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16.1 Introduction

This chapter motivates the application of Artificial Intelligence (AI) to modeling
styles of folk music. In this context, we focus particularly on questions about the
meaningful evaluation of such AI, and argue that music practitioners should be inte-
gral to the research pursuit. We ground our discussion in specific music AI that
model symbolic transcriptions of traditional dance music of Ireland and Scandi-
navia. Finally, we discuss several ethical dimensions of such work. After reading
this chapter, the reader should have a grasp of approaches to modeling music data,
evaluating those approaches, and critically considering wider aspects of the applica-
tion of AI to music.

Our foray into modeling and generating folk-like music began modestly as a
humorous exercise one weekend in 2015 after reading Andrej Karpathy’s entertain-
ing blogpost, “The unreasonable effectiveness of recurrent neural networks” [46].
Karpathy shows how Long Short-Term Memory networks (LSTM)—a particular
kind of Recurrent Neural Network (RNN)—can be trained to generate novel text
one character at a time resembling Shakespeare, Wikipedia articles, and even for-
matted computer code.Howwellwould suchmodelswork formusic? SinceKarpathy
included computer code with his blogpost to reproduce his experiments, it would be
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a simple matter to just replace the Shakespeare data with music—all we needed was
a dataset of music expressed as text.

We downloaded an online collection of transcriptions of Irish traditional dance
music from the website thesession.org [48] expressed in ABCnotation [1]—a text-
based shorthand representation invented to help memorize folk music. We extracted
each transcription to create a text file of 423,249 lines and 13,519,069 characters.
Below is an extract from that file showing three settings of an Irish polka titled “The
Ballydesmond”:

T: Ballydesmond, The
M: 2/4
L: 1/8
K: Ador
|:E>A AB|cd e2|G>F GA|GF ED|
|E>A AB|cd ef|ge dB|A2 A2:|
|:a2 ab|ag ef|g2 ga|ge de|
|e<a ab|ag ef|ge dB|A2 A2:|

T: Ballydesmond, The
M: 2/4
L: 1/8
K: Ador
|:"Am"EA AB|cd e2|"G"G>F GA|GE ED||"Am"EA AB|B1/2c1/2d ef|"G"g1/2

f1/2e"Em" dB|"Am"A2 A2:||:"Am"a>g ab|ag ef|"G"g>f ga|ge d2||"
Am"ea ab|ag ef|"G"ge "E7"dB|"Am"A2 A2:||:"Am"c2"Em"Bc1/2B1
/2|"Am"AB1/2A1/2G>A|"G"Bded|g2gd||"Am"e1/2g1/2a"Em"ge|"G"
dBGA1/2B1/2|"Am"ce"Em"dB|"Am"A2 A2:||:"Am"eaag1/2e1/2|"G"
dgge1/2d1/2|"Am"eaab|"Em"g2ed||"Am"ea"Em"g1/2a1/2g1/2e1/2|"G"
dBGA1/2B1/2|"Am"ce"Em"dB|"Am"A2 A2:|

T: Ballydesmond, The
M: 2/4
L: 1/8
K: Ador
|: A/G/ |EA A>B | cd e2 | G/A/G/F/ G>A | GE ED |
EA- A>B | cd e>f | g/f/e dB | A2 A :|
|: B/d/ |ea a>b | a/b/a/g/ ef | g>f ga | ge ed |
ea- a>b | ag ef | ge dG | A2- A :|

ABCnotation is described more thoroughly in Sect. 16.3.2, but for now all one needs
to understand is that training an LSTM network on this text file means adjusting its
parameters such that it is likely to output a correct character given all the characters
it has seen up to that point. Taking the first setting of “The Ballydesmond” as an
example, this means making the LSTM network likely output ‘:’ given the input
‘T’; and then output a space given ‘T:’; and then output a ‘B’ given ‘T: ’; and then
outputting ‘a’ given ‘T: B’; and so on.

Using Karpathy’s code [46], we trained an LSTM network on batches of 50-
character excerpts of this text file. We then had the trained model—which we call
folk-rnn (v1)—generate tens of thousands of new transcription and published some
of these online [28]. Here is one example generated by folk-rnn (v1):
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Fig.16.1 Notation of “The Mal’s Copporim” generated by folk-rnn (v1), which exemplifies many
of the local and global conventions of the transcriptions in its training data

T: The Mal’s Copporim
M: 4/4
K: Dmaj
|: a>g | f2 f>e d2 d>B | A>BA<F A2 d>e | f2 d>f e<ac>d | e>dc>B

Agfe |
f2 f>e d2 d>B | A2 A>G F2 F2 | G2 B>A d2 c>d |[1 e>dc>A d2:|[2 e2

d2 d2 ||
|: f<g | a>Ag>A f>Ae>A| d>gd>B d2 g>A| f>Af>e d>ed>c| e>ed>c (3

Bcd (3efg |
a2 a>g f2 e2 | d2 A>d f2 f>g | a2 g>f e2 f>g | a2 A2 D2 :|

Figure16.1 shows the notation of this transcription. While the melody does not
sound particularly Irish, it is convincing and original, has a typical AABB structure,
shows rhythmic consistency and novelty, repetition and variation, and uses cadences
appropriately. The first part also has been given two endings. The model has even
created a unique title: neither “Mal” nor “Copporim” appear in the training data.

We synthesized over 35,000 of these generated tunes using a variety of instru-
ments common to Irish traditional music, and created The Endless Traditional Music
Session website to stream these results. Figure16.2 shows a screenshot. Every five
minutes a new random set of seven tunes would appear in rotation. We posted a
message about this on the discussion forum of the website from which we got
the data (https://thesession.org/discussions/37800). Most replies were critical: user
hnorbeck writes, “Interesting, but the results sound rather dull.” Ergo writes: “I
listened to a couple and they sound – weird. I mean the melodies themselves, not
the production. Nothing going on. I think you’d have to get a good musician or two
to actually play a few of these for them to make sense, if they can make any sense.”
AB writes, “Basically it’s crude turntabling without the sense of a musician familiar
with the significance of various motifs & phrases.” ceolachan notes a disconnec-

https://thesession.org/discussions/37800
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Fig.16.2 Screenshot ofTheEndless TraditionalMusic Sessionwebpage,which served up a random
set of seven tunes generated by themusicAI folk-rnn (v1). The titles and group nameswere generated
by the model as well

tion between the music and its function: “Teach it to dance first?!” A few comments
describe trying to play some of the generated tunes, e.g., Mark Harmer writes,

I’ve had a romp round the archive of mp3s. It’s a slightly surreal experience, like you are
listening to the output of someone locked in a cell and forced to write tunes! …Interesting
to listen to a few - normally you know pretty much immediately whether a tune’s going to
be good or not, but there is quite a lot of variation during the tune - not “totally unexpected
variation” but not simple repetition either. In [The Mal’s Copporim], the first two phrases are
quite fun as a generative idea to "human-compose" the rest of it! I know that’s not quite the
point of course. Still had fun trying the opening of this one on the harp …

Regardless of the fact that many of the generated melodies did not sound like
authentic Irish traditional tunes, we did not have difficulties finding examples that
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were plausible and interesting enough for composition. One of the first examples is
Sturm’s 2015 electroacoustic composition, “Eight short outputs generated by a long
short-term memory network with three fully connected hidden layers of 512 units
each trained on over 23,000 ABC transcriptions of session music (Irish, English,
etc.), and arranged by my own ‘personal’ neural network trained on who knows
what for who knows how long (I can’t remember any of the settings)” [68]. Our
exploration eventually led to many interesting research questions that motivated
more serious and deliberate work in a variety of directions, and which resulted in
many conference papers [35,69,70,73], journal articles [43,71,74,75], workshops
and concerts, a professionally recorded music album, “Let’s Have Another Gan
Ainm” [72], media attention, and significant research funding including AHRC No.
AH/R004706/1 (Engaging three user communities with applications and outcomes
of computational music creativity) and ERC-2019-COG No. 864189 (MUSAiC:
Music at the Frontiers of Artificial Creativity and Criticism).

