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24.1 Introduction

The field of Music Information Retrieval (MIR) focuses on creating methods and
practices for making sense of music data from various modalities, including audio,
video, images, scores and metadata [54]. Within MIR, a core problem which to the
day remains open is Automatic Music Transcription (AMT), the process of auto-
matically converting an acoustic music signal into some form of musical notation.
The creation of a method for automatically converting musical audio to notation
has several uses including but also going beyond MIR: from software for automatic
typesetting of audio into staff notation or other music representations, to the use
of automatic transcriptions as a descriptor towards the development of systems for
music recommendation, to applications for interactive music systems such as auto-
matic music accompaniment, for music education through methods for automatic
instrument tutoring, and towards enabling musicological research in sound archives,
to name but a few.

Interest in AMT has grown during recent years as part of recent advances in artifi-
cial intelligence and in particular deep learning, which have led to new applications,
systems, as well as have led to a new set of technical, methodological and ethical
challenges related to this problem. This chapter presents state-of-the-art research and
open topics in AMT, focusing on recent methods for addressing this task based on
deep learning, as well as on outlining challenges and directions for future research.

The first attempts to address this problem come back to the 1970s and the dawn of
the field of computer music (e.g. [47]), while the problem faced a resurgence in the

L. Liu (B) · E. Benetos
School of Electronic Engineering and Computer Science, Queen Mary University of London,
London E1 4NS, UK
e-mail: lele.liu@qmul.ac.uk

© Springer Nature Switzerland AG 2021
E. R. Miranda (ed.), Handbook of Artificial Intelligence for Music,
https://doi.org/10.1007/978-3-030-72116-9_24

693

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72116-9_24&domain=pdf
mailto:lele.liu@qmul.ac.uk
https://doi.org/10.1007/978-3-030-72116-9_24


694 L. Liu and E. Benetos

mid-2000s with the development of methods for audio signal processing and pattern
recognition, and encountered a second wave of popularity in recent years following
the emergence of deep learning methods. Irrespective of the methodologies used
to investigate and develop tools and practices for AMT, researchers addressing this
task draw knowledge from several disciplines, including digital signal processing,
machine learning/artificial intelligence, music perception and cognition, musical
acoustics and music theory. There are also strong links with other problems both
within and beyond MIR, including Optical Music Recognition (OMR—which is the
counterpart ofAMTbut for printedmusic ormanuscripts instead of recorded audio—
e.g. [50]), automatic speech recognition and speaker diarisation [66], sound event
detection for everyday and nature sounds [59], and object recognition and tracking
in video [17]. AMT is also closely related to the fields of music language modelling
and symbolic music processing [15], serving as a bridge between the acoustic and
symbolic domains in music.

Given the complexity of the problem of AMT, the overarching task is often
split into subtasks, including pitch/multi-pitch detection, onset and offset detection,
instrument identification and tracking, meter estimation and rhythm quantisation,
estimation of dynamics and expression and typesetting/engraving. However, recent
advances in artificial intelligence have promoted the development of ‘end-to-end’
methods for AMT, thus often skipping intermediate tasks or steps and directly pro-
ducing a transcription in a particular notation format. Figure24.1 shows the typical
stages of an AMT system for a short excerpt from a Mozart sonata, starting with the
input waveform, the extracted time-frequency representation (in this case a short-
timeFourier transformmagnitude spectrogram), the output transcription in piano-roll
representation and the output transcription in the form of Western staff notation.

Despite active research on this problem for decades and measurable progress
over the years, AMT is still faced by several challenges, both technical and ethical.
Broadly, the performance of certain AMT systems can be deemed sufficient for audio
recordings containing solo acoustic instruments, within the context of Western tonal
music, assuming a relatively moderate tempo and a level of polyphony around 3,
4. Here, the term ‘polyphony’ refers to the maximum number of concurrent pitches
at a given time instant. The problem of automatically transcribing audio recordings
which contain sounds produced by multiple instruments, vocals and percussion with
a high polyphony level or a fast tempo is still relatively limited. Other factors that can
affect the performance of such systems include the existence of distortions either at
the instrumental production stage or at the audio production/mastering stage, or cases
where the performance or composition in question does not fall under the auspices of
Western tonalmusic.A relatively newchallengewhichhas emergedwith the adoption
of data-driven methods for addressing the task is the bias imposed by the algorithms
through the choice of datasets. Given that most datasets for AMT include Western
tonal music performed by solo piano or other solo Western orchestral instruments
have created certain limits and biases with respect to the range of instruments or to
the range of music cultures and styles that can be supported by state-of-the-art AMT
systems. Limitations of symbolic representations and encodings for music (MIDI,
MEI, MusicXML, Lilypond, etc.) also further constrain the potential of current AI-
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Fig. 24.1 Typical stages of an AMT system: a input waveform; b time-frequency representation;
c output piano-roll representation; d output music score, typeset using Musescore. The example
corresponds to the first 4 s of W.A. Mozart’s Piano Sonata no. 11, 3rd movement
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based AMT systems to support the transcription of music performances that cannot
necessarily be expressed through Western staff notation or do not assume 12-tone
equal temperament.

