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Foreword: From Audio Signals to Musical
Meaning

In 1957, Lejaren Hiller and Leonard Isaacson stunned the world of music by
presenting the first composition constructed by an AI system, called Illiac Suite
(Hiller and Isaacson 1959).

Illiac was the name of one of the first computers ever built, installed at the
University of Illinois in 1952. Hiller and Isaacson were trained as musicians but
they were also computer scientists ‘avant la lettre’ with a solid training in the
natural sciences. Their project took place in the wake of the earliest
problem-solving programs demonstrated by Allen Newell, Herbert Simon and John
Shaw a few years earlier and the enthusiasm generated by John McCarthy and
Marvin Minsky at the Dartmouth summer project on AI in 1956 (Nilson, 2010).

Illiac Suite is remarkable from many angles, particularly given the state of
computer and software technology at that time. Programs had to be submitted on
punched cards, memory was tiny, execution slow, and higher-level programming
languages were in their infancy; the first compiler for Fortran became operational
only in 1957. One had to be a genius to get anything done at all. The Illiac Suite
composition was also remarkable because Hiller and Isaacson introduced various
paradigms for computer music that are still dominant today.

They were familiar with the canonical techniques of Western composition based
on a system of pitches and constraints on how these pitches could best be organized
to get a harmonious piece of music, such as use recognizable tonalities, avoid
transitions that are boring like parallel fifths or octaves, and so on. Within the
heuristic search paradigm initiated by Allen Newell and Herbert Simon (Newell and
Simon, 1956), Hiller and Isaacson implemented a generate and test scenario where
possible pitches were generated and only those kept that fit with the canonical rules
of composition, thus foreshadowing the constraint-based computer composition
techniques used today.

To dampen the inevitable combinatorial explosions, they introduced heuristics
and higher-level musical representations, such as larger melodic and rhythmic
structures. They also experimented with Markovian decision processes that are still
at the heart of many efforts in computer music generation and argued that creativity
could be modelled by introducing stochasticity, based on a random number gen-
erator that could make unexpected choices. To bridge the gap with human-produced
music, they introduced higher level structures from the classical music tradition, for
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example, having different movements like presto, andante, and allegro, and they
used human performers and classical instruments to give a recognizable emotional
quality to their music.

How did the resulting music sound? You can listen for yourself.1 The music is
certainly intriguing and an adequate performance can add emotional value making
it easier (or in some cases harder) for listeners to build some sort of interpretive
experience. After all, enjoyable music is not only the task of the composer and the
performers but just as much of the listeners who are invited to project structures and
meanings on what they are hearing.

At the time, most musicians reacted in an extremely hostile way to this exper-
iment, both because the computer was encroaching on a terrain that was until then
the province of human creativity and because of the aesthetics and structure of the
music that the computer programs produced. With respect to the latter, we have to
remember that the IlliacSuite was composed at the time John Cage’s experimental
music had come in vogue, emphasizing aleatoric elements, processes, and rhythm
and tone rather than melody and harmony (Kuhn 2016). From that perspective,
Illiac Suite is actually more conservative than much of the experimental music,
concrete and electronic music that followed. It is more comprehensible to the
average listener than the highly complex academic music produced in the 1980s
and 90s. Nevertheless, Illiac Suite remained an isolated experiment.

Fast forward to today. The field of computer music in general, and the appli-
cation of AI in music in particular, have blossomed beyond belief. Developments at
the level of hardware, software, and the use of AI for composition, tutoring,
recording and music distribution have been extraordinary. The papers appearing in
the Computer Music Journal (started in 1977) and the historical collection of
Stephan Schwanauer and David Levitt (1993) are important resources to track these
developments. And now we have the collection of chapters in this handbook,
brilliantly brought together by Eduardo Reck Miranda. This book gives an excellent
survey of more recent achievements and speculates on near-future developments.
All the publications, demonstrations and musical works being discussed here
establish beyond doubt the very high level of technical and scientific competence
and the musicological sophistication of the computer music field and its branch
dedicated to the application of AI to music.

The experimental achievements of computer music researchers have been
abundant. But equally impressive is the fact that the laboratory experiments have
successfully moved into musical practice in the real world. No composer today
would work without the help of programs for editing scores and for the tedious
process of adapting scores to different instruments. Synthesis from scores has
become so good (but certainly not at the level of human performers) to give
composers a good idea of what their music will sound when executed by a human
orchestra. Performers now practice and play from digital scores and have digital
ways to organise and annotate scores. They can even practice on their own with the
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other instruments synthesized by a computer, in real-time synchrony with what they
are playing. The recording and distribution of music are no longer the exclusive
work of manual labour only because very sophisticated signal processing intervenes
in recording and listening. Moreover, modern-day AI algorithms play a crucial role
in how the public gets to know new work. Also in musical education, the results
from computer music research are playing increasing roles from simple Apps that
help you train your musical competence to MOOCs that allow many more people to
learn about music online (Steels, 2015). And moreover, we have many examples of
fascinating music composed, and in many cases performed, by computer systems in
prestigious venues and launched on a commercial market where until recently only
human compositions could be found. This is all very remarkable. The adoption of
computer music has even accelerated with the COVID-19 pandemic in 2020, so that
you now find choirs that rehearse using Internet streaming technologies, or Jazz
musicians that play together over the cloud, with occasionally an AI musician
thrown in to play along when a band member is missing.

Research into computer music has not only contributed to music itself. Computer
music researchers have also been making steady contributions to software engi-
neering, hardware development, signal processing, embedded systems, and AI
methods, particularly in the area of constraint programming, object-oriented pro-
gramming and, more recently, deep learning. At the moment there are even forays
into neuro-technology (integration of electronics and computing with living neural
cells) and quantum computing (see Chaps. 8 and 34 this volume). All of these
topics are explored in this book with outstanding overviews and reviews.

Given all these incredible advances what could be done next? Pushing the state
of the art further in computational creativity is high on the list, and one of the focal
topics of the present book, so let me focus on that for the remainder of this essay.

So far most experiments in musical creativity still follow the approach of Hiller
and Isaacson, namely to work with templates and add some randomness in
instantiating a template to make an audible composition. The difference nowadays
is that those templates might be learned using machine learning techniques and the
randomness gets heavily constrained both by statistical models and by music theory
so that the resulting music often sounds more harmonious and plausible than Illiac
Suite. But is this the only approach possible?

Although composers certainly use templates that they have either learned
explicitly through musical education or implicitly by listening to a lot of music,
their creativity obviously goes beyond making random variations to instances of
templates or to the templates themselves. And although listeners also have musical
memories containing templates, melodies, favourite interpretations of well-known
pieces, and so on, they clearly do more than recognize patterns and predict what
pattern comes next. I am of the opinion that in order to know what it is that they do
more, and hence what creativity requires in the domain of music, we have to
address the question of meaning in music. I am probably stating the obvious when I
say that musicians and listeners engage with music because they find music
meaningful.
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What are the implications of saying that? Does it make sense actually to talk
about meaning in music? What kinds of meanings are we talking about? And how
does music accomplish the expression of meaning? How do listeners ‘understand’
music? Can we build tools to assist composers for the meaning dimension of their
work? Can we find computational means to aid listeners in interpreting and
experiencing in a richer and deeper way the meanings of a musical work? Most
importantly, if we are serious about music creation or co-creation with AI systems,
should we address how musicians use music to express meaning? And furthermore,
if we are serious about autonomous computational creativity for music, should we
investigate how innovative composers or improvisers have found new ways to
express meaning through music or opened up new domains of meaning for
expression by music?

All these questions are difficult, which might explain why the AI and music
community has been avoiding them. In fact, recent work on machine learning and
neural networks has moved AI even further away from considerations of meaning
because of its behaviourist approach to mind. In the behaviourist tradition, initiated
by Watson (1930) and Skinner (1953) and brought into AI in the 1950s by Frank
Rosenblatt (1962) and his cybernetic colleagues, intelligence is reduced to pattern
recognition and pattern prediction It is acquired through behavioural conditioning,
associative learning, reinforcement learning, perceptron-style multi-layered net-
works and other statistical machine learning techniques. Goals, intentions, beliefs,
symbols and perspectives are de-emphasized, and occasionally denied to be rele-
vant for intelligence. The topic of meaning is avoided entirely.

We see this kind of approach not only in applications of AI to music but also for
all other applications areas that this kind of data-driven, behaviourist AI has tackled.
For example, ‘neural’ text translation approaches translation by mapping n-grams
(sequences of words) from a source to a target language without even trying to do a
serious syntactic and semantic analysis, let alone try to understand and reformulate
what the author wants to say. Adepts of this approach argue that doing syntactic and
semantic analysis is very difficult, which is certainly true, but also that you do not
need it. When more data is given to learn from, the glitches and silly translations
that we now see will become rare. Another example is ‘neural’ art generation
(Dumoulin et al. 2017). A neural network learning system generates paintings in the
style of the impressionist Claude Monet, for example, by regenerating statistical
patterns gleaned from Monet’s paintings, but without even trying to understand
what is depicted on the painting. The system would not have a clue as to why a
particular scene was chosen or why Claude Monet made a specific transformation
of the original colours and shapes.

We see this same approach in data-driven AI work that explores how deep
learning mechanisms can be used for music, for example, in the experiments of
MUSENET by OpenAI.2 Even though it is quite fascinating and a technical tour de
force, attempts to create music ‘in the same style’ as human composers like Chopin,
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based on a probabilistic transformer model that predicts or generates the next
element in a sequence, completely bypasses meaning. What is amazing is that the
end result is so close to a Chopin piano piece that commentators often describe it as
‘brilliant’, but also ‘terrifying’ and ‘having no human element in it’. It suggests that
a significant part of the musical experience is imposed by listeners. The composer
creates a vehicle for this to happen. And even if the musical piece has been con-
structed without any consideration of meaning, listeners still manage to impose
structure and meaning onto it.

In contrast to the behaviourist tradition, the cognitivist tradition, brought into AI
by Allen Newell and Herbert Simon (1956), insisted on topics like goal-directed
problem solving, symbolic representations, reasoning, conceptual understanding
and Piagetian style constructivist learning. Some research on understanding did
indeed take place in the 1960s and 70s, see, for example, Minsky (1968) or Schank
(1983), but in general, the cognitivist AI tradition has also tended to shy away from
meaning. They have focused instead on syntactic manipulation of formal structures,
simply because this is more amenable to computational treatment. The composition
and analysis experiments to formalise and codify music using symbolic techniques
(see, for example, Chap. 18 in this volume) are technically as impressive as the
more recent music generation experiments based on machine learning, particularly
when used for real-time support during Jazz improvisation. The results also sound
more like real music, even though discerning listeners might still feel a lack of
narrative structure, authentic emotions and meaning. Nevertheless, the cognitive AI
tradition accepts at least that meaning is important in human intelligence and
culture.

Computational music research on meaning has been difficult because there is no
clear consensus among musical scholars and practitioners on what musical meaning
is. Even the idea that music is about meaning is controversial. For some, there is
simply no meaning in music. For instance, consider this quotation from composer
Igor Stravinsky: “I consider that music is, by its very nature, essentially powerless
to express anything at all, whether a feeling, an attitude of mind, a psychological
mood, a phenomenon of nature, etc.” (Stravinsky, 1935, p. 53). This quotation is
surprising, particularly coming from a composer that has written music for ballet, a
few operas, and even music for film. If we take this stance, music becomes similar
to mathematics. Musical composition comes to be seen as about designing abstract
structures and formal pattern manipulation. Listening in this case amounts to an
experience of sound and the recognition of the patterns imposed on sounds. From
this perspective, the joy of musical listening consists in recognizing and tracing the
development of these structural patterns, similar to looking at mosaic patterns on a
floor.

The ‘music is like mathematics’ metaphor is natural to the many mathematicians
and computer scientists, who have been the most active group in computer music
research. They feel very much at home in the world of abstract structures and the
computer is the ideal tool for exploring this world. This perspective has heavily
influenced the development of AI as applied to music. However, equating music
with mathematics is nor the view of many practicing musicians nor of most
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listeners. For them, music is much more than sound sensations and syntactic
structures. We are a meaning-seeking species steeped in emotion and intention. We
are always trying to figure out why things are the way they are, what motivates
somebody to do something, how fragments of an experience fit together into a
coherent whole and relate to our earlier experiences.

True, many of the meanings that we impose on reality and on artworks,
including music, are not easy to capture in words. They are pre-verbal and
non-symbolic, but they still count as meanings. It is also true that even if we would
have a clear notion of what musical meaning might be, the set of meanings invoked
by one listener would seldom be the same as those invoked by another listener. This
is simply because different people have their own personal memory, their own prior
experiences of the world and of music, their own social context and psychological
state when composing or listening to music. Objectively, there is no ‘correct’ set of
meanings for a given piece of music. Therefore, it does not seem to be a reasonable
goal for AI to extract it. It also seems beyond machines to capture the rich
embodied and culturally grounded set of meanings that humans effortlessly deal
with.

Those who admit that music is meaningful often restrict the meaning of music to
be about expressing and invoking emotional states, like sadness or joy (Meyer,
1956). That is certainly one aspect of musical meaning, but there is much more.
I suggest that it is helpful to look at other artistic disciplines that have been
grappling with meaning in art.

One concept that I have found useful is that of a narrative. It is commonly
employed in studies of art and literature. A narrative is a larger scale structure that
organizes experiences into multiple levels of description. A painting or a musical
composition is not literally a story, like a theatre play or a novel, but it stimulates us
to construct narratives. From this perspective, an artist is engaged in a form of
cognitive engineering (Dewey, 2018), manipulating the mental processes of
viewers by shaping their sensory experiences and memory recalls in order to
stimulate narrative construction. This insight is very important because it suggests
that a composer or performer is like a designer who has goals at many levels and
almost magically manages to transform these goals into a coherent piece of art. It
also suggests a rethink of how we might achieve computational creativity in the
music domain. It is about finding solutions to compositional problems similar to the
way an architect designs a building that has to satisfy many constraints and at the
same time has to be done in a creative way. Creativity then is not about introducing
some random variations without motivation or insight into the underlying purposes
and strategies for achieving them.

Narratives typically segment experiences into a series of events with a temporal,
causal, and spatial structure. They describe the different participants in these events
their roles, goals, intentions and emotions. They introduce the context and world
setting, provide perspectives, an emotional stance, and probe the moral, political
and ethical implications of what is happening. When we look intently at a painting
or watch a theatre play, we spontaneously construct narratives. We try to fit together
the different elements we see or hear until they fall into place. An artistic
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experience, or even a mundane situation, only ‘makes sense’ when we can construct
a coherent narrative and integrate it with our own personal episodic and semantic
memory. Often there are ambiguities, alternative competing interpretations and
conflicting perspectives which either get resolved or remain as open-ended multi-
plicities. As composer Arnold Schoenberg puts it: “A work of art is a labyrinth
where, at every point, every knowledgeable person is aware of the entrance and the
exit without needing a golden thread to guide him.” (Schoenberg, 1995). I think
Schoenberg overestimates most listeners who may struggle to hear the structure
underlying his 12-tone compositions, but the point is well taken.

Another, complementary, insight which I have found useful, comes from the art
historian and semiotician Ervin Panofsky. He has identified five levels of meaning
(Panofsky, 1939): the formal, factual, expressional, cultural, and intrinsic level, and
applied it principally to painting. Can we apply these Panofskyan distinctions to
music as a step towards putting meaning at the heart of AI research into music? Let
me try and see what lessons we can learn.

The first Panofskyan level is that of the form, the material presence and syntactic
structure of an artwork. For a painting, these are the lines and colours which
hierarchically aggregate into artistic motifs. The obvious correlation for music are
the sounds themselves, which have sensory qualities that may already give aesthetic
sensations or a feeling of well-being, and the syntactic structuring of the sounds:
their segmentation, categorization and aggregation into tones, melodies, rhythm,
meter, harmonic structure, phrases, and the like. They constitute musical motifs, or
musical ideas in Schoenberg’s terminology (Schoenberg, 1995). They are the
building blocks of a composition at the form level.

Composers often already tell a story on this form level, playing around with
these musical motifs. They are presented, transformed, repeated and contrasted with
other motifs as the music unfolds. Music is unique as an art medium because the
musical forms themselves create narratives that are about musical ideas without any
reference to emotions or events in the world. Minsky’s brilliant essay Music, mind
and meaning (Minsky, 1981) illustrates this point, using the example of Ludwig
van Beethoven’s fifth symphony, where the first subject is expressed in its famous
first four notes; see also (Guerrieri, 2012). If some musicians, such as Stravinsky,
say that music does not have any meaning, I reckon that what they want to convey
is that there is no meaning outside of the domain of (musical) form itself in music.
I am not entirely convinced about this.

The level of musical form is what most of the AI research into musical com-
position, interpretation and listening has focused on. Much has been achieved, as
the chapters in this book clearly attest, and there are still many ideas floating around
on how one can increase the structural depth of compositional work, build better
ways to extract from audio signals notes, tempo, measures, rhythms, and harmonic
structure or improve the synthesis of music by taking into account its phrasal
structure. However, less work has been done on the narrative structure of music at
this form level: to recognize the motifs and their transformations, to reconstruct the
musical story that the composer is telling us.
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The second Panofskyan level is concerned with factual meanings. It refers to the
capability of images to conjure up memories of objects and events in a real or
imaginary world. For example, Michelangelo Merisi da Caravaggio’s stunning
painting Presa di Cristo nell’orto (The Taking of Christ, in English) from 1602
directly triggers recognition of a central narrative in the catholic passion story that
would have been known by his audience at the time.3 In the painting we see in the
middle Judas giving the fatal kiss and the soldiers ready to take Jesus. To the left,
we see one of the apostles crying for help and Jesus retracting to avoid the embrace
of Judas. To the far right, we see a person (generally considered to be the painter
himself) who shines light on the scene, thus becoming an accomplice to the arrest.
The title of a work is usually suggestive of its factual meaning. But it is only the
starting point, together with the image itself, for triggering the construction of a
narrative that makes sense of what is depicted and why.

Factual meanings are much more common in music than usually thought,
although they are less so in twentieth-century music, which commensurate with the
rise of abstract art by painters such as Piet Mondriaan and Wassily Kandinsky who
wanted to create paintings who were interesting at the level of form only, using
music as their guiding example. A figurative component is most evident for vocal
music, where the music underscores and augments the verbally expressed narrative,
or for opera and film music, where the music underlines the action, the emotional
state of the characters and their role.

For example, Johann Sebastian Bach’s St. Matthew Passion composed in 1727
tells the same story as Carravagio’s painting and is equally figurative. The story
of the arrest of Christ is first told by the Evangelist without much drama (Recitativo
32). Initially, there is a duet (Duetto 33) with a feeling of sadness and resignation
with the choir representing the apostles and interjecting with the cries “Laszt ihn,
haltet, bindet nicht!” (“Leave him, don’t’ keep him, do not tie him!”).4 These cries
map straight onto the left-most figure in Caravaggio’s painting. But then a storm
breaks out: “Sind Blitze und Donner in Wolken verschwunden” (“Lightning and
thunder disappear in the clouds”). It is forcefully evoked by the choir in staccato
rhythm and totally dramatizes the importance of the arrest.5 In order to appreciate
all this, one has to go beyond the form appearance of this music and take into
account what the story is about.

Factual meanings are not only present in vocal works. Music does not neces-
sarily have to imitate literally the sound of an event or situation in the world to be
figurative. It is most of the time only suggestive, the same way a painting of the sea
by impressionist painter Claude Monnet does not literally reuse the colours of the
sea and the sky, or faithfully represents the waves that you actually observe. The
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3https://en.wikipedia.org/wiki/The_Taking_of_Christ_(Caravaggio)#/media/File:The_Taking_of_
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uLpp6cW7sA (Accessed on 04 February 2021).
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relation to reality is iconic: there is a resemblance with what is signified without
trying to be realistic. Take Antonio Vivaldi’s Four Seasons violin concerti com-
posed in 1723. You can of course listen to it purely from a form point of view and
discern different musical motifs, and hear how they develop and interact over time.
But this ignores that the work is really about the four seasons: Summer, Spring,
Winter, and Autumn. Each season is evoked with musical images conjuring up
impressions and experiences related to that season. For example, in the Summer
movement6 we hear the laziness that comes with a sizzling hot sun, water flowing,
birds, a barking dog, buzzing flies, but also the wind coming up, lightning bolts,
thunder and then a violent escalating storm. Is this over-interpretation? Not really.
Vivaldi himself wrote sonnets corresponding to each movement. The sonnets
describe what experiences he was trying to evoke, helping the listener’s imagina-
tion. Without considering this figurative aspect, listening to Four Seasons becomes
an exercise in syntactic recognition that lacks meaning and therefore becomes
boring once these sounds and structures have been grasped at their surface level.

Other examples of factual meaning in figurative music are easy to find. Claude
Debussy’s symphonic sketch La Mer (The Sea, in English) composed in 1903 is
really about the sea. The first movement De l’aube a midi sur la mer (From dawn to
midday at the sea, in English) gives the sensation of the swaying movement of the
waves that start timidly but then become bigger with the water splashing as they
break.7 Another example are the so-called tone poems by Richard Strauss. For
example, the last one of the Vier letzte lieder (The four last songs, in English) called
Im Abendrot (At Sunset or more literally ‘With the red of the evening’, in English)
was written in 1948 shortly before the composer died.8 The song for soprano and
orchestra evokes the red light of the sun going under but also the end of life
depicted as a long walk by a couple. When the soprano sings ‘Zwei Lerchen nur
noch steigen/nachträumend in den Duft’ (‘Left are only two larks who climb like in
a night dream in the air’, in English), we hear singing larks evoked through two
flutes. These larks are metaphors for the souls of the couple that are soon to go to
heaven. The last phrase is: ‘Wie sind wir wandermüde-Ist dies etwa der Tod?’ (‘We
are tired of walking-is this near death?’, in English) where Strauss reuses the basic
theme of ‘Tod und Erklaerung’ (‘Death and transfiguration’, in English), another
tone poem he wrote 60 years earlier, which is a musical portrait of a dying man
entering into heaven. Clearly, when this broader context is provided the experience
of Im Abendrot changes completely and goes beyond its remarkable sensual beauty.

The third Panofskyan level is about expressional meaning, in other words the
psychological states, emotions and affects that are evoked through an artwork.
Looking again at Caravaggio’s Presa di Cristo nell’orto we see that every figure
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(Accessed on 04 February 2021).
8Anja Harteros, Sinfonieorchester des Bayerischen Rundfunks: https://www.youtube.com/watch?
v=JwZOXC6_4fE (Accessed on 04 February 2021).
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expresses clearly emotional states through the looks of their face, the gestures and
body language. The apostle expressing fear while crying for help, Jesus almost
saying to Judas: ‘What are you doing?’, frowning and looking sad, the onlooker to
the right being curious and astonished about what is going on. Obviously,
expressional meanings are abundant in music as well, and I am not referring now to
expressive performance that brings out the music’s phrase structure, which is on the
form level, but to the expression of affective states, often related to the factual
meanings of the musical work. Such expressive meanings are embedded in all the
aspects of a piece of music: the tonality, the chords and chord progressions, the
choice of instruments, the tempo, dynamics, loudness and articulation. The
responsibility for recognizing the affective content in a score and expressing it in
performance lies for a large part in the hands of human interpreters. It is the
Achilles’ heel of synthetic music.

The song by Richard Strauss showed already a magnificent example of a
strongly emotional content. But let us listen to George Friedric Haendel’s famous
aria Lascia ch’io pianga from his opera Rinaldo9 as a second example. The aria,
composed in 1685 is sung by the character Almerina, who is held captive, away
from her lover Rinaldo. The words are as follows: ‘Lascia ch’io pianga / Mia cruda
sorte, / E che sospiri / La libert’a Il duolo infranga / Queste ritorte, / De’ miei martiri
/ Sol per pietà’ (which translates in English as ‘Allow that I weep over / my cruel
fate, / and that I may sigh / for freedom. Let my sadness shatter / these chains / of
my suffering, / if only out of pity’). The aria, in a tonality of F-major, and its
orchestration is of utmost simplicity and you do not need to follow or understand
the words to share the extreme feeling of sadness of Almerina, the desperation and
frustration of being away from her lover, the longing for liberty. Many other
magnificent examples of the importance and power of expression in music abound,
including in purely instrumental music, and to ignore it is to deprive music of its
potent force.

The expressive meaning level has already received considerable attention within
AI approaches to musical meaning; see, for example, Widmer and Goebl (2004)
and Chap. 19 this volume, because it is so crucial for a good performance. But so
far, expression is mostly considered from the viewpoint of making the syntactic
structure of the music more legible. This is very important in itself of course, but the
expression of affective states and how they embed in a narrative remains almost
virgin territory for AI approaches to music.

Next, there is the cultural meaning layer. It rests on knowing more about his-
torical events, society, religious systems, myths, other cultural artefacts. For
example, the Caravaggio Presa di Cristo nell’orto or Bach’s Matthäus Passion can
only be understood when knowing the Bible’s narrative of these depicted events.
For Christian believers, it has even more significance. They will feel total empathy
with the suffering of Christ, the shock of the arrest, the protests of the apostles. Or
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9Joyce Di Donato, Maxim Emelyanychev, Il Pomo d’Oro: https://www.youtube.com/watch?v=
PrJTmpt43hg (Accessed on 04 February 2021).
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consider, for example, the song To Yelasto Pedi (The jovial boy, in English)
composed by Mikis Theodorakis, and performed to a full stadium after the fall
of the military dictatorship in Greece in 1974.10 This song, about the fascist terror
exerted on the Greek population, was of enormous significance for the audience,
particularly because they were forbidden and Theodorakis was jailed and forced
into exile. The unforgettable concert in 1974 was a celebration of the regained
freedom.

Similarly, fully experiencing the aria Va pensiero from Giuseppe Verdi’s opera
Nabucco, which has become something like an alternative national hymn of Italy,
can only be done by understanding that it was written when Lombardy and Veneto
were occupied by the Habsburg empire in the nineteenth century and the population
felt enslaved like the slaves depicted in the opera. When this aria is performed
today, Italian audiences often rise to sing along. The aria resonates because it was at
the time a symbol of protest against oppression by the Habsburg armies. More
recently it has been appropriated by Italian right-wing parties because of its patriotic
symbolism but Ricardo Mutti in 2011 invited the audience to re-appropriate this
highly symbolic music to protest against the dismantlement of cultural institutions
and to regroup the cultural force of Italy and thus halt the slide in moral decay of
Italy during the era of Silvio Berlusconi.11

Here is another example: the Jazz standard Strange Fruit. You can certainly
listen to it—and it is often performed that way—as just another Jazz standard where
the different performers give their own interpretations of the melody and harmony.
However, this is totally missing the cultural and political significance of this song. It
is actually a cry against the injustice of racial oppression that was happening in the
south of the US in the 1920s and 30s when this song was conceived and performed.
Strange Fruit refers to bodies of black people that have been tortured and
lynched: ‘Southern trees bear a strange fruit / Blood on the leaves and blood at the
root / Black bodies swingin’ in the Southern breeze / Strange fruit hangin’ from the
poplar trees’. When watching Billy Holliday’s rendition of this song12 there is raw
authentic emotion. At the time, it raised high tensions and there were attempts to
silence her, particularly as she sang it before white audiences. Without this his-
torical context, the significance of the song is largely lost.

It is clearly too much to expect from a computer program to take this cultural
context into account or to construct an authentic performance with the same cultural
background and emotional force that humans bring to bear on such musical
experiences. Nevertheless, this is what music in its full extent is all about. As more
and more cultural knowledge becomes available through the World Wide Web and
as the knowledge graphs and dictionaries (e.g., Wordnet or Propbank) have now
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10Maria Farantouri, Mikis Theodorakis: https://www.youtube.com/watch?v=NLgerQJo7zM
(Accessed on 04 February 2021).
11Ricardo Mutti, Scala of Milano: https://www.youtube.com/watch?v=5wAXhHrqOzQ&list=
RDXg1yRoENqJQ&index=2 (access on 4 February 2021).
12Billy Holliday: https://www.youtube.com/watch?v=-_R8xxeMFEU (Accessed 4 February
2021).
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become accessible to the AI and music research community for use in
meaning-oriented AI, new opportunities will certainly emerge to preserve much
more of the cultural context of musical works and to make it more accessible as part
of recordings or in educational settings. That is also a task for the future.

Finally, Panofsky talks about the intrinsic meaning of an artwork: the motiva-
tions of the artist, what does he or she try to accomplish. This can, for example, be a
political statement, social commentary, moral advice, community bonding, com-
memoration of traumatic events, religious and spiritual exaltation, or mere enter-
tainment. The intrinsic meaning of Holliday’s Strange Fruit or Theodorakis song
To Yelasto Pedi is political, protesting against injustice. The meaning of Bach’s
Matthäus Passion, and much of his other music, is spiritual. Needless to say, this
dimension is entirely lacking in computational musical compositions or synthetic
performance, mainly because AI systems, despite claims in the popular press, do
not have the kind of autonomous agency and social embedding that humans have.
This gap is not a criticism. But it should make us all humble and critical about AI
researchers claiming that their computer programs can now make music as good as
human composers! They have fallen in the Turing trap: to create music superficially
indistinguishable from a real composition by a (usually naïve) human observer. But
this is fake music because it lacks the many levels of meaning that are the essence
of human music. It is not grounded in identity or human motivation. It does not
express affective values. It is not embedded in cultural and societal concerns.

Let me summarize the main point of this essay. Our current computational tools
can handle a remarkable number of signal processing and feature recognition
aspects for going from sounds to notes, rhythms and phrasal structures. They can
represent and enact constraints on harmony, instrumentation or rhythm for musical
composition. And they can even approach very difficult issues in performance and
audio synthesis. Nevertheless, they rarely address the meanings and musical nar-
ratives which underlie music as an art form. Consequently, it makes no sense to call
these systems creative in the same way as human composers, performers or listeners
are musically creative.

I do not believe that the rich web of meanings that we as humans naturally
engage in will ever be captured by an AI system, particularly if it is disembodied
and has no social role in a human community. Nevertheless, the fantastic tools we
have already today make it conceivable to attempt a significant leap in the direction
of meaning. This development would be in line with a current trend in AI research,
which considers meaning as the key barrier AI still has to overcome (Mitchell,
2020) and calls for a ‘human-centric AI’ where only through a proper focus on
meaning can we create a more responsible and more robust form of AI than the one
underlying many of today’s applications (Steels, 2020).

A focus on meaning in AI research into music would allow us to understand
better the relation between music and the musical narratives that it can invoke in
listeners, and the strategies composers use to design music that can realize this
function. I do not think this will happen soon but if it happens it would lead to many
new spin-offs for enhancing musical practice, preserving or reconstructing musical
heritage, richer musical compositions, and many great musical experiences for all of
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us. It would also allow us a whole new approach towards musical creativity, now
understood as establishing multi-dimensional mappings between a complex web of
meanings and musical forms.

Barcelona, Spain Luc Steels
December 2020
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Preface

I am delighted to be in a position to write this preface: it is the last task that I need to
get done before I submit the manuscript for production. I have just gone through the
checklist. All good to go. It was a long, but nevertheless gratifying, journey.

I must confess that I misjudged the magnitude of the job when I signed up to
produce this book. It ended up being a much greater project than I had anticipated.
And much harder too. The field of Artificial Intelligence (AI) today is over-
whelming. It is very difficult to map. And throwing music into the mix makes things
even muddier.

It was relatively straightforward to survey the field when I edited the book
Readings in Music and Artificial Intelligence 20 years ago.13 There were only a
handful of pioneers taking music as a serious domain for AI at the time. Research
into applying AI in music was in its infancy. I vividly remember the disdainful
looks I used to get at international AI conferences in the 1990s when introducing
myself as a musician. And to add insult to injury, musicians used to scoff at the
notion of making music with AI. Perceptions have changed. And how!

Back then, neural networks were not much more than a theoretical promise
based on toy problems. Practical implementations often failed to impress. Symbolic
knowledge representation and logic-based modelling were the norm. Functional
programming with LISP and logic programming with PROLOG defined the bas-
tions of AI research at the time; the latter favoured in Europe, notably in France and
Scotland, the former in the USA and beyond. From this era, two notable
achievements immediately come to mind. David Cope’s EMI system emerged as an
exemplary LISP-based system, able to learn and compose in the style of classical
music composers. And the Continuator system (precursor of the Flow Machines
project) led by my former colleague at Sony, François Pachet, took the symbolic
approach to an unprecedented level of sophistication.

Since then, neural networks evolved significantly with the emergence of the
so-called ‘deep learning’ methods, which are remarkable. Deep learning has been
enjoying considerable publicity. So much so that it has inadvertently become a
synonym of AI for some: I often have students coming through the door these days

13https://www.taylorfrancis.com/books/readings-music-artificial-intelligence-eduardo-reck-
miranda/e/10.4324/9780203059746.
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thinking that AI and deep learning are the same thing. Yet, deep learning alone is of
limited capacity to model and simulate intelligence; depending on what one means
by ‘intelligence’, of course. This book concerns musical intelligence.

In addition to developing technology to building musical systems able to per-
sonify aspects of human intelligence, AI is a great tool to study musical intelli-
gence. If anything, AI research has demonstrated that intelligence in general
requires more than logical reasoning. It requires creativity, subjectivity, emotions,
interaction, embodiment, and all those things that the brain takes care of, con-
sciously and unconsciously, to keep us alive. Music engages a multitude of these
human capacities. Hence the reason music has become such an interesting domain
for AI research.

This book comprises 34 chapters from leading scholars and practitioners
approaching AI in music from a variety of perspectives. There are chapters touching
upon sociological, philosophical and musicological issues: Chapters 1–4, 31. Then,
we have chapters on understanding our musical brain and body for (and with) AI:
Chaps. 5–9. These naturally connect with chapters discussing cognition and
modelling thereof: Chapters 10–12 and 15. More technical chapters introduce a
variety of applications ranging from improvisation and composition (Chaps. 14, 16
–18), to performance (Chaps. 19, 27), orchestration (Chap. 20), notation (Chaps. 24
, 25), studio production (Chaps. 13, 30) and even lyrics for popular music (Chap. 26
). Other important applications of AI represented in this book are sound synthesis
and signal processing (Chaps. 21–23), and musical robotics (Chaps. 28, 29).

The field is evolving faster than ever. AI is becoming so ubiquitous in our daily
lives that the topic as we know it today is becoming diluted. It is being absorbed by
other domains; almost every application of computing involves some form of AI in
a way or another. One question that the AI and music community should certainly
consider, however, is this: What is next? Has AI research reached the end of the
road? Twenty years from now, what would the sequel book be about, if any?

The last three chapters (Chaps. 32–34) consider harnessing biology to develop
living processors for ‘not-so-Artificial’ Intelligence systems and the potential of
emerging quantum computing technology for music. The computers that our
children will be using in 2050 are likely to be significantly different from the ones
we are using today. What will be the impact of these on AI, music and indeed
society?

I am grateful to Luc Steels for agreeing to write the foreword. Luc was director
of Sony Computer Science Laboratory Paris at the time when I worked there as a
member of his Origins of Language team. Luc is well respected internationally for
his ground-breaking research on computational modelling of the origins and evo-
lution of language, and robotics. Luc also enjoys composing opera14 and has made
pioneering contributions to the field of computer music in the 1980s. In the fore-
word, Luc touches upon the problem of making sense of musical meaning, a topic

14See Casparo, a tragi-comic opera in three acts by Luc Steels (music) and Oscar Villaroya Oliver
(libretto): https://bit.ly/3obAHuH.
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that is seldom discussed in AI and music research. It is an invitation to this research
community to take the challenge.

I do not have words to express my gratitude to all contributors to this book. My
heartfelt thanks to you all. You taught me a great deal about AI, but even more so
about human intelligence, and above all, generosity. Thank you!

Plymouth, UK
October 2020

Eduardo Reck Miranda
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1Sociocultural andDesignPerspectives
onAI-BasedMusic Production:WhyDo
WeMakeMusic andWhat Changes if AI
Makes It forUs?

Oliver Bown

1.1 Introduction

The recent advance α of artificial intelligence (AI) technologies that can generate
musical material (e.g. [1–4]) has driven a wave of interest in applications, creative
works and commercial enterprises that employ AI in music creation. Most funda-
mental to these endeavours is research focused on the question of how to create better
algorithms that are capable of generating music, but the wider issue of application
and use draws on a diverse range of fields including design, psychology, creative
practice and sociocultural factors. This chapter takes a closer look at the sociological
and design dimensions of AI music generation, and offers researchers in AI and
music a number of themes and references that can be used to help frame creative
practice and applications, supporting the design and evaluation of creative music
systems.

I begin by considering the more practice-based origins of AI-based music genera-
tion, which I suggest has traditionally taken amore philosophical orientation towards
the question of musical intelligence and creative autonomy in machines. Then I con-
sider how design has given the field a more functional applied focus which has to
some extent drawn attention away from the philosophical concerns of earlier cre-
ative practitioners. Then I consider how sociological views, which remain relatively
marginal to the practice of AI music, are beginning to influence the field and con-
tribute a much-needed vantage point for understanding human musical behaviour.
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1.2 The Philosophical Era

In the 1950s, Lejaren Hiller and Leonard Isaacson composed the Illiac Suite [5],
widely recognised as the first score composed with the creative input of algorithms
running on a digital computer, the ILLIAC 1 computer, based at the University of
Illinois at Urbana-Champaign. The Illiac Suite consists of four movements, each of
which explored different methods of algorithmic composition including hand-coded
rules and the nowwidely used stochastic generation method ofMarkov modelling. It
is well over half a century since this first experiment in computer music generation,
and the capabilities of computers have advanced unimaginably. Subfields of Com-
puter Science have made great advances, particularly over the last decade in Deep
Learning [6] (a summary of Deep Learning applications in music can be found here
[1,2]). Programmes far more complex than Hiller and Isaacson’s run in real time
on $10 credit card-sized computers, and school children are learning to code using
programming languages that abstract away the complexities of the machine code
they would have had to use. Yet listening to the Illiac Suite, you might think that
the authors had solved automated music generation on the very first attempt. The
music sounds harmonious and richly structured, original and emotional. You might
conclude upon listening that automated music generation is not a hard problem.

In fact, on the contrary, this field possesses some of the characteristics of a wicked
problem [7], that is ill-defined and potentially unsolvable due to its complexity and
sociocultural embeddedness. Relevant features ofwicked problems include that there
is no definitive formulation, no ultimate test and no stopping rule. Researchers are
definitely still trying to discover functional music generation algorithms today, that
could effectively generate new and original musical works from the ground up.
Unsurprisingly, this disconnect between us thinking of the Illiac Suite as a success
and yet still finding automated music generation a hard problem arises because of
the complex context of creative production.

Hiller and Isaacson were composers (amongst other things), and their approach to
the Illiac Suite took a form that continued for the rest of the century to be, arguably,
the predominant approach to computer-generated music experiments; creative prac-
titioners with hacking skills (or with paid programming support) programming com-
puters in tasks of algorithmic composition (there are significant exceptions, of course,
like the creation of more traditional end-user tools such as Microsoft’s Songsmith).
Here, the creative interaction between human and software system takes the form of
an iterative cycle of programming and reviewing machine output, followed by any
further processes the human author wishes to add to complete the work (arranging,
orchestrating and performing the work, for example). The process is summarised in
a simplified form in Fig. 1.1.

This diagram purposefully highlights the limited scope of the machine and the
various ways in which creative authority is maintained by the human composer. For
example, if the system produces outputs that don’t sound right the first time, the
composer can modify the program code or parameters through trial and error—a
form of search enacted by the composer. They can cherry-pick outputs, and they can
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Fig.1.1 Typical human–computer creative interaction in algorithmic composition where the com-
poser is either the programmer or user of an existing program

perform additional work on the resulting outputs, modifying them or engaging in
additional steps such as arranging, orchestrating or rendering the result.

Thus conceived, the challenge of making better algorithmic composition systems
could be defined in terms of moving more of these stages and decisions into the
computer’s scope, to the point where a computer is more autonomous in the cre-
ation of music, or alternatively making the computer perform so well in the given
role that it minimises the need for the composer to iteratively search for the ‘right’
output. Historically, this has been the focus of much academic work in computer-
generated music, underpinned by a vision of creating machines that fulfil the role
of human-equivalent artists. Practitioners of algorithmic composition have endeav-
oured to create systems that allow them to be as hands-off as possible, intending to
hand over autonomy and control to the machine in order to fulfil this vision of the
machine performing the artist’s job. We can think of this in terms of timescales or
levels of a creative agency. At a very low level, we might think of the creative work
that goes into the choice of a single note in a sequence. Higher up we might think of
the composition of an individual melody. Up and up at the other extreme we might
think of the kind of creative development a practitioner engages in over their lifetime
involving choices of styles, paradigms and strategies; in theory, these might all be
creative processes that could be codified in computer programs.

Such a vision was popularised by writers such as Ray Kurzweil [8] who prophe-
sised that autonomous machine artists were imminent and, as in other areas of AI,
would begin to take their place alongside human artists. Formany artists, this endeav-
our to experiment with creative autonomy in machines was primarily grounded in
an aesthetic philosophical interest; the creative work acting both as a simulation
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experiment as well as a kind of cultural probe [9], stimulating reactions. David Cope
[10,11] famously upset musicologists with machine-generated compositions that he
disguised as human works. He viewed his works as a proof-of-concept that musi-
cal composition could be subjected to mechanical instructions, and that much of the
defensiveness found in responses to his workwas hubristic and based on an essential-
ist view that human creativity was profound and inimitable. In the parallel world of
generative visual art systems, pioneer Harold Cohen [12] used his work, co-creating
with rule-based software of his own making, to explore how we attribute authorial
agency to machines:

If a photographer takes a picture, we do not say that the picture has been made by the camera.
If, on the other hand, a man writes a chess-playing program for a computer, and then loses
to it, we do not consider it unreasonable to say that he has been beaten by the computer. [12]

But since these composer-centric efforts in algorithmic composition are always
ultimately (and heavily—despite various claims made) in the creative control of the
practitioner, it becomes tricky to define quite how the system is able to take on creative
autonomy, nomatter howgood the results are andhow little,metaphorically speaking,
the human artist’s hand touched the canvas. For example, Brian Eno’s celebrated
generative music experiments [13] were purposefully musically simple, constrained
to a pleasant melodic space not dissimilar to the output of aeolian harps. The Illiac
Suite’s fourth movement sounds significantly more abrasive and challenging than
the other movements, reflecting the weirder results of their Markov experiments.
In both cases, we are hearing the aesthetics that emerge when a composer grapples
with algorithmic possibilities; arguably less important is the detail filled in by the
algorithm’s decisions. It is possible that the trickiness of unpacking and evaluating
such efforts—the wickedness of the problem—has, over time, whittled away this
once strong interest in making autonomous machine artists.

Moreover, there is awider context of engagement in the sociocultural environment
that frames such cultural production; the human arrives at this interaction having
formed an intention to do so, usually with a specific style, agenda and audience in
mind, and, importantly, motivated by social objectives such as engagement with a
community or social status. They may also exert other forms of influence on the
sociocultural environment; for example, if they are successful they may be more
empowered to influencewhat constitutes goodmusic. If all of this culturally grounded
activity is part of being an artist, then the full hand-over of being an artist to amachine
becomes unimaginably complex and beyond the scope of anyone’s capability.

Friction between engineering and sociologically grounded perspectives arises
here: froman engineer’s perspective,where simplifying first-approximations to prob-
lems are used purposefully to scaffold more substantial solutions, it would seem
reasonable to separate out such questions of social context from questions of what
note goes next or how to arrange a composition for dramatic effect, and the success
of music generation tools at mimicking musical style and proposing interesting new
content is testament to this approach. However, from a human scientist’s perspective,
the engineer’s simplification may be untenable; the result of their work is a strange
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beast that does not correspond exactly with anything in the pre-existing world. It is
as much a novel hybrid as it is a model of any particular aspect of human behaviour.
This is an important difference of perspective that can be hard to fully appreciate.

1.3 Creative Cognition and LoftyVersus Lowly Computational
Creativity

In the field of Computational Creativity [14], a common tenet is that the mere gen-
eration of creative content, although a critical subcomponent, is far from a complete
model of human creative production [15]. An act of creative production, it is held,
requires evaluation and iteration of outputs; when humans make music, art and other
forms of cultural production, a key component of their process is reflection and iter-
ation. Algorithms that do not do this are deficient and, it could be said, have no sense
of the aesthetic and cultural world they act in.

In practical terms, the majority of current generative art practices are situated
in the domain of ‘mere generation’. This includes most of the work of creative
coding artists from Harold Cohen and David Cope onwards, who shepherd their
generative systems, but it also includes the bulk of advanced machine learning (ML)
systems applied to music that perform predictive modelling of what should come
next in a sequence, not involving any creative iteration or evaluation. These ‘lowly’
forms of generative practice may generate creative works of stunning originality
and sophistication, but they have no meta-awareness they are doing so. They are
not culturally aware agents and they have no sense of judgement or inherent taste
themselves. The ‘lofty’ goal of Computational Creativity is to create systems that
perform genuine human-like creative cognition, which involves a host of cognitive
processes and is largely understood as a search process.

1.4 The DesignTurn

In recent years, design thinking and design practices have become increasingly fore-
grounded in the study of the application of AI to music (e.g. [16–18]). This is in step
with design’s more general rise to prominence, especially in technology innovation
where design methods now enable a richer and more productive cycle of feedback
between the work of the engineer and the experience and needs of the human user.
It has also arisen naturally within the music AI field in recognition of the impor-
tance of interfaces and user interactions even when the ultimate goal is to build an
‘autonomous’ intelligent system. Everything has an interface, even a sophisticated
robot that can converse in natural language, or a real-time improvisational musical
agent that interacts via musical sound. As AI-powered systems emerge in multiple
different fields, it has become increasingly evident that the design of interactions
occurs all the way up the scale of AI sophistication. Even if you are conversing with
a machine in plain English, its behaviour is packed with design decisions, from the
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overall interface and interaction context to the specific responses and behavioural
traits. Thus, design considerations clearly extend beyond the graphical and tangible
aspects of an interface; non-graphical voice-audio or music-audio interfaces present
their own unique challenges for interaction design. For example, the makers of real-
time improvisational interfaces must still grapple with designed interactions such as
turn-taking strategies or ways for the system to signal to the user that it is responding,
whether it is hearing properly, and so on (e.g. as discussed in [19]).

Although they rarely framed their discussion in terms of interaction design, those
early innovators such as Hiller and Isaacson, Cope and, in the visual domain, Harold
Cohen, could all be seen to be interacting with their systems in a variety of ways,
even if through the code interface itself, engaging in heuristic creative strategies,
evaluating and iterating. In doing so, theirwork inevitably highlightsmany interesting
interaction design concepts. Today design thinking horizontally penetrates other
fields from business to computer science, with music AI systems as natural an area of
application as any other; current creators ofAImusic systems aremore likely to apply
design terminology and methods, following the leading work by researchers such as
Rebecca Fiebrink [17], ThorMagnusson [20], NickCollins [21], AndrewBrown [19]
andFraçois Pachet [22] (also seeAnnaKantosalo’swork in non-music domains [23]).
Areas of practice such as ‘live coding’ have focused more explicitly on the design of
usable and creatively productive programming languages and environments, work
that has extended into the design of usable generative and AI-based systems. This
work draws on research into the design of creatively empowering and productive
software systems, such as Blackwell and Green work on the cognitive dimensions
of notations [24], Shneiderman, Resnick, Candy, Edmonds and colleagues’ work
on creativity support tools [25–27] and more general usability principles such as
Nielsen’s heuristics for user interface design [28] and key interaction design work
such as that of Donald Norman [29].

Thus increasingly, the question of howgood interaction design can support the cre-
ation of successful AI music tools has become more commonly posed (for example,
[17,18,20,21,30]), and a general shift can be seen away from the more philosophical
concerns of autonomous music composition agents, towards AI tools that support
creative production. This is in part due to the maturation of the technology and the
potential for business opportunities that invite a user-centered design perspective to
solve the problem of making usable technology.

The design of usable AI music systems can be divided very roughly into two
categories: tools targeting creators, those people already involved in the production
of music; and tools targeting non-musician end-users who need music services,
including professionals such as film producers, their equivalent amateur or prosumer
creators (such as amateurYouTube contributors) and other types ofmusic consumers.
In both cases, as with other areas of technology innovation, the use-cases to which
new AI music technologies are applied can be broadly divided into those use-cases
that effectively model an existing scenario and those use-cases that are novel.

