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Abstract. Many downstream NLP tasks have shown significant impro-
vement through continual pre-training, transfer learning and multi-task
learning. State-of-the-art approaches in Word Sense Disambiguation
today benefit from some of these approaches in conjunction with infor-
mation sources such as semantic relationships and gloss definitions con-
tained within WordNet. Our work builds upon these systems and uses
data augmentation along with extensive pre-training on various differ-
ent NLP tasks and datasets. Our transfer learning and augmentation
pipeline achieves state-of-the-art single model performance in WSD and
is at par with the best ensemble results.
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1 Introduction

Word Sense Disambiguation or WSD is the task of gleaning the correct sense of
an ambiguous word given the context in which it was used. It is a well-studied
problem in NLP and has seen several diversified approaches over the years
including techniques leveraging Knowledge-Based Systems, Supervised learning
approaches and, more recently, end-to-end deep learnt models. WSD has found
application in various kinds of NLP systems such as Question Answering, IR,
and Machine Translation.

WordNet 3.0 is the most popular and widely used sense inventory that con-
sists of over 109k synonym sets or synsets and relationships between them such
as hypernym, anotnym, hyponym, entailment etc. Most training and evalua-
tion corpora used in supervised systems today consist of sentences where words
are manually annotated and mapped to a particular synset in WordNet. We
use these sources in addition to other publicly available datasets to tune our
model for this task. Through transfer learning from these datasets and other
augmentation and pre-processing techniques we achieve state-of-the-art results
on standard benchmarks.
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2 Related Work

Traditional approaches to WSD relied primarily on Knowledge-Based Systems.
Lexical similarity over dictionary definitions or Gloss for each synset was first
used in [10] to estimate the correct sense. Graph based approaches such as
[18] were also proposed which leverage structural properties of lexico-semantic
sources treating the knowledge graph as a semantic network. One major advan-
tage of using such unsupervised techniques was that they eliminated the need
of having large annotated training corpora. Since annotation is expensive given
the large number of fine-grained word senses, such methods were the de facto
choice for WSD systems. Recently, however, approaches for semi-automatic [27]
and automatic [21] sense annotation have been proposed to partially circumvent
the problem of manually annotating a sizeable training set.

Supervised methods, on the other hand, relied on a variety of hand-crafted
features such as a neighbouring window of words and their corresponding part
of speech (POS) tags etc. Commonly referred to as word expert systems, they
involved training a dedicated classifier for each individual lemma [34]. The
default or first sense was usually returned when the target lemma was not seen
during training. While these were less practical in real application, they often
yielded better results on common evaluation sets.

[8] and [24] were the first neural architectures for WSD which consisted of
Bidirectional LSTM models and Seq2Seq Encoder-Decoder architectures with
attention. These architectures optionally included lexical and POS features
which yielded better results. Due to strong performance of contextual embed-
dings such as BERT [3] on various NLP tasks, recent approaches such as [30]
and [5] have used these to achieve significant gains in WSD benchmarks. We
leverage the ideas presented in GlossBERT [5] and improve upon the results
with a multi-task pre-training procedure and greater semantic variations in the
train dataset through augmentation techniques.

3 Data Preparation Pipeline

3.1 Source Datasets

We use the largest manually annotated WSD corpus SemCor 3.0 [17] consisting
of over 226k sense tags for training our models. In keeping with most neural
architectures today such as [14], we use the SemEval-2007 corpus [22] as our dev
set and SemEval-2013 [20], SemEval-2015 [19], Senseval-2 [4], and Senseval-3 [26]
as our test sets.

3.2 Data Preprocessing

GlossBERT [5] utilizes context gloss pairs with weak supervision to achieve state-
of-the-art single model performance on the evaluation sets. We follow the same
pre-processing procedure as GlossBERT. The context sentence along with each
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of the gloss definitions of senses of the target word are considered as a pair.
Thus, for a sentence containing an ambiguous word with N senses, we consider
all N senses with as many sentence pairs. Only the correct sense is marked as a
positive sample while all others are considered negative inputs to our pairwise
sentence classifier. As this formulation relies on the gloss definition of a synset
and not just the synset tag or key, it is more robust to keys that do not occur
or are under-represented in training.

Fig. 1. Context-Gloss Pairs with Weak Supervision

Figure 1 above shows an example of context-gloss pairs for a single context
sentence with the target word - objectives. The highlighted text represent the
weak supervised signals which help identify the target word both in the gloss
definition, as well as in the context sentence. In the context sentence, the target
word may appear more than once, and the signal helps associate each occurrence
with the definition independently.