The aim of this chapter is to provide a review and discussion of recent methods for
AMT, focusing on methods based on AI and deep learning in particular. The focus
of the chapter is on automatic transcription of pitched sounds; see [61] for a recent
review on the related task of Automatic Drum Transcription (ADT). For a detailed
look on signal processing and statistical methods for AMT, the reader is referred to
[36]; for a discussion related to the challenges of AMT methods relying on signal
processing or statistical methods, please see [6]. A recent tutorial-like overview of
both ‘traditional’ machine learning and deep learning methodologies for AMT is
presented in [5].

The outline of this chapter is as follows. Section24.2 provides a concise definition
of various problems that have been posed underAMT; an overviewof commonly used
datasets and evaluation metrics in AMT is presented in Sect. 24.3. An overview of
the state-of-the-art in AMT is presented in Sect. 24.4, including a more detailed look
at deep learning methods for the task. Current methodological and ethical challenges
facing AMTmethods, tools, systems and practices are outlined in Sect. 24.5. Finally,
conclusions are presented in Sect. 24.6.

24.2 ProblemDefinition

As mentioned in Sect. 24.1, AMT is divided into several subtasks, and most
approaches have only been addressing a small subset of these subtasks. Perhaps
the most essential subtask (especially when referring to the transcription of pitched
sounds) is pitch detection, or in the case of multiple concurrent sounds, multi-pitch
detection. Here, we define pitch in the same way as in [27], where a sound has a
certain pitch if it can be reliably matched to a sine tone of a given frequency at a
sound pressure level of 40 dB. Typically, this task refers to estimating one or more
pitches at each time frame (e.g. at 10ms intervals), where pitch is typically expressed
in Hz. Given the close links between pitch and the fundamental frequency of periodic
signals, this task is often referred to as multiple-F0 estimation. This task is publicly
evaluated annually as part of the Music Information Retrieval Evaluation eXchange
(MIREX) task on MultiF0 estimation [1].

It is often useful for multi-pitch detection systems to produce a non-binary repre-
sentation of estimated pitches over time, which could be used for pitch visualisation
purposes, or as an intermediate feature for other MIR tasks that rely on an initial
pitch estimate (e.g. melody estimation [53], chord estimation [41]). Often this repre-
sentation is referred to as pitch salience, or a time-pitch representation. Figure24.2a
shows the pitch salience representation for the excerpt of Fig. 24.1 using the method
of [8].

Moving on to a higher level of abstraction which is closer to how humans might
transcribemusic,wewould need express notes as characterised by their start time, end
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Fig. 24.2 a The pitch salience representation for the excerpt of Fig. 24.1 using the method of [8];
b The corresponding binarised piano-roll representation

time, and pitch—in a similar way as expressed, e.g. in the MIDI format. This task is
referred to as note tracking and involves the subtasks of onset detection (i.e. detecting
the start of a note), offset detection (i.e. detecting the end of a note), and (multi-)pitch
detection. A comprehensive tutorial on signal processing-based methods for onset
detection can be found in [4]. Approaches for note tracking are publicly evaluated
annually as part of the Music Information Retrieval Evaluation eXchange (MIREX)
note tracking task [1]. Figure24.2b shows the output of the note tracking process by
performing simple thresholding on the pitch salience of Fig. 24.2a.

In addition to the detection of pitched sounds and their timings, a key element
towards a successful musical transcription is on assigning each detected note to
the musical instrument that produced it. This task is referred to in the literature as
instrument assignment, timbre tracking, or multi-pitch streaming. A closely related
task in the wider field of MIR is that of musical instrument recognition from audio,
which has received relatively little attention from the research community (see [30]
for a recent overview).