Regarding tools for creators, there are a number of common creative practice
contexts and activities that point to some of the main uses for AI in music. Some
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major areas that cover a great deal of the scope of creator-based AI music production
are as follows:

• Supporting a composition task in an offline context (i.e. not performed live), for
example, when working in a Digital Audio Workstation, on a paper score or com-
posing with an instrument.

• Creating, configuring and performing with intelligent performance systems such
as improvising musical agents and intelligent augmented instruments, where the
system is perceived as having creative agency in some capacity. This has been a
popular topic of discussion in communities such as the Live Algorithms for Music
and Musical Metacreation research groups.

• Meta-designing musical interfaces to be used in creation or performance. This
area is exemplified by the work of Rebecca Fiebrink with her Wekinator software,
which can be used for rapid on-the-fly mapping by non-programmer users in a
range of contexts [17].

• Developing bespoke systems with niche applications. A recent popular example
is Holly Herndon’s AI choir, which does not aim for a dominant creative role by
AI in the musical composition, but a more specific creative function within her
compositional work.

The first area is vast and Iwill consider it in a bitmore detail. AI-supported compo-
sitionmay be a collaborative or solo activity in any number ofmusical cultural niches
from commercial studio production to highly experimental art music to educational
contexts. Common tasks include melodic-, chord- or drum-pattern creation, arrange-
ment, orchestration, harmonisation, timbre selection, expressive performance render-
ing (as in ‘groove quantise’) and related production tasks such as mixing and mas-
tering (as performed by the successful commercial software service Landr (https://
www.landr.com/)). Contextual factors for the task may include adaption to existing
musical content (e.g. selecting a chord progression to fit amelodic line), and selecting
styles and other parameters (e.g. achieved through selecting a training corpus). Two
important use-case paradigms here are rapid ideation, as performed by Aiva (https://
www.aiva.ai/), where the system’s main purpose is to support the rapid ideation of
potentials; and a producer–session–musician relationship, where the system’s main
purpose is to provide modular adaptive units for insertion into a composition, as
popularised in amateur production by Apple’s Garage Band software (https://www.
apple.com/au/mac/garageband/). Slightly distinct from these two paradigms is the
situation in which there is more of a conceptual commitment to the idea of the system
being an autonomous independent creator, or more loosely sometimes acting as a
‘collaborator’ (examples include the Sony CSL-produced Daddy’s Car track [31]).
One other related category is the creation of adaptive compositions such as music for
games or VR/AR experiences, where the preparation of a composition is performed
offline, but its ultimate structuring occurs at listening time. However, this category
of activity is more correctly placed in the ‘Tools for Consumers’ category.

Tools for consumers might include systems for democratising music production
and generative music for games and other interactive experiences. We can imagine

https://www.landr.com/
https://www.landr.com/
https://www.aiva.ai/
https://www.aiva.ai/
https://www.apple.com/au/mac/garageband/
https://www.apple.com/au/mac/garageband/
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that as such tools emerge the specific use-cases in which consumer-based generative
music might occur will evolve. For example, with the rise of predictive tools in
text messaging and richer text media such as emojis and gifs we can imagine the
automation of creative content such as images or music becoming applied to rapid-
fire social interactions.

1.4.1 Design Evaluation

The design process is strongly focused on the evaluation of tools in the hands of
users, feeding back into improved designs in an iterative cycle. For example, tools to
support music ideation can be evaluated in terms of the speed of development of new
musical ideas, how well they enable a creator to break a creative block or discover
new directions (as reported by the creator, for example), or how well they augment
someone’s musical skill (for example, could a system that enables style transfer
support an expert jazz musician to transfer their skills to Latin music styles?).

Compared to the earlier philosophical perspective, the system’s creative autonomy
becomes a broader but somewhat more measurable issue from a design perspective:

• Does the system create music well (canonically) under given stylistic or task
constraints? In many contexts, such as generating a piece of music for a YouTube
video, we aren’t necessarily concerned with whether a system is innovative, but
whether it can produce functional music that conforms to stylistic requirements.
Thus, a need for typicality may be key [32].

• Does the system creatively innovate? Does it evoke a sense of being talented,
maverick, surprising or inspiring? This may be more useful in the context of
breaking the creative block.

• Does the system give the impression of either performative agency (demonstrating
autonomy in a performance context) or memetic agency (demonstrating agency
over a cultural timescale) [33]? Giving the impression of agency, regardless of
what is actually produced, may be an important factor in certain contexts such as
interactive performance contexts where liveness is at stake.

Here, the context of the creativity activity has a nuanced impact on how we might
judge the importance of any system’s intelligence and autonomy. In a performance
context, for example, the sense of autonomymay be an important aspect of the expe-
rience of the work. In a creative production context, the system’s creative autonomy
could potentially problematise the author’s sense of ownership of the work, if there
is a strong relationship between authorship and identity. In a commercial context,
this may be less the case if the identity of the work is more anonymous, but creators
may nevertheless be concerned about the technicalities of ownership, i.e. issues of
copyright.

Such concerns regarding contextual factors in the evaluation of music AI systems,
from a design perspective, naturally invite a number of sociological questions, which
form the next stage in this discussion.
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1.5 The Sociological View

Amore recent development that builds in turn on design practices is the introduction
of sociological perspectives on howwe think about and study creative practices in the
AImusic space. Sociological perspectives naturally complement design contributing
practical extensions to design researchwith ethnographicmethods for the observation
of producers or consumers of music. Since designers focus on understanding use
in practice, social and cultural factors are naturally important; how we use cars
or kitchens, for example, and therefore how they should be designed, is deeply
entangled with our social patterns of behaviour, which vary greatly across cultural
contexts. Ethnography emphasises situated qualitative research that holistically takes
into account the cultural context in which people operate, where ‘culture’ might
refer equally to what differs between bedroom techno producers and commercial
pop producers, as to what differs between religious rites in Cuban Catholic and Thai
Buddhist groups. Music can safely be considered an exemplary cultural activity; we
inhabit niches of musical style specific to our cultural backgrounds, and we find
music playing a role in a wide number of critical social activities from funerals and
weddings to the formation of friendships and the playing out of everyday shared
experiences. Yet a sociological perspective has revealed how even seemingly non-
cultural activities such as scientific research are shaped in very important ways by
cultural factors (e.g. [34,35]. In this case, whilst the principle of scientific objectivity
may be closely adhered to, science is still carried out by individuals with personal
ambitions, biases and social relations, and within systems of social organisation that
strongly influence behaviour.

A sociological perspective also provides a frame, building on relevant social the-
ory, with which to conceptualise AI music activity. It is not a neutral method but a
creative one, where conceptual frameworks can guide how research is done. One of
the pioneers of Sociology and Anthropology, Emile Durkheim [36], believed that a
social perspective is to psychology what chemistry is to physics: the phenomena of
the social are irreducible to explanation at the level of individual human psychol-
ogy. Durkheim developed the concept of the collective consciousness to capture the
notion that societies operate in systems of share beliefs, ideas, habits, styles and
attitudes.

Inmodernworkonmusic,Born [37], for example, considers howsocial relations—
such as those amongst musical collaborators, between themselves and their audi-
ences, or in the wider social environment as reflected upon by musical artists—
influence and are influenced by musical practices, styles and cultures in complex but
traceable ways that are subject to useful analysis. A band’s social organisation may
reflect its politics, for example.

1.5.1 Cluster Concepts and EmicVersus Etic Definitions

The sociological perspective is valuable for a number of reasons but one of the
most fundamental is how it enables us to distinguish the analysis of the practice, as
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seen from ‘outside’, from the perspective that emerges from the practice itself—this
is something that distinguishes it from art theory or musicology, for example. In
Anthropology, an emic perspective is a perspective from within the system being
observed and an etic perspective is that of the (in theory) independent observer.
This distinction is immediately enlightening when we consider how we might define
two important but ambiguous terms: creativity and art. From an emic perspective,
the use of both terms may be observed in practice. For example, we might notice
that creativity is closely associated by people with an expression of individuality in
some contexts and more closely associated with occasional genius and a high degree
of training in others (Anna Jordanous [38] was the first to bring this topic to the
fore in the field of Computational Creativity). Likewise, the familiar provocations of
conceptual artists to push the boundaries ofwhat is considered art, and the predictable
cries of ‘this is not art’ from some sectors of the population, highlight how there is
ongoing movement around that concept. We might therefore note that even when
more formal definitions are in play, they are always contestable and blurry at the
edges.

This tallies with how psychologists have come to understand how concepts are
formed and used by people [39]. Rather than adhere to definitions, in practice, we
understand concepts in relation to prototypes. Things that are very similar to those
prototypes are more likely to fit the concept, and their salient properties more likely
to be treated as important to the concept: thus we recognise fluffy dogs as more dog-
like than bald dogs. Pablo Picasso and Albert Einstein might serve as prototypical
‘creative’ people.

Meanwhile, we have to be able to understand what we (as researchers) mean by
these terms evenwhen theirmeaningmight change from context to context. Although
one solution is to seek an operationalisable definition of such terms, as has been
attempted in variousfields, it is arguablymore useful to seek useful technical concepts
that inspire an underlying social or psychological phenomenon. Examples include
work by researchers such as Dissanayake (art as ‘making special’ [40]), Blacking
(music as ‘human organised sound’ [41]), Bloom (‘essentialism’ as a structuring
concept [42]) and Blackmore (meme theory [43]), who attempt to seek the essence
of the behaviour in question.

1.5.2 Social Perspectives on the Psychology of Creativity

A key concept in the study of the psychology of creativity is that creative tasks are
those that inherently involve a process of search for an outcome that has not been con-
sidered before. Thus, a strong focus of creative psychology research is the question
of what strategies and heuristics support effective search. Wallas’ early formulation
of creative cognition [44], for example, identified the four stages of preparation,
incubation, illumination and verification. During incubation, an unsolved problem
goes on the cognitive backburner so to speak, away from conscious attention, but is
still being processed and might respond to salient input; as in the tale of Archimedes
shouting ‘eureka’ in the bath. This process outline suggests at least two cycles of trial
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and error: one internal and subconscious and the other external and overtly evaluated.
A substantial body of more recent work may deviate significantly fromWallas’ early
formulation but shares a common framework of looking at the cognitive heuristics
and methods of search.

Meanwhile, a longstanding body of theory has considered equivalent questions
formulated through a social frame. In a social system, many individuals performing
search are contributing to a higher level collective, parallel search system. Mathe-
maticians trying to prove Fermat’s Last Theorem, for example, are in competition
with each other, but in doing so are collectively collaborating on the problem being
solved faster at that collective level. Thus, the same heuristics of creative search found
in Psychology can also be seen operating at the social level, sometimes more overtly
constructed in systems like market mechanisms, grand challenges in research, patent
law, peer review and open data policies.

When viewed at the social level, it is worth noting that our ability to imitate
becomes one of the most important cognitive abilities in the support of creative
innovation: if we couldn’t learn from each other then creative outcomes would never
accumulate and there would be little benefit in individuals being creative (discussed
for example in different ways by [43,45,46]). Richerson and Boyd [45] in particular
emphasise the importance of social learning to strategic behaviours and to the evo-
lutionary process itself. It is common sense that those most successful in creative
spheres must be trained so that they can ‘stand on the shoulders of giants’. Fur-
thermore, creative activities operate in cultures of practice which create their own
environments of objectives and evaluation (a phenomenon known in evolutionary
theory as niche construction [47]). This is especially evident in the arts and there is
evidence, discussed below, that the practice of artistic behaviours is tied up with the
construction and maintenance of these cultural groups.

Most well known to researchers in Computational Creativity, Mihaly Csikszent-
mihalyi’s systems model of creativity [48] defines such a community as a collective
realm in which creativity occurs, the creative individual being one ‘owner’ of a cre-
ative output, but the community of others who evaluate it and hold it up as worthy is
just as important. Indeed, analysis by Schaffer in the domain of science suggests that
often the attribution of a breakthrough to an individual can be exaggerated, dimin-
ishing the collective action of the community, a process of myth-making that may
perform some functional role.

Whilst Csikszentmihalyi’s work is more well known to Computational Creativity
researchers, one of the most extensive bodies of work studying communities of cre-
ative practice in Sociology is by Howard Becker [49]. Becker’s work is less about
predictive theories and more about a rich description of the minutiae of concerns of
such communities, prising apart the myriad different individuals and the relationship
they each hold to the systems they interactwith. For example, he discusses the esoteric
musical interests of undergraduate music students inhabiting small closed cliques of
extreme experimentalism, a consequence of the intellectual learning environment
they inhabit and compete within. Always, importantly, in Becker’s studies, the rel-
evant community is never a community of artists but may include business people,
lawyers, technicians, marketing people, philanthropists and so on, all contributing
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to the structures within which any other individual operates. The resulting portrait
is one in which any particular individual is pursuing a complex multi-factored goal
that might involvemoney, social status, political intentions, ethnicity, fame, tradition,
authorial integrity, friendships, loyalties, relationships, courtship, lifestyle, quality
of life and rebellion against one’s parents.

Becker’s work highlights the very emergent nature of artistic creativity at this
social level: artist A’s intentions may be very specific to a context that is far beyond
their design, and theirworkmight have an effect that goes far beyond those intentions.
Whilst creativity in artistic and scientific domains has much in common, it seems fair
to say that artistic domains have many more possible and divergent paths of future
development.

1.5.3 Social Theories of Taste and Identity

One of the most influential bodies of work in the sociological study of artistic
behaviours comes from Pierre Bourdieu [50], who sought to understand amongst
other things, artistic taste and its apparent role in social interaction. Bourdieu sug-
gested that theway that taste and embodied knowledge of a culturalmilieu is acquired
is deeply related to social groups and their identities and boundaries. In essence,
we absorb tacit cultural understanding very deeply and at such an early age that it
becomes integral to our identity. It is hard to fake one’s accent, which indicates one’s
social background, and the same is true of intimate knowledge, or lack thereof, of a
cultural domain. Indeed, Bourdieu notes how some aspects of one’s cultural identity
can be acquired in education, learning about the arts at school, say, but some are
so deeply embedded that they are really only acquired by those whose family life
provides the right environment for early in-depth acquisition. These deep cultural
acquisitions Bourdieu terms ‘habitus’.

For Bourdieu, this acquisition and deep embodiment of taste, in turn, influence
social relations in profound ways:

Taste classifies, and it classifies the classifier. Social subjects, classified by their classifica-
tions, distinguish themselves by the distinctions they make, between the beautiful and the
ugly, the distinguished and the vulgar, in which their position in the objective classifications
is expressed or betrayed. [50]

This fits everyday experience: we gravitate towards people with similar taste or at
least we find ourselves situated in filter bubbles of cultures and tastes; we spend time
in the same places or listening to the same radio stations as those whose tastes we
share. This is a more general instance of the way that shared experience can forge
social bonds. Related research has shown that information about a person’s taste can
influence others’ judgements about them, including about their personalities [51].

Bourdieu also introduces the idea of ‘cultural capital’. Like financial capital
(wealth), this is capital accumulated by a person as embodied in tacit or explicit
knowledge, style or status. Cultural capital includes one’s knowledge, acquired
through education, but also one’s taste. By constructing this correspondence with
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financial capital, Bourdieu is able to show how the cultural qualities of people serve
goals and tangible outcomes, and also how the properties of a cultural group define
the context in which each individual must compete. The implication that being a con-
sumer of art or music is a competitive activity was radical at the time and still sounds
counter-intuitive or at least confrontational to a view of art and music as bringing
people together or being of unquestioned benefit to humanity. Bourdieu portrays a
more combative and politically chargedworld ofmusic production and consumption.
He says specifically of music; “nothing more clearly affirms one’s ‘class’, nothing
more infallibly classifies, than tastes in music” [50].

Such strands of research feed a broader potential that music and other artistic
behaviours are functional, in some way, in the formation and maintenance of groups,
or more generally, in the construction of individual identities and relations. Briefly,
then, I consider the related field of research into music’s origins, as viewed from the
perspective of Evolutionary Psychology.

1.5.4 Why DoWeMake and Listen toMusic?

For some, the discussion of social functions for music must go further and seek a
theoretical footing regarding why we make and listen to music. One approach is a
cultural blank-slate perspective where we understand human behaviour as being so
flexible as to adapt to very different cultural potentials. Imagine a child born into a
richly musical culture, whether New York jazz or Javanese gamelan music or Irish
folk. Through their immersion in this culture, they gain a love of their local music,
expertise in it and above all a deep appreciation of its cultural value and therefore
potential personal value. Within this context, they may pursue musical activities
for a range of reasons. We may say that given the cultural context, the individual’s
behaviour can be explained in terms of the cultural motivators that have driven them
to like the music and perhaps aspire to be a creator or collector of it. But a further
goal of a social perspective is to understand how and why this particular cultural
context emerged, not just how individuals act given the culture.

As an alternative to a blank-slate approach, we may consider a deep evolutionary
perspective, in which we seek to understand how Darwinian evolutionary theory
[52–54] may be used to explain how human artistic behaviours and their related
social structures emerged. Darwinian evolutionary theory should be understood in
the broadest sense—i.e. not simple adaptationism or genetic determinism—instead
taking into account the more contemporary concepts of emergence, gene-culture
coevolution and niche constructionism, amongst others. It should be noted that such
a perspective is not widely popular amongst sociologists. Darwinian explanations of
social phenomena were popular in the wake of Darwin’s theory but became severely
tainted by applications to eugenics and other morally problematic or flawed scientific
initiatives.

There are, broadly speaking, four categories of theory of the evolution of human
musical behaviour. In all cases, these needn’t refer to genetically evolved behaviours,
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but be understood in terms of a more complex gene-culture coevolutionary frame-
work.

1. Cognitivist: theories which posit that music supports cognitive development,
helping us think.

2. Consequentialist: theories which do not posit a function for music itself, but
explain musical behaviour as the consequence of a set of other evolved traits.
The most well known of these is Stephen Pinker’s [55] position that music is
like cheesecake; it combines elements that we evolved to enjoy (like salt and
sugar) with novelty and complexity, that we also evolved to enjoy, but neither
cheesecake nor music were themselves directly involved in our evolution.

3. Cohesionist: theories which posit that music is functional in binding groups,
for example, by creating shared rhythmic experiences that reinforce a shared
identity [56,57]. One example is Hagen and Bryant’s [58] theory of music as
a signalling system for a group’s coalition strength, representing their ability
to fight. This draws on the important handicap principle, or honest signalling
theory, which states that a system of communication can evolve as long as it
can’t be cheated. Hagen and Bryant’s theory is that because learning to perform
together takes practice, it is an honest indicator of the cohesion of the group.

4. Competitivist: theories which posit that music evolved through competition
between individuals. The most familiar example of this is the sexual selection
theory of music [59], which states that males attract females with their music
performance ability, music being here an honest indicator of cognitive ability.
But in fact, the same logic that underlies sexual selection theory, based on honest
signalling theory, can be applied in many other ways. Of particular interest is
the potential to derive a competitivist model based on the work of Bourdieu.

In all cases, it is necessary to consider emergent factors and interactions between
these different forms of explanation. Certainly, at some level, a consequentialist view
must be foundational tomusic’s evolution, since wewouldn’t havemusic if we didn’t
first have ahearing apparatus, and someof the auditory perceptual abilities that clearly
preceded human evolution [60]. The cohesionist and competitivist perspectives can
also be seen to interact: it follows that if music plays a role in supporting cohesion
within groups, then it also sets up the conditions for there to be competition within
the group on the same grounds.

I only briefly touch on this subject here to highlight some of the ways in which
the social nature of music generally exceeds the kinds of factors taken into account
in current AI music models. Although sociologists and evolutionary psychologists
generallywork in different realms, both of these strands provide a footing for thinking
aboutwhat underlying factorsmight fundamentallymotivatemusical enthusiasm and
pleasure. Thismatters a great deal because it influences howweunderstand individual
social motivations and pleasure responses related to our creation and experience of
music. These factors draw attention to the great difference between what situated
contexts AI systems inhabit when they create music and those that we inhabit.
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1.6 Discussion

Just as the design perspective has been thoroughly embraced inAImusic practice, the
sociological perspective seems to be taking hold and promises to contribute to a far
richer multidisciplinary field. What can AI currently do, and what can sociological
and design perspectives do to both support and critique the development of AI music
systems?

The above discussion points broadly to two related ways in which current state-
of-the-art ML systems do not employ ‘human-like algorithms’ of music creation.
Firstly, most do not perform an iteration of search and evaluation. And secondly,
they do not perform generative actions grounded in matters of taste, identity and
human motivations.

This is not to say that we couldn’t very soon derive systems that would satisfy
these requirements, especially given the big data resources related to musical culture
that are available. This can be achieved by training systems that are not just aware of
musical content but also of the context, the cultural associations and meanings of the
musical corpus being ingested by an algorithm. This requires a paradigm shift: the
currently cutting-edgeML algorithms are still only predictivemodels (whereas in the
Computational Creativity community there are in fact many examples of evaluative
and iterative search-based models, such as [61,62]). They take a corpus of music
to infer expectations about what the next note will be in a sequence. Anecdotally, I
have heard an ML model trained on the music of David Bowie being described as
a ‘David Bowie simulator’, yet this is far from an accurate description: the artist’s
awareness of the culture and his position in it is completely missing from themodel –
it is actually absurd to suggest you can model David Bowie, as a system, by looking
at the output of that system. Models of taste, identity and motivation will become
important as the next step in powering a more human-like AI generation, if this is
what we want.

In fact, we might position the current most popular algorithms at the second
stage of a possible four-stage hierarchy of more culturally-oriented models of taste
acquisition:

1. Universal rules of aesthetics, such as those of [63], which assume that despite dif-
ferences in taste, there are common rules to what makes something aesthetically
pleasing;

2. Experience-specific models, sophisticated versions of which posit a universal
cognitive mechanism combined with adaptation. For example, Berlyne [64] pro-
posed models of cultural evolution in which individuals learnt and then became
saturated in their preference for certain stylistic traits. Similarly, Ramachandran
[65] proposes a number of existing cognitive strategies related to learning about
the world stimulate aesthetic pleasure and are, equally, subject to adaptation
through learning (this is another consequentialist theory). One example is the
peak shift principle, which states that once we’ve learnt a structural property we
tend to seek it in its extreme (explaining how some genres evolve towards more
baroque forms);
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3. More overtly curiousity-based models, in which we are stimulated by our ability
to build effective models of the world, those forms we find most learnable being
thosewe enjoymost. Versions of this concept can be found inCsikszentmihalyi’s
‘flow’ theory [66] and in the work of Schmidthuber [67] andWiggins (e.g. [68]);

4. Approaches in which all of the above are situated in the context of life strategies
that shape an individual’s interaction with a musical corpus. Arguably, we don’t
really have any good models of this. There are some experimental models that
have tentatively explored this stage in the hierarchy, such as Saunders’ curious
design agents [69].

An additional level of complexity comes from the fact that musical styles and gen-
res might embody extremely different sets of rules regarding innovation, authorship,
copying, referencing, collaboration and what is considered the fixed and important
parts of a composition versus those immaterial and changeable parts. Musical scores
in Common Music Notation are treated in some cultures as instances of pieces of
music, but many electronic music composers would not consider a score to be a suit-
able representation of a work, sonic timbre and microtiming being critically defined
only in a machine rendering of the work. Regarding authorship, the importance of
the author’s identity may be far less present in commercial jingle composition than
it is in hip hop. Where authorship matters, highly regarded authors are able to create
value around their work. Regarding copying and innovation, in Jamaican dancehall,
it is common to produce many different variations using the same riddim (backing
track), whereas reuse of previous material might be considered lazy in other music
scenes. These types of variation impact the kinds of behaviours a human creative
practitioner might engage in, cutting to the heart of how they make decisions as
simple as, say, what note comes next in a melody. All of these nuances are arguably
essential to marking out a music scene’s identity; if current ML algorithms are to
embody human-like musical behaviours, we have to ask which of these behaviours
they are targeting. What type of musical role or musical activity, whether existing in
the human realm or not, is the system aiming for?

We should also be conscious of how AI ‘disrupts’ these various cultural spheres,
and recognise cultural applications as just as potentially dangerous as other areas
of activity, in terms of the possible damage AI could wreak. Both the sociological
and evolutionary perspectives on the potential social function of music suggest that
disruption in the means of cultural production or the experience or dissemination of
cultural products could, in perhaps very subtle ways, upset core processes underlying
the formation and maintenance of communities. Perhaps not in the near future, but in
the long term, such technologies could have devastating potential, in line with recent
developments in the manipulation of electorates via social media disinformation.

Pointingout theways inwhich currentML technologies are not simply comparable
to human creators certainly does notmean that such systems are not useful or effective
tools. From the design stance—unencumbered by the need to argue for or aspire
towards AI human-likeness, and simply focused on how such systemsmight enhance
creativity—such tools may clearly perform a novel and potentially useful function.
But I would argue that with the exception of more practical user-interface focused
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work such as Fiebrink’s, or very domain-specific functionality such as the Landr
service (my own very much included), many existing music AI projects have been
more conceptual than they have been practical and have yet to prove their use value
in tangible examples. Whilst it remains easy to generate hype around the use of AI
in music, it remains hard to spot more sustained uses of the technology.

A sociological view can also be used to understand AI music systems as creative
contributors in social processes of creativity, returning to the discussion surrounding
how creators’ creative authority interacts with and may give over to the contribution
of an AI system (with reference to Fig. 1.1). A system that generates completely
novel musical content, even in the hands of an operator who is manipulating settings,
datasets and so on, should be understood as technology that extends the basic creative
mechanism of search in potentially powerful ways, as has been explored extensively
by Computational Creativity researchers [70–72]. It is cognitive machinery of a sort,
as seen from the perspective of Clark’s extended-mind hypothesis [73]; it can be
seen to possess material agency, in the language of Lambros Malafouris [74]; or
secondary agency, in the language of Alfred Gell [75].

Richer analysis of such systems might fruitfully attempt to classify and categorise
them in terms of what role they play in this bigger system, with a key distinction
being between generators and evaluators: systems that generate output under the
supervised control of an operator, and systems that analyse output in order to feed
directly into a searchprocess or to provide informationback to the humanoperator in a
conversational interactive paradigm. Such analysis, in necessary detail, is beginning
to emerge and will have a part to play in shaping the algorithmic design and the
interaction design of future tools. As such systems start to be used in practice, it
would seem likely that the emerging design requirements and applied objectives
of such systems will move to outweigh the philosophical questions, but that new
philosophical questions will come to the fore.

Acknowledgements I thank Chloe McFadden for her research assistance in the production of this
chapter.
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2Human–Machine Simultaneity in the
Compositional Process

Hanns Holger Rutz

2.1 Introduction

How can the exchange processes between human artists and software algorithms as
the medium of their work be understood? It is no longer the case that the research
value in art is only validated through other disciplines, and this chapter attempts to
interrogate the possibilities of artistic research to shed light on this question. I will put
a particular computer music system and various pieces and studies made with it into
a dialogue with theoretical explorations, focusing on the question how temporal rela-
tionships are established that subvert the instrumental reasoning often foregrounded
in technological discourses. What happens to the rudiments and failures, and how
can turning away and disconnecting from real-time coupling help to think compu-
tation as a domain that includes the relations that were built by us through careful
and long-term investment? How can the elements that appear in software systems
be seen as carrying a transformative potential, and what does it mean to share these
elements with others in a togetherness that avoids a regime of cause-and-effect?

I spent much of my adolescence in front of a computer screen. Amore appropriate
description would be to say that I was in the computer. To become immersed does
not require a particular technological finesse. I returned from holidays after two
or three weeks away from the computer, and I was astonished when I booted up
the computer again: The screen had become a flat surface, the plasticity and three-
dimensionality that I was used to had vanished, it would require some time for
me to reinhabit that virtual space. Computers and computation are complexes that
are not exhaustively described in technological terms, in terms of informatics and
mathematics, because the relationships we build with them are as important. These
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relationships in turn are not exhaustively described in terms of cognitive processes
that eliminate the materiality of the exchanges, that conflate both sides of the relation
by either implying that the computer should be a transparent and generic vehicle
supporting the human creative nature, or that in turn human cognition is just a peculiar
form of computation. Instead, humans and machines come together as cognitive
assemblages [19] in which the exchange processes and dynamics themselves become
the central element, and whatever emerges from this connectedness is difficult to
separate and attribute to either agent. The idea of a hybrid human–machine agency
is central for many thinkers, for instance, Karen Barad describes the objects or
phenomena arising from scientific experimentation as coproduced in the coming-
together of researcher and apparatus [3].

With this perspective as background, I want to describe what happens in computer
music and computer sound art composition,when the humanartist forms a connection
with their machinery or programming environment, particularly if that environment
has been co-created or shaped by the artists themselves, not unlike the tools and
arrangements that scientists develop in order to conduct their work. Originating from
my research on the temporal relations in the compositional process [34], I will take as
example the computer music environmentMellite that I have been developing since
several years [32], and look at the temporal and cognitive relations between the artist
or composer and the computer system. Mellite appears as something that vacillates
between a technological infrastructure for the composition and performance of sound
works, and anoftenunstable researchdevice that is used to understand these processes
through artistic research.

Some of the cases presented are anchored in the project Algorithms that Matter
[38] which investigated the agency of algorithms as emerging from human–machine
interaction, and how the work with algorithms reshapes the way we think about our
role as artists. It is implied that algorithms are—like computation—not delimited by
narrow technical definitions, but that they are “ontogenetic in nature (always in a
state of becoming), teased into being: edited, revised, deleted and restarted, shared
with others, passing through multiple iterations stretched out over time and space”
[21, p. 18].

The chapter is structured around terms and concepts that, when put together, form
a picture of human–machine coproduction in the compositional process. Instead of
one concept following from another, they function as simultaneous perspectives that
complement each other. Each section breaks down its concept into two levels, a rather
theoretical and abstract one, and a technical–practical one rooted in the practice with
the computer music system. What the text will work towards is a counterbalance to
the compulsivity of the computational medium to force the image of connectedness
on us, always being coupled, alwaysmoving along arrows provided by the operability
of digital objects. The balancing is performed by acts of suspension (to set aside for
a time), relaying (to pass on in a shared effort that maintains a critical concern)
and searching for states of simultaneity where heterogeneous things can meet in a
common reference frame without arrows of causation or asymmetrical dependency.
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2.2 Machine as Projection Space

It is an often shared view that machines and technologies extend or substitute our
abilities and thereby can be thought of as prostheses. The computer’s “memory”
and storage media extend or substitute our memory, for example. But beyond being
merely mnemotechnical devices, they produce novel operations and novel spaces,
which turn familiar at the same time they are inhabited by their users. We project
our doing and thinking into these new spaces, which arise not out of thin air but as
a result of the investment of work in the infrastructures that bring them about.

Who makes this investment? In the case of computer-based art, there are, first of
all, a number of professional companies producing software for a user base abstracted
to a certain degree. Here the investment is primarily an economic one, even though
it is driven by “usability” and the valuation of the user base, thus also becoming part
of an artistic investment in an indirect way. This relation is inverted when looking at
softwaremade by amateurs—artists and researchers who are often not professionally
trained in programming, mathematics or computer science, who cannot compete in
the economical sense, who cannot conduct studies with larger user bases and adjust
their software process accordingly, but they rather build software as a direct artistic
investment. No software is isolated, it always builds on existing software, in the
ultimate case the compiler for the language in which it is written, but more often
by extending or incorporating an existing platform. And therefore, artistic software
almost always requires a number of softwarewrittenwith other strategies and goals in
mind. A useful model for this relation is Hans–Jörg Rheinberger’s distinction along
the continuum of technical devices and epistemic things [28]. As a technology, a
computer and a software system can never be purely epistemic things on their own,
this would be a false idealisation, however in their tentative, unfinished form under
constant reconfiguration by the researcher or artist, they rely, on the one hand, on the
stable subroutines embodied by the existing software they built on, and on the other
hand they become crucial elements in an epistemic endeavour (and epistemic can be
read as artistic-researching in this context).

While it is absolutely valid for an artist to work with a set of tools purely created
by others, there arises the particular situation of an artist working with software
created by themselves, as here a reciprocation happens between the creation of an
infrastructure for projection spaces and their inhabitation, the population of a space
of material representation as Rheinberger calls it. This highly individual perspective
is different to one that looks, for example, at the general “conditions of creativity”
and how software could support it. It is to make a case for writing software as an
irreducible strategy of artistic research where the computer medium is central.

The writing of artistic software is a formal re-entry. This term, going back to
mathematician George Spencer-Brown, is used by system theorist Niklas Luhmann
to ask what happens within a system when a form is distinguished and the “other”
of this form is omitted because form and distinction (making form) become the
same: We only ever find ourselves on the inner side of the distinction [23]. It is
reminiscent of Rheinberger explaining “pure” representations as interventions that
lost their correlational reference. In a paradoxical self-reference, there is a writing
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underlying the creation of the artistic software that in turn makes this underlying
writing possible at all. We can analytically distinguish between the two writings, the
creation of a software, and the application of a software thus created, but this is just a
temporal and fluctuating distinction. When I writeMellite the software, when I write
a piece in Mellite, and when I write this text about both, the three principle writing
processes are entangled and aligned. It means that none of these three can have
been written without the other, and also that there is a formal recurrence in the three
regarding the way they are written. Thus, there is a moment of selfsame authorship,
voluntary or not. The entanglement implies that I can merely make analytical cuts,
they are after the fact as there is always a correspondence, a reciprocal exchange
between the layers and instances of writing. In the end, it is a contiguous endeavour
in artistic production and research in which these three forms are complementary.

Each layer of the writing is excessive in the sense that it will always produce
something unexpectable, not planned for, and most importantly, something whose
use and function is not known yet or ever. This graft or cruft, what has unintendedly
grown during the work of writing, can become a crucial topological element in the
space, an element that is much more likely to be removed if we had looked at a
software written by an organisation for a general user base, much less likely to have
even existed in the absence of the personal, artistic investment.1 The grafting of
foreign elements onto the artistic process, this type of contingency, is often part of
the artistic strategy, and one should not be ashamed to admit it, indeed one should
study the conditions that make it possible.

Workspaces

I nowwant to lookmore closely at the particular projection space enabled byMellite.
If we think of the representations of the graphematic space afforded by a machine,
we may begin with the “handle” by which we refer to them. According to a known
bonmot, naming things is one of the hard tasks in computer science. But it is not only
hard, but full of consequence, as it shapes how we think about that which obtained
the name. What is it that we compose and work with in a computer music system?
A patch (Max, PD), a document (SuperCollider), aworkspace (OpenMusic) a project
(Logic Pro), a session (Pro Tools)? For a time I alternatingly used the words session
and workspace in Mellite, then settling on the latter. Why not session? A session
is a meeting delimited in time and space, with an element of repetition, such as
musicians coming together in a studio and making music, or the scheduled meeting
with a psychiatrist. We do not return to the same session, but when we compose,
we return to the same set of objects, sketches, sounds, ideas. A workspace, on the
other hand, first sounds like a container of varying content and a set of tools. But
it is also more specific than a workshop, it includes the particular organisation of
the space with respect to a work carried out. In computer software, the term is often

1The non-removal I also call non-selection, see Rutz [35].
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found to describe the set of objects that form a software project within an integrated
development environment (IDE) such as Eclipse or Visual Studio. I describeMellite
as an integrated environment for composing and performing.

The comfort of the digital workspace is that one can have multiple of them, each
becoming fitted over time with the elements belonging to a particular project. The
metaphor of a space with objects is of course as old as graphical user interfaces are
for operating systems. If one instals the full operating system image of a Raspberry
Pi miniature computer in 2020, one will still be greeted with a “desktop” and a
“wastebasket” after booting finishes. In our digital second nature, it feels intuitive
to project spaces into these tiny machines. Like physical spaces, we can have them
turned into a mess, we can go and invest time to clean them up, and so forth. This
is not changed by the fact that the nominal and visual metaphors drift according to
trends in software design, and this space still exists in mobile phones that do away
with desktop imagery and file system navigation—we simply learned again to inhabit
these differently designed spaces.

Is a workspace a volume or a hypertext? Certainly, there is a nesting of spaces
within spaces: In the interface, we can open an object to enter a new (sub)space. The
space in the workspace is the twofold space of Spencer-Brown: Unmarked space
or virtuality on one side, and marked space or carved out forms on the other side
[44]. It is an inhabited space, a personal space filled with relations (hypertext), but
also a proposition to elaborate it further (an extending volume). The hybrid nature
ofMellite’s workspace becomes clear when looking at the underlying data structure
and its visual representation which, more or less involuntarily, reveals this ambiguity.
The data structure is simply a graph of interconnected objects, some of which have
classical spatial representations, such as the Folder which contains the list of other
objects, or the Timeline which associates a list of objects with positions along a time
axis. The graphical interface uses dedicated renderers for each type of object, and
one always begins with a “root” folder, from which one can then access the views of
the contained objects, which again could be other folders, or audio files, or a timeline
object (Fig. 2.1). However, objects can be associated with more than one container-
like object, thus within any one set of currently visually rendered subspaces, the same
object may appear multiple times—like a variable in text programming language—
thereby breaking with our experience of physical spaces as well as weakening the
analogy with patcher-based programs. Clearly indicating those multiplicities for the
user is one of the open tasks for the future development of this interface.

Why is the workspace as such important, why not begin with a description of
objects that Mellite offers for its population? In a conversation, I was recently con-
fronted with the argument that the computational medium always presented itself
as a network of dots and arrows and no notion of emptiness or isolation. What was
thus crucially missing for the computer artist was the element of horror vacui. But
the void here exists both in the ever extending volume as well as in the blank new
object (empty folder, empty timeline, empty code fragment). The blank new object
has this quality of vacuum. There exists also the opposite sense: Working in a tradi-
tional digital audio workstation (DAW) can feel claustrophobic; there is no space to
put things other than on dedicated positions in the timeline. Unless it is a supported
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Fig. 2.1 A screenshot of Mellite, showing a number of objects in the workspace of the electroa-
coustic composition Shouldhalde (work in progress)

object such as an audio file that can live in a list of audio files. Otherwise one has to
organise their space elsewhere.Mellite’s workspace is designed to allow for different
ways of organisation and heterogeneous objects, more akin to a patcher or the set of
source code files in a purely text-based environment.

When marking this intermediate position between a stable technical subroutine
and the material embodiment of an always under-determined epistemic endeavour,
it implied that I am presenting Mellite and its workspace in its current form which
may always become subject to slight or more radical change in the future. The aim
is, therefore, not to give an explanation of what its workspace is and how to use it,
but to understand how and why it came about. From the actual application, there
is a gap towards the structure as I imagine it. For example, it should be possible
to produce any kind of indices into the underlying graph of a workspace, so that a
timeline is just a selected index over time spans, but one could as well generate a
new index by the duration of contained objects, by their colour attribute or name, by
their sonic features, etc. What are all the possible ways in which one may want to
organise objects in digital spaces?

2.3 Temporal Interleaving

The sonic arts are largely time-based art forms, and as such capable of producing
curious interleaving between the temporal dimension of their performative expres-
sions and the temporal dimension of the production of the artwork. Even in the “most
spatial” form, sound installation, in which the work has a relatively weak authority
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on the temporal ordering of the recipient’s perception—equally structured by their
exploration of a site or space—most works can still be described in terms of tempo-
rally composed elements. In this case, one may place the composer’s writing process
as an antecedent to the temporal unfolding in the exhibition or performance of the
work. If we hypothetically distinguish between a performance time (prescriptive,
composed or in its reenactment and actualisation) and a creation time, in which the
prescription is written by the artist, these two layers seem neatly separated, so how
can we claim their interleaving? The obvious counter case would be improvisation,
in which decision-making happens clearly in the temporal vicinity of or simultane-
ous with what the audience hears. But there are three less obvious and qualitatively
different aspects of interleaving.

The first one could be described as a sedimentation of time “in a piece”. It begins
with the almost trivial assertion that it takes time to make a piece, to select and form
its elements, to develop the thoughts and gather the experience that shapes it. It may
appear that this time is erased from the piece as it takes its final form, unless there
is a manifest way in which temporal context is embedded, for example, through
the use of field recordings or references to the events of the day. Or think of Luc
Ferrari’s piece Dialogue Ordinaire Avec La Machine in which one hears him talk
in his studio about the composition process [14]. But this time always participates,
through the way it was invested in the process, in the production of excess that is
reflected as ingression into the piece. Because of this participation, it is not possi-
ble to see these ingressions as purified and “outside time”. Even if one imagines
the purity of Iannis Xenakis’ outside-time structures that he can manipulate without
the constraints of “lexicographic” ordering [47, p. 160 and passim], the conceptu-
alisation of this type of structure, its plain possibility, as well as the manipulations
performed, shielded from the audience’s ears, are embedded in time. As Sara Ahmed
elaborates in her look “behind” phenomenology, in the constitution of the figure of
an object, its background is not just what is dimly perceived around a thus isolated
or “bracketed” foreground, but it also denotes “the conditions of emergence or an
arrival of something as the thing that it appears to be in the present” [1, p. 38], and the
arrival takes time that is not hollow but active in forming the direction of the object.
This arrival includes us who witness the arrival, thus Ferrari’s self-citing does not
remain the type of bracketing performed by the reciting “non-serious” actor on stage
that Jacques Derrida dismisses as totalisation of intentionality in the speech act the-
ory, and context is not escaped but infinitely produced without originary anchoring,
leading to aforementioned excess [9].

The second aspect is the introduction of the computational medium, as yet another
writing process that is relocated into the performance. Generation, transformation,
selection and rejection are built into the composition as programs to be invoked and
actualised in the performance. This does not go as far as the automatic reprogramming
of a composition’s code, but it must go beyond the pre-established course in which an
algorithmic composition unfolds irrespective of a performance context. There must
be a sensitivity towards “the unexpected, the singularity of events” [10, 236f].

The third is a rotation of perspective from reception to production. Pieces here
become interpunctuation in a long-term process.What is marked as a “piece” is often
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transverse to the actual writing nexus.We have one bodywith one set of tentacles.We
can only tend to one thing at a time, but we fluctuate across confluent projects, soft-
ware components, pieces. Pieces are often cut from this fluctuating nexus—just like
decidingwhen to take a developing photo out of the acid bath—and in order to under-
stand the writing process, it may be more useful to establish object-series related to
one another, not necessarily in chronological order, through reconfigurations within
a set of commonalities (cf. [36]). And finally, the sets of tentacles multiply, as we
move towards collaborative works, and a whole new dimension is added to these
topological reconfigurations through the simultaneous arrival of multiple agents.

Transactions

When I developed the temporal model that eventually became a fundamental layer of
Mellite, I was still guided by the techno-optimism of capturing the “entire” compo-
sitional process, using as basis the concept of a bi-temporal database, which posits
valid time—the temporal information represented by a datum in the database—
against user time—the time, when a user modifies the database. It is no coincidence
that the former, referring to the “real world”, is often represented as durations, time
and date intervals, whereas the latter, referring to the digital realm, is often repre-
sented as discrete and duration-less instants.2 From a technical perspective, it ismuch
more difficult and rather useless to think about the process of entering or deleting
data as something that takes time. The datum was there; now it is not there; it had
value A, now it has value B. There is no space for uncertainty. Of course, every
implementation will take time, but logically it must be atomised, especially where
concurrency comes into play—multiple actors operating within a common space. It
is from this background that the concept of transactions was developed for database
systems.

As the name suggests, a transaction is something that spans across actions, “… the
actions of a process are grouped into sequences called transactions which are units of
consistency.” [13] Let us take a simple example: Given a list of elements, move the
first element one position down. If the list was realised through single links from cell
to cell, where each cell contains a value (element) and a pointer to the next cell (or
terminal symbol), the computer might perform three actions: Set the next-pointer of
the former first cell to the former third cell. Set the next-pointer of the former second
cell to the former first cell. Set the pointer to the list head to the former second cell.
To the computer system, and likely to the user as well, only the ensemble of the
three actions makes sense, thus forming a transaction. A transaction as a semantic
unit, therefore, forms a higher level of atomicity than the actions it is composed
of. Concurrent transactions are isolated, so if two users try to move elements in
the list, this cannot overlap in time, but parallelism must be coerced into sequential
order, possibly aborting and retrying the transaction of one user if it would conflict

2Compare the opposition of time as passage and time as encounter in Rohrhuber [30].
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with the transaction of the other user. These three properties, atomicity, consistency,
isolation, along with a guarantee that the effects of transactions are made durable on
a secondary storage, define the classic ACID acronym of database systems.

Digital systems are transactional through and through. When we type a character
in a text editor, we expect the cursor to move in the same instant as the character
is inserted. When we save the text buffer, we expect it to complete with the entire
contents saved (or nothing at all, if there is an error). If saving means the hard disk
has to spin up because it had been automatically parked due to inactivity, we accept
that during this physically perceivable time span, we cannot do anything useful in
the editor. To a certain extent, we become transactional ourselves, in the way we
anticipate the machine to work. But perhaps also in the way we consider other
elements outside the machine?

Mellite was thought with the orthogonality of performance and creation time in
mind, with the goal of being able to observe the latter and the prospect of possibly
linking the two in some way. It turns out that both objectives are quite complicated.
Automated observation requires a prior definition of a boundary within which pro-
visions for observing (trans)actions are implemented. This happens by extending
the transactional object modifications with a history-preserving data model called
confluent persistence [15]. In the linked list example, it means that after updating
the list, we can determine the point in time preceding this update and view the list
at this point in its “old” state. In contrast to delta-based versioning systems such as
git, an analysis must heuristically reconstruct from this information the changes that
happened in between two transactions. This is cumbersome but feasible, as demon-
strated in Fig. 2.2 that shows the creation of an electroacoustic music piece, with
performance time on the abscissa and creation (transaction) time on the ordinate.
For simplicity, what is highlighted are the time spans of objects that were created,
deleted, moved, resized or otherwise modified, sufficient to see particular patterns
of working with the timeline. While this is an interesting result for the study of the
compositional process, two strong limitations arise. The principle idea of the com-
puter music environment rests on the possibility to write code that produces and
transforms structures. Arranging audio file snippets on the timeline is a very tight
boundary for observation. With code fragments, it is not a priori clear what consti-
tutes a transaction. Versioning systems like git avoid this problem by requiring the
user to decide when to commit a new transaction. In Mellite, the current solution
is similar—changes to code fragments have to be explicitly saved. Still, analysing
what happens semantically between two versions is difficult. Moreover, since the
system is always at the threshold between stable technical component and unsta-
ble research device, the development of various sound installations has shown that
staying within the confines of prior coded object abstractions is impossible. There is
always a moment when implementing a new algorithm or mechanism exceeds what
is currently possible with the given objects, and thus one moves from the domain-
specific language provided byMellite to the general object language, Scala, in which
it is implemented and which is not under automated observation itself. Extending
the system to accommodate these algorithms in the future also happens outside the
provided observation system, confirming the entanglement of the different writing
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Fig. 2.2 Visualisation of the work on the electroacoustic study (Inde)terminus (2013), its five
sections are shown as columns. In each column, creation time (transactions) advances from top to
bottom, and the horizontal extent covers the section’s performance time (duration). Black markings
represent the modifications to the piece

processes. Finally, we leave programming languages altogether, whenever our work
within the computer is suspended; perhaps we sketch on paper, or we read, write and
talk in a natural language, “evil” andmessy since it cannot be cast in the stratification
of object and meta languages [17].

Secondly, linking the two time domains is difficult, because a relatively complex
concept must be represented within a relatively confined embedded language. An
attempt was made to explore this option at least as an artistic research experiment
rather than a stand-alone composition, creating the étude (Inde)terminus in which
an explicit mechanism is introduced to manually trigger a recursive replacement
of audio files in an electroacoustic composition [33]. It is another example where
writing a new abstraction—the representation of the recursive element—is part both
of writing the computer music environment and of writing a particular piece. Indeed,
it proved to be so specific to this study that the abstraction has since been removed
again from the software. As a new embedded “glue” language within Mellite is
shaping up to be able to write more expressive algorithmic couplings within the
system, naturally this would be the place to introduce new elements that represent
the creation and modification time of objects. To make any sense, this introduction
would have to coincide with the composition of a piece that requires the use of
this data. So no matter how one looks at this development process, it is clear that
apparatus and objects produced from it always coevolve.

Expectedly, building a system based on transactions produced a number of effects
accidental to the design goals. For a long time, especially while the system was in
a less stable state than it is today, the property that transactions can be rolled back,
played an important role in living with error. Transactions are performed in sepa-
rate phases in order to guarantee the isolation property. In the first phase, accessing
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(reading) and updating (writing) objects are recorded in a log. If another transaction
tries to access or update the same objects concurrently, the actions recorded in the
log are reverted. Only when all actions that make up the transaction have success-
fully completed, the changes in the log are made permanent in the second phase or
commit phase. Programming errors can now be handled as if they were a conflicting
concurrent transaction, reverting the log but not attempting to run the actions again
as in a usual conflict. Therefore, if the transactional layer is robust and implemented
correctly, the system is relatively immune towards propagating errors in the evolving
and more unstable code to places where actual damage is done (such as corrupting
the workspace database). It is only this behaviour that permitted the system to be
actively used even while parts of it are in precarious state.