In this chapter, we survey several directions of our research in music AI. In the
next section, we discuss how folk music provides exciting avenues for research
in machine learning and AI, and survey past work in emulating folk music with
computers. Section16.3 describes several versions of folk-rnn that we have created,
motivated by questions of music and engineering. Section16.4 evaluates some of
these systems to gauge how successful they are, and, more broadly, how useful they
can be formusic creation. Finally, Sect. 16.5 discusses some of the ethical dimensions
of our research.We hope that this chapter provides an intriguing look at how research
in music AI can be accomplished in ways that are productive and respectful of the
practices from which it draws.

16.2 Music Artificial Intelligence and Its Application to Folk
Music

Music AI involves engineering machines that can perform tasks that would nor-
mally require human music intelligence or ability. Examples include: recognizing
musical instruments, segmenting music, recommending music, identifying musical
characteristics like melody, harmony, and structure, expressively performing music,
transcribing music, composing, accompanying, and improvising. The commercial
and cultural applicability of such systems translates to considerable impacts, both
positive and negative [43,75]. Technical details of such systems can be found in sev-
eral texts; e.g., Lerch [52], Müller [57], Knees and Schedl [49], Dean and McLean
[20].

Applying computational modeling to create music has a rich history beginning
in the late 1950s [40]. Much of that work is centered on the emulation of heavily
theorizedmusical styles such as the chorales of J. S. Bach; e.g., Ebcioğlu [22], Hild et
al. [38], Hadjeres et al. [34]. Comparatively little work, however, has been devoted
to modeling and emulating folk music. This is surprising for several reasons. For
traditions that are still practiced, like Irish music, there exists a lot of data with



428 B. L. T. Sturm and O. Ben-Tal

which music AI can be trained. Much of this music data is free of copyright as well.
Even though folk music can lack explicit rules, it often still has implicit conventions
that can motivate decisions for modeling and evaluation. Irish traditional music is
unique in the sense that expert practitioners can be found in many places around
the world. This makes it possible to involve practitioners in an evaluation process.
Such research can provide starting points for exploring the emulation of other music
styles, and for studying the computer augmentation of human creative practices.
Sections16.3 and 16.4 give several examples of the above; but first, we survey past
research (other than our own) in the computational modeling of folk music.

16.2.1 1950s–60s

The first reference we can find applying machines to generating folk-like music
is given by Hiller [39], who mentions work performed around 1951 but not pub-
lished until a decade later: Olson and Belar [60] programmed a machine to generate
melodies in the style of those written nearly a century earlier by American composer
Stephen Foster, himself borrowing from folk songs at that time. Olson and Belar [60]
describe their machine as meant to be an “aid” to the composer, “in his search for
melody which is the essence of most music.” This work occurred only a few years
after machines started to be applied to analyzing folk melodies, as in the work of
Bronson [8].

Cohen [12] mentions work from 1955 on the generation of music by a first-
order Markov chain with note transition probabilities found by analyzing “Western
cowboy songs”. Thiswork appears to never have been published. Pinkerton [66] takes
a similar approach but with 39 nursery tunes. These works appear to be motivated
by the mathematical study of music from the perspective of information theory.

Brooks et al. [9] is perhaps the most thorough early investigation of melody
generation by computer models with parameters found from existing music. They
analyze the melodies in 37 common-meter hymns, and build Markov chains having
orders from one to eight. They also impose a variety of constraints on the generation
process, such as note durations, and starting and ending pitches, and generate 600
new melodies of eight measures. They discuss some of the results in terms of pitch
range, melodic contour, intervalic content and singability, and the reproduction of
melodies in the training material. Similar to Pinkerton [66], Brooks et al. [9] explore
the use of music synthesis to test the completeness of their statistical analysis of
music.

Hiller [39], in a section titled, “Algorithms for generating folk tunes”, observes
that much music generation synthesis work up to that time had occurred in the Soviet
Union, Hungary and Czechoslovakia, and gives several examples. For instance,
Havass [36] analyze 100 folk songs collected byHungarian composer ZoltánKodály,
and synthesize new melodies using a Markov model built from that analysis. They
present no musical examples in the text, but propose to play five generated melodies
from magnetic tape at the August 1964 conference of the “International Folk Music
Council” (where Zoltán Kodály delivered the keynote address). It is unclear if this
materialized since a report about the conference makes no mention of this in the
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schedule. The Hungarian Academy of Sciences, the institute under which Havass
worked, is also noted to be studying folk dancing from computational perspectives
[27].

16.2.2 1970s–90s

Lieberman [53] proposes testing whether a given set of statistics is sufficient for
describing a melodic style by generating melodies using those statistics and com-
paring them with real ones. They briefly discuss applying such an approach using
Markov models with parameters derived from analyses of Javanese melodies, and
motivate the search for statistics that are more descriptive of that style of music since
the results are poor. A similar argument of studying the completeness of a set of
musical rules is found in Sundberg and Lindblom [76], who study the generation
of melodies according to grammatical rules found from analyzing Swedish nursery
songs by a specific composer, as well as a small set of folk tunes.

Cope [19] applies his Experiments in Music Intelligence—an approach he devel-
oped for imitatingWestern composers such asBachorChopin by focusing onpatterns
and their variation—to gamelan gong kebyar, based on transcriptions into Western
notation. These, as he observes, abstract away the tuning system as well as the tim-
bral qualities—both rather important attributes in this music. According to Cope, the
generated outputs were considered acceptable to gamelan musicians. He acknowl-
edges that this endeavor may be biased because of the grounding in Western musical
concepts that only partially capture the gong kebyar music.

Mozer [56] proposes music modeling and generation using artificial neural net-
works and amusically-informed representation.Hepresents results based on artificial
melodies, melodies by Bach, and 25 “traditional European folk melodies” from a
17th century collection ofmelodies for recorder. He provides an example of amelody
generated in the latter style, but performs no deeper evaluation.

16.2.3 2000s–10s

Eck and Schmidhuber [24,25] investigate the success of a long short-term memory
network (LSTM) [42] in modeling and generating “twelve-bar blues”—a melodic
form following a specific harmonic progression. The training data was constructed
by concatenating together 12 common-meter measures of crotchets from a scale of
6 pitches each within a particular harmonic context. Each measure was composed
by the authors. The results are evaluated by informal listening, and by comparison
with melodies generated by random walks.

Lapalme [51] appears to be the first to train music AI on traditional music from
Ireland and England, which is extended in Eck and Lapalme [23]. They created one
dataset from56 Irish tunes downloaded from thesession.org [48], and a seconddataset
of 435 tunes from the so-called Nottingham dataset, which is a collection of about
1035 British folk music pieces [29]. All transcriptions in this dataset are notated in
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common meter. The authors quantize each melody as a sequence of quavers, and
build a representation that links notes to others in the same metric position occurring
previously. They train an LSTM network to predict the next pitch of a sequence
given the previous pitch, and the pitches occurring at the same beat position in the
three preceding measures. They test the accuracy of each model in continuing the
first eight measures from tunes in a validation partition of their datasets.