The above mentioned note tracking task estimates the start and end times of notes,
but in terms of seconds as opposed to beats or any other metrical subdivision. To that
end, the task of rhythm transcription or note value recognition aims to estimate the
metrical structure of the music recording in question and estimate the note timings
and durations in terms of metrical subdivisions (e.g. [20,44]). By having estimated
pitcheswith their respective timings in terms ofmeter, one can typeset the transcribed
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Fig.24.3 The rhythm-quantised transcription of the excerpt of Fig. 24.1, automatically transcribed
using the method of [8] and typeset using Musescore (https://musescore.org/)

audio in some form of human-readable music notation, e.g. Western staff notation.
This is a task that depending on the complexity of the music performance in question
might also require to split the detected stream of notes intomultiplemusic staves (this
is referred to as voice separation and staff estimation). The process of converting
music audio into staff notation is sometimes referred to as complete music tran-
scription (taking into account that such a ‘complete’ transcription might not contain
information related to musical instruments, phrasing, expression or dynamics).

Figure24.3 shows the rhythm-quantised transcription of the excerpt of Fig. 24.1
in Western staff notation, automatically transcribed using the method of [8]. While
from a first glance there are little similarities with the score of Fig. 24.1d, a close
inspection shows that the majority of pitches have been correctly detected, although
their respective durations are not properly estimated (which can be attributed to
sustain and pedalling of the piano performance of this piece).

24.3 Datasets and EvaluationMetrics

24.3.1 Datasets

As there are an increasing amount of exploration on deep learningmethods for AMT,
people are using larger datasets to train and evaluate the systems they developed.
There are several datasets that are commonly used for AMT problems in literature,
such as the RWC dataset [26], MIDI Aligned Piano Sounds (MAPS) dataset [24],
Bach10 [22], MedleyDB [10], and MusicNet [58]. Two recently proposed datasets
are MAESTRO [29] and Slakh [38]. Table24.1 provides an overview on commonly
used AMT datasets.

https://musescore.org/
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Table 24.1 AMT datasets and their properties. Instrument abbreviations—Vc: Vocal, Gt: Guitar,
Bs: Bass, Dr: Drums, Pn: Piano, Tp: Trumpet, Cl: Cello, Vl: Violin, Cr: Clarinet Sx: Saxophone,
Bn: Bassoon. Music style abbreviations—Cls: Classical, Plr: Popular, Jzz: Jazz, Ryf: Royalty-Free

Dataset Instruments Music style Size Comments

RWC dataset ([26],
2002)

Gt, Vc, Dr, Pn, Tp,
Cl, etc.

Cls, Ryf, Plr,
Jzz, etc.

315 pieces in 6
subsets

Real recordings, with
non-aligned MIDI
files for Popular,
Royalty-Free,
Classical and Jazz
subsets. A version of
automatically aligned
MIDI annotations for
the Classical subset
can be found in the
SyncRWC dataset [2]

MAPS dataset ([24],
2010)

Pn Cls + non musical
piece (notes and
chords)

30 pieces * 9 piano
synthesizers in the
MUS subset

synthesized and real
piano recordings.
Additional rhythm
and key annotations
can be found in
A-MAPS dataset [64]

Bach10 ([22], 2010) Vl, Cr, Sx, Bn Four-part J.S. Bach
Chorales

10 pieces Real recordings,
individual stems, F0
annotations

MedleyDB ([10],
2014)

multiple instrument
(Pn, Vc, etc.)

Ryf 196 pieces in
MedleyDB 2.0

Real recordings, With
individual stems of
each instrument
recording. 108 pieces
with melody
annotation

MusicNet ([58],
2016)

multiple instrument
(Pn, Vl, Cl, etc.)

Cls 330 pieces Real recordings
under various
conditions. Labels
aligned by dynamic
time wrapping and
verified by trained
musicians, estimated
labeling error rate 4%

GuitarSet ([62],
2018)

Gt Plr 360 pieces Real recordings

MAESTRO ([29],
2019)

Pn mostly Cls 1282 pieces From e-piano
competition, 201.2h
in total

Slakh ([38], 2019) Pn, Gt, Bs, Dr, etc. Cls, Plr, etc. 2100 tracks Synthesized from
Lakh MIDI dataset
[49]
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Although there are plenty of choices of AMT datasets, there are relatively more
datasets for piano transcription (given the ease in automatically exportingMIDI anno-
tations from acoustic pianos when using specific piano models such as Disklavier
or Bösendorfer), but much less for other instruments, especially non-Western instru-
ments. The biggest challenge of collecting AMT datasets is that annotating music
recordings requires a high degree of music expertise, and is very time-consuming.
Also, there might not be enough music pieces and recordings for some less popular
traditional instruments when a large dataset is needed. Moreover, human-annotated
transcription datasets are not guaranteed to have a high degree of temporal precision,
which makes them less suitable for model evaluation on frame and note level. Su and
Yang [57] proposed four aspects to evaluate the goodness of a dataset: generality,
efficiency, cost and quality. They suggest that a good dataset should be not limited to
a certain music form or recording conditions, should be fast-annotated, should be as
low-cost as possible and be accurate enough. Because of the difficulty in collecting
large human-transcribed datasets, researchers have used electronic instruments or
acoustic instruments with sensors that can directly produce annotations (e.g. elec-
tronic piano, MAESTRO dataset), or synthesised datasets (e.g. Slakh) instead of real
recordings. The use of synthesised recordings greatly speed up dataset collection, but
on the other hand, could introduce some bias in model training, limiting generality
of the developed AMT system.