Another effect that retroacts on the compositional process is the image we have of
ourselves as humans in relation to transactions.We can think transactional and atomic
in the small gestures, but in the larger context we are never transactional as humans,
we do not “roll back”. If there is anything like transactions, we rather abandon them
than complete them. A transaction leads from consistent state to consistent state. We
are not consistent. But we suspend, we bend. The time the computer actually takes, it
is our time of simultaneously doing and thinking other things. There are indications
that we perform simultaneous threads in the compositional process, through opera-
tions of deferral for which this isolation from the computer transactions is important
(see, for example, the process-synthesis model of [7]).

2.4 Work

When we speak of computers as machines, it probably relates back to the tradition of
mechanical machines that complemented or replaced physicalwork done by humans
(the first computation machines still had mechanical components). Force times dis-
placement. As today less and less of our work is physical work, but rather thinking,
writing, negotiating, designing and observing machines that do physical work, we
employ the term for any form of production and processing, including computational
data production and processing. A program is written until “it works”. Like the wear
of physical machines, a program or configuration of programs may stop to work,
something may become broken. Bits rot.

But also: Writing programs is “a lot of work” (and creating systems is even more
so) until “they work”. There is the work we invest, the time we spend setting up,
fixing and tuning the system, and the work a running program returns to us is a work
that, because of our investment, is not just the functioning of something we took
off a shelf or somebody else could have written, but it constitutes a critical work
with epistemic value to us. It is us who have overcome the frictions and resistances
of the computer. This investment and return has been captured by Rheinberger as
an opening statement to his theory of experimental systems, which examines the
laboratory culture in the natural sciences: The more a scientist “… learns to handle
his or her own experimental system, the more it plays out its own intrinsic capacities.
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In a certain sense, it becomes independent of the researcher’s wishes just because he
or she has shaped it with all possible skill.” [27, p. 24] The perceived agency in the
system that we have shaped is, to a significant degree, a result of our engagement
with it. Rheinberger employs Lacan’s term extimacy for this situation, where we
are intimately familiar with a machinery even though it is exterior to us. When we
say, “it works”, it signals that we recognise a form of agency has passed over to
the machinery, which is now self-moving or self-governing, even though the overall
agency is still extimately shared, because it was us that passed something over.

Ostensibly, work seems indivisible. Either it works or it does not. Using the
classical idea of the artwork, it is difficult to imagine half of an artwork. We may
say a work is unfinished, thus the thought rests with the completed work. When we
think of a body of works, we use the word piece. The work unites the act of working
and the product, in contrast to labour which seems detachable from the product. In
industrial production, labour is divided. When we rid ourselves of the masterwork
syndrome [12, p. 134], the works of art may be conceived more fragmentary and
open-ended. The double meaning of work or composition as both the activity and the
result seems to reflect a similar ambiguity in processes, which may either terminate
in products or perpetuate as self-sustaining (cf. [31]). This undecidedness is in the
artistic process as well; while one works on a piece, one is often not concerned with
its termination but with a productive sustainment.

This durational mode, the productive sustainment or suspension of completing
the process, allows us to experiment and speculate, and it is here that algorithmic
practices appear as particularly appealing, since algorithmic agency shares such
experimental and speculative tendencies. That work is durational, that it takes time,
is not to say that it is inseparable or indivisible. When we proceed, we make steps,
the discreteness of steps is not in contradiction to sustainment. One would think that
process happens as bottom-up self-organisation and that divisions have to be top-
down, rational, breaking-down. This conceals that the effective motion is vacillation,
up and down, forward and backward. The divisibility indeed ensures the sustainment.
It allows to put things side-by-side, a spatial projection, a random access to and thus
possible rerouting of what has been broken down. For example, Fig. 2.3 shows
a sketch of the sections of a catalogue text about the sound installation Mexican
Tumulus (2018). There is a top-down decision to divide the text into twelve sections,
following the number of speakers in the installation, and to produce an overall text
length of six thousand characters equally distributed across the sections. Both enable
particular movements: First to identify and select twelve subtitles that guide the text
production. This is a request for an effort—find twelve items—and at the same time
an open-ended step—the liberty to assemble heterogeneous things in no particular
order. Also an anticipation: to stop after twelve items and then tend to another part
of the production. Note that this part was suspended with a placeholder or hole in
the last place—“(it’ll come)”. Placeholders are available in all types of writing and
coding. Furthermore, one can always cancel out an item and replace it with another in
the process, or merge two together. It is what happened with the text you are reading,
the number of sections shrank over time.
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Fig. 2.3 A priori partitioning of a catalogue text into sections and number of characters

The division and spatialisation help to handle the simultaneity of things, we fix
them in no prescribed order, we tentatively mark the spaces, so we can return to
them later. We stay in the hypertext, even if the eventual outcome is a linear text.
This suspension of order is not only a quality I can discern in algorithmic practices,
but also in the way dreams are memorised. They appear as episodes, and they may
have had a sequence, but the sequence’s order is often not important or even clear.
An effective technique to mark them is to quickly gather them as captions, similar
to the section titles of the catalogue text described above. This creates an iterability
that allows us to return to each episode and note down its details without complete
loss or shadowing of the others.

I have made the connection between writing processes, the algorithmic, and
dreams on several occasions—for example, in the installationwork Imperfect Recon-
struction [40] and in the lecture performanceFromData to Process [39]—which lead
me to believe that this connection is quite useful to understand writing processes and
algorithmic practices. One aspect in which dreams resemble the algorithmic is in
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terms of their change. Changes happen both in the discrete (separated) and under
discretion (tacit). For example: “the hotel room, now dorm room, now outside field
exposed to rain.” It is not clear whether this is an essential property of the dream,
or it belongs to the mode of their recall, which is challenged with verbalisation, but
there are cases that indicate the essential: “I notice the fundamental error – the room;
I must have confused it, it unnoticeably changed.” Sometimes the discrete has not
manifested itself, yet the limbo is not a continuity but an oscillation—“the tram that
is not”—or it appears as statement of change without qualification—“the town that
changes”. The discretion is an ambiguity that is only seemingly resolved through
statement, because the statement pretends to resolve something that in fact remains
unsaid: “A light source which began moving in space (the performer began moving
in the space).” The observation is not innocent. When I correct myself, stating that
it is not the light source that moves by itself, but the performer carrying the light
source, the observation is responsible for the manifestation of the change. This is
one side of the change, in which we are passive or reactive. We make a move, for
example, we make the observation and statement “the performer began moving in
the space,” but this decision is a consequence to an alien agency or will that encircles
what is possible.

The other side relates to the forward–backward movement described before as
random access. In dreams, this is still constrained and partial. For instance, we jump
across a cliff or fall from a cliff. We observe ourselves falling, we then “develop”
the landscape beneath us. A river appears, and we may either miss it and hit on a
piece of grass next to it, or we reach the water surface without further ado. In the first
case, we possess a limited power to repeat—perhaps not from the very beginning,
but while already in motion—the jump or fall; a new attempt can be made, to correct
the fall’s trajectory in order to reach safely the water surface. It is a partial power,
because it only extends to “incomplete” things; if I had already hit the ground, the
jump or fall could not be repeated. Clocks cannot be fully turned back, instead we
can suspend the situation, reconfigure it and resume it in altered state. Substances
can be transformed: I am rolling within a wave of water, I need air and thus I can take
the required breath of air, thus the water becomes oxygenous or my lungs become
amphibious.

In the speculative mode, one tests a proposition and one may revert and redo it
slightly differently, one adjusts the rules, thus rules are mutable. For example, in a
dream, we travel in space-time, but a problem occurs, a physical impossibility in the
contact between the traveller and those who “stay on”. Something did not work or
would have terminated the dream. We introduce a “solution”, perhaps it is better to
call it resolution to avoid confusionwith the concept of problem-solving (a confusion
that also applies to the surficial description of algorithmic practice): We were not
transparent, thus we speculate and become transparent along with the objects that we
take in possession. If I envelop an orb or a box, it belongs to me, passes over into my
space-time, becomes transparent withme against those who “stay on”. Therefore, the
resolution is the boundary that now runs alongside me and the objects in possession.
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We are at the middle of the text, and just like in other of my writing processes,
the materials develop their own motion of unfolding. The demonstration should
suffice, so let us return to understand, how can one relate these kinds of changes and
investments to algorithmic practices?

Software Anatomy

To begin with an obvious difference, while in dreams something does not “work” or
“figure” only for a short moment before a kind of resolution sets in—as we are in a
flux that is similar to music improvisation—when working with algorithms, they are
seldom effortless, most of the time they are in the state of “not working” (yet). There
seems to be a separation between, on the one hand, my writing or the computer
“reading” my code, and, on the other hand, the computer “writing” or producing
things which is observed or “read” by me, perhaps captured by the upper half of the
phase model of reading–writing relations in Fig. 2.4.

The diaphragm in the figurewas originally indicating the separation between com-
posing and performing by the introduction of a manifest element such as a score,
but also the separation between observer and observed, through spatio-temporal dis-
tance or distinct behaviour. In contrast, the lower half pictures a mode where reading
and writing are tightly coupled and interacting to a degree where it is impossible to
separate them, symbolised by the needle and the wax disc, in which the needle could
either incise the wax or carefully trace its surface. It corresponds with the entan-
gled agency in dreams, where sometimes we are able to suspend and inject our will
and direct the fall, whereas at other times we are acceptors of the discrete and tacit
changes presented to us (tacit: we are not asked, we are not separated observers).

The important point here is, as indicated by the rotary arrows, a process iterates
both types of couplings and distances. Even thoughmost of the timewriting software
and algorithms is spent in alternating activity—either writing with the system halted,
or the system runs testswith uswaiting andobserving—wealso enter amode inwhich

Fig. 2.4 Phase model of
relations between writing
and reading ([34, p. 108])
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directions are not taken from a distance, but by following hunches in close proximity
to the performance of the system, its unexpected responses. As a result, the evolution
of a program follows the kind of sprawling and it includes themoments of acceptance
and resolution described before.

Before Mellite even had its name, one of its starting points was the development
of a model of sound processes that were on the one hand “persistent” in the sense of
a score, but also reflected in a real-time sound synthesis realisation. The needle/wax
model came in as a way to understand the hinge between these two aspects, literally
translating into two elements in the software called Scan and Grapheme [34,
280f]. The idea that a “scan” (the action of the needle) had no a priori distinction
between reading and writing proved to be very unpractical, and eventually the Scan
element itself was removed again, giving way to more traditionally distinguished
inputs and outputs, although a trace is still there as one refers to inputs and outputs
in the code that defines a sound synthesis program as ScanIn and ScanOut.
Another entirely different remnant is an episodeof spoken text in the installation piece
Unvorhergesehen–Real–Farblos (2012) in which the difficulty of understanding the
hinge between stored and live sound is addressed. In a way, the difficulty is resolved
in this spoken text, whereas it has been scraped off the software framework.

A tacit change happened in my perspective on Mellite. In the original research,
everything was centred around the sedimentation of traces in creation time; even
though it included many thoughts on multiple versions of a piece, branching and
merging in the compositional process, the computer only registered human time, its
own time was of little consideration. That is kind of surprising, given that the first
music software I wrote, beginning in 2001, was FScape, a program for “rendering”
sounds in non-real-time.Only a fewyears back did I start to rethinkFScape as another
constituent element within Mellite next to its existent real-time sound synthesis,
giving more explicit thought to the time it takes to compute a sound, and the human
time away from the computer while it is occupied.

The originalFScape programwas developed in the spirit of several other programs
that existed at the time—such as SoundHack (1991), Argeïphontes Lyre (1997/98)
or the commercial sonicWORX (1994)—which applied lengthy digital signal pro-
cessing (DSP) to sound files, yielding newly transformed sound files as output. Each
transform, called module, was either a common DSP algorithm, such as convolution
or resampling, or the result of experimenting with a less conventional sonic idea
that I had, often arising out of work on a particular piece of music. Since so-called
real-time, the alignment of sound processing and audible sound production, was not
a requirement, depending on the parameters chosen the modules could often run for
a very long time, indicating their internal state through a progress bar and estimation
of remaining processing time. Especially in the beginning, when computers were
relatively slow compared to today, one had to tend to other activities while expensive
processes were running, or even put them to run overnight. At a time when real-time
software had become feasible on personal computers, it could be seen as a disad-
vantage having to wait for results, examining them, possibly adjusting parameters
and running the process again, until one arrived at a satisfying output. But on the
contrary, it felt liberating to work this way. Clearly, since I had given the computer so
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Fig. 2.5 Iterating over a number of modules in batch processing mode in FScape (2004)

much time to make an effort and waited for so much time to examine it, an entirely
different type of valuation is taking place compared to the effortless tweaking of
real-time parameters that often leave me with a stronger sense of arbitrariness (if
there is no effort, what is the point?). There is a particular way of treating the results
as jigsaw pieces, putting them sometimes aside until a position for them is found.

A countermovement was prompted, though, by the fact that while under develop-
ment, a module might fail or run out of memory, or it would take only a few hours
and leave the computer idle for the rest of the night. A simple solution was the intro-
duction of a batch module that could run a list of modules in succession, but also
provided a simple variable templating function to iterate a process over a number of
uniformly named input files (Fig. 2.5).

Intermediate files would be overwritten in this case and not remain for future
examination. This possibility of process division and iteration was not really new,
it just automated and systematised a mode of working that I had employed before.
Although it was always possible to invoke a remote FScape rendering process from
Mellite, it felt like a shortcoming not to have a genuine integration of the two.
A reason this had not happened earlier is that the original modules had been written
in a language (Java) I was no longer using, and some of the code was so old that I
would neither have been able to fully understand all of its details, rendering the task of
translating the code too laborious. It was in 2016 duringwork on a sonification project
that the real-time capabilities of Mellite alone were too limited to transform the



38 H. H. Rutz

Fig. 2.6 Attempt to understand the passages between the four languages embedded in Mellite:
Sound Processes or Proc for real-time signal processing, FScape or FSc for offline signal pro-
cessing, Patterns or Pat for symbolic or numeric sequences, Expressions or Ex and Control for
high-level coordination or “glue” between algorithmic processes. Each lives in their own temporal
space, with FSc working by rendering asynchronously, Proc running on a server in real time, and
Pat and Ex sharing the similarity of returning values or invoking actions synchronously

sonification’s input data, and I decided that a worthwhile experiment would be to give
FScape a new “language form”withinMellite in order to formulate these sonification
data preparations. This language form was intentionally chosen to resemble the real-
time sound synthesis description, using a similar domain-specific language for unit
generator descriptions of a signal process, although now I could use the particularities
that offline signals would have a finite duration and could be treated in a random
access way.

At first, the coupling between the two embedded languageswas fixed and designed
with the sonification application in mind: FScape could be invoked as an auxiliary,
preparatory step to the sonification, rendering to temporary sound files which would
then be streamed into the real-time process. A year later, Algorithms that Matter
(Almat) was started as an artistic research project with the experimentality of algo-
rithms as its explicit topic, andMellite becoming (again) a research vehicle. One of
the experiments was the translation of sketches by guest artist Ron Kuivila, using
the SuperCollider pattern language, into a language that could be embedded inMel-
lite, in order to understand what happens in this translation process, what it enables,
precludes or displaces. The question of how these different sprawling subsystems
could be connected became more pressing, and barely another year later, in 2018, a
fourth embedded language was introduced, with the explicit goal of acting as a glue
between the others. The sketch in Fig. 2.6 shows the quadruple configuration with
the glue language appearing on an equal level with the others.

The multiplicity of these, nevertheless interlinked and often structurally similar,
languages is not a disadvantage over the monism of other computer music systems.
Instead, one could see it as an expression of the becoming-topological of Mellite,
a surface that produces its own internally organised space [24]. Like the depicted
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diagram, this space is a mobile as the system evolves, and each new form of notation
introduced in either of the sub-languages can have the experimental property of
spilling over and “contaminating” the other sub-languages (cf. [5, 36]).

2.5 Artistic Research

Processes of human–machine exchange in sound composition, and algorithmic
experimentation can be regarded from a number of disciplines, using their corre-
sponding perspectives and methods. I want to argue here for the sovereignty of
artistic research as an appropriate way to understand these processes. We still rely
too much on disciplines like musicology, psychology and cognitive science, but also
media archaeology, software studies, cultural studies and philosophy, to encircle the
topic. All of them produce valid knowledge, but a fundamental difference to artistic
research is that the latter is not talking about art and about artists, but now artists
articulate research through their practice, challenging the assumption that you have to
be distinct from your research subject and that a particular form of written language
is the distinguished means of articulation.

The two criteria, attenuation of the prerogative of rational, citational, peer-
reviewed text, and of the distance between researcher and researched, are not easy
to solve,3 and the embedding of artistic research in institutional cultures anchored in
traditional scholarly practices also contributes to the fact that a lot of artistic research
is still articulated in traditional forms. The spatio-temporal persistence of a published
text is not easily substituted by a lecture performance, a concert, an exhibited arte-
fact; we cannot really cite them unless we refer to their recordings or catalogues.
Text is successful, because it is so connectable. The success of the online platform
Research Catalogue (RC), which was chosen for the dissemination of the Almat
project [42], is an indicator that both stable citationality—allowing acceptancewithin
a scholarly culture—and an augmentation to non-linear hypertext with the inclusion
of non-textual media—allowing adequate expression of work processes—are strong
requirements for the dissemination of artistic research. The RC exposition represents
perhaps a current “local optimum”, still having an ordering of authors, an abstract,
a table-of-contents and the idea of immutability once the exposition is “published”
(which has no technological justification and requires but a button click), hence we
should strive for much more experimental means of dissemination.

Computer codewould seema good candidate next to natural language text, sharing
with it the same properties of persistence, citationality, being even formally specified.
Given enough preparation, it may in fact be executable by others, although any non-
trivial code would involve difficult to reproduce performance contexts. But there
is no literacy we can assume, especially given the vast amount of programming
languages available, some even specific to a particular artist/researcher. We want to

3For a discussion on the problems of language and reflexivity in artistic research, see Crispin [8].
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talk not only to our closest peers, but even beyond the boundaries of the discipline,
so that a cultural theorist or a musicologist can follow the discourse to a certain
extent, and here is perhaps a difference to a computer scientist that can write a paper
readable almost exclusively by other computer scientists. Programming languages
are likely “inscrutable to the uninitiated” [20], so code has to be contextualised
with the products of its performance, with commentary. Gathering multiple formats
around each research “item” and interlinking them could be a viable approach, with
the implicit assumption that no person can read them exhaustively.

When researcher and researched are intimately linked, the issue of how to write—
writing now in an abstract sense that goes beyond logically linguistically structured
natural language text—has to be augmented by writing about the writing. As indi-
cated earlier, there is a self-sameness in the writings, this text, the software, the
compositions, so why would a re-entry or (simpler) a meta-level be needed? Are not
all the crucial elements guaranteed to be present in the text as it is and thus relatable
to the other writings? It is obvious that the writings are not reducible to each other,
otherwise the plea for new forms of dissemination would not be necessary. A writing
is always the coming-together of an assumed author and a material configuration
that enables the writing, and it would be a mistake to assume a generality of this
configuration, as it happens when researchers talk about general conditions for cre-
ativity, creativity support systems, artificial creativity and so on. The suspicion that
Rheinberger has about this generality can be extended beyond the artist’s workspace
that he considers:

I don’t like the notion of creativity. It tends to obscure the materiality of the process, and to
locate itself on the spiritual side. An artist’s studio is not only an aesthetic space, it is usually
also an epistemic work-space with a lot of intellectual as well as material investment, an
investment that tends to disappear in the product. But for the artist, it’s an integral aspect of
his or her work, without which she or he probably would not be motivated to carry out that
work. [29, p. 217]

It is this material investment that we are interested in as artists-researchers, it is
here that a difference towards “just” artistic work manifests itself. It is important to
observe that writing a dream recollection, it makes a difference whether I open the
laptop and type characters, or I take my paper notebook and begin to scribble. Two
very distinctly structured recollections ensue. “I write on a typewriter … and my
machine … is the biggest influence on my work … The type-face is a standard pica;
if it were another style I’d write (subtly) different poems. Andwhen a ribbon gets dull
my poems I’m sure change” [43, back]. Yes, there is a sameness in the movement,
whether I write this text or I write a composition, there is strategic alignment, but
at the same time, the word processor feels far more removed to how I imagine to
work with text, thanMellite feels removed from how I imagine to work with sound. I
interrupt, I move from screen to paper and back, I copy and paste materials to future
subspaces of the text. Amusicologist does not normally write about their desk or how
they manage to work on their texts. It may not be needed, because there is no re-entry
of the subject, but Ahmed makes clear that there is a problematic disappearance of
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materiality from the writing when limiting one’s focus to what is faced. What is
excluded is the background:

We can think … of the background not simply in terms of what is around what we face, as
the ‘dimly perceived,’ but as produced by acts of relegation: some things are relegated to the
background in order to sustain a certain direction; in other words, in order to keep attention
on what is faced. [1, p. 31]

Beyond the relegation of the familiar, the background can be “understood as that
which must take place in order for something to appear” [1, 37f], i.e. the appearance
of the research object in the first place. The call for multiple formats is not made for
a hermeneutic gain. It does not mean that a recipient gets “nearer” the object, that
they uncover more of it. Instead, the object is constituted through the complementary
forms of arrival (it does not exist prior to each of their performances).

We should strive for rigour, but limit redaction, not in order to create mystification
but to preserve what is fragile. In the Almat project, we have reviewed its RC
exposition, adding meta-data in order to transform it into a database that can be
queried. To obtain a partially exterior perspective,we tasked somebodywith a reading
through the existing material. After this reading, they stated that initially it seemed
difficult to get into the text because of its fragmentary, unwieldy character and lack
of more common academic style, but that during the course of the reading this
impression receded, instead of giving way to an understanding why this fragmentary
anddispersed formwas chosen, producing a concreteness that resists totalisation [11].

Materiality and Rudiments

How can one not only preserve the materiality of writing, but work with it, share it,
if it escapes verbalisation? How would this sharing look like, if it is not simply the
display of artefacts about which one can then talk? When Almat was constructed,
one of its foundations were the existing computer music frameworks that the team
had developed in the preceding years. In several iterations in which we invited guest
artists to work with us, we had envisioned that they could engage with these systems,
and thus their epistemic qualities would appear through the difference these systems
made when used not by their original authors but by other artists.

The first iteration began in autumn 2017with composer and sound artist RonKuiv-
ila joining the project. Kuivila is also a pioneer of computermusic, having coauthored
Formula (Forth Music Language) in the late 1980s, and later the pattern system for
SuperCollider. I was intrigued by what he would do with Mellite whose real-time
component is based on a SuperCollider dialect, and in return, I tried to translate the
pattern system to Mellite. What looks much less surprising in retrospect, expecting
that after handing a personal system over to someone they can transfer their knowl-
edge and be productive in a short amount of time is unrealistic. Because the system
is not a stable technical component—in which case it would be easier to involve an
exterior person but one would rather deal with design and engineering questions than
with aesthetic-epistemic questions—the extimate relation that I had developed with
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it concealed that of the large possible design space of this system only those paths
were trodden that corresponded to my personal practice, and glitches and problems
would appear quickly if one left these paths. Despite some effort to document the
paths, the close relationship with my practice also meant that the documentation was
insufficient for an exterior person. I recently made a renewed attempt to develop a
tutorial that only looks at one aspect of the system, the FScape offline rendering
component, and even here it was difficult to draw a boundary to the necessary expla-
nations and assumptions about the knowledge somebody would bring to the tutorial.
For every statement made, a huge space of unsaid things would open. Sometimes
the term tacit knowledge is used to describe the implicit aspects of a practice, but
the term is wrong in this respect; the problem with sharing knowledge about a tech-
nological system rooted in personal investment lies less in an inability to verbalise
its aspects, but in their shear amount, interconnectedness and contextualisation. It is
literally impractical.

The effect was also observable in the reverse case: While I had the literacy to read
the code with which Kuivila and the other guest artists were working, often using
mainstream languages such as SuperCollider, Java,Python orC++, I did not develop
a strong interest in being able to run the original pieces of code, but preferred to see
how the artists worked with the code, how the code embodied a particular long-term
practice, and how I could draw value from it in other ways. In the case of Kuivila’s
pattern-based piece The Fifth Root Of Two,4 inspired by Gamelan music, a melodic
base cell is generated, filtered, permuted, looking for repeated sub-patterns, and from
the analyses it produces rhythmical-spatial interleaving. The program that generates
the piece is less than 300 lines of code, including the definition of sound synthesis
functions and audio routing, with core pattern code taking up around 200 lines. That
felt like a reasonable size for a translation experiment, and so I took this as the study
case that should be representable in a pattern system written for Mellite (for more
details on the pattern translations and side-by-side code comparisons, see [41]).

Examining the original code, two things became clear. First, that the boundaries
between patterns and ordinary sequence collections were porous. One can quickly
translate from a pattern to a stateful stream, from there into a plain collection, and
from there back to patterns. A pattern is an immutable description, such as “count the
integer numbers, starting with 4”—written Pseries(start: 4) in SuperCol-
lider. Expanded as a stream this becomes a stateful object that responds to the next
message. When next is called the first time, the stream returns 4, the second time
next is called, it will return 5, and so on. When collecting the first three results of
the invocations of next, one obtains the plain collection [4, 5, 6]. A particularity of
the SuperCollider language is that many operations are defined in the same way for
different types, and one can easily and sometimes unknowingly move from one type
to another. In his piece, Kuivila moved from patterns to arrays (plain sequences), and
back to patterns. As he was explaining in a workshop:

4Kuivila stressed that it is a project in development, which came into being primarily to give me an
example of how he was working with patterns.
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I will take every distinct subgrouping of pitches from [the initial] phrase … And then I
will find how to play every one of those notes in combination in that grouping … It just
turns out that doing this in SuperCollider, it took a bunch of code, because although array
manipulations are really great, they are not necessarily set up to do exactly this. This kind
of idea is atemporal. You do not want to do it in a sequential fashion. You want to take an
array and expand all these possibilities. This is a kind of question that probably turns out to
be much nicer to do within a functional programming language. [22]

Kuivila talks about shortcomings of the language, although the code certainly looks
elegant and concise. He knows how to work around the fact that patterns establish
sequential (temporal) relations, implementing his own operations on sets through
custom functions.An entirely different aspect of patterns is that they are implemented
using coroutines, linking themwith SuperCollider’s primaryway of expressing time-
based sequencing. Kuivila is using an abstraction he has written, Pspawner, that
makes it more easy to formulate temporal structures and interleave parallel patterns.
Furthermore, value patterns that generate sequences of scalar parameters and event
patterns that configure a sound playing function can be distinguished, and special
cases have been introduced to distinguish between notes and rests. Once all these
elements are included, the surface area of patterns in SuperCollider becomes quite
large, evidence of sprawling having taken place in its evolution.

I worked over the course of half a year on the implementation up to the point
where The Fifth Root Of Two was fully working following the original code. The
process was very intriguing as an opportunity to narrow down some solutions, for
example, being able to write the piece using only patterns without having to expand
them to sequences for manipulations, also having to find solutions where equivalent
constructs such as coroutines were not available in the Scala language. However,
regarding Fig. 2.6, the quadrant had been lying dormant since its creation. I had
not understood yet what to do with the pattern language. It was an experiment and
remained a rudiment. A beginning, a first try, a test piece, a vestigial organ in the
anatomy of the system. A rudiment does not mean it is nonfunctional matter, that
it does not matter. It may be overlooked as too uninteresting or unintelligible, but
it has been suggested to adopt “rudimentariness as a mode of thought and practice
in approaching an object of investigation”, wherein rudimentariness is seen as a
way of resisting premature conceptual judgement, as an approach “predisposed to
the concept of sensate thinking” [16]. Going beyond sensate thinking, the rudiment
could also be approached with new operations, or to stay in the vestige metaphor,
one could operate on these software pieces and graft them onto other objects.

The excess produced in the translation of the pattern system manifested itself
in at least two instances of novel elements entering into my system, now attaching
themselves to the further development of the system. These instances are the abilities
to reset and to persist streams. The first came about as a consequence of merging
patterns with the breadth of the operations normally available to Scala collections, in
particular the functional programming concept of functions acting as arguments to
operations. For example, one can sort a collection by giving a function argument for
the pairwise comparison of elements (a predicate determining whether one element
is “less than” another). On a collection Seq[A] of element type A, this operation is
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def sortWith(lt: (A, A) => Boolean): Seq[A], the predicate lt
comparing two elements, and the result being a new collection of type Seq[A]. In
the patterns system ofMellite, because of the second property—the ability to persist
streams (to store them on the hard-drive)—functions passed as arguments have to be
destructured into a pattern or a tree of pattern expressions. A trick is to require that the
pattern is nested,5 Pat[Pat[A]] or a pattern of patterns of element typeA, and thus
the predicate has type (Pat[A], Pat[A]) => Pat[Boolean], allowing the
evaluation of this pattern expression and obtaining a serialisable tree. The predicate
has to be “reused” for any pair of elements that need to be compared during the
sorting operation. The solution I found is to add a reset operation to the stream
(expanded pattern), which requires that the stream purges its cached state, internal
counters, etc., and recursively calls reset on its inputs, thus fetching fresh iteration
variables when next is called again. Without going into more technical details,
the reset mechanism also allows for the nested iteration and mapping over patterns
in a way that delimited pattern scopes can be created, blocking the propagation of
reset and thereby allowing the kind of array operations Kuivila used in his piece.
I was so stunned when finally having made this reset mechanism work that I now
plan to implement the same mechanism for FScape unit generators. It would mean
that the same problem that Kuivila stated in the above quote, escaping the inherent
“temporal” coupling of patterns, could be overcome in signal processing, which in
the unit generator formalism also suffers from the inability to express larger forms
of “stages” of processes and functionally nested processing.

The second instance, making streams persistent, was somewhat premeditated but
at the same time a natural choice, because in Mellite mutable state is usually repre-
sented with software transactional memory, which is only one step away from persis-
tence. In the first implementation, this property remained rudimentary, as one could
not do anything yet with the persisted stream. Only recently, persisted streams were
integrated as directly accessible objects. Storing their current state in the workspace,
they can be resumed at any future point in time. For me, this was a solution to rep-
resenting very slowly changing and interruptible processes in a sound installation,
also having a memory that survives the rebooting of a computer. In this way, persis-
tent streams complement FScape which produces such memory or material through
its intermediary sound files written to the hard disk. An unexpected, unintended or
outright useless sound is not “going away” by rotating some knobs, but lies there on
the hard disk. Likewise, data is kept, the human composer can go away and return,
examine and consider this data at a later point.

5You can always transform a pattern into a nested one using the bubble operation, and return later
using flatten.
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2.6 Suspension

To understand the nature of human-machine coupling, it is also necessary to look
at those situations in which they are not coupled, where a causal interaction is sus-
pended: When either the sealed transaction takes longer than required to trick us into
perceiving it as instantaneous—a computation is taking place at its intrinsic speed—
or we proactively turn away from the computer and towards other things. We are set
aside or we set ourselves aside, temporarily. At a research seminar, I was attending
in 2019, there was concern that human life and machine operation are often treated,
in the discourse, as commensurable. That there is a widespread view that they can
be treated equally by some abstract model of computation that runs in both of them.
It was instead suggested that computations and algorithms are nothing but applied
mathematics, and the world was more than mathematics, and therefore we should
be careful not to conflate the human world and the world of computation, since the
latter cannot contain the whole of the former.

I believe this assumption to be wrong on two levels. First, is human life com-
mensurable with itself? Do we recognise our kind? I recently heard the story of a
mother and her 2 1/2year-old child riding on the tramway. The child grew up in a
small village in rural Austria and was perhaps visiting the city for the first time. It
was very shy and clung to its mother as it was anxiously observing another child of
African descent sitting across the aisle. Not speaking for a while, it was eventually
asking its mother whether “the dog would not bite”. It would seem strange to think
of this reaction as an expression of racism, but more likely the child had never seen
a child of another skin colour and hair type, and just having started to develop its
language, it was trying to verbalise its confusion. On the other end of the spectrum,
we find the post-human position of Donna Haraway who stresses the potential to
communicate beyond the boundaries of otherness and to form a kinship with other
species, to think-with as a transformative practice [18].

So yes, if we dismiss both computationalist universality and connectionism, there
may be otherness between human life and computational processes, but this is not
a distinguished feature of this pair. Computation may be governed by what Luciana
Parisi calls “alien mode of thought” [26, p. 240] which cannot nearly be reduced to
applied mathematics (not even the application alone would be reducible, but would
bringwith it performativity and contextuality). If the alienness or otherness is granted
a degree of autonomy, the possibility of nevertheless going together with otherness
could perhaps be compared to a holobiontic relationship.6 Biologist Lynn Margulis
used the term to denote the formation of a new individual from two, possibly very
different bionts, by recognising each other and merging their bodies, eventually
dissociating again [25]. The new integrated symbiont is of higher complexity than
the constituting former individuals, questioning the concept of individuality itself

6To be sure, this is an approximation, not to conflate the algorithmic with a living matter, as “life”
is beyond the scope of this article. This is why autonomy or self-governance is a less problematic
term.
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Fig. 2.7 Phase model of
coupling between human and
machine

(cf. [6]). Two human arms are put together, next to each other, close to each other.
They are squashed, dissected, cut, united on an object slide or a glass. A specimen
is created—a confluent investment—the (section of the) double-arm becomes one
object. What happens to life? Because formerly life existed separately in each of
the arms. To what extent does life unite in the squashed arms, since it can be traced
back to two individual lines? Composed systems are made this way: they perform
an orientation, they give up something (necessity) to gain something (contingency),
they align with each other [2].

An important element in the holobiont is rhythmic; the alignment may be undone,
the integrated system may be dissolved, and then later, alignment and composition
can be performed again. Today I would develop a phase model different to the one
drawn in Fig. 2.4 in 2011–2013, focusing more on this alternation between cou-
pling/alignment and decoupling/suspension instead of the binarism between reading
and writing. At the end points, one then finds the two temporal modes of synchroni-
sation and simultaneity (Fig. 2.7).

A movement between both sides is necessary, because on the one hand, there is
no knowing from a distance without direct material engagement [3, p. 49], on the
other hand memory and reflection require a distance or disengagement. Constantly
being close is stressful, as it requires a form of obedience—having to listen. Turning
away allows also for an important function of memory, oblivion. When we come
back, we have to pick up where we left, remember things, and piece those together
anew that we have forgotten. Human–machine agency thus develops in a balance
between memory work and synchronised activity. No pure real-time systems and no
pure non-real-time systems are likely to exhibit it, but a movement between both.

Simultaneity and Relaying

Why choose simultaneity on the left side instead of asynchronicity or diachronicity?
To be sure, diachronicity may also occur, where something happening in the com-
puter forms a relation with what a human is doing at a later point and vice versa. But
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I wanted to stress a togetherness-in-independence. The word simultaneity derives
from Latin simul for “together, at the same time”. For example, in the reception of an
artwork, the person encountering the work will create meaning from the intersection
of the presence of the piece’s artefacts or propositions and their past experiences
and memories which through mental and bodily acts become co-present. There is no
causality involved, it is not one being primary to the other. In physics, simultaneity
would be the observation of two events at the “same” time which thus precludes
that one event caused the other. In an artistic performance, one might think this
ecologically or like Cage’s idea of the “unimpeded and interpenetrating” coexis-
tence of sounds [4, p. 46]. When regarding the compositional process, this reference
frame may well include human and machine activities that are in spatio-temporal
distance when viewed atomically, as long as the reference frame permits to establish
a “togetherness, at the same time”. One may observe an orientation away from each
other, the other becoming latent, as long as one includes an eventual common arrival
of the two. If I leave the computer rendering, turn away from it for a while tending
towards other elements of the compositional process—even sleeping over it, piecing
together elements in a dream or recollecting them the next morning—then there is
still a togetherness in the compositional process without a clear causal link; finally,
I return to the computer and examine the tableau of elements that now coincide.

Simultaneity can become a vehicle for artistic research and collaboration, too.
In the fifth and last Almat iteration, we were working on a collaborative sound
installation between four artists titled Through Segments [37]. An early thought was
that we could explore the excess of algorithmic agency, manifesting itself as an indi-
viduation and differentiation in the process of experimentation and implementation,
by departing from the same initial configuration or algorithm. As we would then
work in parallel with the common disposition, individuated segments would emerge
between which horizontal communicative links could be established, as sketched on
the left side of Fig. 2.8. It soon turned out that finding a neutral “uninvested” algo-
rithmic idea as the starting point was very difficult; either someone proposed an idea
that others could not connect to or had difficulties to construe with their respective
computer music systems (we were all using different systems); or we were left with
a feeling of arbitrariness—if nobody had an investment in a particular algorithmic
configuration, then why use it at all?

At attempt was thus made to “reset” the planning process. What had also become
clear is that even ifwedid not agree on one specific disposition,we identified common
ideas and elements; perhaps these elements could be explicated and serve as a layer
of stability on which we could work in a different way. The parallelism seemed the
important concept to retain, and so I suggested to discard the common disposition,
but to keep the steps from there, inverting the arrows so that we should instead
arrive at a common site, as sketched in the right side of Fig. 2.8, site meaning the
bringing together of our work process—on the RC platform—but also the particular
exhibition site. If parallelism was not sufficient to constitute simultaneity, it may
be the operation in which we come together, in intervals, or even staying together
through the image of the future arrival. The arrival then is not just a cumulative effect
of what each individual had done, but it is something that would always already have
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Fig.2.8 Inversion of theworkingmethod on Through Segments, from the departure from a common
algorithmic disposition (left) to a projected common arrival (right)

configured our prior doing, the “background” as Ahmed would call it. She describes
this arrival as follows:

At least two entities have to arrive to create an encounter, a ‘bringing forth’ in the sense of
an occupation … To ‘co-incide’ suggests how different things happen at the same moment,
a happening that brings things near to other things, whereby the nearness shapes the shape
of each thing. Simultaneous arrivals … are determined, at least in a certain way, as a deter-
mination that might determine what gets near, even if it does not decide what happens once
we are near. If being near to this or that object is not a matter of chance, what happens in the
‘now’ of this nearness remains open, in the sense that we don’t always know things affect
each other, or how we will be affected by things …[1, p. 39]

In other words, the arbitrariness is excluded by the intention to get near, while
openness and contingency remain in the outcome of the encounter, not unlike Barad’s
concept of agency arising in the encounters she calls intra-action [3, p. 128], a
term also found in the writing of Haraway, both in turn connecting to Margulis’
symbiogenesis.

InThrough Segments, althoughwewanted the openness of the experiment, we also
wanted to prolong the mode of simultaneous working, to have frequent encounters
after which each of us would turn away again and work on their layer of sound.
The common site should include, as something we were striving for, a sense of
differential reproduction of shared ideas, instead of the pure chance of unimpeded
interpenetration in Cage’s way. A method was put in place for this exchange, by
giving each artist dedicated workspaces on the RC to develop their process and
layer, while inviting everyone to respond to the others, by either commenting or by
answering to open questions put out by each artist; this could be a textual natural
language, but also code or rendered sounds. The responses were not merely meant as
a reflection on the others, but a move to take what was offered and turn it into a way
of continuing one’s own trajectory. This attitude is perhaps best described by Isabelle
Stengers as relaying, in which something is not simply taken from somebody else in
indifference, but with a mutual understanding:
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… knowing that what you take has been held-out entails a particular thinking ‘between’. It
does not demand fidelity, still less fealty, rather a particular kind of loyalty, the answer to
the trust of the hand held-out. Even if this trust is not in ‘you’ but in ‘creative uncertainty’,
even if the consequences and meaning of what has been done, thought or written do not
belong to you any more than they belonged to the one you take the relay from, one way or
another the relay is now in your hands, together with the demand that you do not proceed
with ‘mechanical confidence’. [45, p. 134]

Staying faithful implies “to feel and think and decide together what a situation is
demanding” [46, p. 398], and the action of relaying is transformative, becausewhat is
relayed tome know becomesmy “concern”. In the process, relaying and simultaneity
go hand in hand. We are not forming a chain in the sense that one is holding their
hands out and keeping them still while the next is taking off the string figure (to
use Haraway’s metaphor); it is that we have a kind of multiple string figure that is
simultaneously produced by each of us.

Relaying in this form is something that can hardly be performed by a computer
system, themutual trust and thinking-with, the shiftingof concern, itmaybe restricted
to living forms.However, the situationwe created inThrough Segments could open an
important new perspective on human–machine agency which is too often narrowed
down to one individual artist interacting with one single computer system. It would
allow us to examine the distributed work that happens in this situation, the distributed
(work)spaces and temporalities, and above all the simultaneity in the configuration
of the different computer music systems, and what happens when they finally come
together in the exhibition site.
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3Artificial Intelligence for Music
Composition

Artemi-Maria Gioti

3.1 Introduction

This chapter explores the potential of Artificial Intelligence (AI) for art music
composition, focusing on how AI can transform musical tasks and shape compo-
sitional ideas. In this context, AI is viewed as an agent contributing to a distributed
human–computer co-creativity and extending human capabilities, rather than a
replacement for human creativity. The premise behind this approach is that Arti-
ficial Intelligence—specifically machine learning algorithms—can shape musical
thinking, by opening up the space of compositional possibilities and allowing for
the emergence of new artistic concepts and practices. The unique capabilities and
compositional “affordances” [19] of machine learning algorithms (i.e., what they
afford composers, both technically and conceptually) are illustrated through
applications in instrument design, interactive music systems, computational aes-
thetic evaluation and human–computer co-exploration. Current and future chal-
lenges concerning the application of machine learning algorithms in the arts are also
considered, particularly the discrepancies between machine learning problems as
closed-ended tasks and artistic practices as open-ended, exploratory processes.
Re-examining the scope, optimization objectives and interaction capabilities of
machine learning algorithms and adopting human-in-the loop design strategies that
allow for a closer human–machine collaboration are proposed as first steps in
addressing the discrepancies between currently available AI tools and emerging
artistic practices and aesthetics.
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3.2 Artificial Intelligence and Distributed Human–
Computer Co-creativity

A common research objective in Music and Artificial Intelligence is the automation
of musical tasks and the development of autonomously creative systems, i.e.,
systems that are able to “compose” music autonomously within specific musical
styles (e.g., [8, 9]). Such systems are concerned with the simulation of musical
creativity, aiming to produce artifacts that are comparable to those produced by
human artists. Recent developments in Deep Learning have brought about a new
era for music generation systems, which can now surpass the problem of music
representation by learning directly from raw audio data (i.e., waveforms)—albeit at
the cost of higher computational power and longer training time (e.g., [42]). While
earlier automatic composition systems relied on representations such as MIDI
reductions of musical scores or signal-level descriptors, Deep Learning applications
like WaveNet [42] can learn from unstructured data (raw audio) and by doing so
simplify the training process, all the while theoretically broadening the area of
application of automatic composition systems to musical idioms that pose chal-
lenges for music representation. For instance, spectralist music (e.g., works by
Kaija Saariaho or Tristan Murail) cannot be reduced to MIDI representations
without significant information loss—indeed, such a reduction would probably defy
the very premise of this music.

Despite their differences, both Deep Learning applications operating on
unstructured data and systems operating in a symbolic domain share a common
principle: that of style imitation. Both approaches aim to imitate artifacts produced
by humans. While such an objective might be interesting from a music-analytical
perspective, it holds limited potential for artistic production per se—let alone for
artistic innovation [21]. Additionally, autonomously creative systems are often of
limited use to artists, as they lack collaborative and interactive capabilities.

As an alternative to automation, this chapter considers how Artificial Intelligence
can be integrated in a more “ecosystemic” [34] approach to musical creativity,
including both humans and machines. The purpose of such an approach is to
enhance human creativity, by opening up new creative possibilities and challenging
traditional notions of authorship and definitions of the musical work. Specifically,
the chapter examines how AI can transform creative tasks and, in synergy with
human creativity, contribute to artistic innovation. The question being asked here is
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not whether AI can compose music, but rather, whether it can expand our creative
capabilities and have a formative influence on compositional ideas.

This last proposition draws from Latour’s ideas on agency as a property of both
human and non-human actors. Latour [29] claims that not only humans, but also
objects—both material and immaterial—have agency, which he defines as the
ability to alter a “state of affairs”. Similarly to Latour, Gell [18] regards art as a
“system of action” and attributes agency to persons and “things” that can “cause
events to happen in their vicinity”. For Gell, agency is social in nature and action
can only be conceptualized in social terms. He distinguishes between “primary”
agents (i.e., intentional beings) and “secondary” agents (objects, works of art, etc.),
through which “primary” agents exercise their agency. However, such a distinction
does not suggest that material agency is any less important than intentional agency:
as human (intentional) agency manifests itself within the material world, “things”
are as essential to the exercise of agency as are “states of mind”. While Gell is
primarily interested in the agency of art objects—or “indices”, to use his termi-
nology—his concept of “secondary” agents can be expanded to encompass all types
of objects and artifacts, including computational tools.

With new computational tools come new compositional affordances and
potentially new artistic concepts and practices. Computational tools then exert a
type of agency that has the potential to modify the “state of affairs” [29] in artistic
production, by inspiring and contributing to artistic innovation. In that sense, they
can be considered as “secondary” agents [18], their agency lying in their potential
to expand the space of creative possibilities and influence musical thinking.

The ways in which AI, in particular, can influence creative ideation and practices
are multiple and relate to its potential not only to assist creative tasks, but also
re-conceptualize them, by providing new compositional affordances. For instance,
machine learning algorithms can be used to create custom action-sound mappings,
enabling composers to design idiosyncratic digital musical instruments that fit the
needs of a specific composition or compositional idea. Admittedly, action-sound
mappings do not require the use of machine learning, as they can be explicitly
programmed using hand-coded rules. However, working with training examples
instead of hand-coded rules can make artistic experimentation with data mappings
much more intuitive and efficient, particularly when dealing with high-dimensional
input and output data (e.g., when collecting data from a variety of different sensors
and mapping them to a large number of interdependent synthesis parameters).

Additionally, machine learning algorithms can be used to explore new interac-
tion paradigms, which are only possible thanks to the affordances of the algorithms
themselves. For example, a musical agent can use clustering algorithms to group
sounds based on their similarity, or classification algorithms to classify incoming
sounds and produce appropriate responses. Such capabilities allow for interaction
affordances that go well beyond conventional mapping strategies, such as recog-
nizing and responding to specific timbres or musical gestures, by interpreting
high-dimensional streams of signal-level features in real-time. And, while
action-sound mappings can be explicitly programmed, hand-coding the rules of a
timbre or gesture recognition algorithm would be an extraordinarily challenging
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task. Such applications illustrate the unique and possibly transformative potential of
AI tools for music composition.

The following sections examine this potential more closely, focusing on how
Artificial Intelligence can transform musical tasks and shape compositional ideas. In
this context, AI is regarded as an agent contributing to a “distributed human–
computer co-creativity”, rather than a replacement for human creativity [21]. The
examples discussed next include applications of AI in instrument design, interactive
music systems, computational aesthetic evaluation and human–computer
co-exploration. While this list is by no means exhaustive, it is representative of the
rich potential of AI capabilities for music composition and their implications for the
concept of the musical work, the author construct and creativity itself.

3.3 Machine Learning: Applications in Music
and Compositional Potential

As a lot of the applications discussed in this section make use of machine learning
algorithms, a quick overview of the different types of algorithms mentioned is
provided below (for a more comprehensive review of the different types of machine
learning algorithms and their applications in music see [6, 15]). Specifically, the
machine learning algorithms discussed in this chapter include regression, classifi-
cation, clustering, prediction and reinforcement learning. The first two, regression
and classification, are examples of supervised learning algorithms and involve two
types of data: input and output or target data. Concretely, each training example
consists of an input-output pair: the input is a feature vector describing the training
example, while the output or target value is the “correct answer” that the algorithm
is expected to “learn”. The task of the algorithm is to predict the target value given
the inputs. Usually, a separate set of examples than those used to train the algo-
rithm, called the test set, is used to assess the algorithm’s ability to generalize (i.e.,
make predictions on previously unseen data).

