E∗ 100% = 133%.

7 Conclusion

In this paper, we have investigated the retrial queueing system with processor
sharing and two types of customers which arrive to the system according the
MMAP . The service times of customers have PH distribution different for cus-
tomer of different types. The operation of the system is described in terms of
multidimensional Markov chain. We derive the ergodicity condition for this chain
and calculate its stationary distribution. Based on the stationary probabilities
we derive formulas for a number of performance measures of the system. In order
to demonstrate the use of the results obtained for optimisation of the quality
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of service in the system, we introduced the cost criterion, defined as average
penalty per unit of time, and presented the example of numerical optimisation
in which it is solved in what proportion should the channel capacity be divided
in order to minimize the value of the criterion.

The results of the research can be used for modeling the operation of a cell
of fixed capacity in a wireless cellular network and others real world systems
operating in processor sharing mode.
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Abstract. In this paper, we propose the multi-level Markov modulated
Poisson process with arbitrary distribution of the packet length as a
model of fractal traffic. For the total amount of information received
in multi-level MMPP, we investigate the probability distribution and
present the algorithm of calculating the first and the second moments.
Using asymptotic analysis method, we build Gaussian approximation of
aforementioned distribution. We show that the convergence time of the
probability distribution to the Gaussian distribution forms the period
where the Hurst parameter is stable and reflects the self-similarity of the
multi-level MMPP.

Keywords: Traffic modeling · Self-similarity · Fractality · Burstiness ·
Markov modulated Poisson process · Asymptotic analysis · Hurst
parameter

1 Introduction

Various statistical studies of real telecommunication flows show the fractality,
self-similarity and burstiness of the traffic. The will to build the model that takes
into account all of such properties leads to the emergence of the models that are
complicated to investigate. Moreover, considering queueing systems with such
flows does not make any sense since the analysis will be impossible. Our goal is
to build the model with clear structure that captures mentioned properties of
the traffic and allows analytical investigation.

The property of burstiness is characterized by the existence of intervals where
traffic rate is rather high and intervals with low or zero intensity. Such behavior
of telecommunication flows led to the creation of On-Off models [1,8,13]. On-
Off models are doubly stochastic point processes having two states: “on” and
“off”. Doubly stochastic point processes are widely described in paper [5]. The
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class of On-Off models contains models with self-transitions and alternating
models. Such models are simple for simulation and have clear interpretation.
However, models with general distributed interarrival times may be complicated
for investigation.

Since the interarrival times in self-similar flows usually follow heavy-tailed
distribution, another commonly used models are renewal processes using heavy-
tailed distributions, e.g. Pareto, Weibull, Lognormal, hyperexponential distribu-
tions with a special choice of parameter values to describe the interarrival times
[2,3,14]. Renewal processes allow to capture long-range dependence and self-
similarity of the traffic. On the other hand, heavy-tailed distributions often have
infinite moments, which does not allow using method of moments to evaluate the
parameters. In renewal processes, interarrival times are represented as indepen-
dent identically distributed events. Due to the lack of intercorrelation between
arrivals, these models are in general inadequate to capture traffic burstiness.
Paper [4] is devoted to the heavy-tailed distributions arise in fractal traffic.

Another class of traffic models that reflects burstiness and self-similarity are
Markovian arrival processes, which are analiticaly tractable. The intensity of the
flow in such models depends on the state of underlying Markov chain. Due to
this, setting high intensity for one state and low intensity for another state yields
the burstiness of the flow [9,12,17].

Statistical studies of the fractal traffic are devoted to the deriving measures
that can capture the burstiness of the traffic [7,10] and the order of self-similarity
[11,16]. In our research, we use the Hurst parameter (Hurst exponent), calculated
using algorithm described in [15].

This paper is dedicated to the multi-level Markov modulated Poisson process
(MMPP), which is a special case of the MAP. MMPP has a more demonstra-
tive interpretation than MAP. The set of parameters in MAP model is wider,
however such model does not invest more in burstiness of the simulated traffic
than MMPP. Moreover, the parameters of MMPP are easier to evaluate using
statistical measures of the real traffic. Thus, we use simpler MMPP model. We
construct the structure of the MMPP in certain form to reflect the fractality,
self-similarity and burstiness of the traffic.

The rest of the paper is organized as follows. In Sect. 2, we describe the math-
ematical model and the structure of the MMPP. Section 3 contains the study of
the total amount of information received in the flow. Section 4 is devoted to the
asymptotic analysis of the model under the limit condition of growing observa-
tion time. Section 5 comprises the algorithm of calculation the moments of the
total amount of information. In Sect. 6, we present the numerical implementa-
tion of the asymptotic results and the estimation of approximation accuracy.
Section 7 is dedicated to the estimation of the values of Hurst exponent for the
total amount of information received in multi-level MMPP. Finally, Sect. 8 is
devoted to concluding remarks.
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2 Mathematical Model of Multi-level MMPP

In bursty flows the intervals of high intensity alternate with intervals of low or
even zero intensity.

The property of self-similarity is characterized by the similarity of flow behav-
ior on different time scales. If we consider the first level interval of high intensity
and decrease the time scale by two or more orders, then the flow structure coin-
cides with the cyclic structure of the first level flow. On the second level of the
flow, we also have alternating between high and low intensity intervals.

If we decrease the time unit again, then we obtain the same structure on the
third level. Figure 1 shows the structure of the flow with four levels. Intervals
H1, H2 and H3 are intervals with high intensity on the different time scales.
On the other hand, L1, L2 and L3 denote low rate intervals.

Fig. 1. Structure of fractal traffic

Of course, a real-life traffic can not be true fractal because, due to the techno-
logical constraints, there exists some level of the time scale where we can observe
only regular arrivals or absence of arrivals. So, in the example, we can suppose
that at the last level of time scaling (inside the H3 intervals) we have Poisson
process with rather big rate. We can vary the number of levels of the model and,
so, we will vary the number of modeled self-similarity levels.

Consider the model of traffic with N levels of self-similarity, zero intensity
inside the Li intervals and Poisson arrivals inside the last (N + 1)-th level. For
modeling such behavior, we consider MMPP given by infinitesimal generator
Q of underlying Markov chain n(t) ∈ {0, . . . , N}, and diagonal matrix Λ with
conditional intensities λn on the main diagonal which are the rates of arrivals
corresponding to the n-th state of the flow. In order to reflect the properties
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of burstiness and self-similarity of the flow, we must set matrices Q and Λ in
certain form.

We will put corresponding parameters into matrices Q and Λ in reverse
order numbering them starting from zero. The zeroth state of the MMPP will
correspond to the (N + 1)-th level where we have a regular (Poisson) flow with
high intensity λ0 = λ. Other states of the MMPP will model only zero-intensity
intervals Li between periods Hi at different levels of self-similarity (see Fig. 1).
So, all rest conditional intensities will be equal to zero: λ1 = · · · = λN = 0.

We suppose that if the MMPP is in the state with zero intensity (states of
the underlying Markov chain 1, . . . , N) then, when this state ends, the MMPP
may move only in state 0 with non-zero intensity. In such a way, we can model
changing of periods with zero intensity by periods with non-zero intensity at
different time scales (levels of self-similarity). Due to this, we have transitions
from states 1, . . . , N only to state 0. Denote intensities of these transitions by
q1, . . . , qN . Also, denote the intensity of leaving state 0 by q0 and probabilities
of transitions in states 1, . . . , N after state 0 ends by v1, . . . , vN , respectively.
So, we obtain the following structures of matrices Q and Λ that determine the
proposed model of multi-level MMPP:

Q =

⎡
⎢⎢⎢⎢⎣

−q0 q0v1 q0v2 . . . q0vN

q1 −q1 0 . . . 0
q2 0 −q2 . . . 0
. . . . . . . . . . . . . . .
qN 0 0 . . . −qN

⎤
⎥⎥⎥⎥⎦

, Λ =

⎡
⎢⎢⎢⎢⎣

λ 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎦

, (1)

where
N∑

n=1
vn = 1.

In practice, the following conditions should be satisfied to the proposed model
be close to real-life traffic as possible:

λ >> q0 >> q1 >> q2 >> · · · >> qN ,

where sign “>>” means “much more than” (“greater than in several orders”).
Each request arrived in the MMPP contains some amount of information

which we will model as continuous random variable with given distribution func-
tion B(x). Let S(t) denote the total amount of information arrived in the flow
during a time period with length t. The goal problem of the paper is to obtain
the probability distribution of process S(t).

3 Derivation of Equations for Probability Distribution
of the Total Amount of Information Received
in Multi-level MMPP for a Certain Time

Denote probability distribution

Pn(s, t) = P{n(t) = n, S(t) < s}, n = 0, . . . , N. (2)
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Two-dimensional process {n(t), S(t)} is Markovian. Thus, we can derive equa-
tions

P0(s, t + Δt) = P0(s, t)(1 − λΔt)(1 − q0Δt)

+λΔt

s∫

0

P0(s − x, t)dB(x) +
N∑

n=1

Pn(s, t)qnΔt + o(Δt),

Pn(s, t + Δt) = Pn(s, t)(1 − qnΔt) + P0(s, t)q0vnΔt + o(Δt), n = 1, . . . , N,

which allow us to obtain system of differential equations

∂P0(s, t)
∂t

= −(λ + q0)P0(s, t) + λ

s∫

0

P0(s − x, t)dB(x) +
N∑

n=1

Pn(s, t)qn,

∂Pn(s, t)
∂t

= −qnPn(s, t) + P0(s, t)q0vn, n = 1, . . . , N. (3)

We introduce Fourier transform

Hn(u, t) =

∞∫

0

ejusdsPn(s, t), n = 0, . . . , N.

Since the sum of functions Hn(u, t) by n = 0, . . . , N gives the characteristic
function of process S(t), we will call functions Hn(u, t) as partial characteristic
functions. Using such notation, we can rewrite system of Eqs. (3) as follows:

∂H0(u, t)
∂t

= λ(B∗(u) − 1)H0(u, t) − q0H0(u, t) +
N∑

n=1

Hn(u, t)qn,

∂Hn(u, t)
∂t

= −qnHn(u, t) + H0(u, t)q0vn. (4)

Here B∗(u) =
∞∫
0

ejuxdB(x) is a characteristic function of the amount of infor-

mation in one request of MMPP.
We denote row vector

H(u, t) = {H1(u, t), H2(u, t), . . . , HN (u, t)}

and represent system (4) as a matrix equation

∂H(u, t)
∂t

= H(u, t){Q + (B∗(u) − 1)Λ}. (5)

Denoting
H(0, t) = r,
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we obtain the system of equations for vector r, which is the stationary distribu-
tion of the states of the underlying Markov chain

rQ = 0, re = 1. (6)

Here e is a vector of ones with (N + 1) × 1 dimension.
Using matrix exponential method, we can write the following solution of the

problem (5)–(6):

H(u, t) = r exp{[Q + (B∗(u) − 1)Λ]t}.

From two-dimensional distribution defined by vector characteristic function
H(u, t), we can derive one-dimensional distribution in the form of scalar charac-
teristic function

H(u, t)e = EejuS(t) = r exp{[Q + (B∗(u) − 1)Λ]t}e. (7)

Similar results were derived in [6] for discrete distribution of the number of
arrivals in MAP.

Inverse Fourier transform

P (s, t) =
1
2π

∞∫

−∞

1 − e−jus

ju
H(u, t)e du

uniquely defines distribution function P (s, t) = P{S(t) < s} of the total amount
of received information S(t) per time t in multi-level MMPP.

Multiplying matrix Eq. (5) by vector e, we obtain system

∂H(u, t)
∂t

= H(u, t){Q + (B∗(u) − 1)Λ},

∂H(u, t)
∂t

e = H(u, t)(B∗(u) − 1)Λe, (8)

which is the main system for our analysis.

4 Asymptotic Analysis of the Amount of Information
Received in MMPP Under Growing Time Limit
Condition

We consider system (8) under the limit condition of growing time of the flow
observation, which is characterized by t = τT , where T is infinite parameter.

Theorem 1. The limit of characteristic function

H(u, t)e = EejuS(t)
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of the total amount of information received per time t in multi-level MMPP
satisfies the equality

lim
t→∞

[
EejuS(t) − exp

{
juκ1t +

(ju)2

2
κ2t

}]
= 0, (9)

where
κ1 = b1rΛe, (10)

κ2 = 2b1gΛe + b2rΛe. (11)

Here b1 and b2 are the first and the second raw moments of distribution B(x),
g is the solution of system

gQ = r(κ1I − b1Λ),

ge = 0, (12)

where I is the identity matrix of dimension (N + 1) × (N + 1). Vector r is the
solution of system (6).

Proof. In system (8) we denote 1
T = ε and make substitutions

τ = tε, u = wε, H(u, t) = F(w, τ, ε), (13)

then we derive system

ε
∂F(w, τ, ε)

∂τ
= F(w, τ, ε){Q + (B∗(wε) − 1)Λ},

ε
∂F(w, τ, ε)

∂τ
e = F(w, τ, ε)(B∗(wε) − 1)Λe. (14)

Taking the limit by ε → 0 in the first equation of system (14) and taking into
account that B∗(0) = 1 and F(w, 0) = r yields to Cauchy problem

F(w, τ)Q = 0,

F(w, 0) = r. (15)

Since the determinant of matrix Q is zero, then the homogeneous solution of
problem (15) has the following form:

F(w, τ) = Φ(w, τ)r, (16)

where vector r is the stationary distribution of MMPP states given by (6) and
function Φ(w, τ) is the scalar multiplier defining the space of particular solutions
of problem (15).

We derive the equation for function Φ(w, τ), considering the second equation
of system (14). We use decomposition of function B∗(wε) up to O(ε2) and sub-
stitute solution (16) into the second equation of system (14) taking the limit by
ε → 0

∂Φ(w, τ)
∂τ

= Φ(w, τ)jwb1rΛe,
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where b1 is the first raw moment of distribution B(x). The solution of obtained
equation is as follows:

Φ(w, τ) = ejwκ1τ ,

where
κ1 = b1rΛe,

which coincides with (10).
Making backward substitutions w = u

ε and τ = tε, we can write expression

ejwκ1τ = ejuκ1t.

For more detailed analysis, we make substitutions

H(u, t) = ejuκ1tH(1)(u, t) (17)

and obtain system

∂H(1)(u, t)
∂t

+ juκ1H(1)(u, t) = H(1)(u, t){Q + (B∗(u) − 1)Λ},

∂H(1)(u, t)
∂t

e + juκ1H(1)(u, t)e = H(1)(u, t)(B∗(u) − 1)Λe. (18)

Denoting 1
T = ε2, we introducee notations

τ = tε2, u = wε, H(1)(u, t) = F(1)(w, τ, ε) (19)

in system (18) and get

ε2
∂F(1)(w, τ, ε)

∂τ
+ jwεκ1F(1)(w, τ, ε) = F(1)(w, τ, ε){Q + (B∗(wε) − 1)Λ},

ε2
∂F(1)(w, τ, ε)

∂τ
e + jwεκ1F(1)(w, τ, ε)e = F(1)(w, τ, ε)(B∗(wε) − 1)Λe. (20)

Solution F(1)(w, τ, ε) of the first equation of system (20) can be written as
decomposition

F(1)(w, τ, ε) = Φ2(w, τ){r + jwεf} + O(ε2), (21)

then from the first equation of system (20), we have

jwεκ1r = r{Q + jwεb1Λ} + jwεfQ + O(ε2).

From the last equation, we obtain

fQ = r(κ1I − b1Λ). (22)

Using superposition principle for inhomogeneous systems, we write the solu-
tion as sum

f = Cr + g, (23)
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which we substitute into (22) and obtain equation

gQ = r(κ1I − b1Λ). (24)

Due to (23), vector g is a particular solution of an inhomogeneous system.
Hence, it satisfies an additional condition, which we choose as ge = 0. Thus,
vector g is the solution of system

gQ = r(κ1I − b1Λ),

ge = 0. (25)

Further, we consider the second equation of system (20) substituting decom-
position (21) and derive equation

ε2
∂Φ2(w, τ)

∂τ
+ jwεκ1Φ2(w, τ){1 + jwεfe} =

= Φ2(w, τ){r + jwεf}
(

jwεb1 +
(jwε)2

2
b2

)
Λe + O(ε3),

where b2 is the second raw moment of distribution B(x). Then we divide the
equation by ε2 taking (10) into account and obtain

∂Φ2(w, τ)
∂τ

+ (jw)2κ1Φ2(w, τ)fe =
(jw)2

2
Φ2(w, τ)(2b1fΛe + b2rΛe). (26)

We substitute solution (23) into equation (26) and get

∂Φ2(w, τ)
∂τ

+ (jw)2κ1Φ2(w, τ)(Cr + g) =

=
(jw)2

2
Φ2(w, τ)(2b1(Cr + g)Λe + b2rΛe).

From the last equation, taking equalities re = 1, ge = 0 into account, we can
write

∂Φ2(w, τ)
∂τ

=
(jw)2

2
Φ2(w, τ)(2b1gΛe + b2rΛe).

We denote
κ2 = 2b1gΛe + b2rΛe, (27)

which coincides with (11). Then function Φ2(w, τ) has the following form:

Φ2(w, τ) = exp
{

(jw)2

2
κ2τ

}
.

By substitutions (19), we can write

w =
u

ε
, τ = tε2.
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Then for function Φ2(w, τ), we can write expression

Φ2(w, τ) = exp
{

(jw)2

2
κ2τ

}
= exp

{
(ju)2

2ε2
κ2ε

2t

}
= exp

{
(ju)2

2
κ2t

}
.

Hence, we obtain scalar asymptotic characteristic function

H(u, t)e = exp
{

juκ1t +
(ju)2

2
κ2t

}
.

Therefore, equality (9) holds. Theorem is proved.

5 Calculation Algorithm for the Moments of the Total
Amount of Information Received in Multi-level MMPP

Vector characteristic function H(u, t) is the solution of Cauchy problem

∂H(u, t)
∂t

= H(u, t){Q + (B∗(u) − 1)Λ},

H(u, 0) = r. (28)

We differentiate the equations of system (28) by u at zero point and obtain the
Cauchy problems for vector moments m1(t) and m2(t)

m′
1(t) = m(t)Q + b1rΛ,

m1(0) = 0. (29)

m′
2(t) = m2(t)Q + 2b1m1(t)Λ + b2rΛ,

m2(0) = 0. (30)

We denote m1(t) = m1(t)e as a scalar first raw moment. Multiplying the equa-
tions of system (29) by vector e, we obtain system

m′
1(t) = b1rΛe,

m1(0) = 0,

the solution of which is

m1(t) = m1(t)e = b1rΛet. (31)

Likewise, for the second raw moment we have

(m2(t)e)′ = 2b1m1(t)Λe + b2rΛe,

m2(0)e = 0.



Multi-level MMPP as a Model of Fractal Traffic 71

Thus, the second raw moment is given by

m2(t) = m2(t)e = 2b1

t∫

0

m1(z) dz Λe + b2rΛet. (32)

Here we have to derive the value of vector integral
t∫
0

m1(z)dz, where m1(t) is a

solution of problem (29).
Despite the fact that problem (29) is rather simple to solve, we give the

algorithm of obtaining its explicit solution. First, we rewrite the problem in
canonical form denoting

mT
1 (t) = x(t), QT = A, b1ΛrT = f ,

then the problem has the following form:

x′(t) = Ax(t) + f ,

x(0) = 0. (33)

We denote ki and vi as eigenvalues and eigenvectors of matrix A = QT . Since the
determinant of matrix Q is zero, we always have zero value among eigenvalues.
We assume that k0 = 0 and all eigenvalues are simple. Solution x(t) of problem
(33) is given as follows

x(t) =
N∑

i=1

Ci(t)ekitvi.

Let V denote the matrix of eigenvectors and c(t) is a column vector with
components Ci(t), then we rewrite solution x(t) as

x(t) = Vdiag(ekit)c(t). (34)

Substituting this expression into (33), we obtain equation

Vdiag(ekit)c′(t) + Vdiag(kie
kit)c(t) = AVdiag(ekit)c(t) + f ,

from which we derive
c′(t) = diag(e−kit)V−1f .

Since k0 = 0, we rewrite diagonal matrix diag(e−kit) as diag(1, e−kit), where the
first element of the matrix is equal to one. Thus, we obtain the formula for c(t)

c(t) = diag
(

t,
1 − e−kit

ki

)
V−1f .

From (34) we obtain

x(t) = Vdiag(1, e−kit)diag
(

t,
1 − e−kit

ki

)
V−1f
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= Vdiag
(

t,
1 − e−kit

ki

)
V−1f .

Since x(t) = mT
1 (t), f = b1ΛrT , we can write the expression for the first vector

moment

m1(t) = b1rΛVdiag
(

t,
1 − e−kit

ki

)
V−1,

and obtain the value of integral

t∫

0

m1(z) dz = b1rΛVdiag
(

t2

2
,
ekit − 1

k2
i

− t

ki

)
V−1.

Further, we substitute the value of integral into (32) and obtain the value of the
second raw moment of process S(t)

m2(t) = m2(t)e = 2b21rΛVdiag
(

t2

2
,
ekit − 1

k2
i

− t

ki

)
V−1Λe + b2rΛet. (35)

The variance d(t) can be derived as follows

d(t) = m2(t) + m1(t)2,

where m1(t) is given by (31).

6 Numerical Implementation of the Analytical Results
for a Three-Level MMPP

In this section, we demonstrate the obtained results for the case of three-level
MMPP. We set matrices Q and Λ as follows:

Q =

⎡
⎢⎢⎣

−100 99 0.99 0.01
50 −50 0 0
0.2 0 −0.2 0

0.001 0 0 −0.001

⎤
⎥⎥⎦ , Λ =

⎡
⎢⎢⎣

100 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ .

The amount of information in one request follows gamma distribution with shape
parameter α = 0.5 and rate β = α. Solving system rQ = 0, re = 1, we obtain
the vector of steady-state distribution of the states of multi-level MMPP

r = {0.056, 0.110, 0.276, 0.558}

and intensity rΛe = 5.577.
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6.1 Gaussian Approximation Accuracy

We denote matrix A(u) = Q+(B∗(u)−1)Λ. Let γ(u) and x(u) denote the vector
of eigenvalues and the matrix of eigenvectors of matrix A(u), respectively.

The value of matrix exponential is given by

eA(u)t = x(u)diag(eγ(u)t)x(u)−1.

Using expression (7), we write scalar characteristic function

H(u)e = reA(u)te.

Numerical implementation of inverse Fourier transform

P (s, t) =
1
2π

∞∫

−∞

1 − e−jus

ju
H(u)e du

causes computational problems due to the presence of component W (t), which
is constant by u, in characteristic function H(u)e

W (t) = lim
u→∞ H(u)e = r exp{[Q − Λ]t}e.

Hence, we represent characteristic function H(u)e in the following form:

H(u)e = W (t) + (1 − W (t))h(u, t),

h(u, t) =
H(u)e − W (t)

1 − W (t)
.

Numerical implementation of the inverse Fourier transform of function h(u, t)
does not make any problems. Thereby, we first calculate the values of function

p(s, t) =
1
2π

∞∫

−∞

1 − e−jus

ju
h(u, t) du

and then obtain the values of distribution function P (s, t) using formula

P (s, t) = W (t) + (1 − W (t))p(s, t).

It is interesting to note that for small values of t and s = 0, distribution function
P (s, t) has a gap equal to W (t) and the gap decreases to zero as the value of t
increases. Having the values of κ1 and κ2 given by formulas (10) and (11), we
can write Gaussian distribution function N(s, t) with parameters a = κ1t and
σ =

√
κ2t. In our case, the values of κ1 and κ2 are

κ1 = 5.577, κ2 = 3.48 · 104.
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We also note that the value of κ2 is four orders greater than κ1 which can
be interpreted as a heavy tail of Gaussian approximation of the probability
distribution of process S(t).

The error of Gaussian approximation N(s, t) against prelimit distribution
P (s, t) we will evaluate using the Kolmogorov distance

Δ(t) = max
0�s<∞

∣∣∣P (s, t) − N(s, t)
∣∣∣.

Table 1 shows values of Δ(t) depending on t. We note that the error of the
approximation decreases while t increasing, which confirms the obtained analyt-
ical results.

Table 1. Kolmogorov distance between distribution function P (s, t) and Gaussian
approximation N(s, t).

t 100 1000 1250 1500 2500 5000 10000 100000

Δ(t) 0.236 0.065 0.050 0.039 0.022 0.015 0.008 0.002

We assume that an approximation is enough accurate when the Kolmogorov
distance is less or equal to 0.05. In our case, the approximation is acceptable
when t � 1250.

7 Hurst Parameter Evaluation for Multi-level MMPP

Having expected value m1(t) given by (31) and the second raw moment m2(t)
given by (35) for the total amount of information received in multi-level MMPP
per time t, we evaluate Fano factor F (t)

F (t) =
d(t)

m1(t)
,

where d(t) = m2(t) + m2
1(t) is the variance of considered process. For Hurst

parameter h(t) of fractality of the process the following equality holds

ln(F (t) − 1) = (2h(t) − 1) ln t + y. (36)

We derive the expression for parameter y from equality (36) setting t = 1

y = ln(F (1) − 1) = 3.308.

Let us resolve equality (36) for h(t)

h(t) =
1
2

{
1 +

1
ln t

ln
F (t) − 1
F (1) − 1

}
. (37)
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Table 2. Hurst parameter of the total amount of information received in multi-level
MMPP.

t 100 200 400 600 800 1000 1200 1250

h(t) 0.856 0.863 0.865 0.864 0.860 0.857 0.854 0.853
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Fig. 2. Traffic trace simulated using multi-level MMPP presented using various lengths
of time slot and scales.
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We calculate Hurst parameter for multi-level MMPP with parameters, which are
presented in the Sect. 6. Table 2 depicts the values of h(t) for different t.

The mean of the Hurst parameter values in the table is equal to 0.86. The
range of t was selected from the obtained in Table 1 condition Δ(t) > 0.05 for
which the Gaussian approximation is not recommended.

We note that increasing time t leads to decreasing of the Hurst parameter.
This is due to the fact that with increasing time t the mean m(t) and variance
d(t) converge to their limit values κ1t and κ2t while Fano factor F (t) converges
to the constant κ2/κ1, which does not depend on t. Therefore, naturally, by
virtue of (37), the Hurst parameter decreases, and process S(t) becomes closer
to Gaussian one.

In Fig. 2, we show the traffic simulated using multi-level MMPP at various
levels of time scaling (similar to Fig. 1). As we can see, the multi-level MMPP
model gives bursts at different time scales. Numerical experiments and compar-
ison with real-life traffic data show a good quality of the proposed multi-level
MMPP in modeling network flows.

8 Conclusion

In this paper, we have provided the research of the multi-level MMPP as a model
that captures the fractality, self-similarity and burstiness of the traffic. We have
derived the characterictic function of the total amount of information received in
the flow during time t. Applying the inverse Fourier transform, we have obtained
the probability distribution of the considered process.

Moreover, we have presented the calculation algorithm and explicit formulas
for the first and the second raw moments of the total amount of information
received in the flow.

The next contribution is a Gaussian approximation for the probability dis-
tribution of the total amount of received information built under limit condition
of growing observation time. We have shown that the convergence time of con-
sidered process to the Gaussian process is rather large and the Hurst parameter
of the process is stably high during this interval.

References

1. Adas, A.: Traffic models in broadband networks. IEEE Commun. Mag. 35(7), 82–
89 (1997)

2. Arfeen, M.A., Pawlikowski, K., Willig, A., McNickle, D.: Fractal renewal process
based analysis of emerging network traffic in access networks. In: 2016 26th Inter-
national Telecommunication Networks and Applications Conference (ITNAC), pp.
265–270. IEEE (2016)

3. Becchi, M.: From poisson processes to self-similarity: a survey of network traffic
models. Washington University in St. Louis, Technical report (2008)
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Abstract. The paper is devoted to obtaining estimations of the rate of
convergence of the intensity of an assembly of Poisson flows to the inten-
sity of a stationary Poisson flow. Analysis of the results shows that this
problem should combine analytical and numerical studies. An important
role is played by the Central limit theorem for both random variables and
stochastic processes which is understood in the sense of C-convergence.
Exact asymptotic formulas are derived for intensity of the assembly flow
of identical Poisson flows, and estimations of the convergence rate are
build for the case of non-identical original flows.
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1 Introduction

In the paper, we analyze the assembly of independent Poisson flows which is
interpreted as connection of customers with the same order numbers taken from
different flows. The assembly processes may be found in computer networks [1],
in conveyor systems for the manufacture of products [2–4], in open queueing
networks with a single input flow, division and merging of customers and with
sufficiently general configuration of network [5,6], in closed queueing networks
with discrete time transitions of batches of customers and dynamic control of
service rates [7]. However, the study of the flow of customers coming out after
the assembly is a very complicated problem.

It is shown in [8] that the average intensity of the assembled flow tends to
the lower of the original Poisson flow intensities while time tends to infinity.
However, computational experiments performed by approximating the Poisson
distribution with a large parameter by a normal distribution showed that it
is possible to improve the obtained estimations of the convergence rate. This
paper is devoted to obtaining, in a certain sense, unimproved estimations of
the convergence rate of the intensity of the assembly flow to the intensity of a
stationary Poisson flow. Analysis of the results shows that this problem should
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combine analytical and numerical methods comparing their results with each
other. Moreover, an important role is played by the Central limit theorem for
both random variables and stochastic processes which is understood in the sense
of C-convergence [9].

The authors are grateful to Professor Anatoly Nazarov from Tomsk State
University for his ideas and advice regarding the research presented in the article,
which made it possible to significantly improve quality of the paper and move
further in the studies.

2 Mathematical Model

Assume that there are r independent stationary Poisson processes (we will call
them as “original flows”) with intensities λ1, . . . , λr. Let us denote an instants
of arrivals in the flows by tk,i, where k is the number of original flow and i is
the order number of the arrival in this flow. The original flows we denote as
Tk = {0 ≤ tk,1 ≤ tk,2 ≤ . . . }, where k = 1, 2, . . . , k = 1, . . . , r. We will call the
flow Ar = {0 ≤ max(t1,1, . . . , tr,1) ≤ max(t1,2, . . . , tr,2) ≤ . . . } as an assembly of
flows T1, . . . , Tr or as an assembly flow.

Denote the number of points in k-th flow in interval [0, t) by nk(t). Then the
number of points in the assembly flow Nr(t) in the interval may be expressed as

Nr(t) = min
k=1,...,r

nk(t). (1)

Flow Ar is not Poisson, because its increments are not independent due to
formula (1).

3 Central Limit Theorem for the Assembly Flow

Suppose that several original flows have minimal intensities: λ = λ1 = . . . =
λs < λs+1 ≤ . . . ≤ λr, s ≤ r. Then the following statement can be proved.

Theorem 1. For any v ∈ (−∞,∞), the following limit relation is true:

P
{

Nr(t) − λt√
λt

> v

}
→
[∫ ∞

v

1√
2π

exp(−u2/2)du

]s

, t → ∞. (2)

Proof. From formula (1) and the independence of flows T1, . . . , Tr, the equality
follows

P {Nr(t) > i} =
r∏

k=1

P {nk(t) > i} . (3)

Then due to the Central limit theorem, we derive

P
{

nk(t) − λt√
λt

> v

}
→
∫ ∞

v

1√
2π

exp(−u2/2)du, for k = 1, . . . , s. (4)
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and

P
{

nk(t) − λt√
λt

> v

}
= P

{
nk(t) − λkt√

λkt
> v

√
λ

λk
− (λk − λ)t

}
≥

P
{

nk(t) − λkt√
λkt

> −(λk − λ)t
}

→ 1, t → ∞, for k = s + 1, . . . , r.

So, we obtain

P
{

nk(t) − λt√
λt

> v

}
→ 1, t → ∞, for k = s + 1, . . . , r. (5)

Using formulas (1), (3)–(5), we derive

P
{

Nr(t) − λt√
λt

> v

}
= P

⎧⎨
⎩

min
k=1,...,r

nk(t) − λt
√

λt
> v

⎫⎬
⎭ =

P
{

min
k=1,...,r

nk(t) − λt√
λt

> v

}
=

r∏
k=1

P
{

nk(t) − λt√
λt

> v

}
→
[∫ ∞

v

1√
2π

exp(−u2/2)du

]s

, t → ∞. (6)

So, the theorem is proved.

Remark 1. The stochastic process
nk(tu) − λtu√

λt
as a function of variable u ≥ 0

tends to Wiener process ξk(u), k = 1, . . . , s while t → ∞. Since process nk(t) is a

process with independent increments, then the stochastic process
nk(tu) − λtu√

λt
is also a process with independent increments. Moreover, while t → ∞, due to

the Central limit theorem, the increment of process
nk(tu) − λtu√

λt
in interval

[u1, u2], u1 < u2, tends to Gaussian random variable with zero mean and vari-

ance equal to u2 − u1. Therefore, if t → ∞, process
nk(tu) − λtu√

λt
converges to

Wiener process wk(u) in the sense of C-convergence [9, Chapter 4, § 3, Theorem
10].

Remark 2. Let r = s, then stochastic process
Nr(tu) − λtu√

λt
for t → ∞ converges

to process min
k=1,...,r

wk(u) in the sense of C-convergence, where w1(u), . . . , wr(u)

are independent Wiener processes (u ≥ 0). This statement follows from formula
(9) and Remark 1.
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4 Limit Relations for Intensity of Assembly of
Independent and Identically Distributed Poisson Flows

Consider Markov process {n1(t), . . . , nr(t)}. A jump of this process in instant
t from state (n1, . . . , ni, . . . , nm), where ni < min

k �=i
nk, to state (n1, . . . , ni +

1, . . . , nr) causes a new point to appear in flow Ar in time moment t. There-
fore, instant intensity λ(t) of assembly flow in this moment satisfies the equality

λ(t) = λ

r∑
i=1

P
{

ni(t) < min
k �=i

nk(t)
}

. (7)

Lemma 1. The following equality is true:

λ(t) = λ(1 − P{n1(t) = . . . = nr(t)}). (8)

Proof. Let us denote the following sets of indices:

J = {1, . . . , r}, Ji = J \ i, i = 1, . . . , r.

Then equality (7) can be transformed as follows:

λ(t) = λP

{
r⋃

i=1

(ni(t) < min
k∈Ji

nk(t))

}
= λ

(
1 − P

{
r⋂

i=1

(ni(t) ≥ min
k∈Ji

nk(t))

})

= λ

(
1 − P

{
r⋂

i=1

(ni(t) ≥ min
k∈J

nk(t))

})
= λ(1 − P{n1(t) = . . . = nr(t)}).

The lemma is proved.

Let us denote a = λt and

p(k, a) =
e−aak

k!
, k = 0, 1, . . . ,

f(a) = P (n1(t) = . . . = nr(t)) =
∞∑

k=0

pr(k, a).

We will search for approximation g(a) of function f(a) in the form

g(a) =
∫ ∞

−∞

[
1√
2πa

exp
(

− (x − a)2

2a

)]r

dx =

(2πa)−r/2

∫ ∞

−∞
exp
(

− (x − a)2

2a/r

)
dx =

(2πa)−r/2
√

2πa/r

∫ ∞

−∞

1√
2πa/r

exp
(

− (x − a)2

2a/r

)
dx =

1√
r
(2πa)(1−r)/2. (9)
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Theorem 2. For λ > 0, r = 2, the following limit ratio is true:

P{n1(t) = n2(t)} ∼ (2√
πa
)−1 → 0, a → ∞, (10)

and therefore, λ(t) → λ, λ(t) − λ ∼ λ(2
√

πλt)−1, t → ∞.

Proof. Indeed, the following equalities are fulfilled:

P{n1(t) = n2(t)} =
∞∑

k=0

exp(−2a)
a2k

(k!)2
= exp(−2a)B, B =

∞∑
k=0

a2k

(k!)2
.

Here B = B(a) is the Infeld function [10, Chapter 4, Sect. 11] satisfying the
asymptotic relation

B(a) =
exp(2a)
2
√

πa

(
1 + O

(
1
a

))
. (11)

Replacing here a by λt, we derive relation (10). The theorem is proved.

Theorem 3. If λ > 0, r > 2,
1
2

< γ <
2
3
, then the following limit relation

takes place:
f(a) = g(a)(1 + O(a3γ−2)) ∼ g(a), a → ∞, (12)

and therefore, λ(t) → λ, λ(t) − λ ∼ λ
(2πλt)(1−r)/2

√
r

, t → ∞.

Proof. Consider the following integrals:

g1(a) =
∫ a−aγ

−∞

[
1√
2πa

exp
(

− (x − a)2

2a

)]r

dx,

g2(a) =
∫ ∞

a+aγ

[
1√
2πa

exp
(

− (x − a)2

2a

)]r

dx,

g3(a) =
∫ a+aγ

a−aγ

[
1√
2πa

exp
(

− (x − a)2

2a

)]r

dx,

g(a) = g1(a) + g2(a) + g3(a). (13)

Let us prove the following supplementary statement.

Lemma 2. The following limit relations are true:

g1(a) = g2(a) = o(g(a)), g3(a) = g(a)(1 + o(g(a))), a → ∞. (14)

Proof. By replacing variable t = x − a, we obtain the equalities

g1(a) =
∫ −aγ

−∞

[
1√
2πa

exp
(

− t2

2a

)]r

dt, g2(a) =
∫ ∞

aγ

[
1√
2πa

exp
(

− t2

2a

)]r

dt.
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From here, we get the following relations (for a → ∞):

g1(a) = g2(a) =
∫ ∞

aγ

(2πa)−r/2

a−1rt
exp
(

−rt2

2a

)
d

(
rt2

2a

)
≤

(2πa)−r/2

raγ−1

∫ ∞

aγ

exp
(

−rt2

2a

)
d
rt2

2a
≤ (2πa)−r/2

raγ−1
exp
(

−ra2γ−1

2

)
= o(g(a)).

From these relations and formulas (9), (13), limit relations (14) follow. The
lemma is proved.

Let us now consider the sums

f1(a) =
∑

0≤k<a−aγ

(
e−aak

k!

)r

, (15)

f2(a) =
∑

a+aγ<k≤∞

(
e−aak

k!

)r

, f3(a) =
∑

a−aγ≤k≤a+aγ

(
e−aak

k!

)r

. (16)

Further, we denote an integer part of some real number x by [x].
Let us prove an additional supplementary statement.

Lemma 3. The following limit relations are true:

f1(a) = O

(
a

(2πa)r/2
exp
(

−ra2γ−1

2

))
= o(g(a)), a → ∞, (17)

f2(a) = O

(
a

(2πa)r/2
exp
(

−ra2γ−1

2

))
= o(g(a)), a → ∞. (18)

Proof. We construct an estimation of f1(a), assuming c = [a−aγ ] ∼ a, a → ∞:

f1(a) ≤ c

(
e−aac

c!

)r

∼ a

(
e−aac

cce−c
√

2πa

)r

≤

a

(2πa)r/2

(
e−aaa−aγ

(a − aγ − 1)a−aγ−1e−a+aγ

)r

=
a

(2πa)r/2
erF1(a), (19)

where

F1(a) = −aγ +(a−aγ) ln a−(a−aγ −1) ln(a−aγ −1) = −a2γ−1

2
(1+o(1)). (20)

Thus, from the condition
1
2

< γ, definition of function g(a) and formulas (15),

(19), (20), it leads us to (17).
We construct an estimation of f2(a), assuming in the proof of Lemma3 that

d = [a + aγ ] ∼ a, a → ∞:

f2(a) ≤
∑
d≤k

(
e−a ak

k!

)r

≤
(

e−aad

d!

)r∑
k≥0

(a

d

)kr

∼
(

e−aad

d!

)r
a1−γ

r
. (21)
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So, for a → ∞ we derive
(

e−aad

d!

)r

∼
(

e−aad

dde−d
√

2πa

)r

≤
(

e−aaa+aγ

(a + aγ − 1)a+aγ−1e−a−aγ
√

2πa

)r

=
1

(2πa)r/2
erF2(a), (22)

where

F2(a) = aγ +(a+aγ) ln a− (a+aγ −1) ln(a+aγ −1) = −a2γ−1

2
(1+o(1)). (23)

From (16), (21)–(23) and the condition
1
2

< γ, we obtain (18). The lemma
is proved.

Let us denote

ϕ3(a) =
∑

a−aγ≤k≤a+aγ

(2πa)−r/2 exp
(

−r(k − a)2

2

)

and prove the following supplementary statements.

Lemma 4. The following limit relation is true:

f3(a) = ϕ3(a)(1 + O(a3γ−2)), a → ∞. (24)

Proof. We analyze the expression e−ra ark

(k!)r
using the Stirling formula in the

form

k! = kke−k
√

2πk exp
(

θ(k)
12k

)
, 0 ≤ θ(k) ≤ 1.

From this formula, it follows that

(k!)−r = k−rkerk(2πk)−r/2 exp
(

−rθ(k)
12k

)
, 0 ≤ θ(k) ≤ 1. (25)

It is obvious that the following relations are true:

sup
k: |k−a|≤aγ

∣∣∣∣exp
(

−rθ(k)
12k

)
− 1
∣∣∣∣ = O(a−1), (26)

sup
k: |k−a|≤aγ

∣∣∣∣ (2πk)−r/2

(2πa)−r/2
− 1
∣∣∣∣ = O(aγ−1). (27)

From formulas (25)–(27), we obtain the following relation:

sup
k: |k−a|≤aγ

∣∣∣∣e−ra ark

(k!)r
· era

(ea

k

)−rk

(2πa)r/2 − 1
∣∣∣∣ = O(aγ−1).
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The notation

p(k, a) = q(k, a)(1 + O(at)), |k − a| ≤ aγ , a → ∞
means that the following relation is satisfied:

sup
k: |k−a|≤aγ

∣∣∣∣p(k, a)
q(k, a)

− 1
∣∣∣∣ = O(at), a → ∞.

Therefore, the following relation is true:

e−ra ark

(k!)r
= e−ra

(ea

k

)rk

(2πa)−r/2(1 + O(aγ−1)), |k − a| ≤ aγ , a → ∞. (28)

Using the Taylor series expansion of the function ln(1 + u) = u − u2

2
+

O(u3), |u| < 1, we evaluate ln
[
e−a
(ea

k

)k
]

. To do this, we set k = a + v, |v| ≤
aγ and evaluate the ratio

ln
[
e−a
(ea

k

)k
]

= −a + (a + v)(1 + ln a − ln a − ln(1 + v/a)) = − v2

2a
+ O

(
v3

a2

)
,

from which it follows that

e−a
(ea

k

)k

= exp
(

− (k − a)2

2a

)(
1 + O

(
a3γ−2

))
, |k − a| ≤ aγ , a → ∞. (29)

From expressions (28) and (29), we obtain the asymptotic relation

e−ra ark

(k!)r
= (2πa)−r/2 exp

(
−r(k − a)2

2a

)
(1+O(a3γ−2)), |k −a| ≤ aγ , a → ∞.

By combining this relation with formula (16), we obtain limit relation (24). The
lemma is proved.

Corollary 1. It follows from Lemma4 that the following asymptotic formula
holds uniformly for all k : |k − a| ≤ aγ :

p(k, a) ∼ exp
(

− (k − a)2

2a

)
1√
2πa

, a → ∞.

Lemma 5. The following limit ratio is true:

ϕ3(a) = g3(a)(1 + O(aγ−1)), a → ∞. (30)

Proof. Without a significant generality constraint (to simplify the proof), we
assume that a, aγ are integer. Then the following equality is true:

g3(a) =
∑

a−aγ≤k<a+aγ

(2πa)−r/2

∫ k+1

k

exp
(

−r(x − a)2

2a

)
dx.
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For k < a, the function exp
(

−r(x − a)2

2a

)
is monotonically increasing, and

for k ≥ a, it decreases monotonically on the interval [k, k + 1]. So, the following
relation is true:

exp
(

−r(k − a)2

2a

)
= exp

(
−r(k + 1 − a)2

2a

)
(1+O(aγ−1)), |k−a| ≤ aγ , a → ∞.

It follows that the following relation is satisfied:

exp
(

−r(k − a)2

2a

)
=
∫ k+1

k

exp
(

−r(x − a)2

2a

)
dx(1 + O(aγ−1)), |k − a| ≤ aγ ,

when a → ∞, and in addition, we have ϕ3(a+aγ , a) = (2πa)−r/2 exp(−ra2γ−1).
From these relations and formulas (12), (14), we derive (30). The lemma is
proved.

From formulas (24), (30), we obtain the relation

f3(a) = g3(a)(1 + O(a3γ−2))(1 + O(aγ−1)) = g3(a)(1 + O(a3γ−2)). (31)

Combining Formulas (9), (14), (17), (18), and (31), we obtain (12). So, Theorem 3
is proved.

Remark 3. The series
∑
k≥0

(
ak

k!

)r

considered in Theorem 3 is a generalized hyper-

geometric series. However, it is impossible to use a well-known asymptotic for-
mulas [11, Chapter 16] for it.

Remark 4. We present results of a computational experiment illustrating the
accuracy of the obtained approximations. Denote error of the approximation by

Δ(a) =
∣∣∣∣f(a) − g(a)

f(a)

∣∣∣∣. Values of Δ(a) are presented in Table 1. We may notice

that the error is decreasing while a grows.

Table 1. Values of Δ(a) for r = 2, 5, 20; a = 10k, k = 1, . . . , 6.

r a

10 102 103 104 105 106

2 6.4× 10−3 6.3× 10−4 6.3× 10−5 6.3× 10−6 6.2× 10−7 6.2× 10−8

5 2.0× 10−2 2.0× 10−3 2.0× 10−4 2.0× 10−5 2.0× 10−6 2.0× 10−7

20 8.3× 10−2 8.3× 10−3 8.3× 10−4 8.3× 10−5 8.3× 10−6 8.2× 10−7
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5 Assembly of Independent Flows with Different
Intensities

Consider now the case when there are two Poisson flows T1, T2 with intensities
λ1, λ2 : λ1 < λ2, and denote d = λ2t, cd = λ1t, so,

0 < c =
λ1

λ2
< 1.

For instant intensity of assembly flow λ(t) in this case, we have

λ(t) = λ1P (n2(t) > n1(t)) + λ2P (n1(t) > n2(t)) = λ1(P (n1(t) > n2(t))
+P (n2(t) > n1(t))) + (λ2 − λ1)P (n1(t) > n2(t)) = λ1(1 − P (n1(t) = n2(t)))
+(λ2 − λ1)P (n1(t) > n2(t)) = λ1 − λ1P (n1(t) ≥ n2(t)) + λ2P (n1(t) > n2(t)),

therefore,
|λ(t) − λ1| ≤ λ2P (n1(t) ≥ n2(t)), (32)

where

P (n1(t) ≥ n2(t)) =
∞∑

k=0

e−d dk

k!

∞∑
i=k

e−cd (cd)i

i!
= G(d). (33)

Consider function G(d) in a form of the sum G(d) = G1(d) + G2(d), where

G1(d) =
∑
k>d

e−d dk

k!

∞∑
i=k

e−cd (cd)i

i!
, G2(d) =

∑
k≤d

e−d dk

k!

∞∑
i=k

e−cd (cd)i

i!
.

For a fixed c : 0 < c < 1, we define the function ψ(c) = c− 1− ln c. Function
ψ(c) satisfies the relations ψ(1) = 0, ψ′(c) = 1 − 1/c < 0, so, ψ(c) is positive
and monotonically decreasing for 0 < c < 1.

We will call that positive functions p(d) and q(d) satisfy the relation

p(d) 	 q(d), d → ∞, if lim sup
d→∞

p(d)
q(d)

< ∞.

Lemma 6. For any c : 0 < c < 1, the following formula holds:

d−1/2 exp(−dψ(c)) 	 G1(d) 	 d1/2 exp(−dψ(c)), d → ∞. (34)

Proof. Really, we have:

G1(d) ≤
∑
k>d

e−d dk

k!

∞∑
i=[d]

e−cd (cd)i

i!
≤

∞∑
i=[d]

e−cd (cd)i

i!
≤

e−cd(cd)d

[d]!

∞∑
i=[d]

(
cd

[d]

)i−[d]

=
e−cd(cd)d

[d]!

(
1 − cd

[d]

)−1

∼ e−cd(cd)d

(1 − c)[d]!
.
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Due to the Stirling formula, we derive

e−cd(cd)d

[d]!
≤ e−cd(cd)d

[d][d]e−[d]
√

2π[d]
≤ ed−cd(cd)d

[d]d
√

2π[d]
≤

ed−cd(cd)d

(d − 1)d−1
√

2π(d − 1)
∼ e

√
d

2π
exp(−dψ(c)).

As a result, we come to the right relation in formula (34).
We now construct the lower bound of the function G1(d), assuming j =

[d] + 1, d → ∞:

e−d dj

j!
≥ e−1/12de−d+j [d]j

jj
√

2πj
≥ 1√

2πj

(
1 +

1
[d]

)−j

∼ 1
e
√

2πd
, (35)

e−cd (cd)j

j!
∼ e−cd (cd)j

jje−j
√

2πj
≥ e−cd+j cd+1dj

jj
√

2πj
∼ c exp(−dψ(c))

e
√

2πd
. (36)

From formulas (35) and (36), the left relation in formula (34) follows. The
lemma is proved.

Let us fix s : 0 < c < s < 1, let l = [sd], and estimate G2(d) = G′
2(d)+G′′

2(d),
where

G′
2(d) =

∑
0≤k<sd

e−d dk

k!

∞∑
i=k

e−cd (cd)i

i!
, G′′

2(d) =
∑

sd≤k≤d

e−d dk

k!

∞∑
i=k

e−cd (cd)i

i!
.

Denote μ(c, s) = c − s(1 + ln c − ln s), q(s) = 1 − s(1 − ln s), 0 < c < s < 1.
For any c, s : 0 < c < s < 1, the relations

μ(c, 1) = ψ(c) > 0,
∂μ(c, s)

∂s
= − ln

c

s
> 0

take place for fixed c. Function μ(c, s) increases on argument s : c < s < 1 and

μ(c, c) = 0, μ(c, s) > 0, c < s < 1.

Function q(s) satisfies the relations

q(1) = 0, q′(s) = ln s < 0, q(s) > 0, 0 < s < 1,

and hence, it is positive and monotonically decreasing for 0 < s < 1.

Lemma 7. For any c, s : 0 < c < s < 1, the following formula holds:

d−1/2 exp(−dq(s)) 	 G′
2(d) 	 d1/2 exp(−dq(s)), d → ∞. (37)
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Proof. Function G′
2(d) satisfies the following relations for cd > 2:

G′
2(d) ≤ l

e−ddl

l!
∼ e−d+l

√
l

2π

(
d

l

)l

≤ e−d+sd

√
l

2π

(
d

sd − 1

)sd

∼
√

sd

2π

l · dl

ll
√

2πsd
∼ e√

2πsd
exp(−dq(s)).

Thus, the right relation in formula (37) is true.

On the other hand G′
2(d) ≥ e−ddl

l!

⎛
⎝1 −

∑
0≤i≤l

e−cd (cd)i

i!

⎞
⎠, where

e−ddl

l!
∼ e−d+ldl

ll
√

2πl
≥ e−d+l

√
2πl

(
1
s

)l

∼ exp(−dq(s))
e
√

2πsd
, (38)

and
∑

0≤i<l

e−cd(cd)i

i!
≤ sde−cd (cd)l

l!
∼
√

1
2πsd

e exp(−dμ(s, c)) → 0, d → ∞. (39)

From (38), (39), we derive the left relation of (37). The lemma is proved.

Lemma 8. For any c, s : 0 < c < s < 1, the following formula holds:

d−1 exp(−d(μ(c, s) + q(s)) 	 G′′
2(d) 	 d1/2 exp(−dμ(c, s))), d → ∞. (40)

Proof. Function G′′
2(d) satisfies the following relations for cd > 2:

G′′
2(d) ≤

∑
i≥sd

e−cd (cd)i

i!
≤ e−cd (cd)l

l!

∑
i≥0

(cd)i

li
=

e−cd (cd)l

l!

(
1 − cd

l

)−1

∼ e−cd (cd)l

l!

(
1 − c

s

)−1

.

We derive

e−cd (cd)l

l!
∼ e−cd+l (cd)sd

ll
√

2πsd
≤ e−cd+sd (cd)sd

(sd − 1)sd−1
√

2πsd
≤

sde−cd+sd (cd)sd

(sd − 1)sd
√

2πsd
=

√
sd

2π
e−cd+sd

( c

s

)sd
(

1 − 1
sd

)−sd

∼

e

√
sd

2π
exp(−dμ(c, s)). (41)

Hence, the right relation in formula (40) is true.
At the same time, using (38) in a similar way to formula (41), we obtain

G′′
2(d) ≥ e−ddl

l!
· e−cd(cd)l

l!
∼ exp(−dq(s))

e
√

2πsd
· exp(−dμ(c, s))

e
√

2πsd
. (42)

From (47), the left relation of formula (40) follows. The lemma is proved.
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For fixed c, s : 0 < c < s < 1, we define the functions

ϑ(c, s) = min(μ(c, s), q(s)); ν(c, s) = min(ϑ(c, s), ψ(c)),

α(c) = sup
s: c<s<1

ν(c, s), s∗(c) = − 1−c
ln c .

Lemma 9. For any c : 0 < c < 1, the following formula holds:

α(c) = q(s∗(c)). (43)

Proof. Since function μ(c, s) is increasing, the function q(s) is decreasing for
s : c ≤ s ≤ 1, and μ(c, c) = 0, q(1) = 0, s = 1, then there exists the unique

point s∗(c) = −1 − c

ln c
> c that satisfies the equality μ(c, s∗(c)) = q(s∗(c)).

Therefore, the following equality is fulfilled:

sup
s: c<s<1

ϑ(c, s) = q(s∗(c)). (44)

Now we prove that the inequality q(s∗(c)) < ψ(c) holds. Indeed, since
c < s∗(c) and function q(s) is decreasing, then q(s∗(c)) < q(c). Therefore, the
function

ω(c) = q(c) − ψ(c) = 2 − 2c + (1 + c) ln c

satisfies the equality ω(1) = 0, and its derivative satisfies ω′(c) =
q(c)
c

> 0. This

means that ω(c) < 0 for 0 < c < 1. So, the following inequalities are true:

q(s∗(c)) < q(c) < ψ(c), 0 < c < s∗(c) < 1. (45)

From relations (44), (45), we obtain formula (43) for a fixed c : 0 < c < 1.
The lemma is proved.

Theorem 4. For any c : 0 < c < 1, the following formula holds:

d−1 exp(−dα(c)) 	 G(d) ≤ d1/2 exp(−dα(c)), (46)

and therefore, λ(t) → λ, λ(t) − λ = G(λ2t) while t → ∞.

Proof. For any c, s : 0 < c < s < 1, it follows from Lemmas 6–9 that

G(d) 	 d1/2 exp(−d min(ψ(c), q(s), μ(c, s)).

So, for any c : 0 < c < 1, we derive

G(d) 	 d1/2 exp(−dq(s∗(c)) = d1/2 exp(−dα(c)).

The right relation in (46) is proved.
For c, s : 0 < c < s < 1, it follows from Lemmas 6–9 that

G(d) 
 d−1 exp(−d min(ψ(c), q(s), μ(c, s) + q(s)).
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Assuming s = s∗(c) in the last inequality, we obtain

G(d) 
 d−1 exp(−d min(ψ(c), q(s∗(c)), μ(c, s∗(c)) + q(s∗(c)))

= d−1 exp(−d min(ψ(c), q(s∗(c))) = d−1 exp(−dα(c).

The left relation in formula (46) is proved. So, Theorem4 is proved.

Remark 5. In Remark 4, the estimation of probability P{n1(t) = . . . = nr(t)}
uses a Gaussian approximation of a Poisson distribution with a large parameter.
It is shown that this approximation gives results similar to the results of the
analytical study. Consider how this approximation works when estimating the
probability P{n1(t) ≥ n2(t)}.

To do this, we write the following approximations of random variables n1(t)
and n2(t):

n1(t) ≈
√

cdξ1 + cd, n2(t) ≈
√

dξ2 + d,

where ξ1 and ξ2 are independent random variables having a standard normal dis-
tribution (with zero mean and variance equal to one). Then by analogy with the
proof of Lemma 5, we can construct a Gaussian approximation of the probability

P{n1(t) ≥ n2(t)} ≈ P{
√

cd ξ1 + cd ≥
√

d ξ2 + d} =

P{ξ2 ≤ √
c ξ1 +

√
d(c − 1)} = S(d), d → ∞.

Denote a random variable with a standard normal distribution by η and put

h = (c − 1)

√
d

c + 1
. Since random vector (ξ1, ξ2) has a two-dimensional normal

distribution with zero mean and with an identity covariance matrix, then using
well-known asymptotic formula

P{η > R} ∼ 1
R

√
2π

exp
(

−R2

2

)
, R → ∞,

it is possible to obtain the following ratio based on the Gaussian approximation:

P{n1(t) ≥ n2(t)} ≈ 1
h
√

2π
exp
(

−h2

2

)
=

√
c + 1√

2πd(c − 1)
exp
(

−d · (c − 1)2

2(c + 1)

)

=
√

c + 1√
2πd(c − 1)

exp(−dA(c)) = S(d), A(c) =
(c − 1)2

2(c + 1)
, d → ∞. (47)

Now compare factors α(c) and A(c) in the exponents of (46) and (47).
When c = 5/6, we have α(c) ≈ 0, 0038, , A(c) ≈ 0, 0076. If c = 2/3, then
α(c) ≈ 0, 0168, A(c) ≈ 0, 0333. Thus, factor A(c) calculated by the Gaussian
approximation is greater than factor α(c) calculated analytically.

We denote δ(d) =
∣∣∣∣G(d) − S(d)

G(d)

∣∣∣∣ and numerically evaluate an accuracy of

the Gaussian approximation for c = 5/6 and c = 2/3. The results are presented
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in Tables 2 and 3. We may notice that the rate of decreasing of values δ(d)
decreases while d grows for the case c = 5/6 (Table 2). On other hand, after
some decreasing, value of δ(d) starts to grow while d grows for the case c = 2/3
(Table 3). Thus, the results given in Tables 2 and 3 indicate a much worse quality
of the Gaussian approximation than the results given in Table 1.

Table 2. Values of δ(d) for c = 5/6.

d 100 200 500 1000 2000

δ(d) 0.267 0.143 0.051 0.021 0.018

Table 3. Values of δ(d) for c = 2/3.

d 10 50 100 200 500

δ(d) 0.321 0.059 0.029 0.047 0.192

Remark 6. Using the proof of Lemma 1, it is easy to consider the case of assem-
bling r independent Poisson flows with intensities λ1 = λ2 = . . . = λs < λs+1 ≤
. . . ≤ λr, to get the inequality

|λ(t) − λ1| ≤
r∑

i=s+1

λiP (n1(t) ≥ ni(t))

and to use Theorem 4 for estimating the probabilities P{n1(1) ≥ ni(t)}, i =
s + 1, . . . , r. The results of performed numerical experiments are very sensitive
to the correct or incorrect choice of the corresponding asymptotic formulas.

6 Convergence of Assembly Flow A2 to Poisson Flow

Consider the union T 2 of independent Poisson flows T1 and T2 with equal inten-
sities λ. It is well-known that T 2 is a Poisson flow with intensity 2λ. Denote its
points as T 2 = {0 = t(0) < t(1) < . . . }.

Also, consider assembly A2 of the flows T1 and T2. Its points {0 = t0 < t1 <
t2 < . . . } are defined by the expressions

tk = inf{t > tk−1 : n1(t) = n2(t)}. (48)

Define the Markov process ν(t) = n2(t) − n1(t) with state space
{0,±1,±2, . . . } and transient intensities λk,k+1 = λk,k−1 = λ, k = 0,±1,±2, . . .
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Process ν(t) has jumps ±1 in the points of flow T 2, and its zeroing points coincide
with points 0 = t0 < t1 < t2 < . . . of assembly flow A2. The random sequence
{ν(t(j)), j = 0, 1, 2, . . . } is a symmetric random walk on the set {0,±1,±2, . . . },
therefore, accordingly to [12, Chapter III, § 3, Lemma 1], we can write

P{ν(t(2j)) = 0} = Cj
2j2

−2j = p2j ≤ p2(j+1), j = 1, 2, . . . , p2j ∼ 1√
πj

, j → ∞.

(49)
Define the random event

k+K⋃
j=k

{ν(t(2j)) = 0} =
2(k+K)⋃

j=2k

{ν(t(j)) = 0} .

Using (49) for the given ε and K, we can derive the following expression:

k(ε,K) =
[

K2

πε2

]
, (50)

and for any k > k(ε,K) we obtain

P

⎧⎨
⎩

2(k+K)⋃
j=2k

{ν(t(j)) = 0}
⎫⎬
⎭ ≤ K√

πk(ε,K)
≤ ε. (51)

Then due to (51), the equality n1(t) = n2(t) does not hold in any 2K points
following the moment t(2k(ε,K)). Therefore, at this time interval, the assembly
flow is Poisson with parameter λ with probability not greater than ε. Note that
in this case, due to formula (50), value of k(ε,K) increases quite rapidly while
ε decreases.

7 Conclusion

Despite the apparent simplicity of the considered model of the assembly flow
of independent Poisson flows, the study have shown that the model is quite
complex for the analysis. In the paper, we have obtained various versions of the
Central limit theorem for the assembly flow both in terms of random variables
and in terms of stochastic processes. Exact asymptotic formulas are derived
for intensity of the assembly flow of identical Poisson flows, and estimations
of the convergence rate are build for the case of non-identical original flows.
Estimations of the convergence rate of the assembly flow of identical Poisson
flows to a Poisson flow are derived.
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Abstract. In this paper, we consider Markov models for two types of
multiserver retrial queues with an input flow rate that depends on a
number of calls in an orbit: classical state-dependent models and state-
dependent queues with limited number of retrials. For both systems,
the conditions for the existence of the stationary regime are defined and
formulas for steady-state probabilities are presented. The investigative
technique is based on approximation of the input system by the system
with truncated state space.

Keywords: Retrial queue · Steady-state probabilities · Service
process · Quasi-birth-and-death process

1 Introduction

Retrial queues form a special class of stochastical models that take into account
an important property of the service process. The call that finds all servers busy
becomes a source of repeated calls. It is usually assumed, that the calls can try
to get service an infinite number of times. However, in some cases, the number
of repeated attempts can be limited. This can be caused by the impatience of
the calls, limited resources, etc. Such type of models is widely used for modeling
and analysis of computer and telecommunication systems, call centers, airport
control systems.

From a practical standpoint, the systems with varying input flow rate are
of special interest. The input flow rate in such systems depends on the number
of repeated calls in the current moment of time (see, e.g. [4]). This allows to
control the input flow in order to maximize the quality of service, eliminate the
possibility of overflow, maximize the income from the system, etc.

Despite the widespread of the retrial queueing systems analytical represen-
tation of the steady state probabilities were obtained only for the simplest cases
[1,3,9]. The mathematical analysis of such systems faces a number of difficulties.
The phenomenon of repeated calls leads to a multi-dimensional service process,
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which is typical for stochastic networks and as a consequence complicates the
theory. The transitions matrix does not have properties, that allow its transfor-
mations for obtaining an explicit solution. Moreover, local characteristics of the
service process in controlled retrial queueing systems depend on the phase point,
which does not allow to use classical approaches of stochastic systems analysis
(e.g. method of generating functions).

In this paper, we develop approach for the analysis of retrial queues with
controlled input flow rate by the systems with limited phase space. For classical
systems and systems with a limited number of retrials, this approach allows
finding explicit formulas of vector-matrix type for probability characteristics of
the truncated system.

2 Mathematical Model of the Classical Retrial Queue
with Controlled Input

Consider a continuous time Markov chain X(t) = (X1(t);X2(t)), X1(t) ∈
{0, 1, . . . , c}, X2(t) ∈ {0, 1, . . . }, that is defined by infinitesimal rates q(i,j)(i′,j′),
(i, j), (i′, j′) ∈ S(X) = {0, 1, . . . , c} × {0, 1, . . . }:

1. For i = {0, 1, . . . , c − 1}

q(i,j)(i′,j′) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λj , when (i′, j′) = (i + 1, j);
iν, when (i′, j′) = (i + 1, j − 1);
iμ, when (i′, j′) = (i − 1, j);

−(λj + jν + iμ), when (i′, j′) = (i, j);
0, otherwise.

2. For i = c

q(c,j)(i′,j′) =

⎧
⎪⎪⎨

⎪⎪⎩

λj , when (i′, j′) = (c, j + 1);
cμ, when (i′, j′) = (c − 1, j);

−(λj + cμ), when (i′, j′) = (c, j);
0, otherwise.

Two-dimensional Markov chain X(t) describes a service process in the fol-
lowing system. The service facility contains c identical servers. Service rate of
each server is μ > 0, ν > 0 - rate of retrial calls flow, λj > 0 - input flow rate
when there are j sources of retrial calls (j calls in the orbit). The first component
X1(t) ∈ {0, 1, . . . , c} indicates the number of busy servers at the instant t ≥ 0
and the second one X2(t) ∈ {0, 1, . . .} is the number of retrial sources.

Let’s write up the ergodicity conditions for X(t), t ≥ 0.

Lemma 1. Let λ = lim
j→∞

λj < ∞. Then under λ < cμ the chain X(t) is ergodic

and its limit distribution is the same as the single stationary one.
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Proof. We will consider the following functions as Lyapunov test functions

φ(i, j) = αi + j, (i, j) ∈ S(X),

where the α parameter will be defined later.
For the given test functions the average transfer

yij =
∑

(i′,j′) �=(i,j)

q(i,j)(i′,j′) (φ(i′, j′) − φ(i, j))

will be

yij =
{

λjα − iμ + jν(α − 1), 0 ≤ i ≤ c − 1,
λjα − cμ, i = c.

Under condition λ < cμ for any α ∈ (λ/cμ, 1) there exists such ε > 0,
so that yij < −ε for all (i, j) ∈ S(X) except of finite number of states (i, j).
So, the conditions of Tweedy theorem ([1], p. 97) are held for test functions
φ(i, j) = αi + j, α ∈

(
λ

nμ , 1
)
.

Lemma is proved.

For the construction of calculating schemes and explicit formulas, we will use
a system with a truncated state space. Such a model operates similarly to the
original queue but has a restriction on the size of an orbit: all new calls are lost
when all servers are occupied and there are N calls in the orbit already. Formally,
the service process in such queue is described by the Markov chain X(t,N) =
(X1(t,N),X2(t,N)), X1(t,N) ∈ {0, 1, . . . , c}, X2(t,N) ∈ {0, 1, . . . , N}. Its
infinitesimal transition rates q

(N)
(i,j)(i′,j′), (i, j), (i′, j′) ∈ S(X,N) = {0, . . . , c} ×

{0, . . . , N} are equal to q(i,j)(i′,j′) of the chain X(t) in all phase points except
the boundary case i = c, j = N , where

q
(N)
(c,N)(i′,j′) =

⎧
⎨

⎩

cμ, when (i′, j′) = (c − 1, N);
−cμ, when (i′, j′) = (c,N);
0, otherwise.

A state space S(N) of the Markov chain X(t,N) is finite. Therefore for
X(t,N) there always exists a stationary regime, and via πij(N), (i, j) ∈ S(X,N)
we will designate its stationary probabilities.

Next, we introduce matrices which are given by the model parameters:
A(j) = ‖ aik(j)‖c

i,k=1 is a matrix with entries aii−1(j) = (j+1)ν, i = 1, . . ., c−
1; ack(j) = (j+1)νcμ

λj
, k �= c−1; acc−1(j) = (j+1)ν(λj+cμ)

λj
and all other entries are

equal to 0;
B(j) = ‖ bik(j)‖c

i,k=1 is a three-diagonal matrix with entries bii−1(j) = −λj ,
i = 2, . . . , c; bii(j) = λj+jν+(i−1)μ, i = 1, . . . , c; bii+1(j) = −iμ, i = 1, . . . , c−1;

C(N) = ‖ cik(N)‖c
i,k=1, where (c11(N), c12(N), . . . , c1c(N)) = eT

1 = (1, 0,
..., 0); and for i = 2, . . . , c: (ci1(N), ci2(N), ..., cic(N)) = (bi−11(N), bi−12(N), ...,
bi−1c(N)).
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Lemma 2. Matrices B(j), j = 0, 1, . . . , N and C(N) are nonsingular.

Proof. Let us check the Adamar’s condition for columns of the matrix B(j),
j = 0, 1, . . . , N (see [11]):

Gj
i ≡ |bii(j)| −

c−1∑

k = 0
k �= i

|bki(j)| > 0, i = 0, . . . , c − 1.

Gj
i = λj + jν + iμ − iμ − λj = jν, i = 0, . . . , c − 2,

Gj
c−1 = λj + jν + (c − 1)μ − (c − 1)μ = λj + jν.

The above conditions are satisfied for all j = 1, . . . , N , which means non-
singularity of B(j), j = 0, 1, . . . , N . For B(0) the weakened Adamar’s condition
holds true. Taking into account the fact that B(0) is indecomposable matrix, we
obtain nonsingularity of B(0).

Since C(N) is a triangular matrix, therefore

|C(N)| =
c−1∑

i=1

bii+1(N) = (−1)c−1(c − 1)!μc−1 �= 0.

So nonsingularity of C(N) takes place and lemma is proved.

For πij(N) Kolmogorov equations may be solved in an explicit vector-matrix
form.

Theorem 1. Let

πT
j (N) = (π0j(N), π1j(N), ..., πc−1j(N)),

Δj(N) =

(∏N−1
i=j B−1(i)A(i)

)
C−1(N)e1

eT
1

(∏N−1
i=0 B−1(i)A(i)

)
C−1(N)e1

, j = 0, 1, ..., N,

where we use the commonly accepted agreement
∏N−1

i=N B−1(i)A(i) = E.
Then

πj(N) = π00(N)Δj(N), j = 0, 1, . . . , N,

πcj(N) = π00(N) (j+1)ν
λj

1̄T (c)Δj+1(N), j = 0, 1, . . . , N − 1,

πcN (N) = π00(N) 1
cμ (λNeT

c + Nν1̄T (n))ΔN (N),

π00(N) =

⎧
⎨

⎩
1̄T (c)Δ0(N) +

N∑

j=1

(

1 +
jν

λj−1

)

1̄T (c)Δj(N)+

1
nμ

(
λNeT

n + Nν1̄T (n)
)
ΔN (N)

}−1

.
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Proof. First, let us consider the Kolmogorov equations corresponding to the
phase points (i, j) ∈ {0, . . . , c − 1} × {0, . . . , N − 1}:

−λjπi−1j(N)+(λj+iμ+jν)πij(N)−(i+1)μπi+1j(N) = (j+1)νπi−1j+1(N) (1)

By an agreement we set π−1k(N) = 0.
Next, we supplement the following equations into (1)

λjπcj(N) = (j + 1)ν
c−1∑

i=0

πij+1(N), j = 0, . . . , N − 1. (2)

The above equations represent an equality of probability flows in stationary
regime through a separation boundary of the phase set S(X,N) = E(j,N) ∪
Ē(j,N), where E(j,N) = {(α, β) ∈ S(X,N) : β ≤ j} (see [12], Section II).

Taking into account the introduces notations, the Eqs. (1), (2) take the fol-
lowing vector-matrix form

B(j)πj(N) = A(j)πj+1(N), j = 0, . . . , N − 1. (3)

For the level j = N we observe

−λNπi−2N (N)+(λN +(i−1)μ+Nν)πi−1N (N)− iμπiN (N) = 0, i = 1, . . . , c−1.

If we supplement the above equations with the identity π0N (N) = π0N (N),
then as a result we will get the system of the following vector-matrix form

C(N)πN (N) = π0N (N)e1. (4)

From (3), (4) we find

πj(N) = π0N (N)

⎛

⎝
N−1∏

i=j

B−1(i)A(i)

⎞

⎠C−1(N)e1, j = 0, 1, . . . , N.

The last formula for j = 0 can be deduced

π0N (N) = π00(N)

{

eT
1

(
N−1∏

i=0

B−1(i)A(i)

)

C−1(N)e1

}−1

.

The probability π00(N) can be found from the normalization condition.
The theorem is proved.

Steady state probabilities πij(N) converge to the probabilities πij when the
truncation level N increases. This fact is a direct corollary of the stochastic
ordering of the migration processes ([1], pp. 111–116).

In case of c = 1, 2 the results of Theorem 1 turn into the explicit formulas of
a scalar type.
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Corollary 1. Let for the state-dependent M|M|1-queue the conditions of
Lemma 1 hold. Then a stationary regime exists and the stationary probabilities
take the form:

π0j = π00

j∏

i=1

ρi−1

[

1 +
1
i

(λi−1/ν − 1)
]

,

π1j = π00
j + 1
λj/ν

j+1∏

i=1

ρi−1

[

1 +
1
i

(λi−1/ν − 1)
]

, j = 0, 1, . . . ,

π00 =

⎧
⎨

⎩
1 +

∞∑

j=1

(

1 +
j

λj−1/ν

) j+1∏

i=1

ρi−1

[

1 +
1
i

(λi−1/ν − 1)
]
⎫
⎬

⎭

−1

,

where ρi = λi/μ is a queue load provided that the number of calls in an orbit
is equal to i.

Corollary 2. Let for the state-dependent M|M|2-queue the conditions of
Lemma 1 hold. Then a stationary regime exists and the stationary probabilities
take the form:

π0j = π00 · λ2
0

(λj + jν)2 + jνμ
· δj ,

π1j = π00 · λ2
0

μ
· λ2

0

(λj + jν)2 + jνμ
· δj ,

π2j = π00 · λ2
0

μ
· (j + 1)ν

λj
· μ + λj+1 + (j + 1)ν
(λj+1 + (j + 1)ν)2 + (j + 1)νμ

· δj+1, j = 0, 1, . . . ,

where π00 =
{

1 + λ0
μ + λ2

0
μ

∑∞
j=1

(
1 + jν

λj−1

)
μ+λj+jν

(λj+jν)2+jνμ
δj

}−1

, δj =
∏j

i=1 ρi−1 · (λi+iν)2+iνμ
iν(λi+iν+μ(1+ρi−1))

, j = 0, 1, . . . , ρi = λi/2μ is a load for the M|M|2-
queue.

Results of Theorem 1 and its corollaries give explicit representations of sta-
tionary probabilities of the multi-channel retrial queue with controlled input
flow. They allow to estimate various integral characteristics of the system, to
solve optimal control and optimization problems.

Next, we present results for queues with limited number of retrials.

3 Steady State Analysis of Systems with Limited
Number of Retrials

Consider an (m + 1)-dimensional Markov chain Qm(t) = (Qm
0 (t), Qm

1 (t), . . . ,
Qm

m(t)), t ≥ 0 in the phase space S(Qm) = {0, 1, . . . , c} × Zm
+ , where

Z+ = {0, 1, . . . } that is defined by its infinitesimal characteristics qββ′ , β =
(i, j1, . . . , jm), β′ = (i′, j′

1, . . . , j
′
m) ∈ S(Qm):
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1. For i = 0, . . . , c − 1, jk ∈ Z+, k = 1, 2, . . . ,m

qββ′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λj1,...,jm , when β′ = (i + 1, j1, . . . , jk, . . . , jm),
iμ, when β′ = (i − 1, j1, . . . , jk, . . . , jm),

j1ν1, when β′ = (i + 1, j1 − 1, . . . , jk, . . . , jm),
j2ν2, when β′ = (i + 1, j1, j2 − 1, . . . , jk, . . . , jm),
. . .

jkνk, when β′ = (i + 1, j1, . . . , jk − 1, . . . , jm),
. . .

jmνm, when β′ = (i + 1, j1, . . . , jk, . . . , jm − 1),
−(λj1,...,jm +iμ +

∑m
k=1 jkνk), when β′ = (i, j1, . . . , jk, . . . , jm),

0, otherwise

2. For i = c, jk ∈ Z+, k = 1, 2, . . . , m

qββ′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λj1,...,jm , when β′ = (c, j1 + 1, . . . , jk, . . . , jm),
cμ, when β′ = (c − 1, j1, . . . , jk, . . . , jm),

j1ν1, when β′ = (c, j1 − 1, j2 + 1, . . . , jm),
j2ν2, when β′ = (c, j1, j2 − 1, j3 + 1, . . . , jm),
. . .

jkνk, when β′ = (c, j1, . . . , jk − 1, jk+1 + 1, . . . , jm),
. . .

jm−1νm−1, when β′ = (c, j1, . . . , jk, . . . , jm−1 − 1, jm + 1),
jmνm, when β′ = (c, j1, . . . , jk, . . . , jm − 1),

−(λj1,...,jm +cμ +
∑m

k=1 jkνk), when β′ = (c, j1, . . . , jk, . . . , jm),
0, otherwise.

The component Qm
0 (t) indicates the number of busy servers at the instant

t ≥ 0 and Qm
k (t), k = 1, . . . ,m – is equal to the number of retrial calls that

have made k unsuccessful attempts to get a service. In the queue the number of
retrials is limited by m.

Markov chain Qm(t) models the service process in the following state-
dependent queue. Service facility of the system consists of c identical servers.
If there is at least one free server on the call arrival, it immediately gets service
and then leaves the system. Service time is a exponentially distributed random
variable with parameter μ. If all the servers are busy, then the call creates a
source of repeated call and tries to get service in a random period of time.
Each call is allowed to make m repeated attempts. If there are no free server at
the time of the last repeated attempt, the call abandons the system and does
not get service. The rate of k − th repeated attempt is νk, k = 1, 2, . . . ,m.
The rate of input flow is λj1,...,jk,...,jm , jk ∈ Z+, k = 1, 2, . . . ,m depends on
the number of sources of repeated calls is the system. The similar process with
λj1,...,jk,...,jm = λ = const was analyzed in [7,8,13] using numerical methods.

Ergodicity conditions for the process Qm(t) are presented by the following
statement.
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Lemma 3. If lim
jm→∞

j−1
m λj1...jk...jm < νm and λj1...,jk...jm , μ, νk > 0, jk ∈ Z+,

k = 1, 2, . . . ,m , then Qm(t) is ergodic and its ergodic distribution πij1...jk...jm ,
(i, j1, . . . , jm) ∈ S(Qm) is the same as the single stationary one.

This result is analog to the result of Lemma 1 and also follows from the
Tweedie theorem [1], p. 97.

The service process for m ≥ 2 becomes complicated and explicit formulas of
the steady state probabilities have not been found so far. However, for m = 1
we give representation of πij1...jk...jm , (i, j1, . . . , jm) ∈ S(Qm) in terms of system
parameters in an explicit form for the case c = 1, 2.

The service process of the retrial queue with one repeated attempt is a two-
dimensional continuous time Markov chain Q1(t) = (Q1

0(t), Q
1
1(t)) ∈ S(Q1),

where Q1
0(t) is the number of busy servers at the instant t ≥ 0 and Q1

1(t),
k = 1, . . . , m is equal to the number of retrial call with a single retrial attempt
to get a service, S(Q1) = {0, . . . , c}×{0, 1, . . . }. The input flow rate in this case
is denoted by λj > 0. It means that λj depends on the number of sources for
single repeated attempt.

Our next goal is to obtain results similar to Corollary 1 for stationary prob-
abilities πij , (i, j) ∈ S(Q1) of the process Q1(t).

Theorem 2. Let for the one-channel state-dependent queue with one retrial
(m = 1) the conditions of Lemma 3 hold. Then for the service process Q1(t) =
(Q1

0(t), Q
1
1(t)) there exists a stationary regime and stationary probabilities take

the form:

π0j =
1

j!νj
1

j∏

i=1

λi−1(λi−1 + (i − 1)ν1)
λi + iν1 + μ

π00, j = 1, 2, . . . ,

π1j =
λ0

μ

1
j!νj

1

j∏

i=1

λi−1(λi + iν1)
λi + iν1 + μ

π00, j = 0, 1, . . . ,

where

π−1
00 =

∞∑

j=0

{
1

j!νj
1

j∏

i=1

λi−1(λi−1 + (i − 1)ν1)
λi + iν1 + μ

+
λ0

μ

1
j!νj

1

j∏

i=1

λi−1(λi + iν1)
λi + iν1 + μ

}

.

Proof. Let us write the Kolmogorov set of equations

(λj + jν1)π0j = μπ1j , j = 0, 1, . . . , (5)

(λj+μ+jν1)π1j = λjπ0j+λj−1π1j−1+(j+1)ν1π0j+1+(j+1)ν1π1j+1, j = 0, 1, . . . .
(6)
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Using an equality of probability flows in stationary regime through a sepa-
ration boundary of the phase set S(Q1) = Sj(Q1) ∪ Sj(Q1), where Sj(Q

1) =
{
(n,m) ∈ S(Q1) : m ≤ j

}
, we get

λjπcj = (j + 1)ν1(π0j+1 + π1j+1), j = 0, 1, . . . .

Taking into account the last equation, we can write Eq. (6) in the following
form:

(μ + jν1)π1j = λjπ0j + λj−1π1j−1, j = 0, 1, . . . .

The expression from (5)

π1j =
1
μ

(λj + jν1)π0j , j = 0, 1, . . . .

is substituted into last equation and leads to the recurrence relation for π0j :

jν1(λj + jν1 + μ)π0j = λj−1(λj−1 + (j − 1)ν1)π0j−1, j = 0, 1, . . . .

Then we can find probability π0j , j = 0, 1, . . . :

π0j =
1

j!νj
1

j∏

i=1

λi−1(λi−1 + (i − 1)ν1)
λi + iν1 + μ

π00, j = 0, 1, . . .

and can write π1j :

π1j =
1
μ

(λj + jν1)π0j =
λ0

μ

1
j!νj

1

j∏

i=1

λi−1(λi + iν1)
λi + iν1 + μ

π00, j = 0, 1, . . . .

The stationary probability π00 we obtain from the normalization condition∑∞
j=0 (π0j + π1j) = 1.
Theorem is proved.

In order to formulate an analog of Corollary 2, we again use approximation
with truncated system technique. This system has a fixed number of N places
in the orbit. This means that the repeated call leaves the system if all servers
are busy and there are N calls in the orbit already.

We can define the service process for truncated model as two-dimensional
Markov chain Q1(t,N) = (Q1

0(t,N), Q1
1(t,N)) with continuous time in the phase

space S(Q1, N) = {0, . . . , c} × {0, 1, . . . , N}.
The infinitesimal transitions rates of Q1(t,N) are the same as the infinitesi-

mal transitions rates of the chain Q1(t), except the case i = c, j = N where:

q(c,N)(i′,j′) =

⎧
⎪⎪⎨

⎪⎪⎩

cμ, when (i′, j′) = (c − 1, N),
Nν, when (i′, j′) = (c,N − 1),

−(cμ + Nν), when (i′, j′) = (c,N),
0, otherwise;
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We introduce the following notations. Let xj =
∑∞

n=1
αj+n|
|βj+n

be the continued
fraction where for j = 1, 2, . . . ,

αj = −λj−1((λj−1+(j−1)ν1)
2+(j−1)ν1μ)

j(j+1)ν2
1μ

,

βj = − jν1((λj+μ+jν1)
2+μ(λj−1+μ+jν1))

j(j+1)ν2
1μ

.

Theorem 3. Let for the two-channel state-dependent queue with one retrial the
conditions of Lemma 3 hold. Then for the service process there exists a stationary
regime and stationary probabilities take the form:

π0j =

(
j−1∏

k=0

xk

)

π00,

π1j =
λj + jν1

μ

(
j−1∏

k=0

xk

)

π00,

π2j =
1

2μ2

(
(λj + jν1)2 + jν1μ − (j + 1)ν1μxj

)
(

j−1∏

k=0

xk

)

π00, j = 0, 1, . . . ,

where π−1
00 = 1

2μ2

∑∞
j=0

(
(λj + μ + jν1)2 + μ(μ + jν1 − (j + 1)ν1xj)

)∏j−1
k=0 xk.

Proof. Let us denote the stationary probabilities of the truncated state-
dependent queue as πij(N), (i, j) ∈ S(Q1, N).

We build Kolmogorov set of equations for πij(N), (i, j) ∈ S(Q1, N):

(λj + jν1)π0j(N) = μπ1j(N), j = 0, . . . , N, (7)

(λj+μ+jν1)π1j(N) = λjπ0j(N)+2μπ2j(N)+(j+1)ν1π0j+1(N), j = 0, . . . , N−1,
(8)

(λj + 2μ + jν1)π2j(N) =
λjπ1j(N) + λj−1π2j−1(N) + (j + 1)ν1π1j+1(N) + (j + 1)ν1π2j+1(N), (9)

j = 0, . . . , N − 1,

λjπcj(N) = (j + 1)ν1 (π0j+1(N) + π1j+1(N) + π2j+1(N)) , j = 0, . . . , N − 1,
(10)

(λN + μ + Nν1)π1N (N) = λNπ0N (N) + 2μπ2N (N), (11)
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(2μ + Nν1)π2N (N) = λNπ1N (N) + λN−1π2N−1(N). (12)

Taking (7), we write expression π1j(N) = λj+jν1
μ π0j(N), j = 0, 1, . . . , N that

is substituted into (8) and we have

2μ2π2j(N) = ((λj + jν1)2 + jν1μ)π0j(N)− (j +1)ν1μπ0j+1(N), j = 0, . . . , N −1.
(13)

Using similar substitution, we can write Eq. (11) in following form:

2μ2π2N (N) = ((λN + Nν1)2 + Nν1μ)π0N (N). (14)

Using formulas (12)–(14), we get

λN−1((λN−1 + (N − 1)ν1)2 + (N − 1)ν1μ)π0N−1(N) =
Nν1((λN + μ + Nν1)2 + μ(λN−1 + μ + Nν1))π0N (N). (15)

We can write the last result in new notation

αNπ0N−1(N) = βNπ0N (N), (16)

where
αN = λN−1((λN−1 + (N − 1)ν1)2 + (N − 1)ν1μ),

βN = Nν1((λN + μ + Nν1)2 + μ(λN−1 + μ + Nν1)).

Using Eq, (10) and expression for π1j(N), we can write (9) as

(2μ + jν)π2j(N) = λj(λj+jν1)
μ π0j(N) + λj−1π2j−1(N) − (j + 1)ν1π0j+1(N),

j = 0, . . . , N − 1.

Then we use (13) for the last equation. Thus, according to notation for αj

and βj we get

αjπ0j−1(N) = βjπ0j(N) + π0j+1(N), j = 0, . . . , N − 1. (17)

Let us divide the left- and right-hand sides by π0N−1(N) in (16) and by
π0j(N) in (17). Passing to the new variable xj(N) =

∑N
n=1

αj+n|
|βj+n

= π0j+1(N)
π0j(N) we

get:

αj

xj−1(N) = βj + xj(N), j = 1, 2, . . . , N − 1,

xN−1(N) = αN

βN
.
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These formulas allow getting the stationary probabilities π0j(N), j =
0, 1, . . . , N − 1 in terms of continued fractions xj(N), j = 0, 1, . . . , N − 1:

π0j(N) =

⎛

⎝
N−1∏

k=j

xk(N)

⎞

⎠

−1

π0N (N), j = 0, 1, ..., N − 1.

Using the last expression for j = 0, we get π0N (N) via π00(N):

π0N (N) =

⎛

⎝
N−1∏

k=j

xk(N)

⎞

⎠π00(N).

Then we obtain formulas for π0j(N), j = 1, 2, . . . , N , π1j(N), j = 0, 1, . . . , N ,
that only depend on π00(N):

π0j(N) =

(
j−1∏

k=0

xk(N)

)

π00(N), j = 1, . . . , N

π1j(N) =
λj + jν1

μ

(
j−1∏

k=0

xk(N)

)

π00(N), j = 0, 1, . . . , N.