24.3.2 EvaluationMetrics

Despite collecting datasets, model evaluation is another important process in devel-
oping methodologies for AMT problems. Evaluating a music transcription can be
difficult since there are various types of errors, from pitch errors to missing/extra
notes, and each has a different influence on the final evaluation of results. Currently,
common evaluation metrics for AMT systems focus mainly on frame/note level
transcriptions [3,9,14,28,33]. Much less work has been down on stream and nota-
tion level transcriptions [39,40,42]. In the 2019 annual Music Information Retrieval
Evaluation eXchange (MIREX), there are three subtasks [1] for music transcription
for pitched-instruments—multiple fundamental frequency estimation on frame level,
note tracking and timbre tracking (multi-pitch streaming).

Commonmultiple fundamental frequency estimationmethods [3] calculate frame-
wise precision, recall and relevant F-measure values. The three scores are defined
as:

precision = TP

TP + FP
(24.1)

recall = TP

TP + FN
(24.2)

F-measure = 2× precision× recall

precision+ recall
(24.3)
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The TP, FP and FN values correspond to true positives, false positives and false
negatives respectively, and are calculated from all pitch values and time frames in
the piano roll. There are also other methods for evaluating frame-wise transcription,
such as separating different types of errors (e.g. missed pitches, extra pitches, false
alarm) inmultiple F0 estimation.A type-specific error rate is calculated in [48],where
the authors defined a frame-level transcription error score combining different error
types. Separating different error types can lead to a better interpretation on music
transcription evaluation.

Note tracking problems usually define transcription results as sequences of notes,
characterised by a pitch, onset and offset. A tolerance is defined to allow small errors
in onset times since it is difficult to estimate exact time when building an AMT
dataset as well as transcribing music with an AMT system. A common tolerance
is 50 ms, which is used in the MIREX note tracking subtask. There are also some
other scenarios where offset times are included (e.g. in [7] a 20% tolerance for offset
is applied and in [19] a tolerance of the larger one in 20% of the note length or
50 ms is used for offset time). For any of the above scenarios, note-level precision,
recall and F-measure are calculated for a final evaluation. Similar to frame-level F0
estimation, researchers have attempted to include error types in evaluation metrics
(see e.g. [42]).

There are less works on multi-pitch streaming. The evaluation for multi-pitch
streaming uses similar metric like precision and recall. Gómez and Bonada [25]
proposed a simple method of calculating accuracy and false rate to evaluate voice
streaming applied to A Capella transcription. In 2014, Duan and Temperley [23]
used a similar evaluation method to calculate a more general multi-pitch streaming
accuracy. The accuracy is defined as:

accuracy = TP

TP + FP + FN
(24.4)

Another work by Molina et al. [42] proposed to include types of errors in streaming
process, and used a standard precision-recall metric.

Recent years has seen some introduction of evaluation metrics for complete music
transcription given a recent increase in methods that directly transcribes audio to
music scores. Some methods proposed include [18,39,40]. A recent approach for
evaluating score transcriptions is proposed by Mcleod and Yoshii [40], which is
based on a previous approach [39] calledMV2H (representingMulti-pitch detection,
Voice separation, Metrical alignment, note Value detection and Harmonic analysis).
According to this metric, a score is calculated for each of the five aspects, then the
scores are combined into a joint evaluation following a principle of one mistake
should not be penalised more than once.

While most of evaluation metrics are based on music theory and simple statistical
analysis, there are some metrics that contain some considerations on human per-
ception of music transcriptions. In 2008, Daniel et al. [21] explored the difference
of some error types in AMT from the aspect of human perception, and proposed a
modified evaluation metric that weights different error types.
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24.4 State of the Art

In this section, we look into state-of-the-artmethodologies forAMT,mainly focusing
onNeuralNetworkmethods. The sectionwill be structured as follows. In Sect. 24.4.1,
we provide an overview for the development and common methods for AMT, fol-
lowed by Sect. 24.4.2 where we discuss Neural Network methods used in AMT.
The following sections cover more specific topics within AMT: we give a review
on multi-task learning methods for AMT in Sect. 24.4.3; the use of music language
models and related works are covered in Sect. 24.4.4 and finally we review works on
complete transcription in Sect. 24.4.5.