Regression algorithms produce a continuous-valued output, while classification
algorithms produce a discrete-valued output. An example of a music-related clas-
sification task is instrument recognition. In such a task, a single training example
could consist of a vector of spectral descriptors, such as Mel Frequency Cepstral
Coefficients (MFCCs), extracted from a short excerpt of audio and a label (e.g., 1
for flute and 2 for saxophone, in the case of saxophone vs. flute classification).
Contrastingly, regression can be used to create continuous input-output mappings
by providing the algorithm with just a few examples of input-output pairs (e.g.,
sensor readings and synthesis parameters). Using these examples, a regression
algorithm can approximate a function that maps input to output variables, thereby
producing a continuous mapping.

In contrast to supervised learning, unsupervised learning involves input but no
output data. The task of the algorithm in this case is to find structure in the data. For
example, clustering algorithms can be used to divide a set of sounds into smaller
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groups (clusters) based on spectral similarity. Another machine learning task with
applications in music is prediction, which involves forecasting future events based
on historical data [6]. Predictive probabilistic models can be used to learn from and
generate new sequence data (e.g., generate melodies using conditional probabili-
ties). Finally, the last type of machine learning discussed in this chapter is rein-
forcement learning. In reinforcement learning, an agent “acts” in an environment
and receives (positive or negative) feedback. The agent selects an action based on
its current state and with the purpose to maximize the value of some reward
function. Co-exploration tools that navigate parametric spaces (e.g., different
parameter settings of a synthesis engine) by generating sounds and receiving
feedback from a human user in an iterative fashion are examples of music-related
applications of reinforcement learning.

3.3.1 Digital Musical Instruments

One of the most common applications of machine learning in music composition
involves data mapping. Machine learning algorithms—particularly regression
algorithms—can function as an “interface”, allowing artists to build complex
mappings between input and output data [15]. Several end-user machine learning
toolkits are currently available to artists and instrument designers [1, 5, 7, 16, 39],
allowing them to experiment with machine learning algorithms without requiring
extensive machine learning knowledge. A widely used machine learning toolkit is
Wekinator [16]. Fiebrink [14] describes a series of music compositions that use
Wekinator to map data obtained through sensors such as accelerometers, light
sensors and other commercial and custom-made physical interfaces to sound syn-
thesis parameters. The advantage of using a regression algorithm for such an
application is that the user can create complex mappings between high-dimensional
input and output data without explicitly programming them. Alternative mappings
can be created just by recording new examples, rather than changing the code,
enabling hands-on experimentation as part of the creative process.

Besides composition-specific action-sound mappings, machine learning is used
in the design of Digital Musical Instruments (DMIs) designed for a variety of
musical contexts and idioms. These two approaches represent different stances
toward instrument design: one that prioritizes idiosyncratic sonic interactions over
customizability (e.g., developing a “musical instrument” for the needs of a specific
composition or performance) and one that prioritizes broader applicability, by
aiming to create instruments that can be used in a variety of compositional and
improvisational settings. Machine learning algorithms, particularly end-user
machine learning toolkits, allow composers to design idiosyncratic musical
instruments, lifting creative limitations that might be posed by customary DMIs and
interfaces. At the same time, the integration of machine learning capabilities in
non-idiosyncratic—or at least composition-agnostic—DMIs is becoming increas-
ingly common, with applications ranging from purely reactive to partly autonomous
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instruments with interactive capabilities. Examples of such instruments are Sansa,
Phalanger and NOISA.

Sansa [31] is an augmented acoustic instrument, which can be used as a purely
acoustic instrument or as a hyper-instrument, extended through various interaction
modalities with the use of Wekinator. The instrument consists of a Kalimba
extended through a series of sensors and machine learning capabilities. Sansa’s
different operation modes allow the user to choose among “conducting” an
ensemble of electronic instruments, navigating a score, shaping electronic sounds
through hand gestures, amplifying or processing the signal of the instrument or
other sound sources (e.g., the performer’s voice) and driving visualizations.

Unlike Sansa, Phalanger [27] has no acoustic component. It is an entirely digital
interface used to control sound through hand and finger motion. Phalanger relies
exclusively on video data and uses a Neural Network to detect and separate the
user’s hand from the background and a Support Vector Machine (SVM) to rec-
ognize different hand positions. The Neural Network can be trained using snapshots
of the user’s hand and the background (without the user) as training examples. This
allows the system to be configured for different cameras, lighting conditions and
skin tones.

Despite differences regarding sound production and user-customizability, the
two instruments mentioned above share a common interaction model based entirely
on action-sound mappings: both instruments produce sound exclusively as a
response to the performer’s control actions; they are reactive but not interactive. In
addition to action-sound mappings, machine learning can be used to design musical
instruments with interactive capabilities and partly autonomous behavior. NOISA
(Network of Intelligent Sonic Agents) is an example of such an instrument, which
aims to increase the performer’s level of engagement by generating autonomous
“non-intrusive” sonic responses (“counteractions”) [40]. The instrument estimates
the performer’s level of engagement at any given moment and generates autono-
mous responses with a probability that is inversely correlated with it. That is, the
system is more likely to generate an autonomous response when the musician’s
level of engagement is estimated as low, a behavior that aims to help the performer
maintain high levels of engagement by providing stimuli for interaction. NOISA
consists of three box-shaped instruments, a computer, an armband sensor and a
motion-tracking camera. Each box-shaped instrument features two handles,
attached to motorized faders. The instrument monitors the performer’s movements,
facial expressions and control actions using descriptors such as slider activity, torso
inclination, neck and head acceleration. These descriptors are analyzed using
movement analysis and the features obtained through this process are fed into a
regression algorithm. Additionally, the instrument performs a spectral analysis of
sonic gestures and the extracted features are used to inform the selection of
autonomous responses, with the purpose to avoid frequency masking between
reactions and “counteractions” (autonomously generated responses) and ensure that
the latter are spectrally distinct from and quieter than performer-controlled sounds.
NOISA is a musical instrument meant to be used in idiomatic musical contexts and,
as such, its behavior is primarily reactive. However, its interactive capabilities (i.e.,

58 A.-M. Gioti



deciding when and how to produce autonomous “counteractions” with the purpose
of increasing the user’s level of engagement) make it a hybrid between musical
instrument and interactive music system, a category that is examined more closely
in the following section.

3.3.2 Interactive Music Systems

Interactive music systems are computer music systems that can sense their envi-
ronment by collecting and interpreting sensing data, make decisions and act both in
response to human actions and as a result of autonomous internal processes. Their
design is based on a decentralized notion of agency in which actions are carried out
both by human and non-human actors, while creativity and authorial responsibility
are distributed in time and across different actors. Creative decisions are made both
“offline”, e.g., when the composer creates the software and possibly a score, and in
real-time, as part of the interaction between the performer and the software agent.

Agentive behaviors in this setting emerge as a result of a negotiation between
compositional intentions and technological directionality. Ihde [23] proposes the
term technological intentionality to refer to the directionality or scope of techno-
logical artifacts. For instance, a tape recorder has a directionality toward sound
which differs fundamentally from a human listener’s intentionality in that it is
unable to focus on some sonic foreground and suppress background noise [44].
Similarly, the output of a pitch detection algorithm differs significantly from pitch
perception in humans. Using a pitch detection algorithm as a sensing module in an
interactive music system will therefore inevitably introduce artifacts that are a
by-product of technological directionality rather than compositional intention. In an
interactive music system, compositional intention is rendered through technological
directionality. Human intentionality is conveyed through the musical knowledge
and aesthetic values embedded in the system, while technological directionality is
inherent to the design of customary hardware and software tools (e.g., standard
Music Information Retrieval (MIR) tools embedded in the agent’s machine lis-
tening stage).

This relationship between compositional intentions and technological direc-
tionality can potentially be enhanced and refined through the use of AI, enabling
more diverse and idiosyncratic sonic interactions. For instance, machine learning
can be used to interpret high-dimensional, signal-level data streams and extract
context-relevant music information. What qualifies as context-relevant information
can be determined by the composer and might depend, among other things, on the
musical idiom, the instrumentation and the compositional idea. Doug Van Nort’s
Genetically Sonified Organisms and the author’s Imitation Game are discussed
below as examples of interactive musical works in which software agents utilize
machine learning in order to process and interpret auditory information.

Doug Van Nort’s Genetically Sonified Organisms (GSOs) is a piece of “envi-
ronmental sound art” consisting of a set of artificial creatures designed to interact
with and adapt to their acoustic environment [43]. Each creature is equipped with a
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lexicon of twenty sounds, produced using physical modeling synthesis techniques
based upon wildlife that may be present at the site of the installation (e.g., frogs,
flies, bees, etc.). The GSOs are designed to listen to their environment and respond
to sounds that are similar to their vocabulary. Specifically, incoming sounds are
analyzed and the extracted feature vectors are compared to the GSO’s sound lex-
icon. Using a nearest neighbor approach, incoming sounds are matched to the
closest synthesis model, while synthesis parameters are updated incrementally so
that with each response the generated sounds come a bit “closer” to the input
sounds. The purpose of this process is for the GSOs to eventually converge to a
sound output similar to the wildlife that inhibits the site of the installation. Listening
and learning are therefore responsible not only for the system’s short-term
responses, but also for its long-term evolution and adaptation to its acoustic
environment.

In the author’s Imitation Game, a similar classification task is performed by a
robotic percussionist as part of its interaction with a human counterpart [20]. The
human percussionist’s input is analyzed and the extracted features are fed into a
feed-forward Neural Network (NN) trained to recognize different instruments
(cymbals, bongos and cowbells) and playing techniques (strokes, scraping and
bowing). The data collected in the robotic percussionist’s auditory processing stage
is used to inform its short- and long-term decision-making. Specifically, the robotic
percussionist can choose among three different interaction scenarios: “imitate” (play
similar material as the human), “initiate” (introduce new sound material) and “re-
peat” (selectively repeat some of the musician’s actions in an improvisatory con-
text). Interaction scenarios are selected based on metrics of rhythmic, timbral and
dynamic contrast, which are calculated on a phrase basis. For instance, if the
material played by the human percussionist lacks timbral contrast, the robotic
percussionist might choose to introduce new timbres (i.e., different instruments or
playing techniques). Similarly, if the estimated rhythmic contrast (standard devia-
tion of Inter-Onset Intervals) has remained constant (i.e., around the same value) for
a while, the robotic percussionist is less likely to follow the human’s lead and more
likely to introduce new, contrasting rhythmic material.

These two examples illustrate the flexibility that AI tools afford composers when
it comes to designing sonic interactions. Using signal-level features as an input,
machine learning algorithms can extract high-level music information, facilitating
real-time decision-making in the context of interactive music systems. Most
importantly, the composer is free to decide what information is relevant in a certain
context and train the algorithm to retrieve that information by providing appropriate
examples. This allows for a high degree of creative freedom coupled with a more
intuitive approach to sonic interaction design, resulting from the use of training
examples as opposed to hand-coded rules.
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3.3.3 Computational Aesthetic Evaluation

Computational aesthetic evaluation, i.e., the aesthetic evaluation of (human- or
computer-generated) artifacts through computational means, is another field of
interest for the application of AI in music composition. Research in the field of
computational aesthetics encompasses a wide range of approaches, from formulaic
theories to psychological models and empirical studies of aesthetics (for a com-
prehensive review see [17]). Admittedly, the relevance of such research for the arts
has often been questioned—and justifiably so. For instance, empirical studies
aiming to identify “universal” aesthetic values (e.g., [33]) have been criticized for
lacking relevance for the appreciation of contemporary art and disregarding the role
that cultural values and individual taste play in aesthetic judgments [34]. Similarly,
research on machine learning based artificial music critics that use popularity as a
measure for aesthetic evaluation (e.g., [32]) has been criticized for equating pop-
ularity with aesthetic value and disregarding the philosophical discourse around
aesthetics, as well as the subjective nature of measures of “beauty” and “pleas-
antness” [26].

While universal or “context-agnostic” [26] aesthetic values might have limited
applicability in the arts, the idea of idiosyncratic musical agents capable of making
aesthetically informed decisions can find applications in both human–computer
co-exploration tasks and interactive music systems. Machine agents can act based
on learned or hand-coded aesthetic values, a capability that brings new dimensions
to computational decision-making.

For example, in the author’s composition Bias, for bass clarinet and interactive
music system, a regression algorithm (Neural Network) was trained to predict the
composer’s aesthetic preferences. Recordings of improvisation sessions, made with
the help of the musician, were segmented, analyzed and labeled by the composer
based on her subjective aesthetic preferences, using a 5-point Likert-type scale
ranging from 1 (“not at all interesting”) to 5 (“extremely interesting”). These
examples were later used to train the Neural Network. The aim of this process was
for the machine learning algorithm to “learn” the composer’s aesthetic preferences
and be able to extrapolate from them in real-time. During the performance, the
interactive music system makes judgments on different time scales and responds to
sounds and textures it finds “interesting”, but remains silent or proposes new sound
material when it loses interest in the musician’s input.

The composition is a comment on the disparities between machine learning
concepts such as optimization and quantitative performance evaluation, both of
which assume that there exist some objectively “right” and “wrong” answers for the
algorithm to learn, and aesthetic judgments as inherently subjective and intangible.
Furthermore, it explores the extent to which aesthetic preferences can be modeled
by machine learning algorithms and aims to blur the boundaries between human
and machine agency. The title “Bias” refers to both the inherently subjective nature
of aesthetic judgments and the “bias” that results from machine learning algorithms
making arbitrary or erroneous assumptions about data. As the composer’s prefer-
ences are distorted through these arbitrary assumptions, the decision-making taking

3 Artificial Intelligence for Music Composition 61



place during the performance can be attributed neither to the composer nor the
machine learning algorithm alone, but rather an emergent, hybrid human–machine
agency that is distributed across actors (composer and machine learning algorithm)
and time (training and performance).

Computational aesthetic evaluation has been explored in other artistic fields as
well, particularly in visual arts. For example, the DrawBots project used evolu-
tionary robotics to investigate whether drawing robots can exhibit autonomously
creative behavior by developing a creative signature of their own [4]. The project
was a continuation of Paul Brown’s previously failed attempts to use cellular
automata to produce artworks that would transcend his personal signature. After
initial experimentation with fitness functions that were meant to minimize the
designers’ influence on the robots’ behavior, such as penalizing robots for crashing
into walls and rewarding them for using the whole surface of the drawing area, the
DrawBots research team opted for a radically different approach, by adopting a
fitness function that revolved around fractals. The robots were endowed with a
“fractal detector” and a “fractal preference” and were able to evaluate the marks
they made based on self-similarity. Brown et al. [4] argue that, while this evaluation
might not be aesthetic or artistic in nature, it results in the agents making
preference-based choices and that fractals are a broad enough category for the
agents to be able to produce diverse and, at times, surprising patterns. While such a
fitness function might be far from an autonomously evolved creative signature, the
DrawBots project is a good example of artificial agents making aesthetically
informed decisions—albeit based on predefined rather than autonomously devel-
oped rules.

3.3.4 Human–Computer Co-exploration

McCormack [34] conceptualizes the creative process in the context of human–
computer co-creativity as a process of search within creative spaces and
“meta-search” within spaces of possibility. Creative spaces are subsets of vast
spaces of possibilities and are defined by the scope of the generative mechanisms
(i.e., the search methods) used in the creative search. For instance, the different
images that can be generated by a piece of code written in Lisp are only a tiny
fraction of all the images that can possibly be generated. The process of
“meta-search” involves defining and modifying the generative mechanisms and
therefore the creative space. In music composition, such a creative space could be
defined by the affordances of a sound synthesis algorithm, a rule-based generative
system, or other compositional constraints.

The purpose of human–machine co-exploration of creative spaces is to facilitate
creative discovery through human–machine interaction. For instance, interactive
machine learning can be used to assist the exploration of a sound synthesis algo-
rithm, by allowing for user-customizable search strategies. Most importantly,
human–machine co-exploration can help expand human creativity by enhancing the
artist’s ability to think beyond established creative habits and take new creative
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paths. For instance, the machine learning algorithm might generate an output that
the user/artist would otherwise not have created, guiding the creative process into
new territories. Beyond breaking creative habits, sonic human–machine
co-exploration can also be a useful tool in reflecting on one’s own artistic practice
and aesthetic stance [25].

While computer-assisted composition tools have been around for a long time,
sonic human–computer co-exploration is a relatively new concept, making use of
AI capabilities—specifically, the ability of machine learning algorithms to learn by
example. The main difference between traditional computer-assisted composition
tools and human–computer co-exploration tools is that the latter have adaptive
capabilities; i.e., they are able to adapt their output to the user’s preferences through
learning. The examples that follow illustrate two different yet related approaches to
human–machine co-exploration of synthesis processes, incorporating machine
learning and user-provided training examples.

The first example, Sonic Xplorer, is a co-exploration tool that uses adjectives for
multiparametric control of a sound synthesis engine [41]. Implemented inMax/MSP
and making use of Wekinator [16], Sonic Xplorer uses Neural Networks to build
correlations between six different adjectives and four perceptual audio features.
After providing the system with a series of training examples, the user can use six
different sliders to describe the qualities of the sound they want to produce. Each
slider corresponds to one of the following adjectives: “warm”, “bright”, “stable”,
“thick”, “noisy” and “evolving”. The user can transition between the Xplorer
interface and the synthesizer’s interface, in order to fine-tune the generated sounds
by setting the synthesis parameters directly. Expert evaluation indicated that the
tool-assisted creative discovery, but the user’s control over the generated sounds
lacked precision.

Scurto et al. [38] conducted similar experiments using reinforcement learning. In
these experiments, participants were asked to collaborate with artificial agents in the
completion of a closed-ended task, by communicating feedback to the agents in an
iterative fashion. Concretely, the task entailed human–machine co-exploration of a
Virtual Studio Technology (VST) with the aim to discover the parameter settings
that produce the brightest sound possible. The VST consisted of an FM synthesis
engine with two discrete parameters (modulation index and harmonicity ratio), all
possible configurations of which added up to 30 discrete states; i.e., 30 static
sounds. At each iteration, the agent would produce a new sound and receive pos-
itive feedback if the new sound was brighter than the previously generated one, or
negative feedback otherwise. At the end of the task, the participants were asked to
evaluate the performance of the artificial agents with respect to different aspects of
collaboration. The participants’ responses seemed to suggest that, regardless of
whether the goal was reached or not, the “path” taken during exploration was
decisive to whether the agents were perceived as collaborative. While still far from
being applicable to real-world scenarios, these experiments reveal the potential of
machine learning for creative exploration. Some of the challenges still to be
overcome include the much higher dimensionality of real-world applications in
comparison to the two parameters used in the experiments and the open-ended
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nature of creative tasks. That is to say that creative tasks cannot sufficiently be
modeled by closed-ended, goal-directed tasks, as in creative work goals might not
necessarily precede the task, but rather evolve as a result of exploration and aes-
thetic experimentation.

Coincidentally, both of the examples discussed above involve creative experi-
mentation with sound synthesis processes. However, human–computer
co-exploration does not need to be limited to the design of static sounds, but can
also include experimentation with larger-scale generative processes. The nature of
creative tasks as open-ended processes informed by subjective aesthetic values and
idiomatic artistic practices suggests that there are still challenges to be overcome in
the design of human–computer co-exploration tools. Nevertheless, first experiments
in this area show potential for future applications in music composition, promising
to assist creative discovery through human–machine collaboration.

3.4 Conceptual Considerations

3.4.1 The Computer as a Compositional Prosthesis

Several of the examples discussed in the previous sections share an understanding
of the computer as a “compositional prosthesis” [24]: a tool used to extend the
composer’s capabilities, by helping them break creative habits [25], or explore
conceptual spaces [34]. In cases of co-creativity such as these, the machine func-
tions as an assistant, making “suggestions” that can be adopted or rejected by the
composer. Creativity is distributed not only across different actors, but also across
different functions, with computational decision-making being mainly explorative
and human decision-making being primarily evaluative.

This type of human–computer co-creativity is concerned with assisting the
creative process, the product of which might fall within existing paradigms (e.g., a
fixed-media composition). The purpose of such applications is to enhance the
artist’s creativity, by generating surprising sound material and exploring creative
paths that the artist might otherwise not have taken. A secondary goal might be to
reflect on one’s own creative practice and aesthetic values [25]. Defining a con-
ceptual space (e.g., a parametric space within which the algorithm can generate
material) and curating (i.e., selecting, rejecting and modifying) computer-generated
material are both tasks that can facilitate reflection on, and analysis of, one’s
aesthetic preferences.

In human–machine co-exploration, or even generative music systems, the
ownership of aesthetic components can rarely be questioned, since high-level
aesthetic decisions are made by the (human) composer, who assumes a significantly
higher degree of authorial responsibility than the computer. Still, traditional notions
of authorship have limited applicability here, since the relation between composi-
tional intention and material is mediated through computational decision-making.
To that, one must add the agency of the software developer, in case this is someone
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other than the composer, and possibly a wider community of developers and/or
artists; e.g., in case a corpus of musical works was used to train the algorithm.

Impett [24] considers the musical work as an activity that is “distributed in
space, technology, society and time”. While this is arguably true for all musical
practices, it is strongly exemplified in human–computer co-creativity. The concept
of distributed human–computer co-creativity invites us to think of musical cre-
ativity as a social activity, involving both human and non-human actors. Bown [2]
argues that “all human creativity occurs in the context of networks of mutual
influence” and that artifacts are produced by networks of interaction involving
human and non-human actors. He maintains that creativity lies in collective
knowledge and networks of influence rather than isolated individuals, which he
refers to as “islands of creativity”. Brown [3] holds a similar view, proposing an
understanding of creative acts as “networks of agency” that encompass “humans,
tools, culture and the physical environment”. Creative relationships within these
networks are symmetrical (“coupled”) with respect to influence, but asymmetrical
with respect to contribution, meaning that within co-creative networks degrees of
agency can vary. For instance, tools influence creative decisions, even though they
might exhibit weaker agency than human actors.

3.4.2 The Computer as a Virtual Player

Human–machine interaction as part of live performance settings is another major
area of application of AI tools discussed in this chapter. Whether this interaction
falls under Rowe’s [37] “instrument” or “player” paradigm has implications not
only for the degree of agency assigned to the computer music system, but also for
the affordances each paradigm brings to music composition. In the “instrument”
paradigm the computer assumes a role similar to a musical instrument, by trans-
lating (human) control actions into sound, while in the “player” paradigm it is
conceptualized as a virtual performer, interacting with musicians in a reciprocal
way. The “instrument” paradigm encompasses DMIs using machine learning to
map sensory data to sound synthesis parameters. The “player” paradigm, on the
other hand, serves as a frame of reference for interactive music systems, prioritizing
system responsiveness and autonomy over controllability.

Arguably, while the “instrument” paradigm falls within familiar conceptual
frameworks—“instrument” being a metaphor that pertains to acoustic musical
instruments—the “player” paradigm poses a number of conceptual challenges and
has implications for both the compositional process and its product. An interactive
musical work cannot be understood as a predetermined structure of sounds, but
rather a space of sonic possibilities, explored by the performers (both human and
virtual) during the performance. In interactive compositions, the practice of musical
interpretation is expanded to include decision-making as part of a real-time inter-
action with a non-human partner, a premise that challenges the
composition/improvisation binary, as well as conventional notions of musical form.
Composing does not entail creating sequences of sounds, but rather interaction

3 Artificial Intelligence for Music Composition 65



scenarios, designed to be explored in real time during the performance. The object
of the compositional process shifts from sound itself to sonic interactions and
creative responsibility is shared among the composer, the human and the virtual
performer. Both the compositional process and its product are effectively redefined
and re-conceptualized.

In interactive musical works, machine intelligence can help enhance the per-
ception and interaction capabilities of computer music systems, enabling new types
of sonic human–machine interaction. Machine learning algorithms can be used to
equip computer music systems with “music understanding” [10] capabilities,
allowing them to recognize and operate based on human musical concepts. Thanks
to the ability of machine learning algorithms to learn from examples, these concepts
do not need to be limited to features extracted by standard Music Information
Retrieval (MIR) tools (e.g., pitch), but can be defined by the composer using
appropriate examples and can range from the concrete (e.g., timbral categories) to
the abstract (e.g., aesthetic evaluation or perceived levels of engagement during
music-making).

3.4.3 Artificial Intelligence as a Secondary Agent

The roles that machines can assume in distributed human–computer co-creativity
include but are not limited to those of a compositional prosthesis and a virtual
performer. These are only a few of many examples that illustrate the reciprocal
relationship between tools and creative ideas. Creative tools are as much tools as
they are instruments of thinking—that is, they have a formative potential for cre-
ative ideas. This is true not only for AI, but any type of tool involved in creative
practices.

The way in which creative tools can form compositional ideas is exemplified
strikingly in some of Éliane Radigue’s recent works which, though strictly acoustic,
are more representative of techniques used in electronic rather than instrumental
music composition. For instance, in her composition OCCAM RIVER XXII [35] for
bass clarinet and alto saxophone, her use of the two woodwind instruments
resembles the sound of amplitude-modulated oscillators, recalling some of her
slowly unfolding electronic pieces created with the ARP 2500 synthesizer. Indeed,
one might argue that her way of musical thinking, deeply rooted in her work with
analogue synthesizers, was transferred almost unaltered from electronic to acoustic
music composition. The result is a radical approach to instrumental composition,
informed by electronic sound production capabilities rather than the traditional
repertoire of the respective instruments.

Creative tools can influence not only the musical language of individual com-
posers but also entire artistic movements. For instance, the stark contrast between
the aesthetics of Elektronische Musik and musique concrète is reflected in—and,
perhaps, partly attributable to—their use of different sound production means; that
is, synthesis and recording technologies, respectively. And while aesthetic choices
can never be entirely attributed to the tools themselves, the reciprocal relationship
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between the two and the influence of the latter on the development of aesthetic
movements is undeniable.

Electronic and computational tools therefore have yet another level of agency:
through their affordances, they define the space of creative possibilities and inform
creative decisions. Such a claim is in line with Latour’s [29] and Gell’s [18] views
of material agency. The agency of machine learning algorithms, as well as AI in
general, is not limited to the decision-making that might be delegated to them as
part of the compositional process or the performance, but includes opening up the
space of compositional possibilities and allowing for the emergence of new artistic
concepts and practices. The ability to recognize musical or physical gestures and
timbres, perform aesthetic judgments, or adapt to a (human) user’s preferences in a
co-exploration task are only a few of the unique affordances of machine learning
algorithms that have the potential to shape musical thinking. As creative applica-
tions of machine learning algorithms become more common, their creative potential
will unfold, allowing new interaction paradigms and conceptualization frameworks
to emerge.

3.5 Limitations of Machine Learning

Despite their potential, machine learning algorithms have shortcomings and limi-
tations, particularly when it comes to creative applications. A common challenge in
machine learning applications is the problem of overfitting. This occurs when the
algorithm learns noise specific to the training data and, as a result, is unable to
generalize on previously unseen examples. Overfitting leads to models that perform
particularly well on the training set (i.e., the examples used for training), but poorly
on the test set (a separate data set used to evaluate the algorithm’s ability to make
predictions on previously unseen examples). Dreyfus ([11]: xxxvi) recalls one of
the most well-known, though never confirmed as true, anecdotes around the
problem of overfitting:

For an amusing and dramatic case of creative but unintelligent generalization, consider one
of connectionism’s first applications. In the early days of this work, the army tried to train
an artificial neural network to recognize tanks in a forest. They took a number of pictures of
a forest without tanks and then, on a later day, with tanks clearly sticking out from behind
trees, and they trained a net to discriminate the two classes of pictures. The results were
impressive, and the army was even more impressed when it turned out that the net could
generalize its knowledge to pictures that had not been part of the training set. Just to make
sure that the net was indeed recognizing partially hidden tanks, however, the researchers
took more pictures in the same forest and showed them to the trained net. They were
depressed to find out that the net failed to discriminate between the new pictures of trees
with tanks behind them and new pictures of just plain trees. After some agonizing, the
mystery was finally solved when someone noticed that the original pictures of the forest
without tanks were taken on a cloudy day and those with tanks were taken on a sunny day.
The net had apparently learned to recognize and generalize the difference between forest
with and without shadows!
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In music applications, overfitting might result in a machine listening algorithm
performing poorly on examples recorded with different microphones than the one
used to record the training set, or a video-based gesture recognition algorithm used
to control a DMI failing to adapt to different lighting conditions. Overfitting is
usually addressed by collecting more training data, preferably from different data
distributions (e.g., audio recordings done with different microphones or video
recordings of various lighting conditions), in order to help the algorithm learn
relevant features and ignore any noise specific to a subset of the data. However,
overfitting might also be the result of an imbalanced training set (i.e., a training set
in which some classes are overrepresented and others underrepresented), or features
that have little or no relevance for the task at hand. Depending on the task, col-
lecting an adequately large, variable and balanced training set and selecting relevant
features for learning can be a time-consuming and labor-intensive process and
involves a good deal of troubleshooting and expert knowledge of the application
domain—albeit not of machine learning per se.

In addition to domain-general problems, such as overfitting, compositional
applications of machine learning pose a series of new, domain-specific challenges.
For instance, for certain musical tasks overfitting might actually be a desirable
feature, while for others existing machine learning algorithms might simply be
inapplicable [15]. Most importantly, supervised learning problems are essentially
optimization problems, operating on the assumption that there is a “right” answer
for the algorithm to learn. This focus on closed-ended tasks and quantitative
evaluation metrics stands in stark contrast to artistic practice as an open-ended
process of exploration and discovery. This effectively limits the scope of applica-
tion of supervised learning algorithms to a rather narrow spectrum of music-related
tasks. Unsupervised algorithms such as clustering algorithms might not involve
labeled data (i.e., “right” and “wrong” answers), but their scope does not differ
significantly from that of supervised learning algorithms, as clustering (grouping
data points together based on similarity metrics) is essentially a classification task.

Another category of machine learning algorithms that might be of relevance for
compositional applications is that of generative models, such as Generative
Adversarial Networks (GANs) and WaveNet [42]. Such algorithms operate based
on probabilistic principles, generating artifacts that “imitate” some sample works.
Imitation as an optimization objective, combined with a lack of interactive capa-
bilities, make such models hard to use in the context of human–computer
co-creativity. The reason for this is that these algorithms are essentially “black
boxes”: the user can feed the algorithm with some sample works but is unable to
provide any form of feedback on the generated outputs. Additionally, style imitation
might not always be a desideratum in human–computer co-exploration tasks. An
“ecosystemic” [34] approach to generative music systems would require an inter-
active, human-in-the-loop design, in which the “fitness” of the generated outputs
would be determined by the user’s feedback, rather than their proximity to some
sample works. In fact, since arguably one of the objectives of human–computer
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co-creativity is to challenge one’s own creative habits and explore new creative
paths [25], deviation from, rather than proximity to, some sample works might be
an equally valid optimization objective.

3.6 Composition and AI: The Road Ahead

The relationship between computational affordances and compositional ideas is a
complex and reciprocal one. Computational affordances can shape compositional
ideas by expanding the space of creative possibilities, or by reducing it to what is
technically feasible, available or efficient. This negotiation between (technical)
means and (aesthetic) ends is an integral part of the creative process and evidence of
the aesthetic implications of material agency. Not only are technical means a factor
in creative decision-making, but also carriers of aesthetic values. Computational
tools are designed with a specific end in mind and are rarely free of aesthetic “bias”.

Consider Google Brain’s Magenta project as an example. The Magenta project
includes tools such as MusicVAE, a model used to blend two different melodies
[36], Onsets and Frames, a tool for automatic polyphonic piano music transcription
[22], and NSynth, a deep learning-based algorithm used to create morphings
between different timbres [12]. The dataset used by the latter consists of instru-
mental sounds generated using commercial sample libraries and covering the range
of a standard MIDI piano. Users can navigate the timbral space among up to four of
these source sounds, using a MIDI input to determine the pitch of the source (and
output) sounds.

All three of Magenta’s creative tools use musical notes as a basic unit, a design
feature that makes them suitable for “note-based” rather than “sound-based” music
[28]. While morphing is a very common technique in electroacoustic music com-
position, the sound material used in the latter can include any recorded sound (e.g.,
recordings of environmental sounds, or instrumental sounds that include microtones
or glissandi) and is not limited to equally tempered, fixed-pitch instrumental
sounds. A tool such as NSynth in this context would therefore be inadequate.
Developing a morphing tool for electroacoustic music composition would require a
different design, in which source sounds could be selected directly by the user,
while sound generation would not depend on pitch, as that might not always be a
relevant parameter; e.g., when morphing between two sounds of indefinite pitch.

Similarly, one might argue that concepts such as melody and harmony are of
little relevance to much of contemporary art music. Of course, there is nothing to
suggest that Magenta’s tools were intended for use within contemporary art music.
The latter is just used as a, perhaps extreme, example in order to demonstrate the
aesthetic agency of computational tools and point out that, when it comes to cre-
ative tools, design decisions are inherently aesthetic.

While the availability and accessibility of AI tools for music has increased
significantly over the last few years, the apparent discrepancy between the scope of
such tools and contemporary art aesthetics seems to point toward the need for a
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closer collaboration between machine learning developers and composers and the
involvement of the latter in the development process. As part of this collaboration,
assumptions underlying the design of AI tools need to be questioned and adapted to
reflect the needs of current and emerging artistic practices. Concretely, the rela-
tionship between human and computational creativity and the purpose of the latter
needs to be re-examined, as the debate on Intelligence Augmentation (machines
enhancing human intelligence) versus Artificial Intelligence (machines replicating
human intelligence) [13, 30] seems to be as relevant as ever. Is computational
creativity to be understood as a simulation or an extension of human creativity?
And how does each of these approaches relate to artistic practices and inform the
development of AI-based compositional tools?

If we are to develop tools for artists, then we clearly need to move away from
automation and “black box” architectures and toward interactive AI systems that
learn from and adapt to human preferences. As far as generative systems are
concerned, this would mean adopting human-in-the-loop design strategies that
enable users to communicate their preferences and guide AI systems through a
process of co-exploration based on their subjective aesthetic judgments. As artistic
experimentation is an open-ended rather than a closed-ended process—that is,
artistic goals might change, or new ones might evolve as a result of experimentation
—optimization objectives should also be examined more closely. Style imitation as
an optimization objective is one, but not the only option. As part of human–
computer co-exploration, artists might wish to explore new territories that lie
beyond established paradigms and challenge their practice and working techniques.
Such discrepancies between currently available machine learning models and cre-
ative practices point toward the need for further research and development of new
tools, designed specifically for artistic applications.

Questions of scope might also be of relevance for future research in music and
AI. As “one-fits-all” approaches are rarely possible, the design of AI tools for music
should be regarded as artistic in nature. Design decisions, such as choosing to use
musical notes, spectral descriptors or audio samples as input units, have aesthetic
implications, as each of these units might be relevant for certain musical idioms and
applications but not for others. A closer collaboration between developers and
artists can ensure that the machine learning models and types of data used by AI
tools meet the needs of artistic practice, facilitating their use within idiomatic and
idiosyncratic musical contexts.
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4Artificial Intelligence inMusic
andPerformance:A Subjective
Art-Research Inquiry

Baptiste Caramiaux and Marco Donnarumma

4.1 Introduction

In many contemporary societies the pervasiveness of technology is constantly
expanding. From communication to social networks, digital health and welfare ser-
vices, every aspect of social life in industrialised societies is being captured by
technology with the objective of human enhancement, optimised services, or auto-
mated management. Among these technologies, Machine Learning (ML) and the
broader field of Artificial Intelligence (AI) received considerable attention in the
past decades. In this chapter, we use an autoethnographic approach to present and
discuss the hybrid methodology that we developed in five years of collaborative
research across computation, science and art. The analysis we offer here combines
insight from academic research in Human–Computer Interaction (HCI), in particular
body-based interaction, and from aesthetic research in the performing arts to inspect
and question the role of ML and AI in our practices.

The past decade has shown that data-driven learning-based algorithms can suc-
ceed in many tasks that were unthinkable not too long ago. Since the deep learning
breakthrough in 2012 [44], these algorithms have been shown to recognise images as
well as humans do, to acquire motor control capacities from few observations, and to
understand and respond to several kinds of human languages. These breakthroughs
prompted major investments in the field, thus accelerating technological advance at
an exponential pace (the number of attendees at major conferences or the number of
published papers at online repository like arxiv show the radical increase of interest
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in the topic). A consequence of the impressive advance of the field is a frantic race
to embed ML-based algorithms in most digital services, without offering ways for
users to acquire a basic literacy of the technology. The general paradigm behind the
development of these technologies is based on centralised ownership by tech com-
panies or institutions. By interacting with these technologies, people produce large
amount of usage data, which, in turn, is used to train the underlying algorithms. This
type of technology is therefore detached from people’s control and understanding.

Artists have historically been among the first to question technological innova-
tions (see, for instance, the organisation Experiments in Art and Technology, E.A.T.,
founded in 1967). They have often been early adopters and disruptors of new tech-
nological tools, and ML is not an exception [13]. On one hand, many artists use ML
to enrich the way they work with their preferred media. On the other, some artists
use ML, and in particular AI, to shed light onto certain facets of these same tools
which can be invisible or taken for granted by public opinion, media, or institutions.

Our own path, which we elaborate next, has taken different directions through-
out the past five years of collaboration. Initially, our approach was to use ML as a
tool to design improvised and markedly physical musical performance, exploring
the relation between computation and corporeality. Eventually, our approach shifted
to utilise and reflect on AI as an actor in a performance, an entity whose functioning
can be used to question the understanding of computational intelligence in West-
ern society. As a team doing research in overlapping fields, we tried to combine
our respective methodologies in a zone of encounter, where practice-based research
meets artistic intervention in research. The former involves the use of artistic prac-
tice as a means of research. The latter entails that a creative, artistic process acts
upon scientific research objectives. Naturally, such a hybrid methodology has been
explored by others before us [26,28].

In this chapter, we intend to extract the subjective aspects of our collaborative
works and to discuss the methodological perspective that our particular mode of
collaboration offers to the study of ML and AI, as well as to the study of their impact
onHCI and the performing arts. The chapter is structured as follows. First, we provide
general thoughts on combining scientific and artistic practices; these observations
will help us give context to the methodology of our collaborative work. The next
two sections discuss the conception and development of our collaborative artworks,
two hybrid performances of computational music and choreography, Corpus Nil and
Humane Methods. We present the scientific and artistic drives behind each project,
highlighting scientific, artistic and cultural contexts. Finally, we provide a closing
discussion where we bring together the core findings emerged from our research.

4.2 Combining Art, Science and Sound Research

A dialogue between scientific research and artistic practice is inclined to generate
multiple and often contrasting perspectives, rather than producing an agreement.
Important insight can emerge from those contrasts, insight that would have been
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obscured by a unified and monodisciplinary approach. This is the methodological
grounding of the present chapter. We do not strive for objective knowledge. Art, even
in its practice-based forms, does not offer any provable truth but creates alternate
visions and, sometimes, it is called upon to “contemplate the dark without drawing
a resolutely positive lesson”, as Fuller and Goriunova put it [33].

4.2.1 Practice-Based Research and Objective Knowledge

The kind of art and science coupling we discuss here is not the use of scientific
findings for the creation of an artwork, for that strategy requires an attentive process of
translation, as stressed by Stengers [53], and—based on our subjective experience—
it can easily feel constraining. As we will elaborate later when discussing our first
collaborative project Corpus Nil, valid insight or correct measurements achieved in
a laboratory setting may not be useful when applied to a musical performance. The
motivation lies in the experimental limitations of particular scientific methods found
in HCI and other research fields combining natural science, design and engineering.
Contrary to the social sciences, for instance, HCI experiments are often conducted in
a laboratory context. In controlled studies, every aspect of such studies is thoroughly
directed by the experimenters.Whereas the protocols of suchHCI experiments aim to
ensure scientific rigour and reproducibility, those same protocols create the specific
context wherein the collected data and related findings are meaningful. Outside of
the specified context, data and findings may not be as meaningful, especially when
applying them to an unpredictable and ever-changing situation such as a live artistic
performance before a public audience.

For example, during a live performance, sensor measurements that have been
validated through a particular experiment may very well vary according to a range
of factors, including room temperature, magnetic interferences and the like. Those
variables—contrary to a laboratory experiment situation—cannot be controlled.
More importantly, the performer experiences her own body, a technological musical
instrument and the context in subjective ways; during an artistic performance a per-
former is driven by instincts, desires and feelings that arise from the relation with the
audience, other performers and a particular musical instrument. Artistic expression
in musical performance emerges from the interaction of human actions and desires
with the capabilities of a musical instrument.

This emphasises the need for, on one hand, a careful selection and interpretation of
the methods of art and science collaboration, and, on the other, a precise definition
of the shared knowledge needed by artist and scientist to operate collaboratively;
an entanglement that Roger Malina aptly calls “deep art-science coupling” [46].
Practice-based research represents a good framework for the exploration of art and
science coupling, for it generates knowledge from action, self-reflection and empir-
ical experimentation [6,11], methods that are equally fitting in HCI as in music
and the performing arts. Crucially, we believe that the goal of art and science col-
laboration is not the production or re-staging of the limits of a normative type of
science, but rather is about “working outside current paradigms, taking conceptual
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risks”, followingMalina, so as to mindfully merge disciplines towards new practices
of experimentation. This can result in contrasts and disimilarities which must be
considered and which, in fact, produce the richness of art and science practice.

4.2.2 Artistic Intervention in Scientific Research

As technology has become more ubiquitous, spreading from workplaces to every-
day life, the field of HCI has adopted new ways to investigate how we interact
with such pervasive technology [23,39]. The so-called third-wave of HCI looks at
notions such as experience, emotions, aesthetics and embodiment [9]. The field thus
embraces methodological resources from a broader range of fields such as cognitive
science, social science, science studies or the Arts. In this context, artistic inter-
vention encourages research practitioners to look at their subject of study under an
alternative “hypothesis”, through different facets. It is important to underline that,
differently from practice-based research, artistic intervention in research emphasises
the idea of intervention: the artistic process acts upon the research objectives. For
example, artistic intervention in scientific research, andmore specifically in HCI, can
help address a problem (or study a phenomenon) in radically new ways [5]. Such as
in the case of Fdili Alaoui [28] who, working between HCI and dance, questions the
academic culture of HCI through her expertise in interactive dance performance.

In our research,we use artistic intervention to build and study interactions between
people and intelligent systems. This methodological choice is motivated by two fac-
tors. On one hand, scientific research practice can feel normative and standardised.
As researchers, we employ established methods to structure our investigations on a
particular question, as well as to disseminate the outcomes of the research.While this
standardisation has its pragmatic rationale (for instance, to help its dissemination),
it can be detrimental to scientific research practice in many ways, such as limiting
exploration or surprise. A detailed articulation of the pros and cons of it goes beyond
the scope of this paper. Here, we stress how artistic intervention in research can com-
plement standard scientific methods in leavingmore room for unexpected challenges
and nuanced conceptual questioning. As an example, which will be developed in the
following section, our study of gestural expressivity in musical performances has
shifted the emphasis from characterising gestural variations in kinematic space to
characterising variations in muscle coordination space.

On the other hand, the specific field of HCI has its own culture and shortcomings.
While the field examines and generates the systems underpinning the technological
world with which humans interact daily, its political dimension—that is, the varying
balances of power between who produces the technology, who designs it, who uses
it, and what socio-cultural impact it may have—is rarely addressed [4,40,42]. By
avoiding to explicitly address the politics of technological innovation, one risks
to contribute to the creation of forms of technological solutionism. Technological
solutionism refers to the idea that technology can solve any problem, including issues
which may not exist or which ignore both socio-cultural and political contexts [8].
We found that one method to prevent (at least partially) our research from entering a
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solutionist discourse is to invoke artistic intervention within the process of scientific
research. Critical artistic intervention can explicitly provoke self-reflection about
the involvement of a particular technology. Through an analytical and self-reflexive
engagement, a critical artistic intervention can question the role of technology and
its capacities of meaning-making, forcing artists and researchers to face the inner
beliefs that ultimately motivated their choices.

In the following, we discuss how we applied the methods and insight described
above to two separate research projects, which led to the creation of two artistic
performances and scientific publications. This also serves to illustrate how our col-
laboration developed iteratively through the intertwining of practice-based research
in the art field and artistic intervention in the scientific research.

4.3 Machine Learning as a Tool for Musical Performance

Our first project stemmed from a collaboration started in 2014. The outcomes of
this particular project were a performance entitled Corpus Nil (premiered in 2016
at ZKM, Center for Art and Media, Germany and still touring internationally) and
academic publications [12,22].

4.3.1 Corpus Nil

The piece is a twenty-minute dance and music performance exploring hybrid forms
of identity and musicianship. It is an intense and ritualistic interaction between an
autonomous musical instrument, a human body, and sound. Figure4.1 depicts a
picture from a live performance. The theatre space is completely dark. The player
(Donnarumma in this case), whose body is partly naked and partly painted in black,
performs a tense choreographywhich gradually morphs his body. Two types of wear-
able biosensors transmit data from his body to our machine learning-based software.
Chip microphones capture sounds from muscles and internal organs (mechanomyo-
gram or MMG) and electrodes capture muscle voltages (electromyogram or EMG).
The software uses special filters to generate a description of the amplitude and fre-
quencies of all sounds produced within the performer’s body (between 1 and 40
Hz), as well as their variations over time. Then, it re-synthesises those sounds by
orchestrating a feedback network of twenty digital oscillators. Because the choreog-
raphy demands slow, subtle and iterative physical movements, the resulting music is
equally slow and recursive, mutating across microtonal variations of a minimal set
of pitches.

The instrument—here intended as a combination of our chosen hardware and
software—analyses the collected data to learn the nuances of the performer’s move-
ment (muscular tension, gesture abruptness, rate of relaxation). Upon observing a
certain nuance, it chooses whether to mute or activate particular oscillators, how to
regulate volumes, phases, glissandos and multi-channel diffusion, and how to adjust
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Fig.4.1 Picture from the performance Corpus Nil. Photo courtesy of ONUK Fotografie. The piece
evolves through different levels of muscular tension, torsion and articulations of the upper limbs.
Aspects of the movements captured by means of two different muscle sensors placed on the arms

feedback amounts within the network. The player cannot control the instrument,
but can only learn how to affect it and be affected by it. The piece thus discards
conventional performer-instrument relationships—founded on the performer’s full
control of the instrument—in favour of an unstable corporeal engagement between
the two. Through the rhythm of sound, vibration and light, the performer’s body
and the instrument mutate, physically and conceptually, into something “other”; an
unfamiliar creature defying common definition of the human.

The software used in Corpus Nil, collaboratively created by the authors, consists
of a set of algorithms linked to one another forming a recursive network. The algo-
rithms have different tasks, such as biosignal analysis, learning ofmovement nuances
(through linear regression and statistical methods) and sound resynthesis. A group
of algorithms extracts a set of high-level features from the biosignals collected from
the player’s body (change rate, damping and spectral centroid). This feature set does
not represent the movement per se, for it does not account for the shape of movement
in space. Rather, it indicates specific traits, such as muscular force, abruptness of a
contraction and damping of the muscular tissues, that characterise the articulation of
themovement. The combination of analysis, learning and sound synthesis algorithms
into a recursive network makes the instrument dynamic enough to provide highly
unexpected responses to the player’s movements. This, in turn, forces the performer
to adapt the choreography “on the fly”, establishing thus a continuous and adaptive
dialogue with the instrument.
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4.3.2 Scientific and Artistic Drives

Here, we present the scientific and artistic contexts, specific to each author, in which
our collaboration on Corpus Nil took place.

Gesture Expressivity and Interactive Machine Learning When we started the col-
laboration in 2014,my (first author) research focused on capturingmovement expres-
sivity to be creatively used in music performance. A hypothesis was that aspects of
the physical expressivity of a performer could be observed by analysing intentional
variations in the execution of a movement. A system which would capture such vari-
ations could then be used to drive sound synthesis engines. However capturing those
variations proved not trivial. Our approach at the time, developed with colleagues
at Ircam (Paris) and Goldsmiths College (London), relied on a machine learning-
based algorithm—called Gesture Variation Follower (GVF) [14]—which tracks, in
real-time, continuous movement variations across space and time. In order to allow
artists with radically different movement vocabularies and expressivity to use the
system, this was designed to be rapidly calibrated.