Spiliopoulou and Storkey [67] also use the Nottingham dataset and explicitly
state that their motivations are to study the success of machine learning systems in
capturing and imitating the structures in these melodies, as well as analyzing what
musical concepts the models learn and how that knowledge is represented. They
compare threemachine learningmodels trained on 117melodies. As done in Eck and
Lapalme [23], they encode a melody as a sequence of events quantized with a quaver
time step. The events are either pitch (one of 24), silence, or a continuation. The
models are built to predict events occurring several time steps ahead of conditioning
events. Their analysis of some of the components of the trained models show them to
have acquired sensitivity to meaningful musical features, e.g., triads, arpeggiation,
and scalar movement.

The Nottingham dataset appears in several other published works in machine
learning; e.g., Paiement [61], Boulanger-Lewandowski et al. [7], Bengio et al. [5],
Pascanu et al. [62], Goel et al. [30], Chung et al. [11], Yu et al. [78], Johnson [44],
Bacciu et al. [3]. The only form of evaluation of the resulting models appearing
in these works involves computing how well-trained models predict real sequences
held out from training. These works contain no discussion of the usefulness of such
systems for music creation.

A unique project involving AI and folk music is LIVINGSTON [54]: “an artifi-
cially intelligent, digital organism capable of accessing the totality of the history of
Canadian folkmusic (among other corpuses) and generating new yet hyper-authentic
Canadian folk objects via her/his algorithmic agents and compression formats.” This
system seems to only generate lyrics and chord progressions, and the two volumes
of recorded music produced with it—titled “Artificially Intelligent Folk Songs Of
Canada”—is performed by humans. Not much more can be surmised from existing
resources at this time.

Herremans et al. [37] train Markov models of different orders on transcriptions
of 37 melodies performed on the traditional Ethiopian lyre (called a bagana). This
instrument has 10 strings, only 6 of which are sounded. Each played string is asso-
ciated with a different finger: five on the left hand, and the index finger of the right
hand. A melody can then be represented by the finger that plucks the string. The
authors explore a variety of metrics to gauge the fitness of the resulting models. This
work is the first we can find in which melodies generated by models are qualitatively
assessed by a practitioner of the music style used for training.

Colombo et al. [14] train music AI on 2,158 Irish traditional melodies transcribed
by Norbeck [58]. They represent a melody as a sequence of elements: paired pitch
and duration values, as well as “ending” and “silence”. They normalize the melodies
by transposing them to be in C major or A minor, and scaling all durations based on
the frequency of the most common duration. They propose to model a melody by two
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recurrent neural networks, one modeling a conditional distribution on the durations,
and another modeling a conditional distribution on the pitches and duration—that is,
one network predicts the next duration based on the previous durations generated,
and the other network predicts the next pitch based on the previous pitches generated
and the duration of the pitch to be generated. They evaluate the resulting model
by observing how it continues a given seed, either 2 notes or 8 full measures. The
melodies shown in the paper are aimless andbear little resemblance to Irish traditional
music.

Colombo et al. [15] extend the approach taken in Colombo et al. [14]. They
again propose using two recurrent neural networks, but this time one models the
conditional distribution of durations given all previous durations and the current
pitch; and the other models the conditional distribution of pitches given all previous
pitches and the next duration. They create a dataset combining 2,160 Irish melodies
from Norbeck [58], and 600 Klezmer melodies from Chambers [10]. In this case,
they do not transpose all melodies to a common key. They propose a measure of tune
novelty with respect to a collection based on the co-occurrence of subsequences in
each. The article is accompanied by synthesized examples, using harp sound for the
Irish ones and clarinet for the Klezmer, thus accentuating the differences. Several
examples have aimless melodies that do not sound Irish, and some of the Klezmer
examples veer off course.

Colombo et al. [16] propose a different music representation from their past work.
Each note in a sequence is given by a tuple: pitch, duration, and time offset relative
to last note. They propose modeling the joint probability of a sequence of notes as
a product of three conditional distributions. Each of these distributions is modeled
as a layer in a recurrent neural network (RNN), with conditioning supplied after
sampling from the output of each of the three hidden layers. In the first step, their
model samples a time offset; then themodel samples a duration; andfinally, themodel
samples a pitch. They train models on a variety of datasets, including Nottingham.
For their trainedmodel, theymeasure themean likelihood of melodies of a validation
dataset. They also link to a website where one can listen to dozens of sound files
created from synthesizing the generated music.

Goienetxea andConklin [31] aremotivated by the challenging problemof creating
a music AI that can compose melodies with “coherence”, or sensible long term
structure coming from the creative development of basic material. They focus on
modeling the structures found in a set of 2,379Basque folkmelodies [21]. Theirmusic
representation uses what is called “multiple viewpoints” perspectives, a description
of music at several levels of detail [18]. They use the resulting model to generate
melodies in the same style, and describe a concert in which the audience was tasked
with trying to identify which of three melodies was not computer generated.

Pati et al. [64] propose amusicAI that generatesmaterial linking a given beginning
and ending. They approach this by building a probabilistic model that interpolates
between representations of these contexts in a latent space. They write of using
a subset of size about 21,000 melodies notated with a common meter from the
collection of Irish traditional music transcriptions used in Sturm et al. [73]. Since
that dataset only has at most 12,593 melodies that fit this description, it is possible
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the authors split up melodies into eight-measure sections. The resulting models are
evaluated quantitatively in terms of model fit, and qualitatively, using a subjective
listening test involving rank which of two completed melodies is preferred.

16.3 Modeling Folk Music Transcriptions with Long Short-Term
Memory Networks

Building folk-rnn (v1) and experimenting with it motivated several interesting
research questions. What would happen if we trained the same kind of model but
using transcriptions expressedwith amore efficient andmusicallymeaningful vocab-
ulary? How can we meaningfully evaluate these systems with music practitioners,
both inside and outside the traditions from which the data comes? How can we mea-
sure the “musical intelligence” of these systems? How can we adapt their knowledge
to other music traditions? How could such models contribute to and detract from
music creation? What does the training, evaluation, existence, and use of such mod-
els mean for traditional music? How might they impact traditional music in positive
and negative ways?

We have so far built several versions of folk-rnn. While each version is a standard
LSTM network, they differ in terms of training data and music representation. In
this section, we discuss the technical details of LSTM networks. We then describe
several different versions of folk-rnn, and present some of their outputs. Section16.4
discusses in more depth methods we have used to evaluate these models.

16.3.1 Long Short-TermMemory Networks

LSTM networks are a type of recurrent neural network (RNN) with special mech-
anisms to control the flow of information through it as it models a sequence [42].
It is essentially a dynamic model of a probability distribution describing what is
likely to come next in a sequence it is observing. To be more explicit, say the LSTM
network has observed the sequence of vectors (x1, x2, . . . , xt ). It computes the pos-
terior probability distribution of the next vector, P(xt+1|xt , . . . , x1)—that is, the
probability of observing xt+1 given the t observations up to that step.