24.4.1 Overview

As the field of MIR has evolved over the past 20years since the inception of the
International Symposium on Music Information Retrieval (ISMIR), so has the topic
of AMT. Roughly, proposed methods for AMT in the early 2000s made use of sig-
nal processing and statistical machine learning theory (see [36] for more details).
Following the seminal paper of [56] on the potential of non-negative matrix fac-
torisation when applied to the problem of AMT, a series of different methods were
proposed for AMT that made use of matrix decomposition approaches. In the early
2010s, following the rise of deep learning methods and the paper by Humphrey et al.
[30] advocating for the use of deep learning methods for MIR, neural network-based
methods started being widely used for AMT and are still in use to date.

In terms of AMT subtasks to be addressed, the vast majority of methods have
been and still do focus on (framewise) multi-pitch detection, with a smaller pro-
portion of methods focusing on note tracking or rhythm transcription/typesetting.
Due to the emergence of end-to-end deep learning methods for AMT, an increas-
ing trend towards systems producing higher-level representations (such as outputs
in MIDI format or in staff notation) can be observed [5]. The problem of timbre
tracking/instrument assignment is however still under-explored.

Current literature for AMT includes amixture of deep learning andmatrix decom-
position approaches, with deep learningmethods currently being used in themajority
of scenarios. Compared to other tasks in MIR, a large proportion of methods still
employ matrix decomposition approaches (see e.g. [5]), due to their ability to work
with limited data, fast learning and inference, and due to the models’ interpretability.
The remainder of this chapter will focus more on neural network-based methods for
AMT, due to their increasing popularity in the research community and also due to
certain methodological challenges when using deep learning methods for AMT that
are still to be addressed.
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24.4.2 Neural Networks for AMT

Research in AMT has increasingly been relying on deep learning models, which
use feedforward, recurrent and convolutional layers as main architectural blocks. An
early example of a deep neural model applied to AMT is the work of Nam et al. [45],
which uses a Deep Belief Network (DBN) in order to learn representations for a
polyphonic piano transcription task. Resulting learned features are then fed to a Sup-
port Vector Machine (SVM) classifier in order to produce a final decision. Another
notable earlywork thatmade use of deep neural architectureswas byBöck andSchedl
[13], where the authors used a bi-directional Recurrent Neural Network (RNN) with
Long Short-Term Memory (LSTM) units, applied to the task of polyphonic piano
transcription. Two points are particularly worth mentioning for the work of [13]: (i)
the use of two STFT magnitude spectrograms with different window sizes as inputs
to the network, in order to achieve both a ‘good temporal precision and a sufficient
frequency resolution’; (ii) The output is a piano-roll representation of note onsets and
corresponding pitches, and does not include information on note durations/offsets.

A first systematic study towards the use of various neural network architectures for
AMTwas done by Sigtia et al. in [55]. The study compared networks for polyphonic
piano transcription that used feedforward, recurrent and convolutional layers (not-
ing that layer types were not combined), all using a Constant-Q Transform (CQT)
spectrogram as input time-frequency representation. Results from [55] showed that
networks that include convolutional layers reported the best results for the task,which
is also in line with other results reported in the literature, and with current method-
ological trends related to neural networks for AMT. The ability of Convolutional
Neural Networks (CNNs) to function well for tasks related to multi-pitch detec-
tion and AMT stems from the useful property of shift-invariance in log-frequency
representations such as the CQT: a convolutional kernel that is shifted across the
log-frequency axis can capture spectro-temporal patterns that are common across
multiple pitches.

Following the work of [55], Kelz et al. [33] showed the potential of simple frame-
based approaches for polyphonic piano transcription using an architecture similar to
[55], but making use of up-to-date training techniques, regularisers and taking into
account hyper-parameter tuning. The ‘ConvNet’ architecture from the work of [33]
can be seen in Fig. 24.4.

An influential work that used CNNs for multiple fundamental frequency estima-
tion in polyphonic music was the deep salience representation proposed by Bittner et
al. [12]. Contrary to most methods in AMT that produce a binary output, the model
of [12] produces a non-binary time-pitch representation at 20 cent pitch resolution,
which can be useful for both AMT applications but also for several downstream
applications in the broader field of MIR. A particular contribution of this work was
the use of a Harmonic Constant-Q Transform (HCQT) as input representation; the
HCQT is a three-dimensional representation over frequency, time and the harmonic
index, produced by computing several versions of the CQT by scaling the minimum
frequency used by a harmonic. Figure24.5 shows the pitch salience representation
for theMozart excerpt of Fig. 24.1, computed using the deep saliencemethod of [12].
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Log-Spectrogram (5*229)