Formulas (13), (14) allow finding the stationary probabilities π2j(N), j =
0, 1, . . . , N :

π2j(N) =
1

2μ2
((λj + jν1)2 + jν1μ − (j + 1)ν1μxj(N))

(
j−1∏

k=0

xk(N)

)

π00(N),

j = 0, 1, . . . , N,

π2N (N) =
(λN + Nν1)2 + Nν1μ

2μ2

(
N−1∏

k=0

xk(N)

)

π00(N).

According to the normalization condition
∑N

j=0 (π0j(N) + π1j(N) + π2j

(N)) = 1 we get

(π00(N))−1 = 1
2μ2

(∑N
j=0

(
(λj + μ + jν1)2 + μ(μ + jν1)

) (∏j−1
k=0 xk(N)

)

− ∑N−1
j=0 (j + 1)ν1μxj(N)

(∏j−1
k=0 xk(N)

))
.

Service processes Q1(t) and Q1(t,N) are migration processes. Therefore, on
the basis of the results from [1], Sect. 2, Theorems 2.3 and 2.4 as N → ∞ the
stationary probabilities πij(N) of the truncated model approximate the station-
ary probabilities πij of the input model. Thus, we pass to the limit in formulas
for πij(N) as N → ∞ we get the expressions for stationary probabilities that
we need to prove.
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We note that in contrast to the classical models now the explicit formulas
contain the continued fractions as components. For πij(N), (i, j) ∈ S(Q1, N)
Kolmogorov equations can be solved in an explicit vector-matrix form (see [6]).
The obtained results can be used to solve optimization problems in the class of
threshold strategies (see, for example, [2–5,10]).

4 Conclusion

In this paper, we have presented the research of multiserver state-dependent
retrial queues of two types: classical systems and systems with a limited number
of repeated attempts. The rate of input calls flow in the systems under investi-
gation depends on the current number of repeated calls. For both types of sys-
tems, we have found ergodicity conditions and obtained explicit representations
of steady-state probabilities. These results allow to carry out further analysis of
the service process and compute different integral characteristics. They also give
an efficient algorithm for solving optimization problems.
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Abstract. In the work a multichannel queueing network with a general input
flow is considered [3]. There are no restrictions on the structure of the input flow.
Heavy traffic conditions on the network parameters are introduced. A functional
limit theorem for the service process of the network is proved provided that the
conditions are satisfied. Approximative Gaussian process is constructed. An addi-
tional splittability condition for the switching matrix of the network yields an
opportunity to merge network nodes and to reduce dimension of the limit process
at the Gaussian approximation scheme. Convergence is proved in the uniform
topology, which enables solving optimization problems for correspondent func-
tionals.

Keywords: Multichannel queueing network · Heavy traffic regime · Gaussian
approximation · Asymptotic merging

1 Introduction

In the analysis of nowadays real-life networks such as data transmission networks, com-
puter networks, queueing models of stochastic systems and networks are efficiently
used [1–4]. Their structure is determined by the probabilistic characteristics of the input
information flows, data processing algorithms. Typically, the information processing in
stochastic networks are high-dimensional vectors with interconnected components and
complex system of stochastic relations defining the process. Thus, one of significant
problems in simulation and studying of stochastic networks is connected with the large
dimension of descriptive processes for the networks and complexity of the phase space
of a stochastic model. To overcome such problems, an approach of asymptotic merg-
ing of nodes set is proposed for investigation of a general-type multichannel queueing
network.

The merging approach of phase space for stochastic systems was pioneered by
works of V.S. Korolyuk [5,6] and V.V. Anisimov [7,9], who developed different
methodologies in this direction. Nowadays, many works are dedicated to the solution of
the phase merging problems (see, for example, [8,10]). According to this methodology,
phase space can be merged and models under consideration can be simplified.
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In contrast to these works, we use the approach of asymptotic merging in relation
to the set of nodes for multichannel queueing networks operating under heavy traffic
conditions [11]. For such networks we consider a multidimensional service process that
is a stochastic process indicating the number of customers being processed at the nodes
of the network. Considering the network processing under assumptions of heavy traffic
regime yields the opportunity to approximate the service process by a Gaussian process
(see, for example, [12–14]). Since for multichannel stochastic networks the service pro-
cess can be a vector-process with high dimension, the merging approach allows us to
reduce dimension of considered stochastic processes, and therefore it simplifies notably
network analysis. An additional condition for the switching matrix of the network pro-
vides an effect of consolidation for some network nodes to a similar-type node, and
the set of the network nodes can be merged. As a result, for the service process in the
merged network, we have a form of limit processes, simpler than for the original one.

Note that we prove the convergence of the corresponding service processes in the
uniform topology. This can be used to the calculating of the quality functionals of net-
work operation and to the solving optimization problems [15].

The rest of the paper is organized as follows. In Sect. 2, the main mathematical
model is described in details. In Sect. 3 conditions on network parameters are formu-
lated. We need them for proving our main result (a functional limit theorem). Section 4
presents the main result on Gaussian approximation for the merged network. For such a
network operating in heavy traffic regime, an approximating Gaussian process is given,
and its characteristics are specified via the network parameters. Approach with merging
of the nodes set reduces the dimension of the limit Gaussian process. It should be noted
that the limit process in general case is a non-Markov process. In Sect. 5 some auxiliary
results are proved. Section 6 provides the proof of the main result. In Sect. 7 a partic-
ular case is described. In this case the limit process in a diffusion process. Section 8
concludes the work.

2 Model Description

In the work we consider a multichannel network of a [G|GI|∞]r type. Such a network

consists of r service nodes. At instants τ(i)k , k = 1,2, ..., the i-th node receives calls from
the outside for service at the network, we denote the number of calls arrived in the
period of time [0, t] by νi(t). There are no restrictions on the structure of the input flow
ν(t) = (ν1(t), ...,νr(t))

′ .
Each of the r nodes is a multi-channel queueing system. If a call arrives in such a

system, its service begins immediately. For the i-th node distribution function of service
time will be denoted by Gi(t), and its Laplace-Stieltjes transformation by

Gi(s) =
∫ ∞

0
e−stdGi(t), i = 1, ...,r .

The direction of movement of a call within the network is controlled by the switch-
ing matrix P = ‖pi j‖r

1. For any i = 1,2, ...,r, if a call has its service finished in the i-th

node, pir+1 = 1−
r
∑
j=1

pi j represents a probability of the call’s exit from the network.
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The service process in the [G|GI|∞]r-network is defined as an r- dimensional pro-
cess Q(t) = (Q1(t), ...,Qr(t))′, where Qi(t), i = 1,2, ...,r, is the number of calls in the
i-th node at an instant t, t ≥ 0.

Let a call be in the node numbered m at the initial instant t = 0, and let its service
do not begin before t = 0. We connect the service process Q(t) with a semi-Markov
process x(m)(t) ∈ {1, ...,r,r+1} which describes the service path of the call within the
[G|GI|∞]r-network. Based on the algorithm of call service at the [G|GI|∞]r-network,
we conclude that x(m)(t) has a semi-Markov matrix

∥∥Gi j(t)
∥∥r+1
1 of the form

Gi j(t) =
{

pi jGi(t), i = 1,2, ...,r, j = 1,2, ...,r,r+1,
δr+1 jGr+1(t), i = r+1, j = 1,2, ...,r,r+1,

Gr+1(t) =
{
0, t < 1,
1, t ≥ 1,

where δi j is the Kronecker delta. At the initial instant t = 0 we have x(m)(0) = m and
distribution function of the sojourn time in the initial state coincides with Gm(t).

The state r+1 for the process x(m)(t) is absorbing. Absorption in r+1 is interpreted
as an exit from the network. We denote the transient probabilities of the semi-Markov
process x(m)(t) by

pm
i (t) = P

{
x(m)(t) = i

}
,

pm
i j(s, t) = P

{
x(m)(s) = i, x(m)(t) = j

}
, s < t,

P(t) =
∥∥∥pi

j(t)
∥∥∥r

1
, P(m)(s, t) =

∥∥∥pm
i j(s, t)

∥∥∥r

i, j=1

3 Underlying Conditions

Now let us introduce four conditions that we need for proving our limit theorems. The
first condition is connected with the starting load of the network, the second and the
third are the heavy traffic conditions, and the fourth is a condition for the switching
matrix to be splittable.

So, firstly, during this work it is assumed that at the initial time t = 0 the network is
empty:

1) Qi(0) = 0, i = 1, ...,r .
Since the main purpose of this work is to study the service process Q(t) in the
heavy traffic regime, we specify now correspondent conditions as conditions on the
network parameters. So, the heavy traffic regime means that the network parameters

depend on the series number n (Q(t) = Q(n)(t), ν(t) = ν(n)(t), τ(i)k = τ(i,n)k , P =
P(n), P(t) = P(n)(t), P(m)(s, t) = P(m,n)(s, t), Gi(t) = G(n)

i (t), i = 1, ...,r) so that the
following two conditions for the input flow and service time at the network nodes
are met.
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2) There exist constants λi ≥ 0, i = 1, ...,r, λ1+ ...+λr �= 0, such that

n−1/2
(

ν(n)
1 (nt)−λ1nt, ...,ν(n)

r (nt)−λrnt
)

U⇒
n→∞

W (t) = (W1(t), ...,Wr(t))
′ ,

where W (t) is an r-dimensional Brownian motion process with a zero vector of
mean values EW (1) = (0, ...,0)′ and with a correlation matrix EW (1)W ′(1) = σ2 =∥∥∥σ2

i j

∥∥∥r

1
, the symbol

U⇒ means weak convergence in the uniform topology.

3) For some numerical sequence {gn}n
1 such that gn → ∞ when n → ∞, there exist limits

for Laplace-Stieltjes transformations Gi(s) = G(n)
i (s) :

lim
n→∞

gn(1−G(n)
i (s/n)) = μi(s), i = 1, ...,r.

Note, that if in each node of the [G|GI|∞]r-network there exists a mean service
time of calls and distribution function of service time does not depend on the series
number n, then condition 3) is fulfilled for gn = n, n ≥ 1.
And, at least, in order to the set I = {1, ...,r} of [G|GI|∞]r-network nodes be able to
be asymptotically merged, we require the following condition:

4) The set of serving nodes I can be divided into classes I1, ..., Ir0 (Ii ∩ I j = ∅, i �=
j, i, j = 1, ...,r0) in such a way that
i) P(n) = P0+g−1

n B0+o(g−1
n ),

p(n)i r+1 = g−1
n bir+1+o(g−1

n );

ii) aαα = −
r0+1
∑

β=1,β �=α
aαβ �= 0;

iii) The spectral radius of the matrix P̂ =
∥∥p̂αβ

∥∥r0
1 =

∥∥(1−δαβ aαβ/(−aαα)
∥∥r0
1 is

strictly less than 1,
where
P0 =

∥∥δαβ P(α)
∥∥r0
1 , P(α) =

∥∥pi j(α)
∥∥

i, j∈Iα
, is an indecomposable stochastic

matrix with stationary distribution ρi(α), i ∈ Iα ;
B0 =

∥∥bi j
∥∥r
1 = ‖B(α,β )‖r0

1 , B(α,β ) =
∥∥bi j

∥∥
i∈Iα , j∈Iβ

are rectangular matrices

of size |Iα |× |Iβ |, α,β = 1, ...,r0;
aαβ = ρ ′(α) · B0 · 1(β ), α,β = 1, ...,r0, α �= β , aα r0+1 = ρ ′(α) · br+1, α =
1, ...,r0, b′

r+1 = (b1r+1, ...,br r+1);
ρ(α) is an r- dimensional vector with its i-th entry equal to ρi(α) if i ∈ Iα , and
equal to zero otherwise, α = 1, ...,r0;
1(β ) is an r- dimensional vector with its i-th entry equal to 1 if i ∈ Iβ , and equal
to zero otherwise, β = 1, ...,r0.

4 Main Result

Let x̂(α)
0 (t)∈ {1, ...,r0,r0+1} be a semi-Markov process, for which the state r0+1 is an

absorbing one, x̂(α)
0 (0) = α, α = 1, ...,r0, the matrix of transient probabilities between
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states {1, ...,r0} for the embedded chain is equal to P̂, and the sojourn time in the state
α has the following Laplace-Stiltjes transformation:

Ĝα(s) =
(−aαα)

(−aαα)+ μ̂α(s)
, μ̂α(s) = ∑

i∈Iα

ρi(α)μi(s), α = 1,2, ...,r0.

The corresponding probability distributions of x̂(α)
0 (t) are denoted by

p̂α
β (t) = P

{
x̂(α)
0 (t) = β

}
, P̂(t) =

∥∥∥p̂α
β (t)

∥∥∥r0

α,β=1
,

p̂α
βγ(s, t) = P

{
x̂(α)
0 (s) = β , x̂(α)

0 (t) = γ
}
, P̂(α)(s, t) =

∥∥∥p̂α
βγ(s, t)

∥∥∥r0

β ,γ=1
, s < t .

In order to describe a limit of the sequence of stochastic processes

ξ̂ (n)′(t) = n−1/2
(

Q(n)′(nt)−nλ ′
(∫ t

0
P(n)(nu)du

))
Ê, n > 2,

where λ ′ = (λ1, ...,λr), Ê = ‖1(1)...1(r0)‖ is a rectangular matrix of size r × r0, it is
necessary to introduce two independent Gaussian processes ξ̂ (1)(t) and ξ̂ (2)(t) which
have zero mean values and correlation matrices

R̂(1)(t) =
∫ t

0
P̂′(u)σ̂2P̂(u)du,

R̂(1)(s, t) =
∫ s

0
P̂′(u)σ̂2P̂(u+ t − s)du, s < t,

R̂(2)(t) =
∫ t

0

[
Δ

(
λ̂ ′P̂(u)

)
− P̂′(u)Δ(λ̂ )P̂(u)

]
du,

R̂(2)(s, t) =
r0

∑
α=1

λ̂α

∫ s

0

[
Δ (p̂α(u))− p̂α(u)p̂′

α(u)
]

Ê(α)(u,u+ t − s)du, s < t,

where

Δ(x) =
∥∥δαβ xα

∥∥r0
1 for any vector x′ = (x1, ...,xr0),

p̂α(t) is the line of the matrix P̂(t) with the number α,
σ̂2 =

∥∥σ̂αβ
∥∥r0
1 = Ê ′σ2Ê,

λ̂ ′ = (λ̂1, ..., λ̂r0) = λ ′Ê,
Ê(α)(s, t) =

∥∥∥Ê(α)
βγ (s, t)

∥∥∥ ,
Ê(α)

βγ (s, t) = p̂(α)
βγ (s, t)/p̂(α)

β (s) if p̂(α)
β (s) �= 0 and Ê(α)

βγ (s, t) = 0 otherwise.

For the sequence ξ̂ (n)(t), n > 2, such a result is valid.

Theorem 1. Let the queueing network of [G|GI|∞]r type satisfy conditions 1)–4). Then,
on any finite interval [0,T ], the sequence of stochastic processes ξ̂ (n)(t), n > 2, weakly
converges to ξ̂ (1)(t)+ ξ̂ (2)(t) in the uniform topology.
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Note that the limit process is a sum of two independent Gaussian processes. Here-
with, the first term is conditioned by fluctuations of input flow while the second is
conditioned by fluctuations of service times.

Before proving the theorem, we provide some auxiliary statements.

5 Auxiliary Results

According to the partition of nodes {1, ...,r} =
⋃r0

β=1 Iβ (Iα
⋂

Iβ = 
 when α �= β ), we
build enlarged process

x̂(t) =
{

β , if x(m)(t) ∈ Iβ ,

r0+1, if x(m)(t) = r+1.

If x(m)(0) = m ∈ Iα , then x̂(0) = α, and we denote x̂(t) = x̂(α)(t).
In the case when the characteristics of the [G|GI|∞]r-network depend on the series

number n and conditions 3), 4) are satisfied, then it follows from the results of Chap. 8
in [9]

x̂(α)
n (nt) d⇒ x̂(α)

0 (t),

where the semi-Markov process x̂(α)
0 (t) is defined above by the matrix of transitions of

the embedded chain P̂, and Laplace-Stieltjes transformations Ĝα(s) of the sojourn time

in the state α.
d⇒ denotes convergence of finite-dimensional distributions.

When we prove Theorem 1, we will need limits of the integrals of the transient

functions of the process x(m)
n (t). In compliance with methods of the asymptotic theory

of perturbed linear operators (see [16], Chap. 3), these limits can be written via the

correspondent integrals of transient functions for the enlarged process x̂(α)
0 (t).

Lemma 1. If conditions 3) and 4) are satisfied, then for arbitrary t, Δ > 0, we have

lim
n→∞

∫ t

0
pm(n)

Iβ
(nu)du =

∫ t

0
p̂α

β (u)du, (1)

lim
n→∞

∫ t

0
pm(n)

Iβ Iγ
(nu,nu+nΔ)du =

∫ t

0
p̂α

βγ(u,u+Δ)du, (2)

where

m ∈ Iα , pm(n)
Iβ

(nu) = ∑
i∈Iβ

pm(n)
i (nu),

pm(n)
Iβ Iγ

(nu,nu+nΔ) = ∑
i∈Iβ , j∈Iγ

pm(n)
i j (nu,nu+nΔ) .

The limit for the service process has two independent terms ξ̂ (1)(t) and ξ̂ (2)(t). In
order to distinguish the term ξ̂ (1)(t) that is connected with the fluctuations of the input
flow, we need the following result.
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Lemma 2. For an r-dimensional Brownian motion Ŵ ′(t) =
(
Ŵ1(t), ...,Ŵr0(t)

)
=

W ′(t)Ê ∫ t

0
dŴ ′(u)P̂(t −u) d= ξ̂ (1)′(t),

where
d= means the equality of finite-dimensional distributions of stochastic processes.

Proof of this fact follows from the properties of stochastic integrals presented, for
instance, in [17], Sect. 15.

6 Proof of the Theorem

Let us check that
ξ̂ (n)(t) d⇒

n→∞
ξ̂ (1)(t)+ ξ̂ (2)(t) (3)

For the characteristic function

ϕ̂(n)(s) = Eexp
{

iξ̂ (n)′(t)s
}
, s′ = (s1, ...,sr0) ∈ R

r0 ,

of the one-dimensional distribution ξ̂ (n)(t) the following takes place

lim
n→∞

ϕ̂(n)(s) = lim
n→∞

exp
{

−in1/2q̂(n)
′
(t)s

}

×Eexp

⎧⎨
⎩

r

∑
m=1

ν(n)
m (nt)

∑
k=1

[
in−1/2p(n)

′
m (nt − τ(m,n)

k )s̃− 1
2

n−1p(n)
′

m (nt − τ(m,n)
k )s̃2

+
1
2

n−1s̃′ p(n)m (nt − τ(m,n)
k )p(n)

′
m (nt − τ(m,n)

k )s̃
]}

(4)

where

q̂(n)
′
(t) = (q̂(n)1 (t), ..., q̂(n)r0 (t)) = λ ′

(∫ t

0
P(n)(nu)du

)
Ê,

s̃ = (s̃1, s̃2, ..., s̃r)′ is an r-dimensional vector with values s̃ = ∑r0
α=1 sα1(α) = Ê · s,

s̃2 = (s̃21, s̃
2
2, ..., s̃

2
r )

′ , p(n)m (t) is the mth row of the matrix P(n)(t) .
Let

W (n)
i (t) = n−1/2(ν(n)

i (nt)−λint), i = 1,2, ...,r,

W (n)′(t) =
(

W (n)
1 (t), ...,W (n)

r (t)
)
,

P̃(n)(t) =
∥∥∥pi(n)

Iα
(t)

∥∥∥
i∈I, α∈Î

is a rectangular matrix of size r × r0, where I = {1,2, ...,r} ,
Î = {1,2, ...,r0} , p̃(n)

′
m (t) =

(
pm(n)

I1
(t), ..., pm(n)

Ir0
(t)

)
is the mth row of the matrix P̃(n)(t).
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Then, taking into account (1), we can see that (4) yields

lim
n→∞

ϕ(n)(s) = lim
n→∞

exp
{
−in1/2q̂(n)

′
(t)s

}

×Eexp

{
i

(∫ t

0
dW (n)′(u)P̃(n)(nt −nu)

)
s+ in1/2q̂(n)

′
(t)s

−1
2

λ ′
∫ t

0
P̃(n)(nu)dus2 − 1

2
n−1/2

(∫ t

0
dW (n)′(u)P̃(n)(nt −nu)

)
s2

+
1
2

s′
[

r

∑
m=1

λm

∫ t

0
p̃(n)m (nu)p̃(n)

′
m (nu)du

]
s

+
1
2

n−1/2s′
[

r

∑
m=1

∫ t

0
dW (n)

m (u)p̃(n)m (nt −nu)p̃(n)
′

m (nt −nu)du

]
s

}

= exp

{
−1
2

s′
[

Δ
(

λ̂ ′
∫ t

0
P̂(u)du

)
−

∫ t

0
P̂′(u)Δ(λ̂ )P̂(u)du

]
s

}

×Eexp

{
i
∫ t

0
dŴ ′(u)P̂(t −u)s

}
,

where s2 = (s21, ...,s
2
r0)

′ , Ŵ ′(u) =W ′(u)Ê.
The last expression is a characteristic function of ξ̂ (1)(t)+ ξ̂ (2)(t). Thus, the con-

vergence of one-dimensional distributions is proved.
Similarly, consider the characteristic function of two-dimensional distributions

ϕ(n)(s(1),s(2)) = Eexp
{

iξ̂ (n)′(t1)s(1)+ iξ̂ (n)′(t2)s(1)
}
, t1 < t2,

s′(1) =
(
s1(1), ...,sr0(1)

)
, s′(2) =

(
s1(2), ...,sr0(2)

) ∈ R
r0 .

We obtain

lim
n→∞

ϕ(n)(s(1),s(2)) =

lim
n→∞

exp

{
−in1/2λ ′

∫ t1

0
P(n)(nu)dus̃(1)− in1/2λ ′

∫ t2

0
P(n)(nu)dus̃(2)

}

×Eexp

⎧⎨
⎩

r

∑
m=1

ν (n)
m (nt1)

∑
k=1

[
i√
n

(
p(n)

′
m (nt1 − τ(m,n)

k )s̃(1)+ p(n)
′

m (nt2 − τ(m,n)
k )s̃(2)

)

−1
n

(
1
2

p(n)
′

m (nt1 − τ(m,n)
k )s̃2(1)+

1
2

p(n)
′

m (nt2 − τ(m,n)
k )s̃2(2)

+s̃′(1)P(m,n)(nt1 − τ(m,n)
k ,nt2 − τ(m,n)

k )s̃(2)
)

+
1
2
1
n

(
s̃′(1)p(n)m (nt1 − τ(m,n)

k )p(n)
′

m (nt1 − τ(m,n)
k )s̃(1)

+ s̃′(2)p(n)m (nt2 − τ(m,n)
k )p(n)

′
m (nt2 − τ(m,n)

k )s̃(2)
)
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+
1
n

s̃′(1)p(n)m (nt1 − τ(m,n)
k )p(n)

′
m (nt2 − τ(m,n)

k )s̃(2)
]

+
r

∑
m=1

ν (n)
m (nt2)

∑
k=ν (n)

m (nt1)+1

[
i√
n

(
p(n)

′
m (nt2 − τ(m,n)

k )s̃(2)− 1
2
1
n

p(n)
′

m (nt2 − τ(m,n)
k )s̃2(2)

+
1
2
1
n

s̃′(2)p(n)m (nt2 − τ(m,n)
k )p(n)

′
m (nt2 − τ(m,n)

k )s̃(2)
]}

,

where s̃(i) = Ês(i), i = 1,2 .
Replacing the sums by the integrals along the path of the process and using relations

(1), (2), we find

lim
n→∞

ϕ(n)(s(1),s(2)) =

lim
n→∞

Eexp

{
i

(∫ t1

0
dW (n)′(u)P̃(n)(nt1 −nu)

)
s(1)+ i

(∫ t2

0
dW (n)′(u)P̃(n)(nt2 −nu)

)
s(2)

−1
2

(
λ ′

∫ t1

0
P̃(n)(nu)du

)
s2(1)− 1

2

(
λ ′

∫ t2

0
P̃(n)(nt2 −nu)du

)
s2(2)

−s′(1)

(
r

∑
m=1

λm

∫ t1

0
Ê ′P(m,n)(nu,nu+nΔ t2)Êdu

)
s(2)

+
1
2

s′(1)

(
r

∑
m=1

λm

∫ t1

0
p̃(n)m (nu)p̃(n)

′
m (nu)du

)
s(1)

+
1
2

s′(2)

(
r

∑
m=1

λm

∫ t2

0
p̃(n)m (nt2 −nu)p̃(n)

′
m (nt2 −nu)du

)
s(2)

+s′(1)

(
r

∑
m=1

λm

∫ t2

0
p̃(n)m (nu)p̃(n)

′
m (nu+nΔ t2)du

)
s(2)

+i

(∫ t2

t1
dW (n)′(u)P̃(n)(nt2 −nu)

)
s(2)− 1

2

(
λ ′

∫ t2

t1
P̃(n)(nt2 −nu)du

)
s2(2)

+
1
2

s′(2)

(
r

∑
m=1

λm

∫ t2

t1
p̃(n)m (nt2 −nu)p̃(n)

′
m (nt2 −nu)du

)
s(2)

}

= exp

{
−1
2

s′(1)Δ
(

λ̂ ′
∫ t1

0
P̂(u)du

)
s(1)− 1

2
s′(2)Δ

(
λ̂ ′

∫ t1

0
P̂(t2 −u)du

)
s(2)

−s′(1)

(
r0

∑
α=1

λ̂α

∫ t1

0
P̂(α)(u,u+Δ t2)du

)
s(2)

+
1
2

s′(1)
(∫ t1

0
P̂′(u)Δ(λ̂ )P̂(u)du

)
s(1)

+
1
2

s′(2)
(∫ t2

0
P̂′(t2 −u)Δ(λ̂ )P̂(t2 −u)du

)
s(2)

+s′(1)
(∫ t1

0
P̂′(u)Δ(λ̂ )P̂(u+Δ t2)du

)
s(2)

−1
2

s′(2)Δ
(

λ̂ ′
∫ t2

t1
P̂(t2 −u)du

)
s(2)
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+
1
2

s′(2)
(∫ t2

t1
P̂′(t2 −u)Δ(λ̂ )P̂′(t2 −u)du

)
s(2)

}

×Eexp

{
i

(∫ t1

0
dŴ ′(u)P̂(t1 −u)

)
s(1)+ i

(∫ t2

0
dŴ ′(u)P̂(t2 −u)

)
s(2)

}
,

s2(i) = (s21(i), ...,s
2
r0(i))

′, i = 1,2.
After performing the obvious algebraic transformations in the last expression, we

come to the following equality

lim
n→∞

ϕ(n)(s(1),s(2))

= exp

{
−1
2

s′(1)
∫ t1

0

[
Δ(λ̂ ′P̂(u))− P̂′(u)Δ(λ̂ )P̂(u)

]
dus(1)

−1
2

s′(2)
∫ t2

0

[
Δ(λ̂ ′P̂(u))− P̂′(u)Δ(λ̂ )P̂(u)

]
dus(2)

−s′(1)

[
r0

∑
α=1

λ̂α

∫ t1

0

[
Δ(p̂α(u))− p̂α(u)p̂′

α(u)
]

Ê(α)(u,u+ t2 − t1)du

]
s(2)

}

×Eexp

{
i

(∫ t1

0
dŴ ′(u)P̂(t1 −u)

)
s(1)+ i

(∫ t2

0
dŴ ′(u)P̂(t2 −u)

)
s(2)

}
. (5)

Equation (5) means the convergence of two-dimensional distributions. Convergence
of N- dimensional distributions for N > 2 is checked similarly.

Reinforcement (3) to the convergence in the uniform topology can be done in the
same way as in [18]. The theorem is proved.

7 Approximative Process as a Diffusion

Consider one important particular case of Theorem 1 when the limit process ξ̂ (t) is
Gaussian diffusion process (see [11]).

Let the distribution of calls’ service time in network nodes do not depend on the
series number n and there exist means of service times. So, we introduce the following
condition.

3′)
∫ ∞
0 tdGi(t) = 1/μi < ∞, i = 1, ...,r.

Then for such a [G|GI|∞]r-network condition 3) is satisfied for the sequence gn = n,
n = 1,2, ....

By 4′) we denote condition 4) with the replacement of the sequence gn by n.
Let θ̂ ′ = (θ̂1, ..., θ̂r0) is a solution of the balance equation

θ̂α = λ̂α +
r0

∑
α=1

θ̂β p̂βα , α = 1, ...,r0,

for the merged network, whose nodes are classes Iα , α = 1, ...,r0;

μ̂(−α) = (μ̂1(−a11), ..., μ̂ ′
r0(−ar0r0))

′,

(θ̂/μ̂(−a)) =
(
θ̂1/μ̂1(−a11), ..., θ̂r0/μ̂r0(−ar0r0)

)′
,

μ̂α = {ρ ′(α)(1/μ)}−1 , α = 1, ...,r0, (1/μ) = (1/μ1, ...,1/μr).
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As a consequence of Theorem 1, we have the following result.

Theorem 2. Let a queueing network of [G|GI|∞]r type satisfy conditions 1), 2), 3′),
4′). Then the sequence of stochastic processes ξ̂ (n)(t), n > 2, weakly converges on any
finite interval [0,T ] in the uniform topology to an r0-dimensional diffusion process ξ̂ (t)
(ξ̂ (0) = (0, ...,0)′) with the transfer vector Â(x) = Â′x and the diffusion matrix

B̂(t) = Δ [q̂′(t)Â]− Â′Δ [q̂(t)]−Δ [q̂(t)]Â+ σ̂2,

where I =
∥∥δαβ

∥∥r0
1 , Δ(x) =

∥∥xα δαβ
∥∥r0
1 for any r0-dimensional vector x = (x1, ...,xr0)

′,
Â = Δ [μ̂(−a)](P̂− I), q̂′(t) = (θ̂/μ̂(−a))′(I − P̂(t)).

Representation of the limit process as a diffusion is attractive in the sense that the
diffusion process is determined only by its local characteristics, and for the analysis
of its functionals it is possible to apply the developed apparatus of Markov diffusion
processes. The appearance of a Markov property of the limit Gaussian process ξ̂ (t) is
due to the fact that if conditions 3′) and 4′) of Theorem 2 are satisfied, then the semi-
Markov process x̂(α)

0 (t), t ≥ 0, is a Markov chain with continuous time.

In the general case, under conditions of Theorem 1, ξ̂ (t) can be a non-Markov Gaus-
sian process with continuous sample functions.

8 Conclusions

In this paper, a multichannel stochastic network is considered. There are no restriction
on a general input flow of calls, service times are generally distributed. It is assumed
that network operates in the heavy traffic regime, defined by special conditions on the
network parameters as a series number n → ∞. For such a multichannel network oper-
ating in the heavy traffic, we propose an asymptotic method based on approximation of
normalized jump-wise service process of calls by a multidimensional continuous path
Gaussian process with its characteristics written via the network parameters. We prove
convergence of the process in the uniform topology, which can be used for calculating
quality functionals of network and for solving optimization problems.

An additional splittability condition for the switching matrix of the network yields
an opportunity to merge network nodes and to reduce dimension of the limit process at
the Gaussian approximation scheme. As a result, for the service process in the merged
network, we have a form of limit process, simpler than for the original one.

We consider also a particular case, when the limit process is a diffusion process.
Note, that in general case the limit can be a non-Markov process.

The main feature of the limit process is that it is decomposed into a sum of two
independent Gaussian processes. The first term of the limit process is associated with
fluctuations of input flow while the second is associated with fluctuations of service
times.
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Abstract. In this paper, we consider a single-server retrial queue with
unreliable server and two-way communication. Inbound calls arrive
according to a Poisson process. If the server is busy upon arrival, an
incoming call joins the orbit and retries to occupy the server after some
exponentially distributed time. Service durations of incoming calls follow
the exponential distribution. In the idle time, the server makes outgo-
ing calls. There are multiple types of outgoing calls in the system. We
assume that durations of each type of outgoing calls follow a distinct
exponential distribution. The server is subject to breakdowns with rates
depending on the state of the server. If the breakdown occurs, the server
undergoes a repair whose duration follows an exponential distribution.
The aim of our research is to show that the scaled number of calls in the
orbit follows a normal distribution under the condition that the retrial
rate is low.

Keywords: Retrial queue · Two-way communication · Incoming
calls · Outgoing calls · Asymptotic analysis · Central limit theorem

1 Introduction

Retrial queues with two-way communication are suitable models for blended
call centers, where the operator can provide both inbound and outbound calls.
Retrial queues for modeling call centers are described in [1]. The research area
of retrial queues is a branch of queueing theory and literature on this topic
is rich and vast [4,5]. In retrial queues, instead of waiting when the server is
busy, customers join a virtual queue (orbit) and retry to access the server after
a random amount of time. On the other hand, the server may make outbound
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calls in idle time. This idea of call blending is to improve the productivity of
classical call centers by reducing the idle time of an operator [2,3,8,9].

Models with combination of retrials and outbound calls are studied in [6,7,
12,13]. The unreliability of the server is also of interest as a common phenomenon
in communication and service systems [10]. In [13], scaling limits (including the
regime with slow retrial) are presented for M/G/1/1 retrial models with two-way
communication. Sakurai and Phung-Duc [12] present Markovian single server
retrial models with multiple types of outgoing calls. In this paper, we extend the
model of Sakurai and Phung-Duc [12] by adding the unreliable feature of the
server [11]. Furthermore, instead of deriving exact expressions as in Sakurai and
Phung-Duc [12], our aim is to obtain compact asymptototic expressions for the
number of customers in the orbit in the stationary regime.

The rest of our paper is orgainized as follows. In Sect. 2, we present the model
in details and in Sect. 3 we show the problem definition and premilinary analy-
sis. Section 4 presents the main results of the paper where we show asymptotic
formulas for the distribution of the number of customers in the orbit. In Sect. 5
we present some numerical examples. Section 6 concludes our paper and presents
some remarks.

2 Mathematical Model

We consider a single-server retrial queue with two-way communication. We have
two classes of calls in the system: incoming calls and outgoing calls. Primary
incoming calls form a Poisson process with rate λ and upon arrival idle server
starts the service immediately. The durations of service times for incoming calls
are exponentially distributed with parameter μ1. If the server is busy upon
arrival, the incoming call joins the orbit and retries to occupy the server after a
random delay, whose duration follows the exponential distribution with param-
eter σ.

In its idle time, the server can make outgoing calls. There are multiple types
of outgoing calls in the system. The server makes an outgoing call of type n with
rate αn and serves it for an exponentially distributed time with parameter μn.
We number the types of outgoing calls from 2 to N .

The unreliability of the server is defined by three parameters: γ0 is the rate
of breakdowns when the server is idle, γ1 is the rate of breakdowns when an
incoming call is in service and γ2 is the rate of restorations. If at the instant of
breakdown, the server provides an incoming call, then the call joins the orbit.
We assume that there are no breakdowns during service of outgoing calls, since
the server itself initiates the call.

3 Problem Definition

Let k(t) denote the state of the server at time t as follows: 0, if the server is
idle; 1, if the server busy with an incoming call; n, if the server is busy with
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an outgoing call of type n, n = 2, ..., N ;N + 1, if the server is broken. Let i(t)
denote the number of calls in the orbit at instant t.

The two-dimensional process {k(t), i(t)} is Markovian. Thus, for the proba-
bility distribution of this process

P{k(t) = k, i(t) = i} = Pk(i, t),

we derive Kolmogorov system of differential equations

∂P0(i, t)
∂t

= −
(

λ + iσ +
N∑

n=2

αn + γ0

)
P0(i, t) +

N∑
k=1

μkPk(i, t) + γ2PN+1(i, t),

∂P1(i, t)
∂t

= −(λ + μ1 + γ1)P1(i, t) + λP1(i − 1, t)

+λP0(i, t) + (i + 1)σP0(i + 1, t),
∂Pn(i, t)

∂t
= −(λ + μn)Pn(i, t) + λPn(i − 1, t) + αnP0(i, t), n = 2, N,

∂PN+1(i, t)
∂t

= −(λ + γ2)PN+1(i, t) + λPN+1(i − 1, t)

+ γ0P0(i, t) + γ1P1(i − 1, t).

In stationary regime, we can write the system of equations for stationary prob-
ability distribution Pn(i), n = 0, N + 1 of process {k(t), i(t)} as follows:

−
(

λ +
N∑

n=2
αn + iσ + γ0

)
P0(i) +

N∑
k=1

μkPk(i) + γ2PN+1(i) = 0,

−(λ + μ1 + γ1)P1(i) + λP0(i) + σ(i + 1)P0(i + 1) + λP1(i − 1) = 0,
−(λ + μn)Pn(i) + λPn(i − 1) + αnP0(i) = 0, n = 2, N,

−(λ + γ2)PN+1(i) + λPN+1(i − 1) + γ0P0(i) + γ1P1(i − 1) = 0.

(1)

The problem is to obtain the probability distribution of the number of calls
in the orbit. We introduce partial characteristic functions

Hk(u) =
∞∑

i=0

ejuiPk(i), k = 0, N + 1,

where j =
√−1.

Rewriting system (1) for the partial characteristic functions, we obtain

−
(

λ +
N∑

n=2
αn + γ0

)
H0(u) + jσH ′

0(u) +
N∑

k=1

μkHk(u) + γ2HN+1(u) = 0,

(λ(eju − 1) − μ1 − γ1)H1(u) + λH0(u) − jσe−juH ′
0(u) = 0,

(λ(eju − 1) − μn)Hn(u) + αnH0(u) = 0, n = 2, N,
(λ(eju − 1) − γ2)HN+1(u) + γ0H0(u) + γ1e

juH1(u) = 0.

(2)

Summing up equations of system (2), we write the additional equation

jσe−juH ′
0(u) + (λ + γ1)H1(u) + λ

N+1∑
n=2

Hn(u) = 0, (3)
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which we will use in further analysis. We will solve system (2) using asymptotic
analysis method under low rate of retrials condition (σ → 0).

4 Asymptotic Analysis Under Low Rate of Retrials
Condition

We denote σ = ε and make the following substitutions in system (2) and Eq. (3)

u = εw,Hk(u) = Fk(w, ε), k = 0, N + 1

in order to obtain the system

−
(

λ + γ0 +
N∑

n=2

αn

)
F0(w, ε) + j ∂F0(w,ε)

∂w
+

N∑
k=1

μkFk(w, ε) + γ2FN+1(w, ε) = 0,

(λ(ejεw − 1)− μ1 − γ1)F1(w, ε) + λF0(w, ε)− je−jεw ∂F0(w,ε)
∂w

= 0,

(λ(ejεw − 1)− μn)Fn(w, ε) + αnF0(w, ε) = 0, n = 2, N,
(λ(ejεw − 1)− γ2)FN+1(w, ε) + γ0F0(w, ε) + γ1e

jεwF1(w, ε) = 0,

je−jεw ∂F0(w,ε)
∂w

+ (λ + γ1)F1(w, ε) + λ
N+1∑
n=2

Fn(w, ε) = 0.

(4)

Solving system (4) in the limit by ε → 0, we prove Theorem 1.

Theorem 1. Suppose that i(t) is the number of calls in the orbit in the Marko-
vian retrial queue with unreliable server and two-way communication, then the
following limit equality holds

lim
σ→0

Eejwσi(t) = ejwκ1 ,

where κ1 is given by

κ1 = λ

γ2(λ + γ1) + λγ1 + γ0(μ1 + γ1) + γ2(μ1 + γ1)
N∑

n=2

αn

μn

γ2μ1 − λ(γ1 + γ2)
. (5)

Proof. In system (4), we take the limit by ε → 0

−
(

λ + γ0 +
N∑

n=2
αn

)
F0(w) + jF ′

0(w) +
N∑

k=1

μkFk(w) + γ2FN+1(w) = 0,

−(μ1 + γ1)F1(w) + λF0(w) − jF ′
0(w) = 0,

−μnFn(w) + αnF0(w) = 0, n = 2, N,
−γ2FN+1(w) + γ0F0(w) + γ1F1(w) = 0,

jF ′
0(w) + (λ + γ1)F1(w) + λ

N+1∑
n=2

Fn(w) = 0.

(6)

We seek the solution of system (6) in the following form

Fk(w) = rkΦ(w), (7)
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where rk is the stationary probability distribution of the server state. Substitut-
ing (7) into system (4) and dividing the equations by Φ(w), we obtain

−
(

λ + γ0 +
N∑

n=2
αn

)
r0 + jr0

Φ′(w)
Φ(w) +

N∑
k=1

μkrk + γ2rN+1 = 0,

−(μ1 + γ1)r1 + λr0 − jr0
Φ′(w)
Φ(w) = 0,

−μnrn + αnr0 = 0, n = 2, N,
−γ2rN+1 + γ0r0 + γ1r1 = 0,

jr0
Φ′(w)
Φ(w) + (λ + γ1)r1 + λ

N+1∑
n=2

rn = 0.

(8)

Since the relation Φ′(w)/Φ(w) does not depend on w, the function Φ(w) has the
following form

Φ(w) = ejwκ1 .

Due to this, we rewrite system (8)

−
(

λ + γ0 +
N∑

n=2
αn + κ1

)
r0 +

N∑
k=1

μkrk + γ2rN+1 = 0,

−(μ1 + γ1)r1 + (λ + κ1)r0 = 0,
−μnrn + αnr0 = 0, n = 2, N,
−γ2rN+1 + γ0r0 + γ1r1 = 0,

−κ1r0 + (λ + γ1)r1 + λ
N+1∑
n=2

rn = 0.

(9)

Taking into account the normalization condition for probability distribution
rk, we obtain the following expressions

r0 =

[
(λ + κ1)(γ1 + γ2) + (γ0 + γ2)(μ1 + γ1)

γ2(μ1 + γ1)
+

N∑
n=2

αn

μn

]−1

,

r1 =
λ + κ1

μ1 + γ1
r0, rn =

αn

μn
r0, n = 2, . . . , N,

rN+1 =
(

γ0
γ2

+
γ1(λ + κ1)
γ2(μ1 + γ1)

)
r0,

κ1 =
(λ + γ1)r1 + λ

N+1∑
n=2

rn

r0
.

Substituting the expressions for rk into the expression for κ1 yields the equation
for κ1, the solution of which is as follows

κ1 = λ

γ2(λ + γ1) + λγ1 + γ0(μ1 + γ1) + γ2(μ1 + γ1)
N∑

n=2

αn

μn

γ2μ1 − λ(γ1 + γ2)
,

which coincides with (5). Theorem is proved.
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Remark 1. The necessary stability condition is λ/μ1 < γ2/(γ1 + γ2) because
κ1 > 0.

The value of κ1 defines the asymptotic mean κ1/σ of the number of calls in
the orbit. On the next stage of analysis, we will obtain the characteristic function
of process i(t).

We introduce the following notations in system (2) and Eq. (3)

Hk(u) = exp
{

ju
κ1

σ

}
H

(2)
k (u), k = 0, N + 1,

to derive the system of equations

−
(

λ +
N∑

n=2
αn + γ0 + κ1

)
H

(2)
0 (u) + jσ

∂H
(2)
0 (u)
∂u +

N∑
k=1

μkH
(2)
k (u)

+ γ2H
(2)
N+1(u) = 0,

(λ(eju − 1) − μ1 − γ1)H
(2)
1 (u) + λH

(2)
0 (u) + κ1e

−juH
(2)
0 (u)

− jσe−ju ∂H
(2)
0 (u)
∂u = 0,

(λ(eju − 1) − μn)H(2)
n (u) + αnH

(2)
0 (u) = 0, n = 2, N,

(λ(eju − 1) − γ2)H
(2)
N+1(u) + γ0H

(2)
0 (u) + γ1e

juH
(2)
1 (u) = 0,

−κ1e
−juH

(2)
0 (u) + jσe−ju ∂H

(2)
0 (u)
∂u + (λ + γ1)H

(2)
1 (u) + λ

N+1∑
n=2

H
(2)
n (u) = 0.

(10)

Then we make the substitutions

σ = ε2, u = εw,H
(2)
k (u) = F

(2)
k (w, ε), k = 0, N + 1,

and obtain the system of equations

−
(

λ +
N∑

n=2
αn + γ0 + κ1

)
F

(2)
0 (w, ε) + jε

∂F
(2)
0 (w,ε)
∂w +

N∑
k=1

μkF
(2)
k (w, ε)

+ γ2F
(2)
N+1(w, ε) = 0,

(λ(ejεw − 1) − μ1 − γ1)F
(2)
1 (w, ε) + λF

(2)
0 (w, ε) + κ1e

−jεwF
(2)
0 (w, ε)

− jεe−jεw ∂F
(2)
0 (w,ε)
∂w = 0,

(λ(ejεw − 1) − μn)F (2)
n (w, ε) + αnF

(2)
0 (w, ε) = 0, n = 2, N,

(λ(ejεw − 1) − γ2)F
(2)
N+1(w, ε) + γ0F

(2)
0 (w, ε) + γ1e

jεwF
(2)
1 (w, ε) = 0,

−κ1e
−jεwF

(2)
0 (w, ε) + je−jεw ∂F

(2)
0 (w,ε)
∂w + (λ + γ1)F

(2)
1 (w, ε)

+λ
N+1∑
n=2

F
(2)
n (w, ε) = 0.

(11)

Considering system (6) in the limit by ε → 0, we prove Theorem 2.

Theorem 2. In the context of Theorem1, the following limit equality is true

lim
σ→0

E exp
{

jw
√

σ
(
i(t) − κ1

σ

)}
= exp

{
jw2

2
κ2

}
,
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where

κ2 = κ1 + λ
γ2μ1−λ(γ1+γ2)

×
[
(γ2(λ + γ1) + γ1(λ + μ1 + γ1)) λ+κ1

μ1+γ1
+ λγ2(μ1 + γ1)

N∑
n=2

αn

μ2
n

+ λ
γ2

(γ0(μ1 + γ1) + γ1(λ + κ1))
]
.

(12)

Proof. In system (11), we substitute the following decomposition

F
(2)
k (w, ε) = Φ2(w){rk + jwεfk} + o(ε2), k = 0, N + 1,

in order to obtain the system

−
(

λ +
N∑

n=2
αn + γ0 + κ1

)
Φ2(w){r0 + jwεf0} + jεr0Φ

′
2(w)

+
N∑

k=1

μkΦ2(w){rk + jwεfk} + γ2Φ2(w){rN+1 + jwεfN+1} = o(ε2),

(λ(ejεw − 1) − μ1 − γ1)Φ2(w){r1 + jwεf1}
+ (λ + κ1e

−jwε)Φ2(w){r0 + jwεf0} − jεe−jεwr0Φ
′
2(w) = 0,

(λ(ejεw − 1) − μn)Φ2(w){rn + jwεfn} + αnΦ2(w){r0 + jwεf0}
= o(ε2), n = 2, N,

(λ(ejεw − 1) − γ2)Φ2(w){rN+1 + jwεfN+1} + γ0Φ2(w){r0 + jwεf0}
+ γ1e

jεwΦ2(w){r1 + jwεf1} = o(ε2),
−κ1e

−jεwΦ2(w){r0 + jwεf0} + je−jεwr0Φ
′
2(w)

+ (λ + γ1)Φ2(w){r1 + jwεf1} + λ
N+1∑
n=2

Φ2(w){rn + jwεfn} = o(ε2).

(13)

Taking (9) into account and dividing the system by wΦ2(w), as ε → 0 we
obtain

−
(

λ +
N∑

n=2
αn + γ0 + κ1

)
f0 + r0

Φ′
2(w)

wΦ2(w) +
N∑

k=1

μkfk + γ2fN+1 = 0,

−(μ1 + γ1)f1 + (λ + κ1)f0 + r0
Φ′

2(w)
wΦ2(w) + κ1r0 − λr1 = 0,

αnf0 − μnf0 + λrn = 0, n = 2, N,
γ0f0 + γ1f1 − γ2fN+1 + λrN+1 + γ1r1 = 0,

−κ1f0 + (λ + γ1)f1 + λ
N+1∑
n=2

fn + κ1r0 + r0
Φ′

2(w)
wΦ2(w) = 0.

(14)

As we can see, the relation Φ′
2(w)/wΦ2(w) does not depend on w, then function

Φ2(w) has following form

Φ2(w) = exp
{

(jw)2

2
κ2

}
.
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Due to this, we rewrite system (14) as follows

−
(

λ +
N∑

n=2
αn + γ0 + κ1

)
f0 +

N∑
k=1

μkfk + γ2fN+1 = κ2r0,

−(μ1 + γ1)f1 + (λ + κ1)f0 = κ1r0 − κ2r0 − λr1,
αnf0 − μnf0 = −λrn, n = 2, N,

γ0f0 + γ1f1 − γ2fN+1 = −λrN+1 − γ1r1,

−κ1f0 + (λ + γ1)f1 + λ
N+1∑
n=2

fn = κ2r0 − κ1r0.

(15)

From system (15), we obtain the expressions for fk

f1 =
λ + κ1

μ1 + γ1
f0 +

κ2 − κ1

μ1 + γ1
r0 +

λ

μ1 + γ1
r1,

fn =
αn

μn
f0 +

λ

μn
rn, n = 2, N,

fN+1 =
γ0(μ1 + γ1) + γ0(λ + κ1)

γ2(μ1 + γ1)
f0 +

γ1(κ2 − κ1)
γ2(μ1 + γ1)

r0

+
γ1(λ + μ1 + γ1)

γ2(μ1 + γ1)
r1 +

λ

γ2
rN+1.

Substituting the expressions into the last equation of system (15), we obtain the
equation for κ2[

−κ1 +
(λ + γ1)(λ + κ1)

μ1 + γ1
+ λ

N∑
n=2

αn

μn
+ λ

γ0(μ1 + γ1) + γ1(λ + κ1)
γ2(μ1 + γ1)

]
f0

+
[
(λ + γ1)(κ2 − κ1)

μ1 + γ1
+

λγ1(κ2 − κ1)
γ2(μ1 + γ1)

− κ2 + κ1

]
r0

+
[
λ(λ + γ1)
μ1 + γ1

+
λγ1(λ + μ1 + γ1)

γ2(μ1 + γ1)

]
r1 +

N∑
n=2

λ2

μn
rn +

λ2

γ2
rN+1 = 0.

Since the coefficient

−κ1 +
(λ + γ1)(λ + κ1)

μ1 + γ1
+ λ

N∑
n=2

αn

μn
+ λ

γ0(μ1 + γ1) + γ1(λ + κ1)
γ2(μ1 + γ1)

= 0,

we can derive the explicit expression for κ2

κ2 = κ1 +
λ

γ2μ1 − λ(γ1 + γ2)

×
[
(γ2(λ + γ1) + γ1(λ + μ1 + γ1))

λ + κ1

μ1 + γ1
+ λγ2(μ1 + γ1)

N∑
n=2

αn

μ2
n

+
λ

γ2
(γ0(μ1 + γ1) + γ1(λ + κ1))

]
,

which coincides with (12). Theorem is proved.
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Fig. 1. Gaussian approximation of the probability distribution of the number of calls
in the orbit, σ = 0.2

Theorem 2 defines the asymptotic variance κ2/σ of the number of calls in
the orbit. Thus, we can conclude that asymptotic probability distribution of the
process i(t) is Gaussian with mean κ1/σ and variance κ2/σ.

Remark 2. Theorem 2 could be interpreted as a central limit theorem for the
number of customers in the orbit.

5 Numerical Examples

For example we set the parameters of the system as follows:

N = 4, λ = 0.5, μ1 = 1, μ2 = 2, μ3 = 3, μ4 = 4,

α2 = 1, α3 = 2, α4 = 3, γ0 = 1, γ1 = 1, γ2 = 2,

then the value of the expression

γ2μ1 − λ(γ1 + γ2) = 0.5,

is grower then 0, which means that the system performs in stationary regime.
Figures 1, 2 shows Gaussian approximation P (i) of the probability distribu-

tion of the number of calls in the orbit given by formula

P (i) =
G(i + 0.5) − G(i − 0.5)

1 − G(−0.5)
,
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Fig. 2. Gaussian approximation of the probability distribution of the number of calls
in the orbit, σ = 1

where G(x) is Gaussian distribution function with mean κ1/σ and standard
deviation

√
κ2/σ.

6 Conclusion

We studied the number of calls in the orbit in Markovian retrial queue with
unreliable server and two-way communication. We have obtained the steady-
state characteristic function of this process. Asymptotic probability distribution
of the process is Gaussian with mean κ1/σ and variance κ2/σ. The values of κ1

and κ2 are given in Theorem 1 and Theorem 2, respectively. For future work, we
may extend our results to the model with arbitrary service time distributions.
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Three-Server Queue with Consultations
by Main Server with a Buffer at the Main
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Abstract. In this paper, we analyse a three-server queueing model
which is equipped with a main server and two regular servers. The main
server offers consultations to the identical regular servers with a preemp-
tive priority over customers. The service of the customers at the main
server undergo interruptions during consultations. An upper bound is
set for the number of interruptions during the service of a customer at
the main server. We consider independent Poisson arrival processes to
the main server and to the regular servers. There is a finite buffer at the
main server. An arriving customer to the main server will be lost when
the buffer is full. The inter occurrence time for requirement for consulta-
tion follows exponential distribution having parameter, depending upon
the number of busy regular servers. When both regular severs are queued
at the main server for consultation, no such fresh event can occur. The
service times at the main server and the regular servers are assumed to
follow mutually independent phase type distributions. We establish the
stability condition and the explicit formula for mean number of inter-
ruptions to a customer at the main server. Some performance measures
are studied numerically.

Keywords: Main server · Regular server · Interruption ·
Consultation · Buffer

1 Introduction

Queueing models with consultation by a main server are very common nowadays.
In hospitals, banks, super markets, etc., one of the servers perform the role of
a main server who is giving consultation to the fellow servers in addition of
providing service to the customers. In some cases, the main server serves some
privileged customers, while the ordinary customers are served by regular servers.
For example, in a hospital, the chief physician attends patients who are suffering
from serious illness or who need special attention by himself or those who are
referred to him by other doctors. Thus different queues are formed at main
server and regular servers. For convenience, we denote the customers at the main
server and at the regular servers as Type 1 customers and as Type 2 customers,
respectively.
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Queueing models with server consultation is introduced by Chakravarthy [3].
In this model, consultations are provided by the main server to the c− 1 regular
servers with a preemptive priority over customers. If more than one regular server
need consultations at the same time, a queue will be formed at the main server
the consultation will be provided in FIFO manner. If there is a customer being
served by the main server when a request for consultation by a regular server
is prompted, then the service of that customer will be stopped temporarily. At
this time the service is said to be ‘interrupted’. The service at the regular server
is not considered to be interrupted because, consultation is a part of service at
the regular service which certainly enhances the quality of service. The service
times at the main server and at the identical regular servers are exponentially
distributed with mean μ1 and μ2, respectively.

Queues with interruptions in service was first analysed by White and Christie
[12]. As soon as the interruption is completed, the service will be resumed. Later
on, queueing models with service interruptions are studied by Avi-Izhak and
Naor [1], Boxma [2], Fiems et al. [4], Gaver [5], Ibe [6], Keilson [7] and Takine
[11].

Krishnamoorthy et al. [9] considered a model where the service after inter-
ruption will be resumed or restarted according to the realisation of a threshold
clock.

If a customer at the main server is interrupted infinitely many times or if
the regular server receives infinite number of consultations during their service
as in [3], they may get impatient and sometimes may leave the system without
completing the service. So it would be better if we control the consultations and
the interruptions by setting some limits to interruptions and consultations.

Krishnamoorthy et al. [8] discussed a single server queueing model in which
interruptions to the server is controlled by a finite number of interruptions and
the duration of a super clock.

The main differences of the present model from [3] are as follows. In this
model, we consider 3 servers, one main server and two regular servers. Two
different queues are maintained, one for the Type 1 customers at the main server
and the other for the Type 2 customers at the regular servers. There is a finite
buffer at the main server. A Type 1 customer upon arrival will not join the
queue if the buffer is full. If both regular servers are free, an arriving Type 2
customer can choose either with same probability. Mutually independent phase
type distributions represent the service times at the main and at the regular
servers. An upper bound is set for the number of interruptions to a customer at
the main server.

1.1 Notations

The following notations are used in this model.

– L1 = L(M + 1)p + 1, L2 = 2LMq, L3 = 2L(2M − 1)q2

L4 = 2L1q + 2Lq + L2p + 2Lpq, L5 = L1q
2 + 4Lq2 + L3p + 6Lpq2

– λ = λ1 + λ2, Λ1 = diag(λIL−1, λ2), Λ2 = diag(λIL, λ2)
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– α̃ = e
′
M+1(1) ⊗ α

– ∇ = diag(Iq ⊗ β,β ⊗ Iq), ∇1 =
[∇ O

]

– Δ = diag(Iq ⊗ V 0, V 0 ⊗ Iq), Δ1 =
[

Δ
O

]
, Δ2 =

[
Δ ⊗ IM O

]′
,

Δ3 = diag(Δ ⊗ IM , O), Δ4 = diag(Δ,O)
– Δ̂ = diag(Iq ⊗ V 0 ⊗ β, V 0 ⊗ β ⊗ Iq), Δ̂1 = diag(Δ̂,O),

Δ∗ = diag(Iq ⊗ V, V ⊗ Iq)

– Ï =
[

0 1
1 0

]
, İn =

[
In−1 0
0 0

]

n×n

În =
[
0 In−1

0 0

]

n×n

, Ĩn =
[

0 0
In−1 0

]

n×n

,

– Io = IL1 , e
∗ = diag(1, 0), ên =

[
en−1

0

]

n×1

.

2 Description of Model

The present model considers a 3-server queueing system having different arrival
processes. The customers arrive to the main server and to the regular servers
according to independent Poisson processes with rates λ1 and λ2, respectively.
A buffer of size L is at the main server. An arriving Type 1 customer will leave
the system without join the queue on seeing the buffer is full. If any one of the
regular servers is free, an arriving Type 2 customer gets service immediately, else
joins the queue. If all the regular servers are free, that customer can choose any
one of them with equal probability.

The service times at the main and regular servers follow independent phase
type distributions with representations (α,U) and (β,V) with number of phases
p and q, respectively. Note that U0 = −Ue and V0 = −Ve. Let M denote the
upper bound for the number of interruptions to the customer at the main server.

Requirement of consultation arises according to a Poisson process with rate
θi, if i regular servers are busy, where i = 1, 2. When both the regular severs
need consultation, a queue is formed for consultation and it is provided in FIFO
basis. In order to distinguish the regular servers, we denote them as �1 and �2.
Here duration of consultation follows exponential distribution with parameter
ξ. After getting consultation, all the servers resume their services at the phases
where they were suspended.

The regular servers can receive any number of consultations during the service
a customer. At most M interruptions are allowed to a customer at the main
server. Suppose that a customer is being served at the main server whose service
has already interrupted M times. If a regular server needs a consultation at
this time, he/she has to wait until the service of the customer at the main
server is completed. Once the service is completed, the main server will attend
the consultation before taking a new customer from the queue for service. Now
consider another situation. The main server is giving consultation to a regular
server with an interrupted customer where that customer is undergoing M th

interruption. If the second regular server needs a consultation by this time,
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he/she has to wait until the completion of the present consultation and the
service of the customer at the main server after that.

The queueing model is Z = {Z(t), t ≥ 0},
where Z(t) = {N2(t), S(t), B(t), J1(t), J2(t), N1(t),K(t), J3(t)}.
Here N2(t) and N1(t) represent the number of type 2 and type 1 customers in
the system, respectively. S(t) denotes the status of the servers at time t such
that

S(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if the main together with or without
regular server(s) is busy

1, if the main server is providing consultation only
2, if the main server is providing consultation

with one interrupted customer at the main server
3, if the regular server is waiting for getting consultation

after the present service at the main server
4, if the regular server is waiting for getting consultation

after the service at the main server followed by
the present interruption

Here

Ji(t) − phase of the regular server �i, i = 1, 2
K(t) − number of interruptions already befell

to a customer at the main server
J3(t) − phase of the main server

For N2(t) = 1, B(t) = {1, 2} according to �1 or �2 is busy or under
going/waiting to receive consultation.

Now consider N2(t) ≥ 2.
If S(t) = {1, 2}, then

B(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 (or 2), if �1 is receiving consultation and �2 is idle or busy
(or vice versa)

3 (or 4), if all the regular servers are queued for consultation
with �1 is receiving consultation in the first place

and �2 in the second place (or vice versa)

If S(t) = 3, then B(t) takes the same values {1, 2, 3, 4} according to the above
definition with ‘receiving consultation’ is replaced by ‘waiting to receive consul-
tation.’

If S(t) = 4, then

B(t) =

⎧
⎨

⎩

1 (or 2), if �1(or �2)is waiting to receive consultation
after the present interruption followed by the
service completion at the main server
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{Z(t), t ≥ 0} is a Continuous Time Markov Chain having state space

Φ =
∞⋃

n=0

φ(n).

The terms φ(n)’s are defined as
φ(0) = {(0, 0) ∪ (0, 0, j, k, t3) : 1 ≤ j ≤ L, 0 ≤ k ≤ M};

φ(1) = φ(1, 0) ∪ φ(1, 1) ∪ φ(1, 2) ∪ φ(1, 3) and
φ(n) = φ(n, 0) ∪ φ(n, 1) ∪ φ(n, 2) ∪ φ(n, 3) ∪ φ(n, 4), for n ≥ 2,
where
φ(1, 0) = {(1, 0, l, tl, 0) ∪ (1, 0, l, tl, j, k, t3) : 1 ≤ j ≤ L, 0 ≤ k ≤ M},
φ(1, 1) = {(1, 1, l, tl, j) : 0 ≤ j ≤ L − 1},
φ(1, 2) = {(1, 2, l, tl, j, k, t2) : 1 ≤ j ≤ L, 0 ≤ k ≤ M − 1} and
φ(1, 3) = {(1, 3, l, tl, j, t2) : 1 ≤ j ≤ L}, for 1 ≤ l ≤ 2;
and for n ≥ 2,
φ(n, 0) = {(n, 0, tl, t2, 0) ∪ (n, 0, t1, t2, j, k, t3) : 1 ≤ j ≤ L, 0 ≤ k ≤ M},
φ(n, 1) = {(n, 1, l, t1, t2, j) : 1 ≤ l ≤ 4, 0 ≤ j ≤ L − 1},
φ(n, 2) = {(n, 2, l, t1, t2, j, k, t3) : 1 ≤ l ≤ 2, 1 ≤ j ≤ L, 0 ≤ k ≤ M − 1} ∪
{(n, 2, l, t1, t2, j, k, t3) : 3 ≤ l ≤ 4, 1 ≤ j ≤ L, 0 ≤ k ≤ M − 2},
φ(n, 3) = {(n, 3, l, t1, t2, j, k, t3) : 1 ≤ l ≤ 4, 1 ≤ j ≤ L} and
φ(n, 4) = {(n, 4, l, t1, t2, j, t3) : 1 ≤ l ≤ 2, 1 ≤ j ≤ L};
with 1 ≤ t1, t2 ≤ q and 1 ≤ t3 ≤ p.

The infinitesimal generator matrix T is given by

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Q0 Q1

Q2 Q3 Q4

Q5 P1 P0

P2 P1 P0

. . . . . . . . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1)

Here P0, P1 and P2 are square matrices of order L5, Q0, Q3 are square matrices
of orders L1 and L4, respectively. Q1, Q2, Q4 and Q5 are matrices of orders
L1 × L4, L4 × L1, L4 × L5 and L5 × L4, respectively.

Q0 =
[ −λ Q01

Q02 Q03

]
, Q1 = λ2

2

[
e

′
2 ⊗ β ⊗ Io O

]
,

Q2 =
[
e2 ⊗ V 0 ⊗ Io

O

]
, Q3 =

⎡

⎣
Q31 Q32 Q33

Q34 Q35

Q36 Q37 Q38

⎤

⎦,

Q4 = λ2

[
diag(∇ ⊗ e2 ⊗ Io, Q41, Q42, Q43) O

]
,

Q5 =
[

diag(e
′
2 ⊗ Δ ⊗ Io, Q51, Q52, Q53)

O

]
,
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P0 = λ2I, P1 =

⎡

⎣
P11 P12 P13

P14 P15

P16 P17 P18

⎤

⎦,

P2 = diag(e
′
2 ⊗ Δ̂ ⊗ e2 ⊗ Io, P21, P22, P23, O).

Here

Q01 = λ1

[
α 0

]
1×L(M+1)p

, Q02 =
[
eM+1 ⊗ U0

0

]

L(M+1)p×1

,

Q03 = I(M+1)L ⊗ U + λ1Î ⊗ I(M+1)p + Ĩ ⊗ eM+1 ⊗ U0 ⊗ α − Λ1 ⊗ Ip(M+1),
Q31 = I2 ⊗ (Iq ⊗ Q0 + (V − θ1Iq) ⊗ Io), Q32 = θ1I2q ⊗ e∗,
Q33 = θ1

[
I2q ⊗ D1 I2q ⊗ D2

]
2L1q×2L(M+1)pq

, Q34 = ξI2q ⊗ Ω,

Q35 = I2q ⊗ (−ξIL+1 − Λ2 + λ1I
∗), Q36 =

[
ξI2q ⊗ G1

O

]

2L(M+1)pq×2L1q

,

Q37 =
[

O
I2q ⊗ U∗

]

2L(M+1)pq×2(L+1)q

, Q38 = diag(I2q ⊗ F1, I2q ⊗ F2)2Lpq,

Q41 =
[∇ O

]
2q×4q2 ⊗ IL+1, Q42 =

[∇ ⊗ ILM O
]
L2×L3

⊗ Ip,

Q43 =
[∇ O

]
2q×2q2 ⊗ ILp, Q51 =

[
Δ
O

]

4q2×2q

⊗ IL+1,

Q52 =
[

Δ ⊗ ILM

O

]

L3×L2

⊗ Ip, Q53 =
[

Δ
O

]

4q2×2q

⊗ ILp,

P11 = Iq2 ⊗ Q0 + (V ⊕ V − 2θ2Iq2) ⊗ Io,

P12 = θ2
[
e

′
2 ⊗ e∗ O

]
L1×4(L+1)

⊗ Iq2 ,

P13 = θ2
[
M1 M2 O

]
L1q2×4L(M+1)q2 ⊗Ip, P14 = ξ

[
e2 ⊗ Iq2 ⊗ Ω

O

]

4(L+1)q2×L1q2

,

P15 =
[

H1 θ1I2q2(L+1)

ξÏ ⊗ Iq2(L+1) H2

]

4(L+1)q2

, P16 = ξ

[
e2 ⊗ Iq2 ⊗ G1

O

]

L3p×L1q2

,

P17 =

⎡

⎣
O

I4q2 ⊗ U∗

O

⎤

⎦

L3p×4(L+1)q2

, P18 =

⎡

⎣
J1 O J2

J3

O J4 J5

⎤

⎦

L3

⊗ Ip,

P21 = diag(Δ̂,O)4q2 ⊗ IL+1, P22 = diag(Δ̂ ⊗ ILM , O)L3 ⊗ Ip,

P23 = diag(Δ̂,O)4q2 ⊗ ILp.
We describe the following terms:

D1 =
[

0
IL ⊗ İM+1 ⊗ Ip

]

L1×L(M+1)p

, D2 =
[

0
IL ⊗ êM+1 ⊗ Ip

]

L1×Lp

,

Ω =
[

1 0
0 IL ⊗ α̃

]
, G1 =

[
O IL ⊗ ÎM+1 ⊗ Ip

]
, U∗ =

[
IL ⊗ U0 0

]
Lp×L+1

,

F1 = (ξIL − Λ1 + λ1ÎL) ⊗ IMp, F2 = IL ⊗ U + (−Λ1 + λ1ÎL) ⊗ Ip,
M1 =

[
e

′
2 ⊗ Iq2 ⊗ D3 O

]
L1q2×L3

, M2 =
[
e

′
2 ⊗ Iq2 ⊗ D4 O

]
L1q2×Lq2 ,

H1 = I2q2 ⊗ (λ1ÎL − (ξ + θ1)IL+1 − Λ2) + I2 ⊗ Δ∗ ⊗ IL+1,
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H2 = I2 ⊗ Iq2 ⊗ (λ1ÎL − ξIL+1 − Λ2),

J1 =
[

H3 θ1I2q2L ⊗ İM

ξÏ ⊗ Iq2L ⊗ ÎM H4

]
, J2 = θ1

[
I2q2L ⊗ êM

O

]

L3p×2Lpq2

,

J3 = I4q2 ⊗ (IL ⊗ U − Λ1 ⊗ Ip) +
[
e

′
2 ⊗ θ1I2Lpq2

O

]
+

[
Δ∗ ⊗ ILp O

O O

]
,

J4 = ξI2q2 ⊗ Ï ⊗ ILp, J5 = I2q2 ⊗ (λ1ÎL − ξIL − Λ1 ⊗ Ip),

D3 =
[

0
IL ⊗ İM+1

]

L(M+1)+1×LM

, D4 =
[

0
IL ⊗ êM+1

]

L1×L

,

H3 = I2q2 ⊗ (λ1ÎL − (ξ + θ1)IL − Λ1 ⊗ IM ) + Δ∗ ⊗ ILM ,

H4 = I2q2 ⊗ (λ1ÎL − ξIL(M−1) − Λ1 ⊗ IM−1).

3 Steady State Analysis

The steady-state analysis of the queueing model is performed in this section.
The stability condition of the queueing system is established as follows.

3.1 Stability condition

The steady-state probability vector of the generator P0 + P1 + P2 is denoted as
π. That is, π(P0 + P1 + P2) = 0; πe = 1.

Theorem 1. The Markov chain {Z(t), t ≥ 0} is stable if and only if

πP0e < πP2e. (2)

Proof. The system is stable if and only if the rate of drift to a lower level from a
given level should be greater than that to the next higher level. See Neuts [10].

The stability condition in Eq. (2) is equivalent to ρ < 1, where the traffic intensity
ρ is given by

ρ =
πP0e
πP2e

. (3)

3.2 Steady State Probability Vector

Let z , partitioned as, z = (z 0, z 1, z 2, ...) denotes the steady state probability
vector of the Markov chain {Z(t), t ≥ 0}. We know that the vector z satisfies
the condition zT = 0 and ze = 1, where e is a column vector of appropriate
dimension. Assume that the stability condition is satisfied. Then the sub-vectors
of z are obtained by the equation

zn = z 2R
n−2, n ≥ 3. (4)
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Here R is the minimal non-negative solution of the matrix equation

R2P2 + RP1 + P0 = 0. (5)

We can trace out the vectors z 0, z 1 and z 2 by solving the equations

z 0Q0 + z 1Q2 = 0

z 0Q1 + z 1Q3 + z 2Q5 = 0 (6)

z 1Q4 + z 2(P1 + RP2) = 0

and the normalizing condition

z 0e + z 1e + z 2(I − R)−1e = 1. (7)

3.3 Mean Number of Interruptions to a Customer at the Main
Server

In this section, we compute the mean number of interruptions experienced by a
Type 1 customer. Consider the Markov process Y (t) = {(Ñ(t), S∗(t), J3(t)) : t ≥
0}, where Ñ(t) is the number of interruptions already befell to a Type 1 customer
at the main server, S∗(t) = S(t) − {1, 3, 4} and all other variables are as defined
earlier. The state space of Y is{(i, j, t1) : 0 ≤ i ≤ M, j = 0, 2, 1 ≤ t1 ≤ p} ∪ {Γ}.
Γ is the absorbing state where the customer leaves the system after service
completion. The infinitesimal generator W̃ of the process Y (t) takes the form

W̃ =
[

W W 0

0 0

]

where

W =
[

W11 O
W12 W13

]

M+1

and W 0 =

⎡

⎣
eM−1 × C0

C1

C2

⎤

⎦ .

Here W11 = IM−2 ⊗ [
A0 B0

]
, W12 =

[
O A0

O O

]
and W13 =

⎡

⎣
B1

A1 B2

A2

⎤

⎦ .

The sub matrices are given by

A0 = diag(U,O)3p×3p +

⎡

⎣
−θ2 θ2

−(θ1 + ξ) θ1
−ξ

⎤

⎦ ⊗ Ip,

A1 = diag(U,O)2p×2p +
[−θ1 θ1

−ξ

]
⊗ Ip, A2 = U ;

B0 = ξ

[
0 0
I2 0

]
⊗ Ip, B1 = ξ

[
0
I2

]
⊗ Ip, B2 = ξ

[
0
1

]
⊗ Ip;
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C0 = e3(1) ⊗ U0, C1 = e2(1) ⊗ U0, C2 = U0.

If yj is the probability that there are exactly j interruptions to a customer
at the main server, then

yj = α̂Xj
00S0e, j = 0, 1, ...,M − 2,

yM−1 = α̂XM−2
00 X01S1e and yM = α̂XM−2

00 X01X12S2e,

where α̂ = (α,0), Si = −A−1
i Ci, i = 0, 1, 2; Xi,j = −A−1

i Bj .
Mean number of interruptions to a customer at the main server is given by

εi =
M∑

j=0

jyj .

3.4 Performance Measures

Here a number of performance measures are listed to bring out the qualitative
aspects of the present model. These measures and their formulae are given below.
For this, we partition the vectors zn, n ≥ 0 as

z 0 = (ζ, z 00), 1 ≤ k ≤ L, z 1 = (z 10, z 11, z 12, z 13) and
zn = (zn0, zn1, zn21, zn22, zn3, zn4), for n ≥ 2. Note that ζ is only a scalar,
z 00, z 10, z 11, z 12, z 13, zn0, zn1, zn21, zn22, zn3, zn4, for n ≥ 2 are vectors of
dimensions L1 − 1, 2L1q, 2Lq, L2p, 2Lpq, L1q

2, 4Lq2, 2LMpq2, 2L(M − 1)pq2,
4Lpq2 and 2Lpq2, respectively.

We use some abbreviations which are given below:

γ0(j) =
L∑

j=1

jz 00j , γ1(j) =
1∑

n=1

2∑

l=1

L−1∑

j=0

jzn1lt1j , n = 1

γ2(j) =
3∑

m=0,m �=1

2∑

l=1

q∑

t1=1

L∑

j=1

jznmlt1je, n = 1,

γ3(j) =
∞∑

n=2

q∑

t1,t2=1

L∑

j=1

jzn0t1t2je,

γ4(j) = ν14(L−1)(j), γ5(j) = ν24L(j) + ν34L(j), γ6(j) = ν42L(j),

γ7(j) =
1∑

n=1

2∑

l=1

q∑

t1=1

zn0lt10, γ8(j) =
∞∑

n=2

q∑

t1,t2=1

nzn10t1t20,
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where νabc(j) =
∞∑

n=2

b∑

l=1

q∑

t1,t2=1

c∑

j=c−L+1

jznalt1t2je.

ωk is obtained from γk(1) by replacing the last summation
c∑

j=c−L+1

by
c∑

j=c

.

(1) Mean number of customers in the system ε = γ0(j) +
8∑

k=1

γk(n + j).

(2) Mean number of type 1 customers in the system

ε1 = γ0(j) +
6∑

k=1

γk(j).

(3) Mean number of type 2 customers in the system ε2 =
∞∑

n=1

nzne.

(4) Mean number of type 2 customers in the queue ε̃2 =
∞∑

n=3

(n − 2)zne.

(5) Probability that an arriving Type 1 customer is lost on seeing the buffer is

full η =
6∑

k=0

ωk(1).

(6) Probability that the system is idle δ1 = ζ.
(7) Probability that the main server is idle δ2 = ζ + γ1(1) + γ8(1)
(8) Probability that both the regular servers are idle δ3 = z 0e.

4 Numerical Analysis

In this section we analyse the effect of the λ1 and λ2 on the performance mea-
sures. Let U, V, α, β and ξ are as in example 4.1. Choose θ1 = 1, θ2 = 1, M = 2
and L = 3.

The above mentioned values, vectors and matrices are chosen so as to satisfy
the stability condition ρ < 1.

Table 1 shows that if λ1 increases, then the buffer is filled in an increased
rate. Thus there is an increase in η. Since there are more Type 1 customers, the
main server’s busy period increases and this in turn reduces the main server’s idle
time δ2. So there will be a slight delay for the regular server to get consultations.
Then the mean number of type 2 customers ε2 increases slightly, even if ε2 is
not depending upon λ1 directly. Thus there is a slight decrease in δ3. All these
results in a decrease in system’s idle time.

From Table 2, we see that as λ2 increases, more and more type 2 customers
accumulate in both the system the queue. Thus ε2 and ε̃2 increase. So the main
server is forced to spend more time in consultation. During this time the number
of type 1 customers waiting at main server increases and thus there will be
frequent loss of type 1 customers due to lack of room in buffer, so η increases.
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Table 1. Effect of λ1 on the performance measures

λ1 1 1.5 2 2.5 3 3.5

ρ 0.4627 0.5406 0.6184 0.6962 0.7740 0.8518

ε2 0.7094 0.7100 0.7105 0.7109 0.7113 0.7116

ε̃2 0.1268 0.1272 0.1275 0.1278 0.1280 0.1282

η 0.0074 0.0208 0.0395 0.0626 0.0895 0.1197

δ1 0.4522 0.3994 0.3484 0.3000 0.2551 0.2144

δ2 0.6050 0.5465 0.4873 0.4290 0.3728 0.3201

δ3 0.5570 0.5569 0.5568 0.5567 0.5567 0.5566

Table 2. Effect of λ2 on the performance measures

λ2 1 1.5 2 2.5 3 3.5

ρ 0.4638 0.5411 0.6184 0.6957 0.7730 0.8503

ε2 0.2984 0.4820 0.7105 1.0087 1.4125 1.972

ε̃2 0.0137 0.0497 0.1275 0.2725 0.5213 0.9251

η 0.0169 0.0271 0.0395 0.0542 0.0708 0.089

δ1 0.4876 0.4136 0.3484 0.2909 0.2399 0.1947

δ2 0.6004 0.5408 0.4873 0.4390 0.395 0.3546

δ3 0.7538 0.6501 0.5568 0.4723 0.3953 0.3249

Thus the busy period of all the three servers increases whereas the idle times δ1,
δ2 and δ3 decrease.

Conclusion
In this paper, we discussed a three server queueing system equipped with con-
sultation by main server with different arrival process and a finite buffer. We
established an explicit formula for the number of interruptions to a customer at
the main server. Some other performance measures are studied numerically. In
this paper, we do not consider any limit for the number of consultations possible
to the regular servers during the service of a particular customer. This may lead
to the impatience of that customer and he may leave the system at all. So we
can impose some maximum possible value for the number of consultations. In
addition to the maximum number of interruptions, a super clock can be set to
control the duration of interruptions spent by a customer at the main server.

Acknowledgement. Authors thank A. Krishnamoorthy for the inspiring ideas, guid-
ance and the valuable time spent for us.
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Abstract. Design and study of mathematical models of marshalling
yards in order to increase productivity and ensure their smooth operation
is relevant, since these objects are key elements for the organization
of freight transport on the railway network. In this work, we develop
a mathematical model for the operation of a marshalling yard in the
form of a four-phase queuing system with BMAP flow and group service
of requests. Each phase is a non-Markov multichannel queuing system
with a finite queue and group service of requests in the channel. For
its numerical study, we create and implement a simulation model. The
proposed mathematical apparatus and software are tested on for the
operating marshalling yard, which is typical and located on the East
Siberian Railway. We demonstrate that it allows us to assess the current
level of operation, determine the maximum permissible load and find
bottlenecks in the structure of the selected station and then eliminate
them.

Keywords: Mathematical modeling · Simulation model · Multiphase
queuing system · BMAP · Railway marshalling yard

1 Introduction

The paper is devoted to construction and study of mathematical models of mar-
shalling yards to increase their productivity and ensure their uninterrupted oper-
ation. This problem is relevant, since the volume of transported cargo (goods),
the stability of the transportation process and the efficiency of the railway net-
work as a whole depend on the quality of these facilities [1,2]. Various approaches
and methods are used to solve this problem, among which deterministic models,
both optimization and predictive play a key role [2–4]. However, their use is often
not effective enough when it is necessary to take into account the possibility of
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failure of signaling and communication devices, breakdowns of operating locomo-
tives, technological windows, and many other random factors. In this case, useful
research tools are various kinds of probabilistic (stochastic) models [4–6]. In par-
ticular, these can be queuing systems (QS) that are well suited for describing
objects where the same type of actions are regularly repeated. Queuing systems
are most often used to simulate the operation of information [7,8] and telecom-
munication systems [9–11]. The features of such systems are the random nature
of the data receipt and non-deterministic processing, regardless of their semantic
meaning. Some technical objects from other fields, such as transport systems,
have similar properties. Hence, the apparatus of queuing theory is suitable for
describing the railway marshalling yards operating.

Previously, using the queuing theory, we performed a mathematical descrip-
tion of the operation of specific passenger transport systems with a multi-
level hierarchical structure and complex incoming passenger traffic [12,13]. To
describe the system structure, we use a three-phase QS, in which each phase
corresponds to a separate functional subsystem (service level). To model the
transport flow, we use the Batch Markovian Arrival Process (BMAP) [14–16],
which allows us to take into account the presence of several sub-flows with dif-
ferent characteristics and combine them. Note that multiphase QS with BMAP
are often used to describe fragments of communication systems and networks
[17,18]. However, as far as we know, they have not been previously used in the
transport sector.

In this paper, we improve this approach by using four-phase QS and apply
it to simulate the operation of a new class of objects marshalling yards. The
resulting QS has a complex structure, and in the general case, it seems to be
not possible to determine its characteristics analytically. Therefore, we study
it numerically using simulation methods. Based on the results of computational
experiments, we give recommendations for improving the parameters of the mar-
shalling yard.

2 Subject of Research

Marshalling yards are intended for mass disbanding of trains into separate groups
of cars, sorting these groups in accordance with the further direction of move-
ment as well as forming and dispatching new trains. The main technological
subsystems of marshalling yards, on which its performance depends, are as fol-
lows. A receiving yard is a place where trains are received, and locomotives are
uncoupled. A hump is intended for disbanding the train and sending separate
groups of cars to the sorting bowl. A sorting bowl is responsible for accumulating
cars in accordance with the direction and moving them to the departure yard.
In a departure yard, technical and commercial inspection of trains is performed,
and they are prepared for further departure from the system.

You can see that the yards are separate functional elements. First, they per-
form various operations with cars. Secondly, each yard has its own service devices
that have different processing capacity. Third, parks can be located rather far
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from each other, depending on the structure of the station. Thus, it is logical to
describe these functional elements as separate phases.

We consider marshalling yard IrS that located on the East Siberian Railway.
It is a two-system system with a sequential arrangement of yards. Both systems
belong to the general type of railway marshalling yards, i.e. include an receiving
yard, a sorting bowl yard with a hump, and a departure yard. They are almost
the same, so we study the operation of only the odd system, the scheme of which
is shown in Fig. 1.

Fig. 1. Diagram of the odd IrS station system

3 Field Research Results

In the period from 1.09.2020 to 30.10.2020, a full-scale survey of the odd IrS
station system was performed. We obtained normative and actual (statistical)
indicators of the being of cars in each subsystem and technical characteristics of
the station, such as the number of shunting locomotives and working crews, the
number and capacity of tracks, and the station layout. The sample size for each
subsystem was 951 elements. Each element is the service time of a group of cars
in the subsystem. We also collected statistical data on incoming trains for this
period, including category, arrival time and a number of cars. The sample size was
2,886 elements. Based on this information, the technical and time parameters of
car servicing, as well as the characteristics of the incoming train flow, are found.

The parameters of the considered system are as follows. The receiving yard
has 7 tracks with an average capacity of 74 conventional cars (conv. cars) each
and two locomotives that move trains to the hump. The hump has two railway
tracks with a capacity of 85 conv. cars and a device for disbanding trains with
a processing capacity of up to 3500 conv. cars per day. The sorting bowl has
18 tracks with an average capacity of 60 conv. cars, and three locomotives are
used to complete the formation of trains. The departure yard has 8 tracks of 75
service cars, and two technical inspection teams send trains in two directions.

Table 1 shows the planned and actual average indicators of cars’ being in
each subsystem. Where Tp is scheduled service time (h), Tf is actual average
service time (h).
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Table 1. Characteristics of the odd system of IrS station

Receiving yard Hump Sorting bowl Departure yard

Tp 1.02 0.40 1.30 2.04

Tf 0.97 0.45 1.23 2.03

Operation characteristics of service devices in each yard are obtained using
statistical processing of data on time spent by cars in each subsystem. These
results are presented in Table 2. Note that the truncated normal distribution
turned up to be the most suitable distribution law for describing the service
time in subsystems [19]. This is natural since the station staff tends to bring
the duration of technical operations closer to the standard values. At the same
time, the duration of technical operations cannot be zero or take negative values.
But anyway various deviations arise due to the influence of random factors. For
example, if a train consists of cars with only two or three destination stations,
then it can be disbanded by the hump in 10 min instead of 24 min with respect
to the standard.

Table 2. Operation characteristics of service devices of the odd system of IrS station

Receiving yard Hump Sorting bowl Departure yard

F N(0.97, 0.15) N(0.45, 0.10) N(1.23, 0.30) N(2.03, 0.30)

X 0.4–1.5 0.2–1.0 0.1–3.1 0.8–3.3

W B(75, 0.91) B(75, 0.91) B(71, 0.90) B(71, 0.90)

X 58–75 58–75 53–71 53–71

Here F is a distribution of service time, W is a distribution of a serviced
group size; N(μ, σ) is the truncated normal distribution, its probability density
function

f(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if x ≤ x1,

1
σ

φ
(

x−μ
σ

)

Φ
(

x2−μ
σ

) − Φ
(

x1−μ
σ

) , if x1 < x < x2,

0, if x ≥ x2,

where μ is a mathematical expectation, σ is a standard deviation of a normal
distribution, φ(x) = 1√

2π
exp

(− 1
2x2

)
, Φ(x) = 1

2

(
1 + erf(x/

√
2)

)
[19]; B(n, p)

is a binomial distribution, where n is a number of trials, p is a probability of
success; X = {x1 < x < x2} an interval that contains all values of the random
variable.

Three categories of trains arrive at the station: transit trains with processing,
transit trains without processing, and local trains. Their arrival is regulated by
the dispatchers’ office in shifts. However, due to intense intra-station work, it is
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not always possible to distribute evenly incoming trains between day and night
shifts. Based on statistical data, we found that the average number of trains
under disbanding (local and transit with processing) in the day and night shifts
are 11 and 6, respectively; and non-disbanding (transit without processing) ones
are 1.5 trains per shift.

A significant part of the incoming train flow is made up of transit trains that
run throughout the territory of the Russian Federation. This group of trains is
sensitive to random factors due to the huge distance of the route, so the dispatch-
ing department can not effectively plan the schedule for all categories of trains
on a separate section of the railway network. As a result, significant deviations of
train traffic from the schedule can appear. Thus, the average deviation from the
schedule is two hours for the considered station. For this reason, we assumed that
the arrival time of trains is a random variable. Based on the results of statistical
processing of the available data, we found that the time between train arrivals
is distributed exponentially with different parameters for each train flow.

The number of cars in a train obeys the binomial distribution B(75, 0.91),
their average number is 68.25, and the maximum one is 75 for all categories of
trains. The maximum recorded number of trains received for disbandment per
day was 23. With such a train traffic, the station operates in a “forced” mode.

4 Mathematical Model

4.1 Generalized Marshalling Yard Model

We propose to use four-phase queuing systems to model the operation of a
marshalling yard. This allows us to describe the four-stage servicing of the flow
of cars at the station, as well as determine the capacity of each of the subsystems
separately. The construction of a mathematical model of a marshalling yard
operation in the form of a QS occurs in two stages. At first, we describe the
incoming car flow; at second, we deal with its servicing.