Figure16.3 diagrams anLSTMnetwork having a single hidden layer. There can be
any number of hidden layers, however. The hidden layer we use for folk-rnnmodels
processes the input at time step t according to the following algorithm [32]:

it ← σ (Wxixt + Whiht−1 + bi ) (16.1)

ft ← σ
(
Wx f xt + Wh f ht−1 + b f

)
(16.2)

ot ← σ (Wxoxt + Whoht−1 + bo) (16.3)

c′
t ← tanh (Wxcxt + Whcht−1 + bc) (16.4)
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Fig.16.3 An LSTM network with one hidden layer. An input vector xt at step t is processed by the
hidden layer, to form the hidden state vector ht in a possibly higher dimension. This is then projected
by a softmax layer to a vectorpt ,which defines the probability distribution P(xt+1|xt , xt−1, . . . , x1).
Sampling from this distribution produces the output for the next time step, xt+1, which becomes
the next input to the model when the LSTM network is generating a sequence

where σ denotes the sigmoid function

σ(x) := 1

1 + e−x

which is applied to each element of the vector. The hyperbolic tangent is similarly
applied to each element of the vector. The vectors it , ft and ot are called the “in gate,”
“forget gate,” and “out gate”, respectively. These encode the new information passed
into the LSTM by xt with the context of past information represented by ht−1. The
matricesWx∗ andWh∗, and bias vectors b∗, define how this information is encoded
in the hidden layer. These vectors are then combined to update the “cell state” and
“hidden state” of the hidden layer, respectively:

ct ← ft � ct−1 + it � c′
t (16.5)

ht ← ot � tanh(ct ) (16.6)

where � denotes element-wise multiplication. This shows how updating the cell
state involves modulating the cell state of the prior step with the forget gate while
adding new information from the in gate. The new hidden state is a product of the
out gate with a compression of the updated cell state.

The softmax layer transforms ht as follows:

pt ← softmax
(
T−1
s [Wsht + bs]

)
(16.7)

where Ts is a user-specified parameter called temperature, and the softmax function
is defined

softmax(y) := exp(y)
∑

exp(y)
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which scales the vector y such that its elements sum to one. The vector pt specifies
the posterior probability distribution P(xt+1|xt , . . . , x1). Sampling from this distri-
bution produces a prediction of xt+1. If the LSTM network is generating a sequence,
one need only make xt+1 the input for updating the posterior distribution, and then
predict the next element of the sequence. This procedure cycles indefinitely until a
stopping criterion is reached. If the LSTM network has several hidden layers, then
each hidden layer after the first transforms the hidden state vector of the preceding
layer according to the equations above (but with different parameters). Other archi-
tectures are possible too; e.g., where each hidden layer has access to the states of all
other hidden layers [32].

The parameters of an LSTM network—the initial conditions h0 and c0 of each
layer, the matrices and biases transforming the input of each layer, and the matrix
and bias of the softmax layer—come from training the LSTM network to minimize
a specified loss function. The loss used for folk-rnnmodels is called the mean cross-
entropy loss. Consider a sequence s of M indices into a discrete vocabulary; e.g.,
256 alpha numeric characters. Let us encode this sequence as a series of vectors,
(x1, x2, . . . , xM ), each dimension being zero except for the one that corresponds
to the vocabulary element, which is called one-hot encoding. Each dimension of
xm , and likewise the LSTM network output pm , refers to a particular element of
the vocabulary. The goal of the network in step m of modeling sequence s using
cross-entropy loss is to predict which dimension of pm should be set to one. This
means that at step m we want to make the network produce a vector pm that looks
like xm+1. In order to do that, we want the output of the network to minimize the
mean cross-entropy loss over a sequence:

L(s) := − 1

M

M−1∑

m=1

log[pm]s(m+1) (16.8)

where s(m) is the mth element of the sequence, and [pm]i is the i th element of the
vector. Each individual term in the sum above is the cross-entropy loss at that step
in the sequence. If the LSTM network produces pm = xm+1 for all elements of the
sequence, then L(s) = 0, the smallest it can be. However, if the network produces a
pm which is close to zero in dimension s(m + 1), then L(s) will become very large.
Training the network with this loss entails making it move as much probability mass
into the correct dimensions of the posterior distribution so as to make L(s) small for
most training sequences. This is accomplished by using back-propagation through
time with stochastic gradient descent, and other computational techniques intended
to avoid overfitting. More details are provided in Sturm et al. [73].

16.3.2 folk-rnn (v2)

The second version of folk-rnn [50], applies the same LSTM network architecture to
the same training data as the first version [48], but uses a modified music representa-
tion. Since folk-rnn (v1) is trained to model blocks of text one character after another,
it has to learn that some characters can have different functions. For instance, ‘E’
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can refer to a letter in a title, a pitch, part of a pitch (e.g., ‘_E’), or part of a key (e.g.,
‘K:Emin’). This ambiguity means folk-rnn (v1) has to learn the different contexts in
which each character can appear. Furthermore,modeling blocks of text in a document
is not necessarily modeling music transcriptions. For instance, some training blocks
could begin in the middle of a transcription. folk-rnn (v1) also had to learn about the
many keys in which the training tunes are transcribed. Most Irish traditional music
uses four modes: ionian (major), aeolian (natural minor), dorian, and mixolydian;
but these can involve many keys; e.g., G, D, and A major, E and B minor, D and
A mixolydian, A and E dorian. To create folk-rnn (v2), we thus set out to train an
LSTM on music transcriptions expressed by a vocabulary where each of its symbols
has only one meaning.

Before we discuss the vocabulary we designed, we review the representation
used in the data collected from thesession.org [48]. ABCnotation [1] was designed
to compactly describe the “bones” of a folk tune. It is important to know that in
Irish traditional music, a transcription of a tune only provides a basic structure.
Rarely is a melody played as notated; performers elaborate upon the “bones” using
ornamentation, variation, harmony, and rhythmic push and pull to give “lift” [26].
In ABCnotation [1], information fields are marked with a capital letter followed by
a colon; e.g., ‘T:’ provides the title; ‘M:’ specifies the meter; ‘L:’ specifies the
base duration of a note without an explicit duration marker; ‘K:’ specifies the key.
Following these fields is the tune body, which notates the melody. Pitches within the
given key are specified by a letter, which may be sharped or flatted by preceding it
by ‘ˆ’ or ‘_’, respectively. In the key of C major, ‘C’ is middle C, while ‘C,’ is an
octave below, ‘c’ is an octave above, and ‘c’’ is two octaves above. More commas
and single quotes can be added to lower or raise the pitch. Harmonic accompaniment
is specified in double quotes, such as “Am”. Multiple pitches sounding at the same
time are grouped between square brackets, such as ‘[Gd]’. When note durations are
specified explicitly, they are either numbers after the pitch (e.g., ‘2’), or symbols:
‘/’ is shorthand for ‘1/2’, while ‘A > B’ steals time from the second pitch and
gives it to the first, conversely ‘A < B’ does the opposite, and ‘(3 EFG’ indicates
a triplet. Otherwise, note durations take on the value specified by the ‘L:’ field.
Finally, the symbol ‘|’ shows a measure line, ‘|:’ and ‘:|’ are beginning and
ending repeat signs, and ‘|1’ and ‘|2’ are first or second endings, respectively.
Many other symbols are possible.

To address the issue of ambiguity in ABC representations, we designed a vocab-
ulary of musical tokens, where each token represents only one thing. The vocabu-
lary we designed consists of 137 tokens grouped into seven types (examples given
in parentheses): meter (‘M:6/8’), key (‘K:Cmaj’), measure (‘:|’ and ‘|1’), pitch
(‘C’ and ‘^c’’), grouping (‘(3’), duration (‘2’ and ‘/2’), and transcription (‘<s>’
and ‘<\s>’). We transposed all transcriptions to have a root note of C as well, so
that a model would only need to learn about the four typical modes.We also removed
titles, harmonic specifications, grace notes, ties and slurs, and other markings. As an
example, The Ballydesmond Polka given in the Introduction becomes the following
sequence of 90 tokens in the new representation:
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Fig.16.4 Notation of transcription #18727 generated by folk-rnn (v2), which can be found in “The
folk-rnn (v2) Session Book Volume 7 of 10” [28]. We transpose it here to E dorian from C dorian

<s> M:2/4 K:Cdor |: G > c c d | e f g 2 | B > A B c | B A G F | G
> c c d | e f g a | b g f d | c 2 c 2 :| |: c’ 2 c’ d’ | c’
b g a | b 2 b c’ | b g f g | g < c’ c’ d’ | c’ b g a | b g f
d | c 2 c 2 :| </s>

Each token is demarcated by a space. The tokens ‘<s>’ and ‘</s>’ signify the
beginning and ending of a transcription, respectively.