Convolution Layer (32*3*3)

Convolution Layer (32*3*3)
+ BatchNorm + MaxPool (1*2)

Convolution Layer (64*3*3)
 + MaxPool (1*2)

Dense Layer (512)

Dense Layer (88)

piano-roll

Fig. 24.4 Model architecture for the convolutional neural network used in [33] for polyphonic
piano transcription. The depicted network corresponds to the ‘ConvNet’ architecture of [33]

Fig.24.5 Pitch salience representation for the excerpt of Fig. 24.1, using the deep salience method
of [12]
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The ability of CNNs in learning features in time or time-frequency representations
keeps themstill active in theAMT literature. This includes theworkofThickstun et al.
[58] that was carried out as part of the MusicNet dataset, and compared feedforward
and convolutional networks learned on raw audio inputs, as opposed to having a time-
frequency representation as input. It is worth noting however that convolutional, and
more broadly neural networks, when trained for AMT as a multi-label classification
task, face the issue that they appear to learn combinations of notes exposed to them
during training, and are not able to generalise unseen combinations of notes—the
so-called entanglement problem as discussed in [34].

24.4.3 Multi-task LearningMethods

Recent research in machine learning has focused on multi-task learning [52], where
multiple learning tasks are addressed jointly, thus exploiting task similarities and
differences. In the context of AMT, multi-task learning has been shown to improve
transcription performance in certain cases. Tasks related to AMT such as note level
transcription, onset detection, melody estimation, bass line prediction and multi-
pitch detection (also sharing similar chroma and rhythm features) can be integrated
into one model that would exploit task interdependencies.

In the ‘Onsets and Frames’ system by Hawthorne et al. [28], which is currently
considered the benchmark in automatic piano transcription, the authors used a deep
Convolutional Recurrent Neural Network (CRNN) to jointly predict onsets and mul-
tiple pitches. The onset detection results are fed back into the model for further
improving frame-wise multi-pitch predictions. The Onsets and Frames model was
further improved in the work of Kim and Bello [35], which addresses the problem
of expressing inter-label dependencies through an adversarial learning scheme.

Bittner et al. [11] proposed a multi-task model that jointly estimates outputs for
several AMT-related tasks, including multiple fundamental frequency estimation,
melody, vocal and bass line estimation. The authors show that themore tasks included
in the model, the higher the performance and that the multi-task model outperforms
the single-task equivalents. In another recent work [32], the authors designed amulti-
task model with CNNs which enables four different transcription subtasks: multiple-
f0 estimation, melody estimation, bass estimation and vocal estimation. Results on
themethod of [32] showed an overall improvement in themulti-taskmodel compared
to single task models.

24.4.4 Music LanguageModels

Inspired bywork in thefield of speechprocessing,wheremany systems forAutomatic
Speech Recognition (ASR) benefit from languagemodels that predict the occurrence
of a word or phoneme [31], researchers inMIR have recently attempted to useMusic
Language Models (MLMs) and combine them with acoustic models in order to
improveAMTperformance.While the problemof polyphonicmusic prediction using
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statistical machine learning models (such as n-grams and hidden Markov models) is
not trivial, the emergence of neural network methods for high-dimensional sequence
prediction has enabled the use of MLMs for polyphonic music.

One of the first works to use neural network-based MLMs for polyphonic
music prediction and combine them with multi-pitch detection, was carried out by
Boulanger-Lewandowski et al. [15]. The MLM was based on a combination of a
recurrent neural networkwith aNeuralAutogressiveDistributionEstimator (NADE).
The sameRNN-NADEmusic languagemodel was also used in [55], whichwas com-
bined with a CNN as the acoustic model, showing that the inclusion of an MLM can
improve transcription performance.

It was shown however that the MLMs which operate at the level of a small time
frame (e.g. 10 msec) are only able to produce a smoothing effect in the resulting
transcription [63]. More recently, Wang et al. [60] used an LSTM-RBM language
model as part of their proposed transcription system, but each frame corresponds to
an inter-onset interval as opposed to a fixed temporal duration, resulting in improved
transcription performance when using note-based metrics. Finally, Ycart et al. [65]
combined anLSTM-basedmusic languagemodelwith a feedforward neural blending
model which combines theMLMprobabilities with the acoustic model probabilities.
In line with past observations, the blending and language models work best when
musically-relevant time steps are used (in this case, time steps corresponding to a
16th note).