3.3 Data Augmentation

Given the large number of candidate synsets for each target lemma, the train
dataset has a large class imbalance. The ratio of negative samples to positives
is nearly 8:1. Rather than adopting a simple oversampling strategy, we use data
augmentation through back translation. Back translation is a popular method for
generating paraphrases involving translating a source sentence to one of several
target languages and then translating the sentence back into the source language.
Approaches described in [16,23,32] have successfully leveraged modern Neural
Machine Translation systems to generate paraphrases for a variety of tasks. We
use this technique to introduce greater diversity and semantic variation in our
training set and augment examples in our minority class.

The Transformers library [33] provides MarianMT models [7] for translation
to and from several different languages. Each model is a 6-layer transformer
[29] encoder-decoder architecture. For best results, we select from a number of
high-resource languages such as French, German etc. and apply simple as well
as chained back-translation (e.g. English - Spanish - English - French - English).
From our pool of back-translated sentences, we retain sentences where the target
word occurs exactly once in the original as well as back-translated sentence. This
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way, we generate several paraphrased examples for each positive example in our
train set. We randomly select n augmented samples for each original sample
at train time, where n was treated as a hyper-parameter during our training
experiments. We achieve best results when n = 3.

4 Model

We use the MT-DNN [12] architecture for training our model. The network
consists of shared layers and task-specific layers. Through cross-task training, the
authors demonstrate how the shared layers of the network learn more generalized
representations and are better suited to adapt to new tasks and domains. Multi-
task learning using large amount of labelled data across tasks has a regularization
effect on the network and the model is able to better generalize to new domains
with relatively fewer labelled training examples than simple pre-trained BERT.
It is this property of MT-DNN that we leverage to improve performance on
WSD.

Fig. 2. Pre-training and Tuning methodology

The pre-training procedure for MT-DNN is similar to that of BERT which
used two supervised tasks - masked LM and next sentence prediction. Using
BERT Large model (24 layers, 1024 dim, 335 m trainable parameters) as our
base model, we then tune on all tasks in the GLUE benchmark [31]. While [5]
reported better performance using BERT base (12 layers, 768 dim, 110 m train-
able parameters), we found that the larger BERT model performed significantly
better in our experiments. We attribute this behaviour to our pre-training pro-
cedure which learns better, more generalized representations thus preventing a
larger, more expressive model from overfitting on the train dataset.

Four different task-specific output layers are constructed corresponding to
single sentence classification, pairwise text similarity, pairwise text classification,
and pairwise text ranking. These are illustrated in Fig. 2. Learning objectives
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differ for each task - single-sentence and pairwise classification tasks are opti-
mized using cross-entropy loss, pairwise text similarity is optimized on the mean
squared error between the target similarity value and semantic representations
of each of the sentences in the input pair, and pairwise text ranking follows the
pairwise learning-to-rank paradigm in minimizing the negative log likelihood of
a positive example given a list of candidates [2]. The pairwise text classification
output layer uses a stochastic answer network (SAN) [11] which maintains a
memory state and employs K-step reasoning to iteratively improve upon predic-
tions. We use the same pairwise classification head when tuning the network for
our WSD task. At inference time, we run context-gloss pairs for each sense of
the target lemma and the candidate synset with the highest score is considered
the predicted sense.

5 Implementation Details

Examples from each of the 9 datasets in GLUE are input to the network and
passed to the correct output layer given the task-type. 5 epochs of pre-training
are thus carried out using GLUE data. The best saved checkpoint is then selected
and, thereafter, context-gloss pairs as described above are input to the model for
tuning on WSD. Model weights of shared layers are carried over from multi-task
training on GLUE. Adamax [9] optimizer is used to tune the weights and a low
learning rate of 2e−5 is used to facilitate a slower, but smoother convergence. A
batch size of 256 is maintained and the architecture is tuned on 8x Tesla V100
GPU’s with 16 GB of VRAM each for a total of 128 GB GPU memory.