In addition to transposing and tokenizing the collection of transcriptions we
retrieved from thesession.org [48], we performed a significant amount of cleaning:
removing comments masquerading as tunes, removing jokes (e.g., Cage’s “4m33s”),
removing chord progressions, and fixing as many human counting errors as possible.
We removed all transcriptions that had explicit changes in meter or key so that all
transcriptions followed the same pattern: meter, mode, and tune. The encoded and
cleaned dataset consists of a total of 23,635 transcriptions, with a total of 4,056,459
tokens, of which 2,816,498 are of the type pitch, 602,673 are of the type duration,
and 520,290 are of the type measure [50].

The network architecture of folk-rnn (v2) is essentially the same as for the first
version (having three hidden layers of 512 units each), but with input and output
dimension 137. The total number of parameters in v2 is 5,599,881. Training proceeds
in nearly the same way as for the first version, but uses minibatches of 64 entire
transcription sequences rather than continuous chunks of text. The v2 model results
from 100 epochs of training, one epoch being exposure to all transcriptions in a
training partition. More details are provided in Sturm et al. [73].

As for the first version, we had folk-rnn (v2) generate tens of thousands of tran-
scriptions and published 10 volumes of these [28]. The model is initialized with
the one-hot vector representing the token ‘<s>’, and terminates token generation
when it produces ‘</s>’. One example output of this model is shown notated in
Fig. 16.4. This transcription shows the conventional structure, rhythmic consistency,
repetition and variation, and appropriate cadences. The second part goes higher in
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Fig.16.5 Notation of transcription #5712 generated by folk-rnn (v3), which can be found in “The
folk-rnn (v3) Session Book Volume 3 of 4” [28]. We transpose it here to G major from C major

pitch than the first, which is a typical characteristic of this kind of music. The two
sections of the tune are also linked together well: the fourth measure of each part is
similar, and the endings of both parts are the same. It also sounds like Irish traditional
dance music, and is very playable on traditional instruments—providing opportu-
nities for ornamentation and variation. Several more examples generated by v2 are
discussed in Sturm et al. [73], Sturm and Ben-Tal [71], including using the model to
“autocomplete” melodic ideas.

16.3.3 folk-rnn (v3)

Although the vocabulary we designed for v2 addresses ambiguity in ABCnotation
[1], it still has redundancy. For instance, for a transcription in themode ofCmajor, the
token ‘ˆB,’ refers to the same pitch as ‘C’ and ‘=C’. In the C minor mode, the token
‘E’ refers to the pitch E flat above middle C, which is the same as the token ‘_E’. We
thus decided to train an LSTM network on the same collection of transcriptions but
with all pitches made explicit, and using only naturals and sharps. Furthermore, so
that the model could learn about all possible pitches in the vocabulary, we added all
transcriptions transposed up a half step (having a root of C-sharp). We keep the four
mode tokens, but do not specify the root. This resulted in a vocabulary of size 104
tokens in the same seven types as for v2. In this representation The Ballydesmond
Polka given in the Introduction becomes (with a root of C):

As for v1 and v2, we had the trained folk-rnn (v3) generate 10,000 transcriptions,
available in four volumes [28]. Figure16.5 shows a particularly good output of this
model displaying many of the conventions of the style.
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Fig. 16.6 Notation of a transcription generated by folk-rnn (v2) using beam search with n = 4
tokens selected in each step. We transpose it here to D major from C major

16.3.4 folk-rnn (vBeamSearch)

One step of an LSTM network results in an estimation of P(xt+1|xt , . . . , x1). How-
ever, this can be generalized to estimating a joint probability distribution of several
tokens at once; e.g., P(xt+1, xt+2|xt , . . . , x1) = P(xt+1|xt , . . . , x1)P(xt+2|xt+1,

xt , . . . , x1). This means that the model can be used to predict several tokens at
each step by first computing the probability distribution of each token conditioned
on all others, then multiplying these to form the joint conditional distribution, and
finally sampling from this. As the number of tokens to be predicted simultaneously
becomes large the computational complexity grows, but a strategic approach called
“beam search” canmake it efficient. Figure16.6 shows a transcription generated four
tokens at a time using beam search with folk-rnn (v2). Henrik Norbeck, an expert in
Irish traditional music and creator of a large dataset of transcriptions [58], says of
this output:

This tune sounds like it could have been composed by Paddy Fahy or Sean Ryan. There are
already two tunes by them that are similar to each other — so much that in my mind they
are connected — and this generated one becomes a third tune in the same class, but still a
distinct tune.

16.3.5 folk-rnn (vScandinavian)

While the collection of thesession.org [48] is focused on Irish traditional music, the
website folkwiki.se focuses on Scandinavian traditional music, and contains many
thousand transcriptions in ABCnotation [1]. Hallström et al. [35] describes train-
ing LSTM networks using this collection of data. In this case, the amount of data
acquired from folkwiki.se is an order of magnitude smaller than that used to train the
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Fig.16.7 Notation of a tune generated by folk-rnn (vScandinavian), which can be found at https://
themachinefolksession.org/tune/551

“Irish” versions of folk-rnn (4,083 transcriptions vs. 23,635). Even after designing
an efficient vocabulary, models trained on only the Scandinavian transcriptions did
not produce plausible melodies. To overcome this, the model was first trained on
a dataset combining all transcriptions of the Scandinavian and Irish datasets. Then
the pre-trained model was “fine-tuned” on just the Scandinavian transcriptions. The
purpose of pretraining is to help a model learn about the vocabulary, and the syntax
of the dataset. Fine-tuning then aims to adjust the model parameters to specifics of
a subset. To accommodate the different ABC notation conventions in the Scandina-
vian transcriptions, other tokens had to be included in the vocabulary. Furthermore,
the Irish transcriptions were not transposed to a common root before they were tok-
enized because the use of keys in the Scandinavian data follows slightly different
conventions, like key changes between sections. The resulting vocabulary size of the
model is 226. Figure16.7 shows a particularly good transcription generated by the
trained model.

16.4 Evaluation

One of the major questions underlying our research with folk-rnn is how to mean-
ingfully analyze and evaluate such models, as well as their involvement and impact
in music practice [74]. A common approach to evaluating music AI is what is often
termed a “musical Turing test”: listeners are presented with some music and are
asked whether it came from a human or a machine. One example of this approach is
by Cope [19], who asked an audience to decide whether a human-performed piece of
music is by Mozart or generated by his system in the style of Mozart. More recently,
Collins and Laney [13] ask listeners to compare two pieces and to identify which
was written by a real composer (in this case, Bach or Chopin). Ariza [2] argues

https://themachinefolksession.org/tune/551
https://themachinefolksession.org/tune/551


440 B. L. T. Sturm and O. Ben-Tal

how this terminology—“musical Turing test”—is inaccurate since the Turing test is
focused on having an interactive dialogue in natural language. In contrast, the music
discrimination task is very different from howwe normally engage withmusic. Ariza
[2] instead uses the terminology, “Musical Output Toy Test.” We should note that
in addition to the methodological problems with this approach, it also inspires the
narrative pitting machines against humans, portraying AI as a threat.