This research belongs to a broader line of endeavour where machine learning
algorithms are considered as tools to design expressive musical instruments and
interactions [15,29,30,32,34,36]. In this type of research, the significant advantage
of machine learning is that it leverages advances in computation and data analy-
sis to allow musicians to tackle fairly complex musical scenarios [29]. More pre-
cisely, instead of writing rules that govern the criteria of interaction between per-
formed movements and resulting sound, one can provide the algorithmic system
with demonstrations of those criteria, which will be automatically learned by the
system [31]. This approach involves tight interactions between the performer and
the ML algorithm, formalised under the discipline of Interactive Machine Learning
(IML) [1,27,55]. Using machine learning as a design tool seemed a natural approach
when considering movement inputs to an interactive system. Writing rules that gov-
ern the analysis of movement inputs is clearly unfeasible when we consider that the
system is expected to handle a wide scope of complex movements, mostly subjective
to each performer. In addition, movement literacy is tacit, which means it cannot be
easily formalised through words and lines of code of a programming language in a
design context [38]. A machine learning-based approach where one can configure a
system by demonstration seems a much more efficient approach [35]. In addition,
such a system can be more inclusive, meaning that it can be used by novices and
people with diverse physical abilities, who may not have previous experience in
movement analysis or computer science [41].

Deconstructing a Performer’s Body By the time our collaboration began, I (second
author) had been working for four years in the field of gestural music as a researcher,
composer and performer; in particular, I had been developing a musical performance
practice known as biophysical music [21]. With this term, I refer to live music pieces
based on a combination of physiological technology and markedly physical, gestural
performance. The approach of biophysical music differs significantly from previous
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strands of biosignal-based musical performance [43,49,54] which are largely rooted
in the use of physiological signal as a means of control over electronic or digital
interfaces. The practice of biophysical music focuses, instead, on designing ways
and tools through which the physical and physiological properties of a performer’s
body are interlaced with the material and computational qualities of the electronic
instruments, with varying degrees of mutual influence. Through this method, which I
term human–machine configuration [20], musical expression arises from an intimate
and, often, not fully predictable negotiation of human bodies, instruments, and pro-
grammatic musical ideas (an anthology of biophysical music projects can be viewed
in [19]).

After several years exploring potentialities and limits of gestural music research, I
started questioning—in both my artistic and scientific processes—the kind of human
body at the centre of conventional gestural music performances. My concern arouse
from both my own work experience in the field and my participation to the HCI
community through conferences and research exchanges, as well as from my study
of feminist theory, in particular body theory [7] and disability studies [51]. Soon,
it became clear to me that the kind of body shown in the performances of gestural
music, and newmusical instruments in general, was most times a heavily normalised
body, that is, a body fitting particular criteria of normality. This triggeredme to inves-
tigate how elements of gestural music performance and HCI could be exploited—in
combination with research on movement and aesthetic—to create a different kind of
performance practice; a practice that would account for the human body as an ever-
changing, fluid entity with multiple potentials and varying forms of embodiment,
instead of a static, controlled and controlling subject as established by our societal
regime. Thus, drawing on the artistic work of performers such as Kō Murobushi [47]
and Maria Donata D’Urso [25], among others, I developed a particular methodol-
ogy of movement research that emphasised the combined use of unconventional
choreographic methods and intense somatic experimentation towards the physical
manipulation and symbolic deconstruction of a performer’s body.

The movement experiments I conducted at the time were based on a gesture
vocabulary composed of complex torsions, flexions, and contractions of shoulders,
upper arms, and neck. No lower arm or hands gesture figured in the movement
vocabulary I had designed for the piece (which then became Corpus Nil); hands,
lower arms and even the headwere, in fact, hidden from view and rendered purposely
useless. Because the literature and tools in regard to this particular mode of gestural
interaction are scarce, we decided to explore muscle activity at a very low level—
through choreographic methods and resources from biomedical engineering. This, in
turn, led us to investigate complementary sensormodality,with the goal to understand
physical expression outside of a frame focused on “control”.

4.3.3 Development and Observations

The initial seed of the collaboration was an intuition to investigate applications of
interactive machine learning to the analysis of movement in a body-based musical



4 Artificial Intelligence in Music and Performance: A Subjective … 83

performance. The performance in question, however, relied on the expression of
bodily and motion qualities that were uncharted by previous work in the field. This
spawned a research of muscle activity, the sensorimotor system and how, through
different sensing methods, aspects of expressivity could be observed in human–
computer interaction.

Understanding Movement Expressivity Initially, the analysis of movement expres-
sivity as conveyed by the specific kind of muscle torsions, flexions and contractions
described in the previous section seemed a good challenge for the Gesture Variation
Follower algorithm (GVF) [14]. GVF was originally designed to track variations
of movement trajectories in space and time, so we explored fundamental questions
about movement expressivity at the level of the muscle activation. What is the tra-
jectory of muscle activity in this context? To what extent information on muscle
temporal activity is meaningful to a performer, and how muscle temporal activity
can be controlled?

We began by experimenting with Mechanomyogram (MMG) sensors, capturing
the mechanical activity of the muscle, built by Donnarumma in previous work [18].
We organised sessions of data capture and post-analysis. It became quickly clear that
MMG data captured dynamic transitions between separate muscle contractions and
the resulting trajectories calculated by GVF did not make sense. We added a second
sensor based on Electromyogram (EMG), which measures the electrical discharges
activating themuscle. Here, a new problem emerged, followingDonnarumma’s feed-
back about the resulting movement-sound interaction: controlling EMG trajectories
was not aesthetically convincing, for it could not allow a highly dynamic mode of
interaction, one of our main musical goal. Therefore, we worked on a new way
to analyse muscle biosignals. We developed a different tracking system where the
tracked parameters were not linked to the movement trajectory but to the parame-
ters of an underlying second-order dynamical system with damping (symbolically
representing muscle dynamic as an oscillating string).

How to define gesture expressivity when the gestures in questions operate through
a set of symbolic and aesthetic signs? What kind of expressivity emerges from a per-
former’s body that is physically constrained by a given choreography? And how
can a ML system actively and subtly support a semi-improvisational physical per-
formance of music where the very notion of “control” is put into question? We felt
that these questions were to be tackled through a strategy that combined scientific
and artistic methods. Our research forked in two parallel streams of investigation.
On one hand, we deepened our understanding of expressivity to take into account
involuntary aspects of whole-body gestures. Using real-time analysis of comple-
mentary muscle biosignals, EMG and MMG, we began isolating a set of features
that could describe relative levels of muscular effort without the need to define in
advance the type or the timing of a gesture. This would support the open-ended and
semi-improvised nature of the choreography that was being developed. On the other
hand, we started exploring the design of a computational music system that would
not be tied to conventional mapping techniques, but instead would reflect, through
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sound, levels of effort intensity, movement abruptness and degree of complexity of
particular gestures—i.e. the amount of muscle groups activated by a given gesture.

We finally conducted a controlled experiment to study gestural expressivity from
the point of view of motor control (i.e. the ability of users to control gesture varia-
tions), using both EMG and MMG interfaces [12]. The main study brought together
12 participants for a session of 45min each. In these sessions, participants were asked
to perform a certain number of gestures (with or without tangible feedback) and then
to vary one or more dimensions of expressivity. We showed that the participants con-
sistently characterised dimensions of implicit expressivity (force, tension, etc.) and
that the physiological interfaces used made it possible to describe these dimensions.
Finally, we showed that participants could control these dimensions under certain
conditions linked to constraints from the laws of motion.

Highlighting algorithm’s limitation with IML GVF was designed to be quickly
trained (or calibrated) by providing one example for each movement that the system
has to recognise, and its capacity to track movement variation was meant to give to
users ameans to explore amovement space.However, its use in a tight interaction loop
with the performer’s body during experiments and rehearsals felt like a failure. One
major factor was that the system felt restrictive rather than extensive. The movement
possibilities seemed to shrink rather than extend. In the typical IML workflow, the
performer is engaged in a close interaction loop with the movement-based machine
learning system. However, if the algorithm has low-capacity (failing to handle a wide
range of input movements) with respect to the complexity of the input movement,
the performer may ultimately adapt to the system limitations, hence constraining her
own movement qualities. Consequently, this adaptation would make the interaction
converge towards simplistic movements and interactions.

This phenomenon may have also been emphasised by the absence of clear expla-
nations about the system’s prediction behaviour. Incorrect analysis of the GVF was
hard to grasp by the performer (second author). Typically, the algorithm could have
failed because the beginning of the movement is too different from the pre-recorded
ones, but this information was not clearly fed back to the performer. As most tem-
poral gesture recognition systems, GVF recognises a gesture (or movement) from a
starting point until an end point. Establishing what defines the beginning of a move-
ment and its ending point during the artistic performance was not trivial and it could
definitely not be handled by the algorithm. Moreover, the system was designed to
handle continuous and rather slow variations, whereas Donnarumma’s muscle activ-
ity during the choreography presented types of dynamics that could not be tracked
by the system. We needed a more flexible approach and thus we developed a new
tracking system. This was designed to estimate in real-time the parameters of a phys-
ical model that mimicked the performer’s muscular activity, as mentioned above. In
doing so, we were not tracking gesture trajectories but movement “regimes”. Thus,
this method allowed us to explore alternative representations of movement using the
input data at hand.
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4.4 Artificial Intelligence as Actor in Performance

In 2019, we initiated a second collaboration, which actively involves a group of 13
people, including artists working with new media, biological materials and perfor-
mance, as well as designers, AI and neurorobotics scientists. The project outcome is
a dance-theatre production entitledHumaneMethods. The first version of the perfor-
mance premiered at Romaeuropa Festival and, at the time of writing, the project is
currently ongoing. As for the previous collaborative project, we begin by describing
the piece and then situating it within distinct scientific and artistic contexts.

4.4.1 HumaneMethods

Humane Methods is a dance-theatre production exploring the multilayered nature of
today’s violence. The project departs from the assumption that—through the physical
and psychological brutalization of people and non-human beings—the combination
of digital technologies and capitalistic urge has driven the natural ecosystem towards
impending destruction. The project then aims to dissect the violence of algorithmic
societies, where power structures, knowledge creation and normative criteria become
means of manipulation. Being an evening-length production, Humane Methods is
composed of a multitude of elements, including robotic prosthetic limbs driven by
their own neural networks, dead plant specimen and fungi growing on costumes,
uncompleted or destroyed architectural structures, chimeric creatures, experiments
in trauma, actions as rituals. For the sake of clarity, herewe focus on the technological
aspects of the piece and how they relate to the techniques and implications of AI.
Figure4.2 shows a picture from the performance.

In a landscape of ruined nature and technological relics, a community of nine
semi-human figures lives a primal and stern existence. They perform a ritual of prayer
in a loop, but with every repetition of the prayer, something in their interpersonal
relations or in the world surrounding changes. As variations accumulate, the praying
loop is drastically altered and the storyline branches out into a constellation of stories,
of hints, of untold events, playing out various degrees of intolerance, isolation and
exploitation. Throughout the action, a deep reinforcement learning algorithm tries
to learn a meaningless sequence of ten digits.

Our motivation in choosing to work with an AI algorithm performing meaning-
less calculations lies in a conceptual shift from conventional uses of deep learning
techniques in music and performance. What interests us is not the capacity of the
algorithm to reach its target, but rather the ways in which the inner (obsessive) logic
of this type of computation can bemade perceivable at an aesthetic and sensorial level
to both performers and audience. To that end, we designed an audiovisual system
that links the actions of the AI algorithm to synaesthetic patterns of music and light,
so that the algorithm “speaks”, as it were, of its actions and choices through sound
and light. The result is a dogged, hypnotic stream of sound and light that inundate
the venue: the calculations of the AI are turned into perceivable material, auditory
and visual pulsating patterns that literally mark the choreographic actions on stage,
as well as the spectators’ experience of the piece.
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Fig. 4.2 Photo courtesy of Giada Spera. Picture from a live performance of Humane Methods at
Romaeuropa Festival. Portrayed is one of the iterations of the ritual at the core of the performance.
It is possible to observe in detail the lighting generated by the AI

4.4.2 Scientific and Artistic Drives

Human–AI Interaction ML and AI algorithms have known an exponential devel-
opment in the past decades. Several important works have shown the capacity of
learning-based algorithms to outperform humans in specific cognitive tasks such as
playing the gameGo [52], recognising images [44] or understanding natural language
[37].

Simultaneously, the fields of HCI, Humanities, and Social Sciences have started
to take seriously the study of the socio-cultural impact of AI and to propose design
guidelines or good practices. Several works have recently been published along
this line. Among them, some aim to propose a set of guidelines for designers of AI-
powered interactive systems [2]. In this context, AI is seen as a tool to improve users’
services and generally empower humans [10]. As an extension, AI can be seen as a
material that can be appropriated by designers to improve user experience inAI-based
applications [24]. However, most of these attempts have highlighted the inherent
challenges of this approach due to the difficulty of grasping what AI can and cannot
do [56]. In my work (first author), I am exploring how the computational learning
mechanisms themselves can become interactive in order to foster exploration and
human learning, as we recently explored in the specific domain of sound design [50].

On the other hand, recent works have investigated the complex consequences of
the inherent biases in AI-powered applications and their impact when used in health



4 Artificial Intelligence in Music and Performance: A Subjective … 87

care, education or culture [3,17,45]. This last branch of research is a necessary under-
taking that I am currently pushing in my recent research interest, which looks at the
socio-cultural impact of technology. Therefore, at a scientific level, the collaboration
presented in this section was motivated by an intention to investigate how people
understands AI technology and which are the founding beliefs supporting particular
forms of such understanding.

Motivations and Artistic Needs The project Humane Methods is a collaborative
endeavour that involves, aside from the collaboration betweenmyself (second author)
and Caramiaux, a shared authorship between Margherita Pevere [48], myself and
video artist Andrea Familari. In particular, the artistic concept for the piece was
jointly created by Pevere and myself, and then furthered through a close collabo-
ration with Caramiaux. As artists working respectively with biotechnology and AI
technology, the first question that Pevere and I asked ourselves was how to situ-
ate our artistic practices within the current historical period, one characterised by
a generally intolerant and polarised socio-political forces, converging with a seri-
ous, technologically-driven disruption of the natural environment. This question led
our efforts towards an analysis of the multifaceted nature of human violence, as
it is exerted between humans as well as it is enforced by humans on the lives of
non-human entities and the natural environment.

Turning to the main topic at hand—AI technology and its use in collaborative
art and science projects—we chose to deploy AI algorithms in an unconventional
way. Instead of using AI to aid human performers in the creation of sound—as we
had done for Corpus Nil—or using an AI generative capacity to create a musical
automata, we chose to make tangible the “brute force” computing mechanism of AI
algorithms. In other words, we chose to highlight how many of the most common
learning algorithms being presently developed attempt to reach their targets using a
mechanism that is obsessive and raw.

4.4.3 Development and Observations

The collaboration developed through personal exchanges on the general theme of
technology and society and particularly on how technology induces violence or
empathy on people, to other people and to their environment. We wanted to cre-
ate an algorithmic behaviour that obsessively learned something and which could
autonomously explore different ways to reach its goal. The first trials, in terms of
scenography, music, light and algorithms happened in June 2019.

Machine BehaviourThe algorithm designed and implemented forHumaneMethods
is based on deep reinforcement learning, which means that the algorithm explores a
high-dimensional continuous space and receives positive rewards when approaching
the goal. These rewards are used to exploit certainmoves within this space that would
help the algorithm reach the goal. In Humane Methods, the algorithm’s target is an
arbitrary set of parameter values which—purposely—holds no meaning. The reward
is given by its distance to the target. Its actions are moves in the parametric space.
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As the algorithm moves in the parametric space, it outputs a list of 10 values—
indicating the degree of proximity of its calculations in respect to its target on an
integer scale between 1 and 3. Each of the 10 values is then mapped to a musical
pattern—which are predefined arpeggios of acoustic piano samples—and a light
pulsation pattern. Sonic and light patterns follow relentlessly one after the other,
creating the perception of an audiovisual entity morphing continually through a
multitude of syncopated variations. This dynamic morphing of sound and light is
made more complex by a parallel method linking the algorithm degree of proximity
to the target to, on one hand, the loudness of each single musical pattern, and on the
other, to the brightness intensity of physical analog lights. The closer a value is to
the corresponding target, the quieter is the volume of the related musical pattern and
the dimmer is the brightness of the corresponding light pattern.

The algorithm moves within the space are entirely inferred by the learning pro-
cess. This process consequently makes apparent to the spectators the behaviour of
the algorithm. The algorithm becomes thus an actor, a performer on its own. Because
neither the human performers nor the technical team behind the piece can control the
computation of the algorithm, the latter is the sole entity responsible for the audio-
visual dramaturgy of the piece. Interestingly, this role taken by the algorithm made
us personify it: we began referring to it by a name, or discussing its contribution
to the piece as an actor on its own. Journalists have also asked questions along this
line, after seeing the show. This has been all the more striking for us as we were
very careful not to anthropomorphize AI, a process that we find counter-creative for
it typically impedes a precise understanding of technology by imposing a human
worldview onto something which is not human.

Controlling Artificial Intelligence and Being Controlled by It Following our first
experiments with the algorithm and, thus, observing the modalities of its interaction
with music, light and choreography, it became more interesting to us how the algo-
rithm learned rather than what it learned.We tested several strategies to map, more or
less directly, the behaviour of the algorithm (the how) to the choreography executed
by the human performers—discarding, in the process, any information regarding
what the algorithm learned. In doing so, we soon faced a different challenge: how
to find a balance between the control of the AI over the piece’s narrative and the
influence of the performers over the AI’s learning process. We explored different
strategies. One was to have the algorithm dictate the start and end points of each
choreographic action. This, however, felt narratively constraining and aesthetically
poor. Another attempt required the AI to describe the movement qualities with which
each loop was to be performed by the human actors. This proved cumbersome, for
a reliable, real-time communication between the AI and the performers was too
complex to design.

At this point we changed our approach. Instead of mapping the AI’s behaviour
to the actions on stage, we thought of implementing the opposite strategy, that is,
to map the actions on stage to the behaviour of the AI. Thus the choreography was
re-conceived tomimic the temporal structure of the AI’s learning process. One single
action (a hybrid form of gestural prayer) is repeated in a loop, but with each repeti-
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tion comes a more or less drastic variation. This loop structure mirrors the episodic
learning of the algorithm: the algorithm learns through episodes—each can take a
fewminutes—and each episode adds variations to the next iteration of learning. This
solution meant to limit the explicit interaction between actors’ performance and AI
learning process. The interaction between the two elements became thus implic-
itly intertwined: at conceptual and aesthetic levels the performers’ action and the
algorithm’s learning process were connected, but this connection was not defined
by explicit mapping of control signals. While we successfully performed the piece
before a public audience in this format, we consider the issue still open. In our view,
the piece would have a stronger impact if the performers’ actions would be linked
both implicitly and explicitly to the learning process of the AI.

Audience Perception of Artificial Intelligence In June 2019, we had the opportunity
to collect subjective feedback from the audience during an open rehearsal at the Cen-
tre des Arts Enghien les Bains (CDA), a co-producer of Humane Methods together
with Romaeuropa Festival, Italy. Our encounter with the audience in France was
important, for it allowed us to open our aesthetics and research to a general public,
most of whom had little or no familiarity with the ongoing project or our previous
works. Here, we focus on the feedback given by the audience about their perception
of the AI, as they observed it during the excerpts of the piece we performed for them.
It is important to note that, before the performance, we purposely avoided informing
the audience about the presence of an algorithm driving lights and music.

The two most significant comments of the audience were that some spectators
did not realise that music and light were driven by an AI algorithm, and that another
spectator suggested us to create more explicit interactions between the algorithm and
the performers on stage. These comments are perhaps unsurprising if we consider the
issue of implicit/explicit interaction discussed above. Nevertheless, they confirmed
our early intuition about the challenges of making an AI perceivable to a public
audience. Our algorithm manifests itself only indirectly, through lights and music
and it lacks a physical embodiment. This was a choice we made in order to reinforce
our critical stand on the impact of AI in society; the AIs regulating social media,
welfare andwarfare are pervasive and ubiquitous, while simultaneously invisible and
implicit, integrated seamlessly as they are in institutional structures and interpersonal
lives. Our AI was designed with this in mind, and is therefore omnipresent and
unobservable.

However, concept aside, on an actual theatre stage it is indeed a challenge to
manifest the AI’s presence and expressivity while completely avoiding a physical
representation of it (and potentially fall into naive anthropomorphism). Thus, while
we still believe the concept we explored is meaningful to the overall piece, the audi-
ence feedback made us realise that, in order to be perceived as a “real” presence, the
AI in Humane Methods needs to be embodied and its agency has to be manifested,
in a way or another. This is still ongoing research, thus we can only speculate here,
but we believe this issue opens a fascinating challenge regarding the fragile bal-
ance between “AI in control” versus “humans in control” elaborated in the previous
section.
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4.5 Discussion

This chapter focused on possible methodological approaches to the use of ML and
AI in the context of music and performance creation. We have offered an autoethno-
graphic perspective on a research and creation process spanning five years. Our aim
was to open up our process and proffer insight into one possible way of coupling art
and science in the application of AI andML. In closing this chapter, we discuss three
main aspects of the research. The first relates to how we approached AI and ML in
relation to music and sound creation. The second concerns a shift in terminology
that accompanied, and became manifested through, our projects. The third and final
one addresses the hybrid methodological approach we developed progressively and
contextually to each artwork.

4.5.1 Artificial Intelligence andMusic

Manymusic-related fields are currently facing important changes due to the interven-
tion of machine learning and artificial intelligence technology in music processing.
These changes occur at different levels: creation, consumption, production and diffu-
sion [13]. While AI technologies offer increasingly broad options to researchers and
artists alike, with the present contributionwe stress the importance of acknowledging
the historicity of these technologies—where and how they emerged and developed—
as well as the increasingly complex implications of their interaction with multiple
layers of humans’ societies. As we have demonstrated through the review and dis-
cussion of our specific collaborative projects, the use of ML and AI in music-related
research does not have to be constrained by a paradigm of control—of humans over
algorithms, of humans over musical forms, or of humans over other humans. Rather,
by nurturing in-depth and long-term art and science collaborations it is possible
to define new modalities of interaction across ML, scientific research and artistic
creation.

At a musical level, both Corpus Nil and Humane Methods foster improvisational
and unconventional types of interaction between algorithms, human bodies andmusi-
cal forms. What should be emphasised, however, is that these kinds of musical inter-
actions emerged from the combination of particular scientific and artistic drives
which, in turn, evolved out of specific socio-cultural contexts. Artistic interven-
tion into scientific research was coupled with practice-based research in ways that
ramified our thoughts and strategies in multiple directions. Our own idea of what
computational music can be was heavily affected by the particular paths we chose
throughout the past five years of collaborative work. Whereas this allowed the ger-
mination of nuanced and technically rigorous interaction systems, it also made the
development of satisfying outcomes slower than it could have been, had either of
chosen towork alone. Thus, the same combination of practices and approacheswhich
affords us with the capacity to deeply couple art and science is a factor that impedes
fast turnarounds and requires mid-large timescales in order to reveal artistically and
scientifically valid outcomes.
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4.5.2 FromMachine Learning to Artificial Intelligence

Our work witnessed a change in terminology that has been occurring since the deep
learning breakthrough in 2012, that is, the shift from “machine learning” to “artificial
intelligence”. Machine learning used to—and, to some extent, still does—refer to
the technological underpinnings that allow computational systems to “learn” from
data, where learning means extracting structural components from a dataset. The
term artificial intelligence is, however, more ambiguous: it was originally coined
in the 1950s to designate a symbolic approach for modelling human cognition, but
nowadays what is called AI mostly relies on vector-space generated by deep neural
networks (which is not a symbolic approach) [16]. The term has its advantage to
communicate about the technology and to create research and business incentives.
Then, we also believe that the term imposed itself following the recent capacities
of machine learning techniques. When AlphaGo [52] won against the world’s best
Go player, the idiom “machine learning” did not seem comprehensive enough to
designate the technology that made it possible, its computational capacities, or the
new prospect that such technology had opened up.

While, today, the HCI community often uses the term Artificial Intelligence, in
our own research we preferably adopt the term Machine Learning to designate the
type of algorithms we develop and use. Nevertheless, in our view, the adoption of
the term AI triggers interesting questions into the concepts that are most commonly
associatedwith the term. Speaking ofAI triggers a specific and ambiguous imaginary
that is worth understanding in detail in order to make better use (or no use at all) of
this technology as practitioners and researchers in HCI.

The dialectical shift can be traced in our own work. Our first project, Corpus Nil,
relied on a low-capacity movement recognition system. In this case, we were certain
that Machine Learning was the right designation because the algorithm did not man-
ifest a distinctive behaviour. Rather, its role was to recognise and learn given aspects
of a performer’s physical expressivity, so as to emphasise elements of human corpo-
reality. On the contrary, the second project, Humane Methods, involved a radically
different algorithm chosen not for its capacity to achieve a certain goal, but rather for
the particular computational behaviour driving its learning mechanism. In this case,
the term Machine Learning felt constraining, for it precluded an understanding of
the algorithm as a socio-cultural phenomenon, beyond its computational capabilities.
The algorithm had almost become a black box, interpretable only by observing its
choices and subsequent actions. In this sense, it became observable as an actor.

4.5.3 Hybrid Methodology

By observing the varied methods we deployed in the research presented in this
chapter,what comes to the fore is a hybridmethodology, an adaptive range ofmethods
which evolved according to the nature and context of the particular problem at hand.
This is illustrated by how, in Corpus Nil and Humane Methods, learning algorithms
were used in two fundamentally different ways, and how, in each case, the coupling
of the respective needs of art and science led to unconventional and effective results.
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In Corpus Nil, we used an algorithmic system to design expressive, body-based
musical interactions between a human performer and algorithms. We set out to
explore Machine Learning algorithms as a tool, therefore our focus was less on
the algorithm itself and more on what results the algorithm could achieve during the
performance. The particular choreography created for the piece revealed limits of
available computational approaches for the design of interactions with sound, and
led us to find an ad hoc method based on physiological sensing. This method—
triggered by artistic intervention into scientific research—yielded a new approach to
the analysis of gesture expressivity, one based on complimentary aspects of muscle
physiological data. This allowed us to capture dimensions of expressivity that greatly
differ from those obtained through computer vision interfaces, which are the most
commonly used in the literature.

In Humane Methods, we designed a computational framework which eventually
became an actor, an independent entity directing sound and light in a dance-theatre
performance according to its own internal functioning. Contrarily to Corpus Nil, at
the core of this piece was an investigation of AI as a cultural and social concept,
therefore we were less concerned with the results the algorithm could achieve and
more preoccupied with how to manifest the functioning of the algorithm itself and to
exhibit its behaviour. On one hand, this shift of focus proved challenging because it
forced our research to confront a broad set of (scientific, artistic and popular) expec-
tations surrounding the notion of AI. On the other hand, though, the challenge has
opened before us a vast field of investigation, which extends across HCI, performing
art and into the socio-political impact of AI. We feel that the prospect for a further
entanglement of science, art and politics is, today, perhaps more urgent than ever.
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5Neuroscience of Musical Improvisation

Psyche Loui

5.1 Introduction

One of the most remarkable abilities of the human brain is to create. Creativity is
the cornerstone of human culture, and is the core cognitive capacity that has
enabled music throughout history. Much of the act of creating new music, such as
in music composition, is an effortful process that requires prolonged persistence,
motivation, and dedication. However, other aspects of musical creativity, such as
musical improvisation, have an appearance of spontaneity and automaticity, and
appear to depend on states of flow that seize the improviser as they encounter
musical ideas and produce novel musical output seemingly in real time. How is this
real-time creativity possible: how does the brain tackle the problem of musical
improvisation, and how does it accomplish this feat? Can improvisation be learned,
and if so, how?

In this chapter, I begin with an introduction into the field of the Cognitive
Neuroscience of Music. This includes a methodological overview of the tools and
techniques commonly used to investigate the key components of music, as well as
the relative strengths and limitations of each technique, and their general findings.
From this overview, I turn to the core question that is addressed in this chapter: how
does the human brain accomplish musical improvisation? This is a question that
requires multiple answers, especially considering that musical improvisation is a
complex system that necessarily involves many simultaneous excitations and
inhibitions across the brain over time. Thus, I take a multi-level approach, dis-
cussing different levels of evidence in sequence. I introduce a hierarchical model of
musical improvisation as a complex system, which affords multiple levels of
description. From there I turn to each level and review the psychological and the
neuroscience evidence in some detail. This is followed by a call to action for what
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might be missing, or still to be addressed, in the current state of the psychology and
neuroscience of musical improvisation.

5.2 Cognitive Neuroscience of Music

Cognitive Neuroscience is, fundamentally, the biological study of the mind. As its
parent fields of Cognitive Neuroscience are Psychology and Biology, it necessarily
inherits the overarching questions from these fields, in that the main goal is to link
brain structure and function to behavior. The field has made great strides in
advancing knowledge, mainly by using emerging technologies to sense and to
record brain activity with ever-increasing spatiotemporal precision and accuracy.
As part of these advancements, recently there has been much interest in real-time
brain processes. As music necessarily unfolds over time, listening to and playing
music can be thought of as a quintessential real-time brain process.

Magnetic Resonance Imaging (MRI) is a technique that can provide insight into
structure as well as function of the human brain. Structural images include
anatomical images and Diffusion Tensor Imaging (DTI). These techniques are
powerful when applied together because of their respective foci: anatomical images
are best at detecting grey matter whereas DTI at imaging white matter. While grey
matter includes cell bodies of neurons and dendrites which provide input to them,
they also provide important information such as the thickness of the cortex, the
surface area of specific structures, and the volume of cortical and subcortical
structures. In contrast, DTI is highly tuned toward white matter, which contains the
axonal connections between neurons. Because DTI images the structural connec-
tions in the brain, it is an especially useful technique for studies where the
hypothesis pertains directly to brain connectivity.

In contrast to the structural imaging techniques, functional techniques are
important as they yield time-series data which can then be assessed against EEG,
MEG, and other more time-sensitive measures. Functional MRI studies (or fMRI)
include task and resting-state studies. Task fMRI studies typically involve the
subject engaging in a variety of mental operations in the scanner, and comparisons
between brain activations during experimental tasks and control tasks can yield
regions and patterns of interest, which may be related to specific mental operations.
For example, Limb et al. [34] compared task activations during the spontaneous
generation of new musical sequences on an MRI-compatible keyboard, against task
activations during a control task of playing a musical scale. The control task does
not involve spontaneous music generation but nevertheless does involve interacting
with the same keyboard; thus, the motoric component and some aspects of the
auditory component are accounted for in the task-fMRI design. By subtracting the
brain activity during the control task from the brain activity during the experimental
task, researchers can obtain activation patterns that are uniquely driven by the
unique aspect of the experimental task; i.e., the cognitive operations that distinguish
the experimental task from the control task. For example, by subtracting brain
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activity during scale-playing from brain activity during the spontaneous generation
of new musical sequences, it should be possible to isolate the effect of spontaneity
while subtracting away the effect of audiation and motor movements, since the two
latter operations are in both experimental and control tasks whereas spontaneity is
only a characteristic of the experimental task and not the control task. By assuming
this purely linear relationship between different cognitive operations fMRI tasks,
this design relies on the assumption that cognitive components are additive in their
effects on brain activity, and is known as the cognitive subtraction methodology.
Results from this widely used cognitive subtraction methodology have been
influential; for instance, in showing isolated activity in the superior temporal lobe
areas (the auditory cortex) during auditory tasks. In addition, task-related fMRI has
shown attention-related modulations of stimulus-driven processing. For example,
when attention that is directed specifically to auditory stimuli is compared to
attention to visual stimuli, there is additional involvement from neighboring regions
to the auditory cortex [57]. This suggests that the extent of activations due to a
predefined perceptual or cognitive operation can be modulated by the conditions of
the task. In the study of musical improvisation, activations during the spontaneous
generation of musical notes in contrast against motorically performing overlearned
sequences (such as musical scales) shows activity in distributed regions throughout
the brain, with the largest number of significantly active clusters within the frontal
lobe [34]. This pattern of distributed clusters of activity may suggest that the
experimental task of musical improvisation, which clearly involves multiple cog-
nitive and perceptual operations, differs from a control task in multiple significant
ways. The same results may also imply that different individuals use different
strategies or set of cognitive operations to approach the task of musical
improvisation.

5.3 Intrinsic Networks of the Brain

Although powerful, the standard model of task-related functional MRI has its own
limitations. The predominant model of fMRI work involves cognitive subtraction,
but there are caveats to cognitive subtraction as a standard model. In particular,
abundant research in the past decade has shown that negative activations may be
just as crucial as positive activations for subserving behavior, especially complex
behavior such as musical improvisation. Evidence for this comes from the finding
that specific regions of the human brain show correlated activity over time. Fur-
thermore, across a variety of tasks in the fMRI, some regions of the brain are
positively correlated with each other in activity, whereas other regions are nega-
tively correlated (anticorrelated). The most consistent set of regions that are anti-
correlated with task-related activity includes the medial prefrontal cortex and the
posterior cingulate cortex, and some regions in the temporal lobe. This network of
regions is together known as the Default Mode Network [17]. The Default Mode
Network has received intense interest and attention in Cognitive Neuroscience in
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recent years, partly because it appears to be active when the mind is not actively
pursuing a task. In contrast, the Default Mode Network is active during
mind-wandering, or during stimulus-independent thought [12, 51]. This set of
regions is also deactivated during effortful cognitive tasks, such as attention and
memory tasks. The latter set of tasks activate the Executive Control Network and
the Dorsal Attention Network, which are centered around the frontal and parietal
cortices.

Mind-wandering is also thought to precede creativity [2]. Thus, these anticor-
related networks are useful in thinking about music and improvisation because
musical improvisation can be thought of as a real-time creative act. As such,
cognitive neuroscientists have found activity in the Default Mode Network during
improvisation, that is in flexible exchange with the brain’s Executive Control
Network [3]. A review of the neuroscience of musical improvisation suggests that
multiple large-scale brain networks are involved in improvisation; specifically, a
network of prefrontal brain regions is commonly activated, including areas in the
motor system (premotor and pre-supplementary motor area), areas in the language
network (inferior frontal gyrus), and importantly areas in the classic Default Mode
Network (medial prefrontal cortex) and Executive Control Network [4, 15, 47, 58].
Following up on these general findings, Belden et al. [6] asked if findings from task
fMRI studies might extend to differences in intrinsic brain networks as assessed by
resting-state functional connectivity. Seeding the Default Mode Network and the
Executive Control Network in resting-state fMRI, this study compared three groups
of different musical training: improvising musicians, classical musicians, and
controls with minimal musical training. Improvising musicians showed the highest
functional connectivity from the Executive Control Network, whereas both classical
and improvising musicians showed higher Default Mode Network connectivity than
musically untrained controls. Interestingly, the primary visual network also showed
higher functional connectivity to both Default Mode and Executive Control net-
works in improvising musicians. From this study, the pattern of results that emerges
suggests that while classical (non-improvising) musicians had higher connectivity
within specific networks, improvising musicians showed higher connectivity
between networks, whereas both musically trained groups showed higher
resting-state connectivity overall compared to musically untrained controls. This
distinction between within-network and between-network connectivity may recur in
creativity research more generally, as more research in the network neuroscience of
creativity shows that individuals who are more creativity in laboratory tasks tend to
simultaneously engage multiple networks (in particular Default Mode, Executive
Control, and Salience Networks) that are usually anticorrelated in their activity [5].

While fMRI is a highly effective method at localizing multiple brain networks at
once, one shortcoming of fMRI is that the time resolution is quite low, on the order
of several seconds. This is because of the inherent properties of fMRI: the technique
makes use of the fact that neural activity is coupled with changes in the oxygenation
level of the blood flow. Thus, by measuring fluctuations in blood flow (known as
the hemodynamic response), we can extract the Blood Oxygenation
Level-Dependent (BOLD) response as the signal of interest in fMRI. Although
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changes in activity of neuronal populations are causally related to the BOLD signal,
the BOLD response requires several seconds to reach its peak after its corre-
sponding neural activity. This delay, known as the hemodynamic lag, places lim-
itations on the temporal resolution of fMRI. Since music is an art form that
necessarily unfolds over time, temporal resolution is at least as important as spatial
resolution for our understanding of neural circuitry that enables musical functions.

5.4 Temporally Precise Indices of Brain Activity in Music

In contrast to fMRI, Electroencephalography (EEG) and Magnetoencephalography
(MEG) are methods that enable examining the function of the brain with much
higher temporal resolution. EEG relies on the electrical properties of brain activity,
and MEG relies on the magnetic fields that are generated as a result of electrical
brain activity. When groups of neurons fire they generate electrical changes, known
as local field potentials. These local field potentials can be recorded as dipoles,
which are separations in electrical charge. These dipoles propagate throughout the
head and are recordable on the surface of the scalp using electrodes. The source of
the dipole can be identified by taking the second-order derivative of the electrical
gradient across different recording sites on the scalp, thus giving a more precise
location of the source of electrical activity, which can be interpreted as the neural
generators of the activity. Because there are multiple geometric nonlinearities in the
mapping between the head shape and the brain, such as due to cerebrospinal fluid as
well as the structure of the brain tissue, the mapping between the source of the
dipole and the local field potentials is often inconsistent. This places constraints on
the spatial acuity of EEG, especially in areas of the brain that are near the inside
folds (sulci) of the cortex, and in areas that are deep inside the head beneath the
level of the cortex (i.e., subcortical structures). Thus, the spatial resolution of EEG
is relatively low. On the other hand, the temporal resolution of EEG is high as it
relies on a direct measure of neural firing itself. Established methods in EEG
research have capitalized on this temporal resolution to obtain fine-grained
time-domain and frequency-domain readouts of brain activity during music pro-
cessing. One established EEG method is Event-Related Potentials (ERPs). ERPs
rely on recordings of EEG during repeated presentations of the same stimulus, or
the same category of stimuli, while precisely tagging the time window during which
each stimulus is presented. Then, by averaging the EEG time windows of all
stimulus presentations, the randomly distributed noise sources in the EEG are
averaged out, whereas the neural signal that is associated with the neural processing
of the stimulus becomes amplified. This increase in signal-to-noise ratio of the
EEG, as a result of time-locked averaging across many trials, results in an electrical
potential that is uniquely related to each neural event. The Event-Related Potential
(ERP) technique has been influential in Cognitive Neuroscience of Music research,
as it is sensitive to cognitive, top-down effects as well as to the bottom-up pro-
cessing of sensory stimuli. One well-known ERP is the P300, which denotes a
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positive waveform around 300 ms after the stimulus, and is observed whenever a
subject is responding to a stimulus. Another well-known ERP is the Mismatch
Negativity (MMN), which is a negative waveform around 200 ms after any stim-
ulus mismatch (i.e., a slightly unexpected stimulus that is different from other
stimuli in an ongoing stream of events). Another ERP that is closely related to the
MMN is the Early Right Anterior Negativity (ERAN), which is a negative wave-
form that is largest over the right hemisphere, and occurs around 200 ms after the
onset of an unexpected musical chord. Since the ERAN is elicited whenever
unexpected chords are presented, it has been known as a neural marker of musical
syntax [29]. The ERAN is elicited, albeit smaller in amplitude, even when attention
is directed away from music, such as when musical chord progressions are played
in the background during a demanding visually presented cognitive task [38]. This
finding of attention-dependent modulation of the ERAN suggests that neural pro-
cesses for syntactic structure in music are partially automatic; in other words, we
process musical syntax without needing to allocate attention toward it, but attention
certainly enhances the syntax processing. This puts musical syntax in the same
category as linguistic syntax, which is also indexed by an early waveform, but one
that is left-lateralized: the Early Left Anterior Negativity (ELAN) is usually
observed after an unexpected word category, such as when the tense of a verb
within a sentence is different from expected [18]. The hemispheric asymmetry—
between the ELAN for language and the ERAN for music—may seem to lend
support to the popular idea that language is left-lateralized whereas music is
right-lateralized; however, in practice the lateralization of these ERP results is much
more variable, and is dependent on low-level acoustical properties of the stimuli as
well as to higher-level task demands and/or instructions to the subject.

While the ERAN and ELAN are relatively early cortical ERPwaveforms, there are
other ERPs that occur later in latency during musical and linguistic processing. These
mid- and late-latency waveforms include the N400 and the P600. The N400 is a
negative waveform largest in central-parietal sites around 400 ms after the onset of a
semantic incongruity [32], whereas the P600 is a positive waveform largest in parietal
sites around 600 ms. Typically, the N400 is observed in response to semantic
incongruity: unexpected semantic sentence stimuli such as “I take my coffee with
cream and socks” elicits an N400 after the unexpected word “socks.” In contrast, the
P600 is elicited during sentences that require syntactic integration, such as when a
sentence contains an ambiguous syntactic structure that the brain must resolve [31].
A classic example of this comes from “garden path” sentences, e.g., “The horse raced
past the barn fell.” In this example, the phrase “raced past the barn” is initially
interpreted as a verb phrase (i.e., describing the action of the horse). However, when
“fell” is presented, the brain has to re-interpret “raced past the barn” as an adjective
phrase that describes a property rather than an action of the horse. This reinterpre-
tation of the garden path sentence is known to elicit the P600 waveform [31]. Because
the P600 is similar to the P3 in its waveform shape and topography, it has been
suggested that these two effects are from the same neural generators [11]. In music, a
similar late positive effect has been observed in response to unexpected melodic
changes that require the reinterpretation of chord structure [8, 55]. This suggests some

102 P. Loui



similarity between neural resources for processing language and music, especially in
the syntactic structure of music and language.

The P600 or P3 effect is also observed during music cognition experiments when
participants are asked to attend and respond specifically to chord structure. In one
study, Koelsch et al. [30] presented participants with chord progressions that were
either highly expected (tonic endings), or unexpected (Neapolitan chord endings),
and asked participants to press a button in response to the unexpected chords [29].
This attentive listening condition was compared against an unattended condition
when the same chord progressions were played in the background while partici-
pants did another task. ERPs showed a large ERAN during both attended and
unattended conditions; however, in the attended condition the ERAN was followed
by the P3 which was not observed in the unattended condition [30]. This pattern of
results was partially replicated in Loui et al. [38], which also observed that the
ERAN was elicited during attended and unattended listening, but with a larger
amplitude during attended listening. In Loui et al.’s extension [38], the researchers
further added an amplitude change in some of the chords, and participants’ task
during the attended condition was to respond to the amplitude change. The P3 was
observed only during the amplitude change, but not during the syntactically
unexpected chord. This finding shows that the P3 is elicited in response to any
feature of sounds to which attention is directed, and not to harmony or musical
syntax per se. On the other hand, the ERAN is more specifically elicited in response
to violations in musical expectancy, especially from violations in chord structure.
The effects of musical training can affect neural processing of musical syntax, as
indicated by these ERPs. In a study comparing improvising (mostly jazz-trained)
musicians and non-improvising (mostly classical) musicians against non-musicians,
Przysinda et al. [59] recorded preference ratings for highly expected, slightly
unexpected, and very unexpected chord progressions, while EEG was recorded.
Behavioral ratings showed that while non-musicians and non-improvising musi-
cians preferred the highly expected chord progressions and disliked the very
unexpected chord progressions, improvising musicians preferred the slightly
unexpected chord progressions, and did not dislike the very unexpected chord
progressions as much as the other two groups. ERPs in response to unexpected
chords showed a larger ERAN among improvising musicians. Although all three
groups showed the P3, it was the largest among the improvising musicians.
However, while the P3 returned to baseline by around 800 ms after the onset of the
unexpected chord in both the improvising musicians and the non-musicians, the P3
lingered to a much later latency (800 ms after stimulus onset) in the
non-improvising (classical) group only. This late-latency positive effect in classical
musicians suggests a rumination, or error-related processing, that lingers in the
minds of the classical musicians even after the improvisers have returned to
baseline. Taken together, the double dissociation between early processing in
improvising musicians and late-latency processing in classical musicians highlights
the effects of different genres of musical training: while classical training empha-
sizes accuracy and precision, training in improvisation emphasizes sensitivity to
expectancy and engagement with unexpected events. Methodologically it is useful
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to have improvising musicians, classical musicians, and non-musicians as multiple
control groups, as it enables a direct comparison between different types of musical
training. Even though the Cognitive Neuroscience of Music has seen a surge of
interest in recent years, with many studies being done on the effects of musical
training, the vast majority of these studies have examined western classical musical
training as the dominant genre, without much studies done at all on non-classical
forms of training. By examining the effects of jazz improvisation training, this study
makes a first attempt at quantifying the effects of training on various neural and
cognitive outcomes.

In another in-depth study on Western music improvisation, Goldman et al. [20]
recorded EEG in musicians with varying levels of improvisation experience while
they listened to an oddball task, where standard stimuli are interspersed with
occasional deviant stimuli. Standard stimuli were chords, interspersed with occa-
sional deviant chords that either did or did not serve a similar chord function
musically. Participants with more improvisation experience showed larger N2 and
P3 while processing the functionally deviant chords, suggesting that the ability to
engage in creative improvisation is related to differences in knowledge
organization.

While ERPs provide accurate time-domain information of brain activity in
response to stimuli and cognitive processes, frequency-domain information can also
be informative, especially since abundant research in recent years has identified
periodic oscillations at multiple frequencies as a fundamental feature of brain
activity. Oscillatory activity is especially important in music and speech, as evi-
dence shows that these complex auditory stimuli can engage phase-locked activity
in the brain via the process of neural entrainment. When listening to acoustic stimuli
with energy at certain frequencies, brain activity also shows activity at the corre-
sponding frequencies. These oscillations at specific frequencies do not only reflect
passive processing of stimulus by the auditory system, but in some cases they also
reflect the active parsing of stimulus streams. This is demonstrated clearly in a
MEG study on the cortical tracking of speech: When meaningful Chinese speech
was presented with a syllabic rate of 4 Hz, noun or verb phrases at 2 Hz, and
sentences at 1 Hz, only Chinese listeners showed corresponding activity at 1 and
2 Hz. In contrast, English speakers who did not understand Chinese only showed
activity at 4 Hz [14]. This finding suggests cortical tracking of linguistic stimuli
reflect comprehension, rather than the perceptual processing of acoustic stimuli.
Findings such as this one show how informative it can be to take a frequency-based
approach instead of a time-domain approach in analyzing and interpreting EEG and
MEG data.

The frequency-based approach is especially informative when there are
frequency-based hypotheses motivating the collection of the EEG and MEG data.
In music, for example, one commonality across musical experiences is that of
rhythm, which is a pattern of repeated durations over time. Rhythm is closely
related to beat, which is the steady pulse that a listener extracts from the rhythm.
The ability to extract a beat from an ongoing pattern of sounds is crucial to musical
ability, and thus much of the literature in the Cognitive Neuroscience of Music
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perception and cognition is dedicated to the perception of rhythm and beat. Since
the beat is tied to a specific frequency (e.g., a 1 Hz beat corresponds to 60 beats per
minute), a frequency-domain analysis makes the problem of beat perception rela-
tively tractable. Nozaradan et al. [54] recorded EEG from human subjects while
they listened to rhythmic patterns that were designed to elicit a sense of beat and
meter. They found that the EEG showed peaks of oscillatory activity at the
rhythmic frequencies, with peaks observed at beat frequencies even when the
acoustic energy was not necessarily strongest [54]. This observation of oscillatory
brain activity at the beat frequency without acoustic stimulation is also termed the
“missing pulse” phenomenon [69], borrowing from terminology of the “missing
fundamental” phenomenon in which pitch can be perceived virtually even without
acoustic energy at the corresponding fundamental frequency [70]. Thus, the
rhythmic brain activity appears to be an index of how the mind interprets the
stimuli, instead of being a faithful mirror of the stimuli themselves. In other words,
these findings highlight the importance of oscillatory brain activity in coding not
only for bottom-up processing of rhythmic stimuli, but also of top-down brain
mechanisms such as attention and memory that are involved in the experience of
music.

5.5 Attention Toward Moments in Time

The idea that attention can fluctuate rhythmically over time, especially in sync with
music and speech stimuli, is formalized in the Dynamic Attending Theory [33],
which is a framework for describing the brain as a series of internal oscillations,
known as attending rhythms, that can entrain (i.e., tune in) to external events and
focus on expected points in time. This model is especially appropriate as a formal
description of the brain during musical experience: As the materials of music (pitch,
harmony, melody, rhythm) unfold over time, these same musical materials can
reasonably be expected to guide our attention over time as well. Ongoing research
is aimed at understanding how the different musical materials guide attention, and
the trajectory of the ability and strategies used to attend to these musical features
throughout the human lifespan [16].

The ability to sustain attention is also related to the degree of engagement one
feels toward a piece of music. For example, if a piece of music urges a person to
move, then the act of engaging in movement likely helps to sustain attention over
time in a rhythmically oscillatory manner. The pleasurable urge to move to music,
also known as “groove,” has become an interesting topic that intersects the study of
neural oscillations and entrainment, rhythm and beat, and pleasure and reward. In
the attempt to understand how rhythmic patterns might activate in the motor system,
Stupacher et al. [68] stimulated the motor cortex using Transcranial Magnetic
Stimulation (TMS) and measured their resultant Motor Evoked Potentials (MEPs)
as a measurability of the motor system [68]. Music that was rated as high-groove
showed larger MEPs, suggesting more excitability of the motor system. This
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finding fits well with fMRI studies showing activity in the motor system during the
perception of musical rhythm and beat [22]. Furthermore, people with motor dis-
orders, specifically Parkinson’s Disease, are less able than controls to extract the
beat from musical rhythms, as shown by a reduced beat-based advantage in dis-
criminating musical rhythms [23]. This provides converging evidence that the
motor system is important for beat perception.