24.4.5 Complete Transcription

Recent works have paid attention to complete transcription, where systems are devel-
oped to convert music audio into a music score. There are two common ways in
designing a complete transcription system. A traditional way is by using a combina-
tion of several methods and subtasks of AMT to form an system that can transcribe
music audio to a notation level, which usually involves estimating a piano-roll rep-
resentation in an intermediate process [43]. Another way which has become increas-
ingly popular is designing an end-to-end system that directly converts input audio
or a time-frequency representation into a score level representation such as textual
encoding, without having a piano-roll or similar intermediate representation in the
pipeline. In this scenario, a deep learning network is used to link the system input
and output. A challenge in designing a end-to-end system is that the input and out-
put of the system cannot be aligned directly (one is a time-based representation and
the other is a representation in terms of metres or symbolic encoding). As a result,
research has focused on encoder-decoder architectures [16,46] which do not rely on
framewise aligned annotations between the audio and music score.

Aworkworthmentioningwhich combined subtasks to build a transcription system
is by Nakamura et al. [43]. In this work, the authors divided a whole transcription
system into a stream of subtasks: multi-pitch analysis, note tracking, onset rhythm
quantisation, note value recognition, hand separation and score typesetting. The final
system reads a spectrogram calculated frommusic audio, and outputs readablemusic
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input signal or
me-frequency 

representa on
Encoder sequence 

embedding Decoder output sequence 
(encoding)...

Fig. 24.6 General structure for an end-to-end AMT system using encoder-decoder architecture

scores. Offering the whole system structure, the authors did not focus on integrating
algorithms for all the subtasks, but optimised methods for multi-pitch detection and
rhythm quantisation. The improved subtask performance ends up adding to the final
performance of the system.

Encoder-decoder mechanisms have also been used for AMT in recent years, with
the advantage in creating complete transcription systems without estimating and
integrating complicated subtasks. In Fig. 24.6, we provide an encoder-decoder struc-
ture commonly used in AMT systems. Recent works have showed the potential of
encoder-decoder methods, although their performance on polyphonic music tran-
scription remains less explored in the literature. In 2017, Carvalho and Smaragdis
proposed a method for end-to-end music transcription using a sequence-to-sequence
architecture combined with CNNs and RNNs [16]. The developed system can out-
put a textual music encoding in Lilypond language from an input audio waveform.
However, the work focused mainly on monophonic music (which showed high-level
performance), but only a simple scenario of polyphonic music was tested (with two
simultaneous melodies within a pitch range of two octaves). Another exploration
on singing transcription by Nishikimi et al. [46] also used a sequence-to-sequence
model. A point worth mentioning is that they applied an attention loss function for
the decoder, which improved the performance of the singing transcription system.
The work, still, focused only on monophonic singing voice.

Using an encoder-decoder architecture is a simple way of designing end-to-end
AMT systems, but there are also other works using Connectionist Temporal Clas-
sification (CTC). A recent example is by Román et al. [51], in which the authors
combined the use of a CRNN and a CTC loss function. The CTC loss function
enables the system to be trained using pairs of the input spectrogram and output tex-
tual encoding. In that work, a simple polyphonic scenario is considered where four
voices are included in a music piece (in string quarters or four-part Bach chorales).
Still, the problem of end-to-end complete music transcription with unconstrained
polyphony is still open.

24.5 Challenges

Although AMT is still very active as a topic within MIR, the performance of current
AMT systems is still far from satisfactory, especially when it comes to polyphonic
music, multiple instruments, non-Western music and ‘complete’ transcription. There



708 L. Liu and E. Benetos

are plenty of challenges in this area where further exploration is required. In this
section, we summarise current challenges and provide potential further directions.

24.5.1 Datasets

The lack of annotated datasets is an aspect that limits the development of AMT
systems. Due to the difficulty in collecting and annotating music recordings, there
is still a lack of data for most music transcription tasks, especially for non-western
music and certain musical instruments. Apart from the lack of large datasets, current
datasets for AMT also have some limitations. For example, the temporal precision
of annotations for some datasets with real recordings is not always satisfactory—
which is also a reason that most AMT systems set a relatively large onset/offset
tolerance for note tracking tasks. Also, dataset annotations are typically limited to
note pitch, onset andoffset times and sometimes note velocity.Additional annotations
are needed for a more comprehensive transcription, such as rhythm, key information
and expressiveness labels.

Recently, an increasing number of datasets has been released, which are based
on synthesising MIDI files. MIDI files provide a good reference for multi-pitch
detection since they provide temporally precise note annotations, but there are also
limitations, since MIDI files do not provide annotations for score level transcription.
Another limitation for synthesised data is that they might not reflect the recording
and acoustic conditions of real-world audio recordings and can cause bias during
model training.