Pease and Colton [65] provide an in-depth discussion of the problems with these
discrimination tests in the context of computational creativity, and review alternative
approaches. They first distinguish between judging the value of a generated output
and evaluating the creativity of the system. They advocate focusing more on the
latter in order to provide measures that can drive research forward and that are also
theoretically sound. They summarise two earlier approaches, called the FACE and
the IDEA models [17]. The first aims to capture aspects of the creative process:
Framing information about the work, Aesthetic measures, developing Concepts, and
Expressing such a concept. The IDEA model brings the viewer/listener into the
equation. They propose to evaluate the effect of the experience on audience well-
being (positive or negative), and the cognitive effort required to engage with the
work.

Another common approach is to ask listeners to rank music generated by an AI,
such as how pleasant a melody is. Problems with this include the lack of definition,
and subjectivity andbias in listening.A stark example of the latter is exemplified by an
unintentional experiment. An article appearing inTheDailyMail [33] about ourwork
included a 30-s music excerpt from a set performed by traditional musicians at one of
our workshops. Readers of the article were able to comment for a few weeks: “[The
excerpt] sounds very neat. It’s missing the ‘human’ element.” “Total Crap! A foot
tapping tune in 6/8 does not make it Irish. Also it feels pretty bland.” “Totally lifeless
without warmth.” “Sounds like a robotic Irish jig….” The music excerpt posted by
the Daily Mail, however, was not of a computer-generated tune, but a real traditional
tune. This unintentional experiment nicely illustrates how a listener’s experience
of music is not just about the acoustic waves hitting their ears. Music happens at
the intersection of incoming (or sometimes imagined) sounds, perception, memory,
preconceptions, past experiences, social and physical environment, and myriad other
factors.

Within the domain of computational creativity, Jordanous [45] proposes to capture
themeaning of creativity through an analysis of existing discussion about it. She iden-
tifies fourteen components of creativity including familiar ones such as competence,
originality, and value, but also aspects that are not often included in proposed defi-
nitions, such as social interactions, perseverance, and spontaneity. She suggests that
evaluations should start from identifying what aspect of creativity will be assessed.
The suggestion is that this would not only enable more meaningful comparisons
but will also guide the choice of evaluation that matches specific components under
investigation.

Yang and Lerch [77] propose the use of note-based statistical measures as a basic
formof evaluation. For collections ofmusicalworks, they calculate pitch andduration
ranges, note transitions histograms, and other fairly general statistics. They note that
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these only apply to monophonic data, though some of the properties can be extended.
The internal variability of these statistics can provide an informative profile of a
dataset, either real or generated. Comparing datasets in this way can, at least, identify
problems with modeling procedures, which can assist engineering. If, for example,
generated melodies display markedly different statistical properties from those in the
training data, this can point to specific problems with the model. Using these general
measures to compare outputs of two different models can suggest the dimensions
that each is successful in modeling.

Sturm and Ben-Tal [71] demonstrate five different approaches to evaluate the
folk-rnn (v2) model: (1) comparing the statistics of real and generated transcription
data (“first-order sanity check”); (2) performing basic music analysis of generated
transcriptions; (3) probing a model’s musical knowledge with “nefarious” initial-
izations; (4) involving a model in music composition; and (5) performing expert
elicitation with real-world music practitioners. Sturm [69,70] take another approach
by attempting to reverse engineer the parameters of folk-rnn (v2) to understand their
musical significance. Sturm et al. [74] analyze different music AI from several per-
spectives to determine how such models can impact music creation, and how the
use of such models for music creation can inform the engineering pursuit. In the
following, we look at several of these evaluation approaches.

16.4.1 Evaluation by Parameter Analysis

Sturm [70] analyzes the parameters of the input layer of folk-rnn (v2), and Sturm
[69] analyzes those of its softmax layer, in terms of the model vocabulary. Much
more work has yet to be done to fully understand the model, but it is clear from these
analyses that the model has learned some musically meaningful characteristics from
looking only at data; e.g., placement of measure lines, enharmonic relationships,
cadences. In a similar direction, Karpathy et al. [47] analyze the internal dynamics
of recurrent models of characters in English texts, and find some parts of the models
are activated near the conclusion of a sentence, quotation, or paragraph. In the case of
a character model, it is difficult to draw concrete conclusions about how it is treating
the elements of the vocabulary because of the ambiguity of the representation. The
vocabulary of folk-rnn (v2), however, is much less ambiguous by design, and so the
analysis of the model becomes easier.

A unique way to analyze folk-rnn (v2) is by looking at how it stores and processes
information in vector spaces. Figure16.8 diagrams the procedure bywhich thismodel
transforms its input into an output. Since the size of its vocabulary is 137, its input
and output are vectors in R

137. However, they are more restricted than that. First,
since the LSTM has been trained on one-hot encoded input vectors, then the input is
just one of the 137 standard basis vectors of R137. (The input can of course by any
point inR137, but the model has only “seen” the 137 standard basis vectors ofR137.)
Second, since the output is computed by a softmax (16.7), then all elements of the
output vector will be positive, and the sum of the magnitudes of the vector will be
one. Hence, the output vector is a point on the positive face of the �1 unit-ball in
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Fig. 16.8 Diagram of how folk-rnn (v2) is transforming information between different vector
spaces. Elements of the standard basis of R137 are transformed by the first LSTM hidden layer to
points in a hypercube (−1, 1)512. The second and third LSTM hidden layers transform points in
(−1, 1)512 to points in hypercubes of the same dimension. The softmax layer then transforms points
in (−1, 1)512 to the points on the positive face of the �1 unit-ball in R

137. A sampling operation
then projects that point to an element of the standard basis of R137

R
137. Furthermore, the ordering of the dimensions at the input and the output relative

to the vocabulary is the same; i.e., the token represented by the mth dimension of
the input is also represented by the mth dimension of the output.

Now let us look at the steps involved in this transformation. The first hidden layer
transforms a vector of dimension 137 to a 512-dimensional vector. This is performed
by the algorithm in Eqs. (16.1)–(16.6), producing ht—the hidden state of the first
layer. From Eq. (16.6) we see that each element of ht is bounded in (−1, 1). Hence,
this first layer is mapping the standard basis of R137 to the hypercube (−1, 1)512.
Likewise, the second layer takes as input the first-layer hidden states in (−1, 1)512

and maps it to (−1, 1)512. The third layer does the same, but using the second-layer
hidden states. We finally reach the softmax layer, which maps (−1, 1)512 onto the
positive face of the �1 unit-ball in R

137. Finally, a sampling operation projects that
point to an element of the standard basis of R137.

Each one of these vector spaces has significance with respect to the concepts
learned by the model. The significance of the dimensions of the input and out-
put spaces are clear since they are closely connected with the vocabulary we have
designed: each orthogonal direction corresponds to one of the tokens. This fact helps
us interpret those layers closest to the input and output, which are the first hidden
layer and the softmax layer. Sturm [70] analyzes the parameters of the input layer
of folk-rnn (v2) in terms of the vocabulary. It appears that the first hidden layer
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has carved out subspaces of (−1, 1)512 in which to represent the seven types of
tokens. For instance, we see overlap in the representation of enharmonic pitches,
such that their representation in the model is similar. Figure16.9 shows the relation-
ships between all pairs of pitch-token-related columns of Wxc in the first hidden
layer. If two columns point in very similar directions, the color of the correspond-
ing element of this matrix will be white. If they are orthogonal, the color will be
gray. This comparison shows clear relationships between different tokens; e.g., pitch
tokens ‘A’ and ‘=A’ are encoded by this gate in nearly the same way, as are ‘B’ and
‘=B’, as well as ‘C’ and ‘=C’. We also see a similarity between ‘B’, ‘_B’ and ‘ˆA’,
which are the same in C mixolyidan, C dorian, and C minor. This shows folk-rnn
(v2) has learned something about enharmonic relationships from the data alone, and
that the cell gate of the first layer is treating these enharmonic pitch tokens in similar
ways.