The station receives trains of three categories with different parameters for
day and night shifts. Trains of different categories can arrive with a significant
deviation from the schedule, i.e. randomly. For the same reason, trains that are
scheduled to arrive in the defined shift may arrive at the station in the next one.
We consider the arriving train as a group of requests since the cars are serviced
independently and occupy a certain place in the system. Based on the results
of statistical processing of data on incoming car traffic, it can be assumed that
the size of groups of cars and the time of their arrival in the system are random
variables [5,6]. Thus, the total incoming car flow is correlated, non-stationary
(piecewise stationary) and allows group arrival. To formalize it we use the BMAP
model [14–16].

In addition, the BMAP flow provides significant potential for the development
of the model, since it can be used to describe a more complex transport flow.
Due to the peculiarities of marshalling yard operation, it is possible not to divide
cars into types, since all operations are performed the same for all cars. However,
if we model freight stations, the type of car affects on the choice of a loading
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front that will serve the car, as well as the duration of loading. In this case, the
BMAP flow turns out to be one of the most suitable mathematical model. Since
we are planning to consider the operation of such a station, we assume using
BMAP for marshalling yard modeling as well.

BMAP (Batch Markovian Arrival Process) is a generalization of the group
Poisson process, allowing the change in the intensity of the arrival of request
groups, but keeping the basic Markov structure.

We have a Markov chain vt with continuous time and state space {0, 1, ...,W}.
The intensity of arrival request groups λv depends on the state number of the
Markov chain vt. The residence time in each state is exponentially distributed
with parameter λv. With probability pk(v, v′) the chain can go to state v′. This
generates a group of random size k ≥ 0. The normalization condition is satisfied,

∞∑

k=0

W∑

v=0

pk(v, v′) = 1.

The transitions intensities are written in matrix form

(D0)v,v = −λv, v = 0,W ,

(D0)v,v′ = λvp0 (v, v′) , v, v′ = 0,W ,

(Dk)v,v′ = λvpk (v, v′) , v, v′ = 0,W , k ≥ 1.

(1)

To model the operation of marshalling yards, we propose using a special open
four-phase QS. Each phase corresponds to the subsystem of the marshalling yard
and has the following characteristics [5]:

– each phase has n service devices (channels) and m places in a queue, n,m <
∞;

– requests from the queue are serviced in accordance with FIFO (first in, first
out);

– group service of requests in each channel is allowed;
– the length of the queue, the distribution of service time for a group of requests

in the channel, and its size may differ for each phase;
– channels of the first three phases are temporarily blocked if there are no

available places for accepting requests in the queue of the next phases;
– groups of requests are accepted according to the discipline of complete rejec-

tion; if there is not enough space for at least one request, the arrived group
is lost [5,15].

In terms of the queuing theory [5], the marshalling yard operation model can
be written as

BMAP/GX1/n1/m1 → ∗/GX2/n2/m2 → ∗/GX3/n3/m3 → ∗/GX4/n4/m4

where G means an arbitrary distribution law of the service time of requests in
the channel; Xi is distribution of the group size, accepted for servicing in the
channel of phase i; mi is a queue length, ni is a number of channels for phase i.
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For parametric identification of a specific station model in the form of a
multiphase QS, it is necessary, first, to determine the parameters of the BMAP
flow, such as the number of sub-flows, the intensity of the arrival of request
groups, and the distribution of the group size. Second, for each phase, we need
to set the number of places in the queue, the number of channels, the distribution
of service time, and the size of the served request groups.

The following parameters and components are not taken into account in the
presented generalized model of the marshalling yard: 1) train formation plan; 2)
specialization of railway tracks; 3) administrative staff; 4) duty station staff; 5)
equipment breakdowns and failures; 6) expenses related to the downtime of cars
in the station’s yards.

Train formation plan regulates the order of formation of all categories of car
and train traffic. The model considers only the car flow arriving at the station.
Specialization of railway tracks taken into account indirectly by the capacity of
the yards. The capacity is calculated based on the tracks’ specialization for train
flows with and without disbanding, even and odd directions. Administrative staff
does not directly affect the operation of the service devices. Duty station staff
is an integral part of the service devices (locomotives, service crews, etc.), so
no need to consider it separately. The purpose of the simulation is to determine
the capacity of the station in a regular operating regime, so events (5) are not
taken into account. The financial and economic indicators of the station (6) are
beyond the scope of the study.

4.2 Model of the Odd IrS Station System

The station normally processes only freight car traffic. Passenger trains pass by
the station and do not affect its operation, therefore this flow is not considered.
Also, we do not take into account freight trains that are not under the disbanding
for the following reasons. First, these trains run past the first three subsystems
of the station and only stop at the departure yard. Second, they are served on
separate tracks and do not significantly affect the processing of other categories
of trains. The model takes into account only the oncoming car traffic with pro-
cessing. We consider transit trains with processing and local trains as the same
type of train, since the number of cars in these types of trains is described by
the same distribution. For its mathematical description, we use the BMAP.

Trains arrive in the system in day and night shifts with different parameters.
Hence, there are two sub-flows, and the control Markov chain has two states
{0, 1}. Since the duration of the shifts is the same, the probabilities of the chain
transition from one state to another are p0 = p1 = p = 0, 5. The maximum
number of cars in a train is 75, therefore the BMAP flow includes 76 matrices
of size 2 × 2,Dk, k = 0, 75. Their elements are calculated by formulas (1), where
λ0 = 11/12 = 0, 92, λ1 = 6/12 = 0, 5 and the transition probabilities pk (v, v′) =
pf (k) , v, v′ = 0, 1, k = 0, 75, f (k) is an arrival probability of a group of
k cars, the group size obey binomial distribution B(75, 0.91).

The model of the odd system of IrS station is as follows. The system has
four servicing phases. Phase 1 corresponds to the arrival yard. We assume that
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the two thrust locomotives are channels, the tracks of the yard are the queue
with a capacity of 518 cars. Phase 2 describes the operation of the hump. Let
one thrust track and the sorting device be one channel, the second track is an
queue with 85 places. Phase 3 simulates the operating of the sorting bowl. The
channel are three thrust locomotives, the queue is the tracks of the park with
1080 places. Phase 4 describes the operation of the departure yard, where we
consider two departure tracks (main course) as channels, the queue is also the
tracks of the yard with 600 places. The distributions of the service time and the
sizes of the served groups of requests in the channels at each phase correspond
to the characteristics of the service devices, which are presented in Table 2.

In terms of the queuing theory, the model of the odd IrS station system takes
the form

BMAP/GB/2/518 → ∗/GB/1/85 → ∗/GB/3/1080 → ∗/GB/2/600,

where B is binomial distribution. Figure 2 shows the scheme of the described
system.

Fig. 2. Scheme of four-phase QS

We study the resulting four-phase QS numerically using a simulation model
[20]. The desired characteristics, i.e. performance indicators are the probabilities
of servicing both the request and the group of requests, the average time the
request stays in the system, the average queue length, and the channel blocking
time for each phase.

5 Computational Experiment

The simulation model of a multiphase QS is based on a discrete-event model-
ing approach and is implemented as a software module [12,13]. It is intended
for the numerical finding of the probabilities of states and, on their basis, for
determining the performance indicators of the QS, as well as for carrying out
multivariate scenario calculations. The user can set the number of phases, the
number of channels and the maximum queue length, as well as the parameters
of the channels and BMAP flow. The channels work independently, it is permis-
sible to have a different distribution of service time for each channel. As soon
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as the channel is released, a request or group of requests from the queue can be
received. If the queue is empty, the channel goes into standby mode. The data of
the module operation process are displayed in tabular form. The results of the
simulation model can be saved in MS Excel format.

We now turn to the description of the computational experiment. We carry
out scenario modeling of the operation of the proposed four-phase QS (see Fig. 2)
for various parameters of the incoming car flow and servicing process. Model
time is five weeks for all experiments. We chose this value because it is the
minimum time for which the simulation model allows calculating the stationary
characteristics of the studied QS. The main indicator that the station can cope
with the load is equal to zero loss probability, i.e. the ability of the QS to service
all requests.

Experiment 1. Table 3 shows the results of simulation of the four-phase QS
operation at the intensity of sub-flows λ0 = 0, 92 and λ1 = 0, 5 groups of requests
per hour for day and night shifts.

Table 3. Results of experiment

Arrived Losses Tsist (m) PG PR

Groups 566.90 0 585.48 0 0

Requests 36755.80 0

k l Tph (m) Tlock (m) Plock

Phase 1 0.95 10.13 79.57 1071.20 0.0213

Phase 2 0.60 12.88 57.67 0 0

Phase 3 1.98 13.43 118.20 3471.90 0.0689

Phase 4 1.87 138.22 330.04 – –

Here and further Tsist is an average residence time of a request in the system,
PG is a loss probability for a group of requests, PR is a loss probability for a
separate request, k is an average number of busy channels, l is an average queue
length, Tph is an average residence time of a request in the phase, Tlock is the
total blocking time of the phase, Plock is a channel blocking probability.

You can see that in this case the average time spent by one request (car)
in the system is just under nine hours. The average queue length in Phases 1–3
is small, and the loss probability is zero. According to the observed indicators,
we can conclude that the odd system of IrS station is operating normally and
coping with the current load.

Next, we study the operation of the station when the incoming car traffic
increases. In the first step (experiment 2), we increase the average number of
incoming trains by two for each shift relative to the observed car traffic, i.e. up to
21 trains per day. On the second (experiment 3) it is increased up to 23 trains
per day, which corresponds to the maximum observed value.
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Experiment 2. Table 4 shows the results of simulation of the four-phase QS
operation at the intensity of sub-flows λ0 = 13/12 = 1, 08 and λ1 = 8/12 = 0, 67
groups of requests per hour for day and night shifts, respectively.

Table 4. Results of experiment 2

Arrived Losses Tsist (m) PG PR

Groups 669.45 8.00 1398.78 0.0120 0.0118

Requests 45713.64 541.55

k l Tph (m) Tlock (m) Plock

Phase 1 1.27 47.54 130.55 9729.27 0.0965

Phase 2 0.75 31.27 75.03 4202.80 0.0834

Phase 3 2.65 355.48 557.73 42188.27 0.2790

Phase 4 1.97 433.39 635.48 – –

According to the results of calculations, there is a non-zero probability of
blocking channels in all phases, which is especially high in Phase 3 (28%). At
the same time, in Phase 4 (departure yard), the average number of busy channels
and the average queue length approach the maximum possible values (2 and 600),
and the average time spent by the request in the system is the highest among
all phases. Therefore, the departure yard is a bottleneck. Its capacity is clearly
insufficient. A further increase in the intensity of train arrivals will lead to a
sharp increase in the loss probability.

Increasing the number of channels in the departure yard is difficult, as this
requires creating new tracks on the main course. Adding new technical inspection
teams is economically unprofitable, since some of them will be idle if the traffic
is low. Therefore, to reduce the downtime of trains in the departure yard, it is
advisable, first, to increase the number of people in the teams, and secondly, to
organize the timely issuance of travel locomotives for trains. In the latter case,
additional locomotive crews are required to ensure that these locomotives are
fully equipped. Based on a consultation with the station’s chief engineer, we
found that applying these recommendations will reduce the average service time
in the departure yard by 25%.

We now study the operation of the station while reducing the average service
time in Phase 4 channels by 25%. With the new operating parameters, we assume
that the station is able to serve up to 23 trains per day in normal mode, i.e. 3
more trains for each shift compared to the average observed values.

Experiment 3. Now let the service time in the channels of Phase 4 have the
normal distribution N(1.52, 0.50); in the day shift, groups of requests arrive with
an intensity of λ0 = 14/12 = 1, 17 per hour, in the night shift with λ1 = 9/12 =
0, 75 per hour. The results of calculations are presented in Table 5.

In this case, the loss probability is non-zero, which indicates that the process-
ing capacity of the station is insufficient. However, at first, it is quite small (less
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Table 5. Results of experiment 3

Arrived Losses Tsist (m) PG PR

Groups 795.18 0.27 757.95 0.0003 0.0003

Requests 54275.27 18.64

k l Tph (m) Tlock (m) Plock

Phase 1 1.35 30.01 96.65 3942.09 0.0652

Phase 2 0.79 26.95 65.20 112.09 0.0037

Phase 3 2.61 91.08 196.54 15752.64 0.1736

Phase 4 1.96 309.86 399.57 – –

than 0.05%). Second, the simulation model allows the arrival of four or more
trains in one hour. If the queue for Phase 1 (arrival yard) is more than half full
during this time period, some trains may be rejected. But for a real object, the
dispatcher unit distributes the load more evenly during the shift. Therefore, the
observed loss probability can be ignored.

Thus, reducing the average service time by 25% in the departure yard will
increase the capacity of the station by 33.6%. To further improve the system’s
performance, a change in the station’s operational technology will be required,
which is acceptable only if it is completely modernized.

6 Conclusions

The paper presents a generalized model of railway marshalling yards based on
four-phase QS, which allows us to describe four functional subsystems that are
the stages of car flow processing. The model is highly complex and unsuitable for
analytical research, but modern simulation tools allow us to analyze it numeri-
cally.

The created software and mathematical apparatus have been applied for
studying an operating marshalling yard located on the East Siberian railway.
We have shown that it allows us to assess the current level of operation, deter-
mine the maximum permissible load and find bottlenecks in the structure of the
selected station and then eliminate them.

We suppose further improvement of the proposed approach due to the appli-
cation of queuing networks apparatus for modeling railway stations. They make
it possible to investigate not only objects with a linear structure but also to
describe the circular movement, which is typical for marshalling yards.

The authors are grateful to Doctor of Technical Sciences, Professor of Tomsk
State University A.A. Nazarov for fruitful discussion and helpful comments.
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Abstract. The Markovian model of single server queuing system with
instantaneous feedback and positive server setup time for servicing of
feedback calls is proposed. Arrival rate of calls from outside depends
on server status which might be in two regimes: working regime and
setup regime. Calls are impatient when server is in setup regime. Two
approaches are developed to study the system: matrix-geometric method
and space merging method. Results of numerical experiments are demon-
strated.

Keywords: Queuing system · Instantaneous feedback · Server setup
time · Impatient calls · Calculation methods

1 Introduction and Related Work

In this paper generalization of model of queuing systems with feedback (QSwFB)
in Melikov et al. (2020) [1] is proposed by introducing the effect of impatience
of calls when server is in setup time.

Let’s briefly consider the state of art the problem. Takac’s work have been a
pioneer [2,3] where models of queuing systems with instantaneous [2] and delayed
feedback [3] are investigated. Such kind of models are intensively investigated
in last two decades. Kumari [4] gives a detailed review of work done in feed-
back queuing models until 2011. Further developments could be accessed from
Koroliuk et al. (2016) [5] and Melikov et al. (2015, 2019) [6,7].

In Krishna Kumar et al. (2009) [8] a multi-server feedback retrial queueing
system with finite waiting room M /M /c/N+c and constant retrial rate is ana-
lyzed. It is shown that the mathematical model of the investigated system is a
quasi-birth-and-death (QBD) process and the necessary and sufficient condition
for stability of the system is obtained. Performance measures of the system are
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calculated by using matrix geometric method and the impact of various parame-
ters on the system performance measures are illustrated numerically. Do (2010)
[9] propose a more efficient computation method to calculate the steady state
probabilities when N+c is large.

In Krieger et al. (2005) [10] the feedback queue model of the type
BMAP/PH/1 operating in a Markov random environment that has a finite state
space is investigated. It is assumed that changing state of random environment
causes instantaneous changes of the parameters of the BMAP input, the PH
service processes and the feedback probabilities. The stationary distribution of
multidimensional continuous time Markov chain (CTMC) describing the behav-
ior of the system is calculated by means by reduction to discrete time Markov
chain (DTMC) at transition epochs. The Laplace-Stieltjes transform of the calls
sojourn time distribution is calculated and practicability of the developed algo-
rithms is illustrated by numerical experiments.

Rajadurai et al. (2018) [11] considered a single server feedback retrial queue-
ing system with multiple working vacations and vacation interruption. An arriv-
ing call may balk the system at some particular times and as soon as orbit
becomes empty at regular service completion instant, the server goes for a work-
ing vacation (WV). The server works at a lower service rate during WV period.
After completion of regular service, the unsatisfied customer may rejoin into
the orbit to get another service as feedback call. The normal busy server may
get to breakdown and the service channel will fail for a short interval of time.
The probability generating function (PGF) for the system size is obtained by
using the supplementary variable method and system performance measures are
determined. Similar model of retrial queueing model with feedback and work-
ing breakdown services has been investigated in Rajadurai et al. (2020) [12].
The regular busy server may become defective by negative customers that arrive
only at the service time of a positive customer and remove the positive customer
from the service. At the instant of failure, the main server is sent for repair and
the repair period begins immediately. During the repair period, the server gives
service at a lower rate (as in previous paper with WV [11]). The PGF for sys-
tem size and orbit size are obtained using the method of supplementary variable
as in [11]. By using PGF analytical expressions for performance measures are
calculated.

The M/G/1 retrial queue with Bernoulli feedback and single vacation where
the server is subjected to starting failure is analyzed by Mokaddis et al. (2007)
[13]. The server leaves for a vacation as soon as the system becomes empty. The
sojourn time in orbit is assumed to follow an arbitrary distribution and when
the server returns from the vacation and finds no calls, he/she waits free for the
call to arrive from outside the system. The system size distribution at random
points and various performance measures are derived.

A discrete-time feedback queueing system of the type Geo/G/1/∞ under
an (m, N )-policy is analyzed in Hernández-Dı́az et al. (2009) [14]. The system
operates under an N -policy with an early setup where the startup period begins
when m (≤N ) calls accumulate in the system. Moreover, it is assumed that
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the i -th service of each call is either unsuccessful (and then the call feedback for
another service) with probability (w.p.) αi or successful (and then the call leaves
the system forever) with complementary probability 1−αi. The joint PGF of the
server state and the system length as well as the main performance measures are
obtained. The distributions of the lengths of the idle, setup, standby and busy
periods, as well as the distribution of the number of calls served during a busy
period, are also derived.

Zhao et al. (2020) [15] consider the model of cognitive radio networks in
form of feedback queuing system. In this paper, in order to reduce possible
packet loss of the primary users (PUs) it is assumed that there is a buffer with
a finite capacity for the PU packets. At the same time, focusing on the packet
interruptions of the secondary users (SUs), feedback scheme for the interrupted
SU packets is proposed. For evaluate the influence of the finite buffer setting and
the feedback probability to the system performance, DTMC model is developed.
The expressions of some performance measures of the PU packets and the SU
packets are obtained and numerical results to evaluate how the buffer setting of
the PU packets and the feedback probability influence the system performance
are demonstrated. For solving the problems, the matrix-geometric method is
used.

The models of feedback queuing systems with two types of calls are considered
in Lee (2005) [16] and Krishnamoorthy et al. (2018) [17]. Lee (2005) [16] consider
the model of feedback retrial queue with two types of calls where after being
served each call either joins the retrial group or departs the system forever. If an
arriving priority call finds the server idle, he/she immediately starts to receive
service; if call finds the server busy, he/she is queued in the priority group and
then served in accordance with some conservative discipline. On the other hand,
when an arriving non-priority call finds the server idle, he/she obtains service
immediately; if call finds the server busy, he/she joins the retrial group in order
to seek service again after a random amount of time (delayed feedback). The
retrial time is exponentially distributed and is independent of all previous retrial
times and all other stochastic process in the system. Both kinds of calls who has
received service either departs the system or feedback to appropriate groups in
accordance to Bernoulli scheme. In M/G/1 retrial queueing system with two
types of calls and feedback, the joint PGF of the number of calls in two groups
are derived by using the supplementary variable method. Krishnamoorthy et al.
(2018) [17] consider the model with two-priority queueing system according to
a marked Poisson process. Both waiting rooms have infinite capacity. Calls are
served one at a time according to FIFO discipline on priority basis: those in
waiting line 1 (P1) are given priority over the ones in line 2 (P2). The service
time is class-dependent phase type. After completion of service, high priority
calls may feedback for service according to a Bernoulli process. Feedback calls
are sent to the low priority queue. When at a service completion epoch of a P1
call, if there is none left behind in P1 line, then the server goes to serve P2 class.
For the two-priority queueing system, we assume that P2 calls are not allowed
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an additional feedback. Both preemptive and non-preemptive service disciplines
are analyzed. Waiting time distribution of both type of calls is derived.

The models of feedback tandem queuing systems are investigated in some
papers as well. So, in Kim (2007) [18] the problem of calculation of the station-
ary state distribution for the BMAP/G/1→·PH/1/M tandem queue with losses
and feedback of calls is solved. Expressions for some performance measures of
the system are derived and the numerical examples are presented. Similar model
was used to study an open tandem communication network where each node con-
sists of a buffer and a transmitter in Raghavendran, et al. (2014) [19]. The two
buffers are Q1, Q2 and transmitters are S1, S2 connected in tandem. The arrival
of packets at the first node follows non-homogeneous Poisson processes with a
mean arrival rate. It is also assumed that the packets are transmitted through
the transmitters and the mean service rate in the transmitter is linearly depen-
dent on the content of the buffer connected to it. It is assumed that the packet
after getting transmitted through first transmitter may join the second buffer
which is in series connected to S2 or may be returned back buffer connected to
S1 for retransmission (feedback) with certain probabilities. The packets deliv-
ered from the first node and arrived at the second node may be transmitted
out of the network or returned back (feedback) to Q2 for retransmission. After
getting transmitted from the first transmitter the packets are forwarded to Q2
for forward transmission w.p. 1-θ or returned back to the Q1 w.p. θ. The pack-
ets arrived from the first transmitter are forwarded to Q2 for transmission and
exit from the network w.p. 1-π or returned back to the Q2 w.p. π. The service
completion in both the transmitters follows Poisson processes with the different
parameters. The transmission rate of each packet is adjusted just before trans-
mission depending on the content of the buffer connected to the transmitter.
The transient analysis of the model is capable of capturing the changes in the
performance measures of the network explicitly. It is observed that the feedback
probabilities have significant influence on the overall performance of the network.

Varalakshmi et al. (2016) [20] consider a single server retrial tandem queueing
system with immediate Bernoulli feedbacks, single vacation and starting failures.
The PGF for number of calls in the system when it is idle, busy, on vacation
or under repair is found by the use of supplementary variable technique. The
performance measures such that mean number of calls in the system/orbit and
mean waiting time of a call in the system/orbit were deduced. The analyti-
cal results are validated with the help of numerical illustrations. Melikov et al.
(2016) [21] consider the Markov model of a two-stage queueing network with
feedback. Poisson flows arrive to both stages from outside. A part of already
serviced calls at the first node instantaneously enter the second node (if there
is free space here) while the other calls leave the network. After the service is
completed at the second node, there are three possibilities: (i) the call leaves
the network; (ii) it instantaneously feeds back to the first node (if there is free
space here); (iii) it feeds back to the first node after some delay in orbit. All
feedbacks are determined by known probabilities. Both nodes have finite capaci-
ties. The mathematical model of the investigated network is a three-dimensional
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Markov chain, and a hierarchical space merging algorithm is developed to cal-
culate its steady-state probabilities. The results of numerical experiments are
demonstrated.

In indicated works it is assumed that server can start to service of feedback
call immediately. However, this assumption sometimes is unrealistic, i.e. to start
of servicing of feedback call some positive server setup time is required. Such
situations are ubiquitous in production systems where to process the defective
part, some positive time for server setup is required.

To our best knowledge there are not works devoted to feedback queuing model
with setup time for servicing of calls that required repeated processing. Here the
model of infinite queuing system with instantaneous feedback and positive setup
time of server is proposed. It is assumed that calls in system are impatient if
server is in setup period. Two approach are developed to calculation of steady-
state probabilities and performance measures of investigated system: matrix-
geometric method of Neuts [22] and space merging method [21].

The rest of the paper is arranged as follows. The system description and
construction of the generating matrix of the appropriate two-dimensional Markov
chain (2D MC) are given in Sect. 2. Section 3 provides steady state analysis of the
model by means of matrix-geometric method. Application of the space merging
method is considered in Sect. 4. In Sect. 5 total cost function is constructed and
results of numerical experiments are demonstrated. Conclusion remarks are given
in Sect. 6.

2 Description of the System and Construction
of the Generating Matrix

Consider a QS with one server and an infinite size of waiting room, which receives
a Poisson flow of primary calls (p-calls) from the outside. The service times
of these calls are independent and identically distributed (iid) r.v. and have
a common exponential cumulative distribution function (cdf) with an average
value μ−1. After the completion of the servicing process, p-calls, independently of
each other and according to the Bernoulli scheme, either leave the system w.p. σ
or immediately require repeated servicing with complementary probability 1−σ.
Calls that require re-servicing will be called feedback calls (f -calls). The service
times of f -calls are also iid r.v. with the same average μ−1.

To start the process of servicing f -calls, the server needs some positive ran-
dom time, which is called the server setup time. It has an exponential cdf with
an average value θ−1, i.e. at any time the server can be in one of two states: in
working mode or in setup mode. It is not allowed to interrupt the server setup
time, i.e. the f -call, which initiates the server setup process, remains on it for
the entire period of its setup.

The p-calls are considered to have information about the server status. This
means that if the server is in switch mode, then their intensity is equal to λ0,
otherwise it is equal to λ1. Calls in the queue are expected to become impatient
during the time the server is in setup mode and only the call at the head of the
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queue being impatient. In other words, during the server setup period, the call
that is at the head of the queue leaves the system after a random time, which
has an exponential distribution with an average value τ−1.

It is considered that random processes of call arrival, their servicing, server
setup time and allowable waiting time in the queue for calls during the server
setup period are independent of each other.

It is required to find the joint distribution of the number of calls in the system
and the state of the server, as well as the following performance measures of the
system: the average number of calls in the system (Ls), fraction of the time the
system is in working (Twr) and in setup mode (Tsr), as well as the intensity of
the server switching from setup mode to working mode (Rsw).

The state of the system at an arbitrary moment in time is determined by the
two-dimensional vector (n, k), where n is the number of calls in the system, k is
the state of server, i.e.

k =
{

0, if the server is in setup mode,
1, if the server is in working mode.

The system operation is described by a two-dimensional MC (2D MC) with the
following state space:

E = E0

∞⋃
n=1

En, (1)

where E0 = {(0, 1)} , En = {(n, 0) , (n, 1)} , n = 1, 2, ...
Elements of the generating matrix Q of the given 2D MC are denoted by

q((n, k), (n′, k′)), i.e. quantities q((n, k), (n′, k′)) indicates the intensity of the
transition from the state (n, k) to state (n′, k′). These quantities are defined as:

q ((n, 1) , (n + 1, 1)) = λ1; (2)

q ((n, 1) , (n − 1, 1)) = μσ , n > 0; (3)

q ((n, 1) , (n, 0)) = μ (1 − σ) , n > 0; (4)

q ((n, 0) , (n, 1)) = θ; (5)

q ((n, 0) , (n + 1, 0)) = λ0; (6)

q ((n, 0) , (n − 1, 0)) = τ, n > 1. (7)

Let us denote by p(n, k) the steady state probability of (n, k) ∈ E (the
ergodicity condition is established below). These quantities satisfy the system
of equilibrium equations (SEE), which is compiled on the basis of relations (2)–
(7) (due to the obviousness of the compilation, the explicit form of this SEE
is not given here). Using the method of generating functions to find stationary
probabilities of states for a similar model with patient calls is considered in [1].
Numerical methods for solving this problem are considered below.
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3 Matrix-Geometric Method

To apply the matrix-geometric method, the states of the system are numbered
lexically, i.e. in order (0, 1) , (1, 0) , (1, 1) , (2, 0) , (2, 1) , . . .. Then the generat-
ing matrix Q of given 2D MC can be represented as follows:

Q =

⎡
⎢⎢⎣

B0 C0 ... ...
B1 A1 A0 ...
... A2 A1 A0

... ... ... ...

⎤
⎥⎥⎦ ,

where block matrices are defined as follows: B0 = (−λ1) is matrix of dimension
1 × 1; C0 =

(
0 λ1

)
is matrix of dimension 1 × 2; A0, A 1 and A2 are matrices of

dimension 2 × 2, i.e.

B1 =
(

τ
μ(1 − σ)

)
;

A2 =
(

τ 0
0 μ (1 − σ)

)
;A1 =

(− (λ0 + θ + τ) θ
μσ − (λ1 + μ)

)
;A0 =

(
λ0 0
0 λ1

)
.

Let be ν = (ν0, ν1 ) is a vector of state probabilities of a MC with two states
and an infinitesimal generator A, where

A = A0 + A1 + A2 =
(−θ θ

μσ −μσ

)
,

i.e. specified vector ν = (ν0, ν1 ) is found from the following system of equations:

ν A = 0, ν e = 1, (8)

where e = (1, 1)T .
From the system of Eqs. (8) we find that, ν0 = μσ/ (θ + μσ), ν1 =

θ/ (θ + μσ).
The quasi birth-death (QBD) process is stable if and if the following condition

is satisfied [22]:
νA0e < νA2e. (9)

From (9) we find the following condition for the ergodicity of the system:

λ1θ + λ0μσ < μ (θσ + τ (1 − σ)) . (10)

When the ergodicity condition (10) is fulfilled, the steady state probabil-
ities of the system are calculated according to the following algorithm. Let
us express the steady state probabilities p(n, k), (n, k) ∈ E in vector form
p = (p0, p1, p2, ...), where p0 has the dimension 1, i.e. p0 = (p (0, 1)),

while pn, n ≥ 1, are two-dimensional vectors, i.e. pn = (p (n, 0) , p (n, 1)).
According to the algorithm of the matrix-geometric method [22], the indi-

cated quantities satisfy the equation pn = p1R
n−1, n ≥ 2, where R is the

minimal non-negative solution of the following quadratic matrix equation:
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R2A2 + RA1 + A0 = 0. (11)

Probabilities of boundary states p0 and p1 are found from the following
system of equations:

p0B0 + p1B1 = 0;

p0C0 + p1 (A1 + RA2) = 0. (12)

System of Eqs. (12) is solved taking into account the normalization condition:

p (0, 1) + p1 (I − R)−1
e = 1, (13)

where I is the 2 × 2 identity matrix.

Remark 1. In [22–24] proposed efficient algorithms for solving equations of the
type (11)–(13), and therefore we do not dwell on this issue.

After finding the steady state probabilities, the desired performance measures
of the system are calculated as follows:

Ls =
∞∑

n=1

1∑
k=0

np (n, k) . (14)

Tsr =
∞∑

n=1

p (n, 0) . (15)

Twr =
∞∑

n=0

p (n, 1) . (16)

Rsw = θ
∞∑

n=1

p (n, 0) . (17)

4 Space Merging Method

Note that for certain ratios of the values of the system parameters, the space
merging method (SMM) can be correctly used to solve the problem under study.
Application of this method allows one to propose explicit formulas for finding
the stationary distribution of the studied 2D MC as well as for calculating the
performance measures of the original system.

Thus, this method, in particular, can be correctly applied to a model in
which the server setup time is significantly less than the intervals between call
arrivals, i.e. it is assumed that the relation θ >> max (λ0, λ1) is true. In addition,
assume that the proportion of calls requiring re-service is much larger than
the proportion of calls that do not require re-service, i.e. the following relation
is fulfilled: σ << 0.5. If these conditions are satisfied, then we obtain that the
intensities of transitions inside the classes En (see (1)) turn out to be much
larger than the intensities of transitions between states from different classes.
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Then, according to the method proposed in [1], each class En, n = 0, 1, 2, ... ,
is represented as a separate merged state <n>, n = 0, 1, 2, ..., and probabilities
of states inside classes En, n = 0, 1, 2, ... are denoted by ρn (k) , k = 0, 1 . The
class E0 contains only one state (0, 1), therefore it is assumed that ρ0 (1) = 1.

Based on relations (4) and (5), we conclude that the probabilities of states
within each class En, n > 0 do not depend on the index n and are calculated as
follows:

ρ (0) =
μ (1 − σ)

θ + μ (1 − σ)
, ρ (1) =

θ

θ + μ (1 − σ)
. (18)

Consequently, from relations (2), (3), (6), (7), taking into account (18), we
find that the intensities of transitions between merged states are calculated as
follows:

q1 (<0>, <1>) = λ1; q1 (<1>, <0>) = μ1; (19)

q1 (<n>, <n + 1>) = λ̃, n ≥ 1; q1 (<n>, <n − 1>) = μ̃, n ≥ 2. (20)

Hereinafter,

μ1 =
μθσ

θ + μ(1 − σ)
, λ̃ =

1
θ + μ(1 − σ)

(λ1θ + λ0μ(1 − σ)) ,

μ̃ =
μ

θ + μ(1 − σ)
(θσ + τ(1 − σ)).

From relations (19) and (20), we conclude that the merged model is described
by an infinite birth-death process with variable parameters. The ergodicity con-
dition for this process is λ̃ < μ̃, i.e. we obtain condition (10).

Remark 2. The ergodicity condition (10) has the following probabilistic inter-
pretation. So, when the server is in working mode, the rate of incoming calls is
λ1ρ (1), and when the server is in setup mode, this value is λ0ρ (0), i.e. λ̃ is the
total rate of incoming calls for different operating modes of the server. On the
other hand, calls are served only when the server is in working mode, i.e. the
service intensity is μσρ (1). In addition, calls leave the system not serviced if the
server is in setup mode, while the rate of call leaving the system is τρ (0). In
other words, the total rate of calls leaving the system is μ̃. Hence, we conclude
that the ergodicity condition (10) has a simple probabilistic interpretation: the
total intensity of incoming calls for different operating modes of the server should
be less than the intensity of calls leaving the system.

From relations (19) and (20) we find that the probabilities of the merged
states π (<n>) , n ≥ 0 are calculated as follows:

π (<n>) =
λ1

μ1

(
λ̃

μ̃

)n−1

π (<0>) , n ≥ 1, (21)

where π (<0>) =
(
1 + λ1

μ1

1
1−α

)−1

, α = λ̃
μ̃ .
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Finally, from relations (18) and (21), the approximate values of the steady
state probabilities of the initial 2D MC are calculated as follows:

p̃ (0, 1) = π (<0>) ; (22)

p̃ (n, 0) = ρ (0) π (<n>) ; (23)

p̃ (n, 1) = ρ (1) π (<n>) . (24)

Approximate values of performance measures (14)–(17) are defined as follows:

Ls ≈
∞∑

n=1

1∑
k=0

np̃ (n, k) =
∞∑

n=1

nπ (<n>) =
λ1

μ1

1
(1 − α)2

π (<0>) ; (25)

Tsr ≈
∞∑

n=1

p̃ (n, 0) = ρ (0)
∞∑

n=1

π (<n>) = ρ (0) (1 − π (<0>)) ; (26)

Twr ≈
∞∑

n=0

p̃ (n, 1) = π (<0>) + ρ (1) (1 − π (<0>)) ; (27)

Rsw ≈ θ
∞∑

n=1

p̃ (n, 0) = θTsr. (28)

Now let’s consider the case when the server setup time is significantly longer
than the intervals between call arrivals, i.e. it is assumed that the relation
θ << max (λ0, λ1) is hold. Under this condition, the following splitting of the
initial state space E is considered:

E = X0

⋃
X1, X0

⋂
X1 = ∅, (29)

where X0 = {(n, 0) : n ≥ 1} , X1 = {(n, 1) : n ≥ 0} .
In this case, the intensities of transitions within the classes X0 and X1 are

significantly bigger than the intensity of transitions between states from different
classes.

According to the algorithm of the SMM, the classes X0 and X1 are repre-
sented as merged states <0> and <1> respectively.

State probabilities (n, k) inside classes Xk are denoted by χk (n) , k = 0, 1.
From the relations (2)–(7) we conclude that these quantities are determined
from the classical formulas for one-dimensional birth-death process. Moreover,
the birth rate for the model with state space X0 is equal to λ0, and the death
rate is τ ; corresponding parameters for the model with state space X1 is equal to
λ1, and the death rate is μσ. Therefore, under the ergodicity conditions λ0 < τ
and λ1 < μσ the indicated probabilities are calculated as

χ0 (n) = αn−1 (1 − α) , n ≥ 1;
χ1 (n) = βn (1 − β) , n ≥ 0,

(30)

where α = λ0/τ, β = λ1/μσ .
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Remark 3. If the above conditions are met for α < 1 and β < 1, then the
ergodicity condition (10) is also satisfied.

Taking into account relations (30), we find that the intensities of transitions
between the merged states <0> and <1> are defined as follows:

q2 (<0>, <1>) = θ ;

q2 (<1>, <0>) = μ (1 − σ) (1 − β) . (31)

From relations (31), the probabilities of the merged states ψ (<n>) , n = 0, 1
are calculated as follows:

ψ (<0>) =
μ (1 − σ) (1 − β)

θ + μ (1 − σ) (1 − β)
, ψ (<1>) =

θ

θ + μ (1 − σ) (1 − β)
. (32)

Taking into account relations (32) for this case, we find the approximate values
of the steady state probabilities of the initial 2D MC:

p̃ (n, k) = χk (n) ψ (<k>) , k = 0, 1. (33)

Then, similarly to (25)–(28), when using partition (29), the approximate
values of the desired performance measures (14)–(17) are defined as follows:

Ls ≈
∞∑

n=1

1∑
k=0

np̃ (n, k) =
1∑

k=0

ψ (<k>)
∞∑

n=1

nχk (n) =

=
β

1 − β
ψ (<1>) +

1
1 − α

ψ (<0>) ;

(34)

Tsr ≈
∞∑

n=1

p̃ (n, 0) = ψ (<0>) ; (35)

Twr ≈
∞∑

n=0

p̃ (n, 1) = ψ (<1>) ; (36)

Rsw ≈ θ
∞∑

n=1

p̃ (n, 0) = θTsr. (37)

5 Numerical Results

Below we study the effect of different parameters on various performance mea-
sures and the cost function. The cost function includes the following components:
penalties associated with calls being in the system, penalties for lost calls due to
impatience, the cost of servicing a call during server working mode, and penalties
for server switch to working mode.

For this purpose, the following coefficients are introduced: ch is penalty per
unit of time spent by one call in the system; csr is penalty for losing one call due
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to his impatience; cwr is the cost of servicing a call in the working mode of the
server; csw is penalty for one server switch to working mode.

Then the objective function of the problem under study is written as follows:

C = chLs + csrTsr + cwrTwr + cswRsw. (38)

Consequently, the task is to minimize functional (38). Since this functional
depends on many variables and has a complex form, an analytical solution to
this problem is not possible. Based on these facts, here we study the problems
of the influence of system parameters on the performance measures of systems
and functional (38).

First, we study the effect of parameter λ0.

Table 1. Effect of parameter λ0: λ1 = 1.2, μ = 10, σ = 0.6, θ = 2, τ = 1, Ch = 3, Csr =
2, Cwr = 35 and Csw = 10.

λ0 Ls Tsr Twr Rsw C

0.1 0.4756 0.3049 0.6951 0.6098 32.4632

0.2 0.5034 0.3156 0.6844 0.6311 32.4080

0.3 0.5380 0.3269 0.6731 0.6539 32.3638

0.4 0.5811 0.3391 0.6609 0.6782 32.3348

0.5 0.6349 0.3522 0.6478 0.7043 32.3266

0.6 0.7023 0.3662 0.6338 0.7324 32.3467

0.7 0.7874 0.3813 0.6187 0.7626 32.4057

0.8 0.8957 0.3976 0.6024 0.7952 32.5184

0.9 1.0349 0.4153 0.5847 0.8305 32.7062

1 1.2165 0.4345 0.5655 0.8690 33.0011

From Table 1, we see that Ls and Tsr increases when λ0 increases, as expected.
As a result Twr decreases. As λ0 increases, Rsw increases, since the expected
number of calls in the system when the server is in set up regime increases. The
cost function first decreases to a minimum value and after that it increases. In
all tables, the number in bold letter denotes the minimum value of cost function.

The effect of parameter λ1 is shown in Table 2. From this table, we see that
Lsincreases when λ1 increases as expected. As λ1 increases Twr decreases, since
customers get service when the server is in working regime and as a result,Tsr

and hence Rsw increases. The cost function first decreases to a minimum value
and after that it increases.
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Table 2. Effect of parameter λ1: λ0 = 1, μ = 10, σ = 0.6, θ = 2, τ = 1, Ch = 3, Csr =
2, Cwr = 35 and Csw = 10.

λ1 Ls Tsr Twr Rsw C

0.2 0.2296 0.1082 0.8918 0.2163 34.2827

0.4 0.4368 0.1969 0.8031 0.3938 33.7504

0.6 0.6315 0.2710 0.7290 0.5421 33.3712

0.8 0.8218 0.3338 0.6662 0.6677 33.1254

1 1.0145 0.3877 0.6123 0.7755 33.0030

1.2 1.2165 0.4345 0.5655 0.8690 33.0011

1.4 1.4347 0.4754 0.5246 0.9508 33.1237

1.6 1.6774 0.5115 0.4885 1.0231 33.3821

1.8 1.9545 0.5437 0.4563 1.0873 33.7962

2 2.2796 0.5724 0.4276 1.1448 34.3978

Table 3. Effect of parameter μ: λ0 = 1, λ1 = 1.2, σ = 0.6, θ = 2, τ = 1, Ch = 3, Csr =
2, Cwr = 35 and Csw = 10.

μ Ls Tsr Twr Rsw C

3.1 52.3818 0.4718 0.5282 0.9436 186.0118

3.2 26.1638 0.4701 0.5299 0.9402 107.3803

3.3 17.4434 0.4684 0.5316 0.9369 81.2404

3.4 13.0959 0.4669 0.5331 0.9338 68.2178

3.5 10.4965 0.4655 0.5345 0.9309 60.4384

3.6 8.7704 0.4641 0.5359 0.9282 55.2777

3.7 7.5427 0.4628 0.5372 0.9257 51.6114

3.8 6.6261 0.4616 0.5384 0.9232 48.8773

3.9 5.9165 0.4605 0.5395 0.9209 46.7635

4 5.3516 0.4594 0.5406 0.9188 45.0829

The effect of parameter μ is shown in Table 3. From Table 3, we can see
that Ls decreases when μ increases, as expected. Also we see that Tsr and Rsw

decreases and Twr increases in slow rate, when μ increases. This is due the effect
of feedback of customers to the system after service completion. Also, the cost
function decreases as μ increases.

Effect of parameter θ is shown in Table 4. From this table, we see that Ls

decreases when θ increases. This happens because when θ increases, server shifts
from setup regime to working regime at a faster rate. Also Tsr decreases and
Twrincreases when θ increases, as expected. Rsw increases as θ increases since
the shifting rate of server from setup regime to working regime increases. The
cost function first decreases to a minimum value and after that it increases.
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Table 4. Effect of parameter θ: λ0 = 1, λ1 = 1.2, σ = 0.6, μ = 10, τ = 1, Ch = 3, Csr =
2, Cwr = 35 and Csw = 10.

θ Ls Tsr Twr Rsw C

0.2 10.5267 0.8691 0.1309 0.1738 39.6373

0.4 5.2509 0.7741 0.2259 0.3096 28.3052

0.6 3.5251 0.7006 0.2994 0.4204 26.6586

0.8 2.6784 0.6416 0.3584 0.5133 26.9952

1 2.1793 0.5928 0.4072 0.5928 27.9034

1.2 1.8519 0.5516 0.4484 0.6619 28.9721

1.4 1.6216 0.5163 0.4837 0.7228 30.0559

1.6 1.4511 0.4855 0.5145 0.7768 31.0997

1.8 1.3201 0.4585 0.5415 0.8253 32.0833

2 1.2165 0.4345 0.5655 0.8690 33.0011

6 Conclusion

The paper studies a model of a service system with one server, an infinite queue,
instantaneous feedback and impatient calls. After the completion of the service,
some of the calls according to the Bernoulli scheme either leave the system or
immediately require repeated service. To start the process of reserving calls, the
server needs some random setup time, which has an exponential distribution
function. It is considered that when the server is in the setup state, it cannot
handle calls and interruption of the setup period are not allowed. Calls in queue
are impatient when server is in setup regime. The rate of incoming calls depends
on the server status.

It is shown that the mathematical model of the system under study is a 2D
MC with an infinite state space. The ergodicity condition for the model is found
and two approach for studying the corresponding 2D MC are proposed: the
approaches based on matrix-geometric method and on space merging method.
The first of them is exact method and the second is approximate one. Results
of minimization of total cost are demonstrated.
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Abstract. In our paper, the waiting time analysis of a M/M/1 retrial
queueing system is presented and the asymptotic distribution of the num-
ber of returns of the tagged request to the orbit is driven since they
are connected to each other. The research was conducted by the use of
asymptotic analysis method. Two different cases are considered. First we
conduct analysis under a heavy load condition and then under a low rate
of retrials condition. Two different characteristic functions of the wait-
ing time were obtained. The analysis was carried out using asymptotic
distributions of the number of requests in the orbit under a heavy load
condition and a low rate of retrials condition, which were also obtained.
To show the effectiveness of asymptotic results for the considered retrial
queuing system, the approximation of the distribution of the number of
returns of the tagged request to the orbit in prelimit situation, numerical
illustrations and results are given.

Keywords: Retrial queue · Asymptotic analysis · Waiting time ·
Number of returns · Number of retrials

1 Introduction

Retrial queue (RQ) systems are adequate models of processes arising from real
world applications. Main fields where such models are used are telecommunica-
tion networks, computer networks, call centers, wireless communication systems,
cognitive networks, cloud computing. An extensive review of recent developments
and methods related to RQ systems one can find in, for example, Artalejo, Falin
[2], Artalejo, Gomez-Corral [3], Gomez-Corral, Phung-Duc [16], Falin, Temple-
ton [13], Kim, Kim [17], Nobel [24], Phung-Duc [26].

The waiting time distribution, the time a request spends in the orbit, is very
complicated problem in the retrial queue system theory. Different approaches to
the investigation of the waiting time can be found in Artalejo, Chakravarthy,
Lopez-Herrero [1], Artalejo, Gomez-Corral [4], Choi, Chang [6], Falin, Artalejo
[8], Gharbi, Dutheillet [14], Sudyko, Nazarov, Sztrik [27], Tóth, Bérczes, Sztrik
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https://doi.org/10.1007/978-3-030-72247-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72247-0_13&domain=pdf
http://orcid.org/0000-0002-2091-6011
http://orcid.org/0000-0002-9069-2359
https://doi.org/10.1007/978-3-030-72247-0_13


172 A. Nazarov and M. Samorodova

[28], Zhang, Feng, Wang [29] for finite retrial group of sources and Chakravarthy,
Dudin [7], Falin, Fricker [9], Falin [1,10,12], Gomez-Corral, Ramalhoto [15],
Neuts [20], Nobel, Tijms [25], Lee, Kim, Kim [18] for infinite number of sources.

Since a request waiting time distribution and the number of returns distribu-
tion are connected to each other, in this paper we investigate both of them. We
use the method of asymptotic analysis under a heavy load condition and a low
rate of retrials condition following approach applied in, for example, Moiseeva,
Nazarov [19], Nazarov, Moiseeva [21], Nazarov, Semenova [22], Nazarov, Sztrik,
Kvach [23].

The rest of the paper is organized as follows. In Sect. 2 the RQ-system math-
ematical model and the waiting time characteristic function are presented. In
Sect. 3 we derive Kolmogorov’s equations for the system states. Section 4 is con-
nected with the asymptotic analysis of the distribution of the number of requests
in the orbit, which is needed for further research. In Sect. 5 asymptotic analy-
sis of characteristic functions for the number of request returns to the orbit is
provided. In Sect. 6 the asymptotic distribution of the waiting time in the orbit
is derived for two different conditions. In Sect. 7 we found the approximation of
the waiting time distribution in prelimit situation. Also, several sample results
obtained by numerical methods showing that proposed approximation is effec-
tive. The paper ends with a Conclusion.

2 Mathematical Model

Let us consider a M/M/1 retrial queuing (RQ) system. The system input receives
a Poisson flow of requests which is given by a scalar intensity λ. When incoming
request arrive at the system the server can be idle or busy. In the first case this
request occupies the server and the service starts immediately. Served request
leaves the system. In second case, the request joins to the orbit. Each request
from the orbit after a random delay retries to get accesses to the server. At the
retrial moment server again can be idle or busy. In the first case this request
occupies the server for a random service time; otherwise, it instantly returns to
the orbit for a next random delay. Service time and random delay time are inde-
pendent and exponentially distributed with parameters μ and σ, respectively.

We assume the system being in stationary mode. Let’s define W – waiting
time of the tagged request in the orbit as the length of the interval from the
moment the request arrives in the system till the start of the service. Let’s denote
by ν̃ the number of transitions of the tagged request to the orbit. Also we denote
by r the probability that the server is busy at the moment the request arrives
at the system. Obviously ν̃ = 0, with the probability (1 − r) that the request
finds the server idle at the moment of the arrival to the system. In addition, we
denote by ν(t) the number of returns of the tagged request to the orbit from the
moment t until the start of the service. Using above notations:

ν̃ =
{

0, with probability (1 − r),
1 + ν(t), with probability r.
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The characteristic function for W can be written as follows:

G(u) = E
{
ejuW

}
= (1 − r) + r

∞∑
n=0

E
{
ejuW /ν = 1 + n

}
P {ν(t) = n}

= (1 − r) + r

∞∑
n=0

(
σ

σ − ju

)1+n

P {ν(t) = n} .

(1)

The aim of our study is to find the asymptotic distribution of W the waiting time
of the tagged request in the orbit. As can be seen from (1), for that purpose it
is enough to find the probability r and the probability distribution P {ν(t) = n}
under limiting conditions. First, we conduct our research under a heavy load
condition and then under a low rate of retrials condition. As a result, two different
asymptotic distributions of W were obtained.

3 Kolmogorov’s Equations

Let’s denote by i(t) the number of requests in the orbit at time t and by k(t) -
the state of the server at time t:

k(t) =
{

0, if the server is idle,
1, if the server is busy.

The system state at time t can be described by means of a markov chain
{k(t), i(t)} with stationary probability distribution:

Pk(i) = P {k(t) = k, i(t) = i}
Probability distribution Pk(i) satisfy the following Kolmogorov equations:

(λ + iσ)P0(i) = μP1(i),
(λ + μ)P1(i) = λP0(i) + (i + 1)σP0(i + 1) + λP1(i − 1).

(2)

Steady-state partial characteristic functions Hk(u) for i(t) can be written in the
following form:

Hk(u) =
∞∑

i=0

ejuiPk(i), (3)

where j =
√−1 is the imaginary unit.

According to (2) and (3) we obtain the system of equations for Hk(u):

−λH0(u) + jσ
∂H0(u)

∂u
+ μH1(u) = 0,

−(λ + μ)H1(u) + λH0(u) − jσe−ju ∂H0(u)
∂u

+ λejuH1(u) = 0.
(4)

Steady-state characteristic functions for ν(t) can be written in the following
form:

G(u) = E
{

ejuv(t)
}

=
∞∑

i=0

[G0(i, u)P0(i) + G1(i, u)P1(i)].
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Let’s consider:

Gk(i, u, t) = E
{

ejuv(t)/k(t) = k, i(t) = i
}

,

where Gk(i, u, t) - conditional partial characteristic functions for ν(t). Taking
into account that the system is in a stationary mode, for Gk(i, u) we obtain the
system of inverse Kolmogorov equations:

− (λ + iσ)G0(i, u) + λG1(i, u) + (i − 1)σG1(i − 1, u) + σ = 0, (5)

− (λ + μ + σ)G1(i, u) + μG0(i, u) + λG1(i + 1, u) + ejuσG1(i, u) = 0. (6)

4 Asymptotic Analysis of the Number of Requests
in the Orbit

Heavy Load Condition. Denote ρ = λ
μ , ε = 1 − ρ, making substitutions

u = εw, H0(u) = εF0(ω, ε), H1(u) = F1(ω, ε) and deviding (4) by μ we get:

F1(w, ε) − (1 − ε)εF0(w, ε) + j
σ

μ

∂F0(w, ε)
∂w

= 0,

(1 − ε)εF0(w, ε) +
[
(1 − ε)(ejwε − 1) − 1

]
F1(w, ε)

−j
σ

μ
e−jwε ∂F0(w, ε)

∂w
= 0.

(7)

The beforelimited characteristic function under a heavy load condition can be
determined approximately by the equation: H(u) = H0(u) + H1(u) ≈ h(w) =
F1(w).

Step 1. Let ε → 0 in (7). Denote

lim
ε→0

Fk(ω, ε) = Fk(ω).

For functions Fk(w) we obtain the system of equations:

F1(w) + j
σ

μ

∂F0(w)
∂w

= 0,

−F1(w) − j
σ

μ

∂F0(w, ε)
∂w

= 0.

This system consists of two equivalent equations.

Step 2. Let’s rewrite Fk(w, ε) from (7) as follows:

Fk(w, ε) = Fk(w) + εfk(w) + o(ε2),
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and devide equations of the system (7) by ε. With respect to step 1 results and
after taking ε → 0, we obtain:

f1(w) − F0(w) + j
σ

μ

∂f0(w)
∂w

= 0,

−F1(w) + f1(w) + j
σ

μ

∂f0(w)
∂w

+
σ

μ
w

∂F0(w)
∂w

= 0.

Combining resulting equations of steps 1 and 2, we get the following system:

F1(w) + j
σ

μ

∂F0(w)
∂w

= 0,

f1(w) − F0(w) + j
σ

μ

∂f0(w)
∂w

= 0,

−F1(w) + f1(w) + j
σ

μ

∂f0(w)
∂w

+
σ

μ
w

∂F0(w)
∂w

= 0.

Solving the obtained system as it is shown in [19] the following expression can
be got:

h(w) = (1 − jw)−(μ+σ
σ ), (8)

where h(w) is a characteristic function of gamma distribution γ (x) with param-
eters β = μ+σ

σ and α = 1.

Low Rate of Retrials Condition. Making substitutions σ = ε, u = εw,
Hk(u) = Fk(ω, ε) in (4), we obtain:

−λF0(ω, ε) + j
∂F0(ω, ε)

∂ω
+ μF1(ω, ε) = 0,

−(λ + μ)F1(ω, ε) + λF0(ω, ε) − je−jεω ∂F0(ω, ε)
∂ω

+ λejεωF1(ω, ε) = 0.
(9)

Step 1. Let ε → 0 in (9). Denote

lim
ε→0

Fk(ω, ε) = Fk(ω).

For functions Fk(w) we obtain the system of equations:

−λF0(ω) + j
∂F0(ω)

∂ω
+ μF1(ω) = 0,

λF0(ω) − j
∂F0(ω)

∂ω
− μF1(ω) = 0.

Note that equations of this system are equivalent.
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Step 2. Adding equations in system (9), we get:

j(1 − e−jεω)
∂F0(ω, ε)

∂ω
+ λ(ejεω − 1)F1(ω, ε) = 0.

Let’s decompose exponential function and rewrite above expression:

j(jεω + o(ε))
∂F0(ω, ε)

∂ω
+ λ(jεω + o(ε))F1(ω, ε) = 0.

Taking ε → 0, we obtain:

j
∂F0(ω)

∂ω
+ λF1(ω) = 0.

Combining with the result of Step 1, we get the system similar to system obtained
in [22]:

−λF0(ω) + j
∂F0(ω)

∂ω
+ μF1(ω) = 0,

j
∂F0(ω)

∂ω
+ λF1(ω) = 0.

(10)

Lets find the solution in the following form:

Fk(ω) = R(κ)ejwk, (11)

where R(κ) = P (k = κ) - stationary probabilities of Markov chain k(t), κ = 0, 1.
Substituting (11) in (10), we obtain a homogeneous system of two equations

for the probability distribution R(k):

−(λ + κ)R(0) + μR(1) = 0
−κR(0) + λR(1) = 0.

(12)

Equation
λ(λ + κ) − μκ = 0 (13)

determines the value of κ for (11). Solving (13) we obtain:

κ =
λ2

μ − λ
(14)

Taking into account the normalization condition R(0) + R(1) = 1 and (12) the
probability distribution R(k) can be calculated as:

R(0) =
μ − λ

μ
,R(1) =

λ

μ
.

5 Asymptotic Analysis of the Number of Returns
of the Tagged Request to the Orbit

Heavy Load Condition. Denote ρ = λ
μ , ε = 1 − ρ, making substitutions

u = εw, iε = x, Gk(i, u) = gk(x,w, ε) and multiplying (5) by ε we obtain:

−(ελ + σ)g0(, w, ε) + ελg1(, w, ε) + (x − ε)σg1(−ε, w, ε) + εσ = 0

−(λ + μ + σ(1 + ejεw))g1(, w, ε) + μg0(, w, ε) + λg1(+ε, w, ε) = 0
(15)
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Step 1. Let ε → 0 in (15). Denote

lim
ε→0

gk(x,w, ε) = gk(x,w).

We obtain the following system for gk(x,w):

−xσg0(x,w) + xσg1(x,w) = 0,
−(μ + σ)g1(x,w) + (μ + σ)g0(x,w) = 0.

(16)

Note that equations of this system are equivalent and g0(x,w) = g1(x,w) =
g(x,w).

Step 2. Let’s rewrite gk(x,w, ε) from (15) as follows:

gk(x,w, ε) = g(x,w) + εfk(x,w) + o(ε), (17)

and then rewrite (15):

−(ελ + xσ)g0(x,w, ε) + (ελ + xσ) g1(x,w, ε)

− ε
∂ [xσg1(x,w, ε)]

∂x
+ εσ = O(ε2),

− (μ + σ)g1(x,w, ε) + μg0(x,w, ε)

+ ε
∂ [λg1(x,w, ε)]

∂x
+ ejεwσg1(x,w, ε) = O(ε2).

(18)

Substituting decomposition (17) in (18), taking ε → 0 and after performing some
actions on the equations, we get the following system:

x [f1(x,w) − f0(x,w)] = g(x,w) + x
∂g(x,w)

∂x
− 1,

[f1(x,w) − f0(x,w)] = jw
σ

μ
g(x,w) +

∂g(x,w)
∂x

− σ

μ
f1(x,w).

Adding equations in the system (18) and taking ε → 0, we get the following
expression:

(x − μ

σ
) [f1(x,w) − f0(x,w)] = (1 − jw) g(x,w) +

(
x − μ

σ

) ∂g(x,w)
∂x

− 1.

Combining obtained expressions we get the system of three equations:

x [f1(x,w) − f0(x,w)] = g(x,w) + x
∂g(x,w)

∂x
− 1,

[f1(x,w) − f0(x,w)] = jw
σ

μ
g(x,w) +

∂g(x,w)
∂x

− σ

μ
f1(x,w),

(x − μ

σ
) [f1(x,w) − f0(x,w)] = (1 − jw) g(x,w) +

(
x − μ

σ

) ∂g(x,w)
∂x

− 1.
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Eliminating f1(x,w), f0(x,w) from this system, we obtain the equation for the
function g(x,w), solving which we find:

g(x,w) =
μ
σ

μ
σ − jw

, (19)

where g(x,w) is a conditional characteristic function of exponential distribution
with parameter α = μ

σ .
Let’s pass from the conditional characteristic function g(x,w) to the charac-

teristic function g(w):

g(w) =

+∞∫
0

g(x,w)γ (x) dx.

It is easy to show that the inverse Fourier transform has the form of the proba-
bility distribution density of the limiting value of ν(t):

P (z) =

∞∫
0

γ (x)
μ

xσ
exp

{
− μ

xσ
z
}

dx. (20)

Low Rate of Retrials Condition. Making substitutions σ = ε, iε = x,
Gk(i, u) = gk(x, u, ε) in (5), (6) we obtain:

−(λ + x)g0(x, u, ε) + λg1(x, u, ε)
+ (x − ε)g1(x − ε, u, ε) + ε = 0,

−(λ + μ + ε)g1(x, u, ε) + μg0(x, u, ε)

+λg1(x + ε, u, ε) + ejuεg1(x, u, ε) = 0.

(21)

Step 1. Let ε → 0 in (21). Denote

lim
ε→0

gk(x,w, ε) = gk(x,w).

We obtain the following system for gk(x,w):

−(λ + x)g0(x, u) + (λ+)g1(x, u) = 0,
−μg1(x, u) + μg0(x, u) = 0.

This system consist of two equivalent equations and g0(x,w) = g1(x,w) =
g(x,w).

Step 2. Let’s rewrite gk(x,w, ε) from (21) as follows:

gk(x,w, ε) = g(x,w) + εfk(x,w) + o(ε), (22)
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and then rewrite (21):

−(λ + x)g0(x, u, ε) + λg1(x, u, ε) + xg1(x, u, ε)

− ε
∂ [xg1(x, u, ε)]

∂x
+ ε = o(ε),

−(λ + μ + ε)g1(x, u, ε) + μg0(x, u, ε) + λg1(x, u, ε)

+ ε
∂ [λg1(x, u, ε)]

∂x
+ ejuεg1(x, u, ε) = o(ε).

(23)

Substituting decomposition (22) in (23), taking ε → 0 and after performing some
actions on the equations, we get the following system:

(λ + x)(f1(x, u) − f0(x, u)) =
∂ [xg(x, u)]

∂x
− 1

μ(f1(x, u) − f0(x, u)) =
∂ [λg(x, u)]

∂x
+ (eju − 1)g(x, u).

Thus, for the function g(x, u) we obtain the following equation:

[λ(λ + x) − μ]
∂g(x, u)

∂x
+

[
(λ + x)(eju − 1) − μ

]
g(x, u) + μ = 0 (24)

In limiting case k = iε = x and k is the solution of the Eq. (13). This equation
is equal to the coefficient of the derivative ∂g(x,u)

∂x . Then the coefficient is zero in
(24) and k = x: [

(λ + k)(eju − 1) − μ
]
g(x, u) + μ = 0.

Solving this system for g(x, u) we obtain:

g(u) =
1 − λ

μ

1 − eju λ
μ

.

Thus, probability distribution of ν(t) the number of returns of the tagged request
to the orbit is geometric

P (ν(t) = n) ≈ (1 − p)pn, (25)

where ρ = λ
μ , n = 0, 1, 2, . . .

6 Distribution of the Waiting Time in the Orbit

Using results obtained in previous sections, we derive expressions for waiting
time asymptotic distributions under considered conditions.

Heavy Load Condition. Using the found distribution density, let’s get an
approximation of the asymptotic discrete probability distribution of the number
of returns of the tagged request to the orbit:

P1(n) = P ((1 − ρ)n) ·
( ∞∑

m=0

P ((1 − ρ)m)

)−1

. (26)
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Substituting above distribution into (1), we obtain:

G(u) = E
{
ejuW

}
= (1 − r) + r

∞∑
n=0

E
{
ejuW /ν = 1 + n

}
P {ν(t) = n}

= (1 − r) + r

∞∑
n=0

(
σ

σ − ju

)1+n

P1(n).

As a result, we have found the limiting characteristic function of the waiting time
of the request in a M/M/1 RQ system under a heavy load condition. Applying
the inverse Fourier transform of the obtained G(u), we find the asymptotic dis-
tribution of the waiting time of the request in the orbit.

Low Rate of Retrials Condition. In previous section we found that proba-
bility distribution of ν(t) under low rate of retrials condition is geometric with
parameter ρ = λ

μ . Substituting this distribution in (1), we obtain:

G(u) = E
{
ejuW

}
= (1 − r) + r

∞∑
n=0

E
{
ejuW /ν = 1 + n

}
P {ν(t) = n}

= (1 − r) + r

∞∑
n=0

(
σ

σ − ju

)1+n

(1 − p)pn = (1 − r)

+ r
σ

σ − ju
(1 − p)

∞∑
n=0

(
σ

σ − ju
p

)n

= (1 − r) + r
σ(1 − p)

σ(1 − p) − ju

Obtained G(u) is the limiting characteristic function of the waiting time of the
request in a M/M/1 RQ system under a low rate of retrials condition. The
distribution of W in this case is two-phase hyper exponential distribution with
an infinite parameter in the first phase and a parameter σ(1 − p) in the second
phase.

7 Numerical Results

Probability distributions P1(n) and P (ν(t) = n) given in (26) and (25) have
been obtained by the method of asymptotic analysis under a heavy load and a
low rate of retrials conditions respectively.

We compare the resulting asymptotic distribution and the numerical solution
of the system of Eq. (5), (6) in order to investigate the applicability of these
asymptotic results for prelimit situations. Also, for that purpose Kolmogorov
distances between distributions were found:

Δ1 = max
0≤n<∞

∣∣∣∣∣∣
n∑

j=0

P1(j) −
n∑

j=0

π (j)

∣∣∣∣∣∣ ,

Δ = max
0≤n<∞

∣∣∣∣∣∣
n∑

j=0

P (j) −
n∑

j=0

π (j)

∣∣∣∣∣∣ .
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Let us denote the prelimit probability distribution of the number of returns of
the tagged request to the orbit by π(n). We obtain it by numerical methods
similar as it is shown in [27]. Using the law of total probability, π(n) can be
written in the following form:

π (n) =
∞∑

i=0

[Π0 (n, i) P0(i) + Π1 (n, i) P1(i)], (27)

where unconditional probabilities Pk(i) are solutions of (2) and normal-
ization condition. In order to find conditional probabilities Πk (n, i) =
P (ν(t) = n/k(t) = k, i(t) = i ), let’s write conditional characteristic function
Gk(i, u) as follows:

Gk(i, u) =
∞∑

n=0

ejunΠk (n, i),

and substitute this representation into inverse Kolmogorov Eq. (5), (6) for
Gk(i, u):

−(λ + iσ)
∞∑

n=0

ejunΠ0 (n, i) + λ

∞∑
n=0

ejunΠ1 (n, i)

+(i − 1)σ
∞∑

n=0

ejunΠ1 (n, i − 1) + σ = 0

−(λ + μ + σ)
∞∑

n=0

ejunΠ1 (n, i) + μ
∞∑

n=0

ejunΠ0 (n, i)

+λ

∞∑
n=0

ejunΠ1 (n, i + 1) + σ

∞∑
n=1

ejunΠ1 (n − 1, i) = 0.

Equating coefficients of corresponding powers of the exponent the following sys-
tems of equations for probabilities Πk (n, i) were obtained:

For n = 0 :

−(λ + iσ)Π0 (0, i) + λΠ1 (0, i) + (i − 1)σΠ1 (0, i − 1) + σ = 0
−(λ + μ + σ)Π1 (0, i) + μΠ0 (0, i) + λΠ1 (0, i + 1) = 0,

(28)

For n ≥ 1 :

−(λ + iσ)Π0 (n, i) + λΠ1 (n, i) + (i − 1)σΠ1 (n, i − 1) = 0,
−(λ + μ + σ)Π1 (n, i) + μΠ0 (n, i) + λΠ1 (n, i + 1) + σΠ1 (n − 1, i) = 0.

(29)

We find exact values of Pk(i) and Πk (0, i) by solving (2) and (28) for some
given parameters λ, μ, σ using numerical methods. Then we substitute found
Pk(i) and Πk (0, i) values into (27) and get the probability π (0). Solving (29) by
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numerical methods for some given parameters λ, μ, σ we similarly find Πk (n, i)
for n = 1, 2, 3, ... (Table 2).

Table 1. The difference between the numerical distribution π (n) and asymptotic dis-
tribution P (ν(t) = n) under a low rate of retrials condition for various parameters

Parameters Δ

λ = 0.95, μ = 1, σ = 0.1 0.024

λ = 0.95, μ = 1, σ = 0.01 0.009

λ = 0.8, μ = 1, σ = 0.1 0.019

λ = 0.8, μ = 1, σ = 0.01 0.002

λ = 0.5, μ = 1, σ = 0.1 0.026

λ = 0.5, μ = 1, σ = 0.01 0.002

Table 2. The difference between the numerical distribution π (n) and asymptotic dis-
tribution P1(n) under a heavy load condition for various parameters

Parameters Δ

λ = 0.95, μ = 1, σ = 0.1 0.0095

λ = 0.95, μ = 1, σ = 1 0.0189

λ = 0.9, μ = 1, σ = 0.1 0.0196

λ = 0.9, μ = 1, σ = 1 0.0695

λ = 0.8, μ = 1, σ = 0.1 0.0416

λ = 0.8, μ = 1, σ = 1 0.2674

By substituting these values in (27) we can find the numerical probability
distribution π (n).

We consider different parameters setup of λ, μ, σ for each asymptotic distri-
bution. In Fig. 1 prelimit probabilities π (n) and asymptotic probabilities P1(n)
are compared to each other. In Fig. 2 prelimit probabilities π (n) and asymp-
totic probabilities P (ν(t) = n) are shown. Table 1 present Kolmogorov distances
between the numerical and asymptotic distributions for various parameters.
The analysis of obtained numerical results shows that under these parameters
obtained asymptotic distributions and prelimit distributions are very close to
each other and asymptotic method is very effective.
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Fig. 1. The difference between the numerical π (n) and asymptotic P1(n) distributions
under a heavy load condition, λ = 0.95, μ = 1, σ = 0.1
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Fig. 2. The difference between the numerical π (n) and asymptotic P (ν(t) = n) distri-
butions under a low rate of retrials condition, λ = 0.5, μ = 1, σ = 0.1
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8 Conclusion

In this paper was presented an asymptotic analysis of the waiting time and the
number of returns of a M/M/1 retrial queueing system. Two different cases were
considered. First we conducted analysis under a heavy load condition and then
under a low rate of retrials condition. Numerical illustrations and results show
the effectiveness of asymptotic method for the considered retrial queuing system.
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Abstract. We consider a single server queueing inventory model. The
customers arrive according to Markovian arrival Process (MAP). The
service is assumed to follow Phase type(PH) distribution. An inventory
of commodities is attached to the service station. The common life time
(CLT) for inventoried items is assumed to follow Phase type(PH) distri-
bution. The inventoried items perish all together. In this case, the supply
of items is immediately in local purchase to bring the inventory level to
maximum inventory level S. The inventory is not allowed to go down to
zero because of local purchase. Each service requires a unit of commodity
for service. This unit is instantaneously taken at the beginning of the ser-
vice. The replenishment of inventory follows (s, S) policy with lead time
positive. The lead time follows exponential distribution. In the case of
local purchase, the outstanding order of the normal purchase (wait until
replenishment) is cancelled. Service of a customer begins only when the
server is free. Otherwise, the arriving customer joins the buffer. Steady
state analysis of the queueing inventory model is performed. Some perfor-
mance measures are computed under steady state. A numerical example
is presented.

Keywords: Queueing inventory · Lead time · Common life time ·
Local purchase · Phase type distribution · Markovian arrival process ·
Matrix analytic method

1 Introduction

In many real life situations, customer, who needs inventoried items to complete
his service, may arrive to service station according to Markovian arrival pro-
cess. After that, he may go through different phases to complete his service in
order to get the inventory. Moreover, common life time (CLT) for inventoried
items may go through different phases until perishing, before they are taken by
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customers. The Markovian Arrival Process (MAP) is more general than Pois-
son process. MAP keeps the memoryless property of the Poisson process(partial
memoryless) [3].

Many papers studied queueing inventory models. For example, Krishnamoor-
thy et al. [4] studied a PH/PH/1 queueing inventory system under (s, S) policy
when the lead time is zero. AL Maqbali, Joshua and Krishnamoorthy [1] studied
M/PH/1 queueing inventory system under (s, S) policy with lead time positive.
Also, Krishnamoorthy and Shajin [5] studied the MAP/PH/1 queueing inven-
tory system under (s, S) policy with lead time positive. In addition, Divya et
al. [2] studied MAP/PH/1 queueing inventory system with processing of service
items under vacation and N-policy with impatient customers. In their study,
customers arrive according to MAP and service time follows two different phase
type distribution. The inventory processing time follows phase type distribution.
Moreover. Nair and Jose [8] studied the MAP/PH/1 production inventory model
with varying service rates under (s, S) policy with lead time positive.

Some papers studied queueing inventory systems with common life time. For
instance, Shajin et al. [10] studied a MAP/PH/1 queueing inventory system with
Markovian lead time to bring the inventory level to its maximum. In their study,
the common life time of inventoried items follows independent exponential distri-
bution. Besides this, their study provided an interesting application of queueing
inventory model with common life time as medicines with the same expiry date.
Moreover, Shajin et al. [9] studied a MAP/M/1 and M/M/1 queueing inventory
system with advanced reservation and cancellation for the next K time frames
a head in the case of overbooking. In their study, the common life time (CLT)
of inventoried items follows Phase type distribution.

Some papers studied queueing inventory systems with local purchase. Local
purchase was introduced by Krishnamoorthy and Raju [6]. Krishnamoorthy,
Varghese and Lakshmy [7] studied an (s, S) production inventory model with
positive service time under local purchase.

As mentioned above, Krishnamoorthy and Shajin [5] and Divya et al. [2]
studied MAP/PH/1 queueing inventory system. Then Shajin et al. [10] studied a
MAP/PH/1 queueing inventory system with common life time. In this paper, we
consider an MAP/PH/1 queueing inventory model under (s, S) policy with lead
time positive. Besides this, we consider PH distributed common life time (CLT)
for inventoried items. According to the common life time (CLT), the inventoried
items perish all together. The supply of items is immediately in local purchase
to bring the inventory level to the maximum inventory level S.

This model can be described as follows: customers arrive according to Marko-
vian Arrival Process (MAP) with representation (D0,D1) of order y. The service
is assumed to follow PH-distribution with representation (β, T ) of order m. An
inventory of commodities is attached to the service station. The inventoried items
have common life time (CLT) which follows PH-distribution with representation
(α,W ) of order l. We assume that the inventoried items perish all together. In
this model, the inventory is not allowed to go down to zero because of local pur-
chase. In order to keep customer goodwill during stock out, the supply of items
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is immediately in local purchase to bring inventory level to S. Local purchases
are purchased at a higher cost than the regular order (wait until replenishment)
procedure.

Each service requires a unit of commodity for service. This unit is instanta-
neously taken at the beginning of the service. The replenishment of inventory
follows (s, S) policy with lead time positive. The lead time follows exponential
distribution with rate θ. When 1 ≤ i ≤ s, the replenishment occurs to bring the
inventory level i to S according to the rate of lead time. In the case of local pur-
chase, the outstanding order of the normal purchase (wait until replenishment)
is cancelled. According to (MAP), the first arriving customer instantaneously
takes one item of the inventory at the beginning of his service. Then, the ser-
vice of this customer immediately follows Phase type (PH) distribution. When
service station is available, the next arriving customer takes one time at the
beginning of his service and the service of this customer instantaneously follows
Phase type (PH) distribution. Otherwise, this customer must wait in the buffer
until the availability of service station. This process goes on.

According to types of blood group, blood bank has store for each blood group.
The motivation for the model comes from the inventory management of one store
in bank blood. For example, patients deal with one type of blood group in this
store. They arrive according to Markovian Arrival Process (MAP). When the
service station is available, the service of this patient follows Phase type (PH)
distribution in the hospital and one blood bag is immediately taken from store
to the patient at the beginning of his service. The common life time (CLT) for
blood bags may go through different phases until perishing, before patients take
the blood bags. In this case, the supply of blood bag is immediately in local
purchase.

2 Mathematical Description of the Model

The model discussed above can be studied as a level Independent Qusi-Birth-
Death (LIQBD) process. We introduce the following notations.

At time t:

N(t): the number of customers in the system.
I(t): the number of items in the inventory and these items are the same type.
L(t): the phase of common life time.
M(t): the phase of service.
Y (t): the phase of the arrival process.

X(t) = {(N(t), I(t), L(t),M(t), Y (t)); t ≥ 0} is a continuous time Markov
Chain (CTMC) with state space

Ω = {(0, i, l1, y1); 1 ≤ i ≤ S; 1 ≤ l1 ≤ l; 1 ≤ y1 ≤ y} ∪ {(n, i, l1,m1, y1);n ≥
1; 1 ≤ i ≤ S; 1 ≤ l1 ≤ l; 1 ≤ m1 ≤ m; 1 ≤ y1 ≤ y}.

The terms of transitions of the states are shown in the Table 1.
The infinitesimal generator Q of the continuous time Markov Chain (CTMC)

is given by



On a Single Server Queueing Inventory System with CLT for IIT 189

Table 1. Intensities of transitions

From To Transition rate

(0, 1, l1, y1) (1, S, l1, m1, y
′
1) 1 ≤ l1 ≤ l; 1 ≤ m1 ≤ m d

y1y
′
1
(1) βm1

(0, i, l1, y1) (1, i − 1, l1, m1, y
′
1) 2 ≤ i ≤ S d

y1y
′
1
(1) βm1

(n, i, l1, m1, y1) (n + 1, i, l1, m1, y
′
1) 1 ≤ n; 1 ≤ i ≤ S d

y1y
′
1
(1)

(0, i, l1, y1) (0, i, l1, y
′
1) 1 ≤ i ≤ S; y1 �= y

′
1 d

y1y
′
1
(0)

(n, i, l1, m1, y1) (n, i, l1, m1, y
′
1) 1 ≤ n; 1 ≤ i ≤ S; y1 �= y

′
1 d

y1y
′
1
(0)

(0, i, l1, y1) (0, S, l1, y1) 1 ≤ i ≤ s θ

(n, i, l1, m1, y1) (n, S, l1, m1, y1) 1 ≤ n; 1 ≤ i ≤ s θ

(1, i, l1, m1, y1) (0, i, l1, y1) 1 ≤ i ≤ S τ0
m1

(n, i, l1, m1, y1) (n − 1, i − 1, l1, m
′
1, y1) 2 ≤ i ≤ S ; 2 ≤ n τ0

m1
β
m

′
1

(n, 1, l1, m1, y1) (n − 1, S, l1, m
′
1, y1) 2 ≤ n τ0

m1
β
m

′
1

(n, i, l1, m1, y1) (n, i, l1, m
′
1, y1) 1 ≤ n;m1 �= m

′
1; 1 ≤ i ≤ S τ

m1m
′
1

(0, i, l1, y1) (0, S, l
′
1, y1) 1 ≤ i ≤ S w0

l1
α

l
′
1

(n, i, l1, m1, y1) (n, S, l
′
1, m1, y1) 1 ≤ n; 1 ≤ i ≤ S w0

l1
α

l
′
1

(0, i, l1, y1) (0, i, l
′
1, y1) 1 ≤ i ≤ S; l1 �= l

′
1 w

l1l
′
1

(n, i, l1, m1, y1) (n, i, l
′
1, m1, y1) 1 ≤ n; 1 ≤ i ≤ S; l1 �= l

′
1 w

l1l
′
1

Q =

⎛
⎜⎜⎜⎜⎜⎝

B00 B01

B10 A1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎠

;

where

B00 =

⎛
⎝

Υ1 O(yls)×[(S−s−1)yl] Υ2

O((S−1−s)yl)×(syl) Υ3 Υ4

O(yl)×(syl) O(yl)×((S−1−s)yl) Υ5

⎞
⎠ ;

B00 is a square matrix of order (Syl);

where

Υ1 = I(s) ⊗ ((Il ⊗ D0) + (Wl ⊗ Il) − [θI(yl)]);

Υ2 = es ⊗ [[(α ⊗ W 0
l ) ⊗ Iy] + θIly];

Υ3 = I(S−1−s) ⊗ ((Il ⊗ D0) + (Wl ⊗ Il));

Υ4 = e(S−1−s) ⊗ [(α ⊗ W 0
l ) ⊗ Iy] and

Υ5 = (Il ⊗ D0) + (Wl ⊗ Il) + [(α ⊗ W 0
l ) ⊗ Iy].

B01 =
(

O(yl)×((Syml)−(yml)) Il ⊗ (β ⊗ D1)
I(S−1) ⊗ (Il ⊗ (β ⊗ D1)) O([S−1]yl)×(ylm)

)
;
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B01 is a matrix of order (Syl) × (Syml).

B10 =
(
IS ⊗ [Il ⊗ (T 0

m ⊗ Iy)]
)
;

B10 is a matrix of order (Syml) × (Syl).

A2 =
(

O(yml)×[(S−1)yml] [Il ⊗ [T 0
m ⊗ (β ⊗ Iy)]]

Γ O[(S−1)yml]×(yml)

)
;

A2 is a square matrix of order (Syml);
where Γ = (I(S−1) ⊗ [Il ⊗ [T 0

m ⊗ (β ⊗ Iy)]])[(S−1)yml]×[(S−1)yml].

A0 =
(
I(mlS) ⊗ D1

)
;

A0 is a square matrix of order (Syml).

A1 =

⎛
⎝

ϕ1 ϕ2

(O[(S−1−s)yml]×(ylms), ϕ3) ϕ4

O[yml]×([S−1]ylm) ϕ5

⎞
⎠ ;

A1 is a square matrix of order (Syml). where

ϕ1 =
(
Is ⊗ ([{Il ⊗ [(Im ⊗ D0) + (Tm ⊗ Iy)]} + (Wl ⊗ I(ym))] − θI(yml))

)
;

ϕ1 is a matrix of order (syml) × (ylms);
ϕ2 =

(
O(syml)×[(S−s−1)ylm] (es ⊗ [[(α ⊗ W 0

l ) ⊗ I(ym)] + θI(yml)])(syml)×(yml)

)
;

ϕ2 is a matrix of order (syml) × (yml);
ϕ3 =

(
[I(S−1−s) ⊗ [{Il ⊗ [(Im ⊗ D0) + (Tm ⊗ Iy)]} + (Wl ⊗ I(ym))]]

)
.

ϕ3 is a matrix of order ((S − 1 − s)yml) × ((S − 1 − s)yml);
ϕ4 =

(
[e(S−1−s) ⊗ [(α ⊗ W 0

l ) ⊗ I(ym)]]
)
;

ϕ4 is a matrix of order ((S − 1 − s)yml) × (yml);
ϕ5 =

(
[{Il ⊗ [(Im ⊗ D0) + (Tm ⊗ Iy)]} + (Wl ⊗ I(ym))] + [(α ⊗ W 0

l ) ⊗ I(ym)]
)
;

ϕ5 is a matrix of order (yml) × (yml).

3 Steady-State Analysis

3.1 Stability Condition

Theorem 1. The stability condition of the queueing inventory model with com-
mon life time for inventoried items under study is given by

λ < μ

Where λ = (
∑(mlS)

i=0 πi)D1ey ; πi is a row vector of order (y)
and μ = (

∑S+1
i=0 πi) ∧ e(yml) ;

where ∧ = [Il ⊗ [T 0
m ⊗ (β ⊗ Iy)]] and πi are row vectors of order (yml).
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Proof. Let A = A2 + A1 + A0. We can realize that A is an irreducible matrix.
Thus, there exists the stationary vector π of A such that

πA = 0

πe = 1.

The Markov chain with generator Q is stable if and only if

πA0e < πA2e.

Recall, A0 =
(
I(mlS) ⊗ D1

)
; A0 is a square matrix of order (Syml).

πA0e = (π0,π1,π2, . . . ,π(mlS))

⎛
⎜⎜⎜⎝

D1

D1

. . .
D1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ey

ey

...
ey

⎞
⎟⎟⎟⎠

(mlS)

;

= (π0D1,π1D1,π2D1, . . . ,π(mlS)D1)

⎛
⎜⎜⎜⎝

ey

ey

...
ey

⎞
⎟⎟⎟⎠

(mlS)

;

= (π0D1,π1D1,π2D1, . . . ,π(mlS)D1)

⎛
⎜⎜⎜⎝

1
1
...
1

⎞
⎟⎟⎟⎠

(mlS)

ey;

= (π0D1 + π1D1 + π2D1 + · · · + π(mlS)D1)ey;
= (π0 + π1 + π2 + · · · + (mlS)D1ey;

= (
(mlS)∑
i=0

π1)D1ey

= λ.

Recall,

A2 =
(

O(yml)×[(S−1)yml] [Il ⊗ [T 0
m ⊗ (β ⊗ Iy)]]

Γ O[(S−1)yml]×(yml)

)
;

A2 is a square matrix of order (Syml).
where Γ = (I(S−1) ⊗ [Il ⊗ [T 0

m ⊗ (β ⊗ Iy)]])[(S−1)yml]×[(S−1)yml].
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To be more clear, we rewrite matrix A2 as following:

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

O · · · ∧
∧ O · · · O

O ∧ O . . .
...

... O ∧

...
...

. . .
...

∧ O

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

where ∧ = [Il ⊗ [T 0
m ⊗ (β ⊗ Iy)]].

πA2e = (π0,π1,π2, . . . ,π(S+1))

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

O · · · ∧
∧ O · · · O

O ∧ O . . .
...

... O ∧

...
...

. . .
...

∧ O

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eyml

eyml

eyml

...
eyml

eyml

eyml

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(S)

;

= (π0∧,π1∧,π2∧, . . . ,π(S+1)∧)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eyml

eyml

eyml

...
eyml

eyml

eyml

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(S)

;

= (π0∧,π1∧,π2∧, . . . ,π(S+1)∧)

⎛
⎜⎜⎜⎜⎜⎝

1
1
...
1
1

⎞
⎟⎟⎟⎟⎟⎠

(S)

e(yml);

= (π0 ∧ +π1 ∧ +π2 ∧ + · · · + π(S+1)∧)e(yml);
= (π0 + π1 + π2 + · · · + π(S+1)) ∧ e(yml);

= (
S+1∑
i=0

π1) ∧ e(yml);

= μ.

Then, πA0e = (
∑(mlS)

i=0 π1)D1ey = λ and

πA2e = (
S+1∑
i=0

π1) ∧ e(yml) = μ.
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Since πA0e = λ and πA2e = μ, then the queueing inventory model under
study is stable if and only if

λ < μ

3.2 Stationary Distribution

According to Stewart [11], we can obtain the stationary distribution of the
Markov chain under study by solving the set of Eqs. 1 and 2.

XQ = 0 (1)

Xe = 1. (2)

Let X be decomposed with Q as following :

X = (X0,X1, . . . ) where X0 = (X01,X02, . . . ,X0S);
X0k = (X0k1,X0k2,X0k3, . . . ,X0kl) for k = 1, 2, 3, · · · , S;
X0kr = (x0kr1, x0kr2, x0kr3, . . . , x0kry) for r = 1, 2, 3, · · · , l;
Xi = (Xi1,Xi2, . . . ,XiS) for i = 1, 2, 3, · · · ;
Xik = (Xik1,Xik2,Xik3, . . . ,Xikl);
Xikr = (Xikr1,Xikr2,Xikr3, . . . ,Xikrm);
Xikrj = (xikrj1, xikrj2, xikrj3, . . . , xikrjy) for j = 1, 2, 3, · · · ,m.

From Eq. 1, we get set of equations as following.

X0B00 + X1B10 = 0; (3)

X0B01 + X1A1 + X2A2 = 0; (4)

...

Xi−1A0 + XiA1 + Xi+1A2 = 0 for i ≥ 2.

where i is a positive integer number.
There exists a constant matrix R such that

Xi = Xi−1R for i ≥ 2 . (5)

We can rewrite the Eq. 5 as following

Xi = X1R
i−1 for i ≥ 2.

We can use the matrix quadratic Eq. 6 to obtain the matrix R.

R2A2 + RA1 + A0 = 0. (6)

The matrix R can be obtained from Rk+1 = −V − R2
kW and R0 = 0; where

V = A0A
−1
0 and W = A2A

−1
1 . Then, we can find X0 and X1 by solving Eqs. 3 and

4. After that, we must normalize X0 and X1 by using the normalizing condition
X0 + X1(I − R)−1e = 1. Then, we use Xi = X1R

i−1 for i = 2, 3, . . . .
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4 Performance Measures

Under steady state, some performance measures of this queueing inventory model
can be obtained as following:

1. Expected number of customers in the system

E[N ] =
∞∑

i=0

iXie.

2. Expected number of items in inventory.

E[I] =
∞∑

i=0

S∑
k=1

kXike.

3. Probability that the server is idle

b0 =
S∑

k=1

X0ke.

5 Numerical Example

For the arrival process, we consider Markovian arrival process (MAP) with rep-
resentation (D0,D1) of order y = 3, where

D0 =

⎛
⎝

−8 1.5 1
1.5 −6 1.5
1 1 −7

⎞
⎠ and D1 =

⎛
⎝

1.5 1.5 2.5
0.5 1 1.5
2.5 1.5 1

⎞
⎠.