While the engagement of the motor system explains the urge to move that one
feels when listening to music, the link between pleasure and the urge to move is yet
unclear. Insight comes from examining the link between groove and syncopation,
which is the shift of acoustic events from metrically strong to metrically weak beats
[73], who compared pleasure ratings between drum-beats with varying levels
syncopation, and showed that medium degrees of syncopation yielded the highest
desire to move and the highest pleasure ratings. Since syncopation is in itself a
violation of rhythmic expectations, this preference for a medium level of synco-
pation is broadly consistent with an inverse u-shaped relationship between expec-
tation and pleasure, which has long been hypothesized in music [52], and also in the
psychology and biology of aesthetics more generally [7].

The ability to hone one’s expectations toward events at recurrent moments in
time is likely a precursor to the ability to the tendency to synchronize with others.
Interpersonal synchrony is a fascinating topic of recent investigations, especially
since the tendency to synchronize with others seems to be tied to the sense of group
identity and group affiliation. The effect of interpersonal synchrony on group
affiliation was tested when pairs of participants were asked to rate how well they felt
affiliated to each other after tapping either to synchronous or to asynchronous
metronomes [26]. As hypothesized, ratings of interpersonal affiliation were higher
for participants after tapping to synchronous metronomes. This suggests that the
ability to entrain to another individual’s rhythmic behaviors is closely tied to social
behavior, in particular affiliative behavior.

The link between synchronizing with other people and cooperative behavior
appears to be established relatively early in life. This link was tested in
14-month-old infants, who were placed in a standard cooperation task after a
rhythmic task. In the rhythmic task, the infants were bounced either in-synchrony or
out-of-synchrony with an experimenter. Following this bouncing task, the infants
were placed in a room with the experimenter, who “accidentally” drops an object.
Cooperation was measured by whether the infant helped by picking up and handing
the dropped object to the experimenter. Infants who had bounced with the exper-
imenter were more likely to help the experimenter afterwards. Interestingly,
cooperative behavior was observed even when the rhythmic bouncing was done
out-of-phase (by still in-synchrony), suggesting that rhythmic synchrony rather than
the similarity or symmetry of movement was what drove the cooperative behavior
[13]. While this measure of cooperative behavior is important and informative as a
measure of prosociality (i.e., behavior that benefits society as a whole), and may
thus have optimistic implications for the effects of music on social behavior, it turns
out that infants were only more likely to help individuals who had bounced with
them; this helping behavior did not extend to other individuals who did not
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participate in the bouncing [71]. This suggests that rhythmic synchrony in music
may help affiliation for the in-group only, rather than promoting altruistic behavior
in general. Nevertheless, this cooperative behavior extends to older children (aged
4), who were more likely to cooperate in their behavior after swinging rhythmically
with a partner [61], suggesting that the link between rhythmic entrainment and
cooperation is likely a stable relationship across the lifespan.

5.6 Prediction and Reward

Given that rhythm directs attention and expectation (as posited by the Dynamic
Attending Theory) and relates to enjoyment and group affiliation, it is not surprising
that the brain processes expectation in time in the same way that it processes other
forms of pleasure and enjoyment. The currency with which the brain processes
reward is dopamine, which is a neurotransmitter that is emitted when animals
undergo hedonic experiences such as food and sex [60]. The dopaminergic system
in the brain includes several way stations: the substantia nigra, ventral tegmental
area, nucleus accumbens, caudate, putamen, and orbitofrontal cortex. In particular,
the nucleus accumbens, caudate, and putamen are known as the striatum. Together
these regions tend to be active when processing extremely pleasurable rewards,
such as when winning in gambling tasks [60]. Interestingly, even events that are
themselves not rewarding, but that signal rewards (i.e., they provide a cue toward
rewards) also activate cells in the dopaminergic system. Furthermore, events that
signal rewards, but are then followed by the lack of reward, results in a decrease in
activity in the dopamine neurons [67]. Thus, the dopaminergic system is known as a
code for the difference between the prediction of a reward and the actual experience
of the reward; this difference is known as the reward prediction error. Importantly,
these same dopaminergic areas are active during the experience of intensely plea-
surable moments in music [9, 10]. In a study that specifically related music to
activity in the dopaminergic system, Salimpoor et al. [66] injected participants with
radioactive raclopride, which is metabolized during dopaminergic activity, and
conducted Positron Emission Tomography (PET) scanning combined with func-
tional MRI while people listened to pieces of music that they selected as being
intensely pleasurable to them. This combined PET and fMRI was especially useful
because it allowed the researchers to simultaneously localize brain activity and
establish its link to the dopaminergic system. Results from this study showed a peak
of activity in the caudate during the anticipation of intensely pleasurable moments
in music, and a peak of activity in the nucleus accumbens during the experience of
the intensely pleasurable moment. This finding is exciting for Neuroscience gen-
erally and for Music Cognition researchers specifically, because it shows a differ-
entiation between anticipation and experience. Both are important components of
the experience of pleasure, but this distinction is especially important for music,
which is fundamentally an interplay between expectation and experience. In further
work, the same researchers showed that the auditory cortices are coupled in activity
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with the nucleus accumbens, and that this coupling is stronger during the experi-
ence of strongly preferred music [65], thus linking the experience of reward to
activity in the auditory system. More evidence for the role of the reward system in
music listening comes from musical anhedonia, which is a recently coined abnor-
mal lack of sensitivity to musical reward. People with musical anhedonia feel no
desire to listen to music, despite normal hedonic responses to non-auditory senses,
such as visual art, food, and monetary reward [50]. Because of this fascinating
dissociation between music and monetary reward, musical anhedonia can be con-
sidered a model system for examining the link between music and reward, and for
examining what it is that makes music special within our culture. In a diffusion
tensor imaging study on a striking case of musical anhedonia, Loui et al. [46]
showed that compared to a large group of controls, the musical anhedonic had less
structural connectivity between auditory areas in the temporal lobe and reward areas
in the nucleus accumbens. Looking at individual differences in white matter con-
nectivity across a group of individuals who vary in musical reward responses,
Martinez-Molina et al. [49] showed that structural connectivity between auditory
and insula, which is an area important for emotional functioning and for intero-
ceptive functions, was correlated with individual differences in self-reported
musical reward. Similar differences were seen between people who frequently
experience chills, or strong emotional responses, when listening to music, compared
with those who rarely experience chills during music listening [63]. Furthermore,
when listening to music that a general population rated as rewarding, musical
anhedonics showed no functional connectivity between auditory areas and the
nucleus accumbens, further providing support for a disconnection between auditory
and reward regions in the brain [48]. Reviewing these findings, Belfi and Loui [1]
propose an anatomical model for the coupling between the auditory and reward
systems, and posit a distinction between multiple types of predictions, only some of
which may become rewarding.

The importance of prediction and expectation in the musical experience is the
theme of Meyer’s seminal work Emotion and Meaning in Music [52], and is also
the topic of Huron’s theory of musical expectation as laid out in his volume Sweet
Anticipation [27]. Huron articulates the ITPRA model, which conceptualizes five
phases of experiencing music (and indeed any experiences that are time-dependent)
as Imagination, Tension, Prediction, Reaction, and Appraisal. This five-stage model
is useful for thinking about the experience of music, partly because it separates the
short-term, or the immediate, predictions and responses surrounding an event, from
the longer-term buildup of expectations in the Imagination phase and the follow-up
experiences of the Appraisal phase. Computational modeling studies have also
begun to quantify the dynamics of information processing in music, and to relate
these dynamics to brain activity. In particular, the Information Dynamics of Music
(IDyoM) model simulates musical expectation using information-theoretic mea-
sures and makes predictions for how much uncertainty there is at each moment in
time, and/or surprising each event is on a note-by-note basis [56]. Training this
model on corpora of real music, and testing it against human ratings, shows an
inverse u-shaped relationship between expectation and preference [19]. Using these
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computational tools coupled with neuroscientific methods, the field can begin to
relate activity in the dopaminergic system to musical expectation in a realistic
music-listening context.

Regarding music and reward, one persistent puzzle is that music, unlike food or
sex, has no clear evolutionary advantage, yet music consistently ranks among life’s
greatest pleasures. Why do we find pleasure in experiences that are not necessary
for keeping ourselves alive, or for keeping our progeny alive? The answer must
come from the interaction between music and inherent properties of the cognitive
system. The ability to learn is fundamental to the cognitive system, and is evolu-
tionary advantageous as it enables organisms to adapt flexibly to their environment.
As the ability to form correct predictions is likely adaptive, the ability to form
predictions must also be learned, and may therefore acquire reward value in and of
itself. Thus, the relationship between learning and reward is an active area of
research in music and in neuroscience more generally.

5.7 Music and Language Learning

The literature on learning is also heavily influenced by work on language acqui-
sition, which has shown that infants as young as eight months of age are able to
learn the transitional probability of events within an acoustic stream (e.g., syllables)
[64]. These findings provide evidence for the existence of a statistical learning
mechanism as part of our cognitive system that can learn expectations from
exposure in much the same way that infants can learn the grammatical structure of
linguistic sounds in their environment even without explicit instruction. Music is
likely learned in a similar manner. Evidence for the learning of musical structures
via passive exposure comes from abundant findings in reaction time, subjective
ratings, and neuroimaging and electrophysiological studies showing that even
people with no explicit musical training have knowledge of musical structure. For
example, the ERAN is observed in response to unexpected musical chords even
among non-musicians [29]. When asked to rate their preference for different chord
progressions, both musicians and non-musicians rated unexpected chord progres-
sions as less preferred [42], although jazz and classical musicians differed in their
preference for unexpected chord progressions [59]. Reaction time is also slower
when non-musicians are presented with unexpected musical chords, even when
their task is independent of chord structure [42], suggesting that we bring implicitly
learned expectation into our experience of music.

While most would agree that these expectations are implicitly learned, much
remains unknown in how this musical knowledge is acquired, and to what extent
these learned expectations interact with acoustic properties of the musical stimulus
(e.g., consonance and dissonance). These questions are challenging to address
because the vast majority of participants (at least participants that most music
cognition labs can access) have already acquired an internal template or repre-
sentation of musical structures within their culture. In other words,
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common-practice Western musical structure is overlearned in most brains. In order
to observe the human brain as it is learning musical structure for the first time [72],
one can approach younger populations to trace their developmental trajectory of
musical knowledge Jacoby and McDermott [28], or one can take a cross-cultural
approach in which we can compare the constraints of cognition in the musical
systems of different cultures, or one can create a new musical system in order to test
how the human brain responds de novo. In an attempt to create a musical system,
Loui et al. [39, 44, 2010] turned to the Bohlen-Pierce scale, which differs from
existing musical systems of the world in its mathematical ratios. While musical
systems of the world commonly recur around the octave, which is a 2:1 ratio in
frequency, the Bohlen-Pierce scale recurs around the tritave, which is a 3:1 ratio.
The equal-tempered Bohlen-Pierce scale has 13 logarithmically even divisions of
the 3:1 frequency ratio (in contrast to the 12 logarithmically even divisions of the
equal-tempered Western scale). Using melodies generated from this system, it was
shown that participants can rapidly learn melodies after exposure. Furthermore,
they can generalize what they had learned after exposure to a sufficiently large set
of melodies by choosing new melodies that followed the same grammatical
structure. In addition, participants rated melodies that they heard repeatedly during
exposure as being more preferable. Because it is a systematic way to test the
learning and liking of new music, the finding that humans rapidly identify and
prefer grammatical structure in a new musical scale offers optimistic implications
for creating new music. EEG recordings made during the course of one hour of
listening to the new musical system showed an ERAN in response to infrequent
chords in the Bohlen–Pierce scale after around 20 min of listening [44]. These
results together show that humans can rapidly learn to form expectations for new
music, by being sensitive to the frequencies and probabilities of events in the
acoustic environment; in that regard music learning is analogous to language
learning [45]. Further follow-up studies showed that the input makes a significant
difference in what was learned and preferred: the larger the set of exposure items,
the more people learned; on the other hand, the more times each melody was
repeated, the more people preferred those specific melodies [43]. Additionally, the
ability to learn grammatical structure was found to be correlated with the white
matter connections in the arcuate fasciculus, a super highway that connects regions
important for auditory perception and sound production, as shown in diffusion
tensor imaging studies [40].

This same white matter pathway is implicated in multiple auditory-motor
functions. For example, people who are tone-deaf, who have trouble perceiving and
producing small differences in pitch (e.g., less than a semitone), have less white
matter connectivity in the arcuate fasciculus [37]. These individuals also have
difficulty with statistical learning of new musical systems, using the same tasks
described above [41]. Furthermore, people with tone-deafness are unaware of their
own pitch production: when presented with pairs of pitches, and asked to reproduce
them by humming and to tell them apart by pitch height, people who are tone-deaf
show a striking mismatch between their production and their perception, frequently
singing a pitch interval that is different from what they report hearing [39]. This

110 P. Loui



perception-production mismatch also points to a more general distinction between
different pathways, or streams, in the auditory system. These ideas on separable
streams in audition are partly inspired by analogous findings in the visual system
[21]: for example, people with lesions in their visual cortex, who are blind and have
no conscious awareness of what they see, are nevertheless able to scale the size of
their grip as they reach toward objects in front of them. These types of findings
provide support for dual-stream pathways in the visual system. In the analogous
sense, the auditory system is posited to have multiple, separable pathways for
processing “where” (location information) and “what” (identity information) [62].
These functional distinctions are also posited specifically for speech processing [25]
and for musical functions such as singing [35]. Strong support for the dual-stream
pathways comes from a diffusion tensor imaging study which showed that the
superior branch of the arcuate fasciculus is less connected in people who are
tone-deaf [37]. Furthermore, people with musical training had larger volume in the
arcuate fasciculus [24], and a week of performing an auditory-motor task on
musical cues (in a motorically controlled form of musical training) resulted in
increased integrity of the right arcuate fasciculus [53].

The same statistical learning mechanisms that are involved in language acqui-
sition and music learning may be involved in creativity as well. Although the areas
of creativity and statistical learning are commonly thought of as separate lines of
research, Zioga et al. [74] tested the relationship between learning and creativity.
They trained participants on an artificial musical grammar, using similar methods as
presented above regarding the Bohlen-Pierce scale. After each training session,
participants created their own musical compositions, which were later evaluated by
human experts. Results showed that the individuals who were better learners as
defined by the statistical learning task were also better at generating more creative
new melodies as judged by experts [74]. These results are first to link statistical
learning to creativity. Future studies are needed to examine the extent to which
similar neural substrates underlie learning and creativity.

5.8 Conclusions: Creativity at Multiple Levels

Taken together, it is clear that multiple cognitive and neural systems contribute to
the brain’s ability to improvise creative musical output. Musical improvisation can
be thought of as a combination of multiple levels of cognitive and neural compu-
tations [36]. At the highest level, musical improvisation serves the computational
goal of using musical knowledge to generate auditory-motor patterns that are
rewarding. This is accomplished by cognitive algorithms that involve statistical
learning mechanisms which help to shape the learned musical structures, including
melodies, harmonies, and rhythms. The cognitive algorithms also include idea
generation and evaluation, and flexibly switching between the perception of audi-
tory targets and the motor production of those targets. The underlying brain net-
works that implement these cognitive mechanisms include the auditory-motor,
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executive control, default mode, and reward networks. Future work may further
delineate the relationship between learning and creativity, and between social
information (e.g., visual and auditory information that comes from partners in group
musical improvisation) and the prediction and reward systems. This social infor-
mation likely involves neural entrainment of auditory and motor areas, which refine
predictions and thus generate rewards. By studying the spatial and temporal
dynamics of human brains as they engage in cognitive operations that are linked to
musical improvisation, future work may design new biologically informed musical
partners that aid improvisation with intellectually and aesthetically satisfying
outcomes.
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6Discovering the Neuroanatomical
Correlates of Music with Machine
Learning

Tatsuya Daikoku

6.1 Introduction

Music is ubiquitous in our lives yet unique to humans. The interaction between
music and the brain is complex, engaging a variety of neural circuits underlying
sensory perception, learning and memory, action, social communication, and cre-
ative activities. Over the past decades, a growing body of literature has revealed the
neural and computational underpinnings of music processing including not only
sensory perception (e.g., pitch, rhythm, and timbre) but also local/non-local
structural processing (e.g., melody and harmony). These findings have also influ-
enced Artificial Intelligence and Machine Learning systems, enabling computers to
possess human-like learning and composing abilities. Despite plenty of evidence,
more study is required for a complete account of music knowledge and creative
mechanisms in human brain. This chapter reviews the neural correlates of unsu-
pervised learning with regard to the computational and neuroanatomical architec-
tures of music processing. Further, we offer a novel theoretical perspective on the
brain’s unsupervised learning machinery that considers computational and neuro-
biological constraints, highlighting the connections between neuroscience and
machine learning.

In the past decades, machine learning algorithms have been successfully used in
a wide variety of fields including automatic music composition and natural lan-
guage processing as well as search engine development and social network filtering.
Machine Learning implements probabilistic algorithms based on input data to make
predictions in the absence of explicit instructions. There are various types of
machine learning algorithms (e.g., supervised, unsupervised, and reinforcement
learning), each of which gives computers a particular learning ability similar to the
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equivalent ability of the human brain. For this reason, these algorithms also enable
machines to create interpretable models revealing the brain’s learning and predic-
tion mechanisms. This knowledge allows us to design brain-inspired Artificial
Intelligence (AI), potentially leading to a harmonized society of humans and
computers. For example, statistical learning theory is a framework for machine
learning that has given neuroscientists some interpretable ideas contributing toward
understanding the implicit learning mechanisms in the human brain [212]. Implicit
learning is an “unsupervised learning” ability that is innately equipped in the
human brain and does not require explicit instructions, intention to learn or
awareness of what has been learned [194]. It is believed that the brain’s (implicit)
statistical learning machinery contributes to the acquisition of a range of auditory
knowledge such as that related to music and language. Abundant evidence has
suggested that statistical learning functions across different levels of processing
phases in perception, memory consolidation, production (i.e., action), and social
communication including music sessions and conversations. Recently, a growing
body of literature has suggested that auditory knowledge acquired through statis-
tical learning can be stored in different types of memory spaces through data
transfer between the cortex and the subcortex and that this knowledge is represented
based on semantic/episodic, short/long-term, and implicit/explicit (procedural/
declarative) processing. This chapter reviews the neural correlates of these pro-
cesses with machine learning in the framework of the statistical learning hypothesis,
based on a large body of literature across a broad spectrum of research areas
including Neuroscience, Psychology, and AI.

6.2 Brain and Statistical Learning Machine

6.2.1 Prediction and Entropy Encoding

The auditory cortex receives external acoustic information through a bottom-up
(ascending) pathway via the cochlea, the brainstem, the superior and olivary
complex, the inferior colliculus in the midbrain, and the medial geniculate body of
the thalamus [154, 216, 259]. For auditory perception, our brain processes space
information (originating from the tonotopic organization of the cochlea) and time
information (originating from the integer time intervals of neural spiking in the
auditory nerve) [189]. Importantly, the auditory pathway consists of top-down
(descending) as well as bottom-up (ascending) projections. Indeed, it has been
proposed that nuclei such as the dorsal nucleus of the inferior colliculus receive
more top-down projections than bottom-up projections from the auditory cortices
[119]. Furthermore, even within the neocortical circuits, auditory processing is
driven by both top-down and bottom-up systems via dorsal and ventral streams
[86]. Here, we focus on the top-down and bottom-up predictive functions of
(sub)cortices within the framework of the statistical learning hypothesis.
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The brain is inherently equipped with computing machinery that models prob-
ability distributions about our environmental conditions. According to the inter-
nalized probabilistic model, it can also predict probable future states and optimize
both perception and action to resolve any uncertainty over the environmental
conditions [215]. Predictive coding, currently one of the dominant theories on
sensory perception [89], provides a neurophysiological framework of such pre-
dictive processes with regard to auditory functions. According to this theory,
neuronal representations in the higher levels of the cortical hierarchies are used to
predict plausible representations in the lower levels in a top-down manner and are
then compared with the representations in the lower levels to assess prediction
error; i.e., a mismatch between sensory information and a prediction [133, 191,
222]. The resulting mismatch signal is passed back up the hierarchy to update
higher representations and evince better predictions. Over the long term, this
recursive exchange of signals suppresses prediction error and uncertainty to provide
a hierarchical explanation for the input information that enters at the lowest (sen-
sory) level. In auditory processing, the lower to higher levels of this hierarchy could
comprise the auditory brainstem and thalamus, the primary auditory cortex, the
auditory association cortex, the premotor cortex, and the frontal cortex in that order.
Thus perceptual processes are driven by active top-down systems (i.e.,
backward/inverse) as well as passive bottom-up systems (i.e., forward) in a per-
ception–action cycle [90, 226, 275]. Thus, the processing of auditory data such as
music and language subsumes a variety of cognitive systems including prediction,
learning, planning, and action.

The brain’s statistical learning mechanisms appear to agree with this predictive
model [110]. Statistical learning is an unsupervised and implicit mechanism by
which the brain encodes the probability distributions in sequential information such
as music and language [30, 238, 239] and assesses the entropy of the distribution
(i.e., the uncertainty of future states, being interpreted as the average surprise of
outcomes sampled from a probability distribution) [112]. The brain also predicts
probable future states based on an internal statistical model and chooses the optimal
action to achieve a given goal [185, 188]. The role of statistical learning was first
discovered in the lexical (word) acquisition process [238, 239], but an increasing
number of studies has indicated that statistical or probabilistic learning also con-
tributes to various levels of learning such as phonetic, syntactic, and grammatical
processing. Statistical learning is a domain-general and species-general principle,
occurring for visual as well as auditory information over a wide span of ages [241,
268] and in both primates such as monkeys [240] and non-primates such as
songbirds [166, 167] and rats [276]. The statistical learning function is not limited
to within the individual but can be expanded to communication between persons
[253]. That is, two persons can share a common statistical model, resulting in the
interplay between them [188]. Furthermore, the generation of culture [68] and
musical creativity and individuality [37] can originate through the interplay of
statistical learning. Thus, statistical learning is an indispensable ability in the
developing brain that contributes to both music perception and production. Previous
studies have shown that pitch prediction of novel melodies is closely linked to
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probability distribution sampled from a large corpus of music [207–209]. In
addition, the brain can process chord sequences accurately and quickly if the pre-
dictability of a chord (local event) and the uncertainty of the preceding sequence of
six chords (global harmonic phrase) are correlated with each other [272, 273]. Thus,
the two levels of statistical learning (i.e., probability and uncertainty encoding) may
not function independently but may rather be interdependent. Hansen and Pearce
[109] have demonstrated that uncertainty perception in melody is stronger in
musicians than in non-musicians. This suggests that long-term musical training
allows the brain to optimize/generalize its probabilistic model of music which
decreases uncertainty. Thus the development of statistical learning machinery in the
brain is indispensable for the generalization of music structure, music proficiency,
and predictive processing efficiency.

6.2.2 Learning

6.2.2.1 Timbre, Phoneme, and Pitch: Distributional Learning
Although plenty of statistical learning studies have focused on the lexical acqui-
sition, statistical learning is also used to discover which phonemes, timbres, and
pitch contours are important in a given language or in music [105, 148, 198]. It is of
note that this type of statistical learning differs from that used in lexical acquisition:
the statistics that are learned do not represent transitional probability but rather the
distributional regularity of acoustic features (e.g., pitch and formant). This is often
referred to as distributional learning [290]. Distributional learning has also been
proposed as a machine learning algorithm in the framework of computational
learning theory [178] although the algorithm differs from that used in psychological
and neural studies. Prior to native language acquisition, infants discriminate
between phonemes in many different languages regardless of phoneme categories.
Through ample exposure to the sounds in their native language, however, they
gradually abstract the features of the phonemes and contrasts through statistical
learning of the distributional regularities in those sounds. Infants then generalize
those features into the same phonetic category even if the phonemes occur at
different articulations [173, 174]; thus they become unable to discriminate between
phonemes that do not appear in their native language. In contrast, a prototypical
phoneme of a native language acts as a magnet for similar phonemes (perceptual
magnet effect) [147, 150]. In the end, the brain perceives that those similar pho-
nemes belong to the same category as the prototypical phoneme [148].

6.2.2.2 Chunk and Word: Transitional Probability
Saffran et al. [238, 239] initially reported on human statistical learning ability in
lexical acquisition. After four minutes of exposure to speech sequences in which
three-syllable pseudo-words were randomly concatenated, infants discriminated the
pseudo-words from non-words (non-words consisted of the same syllables but were
sequenced in a different order from the pseudo-words). Because there were no cues
(such as pauses, intonation, etc.) indicating word boundary information other than
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transitional probabilities between words, the results indicate that infants can learn
words based on statistical learning of adjacent transitional probability. Several
studies have demonstrated that statistical learning based on adjacent transitional
probability is also indispensable for learning the sequential structures of musical
pitches [241, 242], timbre [141], and chord sequences [45, 135]. Actually, this type
of statistical learning has frequently been used in machine learning such as
natural-language processing and automatic music composition [28, 223]; these
models are referred to as n-gram or nth-order Markov models. The statistical
learning that occurs during lexical acquisition has generally been assumed to rep-
resent the early stages of native language and music acquisition. Statistical learning
based on local dependency (i.e., adjacent transitional probability) alone, however,
may not be sufficient to account for all levels of music and language knowledge. In
other words, music structures consist of both local and non-local (hierarchically
organized and non-adjacent) dependencies. Some reports have indicated that dif-
ferent types of statistical or probabilistic learning can partially explain the acqui-
sition of higher level structures such as syntactic processing [243, 254]. Indeed, in
machine learning as well as in natural language processing, the n-gram models of
words have been applied to generate artificial sentences (i.e., a word is recognized
as one unit and a computer calculates the statistical relationships between words). It
is, however, still debatable whether the human brain also performs the same
underlying computation used in lexical acquisition to acquire syntactic structure, or
whether the two processes tap into different mechanisms. In the next section, we
review recent advances in exploring the underpinnings of syntactic learning
mechanisms and how nonlocal/nonadjacent (i.e., long-distance) dependency inter-
acts with adjacent dependency.

6.2.2.3 Syntax and Grammar: Local Versus Non-local
Dependencies

The important question consists of how statistically chunked words are syntactically
ordered and how nonlocal/nonadjacent (i.e., long-distance) dependency interacts
with adjacent dependency. In many experimental paradigms, however, the pro-
cesses of local dependency (e.g., musical expectancy formation between adjacent
events) and non-local dependency (hierarchically organized musical structure
building) have often been confounded (as is usually the case in real music and
language). For example, in the sentence “The books on the desk are old,” the plural
verb form “are” corresponds to the plural subject “books” occurring several words
earlier, creating a nonadjacent hierarchical dependency between “the books” and
“are old.” Learning such rules can be difficult because the adjacent singular form
“desk” must be ignored. Analogous hierarchical structures are found in music. For
example, in a wide variety of musical genres (but most commonly by far in Jazz),
the subdominant—dominant—tonic progression is referred to as a two–five–one
(II–V–I) progression is a common cadential chord progression. Jazz improvisers
partially chunk harmony progressions to create the hierarchical structure of a larger
phrase. Figure 6.1 shows an example of non-local dependency in a piece of Jazz
music entitled Misty as played by Errol Garner (a simplified arrangement is shown).
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As can be seen in Fig. 6.1, the chord names and symbols are also simplified (just
major/minor, and 7th note) to account for the two-five-one (II–V(7)

–I) progression.
In this phrase, the chord “IV” (E maj7) in the fourth measure corresponds to the
chord “I” (E maj7) in the second measure occurring several chords earlier, creating
a nonadjacent hierarchical dependency between the “I” and the “IV” in a recursive
fashion. The local dependency between the first and second chords (E maj7–B m7)
is less likely according to traditional music theory, but this second chord lays the
groundwork for the non-local dependency between “I” and “IV” by generating a II–
V–I progression (i.e., B m7–E 7–A maj7). Another type of interaction can be seen
in the latter half of the phrase (i.e., adjacent: II–V–VI–IV, non-adjacent: IV–I). Near
the end of the piece, the higher hierarchy of the harmony structure “I–IV (–IV)–I”
nests the lower hierarchy of the structures “II–V–I” and “II–V–VI–IV.” Hofstadter
[118] has also indicated that a key change embedded in a superordinate key forms
hierarchical nonadjacent structures in a recursive fashion. Thus, composers generally
design hierarchical nonadjacent structures in a recursive fashion, potentially using
this technique to organize as much as an entire movement of a symphony or sonata
[248]. Some researchers have proposed computational and generative models for
such hierarchical structures in music; e.g., Generative Theory of Tonal Music
(GTTM) by [158] and the Generative Syntax Model (GSM) by [232].

With respect to the question of how nonadjacent dependency interacts with
adjacent dependency, categorization [125], non-adjacent (non-local) transitional
probabilities [94, 211], and higher order transitional probabilities [38] may be key
insights into generating advanced statistical learning models that are as similar as
possible to those used for natural music and language processing. For example,
humans can learn which words belong to certain categories such as nouns and verbs
by tracking the similar contexts in which words of the same category appear and
creating templates of possible sentence structures based on the statistical regularities
of the ordering of these different categories, regardless of explicit (declarative)
knowledge of labels on their categories [125, 153, 168]. For example, when the
verb “drink” occurs, the models predict subsequent words referring to things that
can be drunk. This hypothesis is partially supported by a behavioral study [105]. In
this study, after exposure to novel grammatical and ungrammatical sentences,
infants could discriminate between grammatical and ungrammatical sentences even

Fig. 6.1 Misty by Errol Garner, composed in 1954. This is a simplified arrangement
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when the individual words were exchanged for others in the same category. This
generalization indicates that infants were not learning vocabulary-specific gram-
matical structures but rather abstracting the general rules of those grammatical
structures and applying those rules to novel vocabulary [106]. Furthermore, Gomez
demonstrated that both adults and infants can learn non-adjacent transitional
probabilities of words [103]. This study also suggested conditions that might lead
learners to focus on nonadjacent versus adjacent dependencies. Each learner was
exposed to several types of pseudo-word streams (e.g., pel-wadim-rud and
pel-kicey-rud). Each type of stream contained the same adjacent dependencies (e.g.,
P(wadim|pel) = P(kicey|pel) and P(rud|wadim) = P(rud|kicey)), so learners could
distinguish among the languages only by acquiring data on dependencies between
the first and third elements (the nonadjacent dependencies: P(pel|rud)). The size of
the pool from which the middle words were drawn was systematically varied to
investigate whether increasing variability (in the form of decreasing predictability
between adjacent words) would lead to better detection of nonadjacent dependen-
cies. The participants acquired non-adjacent dependencies only when adjacent
dependencies were least predictable. That is, the adjacent elements were recognized
as invariant when the adjacent transitional probabilities were high, whereas learners
might seek alternative sources of predictability such as non-adjacent transitional
probabilities when adjacent dependencies were lower. A similar finding has also
been observed from a different viewpoint in a study on the order of transitional
probability [42]. In this study, when the variability of transitional probability dis-
tribution was increased, participants focused on higher-order transitional proba-
bility. For example, in the sentence “the books on the desk are old” mentioned
above, an increase in variability could lead to a shift in the statistical learning
strategy from a lower order (e.g., first-order: P(are|desk)) to a higher order (e.g.,
fourth-order: P(are|books-on-the-desk)). In the end, the adjacent singular form
“desk” does not have to be ignored when predicting the plural verb form “are”
based on a higher-order transitional probability. In other words, “are” accompanied
by “desk” (i.e., first-order transitional probability of P(are|desk)) is less likely and
the uncertainty of predictability is high, whereas “are” accompanied by
“books-on-the-desk” (i.e., first-order transitional probability of P(are|desk)) is likely
and the uncertainty of predictability is low. Importantly, Shannon’s information
theory also offers evidence that a higher order transitional-probability distribution
shows lower conditional entropy (i.e., uncertainty). Thus the order of transitional
probability may partially represent the relationship between local and non-local
dependencies [256]. It is of note, however, that composers sometimes design
hierarchical nonadjacent structures, potentially even consisting of “entire” move-
ments of music [248]. It may not be reasonable to create a transitional probability
that is long enough and of a high enough order to cover an entire piece of music. In
summary, many researchers have suggested a relationship between adjacent and
non-adjacent dependency in syntactic structure, but the matter is still open to
debate.
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6.2.3 Memory

6.2.3.1 Semantic Versus Episodic
It has been suggested that semantic memory is partially acquired through statistical
learning of episodic experience [4, 231]. In other words, an individual episodic
experience is abstracted on a statistical basis to generate semantic knowledge that
captures the statistical common denominator across experienced information [261].
This suggests that statistical learning underlying chunk formation and word
acquisition consists in part of statistical accumulation across multiple episodes. On
the other hand, an opposing statistical learning process appears to be happening
simultaneously: semantic memory can be integrated to generate novel episodic
memory through statistical learning [4]. This can be regarded as a syntactic process
in contrast to chunking and the lexical process. Altman [4] has suggested that
language learning (e.g., semantic tokens) requires a route from episodic experience
to semantic representation (via abstraction), while language comprehension (e.g.,
grammar and sentences) requires a route from semantic to episodic representation.
Thus it has been suggested that two interdependent processes should be incorpo-
rated to generate a complete account of statistical learning [270]:

(a) Abstraction (chunking) of statistically coherent events from the input infor-
mation (i.e., abstraction to generate semantic memory on lexicon

(b) Comparison and integration between those chunked units (i.e., comparison
between semantic memories to generate episodic memory on syntax).

6.2.3.2 Short-Term Versus Long-Term
Recent neurophysiological studies have demonstrated that the statistical learning
effect is reflected in neuronal response even after short-duration exposure (5–
10 min) [43, 78, 141]. Few studies, however, have investigated how long statistical
knowledge can persist [63]. It has been suggested that statistical learning shares
properties with artificial grammar learning [227] because of their implicit nature in
memory [33, 212]. According to artificial grammar learning studies, implicit
memory persists over the long term; as long as two years [3]. Considering its shared
properties with artificial grammar learning, implicit memory acquired by statistical
learning may also have both short-term and long-term properties. Indeed, some
researchers have reported that statistical learning persists for at least 24 h [134].
Recent studies indicate that slow-wave sleep (SWS) contributes to the retention of
statistical knowledge [59, 60]. Interestingly, memory consolidation could modulate
the structure of short-term memory into different forms of long-term memory in
which the information may be minimized, possibly to enhance information effi-
ciency in long-term storage [52, 160]. Furthermore, it has been indicated that
memory consolidation transforms implicit memory into explicit memory [73]. In
the next section, we review recent studies on consolidation within the statistical
learning framework and discuss how memory can be transformed by consolidation.
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6.2.3.3 Consolidation
An initially acquired memory is labile and easily forgotten. To retain temporary but
important memories over the long term, memory can be stabilized by the memory
consolidation system in the brain. This memory consolidation process allows the
brain to extract useful knowledge and discard (forget) irrelevant information,
contributing to the efficiency of memory capacity in the brain [151]. It is still
debatable, however, how the brain discriminates between important and irrelevant
knowledge among the massive quantities of information it receives. Recent studies
have proposed that the algorithm underlying the brain’s memory consolidation will
prove to be a key insight for improving the efficiency of information processing in
machine learning [291] and understanding the links between neuroscience and
machine learning [151].

Active Systems Consolidation (ASC), a leading theory of memory consolida-
tion, proposes a two-stage model of memory consolidation across short- and
long-term storage [52]. This model describes a way in which the brain’s neuronal
networks could overcome the stability–plasticity dilemma; i.e., how it could acquire
new information (plasticity) without overriding older knowledge (stability) [81,
171, 176, 224]. The model assumes two types of memory stores: one serves as
storage for fast and short-term learning and memory while the other serves as
storage for long-term learning and memory. First, novel information is encoded in
both stores. Then, the short-term memory is repeatedly re-activated in the
fast-learning store. This processing is followed by re-activation in the long-term
store to re-organize and strengthen the memory. Through these re-activations of
novel information, the short-term learning store acts like an internal trainer for the
long-term-learning store, allowing it to gradually adapt the novel information to the
pre-existing long-term memories. This process also promotes the extraction of
invariant repeating features from the new memories. These processes occur when
there is no interference from novel information; i.e., during sleep. Neuronal studies
have suggested that these two stores for short-term and long-term learning are
reflected in the hippocampus and neocortex activities, respectively [59, 225]. On
the other hand, whether memory consolidation merely passively protects memories
from decay or actively refreshes memory representations remains an open question
[62, 295]. The ASC posits that consolidation during both Slow-Wave Sleep (SWS),
which is typically referred to as deep sleep and which consists of stages 3 and 4 of
non-rapid Eye Movement (nonREM) sleep, and Rapid Eye Movement (REM) sleep
promotes both quantitative and qualitative changes in memory representations [61,
286]. For example, through ASC, memory representation in the short-term space is
consolidated and then re-organized in the long-term space. This consolidation also
leads to chunking of the memory as a single unit, improvement of performance, and
enhancement of novel and creative processing [287, 288]. The consolidated
memory can be integrated into the network of pre-existing long-term memories
[160], which allows the brain to generate creative information [284]. Furthermore,
the consolidation facilitates the inference of relationships between distant
(non-local) objects that had not been learned before sleep [61]. Together, the brain’s
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consolidation system may give AI researchers new ideas to use in pursuing an
innovative future machine learning algorithm; this will be discussed in more detail
in Sect. 6.4.2.

6.2.4 Action and Production

Statistical learning also influences human actions and decision-making [91, 92,
185–187, 214, 252, 299]. Using sequential paradigms based on various-order
Markov models, Karlaftis et al. [128] demonstrated that the brain alters its decision
strategies and engages dissociable neural circuits in response to changes in statistics
pertaining to the environment: the ability to extract exact sequence statistics relates
to neural plasticity in the motor corticostriatal circuits, while the ability to select the
most probable outcomes relates to plasticity in the motivational and executive
corticostriatal circuits. The same study also provided evidence that
learning-dependent changes in these circuits predict individual decision strategy.
Statistical learning of motor and action sequences is partially supported by the
chunking hypothesis [27], i.e., the hypothesis that learning is based on extracting,
storing, and combining small chunks of information. Statistical knowledge formed
in the cerebral cortex is sent to the cerebellum, which is thought to play important
roles in procedural learning such as motor skill learning [120] and habit learning
[90] as well as the generalization or abstraction of statistical knowledge [257] and
prediction of sequences [159, 182].

6.2.5 Social Communication

Humans are more sensitive to the statistical regularities of action sequences
between two persons than to those that occur within one person [186]. This implies
that social–communicative interaction facilitates statistical learning [188]. Some
evidence also suggests the importance of communication in the distributional
learning of phonemes [148]. In these studies, infants who spent time in a laboratory
with a native Mandarin speaker could discriminate among Mandarin but not among
English phonemes, whereas infants raised under comparable circumstances who
were exposed to English rather than Mandarin failed to discriminate among
Mandarin phonemes [149]. This shows that, when infants are merely exposed to
auditory speech sounds rather than engaged in social interaction, they cannot use
the statistical cues included in the sounds. Hence, social and communicative
interaction may allow infants to conduct statistical learning more effectively. Within
the predictive coding framework, a recent study on human–robot interaction [192]
likewise indicated that interacting with other individuals often increases prediction
error, which can be minimized by executing one’s own action corresponding to
others’ actions. Using robotic systems, Nagai and colleagues replicated develop-
mental dynamics observed in infants. The abilities of self–other cognition and
goal-directed action were acquired through updating an immature predictor through
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sensorimotor experiences, whereas imitation and prosocial behaviors emerged by
executing the action anticipated by the predictor. Thus, social and communicative
interaction modulates learning and prediction abilities in the developing brain and
may be an important key to developing advanced machine learning algorithms
similar to that used by the human brain.

6.3 Computational Model

6.3.1 Mathematical Concepts of the Brain’s Statistical
Learning

According to the statistical learning hypothesis, the brain automatically computes
transitional probability distributions in sequences, grasps uncertainty/entropy in
distributions, and predicts probable states based on its internal statistical models to
minimize prediction error. Thus statistical learning includes at least two
mechanisms:

(a) Probability encoding of each local event
(b) Uncertainty encoding of probability distribution.

The transitional probability is a conditional probability of an event B given that
the latest event A has occurred, written as P(B|A). From a psychological per-
spective, it can be interpreted as positing that the brain predicts a subsequent event
B after observing the preceding events A in a sequence. Learners expect an event
with a higher transitional probability based on the latest event A, whereas they are
likely to be surprised by an event with a lower transitional probability. Entropy can
be calculated from the probability distribution and used to evaluate the neurobi-
ology of higher levels of predictive coding and statistical learning [110]. Condi-
tional entropy has been defined as the average surprise (uncertainty) of an outcome
[89]. Furthermore, the motivation to resolve uncertainty is sometimes interpreted as
curiosity [127]. Curiosity can be regarded as the drive toward novelty-seeking
behavior, which has often been evaluated by mutual information I(X;Y) between
hidden states (Y) and observations (X) [90, 146, 252, 294]. In general, mutual
information is an information-theoretical measure of dependency between two
variables. Mutual information corresponds to a reduction in entropy (uncertainty)
about hidden states (Y) afforded by observations (X). According to psychological
and information-theoretical concepts, mutual information means that the amount of
uncertainty remaining about Y after X is known. The brain’s prediction ability is
correlated with mutual information (uncertainty reduction) [110]. When an observer
is curious about sequential information, observation of an event X may lead to
stronger (and correct) expectation of Y, resulting in an increase in mutual infor-
mation (reduction in uncertainty). In contrast, a lack of curiosity about event X can
be simply perceived as having no expectation of a subsequent event, resulting in
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less mutual information (increasing uncertainty). Several researchers have proposed
advanced computational models for expressing a variety of brain functions such as
reward system and action. The next section discusses these brain-inspired models in
the framework of music and language statistical learning.

6.3.2 Statistical Learning and the Neural Network

Computational modeling has been used to understand the brain’s statistical learning
mechanisms [36, 210, 235, 292]. Although experimental approaches are necessary
for understanding the brain’s function in the real world, the modeling approaches
partially outperform experimental results under conditions that are difficult to
replicate in an experimental approach (e.g., long-term statistical variation over the
decades within a person and across cultures). Computational modeling can also
represent the relevant neural hardware in the sensory cortices [237, 279]. For
example, the simple recurrent network (SRN), which is classified as a neural net-
work and was first hypothesized by Elmer [64], learns sequential co-occurrence
statistics through error-driven learning in which the gap between the predicted next
input and the actual next input drives changes to the weights on its internal con-
nections. The SRN [231] and a modified SRN [5, 53] implement a similarity space
in which words referring to similar objects or actions were located more closely to
one another than to words referring to dissimilar objects or actions. The neural
network and deep learning such as Long-Short Term Memory (LSTM) [117],
however, are not intended to serve as a model for the human episodic and semantic
memory systems, although they proceed in this direction. Corpus-based approaches
such as Hyperspace Analogue to Language (HAL) [168], Bound Encoding of the
AGgregate Language Environment (BEAGLE) [125], and Latent Semantic Anal-
ysis (LSA) [153] are based on the abstraction of episodic information and encoding
in a multidimensional semantic space. These models can also generate semantic
similarity spaces in a similar way. For example, when the verb “drink” occurs, the
models predict subsequent words referring to things that can be drunk. PARSER
[213], Competitive Chunker [255], Information Dynamics of Music (IDyOM)
[210], Information Dynamics of Thinking (IDyOT) [292], and other Markovian
models including the n-gram and nth-order Markov models [37] incorporate the
chunking hypothesis in which learning is based on extracting, storing, and com-
bining small chunks of information. The Markov Decision Process (MDP) [91, 92,
214, 252], which has often been used for reinforcement learning in machine
learning and robotics, extends the simple perceptive process by adding an active
process (controlling predictability by choice, called ‘policy’) and rewards (giving
motivation). The IDyOM is also an extension of the Markov model (i.e., the
variable-order Markov model) for precisely modeling the statistical learning of
musical sequences concomitantly combining several types of information such as
pitch, duration, onset, scale degree, and so on. The IDyOT takes advantage of
information theory to represent statistical learning mechanisms that cover both
music and language [292]. This model implements semantic and episodic memory
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systems and captures the hierarchical learning process from lower to higher levels
using boundary entropy: the spectrum of an auditory sequence is chunked into
phonemes, then morphemes, then words [292].

Rohrmeier and Cross [233] compared the n-gram Markov, Competitive Chun-
ker, and neural network SRN models to examine how each of these models sim-
ulates human implicit learning. They showed a strong learning effect for n-gram
models and Competitive Chunker and a weaker effect for SRN. Their results
suggest that the SRN and n-gram models represent the abilities of ordinary humans
and those of music experts, respectively. These findings are important because they
can provide useful information for devising an AI algorithm that simulates the
development of learning ability in the human brain. It is of note, however, that such
neural networks and deep learning [156] are inscrutable because some integrated
components as opposed to independent components may be learned. The statistical
(machine) learning model, on the other hand, is time-based and the learning effect is
dynamically represented. Importantly, pitch prediction in novel melodies is closely
tied with probability distribution sampled from a large corpus of music [207–209].
For example, the transitional probability between two pitches that are a whole-tone
apart is higher than other transitional probabilities in Beethoven’s piano sonatas
[39], Jazz improvisation [37], and Bach’s Well-Tempered Clavier [40, 41]. These
properties are clearer when the order of transitional probabilities is higher (e.g.,
fifth-order transitional probability: P(VI|I-II-III-IV-V), corresponding to P(A|
C-D-E-F-G) in C major [39]. The transition probability distribution of chords
extracted from a corpus of Bach chorales also captures musical expectancy [234],
showing, for example, that a tonic chord follows the dominant seventh chord with
the highest transitional probability.

These statistical learning models have also been applied to neurophysiological
experiments [38, 208–210, 296, 297], which have consistently indicated that neural
activity is higher in response to stimuli with high information content (i.e., low
probability) than in response to those with low information content (i.e., high
probability), which is in keeping with the predictive coding hypothesis. Further-
more, these statistical learning effects are larger when humans are exposed to
stimulus sequences with less information entropy (uncertainty) than when they are
exposed to stimulus sequences with more information entropy [42]. This neural
phenomenon is in agreement with the Bayesian hypothesis in which the brain
encodes probabilities (beliefs) about the causes of sensory data and updates these
beliefs in response to new sensory evidence based on Bayesian inference [58, 89,
131, 137, 196, 204, 205]. Hence, the statistical (machine) learning model can
capture a variety of neurophysiological phenomena pertaining to statistical learning
such as prediction and uncertainty. The next section reviews how these statistical
learning models are reflected in neurophysiological activity based on the abundant
neuroimaging literature.
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6.4 Neurobiological Model

6.4.1 Temporal Mechanism

Electroencephalography (EEG) and magnetoencephalography (MEG) directly
measure neural activity during statistical learning and represent a more sensitive
method as compared to the observation of behavioral effects [141, 202]. When the
brain encodes the probability distribution in a stimulus sequence, it expects a
probable future stimulus with a high probability and inhibits the neural activity that
would occur in response to that predictable stimulus. Finally, the statistical learning
effect manifests as a difference in neuronal activity between predicable and
unpredictable stimuli (Fig. 6.2). Studies on Event-Related Potentials (ERP) and

Fig. 6.2 Representative statistical learning effect. Equivalent Current Dipole (ECD) locations
(dots) and orientations (bars) for auditory ERP (N1) responses superimposed on the magnetic
resonance images (a) and the auditory statistical learning effects (b). Reprinted from [36–39] with
permission
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Event-Related Magnetic Fields (ERF) have suggested that statistical learning is
reflected in:

(a) Early components, such as

• Auditory Brainstem Response (ABR) [260]

• P5 [45, 46, 202]

• N100 [43, 44, 95, 246]

• MisMatch Negativity (MMN) [78, 141, 183, 278]

(b) Late components such as:

• P200 [13, 35, 79, 95],
• N200–250 [78, 221]
• P300 [155]
• N400 [13, 34, 35, 77, 80, 246]

The suppression of the early components of responses in the lower cortical areas
to auditory stimuli with higher transitional probabilities has been interpreted as the
transient expression of prediction error that is suppressed by top-down predictions
from higher cortical areas [38, 260]. Within the predictive coding framework,
neuronal representations in the higher levels of cortical hierarchies predict plausible
representations in the lower levels in a top-down manner and are compared with the
representations in the lower levels to yield prediction error, usually associated with
the activity of superficial pyramidal cells [133, 191, 222]. The resulting mismatch
signal is passed back up the hierarchy to update higher representations (associated
with the activity of deep pyramidal cells). This recursive exchange of signals
suppresses prediction error at each level to provide a hierarchical explanation for
inputs that enter at the lowest (sensory) level.