Sturm [69] analyzes the parameters of the softmax layer, which is transforming
the hidden state of the third hidden layer into a probability distribution. This work
shows how some principal directions are important for representing tokens of the
measure type. This analysis also provides ways to adjust the behavior of the model,
for instance, to make it less likely to output particular pitches. Much more analytical
work has yet to be done to fully understand what is occurring in folk-rnn (v2), but
this kind of approach to analyzing an RNN is unique. The fact that the vocabulary of
the system is not ambiguous helps to reveal the significance of particular subspaces.

16.4.2 Evaluation by Co-creation

One way of evaluating folk-rnnmodels is by looking at how composers can use them
in the process of composition. Sturm, Ben-Tal and others have composed several
pieces using folk-rnn [50]. One approach for a composer is to sift through generated
outputs and locate ones that are interesting or inspire. A different approach involves
searching the creative space [6] of folk-rnn transcriptions by iteratively generating
transcriptions and changing parameters. In Boden’s formulation [6], generative rules
constrain the novel artifacts (poems, paintings, or music pieces, but also an idea or
scientific discovery) that are possible to discover within a conceptual space. In that
sense, folk-rnn is a manifestation of generative rules, which define the rather large
conceptual space of all possible folk-rnn transcriptions. Iteratively generating outputs
and tweaking the initialization parameters of the model is a search for valuable
artifacts in that space. But, as we explain in more detail in Ben-Tal et al. [4], sifting
for “gold” in this manner is not a straightforward process. The model is highly
nonlinear, which could contribute to it producing interesting results, but also makes
steering the generation process towards useful outputs somewhat unpredictable.

There are essentially three ways to interact with folk-rnn models. Changing the
random seed of the sampling procedure just results in a different sampling from
each posterior distribution. It has no musical significance. Changing the temperature
parameter, which is the multiplicative factor Ts in (16.7), affects how “conservative”
the sampling will be in each iteration. Figure16.10 shows one example transcription
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Fig. 16.9 Angles between columns cell matrix Wxc related to the pitch tokens in the first hidden-
layer.White means the columns point in the same direction. The axes are labeled with the associated
tokens. The diagonal structures show that columns ofWxc are related inways that reflect enharmonic
relationships; e.g., ‘A’ and ‘=A’ point in very similar directions; as do ‘B’ and ‘=B’

generated by folk-rnn (v2) at a low temperature; and Fig. 16.11 shows an example
generated at a high temperature. Setting the temperature to be very low will result in
the network choosing the most likely event at each step. This can produce transcrip-
tions having repeated notes and simple rhythms, but not always. High temperatures
will result in transcriptions that adhere less to the conventions in the training data.

The third way a user can interact with folk-rnn is by giving it a sequence to
continue. This provides perhaps the most immediate way to influence the content
of the model output. Figure16.12 shows how folk-rnn (v2) completes the given first
measure ‘M:4/4 K:Cmaj |: G C D E F G B A’ that is within the style of
its training material. If a given sequence is a little outside the scope of what folk-
rnn has seen it can produce unpredictable results. Figure16.13 shows how folk-rnn
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Fig. 16.10 Notation of a transcription generated by folk-rnn (v2) at a low sampling temperature
(Ts = 0.1) The first part of the transcription is very close to a traditional Irish polka, “Babes in the
Woods.”
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Fig. 16.11 Notation of a transcription generated by folk-rnn (v2) at a high sampling temperature
(Ts = 3)

4
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Fig.16.12 Notation of a transcription generated by folk-rnn (v2) initialized with ‘M:4/4 K:Cmaj
|: G C D E F G B A’

(v2) continues nearly the same measure, changed in only one token to make it less
conventional.

The design of the interaction with systems like folk-rnn needs considerable atten-
tion for them to serve as useful co-creative tools. To engage wider audiences in
the potential for machine learning to stimulate music making, we created a pair
of websites [4]: folkrnn.org and themachinefolksession.org. The first provides a
web interface to use folk-rnn models for generating transcriptions. The second is
a growing archive of transcriptions created by people using folk-rnn. At this time,
folkrnn.org has been more successful than the archive. The interface for generat-
ing transcriptions continues to be used with several hundred individual users each
month (with spikes following mention of the website in media or large events).
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Fig.16.13 Notation of a transcription generated by folk-rnn (v2) initialized with ‘M:4/4 K:Cmaj
|: G C ˆD E F G B A’. Compare to Fig. 16.12

https://themachinefolksession.org was intended to be a community portal for shar-
ing interesting machine-generated but human-edited/performed tunes, but this has
not gained much attention.

Finally, as noted above, the search for interesting or useful material from the
generated outputs can be tedious. An “artificial critic” that sifts through generated
material and identifies that having musical potential could greatly help—though
a composer would like to be able to personalize “musical potential”. More direct
control over the features that a model learns, as well as the generation process,
would also be useful. With increased knowledge about how the system learns and
how it encodes its knowledge (see Sect. 16.4.1), it should be possible to provide
additional methods of shaping the generated material.

16.4.3 Evaluation by Cherry Picking:“Let’s Have Another Gan Ainm”

A different approach to gauging the creative potential of folk-rnn is to ask perform-
ers to make music out of the generated material. We collaborated with a range of
musicians—both those familiar with the music traditions upon which folk-rnn was
trained and musicians coming from other backgrounds. Many of these show a fair
variety of results [71,72,74]. Significantly, most of the musicians did not have dif-
ficulties locating generated melodies they can perform, including performances on
the soprano trombone, trumpet, and the double bass (instruments that are atypical in
traditional music). At the same time, most of the musicians changed the generated
melodies in performance. They frequently changed notes here and there, especially
at the cadence points of phrases.

The relative ease of finding playable material in the generated outputs led us to
record and release an album [72]. The aim was to investigate the potential of folk-
rnn in creating material that sits comfortably within the domain of Irish traditional

https://themachinefolksession.org
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music. We worked with Daren Banarsë, a London-based composer and performer
who is well-versed in this kind ofmusic. By his account, he looked at several hundred
generated transcription and selected 20 to be recorded in the studio. Selecting the
tunes involved judgments about what makes a tune ‘good’: does it work as a session
tune? Is it playable by traditional instruments? Is it interesting and well-shaped?
How well will it work with other tunes combined in a set? How well do the tracks
add up to create a good album displaying both range and balance of the different
dance types that constitute this musical world. Sturm and Ben-Tal [72] describes the
process, and shows the changes Banarsë made to the generated material, and how he
combined them with real traditional tunes to form the eleven tracks of the album.

We purposely kept secret the background of the album until a number of experts
reviewed it.We did that to avoid bias in the reaction of the listener [55,63] rather than
to discover if people would be fooled by the machine composed ones. The music
was well-received by experts in this (fairly small) field—which is probably due in
large part to the musical proficiency of the performers, and with Banarsë’s careful
curation of material. While cherry picking is an unacceptable way to evaluate many
applications ofmachine learning,when applied to art it is not so different to howmany
artists work. Painters, writers, and composers constantly reject ideas in the creative
process. In fact, a lack of ability to be self-critical can be a major hindrance. The
creative process requires identifying weaknesses and fixing them, and persistence in
doing that even when this can be slow and frustrating work. When it comes to music
AI, the question to answer with cherry picking is not, “Which outputs best show the
success of my model?” but, “How easy is it to find material generated by this model
that I would like to work with?”