For the service process, we consider PH-representation (β, T ) of order m = 3,
where

β =
(
0.2, 0.5, 0.3

)
,

T =

⎛
⎝

−12 3 4
6 −13 3
5 3 −14

⎞
⎠ and T 0 = −Te =

⎛
⎝

5
4
6

⎞
⎠.

For the common life time (CLT) for inventoried items, we consider PH-
representation (α,W ) of order l = 3, where

α =
(
0.3, 0.4, 0.3

)
,

W =

⎛
⎝

−0.35 0.1 0.2
0.3 −0.41 0.1
0.3 0.2 −0.52

⎞
⎠ and W 0 = −We =

⎛
⎝

0.05
0.01
0.02

⎞
⎠.

We fix the rate of lead time θ = 0.6 and s = 3.
Now, we analyze the effect of S on the performance measures of the system

in the Table 2.
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Fig. 1. Effect of S on expected number of customers

Table 2. Effect of S on various performance measures

S E[N] E[I] b0

6 8.9228 3.7312 0.1014

7 8.9228 4.2546 0.1014

8 8.9228 4.7748 0.1014

9 8.9228 5.2932 0.1014

10 8.9228 5.8109 0.1014

11 8.9228 6.3283 0.1014

12 8.9228 6.8460 0.1014

13 8.9228 7.3640 0.1014

14 8.9228 7.8826 0.1014

15 8.9228 8.4019 0.1014

From Figs. 1, 2 and 3, we can realize the effect of S on performance measures
as following:

1. The expected number of customers in the system E[N ] has no change when
the maximum inventory level S increases.

2. The expected number of items in inventory E[I] increases when the maximum
inventory level S increases.

3. The probability that the server is idle b0 has no change when the maximum
inventory level S increases.
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Fig. 2. Effect of S on expected number of items in inventory

Fig. 3. Effect of S on probability that the server is idle

6 Conclusion

In this paper, we analyse an MAP/PH/1 queueing inventory model under (s, S)
policy with lead time positive and with common life time for inventoried items.
In the case of expiry of the common life time for the inventoried items, the
supply of items is immediately in local purchase to bring the inventory level to
the maximum inventory level S. Different performance measures are estimated
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under Steady state condition. In this paper, we study the effect of maximum
inventory level S on the performance measures of the system numerically. We
realize that firstly, the expected number of customers in the system E[N ] has no
change when the maximum inventory level S increases. Secondly, the expected
number of items in inventory E[I] increases when the maximum inventory level
S increases. Finally, the probability that the server is idle b0 has no change when
the maximum inventory level S increases.
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Abstract. Network slicing is defined as one of the main components
of fifth-generation mobile communications that can solve the problem
of colossal growth in data volume traffic in cellular networks. A key
feature of slicing is to limit the effect of one slice on another to provide
a high quality of service. Therefore, in this paper, a model for resource
sharing in slicing using the queueing theory methods is constructed. The
main aim is to determine how radio resources should be fairly shared
between different slices in the system. The proposed algorithm ensures
the isolation of slices according to the quality of service. The resource
sharing problem is formulated as an optimization problem. Analysis of
the system’s performance characteristics will allow us to conclude that
the isolation parameter has a significant effect on metrics of interest.

Keywords: Network slicing · Isolation · Slice · Resource allocation ·
Optimization problem

1 Introduction

The new 5G networks and their operators have to manage a wide range of ser-
vices with very varied connection requirements, targeting new market segments
and vertical industries. Network slicing is a key technology that allows network
operators to provide their physical infrastructure to support various services with
different requirements [10]. Different sets of services may be associated with log-
ically independent end-to-end networks, i.e. slices. The slice is a logical network
that provides functional capabilities and network characteristics [3]. Slices are
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configured and managed by tenants, to whom operators delegate control over
resource utilization and service performance. Network slicing properties [4] are
the automation of creating and setting slice, the slice isolation (slice indepen-
dence from traffic in other slices, but also security, etc.), the elasticity of slicing
(fair [6] and efficient use of resources, adaptation to conditions), management
(self-management in a slice) and ability to assign priority slices.

The fundamental base for implementing the future, as well as keeping cur-
rent, 5G application scenarios is network slicing [12]. This approach allows us
to consider the network as a service, not as an infrastructure, as shown in the
paper [5], which lets us maximize the long-term utility of the network. This tech-
nology facilitates the economical deployment and operation of complex logical
networks in a joint physical network infrastructure.

The key feature of network slicing for ensuring performance and high quality
of service is isolation, which limits the influence of slices on each other. Using
isolation and resource sharing strategies on the radio interface is a rather entan-
gled process [11]. Actually, it is necessary to take into account the stochastic
nature of the wireless environment and the high variability of traffic in time and
space, for example, using the Markov chain methods [15] and [13].

However, as shown in [8], it is possible to achieve an optimal state between
isolation and efficiency by setting some network parameters. It allows us to pri-
oritize and configure slices in accordance with the specific tasks for which it
is used. Nevertheless, resource management inside the slice and between differ-
ent slices should guarantee not only slice isolation but also the fair sharing of
resources between users, as noted in [2].

Important in future fifth-generation networks is the economic aspect. The
issue of pricing for services was considered in [18], and such an optimization
structure allows us to find a compromise between the interests of communication
service providers and the social welfare of the network, without violating the
interests of users. Maximizing revenue using the access control mechanism for
the network slice is presented in [16]. Infrastructure providers have the ability to
rent network slices, both one-time and on a periodic basis. In conditions of heavy
traffic for infrastructures with a large volume of resources, such a solution can
provide high performance. In this regard, tenants need to coordinate common
resources in the market in real-time, based on the instant needs of the slices.
Based on the theory of games, the authors [7] propose a model that allows
tenants to optimize their service strategies, receiving resources when and where
it is necessary, in accordance with the level of quality and reliability requested
by specific types of traffic.

This paper proposes the use of queueing theory and optimization the-
ory methods. So it is a combination and extension of the research conducted
in [1,9,14,17]. In [9] the authors consider one of the potential radio resource
allocation schemes for multiservice wireless networks with Network Slicing tech-
nology. They describe it by using the retrial queue with the orbit to wait for
sessions. In [1] the simulation architecture of VRRM (Virtual radio resource
management) in terms of queueing systems is presented. In addition, the authors
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developed a simulator that allows you to analyze scenario with three VNOs (Vir-
tual Network Operators) and various types of SLA (Service Level Agreement).

The paper organizes as follows. In the next section, we construct a system
model of a network with two active slices. The third section is a detailed descrip-
tion of the mathematical model for network slicing with isolation. In the next
two sections, we present an algorithm for the sharing of resources, ensuring their
fair and efficient use, and demonstrate it on a small dimension example. Then
we present the numerical analysis for metrics of interest. Finally, we conclude
with some remarks on open issues.

2 System Model

Suppose that two slices are activated in a base station of the fifth-generation
wireless system with New Radio access technology (Fig. 1). The slicing module
divides between them radio resource, the total amount of which is equal to C
resource units. In each slice, a certain communication service is provided to users,
which involves the continuous file transfer to it on a certain number of resource
units, at least bmin, dmin ≥ 0 and not more than bmax, dmax ≥ 0 for the first
and second slices, respectively. Moreover, the transmission rate is variable and
depends on the number of user connections (sessions) at every instant in time
for each slice. We assume that the resources of each slice are divided equally
among its users.

Fig. 1. System model

The radio resource slicing algorithm should ensure fair and efficient use of
resources, and should also be aimed at ensuring the slices isolation according to
the quality of service (QoS-based isolation).



Queueing System for Analysis of Network Slicing Performance 201

3 Queueing System

Let two Poisson processes, corresponding to requests for data transmission from
users of two different slices, arrive at the multi-server resource queueing system
(QS). The intensities of arrivals are constant and equal to λ1 and λ2, respectively.
Service durations per resource unit are independent random variables distributed
exponentially with the parameters μ1 and μ2 for the first and second slices,
respectively.

Let the total amount of QS resources for customers servicing be equal to C.
The amount of resources allocated to the request depends on the system load
and varies in the ranges [bmin, bmax] and [dmin, dmax] for first and second slices,
respectively.

We define a stochastic process X(t) = {M(t), N(t), t > 0}, where M(t) = m
is the number of customers in the first slice at the time t, N(t) = n is the number
of customers in the second slice at the time t. Moreover

m ∈ {0, 1, . . . , �C/bmin�}, n ∈ {0, 1, . . . , �C/dmin�}.

Then the states space of the two-dimensional process has the form:

X = {(m,n) : bminm + dminn ≤ C}.

Denote the amount of the allocated resource to one request in the first slice
in the state (m,n) by b(m,n), and in the second slice by d(m,n). Then the
service intensities for the first and second slices are defined as mb(m,n)μ1 and
nd(m,n)μ2.

To ensure the isolation of slices, we introduce the isolation parameters M
and N which control the acceptance of arrival customers into the system and
the interruption of servicing previously received customers in the following way.
When shortage of resources, if one of the slices exceeds a predetermined threshold
value, then the arrival request of the second slice can preempt one or more
requests of the first to get service, the number of which is calculated as

k(m,n) =
⌈

(m + 1)bmin + ndmin − C

dmin

⌉
,

s(m,n) =
⌈

mbmin + (n + 1)dmin − C

bmin

⌉
.

If none of the slices exceeds the threshold value or exceeds both in case of resource
shortage, the arrival customer will be dropped.

Thus, we write down the conditions for dropping (offloading) arriving
requests and interrupting servicing requests due to resource preemption for the
first and the second slices. The states space of customers dropping:

B
arr
1 = {(m,n) : ((m + 1, n) /∈ X) ∩ ((m ≥ M) ∪ (n ≤ N))},

B
arr
2 = {(m,n) : ((m,n + 1) /∈ X) ∩ ((m ≤ M) ∪ (n ≥ N))}.
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The states space of interruption customers servicing:

B
pr
1 = {(m,n) : ((m,n + 1) /∈ X) ∩ (m > M) ∩ (n < N))},

B
pr
2 = {(m,n) : ((m + 1, n) /∈ X) ∩ (m < M) ∩ (n > N)}.

To find the state vector of probabilities p = [p(m,n)](m,n)∈X, it is necessary
to solve the system of linear equations:{

pQ = 0,

pe = 1,
(1)

where Q is the generator matrix of the two-dimensional stochastic process X(t),
and e is the column vector of ones.

We write the generator matrix, its elements have the form:

q((m,n)(m′, n′)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1, m′ = m + 1, [(n′ = n, (m + 1, n) ∈ X)∪
∪(n′ = n − k(m,n), (m + 1, n) /∈ X,
m < M,n > N)],

λ2, n′ = n + 1, [(m′ = m, (m,n + 1) ∈ X)∪
∪(m′ = m − s(m,n), (m,n + 1) /∈ X,
m > M,n < N)],

mb(m,n)μ1, m′ = m − 1, n′ = n,m > 0,
nd(m,n)μ2, m′ = m,n′ = n − 1, n > 0,

Q, m′ = m,n′ = n,

where

Q = −[λ1 · I((m + 1, n) ∈ X) + λ1 · I((m + 1, n) /∈ X,m < M,n > N)

+λ2 · I((m,n + 1) ∈ X) + λ2 · I((m,n + 1) /∈ X,m > M,n < N)

+mb(m,n)μ1 · I(m > 0) + nd(m,n)μ2 · I(n > 0)].

Having obtained the probability distribution, we can find some metrics charac-
terizing the system performance:

– probabilities of customers dropping and service interruption:

Barr
s =

∑
(m,n)∈Barr

s

p (m,n) , Bpr
s =

∑
(m,n)∈B

pr
s

p (m,n) , s = 1, 2;

– loss probabilities:
Bs = Barr

s + Bpr
s , s = 1, 2;

– average service time:

S1 =
N1

λ1 (1 − Barr
1 ) − λ2

∑
(m,n)∈B

arr
1

s (m,n) p (m,n)
,

S2 =
N2

λ2 (1 − Barr
2 ) − λ1

∑
(m,n)∈B

arr
2

k (m,n) p (m,n)
;
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– probability of violation (the states when the number of customers is greater
than the isolation parameter):

V1 =
∑

(m,n):m>M

p (m,n) , V2 =
∑

(m,n):n>N

p (m,n) .

We now consider a subspace of states where each request in both slices can be
allocated the maximum required resource amount, i.e. Ω1 = {(m,n) : mbmax +
ndmax ≤ C}, which we call the states subspace of excess resources. Note that
the states subspace Ω0 = X\Ω1 are the states of limited resources, for which the
optimization problem can be formulated and solved.

4 Resource Sharing

In order for the resource sharing algorithm to satisfy the requirement of fair-
ness and efficient resource use, we will solve the optimization problem. Let the
data transfer rate to the user of the first and second slices corresponding to the
allocated resource b(m,n) and d(m,n) in the state (m,n) respectively have the
utility functions

U1(a) = ln a, (2)

or
U2(a, amin, amax) =

ln a − ln amin

ln amax − ln amin
. (3)

The weights w1(m,n) and w2(m,n) are calculated using the following formulas:

w1(m,n) =

{
1, m ≤ M,
1

m−M+1
, m > M,

w2(m,n) =

{
1, n ≤ N,
1

n−N+1
, n > N.

For the utility function (2) the optimal resource amounts correspond to solving
the following optimization problem:

max [w1(m,n)mU1(b(m,n)) + w2(m,n)nU1(d(m,n))] ,
s.t. mb(m,n) − nd(m,n) = C,

over

⎧⎨
⎩

(m,n) ∈ Ω0,
bmin ≤ b(m,n) ≤ bmax,
dmin ≤ d(m,n) ≤ dmax.

(4)

Then the objective function of Lagrange problem for the state (m,n) has the
form:

f(b(m,n), d(m,n)) = w1(m,n)m ln (b(m,n)) + w2(m,n)n ln (d(m,n)). (5)

The functional constraint of the proposed problem is:

g(b(m,n), d(m,n)) = C − mb(m,n) − nd(m,n) = 0 (6)
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and corresponds to the fact that all system resources in the states (m,n) of
limited resources are used. Direct constraint has the form

bmin ≤ b(m,n) ≤ bmax and dmin ≤ d(m,n) ≤ dmax. (7)

Thus, the stationary point of the objective function (5) with utility func-
tion (2) has the coordinates:

b(m,n) =
w1(m,n)C

w1(m,n)m + w2(m,n)n
, d(m,n) =

w2(m,n)C
w1(m,n)m + w2(m,n)n

(8)

and is located in the intersection point of lines mb(m,n) + nd(m,n) = C and
w2(m,n)b(m,n) = w1(m,n)d(m,n).

For the utility function (3) the optimal resource amounts correspond to solv-
ing the following optimization problem:

max [w1(m,n)mU2(b(m,n), bmin, bmax) + w2(m,n)nU2(d(m,n), dmin, dmax)] ,
s.t. mb(m,n) − nd(m,n) = C,

over

⎧⎨
⎩

(m,n) ∈ Ω0,
bmin ≤ b(m,n) ≤ bmax,
dmin ≤ d(m,n) ≤ dmax.

(9)
Then the objective function of Lagrange problem for the state (m,n) has the

form:

f(b(m,n), d(m,n))

= w1(m,n)m
ln b(m,n) − ln bmin

ln bmax − ln bmin
+ w2(m,n)n

ln d(m,n) − ln dmin

ln dmax − ln dmin
. (10)

with functional constraint (6) and direct constraint (7).
The stationary point of the objective function (10) for utility function (3)

has the coordinates:

b(m,n) =
Cw1(m,n)(ln dmax − ln dmin)

mw1(m,n)(ln dmax − ln dmin + nw2(m,n)(ln bmax − ln bmin)
,

d(m,n) =
Cw2(m,n)(ln bmax − ln bmin)

mw1(m,n)(ln bmax − ln bmin) + nw2(m,n)(ln dmax − ln dmin)

(11)

and is located in the intersection point of lines mb(m,n) + nd(m,n) = C and
w2(m,n)b(m,n) = w1(m,n)d(m,n).

However, the obtained point may not satisfy the direct constraints of bmin ≤
b(m,n) ≤ bmax and dmin ≤ d(m,n) ≤ dmax. Then the solution should be sought
in the intersection point of the straight line corresponding to the functional
constraint and the borders of the coordinate rectangle corresponding to direct
constraints.
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5 Demonstration of Resource Sharing Algorithm

To demonstrate the obtained results, consider a numerical example of a small
dimension. Let the system have C = 10 resource units for use by two slices, and
the resource requirements are characterized by the parameters: bmin = 1, bmax =
3, dmin = 2, dmax = 5, slice isolation parameters: M = 3, N = 2.

To obtain the performance parameters of the system, it is necessary to calcu-
late the amount of the allocated resource for one request in each state according
to formulas (8) taking into account the direct constraints (7). Let us consider in
detail the solution of the optimization problem for several states, demonstrat-
ing all possible cases of the location of the stationary point of the optimization
problem (5), (6).

5.1 State (m,n) = (2, 2)

For this state, the weight functions are w1(2, 2) = 1, w2(2, 2) = 1. In Fig. 2
the arguments (2, 2) are omitted for the sake of compactness, in Fig. 2a shows:
red dotted line corresponds to straight line b(2, 2) = d(2, 2), solution (8); green
rectangle is direct constraints 1 ≤ b(2, 2) ≤ 3 and 2 ≤ d(2, 2) ≤ 5; blue line
corresponds to 2b(2, 2) + 2d(2, 2) = 10, functional limitation; blue curves – level
lines of the objective function (5). Here, the range of valid values is the red
line inside the green rectangle. While the stationary point of the optimization
problem

b(2, 2) =
1 · 10

1 · 2 + 1 · 2
= 2.5, d(2, 2) =

1 · 10
1 · 2 + 1 · 2

= 2.5,

belongs to this area, therefore it is a solution to the optimization problem. The
objective function value at this point is f(b(2, 2), d(2, 2)) ≈ 3.66. Figure 2b shows
the graph of the objective function of one variable, in which the variable d(2, 2)
is expressed from the functional constraint through the variable b(2, 2). Let us
display the direct constraints: it is known that 2 ≤ 10−2b(2,2)

2 ≤ 5, whence we
get: {

1 ≤ b(2, 2) ≤ 3,
0 ≤ b(2, 2) ≤ 3,

the solution to the system of inequalities is 1 ≤ b(2, 2) ≤ 3. The task is to find
the maximum of the objective function on the segment [1; 3]. The solution will
be the extremum point of the function (b(2, 2); f(b(2, 2))) = (2.5;≈ 3.66), then
d(2, 2) = 2.5, which is consistent with the solution in Fig. 2a.

5.2 State (m,n) = (1, 2)

For this state, the weight functions are w1(1, 2) = 1, w2(1, 2) = 1, and the
stationary point of the optimization problem without taking into account direct
constraints has coordinates

b(1, 2) =
1 · 10

1 · 1 + 1 · 2
=

10
3

, d(1, 2) =
1 · 10

1 · 1 + 1 · 2
=

10
3

,
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a) Maximum of the objective function of two arguments

b) Maximum of the objective function of one argument

Fig. 2. Solution of the optimization problem for the state (2, 2)

(on Fig. 3a) and does not belong to the range of valid values, because 10
3 > 3,

that is, b(1, 2) > bmax = 3. Therefore, the solution to the problem should be
sought in the intersection points of the straight line b(1, 2) + 2d(1, 2) = 10 and
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a) Maximum of the objective function of two arguments

b) Maximum of the objective function of one argument

Fig. 3. Solution of the optimization problem for the state (1, 2) (Color figure online)

direct constraints (green rectangle). We observe the behavior of the lines of
the objective function level, we see that at the point (3; 10−1·3

2 ) = (3; 3.5) it
distributes the maximum value f(b(1, 2), d(1, 2)) ≈ 3.61. Figure 3b shows a graph
of the objective function of one variable. Let us display the direct constraints: it
is known that 2 ≤ 10−b(1,2)

2 ≤ 5, whence we get:
{

1 ≤ b(1, 2) ≤ 3,
0 ≤ b(1, 2) ≤ 6,
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the solution to the system of inequalities is 1 ≤ b(1, 2) ≤ 3. The task is to
find the maximum of the objective function on the segment [1; 3]. The solution
will be the maximum point of the function on the boundary of the segment
(b(1, 2); f(b(1, 2))) = (3;≈ 3.61), then d(1, 2) = 3.5, which is consistent with the
solution in Fig. 3a.

The solution of such an optimization problem will make it possible to divide
the resource between customers in such a way as to provide isolation of slices,
efficient use of the system resource and fairness in serving users.

6 Numerical Analysis

Let us illustrate the dependence of system characteristics on the isolation of
the network slices for data close to real [19]. So we consider the following ser-
vices: buffered HD video streaming for the first slice and file download (software
updates) for the second slice. We assume that two operators share 50 Mbps
(C = 50) according to the solution of the optimization problem (5). The min-
imum data transfer rates are 5 Mbps (bmin = 5) and 1 Mbps (dmin = 1),
maximum – 8 Mbps (bmax = 8) and 50 Mbps (dmax = 50). Isolation parameters:
M = 5 and N = 25 customers, arrival rates are λ1 = 1/150 and λ2 = 1/120,
service rates are μ1 = 1/1920 and μ2 = 1/4000, with average file sizes 1.2 GB
and 500 MB for the services of the first and second operators, respectively.

Figure 4 shows the graphs of the loss probabilities of both operators for both
utility functions (red lines correspond to the first slice, blue lines to the second
slice, solid lines to the first utility function, dashed lines to the second utility
function). It is possible to change the utility function depending on the opera-
tor’s needs, for example, the second utility function allows to provide the greater
resource to customers, number of which is bigger. Note, with an increase in the
isolation parameter of the first slice, i.e. a guaranteed number of received cus-
tomers M , the loss probability for the first slice decreases and the loss probability
for the second slice increases. The tipping point turns out to be M = 5, at which
the system resource becomes insufficient to simultaneously satisfy the guarantees
of the first and second slice, i.e. Mbmin + Ndmin > C.

Figure 5 shows that the isolation parameter has a significant effect on the
probability Vs of a slice being in the violation state (m > M for the first slice,
n > N for the second). With an increase in the isolation parameter M , the
probability V1 for the first slice tends to zero, and the probability V2 for the
second slice changes insignificantly, which indicates that isolation is provided.

Thus, we can conclude that changing the isolation parameter has a significant
effect on the performance characteristics of the system, while the constructed
model is able to provide isolation of slices.
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Fig. 4. Loss probability

Fig. 5. Violation probability

7 Conclusion

This paper presents a model of resource sharing for network slicing to ensure the
isolation of slices. The algorithm for sharing resources is developed that takes
into account the features of the presented mathematical model. The resource
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sharing problem is formulated as an optimization problem and its solution is
obtained. The resource sharing algorithm allows us to share network resources
fairly and effectively. The objective of further tasks is to compare the proposed
algorithm with complete sharing and complete isolation algorithms. In addition,
an assessment of the influence of isolation parameters in the proposed algorithm
on the main characteristics of system performance will be made. In addition, it
is necessary to extend the model to the case of an arbitrary number of slices, as
well as consider the model with zero minimum and unlimited maximum resource
requirements.
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Abstract. Possible applications of the developed method with assign-
ment of preemptive priorities determined by infinite markings of the
service time semiaxis are analyzed. In queueing systems without priority
the stationary average queue length is infinite when the service time has
infinite variance even if the utilization is less than one. In case of Poisson
arrival flow and Pareto distributed service times with finite mean and
infinite variance, the stationary distribution of the queue length is shown
to be asymptotically power-law with the exponent less than one; conse-
quently, the stationary average queue length is infinite. But if we use the
preemptive priorities in accordance with infinite markings method, the
average waiting time in the queue and, hence, its average length become
finite. For the case when the request length is proportional to its service
time, we introduce an indicator defined as the sum of request lengths
in the queue. Generalized Little’s formula for calculating and estimat-
ing of average value of the indicator in systems with finite and infinite
stationary average queue length is derived. We consider the case when
actual service time of arriving requests is unknown. For this situation it
is proposed to employ a version of infinite markings method based on
dynamically configurable preemptive priorities. In this case, it is found
that the infinite markings method provides finite average waiting time.

Keywords: Queueing systems · Fractal traffic · Heavy-tailed
distributions · Service discipline · Infinite markings method

1 Introduction

We consider possible applications of the method proposed in [1,2] to networks
with fractal traffic [3] for reducing the average queue length in queueing systems
with infinite variance of the service time x. The method is based on introducing
preemptive priorities assigned in accordance with infinite markings of service
time semiaxis. From Pollaczek–Khinchine formula it follows that M/GI/1 sys-
tems with infinite variance of the service time have an infinite average queue
length as shown in detail for Pareto distributed service time in [4]. In [1] it is
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proven that assignment of preemptive priorities in accordance with the infinite
markings method (IMM) makes the average waiting time finite.

We consider the following cases:

– when the service time x is known and the queue length is defined not only
by the number of requests in the queue, but also by requests length (as when
transferring files over the Internet),

– when the queue length is defined only by the number of requests in the queue
and the service time of arrival requests is unknown.

The first case, already investigated in [1,3], was the original application of
IMM. In this paper we focus on both cases and suggest to apply an IMM version
based on dynamically configurable preemptive priorities. It is established that
our approach allows the average queue length to be finite.

2 Mathematical Model

In the rest of the paper we assume that requests service time x is Pareto dis-
tributed:

F (t) = P (x ≤ t) = 1 −
(

K

t

)α

, α > 0, t ≥ K,

where K > 0 is the least value of the random variable (r.v.) and simultaneously
the scale parameter of Pareto distribution; α is shape parameter.

The first two moments of the r.v. x and its variance are determined as follows:

E(x) =
αK

α − 1
, (α > 1),

E(x2) =
αK2

(α − 1)2(α − 2)
, (α > 2),

D(x) =
αK2

(α − 1)2(α − 2)
, (α > 2).

When α < 1 all moments of x are infinite, while for 1 < α ≤ 2 we have E(x) <
∞, D(x) = ∞. This variant is highly demanded in fractal traffic modeling. In
M/Pa/1/∞ systems (with Pareto distributed service time x) with 1 < α ≤ 2
according to Pollaczek–Khinchine formula [5] the average queue length is infinite:

L =
λ2E(x2)
2(1 − ρ)

= ∞, (1)

where ρ = λE(x) < 1 is the utilization and λ is the arrival rate.
According to Little’s formula, the average waiting time is W = L/λ. Con-

sequently, W = ∞ for L = ∞. Since ρ < 1 in (1), a stationary regime in the
system exists, and the infinite average queue length can be explained by the fact
that the stationary queue length distribution [6–15] is heavy tailed. Let us verify
this hypothesis by system simulation.
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3 Simulation of M/Pa/1 System at D(x) = ∞
Let us consider a test M/Pa/1 with the following parameters: λ = 1/6, K = 1,
α = 1.5. Then, the service time has finite mean, E(x) = 3 and infinite variance
D(x) = ∞, utilization ρ = λ E(x) = 0.5 < 1, and, therefore, a stationary
distribution of the queue length l exists. Let us determine its properties by means
of simulation experiments with different lengths (in all cases the test system is
empty at t = 0). The simulation length TM represents the time during which on
average N requests enter into the system, i.e. TM = N/λ. The actual number of
arriving requests (random number) deviates from N by only percent fractions
in system with Poisson flows when N is several millions.

Figures 1, 2 and 3 illustrate probabilities rj = P (l = j) for the queue length
l(j = 0, 1, 2, . . .) calculated at increasing (finite) values of N . When N → ∞
the calculated values (empirical probabilities) converge to the probabilities of
interest rj = P (l = j) in accordance with the strong law of large numbers. This
may tell us about the actual queue length l distribution.

When N = 104 (Fig. 1) the maximum length lmax is equal to 35 and the
estimate for L is 1.099. The obtained empirical distribution (continuous curve in
the figure) is already well approximated by the power function y = 0.147x−1.667

for integer variable x ∈ {0, 1, 2, ...} (the graphs are represented by continuous
lines for sake of clarity); indeed, the coefficient of determination R2 is close to
one. The graph of the approximating power function y(x) (red solid line – a
trend line) has a straight-line form, since we use logarithmic axes. The value 0
on logarithmic scales is unrepresentable, therefore, the probability r0 for zero
queue length, estimate of which is 0.764, on the graph in Fig. 1 is missing. The
estimate 0.4564 of the utilization is not far from the exact value ρ = 0.5.

Fig. 1. Calculation of distribution rj in
the test system at simulation run N =
104 (Color figure online)

Fig. 2. Calculation of distribution rj in
the test system at simulation run N = 106

Figure 2 and Fig. 3 show similar results obtained for simulation run lengths
N = 106 and N = 108, respectively. Since the trend line at long simulation runs
begins to merge with the empirical probability distribution, it is depicted as a
thickened dashed line.
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The position of the trend line and the coefficient of determination R2, which
is much closer to one, in Fig. 2 demonstrate that the empirical distribution of the
queue length converges to a power distribution and the fitting is adequate over
a bigger range (up to j = 500). The corresponding estimate of the probability r0
is 0.707, while the estimates for lmax and L increased significantly and reached
the values of 7194 and 64.49, respectively. The estimate of the utilization 0.5052
noticeably approached the exact value ρ = 0.5.

Figure 3 shows simulation results of the testing system at simulation run
N = 100 mln.

Fig. 3. Distribution calculation rj in the test system at N = 108

Simulation results in Fig. 1, 2 and 3 confirm the above assumption about the
asymptotically power-law form of the queue length distribution. The “straight”
range of the distribution in Fig.3 increased and reached the value j = 4000,
the maximum queue length reached 62314, and the estimate for L increased
up to 85.42. The obtained estimate of the probability r0 is equal to 0.715 and
the utilization estimate is 0.4991. The coefficient of determination has become
even closer to one. The exponent of the power-law distribution approaches the
value (−1.5). So, by dropping the estimates of probabilities rj in the empirical
distribution at j > 1000 (they are obtained from a small number of realizations of
the corresponding events and have large confidence intervals), and also estimates
for rj at j < 3 (where the distribution rj is noticeably different from its power
asymptotic), we obtain the approximating function rj = P (l = j) = 0.138j−1.498

characterized by R2 = 0.999. With such power-law distribution for discrete r.v.
j the sum defining its mean diverges to infinity:

L =
∞∑

i=1

jrj ≈
∞∑

i=1

j · 0.138j−1.498 =
∞∑

i=1

0.138j−0.498 = ∞.

Therefore, the results of the performed experiments agree with the above
assumption explaining the infinite average queue length in stationary regime.
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4 A Brief Description of the Infinite Markings Method
(IMM)

The discipline of preemptive priorities in accordance with IMM is defined by
splitting the range K ≤ t < ∞ of possible values of the service time x, using an
infinite sequence of points (markup) into intervals

[t0, t1), [t1, t2), ..., [tk−1, tk), ...

where t0 = K (Fig. 4).

Fig. 4. Infinite markup of a range of possible vales x

If the entering request has service time belonging to the [t0, t1) interval, to
this request the P1 priority is assigned, if x ∈ [t1, t2), then the assigned priority
is P1 − 1 priority, if x ∈ [t2, t3), then its priority is P1 − 2, and so on. With
such preemptive priority assignment [1, 2] the average queue length L and the
average waiting time W become finite.

Further consideration will be given of the exponential marking with

t0 = K, tk = K + ceak, (k = 1, 2, ...). (2)

The values of the parameters a, c are optimized according to the criterion
W → min. To this aim we use the known formulas to calculate W in systems
with preemptive priorities [5].

To determine the request class (marking interval number) by its service time
x, the following formula from (2) is used

k =
1
a

⌈
log

(
x − K

c

)⌉
.

5 Influence of IMM on the Queue Determined
by Request Length

If the request service time is proportional to its length – as when file transmission
occurs, then the queue length can be calculated in two ways. The first way is
the traditional one when the queue length l is determined as the number of
requests in it. In this case, applying IMM to a system with an infinite variance
of the service time leads to finite queue length L. In the second way, the queue
length is determined as the sum of the request lengths in the queue. In order to
distinguish such queue length from the traditional one, we will call it the queue
duration, denote it by ω, and denote the average queue length by Ω. Moreover,
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assuming that the request service time is proportional to request length with a
proportionality coefficient of one, we obtain

ω =
l∑

i=1

xi, (3)

where xi is the service time of a request in the queue.
Let us consider again the M/Pa/1/∞ introduced in Sect. 3 in which the

average queue length L (1) is infinite (and hence Ω = ∞). The optimized values
of parameters a, c of exponential marking (2) are a ≈ 1, c ≈ 0.5. Table 1 shows
the simulation results without the application of IMM for different lengths of
the simulation runs. Recall, that a run length is determined by the simulated
time period, during which the system receives on average N requests. Estimates
L̂, Ω̂ and Ŵ of parameters L, Ω and W converge to their stationary values
(to infinity) as the simulation length increases. Table 2 shows the simulation
results of the same test system M/Pa/1/∞ when IMM is used. Estimates for L
and W stabilize near the stationary values of these indicators, close to 0.22 and
1.3, respectively. At the same time, the estimate of the average duration Ω is
growing along with simulation run length, which indicates that Ω = ∞. Taking
into account the small average number L ≈ 0.22 of summands in formula (3),
the stationary average Ω = ∞ is caused by requests with high service time. This
is quite consistent with the physical meaning of IMM, which makes it possible
for “short” requests to be serviced without delays due to their high priority.

Table 1. Estimated values L̂, Ω̂, Ŵ with growing N in the model without priorities

Simulation run N L̂ Ω̂ Ŵ

104 1.093 2.773 3.737

105 3.025 7.884 15.222

106 64.486 161.834 383.375

107 129.524 332.182 773.538

Table 2. Estimated values L̂, Ω̂, Ŵ with growing N in the model with IMM

Simulation run N L̂ Ω̂ Ŵ

104 0.133 3747 0.903

105 0.176 45688 1.070

106 0.233 514686 1.391

107 0.222 5055579 1.329

The increase of simulation estimates of the average queue duration with the
simulation length growth is explained by fact that the average queue duration is
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infinite when using IMM in contrast to the average queue length. To show this,
it is enough to use again Little’s formula.

In fact, in continuous time t the average queue duration Ω is determined by
the formula

Ω = lim
T→∞

1
T

T∫
0

ω(t)dt, (4)

where ω(t) is the stochastic process describing the evolution of the queue dura-
tion in time. At the same time, we cannot apply Little’s formula directly, but
we can use a technique of deriving Little’s formula with corresponding adjust-
ment. Formula (4) corresponds to the process shown in Fig. 5 and depicting the
time-averaged value l(t).

Fig. 5. Deriving Little’s formula

When deriving the classic Little’s formula, to establish a connection between
the average number of requests L in the queue and the average waiting time
W , all rectangles in Fig. 5 have unit width and length equal to the queue occu-
pancy time ti of the corresponding request. The figure clearly shows that just
N ∼ λT requests pass through the queue during large time T , and average
queue occupancy time is W = 1

N

∑
i

ti = 1
λT

∑
i

ti with the sum over all requests

arrived during time T . The average number L of requests in the queue (i.e., the
filled area divided by T ) is L = 1

T

∑
i

ti. Comparing the expressions obtained for

W and L, we get W = L/λ, i.e. Little’s formula.
A similar formula for the IMM case with preemptive priorities can be

obtained as follows.
Since the average queue duration Ω is determined taking into account the

request lengths ωi, Fig. 5 must be modified introducing rectangles with different
width, equal to the length ωi of the corresponding request. Therefore, the dura-
tion Ω, defined as the time-averaged sum of the areas of the filled rectangles,
now takes the following form:

Ω =
1
T

N∑
i=1

tiωi ∼ 1
T

NE(tω) =
1
T

λTE(tiωi) = λE(tiωi), (5)
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where ti is the queue occupancy time of the i-th requests and ωi its length.
Multipliers under the expectation sign E in (5) are dependent and, therefore,
the mean is calculated in the context of correlation coefficient for multipliers:

Ω = λrtωσtσω + λE(t)E(ω) = λrtωσtσω + λWE(ω), (6)

where rtω is the correlation coefficient of r.v. t and ω, while σt, σω are their
standard deviations.

The correlation coefficient on the right hand side of (6) is positive, since the
lower the priority of a request (i.e., the bigger its length), the longer it remains
in the queue and, hence, the more times it is counted in the queue duration.
Moreover, at least σω is infinite (since α < 2). Thus, the average queue duration
Ω remains infinite when using IMM. Obviously, this also leads to infinite average
waiting time in such queues.

It is worth noticing that form (6) of Little’s formula coincides with the usual
Little’s formula when rtω = 0 and E(ω) = 1.

6 Application of IMM to Computer Networks
with Packet Switching

A possible application of IMM to packet switching networks is based on the
fact that the relative priorities of transmitted files, split into packets, function
almost in the same manner as the absolute priorities. Figure 6 shows how packets
transmission of a certain file (unpainted rectangles in the channel queue) is tem-
porarily interrupted when packets of higher priority file arrive (black rectangles).

Fig. 6. Transmission of higher priority file split into packets (black rectangles) at rel-
ative priorities discipline

Figures 6 a), b) illustrate the arrival of the priority “black” packet and how it
waits for the end of transmission of the “white” packet in the channel. At the end
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of the “white” packet transmission, the “black” packet begins to be transmitted,
and at the same time the remaining “black” packets of the priority file arrive
at the queue (Fig. 6 c). After the priority file transmission, the transmission of
“white” packets of the lower priority file resumes (Fig. 6 d). Since the transmitted
files consist of several packets, the delay in the start of servicing the priority
file, which is a fraction of transmission time of one packet, is relatively small.
This leads to a slight difference in the file transmission between relative and
preemptive priorities.

The possible application of IMM to file transmission is further investigated
by means of simulation.

7 Simulation of a Typical Network Fragment

The simulated network fragment is shown in Fig. 7. Arriving at inputs 1, 2, and
3 file flows are Poissonian and transmission time x (determined by the file size) is
Pareto distributed with the parameters K = 1, α = 1.5; consequently, E(x) = 3,
D(x) = ∞.

Fig. 7. Simulated network fragment

The average times between file arrivals at inputs 1, 2, and 3 are 6, 12, and
12 units, respectively. Priorities are assigned to files according to IMM with
the following difference from the basic version of IMM – these priorities are
not preemptive, but relative. We use an exponential markup (2) during priority
assignment. As a result of the optimization procedure, it was found that at all
inputs the optimal parameters are approximately the same: a = 1, c = 0.5.

Before transmission, files are split into packets of unit duration, which inherit
the priorities of the files. Packets are free to move on different routes. A packet
from node 1, for instance, arrives at node 2 if the queue there is shorter than that
in node 3, otherwise, the packet arrives at node 3. At the exit from the network
the packets are reassembled into files. A file is considered to be transmitted when
assembly is complete.

Table 3 shows the simulation results obtained for approximately 10 million
files at the first input (and, consequently, approximately 5 million at the second
and third inputs). The only difference between the two network scenarios is the
use of IMM in one of them. Consequently, the estimates of the utilizations ρ1,
ρ2, and ρ3 of channels 1, 2, and 3 for the compared networks turned out to be
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approximately the same. However, the estimates of the average transmission time
T1, T2, and T3, taking into account the waiting time of arriving files at inputs 1,
2, and 3, differ significantly. For the network with IMM the estimates converge
to the limit values shown in the last row of Table 3, while for the non-priority
network the corresponding estimates do not converge and grow with increasing
simulation time. The simulation thereby confirms the assumption that the rel-
ative priorities of files in the packet-switched network behave in approximately
the same way as the preemptive priorities. This allows the use of IMM, and thus,
we can provide finite average waiting time even when the variances of the file
transmission time x are infinite.

Table 3. Simulation results (60 million units of modelling time)

Network ρ1 ρ2 ρ3 T1 T2 T3

Non-priority network 0.502 0.364 0.634 798.4 23.5 50.5

Network with IMM 0.503 0.362 0.636 5.82 3.70 3.92

Application of IMM does not lead to a significant decrease in the average
queue lengths L1, L2, and L3, although it does not worsen these indicators
(Table 4).

Table 4. Average queue lengths (in packets) after 60 million units of modelling time

Network ρ1 ρ2 ρ3 T1 T2 T3 L1 L2 L3

Non-priority network 0.752 0.635 0.862 3422.2 118.7 156.8 2591.5 84.45 111.2

Non-priority network 0.600 0.466 0.732 1368.4 50.6 93.8 1265.3 41.9 80.1

Non-priority network 0.502 0.364 0.634 798.4 23.5 50.5 876.14 21.5 49.59

Non-priority network 0.251 0.153 0.346 136.2 6.83 10.8 282.63 10.85 19.10

Non-priority network 0.100 0.0544 0.145 18.2 1.27 2.36 89.3 3.41 8.94

Network with IMM 0.754 0.632 0.865 13.402 7.52 7.69 2262.8 61.25 105.8

Network with IMM 0.601 0.463 0.735 7.91 4.86 5.11 1127.0 48.1 64.4

Network with IMM 0.503 0.362 0.636 5.817 3.702 3.92 806.53 19.49 44.26

Network with IMM 0.251 0.153 0.347 2.32 1.63 1.68 266.78 13.06 16.68

Network with IMM 0.100 0.054 0.145 0.843 0.615 0.628 85.72 4.97 8.74

Indicators L1, L2, and L3 are growing with time, since their stationary values
are infinite – see formula (6). In the considered model with infinite buffers, this
fact does not matter, but in practice it will lead to the problem of high loss
probabilities. The results presented in Table 4 show that the rate of queue growth
is sensitive to channel utilization. Figure 8 summarizes these results.

For both scenarios (i.e., non-priority network and network with IMM), Table
4 reports the main performance parameters for different utilization levels (the



222 V. N. Zadorozhnyi et al.

Fig. 8. Dependence of the total average time of files transmission on network utilization
(T1 is the average time for transmission of files arriving at the first input in network
and L1 is the average number of packets in the queue at the first node)

original test case corresponds to the utilization ρ1 = 0.5). As we can see, indi-
cators Li and, therefore, the loss probabilities (with finite buffers) can be sig-
nificantly reduced by increasing the link capacity. For instance, decreasing the
channel utilizations by five times w.r.t. the original version of network, after the
transmission of 10 million files, the average queue lengths are still far from values
threatening packet losses for reasonable buffer sizes.

8 Application IMM with Unknow Service Time

Another important case of IMM application is associated with queue length
determined only by the number of requests in it (for example, as when we send
mathematical tasks to the wolframalpha.com site). In this case, the request ser-
vice time depends only on its features (on the complexity of the transferred
mathematical task). At the same time, as a rule, the service time of arriving
requests (the time for task solving) is unknown.

We can propose such version of IMM, in which priorities assignments occur
during their servicing. At the beginning the highest priority P1 is assigned to
every request arriving to the system. If a request is completely serviced during
a time in the [t0, t1) interval, the request leaves the system and, as a result, the
highest priority was assigned correctly. If a request is serviced longer, i.e. time
x reaches the threshold t1, the request priority is reduced by one. Further, if its
service is completed by t2, the request leaves the system and, as a result, the
priority was assigned correctly. If request service time x reaches the value t3, the
request priority is reduced by one more, and so on.

Table 5 shows the simulation results for a test system having the IMM version
with dynamically configurable preemptive priorities. The average queue length in
this IMM version is approximately 0.53, and the average waiting time is approx-
imately 3.14 time units. When the service time is known, the IMM provides
0.22 and 1.3 for these indicators, respectively (see Table 1), which, of course,

https://www.wolframalpha.com/
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Table 5. Characteristics of IMM with unknown request service time

Simulation run N L̂ Ŵ

104 0.366 2.337

105 0.419 2.534

106 0.556 3.325

107 0.525 3.144

are somewhat better. At the same time, with unknown service time the IMM
guarantees an improvement of these indicators (due to the dynamically config-
urable preemptive priorities) in comparison with the non-priority system (see
Table 1), where these indicators are infinite. The relatively high efficiency of the
configurable priorities with unknown service time is caused by the exponential
markup (2). Since the length of the marking intervals grows rapidly with the
growth of the interval number, the request service time in the initial intervals
(with inadequately high priority) takes a relatively small fraction of the total
time of their service.

Note that in the particular case when there is an inverse order of request
service, applying such an order of servicing (with preemption [16]) reduces the
average queue length and average waiting time greatly then IMM. Besides, the
implementation of such a service order is usually more complex than the imple-
mentation of IMM. The inverse order of service also does not solve the problem
of infinite average queue duration Ω for 1 < α ≤ 2.

9 Conclusion

The paper highlighted the effectivness of the infinite markings method in pres-
ence of highly variable service time. Indeed, the analytical and simulation studies
carried out in this article point out the following results:

1. In M/Pa/1 systems with infinite variance of the service time the stationary
queue length distribution is power-law and the average queue length is infinite.

2. The introduction in such M/Pa/1 systems of preemptive priorities assigned
in accordance with the infinite markings method makes the average queue
length finite. However, the Ω indicator (the average queue duration) remains
infinite. The Ω indicator was determined as the average sum of request lengths
in the queue.

3. The average queue duration and the average waiting time are related through
generalized Little’s formula (6).

4. The assignment of relative priorities according to infinite markings method in
packet switching networks with infinite variance of file sizes provides drastic
reduction the average file transmission time.

5. When the queue duration equals to its length, infinite markings method can
be effectively used to reduce drastically the queue length and waiting time
even with unknown request service time.
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Abstract. In this paper, we develop the queuing system model with
processor sharing discipline with random serving rate coefficients. Each
arriving customer is characterized by its length (job volume) and a serv-
ing rate coefficient determined by some probability distributions. The
coefficients remain constant during the service process of customers. The
proposed model is aimed to model the service process of elastic sessions
in wireless networks, in which each session is assigned to one of modu-
lation and coding schemes (MCSs) according to the state of the radio
channel. Each MCS is characterized by its value of the spectral efficiency,
which is modeled by serving rate coefficients.

First, we analyze the proposed model. Then we apply a simplification
that significantly reduces the complexity of the analysis and allows us
to deduce formulas for the blocking probability and the average sojourn
time. Finally, we conduct a numerical analysis of the considered model.

Keywords: Queuing system · Limited processor sharing · Serving rate
coefficients · Blocking probability · Sojourn time

1 Introduction

In the modern wireless networks, the bitrate achieved by elastic sessions depends
not only on the number of current sessions but also on the state of the radio
channel. Based on the signal-to-noise ratio, a base station chooses one of the
Modulation and Coding Schemes (MCS) [1,2]. Each MCS is characterized by
a certain value of spectral efficiency, which determines the bitrate achieved on
the unit spectrum bandwidth. Consequently, even if the spectrum bandwidth
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is divided equally between all current sessions, the bitrates of the sessions vary
significantly [3]. So, to analyze the performance measures of a base station that
serves elastic sessions these peculiarities should be taken into account.

Queuing system with processor sharing service discipline [4], as well as their
special case - limited processor sharing queues [5], are widely implemented in
the analysis of telecommunication systems with elastic traffic. In this paper,
we develop the queuing system with a single server and processor sharing (PS)
discipline that can serve no more than N customers simultaneously. The main
difference from other PS queues is that each customer is characterized not only
by its length (or job volume) but also by the serving rate coefficient. Both length
of a customer and its serving rate coefficient are independent random variables
with certain distribution functions. The coefficients remain constant during the
service process of customers.

In the classic PS queueing systems, if there are n customers in the system,
then each customer receives 1

n -th fraction of the server’s performance. In the
proposed model, the serving rate received by a customer is obtained by the mul-
tiplication of the 1

n -th fraction of the server’s rate and the serving rate coefficient
associated with the customer. The considered system may be interpreted as the
M/G/1/PS queuing system (by incorporating the serving rate coefficients into
the distribution function of the customers’ length), however, the proposed app-
roach has some advantages. The main advantage is as follows: the considered
system may be described in terms of stochastic lists [6], hence the simplification
method applied to them, and resource queuing systems [7] may be applied here
also. As a result, the simplification method allows us to derive tractable expres-
sions for the cumulative distribution function (CDF) of the customer’s sojourn
time.

The rest of the paper is as follows. Section 2 briefly describes the considered
queueing system together with the system of equations for stationary distribu-
tion. Section 3 presents the simplification approach and provides an analysis of
the simplified system. Section 4 continues the analysis on the part of the sojourn
time’s CDF. Section 5 presents the results of the numerical analysis, while Sect. 6
concludes the paper.

2 Model Description

Consider a single server queuing system that serves customers according to the
PS discipline, but no more than N customers simultaneously. Customers arrive
according to a Poisson process with intensity λ, the length of customers is expo-
nentially distributed with parameter μ. Besides, a customer is characterized by a
serving rate coefficient ν, which may take values from the set V = {ν1, ν2, ..., νL},
ν1 < ν2 < ... < νL. The serving rate coefficients of different customers are inde-
pendent of each other, independent of the arrival process and the customer’s
length. The distribution of the serving rate coefficients is denoted by {pi}, i ≥ 0,
where pi = P{ν = νi}.

So, if there are n customers in the system and their serving rate coefficients
are represented by the vector (u1, u2, ..., un), then each customer is allocated 1

n
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of the processing time. The service rate of the i-th customer is a product of the
allocated processing time ratio and its serving rate coefficient, that is ui

n . Once
the job associated with a customer is done, the customer leaves the system. If
an arriving customer finds that there are N customers in the system already,
then it is lost.

The behavior of the system may be described by the Markov process X1(t) ={
ξ(t),

(
ν1(t), ν2(t), ..., νξ(t)(t)

)}
, where ξ(t) is the number of customers in the

system at time t, while
(
ν1(t), ν2(t), ..., νξ(t)(t)

)
is the vector of the serving rate

coefficients. The set of states is expressed by the following formula:

S1 = {(n, u1, u2, ..., un) : 0 ≤ n ≤ N,ui ∈ V, i = 1, 2, .., n} (1)

Denote qn(u1, u2, ..., un) the stationary probability that the system is in state
(n, u1, u2, ..., un):

qn(u1, u2, ..., un) = lim
t→∞ P {ξ(t) = n, ν1(t) = u1, ..., νn(t) = un} . (2)

Then the system of equilibrium equations can be written as follows.

λq0 = μ

L∑

l=1

ν1q1(ν1), (3)

(

λ +
μ

n

n∑

i=1

ui

)

qn(u1, u2, ..., un) =
λ

n

n∑

i=1

pui
qn−1(u1, .., ui−1, ui+1, ..., un)

+
μ

n + 1

L∑

l=1

n+1∑

i=1

⎛

⎝νl +
n∑

j=1

uj

⎞

⎠ qn+1(u1, ..., ui−1, νl, ui, , ..., un), (4)

n = 1, 2, .., N − 1,
(

μ

N

N∑

i=1

ui

)

qN (u1, u2, ..., uN ) =
λ

N

N∑

i=1

pui
qN−1(u1, .., ui−1, ui+1, ..., uN ). (5)

The left-hand side of (4) represents the exit intensity from the state
(n, u1, ..., un). The first sum on the right-hand side of (4) stands for transition
intensity to the state (n, u1, ..., un) induced by the arrival of a customer. Note
that arriving customer is assigned any possible number in the list equiprobably
(with probability 1

n ). The second sum on the right-hand side represents tran-
sitions induced by the departure of a customer. Equations (3) and (5) are the
special cases of (4) for the number of customers n in the system equal to 0 and
N respectively.

Computational complexity of the numerical solution of the system (3)–(5)
increases very fast, since the number of states in set S1 is LN+1−1

L−1 . So, in the
next section we propose a simplified model based on the state aggregation tech-
nique [7].
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3 Analysis of the Simplified Model

To simplify the model, we propose to trace only the sum of the serving rate
coefficients of all customers in the system. Consider the simplified process
X2(t) = {ξ(t), ν(t)}, where ξ(t) is the number of customers in the system at
time t, as before, and ν(t) is the sum of their serving rate coefficients. The set
of states is given by

S2 = {(n, u) : 0 ≤ n ≤ N, p(n)u > 0}, (6)

where distribution {p
(n)
u } is the probability that the sum of n serving rate coef-

ficients is equal to u, which can be derived from the n-fold convolution of the
distribution {pi}:

p(1)u =

{
pi, if νi = u;
0, otherwise;

(7)

p(n)u =
∑

v∈V

p(1)v p
(n−1)
u−v . (8)

As a result of the simplification, we cannot exactly determine the decrease of
the ν(t) after a customer’s departure from the system. To handle the problem,
we introduce the probabilities ϕi(n, u) that a customer’s serving rate coefficient
is equal to i given that the sum of the n customers’ coefficients is u. The latter
can be estimated by the Bayes formula:

ϕi(n, u) =
p
(1)
i p

(n−1)
u−i

p
(n)
u

, i ≤ u, (n, u) ∈ S2. (9)

The stationary probabilities qn(u)

qn(u) = lim
t→∞ P {ξ(t) = n, ν(t) = u}

of the process X2(t) satisfy the following equilibrium equations:

λq0 = μ
L∑

l=1

νlq1(νl); (10)

(
λ +

μu

n

)
qn(u) = λ

L∑

l=1

plqn−1(u − νl)

+
μ

n + 1

L∑

l=1

(u + νl)qn+1(u + νl)ϕνl
(n + 1, u + νl), (11)

n = 1, 2, .., N − 1, (n, u) ∈ S2,

μu

n
qN (u) = λ

L∑

l=1

plqN−1(u − νl), (N,u) ∈ S2. (12)
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The system (10)–(12) is obtained similarly to the equilibrium Eqs. (3)–(5) for
the initial queuing system. The system (10)–(12) along with the normalizing
condition can be solved using any appropriate numerical method to obtain the
stationary probabilities. Note that the transitions between states are possible
if and only if the difference in the number of customers is equal to 1. So, with
the proper order of states, the generator matrix of X2(t) can be represented
in block-tridiagonal form. Thus, one may choose numerical methods that can
benefit from the special structure of the generator matrix.

Performance metrics of the considered queuing system may be evaluated
using the stationary distribution obtained from the system (10)–(12). Since a
customer is blocked upon arrival if there are N customers in the system already,
then the blocking probability π is

π =
∑

(N,u)∈S2

qN (u). (13)

Another important performance metric is the customer’s sojourn time. The
next section is devoted to its analysis.

4 Analysis of the Mean Sojourn Time

According to [8], customers’ sojourn time in the considered system has a phase-
type CDF F (x). Earlier we employed the proposed phase method to the analysis
of the sojourn time in the limited processor sharing queuing systems with server
vacations [9]. The same approach is used here, for the considered system with
random service coefficients. So, we introduce a Markov process Yv(t), v ∈ V that
describes the system’s behavior from the arrival to the departure of a customer
with the serving rate coefficient v. The set of states of Yv(t) is given by

Sv = {(1, v)} ∪ {(n, u) : 2 ≤ n ≤ N, p
(n−1)
u−v > 0} ∪ {ω}, (14)

where ω is the absorbing state, which is reached at the departure of the consid-
ered customer.

We assign the following order of states in Sv. If n1 < n2, then (n1, u1) ≺
(n2, u2). In the case n1 = n2, the order of states is defined by the second com-
ponent: if u1 < u2, then (n, u1) ≺ (n, u2). The last state in Sv is the absorbing
state ω. Then, the generator matrix of Yv(t) has the following form:

A =
(

G g
0 0

)
, (15)

where g is an exit vector to the absorbing state. The matrix G has block-
tridiagonal structure with diagonal Dn, n = 1, 2, .., N , upper-diagonal Λn, n =
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1, 2, ..., N − 1 and lower-diagonal blocks Mn, n = 2, 3, ..., N .

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

D1 Λ1 0 · · · · · · · · · 0
M2 D2 Λ2 0 · · · · · · 0
0 M3 D3 Λ3 0 · · · 0

0 0
. . . . . . . . . 0 · · ·

0 · · · · · · 0 MN−1 DN−1 ΛN−1

0 · · · · · · · · · 0 MN DN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (16)

Diagonal elements represent the exit intensities from the corresponding
states. So, block D1 consist of only one element, D1 = (−λ − μv), while other
diagonal blocks are diagonal matrices:

Dn = diag

[
−

(
λ +

μ(v + (n − 1)ν1)
n

)
, ...,−

(
λ +

μ(v + (n − 1)νL)
n

)]
, (17)

n = 2, 3, ..., N.

The upper-diagonal blocks stand for the transitions induced by the arrival of
a customer. So, block Λ1 is a row vector:

Λ1 = (λpν1 , ..., λpνL
) , (18)

while other upper-diagonal blocks are given by

Λn =

⎛

⎜
⎜
⎜
⎝

λpν1 · · · λpνL
0 · · · · · · 0

0 λpν1 · · · λpνL
0 · · · 0

0 0
. . . . . . . . . 0 · · ·

0 · · · · · · 0 λpν1 · · · λpνL

⎞

⎟
⎟
⎟
⎠

, n = 2, 3, ..., N − 1. (19)

The lower-diagonal blocks represent transitions induced by the departure of
any customer, except the considered one. Block M2 is a column vector:

M2 =

⎛

⎜
⎝

μν1
n
...

μνL

n

⎞

⎟
⎠ , (20)

and other lower-diagonal blocks have the following form:

Mn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

μ(n−1)ν1
n 0 · · · · · · 0

μ((n−2)ν1+ν2)
n ×

ϕν2(n−1, (n−2)ν1+ν2)

μ((n−2)ν1+ν2)
n ×

ϕν1(n−1, (n−2)ν1+ν2)
0 · · · 0

...
. . . . . . 0 . . . 0

0 . . . 0 . . . 0 μ(N−1)νL

n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

n = 3, 4, ..., N. (21)
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The exit vector g to the absorbing state ω consist of departure intensities
of the considered customer with the service rate coefficient v. If there are n
customers in the system, then the received processing time of the considered
customer is 1

n . And the serving rate of the considered customer is expressed by
μv
n . Thus, the exit vector g can be expressed as follows.

g =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

μv
μv
2
...

μv
2
...

μv
N
...

μv
N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (22)

According to the PASTA property [10], the stationary distribution of X2(t)
is equal to the stationary distribution of the Markov chain X2(tn −0) embedded
at the moments tn, n = 1, 2, ... just before arrivals. Since the initial distribution
θ of the Markov process Yv(t) is equal to the distribution of the Markov chain
X2(tn + 0), we obtain

θn,u =

⎧
⎪⎨

⎪⎩

q0
1 − π

, n = 1, u = v;
qn−1(u − v)

1 − π
, n = 2, 3, .., N, p

(n−1)
u−v > 0.

(23)

Then, according to [8], the CDF F (x) of the customer’s sojourn time is

F (x) = 1 − θeGx1, (24)

where 1 is a column-vector of ones with the appropriate size. The k-th moment
w

(k)
v of the sojourn time is given by the following expression.

w(k)
v = (−1)kk!θG−k1. (25)

Particularly, the mean sojourn time w
(1)
v for a customer the with serving rate

coefficient v is
w(1)

v = −θG−11. (26)

Finally, averaging over all possible serving rate coefficients, we obtain the
formula for the mean sojourn time w̄ of an arbitrary customer:

w̄ =
L∑

l=1

pνl
w(1)

νl
. (27)
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5 Numerical Analysis

In this section, we summarize the results of the numerical analysis. We evaluated
the performance of the considered system under the following initial values. The
server serves customers with the unit rate (μ = 1), the maximum number of
simultaneously served customers N = 10. Assume there are L = 5 different
values of the serving rate coefficients, V = {1, 2, 3, 4, 5}.

We consider two different distributions of the serving rate coefficients:

p1 = (0.1, 0.2, 0.3, 0.3, 0.1);
p2 = (0.3, 0.2, 0, 0.1, 0.5).

Note that the average serving rate for both distributions is equal to 3.1, but
their variances are different.

First, we analyze the dependence of the blocking probability π on the arrival
intensity λ. Figure 1 depicts the dependence with λ varying from 2.5 to 3.5.
One can note that the blocking probability for the distribution p2 with greater
variance is higher.

Fig. 1. The blocking probability as a function of the arrival intensity λ

Figures 2 and 3 show the dependence of the average sojourn time w̄ on the
arrival intensity λ for the distributions p1 and p2, respectively. Besides the aver-
age sojourn time itself, the figures also depict the average sojourn times w

(1)
v for

customers with different serving rate coefficients v.
As one can see from the Figs. 2 and 3, the average sojourn time for the

distribution p2 is greater than for the p1, although the accepted load for p2
is smaller. So, the type of the serving rate distribution and its higher-order
moments have a significant impact on the system performance.
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Fig. 2. The average sojourn time w̄ as a function of the arrival intensity λ for distri-
bution p1

Fig. 3. The average sojourn time w̄ as a function of the arrival intensity λ for distri-
bution p2

Figures 4 and 5 depict the dependences of the performance metrics on the
maximum number of customers in the system N for the arrival intensity λ = 3.
The general behavior of the lines is expected. With the increase of the maximum
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Fig. 4. The blocking probability as a function of the maximum number of customers
N

Fig. 5. The average sojourn time w̄ as a function of the maximum number of customers
N

number of customers, the blocking probability decreases. As a consequence, the
increase in the number of served customers without a boost of the server’s per-
formance, leads to the increase of the sojourn time.
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6 Conclusion

In the paper, we developed a queuing system model with PS discipline and
random serving rate coefficients. We also proposed a simplification of the model
that allowed to decrease the dimension of the set of states. For the simplified
model, we obtained the equilibrium equations for the stationary distribution,
as well as formulas for the blocking probability and the mean sojourn time. In
the numerical analysis section, we studied the dependences of the performance
metrics on the offered load and the maximum number of customers in the system.

The developed model will be used in the analysis of the optimal coverage
radius of a base station in a wireless network. The decrease of the coverage radius
will reduce the probability that a customer has a low serving rate coefficient,
hence it will increase the performance of the base station. Another direction
of further research is the development of efficient approximate methods for the
performance measures evaluation.
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Abstract. This paper considers a priority multi-server retrial queue
with two classes of customers. Primary customers have preemptive pri-
ority over secondary users. The dynamics of primary customers is the
same as that of an Erlang loss system with Poisson input and exponen-
tial service time distribution. Secondary users can cognitively use the
channels when they are not used by primary users. Secondary users that
see all the channels occupied upon arrival join the orbit and retry later.
Upon arrival, if a primary user is lost if it sees all the channels occu-
pied by other primary users. Upon the arrival of a primary customer,
if all the channels are occupied but some channels are occupied by sec-
ondary users, one of these ongoing secondary users is interrupted by the
primary user and the interrupted secondary user enters the orbit. Sec-
ondary users from the orbit retry to occupy an idle server until they are
successfully occupying one. For this model, we consider an asymptotic
regime in which the retrial rate is extremely low. While the number of
secondary users in the orbit explodes in this regime, we prove that a
scaling version of the number of users in the orbit weakly converges to a
diffusion process whose drift and diffusion coefficients are constructed.

Keywords: Retrial queueing system · Asymptotic-diffusion analysis ·
Priority customers

1 Introduction

Priority queue is one of the main streams in queueing theory because the model
naturally arises in various applications from services to telecommunication and
computer systems. In practice, service differentiation is required in various sit-
uations. In service systems such as airline, first class customer has priority over
economy class. In telecommunication system, voice packets have higher priority
than other data packets such as email etc.
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Recently, mobile traffic has explosively increased leading to the shortage of
wireless spectrums. Cognitive radio networks are promising technologies for this
spectrum shortage problem. Two types of users in cognitive radio networks are
primary users and secondary users. Primary users are granted some spectrum
bands. Secondary users can cognitively utilize these bands when they are not
used by primary users. To this end, secondary users must use these band in
such a way that does not interfere primary users. Once primary users arrive,
ongoing secondary users must evacuate and then sense to occupy a channel in
a later time. Motivated by this application, we consider a multiserver priority
retrial queue. Primary users and secondary users arrive at the system of multiple
servers according to Poisson processes. Service time distributions of primary and
secondary users are exponential distributions with distinct parameters. From the
viewpoint of primary users, the dynamics of the number of primary users is the
same as that of an Erlang loss system.

Upon arrival, if there are some idle servers, the secondary user can use one
of these idle ones, otherwise they join the orbit and sense to find an idle one in
an exponentially distributed time. Upon arrival, if there are some idle servers,
the primary user chooses one of them. Otherwise, the primary user is either lost
if all the channels busy with other primary users, or interrupts one of ongoing
secondary users. The interrupted ongoing secondary user returns to the orbit
and sense to occupy an idle server. The sensing process of blocked secondary
users and the interrupted ones is the same as the orbit in retrial queues.

As a related work, Akutsu and Phung-Duc [1] study a similar model where
secondary users must sense before accessing the channel using simulation. In the
study [1], analytical solution is derived for the single server case and simulation
is carried out for the multi-server case. Furthermore, Phung-Duc et al. [6] ana-
lytically study the same model and derive the stability condition. Morozov et al.
[4] study the model where secondary can wait at a buffer in case an idle server
is not available or in case of being interrupted. In paper [7] consider the effect
of retrial phenomenon on in performance modeling of radio by using a finite-
source queueing model. Nemouchi and Sztrik [8] used stochastic simulation for
performance evaluation of cognitive radio network. In this paper, in contrast to
the models in [1,4,6], we consider a new model where fresh secondary users can
occupy an empty channel upon arrival without sensing. Numerical solutions for
priority retrial queues can be found in [9,10,12]. Especially the model in [12] is
more general than the one presented in the current paper.

In this paper, rather than finding a numerical solution, we consider asymp-
totic analysis under the condition that the delay in the orbit is extremely long
using the asymptotic diffusion method [2,3,5]. Under that condition, the number
of customers in the orbit explosively increases. However, using an appropriate
scaling, we prove that the scaled number of customers in the orbit weakly con-
verges to a diffusion process. The results allow us to derive an approximation
for the distribution of the number of customers in the orbit.

The remainder of the paper is organized as follows. In Sect. 2, we present
the model in detail. Section 3 presents the first order asymptotics while sec-
ond order asymptotic analysis is presented in Sect. 4. An approximation of the
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distribution of the stationary number of customers in the orbit is presented in
Sect. 5. Concluding remarks are presented in Sect. 6.

2 Mathematical Model

We consider multi-server retrial queueing system with two incoming streams of
primary users and secondary users. We assume that arrival flows to the system
follow the stationary Poisson processes with intensity λ1 and λ2, respectively. The
first arrival flow of primary users has preemptive priority over that of secondary
users. The system has N servers. Service times of customers of the first and the
second flows are exponentially distributed with rate μ1 and μ2, respectively. If
upon arrival, the customer (of either the first or the second flow) finds free servers,
then he gets on one of these free servers and starts the service. If all servers are
busy with priority customers, the incoming primary customer is lost otherwise,
the primary customer will preempt a non-priority customer and the preempted
customer joins the orbit. Non-priority customers that see all the servers busy upon
arrival join the orbit. From the orbit non-priority customers retry in to occupy a
free server after an exponentially distributed time with rate σ.

Let n1(t) and n2(t) denote the number of busy servers with priority customers
and that with non-priority ones at time t, respectively and let i(t) denote the
number of customers in the orbit at the time t.

The random process {n1(t), n2(t), i(t)} forms a continuous time Markov
chain. Let

P (n1, n2, i, t) = P{n1(t) = n1, n2(t) = n2, i(t) = i}
denote the probability distribution of the process {n1(t), n2(t), i(t)} . The system
of Kolmogorov differential equations for P (n1, n2, i, t), n1 + n2 = n, n ≤ N is
given as follows.

∂P (0, 0, i, t)
∂t

= −(λ1 + λ2 + iσ)P (0, 0, i, t) + μ1P (1, 0, i, t)

+μ2P (0, 1, i, t), n = 0,

∂P (n1, n2, i, t)
∂t

= −(λ1 + λ2 + μ1n1 + μ2n2 + iσ)P (n1, n2, i, t)

+λ1P (n1 − 1, n2, i, t) + (i + 1)σP (n1, n2 − 1, i + 1, t) + λ2P (n1, n2 − 1, i, t)
+μ1(n1 + 1)P (n1 + 1, n2, i, t) + μ2(n2 + 1)P (n1, n2 + 1, i, t), 1 ≤ n < N,

∂P (n1, n2, i, t)
∂t

= −(λ1 + λ2 + μ1n1 + μ2n2)P (n1, n2, i, t)

+λ1P (n1 − 1, n2 + 1, i − 1, t) + λ2P (n1, n2 − 1, i, t) + λ1P (n1 − 1, n2, i, t)
+λ2P (n1, n2, i − 1, t) + (i + 1)σP (n1, n2 − 1, i + 1, t), n = N,n1 < N,

∂P (N, 0, i, t)
∂t

= −(λ2 + Nμ1)P (N, 0, i, t) + λ1P (N − 1, 0, i, t)

+λ1P (N − 1, 1, i − 1, t) + λ2P (N, 0, i − 1, t), n1 = N.
(1)
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We consider the partial characteristic function with j =
√−1

H(n1, n2, u, , t) =
∞∑

i=0

ejuiP (n1, n2, i, t).

The system (1) is transformed to

∂H(0, 0, u, t)
∂t

= −(λ1 + λ2)H(0, 0, u, t) + μ1H(1, 0, u, t)

+μ2H(0, 1, u, t) + jσ
∂H(0, 0, u, t)

∂u
, n = 0,

∂H(n1, n2, u, t)
∂t

= −(λ1 + λ2 + μ1n1 + μ2n2)H(n1, n2, u, t)

+jσ
∂H(n1, n2, u, t)

∂u
+ λ1H(n1 − 1, n2, u, t)

− jσe−ju ∂H(n1, n2 − 1, u, t)
∂u

+ λ2H(n1, n2 − 1, u, t)

+μ1(n1 + 1)H(n1 + 1, n2, u, t) + μ2(n2 + 1)H(n1, n2 + 1, u, t), 1 ≤ n < N,

∂H(n1, n2, u, t)
∂t

= −(λ1 + λ2 + μ1n1 + μ2n2)H(n1, n2, u, t)

+λ1e
juH(n1 − 1, n2 + 1, u, t) + λ2H(n1, n2 − 1, u, t) + λ1H(n1 − 1, n2, u, t)

+λ2e
juH(n1, n2, u, t) − jσ

∂H(n1, n2 − 1, u, t)
∂u

, n = N,n1 < N,

∂H(N, 0, u, t)
∂t

= −(λ2 + Nμ1)H(N, 0, u, t) + λ1H(N − 1, 0, u, t)

+λ1e
juH(N − 1, 1, u, t) + λ2e

juH(N, 0, u, t), n1 = N.
(2)

Summing up the equations of system (2) yields an additional equation that
we need for further research:

∑

n1+n2≤N

∂H(n1, n2, u, t)
∂t

= (eju − 1)

(
jσe−ju

∑

n1+n2<N

∂H(n1, n2, u, t)
∂u

+ (λ1 + λ2)
∑

n1+n2=N

H(n1, n2, u, t) − λ1H(N, 0, u, t)

)
.

(3)

The main contribution of the paper is threefold: i) the probability distribution
of the number of customers in the orbit, ii) the joint stationary probability
distribution that n1 servers are busy with serving priority customers and n2

servers are busy with non-priority customers, iii) the blocking probability of
priority customers. The system of Eqs. (2) seems to be impossible to solve by a
direct way, so we will consider it under the condition of long delay customers in
the orbit, i.e., when σ → 0.
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3 First Order Asymptotic Analysis

In system of Eqs. (2) and Eq. (3), we consider the following substitutions:

σ = ε, τ = εt, u = εw,H(n1, n2, u, t) = F (n1, n2, w, τ, ε).

We can transform system (2) and (3) to the form:

ε
∂F (0, 0, w, τ, ε)

∂τ
= −(λ1 + λ2)F (0, 0, w, τ, ε) + μ1F (1, 0, w, τ, ε)

+μ2F (0, 1, w, τ, ε) + j
∂F (0, 0, w, τ, ε)

∂w
, n = 0,

ε
∂F (n1, n2, w, τ, ε)

∂τ
= −(λ1 + λ2 + μ1n1 + μ2n2)F (n1, n2, w, τ, ε)

+ j
∂F (n1, n2, w, τ, ε)

∂w
+ μ1(n1 + 1)F (n1 + 1, n2, w, τ, ε)

− je−jεw ∂F (n1, n2 − 1, w, τ, ε)
∂w

+ λ2F (n1, n2 − 1, w, τ, ε)

+λ1F (n1 − 1, n2, w, τ, ε) + μ2(n2 + 1)F (n1, n2 + 1, w, τ, ε), 1 ≤ n < N,

ε
∂F (n1, n2, w, τ, ε)

∂τ
= −(λ1 + λ2 + μ1n1 + μ2n2)F (n1, n2, w, τ, ε)

+λ1e
jεwF (n1 − 1, n2 + 1, w, τ, ε) + λ2F (n1, n2 − 1, w, τ, ε)

+λ1F (n1 − 1, n2, w, τ, ε) + λ2e
jεwF (n1, n2, w, τ, ε)

− j
∂F (n1, n2 − 1, w, τ, ε)

∂w
, n = N,n1 < N,

ε
∂F (N, 0, w, τ, ε)

∂τ
= −(λ2 + Nμ1)F (N, 0, w, τ, ε) + λ1F (N − 1, 0, w, τ, ε)

+λ1e
jεwF (N − 1, 1, w, τ, ε) + λ2e

jεwF (N, 0, w, τ, ε), n1 = N,

(4)

ε
∑

n1+n2≤N

∂F (n1, n2, w, τ, ε)
∂τ

= (ejεw − 1) (−λ1F (N, 0, w, τ, ε)

+ (λ1 + λ2)
∑

n1+n2=N

F (n1, n2, w, τ, ε) + je−jεw
∑

n1+n2<N

∂F (n1, n2, w, τ, ε)
∂w

)
.

(5)
We denote F (n1, n2, w, τ) = lim

ε→0
F (n1, n2, w, τ, ε).

Theorem 1. Let F (n1, n2, w, τ) denote the solution of (4) by taking the limit
as ε → 0. Then function F (n1, n2, w, τ) has the following form

F (n1, n2, w, τ) = exp{jwx(τ)}R(n1, n2, x).
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Here the probabilities R(n1, n2, x) are solutions to the following system of equa-
tions:

− (λ1 + λ2 + x)R(0, 0, x) + μ1R(1, 0, x) + μ2R(0, 1, x) = 0, n = 0,

− (λ1 + λ2 + μ1n1 + μ2n2 + x)R(n1, n2, x) + λ2R(n1, n2 − 1, x)
+λ1R(n1 − 1, n2, x) + xR(n1, n2 − 1, x) + μ1(n1 + 1)R(n1 + 1, n2, x)

+μ2(n2 + 1)R(n1, n2 + 1, x) = 0, 1 ≤ n < N,

− (λ1 + μ1n1 + μ2n2)R(n1, n2, x) + (λ2 + x)R(n1, n2 − 1, x)
+λ1R(n1 − 1, n2 + 1, x) + λ1R(n1 − 1, n2, x) = 0, n = N,n1 < N,

−Nμ1R(N, 0, x) + λ1(R(N − 1, 0, x) + R(N − 1, 1, x)) = 0, n1 = N,

(6)

and x(τ) is the solution of the following ordinary differential equation

x′(τ) = −x(τ)
∑

n≤N−1

R(n1, n2, x) + (λ1 + λ2)
∑

n=N

R(n1, n2, x) − λ1R(N, 0, x).

(7)

Proof. Taking ε → 0 in the system (4), we find the solution of (4) in the form:

F (n1, n2, w, τ) = R(n1, n2, x)Φ(w). (8)

Substituting the product (8) into the system of Eq. (4), we obtain

−(λ1 + λ2)R(0, 0, x)Φ(w) + jR(0, 0, x)
∂Φ(w)

∂w
+μ1R(1, 0, x)Φ(w) + μ2R(0, 1, x)Φ(w) = 0, n = 0,

− (λ1 + λ2 + μ1n1 + μ2n2)R(n1, n2, x)Φ(w) + μ1(n1 + 1)R(n1 + 1, n2, x)Φ(w)

+ jR(n1, n2, x)
∂Φ(w)

∂w
− jR(n1, n2 − 1, x)

∂Φ(w)
∂w

+ λ2R(n1, n2 − 1, x)Φ(w)

+λ1R(n1 − 1, n2, x)Φ(w) + μ2(n2 + 1)R(n1, n2 + 1, x)Φ(w) = 0, 1 ≤ n < N,

− (λ1 + λ2 + μ1n1 + μ2n2)R(n1, n2, x)Φ(w) + λ1R(n1 − 1, n2 + 1, x)Φ(w)
+λ2R(n1, n2 − 1, x)Φ(w) + λ1R(n1 − 1, n2, x)Φ(w) + λ2R(n1, n2, x)Φ(w)

− jR(n1, n2 − 1, x)
∂Φ(w)

∂w
= 0, n = N,n1 < N,

− (λ2 + Nμ1)R(N, 0, x)Φ(w) + λ1R(N − 1, 0, x)Φ(w)
+λ1R(N − 1, 1, x)Φ(w) + λ2R(N, 0, x)Φ(w) = 0, n1 = N,

(9)

Here Φ(w) is given in the form

Φ(w) = exp{jwx(τ)}. (10)

Substituting expression (10) into (9), we obtain the system of equations,
which coincides with (6).
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Let’s use the following expansion

ejwε = 1 + jwε + O(ε2).

Substituting this into (5) and sending ε → 0, we obtain

∑

n1+n2≤N

∂F (n1, n2, w, τ)
∂τ

= jw (−λ1F (N, 0, w, τ)

+ (λ1 + λ2)
∑

n1+n2=N

F (n1, n2, w, τ) + j
∑

n1+n2<N

∂F (n1, n2, w, τ)
∂w

)
.

(11)

Substituting (8) and (10) into Eq. (11), we get (7).
The system (6) is a system of linear equations for R(n1, n2, x). Equation (7)

is an ordinary differential equation for function x(τ). We can find a solution of
the system of Eqs. (6), which depends on x(τ), and substitute it into Eq. (7).
Solving Eq. (7), we get an expression for finding x(τ).

Taking into account that
∑

n1+n2=n≤N

R(n1, n2, x) = 1, we denote r(x) =
∑

n<N

R(n1, n2, x), 1 − r(x) =
∑

n=N

R(n1, n2, x). Denoting the right-hand side of

Eq. (7) as a(x), we can write following equality

a(x) = −xr(x) + (λ1 + λ2)(1 − r(x)) − λ1R(N, 0, x). (12)

In stationary regime, Eq. (7) transforms to the following equation

−xr(x) + (λ1 + λ2)(1 − r(x)) − λ1R(N, 0, x) = 0.

Here x is the fixed point. Let us denote the solution of this equation as κ.
Substituting x = κ into the system Eq. (6), we obtain stationary probabilities
R(n1, n2, κ) = R(n1, n2) of the states of the servers. Probability R(N, 0) is the
blocking probability of priority customers.

4 Second Order Asymptotic Analysis

In the system Eqs. (2) and Eq. (3), we consider the characteristic functions of
i(t) − x(σt)

σ as follows.

H(n1, n2, u, t) = ej u
σ x(σt)H(2)(n1, n2, u, t).

By putting σ = ε2, τ = εt, u = εw, H(2)(n1, n2, u, t) = F (2)(n1, n2, w, τ, ε),
we get
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ε2
∂F (2)(0, 0, w, τ, ε)

∂τ
+ jεwa(x)F (2)(0, 0, w, τ, ε) = μ1F

(2)(1, 0, w, τ, ε)

− (λ1 + λ2 + x)F (2)(0, 0, w, τ, ε) + μ2F
(2)(0, 1, w, τ, ε)

+ jε
∂F (2)(0, 0, w, τ, ε)

∂w
, n = 0,

ε2
∂F (2)(n1, n2, w, τ, ε)

∂τ
+ jεwa(x)F (2)(n1, n2, w, τ, ε)

= − (λ1 + λ2 + μ1n1 + μ2n2 + x)F (2)(n1, n2, w, τ, ε) + jε
∂F (2)(n1, n2, w, τ, ε)

∂w

+μ1(n1 + 1)F (2)(n1 + 1, n2, w, τ, ε) − jεe−jεw ∂F (2)(n1, n2 − 1, w, τ, ε)
∂w

+λ2F
(2)(n1, n2 − 1, w, τ, ε) + λ1F

(2)(n1 − 1, n2, w, τ, ε)

+μ2(n2 + 1)F (2)(n1, n2 + 1, w, τ, ε), 1 ≤ n < N,

ε2
∂F (2)(n1, n2, w, τ, ε)

∂τ
+ jεwa(x)F (2)(n1, n2, w, τ, ε)

= − (λ1 + λ2 + μ1n1 + μ2n2 + λ2e
jεw)F (2)(n1, n2, w, τ, ε)

+λ1e
jεwF (2)(n1 − 1, n2 + 1, w, τ, ε) + (λ2 + xe−jεw)F (2)(n1, n2 − 1, w, τ, ε)

+λ1F
(2)(n1 − 1, n2, w, τ, ε) − jεe−jεw ∂F (n1, n2 − 1, w, τ, ε)

∂w
, n = N,n1 < N,

ε2
∂F (2)(N, 0, w, τ, ε)

∂τ
+ jεwa(x)F (2)(N, 0, w, τ, ε)

= − (λ2(1 − ejεw) + Nμ1)F (2)(N, 0, w, τ, ε) + λ1F
(2)(N − 1, 0, w, τ, ε)

+λ1e
jεwF (2)(N − 1, 1, w, τ, ε), n1 = N,

(13)

ε2
∑

n1+n2≤N

∂F (2)(n1, n2, w, τ, ε)

∂τ
+ jεwa(x)

∑

n1+n2≤N

F (2)(n1, n2, w, τ, ε)

= (ejεw − 1)

(
−λ1F

(2)(N, 0, w, τ, ε) + jεe−jεw
∑

n1+n2<N

∂F (2)(n1, n2, w, τ, ε)

∂w

+(λ1 + λ2)
∑

n1+n2=N

F (2)(n1, n2, w, τ, ε) − xe−jεw
∑

n1+n2<N

F (2)(n1, n2, w, τ, ε)

)
.

(14)
We denote F (2)(n1, n2, w, τ) = lim

ε→0
F (2)(n1, n2, w, τ, ε). Function F (2)

(n1, n2, w, τ) has the following form:

F (2)(n1, n2, w, τ) = Φ(w, τ)R(n1, n2, x).

Φ(w, τ) is the characteristic function of y(τ), where y(τ) = lim
σ→0

√
σ

(
i( τ

σ ) − x(τ)
σ

)
.
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Theorem 2. Function Φ(w, τ) is a solution of the differential equation:

∂Φ(w, τ)
∂τ

= a′(x)w
∂Φ(w, τ)

∂w
− w2

2
b(x)Φ(w, τ), (15)

where a(x) is determined by (12), b(x) has the form

b(x) = a(x)+2(xr(x)−x
∑

n<N

g(n1, n2, x)+(λ1+λ2)
∑

n=N

g(n1, n2, x)−g(N, 0, x)).

(16)
Here functions g(n1, n2, x) are defined by the following system of equations

−(λ1 + λ2 + x)g(0, 0, x) + μ1g(1, 0, x) + μ2g(0, 1, x) = a(x)R(0, 0, x), n = 0,

−(λ1 + λ2 + μ1n1 + μ2n2 + x)g(n1, n2, x) + (λ2 + x)g(n1, n2 − 1, x)
+λ1g(n1 − 1, n2, x) + μ1(n1 + 1)g(n1 + 1, n2, x) + μ2(n2 + 1)g(n1, n2 + 1, x)

= a(x)R(n1, n2, x) + xR(n1, n2 − 1, x), 1 ≤ n ≤ N,

−(λ1 + μ1n1 + μ2n2)g(n1, n2, x) + (λ2 + x)g(n1, n2 − 1, x)
+λ1g(n1 − 1, n2 + 1, x) + λ1g(n1 − 1, n2, x) = xR(n1, n2 − 1, x)

+ (a(x) − λ2)R(n1, n2, x) − λ1R(n1 − 1, n2 + 1, x), n = N,n1 < N,

−Nμ1g(N, 0, x) + λ1(g(N − 1, 0, x) + g(N − 1, 1, x))) =
= a(x)R(N, 0, x) − λ2R(N, 0, x) − λ1R(N − 1, 1, x), n1 = N.

(17)

Proof. For the solution of the system of Eqs. (13), we write in the form

F (2)(n1, n2, w, τ, ε) = Φ(w, τ) (R(n1, n2, x) + jεwf(n1, n2, x)) + O(ε2). (18)

We will substitute this expression into the system of Eqs. (13). Taking (6)
into account and sending ε → 0, we obtain

wa(x)R(0, 0, x) = − (λ1 + λ2 + x)wf(0, 0, x) + μ2wf(0, 1, x)

+μ1wf(1, 0, x) + R(0, 0, x)
∂Φ(w, τ)

Φ(w, τ)∂w
, n = 0,

wa(x)R(n1, n2, x) = − (λ1 + λ2 + μ1n1 + μ2n2 + x)wf(n1, n2, x)

+R(n1, n2, x)
∂Φ(w, τ)

Φ(w, τ)∂w
+ μ1(n1 + 1)wf(n1 + 1, n2, x)

−R(n1, n2 − 1, x)
∂Φ(w, τ)

Φ(w, τ)∂w
− xwR(n1, n2 − 1, x) + λ2wf(n1, n2 − 1, x)

+λ1wf(n1 − 1, n2, x) + μ2(n2 + 1)wf(n1, n2 + 1, x), 1 ≤ n < N,

wa(x)R(n1, n2, x) = − (λ1 + μ1n1 + μ2n2)wf(n1, n2, x)
+λ1w (R(n1 − 1, n2 + 1, x) + f(n1 − 1, n2 + 1, x))

+λ2wR(n1, n2, x) + (λ2 + x)wf(n1, n2 − 1, x) − xwR(n1, n2 − 1, x)

+λ1wf(n1 − 1, n2, x) − R(n1, n2 − 1, x)
∂Φ(w, τ)

Φ(w, τ)∂w
, n = N,n1 < N,
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wa(x)R(N, 0, x) = −Nμ1wf(N, 0, x) + λ1wf(N − 1, 0, x)
+λ1w(R(N − 1, 1, x) + f(N − 1, 1, x)) + λ2wR(N, 0, x), n1 = N.