The brain computes the uncertainty/entropy of each probability distribution as
well as the probability of each local event. The distinction between the uncertainty
and probability encodings may partially be explained by the findings of ERP studies
[143]. An early component called MMN (100–200 ms after stimulus onset) is
typically elicited by deviant stimuli of oddball sequences and is not affected by
explicit and prior knowledge about upcoming deviant stimuli [98, 229, 265, 293].
In contrast, a later component called P300 or P3 is elicited by novel stimuli rather
than repeated deviant stimuli [87] and is reduced by prior knowledge of an
upcoming syntactic deviant stimulus [230, 265]. This suggests that, if an upcoming
stimulus is predictably unpredictable (i.e., the event has a low probability but the
sequence has low uncertainty), the later rather than earlier components may be
decreased. It has generally been considered that, as compared to earlier compo-
nents, later components reflect higher levels of auditory processing such as
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semantic and syntactic learning [99]. Neurophysiological [56, 82] and computa-
tional studies [69] suggest that later components reflect a change in context or
predictability. For example, N400 reflects a semantic meaning in language and
music [142, 152, 274]. Thus, statistical learning’s effect on N400 [13, 34, 35, 77,
80, 246] may support the hypothesis that semantic memory can be acquired through
statistical learning [4, 231].

N400 and Early Anterior Negativity (EAN) components distinguishing between
high and low transitional probability are also influenced by long-term musical
experiences [79, 135]. It is widely known that Early Right Anterior Negativity
(ERAN) has a larger amplitude in individuals with musical training [139]. ERAN
can be elicited not only in harmony processing but also in melody processing [29,
180] and in rhythmic syntactic processing [264]. Importantly, random feedback
including false and correct feedback regarding participants’ detection of out-of-key
tones in melodies may modulate ERAN [285], as could attention-driven changes in
the confidence of predictions (i.e., uncertainty). A recent study offered evidence that
long-term experience of music also modulates another earlier component called
P50. In this study, the effects of statistical learning on P50 were larger in musicians
than in non-musicians [202], suggesting that long-term experience may facilitate
the prediction of each content type as well as the uncertainty of context. Hence,
both the prediction of individual events and the uncertainty of the context can be
reflected in many ERP components, but different levels of statistical learning may
involve different ERP components.

Statistical learning is reflected in oscillatory activity as well as ERP/ERF.
According to neurophysiological studies, low-frequency oscillations in the speech
motor cortex track the envelope of the speech signal [203], while high-frequency
oscillations dominate in tracking the fine structure of speech [100] and bottom-up
processing [76]. Furthermore, in each frequency band, statistical learning and the
chunking function control the coupling and synchronization between phase-locked
neural oscillations and speech frequencies (e.g., *20 Hz: phoneme, *4 Hz:
syllable, *1 Hz: word and phrase) [9, 54]. This has also been suggested by sim-
ulations and models based on cochlea function [55, 157]. Furthermore, the N400
and phase-locked coherence (*1 Hz: word frequency) as semantic chunking
effects can be detected in parallel [15]. Thus a number of electrophysiological
experiments have shown that both oscillation and ERP/ERF represent statistical
learning processes including probability and uncertainty encodings.

As shown in Fig. 6.2, when the brain encodes the transitional probability in an
auditory sequence, it expects a probable future stimulus with a high transitional
probability and inhibits the neural response to predictable stimuli. In the end, the
statistical learning effects manifest as a difference in amplitudes of neural responses
to stimuli with lower and higher transitional probability.
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6.4.2 Spatial Mechanism

6.4.2.1 Domain Generality Versus Domain Specificity
It has generally been assumed that the networks that are instrumental in statistical
learning involve a variety of brain areas including the neocortex, hippocampus, and
corticostriatal systems [102, 176, 228, 247]. In other words, the neuroanatomical
mechanisms of statistical learning are associated with both modality-general (e.g.,
hippocampus and striatum) and modality-specific processing (e.g., auditory:
Superior Temporal Gyrus (STG) and Superior Temporal Sulcus (STS); visual:
cuneus, fusiform gyrus) [193, 263]. Some studies have suggested that the sensory
type of statistical learning modulates the cortical networks. For example, the neu-
ronal system underlying audiovisual statistical learning is partly in common with
and partly distinct from the unimodal networks of visual and auditory statistical
learning, comprising the right temporal [236] and left inferior frontal sources,
respectively [201]. That is, statistical learning essentially reflects contributions from
domain-general mechanisms that share brain regions between different modalities
yet are constrained to operate in specific modalities [93, 193, 263]. In terms of the
two distinct types of statistical learning mechanisms (i.e., encoding probability and
uncertainty, presumably corresponding to the prediction of local events and pre-
dictability of whole events, respectively), recent studies have consistently shown
that the neocortex is likely to play an important role in probability encoding, while
the hippocampus is thought to be associated with uncertainty encoding [110, 112,
271]. On the other hand, many other studies have implied that these two levels of
statistical learning do not function independently but rather are interdependent [109,
272, 273].

6.4.2.2 Probability Encoding
According to findings obtained through functional magnetic resonance imaging
(fMRI) [34], MEG [201], and near-infrared spectroscopy (NIRS) [1], the networks
instrumental in statistical learning are associated with a variety of brain areas. For
example, recent studies report contributions from motor areas including the
Premotor Cortex (PMC) [34] and the primary motor cortex [299] as well as the
superior temporal cortex including the STG [277] and the STS [66], areas for
speech processing and forward prediction, respectively [116, 200]. The left dorsal
stream including the superior temporal areas, auditory-motor areas, PMC, and
prefrontal cortex plays an important role in statistical learning [65] in the contexts
of infant speech and music processing [197]. The basal ganglia are also thought to
be associated with chunk formation, which is underpinned by statistical learning
[107, 245]. In particular, the striatum, which is part of the basal ganglia and thought
to be associated with motivational circuits, has been proposed as a region impli-
cating prediction [177, 219, 279]. Using sequential paradigms based on
various-order Markov models, Karlaftis et al. [128] have demonstrated that indi-
viduals alter their decision strategies in response to changes in the statistics of their
environments and engage dissociable circuits, extraction of exact sequence statistics
is related to neural plasticity in the motor corticostriatal circuits, while the selection
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of the most probable outcomes is related to plasticity in the motivational and
executive corticostriatal circuits. Karlaftis et al. [128] also provided evidence that
learning-dependent changes in these circuits predict individual decision strategies.

Previous studies have also reported contributions from functional connectivity
between the auditory and motor language networks, that is, from the link between
the prefrontal cortex including the IFG and Broca’s area, and that between the
superior temporal cortex and Wernicke’s area [165, 177]. It is important, however,
to differentiate between local and non-local processing in prediction [50].
A growing body of literature claims that hierarchically organized (nested) non-local
dependencies are processed in the pars opercularis of the posterior IFG corre-
sponding to BA 44v [7], whereas the processing of local dependency violations is
mainly associated with the ventral PMC [83, 85, 170, 199]. The ventral parts of
Broca’s area are involved in left- and right-hemispheric weighting in language- and
music-syntactic processing, respectively [85, 170]. Furthermore, the ventral parts of
Broca’s area are involved not only in language- and music-syntactic processing but
also in the hierarchical processing of action sequences [67, 138] and presumably in
the processing of hierarchically organized mathematical formulas [88]. Music
syntax has both local and non-local regularities. Therefore, there is no doubt that
music-syntactic processing involves not only the IFG but also the ventral PMC
[121, 206] and the STG [277]. The IFG and ventral PMC, however, are likely to
contribute mainly to non-local and local processing, respectively. Dehaene et al.
[50] have indicated that tree structures, which are used to explain hierarchical
syntactic structures in language and music (e.g., context-free grammar) [113, 158],
require a specific recursive neural code. Importantly, the processing of context-free
grammar is available to humans but not to non-human primates [74]. Thus this type
of processing may be unique to humans, which may explain the singularity of
human language and music cognition.

6.4.2.3 Uncertainty Encoding
The mechanisms underlying uncertainty encoding are considered to be partially
independent of those underlying prediction [112, 271]. For example, Medial
Temporal Lobe (MTL) including the hippocampus [279, 280], and the lateral
temporal region [34] including Wernicke’s area [24] are considered to play roles in
encoding uncertainty [110]. The interactive neuronal networks between prediction
and uncertainty may be partially explained by the Complementary Learning System
(CLS) [176], which is a model for the memory system in the neocortex and hip-
pocampus. This model suggests that the neocortex contributes slow and long-term
encoding of semantic memory based on statistical knowledge through smaller
changes in connectivity within the neocortex, whereas the hippocampus contributes
rapid, sparse, and long-term encoding of episodic memory through large changes in
connectivity between the hippocampus and the neocortex as well as within the
hippocampus [93].
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6.4.2.4 Consolidation of Statistically Learned Knowledge
Many studies have suggested that neural replay in the MTL contributes to memory
consolidation in the cortex [52, 184]. A previous study has demonstrated that, after
24 h of consolidation of statistical knowledge during sleep, the memory system is
less dependent on the hippocampus and more dependent on the corticostriatal
pathway and the planum temporale [59] in a process known as Active System
Consolidation (ASC). That study indicated that, prior to consolidation, the striatum
has greater connectivity with both the MTL and the ventromedial prefrontal cortex,
whereas after consolidation the striatum is directly connected to the STG. The
system of interaction between the hippocampus and the neocortex that is involved
in statistical learning has also been discussed from the perspective of a different
consolidation system that activates during development, between infancy and
adulthood [60, 102, 266]. The ability to predict each type of content improved after
24 h consolidation in adults [60], whereas infants tend to show weak retention of
statistical knowledge [102, 266]. Furthermore, infants’ statistical knowledge is
drastically altered by novel input [20], suggesting that infants, compared with
adults, may encode statistical information in a noisier representation, and have more
difficulty integrating novel input with pre-existing memory [269]. It has been
suggested that the connectivity between hippocampal and other memory systems
including the prefrontal cortex [104] develops more fully after two years of age
[96]. Prior to two years of age, therefore, the networks that are instrumental in
statistical learning involve the cortex, corticostriatal loop, and monosynaptic circuit
of the hippocampus. Together, the previous studies suggest that the hippocampus–
neocortex loop contributes to the consolidation of statistical knowledge. That
hypothesis leads one to wonder how the consolidation networks between the MTL
and the neocortex are related to the interactive system between uncertainty and
prediction in statistical learning. Again, the CLS and ASC models suggest that the
hippocampus plays an important role in the formation of novel episodic memory
through rapid, sparse, and short-term encoding, whereas the neocortex contributes
to slow and long-term encoding of semantic memory based on statistical knowledge
[59, 93]. Thus, to retain a memory, the brain must consolidate a short-term memory
in the hippocampus and shift it into long-term memory in the neocortex through the
pathway between the hippocampus and the neocortex. Then novel input can be
integrated into the consolidated memory without destroying it [160]. According to
previous studies, the MTL contributes the abstraction in statistical learning [31,
144, 190] and uncertainty perception [110, 111, 279, 280]. This abstracted infor-
mation is sparse and represents only a fragment of the whole, but is statistically
important and enhances predictability under conditions of limited uncertainty
(Fig. 16.1). In contrast, syntactic processing associated with the integration of
semantic knowledge depends on neocortical areas including the language network;
e.g., IFG, STG, etc. [84] as well as other areas associated with the integration of
semantic knowledge, such as the medial prefrontal cortex [282] and the perirhinal
cortex [267]. Thus, integration between pre-existing long-term information sent
from the MTL through consolidation and novel input information may occur in the
neocortex. Statistical knowledge may also be sent to the cerebellum which is
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thought to play important roles in generalization or abstraction, prediction of
sequences [159, 182], motor skill acquisition [120], and transference into novel
circumstances [257] to enable more efficient performance in a learned context.
A previous study has suggested that the cerebellum, in conjunction with the pre-
motor cortex, inferior parietal lobule, and medial occipital cortex, mediates the
probabilistic inferences that guide decision-making under conditions of uncertainty
[25]. The cerebellum as well as the hippocampus and the cerebellum-hippocampus
network [11] may play a role in resolving uncertainty [132] to optimize action and
prediction via statistical learning. An fMRI study [129] has suggested that, during
statistical learning, participants with strong statistical learning effects of a familiar
language on which they had been pretrained (e.g., their native language) exhibited
decreased recruitment of the fronto-subcortical and posterior parietal regions, as
well as a dissociation between downstream regions and the early auditory cortex.
Some studies have indicated that IFG activity may reflect recognition of accumu-
lated statistical information [129, 218]. This finding may suggest that, through
long-term learning, the brain optimizes probabilistic models with less uncertainty in
the long-term space in order to predict input information efficiently. In summary,
these previous studies suggest that the dorsal stream (namely, the superior temporal
areas, motor areas, PMC, and prefrontal cortex) plays an important role in the
online prediction of each event during statistical learning. In addition, these net-
works in the neocortex may interact with the functions of the basal ganglia through
the corticostriatal pathway. In contrast, the hippocampus may serve as a short-term
space associated with perceptive mechanisms of uncertainty. Furthermore, these
two distinct systems are not independent but interdependent via the
hippocampus-neocortex gateway, which contributes to memory consolidation from
short-term to long-term memory.

Within the framework of CLS theory, Kumaran et al. [151] have also asserted
the relevance of the hippocampus-neocortex interplay to the design of Artificial
Intelligence, highlighting connections between neuroscience and machine learning.
The CLS theory proposes two learning systems. The first gradually acquires
structured knowledge representations in the neocortex while the second quickly
learns the specifics of individual experiences in the hippocampus. Both the brain
and AI systems benefit from the second system that stores specific experiences in
the hippocampus. That is, once structured knowledge has been acquired in the
hippocampus–neocortex networks, new consistent information can be rapidly
integrated. The network replays memories stored in the hippocampus, contributing
to the integration of new information into the neocortex [195]. It is thought that the
replay of recent experiences occurs during offline periods (e.g., during sleep and
rest). Furthermore, the hippocampus and the neocortex interact during replay [123].
This recurrent activation of multiple memories can be used to discover links
between experiences, supporting generalization and memory-based reasoning. Thus
this mechanism could support a variety of cognitive functions, including
goal-related manipulation of experience statistics such that the neocortex is not a
slave to the statistics of its environment [151]. The fast-learning hippocampal
system can circumvent the general statistics of the environment by reweighting
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experiences that are of unequal significance. This mechanism may link the cogni-
tive and machine learning models in that both operate by computing the similarity
of a new input pattern to stored experiences, though the first is an exemplar model
and the second is an instance-based model. On the other hand, the hippocampal
replay of experiences can be modulated according to each experience’s degree of
surprise and its novelty, that is, its relative reward value (either positive or negative)
and the amount of new informational content that it provides (e.g., its value in terms
of reducing uncertainty about the best action to take in a given situation), acting to
rebalance the general statistics of the environment [151]. Kumaran et al. [151] have
also indicated that the hippocampus plays an important role in marking salient but
statistically infrequent experiences, ensuring that such events are not swamped by
the wealth of typical experiences but are instead preferentially stabilized and
replayed to the neocortex, thereby allowing knowledge structures to incorporate this
new information. Importantly, recent machine learning research has been inspired
by the role of hippocampal experience replay within the framework of CLS theory.
In AI research, experience replay stores experiences including state transitions,
rewards, and actions, which are necessary for creating mini-batches to update neural
networks and increase learning speed. For example, the implementation of an
experience replay mechanism was crucial to developing the neural network called
Deep Q-network (DQN). This neural network achieved human-level performance
across a wide variety of Atari 2600 games by successfully harnessing the power of
deep neural networks and reinforcement learning [181]. In machine-learning
research, continual learning, which is the ability to learn successive tasks in a
sequential fashion (e.g., tasks A, B, C) without catastrophic forgetting of non-local
earlier tasks (e.g., task A), remains a fundamental challenge. This is believed to be a
prerequisite to developing artificial agents that we would consider truly intelligent.
A principal motivation for incorporating a fast-learning hippocampal system as a
complement to the slow neocortical system was to support continual learning in the
neocortex: hippocampal replay was proposed to mediate interleaved training of the
neocortex (i.e., intermixed examples from tasks A, B, C). In sum, a number of
recent studies have identified the neural correlates of music with machine learning.
Actually, a number of AI models have been inspired by neural function in the
human brain, and compose many genres of music as if human brain does. On the
other hand, many computational and neurophysiological studies in music pro-
cessing had mainly focused into optimal, likelihood, efficient problem-solving.
However, the human brain often behaves inefficiently. For example, creative
thinking such as music composition is a process by which we resolve an
open-ended problem from a different perspective that has not been emerged before.
In the next section, we propose future directions for interdisciplinary research in
Neuroscience and AI for music processing.
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6.5 Future Direction: Creativity

6.5.1 Optimization for Creativity Rather than Efficiency

The brain is generally motivated to optimize prediction and minimize uncertainty
for information efficiency [89]. This uncertainty resolution results in rewards. Until
the last few decades, many computational and neurophysiological studies in music
processing had mainly focused on optimal, likely, and efficient solutions to specific
problems. Yet these specific problem-solving approaches are not ideal for revealing
how the brain deals with open-ended problems. For example, creative thinking such
as music composition is a process by which we resolve a specific or open-ended
problem from a different perspective that has not been encountered before. This
mechanism has been broadly investigated in a variety of analyses of creative people
[97], products [6], creative processes [258], and neuroimaging during creation [19].
For example, motivation is a key insight into understanding creativity from both
neuronal and computational perspectives. Generally, motivation stems from two
different sources: intrinsic and extrinsic motivation [251]. Intrinsic motivation is a
drive originating inside an individual toward personal interest, satisfaction, goals,
etc., whereas extrinsic motivation is a drive originating outside of a person toward
external factors such as specific rewards, approval from others, etc. Although both
extrinsic and intrinsic motivation increases creativity in certain cases, extrinsic
motivation can sometimes impede creativity [220]. Excessively predictable patterns
and very low uncertainty of information essentially give rise to boredom because
they do not allow for the pursuit of curiosity rewards. A certain degree of uncer-
tainty may be necessary to maintain curiosity about information and thus the
motivation to learn it, given that uncertainty allows the brain to anticipate further
rewards through the resolution of the unknown. That is, for sustainable curiosity
and motivation, humans may seek a slightly suboptimal solution if it is afforded at a
significantly low uncertainty. Recent studies indicate that fluctuations in uncertainty
may contribute to esthetic appreciation of art and music [40, 41, 140] and that this
phenomenon may encourage humans to create and learn new regularities [250].
This suggests that an algorithm optimizing not for efficiency but for creativity is an
important goal in statistical learning (probability and uncertainty encodings) of
creative information such as music. Creative information is not just pastiche and
replication of previous information but is regarded as an artifact that is difficult to
anticipate based on information that is already known.

Over the past decade, however, statistical learning mechanisms have essentially
been discussed based on optimization of prediction and information efficiency at the
lowest possible informational cost and uncertainty. Creativity, however, does not
necessarily generate information-theoretically optimal, efficient, and certain infor-
mation, but sometimes gives rise to uncertain, unpredictable information. We
sometimes derive pleasure from prediction errors under conditions such as music
listening due to our curiosity and our drive toward novelty-seeking behavior in
connection with our anticipation of the resolution of uncertainties. That is, humans
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appear to seek certain forms of optimality between uncertain and certain situations
through actions from which we expect to receive maximal curiosity rewards, and
hence our actions give rise to increasing as well as decreasing uncertainty. Nev-
ertheless, few studies have investigated how creativity interacts with the brain’s
statistical learning machinery including probability and uncertainty encoding. The
next section reviews some computational literature on this challenging question
from the viewpoint of the brain’s functions including prediction, learning, memory
consolidation, and intrinsic/extrinsic rewards systems. Then we discuss the neu-
roanatomical correlates of creativity and music with machine learning and statistical
learning.

6.5.2 Cognitive Architectures

Until a few decades ago, computational modeling was mostly focused on seeking
an optimal, likely, and efficient solution to a specific problem by a reductionist
means. These problem-solving approaches, however, are not ideal for implementing
divergent thinking as humans do. How to deal with open-ended problems is a
contemporary challenge in AI studies. Computational creativity and Artificial
General Intelligence (AGI) aims at breaking free from the problem-solving
approaches [23] and instead of dealing with conditions where there is no solution
and no problem. The Dual Process Theory of Intelligence has proposed two types of
intelligence models that give rise to creativity [130]. One is a conscious and explicit
process in response to a specific goal-directed thought. The other, in contrast, is an
unconscious and implicit process of spontaneous cognition associated with implicit
learning ability. Hélie and Sun [115] have also proposed the Explicit–Implicit
Interaction (EII) theory of creativity as a unified theory of creativity. This theory,
which attempts to integrate various fragmentary theories, consists of five basic
principles:

(1) The co-existence of and the difference between explicit and implicit
knowledge

(2) The simultaneous involvement of implicit and explicit processes in most tasks
(3) The redundant representation of explicit and implicit knowledge
(4) The integration of the results of explicit and implicit processing
(5) The existence of iterative (and possibly bidirectional) processing.

A cognitive architecture called Connectionist Learning with Adaptive Rule
Induction On-line (CLARION) [115] computationally implements EII theory and
simulates relevant human data. This work represents an initial step in the devel-
opment of process-based theories of creativity encompassing incubation, insight,
and various other related phenomena. For example, explicit knowledge can be
encoded as directional associative rules that link chunks (of declarative knowledge),
while implicit knowledge is learned by an algorithm related to standard
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backpropagation using both implicit and explicit networks. In the end, the given
explicit knowledge affects the learned implicit knowledge.

Schmidhuber [250, 251] has proposed a theory of learning that affords creativity
based on information theory. This theory indicates that creativity and curiosity are
by-products of a computational principle for optimizing learning progress. That is, a
human’s acts afford a “black box” optimization through reinforcement learning that
maximizes the extrinsic rewards for achieving a given goal. In this model, the
intrinsic rewards, i.e., the so-called wow-effect, motivates creative behavior even if
there is no specific goal. The agent keeps improving its performance over time
because it is invariably predicting and encoding a growing history of actions and
sensory information. A sudden improvement in data compression or computational
speed, which can be measured as a decrease in computational cost at each time
point (e.g., errors, time, number of required synapses, storage size), gives rise to the
wow-effect. This effect finally becomes an intrinsic reward signal for the action
selector. Thus, unknown (uncertain), novel, and regular information motivates the
agent to perform continual, open-ended, active, creative exploration, whereas ran-
dom data, already known (certain) information, and predictable patterns are
essentially boring because they do not give rise to wow-effects and rewards. Recent
computational studies on music have found that the conditional entropies (i.e.,
uncertainties) in Beethoven’s music gradually increased [40, 41] with time over the
composer’s lifetime. These findings were prominent in higher-rather than lower
order statistical learning models. Improvisational music also shows a similar phe-
nomenon: lower order statistical learning models represent the general character-
istics shared among musicians, whereas higher order statistical learning models
detected specific characteristics unique to each musician [37]. These findings may
suggest that higher rather than lower order statistical knowledge [36] may be more
susceptible to the effects of long-term experience on the brain’s probabilistic
models and individuality of creativity. In sum, it is thought that new structured
information may intrinsically motivate humans to discover the regularities. In
response, they perform open-ended and creative exploration due to the absence of
pre-established knowledge or instruction on the regularities. This behavior, how-
ever, may increase creativity and provide intrinsic rewards when the hidden reg-
ularity is finally detected. In terms of statistical learning, “how” and “when” the
intrinsic motivation occurs during statistical (machine) learning appears to be a key
insight into new frontiers for both neural and computational fields. In the next
section, we discuss neuroanatomical mechanisms involved in creativity and music.

6.5.3 Neuroanatomical Correlates

In contrast to a large number of studies on statistical learning and memory, there are
few neuronal studies on creativity based on statistical learning theory. On the other
hand, behavioral and neuroimaging studies have begun to uncover mechanisms that
give rise to novel ideas using various paradigms on divergent thinking, musical
improvisation, poetry composition, and art production. Here, we review neural
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studies on creativity across several paradigms. Then, based on a number of previous
findings across neuronal and computational studies, we hypothesize possible
mechanisms of creativity within the statistical learning framework including pre-
diction and uncertainty encoding.

6.5.3.1 Frontal Lobe
It is generally considered that frontal lobe function, which is involved in top-down
control of executive function and decision-making [47, 57, 101, 114], is one of the
most important keys to understanding creativity and statistical learning in the brain
[75], although multiple neural networks also interact with each other [175]. For
example, EEG [71, 72, 169] and fMRI studies [21, 22, 48, 49, 161] have examined
brain activity during exposure to fixed melodies (less creative) or free-improvised
melodies (more creative). The results indicate that more creative conditions lead to
stronger alpha power [71, 164, 169] in the right frontal and parietal regions [72].
The increased oscillatory activity in the alpha band is considered to reflect inhi-
bition of the top-down process [136] and the dorsal stream [124]. Other studies, in
contrast, have suggested that alpha power reflects internally oriented attention in
which external bottom-up stimulation is suppressed [70]. One study that investi-
gated both the neural and genetic correlates of creativity has suggested that a system
of interaction between strong top-down and weak bottom-up processes underpins
creativity, which is modulated by competition between the glutamate and GABA
neurotransmitter systems [163]. Furthermore, a computational model [32] inspired
the hypothesis that the frontal lobes create an expanding repertoire of flexible
behavioral strategies for driving action in uncertain, changing, and open-ended
environments and suggested that frontal lobe function including executive control
and decision-making supports integration between reasoning, learning, and cre-
ativity through uncertainty monitoring. Green et al. [108] have also suggested that
neural activity in the frontopolar cortex facilitates creative intelligence. The con-
tradiction between these two opposing findings on inhibition and enhancement of
top-down control may be explained by the different tasks set in the different studies
[2]. In fMRI studies [217], however, improvisation using a defined pitch set
resulted in activation of the dorsolateral Prefrontal Cortex (dlPFC) because par-
ticipants had to maintain available note choices in the working memory, whereas
free improvisation leads to the deactivation of the dlPFC because participants are
able to take advantage of their implicit learning systems to create improvisations in
which top-down control from the dlPFC would be disadvantageous [51]. Using
fMRI, Liu et al. [162] have examined brain mechanisms during poetry composition
and the assessment (revision) process. The results indicated that dlPFC activity was
attenuated during composition and re-engaged during revision, whereas the Medial
Prefrontal Cortex (MPFC), which is associated with multiple cognitive functions
such as motivation [145] and unconscious decision-making [262], was active
during both phases. Furthermore, expert poets showed significantly stronger
deactivation of the dlPFC during composition but no significant difference in
activity of the MPFC. Thus expert poets may more effectively suspend top-down
control while maintaining their motivation. Together, these findings show that
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open-ended creative behaviors may suppress top-down controls as expressed
through dlPFC activity level while maintaining motivation as expressed through
MPFC activity level, whereas fixed behaviors enhance top-down control.

6.5.3.2 Cerebellum
The cerebellum as well as the frontal lobe is known to be an important area in
creativity. de Manzano and Ullen [48] found that rhythmic improvisation enhanced
connectivity between the Supplementary Motor Area (SMA) and the cerebellum.
Furthermore, the cerebellum [244] and the caudate, which is part of the striatum
[18, 122], also contribute to creative cognition. Vandervert et al. [283] have
explained how the frontal lobes and the cerebellum collaborate to produce cre-
ativity. The cerebellum adaptively models all movement and thought [249]. The
cerebellum's adaptive models then forward this information to the frontal lobes’
working memory which it uses in its control processes [179]. Frontal lobe function
then leads to idea generation [283]. Furthermore, the temporal lobe, as a region
where idea editing and evaluation occurs [75], triggers creative insight or the “aha”
experience [126]. This hypothesis may be partially supported by computational
studies [250, 251]. Due to the improvements in performance speed and efficiency
and the reduction of uncertainty that occur through repetitive mental prototyping in
the cerebro-cerebellar blending process, the human brain receives intrinsic rewards
in the form of the so-called wow-effect, which then motivates further creative
behavior. Furthermore, statistical learning studies have also suggested that statis-
tical knowledge can be sent to the cerebellum for more efficient performance in a
learned context [257]. The cerebellum, in conjunction with the premotor cortex,
inferior parietal lobule, and medial occipital cortex, mediates the probabilistic
inferences under the control of uncertainty [11, 25, 132].

6.5.3.3 Neural Network
Recently, to explain the dynamics of creativity processes, three types of neuronal
networks have been proposed [19]. One is the Default Mode Network (DMN),
which consists of the cortical midline and posterior inferior parietal regions and
contributes to idea generation via flexible, spontaneous, and self-generated thought
involved in mental simulation [298], mind-wandering [172], social cognition, and
episodic future thinking. A second proposed network is the Executive Control
Network (ECN), which consists of the lateral prefrontal and anterior inferior
parietal regions and plays a role in idea evaluation through involvement in cognitive
processes that require externally directed attention, working memory, and relational
integration [17]. The third is the Salience Network (SN), which consists of the
bilateral insula and anterior cingulate cortex and which underpins the dynamic
transitions between DMN and ECN [281] and forwards candidate ideas originating
from the DMN to the ECN for high-order processing such as idea evaluation,
elaboration, or revision [16, 17, 19]. Thus, creative behaviors may involve an
interaction between an automatic bottom-up process (DMN) that supplies possible
choices and a top-down control process (ECN) that guides those choices according
to hierarchical rules [16, 17]. The ECN [10] and the DMN [172] have also been
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considered to contribute to mind-wandering, which is important for many mental
functions such as future planning [14] and creativity [12]. Using a
divergent-thinking task, a recent study [16] reported that coupling between the
DMN and the SN preceded coupling between the DMN and the ECN, suggesting
dynamic shifts in idea generation and evaluation. They also indicated that more
creative participants showed higher global efficiency within a network; i.e., a
smaller number of paths to traverse between brain regions). This suggests that
communication efficiency is higher in more creative people. Interestingly, a recent
study has suggested that the hippocampus, which is thought to be related to
uncertainty, is linked to the DMN [289]. Thus, it is hypothesized that uncertainty
perception and divergent thinking are interdependent with each other. It has gen-
erally been considered that the DMN and the ECN usually do not work concur-
rently [8]. A recent study, however, has demonstrated that creative people have the
ability to simultaneously engage these large-scale brain networks [19, 26]. This
suggests that individual variation in the ability to simultaneously engage the DMN,
ECN, and SN can be a neurophysiological marker of creativity.

In summary, the brain is equipped with unsupervised statistical learning
machinery that makes Bayesian predictions without explicit instructions. For this
reason, AI algorithms also enable machines to create interpretable models repre-
senting the brain’s methods of prediction, learning, and memory consolidation in
music and language acquisition. These machine learning models, however, are still
unable to account for all levels of music and language learning including hierar-
chically organized and non-local regularities. It also remains an open question how
the unsupervised statistical learning machinery in the human brain gives rise to
creative information. Hence, an algorithm optimizing not for efficiency but for
creativity is a key option to pursue to improve music processing both by the brain
and by computers. To understand how and when creativity originates through
learning processes, the future interdisciplinary study is needed to verify the present
conclusions from both computational and neuronal perspectives.

6.6 Concluding Remarks

A body of studies demonstrated that the brain makes Bayesian predictions without
explicit instructions: unsupervised learning. The AI algorithms also enable
machines to create interpretable models revealing the brain’s predictive and
learning function. Nonetheless, it remains unknown how our brains produce cre-
ative and innovative ideas, which are an essential capacity unique to natural
intelligence and which have recently been an important and challenging topic for
advanced machine learning algorithms as they attempt to break free from the
specific problem-solving approaches that have been a mainstream of AI. Given that
composers do not observe their own brains’ activity in writing music, music itself
does not necessarily require input from the fields of neuroscience and computing.
Yet music offers (computational) neuroscientists a new perspective from which to
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explore a wide range of the brain’s natural intelligence including idea generation
and to devise creative machine learning algorithms that can resolve open-ended
problems.

In sum, further research is required to generate a complete explanation of music
knowledge both in the human brain and in computers. One of the key questions for
future research will be how local dependency (e.g., musical expectancy formation
between adjacent events) interacts with non-local dependency (hierarchically
organized musical structure building) in the computation of music, and whether
these interactions can explain both AI models’ and the brain’s function. A second
key question is how music processing benefits from ubiquitous (domain-general)
phenomena such as curiosity, creativity, and reward systems. Statistical learning
essentially reflects contributions from domain-general mechanisms that share brain
regions between different modalities (e.g., auditory, visual, and somatosensory) but
are constrained to operate in their respective specific modalities. A third key
question is how and when unsupervised statistical learning machinery such as that
in the brain computationally and neurophysiologically gives rise to creative infor-
mation. Creativity is part of human nature and is an important ability for advanced
machine learning algorithms that are expected to imitate the human brain. Hence,
an algorithm that is optimized not for efficiency but rather for creativity may be a
key step toward a complete account of music knowledge both in the brain and in
computers, potentially leading to a harmonized society of humans and computers.
Here, we offer a novel theoretical perspective on statistical learning, highlighting
the connections between Neuroscience and Machine Learning.
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7Music, Artificial Intelligence
and Neuroscience

David Cope

7.1 Introduction

Aside from historical references to the Early Greek philosophers and since then a
long line of sci-fi authors and stories of mental illnesses running rampant, the fields
of Artificial Intelligence (AI) and Neuroscience waited until the mid-twentieth
century before gaining their current titles and credence in academia, research, and
knowledge of their existence among the populace as a whole [33]. Certainly, people
like von Neumann and Turing in AI and Skinner and Chomsky in Psychology had
great theories, some of which are still in vogue, but it took John McCarthy to invent
the term ‘Artificial Intelligence’ in his 1955 proposal for the 1956 Dartmouth
Conference. Several prominent Neuroscience organizations (study of the human
nervous system and brain) were formed during that same period and later: e.g., the
International Society for Neurochemistry in 1963, the European Brain and Beha-
viour Society in 1968, and the Society for Neuroscience in 1969.

Today, both subjects thrive in the arenas of disagreements with AI gaining a
growing audience of Deep Learning enthusiasts while the experts begin to doubt the
all-encompassing future that many have predicted. Neuroscience, on the other hand,
has split into at least fourteen different specialties that often struggle through lean
times. Since AI and Neuroscience would seem un-strange bedfellows, logic sug-
gests that the two disciplines would have a great deal to offer one another, and to
some extent, that proved true over the sixty-plus years since their official births [47].
However, it has only been recently that collegiate departments have surfaced that
pair expert of both studies working together and that a few brave converts have
decided to codify their interests in both subjects and frame a single discipline from
the two [44]. This should herald a celebration of sorts, for the independence of these
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fields makes no sense at all. In fact, at least in part, the two should have been joined
at the hip from the beginning.

Music, interestingly enough, naturally shares overlapping interests for both of
these aforementioned disciplines: algorithmic computer music and music psy-
chology and perception being obvious examples of such overlaps. In fact, music,
with its more syntactic than semantic base, and strong semiotic ties, provides the
former two areas with a strong base for creating a cohesive binding between all
three fields [24]. With these thoughts in mind, we will proceed with more infor-
mation about these areas of study and how important they can be to one another
now and in the future.

7.2 Music

... experienced listeners show the following expectational tendencies: 1. Pitch proximity
Listeners expect an ensuing pitch to be near the current pitch. 2. Post-skip reversal Listeners
expect a large interval to be followed by a change in pitch direction. 3. Step inertia
Listeners expect a small interval to be followed by a subsequent small interval in the same
direction. 4. Late-phrase declination Listeners expect pitches to descend in the latter half of
phrases (Huron [25], p. 94).

Music “is the science or art of ordering tones or sounds in succession, in
combination, and in temporal relationships to produce a composition having unity
and continuity” (Merriam-Webster). Defining music presents many difficulties since
it pertains to very different and subtle complications such as pitch, rhythm,
dynamics, timbre, transposition, key, texture, form, styles, articulations, meters,
tempos, and too many more to continue listing. In brief, however, music relies on
patterns, a word not unfamiliar to the two other fields proclaimed in the title of this
chapter, and the word that will be oft-repeated during the course of describing the
manner in which Music, Artificial Intelligence, and Neuroscience intersect
regardless of whether we know and/or understand this to be true.

Music, like its brethren Visual Art and Authorship, has, at least since composer
Hector Berlioz in the early and mid-nineteenth century, proven itself a medium of
experimental works in progress, and, following John Cage, an anything-goes
model. Like both AI and Neuroscience, Cage’s fixation on chance and combina-
tions of unrelated forms began during the forties and fifties of the twentieth century,
mirroring in some respects the formal origins of AI and Neuroscience. Cage’s
historic composition entitled 4′33″ premiered in 1952 and today represents the first
instance of a work of music devoid of deliberate sounds. Finnigans Wake by James
Joyce, an avant-garde novel, was published in 1939, and Marcel Duchamp’s
Fountain, an actual cement drinking fountain untouched except by those who
moved it over the years, was first displayed in 1917, both predating Cage’s work
but neither having the impact that 4′33″ did.
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Human-composed music, even computer-composed and so-called
randomly-composed music, depends on the single word: patterns. To a degree,
patterns exist in everything. Even irrational numbers like p exhibit patterns and,
because irrational numbers are infinite in length, these patterns repeat an infinite
number of times and infinitely varied in unpredictable ways. Patterns (often called
motives) in non-experimental Classical music, however, tend to be the glue that
holds works together, even when most of the other elements are changing, some-
times even radically so.

Examples of motives holding music together, even long and large ensemble
types, are plentiful in the music of Ludwig van Beethoven as briefly pointed out in
an example of the beginning of his famous 5th Symphony (Fig. 7.1).

In music, pattern recognition, when included with techniques of variation such
as pitch transposition, proximate rhythmic similarities, interval size variants, and so
on, as well as less audible inversions, retrogrades, and metric displacements, require
wider search techniques than in most other fields.

In the first example, the beginning of Beethoven’s 5th Symphony, the upper
strings demonstrate the four-note pattern beginning on the offbeat of beat one of
measure one: three repeated notes followed by a major third downward (G to Eb).
The motive is then repeated transposed down to already the first variation, a minor
third downward preceded by three repeated notes. Beginning in measure 6, then, the
music becomes more contrapuntal with repeated statements beginning in the second
violins (major third down), the violas a minor second above and moving only a
minor second down after the repeated notes, and then a minor third in the first

Fig. 7.1 Strings from the beginning of Ludwig van Beethoven’s 5th Symphony, Movement 1
(1807). (Dover Publications, Public Domain.)
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violins down from the starting notes a minor sixth up from the beginning statement.
A single note motive in several intervallic iterations in the first twelve measures of
the symphony exhibits an amazing array of variations with no extended melody
presented thus far [26].

The short snippet shown in this first example barely begins to indicate how this
pattern alters throughout all four movements of the symphony. For example, just a
few measures beyond that example, the music displays a two-note beginning of the
motive followed by stepwise motion filling in material in the same strings in both
the original material and its inversion. The following music presents continuing
variation with the original pattern transposed and altered with an expanded interval
(perfect fourth) upward.

Fearful that presenting all the manipulations of Beethoven’s four-note motive
would in themselves create a book-length manuscript, readers should look to the
Internet, Bibliography of this book, or your local library for far more extensive
portrayals of this and other works by Beethoven, and the many other composers of
the eighteenth, nineteenth, and twentieth centuries that made their careers from this
kind of pattern recognition in their music, from Antonio Vivaldi and Johann
Sebastien Bach to Igor Stravinsky and Arnold Schoenberg).

It would be imprudent here not to include more on music and emotions at this
point, especially since emotional states are integral to the activities of the brain.
Kate Hevner’s 66 words in eight categories have created a kind of model for those
theorizing on one-to-one relationships between the elements of music that trigger
certain emotional states in at least a majority of those taking part in tests (Hevner in
[19]. One version of this model appears in Fig. 7.2. Sometimes called the Adjective
Circle, these groups of words tend toward the positive aspects of the human

Fig. 7.2 The hevner adjective list
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condition rather than the negative, with only eleven words tending toward the dark
side (see the second category).

AI scholars and researchers have tended toward ignoring emotions in their
analyses of listener reactions since chemical responses to activations are much more
difficult to pin down precisely than judgments on reactions to electrical
initializations.

Emotions are usually considered states of a person. We say that somebody is in a state of
fear as they are being chased by a bear, for instance. But we also apply emotions to systems
larger than a person. For instance, we can say that ‘America was in a state of fear’ after the
9/11 terrorist attacks. In this case we might be referring to all or most of the people in
America, or to America as a more abstract entity in terms of how the country reacted in
news, policy, and so forth. The attribution of a fear state to a single person, or to larger
social entity, can both be legitimate, if they adopt the functional perspective... In both
examples, there is a situation of threat and various functional consequences of an emotion
state that collectively attempt to deal with the threat (Adolphs and Anderson [1], p. 58).

All of these affect the states and cognition of listeners and the human brain’s
interpretation of almost anything perceived and should never be taken for granted
by researchers in areas associated with Music, AI, or Neuroscience.

7.3 Artificial Intelligence

AI currently encompasses a huge variety of subfields, ranging from the general (learning
and perception) to the specific, such as playing chess, proving mathematical theories,
writing poetry, driving a car on a crowded street, and diagnosing diseases. AI is relevant to
any intellectual task: it is truly a universal field (Norvig and Russell [34], p. 1).

A common definition of Artificial Intelligence is “the capability of a machine to
imitate intelligent human behavior” (Merriam- Webster). Since everyone reading
this last sentence will have different views on a definition, we will let this stand for
the moment since simple and direct views of a complicated matter will help us stay
on track.

One of the things we can imply from this definition is that the activity and
structure of the human brain plays a significant role, if not the entire role, in what
we can surmise from ‘intelligent human behavior.’ Since the human brain and its
corollaries are at least equally important in the field of Neuroscience, we will
discuss patterns in AI in terms of programming, and neuroscience in terms of how
an actual brain functions.

Your perceptions and knowledge about the world are built from these patterns. There’s no
light inside your head. It’s dark in there. There’s no sound entering your brain either. It’s
quiet inside. In fact, the brain is the only part of your body that has no senses itself.
A surgeon could stick a finger into your brain and you wouldn’t feel it. All the information
that enters your mind comes in as spatial and temporal patterns on the axons (Hawkins [22],
p. 56–57).
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Early on in the history of Artificial Intelligence, pattern recognition (the auto-
matic discovery of patterns and their regularity in data through the use of algorithms
taking actions such as classifying the data into different groupings) became an
important element of computational learning and thus programming. Computational
musical pattern recognition can, therefore, reveal otherwise elusive pattern rela-
tionships not otherwise obvious or clear. Of the many types of techniques used in
machine learning, the following three seem the most often and most successfully
used. Note, however, that at the core of each is some manner of a pattern recog-
nition program, regardless of whether it’s explicitly stated here or not.

The first is Linear Regression. This is an approach to modeling relationships
between a dependent variable and one or more independent variables. In simple
terms, this process could be described as someone asking you to rate the first ten
people you see walking around a corner in order of their yearly salaries without
knowing or being able to ask them what their salaries were. One way to do this
would be to judge their clothing: the better and more or less expensive their suits or
dresses, the more or less money they make. While not always correct, this approach,
a linear 45º line on a graph representing the dependent variable and points where
the well-dressed and not so well-dressed people were situated would be one way to
statistically answer the question [29].

The second are supervised machine learning algorithms referred to as Decision
Trees. Again, in simple terms, one way to view this type of computational learning
could be a problem that needs solving. In an example case, you know ten people who
have never been to Death Valley before and would like to schedule an event there
such that all ten will attend. You would like to do this without causing a problem such
as having to cancel it when you discover that only five can come. Based on past
experience, you could create a tree structure in which all ten people sit at the top and
the layers (branches) below it attempt to indicate under what weather conditions,
likability among other members of the group will get along, and who does not like to
walk in warm weather (the event would take place in the early spring).

And then, there is the Naive Bayes method which is based on a simple formula

P hjdð Þ ¼ P djhð Þ � P hð Þð Þ = P dð Þ

where P(h|d) is the probability of hypothesis h given the data d, called the posterior
probability, P(d|h) is the probability of data d given that the hypothesis h is true, P
(h) is the probability of hypothesis h being true called the prior probability of h,
and P(d) is the probability of the data (regardless of the hypothesis). In brief, we are
interested in the posterior probability of P(h|d) from the prior probability p(h) with
P(D) and P(d|h). The title usually given this approach (Naive Bayes) is also termed
‘Idiot Bayes’ due to the probabilities for each hypothesis being simplified to
make their calculation manageable. Using our example above, with a new instance
of the weather of sunny, we can calculate

go� out ¼ P weather ¼ sunnyjclass ¼ go� outð Þ � P class ¼ go� outð Þ
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stay� home ¼ P weather ¼ sunnyjclass ¼ stay� homeð Þ
� P class ¼ stay� homeð Þ

We can also choose the class that has the largest calculated value, and can then
turn the values into probabilities by normalizing them as follows:

P go� outjweather ¼ sunnyð Þ ¼ go� out = go� out þ stay� homeð Þ

P stay� homejweather ¼ sunnyð Þ ¼ stay� home = go� out þ stay� homeð Þ

Other algorithms for machine learning include Logistic Regression, SVM, kNN,
K-Means, Random Forests, Dimensionality Reduction Algorithms, Gradient
Boosting Algorithms, Markov Techniques, and many more.

There are many other processes aside from these three machine learning algo-
rithms that deserve mentioning here. For example, machine creativity (particularly
in the areas of music composition and art) has come a long way from its beginnings
in the 1950s. While most of the programs that succeed in these areas remain
typically in the ‘shadows’ of what some might say have more business-oriented or
neurological-research points of view, computational visual arts, in particular, have
proven amazingly robust both in longevity and in the world of financial sales [35].

Pattern recognition also plays a significant role in today’s computational neural
networks, particularly Convolutional Neural Networks (CNNs) making it possible
to recognize visual patterns directly from raw pixels with little to no preprocessing
[21]. It may, therefore, be surprising to some that the history of Artificial Neural
Networks (ANNs) and Deep Learning Neural Networks (DNNs) goes back more
than sixty years, well before the invention of the seemingly ubiquitous computers
that we carry with us in our phones, watches, briefcases, and maybe even still our
desktops. ANNs began in 1943 when neurophysiologist Warren McCulloch and
mathematician Walter Pitts portrayed a simple electrical circuit as having brain-like
potentials. Donald Hebb’s book, The Organization of Behaviour in 1949 then
proposed that neural pathways strengthen over repeated use, especially between
neurons that fire at the same time, thus beginning a long journey towards quanti-
fying some of the complex processes of the human brain. The first Hebbian net-
work was successfully implemented at MIT in 1954. Four years later, Frank
Rosenblatt, a psychologist at Cornell University, proposed the idea of the Per-
ceptron calling it the Mark 1 version, modeled on a McCulloch-Pitts neuron,
proposed in 1943.

To say that from then until today, the road has been rocky for ANNs would be
doing its history an injustice. ANNs have gone from hardware to software, guesses
to whether they are similar to the human brain or nothing like it have come and
gone with prolific rapidity, and yearly AI conferences have occurred with some
years boasting no papers on the subject, and other years having only papers on the
subject. As of 2020, however, Deep Learning will have remained the hottest ticket
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on the market with assumptions that the next breakthroughs in AI will surely
originate with these virtual machines.

Amazingly enough, though, these advanced multi-layered hidden-unit programs
are still basically simple machines that often produce astonishing results. Add to
that, the fact that many designers, programmers, and users are still not precisely
sure what makes them work, and the history becomes even more confusing.
Questions remain, however: Do they really mimic the manner in which the human
brain works? Do their outputs simply recognize and categorize inputs, and in some
cases, produce surprisingly strange images, but have nothing much related to the
current goal of AI or that of AGI (Artificial General Intelligence). That is, the notion
that computers could act more like the human mind in being able to solve problems
with which they have not been specifically human trained.