24.5.2 EvaluationMetrics

Current evaluation metrics mainly focus on frame-wise and note-wise evaluations,
where transcription results are provided in a piano-roll representation or note
sequences. Benchmark evaluation metrics also do not model different error types
beyond measuring precision and recall. For example, an extra note may be more
severe than a missing note in a polyphonic music, on-key notes may be less noticed
than off-key ones, and an error in a predominant voice may be more obvious com-
pared to a similar error in a middle voice. Besides, much less work can be found in
evaluating complete transcription systems.

There is also a lack of perceptual considerations in commonly used evaluation
metrics. Somework [43,48] has attempted to create different types of errors, however
these metrics still do not account for human perception. Deniel et al. provided an
early work on perceptually-based multi-pitch detection evaluation [21], but is not
widely used in the community. In addition, there is still no work on perceptually-
based evaluation metrics for score-level transcription.
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24.5.3 Non-WesternMusic

Most AMT methods aim specifically at modelling Western tonal music, but there is
much less work done on automatically transcribing music cultures beyond Western
tonal music, such as world, folk and traditional music. This results in AMT systems
not being able to accurately or adequately transcribe non-Western music.

Differences between Western and non-Western music cultures that can affect the
design of AMT systems include but are not limited to pitch space organisation and
microtonality, the presence of heterophony (vs. homophony or polyphony occur-
ring in Western tonal music), complex rhythmic and metrical structures, differences
in tuning and temperament, differences in musical instruments and differences in
methods for expressive performance and music notation amongst others. Despite the
above differences, the lack of large annotated datasets is another limitation for music
transcription research for non-Western music cultures.

24.5.4 Complete Transcription

Although research in AMT has increasingly been focusing on complete transcription
in recent years, current methods and systems are still not suitable for general-purpose
audio-to-score transcription of multi-instrument polyphonic music. Some systems
for complete transcription rely on typesetting methods as a final step, but most
typesetting methods assume a performance MIDI or similar representation as input
and are not designed to take noisy input into account. In addition,whenmany tasks are
combined into a whole system for complete transcription, the errors in each step can
accumulate and worsen the system’s performance. As for end-to-end transcription
methods, current research is still limited to monophonic music and special cases
for polyphonic music, mostly using synthetic audio. There is still a large room for
further work towards the development of systems for complete music transcription.

24.5.5 Expressive Performance

Including expressive performance annotations is another challenge in current AMT
research. Most AMT systems transcribe music into a defined framework of note
pitch, onset and offset in a metre constrained format, but cover little expressive labels
such as note velocity, speed symbols, as well as expressive playing techniques. It is
currently hard to predict such information in AMT, although MIR research has been
focusing on specific problemswithin the broader topic expressivemusic performance
modelling (e.g. vibrato detection). How to incorporate the estimation and modelling
of expressive performance into AMT systems remains an open problem.
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24.5.6 Domain Adaptation

Due to the increasing use of synthesised datasets, or due to the mainstream use of
piano-specific datasets for AMT, the ability of such models to generalise to real
recordings, different instruments, acoustic recording conditions or music styles has
become a problemworth considering. There is currently no research focusing on this
question in the context of AMT, although the broader problem of domain adapta-
tion has been attracting increasing interest in MIR and the broader area of machine
learning.

For example, tasks in MIR such as music alignment and singing voice separation
were explored in a recent paper [37] using domain adaptation methods based on
variational autoencoders. We believe that similar domain adaptation methods can be
applied to AMT tasks to solve existing problems such as the lack of data for some
less popular instruments and dealing with the differences between synthesised and
real-life recorded datasets or different recording conditions.

24.6 Conclusions

AMT is a core problem in the field of Music Information Retrieval (MIR), and has
attracted a lot of attention during the past few decades. In this chapter, we review and
discuss some of the main topics within the problem of AMT. We make a concrete
definition of the problem of AMT, and describe the main subtasks in the AMT pro-
cess (see Sect. 24.2).We also introduce the problem of complete transcription, which
refers to the process of converting music audio into a music score representation. We
review commonly used datasets and evaluationmetrics for AMT (see Sect. 24.3), and
look into the state of the art methodologies used in AMT (see Sect. 24.4). Current
research on AMT has focused on methods using neural networks with promising
results. We look into several topics in particular, including the use of commonly
used neural network architectures, the use of multi-task learning methods, the use
of music language models and methods for complete transcription. However, chal-
lenges still exist in the field of AMT, as we discussed in Sect. 24.5. A large room
for improvement is open in areas such as building better datasets and evaluation
metrics, building systems for non-Western music transcription, complete transcrip-
tion, adding expressive performance in transcription results and considering domain
adaptation. Given our review in this chapter, we believe that AMT is an open and
promising field within both MIR and the broader intersection of music and artificial
intelligence.
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