(19)

For the solution f(n1, n2, x) of the system (19), we present in the following
form

f(n1, n2, x) = CR(n1, n2, x) + g(n1, n2, x) − φ(n1, n2, x)
∂Φ(w, τ)

wΦ(w, τ)∂w
. (20)

Substituting this expression into the system Eq. (19), we obtain the following
system of equations:

− (a(x) + C(λ1 + λ2 + x))R(0, 0, x) + Cμ1R(1, 0, x) + Cμ2R(0, 1, x)
− (λ1 + λ2 + x)g(0, 0, x) + μ1g(1, 0, x) + μ2g(0, 1, x) + ((λ1 + λ2 + x))φ(0, 0, x)

−μ1φ(1, 0, x) − μ2φ(0, 1, x) + R(0, 0, x))
∂Φ(w, τ)

wΦ(w, τ)∂w
= 0, n = 0,

− (a(x) + C(λ1 + λ2 + μ1n1 + μ2n2 + x))R(n1, n2, x)
+ (λ2 + x)CR(n1, n2 − 1, x) + λ1CR(n1 − 1, n2, x) − xR(n1, n2 − 1, x)

+μ1(n1 + 1)CR(n1 + 1, n2, x) + μ2(n2 + 1)CR(n1, n2 + 1)
+ (λ2 + x)g(n1, n2 − 1, x) + λ1g(n1 − 1, n2, x) + μ1(n1 + 1)g(n1 + 1, n2, x)

+μ2(n2 + 1)g(n1, n2 + 1) − (λ1 + λ2 + μ1n1 + μ2n2 + x)g(n1, n2, x)
+ ((λ1 + λ2 + μ1n1 + μ2n2 + x)φ(n1, n2, x) + R(n1, n2, x)

−R(n1, n2 − 1, x) − (λ2 + x)φ(n1, n2 − 1, x)
−λ1φ(n1 − 1, n2, x) − μ1(n1 + 1)φ(n1 + 1, n2, x)

−μ2(n2 + 1)φ(n1, n2 + 1))
∂Φ(w, τ)

wΦ(w, τ)∂w
= 0, 1 ≤ n < N,

− (a(x) + C(λ1 + μ1n1 + μ2n2))R(n1, n2, x) + Cλ1R(n1 − 1, n2 + 1, x)
+λ1R(n1 − 1, n2 + 1, x) + λ2R(n1, n2, x) + (λ2 + x)CR(n1, n2 − 1, x)

−xR(n1, n2 − 1, x) + Cλ1R(n1 − 1, n2, x)
− (λ1 + μ1n1 + μ2n2)g(n1, n2, x) + λ1g(n1 − 1, n2 + 1, x)

+ (λ2 + x)g(n1, n2 − 1, x) + λ1g(n1 − 1, n2, x) + (−λ1φ(n1 − 1, n2 + 1, x)
+ (λ1 + μ1n1 + μ2n2)φ(n1, n2, x) − (λ2 + x)φ(n1, n2 − 1, x)

−λ1φ(n1 − 1, n2, x) − R(n1, n2 − 1, x))
∂Φ(w, τ)

wΦ(w, τ)∂w
= 0, n = N,n1 < N,

− (a(x) + CNμ1)R(N, 0, x) + λ1CR(N − 1, 0, x)
+λ1(R(N − 1, 1, x) + CR(N − 1, 1, x)) + λ2R(N, 0, x) + (λ1g(N − 1, 0, x)
−Nμ1g(N, 0, x) + λ1g(N − 1, 1, x)) + (Nμ1φ(N, 0, x) − λ1φ(N − 1, 0, x)

−λ1φ(N − 1, 1, x))
∂Φ(w, τ)

wΦ(w, τ)∂w
= 0, n1 = N.

(21)
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Considering the system of Eqs. (6), the coefficient C before the constant is
equal to zero. As a result, we obtain the following two systems of equations:

For finding the functions φ(n1, n2, x):

(λ1 + λ2 + x)φ(0, 0, x) − μ1φ(1, 0, x) − μ2φ(0, 1, x) = −R(0, 0, x), n = 0,

(λ1 + λ2 + μ1n1 + μ2n2 + x)φ(n1, n2, x) − (λ2 + x)φ(n1, n2 − 1, x)
−λ1φ(n1 − 1, n2, x) − μ1(n1 + 1)φ(n1 + 1, n2, x)

−μ2(n2 + 1)φ(n1, n2 + 1) = R(n1, n2 − 1, x) − R(n1, n2, x), 1 ≤ n < N,

(λ1 + μ1n1 + μ2n2)φ(n1, n2, x) − λ1φ(n1 − 1, n2 + 1, x) − λ1φ(n1 − 1, n2, x)
− (λ2 + x)φ(n1, n2 − 1, x) = R(n1, n2 − 1, x), n = N,n1 < N,

Nμ1φ(N, 0, x) − λ1φ(N − 1, 0, x) − λ1φ(N − 1, 1, x) = 0, n1 = N. (22)

For finding the functions g(n1, n2, x):

−(λ1 + λ2 + x)g(0, 0, x) + μ1g(1, 0, x) + μ2g(0, 1, x) = a(x)R(0, 0, x), n = 0,

−(λ1 + λ2 + μ1n1 + μ2n2 + x)g(n1, n2, x) + (λ2 + x)g(n1, n2 − 1, x)+
+λ1g(n1 − 1, n2, x) + μ1(n1 + 1)g(n1 + 1, n2, x) + μ2(n2 + 1)g(n1, n2 + 1, x)

= a(x)R(n1, n2, x) + xR(n1, n2 − 1, x), 1 ≤ n ≤ N,

− (λ1 + μ1n1 + μ2n2)g(n1, n2, x) + (λ2 + x)g(n1, n2 − 1, x)
+λ1g(n1 − 1, n2 + 1, x) + λ1g(n1 − 1, n2, x) = xR(n1, n2 − 1, x)

+ (a(x) − λ2)R(n1, n2, x) − λ1R(n1 − 1, n2 + 1, x), n = N,n1 < N,

−Nμ1g(N, 0, x) + λ1(g(N − 1, 0, x) + g(N − 1, 1, x)))
= a(x)R(N, 0, x) − λ2R(N, 0, x) − λ1R(N − 1, 1, x), n1 = N.

(23)

Now, consider system of Eqs. (6). Differentiating it with respect to x, we
derive

(λ1 + λ2 + x)
∂R(0, 0, x)

∂x
+ R(0, 0, x) − μ1

∂R(1, 0, x)

∂x
− μ2

∂R(0, 1, x)

∂x
= 0, n = 0,

(λ1 + λ2 + μ1n1 + μ2n2 + x)
∂R(n1, n2, x)

∂x
+ R(n1, n2, x)

− (λ2 + x)
∂R(n1, n2 − 1, x)

∂x
− R(n1, n2 − 1, x)

−λ1
∂R(n1 − 1, n2, x)

∂x
− μ1(n1 + 1)

∂R(n1 + 1, n2, x)
∂x

−μ2(n2 + 1)
∂R(n1, n2 + 1, x)

∂x
= 0, 1 ≤ n < N,

(λ1 + μ1n1 + μ2n2)
∂R(n1, n2, x)

∂x
− λ1

∂R(n1 − 1, n2 + 1, x)
∂x

−λ1
∂R(n1 − 1, n2, x)

∂x
− (λ2 + x)

∂R(n1, n2 − 1, x)
∂x

−R(n1, n2 − 1, x) = 0, n = N,n1 < N,
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Nμ1
∂R(N, 0, x)

∂x
− λ1

∂R(N − 1, 0, x)
∂x

− λ1
∂R(N − 1, 1, x)

∂x
= 0, n1 = N. (24)

Comparing systems of Eqs. (22) and (24), we can conclude that

φ(n1, n2, x) =
∂R(n1, n2, x)

∂x
, where

∑
n≤N

φ(n1, n2, x) = 0.

Functions g(n1, n2, x) are particular solution to (19), we choose the one
satisfying

∑
n≤N

g(n1, n2, x) = 0. Notice that system of Eq. (23) for functions

g(n1, n2, x) coincides with the system of Eqs. (17).
Then we consider the scalar Eq. (14). Using the expansion

ejεw = 1 + jεw +
(jεw)2

2
+ O(ε3)

and applying this expansion, we obtain

− jε
∑

n≤N

∂F (2)(n1, n2, w, τ, ε)
∂τ

+ wa(x)
∑

n≤N

F (2)(n1, n2, w, τ, ε)

= (w − jεw2

2
)

(
−λ1F

(2)(N, 0, w, τ, ε) + jε
∑

n<N

∂F (2)(n1, n2, w, τ, ε)
∂w

− (jε)2w
∑

n<N

∂F (2)(n1, n2, w, τ, ε)
∂w

+ (λ1 + λ2)
∑

n=N

F (2)(n1, n2, w, τ, ε)

−x(1 − jεw +
(jεw)2

2
)

∑

n<N

F (2)(n1, n2, w, τ, ε)

)
+ O(ε3).

We substitute the solution (18) into this equation. Considering Eq. (7), we
divide by jε and take the limit ε → 0. Then, substituting expression (20), we get

− ∂Φ(w, τ)
∂τ

= w

(
r(x) + x

∑

n<N

∂R(n1, n2, x)
∂x

− (λ1 + λ2)
∑

n=N

∂R(n1, n2, x)
∂x

+λ1
∂R(N, 0, x)

∂x

)
∂Φ(w, τ)

∂w
+

w2

2
(xr(x) + (λ1 + λ2)(1 − r(x)) − λ1R(N, 0, x)

− 2x
∑

n<N

g(n1, n2, x) + 2(λ1 + λ2)
∑

n=N

g(n1, n2, x) − 2λ1g(N, 0, x))Φ(w, τ).

Now, let us consider the Eq. (12). Differentiating it with respect to x, we
derive the equation

a′(x) = −r(x) − x
∑

n<N

∂R(n1, n2, x)

∂x
+ (λ1 + λ2)

∑

n=N

∂R(n1, n2, x)

∂x
− λ1

∂R(N, 0, x)

∂x
.

(25)
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We denote

b(x) = xr(x) + (λ1 + λ2)(1 − r(x)) − λ1R(N, 0, x)

− 2x
∑

n<N

g(n1, n2, x) + 2(λ1 + λ2)
∑

n=N

g(n1, n2, x) − 2λ1g(N, 0, x) = a(x)

+ 2

(
r(x) − x

∑

n<N

g(n1, n2, x) − (λ1 + λ2)
∑

n=N

g(n1, n2, x) + λ1g(N, 0, x)

)
.

Given this expression and Eq. (25), we will write the following equation

−∂Φ(w, τ)
∂τ

= wa′(x)
∂Φ(w, τ)

∂w
+

w2

2
b(x)Φ(w, τ),

which coincides with Eq. (15).
So, the theorem is proved.

Applying the inverse Fourier transform in the system (15), we obtain Fokker-
Plank equation for probability density function P (y, τ) = ∂P{y(τ)<y}

∂y of process
y(τ):

∂P (y, τ)
∂τ

= −∂{ya′(x)P (y, τ)}
∂y

+
1
2

∂2{b(x)P (y, τ)}
∂y2

.

Hence, y(τ) is the diffusion process whose with drift and diffusion coefficients
are given by ya′(x) and b(x), respectively.

5 Stationary Distribution of the Diffusion Process

We consider z(τ) = x(τ) +
√

σy(τ), which has a direct relation with i(t).
We consider the stationary probability density function for z(τ):

Π(z) =
∂P{z(τ) < z}

∂z
.

Theorem 3. The stationary probability density function of z(τ) is given by

Π(z) =
C

b(z)
exp

⎛

⎝ 2
σ

z∫

0

a(x)
b(x)

dx

⎞

⎠ ,

where C is the normalizing constant.

Proof. z(τ) is a solution to

dz(τ) = dx(τ) + εdy(τ) = a(x)dτ + ε(y(τ)a′(x)dτ +
√

b(x)dw(τ))

= (a(x) + εy(τ)a′(x))dτ + ε
√

b(x)dw(τ),
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where w(τ) is Wiener process.
The coefficients of the Wiener process are given in the form:

a(x) + εy(τ)a′(x) = a(z) + O(ε2),

ε
√

b(x) =
√

ε2b(x) =
√

ε2b(x + εy(τ)) + O(ε3) =
√

ε2b(z) + O(ε3)

=
√

ε2b(z) + O(ε2) =
√

σb(z) + O(ε2).

Then the stochastic differential equation for the process z(τ) can be rewritten
as:

dz(τ) = a(z)dτ +
√

σb(z)dw(τ).

Process z(τ) is a diffusion process whose probability density

Π(z, τ) =
∂P{z(τ) < z}

∂z

is the solution of the Fokker-Planck equation

∂Π(z, τ)
∂τ

= −∂{a(z)Π(z, τ)}
∂z

+
1
2

∂2{σb(z)Π(z, τ)}
∂z2

.

Under the stationary regime, this equation reduces to

−∂{a(z)Π(z)}
∂z

+
σ

2
∂2{b(z)Π(z)}

∂z2
= 0.

The solution of this differential equation is given by

Π(z) =
C

b(z)
exp

⎛

⎝ 2
σ

z∫

0

a(x)
b(x)

dx

⎞

⎠ . (26)

So, the theorem is proved.

We build the approximation of the probability distribution for i(t) as

Pd(i) =
Π(iσ)

∞∑
n=0

Π(nσ)
. (27)

6 Conclusion

In this paper, we considered a multi-server retrial queueing system with priority
customers. Using the method of asymptotic-diffusion analysis, we showed that
the scaled version of the number of customers in the orbit converges to a diffu-
sion process. We used this result to build an approximation for the stationary
probability distribution of the number of customers in the orbit.
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Abstract. We consider a modified Erlang loss system where the first
priority customers (class-1) are lost if find all servers busy, while the
second priority customers (class-2) form an infinite capacity queue. A
new feature of this system is that sub-classes of class-1 customers are
assigned on servers according to assignment probabilities. All customers
follow Poisson inputs and have general class-dependent service time. We
show how the product form of class-1 stationary probabilities can be used
to obtain the stability condition of the whole system even when sub-
classes of class-1 customers have different service rates. Also we perform
discrete event simulation to confirm theoretical results.

Keywords: Modified Erlang system · Two-priority customers ·
Stability condition · Multi-type customers · Multi-type servers ·
Simulation

1 Introduction

A spectrum shortage problems appearing by the explosively increasing wireless
networks can be solved in particular by using cognitive wireless networks [4,7]. In
such a network, there are two main classes of users primary users and secondary
users. The former users are allowed to use the transmission bandwidths only if
the primary users are not present in the network at this moment. Thus, if there
are no free channels, the primary users have priority interrupting transmissions of
secondary users, and an interrupted secondary user resumes transmission when
one of the channels becomes again available. We consider the setting when trans-
mission rate is channel-dependent and moreover, each server in general accepts a
limited set of (sub)classes of the primary users. Thus the system we study relates
to a wide class of systems with flexible servers, see for instance, [8,9]. In such a
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system there is a possibility that a part of service capacity of a given server can
be transferred to another server (or servers) to satisfy the corresponding QoS
requirements. A closely related concept is the system with the so-called cross-
trained servers, which are considered in detail, in particular, in [10–12]. In such a
system a set of servers accept a limited set of customer types only, while another
set of servers accept to server a wider class of customers (or all customers). Vari-
ous aspects of such systems, including the problems of optimal allocation aiming
minimizing a cost function are considered in the papers [8,13,14].

In this work we consider the extension of the following system with two-
priority classes of customers and several identical servers. The first priority cus-
tomers are lost if find all servers busy, while the second priority customers form
an infinite capacity queue. All classes of customers follow Poisson input and
have general independent identically distributed (iid) service times. The service
discipline for class-2 customers is assumed to be FCFS (first-come-first-served).
Such a modified Erlang loss system is motivated and studied in the paper [1] in
which in particular the stability condition (1) of this system is obtained.

A new feature of this system considering in this work is that a multi-type
server assignment for the priority customers is assumed. Each server can serve
only a limited set of sub-classes of class-1 customers and different sub-classes
of customers in general have different arrival rates. At the same time, class-2
customers belong to only one type and can be served by any server. In previous
work [2], we have shown that this system has the same stability condition (1),
provided all servers have identical service rates. In present work, we prove that
this condition is also stability one for Poisson inputs and server-dependent service
rates for the corresponding sub-classes of priority customers.

The paper is organized as follows. In Sect. 2, we describe the model in detail.
In Sect. 3, the main stability result is proved using a regenerative approach and
a balance equation connecting arrived and departed work. Also in this section,
we describe in brief how to compute the stationary busy probabilities which
are required to obtain the stability condition of the system in an explicit form.
Finally, in Sect. 4, we present some numerical results illustrating and verifying
theoretical results.

2 Description of the Model

We consider the extension of the following system with two-priority classes of
customers and J identical servers. The first priority customers (class-1) are lost
if find all servers busy, while the second priority customers (class-2) form an
infinite capacity queue if find all servers busy. Customers of class-i follow Poisson
input with rate λ(i). Also we assume that class-i customers have independent
identically distributed (iid) service times {S

(i)
n } with generic element S(i). The

service discipline for class-2 customers is assumed to be FCFS (first-come-first-
served). A new feature of this system considering in this work is that a multi-type
server assignment for the priority customers is assumed. Each server can serve
only a limited set of subclasses of class-1 customers and different subclasses
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of customers in general have different arrival rates. Suppose that we have I
subclasses of class-1 customers. We assume Poisson inputs and server-dependent
service rates for the sets of priority subclasses. We denote μj the work rate of
server j and S(i,j) =st S(i)/μj the service time of class-i customers arrived at
server j. We also assume that ES(1) = 1, therefore ES(1,j) = 1/μj . At the same
time, class-2 customers belong to only one type and can be served by any server.
In Fig. 1. We present the scheme of this extended system.

Also we introduce assignment probabilities of this system. We denote S ⊆
{1, ..., J} all possible combinations of the numbers of servers. When the system
is in state S an arriving class-1 customer of subclass i selects a server j ∈ S with
the probability Pi,j(S). These assignment probabilities are the control parameters
that we can choose to obtain the stationary distribution of the system [2,3]. If
subclass i customers can not be served by server j then Pi,j(S) = 0. If S = {k}
and subclass i customers can be served by server j then Pi,k(S) = 1.

Fig. 1. Extended system

3 Stability Analysis

Denote by ρ2 = λ(2)ES(2) the traffic intensity of class-2 customers and let Pi

be the stationary probability that i servers are occupied by class-1 customers.
Because the processes related to class-1 customers are positive recurrent and the
inputs are Poisson, these stationary probabilities exist [5]. It is assumed that the
first customer arrives in an empty system at instant t1 = 0, and if the system
is empty at this instant, we call it initially empty system. We note that in this
case, the instant T0 = 0 is a regeneration point and then T1 =st T , that is the
first regeneration period is stochastically equivalent to generic period. In this
case positive recurrence means that ET < ∞ [6]. In this section we present in
brief the proof of the following statement.

Theorem 1. If condition

ρ2 +
J∑

i=1

iPi < J, (1)
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holds then ET < ∞, that is initially empty system is positive recurrent.

Proof. In the interval of time [0, t) denote: V̂1(t), the total work which class-
1 customers bring in the system (that is V̂1(t) does not include the lost work);
V2(t), the arrived work which class-2 customers bring; B(t), the aggregated busy
time of the servers which in turn equals the departed work in [0, t). Also denote
I(t) =

∑J
i=1 Ii(t), where Ii(t) is the idle time of server i in [0, t]. Obviously the

following balance equations hold:

V̂1(t) + V2(t) = W1(t) + W2(t) + B(t) = W (t) + Jt − I(t), (2)

where Wi(t) is the remaining workload to process class-i customers at instant
t. We denote by Q1(t) the number of servers occupied by class-1 customers at
instant t. First of all we note that, because class-1 customers have preemptive
priority and lost when all servers are busy, then the process {Q1(t)} is posi-
tive recurrent regenerative [5]. Then, since the input is Poisson, the weak limit
(limit in distribution) Q1(t) ⇒ Q1 exists and is the stationary number of class-1
customers in the system. Now we show that the following equality holds:

lim
t→∞

EV̂1(t)
t

= EQ1 =
J∑

i=1

iPi. (3)

It is easy to see that the work V̂1(t) can be presented as follows:

V̂1(t) =
∫ t

0

J∑

i=1

i1(Q1(u) = i)du + W1(t) = B1(t) + W1(t), t ≥ 0, (4)

where 1(·) denotes indicator function, B1(t) is the work spent by all servers to
server class-1 customers in the time interval [0, t). Moreover, because the process
{Q1(t)} is positive recurrent, then with probability 1 (w.p.1) [6],

lim
t→∞

W1(t)
t

= 0.

Now, to find B1(t), we split indicators 1(·) into the following 2J − 1 disjoint
subsets:

1(Q1(t) = 1) =
J∑

i=1

1(only the i-th server is busy at instant t),

1(Q1(t) = 2) =
∑

i,j∈{1,..,J}, i �=j

1(only the i-th and the j-th servers

are busy at instant t),
...

1(Q1(t) = J) = 1(all servers are busy at instant t). (5)
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Therefore the arrived (and accepted) work V̂1(t) can be represented as:

V̂1(t) = 1
∫ t

0

J∑

i=1

1(only the i -th server is busy at instant u)du

+ 2
∫ t

0

∑

i,j∈{1,..,J}, i �=j

1(only the i -th and the j -th servers

are busy at instant u)du

...

+ J

∫ t

0

1(all servers are busy at instant u)du + W1(t), t ≥ 0. (6)

Because, as we mentioned above, all processes related to class-1 customers are
positive recurrent regenerative, then the following limit exists:

lim
t→∞

EV̂1(t)
t

= lim
t→∞

1
t

∫ t

0

J∑

i=1

iP(Q1(u) = i)du

=
J∑

i=1

i lim
t→∞

1
t

∫ t

0

P(Q1(u) = i)du =
c∑

i=1

iPi. (7)

The key observation is that the stationary probability that i servers are occupied
by class-1 customers is also the limiting fraction of the corresponding busy time:

Pi = lim
t→∞

1
t

∫ t

0

P(Q1(u) = i)du. (8)

Note that the arrived work {V2(t)} is a positive recurrent cumulative process
(see [6]), and it is easy to obtain that

lim
t→∞

EV2(t)
t

= ρ2. (9)

Now we assume the following convergence in probability:

Q2(t) ⇒ ∞ as t → ∞. (10)

Then it is easy to establish that

lim
t→∞

EI(t)
t

= 0. (11)

It remains to note that

lim inf
t→∞

EW (t)
t

= lim inf
t→∞

EW2(t)
t

≥ 0. (12)
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It now follows from balance Eq. (4), from assumption (10) and from previous
limiting results that indeed a non-negative limit limt→∞ EW2(t)/t ≥ 0 exists,
and we obtain

0 ≤ lim
t→∞

EW2(t)
t

= lim
t→∞

EV̂1(t)
t

+ lim
t→∞

EV2(t)
t

− J =
∑

i

iPi + ρ2 − J, (13)

implying a contradiction with assumption (10):

ρ2 +
J∑

i=1

iPi ≥ J. (14)

Thus indeed
Q2(t) � ∞, (15)

and then one can show that it implies positive recurrence, that is ET < ∞, and
the existence of stationary regime of the system, see [6]. �

Condition (1), written as

ρ2 < J −
J∑

i=1

iPi = J − EQ1, (16)

has the following probabilistic interpretation: to have stability of the system, the
traffic intensity of class-2 customers must be less than the mean number of the
available servers.

Remark 1. Indeed, following [6] one can prove that condition (1) is stability
criterion of the system under arbitrary initial state.

To implement our results in practice, we need to be able to calculate the
probability Pi included in the stability condition (1). To do this, we present
corresponding results from the paper [3]. In particular in this paper is shown
that the following detailed balance equations hold:

π(S)νj(S) = π(S\{j})μj for all subset S ⊆ {1, ..., J} and j ∈ S, (17)

where π(S) is the stationary probabilities that servers S are not serving class-1
customers, νj(S) is the rate at which server j ∈ S becomes busy (i.e. the arrival
rate of class-1 customers arriving at server j), when the system is in state S. From
these equations one can obtain the stationary distribution for S = {j1, ..., jm},
j1, ..., jm ∈ {1, ..., J} and m = 1, ..., J :

π(S) = π(∅)
μj1

νj1({j1})
μj2

νj2({j1, j2})
μj3

νj3({j1, j2, j3})
· · · μjm

νjm(S)
, (18)

where π(∅) normalizes the sum to 1.
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Now we can calculate the stationary probabilities Pi using found probabilities
π(S):

Pk =
∑

j1,...,jJ−k∈{1,...,J}
π({j1, ..., jJ−k}) for all k ∈ {1, ..., J}. (19)

We note that these stationary probabilities π(S) is correct only if the assignment
probabilities satisfied some equation system obtained in the paper [3]. We present
this system below for an example.

In the next section we give simulation results to demonstrate the theoretical
results obtained above.

4 Simulation

In order to verify theoretical results obtained above, we present a numerical
example based on discrete-event simulation of the system under consideration.
Evidently, this example confirms theoretical results in a particular case only.

We consider the following example of our system. Let we have J = 3, I = 2,
and we assume that servers 1 and 2 can serve all customers but server 3 cannot
serve subclass-2 customers (see Fig. 2). This example is considered in details in
paper [2] in which in particular the stationary probabilities are obtained. Also
the system of assignment probabilities is obtained:

λ1P1,1({1, 2}) + λ2P2,1({1, 2}) =
λ1 + λ2

2
,

P1,1({1, 3}) =
λ1

2λ1 + λ2
,

P1,3({1, 3}) =
λ1 + λ2

2λ1 + λ2
,

P1,2({2, 3}) =
λ1

2λ1 + λ2
,

P1,3({2, 3}) =
λ1 + λ2

2λ1 + λ2
,

P1,2({1, 2}) = 1 − P1,1({1, 2}),
P2,2({1, 2}) = 1 − P2,1({1, 2}),

λ1P1,1({1, 2, 3}) + λ2P2,1({1, 2, 3}) =
(λ1 + λ2)(2λ1 + λ2)

2(3λ1 + λ2)
,

P1,3({1, 2, 3}) =
(λ1 + λ2)
3λ1 + λ2

,

P1,2({1, 2, 3}) =
2λ1

3λ1 + λ2
− P1,1({1, 2, 3}),

P2,2({1, 2, 3}) = 1 − P2,1({1, 2, 3}). (20)

We recall that if this system is satisfied then the stationary probabilities can
be found. However simulation of this example in paper [2] is performed only for
identical service rates:
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λ1 = λ2 = 10, μ1 = μ2 = μ3 = 10. (21)

Fig. 2. Example

In the present paper we assume different work rates of servers:

λ1 = λ2 = 10, μ1 = 15, μ2 = 10, μ3 = 5. (22)

It implies different service times S(i,j). We present below theoretical stationary
probabilities provided arrival and servers rates (22):

π(∅) = 16/83, π({1}) = 12/83,

π({2}) = 8/83, π({3}) = 8/83,

π({1, 2}) = 12/83, π({1, 3}) = 9/83,

π({2, 3}) = 6/83, π({1, 2, 3}) = 12/83. (23)

Now we can calculate the stationary probabilities Pi in (19) using (23):

P0 = 12/83, P1 = 27/83, P2 = 28/83, P3 = 16/83. (24)

To compare these theoretical probabilities and calculated ones, we use the
Euclidean distance between two probabilities distribution:

δ(t) :=
√ ∑

S⊆{1,...,J}
(π(S) − π∗(S, t))2, (25)

where

π∗(S, t) =
T (S, t)

t
, t > 0, (26)

and T (S, t) is the computed time, in interval [0, t), when the system is in the
state S. To compare obtained values of δ(t) with the results from paper [2], we
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Table 1. The assignment probabilities violating equation system (20): 1) uniform
distribution; 2) uniform load of servers; 3) higher workload in server 2; 4) the maximum
workload in server 2.

Case S = {1, 2} S = {1, 3} S = {2, 3} S = {1, 2, 3}
P1,1 P1,2 P2,1 P2,2 P1,1 P1,3 P1,2 P1,3 P1,1 P1,2 P2,1 P2,2 P1,3

1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1/3 1/3 0.5 0.5 1/3

2 0.5 0.5 0.5 0.5 0.0 1.0 0.0 1.0 1/6 1/6 0.5 0.5 2/3

3 1/3 2/3 1/3 2/3 2/3 1/3 2/3 1/3 1/3 2/3 1/3 2/3 1/3

4 0.0 1.0 0.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0

Table 2. Comparing δ(t) for different and identical service rates, respectively: scenarios
from Table 1.

Case δ(t) δir(t) Case δ(t) δir(t)

1 0.0354 0.0322 3 0.1043 0.0870

2 0.0433 0.0459 4 0.1842 0.1559

denote by δir(t) the distance between two probabilities distribution obtained in
[2] for the identical service rates.

Denote by L(t) the number of customer losses per time unit in interval [0, t)
(loss rate). Also we denote by Î(t) the total time when servers do not serve
class-1 customers, in interval [0, t], and compute the fraction Î(t)/t. Note that
this fraction can be larger 1 when the number of servers is bigger than 1.

We consider 13 different sets of assignment probabilities: 4 cases violate equa-
tion system (20) (see Table 1) and 9 cases satisfy it (see Table 3). To satisfy
system (20), we can vary only two probabilities, P1,1({1, 2}) and P1,1({1, 2, 3})
(free variables, marked columns), while other probabilities depend on these free
variables or are uniquely determined. The sample means of δ(t), based on 100
paths, are compared with δir(t) given in Tables 2, 4.

Although the stationary probabilities are different for identical and different
service rates, but δ(t) and δir(t) turn out to be close. Moreover, the values of
δ(t) in Table 2 is much larger than in Table 4, and it confirms that the stationary
probabilities (23) are indeed found correctly for the cases given in Table 3 and
satisfying system (20).

In Fig. 3 we present sample mean of δ(t) for 3 cases. It is easy to see that
δ(t) converges for both in the cases when the system (20) is violated and in the
cases when it is satisfied. We also show that number of class-1 customer losses
L(t) also converges (see Fig. 4). However for the cases when the system (20)
is violated L(t) is not much larger than for the cases when the system (20) is
satisfied.

We also present sample mean of the ratio Î(t)/t on Fig. 5. Obviously, it
behaves similarly as L(t). One can see on Fig. 6 that when the system (20) is
satisfied, then Î(t)/t converges to the upper bound of ρ2 given by (16). It is
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Table 3. The assignment probabilities satisfying equation system (20): only two
(marked) probabilities can be varied.

Case S = {1, 2} S = {1, 3} S = {2, 3} S = {1, 2, 3}
P1,1 P1,2 P2,1 P2,2 P1,1 P1,3 P1,2 P1,3 P1,1 P1,2 P2,1 P2,2 P1,3

1 0.1 0.9 0.9 0.1 1/3 2/3 1/3 2/3 0.1 0.4 0.65 0.35 0.5

2 0.1 0.9 0.9 0.1 1/3 2/3 1/3 2/3 0.3 0.2 0.45 0.55 0.5

3 0.1 0.9 0.9 0.1 1/3 2/3 1/3 2/3 0.5 0.0 0.25 0.75 0.5

4 0.5 0.5 0.5 0.5 1/3 2/3 1/3 2/3 0.1 0.4 0.65 0.35 0.5

5 0.5 0.5 0.5 0.5 1/3 2/3 1/3 2/3 0.3 0.2 0.45 0.55 0.5

6 0.5 0.5 0.5 0.5 1/3 2/3 1/3 2/3 0.5 0.0 0.25 0.75 0.5

7 0.9 0.1 0.1 0.9 1/3 2/3 1/3 2/3 0.1 0.4 0.65 0.35 0.5

8 0.9 0.1 0.1 0.9 1/3 2/3 1/3 2/3 0.3 0.2 0.45 0.55 0.5

9 0.9 0.1 0.1 0.9 1/3 2/3 1/3 2/3 0.5 0.0 0.25 0.75 0.5

Table 4. Comparison δ(t) for different and identical service rates, respectively: scenar-
ios are in Table 3. Both δ(t) and δir(t) are much less than in Table 2.

Case δ(t) δir(t) Case δ(t) δir(t) Case δ(t) δir(t)

1 0.0011 0.0016 4 0.0011 0.0009 7 0.0011 0.0013

2 0.0011 0.0013 5 0.0011 0.0012 8 0.0011 0.0012

3 0.0011 0.0010 6 0.0011 0.0009 9 0.0011 0.0015

Fig. 3. Difference between theoretical and simulated stationary probabilities (Sample
mean δ(t)): case a) corresponds to case 3 in Table 1; case b) corresponds to case 1 in
Table 1; case c) corresponds to case 1 in Table 3.
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Fig. 4. Number of losses per time unit in interval [0, t) (Sample mean L(t)): case a)
corresponds to case 4 in Table 1; case b) corresponds to case 3 in Table 1; case c)
corresponds to case 1 in Table 3; case d) corresponds to case 2 in Table 1.

Fig. 5. Fraction time Î(t)/t when servers free of class-1 customers: case a) corresponds
to case 4 in Table 1; case b) corresponds to case 3 in Table 1; case c) corresponds to
case 1 in Table 3; case d) corresponds to case 2 in Table 1.

intuitively clear that,

lim
t→∞

Î(t)
t

= J − EQ1,

(also see (16)) that is, Î(t)/t converges to the mean number of available servers
for class-2 customers.

Finally, we compute the stability criterion (1). We obtain the upper bound
for ρ2 from (24) and (1):

ρ2 < 118/83 ≈ 1.4217. (27)



262 S. Rogozin and E. Morozov

Fig. 6. Fraction time Î(t)/t when servers free of class-1 customers: line a) corresponds
to case 1 in Table 3; line b) corresponds to stability condition for ρ2.

Fig. 7. Sample mean queue size of class-2 customers for Pareto service times, case 1 in
Table 3. Stability condition (1) is ρ2 < 1.42.

We also check stability condition by simulation queue size of class-2 customers
for Pareto service times. We construct the sample mean queue size Q2(t) based
on 300 paths queue size of class-2 customers for different values of ρ2 (see Fig. 7).
It is clear that, Q2(t) increases linearly to infinity, if (27) does not hold. However,
when condition (27) is satisfied, we see that all paths are stable.

5 Conclusion

A modified Erlang loss system with two-priority classes of customers and multi-
class customers and multi-class servers assumption of first priority customers
is considered. The main aim of the work is to prove the stability condition of
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this system when sub-classes of class-1 customers have different service rates.
In this system, the first priority customers (class-1) are lost if find all servers
busy, while the second priority customers (class-2) form an infinite capacity
queue. A new feature of this system is that sub-classes of class-1 customers
are assigned on servers according to the assignment probabilities which must
satisfy a preliminary condition. All customers follows Poisson inputs and have
general class-dependent service times. We show how the product form of class-
1 stationary probabilities can be used to obtain the stability condition of the
system. Also results of discrete-event simulation to confirm theoretical results
are given.
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Abstract. Fourth generation wireless network was very soon about to
not be able to support or withstand the exponential growth of traffic
in modern wireless telecommunication networks. In addition, the inflex-
ibility of mobile networks until now is making the situation even more
complicated. In response, the fifth generation (5G) wireless telecommuni-
cation network was developed, allowing flexible and quick deployment of
applications and services to accommodate specific requirements of users
in very diverse fields. The cornerstone of 5G is called slicing technology:
a mechanism making possible the creation and configuration of multi-
ple network services on top of the same infrastructure with help of its
defined network slices. The international telecommunication union (ITU)
has defined three categories of use which have been brought into confor-
mity with the 3GPP standards. These categories are specified by three
generic slices of 5G: enhanced mobile broadband (eMBB), ultra-reliable
low latency communications (uRLLc) and massive machine type com-
munications (mMTC). We consider queueing system with queue and its
retrial group for modeling slicing technology in 5G wireless network.

Keywords: Queueing system · Retrial group · 5G network · Product
solution · Performance measures

1 Introduction

In modern wireless telecommunication networks, the fifth generation (5G) wire-
less network with slicing technology [4,11,16] is being widely launched around
the world. This technology was developed to address the problem of data traffic
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volume exponential growth [5,7,9]. It permits a more effective utilization of the
available radio resources, which are indispensable for data transfer in wireless
networks. Slicing technology allows to represent the whole network infrastruc-
ture of mobile network operators (MNOs) in the form of various configurable
logical networks called multi-service wireless network slices, each of which can
be rented by virtual network operators (VNOs).

This paper considers the operation of a single VNO renting from one MNO
a multi-service wireless network slice. We assume that VNO provides to its cus-
tomers only services which generate best effort traffic with minimum guarantees
(BG), characterized by the fact that a minimum bit rate is assigned for cus-
tomers services. BG-services correspond to elastic or non-real time traffic such
as file sharing, web browsing and social networking [1,10,18].

The methods applied in queueing theory are used to analyze the model,
which is described by a queueing system (QS) with a buffer and its retrial group
[2,6,8,12]. We assume that if there is free resource, the elastic session will be
established upon arrival, otherwise it will await in the buffer, from where it can
depart for buffer’ retrial group [3,8,14,15,17] and return after a moment.

As example of physical interpretation, let us consider a web page reloading
process by one user after awaiting a certain time this web page to load. In this
case, user await in our model corresponds to elastic session await in buffer, and
web page reloading process – to elastic session departure for buffer’ retrial group
and return to buffer after a moment.

Note that, model with limited storage capacities of buffer and its retrial group
has already been investigated in [13], where a computed numerical solution of the
equilibrium equations system was used to analyze the characteristics. However,
for model to match reality, the storage capacities must be unlimited. Therefore,
the purpose of this article is the study of a more complex case of that model
with unlimited storage capacities of buffer and its retrial group.

2 Related Work: Single Server Queueing System with
Retrial Queue

Before modeling and analyzing QS with buffer and its retrial group for describing
5G wireless network with slicing technology, we conduct analytic review of the
methods used for computing solution in QSs with unlimited storage capacity.
For this purpose, we consider the M/M/1/0 QS with unlimited retrial queue
described in [3,8].

2.1 Mathematical Model

In this system, requests arrive according to the Poisson process with rate λ and
service times are exponentially distributed with rate μ−1. Storage capacity of
retrial queue is unlimited.

The service of new incoming request begins immediately if the server is free,
otherwise it is delayed and the request is redirected to the retrial queue, where it
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can await. Note that requests awaiting in retrial queue can retry indefinitely to
occupy server after exponentially distributed time α−1. Also, as well as the new
incoming, they can leave the system after an unsuccessful attempt to occupy
server with probability q. The corresponding scheme model is shown in Fig. 1.

Fig. 1. Scheme model of the single server QS with retrial queue.

According to radio admission control scheme above described and since sys-
tem’ arrival process is Poisson distributed while service times are exponentially
distributed, the system’ behavior might be described using a two-dimensional
vector (n, s) over state space X = {(n, s) : n ≥ 0, s = 0, 1}, where n represents
the quantity of customers awaiting in retrial queue and s – the server’ state (0
– is free, 1 – is occupied). The corresponding state transition and central state
transition diagrams are shown respectively in Fig. 2 and Fig. 3.

Fig. 2. State transition diagram of the single server QS with retrial queue.

The corresponding Markov process is described by the following equilibrium
equations system according to central state transition diagram (Fig. 3):

(λI{s = 0} + μI{s = 1} + (1 − q)λI{s = 1} + nαqI{s = 1, n > 0}
+nαI{s = 0, n > 0})p(n, s) = λI{s = 1}p(n, s − 1) + μI{s = 0}

× p(n, s + 1) + (n + 1)αqI{s = 1}p(n + 1, s) + (1 − q)λI{s = 1, n > 0}
× p(n − 1, s) + (n + 1)αI{s = 1}p(n + 1, s − 1),

(1)

where p(n, s), (n, s) ∈ X represents the stationary probability distribution of
requests quantity in system and I – the function indicator that equals 1, when
condition is met and 0 otherwise.
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Fig. 3. Central state transition diagram of the single server QS with retrial queue.

2.2 Stationary Probability Distribution Computation

Since retrial queue has unlimited storage capacity, the probably only way for find-
ing the stationary probability distribution p(n, s), (n, s) ∈ X would be through a
generating function-based approach [3,8]. However, fixing or setting the retrial’
queue storage capacity to a very huge value Nrq, one can also compute it either
numerically or by using a product form solution obtained from equilibrium and
local balance equations systems. For simplification, only the case of absolutely
insistent requests is considered, i.e. requests can leave system only after getting
serviced (q = 0).

Generating Function. The generating function-based solution is computed
using formula:

∀n ≥ 0, p(n, s) =

⎧
⎪⎪⎨

⎪⎪⎩

(
n + 1/ξ − 1

n

)

ρn(1 − ρ)1+1/ξ, if s = 0,
(

n + 1/ξ

n

)

ρn+1(1 − ρ)1+1/ξ, if s = 1,
(2)

where ρ = λ/μ is the offered load of incoming requests and ξ = α/λ – the ratio
coefficient of average waiting time to arrival rate of requests.

Numerical Solution. The process describing the system’ behavior is not
reversible Markov process. Therefore, the stationary probability distribution
p(n, s)(n,s)∈X = p can be calculated using a numerical solution of the equi-
librium’ equations system p · A = 0,p · 1T = 1, where A is the infinitesimal
generator of Markov process, elements a((n, s)(n′, s′)) of which are defined as
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follows: ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ, if n′ = n, s′ = s+1, n = 0, ..., Nrq, s = 0,

or n′ = n+1, s′ = s, n = 0, ..., Nrq−1, s = 1,

μ, if n′ = n, s′ = s−1, n = 0, ..., Nrq, s = 1,

nα, if n′ = n−1, s′ = s+1, n = 1, ..., Nrq, s = 0,

ψ, if n′ = n, s′ = s, n = 0, ..., Nrq, s = 0, 1,

0, otherwise,

(3)

where
ψ = − (λI{n ≤ Nrq, s = 0‖n < Nrq, s = 1} + μI{s = 1} + nαI{n > 0, s = 0}).

Product Form. The product form solution is calculated using formula:

∀n ≥ 0, p(n, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p(0, 0) · u(n)
n∏

i=0

v(i), if s = 0,

p(0, 0) ·
n∏

i=0

v(i), if s = 1,

(4)

with

p(0, 0) =

⎛

⎝
∞∑

k=0

(u(k) + 1)
k∏

j=0

v(j)

⎞

⎠

−1

,

u(i) =
μ

λ + iα
, i ≥ 0,

v(0) =
λ

μ
,

v(i) =
λ(λ + iα)

iαμ
, i > 0.

3 QS with Buffer and Retrial Group for Modeling
Network Within Slicing Technology

Summarizing previous section, there are three methods for analyzing perfor-
mance measures of systems with unlimited storage capacity:

– the generating function-based approach;
– the numerical solution of the equilibrium equations system;
– the product form solution.

Let us consider two of them in the modeling of the 5G wireless network with
slicing technology as QS with buffer and its retrial group.
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3.1 Mathematical Model

We assume that a multi-service wireless network slice has total network capacity
Rnc MBps. Elastic sessions arrive in the system according to the Poisson process
with rate λ and are parametrized by the exponentially distributed average file
size θ MB and the minimum assignable bit rate b MBps. The average service time
of established elastic sessions is exponentially distributed with rate μ−1 = θ/Rnc

seconds. Storage capacities of buffer and its retrial group are unlimited.
We assume that elastic session is immediately established upon arrival if there

is free resource, i.e. quantity of simultaneously established elastic sessions is less
than maximum Nres = �Rnc/b�, otherwise its establishment is delayed and it
awaits free resource in buffer. Note that elastic sessions awaiting in buffer can
depart for its retrial group after an exponentially distributed time β−1 and return
after an exponentially distributed time α−1. Also, each established elastic session
ends successfully and retries are unlimited. The corresponding scheme model
is shown in Fig. 4. Note that elastic sessions are characterized by a uniformly
distributed channel rate Rnc between simultaneously established elastic sessions,
thus service rate of single established elastic session is defined as μ/n, where
n ≤ Nres.

Fig. 4. Scheme model for unlimited storage capacities of buffer and its retrial group.

According to above described radio admission control scheme and taking into
account that system’ arrival process is Poisson distributed while average service
time is exponentially distributed, the system’ behavior could be described using
a three-dimensional vector (n1, n2, s) over state space Y = {(n1, n2, s) : n1 ≥ 0,
n2 ≥ 0, s = 0, · · · , Nres}, where n1 represents the quantity of elastic sessions
awaiting free resources in buffer, n2 – the quantity of elastic sessions awaiting in
buffer’ retrial group and s – the quantity of simultaneously established elastic
sessions. The corresponding state transition and central state transition diagrams
are shown respectively in Fig. 5 and Fig. 6.
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Fig. 5. State transition diagram of the model

The corresponding Markov process is described by the following equilibrium
equations system according to central state transition diagram (Fig. 6):

(λ + μI{s > 0} + n1βI{n1 > 0} + n2αI{n2 > 0})q(n1, n2, s)
= λI{n1 > 0}q(n1 − 1, n2, s) + μI{s = Nres}q(n1 + 1, n2, s)

+λI{n1 = 0, s > 0}q(n1, n2, s − 1) + μI{n1 = 0, s < Nres}q(n1, n2, s + 1)
+ (n2 + 1)αI{n1 = 0, s > 0}q(n1, n2 + 1, s − 1) + (n2 + 1)αI{n1 > 0}

× q(n1 − 1, n2 + 1, s) + (n1 + 1)βI{n2 > 0, s = Nres}q(n1 + 1, n2 − 1, s),

(5)

where q(n1, n2, s), (n1, n2, s) ∈ Y represents the stationary probability distribu-
tion of elastic’ sessions quantity in system and I – the function indicator that
equals 1, when condition is met and 0 otherwise.

3.2 Stationary Probability Distribution Calculation

Similarly to M/M/1/0 QS model with retrial queue, since buffer and its retrial
group have unlimited storage capacities, the probably only way for finding the
stationary probability distribution q(n1, n2, s), (n1, n2, s) ∈ Y should be through
a generating function-based approach [3,8]. However, fixing or setting the stor-
age capacity of buffer to a very huge value Nq, one can also compute it either
numerically or by using a product form solution obtained from equilibrium and
local balance equations systems.

Note that, the storage capacity of buffer’ retrial group, represented as Nrg,
is always proportional to buffer’ in this system (i.e. Nrg = Nres + Nq).

Numerical Solution. The process describing the system’ behavior is not
reversible Markov process. Therefore, the stationary probability distribution
q(n1, n2, s)(n1,n2,s)∈Y = q can be calculated using a numerical solution [13] of
the equilibrium’ equations system q ·A = 0,q ·1T = 1, where A is the infinites-
imal generator of Markov process, elements a((n1, n2, s)(n′

1, n
′
2, s

′)) of which are
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defined as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ, if n′
1 = n1, n

′
2 = n2, s

′ = s+1, n1 = 0, n2 = 0, ..., Nrg, s = 0, ..., Nres−1,

or n′
1 = n1+1, n′

2 = n2, s
′ = s, n1 = 0, ..., Nq−1, n2 = 0, ..., Nrg, s = Nres,

μ, if n′
1 = n1, n

′
2 = n2, s

′ = s−1, n1 = 0, n2 = 0, ..., Nrg, s = 1, ..., Nres,

or n′
1 = n1−1, n′

2 = n2, s
′ = s, n1 = 1, ..., Nq, n2 = 0, ..., Nrg, s = Nres,

n2α, if n′
1 = n1, n

′
2 = n2−1, s′ = s+1, n1 = 0, n2 = 1, ..., Nrg, s = 0, ..., Nres−1,

or n′
1 = n1+1, n′

2 = n2−1, s′ = s, n1 = 0, ..., Nq−1, n2 = 1, ..., Nrg, s = Nres,

n1β, if n′
1 = n1−1, n′

2 = n2+1, s′ = s, n1 = 1, ..., Nq, n2 = 0, ..., Nrg−1, s = Nres,

ψ, if n′
1 = n1, n

′
2 = n2, s

′ = s, n1 = 0, ..., Nq, n2 = 0, ..., Nrg, s = 0, ..., Nres,

0, otherwise,

(6)
where
ψ = −(λI{n1 = 0, n2 ≤ Nrg, s < Nres‖n1 < Nq−1, n2 ≤ Nrg, s = Nres} +
μI{n1 = 0, n2 ≤ Nrg, s > 0‖n1 > 0, n2 ≤ Nrg, s = Nres} + n2αI{n1 = 0, n2 >
0, s ≤ Nres−1‖n1 ≤ Nq−1, n2 > 0, s = Nres} + n1βI{n1 > 0, n2 ≤ Nrg−1, s =
Nres}).

Product Form. The product form solution is calculated using formula:

q(n1, n2, s) =

⎧
⎪⎨

⎪⎩

q(0, 0, 0) · c(n1, s), if n1 ≥ 0, n2 = 0, s = 0, ..., Nres,

q(0, 0, 0) · d(n1, n2), if n1 ≥ 0, n2 ≥ 0, s = Nres,

q(0, 0, 0) · b(n2, s), if n1 = 0, n2 ≥ 0, s = 0, ..., Nres − 1,

(7)

with

q(0, 0, 0) =

⎛

⎝
1

1 − ρ
+

Nres−1∑

k=0

Nrg∑

j=1

b(j, k) +
∞∑

i=1

Nres+i∑

j=1

d(i, j)

⎞

⎠

−1

;

c(i, j) = ρi+j , i ≥ 0, j ≥ 0;

d(i, j) = δj (i + j)!
i! j!

ρNres+i+j , i ≥ 0, j ≥ 0;

b(i) = δi

(
μ

λ + iα

)Nres−j

ρNres+i,

where ρ = λ/μ represents the average offered load of incoming elastic sessions
and δ = β/α – the ratio coefficient of elastic’ sessions average time spent in
buffer to average time spent in buffer’ retrial group.

4 Numerical Analysis

Having computed the stationary probability distribution in each system (i.e.,
Sects. 2 and 3), one can compute their main performance measures.
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Fig. 6. Central state transition diagram of the model

To carry out numerical analysis of the QS model with buffer and its retrial
group under slicing technology, we estimate the value that can represent the
limit of system’ storage capacity as it approaches infinity. For this purpose, we
first analyze the M/M/1/0 QS with retrial queue.

4.1 Model with Server and Retrial Queue

For the single server QS model with retrial queue, the main performance metrics
are the following:

– the mean number N of requests in retrial group

N = lim
n→∞

n∑

k=0

k (p(k, 0) + p(k, 1)); (8)

– the immediate service probability Pr of incoming request in system

Pr = lim
n→∞

n∑

k=0

p(k, 0). (9)

In this system, these two measures can also be computed using formulas obtained
introducing the generating function-based solution (2) in equations (8) and (9).
Thus, we obtain the following expressions:

N =
ρ(1 + ξρ)
ξ(1 − ρ)

; (10)

Pr = 1 − ρ. (11)
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Numerical analysis was conducted to evaluate the convergence’ level of com-
puted generating function-based (2), numerical (3) and product form (4) solu-
tions depending on retrial’ queue storage capacity. We focus only on one of
performance metrics – the incoming’ requests immediate service probability,
for which we measure the elapsed computation time through each of all three
methods.

As illustrated in Fig. 7 by the plots, the results obtained using all three calcu-
lation methods tend to coincide when increasing retrial’ queue storage capacity,
i.e. to value 104. Note that, calculation through generating function-based and
product form solutions generally takes less time than numerical solution as shown
in Table 1 by elapsed computation time measurement.
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Fig. 7. Immediate service probability Pr depending on average offered load ρ of incom-
ing requests for μ−1 = 3s, α−1 = 0.01s.

4.2 Model with Buffer and Retrial Group

For the model with buffer and its retrial group, the main performance measures
are the following:
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Table 1. Elapsed computation time t in seconds for incoming’ requests immediate
service probability calculation, μ−1 = 3s, ρ = 0.5, α−1 in seconds.

Methods α−1 lim
n→∞ n = 10 lim

n→∞ n = 102 lim
n→∞ n = 103 lim

n→∞ n = 104

Generating function 0.01 0.001311 0.001256 0.001233 0.001591

0.02 0.001208 0.001240 0.001158 0.003816

0.03 0.001071 0.001428 0.001173 0.004740

0.04 0.001314 0.001090 0.001251 0.003853

0.05 0.001608 0.001187 0.001442 0.003484

Numerical solution 0.01 0.012892 0.022449 0.177820 100.837675

0.02 0.010738 0.012267 0.177508 111.837707

0.03 0.012182 0.015339 0.202122 120.135441

0.04 0.010341 0.011975 0.212048 110.312899

0.05 0.013208 0.012275 0.204793 101.917594

Product form 0.01 0.006880 0.009252 0.013336 5.045567

0.02 0.008093 0.007329 0.015586 5.487846

0.03 0.007528 0.010168 0.018457 5.868070

0.04 0.007512 0.007037 0.015007 5.699569

0.05 0.006776 0.007144 0.014051 5.941449

– the immediate establishment probability Im1 of incoming elastic session

Im1 = lim
n1→∞

Nres−1∑

s=0

Nres+n1∑

n2=0

q(0, n2, s); (12)

– the immediate establishment probability Im2 of retrial elastic session

Im2 = Im1 −
Nres−1∑

s=0

q(0, 0, s); (13)

– the emptiness probability E1 of buffer

E1 = Im1 + lim
n1→∞

Nres+n1∑

n2=0

q(0, n2, Nres); (14)

– the emptiness probability E2 of buffer’ retrial group

E2 =
Nres−1∑

s=0

q(0, 0, s) + lim
n1→∞

n1∑

k=0

q(k, 0, Nres). (15)

Here, numerical analysis is performed to determine the accuracy of the
obtained product form (7) compared to numerical solution (6). Let us focus
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only on one of the performance measures – the immediate establishment proba-
bility of incoming elastic session (12). The absolute error Δ is calculated for this
metric. Note that according to previous Subsect. 4.1 with very simple restriction
on buffer’ storage capacity and provided that the average offered load is small,
the results of characteristics’ computation correspond to reality, i.e. when stor-
age capacity of buffer is unlimited. But since buffer’ storage capacity is limited,
even with such average offered load there will be a small error when calculat-
ing the characteristics using the different methods. The error’ estimations are
presented in Tables 2 and 3.

Table 2. Absolute error Δ for incoming’ elastic session immediate establishment prob-
ability calculation, Rnc = 20 MBps, θ = 8 MB, α−1 = 5 s, β−1 = 3 s.

– b = 2MBps b = 5MBps b = 8MBps b = 11MBps

lim
n1→∞ n1 = 10 ρ = 0.1 803.03542e−12 802.91113e−06 0.07872394731 0.61033994564

0% 0.000008% 0.08% 0.6%

ρ = 0.15 756.67250e−10 663.75605e−05 0.28360774741 1.39327955034

0% 0.00007% 0.3% 1.4%

ρ = 0.2 197.44599e−08 0.03077263160 0.72026980730 2.52439464906

0% 0.03% 0.7% 2.5%

lim
n1→∞ n1 = 102 ρ = 0.1 803.04652e−12 802.91113e−06 0.07872394731 0.61033994566

0% 0.000008% 0.079% 0.6%

ρ = 0.15 756.67184e−10 663.75605e−05 0.28360774758 1.39327955588

0% 0.00007% 0.3% 1.4%

ρ = 0.2 197.44605e−08 0.03077263172 0.72026982842 2.52439498744

0% 0.03% 0.7% 2.5%

To analyze the behavior of system’ remaining characteristics (i.e. immediate
establishment probability of retrial elastic session and emptiness probabilities of
buffer and its retrial group), we use method not depending on buffer’ storage
capacity, namely the numerical solution (6). The analysis is focused on aver-
age’ offered load of incoming elastic sessions dependence. Note that, the use
of numerical solution method permits to obtain accurate computation results
of investigated characteristics only for small values of incoming’ elastic sessions
average offered load. However, the graphs provided below are illustrative of the
general behavior of the characteristics for the various system’ parameters.

As shown by curves in Fig. 8(a), the incoming’ elastic sessions immediate
establishment probability decreases as their average offered load increases. This
is indeed explained by the augmentation of elastic’ sessions quantity in buffer
with increase of the average’ offered load value. Thus, since the elastic sessions
awaiting in buffer depart for its retrial group after some exponentially distributed
time, it is likely that the buffer might be empty for some time at a certain point.
This explains the increase of retrial’ elastic sessions immediate establishment
probability up to a certain maximum value and its sudden decrease in Fig. 8(b).
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Table 3. Absolute error Δ for incoming’ elastic session immediate establishment prob-
ability calculation, θ = 8 MB, ρ = 0.2, b = 5 MBps, limn1→∞ n1 = 100.

– β−1 = 1s β−1 = 3s β−1 = 5s

Rnc = 10MBps α−1 = 1s 12.980479045e−03 98.119119090e−03 962.35722294e−03

0.13% 0.98% 0.96%

α−1 = 3s 3.7791409654e−03 13.207337838e−03 27.242831947e−03

0.37% 0.13% 0.27%

α−1 = 5s 2.1744519479e−03 7.0868379176e−03 13.094733275e−03

0.2% 0.7% 0.13%

Rnc = 20MBps α−1 = 1s 574.37975167e−06 4.7753074010e−03 998.52931050e−03

0.00057% 0.47% 0.99%

α−1 = 3s 164.92051128e−06 576.79645625e−06 1.1988472551e−03

0.00016% 0.00057% 0.12%

α−1 = 5s 94.715729012e−06 307.72631725e−06 568.47476749e−06

0.0009% 0.0003% 0.00057%

Rnc = 30MBps α−1 = 1s 23.099966729e−06 194.48883387e−06 999.94060287e−03

0.00023% 0.0002% 0.99%

α−1 = 3s 6.6810457051e−06 23.357388823e−06 48.485771984e−06

0.00067% 0.00023% 0.00048%

α−1 = 5s 3.8664118408e−06 12.530227719e−06 23.091889055e−06

0.00038% 0.00012% 0.00023%
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Fig. 8. Immediate establishment probabilities depending on average offered load ρ
of incoming elastic sessions for Rnc = 20MBps, θ = 8MB, α−1 = 5s, β−1 = 3s,
limn1→∞ n1 = 100.

From resulting plots in Fig. 9, one can see that the emptiness probabilities
of buffer and its retrial group decreases as the average offered load of incoming
elastic sessions tends towards value 1. This is also explained by the fact that,
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Fig. 9. Emptiness probabilities depending on average offered load ρ of incoming elastic
sessions for Rnc = 20MBps, θ = 8MB, α−1 = 5s, β−1 = 3s, limn1→∞ n1 = 100.

when increasing their average offered load, the incoming’ elastic sessions quantity
in buffer augments. Thus, the elastic sessions spend more time in the buffer and
its retrial group, i.e. buffer and its retrial group are likely to extremely rarely, if
not, never be empty.

5 Conclusion

We analyzed the single server queueing system (QS) with retrial queue. Product
form solution and numerical solution of the equilibrium equations system, as
well as generating function-based approach solution, for computing stationary
probability distribution were obtained. A comparative analysis of incoming’ elas-
tic requests immediate service probability using all three calculations methods
was given. As result, all three methods coincide. Measurement of the elapsed
computation time through each of the methods was provided, concluding that
computation through generating function-based and product form solutions usu-
ally takes less time than numerical solution method.

We continued study on QS model with buffer and its retrial group for mod-
eling network within slicing technology. Product form and numerical solutions
for calculating stationary probability distribution were obtained. A compara-
tive analysis of incoming’ elastic sessions immediate establishment probability
computation using both solutions was given. As result, both product form and
numerical solution coincide with absolute error value equaling 0%. An analysis
of the remaining performance measures using only numerical solution was given.
Generating function-based approach will be implemented in further investiga-
tions, and the operation of multiple VNOs renting from one MNO a multi-service
wireless network slice will be considered as last stage of this research subject.
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Abstract. In this paper, we review a two-dimensional output process of
the system with repeated calls and called applications. In a system with
repeated calls, incoming applications, which found serving unit busy,
move to the source of repeated calls, where carry out random exponen-
tially distributed delay, after which try to receive serving again. While
serving unit is free, it can call applications itself with exponentially dis-
tributed intensity, which will serve with their serving time parameter.
This feature characterises a system as one with called applications. An
asymptotic approximation of the two-dimensional characteristic function
is obtained under the condition of a large delay of applications in the
orbit. Using integral transformations, the asymptotic two-dimensional
distribution of the probabilities of the number of applications of differ-
ent types that have finished serving in the system is found. A numerical
analysis of the values of the correlation coefficient of the components of
the considered two-dimensional output is carried out.

Keywords: Output process · Retrial queue · Two-way
communication · Asymptotic analysis method · Correlation coefficient

1 Introduction

In this paper we review two-dimensional output process of the queueing system
[6,8] with repeated calls [1] and called applications [7]. Such system can be inter-
preted as a processing node with multiple random access, which in spare time
of processing requests can request self-diagnosis or any other procedure, which
will continue during the random time. Also considered system can be applied
for modelling processing nodes with different types of applications. Applications
of one type are not lost and will be served in any case, while applications of
another type will be served only with a free resource.

The individual nodes form a communication network model in which the
outgoing flow from one node is incoming to another. In the case of applications
of different types, after service at a certain node, they leave along their routes.
Therefore, the results of the study of the output processes of queuing systems
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are widely applicable for the design of real data transmission systems and the
analysis of complex processes consisting of several stages. In this regard, for
modelling networks, it is important to have information about the presence of
a correlation between processes in it. A weak correlation makes it possible to
consider processes as independent ones in modelling, which can significantly
simplify the model and its research.

In this paper, we consider the influence of the system parameters on the
values of the asymptotic correlation coefficient of the components of the two-
dimensional output process of different types of applications. To study the sys-
tem, the method of asymptotic analysis is used to find the form of the limiting
two-dimensional distribution of the number of served applications of the input
process and the number of served called applications for some time t, provided
that there is a large delay of applications in the orbit [10].

2 Mathematical Model

Let’s consider the RQ-system, the input of which is supplied with the Poisson
process with the intensity of λ. Input stream application, entering the system
and finding the device free, takes him, the device, in turn, begins serving for some
random time, distributed exponentially with parameter μ1. If upon entering the
system, the application finds the device busy, it instantly goes to the orbit,
where carries out a random delay during an exponentially distributed time with
parameter σ. In its free time from serving applications from the input process, the
device itself calls applications with intensity α and serves them for exponentially
distributed time with parameter μ2.

Let us denote following notations: i(t) – the number of application in the
system at the moment t, k(t) – state of the device: 0 – the device is free, 1 –
the device is busy, 2 – the device is busy serving retrial application; m1(t) – the
number of served applications from input process at the moment t, m2(t) – the
number of served called applications at the moment t (Fig. 1).

Fig. 1. System model
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3 Kolmogorov Equations

Let us consider four-dimensional Markov process

{k(t), i(t),m1(t),m2(t)}

Let us set up for probabilities P{k(t) = k, i(t) = i,m1(t) = m1,m2(t) = m2} a
system of Kolmogorov differential equations

∂P0(i,m1,m2, t)
∂t

= −(λ + iσ + α)P0(i,m1,m2, t) + P1(i,m1 − 1,m2, t)μ1

+ P2(i,m1,m2 − 1, t)μ2,

∂P1(i,m1,m2, t)
∂t

= −(λ + μ1)P1(i,m1,m2, t) + (i + 1)σP0(i + 1,m1,m2, t)

+ λP0(i,m1,m2, t),
∂P2(i,m1,m2, t)

∂t
= −(λ + μ2)P2(i,m1,m2, t) + λP2(i − 1,m1,m2, t)

+ αP0(i,m1,m2, t).
(1)

It is not possible to solve provided equations analytically since it is a sys-
tem of an infinite number of differential finite-difference equations with variable
coefficients. In order to pass to a finite number of equations, we introduce the
partial characteristic functions, denoting j =

√−1,

Hk(u, u1, u2, t) =
∞∑

i=0

∞∑

m1=0

∞∑

m2=0

ejuieju1m1eju2m2Pk(i,m1,m2, t).

Then the system (1) takes following form

∂H0(u, u1, u2, t)
∂t

= −(λ + α)H0(u, u1, u2, t) + jσ
∂H0(u, u1, u2, t)

∂u

+ μ1e
ju1H1(u, u1, u2, t) + μ2e

ju2H2(u, u1, u2, t),
∂H1(u, u1, u2, t)

∂t
= −(λ + μ1)H1(u, u1, u2, t) − jσe−ju ∂H0(u, u1, u2, t)

∂u

+ λH0(u, u1, u2, t) + λejuH1(u, u1, u2, t),
∂H2(u, u1, u2, t)

∂t
= −(λ + μ2)H2(u, u1, u2, t) + λejuH2(u, u1, u2, t)

+ αH0(u, u1, u2, t).

(2)

4 Method of Asymptotic Analysis

The resulting system of differential equations in partial derivatives (2) will be
solved by the method of asymptotic analysis in the limit condition of a large
delay of applications in the orbit (σ −→ 0).
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Let us denote ε = σ, u = εw, Fk(w, u1, u2, t, ε) = Hk(u, u1, u2, t), then the
system will be written as

∂F0(w, u1, u2, t, ε)
∂t

= −(λ + α)F0(w, u1, u2, t, ε) + j
∂F0(w, u1, u2, t, ε)

∂w

+ μ1e
ju1F1(w, u1, u2, t, ε) + μ2e

ju2F2(u, u1, u2, t, ε),
∂F1(w, u1, u2, t, ε)

∂t
= −(λ + μ1)F1(w, u1, u2, t, ε) − je−jεw ∂F0(w, u1, u2, t, ε)

∂w

+ λF0(w, u1, u2, t, ε) + λejεwF1(w, u1, u2, t, ε),
∂F2(w, u1, u2, t, ε)

∂t
= −(λ + μ2)F2(w, u1, u2, t, ε) + λejεwF2(w, u1, u2, t, ε)

+ αF0(w, u1, u2, t, ε).
(3)

Let us note that, using the consistency condition for multidimensional distribu-
tions, the characteristic function of the processes m1(t) and m1(t) is expressed
as follows with the introduced functions

M{exp(ju1m1(t)) exp(ju2m2(t))} =
2∑

k=0

Hk(0, u1, u2, t) =
2∑

k=0

Fk(0, u1, u2, t, ε).

Theorem 1. The asymptotic approximation of the two-dimensional character-
istic function of the number of served applications of the input process and the
number of served called applications for some time t has the form

F (u1, u2, t) = lim
σ−→0

M{exp(ju1m1(t)) exp(ju2m2(t))} =

= lim
ε−→0

2∑

k=0

Fk(0, u1, u2, t, ε) = R · exp{G(u1, u2)t} · E

where

G(u1, u2) =

⎡

⎣
−(λ + α + κ) μ1e

ju1 μ2e
ju2

κ + λ −μ1 0
α 0 −μ2

⎤

⎦
T

,

row vector R = {R0, R1, R2} is the stationary probability distribution of the state
of the device

R = {μ2(μ1 − λ)
μ1(μ2 − α)

,
λ

μ1
,

α(μ1 − λ)
μ1(μ2 + α)

},

κ is the normalized average number of applications in the orbit

κ =
λ(λμ2 + αμ1)
μ2(μ1 − λ)

,

and E is a unit column vector of the corresponding dimension.
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Proof. Taking the limit value limε−→0 Fk(w, u1, u2, t, ε) = Fk(w, u1, u2, t) in the
resulting system (3) , the system of equations will be written as

∂F0(w, u1, u2, t)
∂t

= −(λ + α)F0(w, u1, u2, t) + j
∂F0(w, u1, u2, t)

∂w

+ μ1e
ju1F1(w, u1, u2, t) + μ2e

ju2F2(w, u1, u2, t),
∂F1(w, u1, u2, t)

∂t
= −(λ + μ1)F1(w, u1, u2, t) − j

∂F0(w, u1, u2, t)
∂w

+ λF0(w, u1, u2, t) + λF1(w, u1, u2, t),
∂F2(w, u1, u2, t)

∂t
= −(λ + μ2)F2(w, u1, u2, t) + λF2(w, u1, u2, t)

+ αF0(w, u1, u2, t).

(4)

The solution to system (4) will be sought in the following form

Fk(w, u1, u2, t) = Φ(w)Fk(u1, u2, t). (5)

Φ(w) is an asymptotic approximation of the characteristic function of the number
of applications in the orbit under the condition of a large delay.

Substituting (5) into the system (4) and dividing both sides of the equations
by Φ(w) we obtain

∂F0(u1, u2, t)
∂t

= −(λ + α)F0(u1, u2, t) + j
Φ′(w)
Φ(w)

F0(u1, u2, t)

+ μ1e
ju1F1(u1, u2, t) + μ2e

ju2F2(u1, u2, t),
∂F1(u1, u2, t)

∂t
= −(λ + μ1)F1(u1, u2, t) − j

Φ′(w)
Φ(w)

F0(u1, u2, t)

+ λF0(u1, u2, t) + λF1(u1, u2, t),
∂F2(u1, u2, t)

∂t
= −(λ + μ2)F2(u1, u2, t) + λF2(u1, u2, t)

+ αF0(u1, u2, t).

(6)

Let us note, that w is only contained in the relation, and the remaining terms
and the left side of the equations are independent of w. That means Φ(w) is
an exponential function. Considering that Φ(w) makes sense of the asymptotic
approximation of the characteristic function of the number of applications in the
orbit, we can specify the form of this function as

Φ′(w)
Φ(w)

=
ejκwjκ

ejκw
,

where κ is the normalized average number of applications in the orbit, which
was obtained in [10] and has form

κ =
λ(λμ2 + αμ1)
μ2(μ1 − λ)

.
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On this basis, the system (6) takes the following form

∂F0(u1, u2, t)
∂t

= −(λ + α + κ)F0(u1, u2, t)

+ μ1e
ju1F1(u1, u2, t) + μ2e

ju2F2(u1, u2, t),
∂F1(u1, u2, t)

∂t
= (λ + κ)F0(u1, u2, t) − μ1F1(u1, u2, t)

+ 0F2(u1, u2, t),
∂F2(u1, u2, t)

∂t
= αF0(u1, u2, t) + 0F1(u1, u2, t)

− μ2F2(u1, u2, t).

(7)

Let us denote following notations

F (u1, u2, t) = {F0(u1, u2, t), F1(u1, u2, t), F1(u1, u2, t)}

G(u1, u2) =

⎡

⎣
−(λ + α + κ) μ1e

ju1 μ2e
ju2

κ + λ −μ1 0
α 0 −μ2

⎤

⎦
T

,

G(u1, u2) is the transposed matrix of coefficients of the system (7). Then we get
the following matrix equation

∂F (u1, u2, t)
∂t

= F (u1, u2, t)G(u1, u2),

general solution of which has the form

F (u1, u2, t) = CeG(u1,u2)t. (8)

In order to obtain the only solution, which corresponds to behaviour of the
considered system, let us assume the initial condition

F (u1, u2, 0) = R, (9)

where row vector R is the stationary probability distribution of the state of the
device, i.e. process k(t), which has form [10]

R = {μ2(μ1 − λ)
μ1(μ2 − α)

,
λ

μ1
,

α(μ1 − λ)
μ1(μ2 + α)

}.

With the initial condition described, we can move to solve the Cauchy problem
(8, 9).

Since we are interested in the probability distribution of the number of appli-
cations in the output processes, it is necessary to find the marginal distribution.
For this, let us summarize components of the row vector F (u1, u2, t) over k by
multiplying it by unit column vector E. The result is

F (u1, u2, t)E = ReG(u1,u2)tE. (10)

This formula allows finding an asymptotic approximation of the characteristic
function of the number of called and incoming applications served by the system
at some moment t. In other words, formula (10) is the solution for the considered
system.
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5 Conversion to Explicit Probability Distribution

Obtained characteristic function (10) just like probability distribution fully
describes the processes m1(t) and m2(t), however it does this in implicit form.
Therefore, to use the obtained formula for calculations, it is necessary to obtain
explicit probability distribution from it. But first, let us note, that the resulting
formula (10) contains matrix exponent, which cannot be evaluated in its initial
form. In order to evaluate matrix exponent, let us apply similarity transforma-
tion [2], which has the following view

G(u1, u2) = T (u1, u2)GJ(u1, u2)T (u1, u2)−1,

where T (u1, u2) – matrix of eigenvectors of matrix G(u1, u2), and GJ(u1, u2)
is a diagonal matrix, containing eigenvalues of G(u1, u2). This transformation is
valid for any power m of some matrix Am, what follows, that it is also valid for
matrix exponent

eG(u1,u2)t = T (u1, u2) ·
⎡

⎣
etΛ1(u1,u2) 0 0

0 etΛ2(u1,u2) 0
0 0 etΛ3(u1,u2)

⎤

⎦ · T (u1, u2)−1,

where Λn is eigenvalue of matrix G(u1, u2). Then the distribution takes the
following form

F (u1, u2, t) = R ·T (u1, u2) ·
⎡

⎣
etΛ1(u1,u2) 0 0

0 etΛ2(u1,u2) 0
0 0 etΛ3(u1,u2)

⎤

⎦ ·T (u1, u2)−1 ·E.

In order to obtain an explicit distribution of the number of served called and
incoming applications, let us use the property of the characteristic function, from
which it follows that the distribution is always restorable from the characteristic
function. For the restoration of the function, we apply inverse Fourier transform
for discrete random variables

P (m1,m2, t) =
1
2π

∫ π

−π

∫ π

−π

e−i·u1·m1e−i·u2·m2F (u1, u2, t)du2du2.

Obtained distribution characterizes the probability of serving m1 incoming appli-
cations and m2 called applications at the moment t in the considered system.

6 Correlation Coefficient

The resulting asymptotic approximation of the characteristic function (10) allows
us to study in more detail the output processes of the system under consideration,
namely, to find the correlation dependence of the random processes m1(t) and
m2(t). Consider finding the correlation coefficient, which will depend on the
parameter t

r(t) =
cov(m1(t),m2(t))√
D(m1(t))

√
D(m2(t))

.
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Let us use the property of the characteristic function about the existence of its
n-th derivative corresponding to the n-th raw moment of the random variable.
Then the covariance and variance will be calculated as follows

cov(m1(t), m2(t)) = M{m1(t)m2(t)} − M{m1(t)}M{m2(t)} =
1

j2
∂2

∂u1∂u2
F (u1, u2, t)

∣
∣
∣
∣u1=0
u2=0

− 1

j2
∂

∂u1
F (u1, u2, t)

∣
∣
∣
∣u1=0
u2=0

∂

∂u2
F (u1, u2, t)

∣
∣
∣
∣u1=0
u2=0

,

D{m1(t)} = M2{m1(t)} − (M{m1(t)})2 =
1

j2
∂2

∂u1
2
F (u1, u2, t)

∣
∣
∣
∣u1=0
u2=0

− (
1

j2
∂

∂u1
F (u1, u2, t)

∣
∣
∣
∣u1=0
u2=0

)2,

D{m2(t)} = M2{m2(t)} − (M{m2(t)})2 =
1

j2
∂2

∂u2
2
F (u1, u2, t)

∣
∣
∣
∣u1=0
u2=0

− (
1

j2
∂

∂u2
F (u1, u2, t)

∣
∣
∣
∣u1=0
u2=0

)2.

The resulting formulas allow us to numerically research the behaviour of the
system for different parameters.

7 Numerical Examples

Let us present the results of a numerical example showing how the correla-
tion dependence of the random processes m1(t) and m2(t) changes for different
parameters of the system

Table 1. Surface matrix

µ1/µ2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 −0.285 −0.303 −0.307 −0.304 −0.299 −0.293 −0.286 −0.281 −0.275 −0.27 −0.265 −0.261 −0.257

4 −0.288 −0.322 −0.334 −0.336 −0.334 −0.33 −0.325 −0.319 −0.314 −0.309 −0.305 −0.301 −0.297

5 −0.268 −0.31 −0.323 −0.332 −0.331 −0.328 −0.324 −0.319 −0.314 −0.309 −0.305 −0.3 −0.296

6 −0.244 −0.292 −0.312 −0.318 −0.319 −0.316 −0.312 −0.307 −0.303 −0.298 −0.293 −0.289 −0.285

7 −0.222 −0.273 −0.295 −0.303 −0.304 −0.301 −0.298 −0.293 −0.289 −0.284 −0.279 −0.275 −0.271

8 −0.202 −0.256 −0.279 −0.287 −0.289 −0.287 −0.283 −0.279 −0.275 −0.27 −0.266 −0.261 −0.257

9 −0.185 −0.24 −0.264 −0.274 −0.276 −0.274 −0.27 −0.266 −0.262 −0.257 −0.253 −0.249 −0.245

10 −0.171 −0.227 −0.251 −0.261 −0.263 −0.262 −0.259 −0.255 −0.25 −0.246 −0.241 −0.237 −0.233

11 −0.158 −0.215 −0.24 −0.25 −0.253 −0.251 −0.248 −0.244 −0.24 −0.235 −0.231 −0.227 −0.223

12 −0.147 −0.204 −0.23 −0.241 −0.243 −0.242 −0.239 −0.235 −0.231 −0.226 −0.222 −0.218 −0.214

13 −0.137 −0.195 −0.221 −0.232 −0.235 −0.234 −0.231 −0.227 −0.222 −0.218 −0.214 −0.21 −0.206

14 −0.129 −0.187 −0.213 −0.224 −0.227 −0.226 −0.223 −0.219 −0.215 −0.211 −0.207 −0.202 −0.199

15 −0.121 −0.18 −0.206 −0.217 −0.22 −0.219 −0.217 −0.213 −0.208 −0.204 −0.2 −0.196 −0.192

With the given parameters of the system, it is observable on Fig. 2 and Table
1, that the largest absolute value of the correlation coefficient of the processes
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Fig. 2. Change in the correlation coefficient of the processes m1(t) and m2(t) depending
on the parameters µ1 and µ2.

m1(t) and m2(t) is achieved at μ1 = 4 and μ2 = 6. For provided calculations were
used the following system parameters: λ = 1, α = 3, t = 150, μ1 ∈ [0, 15], μ2 ∈
[0, 15].
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Fig. 3. Change in the correlation coefficient of the processes m1(t) and m2(t) depending
on the parameter t.

On Fig. 3 it is observable, that as system comes to stationary state during
some time t, correlation coefficient also comes to stationary value. We used fol-
lowing system parameters: r1: λ = 1, α = 2, μ1 = 2, μ2 = 1, t ∈ [0, 50]; r2:
λ = 5, α = 1, μ1 = 6, μ2 = 1, t ∈ [0, 50]. Considering chosen parameters, it is
noticeable in this example, that higher serving intensity of incoming applica-
tions leads to an increase of correlation dependence of random processes m1(t)
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and m2(t). An absolute value higher then 0.30 is a strong dependence between
random processes, which cannot be disregarded.

Fig. 4. Change in the correlation coefficient of the processes m1(t) and m2(t) depending
on different parameters.

System parameters on Fig. 4

mu1 : λ = 1, α = 2, μ2 = 1, t = 15, μ1 ∈ [2, 21]
mu2 : λ = 1, α = 2, μ1 = 2, t = 15, μ2 ∈ [1, 21]

alpha : λ = 1, μ1 = 2, μ2 = 1, t = 15, α ∈ [1, 21].

Fig. 5. Change in the correlation coefficient of the processes m1(t) and m2(t) depending
on different parameters.
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System parameters on Fig. 5

mu1 : λ = 5, α = 1, μ2 = 1, t = 15, μ1 ∈ [6, 25];
mu2 : λ = 5, α = 1, μ1 = 6, t = 15, μ2 ∈ [5, 25];

alpha : λ = 5, μ1 = 6, μ2 = 1, t = 15, α ∈ [5, 25].

As can be seen in Fig. 4 and 5, the correlation coefficient, depending on the
changed parameters of the system, behaves completely differently, including tak-
ing positive values.

8 Conclusion

Thus, we have obtained a formula for finding the asymptotic approximation of
the two-dimensional characteristic function of the number of applications from
the input process that have finished serving in a Markov queueing system with
repeated calls and called applications under the condition of a large delay in
the orbit. It was shown that using the inverse Fourier transform it is possible
to calculate the numerical values of the probability distribution using the found
asymptotic approximation of the characteristic function of the processes m1(t)
and m2(t). A numerical experiment showing the correlation dependence of the
random processes m1(t) and m2(t) has been carried out. Depending on the sys-
tem parameters, the asymptotic correlation coefficient takes on both positive and
negative values. And its absolute values can be quite small, which indicates an
insignificant correlation dependence. In the future, it is necessary to determine
at what ratios of parameters the correlation has values close to zero.
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Abstract. In this paper, we consider a retrial queueing system of
M/G/1 type with an unreliable server, collisions, and impatient cus-
tomers. The novelty of our work is to carry out a sensitivity analysis
applying different distributions of service time of customers on significant
performance measures for example on the probability of abandonment,
the mean waiting time of an arbitrary, successfully served, impatient cus-
tomer, etc. A customer is able to depart from the system in the orbit
if it does not get its appropriate service after a definite random waiting
time so these will be the so-called impatient customers. In the case of
server failure, requests are allowed to enter the system but these will
be forwarded immediately towards the orbit. The service, retrial, impa-
tience, operation, and repair times are supposed to be independent of
each other. Several graphical illustrations demonstrate the comparisons
of the investigated distributions and the interesting phenomena which
are obtained by our self-developed simulation program. The achieved
results are compared to the results of the [2] to check how the system
characteristics changes if we use other distributions of service time and
to present the advantages of performing simulations in certain scenarios.
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1 Introduction

With the growing number of users, devices, and networks it is crucial developing
and applying new methods and ideas for designing communication systems even
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in the case of the existing systems. Across industries, more and more companies
expand their services using a higher number of devices and cloud networking
resulting in big data transmission. Consequently, creating mathematical and
simulation models of modern telecommunication systems are necessary because
these investigations can lessen the hardship of modifying or creating systems. In
real life, in many cases, customers encountering the service units in busy state
may make a decision to attempt to be served after some random time remaining
in the system. Instead of residing in a queue these customers are located in a vir-
tual waiting room called orbit and can be modeled with retrial queues. Queuing
systems with retrial queues are widely used tools modelling emerging problems
in major telecommunication systems, such as telephone switching systems or call
centres. Many papers dealt with these types of systems which can be viewed in
the following works like in [4,9,19].

Models with customers impatience in queues like the process of reneging and
balking have been studied by various authors in the past. Most recent results
about systems having the impatience property can be found for example in
[7,8,16].

In certain scenarios during the transmission of a message, another message
may appear in the channel which makes both impossible to decode causing a
conflict. This can happen due to the limited number of communication channels
and sometimes the launched uncoordinated attempts leading to the loss of the
transmission and consequently the necessity for retransmission. In such cases,
these requests go into orbit and after a random waiting time other attempts will
be initiated in order to reach the service facility again. Investigating and building
up efficient procedures for preventing conflicts and corresponding message delays
are needed. Of course, there are papers that have studied retrial queues with
collisions see for example [11–15].

Seeking in the available literature it is assumed that the components of the
system are accessible all the time. In practice, this is quite unrealistic and scien-
tists can not ignore examining the reliability of retrial queueing systems because
server breakdowns and repairs have a great influence on the system character-
istics and the performance measures. In real-life systems typical problems arise
like a power outage, human errors, or in wireless communication packets can
suffer transmission failure, interruptions throughout their transfer and unfortu-
nately it can happen at any time. These systems with an unreliable server were
analyzed in several papers, for example in [3,6,10,18,20].

In the paper of [2] a retrial queueing system of M/M/1 type with Poisson
flow of arrivals, impatient customers, collisions, and unreliable service device is
presented. In that, an asymptotic analysis method is used to define the station-
ary distribution of the number of customers in the orbit. We investigate the same
model as in [2], but the results are gathered by our simulation program package.
With this approach, it is possible to calculate performance measures that can
not be determined or almost impossible to give exact formulas using numeri-
cal or asymptotic analysis. Various software packages exist which are capable
to describe and perform an evaluation of complex systems if all the random
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variables are exponentially distributed but undoubtedly the usage of simulation
has a tremendous advantage: besides exponential, any other distribution can
be integrated into the code. The novelty of our work is the inclusion of other
distributions of service time in the previously developed models to carry out
a sensitivity analysis to see whether the observed curiosities are valid for this
model or how this modification alters the performance measures. To do so we
use stochastic simulation because using this method it is feasible to calculate the
desired measures while obtaining analytical results, which in this case, are a dif-
ficult task if at all possible. With the help of this program, we present graphical
results revealing interesting phenomena.

2 System Model

Fig. 1. The considered model.

We consider a queueing system of M/G/1 with collisions, impatience of the cus-
tomers, and an unreliable server which is shown in Fig. 1. The system arrival
process is characterized by the Poisson process with a rate of λ. The arriv-
ing customer occupies instantly the service unit in idle state and the distri-
bution of its service is according to exponentially, gamma, Pareto, lognormal,
hypo-exponentially, and hyper-exponentially distributed random variable with
the same mean value and variance but with different parameters. Otherwise, it
is forwarded toward the orbit. The retrial time of the requests is assumed to be
exponentially distributed with a rate of σ. In the case of a busy server an arriving
customer brings about a collision and both requests enter the orbit. It is sup-
posed that the server is unreliable so it breaks down from time to time according
to an exponential distribution with parameter γ0 when the server is idle and with
parameter γ1 when it is busy. In that period generation of new requests contin-
ues but each of them is sent to orbit. After a breakdown, it is immediately sent
for repair and the recovery process is also an exponential random variable with
the rate γ2. Every customer possesses an “impatience” property meaning that
a customer may depart from the system earlier after waiting a random time in
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the orbit. The distribution of the impatient time follows an exponential distribu-
tion with parameter τ . In this unreliable model after interruption or breakdown,
it is supposed that requests immediately are placed in orbit. Every service is
independent of the other service including the interrupted ones, too.

3 Simulation Results

To obtain the results of our simulation program a statistic package is used that
was developed by Andrea Francini in 1994 [5]. With the help of this tool, it is
possible to make a quantitative estimation of the mean and variance values of the
desired variables using the method of batch means. There are n observations in
every batch and the useful run is divided into a predetermined number of batches.
In order for the estimation to work correctly, the batches are necessary to be long
enough and approximately independent. It is one of the most popular confidence
interval techniques for a steady-state mean of a process. The following works
contain more detailed information about this method in [1]. The simulations
are performed with a confidence level of 99.9%. The relative half-width of the
confidence interval required to stop the simulation run is 0.00001.

3.1 First Scenario

The realization of the sensitivity analysis includes four different distributions
of service time to compare the performance measures with each other. In every
case, the parameters are selected in a way that the mean and variance would be
equal. To accomplish that we applied a fitting process that is required to be done
and [17] contains detailed information about the whole process describing every
used distribution. Two scenarios are developed to investigate the effect of the
various distributions. Table 2 shows the chosen parameters of the distribution
of service time while Table 1 the values of other parameters. In the first one,
the squared coefficient of variation is greater than one and the following distri-
butions are used: hyper-exponential, gamma, Pareto, and lognormal. Results in
connection with the second scenario (when the squared coefficient of variation is
less than one) were also examined but because of the page limitation, these will
be intended to be published in the extended version of the paper.

Table 1. Numerical values of model parameters

σ γ0 γ1 γ2 τ

0.01; 0.001 0.1 0.2 1 0.02; 0.002

In Figs. 2 and 3 the comparison of steady-state distribution of the number
of customers in the orbit can be seen when the distribution of service time of
the incoming customers is different. It demonstrates the probability (P (i)) of
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Fig. 2. Distribution of the number of customers in the orbit using various distributions,
σ = 0.01, τ = 0.02, λ = 0.7.

how many customers (i) residing in the orbit. Taking a closer look at the curves
in more detail they coincide with normal distribution regardless of the used
parameter setting. The figures also show the case of exponential distribution
with the same mean as the other applied distributions. The mean number of
customers in the orbit significantly differs from each other, at gamma distribution

Fig. 3. Distribution of the number of customers in the orbit using various distributions,
σ = 0.001, τ = 0.002, λ = 0.7.
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Table 2. Parameters of service time of incoming customers

Distribution Gamma Hyper-exponential Pareto Lognormal

Parameters α = 0.0816 p = 0.4607 α = 2.040 m = −1.292

β = 0.0816 λ1 = 0.9214 k = 0.5098 σ = 1.6075

λ2 = 1.0786

Mean 1

Variance 12.25

Squared coefficient of variation 12.25

customers spend the fewest at Pareto distribution the highest time for waiting
which is quite interesting.

Fig. 4. Mean waiting time of an arbitrary customer vs. arrival intensity using various
distributions, σ = 0.01, τ = 0.02.

The mean waiting time of an arbitrary customer is presented in the function
of the arrival intensity of incoming customers in Figs. 4 and 5. Even though
the mean and the variance are identical huge gaps develop among the applied
distributions. With the increment of the arrival intensity, the mean waiting time
of an arbitrary customer increases as well. The same tendency is observable
when we use other values of retrial and impatience time. The usage of gamma
distribution results in lower mean waiting time compared to the others, especially
versus gamma and Pareto distributions.