6 Results

We summarize the results of our experiments in Table 1. We compare our results
against the Most Frequent Sense Baseline as well as different approaches, Knowl-
edge Based - Lesk (ext+emb) [1] and Babelfly [18], Word-Expert Supervised
Systems - IMS [34] and IMS+emb[6], Neural Models - Bi-LSTM [8], Bi-LSTM +
att + lex +pos [24], CAN/HCAN [14], GAS [15], SemCar/SemCor+WNGC,
hypernyms [30] and GlossBERT [5]. We exclude results from ensemble systems
marked in Table 1 as these results were obtained using a geometric mean of pre-
dictions across 8 independent models. We achieve the best results for any single
model across all evaluation sets and POS types.

While [30] supplement their train corpus with the Wordnet Gloss Corpus
(WNGC) and also use 8 different models for their ensemble, our overall results
are at par with theirs on test datasets and slightly better on the dev set. The fact
that such results were achieved with fewer training examples (without the use of
WNGC) further enforces the generalization and domain adaptation capabilities
of our pre-training methodology.
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Table 1. Final Results. * Result excluded from consideration as it uses an ensemble

System SE07 SE2 SE3 SE13 SE15 Noun Verb Adj Adv All

MFS Baseline 54.5 65.6 66.0 63.8 67.1 67.7 49.8 73.1 80.5 65.5

Leskext+emb 56.7 63.0 63.7 66.2 64.6 70.0 51.1 51.7 80.6 64.2

Babelfly 51.6 67.0 63.5 66.4 70.3 68.9 50.7 73.2 79.8 66.4

IMS 61.3 70.9 69.3 65.3 69.5 70.5 55.8 75.6 82.9 68.9

IMS+emb 62.6 72.2 70.4 65.9 71.5 71.9 56.6 75.9 84.7 70.1

Bi-LSTM – 71.1 68.4 64.8 68.3 69.5 55.9 76.2 82.4 68.4

Bi-LSTM+att.+LEX+POS 64.8 72.0 69.1 66.9 71.5 71.5 57.5 75.0 83.8 69.9

GASext(Linear) – 72.4 70.1 67.1 72.1 71.9 58.1 76.4 84.7 70.4

GASext(Concatenation) – 72.2 70.5 67.2 72.6 72.2 57.7 76.6 85.0 70.6

CAN – 72.2 70.2 69.1 72.2 73.5 56.5 76.6 80.3 70.9

HCAN – 72.8 70.3 68.5 72.8 72.7 58.2 77.4 84.1 71.1

SemCor,hyp – – – – – - – – – 75.6

SemCor,hyp(ens)* 69.5 77.5 77.4 76.0 78.3 79.6 65.9 79.5 85.5 76.7

SemCor+WNGC,hyp – – – – – – – – – 77.1

SemCor+WNGC,hyp(ens)* 73.4 79.7 77.8 78.7 82.6 81.4 68.7 83.7 85.5 79.0

BERT(Token-CLS) 61.1 69.7 69.4 65.8 69.5 70.5 57.1 71.6 83.5 68.6

GlossBERT(Sent-CLS) 69.2 76.5 73.4 75.1 79.5 78.3 64.8 77.6 83.8 75.8

GlossBERT(Token-CLS) 71.9 77.0 75.4 74.6 79.3 78.3 66.5 78.6 84.4 76.3

GlossBERT(Sent-CLS-WS) 72.5 77.7 75.2 76.1 80.4 79.3 66.9 78.2 86.4 77.0

MTDNN+Gloss 73.9 79.5 76.6 79.7 80.9 81.8 67.7 79.8 86.5 79.0

7 Conclusion and Future Work

We use the pre-processing steps and weak-supervision over context-gloss pairs as
described in [5] and improve upon the results through simple and chained back-
translation as a means of data augmentation and multi-task training and transfer
learning from different data sources. Better and more generalized representations
achieved by leveraging the GLUE datasets allows us to train a larger model with
nearly thrice as many trainable parameters. Through these techniques we are
able improve upon existing SOTA on standard benchmark.

Additional data from WNGC or OMSTI [27] has shown to aid model per-
formance in various systems and could be incorporated in training. Recent work
such as [28] indicates that cost-sensitive training is often effective when training
BERT when there is a class imbalance. Given the nature of the problem, a triplet
loss function similar to [25] could be used to further improve performance. Online
hard or semi-hard sampling strategies could be experimented with to sample the
negative sysnets. Finally, RoBERTa [13] has shown improved performance on
many NLP tasks and could be used as a base model that is input to our multi-
task pre-training pipeline. All of these techniques could be used in conjunction
with our context-gloss pairwise formulation to improve performance further.
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