16.5 Ethical Considerations

Aparticularly original and illuminating outcome of this research has been the critical
assessment of its motivations and impacts.We started a number of discussion threads
on the forum of thesession.org requesting feedback on transcriptions generated by
folk-rnn (v2). The user Ergo agreed with another commenter about seeing no point
to the research, but also mentioned some concern about its impact: “My concern
is that some people, somewhere and sometime, may consider one or more of these
tunes – maybe all of them? – to be actual traditional tunes…I think it’s reckless to
send 3,000 machine-created fiddle tunes into the world.” Another user commented:
“I would suggest confining your computerised efforts to the archives of whichever
University you are at, I don’t think this helps trad music in any way.” In another
thread, Ergo asks: “explain how this is going to contribute to [Irish traditional
music].”

Someone later posted an article about our work to a Facebook group focused on
Swedish folk music. Some comments among the 163 show real displeasure at the
idea of involving computers in traditional music. One person writes, “Where is the
heart and feeling in the computer?” Another writes
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Talk about soul-less tunes…MUSIC .. Especially folk music .. Must come from experiences,
tradition’s deep imprint.…Where the people are the focus, there the folk music characterizes
the traditional cultural life. …When I see something like this, I get either pissed off or very
critical.

Some express fears: “This takes away possibilities for real musicians to compose
Music and earn a living!” Another writes

You have stolen from existing music to offer a library based on goods made by [musicians]
who have got their material from older musicians or composed their own now for tecknocrats
within music to continue to steal patterns from the existing traditional music. …Within [pop
music] there are rules for howmuch in seconds you are allowed to use from an existing piece
of music for a mix or other use. One should pay the same respect to traditional music.

We experienced similar frictions when making the album, “Let’s Have Another
Gan Ainm” (Sect. 16.4.3) [72]. For instance, the professional musicians involved did
not want to be too closely associated with the project. Though they were not a part
of the research, and were only hired to perform on the album, they wanted to make
sure that their professional careers were clearly separated.

Working together with Irish traditional harper Úna Monaghan also uncovered
interesting aspects [74]. The music of this tradition is aural, and so modeling tran-
scriptions is not reallymodeling themusic. Irish traditionalmusic is not a collection of
transcriptions of music, but is bound together with functional notions, from dancing
to making music together to expressing national pride [26,41,59]. Hence, anything
produced by a music AI will be several steps away from the music that occurs in
practice. Second, these AI-generated transcriptions, which necessarily come from
a statistical mishmash of regional and historical styles, have only tenuous and con-
fusing relation to the wider context that players use to perform this music. Because
the data used for training folk-rnn is crowd-sourced, the choice of what to transcribe
and how is not consistent in any manner across the corpus. What, therefore, should
musicians do with these transcriptions? Should they try to correct or improve a gen-
erated transcription, to bring it “in line” with the tradition? Should they play them
“straight”, in tension to their own instinct and training?

These experiences show how our research can be seen in negative ways, and how
our use of data could be an overstep. Our initial humorous application of machine
learning could be regarded as trivializing a living tradition. While there is bound
to be fear of human redundancy, or appeals to the narrative of machines taking
control, many of the objections raised are more subtle and deserve careful attention.
This motivated us to critically examine our assumptions, methodology, and research
questions [43,75]. For example, since the data that we used to train music AI can
be freely downloaded, does that give us the right to use it in the way we have?
Considering that this data is essentially crowd-sourced over 18 years, contributed by
people aiming to share, preserve,and advocate a particular form of traditional music,
our use of the data for such a different outcome was likely unanticipated. That the
dataset includes transcriptions of original works that are copyright protected can
mean that our use of the data could be an infringement on those rights [75].
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Our critical reflection has motivated us to learn much more about the living tradi-
tions from which we as researchers are benefiting, and to examine how our research
could be detrimental and beneficial to Irish traditional music. While some of the
musicians we worked with enjoyed learning the music, and some of the material has
ended up in their regular repertoire [4], it is not completely clear how our research
contributes to Irish traditional music. It did enable us to pay traditional musicians
to perform and participate in various experiments. It also deepened Sturm’s involve-
ment with this music by attending traditional music summer schools in Ireland, and
organizing regular learners’ sessions in Stockholm. What is clear, however, is that
this living tradition is not so weak that any music AI we or others might create can
likely do any harm. One cannot confuse the tradition with symbols in a sequence,
dots on a page, or tunes in an online database. Nonetheless, the variety of questions
about the ethics of such research deserve to be discussed and assessed openly and
regularly with practitioners.

16.6 Conclusion

Applying artificial intelligence to model and generate folk music offers many oppor-
tunities to study the capabilities and limitations of such methods, especially so in
traditions that are living. It also motivates the critical examination of the use and
misuse of artificial intelligence for music. In this chapter, we have surveyed the
application of artificial intelligence to folk music. We have presented in depth our
work in modeling transcriptions of traditional music from Ireland and Scandinavia
using recurrent neural networks. We have also surveyed a variety of approaches we
use to evaluate our models, from analyses of model parameters, to the use of the
models in music creation. We finally discussed several contentious issues of our
work, which motivates a careful study of its ethical dimensions.

Since ourworkwithmusicians and domain experts show that ourmachine learning
models can generate transcriptions that are plausiblewithin folkmusic traditions, it is
clear that they have learned something relevant about identifiable and distinguishing
characteristics from the training data. Special care needs to be taken, however. It
is easy to fall into a trap of thinking human-like outputs from the machine reflect
human-like learning or ability. Deeper examinations of our folk-rnn models reveal
their knowledge about music to be very brittle. Nonetheless, we have found that these
models can still be used as co-creative tools formusic. In some cases, the brittleness of
the knowledge of a model provides creative opportunities, which makes it a feature
and not a bug. Indeed, our aims for building models of traditional music do not
include generating a limitless number of cheap imitations. Instead, modeling folk
music provides starting points to explore more interesting research questions.

One of these questions is the meaningful and effective evaluation of music AI
and its involvement in music creation. While the field has progressed beyond simply
listening to a few examples and confirming they sound reasonable, the evaluation
of music-generating AI must include many dimensions, from the comparison of
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statistical summaries of populations, to relating the models to music as a practice.
Good evaluation methods identify ways for making improvements. We believe an
essential component of the success of our project has been deep and meaningful
partnerships between the engineering and musical sides, eventually engaging musi-
cians in the research process and not just with the final outcome. The expertise of
musicians, working in the specific domains from which we collect data for training
AI—however superficially—is invaluable in that regard.

As to the future of folk-rnn, there are several directions we are exploring. We
continue to analyze the parameters of ourmodels to understandhow they are encoding
information, and how we might adjust them in musically meaningful ways; e.g.,
adjusting the parameters such that the model constructs jigs of nine-measures length
instead of the conventional eight. Another direction is building an “artificial critic”
that can streamline the search for interesting material a model has or could generate.
This can be seen as a problemof information retrieval, for either an existing collection
of material, or a collection that could be created by a given model. In line with this
are methods for comparing collections of materials, including detecting plagiarism.
All of these can potentially be incorporated into training models in more musically
meaningful ways than just reproducing sequences of tokens.

Another avenue for future research can develop the system to accommodate poly-
phonic practices, or non-Western music. Polyphony means concurrent but also semi-
independent voices, where the musical-logic has both a horizontal component (that
governs the construction of each line) and a vertical one (that governs the interde-
pendence of those lines). These different dimensions do not need to have the same
or even similar rules. A challenge in applying machine learning to non-Western folk
music entails finding a representation that is meaningful within the context of that
tradition. Any representation necessarily abstracts away some aspects of the music,
just as ABC notation does for Irish and Scandinavian folk music. The music AI
researcher needs to produce a representation that can encode important and relevant
aspects of music they want to model, and at the same time be aware of the aspects
they discard.
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