Figure 6 and 7 demonstrate the development of the probability of abandon-
ment of a customer besides increasing arrival intensity. This measure shows the
probability that an arbitrary customer leaves the system throughout the orbit
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Fig. 5. Mean waiting time of an arbitrary customer vs. arrival intensity using various
distributions, σ = 0.001, τ = 0.002.

which means the request does not get its appropriate service requirement (impa-
tient customers). As λ increases the value of this performance measure raises
as well which is true for every used distribution but the difference is quite high
among them. At gamma distribution, the tendency of leaving the system ear-
lier is much less than the others especially compared to Pareto and exponential
distributions. Taking a closer look at the Fig. 6 and 7 the obtained values of

Fig. 6. Comparison of probability of abandonment, σ = 0.01, τ = 0.02.
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Fig. 7. Comparison of probability of abandonment, σ = 0.001, τ = 0.002.

this measure are basically identical because the relationship remains the same
between σ and τ .

3.2 Second Scenario

After observing the results and the tendencies of the previous section we mod-
ified the parameters of service time of incoming customers to see how this new
parameter setting affects the performance measures. In this scenario, the squared
coefficient of variation is less than one meaning that instead of hyper-exponential
we used hypo-exponential distribution. We go over the same figures as in the
first scenario but with the new applied parameters of service time which can be
viewed in Table 3. All the other parameters remained unchanged (see Table 1).

Table 3. Parameters of service time of incoming customers

Distribution Gamma Hypo-exponential Pareto Lognormal

Parameters α = 1.6 μ1 = 4 α = 2.6125 m = −0.2428

β = 1.6 μ2 = 1.3333 k = 0.6172 σ = 0.6968

Mean 1

Variance 0.625

Squared coefficient of variation 0.625

Figures 8 and 9 display the steady-state distribution of the number of cus-
tomers in the orbit using various distributions of service time. The obtained
curves are much closer to each other with this parameter setting even though
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Fig. 8. Distribution of the number of customers in the orbit using various distributions,
σ = 0.01, τ = 0.02, λ = 0.7.

Fig. 9. Distribution of the number of customers in the orbit using various distributions,
σ = 0.001, τ = 0.002, λ = 0.7.
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the difference is still quite significant in Figure 9 and the shape of the curves
resemble the normal distribution. The value of the mean number of customers is
higher in the case of gamma and lognormal distribution compared to Figures 2
and 3.

Fig. 10. Mean waiting time of an arbitrary customer vs. arrival intensity using various
distributions, σ = 0.01, τ = 0.02.

The next two figures (Figs. 10 and 11) are related to the mean waiting of
an arbitrary customer. Evaluating the results it can be stated that very slight
differences occur although in the case of Pareto distribution the values are a
little bit higher. Otherwise, they almost overlap each other and the same ten-
dency can be observed in both figures. The mean waiting time increases with
the increment of arrival intensity. Obviously, the achieved results indicate that
the characteristics of the system are different using these parameters of service
time among the applied distributions collated in this scenario with the former
one.

Finally, to have a total comparison between the investigated scenarios Fig. 12
exhibits the probability of abandonment in the function of arrival intensity. After
examining the two previous figures it is no wonder how this measure develops.
The realization of the attained values shows how close the applied distributions
with each other and the probability that an arbitrary customer leaves the system
from the orbit increases besides higher arrival intensity. The represented values
are almost totally identical with the results of Fig. 12 when σ = 0.001 and
τ = 0.002 as in the previous section.
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Fig. 11. Mean waiting time of an arbitrary customer vs. arrival intensity using various
distributions, σ = 0.001, τ = 0.002.

Fig. 12. Comparison of probability of abandonment, σ = 0.01, τ = 0.02.
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4 Conclusion

We studied the development of performance measures like the mean number of
customers in the orbit or the mean waiting time of an arbitrary customer in a
retrial queueing system of type M/G/1 with a non-reliable server and impatient
customers in the orbit. Simulation has been carried out, the obtained results
demonstrate that the number of customers in the orbit corresponds to the normal
distribution in the case of every applied distribution. It is also displayed how the
different distributions affect the performance measures despite the equality of
mean value and variance when the squared coefficient of variation is more than
one. In the case of the other scenario when the squared coefficient of variation is
less than one, results clearly illustrated the moderate effect on the performance
measures compared to the first scenario. In the future, we would extend this
sensitivity analysis including more distributions or expanding the system with
other features like two-way communication or other operation modes during a
server failure.
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Abstract. A queueing system with conflicting non-ordinary input flows
in considered. The flows are modulated by a random external environ-
ment with two states. Serviced customers may return instantly to wait-
ing line, following the general Bernoulli feedback rules. After each service
act, a setup-and-control act takes place. A mathematical model for the
process is a discrete-time denumerable multivariate Markov chain which
includes the server state, numbers in the queues and random environ-
ment state. The model extends the class of queueing models studied by
G.P.Klimov, M.Yu.Kitaev, V.V.Rykov, M.A. Fedotkin et al. Functional
equation for partial probability generating functions are studied for a
class of non-preemptive priority service. An algorithm for solving these
equations is proposed. Some steps of the algorithm are theoretically jus-
tified. Its implementation in an open-source computer algebra language
is used to demonstrate practical usefulness of the algorithm, and to inves-
tigate inner properties of some important stationary probabilities.

Keywords: Time-sharing queueing system with readjustment times ·
Random external environment · Non-ordinary input flows · Stationary
probability distribution · Stationary probability computation
algorithm · Symbolic manipulation program application

1 Introduction

In papers [1–5] a queueing system with conflicting ordinary or non-ordinary
Poisson input flows by a time-sharing algorithms was studied. The notion of
“time-sharing” was borrowed from computing. It means basically that the total
execution time of a task is divided into small slots. When a time quant doesn’t
result in the process termination, the task is put back into a waiting queue (possi-
bly, switching to another queue for different service type). A class of admissible
control algorithms there allowed switching between queues based on observed
queues’ lengths. The main result in those papers was proving the optimality
property for non-preemptive priority policy. The objective function there was
the mean sojourn time for all customers per unit of time, or during a working
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and setup acts of the server. An important point in the proof was to find explicit
formulas for certain stationary probabilities. In particular, these stationary prob-
abilities didn’t remained the same for all admissible control policies.

A generalization of [3–5] was investigated in [6,7]. Input flows of the queueing
system were modulated by a random external environment with two states. Only
under additional constraints on the system’s parameters some explicit formulas
for necessary stationary probabilities were found there. The arrival intensities
needed to be invariant for all environment states. In general case we failed to
analytically deduce these stationary probabilities. So, it is still an open question,
whether they depend on a control policy, or not.

In the present study, steady-state equations for non-preemptive priority pol-
icy are analyzed. Using a symbolic expressions manipulation software called Max-
ima [8], a computational procedure to solve for stationary probabilities is built.
It allows to compare numerically approximated values for these probabilities for
different priority policies.

2 Problem Statement

Let us recall the problem statement and necessary notations from [6,7]. Flows
Π1, Π2, . . . , Πm enter the queueing system, m < ∞. Customers from flow Πj

join a queue Oj of infinite capacity, j = 1, 2, . . . , m. Set n = m + 1. Served
customer from queue Oj can be redirected to the queue Or with probability pj,r,
or leaves, with the probability

pj,n = 1 −
m∑

r=1

pj,r.

After each service act the server performs inner setup and readjustments, and
makes controling decision on the next queue to serve. Let a probability distri-
bution Bj(t), Bj(+0) = 0 define i.i.d. service act durations for customers from
a queue Oj , and let a probability distribution function B̄j(t), B̄j(+0) = 0 define
i.i.d. setup-and-readjustment act durations after a service act for the j-th queue.
If at the termination instant of a setup-and-readjustment act the queues are
empty the servers switches to an ‘idle’ state and waits for the first arrival. The
first arriving customer get taken for service, the others join appropriate queues.
On the other hand, if at the termination instant of an setup-and-readjustment
act the queue lengths make a non-zero vector x = (x1, x2, . . . , xm) then the
server switches to a queue Oj with index j = h(x) instantly and begins work
there. Here h(·) is a given mapping of an m-dimensional lattice non-negative

X = {0, 1, . . . , } × {0, 1, . . . , } × . . . × {0, 1, . . .}
onto a set {1, 2, . . . , n}. The mapping h(·) should be such that h(x) = j implies
xj > 0 for j = 1, 2, . . . , m, and the only preimage of the number n is the zero
vector 0̄ = (0, 0, . . . , 0) ∈ X.

Primary customer arrivals in each flow are modulated by a two-stated random
environment, its states are denoted by e(1) and e(2). Environment states can alter
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only at service act termination instants and at readjustment act termination
instants. The transition probability from a state e(k) to a state e(l) equals ak,l

where k, l ∈ {1, 2}. On interval on constancy of the environment states, the
primary flows Π1, Π2, . . . , Πm are conditionally independent. Customers from
a flow Πj in the environment state e(k) arrive in batches, a batch contains b
customers with probability pj(b; k), b = 1, 2, . . . , and batches arrive according
to a Poisson process with intensity λ

(k)
j .

Set τ0 = 0 and let τi be either a service act termination instant, or a read-
justment act termination instant, at that τi+1 > τi. Let us introduce neces-
sary random variables and random elements. Let χi ∈ {e(1), e(2)} be the ran-
dom environment state during the time interval (τi, τi+1]. Let a random element
Γi ∈ Γ = {Γ (1), Γ (2), . . . , Γ (n)} for i = 1, 2, . . . define the server state during
the time interval (τi−1, τi]. Equality Γi = Γ (s) for s = 1, 2, . . . , m indicates that
a service act for the queue Os, and for s = n that a readjustment act takes place.
A random element Γ0 from Γ defines the initial server state (at time τ0). Denote
by κj,i the number in the queue Oj at time τi after a secondary (redirected)
customer joins the queue. Define vectors κi = (κ1,i, κ2,i, . . . , κm,i), i = 0, 1, . . . .
Under the assumptions above, a multivariate sequence {(Γi, κi, χi); i = 0, 1, . . . },
given the initial vector (Γ0, κ0, χ0), is an irreducible periodic Markov chain with
two cyclic classes

{(Γ (s), x, e(k)) : s �= m + 1, x ∈ X, k = 1, 2},
{(Γ (m+1), x, e(k)) : x ∈ X, k = 1, 2}.

Denote by Q(j, x, k) the stationary probability of the Markov chain’s state
(Γ (j), x, e(k)), j = 1, 2, . . . , n, x ∈ X, k = 1, 2. For an integer-valued vector
x ∈ X and a vector v = (v1, v2, . . . , vm) ∈ C

m we’ll write vx = vx1
1 vx2

2 ×· · ·×vxm
m ,

in particular we set 0̄0̄ = 1. Let us define some partial probability generating
functions:

f
(k)
j (z) =

∞∑
b=1

pj(b; k)zb, z ∈ C,

Rj(v) = vj
−1

(
pj,n +

m∑
r=1

pj,rvr

)
, v ∈ C

m,

q
(k)
j (v) =

∞∫
0

m∏
r=1

exp{(λ(k)
r (f (k)

r (vr) − 1)t)}dBj(t),

q̄
(k)
j (v) =

∞∫
0

m∏
r=1

exp{(λ(k)
r (f (k)

r (vr) − 1)t)}dB̄j(t),

Ψ(v, s, k) =
∑

x∈X Q(s, x, k)vx,

Φ(v, j, k) =
∑

x∈Xj
Q(n, x, k)vx

and set λ
(k)
+ = λ

(k)
1 + λ

(k)
2 + . . . + λ

(k)
m for k = 1, 2. Earlier in [6,7] the following

equations were given:

Ψ(v, j, l) =
2∑

k=1

ak,lq
(k)
j (v)Rj(v)

(
Φ(v, j, k) +

λ
(k)
j

λ
(k)
+

f
(k)
j (vj)Q(n, 0̄, k)

)
, (1)
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j = 1, 2, . . . , m,

Ψ(v, n, l) =
2∑

k=1

ak,l

m∑

j=1

q̄j(v)Ψ(v, j, k), (2)

They hold at least inside a closed polydisk

Um = {(v1, v2, . . . , vm) : |vj | � 1, j = 1, 2, . . . ,m}.

The system of Eqs. (1), (2) isn’t complete, since it lacks relations for unknown
functions Φ(v, j, k) and probabilities Q(n, 0̄, k) for j = 1, 2, . . . , m, k = 1, 2.
It contains only 2n relations between unknown functions Ψ(v, s, k), s = 1, 2,
. . . , n, k = 1, 2, and the above-mentioned functions and probabilities. However,
it turned out to be possible, by virtue of putting constraints on environment
parameters or input flows’ parameters, to obtain explicit formulas for several
stationary probabilities. Let us cite these results here. The following notations
will be used. Let E denote an identity matrix of size m × m,

βr =
∫ ∞
0

t dBr(t), β̄r =
∫ ∞
0

t dB̄r(t),

β = (β1, . . . , βm), β̄ = (β̄1, . . . , β̄m),

Π = (pj,r)j,r=1,m, λ̄
(k)
j = λ

(k)
j

∑∞
b=1 bpj(b; k),

λ̄(k) = (λ̄(k)
1 , . . . , λ̄

(k)
m )T, Λ(k) = (E − ΠT )−1λ̄(k),

ρ(k) = (β + β̄)Λ(k), 1̄ = (1, . . . , 1),

Ψj = Ψ(1̄, j, 1) + Ψ(1̄, j, 2), Ψ = (Ψ1, . . . , Ψm)T

it is assumed that all quantities defined above are finite, and the matrix (E −Π)
is invertible. Let us interpret these quantities: βr is the mean service act duration
for a customer from the queue Or, β̄r is the mean readjustment act duration after
a service act for Or, λ̄

(k)
j is the overall arrival intensity (i.e. the mean number of

customers per unit of time, not batches) from the flow Πj when the environment
state is e(k).

It was discovered earlier [6] that when a1,1 = a2,1 = α one has for any h(·)
that

Q(Γ (m+1), 0̄, k) =
a1,k

2
(1 − αρ(1) − (1 − α)ρ(2)))

(
α(1 − α)

×
(1 + βλ(1)

λ
(1)
+

− 1 + βλ(2)

λ
(2)
+

)
(Λ(2)

+ ρ(1) − Λ
(1)
+ ρ(2))

+αΛ
(1)
+

1 + βλ(1)

λ
(1)
+

+ (1 − α)Λ(2)
+

1 + βλ(2)

λ
(2)
+

−
(αβλ(1)

λ
(1)
+

+
(1 − α)βλ(2)

λ
(2)
+

)
(αΛ

(1)
+ + (1 − α)Λ(2)

+ )
)−1
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The second known case assumes λ̄(1) = λ̄(2), i.e. that arrival intensities remain
the same for all states of the external environment. Then, for any h(·), one has:

Ψ =
Λ

2Λ+
,

2∑

k=1

Q(n, 0̄, k)

λ
(k)
+

=
1 − ρ(1)

2Λ+
. (3)

However, no separate formulas for the probabilities Q(n, 0̄, 1), Q(n, 0̄, 2) are
known in this case.

3 Solution Algorithm in Case of Non-preemptive Priority
Policies

We will narrow the class of admissible control policies in order to fill in miss-
ing relations for the partial probability generating functions Φ(v, j, k). A non-
preemptive priority policies is uniquely determined by priority indices for the
queues. Up to relabeling the queues, it is enough to assume that queue O1 has
the highest priority index, O2 is the second in priority, etc. Formally speaking,
let h(x) = min{j : xj �= 0}. Let us use operators 0j(·) : Cm → C

m, j = 1, 2, . . . ,
n which were introduced in [9] by means of equations

0jv = (0, . . . , 0, vj , vj+1, . . . , vm).

Let us remark that 01v = v, 0nv = 0̄. Then one has

Φ(v, j, k) = Ψ(0jv, n, k) − Ψ(0j+1v, n, k)

Now the problem is reduced to finding functions Ψ(v, n, k), k = 1, 2, analytic in
a polydisk [10]

Um = {(v1, v2, . . . , vm) : |v1| < 1, |v2| < 1, . . . , |vm| < 1} ∈ C
m

and satisfying equations

Ψ(v, n, k) =
2∑

l1=1

al1,k

m∑

j=1

q̄
(l1)
j (v)

2∑

l=1

al,l1q
(l)
j (v)Rj(v) (4)

×
(

Ψ(0jv, n, l) − Ψ(0j+1v, n, l) + Ψ(0̄, n, l)f (l)
j (vj)

λ
(l)
j

λ
(l)
+

)
.

Now, to explicate the solution algorithm, let us switch to matrix form of
equations. Let

Ψ̄(v) =
(

Ψ(v, n, 1)
Ψ(v, n, 2)

)
,
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and for j = 1, 2, . . . , m let

Qj(v) =

⎛

⎜⎜⎝

2∑
l=1

a1,lal,1q̄
(l)
j (v)q(1)j (v)Rj(v)

2∑
l=1

a2,lal,1q̄
(l)
j (v)q(2)j (v)Rj(v)

2∑
l=1

a1,lal,2q̄
(l)
j (v)q(1)j (v)Rj(v)

2∑
l=1

a2,lal,2q̄
(l)
j (v)q(2)j (v)Rj(v)

⎞

⎟⎟⎠ ,

Dj(vj) =

⎛

⎜⎜⎜⎜⎝

f
(1)
j (vj)

λ
(1)
j

λ
(1)
+

0

0 f
(2)
j (vj)

λ
(2)
j

λ
(2)
+

⎞

⎟⎟⎟⎟⎠
.

Then Eq. (4) takes form

Ψ̄(v) =
m∑

j=1

Qj(v)
(
Ψ̄(0jv) − Ψ̄(0j+1v) + Dj(vj)Ψ̄(0̄)

)
.

After rearranging terms we finally get:

(E − Q1(v))Ψ̄(v) =
m∑

j=2

(Qj(v) − Qj−1(v))Ψ̄(0jv) (5)

+
( m∑

j=1

Qj(v)Dj(vj) − Qm(v)
)
Ψ̄(0̄).

Since the entries of the functional matrix (v1E − v1Q1(v)) have no poles inside
the polydisk Um, one can solve Eq. (5) for the desired vector of functions Ψ̄(v):

Ψ̄(v) = (v1E − v1Q1(v))−1
m∑

j=2

v1(Qj(v) − Qj−1(v))Ψ̄(0jv) (6)

+ (v1E − v1Q1(v))−1
(
v1

m∑

j=1

Qj(v)Dj(vj) − v1Qm(v)
)
Ψ̄(0̄).

Equality (6) holds at those points of Um where

det(v1E − v1Q1(v)) �= 0. (7)

Since the functions Ψ(v, n, k), k = 1, 2 must be holomorphic [10] everywhere
in Um, the yet undefined functions Ψ̄(0jv), j = 2, 3, . . . , n must satisfy additional
equations which we now aim to describe.

Let us define functional matrices

Q1,j(v1, v2, . . . , vm) =
(
Q1,j;k,l(v1, v2, . . . , vm)

)
k,l=1,2

,

Q̃1(v1, v2, . . . , vm) =
(
Q̃1;k,l(v1, v2, . . . , vm)

)
k,l=1,2

,
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through equations

Q1,1(v1, v2, . . . , vm) = v1(Q1(v) − E),
Q1,j(v1, v2, . . . , vm) = v1(Qj(v) − Qj−1(v)), j = 2, 3, . . . ,m,

Q̃1(v1, v2, . . . , v2) =
(
v1

∑m
j=1 Qj(v)Dj(vj) − v1Qm(v)

)
.

Equation (5) becomes

m∑

j=1

Q1,j(v1, v2, . . . , vm)Ψ̄(0jv) + Q̃1(v1, v2, . . . , vm)Ψ̄(0̄) = 0. (8)

Let us multiply Eq. (8) from left by the matrix Q∗
1,1(v1, v2, . . . , vm) adjoint

to Q1,1(v1, v2, . . . , vm) (an asterix marks an adjoint matrix). Then we get for all
v ∈ Um, satisfying the following equation

det Q1,1(v1, v2, . . . , vm) = 0 (9)

(it’s the same as Eq. (7)), the following matrix equation should hold:

m∑

j=2

Q∗
1,1(v1, v2, . . . , vm)Q1,j(v1, v2, . . . , vm)Ψ̄(0jv) (10)

+Q∗
1,1(v1, v2, . . . , vm)Q̃1(v1, v2, . . . , vm)Ψ̄(0̄) = 0.

Let us assume that Equation (9) implicitly defines two distinct functions

v1 = v
(k)
1 (v2, . . . , vm), k = 1, 2,

holomorphic in a polydisk

Um−1 = {(v2, . . . , vm) : |v2| < 1, . . . , |vm| < 1}.

Let us remark that vectors Ψ̄(0jv) for j = 2, 3, . . . , m, depend only on the
variables v2, v3, . . . , vm. So, a substitution v = (v(k)

1 , v2, . . . , vm) into matrix
Eq. (10) gives a new relation between these vectors:

m∑

j=2

Q2,m(v2, . . . , vm)Ψ̄(0jv) + Q̃2(v2, . . . , vm)Ψ̄(0̄) = 0,

where matrices Q2,j(v2, . . . , vm) =
(
Q2,j;k,l(v2, . . . , vm)

)
k,l=1,2

, j = 2, 3, . . . , m

and Q̃2(v2, . . . , vm) =
(
Q̃2;k,l(v2, . . . , vm)

)
k,l=1,2

have entries

Q2,j;1,1(v2, . . . , vm) = v2 · (
Q1,1;2,2(v

(1)
1 , v2, . . . , vm)Q1,j;1,1(v

(1)
1 , v2, . . . , vm)

− Q1,1;1,2(v
(1)
1 , v2, . . . , vm)Q1,j;2,1(v

(1)
1 , v2, . . . , vm)

)
,
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Q2,j;1,2(v2, . . . , vm) = v2 · (
Q1,1;2,2(v

(1)
1 , v2, . . . , vm)Q1,j;1,2(v

(1)
1 , v2, . . . , vm)

− Q1,1;1,2(v
(1)
1 , v2, . . . , vm)Q1,j;2,2(v

(1)
1 , v2, . . . , vm)

)
,

Q2,j;2,1(v2, . . . , vm) = v2 · (
Q1,1;1,1(v

(2)
1 , v2, . . . , vm)Q1,j;2,1(v

(2)
1 , v2, . . . , vm)

− Q1,1;2,1(v
(2)
1 , v2, . . . , vm)Q1,j;1,1(v

(2)
1 , v2, . . . , vm)

)
,

Q2,j;2,2(v2, . . . , vm) = v2 · (
Q1,1;1,1(v

(2)
1 , v2, . . . , vm)Q1,j;2,2(v

(2)
1 , v2, . . . , vm)

− Q1,1;2,1(v
(2)
1 , v2, . . . , vm)Q1,j;1,2(v

(2)
1 , v2, . . . , vm)

)
,

Q̃2;1,1(v2, . . . , vm) = v2 · (
Q1,1;2,2(v

(1)
1 , v2, . . . , vm)Q̃1;1,1(v

(1)
1 , v2, . . . , vm)

− Q1,1;1,2(v
(1)
1 , v2, . . . , vm)Q̃1;2,1(v

(1)
1 , v2, . . . , vm)

)
,

Q̃2;1,2(v2, . . . , vm) = v2 · (
Q1,1;2,2(v

(1)
1 , v2, . . . , vm)Q̃1;1,2(v

(1)
1 , v2, . . . , vm)

− Q1,1;1,2(v
(1)
1 , v2, . . . , vm)Q̃1;2,2(v

(1)
1 , v2, . . . , vm)

)
,

Q̃2;2,1(v2, . . . , vm) = v2 · (
Q1,1;1,1(v

(2)
1 , v2, . . . , vm)Q̃1;2,1(v

(2)
1 , v2, . . . , vm)

− Q1,1;2,1(v
(2)
1 , v2, . . . , vm)Q̃1;1,1(v

(2)
1 , v2, . . . , vm)

)
,

Q̃2;2,2(v2, . . . , vm) = v2 · (
Q1,1;1,1(v

(2)
1 , v2, . . . , vm)Q̃1;2,2(v

(2)
1 , v2, . . . , vm)

− Q1,1;2,1(v
(2)
1 , v2, . . . , vm)Q̃1;1,2(v

(2)
1 , v2, . . . , vm)

)
.

Let us explain that the k-th row of the matrix Q2,j(v2, . . . , vm) is obtained by
substituting v1 = v

(k)
1 (v2, . . . , vm) into the k-th row of the matrix

v2 · (v1E − v1Q1(v))∗v1(Qj(v) − Qj−1(v)),

and the k-th row of the functional matrix Q̃2(v2, . . . , vm) is obtained by substi-
tuting v = (v(k)

1 , v2, . . . , vm) into the k-the row of the matrix

v2 · (v1E − v1Q1(v))∗
(
v1

m∑

j=1

Qj(v)Dj(vj) − v1Qm(v)
)
.

The structure of the obtained equation is similar to the original Eq. (8), but it
contains fewer unkown functions and fewer independent variables. Let us assume
that at the s-th step we got the following equation:

0 =
m∑

j=s

Qs,j(vs, . . . , vm)Ψ̄(0jv) + Q̃s(vs, . . . , vm)Ψ̄(0̄),

Next, let us assume that the equation

det Qs,s(vs, . . . , vm) = 0 (11)

implicitly defines two distinct functions

v2 = v
(k)
2 (v3, . . . , vm), k = 1, 2,
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holomorphic in a polydisk

Um−2 = {(v3, . . . , vm) : |v3| < 1, . . . , |vm| < 1}.

Then, repeating the steps as above, we obtain a new equation of the form

m∑

j=s+1

Qs+1,j(vs+1, . . . , vm)Ψ̄(0jv) + Q̃s+1(vs+1, . . . , vm)Ψ̄(0̄) = 0.

In particular, after (m − 1) steps we finally get

Qm,m(vm)Ψ̄(0mv) + Q̃m(vm)Ψ̄(0̄) = 0. (12)

If the determinant detQm,m(vm) has two zeros inside the unit disk |vm| < 1 then
the described procedure of exclusion of unknown functions leads to two homo-
geneous linear equations for Ψ̄(0̄), its solution is only the zero vector 0̄. It con-
tradicts to the stationary distribution existence, (Γ (n), 0̄, e(1)) and (Γ (n), 0̄, e(1))
are essential states. So, let us assume that the determinant det Qm,m(vm) has a
single zero v†

m inside the disk |vm| < 1, the other zero vm = 1 lying on the disk
boundary. Using this v†

m, we get a linear homogeneous equation

Q̃m+1Ψ̄(0̄) = 0 (13)

where Q̃m+1 is a constant row-vector.

Proposition 1. The following formulas take place

Ψ(1̄, n, 1) =
a2,1

2(a1,2 + a2,1)
, Ψ(1̄, n, 2) =

a1,2

2(a1,2 + a2,1)
. (14)

Proof. Set v = 1̄ in (4) and use the normalization condition

Ψ(1̄, n, 1) + Ψ(1̄, n, 2) = 1/2

(taking into account the cyclic classes), we get the claimed formulas.

Since a single Eq. (13) binds two unknown quantities Ψ(0̄, n, 1) and Ψ(0̄, n, 2),
we need to find more relations for these quantities. The next Proposition suggests
useful equations in this respect.

Proposition 2. The following equality hold:

0 =
2∑

l1=1

2∑

l=1

m∑

j=1

al,l1(λ̄
(l1)
g β̄j,1 + λ̄(l)

g βj,1 + pj,g − δg,j) (15)

×
(

Ψ(0j 1̄, n, l) − Ψ(0j+11̄, n, l) + Ψ(0̄, n, l)
λ
(l)
j

λ
(l)
+

)
+

2∑

l=1

Ψ(0̄, n, l)
λ̄
(l)
g

λ
(l)
+

.
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Proof. Let us sum Eqs. (4) w.r.t. k = 1, 2. We get

2∑

k=1

Ψ(v, n, k) =
2∑

l1=1

m∑

j=1

q̄
(l1)
j (v)

2∑

l=1

al,l1q
(l)
j (v)Rj(v)

×
(

Ψ(0jv, n, l) − Ψ(0j+1v, n, l) + Ψ(0̄, n, l)f (l)
j (vj)

λ
(l)
j

λ
(l)
+

)
.

Take derivatives w.r.t. vg, g = 1, 2, . . . , m and then set v = 1̄. We get:

2∑
k=1

∂
∂vg

Ψ(v, n, k)
∣∣∣
v=1̄

=
2∑

l1=1

2∑
l=1

m∑
j=1

∂
∂vg

(
q̄
(l1)
j (v)al,l1q

(l)
j (v)Rj(v)

)∣∣∣
v=1̄

×
(

Ψ(0j 1̄, n, l) − Ψ(0j+11̄, n, l) + Ψ(0̄, n, l)
λ
(l)
j

λ
(l)
+

)

+
2∑

l=1

m∑
j=1

(
∂

∂vg

(
Ψ(0jv, n, l) − Ψ(0j+1v, n, l)

)∣∣∣∣
v=1̄

+δj,gΨ(0̄, n, l)
μ
(l)
j λ

(l)
j

λ
(l)
+

)
.

After combining similar terms we finally get Eq. (15).

To summarize, Eqs. (13), (14), and (15) provide (m+3) linearly independent
linear equations for (2m + 2) quantities Ψ̄(0j 1̄, n, k), j = 1, 2, . . . , n, k = 1, 2.
Another (m−1) new equations we can have by using that solution vs(1, . . . , 1) of
Eq. (11) with vs+1 = 1, . . . , vm = 1, which satisfied the inequality |vs(1, . . . , 1)| <
1 (the other solution is vs(1, . . . , 1) = 1).

4 Numerical Routine Details and Experiments

At each step of the algorithm presented in the previous section, several assump-
tions need quantitative verification.

1. Determining the number of zeros of a determinant in an appropriate disk
|vs| � 1.

2. Finding all zeroes in the disk.

The first problem can be solved by applying the famous Cauchy’s Theorem
(see, e.g., [12]). To count zeros of W (vs) = det Qs,s(vs, . . . , vm) inside |vs| < 1
for fixed vm+1, . . . , vm use a Couchy integral

1
2πi

∫

∂D

W ′(z)
W (z)

dz, D = {|z| � 1}.

By change of variable it reduces to a Riemann integral over a finite segment
and can by computed using standard numerical quadrature routines. We used
an adaptive integrator from QUADPACK library [13] distributed with Maxima
CAS [8].
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For an approximate computation of zeros ζl, l = 1, 2 in the disk |z| < 1 we
used an algorithm of Delves and Lyness [11]. First, using the same integrator
from QUADPACK we compute sums

Sk =
1

2πi

∫

D

zk W ′(z)
W (z)

dz =
2∑

l=1

ζk
l , k = 1, 2,

and then solve a quadratic algebraic equation

z2 − S1z +
S2
1 − S2

2
= 0

whose coefficients are symmetric polynomials of powers of the zeros by Vieta’s
formula.

The next claim is necessary to count zeros of (9). Counting zeros of (11)
inside |vs| < 1 for s � 2 is still an open problem.

Proposition 3. For |v2| < 1, . . . , |vm| < 1, Eq. (7) has two zeros (counting
their multiplicities) in the disk |v1| � 1.

Proof. For a 2×2 matrix, its determinant equals the product of diagonal entries
minus the product of off-diagonal entries. We aim to apply the Rouche’s theorem
to prove that the determinant has as many zeros as the product of the diagonal
elements does. Indeed, for |v1| = 1, |v2| � 1 we have

∣∣∣∣∣

2∑

l=1

ak,lal,k q̄
(l)
1 (v)q(k)1 (v)v1R1(v)

∣∣∣∣∣ �
2∑

l=1

ak,lal,k < 1 = |v1|, k = 1, 2.

Let us prove that
∣∣∣∣∣v1 −

2∑

l=1

a1,lal,1q̄
(l)
1 (v)q(1)1 (v)v1R1(v)

∣∣∣∣∣ �
∣∣∣∣∣

2∑

l=1

a1,lal,2q̄
(l)
1 (v)q(1)1 (v)v1R1(v)

∣∣∣∣∣

Let us write the complex-valued quantities of interest in polar form:

rl(t)eiAl(t) = q̄
(l)
1 (v)q(1)1 (v)v1R1(v),

where 0 � rl(t) � 1 and 0 � Al(t) � 2π for 0 � t � 2π, l = 1, 2. Then, on a
circle |v1| = 1 the left-hand side can be bounded from below as follows:
∣∣∣∣∣e

iu −
2∑

l=1

a1,lal,1rl(u)eiAl(u)

∣∣∣∣∣

2

=
(
1 − a2

1,1r1(u) − a1,2a2,1r2(u)
)2

+
2∑

l=1

2a1,lal,1rl(u)(1 − cos(u − Al(u)))

+ 2a2
1,1a1,2a2,1r1(u)r2(u)(1 − cos(A1(u) − A2(u)))

�
(
1 − a2

1,1r1(u) − a1,2a2,1r2(u)
)2

,
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and for the right-hand side,

∣∣∣∣∣

2∑

l=1

a1,lal,2rl(u)eiAl(u)

∣∣∣∣∣

2

=
(
a1,1(1 − a1,1)r1(t) + a1,2(1 − a2,1)r2(t)

)2

−2a1,1(1 − a1,1)a1,2(1 − a2,1)r1(u)r2(u)(1 − cos(A1(u) − A2(u)))

�
(
1 − a2

1,1r1(u) − a1,2a2,1r2(u) − 1 + a1,1r1(t) + a1,2r2(u)
)2

�
(
1 − a2

1,1r1(u) − a1,2a2,1r2(u)
)2

,

since
0 � a1,1r1(t) + a1,2r2(u) � a1,1 + a1,2 = 1.

The proof is completed.

In the rest of the paper we’ll study a queueing system with two input flows,
m = 2.

One may ask, are solution v
(1)
1 (v2), v

(2)
1 (v2) to Eq. (9) actually holomorphic

in the open disk |v2| < 1? Singular points of these function should satisfy the
system

F (v1, v2) := det Q̃1,1(v1, v2) = 0, F1(v1, v2) :=
∂

∂v1
det Q̃1,1(v1, v2) = 0.

(16)
We can prove absence of singular points by computing the number of solutions
of equations (16) inside a polydisk {(v1, v2) : |v1| < 1, |v2| < 1}. This number
of solutions can be found using a multidimensional logarithmic residue formula
(see [12,15]). It equals I1 + I2, where

Ik =
∫

[0,1]3

det JF (v1, v2)det J[k](v1, v2)
(|F (v1, v2)|2 + |F1(v1, v2)|2)2 e2πiθkrk̄, drk̄dθ1dθ2, k �= k̄ ∈ {1, 2},

JF =

(
∂F
∂v1

∂F
∂v2

∂F1
∂v1

∂F1
∂v2

)
, J[1] =

(
∂F
∂v1

F
∂F1
∂v1

F1

)
, J[2] =

(
F ∂F

∂v2

F1
∂F1
∂v2

)
,

To evaluate these integrals a routine DCUHRE [16] was used. We’ll say in
advance that the integral was close to zero in all our experiments.

Let us assume that both service times and readjustment times are exponen-
tially distributed,

Bj(t) =

{
0 if t � 0,

1 − e−t/βj if t > 0,
and B̄j(t) =

{
0 if t � 0,

1 − e−t/β̄j if t > 0

for j = 1, 2. Let the input flows be ordinary in the state e(1) (f (1)
j (z) = z), and

Gnedenko–Kovalenko type [14] in the state e(2) (f (2)
j (z) = gjz + (1 − gj)z2 with

0 < gj < 1).



316 A. V. Zorine and K. O. Sizova

For the first experiment, set a1,1 = 0.33, a2,2 = 0.6 for the environment,
λ
(1)
1 = 0.625, λ

(1)
2 = 0.15, λ

(2)
1 = 0.5, λ

(2)
2 = 0.1, g1 = 0.75, g2 = 0.5 for the input

flows, β1 = 0.2, β̄1 = 0.05, β2 = 0.375, β̄2 = 0.125 for the server, p1,1 = 0.25,
p1,2 = 0, p2,1 = 0.43, p2,2 = 0.1 for the feedback flows. It is easy to check that
here λ̄

(1)
j = λ

(1)
j = λ̄

(2)
j = (2 − gj)λ

(2)
j for all j = 1, 2, so equalities (3) need to

hold, we’ll use them to assess accuracy of computed probabilities. The results
are shown in Table 1 together with rough Monte–Carlo estimates. We will call
the case when O1 has priority over O2 “order 1”, and the opposite case when O2

has priority over O1 “order 2”. In the last column, correct digits in the control
sum are underlined. So, the absolute accuracy seems to be of order 10−6. In the
second and third column coinciding digits are underlined, and we find five and
six coinciding digits in the probabilities related to different control policies.

For example, for “order 1” the zeros of det(v2Q̃2,2(v2)) = 0 were found to be
approximately

v2 = 0.9999999999992426 − 1.866770016832244 · 10−14 i ≈ 1

and
v2 = 0.001675593522702356 − 1.861484450736359 · 10−14 i

Then, (13) becomes

3.385895222324992 · 10−7 Ψ(0̄, 3, 2) − 5.664247186616641̇0−7 Ψ(0̄, 3, 1) = 0,

Equations (15) turn into

− 0.071850588988876Ψ(0̄, 3, 2) − 0.27114573127955Ψ(0̄, 3, 1)

+ 1.3362207067866Ψ(021̄, 3, 2) + 1.3362207067866Ψ(021̄, 3, 1) = 0.296875,

0.96875585864266Ψ(0̄, 3, 2) + 0.88911857288000Ψ(0̄, 3, 1)

− 0.86250703037120Ψ(021̄, 3, 2) − 0.86250703037120Ψ(021̄, 3, 1) = −0.01875;

finally, using the zero v1(1) with |v1(1)| < 1 we get from (10)

2.672611460126473 · 10−7 Ψ(0̄, 3, 2)− 1.044306811888245 · 10−6 Ψ(0̄, 3, 1)

−7.911439931036352 · 10−4Ψ(021̄, 3, 2) + 0.00132444608971527Ψ(021̄, 3, 1) = 0.

For the second example, set a1,1 = 0.3, a2,2 = 0.1, λ
(1)
1 = 0.001, λ

(1)
2 = 0.004,

λ
(2)
1 = 0.001, λ

(2)
2 = 0.003, g1 = 0.6, g2 = 0.7, β1 = 1, β2 = 0.5, β̄1 = −0.5, β̄2 =

1, p1,1 = 0.1, p1,2 = 0.3, p2,1 = 0.3, p2,2 = 0.1. Now the effective input intensities
are different, λ̄

(1)
j �= λ̄

(2)
j , and we can only rely on the accuracy estimate from

Example 1. The computation results are shown in Table 2
Comparing only the underlined digits which we consider to be reliable, we

may say that the probabilities are the same for both priority orderings.
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Table 1. Computation results from the first experiment

Order Probabilities
2∑

k=1

Q(n,0̄,k)

λ
(k)
+

Ψ(0̄, 3, 1) Ψ(0̄, 3, 2) (0.312373225)

Order 1 0.07659145571302693 0.1281294632748519 0.312376790

(simul.) (0.0765674) (0.128134)

Order 2 0.07659030797447868 0.128130351846631 0.312376790

(simul.) (0.0765644) (0.128142)

Table 2. Computation results from the second experiment

Order Probabilities

Ψ(0̄, 3, 1) Ψ(0̄, 3, 2)

Order 1 0.15166248480232 0.10904766425247

(simul.) (0.15160) (0.10905)

Order 2 0.15166407152574 0.10904654283947

(simul.) (0.15168) (0.10905)

5 Conclusion

An algorithm to solve stationary equations for probability distribution functions
was proposed and probated on several parameter sets. Comparisons to known
predicted combinations of stationary probabilities and rough Monte–Carlo simu-
lation demonstrate that the method is viable. Further research is needed though
to improve accuracy.

On the practical side, up to computation errors the stationary probabilities
for empty queues seem independent of the server switching policy, which agrees
with previous work using computer simulations.
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Abstract. In the present paper, the single-server queue model M|G|1|∞ with
unreliable server subject to catastrophes is considered. The transient and sta-
tionary distributions of virtual waiting time, busy period and idle state proba-
bility for two basic models with reliable and unreliable server are obtained.
Different generalizations of basic models are considered: model with batch
arrival of customers, model with non-homogeneous streams of customers and
catastrophes, model with k types of customers, model with k types of priority
customers. For those models, the virtual waiting time distribution and idle state
probability are found.

Keywords: Virtual waiting time � Single-server queue � Catastrophes �
Unreliable server � Idle state probability

1 Introduction

Over the last two decades, an increasing interest in queueing models with “negative”
customers has been observed (see reviews [1–3]). Queueing networks with “negative”
customers have been introduced and investigated in [4]. Different mechanisms of
interaction between “regular” and “negative” customers have been considered. For
example, the arriving “negative” customers can destroy, transfer or trigger some
number of “regular” customers which are waiting in the model or are being served in
the server. If an arriving “negative” customer can destroy all system workload, i.e.
remove all “regular” customers which have been waiting and being served in the
model, this type of “negative” customer is called catastrophe or disaster. Stochastic
systems with clearing mechanism are considered in [5] using methods of renewal
processes. Different queueing models with catastrophes and disasters and their appli-
cations are considered in [6–18]. Later in this paper we will use customers and
catastrophes instead of “regular” and “negative” customers.

In queuing models with catastrophes, subjects of interest are three main charac-
teristics: queue size, busy period, and virtual waiting time or workload of the model.
One of first queuing models with catastrophes was considered in [6]. The product form
solution for queue size distribution in steady state was obtained. The queuing model M|
G|1 with catastrophes was investigated in [7]. The stationary workload process is
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considered and the analog of Pollaczeck-Khinchin formula for the model was found.
The single server model M|G|1 with “stochastic clearing” mechanism-disaster and with
server repair after the disaster was considered in [8]. The distribution of the number of
customers in the model and sojourn time distribution in steady state were obtained. The
models M|G|1, Mx|G|1 with recovery time after the catastrophes were investigated in
[9, 10]. The queue size and busy period distributions in steady state are obtained.
A queueing model M|G|1 with Poisson arrival of “negative” customers is considered in
[11, 12]. It is showed that the workload distribution in this model equals the waiting
time distribution in an equivalent GI/G/1 queue with “regular” customers only. The
queue model M|G|1 with unreliable server and catastrophes was considered in [13]
using supplementary variables and supplementary event methods. The transient and
steady state distributions of queue size and busy period are investigated. Single server
queue MAP|G|1 with Markov Arrival Process input of customers and catastrophes was
considered in [14] using the supplementary variable method. The transient and sta-
tionary behavior of queue length, busy period, and virtual waiting time of the model are
investigated. The model BMAP|SM|1 with Batch MAP input of customers and
catastrophes was considered in [15] using Semi Markov (SM) processes and embedded
Markov chain methods. The stationary distributions of EMC and SMP, distribution of
actual and virtual waiting times of customers were found. The queue MAP|G|1 with
MAP arrival of k types of customers and catastrophes is considered in [16]. The queue
size and workload distributions in steady state are obtained. The queue model M|M|1
with catastrophes and two preemptive priority customers were introduced in [17] for
the purpose of analyzing distributed database systems that undergo site failure. The
waiting time distributions for different priority customers are found. The queue model
Mr|Gr|1 with preemptive and non-preemptive customers and catastrophes is considered
in [18]. The transient and stationary queue size and busy period distributions of the
model are obtained.

In this paper, we consider transient and stationary distributions of virtual waiting
time of the models M|G|1 with catastrophes and unreliable server. We suppose that
service time of customers and recovery time of server have general distribution and
arrival of customers, occurrence of disasters have Poisson distribution. This model is
extended the results of [6–11, 18]. As an application of obtained results we consider the
queueing model Mr|Gr|1|∞ with priority service of customers and catastrophes.

2 Model Description

We consider a single server queueing model M|G|1|∞ with unreliable server and
catastrophes The arrival of customers and occurrence of catastrophes happen according
to a Poisson distribution with parameters k and m, respectively. Catastrophes cannot be
served and accumulated in the model. They can just remove all the customers being in
the model at the moment of their occurrence. Service times of customers are inde-
pendent and identically distributed (i.i.d.) random variables (r.v.) b with general
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distribution function (PDF) BðxÞ ¼ Pðb\xÞ, and finite mean value b1 The server is
unreliable: it can fail and be repaired only when the model is free of customers. Time
intervals between two consecutive failures of server have exponential PDF with
parameter a, and the repair times have general PDF C(x) with mean value c1.

The catastrophes act in the following manner: if the model is empty and the server
is reliable, then they disappear without any influence on the model. If the server is busy
by serving customers or is in repair, then the catastrophes remove all customers in the
model, including the one in service, and interrupt the server repair. After the catas-
trophes, the model continues its work from an empty and reliable server state.

All customers serve in the model according to FCFS (first come – first serve)
discipline. The model has unlimited waiting space. At the initial moment t ¼ 0, the
model is empty, the server is reliable and ready to serve the customers.

We will consider two cases of the model: first, model with reliable server, and
second, model with unreliable server when the model is empty.

3 Virtual Waiting Time

Let’s introduce following notations and definitions: fnðtÞ; t� 0g - is a stochastic
process (SP) which describes workload or virtual waiting time of the model at the
moment t and takes values in the state space ½0;1Þ. For the considering model, SP
fnðtÞ; t� 0g is a homogeneous Markov process with respect to time. For the farther
convenience of analysis we will consider two different states of the SP n(t): 0 - state,
where the model is free of customers and ð0;1Þ - where the model is busy either
serving the customers or repairing the server.

Wðx; tÞ ¼ PfnðtÞ\xg - is the probability distribution function for SP fnðtÞ; t� 0g,
p0ðtÞ ¼ Wð0þ ; tÞ ¼ PfnðtÞ ¼ 0g - is an idle state probability of the model, i.e.

model is free from customers and the server is reliable, at the moment t.
Ŵðx; tÞ ¼ Wðx; tÞ � p0ðtÞ ¼ Pf0\nðtÞ\xg - is a busy state probability of the

model, i.e. the model is busy, at the moment t and total workload (virtual waiting time)
of the model is less than x [19–21].

Obviously, between Wðx; tÞ; p0ðtÞ, and Ŵðx; tÞ the following relations take place:

Wðx; tÞ ¼ 0; if x� 0;

Ŵðx; tÞþ p0ðtÞ; if x[ 0;

(

Wð1; tÞ ¼ Ŵð1; tÞþ p0ðtÞ ¼ 1:

First of all, let’s consider a model M|G|1 with reliable server and catastrophes.
Using standard probabilistic arguments for p0ðtÞ and Ŵðx; tÞ we derive the following
equations:
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Case 1

d
dt
p0ðtÞ ¼ �kp0ðtÞþ @

@x
Ŵðx; tÞ x¼0j þ vŴð1; tÞ; ð1Þ

@

@t
Ŵðx; tÞ � @

@x
Ŵðx; tÞ ¼ �ðkþ vÞŴðx; tÞ � @

@x
Ŵðx; tÞ x¼0j

þ k
Zx
0

Ŵðx� y; tÞdBðyÞþ kBðxÞp0ðtÞ;

Case 2

d
dt
p0ðtÞ ¼ �ðkþ aÞp0ðtÞþ @

@x
Ŵðx; tÞ x¼0j þ vŴð1Þ; ð2Þ

@

@t
Ŵðx; tÞ � @

@x
Ŵðx; tÞ ¼ �ðkþ vÞŴðx; tÞ � @

@x
Ŵðx; tÞ x¼0j

þ k
Zx
0

Ŵðx� y; tÞdBðyÞþ ½aCðxÞþ kBðxÞ�p0ðtÞ;

with initial conditions: Wð1; tÞ ¼ Ŵð1; tÞþ p0ðtÞ ¼ 1; and Wð0þ ; 0Þ ¼ p0ð0Þ ¼ 1:
First let’s analyze the steady state solution of the model,

ŴðxÞ ¼ lim
t!1 Ŵðx; tÞ; p0 ¼ lim

t!1 p0ðtÞ:

where p0 - is a steady state probability of emptiness of the model, and ŴðxÞ is a steady
state PDF of workload of the model, respectively.

From (1) and (2) for p0 and ŴðxÞ we obtain
Case 1

0 ¼ �kp0 þ @

@x
ŴðxÞ x¼0j þ vŴð1Þ; ð3Þ

@

@x
ŴðxÞ ¼ ðkþ vÞŴðxÞþ @

@x
ŴðxÞ x¼0j � k

Zx
0

Ŵðx� yÞdBðyÞ � kBðxÞp0;

Case 2

0 ¼ �ðkþ aÞp0 þ @

@x
ŴðxÞ x¼0j þ vŴð1Þ; ð4Þ

@

@x
ŴðxÞ ¼ ðkþ vÞŴðxÞþ @

@x
ŴðxÞ x¼0j � k

Zx
0

Ŵðx� yÞdBðyÞ � ½aCðxÞþ kBðxÞ�p0:
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Now taking into account the relations between p0, ŴðxÞ and WðxÞ for PDF of
virtual waiting time WðxÞ we derive

Case 1

@

@x
WðxÞ ¼ ðkþ vÞWðxÞ � k

Zx
0

Wðx� yÞdBðyÞ � v: ð5Þ

Case 2

@

@x
WðxÞ ¼ ðkþ vÞWðxÞ � k

Zx
0

Wðx� yÞdBðyÞ � vþ a½1� CðxÞ�p0:

Let ~WðsÞ be the Laplace - Stieltjes transformation (LST) of the function WðxÞ

~WðsÞ ¼
Z1
0

e�sxdWðxÞ:

Then from (5) and we get
Case 1

~WðsÞ ¼ sp0 � v

s� v� kð1� ~BðsÞÞ ; ð6Þ

Case 2

~WðsÞ ¼ ½sþ að1� ~CðsÞÞ�p0 � v

s� v� kð1� ~BðsÞÞ :

From (6) we can define the LST of distribution ~̂WðsÞ,
Case 1

~̂WðsÞ ¼ ~WðsÞ � p0 ¼ p0k
�~BðsÞ � vð1� p0Þ
s� v� k�~BðsÞ

¼ p0k
�~BðsÞ � vŴð1Þ

s� v� k�~BðsÞÞ
;

Case 2

~̂WðsÞ ¼ p0½a�~CðsÞþ k�~BðsÞ� � vð1� p0Þ
s� v� k�~BðsÞ

¼ p0½a�~CðsÞþ k�~BðsÞ� � vŴð1Þ
s� v� k�~BðsÞ

;

where �AðxÞ ¼ 1� AðxÞ, and Ŵð1Þ ¼ 1� p0.
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ŴðxÞ can be interpreted as a workload which can be destroyed by the catastrophe at
the moment of its occurrence, whereas Ŵð1Þ - can be interpreted as a probability that
the model is busy.

To find the value of unknown factor p0 we can use different approaches. For
instance, the factor p0 can be found by using the fact that LST of virtual waiting time
distribution is an analytic function (see [20–22]). We can also use the regenerative
processes arguments [21, 23, 24], relation between characteristics of two M|G|1 models
with and without catastrophes [25–29], and collective marks method [25–33]. In the
next section we shall discuss the usage of these three methods to find the idle state
transient and steady state probabilities p0ðtÞ, p0 of the model.

4 The Idle State Probabilities

Let’s use alternating renewal processes to define the idle state probability p0 of the
model. According to this approach the model can be described by the renewal process
wðtÞ which has two alternative periods: idle period when the model is free of customers
and the server is reliable, and busy period - when the model serves customers or the
server repairs after the failure. These two periods we denote farther by (0) and (1),
respectively. The length of idle period is a r.v. f which has a Poisson distribution with
parameter k for case 1 and kþ a for case 2. The length of busy period is a r.v. ĝ which
has a PDF p̂ðtÞ ¼ Pðĝ� tÞ, and mean value �̂p1.

Let p0 and p1 are stationary probabilities of states (0) and (1) at moment t. Then,
according to [23], for the steady-state probabilities p0 and p1 we obtain

Case 1

p0 ¼ 1
1þ k�̂p1

; p1 ¼ k�̂p1
1þ k�̂p1

: ð7Þ

Case 2

p0 ¼ 1
1þ �̂p1ðkþ aÞ ; p1 ¼

�̂p1ðkþ aÞ
1þ �̂p1ðkþ aÞ :

To find the mean value of the busy period for the model with catastrophes we can
use well known result for the busy period of the standard model M|G|1 without
catastrophes, as shown in [25]. Let the r.v h is the length of interval between two
successive catastrophes, and the r.v. gi, i ¼ 1; 2 is the length of busy period of the
standard M|G|1 model without catastrophes, where r.v. g1 correspond to model with
reliable server and r.v. g2 correspond to model with unreliable server. Then the length
of busy period ĝ of the model with catastrophes can be find from ĝi ¼ minfh; gig. Let
FðtÞ ¼ Pðh\tÞ and piðtÞ ¼ Pðgi\tÞ are the PDFs of r.v. gi and h, and �pi1 and �h1 are
their mean values, respectively. As it is well known (see for example [30, 31]), the LST
of busy period for standard M|G|1 model ~p1ðsÞ with reliable server is a smallest
positive real root of the functional equation ~p1ðsÞ ¼ ~Bðsþ kð1� ~p1ðsÞÞ; Res[ 0.
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For the model with unreliable server the LST of busy period ~p2ðsÞ can be found from
functional equations (see for example [22, 30, 31, 34])

~p2ðsÞ ¼ k
kþ a

~Bðsþðkþ aÞð1� ~p2ðsÞÞþ a
kþ a

~Cðsþðkþ aÞð1� ~p2ðsÞÞ Res[ 0:

Thus, for the distribution of busy period of the model with catastrophes p̂ðtÞ and its
mean value �̂p1 we obtain

p̂ðtÞ ¼
Z t

0

ð1� pðxÞÞdFðxÞþ
Z t

0

ð1� FðxÞÞdpðxÞ; �̂p1 ¼
Z1
0

ð1� p̂ðtÞÞdt:

If catastrophes occur according to Poisson process with parameter v, �h1 ¼ v�1, then
for LST of PDF ~̂piðsÞ; and its mean value �̂p1i; i ¼ 1; 2, (see [17, 23]) we derive

~̂piðsÞ ¼ ~piðsþ vÞþ v
sþ v

½1� ~piðsþ vÞ� ¼ vþ s~piðsþ vÞ
sþ v

; �̂p1i ¼ 1� ~piðvÞ
v

; i ¼ 1; 2:

ð8Þ

The steady-state probabilities p0 and p1 can be obtained from (7)
Case 1

p0 ¼ v
vþ k½1� ~p1ðvÞ� ; p1 ¼

k½1� ~p1ðvÞ�
vþ k½1� ~p1ðvÞ� ; ð9Þ

Case 2

p0 ¼ v
vþ ½1� ~p2ðvÞ�ðkþ aÞ ; p1 ¼

½1� ~p2ðvÞ�ðkþ aÞ
vþ ½1� ~p2ðvÞ�ðkþ aÞ :

After substitution of p0 into (6) we find the LST of virtual waiting time distribution
~WðsÞ for the corresponding models M|G|1 with catastrophes

Case 1

~WðsÞ ¼ v½s� v� að1� ~̂pðvÞÞ�
½s� v� k�BðsÞ�½vþ að1� ~̂pðvÞÞ� : ð10Þ

Case 2

~WðsÞ ¼ v½s� vð1� ~CðsÞÞ�f1� ~CðsÞ½vþ k½1� ~pðvÞ�ð1þ avÞ�g
½s� v� kð1� ~BðsÞÞ�½vþ k½1� ~pðvÞ�ð1þ avÞ� :

Let �x1 be a mean value of virtual waiting time, then from (10) for the case 1 we
derive

Virtual Waiting Time in Single-Server Queueing Model M|G|1 325



�x1 ¼ lim
s!0

�W 0ðsÞ½ � ¼ p0 � ½1� kb1�
v

¼ p0 � ½1� q�
v

; ð11Þ

where q is a workload of the model, q ¼ kb1.
Obviously when the arrival rate of catastrophes approaches zero v ! 0, from (11)

and (9) we obtain the mean value of virtual waiting time �̂x1 and idle state stationary
probability for the model without catastrophes �̂x1 ¼ kb2

2ð1�qÞ and p̂0 ¼ 1� q.

Here b2 is the second moment of the service time distribution.
To evaluate the mean value of the virtual waiting time �x1 and idle state probability

of the model p0 for small value of v first we define the expansion of LST of a busy
period distribution ~pðvÞ

~pðvÞ ¼
Z1
0

e�vtdp̂ðtÞ ¼ 1� vp̂1 þ v2p̂2
2

� v3p̂3
3!

þOðvÞ;

where p̂1 ¼ b1
1�q ; p̂2 ¼ b2

1�qð Þ3 ; p̂3 ¼ b3
1�qð Þ4 þ

3kb22
1�qð Þ5 :

Then for p0 and �x1 we obtain

p0 ¼ ð1� qÞþ v
2

kb2
1� qð Þ þ v2

1
6

kb3
1� qð Þ2 þ 3

4
ðkb2Þ2
1� qð Þ3

 !
þOðv3Þ; ð12Þ

�x1 ¼ p0 � 1� qð Þ
v

ffi 1
2

kb2
1� qð Þ þ v

1
6

kb3
1� qð Þ2 þ 3

4
ðkb2Þ2
1� qð Þ3

 !
þOðv2Þ: ð13Þ

The (12) and (13) can be rewritten in more convenient form

p0 ¼ p̂0 þ v
2

kb2
1� qð Þ þ v2

1
6

kb3
1� qð Þ2 þ 3

4
ðkb2Þ2
1� qð Þ3

 !
þOðv3Þ;

�x1 ¼ �̂x1 þ v
1
6

kb3
1� qð Þ2 þ 3

4
ðkb2Þ2
1� qð Þ3

 !
þOðv2Þ:

Where �̂x1 and p̂0 are defined above.

5 Transient Virtual Waiting Time of the Model M|G|1

In this section we consider the transient virtual waiting time distribution Wðx; tÞ of the
models M|G|1 with catastrophes. To solve the Eqs. (1) and (2) for Ŵðx; tÞ and p0ðtÞ
with initial conditions p0ð0Þ ¼ 0; Ŵðx; 0Þ; x� 0, Ŵðx;1Þþ p0ð1Þ ¼ 1 we will use
LST method.
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Let ~Wðs; tÞ be a LST of Wðx; tÞ with respect to x

~Wðs; tÞ ¼
Z1
0

e�sxdWðx; tÞ; ReðsÞ[ 0:

Taking into account the relation Wðx; tÞ ¼ p0ðtÞþ Ŵðx; tÞ, initial condition
Wðx; 0Þ, and normalization condition Wð1; tÞ ¼ 1; t� 0, then, for ~Wðs; tÞ we derive
the following differential equations:

Case 1

@

@t
~Wðs; tÞ � ~Wðs; tÞ½s� v� kð1� ~BðsÞÞ� ¼ v� sp0ðtÞ: ð14Þ

Case 2

@

@t
~Wðs; tÞ � ~Wðs; tÞ½s� v� kð1� ~BðsÞÞ� ¼ v� p0ðtÞ½sþ a�~CðsÞ�:

The solutions for (14) are
Case 1

~Wðs; tÞ ¼ euðs;vÞt ~Wðs; 0Þ � s
Z t

0

e�uðs;vÞup0ðuÞduþ v
Z t

0

e�uðs;vÞudu

8<
:

9=
;; ð15Þ

Case 2

~Wðs; tÞ ¼ euðs;vÞt ~Wðs; 0Þ � ½sþ að1� ~CðsÞÞ�
Z t

0

e�uðs;vÞup0ðuÞduþ v
Z t

0

e�uðs;vÞudu

8<
:

9=
;;

where uðs; vÞ ¼ s� v� kð1� ~BðsÞÞ, ~Wðs; 0Þ ¼ ~̂Wðs; 0Þ.
The expressions for unknown function p0ðtÞ we will derive by supplementary event

method [22, 30–34].
Let’s suppose that an event A can happen independently from the considering

model. The intervals between two consecutive events A have exponential distribution
with parameter s:

Then s~p0ðsÞ ¼
R1
0
p0ðtÞdt 1� e�stð Þ can be interpreted as a probability of an event

{an event A occurs when the model is idle and the server is reliable}.
But this event can be realized in three mutually independent ways:
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• {an event A appears earlier than a customer arrives or a server breaks down}.
Recall, that at initial moment t ¼ 0 the model is in idle (0) state and the server is
reliable. In this state there are three competitive events: occurrence of an event A
with the rate s, arrival of a customer with the rate k, and a server breaking down
with the rate a. The probability of this event is

Z1
0

e�ðkþ aÞtdð1� e�stÞ ¼ s
sþ kþ a

:

• {among those three events (an arriving of a customer, the breaking down of a
server, and the occurrence of an event A), the first is the customer’s arrival. The
probability of the first part of this event is

Z1
0

e�ðsþ aÞtdð1� e�ktÞ ¼ k
sþ kþ a

:

• {after arrival of customer the busy period of the model immediately begins. During
this busy period an event A does not occur (with probability ~pðsÞ), it occurs during
the following idle period (with probability s~p0ðsÞ}. The probability of this event is

k
sþ kþ a

~pðsÞs~p0ðsÞ:

• {among those, the server breaks down first ( a
sþ kþ a) and immediately its renewal

period begins. During this period, an event A does not occur (~cðsÞ). It occurs during
the following idle period (s~p0ðsÞ)}. The probability of this event is

a
sþ kþ a

~cðsÞs~p0ðsÞ:

Now by using the full probability rule for s~p0ðsÞ we obtain

s~p0ðsÞ ¼ s
sþ kþ a

þ k
sþ kþ a

~pðsÞs~p0ðsÞþ a
sþ kþ a

~cðsþ kð1� ~̂pðsÞÞÞs~p0ðsÞ: ð16Þ

Hence from (16) for ~p0ðsÞ we derive

~p0ðsÞ ¼ 1

sþ kð1� ~pðsÞÞþ a½1� ~Cðsþ kð1� ~̂pðsÞÞÞ� : ð17Þ

Now to present the probability ~̂p0ðsÞ by the parameters of the model without
catastrophes ~p0ðsÞ we use the relation [26, 27]:
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p̂0ðsÞ ¼ sþ v
s

p0ðsþ vÞ: ð18Þ

From (17) and (18) for the ~p0ðsÞ of the model M|G|1 with catastrophes we derive

~p0ðsÞ ¼ sþ v

s sþ vþ kð1� ~̂pðsþ vÞÞþ a½1� ~Cðsþ vþ kð1� ~̂pðsþ vÞÞÞ�� � : ð19Þ

From (19) when a ¼ 0 for the model M|G|1 with reliable server and catastrophes
we obtain

~p0ðsÞ ¼ sþ v

s sþ vþ kð1� ~̂pðsþ vÞÞ� � : ð20Þ

The corresponding steady-state probabilities p0 for the model M|G|1 with catas-
trophes we obtain

Case 1

p0 ¼ lim
t!1 p0ðtÞ ¼ lim

s!0
s~p0ðsÞ ¼ v

vþ kð1� ~̂pðvÞÞ ; ð21Þ

Case 2

p0 ¼ v

vþ kð1� ~̂pðvÞÞþ a½1� ~Cðvþ kð1� ~̂pðvÞÞÞ� :

Remark 1. Let’s suppose that customers arrive and catastrophes occur according to
non-homogeneous Poisson processes with rates kðtÞ and vðtÞ, respectively. In this case
the corresponding differential equations for ~Wðs; tÞ are

Case 1

@

@t
~Wðs; tÞ � ~Wðs; tÞ½s� vðtÞ � kðtÞ~�BðsÞ� ¼ vðtÞ � sp0ðtÞ; ð22Þ

Case 2

@

@t
~Wðs; tÞ � ~Wðs; tÞ½s� vðtÞ � kðtÞ~�BðsÞ� ¼ vðtÞ � p0ðtÞ½sþ a�~CðsÞ�;

and their solutions are
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Case 1

~Wðs; tÞ ¼ exðtÞ ~Wðs; 0Þ � s
Z t

0

e�xðuÞp0ðuÞduþ
Z t

0

e�xðuÞvðuÞdu
8<
:

9=
;; ð23Þ

Case 2

~Wðs; tÞ ¼ exðtÞ ~Wðs; 0Þ � ½sþ að1� ~CðsÞÞ�
Z t

0

e�xðuÞp0ðuÞduþ
Z t

0

e�xðuÞvðuÞdu
8<
:

9=
;;

where uðs; v; tÞ ¼ s� vðtÞ � kðtÞð1� ~BðsÞÞ, xðuÞ ¼ Ru
0
uðs; v; yÞdy.

To solve the differential Eq. (14) we use LT method. Let ~~Wðs; hÞ be the LT of PDF
~Wðs; tÞ with respect to t; namely

From (14), after taking LT, for ~~Wðs; hÞ we get the following equations:
Case 1

~~Wðs; hÞ ¼
~Wðs; 0Þþ v

h � s~p0ðhÞ
h� sþ vþ kð1� ~BðsÞÞ : ð24Þ

Case 2

~~Wðs; hÞ ¼
~Wðs; 0Þþ v

h � ½sþ að1� ~CðsÞÞ�~p0ðhÞ
h� sþ vþ kð1� ~BðsÞÞ :

As shown in [21], the unknown function ~p0ðhÞ can be derived by using analytic

properties of a function ~~Wðs; hÞ with respect to arguments s and h. Let s be a zero of the

denominator of ~~Wðs; hÞ

s ¼ hþ vþ kð1� ~pðhÞÞ:

Hence, from (24) for ~p0ðhÞ we obtain
Case 1

~p0ðhÞ ¼
~Wðhþ vþ kð1� ~pðhÞÞ; 0Þþ v

h

hþ vþ kð1� ~pðhÞÞ ; ð25Þ
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Case 2

~p0ðhÞ ¼
~Wðs; 0Þþ v

h

½að1� ~Cðhþ vþ kð1� ~pðhÞÞÞÞþ hþ vþ kð1� ~pðhÞÞ� :

Remark 2. Let’s consider the model BM|G|1 with batch arrival of customers, catas-
trophes, “negative” customers and unreliable server. The batches arrive according to
Poisson distribution with parameter k. With probability qr arriving batch contains r
regular customers. Let QðzÞ be the probability generating function (PGF) of batch size
and �q is its mean value.

QðzÞ ¼
X1
r¼0

qrz
r:

“Negative” customers, catastrophes and server failures occur according to Poisson
distribution with parameters k�; v; and a, respectively. The “negative” customers act
in the following manner: if the model is empty or server is in repair station, then
“negative” customer disappears without any influences on the model. If the model is
busy by serving regular customers, then occurring “negative” customer removes a
regular customer in service and with probability p initiates the second type recovery of
server or with probability 1� p starts serving next regular customer. After the
recovery, server continues serving remaining regular customers in the model. Second
type recovery time has general PDF GðtÞ with LST ~GðsÞ and mean value �g1.

For the LST of virtual waiting time distribution of the model we derive

~Wðs; tÞ ¼ euðs;vÞt ~Wðs; 0Þ � ½að1� ~C1ðsÞÞþ s�
Z t

0

euðs;vÞup0ðuÞduþ
Z t

0

euðs;vÞuvdu

8<
:

9=
;;

where uðs; vÞ ¼ s� v� kQð~B0ðsÞÞ, ~B0ðsÞ ¼ ~Bðsþ k�Þþ k�
sþ k�

�~Bðsþ k�Þ½1� p�~GðsÞ�:
Remark 3. The results for ~p0ðsÞ, p0 and virtual waiting time distribution can be
generalized in case of the model MkjGkj1 with k types of customers, unreliable server
and catastrophes. Let’s suppose that different types of customers arrive according to
Poisson processes with the rates k1; k2; . . .; kk and their service times are i.i.d. r.v. with
PDFs B1ðtÞ; B2ðtÞ; . . .; BkðtÞ and finite mean values �b11; �b12; . . .; �b1k. For the model
MkjGkj1 with conservative service discipline and catastrophes for LT of transient and
steady state probabilities ~p0ðsÞ, p0 we derive

~p0ðsÞ ¼ sþ v

s sþ vþ r~̂pðsþ vÞþ a½1� ~Cðsþ vþ rð1� ~̂pðsþ vÞÞ�� � ;
p0 ¼ v

vþ r~̂pðvÞþ a½1� ~Cðvþ rð1� ~̂pðvÞÞ� :

Where ~̂pðsÞ is a unique solution of the functional equation
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r~̂pðsÞ ¼
Xk
i¼1

ki~Biðsþ kð1� ~̂pðsÞÞÞ; r ¼
Xk
i¼1

ki:

For the LST of steady state virtual waiting time PDF ~WðsÞ of the model MkjGkj1
with k types of customers, catastrophes and unreliable server we derive:

~WðsÞ ¼ ½sþ að1� ~CðsÞÞ�p0 � v

s� v�Pk
i¼1

kið1� ~Biðsþ kð1� ~̂pðsÞÞÞÞ
: ð26Þ

Remark 4. Let’s consider queuing model M|G|1 with catastrophes when arrival rate
and PDF of service time of first customer which opens the busy period are k0 and
B0ðxÞ; the arrival rate and PDF of other customers (during one busy period of the
model) are k and BðxÞ, respectively. As noted in [21, 31] this model can be used for
modeling queuing systems with unreliable server, vacations and set up time. We
suppose that both PDFs have finite mean values.

The corresponding differential equations for Wðx; tÞ, LST ~Wðs; tÞ and its solution
are

@

@t
Wðx; tÞ � @

@x
Wðx; tÞ ¼ �ðkþ vÞWðx; tÞþ k

Zx
0

Wðx� y; tÞdBðyÞ

þ ½k0B0ðxÞ � kBðxÞ � að1� CðxÞÞ�p0ðtÞ;

@

@t
~Wðs; tÞ � ~Wðs; tÞ½s� v� kð1� ~BðsÞÞ� ¼ v� p0ðtÞ½sþ að1� ~CðsÞÞ

� k0~B0ðsÞþ k~BðsÞ�;

~Wðs; tÞ ¼ euðs;vÞt ~Wðs; 0Þ � ½sþ a�~CðsÞ � k0~B0ðsÞþ k~BðsÞ�
Z t

0

e�uðs;vÞup0ðuÞduþ v
Z t

0

e�uðs;vÞudu

8<
:

9=
;:

Remark 5. As an application of obtained results let define virtual waiting time dis-
tribution for MkjGkj1 queueing model with priority service of customers and catas-
trophes. We consider queuing models MkjGkj1 with non-preemptive and preemptive
priorities. Suppose that customers of ith priority (simply ith type) arrive according to
Poisson process with the rate ki, i ¼ 1; 2; . . .; k and their service times are i.i.d. r.v. bi
with general PDF BiðxÞ and finite mean values b1i. Suppose that ith type customers have
higher priority than jth type customers if i\ j. We will consider the steady state
solution.

Let ~pnðsÞ be the LST of the busy period of the model with customers of priorities n
and higher, and ~HnðsÞ be the LST of PDF of time interval starting with service of nth
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type customer up to moment when the model is free of nth type customers and higher
priority customers. Then for ~pnðsÞ and ~HnðsÞ we get [22],

rn~pnðsÞ ¼
Xn
j¼1

kj~Bjðsþ rnð1� ~pnðsÞÞÞ; rn ¼
Xn
i¼1

ki; n ¼ 1; 2; . . .; k:

~HnðsÞ ¼ ~Bnðsþ rn�1�~pn�1ðsÞÞ:

To define the LST of virtual waiting time for nth priority customers for the model
with non-preemptive priorities and preemptive resume priorities we have to do the
following substitutions into the results of the model M|G|1 with unreliable server and
catastrophes: k ¼ kn; BðxÞ ¼ HnðxÞ; a ¼ rn�1; ~CðsÞ ¼ ~pn�1ðsÞ; v ¼ vn:

Using the results obtained in [22] for priority queueing models we can define
virtual waiting time distribution for different modifications of preemptive priorities, as
well as for the models with alternative priorities, vocations and set-up times.

Remark 6. Now let’s consider a single server model M|G|1 with recovery time after
catastrophes. Catastrophes occur according to Poisson distribution with parameter v.
The occurring catastrophe removes all customers in the model including the one in
service, and the repair period of the server starts immediately. The customers which
arrive during repair period, stay in the model, and get served after the repair of server.
Suppose that catastrophes can occur during repair period of server as well and can
remove all the customers waiting in the model. Server repair times have general PDF
C2(x), with LST ~C2ðsÞ; and finite mean value c2.

By using standard probabilistic arguments for p0ðtÞ and Ŵðx; tÞ of the model we
derive the following differential equations and their transient and steady state solutions

d
dt
p0ðtÞ ¼ �kp0ðtÞþ @

@x
Ŵðx; tÞ x¼0j ; ð27Þ

@

@t
Ŵðx; tÞ � @

@x
Ŵðx; tÞ ¼ �ðkþ vÞŴðx; tÞ � @

@x
Ŵðx; tÞ x¼0j þ vŴð1ÞC2ðxÞ

þ k
Zx
0

Ŵðx� y; tÞdBðyÞþ kBðxÞp0ðtÞ;

@

@t
~Wðs; tÞ � ~Wðs; tÞ½s� v� kð1� ~BðsÞÞ� ¼ v~C2ðsÞ � p0ðtÞ½s� vð1� ~C2ðsÞÞ�; ð28Þ

and their transient and steady state solutions
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~Wðs; tÞ ¼ euðs;vÞt ~Wðs; 0Þ � ½s� v�~C2ðsÞ�
Z t

0

e�uðs;vÞup0ðuÞduþ v~C2ðsÞ
Z t

0

e�uðs;vÞudu

8<
:

9=
;;

~~Wðs; hÞ ¼
~Wðs; 0Þþ v~C2ðsÞ

h � ~p0ðhÞ½s� vð1� ~C2ðsÞÞ�
h� sþ vþ kð1� ~BðsÞÞ ; ð29Þ

~p0ðhÞ ¼
~Wðhþ vþ kð1� ~pðhÞÞ; 0Þþ v

h
~C2ðhþ vþ kð1� ~pðhÞÞÞ

hþ vþ kð1� ~pðhÞÞ � vð1� ~C2ðhþ vþ kð1� ~pðhÞÞÞÞ ;

~WðsÞ ¼ ½s� vð1� ~C2ðsÞÞ�p0 � v~C2ðsÞÞ
s� v� kð1� ~BðsÞÞ ; ð30Þ

where p0 is defined by p0 ¼ v~C2ðdÞÞ
d�vð1�~C2ðdÞÞ :

Here d is a unique positive zero of the function f ðsÞ ¼ s� v� kð1� ~BðsÞÞ in the
unite disk jsj\1 of complex plane [30, 31].

6 Conclusion

In the present paper we consider two basic types of queue models M|G|1 with catas-
trophes, reliable and unreliable server. We also consider some generalizations of these
models for queues with priorities, non-homogeneous arrivals of customers and
occurrence of catastrophes. To define the virtual waiting time distribution and idle state
probability of the model we show possibility of using different methods: for example,
collective marks method, integro-differential equations of Takacs, or renewal theory. In
the future research we plan to generalize queueing models with catastrophes by con-
sidering Marked Markov Arrival Processes stream of customers and occurrence of
catastrophes, and develop the supplementary event method for these types of queueing
models.
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Abstract. We consider a single-server queueing system with two par-
allel queues of which one is a finite buffer for priority customers and
the other infinite for ordinary customers. Two types of customers arrive
according to the Marked Markovian Arrival Process (MMAP). Service
times are assumed to follow phase-type distributions. A customer gets
priority either by paying a cost or by any other means. Priority customers
receive service on the basis of a token system which works according to
the following rule: K − 1 lower priority customers are served consecu-
tively, and the Kth one is from the priority queue, if there is any. Priority
customers have the right to take the strategic decision in choosing the
queue on arrival, if such a customer joins an ordinary queue then he loses
the special benefit that he would have got otherwise. We introduce the
joining strategy for the priority customers and call it ‘K-policy’ along
with probabilistic decision whether to give up their additional benefit
(reward). Steady-state analysis of the model is done. Some system char-
acteristics are evaluated, a social optimization problem is discussed and
numerical illustrations are provided.

Keywords: Token · Joining strategy · Marked Markovian arrival
process · Net benefits

1 Introduction

Classical priority queueing systems consider two or more parallel queues, formed
by customers of distinct priorities 1(highest), 2, ...,m(least), respectively. White
and Christie were the first to consider priority queues. In [13], they considered
the simple 2-priority (M,M)/M/1 queue and analyzed both non-preemptive
and preemptive cases of services to derive the system state probability distribu-
tion, thereby deriving all-important system performance measures. Miller [10]
employed the matrix geometric method to analyze the same system. Sapna and
Stanford extended Miller’s results to n-priority system in [4], with service time
having phase-type distribution. Krishnamoorthy and Manjunath in [7] consid-
ered a priority system where only one queue is formed externally. In a subsequent
paper [6], Krishnamoorthy and Manjunath extended the procedure of generating
low priority queues internally to feedback queues. Analysis of various priority
queues is described in [12].
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Multiple queues with simultaneous services are analyzed in [1]. MMAP model
is described in [3] and [9]. Steady-state probabilities are computed using Matrix
Geometric methods in [11]. The rate matrix is computed using Ramaswami’s
Logarithmic Reduction Algorithm by [8]. In [2], Deepak T.G. et al. considered
queues with postponed work. The present work is an extension of [5], a single
server queueing model with an optimal joining strategy for priority customers.

In this paper, we introduce an entirely different priority queue, two types of
priority waiting lines are formed at a counter in a single server queue. One is
called ordinary customers queue (OC) with infinite capacity waiting for space
and the second one is referred to as queue of priority customers (PC) with finite
capacity waiting for space.

The problems addressed in this paper are what is the optimal joining strategy
of a priority customer upon arrival, whether to join the PC queue or OC queue
to reduce his waiting time assuming there is no additional benefit (reward) for
joining the PC queue, except that he is offered service as per the K-policy, and
the other is what is the optimal K value in the sense of reducing the waiting of
PC customers and minimizing their loss due to finite capacity of the PC queue?
Along with the joining strategy, we introduced a probabilistic joining strategy for
PC customers to join in PC queue or in OC queue by assuming additional benefit
(reward). The case of K = 1 leads to a classical 2-priority queue; K = 2 results
in the alternating queue and K infinity leads to exhaustive service discipline of
OC queue before the PC queue is attended.

The rest of the article is organized as follows. Section 2 provides the mathe-
matical modeling of the problem under study. Steady-state analysis of the model
and some system performance measures are presented in Sect. 3.

2 Model Description

We consider a queueing system with two types of priority waiting for lines formed
in front of a single server. One is called the ordinary customers (OC) queue and
the second one is referred to as the priority customers (PC) queue. The ordinary
queue is of infinite size and the priority queue is of finite size M . Customer
priority may be either by paying a cost or by any other means.

2.1 Service Policy

Service policy is on the basis of a token system. A token is circulating from
1, 2, ...,K − 1,K. The system assigns priority to priority customers as follows.
After serving continuously K − 1 ordinary customers a priority customer, if
present, will be taken for service. In the absence of a priority customer, ordinary
customers, if present, are again served. Each time, a cycle of K − 1 ordinary
customers complete service continuously (one after the other), the server goes to
PC queue to serve the head of the queue. If the PC queue is empty, he returns to
OC queue. If OC queue gets empty before the counter reaches K, the server visits
PC queue and the counter restarts. Also, the priority customer not only observes
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the token number but also the occupancy of both queues as well. The token
number of the ordinary customers being served 1, 2, ...,K−1, and K standing for
a priority customer currently in service is displayed so that a priority customer
can, upon arrival decide which queue he should join to minimize his waiting
time. We assume that such an option is given to the priority customers alone.
Every time the server serves a priority customer, he checks the OC queue to serve
customers there, if there is any, else he attends the next priority customer. We
call this process of assigning priority to priority customers “K-policy of priority”.

2.2 Joining Strategy of Priority Customer

We introduce a joining strategy of an arriving priority customer as follows. An
arriving priority customer observes the number of ordinary customers waiting,
the type of customer being served and the number of priority customers in the
queue. This information will help him to decide his joining strategy.

Suppose there are n ordinary customers in waiting, service in progress is
that of an ordinary customer with his token number j, m priority customers are
waiting and the K-policy is followed.

Thus if the tagged priority customer joins the PC queue:
Waiting time of PC = The service time of m PC’s joined ahead of him +

The residual service time of the ordinary customer in-service + Service time
of (K − 1) − j ordinary customers in the present cycle + Service time of a
maximum of [(K − 1)m] ordinary customers (future arrivals also to be taken
into consideration).

Suppose instead when n + 1 customers in OC queue get served before his
turn comes in PC queue, if he were to join the PC queue, then he should join
the OC queue(provided there is no extra benefit for joining it).

Let S1 = � i+r−(K+1)
K−1 �(K − 1), S2 = (K − 1)j, and S∗

1 = � i
K−1�(K − 1).

In effect with K-policy for taking for service, the PC customer arriving at
the station decide to join PC or OC queue according to the following conditions:

– If an OC customer is in service,
An arriving PC customer decide to join PC queue if S1 > S2.
An arriving PC customer decide to join OC queue if S1 ≤ S2.

– If a PC customer is in service,
An arriving PC customer decide to join PC queue if S∗

1 > S2.
An arriving PC customer decide to join OC queue if S∗

1 ≤ S2.

The arrival process is governed by a continuous-time Markov chain {A(t), t ≥
0} with state-space {1, 2, ....n}. Even if the priority customer has the opportunity
to get the chance to enter into service immediately as an ordinary customer than
to stand in the priority queue, we assume that some of the priority customers take
the probabilistic decision whether to give up their additional benefit (reward)
or not with a probability. Instead of joining in the ordinary queue according to
the optimal joining strategy, let the priority customer join in PC queue itself
with probability p, where 0 ≤ p ≤ 1. The sojourn time in the state i1 is expo-
nentially distributed with a positive λ1

i , when the sojourn time in the state i1
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expires, the process jumps to the state j1 without generation of a customer with
probability λ1

i pi1j1(0) = di1j1(0) where i1, j1 ={1, 2, ..., n}. The process J2(t)
jumps from state i1 to j1 with the generation of ordinary or priority customer
with the probability di1j1(1) and di1j1(2), respectively, λ1

i pi1j1(1) = di1j1(1) and
λ1

i pi1j1(2) = di1j1(2).
Let D0 = (di1j1(0)), D1 = (di1j1(1)) and D2 = (di1j1(2)). The matrix D =

D0 +D1 +D2 represents the generator of the process {J(t), t ≥ 0}. The average
total arrival intensity λ is defined by λ = θ(D1 + D2)e, where θ is an invariant
vector of the stationary distribution of the Markov chain {A(t), t ≥ 0}. The
vector θ is the unique solution to the system θD = 0 and θe = 1, where e
is a column-vector consisting of ones and 0 is a zero row-vector. The average
arrival intensities of ordinary and priority customers are given by λ(1) = θD1e
and λ(2) = θD2e. The two types of customer’s arrive according to a Marked
Markovian Arrival Process (MMAP) with representation (D0,D1,D2) with order
n. Service time of an ordinary customer follows phase type distribution with
representation PH(α, T ) of order s1 and that of priority customer follows phase
type distribution with representation PH(β, S) of order s2.

Notations

Let

– N1(t) be the number of customers at time t in ordinary queue;
– N2(t) be the number of customers at time t in priority queue;
– R(t) be the token numbers from 1, 2, ...,K − 1,K;
– A(t) be the arriving phase of customer;
– S(t) be the service phase of customer in service.

Let {(N1(t), N2(t), R(t), S(t), A(t)); t ≥ 0} be the Markov Process on the
state space:

Ω = l∗ ∪ (∪∞
i=1l(i)), where

l∗ = {(0, 0, 0, 0, v); v = 1, 2, ..l}, for i ≥ 1,
l(i) = {i, j, r, u, v); i ≥ 1, 0 ≤ j ≤ M, 1 ≤ r ≤ K, 1 ≤ u ≤ m, 1 ≤ v ≤ n},
depending on the joining strategy, where m = δ[r:1<K]s1 + δ[r=K]s2,

δ[condition] =

{
1, if condition is true.
0, otherwise.
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3 Steady-State Analysis

The infinitesimal generator of the Markov chain is

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

A10 A00
A21 A11 A01

A22 A12 A02

. . .
. . .

. . .

A2N A1N A0N

A2 A1 A0

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where N = M(K − 1) + 1.

This model is a level independent quasi birth and death process (LIQBD).
This can be conveniently and efficiently solved by the classical matrix analytic
method.

The matrices A0, A1 and A2 are as follows:

A0 = diag{E, . . . , EM},

where
E = diag{Is1 ⊗ D1, . . . , Is2 ⊗ D1},

EM = diag{Is1 ⊗ (D1 + D2), . . . , Is2 ⊗ (D1 + D2)}.

The matrix A1 is

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

F1 F0
F2 F1 F0

F2 F1 F0

. . .
. . .

. . .

. . .
. . .

. . .

F2 F1 F0
F2 F1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where F1 = diag{T ⊕ D0, . . . , S ⊕ D0}, F0 = diag{Is1 ⊗ D2, . . . , Is2 ⊗ D2},

F2 =

⎛
⎜⎜⎝

O O . . . O
O O . . . O

.

.

.
.
.
.

.

.

.
.
.
.

O O . . . (T 0 ⊗ β) ⊗ Il
O O . . . O

⎞
⎟⎟⎠ .

A2 = diag{G0, G, . . . , G},

where

G0 =

⎛
⎜⎜⎝

(T 0 ⊗ α) ⊗ In

. . .

(T 0 ⊗ α) ⊗ In
(S0 ⊗ α) ⊗ In
(T 0 ⊗ α) ⊗ In

⎞
⎟⎟⎠ ,
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G =

⎛
⎜⎜⎝

(T 0 ⊗ α) ⊗ In

. . .

(T 0 ⊗ α) ⊗ In
(T 0 ⊗ α) ⊗ In
(S0 ⊗ α) ⊗ In

⎞
⎟⎟⎠ .

The matrix A = A0 + A1 + A2 can be written as

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

C1 C0
C2 C1 C0

C2 C1 C0

. . .
. . .

. . .

. . .
. . .

. . .

C2 C1 C0

C1
2 CM

1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where the matrices C0, C1, C2, C
M
1 are of same orders:

C1 =

⎛
⎜⎜⎜⎜⎝

T ⊕ (D0 + D1) (T 0 ⊗ α) ⊗ Il

. . .
. . .

. . .
. . .

O . . . . . . T ⊕ (D0 + D1) (T 0 ⊗ α) ⊗ Il
(S0 ⊗ α) ⊗ Il O . . . . . . S ⊕ (D0 + D1)

⎞
⎟⎟⎟⎟⎠ ,

C2 =

⎛
⎜⎝

O O . . . . . . O

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
T ⊕ (D0 + D1) O . . . O (T 0 ⊗ β) ⊗ Il

O O . . . O O

⎞
⎟⎠ , C1

2 =

⎛
⎜⎝

O O . . . . . . O

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
O O . . . O (T 0 ⊗ β) ⊗ Il
O O . . . O O

⎞
⎟⎠ ,

CM
1 =

⎛
⎜⎜⎜⎜⎝

T ⊕ D (T 0 ⊗ α) ⊗ Il

. . .
. . .

. . .
. . .

O . . . . . . T ⊕ D (T 0 ⊗ α) ⊗ Il
(S0 ⊗ α) ⊗ Il O . . . . . . S ⊕ D

⎞
⎟⎟⎟⎟⎠ ,

C0 = diag{Is1 ⊗ D2, . . . , Is1 ⊗ D2}.

3.1 Stability Condition

We see that A is an irreducible infinitesimal generator matrix and so there exists
the stationary vector π of A such that πA = 0 and πe = 1:

πi = πM

M−1−i∏
j=0

HM−1−j (1)
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for i = 0, 1, . . . . . .M − 1.
The sequence of matrices Hi are defined as Hi = −C2[Hi−1C0 + C1]−1 for

i = 1, 2, . . . . . . ,M − 1 and H0 = −C2[C0
1 ]−1.

The vector πM is obtained from the equation πe = 1, where

πM

⎡
⎣M−1∑

i=0

M−1−i∏
j=0

HM−1−j + I

⎤
⎦ e = 1. (2)

The stability condition is given by

πA0e < πA2e,

where

πA0e = [π0 + π1 + π2 + ...πM−1] Ee + πMEMe = Ee + πM (EM − E)e,

πA2e = [π0 + π1 + π2 + ...πM−1] Ge + πMGMe = Ge + πM (GM − G)e.

3.2 Computation of the Steady-State Vector

The Quasi-birth-death processes can be conveniently and efficiently solved using
the Matrix Analytic Method.

The stationary distribution of the Markov process under consideration is
obtained by solving the set of equations xQ = 0, xe = 1.

Let x be the steady-state probability vector of Q. Partition this vec-
tor as: x = (x0,x1,x2, . . . ), where xi = (xi0,xi1, . . .xiM ), xij =
(xij0,xij1,xij2,xij3, . . .xijK) for j = 0, 1, 2, . . . ,M , whereas for r=1, 2 . . . K,
the vectors

xijr = (xijr1,xijr2, . . . ,xijrm),

where xijru is the probability of being in state (i, j, r, u) for r = 1, 2, . . . K, i ≥ 0,
j = 0, 1, 2 . . . M, u = 1, 2, . . . m, the vectors xijru = (xijru1,xijru2, . . . ,xijrun),
where xijruv is the probability of being in state (i, j, r, u, v) for r = 1, 2, . . . N,
i ≥ 0, j = 0, 1, 2 . . . M, u = 1, 2, . . . . . .m, v = 1, 2, . . . . . . n.

The steady-state vector xi is obtained as

xi = xi−1Li,

where Li = −A0(i−1)[A1i + Li+1A2(i+1)]−1, 1 ≤ i ≤ N ,

xM(K−1)+i = xM(K−1)R
i, i ≥ 1, (3)

where the matrix R is the minimal non negative solution to the matrix quadratic
equation

R2A2 + RA1 + A0 = 0 (4)

and R can be obtained by successive substitution procedure R0 = 0 and
Rk+1 = −V −R2

kW , where V = A2A
−1
1 , W = A0A

−1
1 by Logarithmic Reduction

Algorithm developed by Latouche and Ramaswamy in [8].
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The vectors x0, ....xN−1 are obtained by solving

x0A10 + x1A21 = 0,

xi−1A0(i−1) + xiA1i + xi+1A2 = 0, 1 ≤ i ≤ N − 1, (5)

xN−1A0N−1 + xNA1 + xN+1A2 = 0,

xi−1A0 + xiA1 + xi+1A2 = 0, i ≥ N + 1,

subject to the normalizing condition

x0

⎡
⎣I +

M∑
j=2

(K − 1)
j∏

i=1

Li +
M(K−1)∏

j=1

Lj(I − R)−1

⎤
⎦ e = 1.

3.3 Waiting Time Distribution of an Ordinary Customer

For deriving the waiting time distribution of a tagged ordinary customer who
joins the queue as the r∗th customer, we consider a Markov process. Let the
Markov process be

X(t) = {(N(t), N2(t), R(t), J1(t), J2(t)); t ≥ 0},

where

– N(t) denotes the rank of the customer,
– N2(t) denotes the number of priority customers,
– R(t) denotes the token numbers,
– J1(t) denotes the phase of the service process,
– J2(t) denotes the phase of the arrival process.

The state space of X(t) is {r∗, r∗−1, r∗−2, ...2, 1}×{0, 1, ...M}×{1, 2, ...K}×
{1, 2, ...m}×{1, 2, ...n} ∪ 0∗ denotes the absorbing state that a tagged customer
is entered into service. The infinitesimal generator of waiting time distribution
of tagged ordinary customer is

Q∗ =
(

T ∗ T ∗0

O O

)
,

where

T ∗ =

⎛
⎜⎜⎝

W1 W0
W1 W0

W1 W0

. . .

W1

⎞
⎟⎟⎠ , T ∗0 =

⎛
⎜⎜⎝

O
O
O

.

.

.
W ∗

⎞
⎟⎟⎠ ,

where the matrix W1 is

W1 =

⎛
⎜⎜⎜⎝

X1 X0
X2 X1 X0

X2 X1 X0
. . . . . . . . .

. . . . . . . . .
X2 X1 X0

X2 X1

⎞
⎟⎟⎟⎠ ,
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where
X1 = diag{T ⊕ (D0 + D1), . . . , S ⊕ (D0 + D1)},

X0 = diag{Is1 ⊗ D2, . . . , Is2 ⊗ D2},

X2 =

⎛
⎜⎝

O O . . . O

.

.

.
.
.
.

.

.

.
.
.
.

O O . . . (T 0 ⊗ β) ⊗ In

⎞
⎟⎠ , W ∗ =

⎛
⎜⎜⎝

Y1

.

.

.

.

.

.
Y1

⎞
⎟⎟⎠ , Y1 =

⎛
⎜⎝

(T 0 ⊗ α) ⊗ In
(T 0 ⊗ α) ⊗ In

.

.

.
(S0 ⊗ α) ⊗ In

⎞
⎟⎠ ,

W0 = diag{W 1
0 ,W 11

0 , . . . ,W 11
0 },

W 1
0 =

⎛
⎜⎜⎜⎜⎝

(T 0 ⊗ α) ⊗ In

. . .

(T 0 ⊗ α) ⊗ In
(T 0 ⊗ α) ⊗ In

(T 0 ⊗ α) ⊗ In
(S0 ⊗ α) ⊗ In

⎞
⎟⎟⎟⎟⎠ ,

W 11
0 =

⎛
⎜⎝

(T 0 ⊗ α) ⊗ In

. . .

(T 0 ⊗ α) ⊗ In
(S0 ⊗ α) ⊗ In

⎞
⎟⎠ .

Expected waiting time of an ordinary customer who joins the queue as r∗th

customer is

WQ1 = −(W1)−1(I − (W0W1)−1)r∗
(I − W0W1)−1.

3.4 Waiting Time Distribution of a Priority Customer

For deriving the waiting time distribution of a tagged ordinary customer who
joins the queue as the s∗th customer, we consider a Markov process. Let the
Markov process be the Markov process

X∗(t) = {(N(t), N1(t), R(t), J1(t), J2(t)); t ≥ 0},

where

– N(t) denotes the rank of the customer,
– N1(t) denotes the number of ordinary customers which is chosen such as

Pr{Number of customers in the ordinary queue ≥ N}< ε, for sufficiently
small ε,

– R(t) denotes the token numbers,
– J1(t) denotes the phase of the service process,
– J2(t) denotes the phase of the arrival process.
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The state space of X(t) is {s∗, s∗−1, s∗−2, ...2, 1}×{0, 1, ...N}×{1, 2, ...K}×
{1, 2, ...m}×{1, 2, ...n}∪0∗, where 0∗ denotes the absorbing state that the tagged
customer is entered into service.

The infinitesimal generator of waiting time distribution of tagged ordinary
customer is

Q∗ =
(

T 1∗
T 1∗0

O O

)
,

where

T 1∗
=

⎛
⎜⎜⎝

W 1
1 W 1

0

W 1
1 W 1

0

W 1
1 W 1

0

. . .

W 1
1

⎞
⎟⎟⎠ , T 1∗0

=

⎛
⎜⎜⎝

O
O
O

.

.

.
W 1∗

⎞
⎟⎟⎠ ,

where the matrix W 1
1 is

W 1
1 =

⎛
⎜⎜⎜⎜⎝

X1
1 X1

0

X1
2 X1

1 X1
0

X1
2 X1

1 X1
0

. . . . . . . . .
. . . . . . . . .

X1
2 X1

1 X1
0

X1
2 X1

1

⎞
⎟⎟⎟⎟⎠ ,

X1
1 = diag{T ⊕ (D0 + D2), . . . , S ⊕ (D0 + D2)},

X1
0 = diag{Is1 ⊗ D1, . . . , Is2 ⊗ D1},

X1
2 =

(
(T 0 ⊗ β) ⊗ In

)
, W 1∗

=

⎛
⎜⎜⎝

Y 1
1

.

.

.

.

.

.
Y 1

1

⎞
⎟⎟⎠ ,where Y 1

1 =

⎛
⎜⎜⎜⎜⎝

O

.

.

.

.

.

.
(T 0 ⊗ α) ⊗ In

O

⎞
⎟⎟⎟⎟⎠ ,

W 1
0 =

⎛
⎜⎝

W 11
0

W 111
0

. . .

W 111
0

⎞
⎟⎠ , W 11

0 =

⎛
⎜⎝

O O . . . (T 0 ⊗ α) ⊗ In
.
.
.

.

.

.
.
.
.

.

.

.
O O . . . (T 0 ⊗ α) ⊗ In
O O . . . (S0 ⊗ α) ⊗ In

⎞
⎟⎠ ,

W 111
0 =

⎛
⎜⎝

O O . . . O

.

.

.
.
.
.

.

.

.
.
.
.

O O . . . (T 0 ⊗ α) ⊗ In
O O . . . O

⎞
⎟⎠ .

Expected waiting time of an priority customer who joins the queue as s∗th

customer is

WQ2 = −(W 1
1)−1(I − (W 1

0W
1
1)−1)s∗

(I − W 1
0W

1
1)−1.
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3.5 Performance Measures

1. Expected number of ordinary customers in the system:

E[N1] =
∞∑

i=0

ixie.

2. Expected Number of priority customers in the system:

E[N2] =
M∑

j=1

jxije.

3. Expected number of customers in the system:

E[N ] = E[N1] + E[N2].

4. The probability that the server is idle:

t0 = x00.

5. The probability that the server is busy with an ordinary customer:

t1 =
∞∑

i=0

M∑
j=0

K−1∑
r=1

xijre.

6. The probability that the server is busy with a priority customer:

t2 =
∞∑

i=0

M∑
j=0

xijKe.

7. The probability that a priority customer is blocked from entering the system
upon arrival:

Pb =
∞∑

i=0

K∑
r=1

xiMre.

3.6 Social Optimization Problem

In this section we propose a social optimization problem:

– a reward or benefit R1 monetary units for a priority customer joining in
ordinary queue;

– a reward or benefit R2 monetary units for a priority customer joining in
priority queue;

– a waiting cost h1 monetary units for each unit of time that a priority customer
waiting in ordinary queue;
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– a waiting cost h2 monetary units for each unit of time that a priority customer
waiting in priority queue;

– a cost of c1 monetary units for each priority customer being served in ordinary
queue;

– a cost of c2 monetary units for each priority customer being served in priority
queue;

– WQ1 be the expected waiting time of an ordinary customer;
– WQ2 be the expected waiting time of priority customer.

Net Benefit for a priority customer if he joins in the ordinary queue Q1

according to joining strategy is

B1 = R1 − (1 − p)h1WQ1 − c1.

Net Benefit for a priority customer if he joins in the priority queue Q2

B2 = R2 − ph2WQ2 − c2.

– If B1 > 0 and B1 > B2, then the priority customer join in ordinary queue
Q1.

– If B1 > 0 and B1 < B2, then the priority customer join in priority queue Q2.
– If B1 < 0 and B2 > 0 then the priority customer join in priority queue Q2.
– B1 < 0 and B2 < B1 , then the priority customer join in ordinary queue Q1.
– If B1 = 0 and B2 = 0, then the priority customer either join in ordinary

queue Q1 or in priority queue Q2.
– If B1= 0 and B1 > B2, then the priority customer join in ordinary queue Q1.
– If B1= 0 and B1 < B2, then the priority customer join in priority queue Q2.

Similarly,
– If B2 > 0 and B2 > B1, then the priority customer join in priority queue Q2.
– If B2 > 0 and B2 < B1, then the priority customer join in ordinary queue

Q1.
– If B2 < 0 and B1 > 0 then the priority customer join in ordinary queue Q1.
– B2 < 0 and B1 < B2, then the priority customer join in priority queue Q2.
– If B2 = 0 and B1 < B2, then the priority customer join in priority queue Q2.
– If B2 = 0 and B1 > B2, then the priority customer join in ordinary queue

Q1.

Example 1. In this example we look at the effect of varying p on some measures.

For the arrival process we consider Markovian arrival processes with repre-
sentation D0, D1 and D2 given by

D0 =

⎛
⎝−2.0044 2.0044 0.0000

0.0000 −2.0044 0.0000
0.0000 0.0000 −451.50000

⎞
⎠ ,D1 =

⎛
⎝0.0000 0.0000 0.0000

1.1906 0.0000 0.0120
2.7090 0.0000 268.1910

⎞
⎠ ,

D2 =

⎛
⎝0.0000 0.0000 0.0000

0.7938 0.0000 0.0080
1.8060 0.0000 178.7940

⎞
⎠ .
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This MAP process is normalized so as to have an arrival rate λ = 2, where
λ1 = 1.2, λ2 = 0.8 and has correlated arrivals with positive correlation between
successive inter-arrival times given by 0.4886.

For the service time distribution of ordinary and priority customers we con-

sider the following phase type distributions α = (0, 1), T =
(−5 5

0 −5

)
,

β = (0, 1), and S =
(−6 6

0 −6

)
.

Fig. 1. Effect of p on E[N1] for differ-
ent K

Fig. 2. Effect of p on E[N2] for differ-
ent K

– From the Fig. 1, we can say that the expected number of customers in ordinary
queue is monotonically decreasing as p increases. Figure 2 shows expected
number of priority queue increases as p increases.This is because as p increases
more customers join in priority queue than in ordinary queue.

Example 2. In this example we look at the effect of varying p on net benefits.

For the arrival process we consider Markovian arrival processes with representa-
tion D0 and D1:

D0 =

⎛
⎝−1.0049 1.0049 0.0000

0.0000 −1.0049 0.0000
0.0000 0.0000 −226.3485

⎞
⎠ ,D1 =

⎛
⎝0.0000 0.0000 0.0000

0.9924 0.0000 0.0900
2.0430 0.0000 223.9818

⎞
⎠ ,

D2 =

⎛
⎝0.0000 0.0000 0.0000

0.0024 0.0000 0.0010
2.2205 0.0000 0.1033

⎞
⎠ .

This MAP process is normalized so as to have an arrival rate λ = 1, where
λ1 = 0.9, λ2 = 0.1 and has correlated arrivals with positive correlation between
successive inter-arrival times given by 0.4886.
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For the service time distribution of ordinary and priority customers we consider

the following phase type distributions α = (0.2, 0.8), T =
(−10 10

0 −10

)
,

β = (0.2, 0.8), and S =
(−5 5

0 −5

)
. Here we illustrate the individual strategy of

priority customers with some examples.

Fig. 3. Effect of p on B1 and B2 Fig. 4. Effect of p on B1 and B2

– For K = 2 and M = 3, R1 = 35, R2 = 40, h1 = 5, h2 = 10, c1 = 30, c2 = 35.
Figure 3 shows that as p increases, the net benefit for a priority customer to
join in ordinary queue increases and is positive so priority customer join in
Q1.

– For K = 5 and M = 10, R1 = 100, R2 = 150, h1 = 5, h2 = 10, c1 = 30,
c2 = 35, Fig. 4 shows that the net benefit for a priority customer to join in
priority queue decreases as p increases and is positive and is greater than B1,
so priority customer join in Q2.

Conclusion

In this paper, we considered a queueing system with non-preemptive priority
and a joining strategy for priority customers. Even if an optimal joining strategy
exists for a priority customer upon arrival whether to join the priority queue or
ordinary queue to reduce his waiting time, priority customers take probabilistic
decision whether to give up their additional benefit (reward) for joining the
priority queue. From the social optimisation problem, we conclude that priority
customers take decision depending on the values of net benefits.

Acknowledgments. The work of first author was supported by the Maulana Azad
National fellowship F1-17.1/2015-16/MANF-2015-17-KER-65493 of University Grants
commission, India.



A Queueing System with Probabilistic Joining Strategy 351

References

1. Chakravarthy, S., Thiagarajan, S.: Two parallel finite queues with simultaneous ser-
vices and markovian arrivals. J. Appl. Math. Stochast. Anal. 10(4) (1997). Article
ID 394369. https://doi.org/10.1155/S1048953397000439

2. Deepak, T.G., Joshua, V.C., Krishnamoorthy, A.: Queues with postponed work.
Top 12, 375–398 (2004). https://doi.org/10.1007/BF02578967

3. Dudin, S., Kim, C., Dudina, O.: MMAP/M/N queueing system with impatient
heterogeneous customers as a model of a contact center. Comput. Oper. Res. 40(7),
1790–1803 (2013). https://doi.org/10.1016/j.cor.2013.01.023

4. Isotupa, S., Stanford, D.: An infinite-phase quasi-birth-and-death model for the
non-preemptive priority M/PH/1 queue. Stoch. Model. 18(3), 387–424 (2007).
https://doi.org/10.1081/STM-120014219

5. Krishnamoorthy, A., Joshua, V., Babu, D.: A token based parallel processing
queueing system with priority. Commun. Comput. Inf. Sci. 700, 231–239 (2017).
https://doi.org/10.1007/978-3-319-66836-9 19

6. Krishnamoorthy, A., Manjunath, A.: On queues with priority determined by
feedback. Calcutta Stat. Assoc. Bull. 70, 33–56 (2018). https://doi.org/10.1177/
0008068318767271

7. Krishnamoorthy, A., Manjunath, A.S.: On priority queues generated through cus-
tomer induced service interruption. Neural Parallel and Sci. Comput. 23, 459–486
(2015)

8. Latouche, G., Ramaswami, V.: Introduction to matrix analytic methods in
stochastic modeling. Soc. Ind. Appl. Math. (1999). https://doi.org/10.1137/1.
9780898719734

9. Mathew, A., Krishnamoorthy, A., Joshua, V.: A retrial queueing system with
orbital search of customers lost from an offer zone. Commun. Comput. Inf. Sci.
912, 39–54 (2018). https://doi.org/10.1007/978-3-319-97595-5 4

10. Miller, D.R.: Computation of steady-state probabilities for M/M/1 priority queues.
Oper. Res. 29(5), 945–958 (1981). https://doi.org/10.1287/opre.29.5.945

11. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic
Approach. Dover Publications (1995)

12. Takagi, H.: Queueing Analysis: A Foundation of Performance Evaluation, vol. 1.
North-Holland (1991). https://doi.org/10.1145/122564.1045501

13. White, H., Christie, L.S.: Queuing with preemptive priorities or with breakdown.
Oper. Res. 6(1), 76–96 (1958). https://doi.org/10.1287/opre.6.1.79

https://doi.org/10.1155/S1048953397000439
https://doi.org/10.1007/BF02578967
https://doi.org/10.1016/j.cor.2013.01.023
https://doi.org/10.1081/STM-120014219
https://doi.org/10.1007/978-3-319-66836-9_19
https://doi.org/10.1177/0008068318767271
https://doi.org/10.1177/0008068318767271
https://doi.org/10.1137/1.9780898719734
https://doi.org/10.1137/1.9780898719734
https://doi.org/10.1007/978-3-319-97595-5_4
https://doi.org/10.1287/opre.29.5.945
https://doi.org/10.1145/122564.1045501
https://doi.org/10.1287/opre.6.1.79


Analysis of Closed Unreliable Queueing
Networks with Batch Service

Elena Stankevich(B) , Igor Tananko , and Oleg Osipov

Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia

Abstract. In this article, we study closed queuing networks with batch
services of customers. Each node in the queueing network is an infi-
nite capacity single-server queueing system under a RANDOM discipline.
Customers move among the nodes following a routing matrix. We assume
queueing systems in the network operate under the general batch service
rule. The lower and upper bounds for the batch size are given. The batch
service time is exponentially distributed. We presents an analysis of the
queueing network using a Markov chain with continuous time. The qen-
erator matrix is constructed for the underlying Markov chain. We obtain
expressions for the performance measures. In addition, we consider an
unreliable case and propose an approximation. Some numerical exam-
ples are provided. The results can be used for the performance analysis
manufacturing systems, production lines, trucking, ship locks.

Keywords: Queueing networks · Unreliable server · Batch service

1 Introduction

Queueing models with batch arrivals and services [1–5] are widely used for sys-
tem performance evaluation and prediction for different kinds of real systems
(production lines, buses, trucking, ship locks). In article [6] Chaudhry M. L. and
Templeton J. G. C. present an overview of the main results for queueing sys-
tems with batch arrivals and batch services. There are a lot of results for both
queueing systems and queueing networks [3,7,8].

Chao X. et al. [2] consider an open queueing network with single arrivals
and batch services at each node. At a service completion the entire batch coa-
lesces into a single unit, and it either leaves the system or goes to another node
according to given routing probabilities. If the number of units present at a ser-
vice completion epoch is less than the required number of units, then all the
units coalesce into an incomplete batch which leaves the system. Main result
is that this network possesses a geometric product form solution with a special
type of traffic equations which depend on the batch size distribution at each
node.
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Federation in the framework of the basic part of the scientific research state task,
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In contrast [2], Economou A. [8] studied an open queueing network without
incomplete batches. It is shown that the stationary distribution of the queue-
ing systems has a nearly geometric form. Using quasi-reversibility arguments
a modified network was constructed. This network has a tractable product-form
stationary distribution which can be used as a bound or as an approximation
for the stationary distribution of the original network under suitable conditions.

Miyazawa M. and Taylor P. G. [9] consider a continuous-time open network
with batch movements and introduce the assembly-transfer batch service disci-
pline. In the network a requested number of customers is simultaneously served
at a node, and transferred to another node as, possibly, a batch of different size,
if there are sufficient customers there; the node is emptied otherwise.

Articles [10,11] extend the works of Miyazawa M. and Taylor P. G. [9] and
present queueing networks with triggered concurrent batch arrival and concur-
rent batch departure processes. It is shown that if an additional arrival process
is introduced, the network has a product form which depends on a class of non-
linear traffic equations.

Economou A. [12] obtained a stochastic lower bound for the queueing net-
work [9] by defining an additional departure process at server which tends to
remove all the customers present in it.

Article [3] considers a single chain open queueing networks with a fixed batch
size. A decomposition method based on a GIX/G(b,b)/c queue approximation is
proposed.

Paper [1] considers a closed queueing network with batch services and conse-
quently batch arrivals. The network consists of M/Mx/1 and Mx/M/1 queueing
systems. A method based on MVA [13] is presented.

The study of unreliable queueing systems with batch movements is one of the
new fields within queueing theory. For example, this kind of queueing networks
arise naturally in the performance analysis of manufacturing systems where sta-
tions are unreliable. In article [14], an unreliable closed queueing network with
batch movements is considered. Each node in the network contains the same
number of servers as the number of customers in the network, the service times
of customers are exponential. The stationary distribution and various perfor-
mance measures are obtained.

Optimization of queueing networks with batch services is considered in [4,15].
Mitici M. et al. [4] show that a tandem network of queues with batch services

has a geometric product-form steady-state distribution and determine the service
allocation that minimizes the waiting time in the system.

The problem of dynamic allocation of a single server with batch process-
ing capability to a set of parallel queues is considered in [15]. Customers from
different classes cannot be processed together in the same batch. It is shown
that for the case of infinite buffers, allocating the server to the longest queue,
stochastically maximizes the aggregate throughput of the system. For the case of
equal-size finite buffers the same policy stochastically minimizes the loss of cus-
tomers due to buffer overflows.
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Paper [16] considers a closed queuing network with batch service and move-
ments of customers in continuous time. Each node in the queueing network
is an infinite capacity single server queueing system. Customers are served
in batches of a fixed size. If a number of customers in a node is less than the size,
the server of the system is idle until the required number of customers arrive at
the node. An arriving at a node customer is placed in the queue if the server is
busy. The batch service time is exponentially distributed. After a batch finishes
its execution at a node, each customer of the batch, regardless of other customers
of the batch, immediately moves to another node in accordance with the routing
probability. The main performance measures are obtained.

This paper extends the queueing model presented in [16]. We assume queue-
ing systems in the network operate under the general batch service rule, there
are a minimum number and a maximum one for batch sizes. We obtain the main
performance measures for the network. In addition, we consider an unreliable
case and propose an approximation.

The rest of the paper is organized as follows. Section 2 describes the closed
queueing network with batch services and batch movements. In Sect. 3, we con-
sider the unreliable queueing networks. In Sect. 4 we obtain the main perfor-
mance measures for the queueing networks. Section 5 provides various numer-
ical examples. Finally, a section of conclusions commenting the main research
contributions of this paper is presented.

2 The Model

Consider a closed queueing network N consisting of L nodes Si, i ∈ I =
{1, . . . , L}. There are H customers in the network.

Each node Si, i = 1, . . . , L, operates like an infinite capacity single-server
queueing system under a RANDOM discipline.

Arriving customers are placed in the queue if the node server is busy. Cus-
tomers are served in batches, servers operate under the general batch service
rule. The server at a node Si may take in a batch of customers with minimum
number xi of customers and with maximum number yi of customers. The ser-
vice of a batch is started immediately after there are at least xi customers in
the queue.

Thus if the server finds q customers in the queue, there are the following
possibilities

– 0 ≤ q < xi, then the server waits till the queue size grows to xi,
– xi ≤ q ≤ yi, then the server takes a batch of size q for service,
– q > yi, then server takes a batch of size yi for service.

The service times of batches at node Si are exponentially distributed
with parameter μi, i = 1, . . . , L. Therefore, the extended Kendall/Gnedenko
notation for node Si is Gai/M (xi,yi)/1, i = 1, . . . , L, where ai is the random
variable and denotes the arriving batch size, its probability distribution will be
defined below.
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After a batch finishes its execution at a node, the customers leave the
node. Transitions of single customers between nodes are defined by the rout-
ing matrix Θ = (θij), i, j = 1, . . . , L. Thus, a customer completing service at
node Si will go to node Sj with probability θij , i, j = 1, . . . , L.

Let si denote the number of customers at node Si, i = 1, . . . , L. Define
a queueing network state as the vector s = (s1, . . . , sL).

Denote by X =
{

s : si ≥ 0,
∑L

i=1 si = H
}

the state space of the queueing
network. By Vi denote the set Vi = {j ∈ I : θij > 0}, i = 1, . . . , L, the set defines
nodes, which are reachable from node Si.

Each transition is associated with an event in the system, consider a transi-
tion from state s ∈ X to state s′ ∈ X, s �= s′:

1. Let a batch complete its service at node Si, i ∈ I, and thus gi customers
leave node Si. Denote by d = (d1, . . . , dL) a vector representing departing
customers, all components of the vector equal to 0, except the ith, which is
gi. Let D be the set of the departing vectors.

2. Each of di customers in the batch, leaving from Si, is routed independently
to nodes according to probability θij , j ∈ Vi. The customers join in batches of
random sizes. Thus a batch of aj customers goes to node Sj with probability
θ

aj

ij .
3. A batch of aj customers arrives at node Sj , then di =

∑
j∈Vi

aj . Thus vector
a = (a1, . . . , aL) represents the arriving customers. Denote by A the set of
the arriving vectors.

4. Thus for the state s′ we have s′ = s − d + a.

It is easy to see, the process {s(t), t > 0} is a continuous time Markov chain
on the state space X. As shown in [17], the transition rate q(s, s′) from state s
to state s′ is defined as:

q(s, s′) =
∑

s′∈X,
s′=s−d+a

u(s)ρ(d, a), d ∈ D, a ∈ A, s ∈ X, (1)

u(s) is a function associated with the service rates of the network, ρ(d, a) is
a function associated with the routing probabilities of the network.

According to the service policy we have

u(s) =
L∑

i=1

μi1(si ≥ xi), (2)

where 1(si ≥ xi) = 1, if si ≥ xi, and 1(si ≥ xi) = 0 otherwise.
Let a batch of customers finish its service at node Si, customers leave the

node and independently arrive at nodes according to vector a.
Denote by ζj the random variable representing the size of the batch arriving

at node Sj . As customers go between nodes of the network independently on
each other, the random variables are independent random variables with the
multinomial distribution. Thus we can write
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Pdi
(ζ1 = a1, . . . , ζL = aL) =

(
di

a1, . . . , aL

) L∏
j=1

θ
aj

ij .

Let us define now the probability distribution ρ(d, a) for sizes of arriving
batches, we can write

ρ(d, a) =
L∑

i=1

(
di

a1, . . . , aL

) L∏
j=1

θ
aj

ij , di =
∑
j∈Vi

aj , d ∈ D, a ∈ A. (3)

Substituting expressions for u(s) and ρ(d, a) in (1) into (2) and (3), we have

q(s, s′) =
∑

s′∈X,
s′=s−d+a

L∑
i=1

μi1(si ≥ xi)
(

di

a1, . . . , aL

) L∏
j=1

θ
aj

ij ,

s ∈ X, di =
∑

j∈Vi

aj , d ∈ D, a ∈ A.

3 Unreliable Networks

Let N̄ be a network with the same parameters as network N , but nodes in
the network are subject to breakdown and repair when active.

Assume, at any arbitrary point in time, there are three possible states for
each server: idle, active or inactive. The server at node Si is idle when there
are no customers to be served, active when a batch is being served with the
corresponding rate μi, and inactive when the server is down and under repair.

The failure and repair times for each server at node Si have exponential
distributions with the corresponding parameters αi and βi. Thus, the total ser-
vice time for the unreliable network can be exactly represented with a two-stage
Coxian distribution.

Let 1
αi

>> 1
βi

, i = 1, . . . , L, then we model [18] the total service time as
the exponential random variable with the expected value

r̄i =
1
μi

αi + βi

βi
, i = 1, . . . , L. (4)

For the unreliable queueing network, the correspondinng Markov chain tran-
sition rates have the following form

q(s, s′) =
∑

s′∈X,
s′=s−d+a

L∑
i=1

1(si ≥ xi)
r̄i

(
di

a1, . . . , aL

) L∏
j=1

θ
aj

ij , (5)

s ∈ X, di =
∑

j∈Vi

aj , d ∈ D, a ∈ A.
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4 Performance Measures

The stationary distribution π = (π(s)), s ∈ X, for the queueuing model is
defined as a solution of the equation

πQ = 0,
∑
s∈X

π(s) = 1,

here Q is the generator matrix, Q = (q(s, s′)), s, s′ ∈ X.
Once the stationary distribution is computed, a variety of other performance

measures may be obtained.
The average number s̄i of customers at the node Si

s̄i =
H∑

k=1

k
∑
s∈X,
si=k

π(s), i = 1, . . . , L,

the arrival rate λi to node Si

λi =
1
r̄i

yi∑
k=xi

(
1 −

∑
s∈X

k−1∑
si=0

π(s)
)
, i = 1, . . . , L,

the average response time ūi for node Si

ūi =
s̄i

λi
, i = 1, . . . , L,

the average idle time v̄i for node Si

v̄i =

xi−1∑
k=0

(xi − k)
∑

s∈X,
si=k

π(s)

λi

xi−1∑
k=0

∑
s∈X,
si=k

π(s)
, i = 1, . . . , L,

the average waiting time w̄i for node Si

w̄i = ūi − 1
μi

, i = 1, . . . , L,

the average number b̄i of customers in the queue for node Si

b̄i = w̄iλi, i = 1, . . . , L.

Note, if αi = 0, i = 1, ..., L, then the performance measures for N and N̄ are
the same.
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5 Numerical Examples

Consider a queueing network which consists of L = 7 nodes with service rates μ =
(0.8, 0.8, 0.9, 0.6, 1.0, 0.7, 0.7) and routing matrix Θ, where

Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.3 0 0.7 0 0 0
0 0 0.5 0 0.5 0 0
0 0 0 0 0.2 0.8 0
0 0 0 0 0 0 1

0.2 0.2 0 0.4 0.2 0 0
0 0.6 0 0 0.4 0 0

0.4 0 0.4 0 0 0.2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

There are H = 20 customers in the network, the threshold values for queueing
systems are x = (2, 2, 2, 4, x5, 2, 2), y = (5, 5, 5, 7, y5, 5, 5). Let us consider five
examples, in each example we change the parameters only for node S5.

The first example considers the reliable queuing network where x5 = y5 =
1, . . . , 10. For this example, Figs. 1, 2, 3 illustrate the arrival rates, the average
number of customers and the average idle times for all nodes. It may be seen
that as x5 and y5 increase from 1 to 4, the arrival rates for all nodes increase too.
There is a slight decrease for x5 = y5 = 5, . . . , 10. The lower batch size thresholds
influence both the arrival rates and the average idle times for all nodes, this is
especially appreciable for Fig. 3 where depicted the average numbers of customers
for node S5.

In the second and third experiments, we examine the same performance mea-
sures, in the second experiment, x5 increases from 1 to 10 for fixed y5 = 10
(Figs. 4, 5 and 6), and in the third one, we assume x5 = 1, and y5 increases from
1 to 10 (Fig. 7, 8 and 9).

1 2 3 4 5 6 7 8 9 10
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 S1

S2

S3

S4

S5

S6

S7

Fig. 1. Example 1: The arrival rates
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Fig. 2. Example 1: The average num-
ber of customers

The results of the second example show that the increasing of the lower
threshold batch size at node S5 (for a sufficiently large the upper threshold
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Fig. 3. Example 1: The average server
idle times
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Fig. 4. Example 2: The arrival rates

value) leads to a decrease in the arrival rates in all nodes (Fig. 4). At the same
time, the average idle times are decreased for all nodes (Fig. 6). Since we con-
sider a closed queueing network, a significant increase in the average number
of customers in node S5 leads to a decrease in the number of customers for other
nodes in the network (Fig. 5).
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Fig. 5. Example 2: The average num-
ber of customers
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Fig. 6. Example 2: The average server
idle times

In the third experiment, we investigate influence for the upper threshold
batch size in node S5. It leads to increases of the arrival rates for all nodes
(Fig. 7) and decreases for the average idle times (Fig. 9). The average number of
customers in node S5 increases at first, and then tends to a limit value (Fig. 8).

In the fourth and fifth examples, we assume that node S5 is unreliable. In
the fourth example, we compare the performance measures obtained using our
approximation and simulation approach. In this example, we assume α5 = 0.1,
β5 = 1.5. Tables 1, 2 present the average number of customers and the average
idle times for different values of x5 = 1, . . . , 6, we fixed y5 = 6.

All simulation results were obtained with confidence probability 0.95. A com-
parison of the results of analytical and simulation modeling (Tables 1, 2) shows
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Table 1. Average number of customers at node S5

x5 1 2 3 4 5 6

Approximation approach 1.216 1.183 1.378 1.737 2.225 2.890

Simulation approach 1.270 1.237 1.433 1.788 2.279 2.942

Table 2. Average idle time for node S5

x5 1 2 3 4 5 6

Approximation approach 1.035 1.332 1.695 2.098 2.524 2.902

Simulation approach 1.040 1.335 1.700 2.105 2.530 2.906

the accuracy of the proposed method for analyzing networks is acceptable for
real applications.

The fifth example contains the performance measures for different values of
β5 = 1, . . . , 4. The following parameters were used: x5 = 2, y5 = 5, α5 = 0.1
(Fig. 10, 11 and 12).
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Fig. 7. Example 3: The arrival rates
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Fig. 8. Example 3: The average num-
ber of customers

1 2 3 4 5 6 7 8 9 10

1

1.5

2

2.5

3

3.5

4

4.5

5
S1

S2

S3

S4

S5

S6

S7

Fig. 9. Example 3: The average server
idle times
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Fig. 10. Example 5: The arrival rates
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Fig. 11. Example 5: The average num-
ber of customers
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Fig. 12. Example 5: The average server
idle times

As it can be seen (Fig. 10, 11 and 12), the greatest changes were made to
the minimum number of customers in node S5 (Fig. 11). The maximum and
minimum values differ by about 7%. On all other figures, there is a slight change
in the performance measures of queueing systems. This can be explained by
the fact that increasing the recovery rate of β5 by 4 times increases the service
rate μ5 of batches by only 7%.

6 Conclusion

This paper analyzed a closed unreliable queueing network with batch services.
The queueing systems in the network operate under the general batch service
rule. For the reliable network we obtain the stationary distribution of the network
and its performance measures, for the unreliable case we present an approxima-
tion. At the end, some examples are presented. The results can be used for
the performance analysis of transport vehicles, telecommunication systems and
manufacturing systems.
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Abstract. In this paper, we consider a single-server queueing inventory
model with two types of customers, say, type-1 and type-2. The queue
formed by the type-1 customer is infinite. The queue formed by the type-2
customer can accommodate a maximum of N customers. Even though the
same server provides service to both types of customers, type-1 customers
are served one by one, while type-2 customers are served in batches of
varying sizes. The service is initiated only when inventory is available and
the service time is assumed to be positive. If at least one item is available
in the inventory and the server is idle, an arriving type-1 customer can
directly enter into the service. The service of the type-2 customer is
initiated either upon realization of a random clock that started ticking
with the arrival of the first type-2 customer or by the accumulation of
N type-2 customers, whichever occurs first. The arrivals follow a Marked
Markovian process. Service time distribution of both type-1 and type-
2 customers follow two different phase-type distribution. Replenishment
of inventory follows the (s, S) policy having a positive lead time. It is
assumed that N is less than s. Steady-state analysis, as well as evaluation
of some performance measures, have been done. The model is analyzed
numerically and graphically.

Keywords: Lead time · Positive service time · MMAP · Phase type
distribution

1 Introduction

In [1], Sigman and Simchi-Levi introduced inventory models with positive service
time. In [2], Krishnamoorthy et al. give a survey of inventory with positive
service time. Dudin et al. in [3] consider a multi-server queueing system with
an infinite buffer. In [3], there are two types of customers whose arrival are
according to a Marked Markovian arrival process. A MAP/PH/1 queueing model
with server vacations is given by Sreenivasan et al. in [4]. In [5], Nisha et al.
consider a single-server queueing inventory model with two channels of service.
A single server queueing model with batch service is considered by Chakravarthy
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et al. in [6]. In [7], Anbazhagan et al. consider inventory system with (s, S)
replenishment policy and two types of services. In [8], Krishnamoorthy et al.
consider a retrial queueing model in which service time distribution is of phase-
type distribution. [9–11] consider queueing inventory models in which lead time
is assumed to be exponential.

The present-day retail system operates on multiple platforms which are either
online or offline. The physical presence of a customer is no longer a mandatory
element in present-day shopping. The customers prefer to shop online through
the various virtual platforms that are available. However, in certain cases, cus-
tomers go out shopping. In order to boost sales, the sellers use various methods
of marketing. Specific algorithms have to be designed in order to determine the
inventory required by the sellers so that there is no delay or failure in meeting
the customer demands.

Our model is motivated by two types of customer demands that arrive at
a shop: one is an online customer and the other is the customer that directly
comes to the shop. The customers that are physically present are served by
the system on a FIFO basis. The system follows a different algorithm while
addressing the service request of an online customer. The demands of online
customers are addressed by the system only when the random clock realizes
or when the number of such demands reaches a prefixed number N, whichever
occurs first.

The remaining sections of the paper are organized as follows: The model
is described in Sect. 2. Section 3 formulates the model mathematically. It also
includes the steady-state analysis of the model. Evaluation of some performance
measures is done in Sect. 4. Numerical and graphical illustrations are provided
in Sect. 5. We conclude the paper in Sect. 6.

2 Model Description

In the present model, we consider the problem of selling out a single product
via two different platforms, say, physical and virtual. Physical platform refers
to a shop, where customers can directly come to purchase commodities. Such
customers are named type-1 customers. Virtual platform refers to some online
facilities for booking items. Customers can order items through these online
facilities and such customers are named type-2 customers. Both the customers
are served by a single server. The arrival of both types of customers is according
to a stationary Marked Markovian Arrival Process (MMAP) having m phases.
Let (D0,D1,D2) denote the matrix representation of the MMAP guiding the
arrival process. The service time is assumed to be positive. Replenishment follows
(s, S) policy. Lead time is assumed to be exponential with parameter γ. It is
assumed that each customer demands one unit of item. Inventory is required for
service. The distribution of service time of type-1 customer follows phase-type
with irreducible representation PH(α, T ) with m1 phases and that of a batch
of type-2 customers follow phase-type with irreducible representation PH(β, U)
with m2 phases. The vectors T 0 and U0 are given by T 0 = −Te and U0 = −Ue.

The queue of the type-1 customer is of infinite capacity. The type-2 customer
joins a finite buffer of size N . Service of customers is done as per the following
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rule: when a type-1 customer arrives, if the server is idle and there is at least one
item in inventory, that customer can directly enter the service. Otherwise, they
wait in their respective queue. For controlling the long waiting time of the type-2
customer, a random clock is set. The clock starts ticking with the first arrival
of the type-2 customer in every cycle. It works for a duration of time, which is
exponentially distributed with parameter θ. The entry of the type-2 customer to
the buffer is permitted only up to the time where the number of type-2 customers
reaches N or when the random clock expires, whichever occurs first. Only after
these customers enter service, new type-2 customers are allowed to join. When
the number of type-2 customers reaches N or when the random clock expires, if
the server is idle and required inventory is available, type-2 customers can enter
service immediately. Otherwise, they are served immediately after the current
service. Service of type-2 customers occurs as batches of a size that varies from
1 to N . It is assumed that N is less than s.

At the beginning of service of a type-1 customer, the level of inventory drops
by one unit. When the service of a batch of type-2 begins, the level of inventory
drops by n2 units, where n2 is the size of that batch.

3 Mathematical Formulation

We define the necessary random variables in the model as follows.
N1(t) – the number of type-1 customers in the queue at time t.
N2(t) – the number of type-2 customers in the finite buffer at time t.
B(t) – the server status at time t,

B(t) =

⎧
⎪⎨

⎪⎩

0, if the server is idle.
1, if the server is busy with a type-1 customer.
2, if the server is busy with a batch of type-2 customer.

C(t) – the clock status at time t.

C(t) =

{
0, if the clock is off.

1, if the clock is on.

I(t) – the number of items in the inventory at time t.
J(t) – the phase of the service process at time t.
A(t) – the phase of the arrival process at time t.

Then {(N1(t), N2(t), B(t), C(t), I(t), J(t), A(t)); t ≥ 0} is a continuous-time
Markov chain on the state space to be described below. This model can be
considered as a Level Independent Quasi-Birth-Death (LIQBD) process and a
solution is obtained by Matrix-Analytic Method. We define the state space of the
QBD under consideration and analyze the structure of its infinitesimal generator.

The state space Ω = Ω1

⋃
Ω2

⋃
Ω3

⋃
Ω4

⋃
Ω5, where

Ω1 = {(0, 0, 0, 0, i, 0∗, a)/0 ≤ i ≤ S; a = 1, 2, . . . ,m},
Ω2 = {(n1, 0, 0, 0, 0, 0∗, a)

⋃
(n1, n2, 0, 1, 0, 0∗, a)/n1 ≥ 1; 1 ≤ n2 ≤ N − 1;
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a = 1, 2, . . . ,m},
Ω3 = {(n1, n2, 0, 0, i, 0∗, a)/n1 ≥ 0; 1 ≤ n2 ≤ N ; 0 ≤ i ≤ n2 − 1; a = 1, 2, . . . ,m},
Ω4 = {(n1, n2, 1, c, i, j, a)/n1 ≥ 0; 0 ≤ n2 ≤ N ; c = 0, 1; 0 ≤ i ≤ S;
j = 1, 2, . . . ,m1; a = 1, 2, . . . , m},
Ω5 = {(n1, n2, 2, 1, i, j, a)

⋃
(n1, 0, 2, 0, i, j, a)

⋃
(n1, N, 2, 0, i, j, a)/n1 ≥ 0;

0 ≤ n2 ≤ N − 1; 0 ≤ i ≤ S; j = 1, 2, . . . ,m2; a = 1, 2, . . . ,m},
0∗ represents phase of an idle server.

The rate of transitions are given in the Tables 1–2 below.

Table 1. Transition table

From To Rate Description

(0, 0, 0, 0, i, 0∗, a) (0, 0, 1, 0, i − 1, j, a
′
) daa

′ (1)αj i ≥ 1, j = 1, 2, · · · m1,

a, a
′
= 1, 2, . . . , m

(0, n2, 0, 1, i, 0∗, a) (0, n2, 1, 1, i − 1, j, a
′
) daa

′ (1)αj i ≥ 1, j = 1, 2, · · · m1,

1 ≤ n2 ≤ N − 1,

a, a
′
= 1, 2, . . . , m

(n1, n2, 1, 1, i, j, a) (n1 + 1, n2, 1, 1, i, j, a
′
) daa

′ (1) n1 ≥ 0, j = 1, 2, · · · m1,

1 ≤ n2 ≤ N − 1,

a, a
′
= 1, 2, . . . , m

(n1, n2, 1, 0, i, j, a) (n1 + 1, n2, 1, 0, i, j, a
′
) daa

′ (1) n1 ≥ 0, j = 1, 2, · · · m1,

0 ≤ n2 ≤ N,

a, a
′
= 1, 2, . . . , m

(n1, 0, 1, 0, i, j, a) (n1, 1, 1, 1, i, j, a
′
) daa

′ (2) n1 ≥ 0, j = 1, 2, · · · m1,

a, a
′
= 1, 2, . . . , m

(0, 0, 0, 0, i, 0∗, a) (0, 1, 0, 1, i, 0∗, a
′
) daa

′ (2) i ≥ 0, a, a
′
= 1, 2, . . . , m

(n1, n2, 1, 1, i, j, a) (n1, n2 + 1, 1, 1, i, j, a
′
) daa

′ (2) n1 ≥ 0, 1 ≤ n2 ≤ N − 2,

j = 1, 2, · · · m1,

a, a
′
= 1, 2, . . . , m

(0, n2, 0, 1, i, 0∗, a) (0, n2 + 1, 0, 1, i, 0∗, a
′
) daa

′ (2) 1 ≤ n2 ≤ N − 2,

a, a
′
= 1, 2, . . . , m

(n1, N − 1, 1, 1, i, j, a) (n1, N, 1, 0, i, j, a
′
) daa

′ (2) n1 ≥ 0, j = 1, 2, · · · m1

a, a
′
= 1, 2, . . . , m

(n1, 0, 2, 0, i, j, a) (n1, 1, 2, 1, i, j, a
′
) daa

′ (2) n1 ≥ 0, j = 1, 2, · · · m2

a, a
′
= 1, 2, . . . , m

(n1, n2, 2, 1, i, j, a) (n1, n2 + 1, 2, 1, i, j, a
′
) daa

′ (2) n1 ≥ 0, 1 ≤ n2 ≤ N − 2,

j = 1, 2, · · · m2,

a, a
′
= 1, 2, . . . , m

(n1, N − 1, 2, 1, i, j, a) (n1, N, 2, 0, i, j, a
′
) daa

′ (2) n1 ≥ 0, j = 1, 2, · · · m2

a, a
′
= 1, 2, . . . , m
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The infinitesimal generator Q of the LIQBD describing the above single server
queueing inventory system is of the form

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B00 B01 O . . . . . . . . .
B10 A1 A0 O . . . . . . . . .
O A2 A1 A0 O . . . . . .
O O A2 A1 A0 O . . .

. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where B00, A0, A1, A2 are all square matrices of appropriate order. The structure
of the matrices A0 and A2 are as follows:

A0 = IK ⊗ D1,

where K = (S + 1)(2m1N + m2(N + 1)) + (N/2)(N + 3);

A2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

H0
1

H1
1

. . .
HN−1

1

HN
1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where H0
1 =

(
O Y O
O Z O

)

, Hj
1 =

⎛

⎜
⎜
⎝

O O O
O Y O
O O O
O Z O

⎞

⎟
⎟
⎠ for j = 1 to N − 1, H0

1 is a

square matrix of order m[1 + (S + 1)(m1 + m2)] and Hj
1 are square matrices

of order m[(j + 1) + (S + 1)(2m1 + m2)], HN
1 is a zero square matrix of order

m[N + (S + 1)(m1 + m2)];
Y =

(
O γα ⊗ Im O

)
is a matrix of order m × [(S + 1)(m1m)];

Z =

⎛

⎜
⎜
⎝

O O
IS ⊗ T 0 ⊗ α ⊗ Im O

O O
IS ⊗ U0 ⊗ α ⊗ Im O

⎞

⎟
⎟
⎠ is a matrix of order m[(S + 1)(m1 + m2)] ×

[(S + 1)(m1m)].

3.1 Stability Condition

The Markov chain with generator Q is positive recurrent if and only if

π[IK ⊗ D1]e <
N∑

j=0

πjH
j
1e, (1)
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Table 2. Transition table

From To Rate Description

(n1, n2, b, c, i, j, a) (n1, n2, b, c, i, j, a
′
) d

aa
′ (0) n1 ≥ 0, n2 ≥ 0, b = 0, 1, 2,

c = 0, 1, 0 ≤ i ≤ s,

a = 1, 2, . . . , m

(n1, n2, 1, 1, i, j, a) (n1, n2, 1, 0, i, j, a) θ n1 ≥ 0, j = 1, 2, · · · m1

1 ≤ n2 ≤ N − 1,

a = 1, 2, . . . , m

(0, n2, 0, 1, i, 0∗, a) (0, 0, 2, 0, i − n2, j, a) θβj i ≥ n2, j = 1, 2, · · · m2,

a = 1, 2, . . . , m

(n1, n2, b, c, i, j, a) (n1, n2, b, c, S, j, a) γ n1 ≥ 0, n2 ≥ 0, b = 0, 1, 2,

c = 0, 1, 0 ≤ i ≤ s,

a = 1, 2, . . . , m

(n1, n2, 0, 1, 0, 0∗, a) (n1 − 1, n2, 1, 1, S − 1, j, a) γαj n1 ≥ 1, j = 1, 2, · · · m1

a = 1, 2, . . . , m

(n1, n2, 0, 0, i, 0∗, a) (n1, 0, 2, 0, S − n2, j, a) γβj n1 ≥ 0, 1 ≤ n2 ≤ N, i < n2,

a = 1, 2, . . . , m,

j = 1, 2, · · · m2

(0, n2, 1, 1, i, j, a) (0, n2, 0, 1, i, 0∗, a) T0
j n2 ≥ 1, j = 1, 2, · · · m1,

a = 1, 2, . . . , m

(n1, n2, 1, 1, 0, j, a) (n1, n2, 0, 1, 0, 0∗, a) T0
j n2 ≥ 1, j = 1, 2, · · · m1

a = 1, 2, . . . , m

(n1, n2, 1, 1, i, j, a) (n1 − 1, n2, 1, 1, i − 1, k, a) T0
j αk n1, n2 ≥ 1, a = 1, 2, . . . , m,

i ≥ 1, j, k = 1, 2, · · · m1

(n1, n2, 1, 0, i, j, a) (n1, 0, 2, 0, i − n2, k, a) T0
j βk i ≥ n2, a = 1, 2, . . . , m,

j = 1, 2, · · · m1,

k = 1, 2, · · · m2

(n1, 0, 1, 0, i, j, a) (n1, 0, 1, 0, i, k, a) Tjk n1 ≥ 0, i ≥ 0,

j, k = 1, 2, · · · m1

(n1, n2, 1, 1, i, j, a) (n1, n2, 1, 1, i, k, a) Tjk n1 ≥ 0, j, k = 1, 2, · · · m1,

a = 1, 2, . . . , m

(0, 0, 2, 0, i, j, a) (0, 0, 0, 0, i, 0∗, a) U0
j j = 1, 2, · · · m2,

a = 1, 2, . . . , m

(n1, 0, 2, 0, 0, j, a) (n1, 0, 0, 0, 0, 0∗, a) U0
j j = 1, 2, · · · m2,

a = 1, 2, . . . , m

(n1, n2, 2, 1, 0, j, a) (n1, n2, 0, 1, 0, 0∗, a) U0
j n1 ≥ 1, 1 ≤ n2 ≤ N − 1,

a = 1, 2, . . . , m, j = 1, 2, · · · m2

(n1, N, 2, 0, i, j, a) (n1, N, 0, 0, i, 0∗, a) U0
j n1 ≥ 0, i ≤ N − 1,

a = 1, 2, . . . , m, j = 1, 2, · · · m1

(n1, 0, 2, 0, i, j, a) (n1 − 1, 0, 1, 0, i − 1, k, a) U0
j αk n1 ≥ 1, i ≥ 1, a = 1, 2, . . . , m

j = 1, 2, · · · m2, k = 1, 2, · · · m1

a = 1, 2, . . . , m

(n1, n2, 2, 1, i, j, a) (n1 − 1, n2, 1, 1, i − 1, k, a) U0
j αk n1 ≥ 1, 1 ≤ n2 ≤ N − 1, i ≥ 1,

j = 1, 2, · · · m2, k = 1, 2, · · · m1

a = 1, 2, . . . , m

(n1, N, 2, 0, i, j, a) (n1, 0, 2, 0, i − N, k, a) U0
j βk n1 ≥ 0, i ≥ N, a = 1, 2, . . . , m

j, k = 1, 2, · · · m1

(n1, 0, 2, 0, i, j, a) (n1, 0, 2, 0, i, k, a) Ujk n1 ≥ 0, j, k = 1, 2, · · · m2

a = 1, 2, . . . , m

(n1, n2, 2, 1, i, j, a) (n1, n2, 2, 1, i, k, a) Ujk n1 ≥ 0, j, k = 1, 2, · · · m2

a = 1, 2, . . . , m



On an MMAP/(PH, PH)/1/(∞, N) Queueing-Inventory System 369

where the stationary vector π of A is obtained by solving

πA = 0;πe = 1, (2)

where the matrix A be defined as A = A0 + A1 + A2.

3.2 Stationary Distribution

The stationary distribution of the Markov process under consideration is
obtained by solving the set of equations:

xQ = 0;xe = 1. (3)

Let x be decomposed in conformity with Q. Then

x = (x0,x1,x2, . . . ),

where xi = (xi0,xi1, . . . . . .xiN), xij = (xij0,xij1,xij2) for j = 1, 2, . . . , N ,
whereas for k = 0, 1, 2, the vectors

xijk = (xijk0,xijk1),

xijkl = (xijkl1,xijkl2, . . . . . .xijklS) for l = 0, 1,

xijklr = (xijklr1,xijklr2, . . . . . .xijklrt),

for k = 1, 2m, where t = mk

xijklru = (xijklru1, xijklru2, . . . . . . xijklrum),

where xijklrua is the probability of being in state (i, j, k, l, r, u, a) for i ≥ 0 : j =
1, 2, . . . , N ; k = 1, 2; l = 0, 1; 0 ≤ r ≤ S;u = 1, 2, . . . ,mk, a = 1, 2, . . . ,m and
xij0lr0∗a is the probability of being in state (i, j, 0, l, r, 0∗, a).

From xQ = 0, we get the following equations:

x0B00 + x1B10 = 0, (4)

x0B01 + x1A1 + x2A2 = 0, (5)

x1A0 + x2A1 + x3A2 = 0, (6)

xi−1A0 + xiA1 + xi+1A2 = 0, i = 2, 3, .. (7)

It may be shown that there exists a constant matrix R such that

xi = xi−1R, i = 2, 3, ... (8)

The sub vectors xi are geometrically related by the equation

xi = x1R
i−1, i = 2, 3, ... (9)

R can be obtained from the matrix quadratic equation

R2A2 + RA1 + A0 = 0. (10)

We can find x0 and x1 by solving Eqs. (4) and (5). Then we normalize x0

and x1 by using the normalizing condition x0e + x1(1 − R)−1e = 1.
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4 Performance Measures

In this section we evaluate some performance measures of the system.

1. Expected number of type-1 customers in the system:

E[N1] =
∞∑

i=0

ixie. (11)

2. Expected number of type-2 customers in the system:

E[N2] =
∞∑

i=0

N∑

j=0

jxije. (12)

3. Expected number of items in the inventory:

E[I] =
∞∑

i=0

N∑

j=0

2∑

k=0

1∑

l=0

S∑

r=0

rxijklre. (13)

4. Expected number of customers waiting in the system due to lack of inven-
tory:

E[W ] =
∞∑

i=0

N−1∑

j=1

ixij010e +
∞∑

i=0

N∑

j=1

j−1∑

r=0

jxij00re. (14)

5. The probability that the server is idle:

b0 =
∞∑

i=0

N∑

j=0

xij0e. (15)

6. The probability that the server is busy with the type-1 customer:

b1 =
∞∑

i=0

N∑

j=0

xij1e. (16)

7. The probability that the server is busy with the type-2 customer:

b2 =
∞∑

i=0

N∑

j=0

xij2e. (17)

8. The probability that the clock is on:

c1 =
∞∑

i=0

N∑

j=1

2∑

k=0

xijk1e. (18)
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9. The expected rate at which replenishment of inventory occurs:

ER =
∞∑

i=0

N∑

j=0

2∑

k=0

1∑

l=0

s∑

r=0

γxijklre. (19)

10. The probability that the type-2 customer is blocked from entering the sys-
tem:

pb =
∞∑

i=0

N−1∑

j=1

2∑

k=1

xijkoe +
∞∑

i=0

xiNe. (20)

5 Numerical Examples

In this section, we provide a numerical illustration of the system performance
measures with variation in values of underlying parameters. We consider a
MMAP in which the arrivals of the type-1 and type-2 customers are described
by matrices (D0,D1,D2). In this example the following values are kept fixed:

α =
(
0.3 0.7

)
; T =

(−10 5
4 −12

)

; T0 =
(

5
8

)

;

β =
(
0.5 0.4 0.1

)
; U =

⎛

⎝
−6.0 3.0 2.0
1.0 −6.0 2.0
2.5 1.5 −8.0

⎞

⎠ ; U0 =

⎛

⎝
1
3
4

⎞

⎠ ;

D0 =
(−9.3 0.5

0.8 −5.1

)

; D1 =
(

2.5 0.6
1.1 0.2

)

; D2 =
(

3.2 2.5
1.9 1.1

)

.

5.1 Effect of Parameter θ on Performance Measures

We fix m = 2; m1 = 2; m2 = 3; s = 6; S = 13; γ = 5; N = 5. Table 3 indicates
the variation in the system performance measures with variation of θ.

Table 3. Effect of θ on various performance measures

θ E[N1] E[N2] E[W ] b0 b1 b2 c1 pb

2 2.0447 1.8146 0.0131 0.2106 0.3314 0.458 0.6 0.1508

3 2.4734 1.7082 0.0125 0.1718 0.3314 0.4968 0.5592 0.1665

4 2.8917 1.6367 0.012 0.1442 0.3314 0.5243 0.5287 0.1787

5 3.2991 1.5865 0.0116 0.124 0.3314 0.5446 0.5054 0.1882

6 3.6958 1.5499 0.0113 0.1087 0.3314 0.5598 0.487 0.1958

7 4.0819 1.5223 0.0111 0.0969 0.3314 0.5716 0.4723 0.202

8 4.4576 1.5008 0.0109 0.0876 0.3314 0.581 0.4603 0.207

9 4.8231 1.4837 0.0108 0.08 0.3314 0.5885 0.4503 0.2112

10 5.1787 1.4698 0.0107 0.0738 0.3314 0.5948 0.4419 0.2147
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As θ increases, the chance of getting service for a batch of type-2 customers
increases. So as θ increases expected number of type-1 customers in the system
increases while the expected number of type-2 customers in the system decreases.
Also, as θ increases the probability that the server is idle decreases, while the
probability that the server is busy with a batch of type-2 customers increases.
Also, as θ increases the probability that the clock is on decreases and the proba-
bility that the type-2 customers are blocked from entering the system increases.
This is because as θ increases, the chance of service of type-2 customers increases
and so the probability that the clock is on decreases. As type-2 customers are
blocked from entering the system when the clock expires, the probability that the
type-2 customers are blocked from entering the system increases as θ increases
(Figs. 1, 2 and 3).

Fig. 1. Effect of θ on the expected number of customers and expected number of
customers waiting in the system due to lack of inventory

Fig. 2. Effect of θ on server utilization and the probability that the clock is on
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Fig. 3. Effect of θ on the probability that the type-2 customer is blocked from entering
the system

5.2 Effect of s on Various Performance Measures

We fix m = 2; m1 = 2; m2 = 3; θ = 6; S = 13; γ = 5; N = 5. Table 4 indicates
the variation in the system performance measures with variation of s.

Table 4. Effect of s on various performance measures

s E[N1] E[N2] E[W ] b0 b1 b2 c1 pb

6 3.6659 1.5494 0.007 0.1082 0.3314 0.5604 0.4875 0.1918

7 3.6457 1.5485 0.0042 0.1078 0.3314 0.5607 0.4878 0.1916

8 3.6339 1.5479 0.0025 0.1076 0.3314 0.561 0.488 0.1915

9 3.6273 1.5474 0.0015 0.1075 0.3314 0.5611 0.4881 0.1905

10 3.6234 1.5471 0.0009 0.1074 0.3314 0.5612 0.4882 0.1888

11 3.6211 1.5467 0.0006 0.1074 0.3314 0.5612 0.4882 0.1879

12 3.6197 1.5464 0.0004 0.1073 0.3314 0.5613 0.4883 0.1873

13 3.6187 1.546 0.0002 0.1073 0.3314 0.5613 0.4883 0.1868

14 3.6183 1.5455 0.0001 0.1073 0.3314 0.5613 0.4883 0.1865

As s increases, expected a number of customers waiting in the system due
to lack of inventory decreases, because as safety stock s increases, the chance
that inventory is not available decreases. As s increases, the probability that the
server is idle decreases, because as safety stock s increases the probability that
the server is idle due to lack of inventory decreases.

5.3 Combined Effect of s and θ on Sever Being Idle

We fix m = 2; m1 = 2; m2 = 3; S = 13; γ = 5; N = 5. Table 5 indicates the
combined effect of s and θ on sever being idle (Figs. 4 and 5).
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Fig. 4. Effect of s on the expected number of customers waiting in the system due to
lack of inventory and probability that the server is idle

Fig. 5. Effect of s on the probability that the type-2 customer is blocked from entering
the system

Table 5. Combined effect of s and θ on sever being idle

s θ = 2 θ = 4 θ = 6 θ = 8 θ = 10 θ = 12 θ = 14 θ = 16

6 0.2101 0.1437 0.1082 0.087 0.0733 0.0637 0.0567 0.0514

7 0.2098 0.1434 0.1078 0.0867 0.0729 0.0633 0.0563 0.051

8 0.2097 0.1432 0.1076 0.0864 0.0726 0.0631 0.0561 0.0508

9 0.2096 0.143 0.1075 0.0863 0.0725 0.0629 0.0559 0.0506

10 0.2095 0.143 0.1074 0.0862 0.0724 0.0629 0.0559 0.0505

11 0.2094 0.1429 0.1074 0.0862 0.0724 0.0628 0.0558 0.0505

12 0.2094 0.1429 0.1073 0.0861 0.0724 0.0628 0.0558 0.0505

13 0.2094 0.1429 0.1073 0.0861 0.0723 0.0628 0.0558 0.0505

14 0.2094 0.1429 0.1073 0.0861 0.0723 0.0628 0.0558 0.0504
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As s and θ increases, the probability that the server is idle decreases. This
is because as safety stock s increases the probability that the server is idle due
to lack of inventory decreases and as θ increases, the chance of service of type-2
customers increases. Both these reduce the probability of the server is idle. For a
fixed value of s, the probability that the server is idle decreases with increasing
θ. For a fixed value of θ the probability that the server is idle decreases with
increasing s. It is clear from the table that when s becomes 11, there is not much
change in the probability (Figs. 6 and 7).

Fig. 6. The combined effect of s and θ on sever being idle

5.4 Combined Effect of s and θ on Sever Busy with a Batch
of Type-2 Customers

We fix m = 2; m1 = 2; m2 = 3; S = 13; γ = 5; N = 5. Table 6 indicates the
combined effect of s and θ on sever busy with a batch of type-2 customers.

As s and θ increases, the probability that the server is busy with a batch
of type-2 customers increases. This is because as safety stock s increases the
probability that the server is idle due to lack of inventory decreases and as θ
increases, the chance of service of type-2 customers increases. Both these increase
the probability of the server being busy with a batch of type-2 customers. It is
clear from the table that when s becomes 11, there is not much change in the
probability of the server being busy with a batch of type-2 customers.



376 N. Mathew et al.

Table 6. Combined effect of s and θ on sever busy with a batch of type-2 customers.

s θ = 2 θ = 4 θ = 6 θ = 8 θ = 10 θ = 12 θ = 14 θ = 16

6 0.4585 0.5249 0.5604 0.5816 0.5953 0.6049 0.6119 0.6172

7 0.4587 0.5252 0.5607 0.5819 0.5957 0.6053 0.6123 0.6176

8 0.4589 0.5254 0.561 0.5822 0.5959 0.6055 0.6125 0.6178

9 0.459 0.5255 0.5611 0.5823 0.5961 0.6056 0.6126 0.618

10 0.4591 0.5256 0.5612 0.5824 0.5961 0.6057 0.6127 0.618

11 0.4591 0.5257 0.5612 0.5824 0.5962 0.6058 0.6128 0.6181

12 0.4592 0.5257 0.5613 0.5824 0.5962 0.6058 0.6128 0.6181

13 0.4592 0.5257 0.5613 0.5825 0.5962 0.6058 0.6128 0.6181

14 0.4592 0.5257 0.5613 0.5825 0.5962 0.6058 0.6128 0.6181

Fig. 7. The combined effect of s and θ on sever busy with a batch of type-2 customers

6 Conclusion

In the model considered here, customers opting for two different platforms of
service are present. We analyze the model for the conditions of stability and
evaluated the stationary distribution. We plan to extend this paper by analyzing
it for cost-effectiveness. We plan to find the optimal values of the maximum buffer
size N .
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Abstract. In modern infrastructure, the mobile network operator, the
owner of the equipment, leases part of the resources of the base sta-
tions. Network slicing allows several virtual network operators to use the
resources of one base station. This allows operators and resource owners
to provide and manage multiple dedicated logical networks with specific
functionality running on top of a shared infrastructure. The key task
is to manage resource allocation between slices. In the current work,
we develop resource queuing model for the analysis of the network slic-
ing technology. Besides, algorithms are being proposed to optimize the
operation of slicing mechanisms. The paper provides a brief overview of
resource slicing strategies, describes a simplified mathematical model of
network slicing, and analyzes it using an effective recurrent algorithm.

Keywords: Network slicing · Queueing systems · Resource systems ·
Limited resources · Resource sharing

1 Introduction

Network slicing is one of the top features of modern network systems that pro-
vides an opportunity to a single network to simultaneously support a wide range
of application scenarios (e.g., automotive, utilities, smart cities, high-tech man-
ufacturing) and business models that impose a wide variety of requirements on
network functions and expected performance. This allows operators to create
and manage multiple dedicated logical networks with specific functionality run-
ning on top of the overall infrastructure. Each of these logical networks is called
a network slice and can be adapted to provide specific system behavior to best
support specific service/application domains [1].
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Network slicing allows a mobile network operator to provide a part of the
radio re-source to virtual network operators in the form of network slices. A
network slice can be allocated for specific types of services to several virtual
network operators that provide similar services, or separately for each virtual
operator [2].

The list of services which provided in wireless networks by VNOs can be
different. However, for the correct interaction of the network and VRRM, a
list of parameters is defined that must be set for each service before it is put
into interaction: class of service, service priority, violation priority, maximum
rate, minimum rate, maximum waiting time for the start of service [3]. Table 1
summarizes the SLA types and their requirements [1].

Table 1. Types of service.

SLA type Serving type Service example

Guaranteed Bitrate
(GB)

Conversational Voice over IP
(VoIP); real-time
games

Guaranteed Bitrate
(GB)

Streaming Buffered video;
video streaming

Best effort with
minimum
Guaranteed (BG)

Interactive Web browsing,
multimedia data
transmission

Best Effort (BE) Background Email, File
Transfer Protocol
(FTP)

GB has a high priority among other types of SLA. VNO must provide a
persistent connection with necessary bitrate. BG has a high priority too: con-
nection must be stable, but bitrate can change between maximum and minimum
borders. BE doesn’t need in persistent connection at all. Services can wait some
period before being done.

A model of radio resources sharing with a dynamic distribution of resources
be-tween classes was described in [4], the characteristics were calculated and
compared with the results of simulations. In [3,5], authors considered the theo-
retical basis for Multi-Operator scheduling (MOS). By dynamically adapting to
the channel and load, the centralized approach maximizes spectral efficiency for
multiple operators with full control over sharing guarantees.

The very important criteria of network slicing are efficient resource usage,
fairness and performance isolation of slices. In [6] proposed a flexible and cus-
tomizable resource slicing model which satisfied these criteria. This model is
suitable QoS-aware, service-oriented slicing, where each slice is homogeneous
with respect to traffic characteristics and QoS requirements.
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Network slicing models can be analyzed with resource queuing systems
(RQS). In [7,8] studied basis and review on research about RQS.

In this article we considered a simplified model for sharing radio resources as
RQS. The model assumes a slicing of radio resources with GB SLA type. The
total resource volume is divided into K+1 blocks. 1, ..,K blocks are isolated from
each other, each of them serves its own flow of customers with corresponding
service intensity and resource distribution. There is also the share-able block 0,
which accepts customers, that are blocked in 1, ..,K. We considered each block
as a type of customers. Each block serv one type of customers.

2 Resource Sharing Strategies

A key feature of the slicing is sharing resources. It can be completed by differ-
ent method and strategies. On figure below (see Fig. 1) present strategies how
the resources can be sliced. Kleinrock and Kamoun applied these strategies for
memory sharing in [9].

The first (and the simplest) is the complete partitioning scheme where actu-
ally no sharing is provided, but where the entire finite resources are permanently
partitioned among the several blocks. The second scheme is complete sharing,
which is such that an arriving customer is accepted if any necessary resources
are available, independent of the block to which directed. With normal traffic
conditions and for balanced input systems complete sharing is better in achiev-
ing a better performance. In strongly asymmetrical customer input rates and
equal service rates this strategy tends to heavily favor block with higher input
rates. In this case other customer flows have a high dropping probability.

Fails of first and second strategies suggest that contention for resources must
be limited in some way. In order to avoid the possible utilization of the entire
resources by any particular output channel, authors in [9] impose a limit on
the number of resources to be allocated at any time to any blocks. This idea is
incorporated in their third scheme: sharing with maximum number of resources
(SMNR). SMNR still does not guarantee a full utilization of the resources under
heavy traffic conditions. This deficiency motivates the fourth scheme: sharing
with minimum allocation (SMA) scheme. With SMA, a minimum number of
resources is always reserved for each server and, in addition, a common pool
of resources is to be shared among all servers. With SMA, the shared area
tends to be unfairly utilized as mentioned earlier; hence, authors offered the fifth
scheme: sharing with a maximum number of resources and minimum allocation
(SMRMA).

In this article we considered the sharing strategy similar to the fourth one.

3 Network Slicing Model

3.1 Model Description

K Poisson flows of customers arrive into multiserver queuing system with inten-
sities λk, k = 1..K. For each type of customers, the required number of resources
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Fig. 1. (a) - CP. (b) - CS. (c) - SMNR. (d) - SMA. (e) - SMRMA.

is defined by the prob-ability distribution {pk,r, r ≥ 1}. Service times are expo-
nentially distributed with intensity μk, k = 1..K.

Customers of type k firstly arrive to the block k, which has Rk, k = 1..K
resources. As the simplification, we assume that the resource volumes Rk, k =
1..K are fixed for all blocks and do not change in time. Maximum number of
customers in block k is Nk = Rk.

Besides, there is also a shareable block with R0 resources. If a k-type customer
is blocked due to insufficient resources at block k, then it is redirected to the
shareable block.

Total volume of resources is the following:

R =
K∑

k=0

Rk (1)

Let nk(t) be the number of customers in block k at moment t, (t > 0). and
γk(t) = (γk,1(t), ..., γk,nk

(t)) - the vector of occupied resources by each customer
in block. To simplify the description of the set of states we applied the aggrega-
tion of occupied volume of resources. rk(t) total occupied volume of resources in
block k [4]. Therefore, the set of states can be expressed as:

Xk = {(nk, rk) : 0 ≤ nk ≤ Nk, 0 ≤ rk ≤ Rk}, k = 1, ...,K (2)
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Assume that a k-type customer arrives to the system and it requires r
resources. Then, if there are not enough resources in block k to meet the resource
requirements, rk + r ≥ Rk, the customer is redirected to the common block
R0. If there are not enough resources for the customer in the common block,
r0 + r ≥ R0, the customer is lost.

Fig. 2. The scheme of the model

Denote the stationary distribution of process Xk:

qk,0 =

(
1 +

Nk∑

n=0

P
(n)
k

ρn
k

n!

)−1

(3)

qk,n(r) = qk,0
ρn

k

n!
P

(n)
k,r (4)

where P
(n)
k,r is the n-fold convolution of resource requirements function, and ρk =

λk

μk
- is the offered load. qk,n(r) - is a probability that there are n customers

occupying r resources at block k. Distribution of resource requirements for the
flow of rejected customers in block k can be calculated according to the formula
(5).
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p̃k,r =
1
πk

pr

⎛

⎝
∑

1≤n≤Nk−1,Rk−r+1≤j≤Rk

qk,n(j) +
∑

1≤j≤Rk

qk,Nk
(j)

⎞

⎠ (5)

Probability of redirecting from k-block to shareable block can be calculated
according to formula (6) and the average volume of occupied resources according
to formula (7).

πk = 1 − qk,0

Nk−1∑

n=0

ρn
k

n!
P

(n)
k,r (6)

bk = qk,0

Nk∑

n=1

ρn
k

n!

Rk∑

r=1

rP
(n)
k,r (7)

The scheme of the described model is presented on figure (see Fig. 2).
To define the resource requirements distribution of the customers that arrive

to the shareable resource block, we combine distributions of resource require-
ments for each block k in formula (9). The offered load at the shareable block
can be calculated ac-cording to formula (8).

ρ0 =
K∑

k=1

ρkπk (8)

P0,r =
K∑

k=1

ρkπk

ρ0
p̃k,r (9)

3.2 Analysis of the Performance Measures

Denote

Gk(n, r) =
n∑

i=0

ρi
k

i!

∑

0≤j≤r

p
(I)
k,j ,

where p
(i)
k,j is the i-fold convolution of the distribution {pk,j}. According to [10],

the stationary probability distributions at block k can be evaluated using the
functions Gk(n, r) in the following way:

Gk(Nk, Rk)−1Gk(n, r) =
∑

0≤i≤n,0≤j≤r

qk,i(j) (10)

Based on recurrent algorithm, presented in [11], we can find G by the recur-
rent relation (11).

G(n, r) =
ρk

nk

∑

0≤j≤r

pk,j(G(n − 1, r − j) − G(n − 2, r − j))

+G(n − 1, r), 2 ≤ n ≤ Nk (11)
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The initial values are as follows:

G(1, r) = 1 + ρk

∑

0≤j≤r

pk,j , 0 ≤ r ≤ Rk (12)

G(0, r) = 1, 0 ≤ r ≤ Rk (13)

We calculated the probability of redirecting customers from block k to the
shareable block 0 by formula (14).

πk = 1 − G−1
k (Nk, Rk)

∑

0≤j≤Rk

pk,jGk(Nk − 1, Rk − j) (14)

We used formula (15) to calculate the average volume of occupied resources
in block k.

bk = Rk − G−1
k (Nk, Rk)

Rk∑

r=1

Gk(Nk, Rk − r) (15)

Proposition 1. The resource requirements distribution of the redirected cus-
tomers at block 0 can be also obtained with the help of Gk(n, r), by substituting
(10) into (7):

p̃k,r = pk,rGk(Nk, Rk)−1(Gk(Nk − 1, Rk) − Gk(Nk − 1, Rk − r)
+Gk(Nk, Rk) − Gk(Nk − 1, Rk)) (16)

p̃k,r = pk,rGk(Nk, Rk)−1(Gk(Nk, Rk) − Gk(Nk − 1, Rk − r)) (17)

Dropping probability for k-type customers derived by formula (18).

Bk = πkπ0 (18)

4 Case Study

4.1 Equal Resources for K Blocks

For the experiment we took the number of blocks K = 3. The distribution of
resource requirements was taken from [12] and is assumed the same for each
block. Note that the average resource requirement is 2,99. For blocks 1–3 we set
the offered load ρ1 = 200, ρ2 = 60, ρ3 = 32.

Blocks 1–3 are assumed to have the same number of resources. The results
were obtained for different capacity of the shareable block R0 with fixed total
number of resources R. The range of the resource volumes in blocks 1–3 is R1 =
R2 = R3 = [60, 100]. The range for block 0 is R0 = [50, 170]. Total volumes of
servers and resources are R = N = 350.
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Fig. 3. Probability of redirecting to the shareable block as a function of its capacity.

The diagram (see Fig. 3) shows the dependence of the probability of redirect-
ing customers from blocks 1–3 to the shareable block on its capacity. Note that
the probability is increasing, which is correct, because we decrease the resources
for blocks 1–3.

The next diagram (see Fig. 4) shows the dependence of dropping probability
of each customer types on the capacity of the shareable block.

Fig. 4. Dropping probability depending on distribution of resources.

On Fig. 4 we can see, that for customers in blocks 2 and 3 dropping probability
increase and stay lower than for block 1. While for customers from block 1, the
prob-ability of drop decreases. This behavior is explained by the fact that an
equal number of resources is allocated for blocks 1–3, and the offered load for
block 1 is significantly higher than for blocks 2 and 3. Thus, when the volume of
resources for blocks 1–3 decreases, the intensity of redirections from block 1 to
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block 0 increases. That allows customers from block 1 to occupy more resources
in block 0, thus reducing the drop-ping probability.

The next diagram (see Fig. 5) shows the dependence of utilization ratio of
resources on the capacity of the shareable block.

Fig. 5. Utilization ratio of resources depending on distribution of resources.

Utilization ratios for blocks 1–3 depend on offered load and number of
resources. That’s why it rises with decreasing the number of resources. We can
oversee that total utilization ratio increase too. In case, when for blocks 1–3 is
100, for block 0 – 50 – there are many free resources in block 2 and 3. But when
the resources for block 0 comes to 170, system can redirect from block 1 to block
0 more customers, that’s why the total utilization ration increased.

4.2 Equal Offered Loads for K Blocks

For the next experiment we took the number of blocks K = 3. The distribution
of resource requirements was taken from [12] and is assumed the same for each
block. Note that the average resource requirement is 2,99. For blocks 1–3 we set
the offered load ρ1 = ρ2 = ρ3 = 125.

We considered five cases with numbers of resources for blocks pointed in
Table 2. Total volumes of servers and resources are always R = N = 350.

The diagram (see Fig. 6) shows the dependence of the probability of redirect-
ing customers from blocks 1–3 to the shareable block on its capacity. Note that
the probability is increasing, which is correct, because we decrease the resources
for blocks 1–3. Behavior of lines is similar, because we considered the same offer
loads and smoothly decreased numbers of resources for each block.

The next diagram (see Fig. 7) shows the dependence of dropping probability
of each customer types on the capacity of the shareable block. Notice that drop-
ping probability is increasing, which is correct too. Behavior on this diagram can
be explained by increasing utilization ratio in system.

The diagram (see Fig. 8) shows the dependence of utilization ratio of
resources on the capacity of the shareable block.
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Table 2. Numbers of resources for each block.

Block 1 2 3 0

Case 1 60 65 70 155
Case 2 70 75 80 125
Case 3 80 85 90 95
Case 4 90 95 100 65
Case 5 100 105 110 35

Fig. 6. Probability of redirecting to the shareable block as a function of its capacity.

Fig. 7. Dropping probability depending on distribution of resources.

Utilization ratios for blocks 1–3 depend on offered load and number of
resources. That’s why it rises with decreasing the number of resources. We can
oversee that total utilization ratio increase too. In this case we also point out
that with increasing re-sources for shareable block the utilization ratio increases
too.
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Fig. 8. Utilization ratio of resources depending on distribution of resources.

5 Conclusion

Network slicing is one of the main features of modern wireless technologies.
Despite the fact that research has been conducted in this area for several years,
a wide range of applications and variations of use allows you to create, describe
and analyze new queuing models.

In this paper, we have made a brief overview of possible strategies for sharing
network resources and discussed one of them in more detail. Also, a simplified
model of radio resource slicing is studied. The system is described in terms of
resource queuing systems. The simplification is that we were looking at a system
where the resource was divided and committed between slices. At the same
time, considered a common block that could receive customers redirected from
any other block in moments of a lack of resources.

The stationary characteristics of the model such a blocking probability, drop-
ping probability and the utilization ratio are calculated using a recurrent algo-
rithm with normalization function. This approach worked well in early studies,
when direct computing led to high time and resource costs.

Numerical experiments were performed for three blocks. Based on the results,
it can be noted that the proposed algorithms and formulas can be applied to
the analysis of the systems that use radio resource slicing mechanisms. We can
notice that dropping probabilities is rather high. In this case customers can be
redirected to close standing systems, which work on unlicensed frequencies. For
example to LTE-U (Long-Term Evolution Unlicensed) or LAA (License assisted
Access) for LTE, or to NR-U (New Radio Unlicensed) for LTE. As a result
the obtained data and developments can contribute to the analysis of services
provided through such channels.

The area of future research is wide. At the next stage, we plan to analysis
different numerical results for a new practical cases. Then we will extend the
simulation tool and make it more flexible for different types of services and
traffic. We plan to set and solve the optimization problem for network slicing
with different SLA types and initial parameters. Also we will pay more attention
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to the practical side of the issue and consider the use of network slicing for IoT
(Internet of Things) services and road traffic monitoring.
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Abstract. This article presents an inventory system of production and
multiple servers, each of which takes multiple vacations, and the vaca-
tions are subject to the Bernoulli vacation policy. The arrival of cus-
tomers constitutes a Markovian Arrival Process (MAP) and the servers
provide phase-type service. Once production starts, the time for making
an item, and the vacation of each server are exponentially distributed.
The manufacturing process begins when the level reaches a prefixed point
and stops production when the inventory level reaches a maximum value
S. Matrix Analytic Method (MAM) is used to obtain the algorithmic
solution to the model. A suitable cost function based on performance
measures is developed and numerical experiments are conducted under
various combinations of arrival and service processes.

Keywords: Markovian arrival process · Multiple servers · Multiple
vacations · Cost analysis · Bernoulli vacation policy

1 Introduction

The multiple server production inventory models with server vacations have
become an intensive area of research in recent years and researchers studied
this area extensively due to the various applications in production/inventory
systems, communication systems, computer networks, and data switching sys-
tems. Vacation in a queuing system means that the servers are not convenient
enough to provide the service in a short period. Studies related to vacation
in queuing models be seen to have begun in the early 1970s. Doshi [5] and
Thegam [15] proposed outstanding survey papers on vacation models. The anal-
ysis of the Bernoulli vacation model (BER) was started by Keilson and Servi [8].
Ayyappan and Gouthami [1] analyzed a Bernoulli schedule vacation model with
customer reneging and Bernoulli feedback. Banik [2] studied a BMAP/G/1/N
system with a p-limited service schedule and vacation to the server depends on
the length of the queue. The stationary distribution of the number of customers
in the system at different epochs is calculated. Suganya [14] discussed a retrial
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inventory system with finite orbit size and multiple servers in which the major
contribution was the use of the idle period of the servers. Krishnamoorthy and
Viswanath Narayanan [9] analyzed a production inventory system in which the
manufacturing process follows a Markovian Production Scheme. Krishnakumar
et al. [11] discussed the waiting time distribution and mean waiting time of a
multiple server queueing system. Krishnakumar and Pavai Madheswari [10] con-
sidered multiple servers queueing model in which each server takes the Bernoulli
vacation service schedule. Jose and Beena [6] analyzed an inventory system with
production, multiple servers, and customer retrial. Jose and Salini [7] compared
two production inventory models with different production rates and with the
retrial of customers. Beena and Jose [3] discussed a multiple server produc-
tion inventory system in which the production rate depends on the stock level.
Chakravarthy [4] analyzed a single server vacation model where primary users
could choose an additional service with certain probabilities or exit the system
with its complementary probabilities.

The following situation in a manufacturing company that produces cattle feed
can be considered as an example of the model under consideration. There are
two staff- one technician and the other, a worker to assist the technician. Service
rates of technician and worker are different. Once the stock level of cattle feed
reaches S, the production will stop. If the level of stock drops to s, production
will begin immediately until the stock level reaches back to S. The presence of a
control parameter is an important factor behind the use of the Bernoulli service
strategy, and we can control system congestion by modifying the value of that
parameter.

This article is organized as follows. Description of the model and system
stability are given in Sects. 2 and 3. Sections 4 and 5 consider the measures of
effectiveness and cost analysis. Numerical illustrations are presented in Sect. 6.
The conclusion is given in Sect. 7.

2 Description of the Model

In this article, we studied a production inventory system with multiple servers
that provide different rates of service to customers. We assume that the arrivals
of customers are according to a MAP with representation (D0,D1)l. Service rates
of server 1 and server 2 are phase type distributed having representations (α, S)m

and (β, T )n respectively. Vacation duration of servers 1 and 2 are exponentially
distributed with parameters θ1 and θ2. If the system has no customers or the
inventory level is zero or both, the servers will always take a vacation. When the
service completes, the servers can choose a vacation with probability pi, i = 1, 2
or restart the service with its complementary probability qi = 1 − pi, i = 1, 2,
if there are positive inventory levels and customers in the waiting area. When
the servers return after a vacation, they return to the vacation, if the system
is empty or the inventory level is zero, or both. The servers will continue to do
this until they find the system nonempty with a positive inventory level. Items
are only available after a certain period and are distributed exponentially with
parameter γ(> 0).
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The notations used in this model are
• N(t) indicates the number of customers in the system at time t.
• I(t) describes the level of stock at time t.
• C(t) denotes the status of servers 1 and 2 where

C(t) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if both the servers are on vacation
1, if server 1 is busy and server 2 is on vacation
2, if server 1 is on vacation and server 2 is busy
3, if both servers are busy

• J(t) denotes the production status where

J(t) :

{
0, if the production process gets switched OFF
1, if the production process gets switched ON

• J0(t) indicates the phase of the arrival process.
• J1(t) denotes the phase of the service process of server 1.
• J2(t) indicates the phase of the service process of server 2.
• l, m, n denote the number of arrival phases, service phases of server 1, and 2

respectively.
• ep denotes a column vector of dimension p with each of its entries are 1.
• e1 = el(2S−s)+ lm(2S−s−1)+ ln(2S−s−1)+ lmn(2S−s−2).
• e2 = el(2S−s)+ lm(2S−s−1)+ ln(2S−s−1) and e3 = el(2S−s).

2.1 Steady State Analysis

Then {X(t) = (N(t), C(t), J(t), I(t), J0(t), J1(t), J2(t)), t ≥ 0} is a continuous
time Markov chain on the state space Ω = l(0) ∪ l(1) ∪ l(2) ∪ l(3) where
l(0) = (i, 0, 0, k, j0)|s + 1 ≤ k ≤ S, ∪ (i, 0, 1, k, j0)|0 ≤ k ≤ S − 1; i ≥ 0
l(1) = (i, 1, 0, k, j0, j1)|s + 1 ≤ k ≤ S, ∪ (i, 1, 1, k, j0, j1)|1 ≤ k ≤ S − 1; i ≥ 1
l(2) = (i, 2, 0, k, j0, j2)|s + 1 ≤ k ≤ S, ∪ (i, 2, 1, k, j0, j2)|1 ≤ k ≤ S − 1; i ≥ 1
l(3) = (i, 3, 0, k, j0, j1, j2)|s+1 ≤ k ≤ S, ∪ (i, 3, 1, k, j0, j1, j2)|2 ≤ k ≤ S−1; i ≥ 2

Generator Q of this process is of the form

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

B00 B01 0 0 0 . . .
B10 B11 B12 0 0 . . .
0 B21 A1 A0 0 . . .
0 0 A2 A1 A0 . . .
...

...
...

...
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎦

where A0, A1, A2 are square matrices of order l(2S − s) + lm(2S − s − 1) +
ln(2S − s − 1) + lmn(2S − s − 2).
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A1 =

⎡

⎢
⎢
⎢
⎣

C
(11)
1 C

(12)
1 C

(13)
1 0

0 C
(22)
1 0 C

(24)
1

0 0 C
(33)
1 C

(34)
1

0 0 0 C
(44)
1

⎤

⎥
⎥
⎥
⎦

, A2 =

⎡

⎢
⎢
⎢
⎣

0 0 0 0
C

(21)
2 C

(22)
2 0 0

C
(31)
2 0 C

(33)
2 0

0 C
(42)
2 C

(43)
2 C

(44)
2

⎤

⎥
⎥
⎥
⎦

,

B11 =

⎡

⎢
⎣

C
(11)
1 C

(12)
1 C

(13)
1

0 C
(22)
11 0

0 0 C
(33)
11

⎤

⎥
⎦ , B21 =

⎡

⎢
⎢
⎢
⎣

0 0 0
C

(21)
2 C

(22)
2 0

C
(31)
2 0 C

(33)
2

0 C
(42)
21 C

(43)
2

⎤

⎥
⎥
⎥
⎦

B00 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D0, if 1 ≤ u ≤ S − s, v = u

D0 − γIl, S − s + 1 ≤ u ≤ 2S − s, v = u

γIl, S − s + 1 ≤ u ≤ 2S − s − 1, v = u + 1
γIl, u = 2S − s, v = S − s

0, otherwise

B01 =

{
D1, 1 ≤ u ≤ 2S − s, v = u

0, otherwise

B10 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Il ⊗ S0, u = 2S − s + 1, v = S + 1
Il ⊗ S0, 2S − s + 2 ≤ u ≤ 3S − 2s, 1 ≤ v ≤ S − s − 1
Il ⊗ S0, 3S − 2s + 1 ≤ u ≤ 4S − 2s − 1, S − s + 1 ≤ v ≤ 2S − s − 1
Il ⊗ T 0, u = 4S − 2s, v = S + 1
Il ⊗ T 0, 4S − 2s + 1 ≤ u ≤ 5S − 3s − 1, 1 ≤ v ≤ S − s − 1
Il ⊗ T 0, 5S − 3s ≤ u ≤ 6S − 3s − 2, S − s + 1 ≤ v ≤ 2S − s − 1
0, otherwise

B12 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D1, 1 ≤ u ≤ 2S − s, v = u

D1 ⊗ Im, 2S − s + 1 ≤ u ≤ 4S − 2s − 1, v = u

D1 ⊗ In, 4S − 2s ≤ u ≤ 6S − 3s − 2, v = u

0, otherwise

A0 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D1, 1 ≤ u ≤ 2S − s, v = u

D1 ⊗ Im, 2S − s + 1 ≤ u ≤ 4S − 2s − 1, v = u

D1 ⊗ In, 4S − 2s ≤ u ≤ 6S − 3s − 2, v = u

D1 ⊗ Im ⊗ In, 6S − 3s − 1 ≤ u ≤ 8S − 4s − 4, v = u

0, otherwise

C
(22)
11 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(D0 ⊕ S), 1 ≤ u ≤ S − s, v = u

(D0 ⊕ S) − γIlm, S − s + 1 ≤ u ≤ 2S − s − 1, v = u

γIlm, S − s + 1 ≤ u ≤ 2S − s − 2, v = u + 1
γIlm, u = 2S − s − 1, v = S − s

0, otherwise
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C
(33)
11 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(D0 ⊕ T ), 1 ≤ u ≤ S − s − 1, v = u

(D0 ⊕ T ) − γIln, if S − s + 1 ≤ u ≤ 2S − s − 1, v = u

γIln, S − s + 1 ≤ u ≤ 2S − s − 2, v = u + 1
γIln, u = 2S − s − 1, v = S − s

0, otherwise

C
(21)
2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Il ⊗ p1S
0, u = 1, v = S + 1

Il ⊗ p1S
0, 2 ≤ u ≤ S − s, v = u − 1

Il ⊗ p1S
0, S − s + 1 ≤ u ≤ 2S − s − 1, v = u

0, otherwise

C
(22)
2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Il ⊗ q1 S0α, u = 1, v = S

Il ⊗ q1 S0α, 2 ≤ u ≤ S − s, v = u − 1
Il ⊗ q1 S0α, S − s + 2 ≤ u ≤ 2S − s − 1, v = u − 1
0, otherwise

C
(31)
2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Il ⊗ p2T
0, u = 1S, v = S + 1

Il ⊗ p2T
0, 2 ≤ u ≤ S − s, v = u − 1

Il ⊗ p2T
0, S − s + 1 ≤ u ≤ 2S − s − 1, v = u

0, otherwise

C
(33)
2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Il ⊗ q2T
0β , u = 1, v = S

Il ⊗ q2T
0β, 2 ≤ u ≤ S − s, v = u − 1

Il ⊗ q2T
0β, S − s + 2 ≤ u ≤ 2S − s − 1, v = u − 1

0, otherwise

C
(42)
2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Il ⊗ (Im ⊗ p2T
0), u = 1, v = S

Il ⊗ (Im ⊗ p2T
0), 2 ≤ u ≤ S − s, v = u − 1

Il ⊗ (Im ⊗ p2T
0), S − s + 1 ≤ u ≤ 2S − s − 2, v = u

0, otherwise

C
(43)
2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Il ⊗ (p1S0 ⊗ In), u = 1, v = S

Il ⊗ (p1S0 ⊗ In), 2 ≤ u ≤ S − s, v = u − 1
Il ⊗ (p1S0 ⊗ In), S − s + 1 ≤ u ≤ 2S − s − 2, v = u

0, otherwise

C
(44)
2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Il ⊗ (q1S0α ⊕ q2T
0β), u = 1, v = S

Il ⊗ (q1S0α ⊕ q2T
0β), 2 ≤ u ≤ S − s, v = u − 1

Il ⊗ (q1S0α ⊕ q2T
0β), S − s + 2 ≤ u ≤ 2S − s − 2, v = u − 1

0, otherwise

C
(42)
21 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Il ⊗ (Im ⊗ T 0), u = 1, v = S

Il ⊗ (Im ⊗ p2T
0), 2 ≤ u ≤ S − s, v = u − 1

Il ⊗ (Im ⊗ p2T
0), S − s + 1 ≤ u ≤ 2S − s − 2, v = u

0, otherwise



MAP/PH(1), PH(2)/2 Production Inventory System 395

C
(43)
2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Il ⊗ (S0 ⊗ In), u = 1, v = S

Il ⊗ (S0 ⊗ In), 2 ≤ u ≤ S − s, v = u − 1
Il ⊗ (S0 ⊗ In), S − s + 1 ≤ u ≤ 2S − s − 2, v = u

0, otherwise

C
(11)
1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

D0 − (θ1 + θ2)Il, 1 ≤ u ≤ S − s, v = u

D0 − γIl, u = S − s + 1, v = u

D0 − (θ1 + θ2 + γ)Il, S − s + 2 ≤ u ≤ 2S − s, v = u

γIl, S − s + 1 ≤ u ≤ 2S − s − 1, v = u + 1
γIl, u = 2S − s, v = S − s

0, otherwise

C
(12)
1 =

⎧
⎪⎨

⎪⎩

Il ⊗ θ1α, ‘1 ≤ u ≤ S − s, v = u

Il ⊗ θ1α, S − s + 2 ≤ u ≤ 2S − s, v = u − 1
0, otherwise

C
(13)
1 =

⎧
⎪⎨

⎪⎩

Il ⊗ θ2β, 1 ≤ u ≤ S − s, v = u

Il ⊗ θ2β, S − s + 2 ≤ u ≤ 2S − s, v = u − 1
0, otherwise

C
(22)
1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(D0 ⊕ (S − θ2Im)), 1 ≤ u ≤ S − s, v = u

(D0 ⊕ p1S) − γIlm u = S − s + 1, v = u

D0 ⊕ (S − θ2Im) − γIlm, S − s + 2 ≤ u ≤ 2S − s − 1, v = u

γIlm, S − s + 1 ≤ u ≤ 2S − s − 2, v = u + 1
γIlm, u = 2S − s − 1, v = S − s

0, otherwise

C
(24)
1 =

⎧
⎪⎨

⎪⎩

Il ⊗ θ2β, 1 ≤ u ≤ S − s, v = u

Il ⊗ θ2β, S − s + 2 ≤ u ≤ 2S − s − 1, v = u − 1
0, otherwise

C
(33)
1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

D0 ⊕ (T − θ1In), 1 ≤ u ≤ S − s, v = u

(D0 ⊕ p2T ) − γIln, u = S − s + 1, v = u

D0 ⊕ (T − θ1In) − γIln, S − s + 2 ≤ u ≤ 2S − s − 1, v = u

γIln, S − s + 1 ≤ u ≤ 2S − s − 2, v = u + 1
γIln, u = 2S − s − 1, v = S − s

0, otherwise

C
(34)
1 =

⎧
⎪⎨

⎪⎩

Il ⊗ (θ1α ⊗ In), 1 ≤ u ≤ S − s, v = u

Il ⊗ (θ1α ⊗ In), S − s + 2 ≤ u ≤ 2S − s − 1, v = u − 1
0, otherwise
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C
(44)
1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

D0 ⊗ Im ⊗ In + Il ⊗ (S ⊕ T ), 1 ≤ u ≤ S − s, v = u

D0 ⊗ Im ⊗ In + Il ⊗ (p1S ⊕ p2T ) − γIlmn, u = S − s + 1, v = u

D0 ⊗ Im ⊗ In + Il ⊗ (S ⊕ T ) − γIlmn, S − s + 2 ≤ u ≤ 2S − s − 2, v = u

γIlmn, S − s + 1 ≤ u ≤ 2S − s − 3, v = u + 1

γIlmn, u = 2S − s − 2, v = S − s

0, otherwise

3 System Stability

To prove the system stability, we define transition rate matrix A = A0+A1+A2

of order l(2S − s) + lm(2S − s − 1) + ln(2S − s − 1) + lmn(2S − s − 2). A is
irreducible so there exists a stationary probability vector Π satisfying ΠA = 0
and Πe = 1. Π can be partitioned as Π = (π[i], i = 0, 1, 2, 3) where each
π[i] = {(π[i,0], π[i,1]), i = 0, 1, 2, 3}

π[i,0] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(π[i,0,s+1,l], . . . , π[i,0,S,l]), i = 0
(π[i,0,s+1,l,m], . . . , π[i,0,S,l,m]), i = 1
(π[i,0,s+1,l,n], . . . , π[i,0,S,l,n]), i = 2
(π[i,0,s+1,l,m,n], . . . , π[i,0,S,l,m,n]), i = 3

π[i,1] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(π[i,1,0,l], . . . , π[i,1,S−1,l]), i = 0
(π[i,1,1,l,m], . . . , π[i,1,S−1,l,m]), i = 1
(π[i,1,1,l,n], . . . , π[i,1,S−1,l,n]), i = 2
(π[i,1,2,l,m,n], . . . , π[i,1,S−1,l,m,n]), i = 3

From the renowned result of the standard drift condition of Nuets [13], ΠA0e <
ΠA2e is a necessary and sufficient condition for the stability of the QBD process.
Using the structure of the matrices A0, A2 and Q , the stability condition can
be found as

ΠA0e =

[

π[0,0][D1IS−s]el(S−s) + π[0,1][D1IS ]elS + π[1,0][D1IS−sel(S−s)] ⊗ em+

π[1,1][D1IS−1el(S−1)] ⊗ em + π[2,0][D1IS−sel(S−s)] ⊗ en + π[2,1][D1IS−1el(S−1)] ⊗ en

+ π[3,0][D1IS−sel(S−s)] ⊗ emn + π[3,1][D1IS−2el(S−2)] ⊗ emn

]
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and

ΠA2e = π[1,0][(el ⊗ S0) ⊗ eS−s] +
[

π[1,1,1][el ⊗ p1 S0] + π[1,1,2][el ⊗ S0]

+ .......... + π[1,1,S−1][el ⊗ S0]
]

+ π[2,0][(el ⊗ T 0) ⊗ eS−s] +
[

π[2,1,1][el ⊗ p2T
0]+

π[2,1,2][el ⊗ T 0] + · · · + π[2,1,S−1][el ⊗ T 0]
]

+ π[3,0][el ⊗ (S0 ⊕ T 0) ⊗ eS−s]

+
[

π[3,1,2][el ⊗ (p1 S0 ⊕ p2T
0)] + π[3,1,3][el ⊗ (S0 ⊕ T 0)] + ....... + π[3,1,S−1][el⊗

(S0 ⊕ T 0)]
]

3.1 Steady State Probability Vector

Under the stability condition of the system, there exists a steady state probabil-
ity vector x = (x0,x1, . . . ), satisfying xQ = 0,xe = 1 and the sub-vectors can
be obtained as

x0B00 + x1B10 = 0 (1)

x0B01 + x1B11 + x2B21 = 0 (2)

x1B12 + x2[A1 + RA2] = 0 (3)

xi = x2R
i−1, i = 3, 4, 5... (4)

subject to the normalizing condition

x0e3 + x1e2 + x2(I − R)−1e1 = 1 (5)

where x0 = (y0,0,0,s+1, ....y0,0,0,S , y0,0,1,0, ....., y0,0,1,S − 1)

x1 =

{
(y1,0,0,s+1, . . . , y1,0,0,S , y1,0,1,0, . . . , y1,0,1,S − 1, y1,1,0,s+1, . . . , y1,1,0,S)
(y1,1,1,1, ...., y1,1,1,S − 1, y1,2,0,s+1, ....., y1,2,0,S , y1,2,1,1, ......, y1,2,1,S − 1)

for i ≥ 2

xi =

⎧
⎪⎨

⎪⎩

(yi,0,0,s+1, . . . , yi,0,0,S , yi,0,1,0, . . . , yi,0,1,S − 1, yi,1,0,s+1, . . . , yi,1,0,S)
(yi,1,1,1, ..., yi,1,1,S − 1,yi,2,0,s+1, ....., yi,2,0,S , yi,2,1,1, ......, yi,2,1,S − 1)
yi,3,0,s+1, . . . , yi,3,0,S , yi,3,1,2, ......, yi,3,1,S − 1

,

R is the minimal nonnegative solution of the matrix quadratic equation
R2A2 + RA1 + A0 = 0, where the spectral radius of R is less than one. The
rate matrix R is computed from R = −A0(A1)−1 − R2A2(A1)−1 and is approx-
imated by the continuous approximation procedure developed by Neuts [12]
namely R0 = 0, Rn+1 = −A0(A1)−1 − R2

nA2(A1)−1, n = 0, 1, 2, . . .. The process
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continues until the difference in corresponding values in R, which is obtained in
successive iteration falls below a certain tolerance level.

4 Measures of Effectiveness

(i) Expected number of customers in the system:

EEC = x1e2 + x2[2(I − R)−1 + R(I − R)−2]e1

(ii) Expected switching rate:

ESWR =
∞∑

i=1

y(i,1,0,s+1)[Il ⊗ S0]e +
∞∑

i=1

y(i,2,0,s+1)[Il ⊗ T 0]e

+
∞∑

i=2

y(i,3,0,s+1)[Il ⊗ (S0 ⊕ T 0)]e

(iii) Expected number of departures after completing service:

EEDS =
∞∑

i=1

S∑

k=s+1

yi,1,0,k(Il ⊗ S0)e +
∞∑

i=1

S−1∑

k=1

yi,1,1,k(Il ⊗ S0)e

+
∞∑

i=1

S∑

k=s+1

yi,2,0,k(Il ⊗ T 0)e +
∞∑

i=1

S−1∑

k=1

yi,2,1,k(Il ⊗ T 0)e

+
∞∑

i=2

S∑

k=s+1

yi,3,0,k(Il ⊗ (S0 ⊕ T 0))e +
∞∑

i=2

S−1∑

k=2

yi,3,1,k(Il ⊗ (S0 ⊕ T 0))e

(iv) Mean Production rate:

EEPR = γ

[ ∞∑

i=0

S−1∑

k=0

yi,0,1,k +
∞∑

i=1

S−1∑

k=1

yi,1,1,k +
∞∑

i=1

S−1∑

k=1

yi,2,1,k +
∞∑

i=2

S−1∑

k=2

yi,3,1,k

]

(v) Expected number of crossovers in one cycle:

EECC = γ[

∞∑

i=1

y(i,1,1,s−1) +

∞∑

i=1

y(i,2,1,s−1) +

∞∑

i=2

y(i,3,1,s−1)]

+

∞∑

i=1

y(i,1,0,s+1)[Il ⊗ S0]e +

∞∑

i=1

y(i,2,0,s+1)[Il ⊗ T 0]e +

∞∑

i=2

y(i,3,0,s+1)[Il ⊗ (S0 ⊕ T 0)]e
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(vi) Expected inventory level:

EEI =
∞∑

i=0

S∑

k=s+1

l∑

j0=1

ky(i,0,0,k,j0) +
∞∑

i=0

S−1∑

k=1

l∑

j0=1

ky(i,0,1,k,j0)

+
∞∑

i=1

S∑

k=s+1

l∑

j0=1

m∑

j1=1

ky(i,1,0,k,j0,j1) +
∞∑

i=1

S−1∑

k=1

l∑

j0=1

m∑

j1=1

ky(i,1,1,k,j0,j1)

+

∞∑

i=1

S∑

k=s+1

l∑

j0=1

n∑

j2=1

ky(i,2,0,k,j0,j2) +

∞∑

i=1

S−1∑

k=1

l∑

j0=1

n∑

j2=1

ky(i,2,1,k,j0,j2)

+

∞∑

i=2

S∑

k=s+1

l∑

j0=1

m∑

j1=1

n∑

j2=1

ky(i,3,0,k,j0,j1,j2) +

∞∑

i=2

S−1∑

k=2

l∑

j0=1

m∑

j1=1

n∑

j2=1

ky(i,3,1,k,j0,j1,j2)

5 Cost Analysis

For the construction of cost function, we define the following costs c1: the pro-
curement cost per unit per unit time, c2: the holding cost of inventory per unit
per unit time, c3: the holding cost of customers per unit per unit time, and c4:
the cost due to service per unit per unit time. Then the expected total cost
(Tcost) of the system per unit per unit time is given by

Tcost = c1ESWR + c2EEI + c3EEC + c4EEDS

6 Numerical Experiments

The model is numerically analyzed by assigning two sets of different values for
D0 and D1 for the arrival process. The arrival processes marked as MAP(C−)
and MAP(C+) respectively, have negative and positive correlations with values
−0.2 and 0.2.
a) Map with negative correlation-MAP(C−):

D0 =
[−5.307 0.001

0.001 −0.903

]

,D1 =
[
0.006 5.3
0.9 0.002

]

b) Map with positive correlation-MAP(C+)

D0 =
[−0.9030 0.001

0.0002 −3.2880

]

,D1 =
[

0.9 0.002
0.008 3.28

]

Three different PH- distributions are considered for each server’s service time
distribution, and by normalizing these processes, servers 1 and 2 will have specific
service rates.
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i) Erlang distribution (ER):

α =
[
1 0

]
, β =

[
1 0

]
, S =

[−5.1613 5.1613
0 −5.1613

]

, T =
[−5.0746 5.0746

0 −5.0746

]

ii) Hyper exponential (HEX):

α =
[
0.8 0.2

]
, β =

[
0.7 0.3

]
, S =

[−4.2665 0
0 −1

]

, T =
[−7.437 0

0 −1

]

iii) Exponential distribution (EX):

α = [1], β = [1], S = [−2.5806], T = [−2.5373]

We consider the long-term expected cost behavior based on variations in the
values of different parameters in different service distributions for the positive
and negative correlated arrivals. Due to the complex terminology of the cost
function that we have acquired, its qualitative nature cannot be studied through
analytical methods. Therefore, we find the “local” optimal values of the expected
cost function by assigning a small set of integer values to the parameters using
a simple numerical procedure.

Tables 1 and 2 provide the details of long term expected costs incurred on
different values of θ1 and θ2 under Bernoulli vacation schedule and for different
service distributions in MAP(C+) and MAP(C−).

Table 1. Tcost vs θ1 (S = 20, s = 5, γ = 5, p1 = 0.5, p2 = 0.6, c1 = 350, c2 = 4, c3 =
100, c4 = 1, θ2 = 50)

θ1 MAP(C+) and PH service

ER HEX EX

EX ER HEX EX ER HEX EX ER HEX

5 48.7974 48.6640 47.8424 48.9408 49.6771 48.9502 48.8617 48.6802 49.1114

6 48.7202 48.5888 47.8110 48.8649 49.5815 48.8874 48.7867 48.6166 49.0031

7 48.6657 48.5361 47.7905 48.8114 49.5127 48.8430 48.7341 48.5723 48.9281

8 48.6251 48.4971 47.7765 48.7715 49.4602 48.8099 48.6952 48.5396 48.8733

9 48.5934 48.4670 47.7667 48.7405 49.4184 48.7843 48.6652 48.5146 48.8315

10 48.5680 48.4430 47.7597 48.7156 49.3841 48.7637 48.6414 48.4949 48.7987

θ1 MAP(C−) and PH service

ER HEX EX

EX ER HEX EX ER HEX EX ER HEX

5 99.4215 116.0370 76.9550 94.9408 116.1167 82.7191 96.4769 110.9148 85.9030

6 98.6746 114.7734 76.4954 93.8580 114.4247 82.0321 95.4981 109.3975 84.9615

7 98.1389 113.8000 76.2179 93.0204 113.0242 81.5396 94.7557 108.1943 84.2918

8 97.7409 113.0222 76.0537 92.3464 111.8297 81.1711 94.1700 107.2054 83.7957

9 97.4375 112.3829 75.9640 91.7875 110.7886 80.8862 93.6937 106.37073 83.4172

10 97.2019 111.8458 75.9253 91.3130 109.8664 80.6605 93.2972 105.6514 83.1218
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Table 2. Tcost vs θ2 (S = 20, s = 8, γ = 5, p1 = 0.5, p2 = 0.6, c1 = 350, c2 = 4, c3 =
100, c4 = 1, θ1 = 10)

θ2 MAP(C+) and PH service

ER HEX EX

EX ER HEX EX HEX ER EX ER HEX

10 49.1261 49.0090 48.3963 49.3174 49.4216 50.0706 49.3049 49.1662 49.4262

11 49.1010 48.9863 48.3724 49.2862 49.3858 50.0276 49.2765 49.1400 49.4000

12 49.0807 48.9679 48.3521 49.2607 49.3564 49.9930 49.2529 49.1182 49.3782

13 49.0640 48.9529 48.3346 49.2396 49.3318 49.9649 49.2330 49.0998 49.3598

14 49.0501 48.9404 48.3194 49.2219 49.3110 49.9417 49.2159 49.0841 49.3439

15 49.0383 48.9299 48.3060 49.2069 49.2932 49.9224 49.2012 49.0705 49.3302

θ2 MAP(C−) and PH service

ER HEX EX

EX ER HEX EX HEX ER EX ER HEX

10 70.4356 73.7856 61.6830 68.1710 67.6271 76.6408 67.8018 70.4495 67.3274

11 69.9205 73.3525 61.1545 67.8403 67.1971 76.4800 67.4532 70.1746 66.9206

12 69.4768 72.9805 60.7003 67.5574 66.8256 76.3542 67.1527 69.9405 66.5678

13 69.0899 72.6570 60.3051 67.3122 66.5010 76.2547 66.8907 69.7385 66.2583

14 68.7491 72.3728 59.9579 67.0974 66.2144 76.1752 66.6597 69.5623 65.9843

15 68.4465 72.1207 59.6502 67.9074 65.9593 76.1113 66.4544 69.4069 65.7397

As the server vacation rates increase, the average duration of the server
vacations decreases, and hence the average service time increases. So, the overall
expected cost decreases as the vacation rate increases. From the table values,
one can see that MAP with positive correlation can achieve the lowest possible
cost and it is obtained during the positive correlated inter-arrival time when
Erlang distribution is considered for the service time of the first server and
hyper-exponential for the second server.

6.1 Optimum (s, S) Pair

We present the optimum (s, S) pair for different service distributions under
MAP(C+). Assume c1 = 2000, c2 = 0.5, c3 = 10, c4 = 10 and p1 = p2 = 0.5.
Optimum (s, S)pair in ER/HEX service distribution is (8, 19) and the opti-
mum value of the expected cost is 8.1815 (Fig. 1). In ER/EX service distribution
(S∗, s∗) = (4, 20) and the optimum value of the expected cost is found to be
8.7775 (Fig. 2).
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Fig. 1. Three dimensional plot for the
convexity of Tcost in ER/HEX for θ1 =
60, θ2 = 22, γ = 10

Fig. 2. Three dimensional plot for the
convexity of Tcost in ER/EX for θ1 =
60, θ2 = 22, γ = 15

7 Concluding Remarks

In this article, we considered a production inventory system with MAP arrivals
and multiple servers under the Bernoulli vacation schedule. The stability and
measures of effectiveness of the system are obtained. We discussed the behaviour
of the expected total cost based on variations in the values of distinct parameters
in different service distributions for the positive and negative correlated arrivals.
Finally, the optimum (s, S) pair for different service time distributions under
MAP(C+) is computed. This work can further be extended by considering the
number of servers greater than two and the distribution of server relaxation time
as phase type.
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Abstract. This paper analyses a discrete-time queueing model with two
modes of service and N-policy. The arrival of customers constitutes a
Bernoulli process. There are two types of service; mode 1 and mode 2
of which service times are geometrically distributed with parameters q1
and q2 respectively, where q1 < q2, so that the mode 2 is an accelerated
service mode. Initially, the service starts with mode 1 and when the
number of customers reaches N , the server tries to change the type of
the service to mode 2 with probability θ. Once the type of the service is
changed from mode 1 to mode 2, it will resume the reduced rate when
either of two cases happens; i) the number of customers in the system is
either less than N and ii) the number of customers is reduced to zero.
These two cases are studied in Model I and Model II respectively. The
spectral value (or eigenvalue) approach is used to analyze Model I and
consequently obtain the rate matrix of the model. Using the rate matrix
of Model I, we analyze Model II. On the basis of a suitable cost function,
numerical experiments are conducted for the models and obtained the
optimum value of N .

Keywords: Discrete-time queue · Bernoulli process · Geometric
distribution · Eigenvalue · Rate matrix

1 Introduction

The discrete-time queue is mainly introduced by Meisling [19] in which the
author analyzed a single-server queueing model with Bernoulli arrivals and
geometrically distributed service time. The author obtained the expressions
for expected queue length and expected waiting time and hence the expected
measures for the analogue continuous-time model as a limiting case. Later,
Hunter [14] discussed the tools such as the generating function method, matrix
theory for the discrete-time queues. An extensive study in discrete-time queues
using Matrix-Analytic Method (MAM) is carried out by Alfa [1]. Recently,
Anilkumar and Jose [3,4] analyzed discrete-time priority queues by applying
MAM. The optimum value of queue length for starting the service was the inter-
est of researchers since the work of Yadin and Naor [27]. The authors optimized
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the queue size for turning the server on, assuming that the server is turned off
when the queue is empty. Heyman [13] studied the economic behavior of an
M/G/1 queue by considering start-up cost, server shutdown cost, holding cost
of customer and cost per unit time when the service is going on. The author
proved that there is a stationary optimal value for the number of customers to
be present to start the service. The exact rate of cost as a function of N and
a closed-form expression for the optimum value of N is derived. Krishnamoor-
thy and Deepak [15] studied a modified N - policy model in continuous-time
in which the service starts with a batch of size N and subsequent arrivals are
served one after the other. As soon as the queue is empty, the server will begin
the service only after accumulating N customers. Moreno [23] analyzed the dis-
crete version of the model. Anilkumar and Jose [2] analyzed the model in which
served customer provides an item from the inventory. Wang et al. [26] discussed
a discrete-time Geo/G/1 queue that operates under (p,N)-policy in which the
server is deactivated until N messages are accumulated in the queue. If the
number of messages in the queue is accumulated to N, the server is activated
for service with probability p and deactivated with probability (1 − p). Based
on the relevant system characteristics, an average cost function per unit time is
analytically developed and the optimal values of p and N that minimize the cost
function are determined.

In working vacation models, the server provides service on the ongoing ser-
vice at a lower rate during vacation. Due to this reason, the idea of variation in
the service rate is used in working vacation models. The multiple vacations with
N -policy in continuous time are analyzed using the Matrix-Analytic Method
by Zhang and Xu [28]. The authors obtained additional queue length as well
as an additional delay for the service due to the reduced rate of service during
vacation. Li and Tian [17] analyzed Geo/Geo/1 queue having a single working
vacation and formulated an expected regular busy period and cycle. Yong and
Jun [24] analyzed a Geo/Geo/1 queue with N -policy on starting time with neg-
ative customers who do not accept service but, remove the ordinary customers.
Balking of an arriving customer after joining the system with a preassigned
probability in an infinite buffer discrete-time working vacation queue is carried
out by Goswami [8]. Ma et al. [18] studied a repairable Geo/Geo/1 discrete-time
queueing system with pseudo-fault, setup time, N policy and multiple working
vacations. Chandrasekaran et al. [5] analysed the developments of investigations
in working vacation models in the survey paper. Recently, Lang and Tang [16]
explicitly formulated the distribution of transient queue length and recursively
derived the distribution of queue length in steady-state. In discrete-time queue-
ing models, the mode of changing the service rate with a preassigned probability
when the number of pending accumulated services is greater than N has not
been considered till the time. In this paper, we analyze the change of service
rate in a discrete-time queueing model under (θ,N)-policy. In this policy, when
the number of customers in the queue is greater than or equal to N , the service
rate is increased with preassigned probability θ or continued at the same rate.
Once the service rate is increased and the number of customers became a number
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less than N , the service rate continues at the increased rate or it changes to the
reduced rate. These two cases are studied separately. By defining a suitable cost
function, an optimum value of N that minimizes the cost function is obtained.

In order to obtain the steady steady-state probability distribution of the
number of customers present in the system and to decide the mode of service,
we use the generalized eigenvalue approach. For the details of the theory of
generalized eigenvalue, one can refer to Gohberg et al. [7]. The method of the
generalized eigenvalue is successfully applied in queueing theory by Mitrani and
Chakka [20] and Haverkort and Ost [12]. The other notable works carried out
using generalized eigenvalue approach by Grassmann and Drekic [10] in tandem
queues, Grassmann and Tavokali [11] in tandem queues with a movable server
and Drekic and Grassmann [6] in priority queues. Recently, Grassmann and
Tavakoli [9] demonstrated the fastest way to find the distribution of the queue
length in a discrete GI/G/1 queue with bounded support from the waiting time
distribution.

The rest of the paper is organized as follows. Section 2 provides mathematical
modeling of Model I and calculation of a steady-state probability vector using
the eigenvalue approach. The relationship with the matrix analytic method and
computation of the rate matrix is discussed in Sect. 3. To reduce the starting
cost of mode 2 service per unit time, a modified model (Model II) is discussed in
Sect. 4. Finally, Optimization and numerical illustration are discussed in Sect. 5.

2 Model I

In this model, we consider a single-server queueing system in which the arrival of
customers follows a Bernoulli process with a parameter p. There are two modes
of service; mode 1 and mode 2 of which the service times are geometrically
distributed with parameters q1 and q2 respectively. If the number of customers
in the system is less than N , then the service is in mode 1 and if the number
of customers in the system is greater than or equal N , the mode of service may
change from mode 1 to mode 2 with a probability θ in each time slot. Once the
mode is changed to mode 2, it will continue until the number of customers in
the system is less than N . We assume that in a time slot, arrival takes place at
the beginning of a slot which is followed by the change in the mode of service
and service takes place at the end of a slot.
Notations

N(n) : Number of customers in queue at an epoch n.

J(n) :

{
1, when server is in mode 1
2, when server is in mode 2

x̄ : 1 − x, for any real x.

Then {(N(n), J(n)) ;n = 0, 1, 2, 3, ..} is a Quasi Birth Death process with
state space

{i; 0 ≤ i < N} ∪ {(i, j); i ≥ N, j = 1, 2}
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We order the state space of the model as dictionary order. Then, the transition
probability matrix of the process is given by,

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p̄ p
p̄q1 t1 pq̄1

. . . . . . . . .
p̄q1 t1 B0

B2 A1 A0

A2 A1 A0

. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with ti = pqi + p̄q̄i, B0 =
[
pq̄1θ̄ pq̄1θ

]
, B2 =

[
p̄q1
p̄q2

]
A1 =

[
t1θ̄ t1θ
0 t2

]

A0 =
[

pq1θ̄ pq1θ
0 pq̄2

]
, A2 =

[
p̄q1θ̄ p̄q1θ

0 p̄q2

]

Let π = (π0, π1, π2, . . . . . . ) be the steady state probability vector of P , where
π0, π1, . . . πN−1 are scalars and πi = [πi1, πi2], for i ≥ N
Then

π0p̄ + π1p̄q1 = π0

π0p + π1t1 + π2p̄q1 = π1

πi−1pq̄1 + πit1 + πi+1p̄q1 = πi, for 2 ≤ i ≤ N − 2
πN−2pq̄1 + πN−1t1 + πNB2 = πN−1

πN−1B0 + πNA1 + πN+1A2 = πN

πi−1A0 + πiA1 + πi+1A2 = πi for i > N. (1)

From the above set of equations, we have

πi =
p

p̄q1

(
pq̄1
p̄q1

)i−1

π0 for 1 ≤ i ≤ N − 1

According to Morse [21] and Mitrani and chakka [20] the Eq. (1) has solution
of the form,

πn = gxn−N for n > N (2)

where g = [g1, g2], which is different from zero and x is a scalar. There may have
different expressions of the form (2), satisfying the Eq. (1). Out of these, we
choose only that expression which is consistent with the convergence property
|x| < 1.
On substituting (2) in (1), we get

gxn−2A0 + gxn−1A1 + gxnA2 = gxn−1

This implies
gxn−2(A0 + x(A1 − I) + x2A2) = 0
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That is
gP (x) = 0, where P (x) = A0 + (A1 − I)x + A2x

2

For non zero g, this is possible only if, x is a generalized eigen value of P (x) and
g is the corresponding eigen vector (Ghoberg [7]).
The equation detP (x) = 0 implies

det

[
pq1θ̄ + (t1θ̄ − 1)x + p̄q1θ̄x

2 (pq1 + t1x + p̄q1x
2)θ

0 pq2 + t2x + p̄q2x
2

]
= 0

This implies that either pq2 + t2x + p̄q2x
2 = 0

or pq1θ̄ + (t1θ̄ − 1)x + p̄q1θ̄x
2 = 0

From the first equation x = 1 or
pq̄2
p̄q2

Since |x| < 1 is necessary for the

convergence, we can only consider the value x2 =
pq̄2
p̄q2

The second equation leads to

x =
θ + θ̄t1 ±

√
(θt1 + θ)2 − 4θ̄2pp̄q1q̄1

2θ̄p̄q1

=
θ(θ̄)−1 + pq̄1 + p̄q1 ±

√
(θ(θ)−1 + pq̄1 + p̄q1)2 − 4pp̄q1q̄1

2p̄q1

We have (θ(θ)−1 + pq̄1 + p̄q1)2 − 4pp̄q1q̄1 > −pq̄1 + p̄q1 − θ(θ̄)−1

Hence,
θ(θ̄)−1 + pq̄1 + p̄q1 +

√
(θ(θ)−1 + pq̄1 + p̄q1)2 − 4pp̄q1q̄1

2p̄q1

>
θ(θ̄)−1 + pq̄1 + p̄q1 + (−pq̄1 + p̄q1 − θ(θ̄)−1)

2p̄q1
= 1

Therefore, x =
θ(θ̄)−1 + pq̄1 + p̄q1 +

√
(θ(θ)−1 + pq̄1 + p̄q1)2 − 4pp̄q1q̄1

2p̄q1
is

not admissible.
Since pq1θ̄ + (t1θ̄ − 1)x + p̄q1θ̄x

2 < 0 for x = 1 and > 0 for x = 0,

we have the other root

x1 =
θ(θ̄)−1 + pq̄1 + p̄q1 −

√
(θ(θ)−1 + pq̄1 + p̄q1)2 − 4pp̄q1q̄1

2p̄q1
which lies

between 0 and 1.
Now we will find the corresponding eigen vectors. In order to simplifying the
notations, we assume that

q1(x) = pq1θ̄ + (t1θ̄ − 1)x + p̄q1θ̄x
2

q2(x) = pq2 + t2x + p̄q2x
2

h(x) = (pq1 + t1x + p̄q1x
2)θ
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Let g(i) = [g(i)1 , g
(i)
2 ] be eigen vector corresponding to the eigen value xi for

i = 1,2
Therefore g(1)P (x1) = 0. This leads to

g
(1)
1 q1(x1) = 0

g
(1)
1 h(x1) + g

(1)
2 q2(x1) = 0

Since q1(x1) = 0 and q2(x1) �= 0 (for, q2(x) has only one root between 0 and 1),
we have g

(1)
1 �= 1 (otherwise g(1) = 0, a contradiction).

Hence without loss of generality, we assume that g
(1)
1 = 1

Then g
(1)
2 = − h(x1)

q2(x1)
.

Hence g(1) =
[
1,− h(x1)

q2(x1)

]

To find g(2), we have g(2)P (x2) = 0.

g
(2)
1 q1(x2) = 0

g
(2)
1 h(x2) + g

(2)
2 q2(x2) = 0

Since q1(x2) �= 0 and q2(x2) = 0, this is possible only if g
(2)
1 = 0 and g

(2)
2 �= 0.

Therefore, without loss of generality we take g(2) = [0, 1]

Hence πn = g(i)xn−1
i is a solution of (1)

Therefore
πn = c1g

(1)xn−1
1 + c2g

(2)xn−1
2 (3)

is the general solution of (1).

Let c =
[
c1 c2

]
, G =

⎡
⎣1 − h(x1)

q2(x1)
0 1

⎤
⎦ and Λ =

[
x1

x2

]
, then we have

πn = cΛn−1G for n > N

where c is obtained by substituting πN = cG in the boundary equation

πN−1B0 + πNA1 + πN+1A2 = πN

That is, πN−1B0 + cGA1 + cΛGA2 = cG

This leads to c (G − GA1 − ΛGA2) = πN−1B0

Therefore,

c =
p

p̄q1

(
pq̄1
p̄q1

)N−2

B0 (G − GA1 − ΛGA2)
−1

π0
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Now, π0 is obtained by normalizing condition
∑∞

i=0 πi = 1

π0 + π1 + · · · + πN−1 + c(I + Λ + Λ2 + . . . . . . )Ge = 1

p

(q1 − p)

(
1 − (pq̄1

p̄q1

)(N−1)
)

π0 +
1

(1 − x1)(1 − x2)
c

⎡
⎣(1 − x2)

(
1 +

h(x1)

q2(x1)

)

(1 − x1)

⎤
⎦ = 1

3 Relationship with Matrix-Analytic Method

By analyzing the transition probability matrix, according to Nuets [22], we have

πn = πNRn−N , for n ≥ N

where R is the minimal non negative solution of A0 + RA1 + R2A2 = R.

Let C =
[
c1 c2

]
, Λ =

[
x1

x2

]
and G =

[
g
(1)
1 g

(1)
2

g
(2)
1 g

(2)
2

]

From (3), πn = CΛn−NG
Therefore

πNRn−N = CΛn−NG

Rn−N = G−1Λn−NG

Hence
R = G−1ΛG

On simplification, we get

R =

⎡
⎣x1

θx1

θp̄q2(1 − x1)
0 x2

⎤
⎦

This is similar to the R matrix obtained in [25].

4 Model II

As in the above model, when the number of customer reaches N , the service mode
may change from mode 1 to mode 2 with a probability θ. In this model, we assume
that the service mode is changed to mode 2. it will continue the same until the
number of customers reaches zero. Let N(n) and J(n) be the notations defined as
before. Then (N(n), J(n)), n=1,2,. . . is quasi birth death process with stste space
{0} ∪ {(i, j); i ≥ 1, j = 1, 2}. The transition probability matrix is given by,

P ∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p̄ B∗
0

B2 C1 C0

C2 C1 C0

. . .
. . .

. . .

C2 A1 A0

A2 A1 A0

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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with B∗
1 =

[
p 0

]
,

B2 =

[
p̄q1
p̄q2

]
, C1 =

[
t1 0
0 t2

]
, C0 =

[
pq̄1 0
0 pq̄2

]
, C2 =

[
p̄q1 0
0 p̄q2

]

As in the previous case, the system is stable if and only if p < q2 Let (π∗
1 , π∗

2 , . . . . . . )
be the steady state probability vector of P ∗. By looking through the structure of P ∗,
we have π∗

i+1 = π∗
i R, where R is a 2 × 2 mtrix having the expression same as before.

The boundary probability vectors π∗
0 , π∗

1 , . . . π∗
N−1 are calculated using the equtions,

π∗
0 p̄ + π∗

1B1 = π∗
0

π∗
0B0 + π∗

1C∗
1 + π∗

2C2 = π∗
1

π∗
i−1C0 + π∗

i C1 + π∗
2C2 = π∗

i , for 1 ≤ i ≤ N − 2

π∗
N−2C0 + π∗

N−1(C1 + RC2) = π∗
N−1

Assume π∗
i = (π∗

1 , π∗
2) for i ≥ 1. Then on simplifying, we get

π∗
11 =

p

p̄q1

(1 − tN−3
1 )pq̄1 − (1 − tN−2

1 )(1 − t1 − x1p̄q1)

(1 − tN−2
1 )pq̄1 − (1 − tN−1

1 )(1 − t1 − x1p̄q1)
π∗
0

π∗
12 =

p

p̄q2

pq̄1(t
N−3
1 − tN−2

1 )(1 − tN−1
1 ) − (1 − t1 − x1p̄q1)(t

N−2
1 − tN−3

1 )

(1 − tN−2
1 )pq̄1 − (1 − tN−1

1 )(1 − t1 − x1p̄q1)
π∗
0

π∗
i1 =

1 − ti1
1 − t1

π∗
11 − p

p̄q1

1 − ti−1
1

1 − t1
π∗
0 for 2 ≤ i ≤ N − 1

π∗
i2 =

1 − ti2
1 − t2

π∗
12 for 2 ≤ i ≤ N − 1

where π0 is obtained from the normalizing condition

π∗
0 + (π∗

1 + π∗
2 + · · · + πN−1(I − R)−1)e = 1

5 Optimization

We determine the value of N which minimizes a suitably defined cost function depend-
ing on some system performances measures. Without loss generality we may assume
that (ψ0, ψ1, ψ2, . . . , ψN−1, ψN , . . . ) be the steady state probability vector for these
models with ψi = (ψi1, ψi2) for i ≥ 1 with the assumption that ψi2 = 0 for 1 ≤ i ≤ N−1
for the first model. The following relevent performance measures are considered for
defining cost function.

– Expected number of customers in the system, EC, is given by

EC =
∞∑
i=1

iψi

– Probability that the server is busy with mode 1 service is given by

PBq1 =

∞∑
i=1

ψi1

– Probability that the server is busy with mode 2 service is given by

EBq2 =
∞∑

i=N

ψi2
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– Probability of starting a mode 2 service in an epoch is

Pstartq2 = θ

( ∞∑
i=N

ψi1 + pψ(N−1)1

)

– Expected departure after completing the service is given by

EDS = q1

∞∑
i=1

ψi1 + q2

∞∑
i=1

πi2

Cost Analysis

On the basis of the above performance measures, we define Expected Total Cost per
unit time as

ETC = C1EC + C2PBq1 + C3PBq2 + C4Estartq2 + C5EDS

where the individual costs C1, C2, C3, C4 and C5 are given by

C1 : holding cost of customers/unit/unit time

C2 : running cost of mode 1 service/unit time

C3 : running cost of mode 2 service/unit time

C4 : starting cost mode 2 service/unit time

C5 : service cost of customers/unit/unit time

Illustrations

Table 1, 2 and 3 illustrates the variations of system performance measures and expected
value of total cost per unit time with respect to the parameters q1 and N for model
I with (p, q2, θ, C1, C2, C3, C4, C5) = (0.55, 0.7, 0.6, 0.01, 1, 2, 1, 5). We assume that the
cost associated with the starting of mode 2 service and the working cost for mode 2
service is greater than that of mode 1 service. From the table the value of N at which
ETC attains minimum increases with q1.

Figure (1) compares the expected total cost for both model. It is evident from the
figure that for each value of n, the expected total cost per unit time for Model II is less
than that of Model I. This is due to the low switching rate of Model II compared to
Model I. From the figure, it is also evident that the value N at which ETC is minimum
for Model II is greater than that of Model I.

Concluding Remarks

This paper analyzed an eigenvalue approach for finding the optimum value of the
number of customers in the system at which the service rate is to be changed. We
obtained the rate matrix using the eigenvalue approach and a closed-form solution to
the model. To minimize the starting cost of changing the mode of service, a modified
model is also discussed. Numerical illustrations are incorporated to compare the models
based on the optimum value of the cost function defined. This paper can be extended
by assuming the arrival process as a discrete Markovian arrival process and service time
as discrete phase-type distribution. One can also be extended the paper by considering
the inventory of items in addition to the assumptions in the model.
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Table 1. ETC vs. N , q1 = 0.4

N EC PBq1 PBq2 Estartq2 EDS ETC

2 1.714 0.4216 0.4634 0.1581 0.5390 4.2187

3 2.449 0.5383 0.4067 0.1388 0.5220 4.1249

4 3.268 0.5906 0.3813 0.1301 0.5144 4.0877

5 4.145 0.6165 0.3687 0.1258 0.5106 4.0741

6 5.064 0.6299 0.3622 0.1236 0.5087 4.0716

7 6.011 0.6370 0.3587 0.1224 0.5076 4.0749

8 6.978 0.6408 0.3568 0.1218 0.5071 4.0813

9 7.957 0.6429 0.3558 0.1214 0.5068 4.0893

10 8.944 0.6440 0.3553 0.1212 0.5066 4.0982

11 9.936 0.6446 0.3550 0.1211 0.5065 4.1076

12 10.931 0.6450 0.3548 0.1211 0.5065 4.1172

Table 2. ETC vs. N , q1 = 0.48

N EC PBq1 PBq2 Estartq2 EDS ETC

2 1.573 0.4411 0.4108 0.1629 0.5704 4.2931

3 2.170 0.5814 0.3290 0.1304 0.5524 4.1535

4 2.828 0.6552 0.2860 0.1134 0.5429 4.0835

5 3.533 0.6993 0.2603 0.1032 0.5373 4.0448

6 4.280 0.7276 0.2438 0.0966 0.5336 4.0228

7 5.064 0.7468 0.2326 0.0922 0.5312 4.0107

8 5.879 0.7601 0.2248 0.0891 0.5295 4.0050

9 6.724 0.7696 0.2193 0.0869 0.5282 4.0036

10 7.593 0.7765 0.2153 0.0854 0.5274 4.0052

11 8.483 0.7815 0.2124 0.0842 0.5267 4.0089

12 9.392 0.7852 0.2102 0.0833 0.5262 4.0141
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Table 3. ETC vs. N , q1 = 0.5

N EC PBq1 PBq2 Estartq2 EDS ETC

2 1.537 0.4461 0.3970 0.1640 0.5794 4.3163

3 2.096 0.5913 0.3088 0.1276 0.5618 4.1663

4 2.704 0.6695 0.2613 0.1080 0.5523 4.0885

5 3.352 0.7176 0.2321 0.0959 0.5464 4.0434

6 4.033 0.7496 0.2127 0.0879 0.5425 4.0159

7 4.746 0.7721 0.1991 0.0822 0.5398 3.9989

8 5.487 0.7884 0.1891 0.0781 0.5378 3.9888

9 6.254 0.8007 0.1817 0.0751 0.5363 3.9834

10 7.046 0.8100 0.1761 0.0728 0.5352 3.9814

11 7.860 0.8171 0.1717 0.0709 0.5343 3.9818

12 8.695 0.8228 0.1683 0.0695 0.5337 3.9841

N
0 10 20 30 40 50 60

E
TC

4.1

4.15

4.2

4.25

4.3
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4.4

4.45

4.5

4.55

4.6

Model II
Model I

Fig. 1. ETC vs. N (p = 0.55; q1 = 0.5; q2 = 0.7; θ = 0.6; C1 = 0.01; C2 = 1; C3 = 2;
C4 = 1; C5 = 5)
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Abstract. In many queuing systems, the inter-arrival time and service
distributions are dependent. In this paper we analyze such a system
where the dependence is through a semi-Markov process. For this we
assume that the arrival and service processes evolve in a finite number of
phases/stages according to a Markov chain. So, the product space of the
two finite sets of states (phases) is considered. The nature of transitions
in the states of the combined process are such that transition rates at
which the states of the combined process changes depend on the phase
in which each ‘marginal’ process is currently in and (the phases of) the
state to be visited next. We derive the stability condition and the effect
of the interdependence on the stability of the system is brought out. A
numerical investigation of the steady state characteristics of the system
is also carried out.

Keywords: Interdependent processes · Semi-Markov process · Matrix
analytic method

1 Introduction

In queueing theory literature, we notice that the problems investigated at the
beginning (from the time Erlang analyzed problems in telephone systems by
modeling that as a queueing problem) were considering arrival and service pro-
cess to be mutually independent of each other and further inter-arrival and
service times were also independent. With the introduction of the Markovian
arrival/service process (MAP/MSP), the evolution within arrival/service could
be modeled as dependent-two consecutive inter-arrival time/service duration are
dependent. These were then extended to batch Markovian arrival and batch
Markovian service processes. For a comprehensive review of such work done up to
the beginning of this century, see Chakravarthy [1]. Achyutha Krishnamoorthy
and Anu Nuthan Joshua extended this to consider a BMAP/BMSP/1 queue
with Markov chain dependence of two successive arrival batch size and similarly
that between successive service batches [2].
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The above-indicated dependence is within each component process of a queu-
ing problem. Naturally one will be curious to know the behavior of service sys-
tems when the two-component processes are correlated; this could be between
the time between the nth and the (n + 1)th customers and the service time of
the (n + 1)th customer. There are several ways of introducing interdependence
of the two processes. First, we give below a brief survey.

Conolly [3], Conolly and Hadidi [4] and Cidon et al. [5] assume that sn, the
service time of the nth arrival depends on the inter-arrival time between n-1
and nth customer. Cidon et al. [6] assume that an inter-arrival time depends
on the previous service time. Conolly and Choo [7], Hadidi [8], Hadidi [9] study
queueing models where the service time sn is correlated to the inter-arrival time
an through some density such as the bivariate exponential. Iyer and Manjunath
[10] study a generalization of these models. Fendick et al. [11] study the effect of
various dependencies between arrival and service processes in packet communi-
cation network queues. Combe and Boxma [12] describe how Batch Markovian
Arrival Process (BMAP) can be used to model correlated inter-arrival and ser-
vice times. Boxma and Perry [13] study fluid production and inventory models
with dependence between service and subsequent inter-arrival time. Adan and
Kulkarni [14] consider a generalization of the MAP/G/1 queue by assuming a
correlation between inter-arrival and service times. They assume that the inter-
arrival and service times are regulated by an irreducible discrete-time Markov
chain. They derive the Laplace-Stiltjes transforms of the steady-state waiting
time and the queue length distribution. Valsiou et al. [15] consider a multi-
station alternating queue where preparation and service times are correlated.
They consider two cases: in the first case, the correlation is determined by a
discrete-time Markov chain as in Adan and Kulkarni [14] and in the second
case the service time depend on the previous preparation time through their
joint Laplace transform. A generalization of the G/G/1 queue with dependence
between inter-arrival and service times is studied in Badila et al. [16]. In none
of the above models the matrix analytic methods developed by Neuts [17–19]
are used. Nor the semi-Markov approach was employed for investigation of the
problem.

Sengupta [20] analyses a semi-Markovian queue with correlated inter-arrival
and service times using the techniques developed in Sengupta [21]. Sengupta
shows that the distributions of waiting time, time in system and virtual wait-
ing time are matrix exponential, having phase-type representations. However, a
matrix-geometric solution for the number of customers is obtained only when
the inter-arrival and service times are independent. Lambert et al. [22] employ
matrix-analytic methods to a queueing model where the service time of a cus-
tomer depends on the inter-arrival time between himself and the previous cus-
tomer. They perform the analysis, without a state-space explosion by keep-
ing track of the age of customer in service. However, this assumption brought
infinitely many parameters in to their model. Lambert et al. do not discuss the
estimation part of the parameters. van Houdt [23] generalizes the above paper by
presenting a queueing model where the inter-arrival times and service time are
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correlated, which can be analyzed as an MMAP[K]/PH[K]/1 queue for which
matrix-geometric solution algorithms are available. Buchholz and Kriege [24]
study a special case of van Houdt, where the dependence between inter-arrival
and service times is brought in by relating phases of the arrival process with the
service time distribution. More importantly, they present methods for estimating
the parameters of the model.

Next, we give a slightly detailed report on Bhaskar Sengupta (Stochastic
Models, 1990) [20] and B. van Houdt (Performance Evaluation, 2012) [23]. Sen-
gupta and van Houdt have something in common in that the latter starts from
the former to fill some gaps in it. Both of them delve on specific queues-the
inter-arrival and service time distributions are specified. So a brief presentation
of the former is sufficient. Sengupta considers the inter-arrival time sequence
{an} and the sequence {sn} duration of successive service times. Together with
these, the sequence of phases where service started for successive customers and
the sequence of phases from which service of customers got completed, are also
taken into account. For the kth customer, while taken for service, the information,
a1, · · · , ak−1; s1, · · · , sk−1 together with the service commencement phases of the
first k−1 customers and the phases from which service completion took place for
the first k−1 customers, are taken into consideration. Thus, too much history is
required to study evolution. On closely examining the papers in the above review,
we notice that the queueing models described therein could be expressed in forms
like “G/G/1 queue with interdependence of arrival and service processes”. In this
paper, we approach the interdependence through a semi-Markov approach. For
this, we need to model arrival and service processes to evolve in stages/phases.
An event occurrence means either an arrival or a service completion (temporarily
absorbing state). This means that we have to have finite state space first-order
Markov chains to describe the evolution of the arrival and service processes.
Each one has an initial probability vector and a one-step transition probability
matrix. Now we take the product space of these two Markov chains (as are essen-
tial for a Markov chain). So, elements in this product space are two-dimensional
objects with the first one representing the stage of current arrival and the second
represents the stage in which the customer is served at present, provided there
is a customer undergoing service. We use the symbol {(X n × Y n), n � 1} to
describe the Markov chain on the product space. The two Markov chains are
independent if P{(Xn+1, Yn+1)|(Xn, Yn)} = P (Xn+1|Xn).P (Yn+1|Yn); if this
equality does not hold, then the component Markov chains are interdependent.
We assume that the two Markov chains to be interdependent. Transitions in this
Markov chain take place according to a semi-Markov process: the sojourn time
in each state (a pair) depends on the state in which it is in and the state to be
visited next. On occurrence of an event, for example an arrival, we sample out
the initial state from the initial probability vector of the Markov chain describing
the arrival, to start the next arrival; similar explanation for the service comple-
tion and start of the next service, provided there is a customer waiting; else the
server waits till the arrival of the next customer and sample out the stage to
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start service, from the initial probability vector of the Markov chain describing
the service process.

Though we discuss a problem arising in the service system, the procedure
we employ here can be applied to any branch of study where at least two pro-
cesses are involved. Further, the interdependence can be group wise; those within
a group are interdependent, but not between two distinct groups. Thus, the
method could be applied to a wide range of study, from Economics to Medicine,
Management, Commerce and even literature.

2 Interdependent Processes

We consider a queue in which arrival and service processes are related through
a semi-Markov process. To this end, we assume that arrival and service of cus-
tomers are in phases, as in a phase-type or MAP/MSP. There assume that we
have two distinct finite state space Markov chains describing the transitions in
the arrival and service processes. Each has one absorbing state-the one for the
arrival process represents the occurrence of an arrival and that for the service
process indicates a service completion.Assume that for the arrival process the
state space of the Markov chain is {1, 2, · · · ,m,m + 1} and that for the ser-
vice the state space is {1, 2, · · · , n, n + 1} such that m + 1 and n + 1 are the
respective absorbing states. Now consider the product space of these two sets:
{(i, j) | 1 ≤ i ≤ m + 1; 1 ≤ j ≤ n + 1} and the Markov chain on this product
space as follows: Suppose that it is in state (i, j). After staying in this state
for an exponentially distributed amount of time, it moves to state (i ′, j ) or (i,
j ′) or stays in that state itself. The sojourn time in (i, j ) depends on both (i,
j ) and the state to be visited next. A transition with change in first coordinate
represents arrival phase change with an arrival (jumping to m+1) or without an
arrival (resulting in one of 1, 2, · · · ,m, other than the one in which already in);
similarly a transition with change in the service coordinate represents a service
completion (jumping to n + 1) or without a service completion (resulting in one
of the states 1, 2, · · · , n, other than the one in which already in). Note that there
cannot be a transition in a short interval of time (t, t + h)) with positive prob-
ability, when both the coordinates change. Further note that the two Markov
chains are independent if and only if

P{(Xi+1, Yi+1) | (Xi, Yi)} = P{Xi+1 | Xi}.P{Yi+1 | Yi}.

In our case, this relation does not hold.
The idea of interdependence among random processes, evolving continu-

ously/discrete in time, in the manner described above, was introduced by Krish-
namoorthy through a series of webinars: SMARTY (Karelian Republic, August
2020); DCCN (Trapeznikov Institute of Control Sciences, Moscow, September
2020); Professor C.R. Rao Birth Centenary Talk (SreeVenkateswara University,
Tirupati, September 2020), and a few others.
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3 Dependence by a Row Vector

In the present study, we take two Markov Chains {Xi} and {Yi} each with finite
state spaces {1, 2, · · · ,m,m + 1} and {1, 2, · · · , n, n + 1} and initial probability
vectors α and β where states m + 1 and n + 1 are absorbing states. We assume
that the state transition probabilities of the chain {Yi} depend on the state in
which the chain {Xi} is. We also assume that the dependence of {Yi} on {Xi} is
such that the rates at which the chain {Yi} changes its states given that the chain
{Xi} is in state k is pkS, where S is an (n+1)× (n+1) matrix, k = 1, 2, · · · ,m.

Now consider the product X = {Xi × Yi} of these chains with state space
{(i, j)|1 ≤ i ≤ m + 1, 1 ≤ j ≤ n + 1, i �= m + 1, j = n + 1, j �= n + 1, i =
m + 1} with the Markovian property P{(Xk+1, Yk+1) = (i′, j′)|(Xk, Yk) = (i, j),
(Xk−1, Yk−1) = (i1, j1), · · · , (X0, Y0) = (ik, jk)} = P{(Xk+1, Yk+1) = (i′, j′)|
(Xk, Yk) = (i, j)} = r(i,j),(i′,j′).

Thus, X × Y is a Markov chain with temporary/instantaneous absorbing
states {(i, n+1)|i = 1, · · · ,m} and {(m+1, j)|j = 1, · · · , n}. This chain induces
a birth death process. This birth death process can be regarded as a Ph/Ph/1
queue in which the state transition times of the arrival process and that of the
service process are dependent. With these assumptions, we have the following
transition probabilities for the product chain:
1. P {(X × Y )(t + �t) = (i, j)/(X × Y )(t) = (i, k)} = piSkj�t, 1 ≤ i ≤ m, 1 ≤

j, k ≤ n, j �= k, without Type 1 or Type 2 event occurrences;
2. P {(X × Y )(t + �t) = (l, j)/(X × Y )(t) = (i, j)} = Til�t, 1 ≤ l, i ≤ m, 1 ≤

j ≤ n, l �= i, without Type 1 or Type 2 event occurrences;
3. P {(X × Y )(t + �t) = (i, j)/(X × Y )(t) = (i, k)} = piSk,n+1�tβj , 1 ≤ i ≤

m, 1 ≤ j, k ≤ n, with a Type 2 event occurrences;
4. P {(X × Y )(t + �t) = (l, j)/(X × Y )(t) = (i, j)} = Tk,m+1�tαl, 1 ≤ i, l ≤

m, 1 ≤ j ≤ n, with a Type 1 event occurrences;

where T = [Tij ] is the state transition rates of the chain {Xi}. The interdepen-
dent process will have representation

(α ⊗ β, T ⊗ In + Jm ⊗ S),

where Jm = diag(p1, p2, ·, pm).
A study of the above described system is motivated by the health care models,

telecommunication models etc., where the essential service has to be given to
more customers within the stipulated time if the demand is high. For example,
if the arrival of patients to a health care system is very high so that for giving
service to all without much delay, the treatment protocol may be changed so
that all the patients may get treatments required. The present scenario arising
out of the COVID-19 outbreak proposes such a model. In the initial stages of the
pandemic the number of patients was so small that the health care system could
handle the situation easily. They are discharged from the hospitals only after
three consecutive negative test results! But in the later stages when the disease
is widely spread, the hospitals became crowded and the treatment protocol had
to be changed so that many lives could be saved. To manage the congestion, the
patients were discharged from the hospitals at a higher rate.
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4 Mathematical Model

Consider a service facility where the arrival and service processes are interdepen-
dent. The assumption of dependence is motivated by the following present day
scenario. In the early stages of the covid-19 outbreak, the health care system in
our country took at most care in the treatment of the patients, they were kept in
isolation and were sent home only after several tests. But as the number of cases
increased the system had to accommodate more and more patients and so the
way of treatment was changed. Here the treatment given (service) depends on
the number of patients (arrival). To model such a system we use above discussed
QBD as follows:

At time t, let N(t) be the number of customers in the system including the
one being served, S1(t) be phase of arrival and S2(t) be the phase of service.
Then

Ω = {X(t) : t ≥ 0} = {(N(t), S1(t), S2(t)), t ≥ 0}
will be a Markov chain with state space

E = {(0, k)|1 ≤ k ≤ m} ∪ {(i, k, l)|i ≥ 1, 1 ≤ k ≤ m, 1 ≤ l ≤ n}.
The state space of the Markov chain can be partitioned into levels ĩ defined

as
0̃ = {(0, 1), (0, 2), ..., (0,m)},

ĩ = {(i, 1, 1), (i, 1, 2), ...(i, 1,n), .., (i,m, 1), ..., (i,m, n)}.

In the following sequel, e denotes a column matrix of 1’s of appropriate order.
The infinitesimal matrix of the chain is

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

B0 B1 0 0 0 0
B2 A1 A0 0 0 0
0 A2 A1 A0 0 0
0 0 A2 A1 A0 0
. . . . . .
. . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where
B0 = T,B1 = T 0 ⊗ β ⊗ α;B2 = Jm ⊗ S0,

and
A1 = T ⊗ In + Jm ⊗ S;A0 = T 0 ⊗ β ⊗ In;A2 = Jm ⊗ S0 ⊗ α.

5 Stability Analysis

Let A = A0 + A1 + A2

= T 0 ⊗ β ⊗ In + T ⊗ In + Jm ⊗ S + Jm ⊗ S0 ⊗ α
= (T 0 ⊗ β + T ) ⊗ In + Jm ⊗ (S + S0 ⊗ α).
If π and θ are the stationary probability vectors of T 0 ⊗ β + T and S + S 0

⊗ α, respectively, then
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(π ⊗ θ)A = (π ⊗ θ)(T0 ⊗ β + T) ⊗ In + (π ⊗ θ)Jm ⊗ (S + S0 ⊗ α)
= π(T0 ⊗ β + T) ⊗ θ + πJm ⊗ θ(S + S0α) = 0.
Hence, (π ⊗ θ) is the stationary probability vector of A.
Now (π ⊗ θ)A0e = πT0 and (π ⊗ θ)A2e = (πP′)(θS0), where P =

[p1, p2, · · · , pn].
Thus, the stability condition reduces to πT 0 < (πP′) (θS0). Hence, we have

the following theorem.

Theorem 1. The Markov chain under consideration is stable if and only if λ′
μ′ <

πP ′ where λ′ = πT0 and μ′ = θS0.

6 Steady State Analysis

The stationary probability vector z of Q is of the form (z0, z1, z1R, z1R
2, . . . ),

where R is the minimal solution of the matrix quadratic equation

R2 A2 + RA1 + A0 = 0.

The stationary probability vector is obtained by solving the equations:

z0B0 + z1B2 = 0,

z0B1 + z1A1 + z1RA2 = 0,

z0 + z1(I − R)−1e = 1.

Hence, z1 can be determined up to a multiplicative constant using the equa-
tion

z1[B2e ⊗ β ⊗ α + A1 + RA2] = 0.

7 Performance Measures

The performance of the system at stationary can be analysed using the stationary
probability vector (z 0, z 1, z 1R, z 1R2, ...). zne gives the probability that there
are n customers in the system. Other measures like a system idle probability,
expected queue length etc. follows from this. Since, our focus is to adjust the
service process to control the system size even when the arrival rate is high, any
information about the queue length is important.

8 Numerical Illustration

Numerical experiments are carried out to examine how the vector P influences
the queue length. We chose the following values for the parameters.
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T =
[−15 14

3 −10

]
, α =

[
0.4, 0.6

]
,

S =

⎡
⎣

−7 1 2
2 −11 2
2 2 −10

⎤
⎦, β =

[
0.2, 0.3, 0.5

]
.

In this example, the arrival of customers has two phases and the rate at which
the phase of the service changes depends on which phase the arrival is in. The
correlation between these two is determined by the vector P. The components of
P represent the degree of dependence of the transition rates of the service with
the phases of arrival. Notice that in the pattern of arrivals considered, occurrence
of the event corresponding to the arrival of a customer happens in a higher rate
from its second state than from the first. We found the effective service rate,
ESR = μ′. πP′, expected size E(C) of the system, the server idle probability
P (I) and the probability P (N > K) that the size of the system is enormously
large (here we considered the case N is greater than 10) for various choices of
P .

Table 1 shows the variation in these parameters as p1 increases while p2 is
kept at 1. As it can be seen from the values of ESR, the service rate increases
with p1. Consequently E(C) and P (N > K) decrease and P (I) increases. This
is a result of increase in the transitions rates of the service while the arrival is in
the first phase. Figure 1 depicts this increment. The fact that this dependence
was linear resulted in a straight line graph. As the effective service rate increases,
the system idle probability P (I) also increases for obvious reason. From Fig. 2,
it can be seen that P (I) increases faster for small values of p1 and slows down
as P (I) becomes high. The expected number of customers E(C) decreases as p1

takes higher values. Figure 3 illustrates this exponential decay. The probability
of a highly populated system which is of much interest when we study healthcare
models shows a similar behavior as E(C). This can be seen from Fig. 4.

Table 2 helps to compare these system characteristics when p1 = 1 and p2
changes. In our example, the dependence of the transition rates of service with
the second phase of arrival is determined by p2. As the arrival of customers to
the system is high in this phase, p2 has more effect on the system characteristics
than p1. Hence, the figures corresponding to p2 (Figs. 5, 6, 7 and 8) have the
same nature of the respective figures with respect to changes in p1 but with a
greater slope.

This study illustrates how the interdependence of arrival and service pro-
cesses affects the system characteristics. The system behaves according to the
nature of this dependence. Thus, by making P as a control variable we can
modify the system characteristics to an optimum level.
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Table 1. Variation in performance measures with p1

p1 ESR P(I) E(C) P (N > 10)

1 5.5639 0.0485 19.6305 0.5788

1.1 5.7221 0.075 12.4117 0.4262

1.2 5.8803 0.1001 9.0907 0.3173

1.3 6.0385 0.1238 7.1855 0.2388

1.4 6.1967 0.1462 5.9514 0.1817

1.5 6.3549 0.1674 5.0877 0.1397

1.6 6.513 0.1874 4.45 0.1085

1.7 6.6712 0.2063 3.9603 0.0851

1.8 6.8294 0.2242 3.5726 0.0674

1.9 6.9876 0.2412 3.2583 0.0539

2 7.1458 0.2572 2.9984 0.0434

2.5 7.9368 0.3257 2.1721 0.0166

3 8.7277 0.379 1.7322 0.0075

Table 2. Variation in performance measures with p2

p2 ESR P(I) E(C) P (N > 10)

1 5.5639 0.0485 19.6305 0.5788

1.1 5.9621 0.1117 7.9045 0.2697

1.2 6.3603 0.1665 4.9437 0.1318

1.3 6.7585 0.2145 3.5982 0.0673

1.4 7.1567 0.2567 2.8313 0.0357

1.5 7.5549 0.2941 2.3366 0.0196

1.6 7.9531 0.3276 1.9917 0.0111

1.7 8.3513 0.3575 1.7376 0.0065

1.8 8.7495 0.3846 1.5429 0.0039

1.9 9.1477 0.4091 1.3891 0.0024

2 9.5459 0.4314 1.2645 0.0015

2.5 11.5369 0.5182 0.8836 0.0002

3 13.5279 0.578 0.6896 0

Fig. 1. p1 vs ESR
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Fig. 2. p1 vs P (I)

Fig. 3. p1 vs E(C)

Fig. 4. p1 vs P (N > 10)
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Fig. 5. p2 vs ESR

Fig. 6. p2 vs P (I)

Fig. 7. p2 vs E(C)
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Fig. 8. p2 vs P (N > 10)

9 Conclusion

In this study, we analysed a system in which the service process is dependent
on the arrival process. A control over this dependency may contribute towards
the system stability. In the model illustrated in the previous section, the vector
P determines the degree of dependency between the two process. Thus, the
numerical analysis reveals that choosing optimal values for P is possible so that
the system runs efficiently. In our future work, we intent to find the service time
distribution as well as the waiting time distribution of the discussed model.

References

1. Chakravarthy, S. R.: The batch Markovian arrival process: a review and future
work. In: Advances in Probability and Stochastic Processes, pp. 21–49 (2001)

2. Krishnamoorthy A., Joshua A.N.: A BMAP/BMSP/1 queue with Markov depen-
dent arrival and Markov dependent service batches. J. Ind. Manage. Optim. 3(5)
(2020). https://doi.org/10.3934/jimo.2020101

3. Conolly, B.: The waiting time for a certain correlated queue. Oper. Res. 15, 1006–
1015 (1968)

4. Conolly, B., Hadidi, N.: A correlated queue. Appl. Prob. 6, 122–136 (1969)
5. Cidon, I., Guerin, R., Khamisy, A., Sidi, M.: On queues with inter-arrival times

proportional to service times. Technical repurt. EE PUB, 811, Technion (1991)
6. Cidon, I., Guerin, R., Khamisy, A., Sidi, M.: Analysis of a correlated queue in

communication systems. Technical report. EE PUB, 812, Technion (1991)
7. Conolly, B., Choo, Q.H.: The waiting process for a generalized correlated queue

with exponential demand and service. SIAM J. Appl. Math. 37, 263–275 (1979)
8. Hadidi, N.: Queues with partial correlation. SIAM J. Appl. Math. 40, 467–475

(1981)
9. Hadidi, N.: Further results on queues with partial correlation. Oper. Res. 33, 203–

209 (1985)
10. Srikanth, K.I., Manjunath, D.: Queues with dependency between interarrival and

service times using mixtures of bivariates. Stoch. Models 22(1), 3–20 (2006)

https://doi.org/10.3934/jimo.2020101


Analysis of a PH/PH/1 Queue with Interdependence 429

11. Fendick, K.W., Saksena, V.R., Whitt, W.: Dependence in packet queues. IEEE
Trans. Commun. 37(11), 1173–1183 (1989)

12. Combe, M.B., Boxma, O.J.: BMAP modeling of a correlated queue. In: Walrand, J.,
Bagchi, K., Zobrist, G.W. (eds.) Network Performance Modeling and Simulation,
pp. 177–196. Gordon and Breach Science Publishers, Philadelphia (1999)

13. Boxma, O.J., Perry, D.: A queueing model with dependence between service and
interarrival time. Eur. J. Oper. Res. 128(13), 611–624 (2001)

14. Adan, I.J.B.F., Kulkarni, V.G.: Single-server queue with Markov-dependent inter-
arrival and service times. Queueing Syst. 45(2), 113–134 (2003)

15. Valsiou, M., Adan, I.J.B.F., Boxma, O.J.: A two-station queue with dependent
preparation and service times. Eur. J. Oper. Res. 195(1), 104–116 (2009)

16. Badila, E.S., Boxma, O.J., Resing, J.A.C.: Queues and risk processes with depen-
dencies. Stoch. Models. 30(3), 390–419 (2014)

17. Neuts, M.F.: Markov chains with applications to queueing theory, which have a
matrix-geometric invariant probability vector. Adv. Appl. Prob. 10, 125–212 (1978)

18. Neuts, M.F.: Matrix Geometric Solutions for Stochastic Models. John Hopkins
University Press, Baltimore (1981)

19. Neuts, M.F., Pagano, M.E.: Generating random variates from a distribution of
phase type. In: Oren, T.I., Delfosse, C.M., Shub, C.M. (eds.) Winter Simulation
Conference, pp. 381–387. IEEE (1981)

20. Sengupta, B.: The semi-Markovian queue: theory and applications. Stoch. Models
6(3), 383–413 (1990)

21. Sengupta, B.: Markov processes whose steady state distribution is matrix expo-
nential with an application to the GI/PH/1 queue. Adv. Appl. Prob. 21, 159–180
(1989)

22. Lambert, J., van Houdt, B., Blondia, C.: Queue with correlated service and inter-
arrival times and its application to optical buffers. Stoch. Models 22(2), 233–251
(2006)

23. van Houdt, B.: A matrix geometric representation for the queue length distribution
of multitype semi-Markovian queues. Perform. Eval. 69(7–8), 299–314 (2012)

24. Buchholz, P., Kriege, J.: Fitting correlated arrival and service times and related
queueing performance. Queueing Syst. 85, 337–359 (2017)

25. Asmussen, S., Nerman, O., Olsson, M.: Fitting phase-type distributions via the
EM algorithm. Scand. J. Stat. 23(4), 419–441 (1996)

26. Breuer, L.: An EM algorithm for batch Markovian arrival processes and its com-
parison to a simpler estimation procedure. Ann. Oper. Res. 112, 123–138 (2002).
https://doi.org/10.1023/A:1020981005544

27. Horváth, G., Okamura, H.: A fast EM algorithm for fitting marked Markovian
arrival processes with a new special structure. In: Balsamo, M.S., Knottenbelt,
W.J., Marin, A. (eds.) EPEW 2013. LNCS, vol. 8168, pp. 119–133. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40725-3 10

28. Ozawa, T.: Analysis of queues with Markovian service process. Stoch. Models.
20(4), 391–413 (2004)

29. Whitt, W., You, W.: Using Robust queueing to expose the impact of dependence
in single-server queues. Oper. Res. 66(1), 184–199 (2017)

https://doi.org/10.1023/A:1020981005544
https://doi.org/10.1007/978-3-642-40725-3_10


Author Index

Adou, K. Yves 264
Ageev, Kirill 378
AL Maqbali, Khamis Abdullah K. 186
Aliyeva, Sevinc 155
Anilkumar, M. P. 404

Babu, Dhanya 337
Bai, Bo 61
Beena, Pathari 390
Blaginin, Alexey 279

Chen, Li 61

Danilyuk, Elena Yu. 291
Divya, V. 155
Dudin, Alexander 16, 46
Dudin, Sergey 16
Dudina, Olga 16

Gaidamaka, Yuliya 198
Gopakumar, B. 417

Izmailova, Yana 236

Jose, K. P. 390, 404
Joshua, Varghese C. 186, 337, 363

Kerobyan, Khanik 319
Kerobyan, Ruben 319
Klimenok, Valentina 46
Korshikov, Maksym 225
Krishnamoorthy, Achyutha 186, 337, 363,

417

Lapatin, Ivan 61, 279
Lebedev, Eugene A. 95, 108
Lempert, Anna 143
Lisovskaya, Ekaterina 198
Livinska, Hanna 108
Lizyura, Olga 61, 120

Markova, Ekaterina V. 264
Mathew, Nisha 363
Melikov, Agassi 155

Moiseev, Alexander 61, 78
Moiseeva, Svetlana P. 291
Morozov, Evsey 251
Moskaleva, Faina 198

Nair, Sajeev S. 417
Nazarov, Anatoly 61, 120, 171, 236
Nemouchi, Hamza 31

Osipov, Oleg 352

Pagano, Michele 212
Paul, Svetlana 61, 120
Pavidis, Michael 143
Peng, Xi 61
Phung-Duc, Tuan 120, 236
Ponomarov, Vadym D. 95
Pristupa, Pavel 61
Pryshchepa, Oksana V. 95

Ranjith, K. R. 417
Ravikumar, K. 131
Resmi, Thekkiniyedath 131
Rogozin, Stepan 251

Samorodova, Maria 171
Samouylov, Konstantin 378
Shulgina, Kseniya 120
Sizova, Kseniya O. 304
Sopin, Eduard 225, 378
Stankevich, Elena 352
Sztrik, János 1, 31, 291

Tananko, Igor 352
Tóth, Ádám 1, 291
Tsitsiashvili, Gurami 78

Voytikov, Konstantin 78

Zadorozhnyi, Vladimir N. 212
Zaghouani, Mohamed Hedi 31
Zakharenkova, Tatiana R. 212
Zharkov, Maksim 143
Zorine, Andrei V. 304


	Preface
	Organization
	Contents
	Some Special Features of Finite-Source Retrial Queues with Collisions, an Unreliable Server and Impatient Customers in the Orbit
	1 Introduction
	2 System Model
	3 Simulation Case Studies
	3.1 Exponentially Distributed Impatience Times
	3.2 Generally Distributed Impatience Times

	4 Conclusion
	References

	Improved Priority Scheme for Unreliable Queueing System
	1 Introduction
	2 Mathematical Model
	3 Process of System States
	4 Performance Measures
	5 Numerical Examples
	6 Conclusion
	References

	Simulation Analysis in Cognitive Radio Networks with Unreliability and Abandonment
	1 Introduction
	2 System Model
	3 Simulation Results
	3.1 Impatience Time is Exponentially Distributed
	3.2 Impatience Time is Generally Distributed with Cx2 > 1
	3.3 Impatience Time is Generally Distributed with Cx2 < 1

	4 Conclusion
	References

	A Retrial Queueing System with Processor Sharing
	1 Introduction
	2 Mathematical Model
	3 Process of the System States
	4 Ergodicity Condition
	5 Stationary Distribution. Performance Measures
	6 Numerical Results
	7 Conclusion
	References

	Multi-level MMPP as a Model of Fractal Traffic
	1 Introduction
	2 Mathematical Model of Multi-level MMPP
	3 Derivation of Equations for Probability Distribution of the Total Amount of Information Received in Multi-level MMPP for a Certain Time
	4 Asymptotic Analysis of the Amount of Information Received in MMPP Under Growing Time Limit Condition
	5 Calculation Algorithm for the Moments of the Total Amount of Information Received in Multi-level MMPP
	6 Numerical Implementation of the Analytical Results for a Three-Level MMPP
	6.1 Gaussian Approximation Accuracy

	7 Hurst Parameter Evaluation for Multi-level MMPP
	8 Conclusion
	References

	Asymptotic Analysis of Intensity of Poisson Flows Assembly
	1 Introduction
	2 Mathematical Model
	3 Central Limit Theorem for the Assembly Flow
	4 Limit Relations for Intensity of Assembly of Independent and Identically Distributed Poisson Flows
	5 Assembly of Independent Flows with Different Intensities
	6 Convergence of Assembly Flow A2 to Poisson Flow
	7 Conclusion
	References

	On Multiserver State-Dependent Retrial Queues Operating in Stationary Regime
	1 Introduction
	2 Mathematical Model of the Classical Retrial Queue with Controlled Input
	3 Steady State Analysis of Systems with Limited Number of Retrials
	4 Conclusion
	References

	Reducing of Service Process Dimension for a General-Type Multichannel Network in Heavy Traffic
	1 Introduction
	2 Model Description
	3 Underlying Conditions
	4 Main Result
	5 Auxiliary Results
	6 Proof of the Theorem
	7 Approximative Process as a Diffusion
	8 Conclusions
	References

	Central Limit Theorem for an M/M/1/1 Retrial Queue with Unreliable Server and Two-Way Communication
	1 Introduction
	2 Mathematical Model
	3 Problem Definition
	4 Asymptotic Analysis Under Low Rate of Retrials Condition
	5 Numerical Examples
	6 Conclusion
	References

	Three-Server Queue with Consultations by Main Server with a Buffer at the Main Server
	1 Introduction
	1.1 Notations

	2 Description of Model
	3 Steady State Analysis
	3.1 Stability condition
	3.2 Steady State Probability Vector
	3.3 Mean Number of Interruptions to a Customer at the Main Server
	3.4 Performance Measures

	4 Numerical Analysis
	References

	Simulation of Railway Marshalling Yards Based on Four-Phase Queuing Systems
	1 Introduction
	2 Subject of Research
	3 Field Research Results
	4 Mathematical Model
	4.1 Generalized Marshalling Yard Model
	4.2 Model of the Odd IrS Station System

	5 Computational Experiment
	6 Conclusions
	References

	Numerical Methods to Analyses of Queuing Systems with Instantaneous Feedback, Positive Server Setup Time and Impatient Calls
	1 Introduction and Related Work
	2 Description of the System and Construction of the Generating Matrix
	3 Matrix-Geometric Method
	4 Space Merging Method
	5 Numerical Results
	6 Conclusion
	References

	Waiting Time Asymptotic Analysis of a M/M/1 Retrial Queueing System Under Two Types of Limiting Condition
	1 Introduction
	2 Mathematical Model
	3 Kolmogorov's Equations
	4 Asymptotic Analysis of the Number of Requests in the Orbit
	5 Asymptotic Analysis of the Number of Returns of the Tagged Request to the Orbit
	6 Distribution of the Waiting Time in the Orbit
	7 Numerical Results
	8 Conclusion
	References

	On a Single Server Queueing Inventory System with Common Life Time for Inventoried Items
	1 Introduction
	2 Mathematical Description of the Model
	3 Steady-State Analysis
	3.1 Stability Condition
	3.2 Stationary Distribution

	4 Performance Measures
	5 Numerical Example
	6 Conclusion
	References

	Resource Queueing System for Analysis of Network Slicing Performance with QoS-Based Isolation
	1 Introduction
	2 System Model
	3 Queueing System
	4 Resource Sharing
	5 Demonstration of Resource Sharing Algorithm
	5.1 State (m,n)=(2,2)
	5.2 State (m,n)=(1,2)

	6 Numerical Analysis
	7 Conclusion
	References

	Infinite Markings Method in Queueing Systems with the Infinite Variance of Service Time
	1 Introduction
	2 Mathematical Model
	3 Simulation of M/Pa/1 System at D(x)=
	4 A Brief Description of the Infinite Markings Method (IMM)
	5 Influence of IMM on the Queue Determined by Request Length
	6 Application of IMM to Computer Networks with Packet Switching
	7 Simulation of a Typical Network Fragment
	8 Application IMM with Unknow Service Time
	9 Conclusion
	References

	Analysis of the Queuing Systems with Processor Sharing Service Discipline and Random Serving Rate Coefficients
	1 Introduction
	2 Model Description
	3 Analysis of the Simplified Model
	4 Analysis of the Mean Sojourn Time
	5 Numerical Analysis
	6 Conclusion
	References

	Asymptotic-Diffusion Analysis of Multiserver Retrial Queueing System with Priority Customers
	1 Introduction
	2 Mathematical Model
	3 First Order Asymptotic Analysis
	4 Second Order Asymptotic Analysis
	5 Stationary Distribution of the Diffusion Process
	6 Conclusion
	References

	Stability Condition of a Multi-class Modified Erlang System
	1 Introduction
	2 Description of the Model
	3 Stability Analysis
	4 Simulation
	5 Conclusion
	References

	Methods for Analyzing Slicing Technology in 5G Wireless Network Described as Queueing System with Unlimited Buffer and Retrial Group
	1 Introduction
	2 Related Work: Single Server Queueing System with Retrial Queue
	2.1 Mathematical Model
	2.2 Stationary Probability Distribution Computation

	3 QS with Buffer and Retrial Group for Modeling Network Within Slicing Technology
	3.1 Mathematical Model
	3.2 Stationary Probability Distribution Calculation

	4 Numerical Analysis
	4.1 Model with Server and Retrial Queue
	4.2 Model with Buffer and Retrial Group

	5 Conclusion
	References

	The Two-Dimensional Output Process of Retrial Queue with Two-Way Communication
	1 Introduction
	2 Mathematical Model
	3 Kolmogorov Equations
	4 Method of Asymptotic Analysis
	5 Conversion to Explicit Probability Distribution
	6 Correlation Coefficient
	7 Numerical Examples
	8 Conclusion
	References

	Analysis of Retrial Queueing System M/G/1 with Impatient Customers, Collisions and Unreliable Server Using Simulation
	1 Introduction
	2 System Model
	3 Simulation Results
	3.1 First Scenario
	3.2 Second Scenario

	4 Conclusion
	References

	A Method for Solving Stationary Equations for Priority Time-Sharing Service Process in Random Environment
	1 Introduction
	2 Problem Statement
	3 Solution Algorithm in Case of Non-preemptive Priority Policies
	4 Numerical Routine Details and Experiments
	5 Conclusion
	References

	Virtual Waiting Time in Single-Server Queueing Model M|G|1 with Unreliable Server and Catastrophes
	Abstract
	1 Introduction
	2 Model Description
	3 Virtual Waiting Time
	4 The Idle State Probabilities
	5 Transient Virtual Waiting Time of the Model M|G|1
	6 Conclusion
	References

	A Queueing System with Probabilistic Joining Strategy for Priority Customers
	1 Introduction
	2 Model Description
	2.1 Service Policy
	2.2 Joining Strategy of Priority Customer

	3 Steady-State Analysis
	3.1 Stability Condition
	3.2 Computation of the Steady-State Vector
	3.3 Waiting Time Distribution of an Ordinary Customer
	3.4 Waiting Time Distribution of a Priority Customer
	3.5 Performance Measures
	3.6 Social Optimization Problem

	References

	Analysis of Closed Unreliable Queueing Networks with Batch Service
	1 Introduction
	2 The Model
	3 Unreliable Networks
	4 Performance Measures
	5 Numerical Examples
	6 Conclusion
	References

	On an MMAP/(PH, PH)/1/(∞, N) Queueing-Inventory System
	1 Introduction
	2 Model Description
	3 Mathematical Formulation
	3.1 Stability Condition
	3.2 Stationary Distribution

	4 Performance Measures
	5 Numerical Examples
	5.1 Effect of Parameter  on Performance Measures
	5.2 Effect of s on Various Performance Measures
	5.3 Combined Effect of s and  on Sever Being Idle
	5.4 Combined Effect of s and  on Sever Busy with a Batch of Type-2 Customers

	6 Conclusion
	References

	Resource Sharing Model with Minimum Allocation for the Performance Analysis of Network Slicing
	1 Introduction
	2 Resource Sharing Strategies
	3 Network Slicing Model
	3.1 Model Description
	3.2 Analysis of the Performance Measures

	4 Case Study
	4.1 Equal Resources for K Blocks
	4.2 Equal Offered Loads for K Blocks

	5 Conclusion
	References

	Analysis of a MAP/PH(1), PH(2)/2 Production Inventory System Under the Bernoulli Vacation Scheme
	1 Introduction
	2 Description of the Model
	2.1 Steady State Analysis

	3 System Stability
	3.1 Steady State Probability Vector

	4 Measures of Effectiveness
	5 Cost Analysis
	6 Numerical Experiments
	6.1 Optimum (s, S) Pair

	7 Concluding Remarks
	References

	Spectral Analysis of a Discrete-Time Queueing Model with N -Policy on an Accelerated Service
	1 Introduction
	2 Model I
	3 Relationship with Matrix-Analytic Method
	4 Model II
	5 Optimization
	References

	Analysis of a Single Server Queue with Interdependence of Arrival and Service Processes – A Semi-Markov Approach
	1 Introduction
	2 Interdependent Processes
	3 Dependence by a Row Vector
	4 Mathematical Model
	5 Stability Analysis
	6 Steady State Analysis
	7 Performance Measures
	8 Numerical Illustration
	9 Conclusion
	References

	Author Index