There are three types of layers in an ANN: The Input Layer, Hidden Layer(s),
and the Output Layer. To train a neural network, you will need a very large data set.
The fundamental internal structure of Deep Learning uses a neural network with
two or more hidden layers to mimic human intelligence (to be discussed more fully
under Neuroscience in this chapter). Each of these ranks of hidden units tend to
specialize in different aspects of the problem confronted. Interconnections between
neurons are associated with neuronal weights which dictate the importance of input
values. The artificial neurons in Deep Learning each apply an Activation Function
to the data to regulate its output. Comparing the outputs produces a Cost Function,
indicating how much it is off mark from the desired outputs. Following every
iteration through the data set, weights between the neurons in the hidden layers are
adjusted to reduce the difference between the desired result and the current result.
Eventually, the desired result finally appears when the weights are properly
self-adjusted [7].

Put more simply, each of deep learning’s hidden units contains summational math
sensitive to the success or failure of the current output. Each unit (non-linearly) sums
all of its input to achieve its weight (between 0 and 1). As the program begins, if the
algorithm’s output improves, unit increase or decrease values until the output begins
to fail. Then the program weights to discover what happens. This goes on for
thousands of iterations until finally one assembly of weights hits pay dirt and the
formula (the numerical weights themselves) is memorized and the DNN has suc-
cessfully achieved its goal with no help from a human whatsoever. DNNs (Deep),
RNNs (Recurrent), and CNNs (Convolutional) typically have thousands of units and
millions of connections, significantly less than human brains [39].

Figure 7.3 presents an example of one of many different configurations for a
Deep Learning program. This facial recognition example disassembles and then
reconstructs to compare likely candidates with names attached. Using Deep
Learning for these kinds of problems can prove effective, and there is no question
that Deep Learning will find a place in future AI regardless of its occasional failures
in moving beyond complex but limited tasks. These successes have made it
extremely valuable in today’s market for technical resources to solve certain
problems that no other machine learning program can deal with as effectively.
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Anyone with small children or grandchildren and paying attention to how they
learn will tell you that they mimic those around them. This is particularly noticeable
by adults watching youngsters learning language and their resultant reactions when
hearing words that they do not yet fully understand. To us, their elders, this process
seems slow and cumbersome, repetitious, and at times obnoxious, but once learned
correctly in pronunciation and parsed correctly, it can last a lifetime. Deep Learning
derives its repetitive processes from these types of examples and represents one of
the most important reference points for the success of fundamental principles
involved in DNN’s success [18].

Many AI professionals, however, have become skeptical about the ability of the
various incarnations of software versions of Deep Learning to ever become a good
example of AGI as opposed to AI. So far at least, the outputs of such programs can
be singularly unique but universally silent. They can certainly recognize a particular
face out of thousands of photos and pin names and other details on that face, a
useful process to be sure, but they cannot yet create a human face from scratch
without simply recombining parts from different faces. As well, patterns or
strategies extracted by Deep Learning may be more superficial than they appear.
The well-known ‘Atari model’ (2600) that learned to break walls and win games
can be ‘over interpreted’ to the extent that many believe the model truly understood
the concept of a wall or of winning, while the model merely learned to break walls
to maximize a highly constrained objective.

Some AI experts believe that Deep Learning has more disadvantages than
advantages. For example, inputs when applied to, say, music, language, and the
sciences require different tunings of the system itself (i.e., hidden units and I/O).
Also, Deep Learning does not, as of yet at least, deal with AI’s primary aim of AGI
where machines can, using just one implementation, deal with different problems
without reworking the fundamentals of the program. At present, each design is
typically useful for one or possibly a few types of problems. Human brains can deal
with almost any problem, at least in understanding what the central patterns of those
problems mean.

Fig. 7.3 A diagram of an ANN and a simple deep learning program. Public domain
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Another aspect of Deep Learning encompasses the number of examples nec-
essary for this type of ANN to tolerably capture the nature (typically visual) of an
image or images. Humans, even children of younger ages, can perceive a pho-
tograph of, say, an animal like a lion and told its name a single time, and then call it
by name when seeing it a second time. Deep Learning requires thousands of such
images and beyond to replicate the same experience. These processes may require
similar amounts of time since computers now function so quickly, but it’s clear that
the two processes vary significantly, and that the notion of Deep Learning as
working similarly to the human brain has become more and more problematic to
defend.

Yet no one knows what the future may bring, and the surprises provided by
Deep Learning systems have been strikingly remarkable at times. Thus, the few
criticisms mentioned above may be too soon in coming and even shortsighted.
Regardless of the lack of match between DL and the human brain’s operation
(especially since they do not resemble one another in terms of mechanical and
biological construction), many well-schooled futurists tend toward declaring future
dates and goals with amazing rewards in mind.

After having used Deep Learning programs and attempted more than several
outputs, I am cautiously hopeful that it may eventually be part of an AGI expla-
nation, but not the major solution. Jeff Hawkins’ belief in ‘memory and prediction’
evolving from pattern matching in the neocortex’s cortical columns soon to be
discussed, while completely abstracted from its sources (a perfect example of AGI),
seems a much better human meme to achieve which, until now, seemed like a
bridge-too-far. Interestingly, some other neuroscientists now believe that our five
senses (sight, hearing, touch, smell, and taste) can work simultaneously in com-
binations producing AGI, and with added deep memory what has seemed like an
insoluble computational problem can be soluble. Only time will tell.

7.4 Neuroscience

... in visionary volumes called Description of the Human Body, Passions of the Soul, and
L’homme (Man), Descartes presented a resolutely mechanical perspective on the inner
operation of the body. We are sophisticated automata, wrote this bold philosopher. Our
bodies and brains literally act as a collection of “organs”: musical instruments comparable
to those found in the churches of his time, with massive bellows forcing a special fluid
called “animal spirits” into reservoirs, then a broad variety of pipes, whose combinations
generate all the rhythms and music of our actions (Dehaene [14], pp. 3–4).

Neuroscience “is a branch of the life sciences that deals with the anatomy,
physiology, biochemistry, or molecular biology of nerves and nervous tissue and
especially with their relation to behavior and learning” (Merriam-Webster). Even
without direct reference to the major set of organs that constitute the human brain,
this definition of Neuroscience demonstrates the collection of different scientific
specialties that contribute to a more or less recent discipline that represents one of
the most important branches of science.

172 D. Cope



There are basically fourteen types of Neuroscience (though counting subtypes
will account for many more):

• Cognitive Neuroscience: study of the biological underpinnings of cognition
• Computational Neuroscience: studies information processing in the brain
• Behavioral Neuroscience: study of biological psychology and behavior
• Molecular Neuroscience: study of the biology of the nervous system
• Neurology: study of disorders of the nervous system
• Neurophysiology: study of the nervous system
• Neuroanatomy: study of the nervous tissue and neural structures of the nervous

system
• Systems Neuroscience: studies the function of neural circuits and systems
• Neuropsychology: studies the brain related to psychological behavior
• Neuroevolution: studies the evolution of the nervous system
• Neurophilosophy: studies the philosophy of neuroscience
• Developmental Neuroscience: study of the cellular basis of brain development
• Neuropharmacology: study of how drugs affect the cellular function in the

nervous system
• Affective Neuroscience: researches emotions and the human brain.

As mentioned previously, and noting that the human brain is complex enough to
afford this number of specialties, the overlaps between these various research
groups can cause many complications if not difficulties in Neuroscience. Since
many relatively new fields of study have suffered from such complicated munici-
palities and survived, we can expect that these too will gather together to form more
useful units of study.

Figure 7.4 shows a representation of the neocortex and the brain’s older, less
intelligent, but still necessary organs which it surrounds. The neocortex (translation:
‘new bark’ since it resembles the bark of a tree due to its large size forcing the
wrinkles) controls language, cognition, motor commands, reasoning, and sensory
perception. Commonly the neocortex is divided into four lobes demarcated by the
cranial sutures in the surrounding skull: the frontal lobe, the parietal lobe, the
occipital lobe, and the temporal lobe. Each of these lobes performs different
functions, the temporal lobe, for example, contains the primary auditory cortex and
the occipital lobe acts as the primary visual cortex (in the rear).

The neocortex is usually described as containing a large number of vertical
structures called cortical columns, each with diameters of approximately 0.5 mm
and a depth of 2 mm. These columns are considered the basic repeating functional
units of the neocortex, but their varying definitions in terms of anatomy and
function are generally not consistent, leading to many different opinions regarding
their purpose or even their definitions in terms of columns.
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Brains are pattern machines. It’s not incorrect to express the brain’s functions in terms of
hearing or vision, but at the most fundamental level, patterns are the name of the game. No
matter how different the activities of various cortical areas may seem from each other, the
same basic cortical algorithm is at work. The cortex doesn’t care if the patterns originated in
vision, hearing, or another sense. It doesn’t care if you happened to perceive the world with
sonar, radar, or magnetic fields, or if you had tentacles rather than hands, or even if you
lived in a world of four dimensions rather than three (Hawkins [22], p. 62).

What is so interesting about these patterns, as they reach their ultimate analytical
destination, is that they have lost their origins and treated as simple abstract entities.
It would seem that those origins would be important, at least as much as they would
keep the neocortex from mistaking visual from oral sources. Since these patterns are
coincident with one another, sight mirroring sound and vice versa, we must assume
that one pattern can stand for many simultaneously, and thus produce much faster
and more accurate responses to what could be dangerous situations.

… the most important thing to understand about the neocortex is that it has an extremely
uniform structure. This was first hypothesized by American neuroscientist Vernon
Mountcastle in 1978. You would think a region responsible for much of the color and
subtlety of human experience would be chaotic, irregular, and unpredictable. Instead, we’ve
found the cortical column, a basic structure that is repeated throughout the neocortex. Each
of the approximately 500,000 cortical columns is about two millimeters high and a half
millimeter wide, and contains about 60,000 neurons (for a total of about 30 billion neurons
in the neocortex) [16].

Fig. 7.4 The four principal
areas of the Neocortex and the
Neocortex in relation to its
two other quite older brains
which it surrounds (Sensory
Cortex and Motor Cortex).
Public domain
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There are many useful concepts of pattern recognition currently. The five
principal theories include analysis of features, template matching, prototype simi-
larities, recognition by components theory, and bottom-up/top-down processing.
Each of these approaches pertains to various areas where patterns prove important,
even critical. Music, language, and visual image recognition are a few of such
subjects. Facial recognition occurs through encrypting visual patterns, while lan-
guage and music recognition benefit from the encoding of auditory information [4].

Feature analysis suggests that the central nervous system filters incoming stimuli
that allows us to understand the evidence. This tactic involves feature detectors
which include groups of neurons encoding perceptual structures. The theory pro-
poses an increasing complexity between detectors and other descriptors. Basic
detectors respond to simple properties of the stimuli. Further along the perceptual
pathways, detectors may respond to even more multifaceted and specific stimuli.
When features repeat or occur in sequences, we can identify these patterns because
of our feature analysis system.

Template theory defines a basic methodology for human pattern recognition. The
model assumes that most perceived entities are kept as a template in long-term
memory. Incoming patterns are compared with these templates to reveal an exact
match. In simpler terms, all sensory input is matched to multiple representations of
a pattern to form one model. This defines perception as a fundamental pattern
recognition process. It assumes that everything we see, we understand through past
experiences, which then informs our future perceptions of the world around us. This
perspective is limited, however, in clarifying how completely new experiences are
understood without being compared to internal memory templates [42].

Prototype matching associates incoming patterns to one common prototype
exposed to a series of related stimuli leading to the formation of a typical prototype
based on shared features. It reduces the number of stored templates by standard-
izing them into a single representation. The prototype supports perceptual flexi-
bility since, unlike template matching, it tolerates variability in the recognition of
unique stimuli. For instance, if a child had never seen a lawn chair, s/he would
likely still recognize it as a chair because of their understanding of chairs having
four supports and a seat. This idea, however, limits the concept of objects that
cannot necessarily be “averaged” into one. Even though dogs, wolves, and foxes
are all typically furry, four-legged, moderate sized animals with ears and a tail, they
are not all the same, and thus cannot be strictly perceived with respect to this theory.

Like feature detection theory, the recognition by components (RBC) approach
proposed by Irving Biederman (1987) states that humans recognize objects by
breaking them down into their basic geometric forms called geons. For example, we
deconstruct a cup by recognizing the cylinder that holds the liquid and the curved
handle that allows us to hold it. While not every coffee cup is exactly the same,
these basic components help us to recognize the regularity across examples (or
patterns). RBC implies that there are fewer than 36 unique geons that when com-
bined form a virtually unlimited number of objects. RBC then proposes we focus on
two specific features: edges and concavities. Edges enable observers to maintain a
consistent representation of the object, regardless of the angle of sight and lighting

7 Music, Artificial Intelligence and Neuroscience 175



conditions. Concavities are where two edges meet and enable observers to perceive
where one geon ends and another begins [3].

Bottom-up processing originated with the stimulation of the sensory receptors
and was proposed by psychologist James Gibson. He opposed the top-down model
by arguing that perception is direct and not subject to hypothesis testing. He
identified sensation as perception and there was no need for extra interpretation.
Further, he maintained that there is more than enough information in our envi-
ronment to make sense of the world in a direct way. His theory is also known as the
‘ecological theory’ because he claimed that perception can be described solely in
terms of the environment.

The opposite of the bottom-up approach, top-down processing commences by
utilizing an individual’s previous experience and then makes predictions according
to the earlier acquired information. Psychologist Richard Gregory estimated that
most of the information is lost during the time it takes to get from the eye to the
brain which is why our brains must guess what a person sees based on past
experiences. In short, we create a perception of reality, and these observations
produce hypotheses or propositions based on past experiences.

… superior pattern processing (SPP) as the fundamental basis of most, if not all, unique
features of the human brain including intelligence, language, imagination, invention, and
the belief in imaginary entities such as ghosts and gods. SPP involves the electrochemical,
neuronal network-based, encoding, integration, and transfer to other individuals of per-
ceived or mentally-fabricated patterns. During human evolution, pattern processing capa-
bilities became increasingly sophisticated as the result of expansion of the cerebral cortex,
particularly the prefrontal cortex and regions involved in processing of images [30].

Given a paragraph written with difficult handwriting, it is easier to understand
what a writer wishes to convey if one reads a whole paragraph rather than just the
words as separate terms. Brains may perceive and even understand the substance of
the paragraph due to the context supplied by nearby words [43].

In the neocortex which forms the convoluted outer surface of the (for example) human
brain, neurons lie in six vertical layers highly coupled within cylindrical columns. Such
columns have been suggested as basic functional units, and stereotypical patterns of con-
nections both within a column and between columns are repeated across cortex (Dayan and
Abbott [13], p. 229).

Every one of the approximately 300 million pattern recognizers in our neocortex is rec-
ognizing and defining a pattern and giving it a name, which in the case of the neocortical
pattern recognition modules is simply the axon emerging from the pattern recognizer that
will fire when that pattern is found. That symbol in turn then becomes part of another
pattern. Each one of these patterns is essentially a metaphor. The recognizers can fire up to
100 times a second, so we have the potential of recognizing up to 30 billion metaphors a
second. Of course, not every module is firing in every cycle—but it is fair to say that we are
indeed recognizing millions of metaphors a second (Kurzweil [28], p. 113).

Pattern recognition, a significant part but not all of the memory process just
described, involves an automated computational process that recognizes the simi-
larity between two similar but not equivalent patterns [10]. The process of PR
proves highly useful in areas such as computer-aided diagnosis in medicine, speech
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recognition, matching handwritten postal addresses, and image recognition. Pattern
recognition can also be useful in Bayesian networks and Markov analyses [4].

One can, for example, define a musical event as an input pattern of activation that is then
transformed by a network of interconnected processing units into an output pattern of
activation representing an interpretation of the event (Gjerdingen [17], p. 138).

In “A Pattern Recognition Program That Generates, Evaluates, and Adjusts Its
Own Operators” [45], pp. 555), the authors describe one of the first machine
learning programs that adaptively acquires and modifies features such that they
overcome the limitations of a simple perceptron (a predecessor of neural networks)
by Rosenblatt.

The human brain has evolved to recognize patterns, perhaps more than any other single
function. Our brain is weak at processing logic, remembering facts, and making calcula-
tions, but pattern recognition is its deep core capability. Deep Blue, the computer that
defeated the chess champion Garry Kasparov in 1997, was capable of analyzing 200
million board positions every second. Kasparov was asked how many positions he could
analyze each second. His answer was “less than one.” So how was this even a remotely
close match? Because Kasparov’s 30 billion neurons, while relatively slow, are able to
work in parallel. He is able to look at a chess board and compare what he sees with all the
(estimated) 100,000 positions he has mastered at the same time. Each of these positions is a
pattern of pieces on a board, and they are all available as potential matches within seconds.
This is how Kasparov’s brain can go head to head against a computer that “thinks” 10
million times faster than him (and also is millions of times more precise): his processing is
slow, but massively parallel. This doesn’t just happen in the brains of world chess
champions [16].

Before leaving this cursory examination of what our brains are responsible for,
we must pay homage to the central nervous system (Fig. 7.7). Our spinal cords,
miracles in themselves, carry and receive messages to and from ganglia and nerves,
and along with those the various muscles, veins, and critical organs of our bodies.
For the most part, these signals emanate from ancient parts of our brains buried
deep inside and below the cortex that keep our hearts going, lungs breathing, and to
some degree our emotional approaches to life. Therefore, lest we forget, the
command-center of the human body is the human brain. We can exchange a dying
heart or lung or kidney with the recently dead in the case of a heart, or a part of a
lung from a living donor, but, to date at least, no one has figured out how to replace
a person’s brain.

Figure 7.5 presents a drawing of the human body and a severely reduced number
of ganglia and nerves (we have several thousand times those shown) that control the
movement and reactions of our bodes to counter danger (attacks, weather, and so
on) and should remind us that the machines of AI are mostly metal and, as Marvin
Minsky allegedly once said: “We are indeed meat. With no disrespect meant toward
robots and androids, meat may have shorter lifetimes, but, so far at least, its ability
to create those robots and androids puts it a step ahead of the pack.”

Not all of the human memory resides in the brain. The memory of the body’s
immune system, for example, resides outside the brain in certain cells (called the B
and T cells) that routinely exist everywhere in the body, but gather around invading
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bacteria to fend them off. These special cells (antibodies) immediately begin
dividing and within the bloodstream spread throughout the body. When the battle
concludes, most of these added immune cells, no longer required, die off to allow
the body’s normal blood cells (red and white) to continue maintaining the natural
blood flow. Fortunately, not all of these new cells disappear, and the remainder
carries with them the memories of what or who won the battles. These few and
simple immune cells, therefore, maintain the memories of what keeps us alive.

Interestingly, ‘muscle memory’ primarily occurs in the brain rather than with
muscles themselves. Words can often be deceiving and this group of two is a
primary example. Interestingly, though, the slim number of memories our muscles
do have are often stored without much conscious awareness, and the skilled actions
are performed automatically. The body can play a major role in Artificial Intelli-
gence though it has not made much of an impression thus far. The worlds of dance,
acting, and sports tend to be left behind in research, most likely due to robotic
complexities that pose so many problems for those intent on including such on their
agendas. The lack of professional and academic papers on this subject, as well as
books, is testimony to the so far almost nonexistent research taking place [6].

Fig. 7.5 How the brain services the human body as well as its own learning. (OpenStax Anatomy
and Physiology:Creative Commons Attribution 4.0 International license)
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A limbic system is a complex group of nerves and networks in the brain located
near the boundary of the neocortex that controls instinct, mood, and especially fear,
pleasure, and anger. The amygdala is also critical to emotional reactions. The
Hypothalamus helps produce physical responses to emotions, and the Cingulate
gyrus is important with respect to subjective emotional awareness. The prefrontal
cortex, ventral striatum, insula, and cerebellum also contribute to emotions and
emotional regulation. Recent studies have indicated that emotions play a significant
role in our higher-level cognitive processes. A popular view of this problem as
some researchers have put it, would be like owning a Maserati but not being able to
drive it.

Known as Emotional Intelligence (EI), Emotional Quotient (EQ), or Affective
Neuroscience, studying and publishing in the field of emotions of the brain has
recently become a significant new approach to intelligence within the world of
neuroscience, and adding neuroplasticity to the mix has made the brain a flexible
and malleable organ that, in good health, has proven by far that the brain is far and
away from the most powerful living organism on the face of the Earth. “Neuro-
plasticity can be seen in various forms at every level of nervous system organi-
zation, from the lowest levels of molecular activity to the highest level of
brain-wide systems and behavior” (Costandi [9], pp. 11–13).

7.5 Music and Neuroscience

Music (with its music cognition and music perception journals, psychoacoustics,
conferences, and academic courses) uses Neuroscience as a significant foundation
for understanding aspects of composition, performance, and listening. These latter
aspects of music become extremely important when neuroscience links particularly
with music performance and composition. Recognition of patterns in the human
brain becomes also extraordinarily important during listening when the listener is
beset by so many variants that s/he can no longer follow the fundamental shape and
direction of the music.

The diagram in Fig. 7.6 shows one possible version of how the ears and brain
process the sounds involved in music. The ears take the input through the first ring,
that being the outside world of sound through to the second ring. The first ring
includes whether the owner of the brain is paying attention to the sound, whether
it’s loud or soft (dynamics), the sound’s timbre (voice, cello, guitar, and so on),
what kind of immediate sensation the sound produces in the brain, what the meter
(beats per measure) might be, any incidental noise in the environment, any other
sensual correlations such as vision competing for notice, and the immediate
recognition of musical form involved. The input then penetrates the neocortex with
the second ring noting the pitches (intervals), rhythmic, phrase lengths, and cadence
types, and feeds those into the third ring where the cortical columns reduce the
input to patterns where they can be compared with patterns in memory and send the
results back out through the same but retrograde process where the sounds regain
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their input attributes with the added (learned) correlates so that, for example, the
person involved can whistle the tune, speak to the artist’s style, or compare one
actor’s propensities with another.

The auditory system may be divided into two pathways, or stages: early auditory pathways,
which lead from the outer ear through a number of subcortical regions and terminate in the
primary auditory cortex, and cortical auditory pathways, which pass out activation from the
primary auditory cortex to a number of other cortical areas. Whereas the early pathways are
essentially the same for all types of sounds (i.e., in the sense that pretty much everything we
hear passes through the same path), the cortical pathways largely depend on the nature of
the auditory signal; that is, sounds may go through different cortical pathways depending on
their specific characteristics (Miranda [32], p. 14).

Fig. 7.6 One possible version of how the brain processes musical sounds. Based on [32], Fig. 4,
p. 22
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The millions and millions of cortical columns in the neocortex can become
confused by patterns so altered by mathematical and rigid controls (see music by
Anton von Webern, for example) that the resultant music sounds foreign and
inimical to the brain. While in part based on lack of experience with such music,
some listener reactions are adversely affected based on complexity alone. What’s
interesting in this case particularly (e.g., Webern’s integral serialism method), is
that music previous to the twentieth century relies primarily on intuitive generation
and the many composers after Webern and influenced by him use pure logic [20].
Why music based on the fundamental nature of the human brain (logic) would be so
negatively charged by serialism seems beyond rational understanding.

Music also plays an obvious role in Neuroscience through its vast investment of
people in music therapy and participating in the ranks of those involved with
administering care to those with neurological problems. The education of a music
therapist not only allows the study of music, but also encourages examination of
one's self as well as others. An undergraduate curriculum includes coursework in
music therapy, psychology, music, biological, social, behavioral sciences, disabil-
ities, and general studies. Students learn to assess the needs of patients, develop and
implement treatment plans, and evaluate and document clinical changes. At the
completion of the American Music Therapy Association AMTA-approved aca-
demic training and internship, a student is eligible for admission to the certification
exam administered by the Certification Board for Music Therapists (CBMT) Inc.
Upon passing the national examination administered by the CBMT, the student
acquires the credential Music Therapist-Board Certified (MT-BC).

Figure 7.7 presents a simple scale-illusion (top) and the manner in which a
listener might hear a performance (bottom) as Diana Deutsch’s famed audio illu-
sions. In the top staff for piano, the first note of each bar when played without the
second note of each bar will sound as a whole-tone scale in downward motion (top
staff) and upward motion (bottom staff)—as in C-A#-G#-F#-E-D-C (top) and
C-D-E–F#-G#-A#-C (bottom). The top two staves and the bottom pair, played

Fig. 7.7 A fast two-hand sound-pattern above and the resultant sounding scales heard by most
listeners (Diana Deutsch, Public Domain)
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correctly, will sound the same. With the top line of each pair performed, say, by a
saxophone and the bottom line of each pair performed by a flute, will sound as
written (in other words, due to their different timbres, each instrument will leap
back and forth except near the middle in the top staves and stepwise half-octave
chromatic scales in the bottom two staves).

Many similar illusions exist in the palette of composers and orchestrators such as
a flute diminuendo simultaneous with a clarinet crescendo on the same pitch never
heard as such in Claude Debussy’s orchestra music, Beethoven’s Fifth Symphony
motive which should begin on a softer note metrically and work its way to the
louder downbeat but is almost always performed as if all four of its notes accented
equally, and six-note chords often sounding like two different triads (polytonality)
rather than one chord even if not intended that way by the composer.

7.6 Artificial Intelligence and Neuroscience

It is hard to imagine Artificial Intelligence and Neuroscience not interrelated.
Experts in either of these fields must rely on experts in the other field or having
expertise in both areas of study. How can one research AI without having intimate
knowledge of neuroscience and vice versa?

AI depends on neuroscience for its fundamental understanding of the human
brain. Neuroscience depends on AI for its ability to build machines and software to
carry out its necessary experiments to make both their studies possible. A perfect
example of how this would work is the following:

Technology that translates neural activity into speech would be transformative for people
who are unable to communicate as a result of neurological impairments. Decoding speech
from neural activity is challenging because speaking requires very precise and rapid
multi-dimensional control of vocal tract articulators. Here we designed a neural decoder
that explicitly leverages kinematic and sound representations encoded in human cortical
activity to synthesize audible speech. Recurrent neural networks first decoded directly
recorded cortical activity into representations of articulatory movement, and then trans-
formed these representations into speech acoustics. In closed vocabulary tests, listeners
could readily identify and transcribe speech synthesized from cortical activity. Intermediate
articulatory dynamics enhanced performance even with limited data. Decoded articulatory
representations were highly conserved across speakers, enabling a component of the
decoder to be transferrable across participants [2].

Figure 7.8 provides an example where brain and machine can be studied toge-
ther for positive and negative aspects of both may be measured and otherwise
compared. In this particular case, White moves first and wins in two moves. What
initially appears as a relatively simple endgame puzzle, proves difficult for many, at
least for those relatively unfamiliar with the game. Both AI and human brains will
benefit from discovering the algorithm involved (answer deliberately not provided
here).
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For those interested in White’s apparently weak situation, Black is winning 26 to
23 points and has, was it his/her turn to move, the possibility of either taking
White’s rook or queen if they attempt to check Black’s king and making the score
either 31–23 or 35–23, a thoroughly impossible deficit to overcome even though
White could counter these moves by taking Black’s rook or bishop/knight. Imag-
inative analysis, however, can provide far too much information for those still
seeking an answer, and therefore, good luck on this one.

The mathematical theory of games was invented by John von Neumann and
Oskar Morgenstern in 1944. While Fig. 7.9 and the previous chess puzzle may
seem strange for a chapter on Music, Artificial Intelligence, and Neuroscience, it
can provide significant insights for those experienced enough to infer valuable
information on how to make sense of apparently impossible to solve situations.
Let’s begin by saying that this chess endgame requires more than several moves and
that White, who moves first and eventually wins, must know precisely what s/he is
doing. As well, the solution to this puzzle is given the name of Saavedra after the
priest who discovered it over 100 years ago [41].

It is placed here because of its brilliance in regard to a retrograde solution (i.e.,
find the perfect checkmate with you the winner, and see if you can work your way
back to this position).

Fig. 7.8 White moves first and wins in two moves. (Public domain)
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My freedom will be so much the greater and more meaningful the more narrowly I limit my
field of action and the more I surround myself with obstacles. Whatever diminishes con-
straint, diminishes strength. The more constraints one imposes, the more one frees oneself
of the chains that shackle the spirit [40].

“Artificial Intelligence (AI) is full of questions that cannot be answered and
answers that cannot be assigned to the correct questions” (Nisioti 2018). Game
theory share common goals. It can lend AI the tools to guide learning algorithms in
these settings. While game theory and neurology can both explain what motivates
human decision-making, it is the intersection of the two studies that develop deeper
understandings of how brains make choices.

Here is a list of equations without answers. Your job is to determine what the
question is that prompted these equations and to do that you will have to figure out
the answers to the equations, or at least the answers to two of them.

A. (2 + √3) + (2 − √3)
B. p + (1 − p))
C. (2 + √3) � (2 − √3)
D. p + p
E. 22 − (√3)2

For those that find mathematics difficult, a good hint would be rational and
irrational numbers; i.e., Can combinations of one turn into the other?

The correct answer, to avoid spending too much time on this, would be some-
thing like ‘Which of the following equations would produce an irrational number?’
The answer would be D based on the assumption that adding two irrational numbers

Fig. 7.9 The Saavedra
solution (White to move first
and win). (Public domain)
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that wouldn’t cancel one another (i.e., [p – p] = 0 which is a rational number)
would definitely produce an irrational number. The other equations would all,
amazingly enough, produce rational numbers.

While game theory brings to mind economics more than any other discipline, it
is a subject that can benefit almost everyone’s interest. For example, take the
sentence “He looked like he’d been to hell and _______.” Finding the missing word
would not be that difficult with ‘back’ and ‘gone’ being the top contenders. On the
other hand, the sentence “I looked to see what it was and saw that I’d angled toward
the very edge of the cliffs between Cloud Peak and Bomber Mountain and almost
stepped blithely into the limitless _______” needs the perfect ending. Is the missing
word ‘canyon’, ‘gorge’, ‘ravine’, ‘valley’, ‘abyss’, ‘crevasse’, ‘void’, ‘chasm’, or
‘depths’ [27]? The actual word chosen is ‘void’ (complete emptiness), one that
perfectly describes the nothingness that the author of this passage hopes readers will
appreciate more than the other choices.

Some readers declare that writers filling the spaces with unpredictable verbiage
(word[s]) represent the best (taking time to study their prose as they write and
finishing with a more or less epic poem rather than simple prose) and writers
grabbing whatever comes to mind quickly represent the worst. Whatever the case,
Game Theory can underscore the understanding of literature as well as many
otherwise difficult to analyze styles of authorship [38].

It is actually not widely known among AI scientists that many of today’s
machine learning algorithms come from research covering animal learning. Recent
findings in neuroscience show that the hippocampus—a seahorse-shaped configu-
ration that acts as a center for pre-encoding memory—replays those experiences
during sleep. This allows the brain to learn anew from successes or failures that
occurred in the past. Depending on the specific tasks involved, machine learning
algorithms are established with specific mathematical structures. Through millions
of examples, artificial neural networks learn to fine-tune the strength of their con-
nections until they achieve the state that lets them complete a task with high
accuracy—may it be identifying faces or translating languages. Because each
algorithm is highly tailored to the task at hand, relearning a new task often erases
established connections. This leads to catastrophic forgetting, and while AI learns a
new task, it can overwrite the previous one, thus nullifying memories of past
successes that may be required in the future.

While Deep Learning affords significantly more such memory than available in
the past, the human mind is capable of enormous numbers of cortical cylinders that
can memorize significantly more than the current best versions of Deep Learning
programs. As the differential of the volume of memories increases, however, the
manifold combinations of parallel procedures occurring simultaneously (part of the
AI versus AGI conflict) will replace the memory problem. Some AI experts see this
as an infinite regress situation that can only be set straight by fully understanding
the human brain’s solutions to these problems. Since the ANN concepts at the base
of Deep Learning, and Deep Learning not actually mirroring the human brain in
design, many AI researchers see a serious obstacle occurring in the not-so-distant
future.
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7.7 Music and Artificial Intelligence

When desktop computers became popular in the late 1970s, digital synthesis was
not far behind. Where previously analog machines like the Moog synthesizer had
driven the market, computer software began to take over. John Chowning’s revo-
lutionary frequency modulation (FM) software [8] initially led the way, followed by
the programming language Csound [5] and many others, and by the late twentieth
century synthesis had taken over the market not only because the results were
amazing, but the software was a fraction of the cost of the earlier Moogs and other
types of hardware computational devices. From 1976 on, computers and music
became no longer strange bedfellows. Although it took more time for computer
music composition to catch up to synthesis, this too has now become popular, and
thus music and AI are now integrated with many college students either majoring in
both subjects, or music departments offering courses in their own versions of both
fields.

Another valuable aspect of AI and music is analysis. Counting intervals instead
of pitches in single lines of a multi-instrument work (say string quartet up to full
orchestra) can indicate a great deal about the nature of a work’s chromatic versus
diatonic nature (intervals void the necessity to account for modulations and trans-
positions in music). Computational analysis can indicate textural changes, repeti-
tions, and variations as well as dozens of other characteristics of music; e.g.,
dynamics, rhythm, articulations, tempi, and meter (time signature) shifts.

Pattern matching (recognition), a seminal aspect of AI, can produce fundamental
properties of form, structure, and techniques used during composition that no other
technique can reveal as well. The short-short-short-long motive in Beethoven’s
Fifth Symphony we have previously discussed proves invaluable when computa-
tionally analyzed, for example, and will be proven thus later in this chapter when
writing code that responds to rhythm rather than pitch.

The world of AI and music has grown in status over the past few years with
many new startups incorporating a variety of methods to create music in different
styles. Google’s Magenta initially led the field with OpenAI a recent convert.
Controversial since their first appearances due to legal possibilities and stealing jobs
from humans in the same fields, they signal the onset of what is bound to be at least
a cheaper way to produce music for films, television sitcoms, and dramas, and for
those backed-up on iPhone lines, elevators, and medical waiting rooms; in short, for
any situation requiring a backdrop of pleasantly, pleasing music.

AIVA (Artificial Intelligence Virtual Artist, https://www.aiva.ai/about) ‘has been
learning the art of music composition by reading through a large collection of music
written by the greatest composers (Mozart, Beethoven, Bach, etc.) to create a
mathematical representation of what music is.’ This program was developed for
creating film scores, with both composition and performance built into the algo-
rithm, and a well-constructed interface that allows users the ability to alter almost
every aspect of the output they wish to with ease. The results, at the end of a
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half-hour of entertaining work, are as professional and as convincing as the music
of composers of previous eras taking hundreds of hours to produce.

OpenAI is a not-for-profit artificial intelligence company backed by Elon Musk
and Reid Hoffman among others, with a mission to “ensure that Artificial General
Intelligence (AGI)—by which we mean highly autonomous systems that outper-
form humans at most economically valuable work—benefits all of humanity”
(https://openai.com/about/). OpenAI made quite a splash when it demonstrated an
AI model capable of writing news and fiction so convincingly-human that the
company declined to release the research publicly in case the system would be
misused. Anyway, OpenAI is now entering AI-generated music. “We’ve created
MuseNet, a deep neural network that can generate four-minute musical composi-
tions with ten different instruments, and can combine styles from country and
western to Mozart and the Beatles,” announced the company recently. “MuseNet
was not explicitly programmed with our understanding of music, but instead dis-
covered patterns of harmony, rhythm, and style by learning to predict the next token
in hundreds of thousands of MIDI files” [15].

7.8 Music, AI, and Neuroscience: A Test

Since we began with Beethoven’s 5th Symphony earlier in this chapter, it may be a
good idea to continue and finish this chapter with the same work. The title of this
section more than suggests that you, the reader, will be included in this bit of
research. The rules of the test are simple: if you are not familiar with the first
movement of Beethoven’s 5th Symphony, you must listen to it several times in
order that the cortical columns in your neocortex will have stored the simple
four-note pattern and some of the variations that take place in this first movement
(or maybe the entire symphony where it returns at certain points). The next rule
requires that you now listen to as many works in the more than hundred-year period
of roughly 1780 to, say, 1920 (more likely the second half of that period) as you
can. The last rule requires that once you have done this and written down those
composers and works in which your ears, minds, and bodies have recognized clear
references to the original, you send them to my email address (Howell@ucsc.edu)
so that the world might take notice of what you’ve accomplished (including your
name is optional). I will then collect these once a month and make the results
available on my website (https://artsites.ucsc.edu/faculty/cope/) for all to see.

While this may seem like a trick to get those not familiar with classical music to
become familiar with it, it’s much more than that. You will be testing your own
abilities to hear, think, and feel music by realizing how pitch, rhythm, texture,
timbre, meter, beat positioning, phrasing, variations on motives, articulations,
cadences, orchestration, harmony, counterpoint, and many other features of music
of many different types. You’ll also realize how you entrust your brain (both in your
head and in your body physically) to compare, recognize, process, and memorize
materials in ways that will astound you.
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This test will further demonstrate how Music, AI, and Neuroscience operate in a
significantly hand in glove manner to deepen your appreciation of the world around
you and how important your senses are to that appreciation in light of the sounds
you hear, whether originating from birds, bears, or human brains and relevant
senses.

The questions remaining at this point are: What does this test prove, if anything?
The answer requires that all three of this chapter’s focal points must be influenced
by the results in important ways. Thus, we will take them in order beginning with
music.

• Do the slowly-appearing and increasing-in-complexity variations of Beethoven’s
Fifth Symphony’s motive make his music so distinctive that it almost immedi-
ately becomes inimitable to all who hear it and no matter the number of times we
listen to the unpredictable variants output from the test music you probably hear
at least once a week?

• Patterns and their recognition in language, music, and data of any kind represent
the single most important constituent in artificial intelligence. Do patterns
transcend their originating sources and represent the basis upon which intelli-
gence, creativity, and perception are based?

• Do we continue to recognize Beethoven’s 5th Symphony’s source no matter
how often we play different versions of other music, or do we discover Diana
Deutsch’s audio illusion techniques playing roles in confusing our neurology’s
pattern memories [26]? Can corruptions of patterns in memory lead to mental
disorders and problems in perception that could be dangerous and should be
avoided?

Clearly, questions should not supplant answers as seems to be the case in the
above situations. However, these particular questions deserve asking and point to
answers both important and relevant to all three of the disciplines discussed herein:
music, artificial intelligence, and neuroscience.

Therefore, as previously asked, what does this test prove, if anything? The
answer requires that all three of this chapter’s focus points must be influenced by
the results in important ways. Thus, we will take them in order beginning with
music.

• Do the slowly-appearing and increasing-in-complexity variations of Beethoven’s
5th Symphony’s motive make his music so distinctive that it almost immediately
becomes inimitable to all who hear it and no matter the number of times we
listen to the unpredictable variants output from the test program it claims as
dominance?

• Patterns and their recognition in language, music, and data of any kind represent
the single most important constituent in artificial intelligence. Do patterns
transcend their originating sources and represent the basis upon which intelli-
gence, creativity, and perception are based?
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• Do we continue to recognize Beethoven’s Fifth Symphony’s source no matter
how often we play different outputs of the simple program’s tests, or do we
discover Diana Deutsch’s audio illusion techniques playing roles in confusing
our neurology’s pattern memories [26]? Can corruptions of patterns in memory
lead to mental disorders and problems in perception that could be dangerous and
avoided?

Clearly, questions should not supplant answers as seems to be the case in the
above cases. However, these particular questions deserve asking and point to
answers both important and relevant to all three of the disciplines discussed herein:
music, artificial intelligence, and neuroscience.

7.9 Concluding Discussion

When people are free to do as they please, they usually imitate each other. Eric Hoffer (Cox
[12], p. 13).

Music, Artificial Intelligence, and Neuroscience, as discussed herein, share many
important properties. Music perception and cognition, for example, reveal
researchers whose original interests lay exclusively in Neuroscience and Artificial
Intelligence. Artificial Intelligence and Neuroscience now rely upon one another
since at least one of the two’s definition depends on an expertise in the other. Music
and Neuroscience contribute to one another in the understanding of shared interests
such as Music Therapy, perception, and cognition, and Neuroscience finding lan-
guage and music so close relatives that at certain points in pattern recognition, it is
difficult to know their differences.

What all three disciplines in the title of this chapter, and more importantly their
obvious and subtle relationships over the past several years, is that no matter how
much we pat ourselves on our backs, not only are these specialties significantly
behind their proclaimed target dates, but woefully so. Researchers are not too busy
making names for themselves and attempting to get tenure, full professorships, and
their photos on the covers of disciplinary journals, but they have often gravely
misjudged the complexities of the subjects they study and particularly the ways in
which those subjects interact with one another.

This said, and without the prognostications of futurists hell-bent on suggesting
the end is near, we have still come a long way. Unfortunately, AI is nowhere near
AGI and further yet from understanding consciousness and self-awareness no less
how to create them in machines. We have, however, come a long way toward
understanding elements of the human brain, though we remain far from the goals
set by science-fiction authors a hundred years ago. And Music, no one knows much
of anything about where it is headed and how it might affect the human race on its
way there.
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On the other hand, we have gained a great deal of knowledge about what we do
not know. Putting it in a slightly different way, we now know the names of things
we do not know much or anything about and wish to share that with you. Here,
then, is a numbered list in no particular order that could not possibly be complete or
thorough but may present a place to start.

1. Artificial Intelligence is currently mired in projects attracting funding to keep
their research going. Deep learning represents a perfect example of that. On one
hand, the initial exemplars of recognition and classification have proved useful
to solving a number of real-world problems. On the other hand, these solutions,
as valuable as they may be, actually do more to prove the failures of their goals
than their successes. The AI versus AGI problem previously discussed is but
one of these. Its initial successes and provocative results gained world attention,
yet at the same time, as the rave reviews play themselves out, it may be that we
are facing another AI winter as we begin to understand the limitations of Deep
Learning.

Once you unleash it on large data, deep learning has its own dynamics, it does its own
repair and its own optimization, and it gives you the right results most of the time. But
when it doesn’t, you don’t have a clue about what went wrong and what should be fixed
(Pearl [37], p. 15).

2. Up until the twentieth century, classical music had a deep historical practice of
producing at least one or two so-called masters per century. Cultural stylistic
traditions changed slowly and even then, often produced severe audience neg-
ative reactions. With Claude Debussy around as the nineteenth century changed
into the twentieth century and with Igor Stravinsky soon to follow, matters
quickly changed, and by mid-century all manner of sound and non-sounding
works appeared, and at such rapid paces that audiences shrunk in size and the
future likewise shrunk in terms of what was left with which to experiment. One
of the composer’s most important draws depended on gaining attention by
outrageous acts, yet unfortunately, even by 1970, such acts seemed already aged
and certainly no longer outrageous, and thus came the neo-avant-garde. New
and outrageous by being old. These bits of tradition, no matter what happened
with style, involved musical patterns saving the day. And, as with AI (above),
musicians find themselves knowing less about the subject and craft than they
should, and with popular music more performed and recorded than ever, yet
further behind in what people listen to [11].

3. Neurology, like all the natural sciences, has been lost in the complexity of its
discipline. It, like the two others facing off in this presentation, struggling
against over-specialization and lack of agreement on even the simplest of the-
ories, routinely creating massive and highly complex tomes of research sum-
maries that often confuse rather than elucidate their readers and colleagues. As
Einstein once purportedly said: “Any intelligent fool can make things bigger and
more complex... It takes a touch of genius – and a lot of courage to move in the
opposite direction.”
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4. While not knowing all of the previous research done in the combined subjects of
Music, AI, and Neuroscience, many quickly discover a number of papers
delivered on these three subjects that evidence a lack of familiarity with their
overlapping concepts. The following proves the point:

In the experiment, six volunteers heard 40 pieces of classical music, rock, pop, jazz, and
others. The neural fingerprint of each song on participants’ brains were captured by the MR
machine while a computer was learning to identify the brain patterns elicited by each
musical piece. Musical features such as tonality, dynamics, rhythm and timbre were taken
into account by the computer. After that, researchers expected that the computer would be
able to do the opposite: identify which song participants were hearing based on their brain
activity – a technique known as brain decoding. When confronted with two options, the
computer showed up to 85% accuracy in identifying the correct song, which is a great
performance, comparing to previous studies [23].

Once again, the word ‘pattern’ occurs just enough times in the above that we are
aware of its importance in the study of cross-disciplinary research and how
important its recurrence is to understand seemingly isolated subjects by taking a
multidisciplinary approach. The significance of patterns, whether their sources
(sound, sight, etc.) are known or not, appear to exist in every aspect of the natural
world and therefore must, if any understanding of that world is to take place, be the
basic foundation of any research that is to lead to any true achievement.

The central role of music and language in human existence and the fact that both involve
complex and meaningful sound sequences naturally invite comparison between the two
domains. Yet from the standpoint of modern cognitive science, music-language relations
have barely begun to be explored. This situation appears to be poised to change rapidly, as
researchers from diverse fields are increasingly drawn to this interdisciplinary enterprise.
The appeal of such research is easy to understand. Humans are unparalleled in their ability
to make sense out of sound (Patel [36], p. 3).

As a final thought, the simple diagram in Fig. 7.10 will point out both the
problems and the solution potentials presented in this chapter.

Woody Allen was once quoted as saying: “Life is divided into the horrible and
the miserable” (Allen playing Alvy Singer in Annie Hall, 1977, screenplay by
Woody Allen and Marshall Brickman). This is included here because not only is
every human brain different from every other human brain, but also that each and
every human brain has faults that make it malfunction at least occasionally.
Sometimes these faults can cause a human to commit suicide, at other times murder,
at still other times produce great acts of courage and love. All of these problems
should remind us that nothing we compose, create, or feel (Music, Artificial
Intelligence, Neuroscience) will be shy of those mistakes. We pass them on. No
matter how we attempt to avoid this from occurring, we cannot escape the inevi-
table. The best we can do is to act responsibly and sensitively as we study as many
different disciplines as make sense and hope that our results will prove fruitful.
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8Creative Music Neurotechnology

Eduardo Reck Miranda

8.1 Introduction

Artificial Intelligence is aimed at endowing machines with some form of intelligence.
Not surprisingly, AI scientists take much inspiration from the ways in which the brain
and/or the mindworks to build intelligent systems [15]. Hence, studies in Philosophy,
Psychology, Cognitive Science and more recently, the Neurosciences have been
nourishing AI research since the field emerged in the 1950s, including, of course, AI
for music. Indeed, whereas chapters by David Cope, Tatsuya Daikoku and Psyche
Louis in this volume discuss the relationship of AI with the Neurosciences, Geraint
Wiggins and Emilios Cambouropolous offer a Cognitive Science perspective to AI.

The Neurosciences have led to a deeper understanding of the behaviour of
individual and large groups of biological neurons and we can now begin to apply
biologically informed neuronal functional paradigms to problems of design and
control, including applications pertaining to music technology and creativity.
Artificial Neuronal Networks (ANN) technology owes much of its development to
burgeoning neuroscientific insight.

However, this chapter introduces a different angle to harness the Neurosciences
for music technology. Rather than discuss how to build musical ANN informed by
the functioning of real biological neuronal networks, I shall introduce my forays
into harnessing the latter to create music with.

Is it possible to build programmable processors using living biological neu-
rones? Can we harness information in physiological brain data to make music? How
could we couple computers with our brains? What new musical systems might we
be able to build with these? These are some of the questions that will be addressed
below.
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8.2 Sound Synthesis with Real Neuronal Networks

There has been a growing interest in research into the development of neurochips
coupling living brain cells and silicon circuits together. The ambition is to harness
the intricate dynamics of in vitro neuronal networks to perform computations.

Engineers have been looking into developing ways to culture brain cells in mini
Petri-like dishes measuring only a few square millimetres. These devices are
referred to as MEA (short for Multi-Electrode Array) devices. They are embedded
with electrodes that detect the electrical activity of aggregates of cells and stimulate
them with electrical pulses. It has been observed that in vitro cultures of brain cells
spontaneously branch out, even if they are left to themselves without external input.
They have a strong disposition to form synapses, even more so if subjected to
electrical stimulation [16].

DeMarse et al. [3] reported the pioneering development of a
neuronally-controlled artificial animal—or Animat—using dissociated cortical
neurons from rats cultured on a MEA device. Distributed patterns of neuronal
activity, also referred to as spike trains, controlled somewhat the behaviour of the
Animat in a computer-simulated virtual environment. The Animat provided elec-
trical feedback about its movement within its virtual environment to the cells on the
MEA device. Changes in Animat’s behaviour were studied together with the
neuronal processes that produced those changes in an attempt to understand how
information was encoded and processed by the cultured neurones.

I am curious about the possibility of developing interactive musical computers
based on such neurochips. As an entry point to kick-start the research towards this
end, I collaborated with scientists at the University of the West of England (UWE),
Bristol, to develop methods for rendering the temporal behaviour of in vitro neu-
ronal tissue into sound [9]. The dynamics of in vitro neuronal tissue represent a
source of rich temporal behaviour, which inspired me to develop and test a number
of rendering methods using different sound synthesis techniques, one of which will
be introduced below.

The UWE team developed a method to extract brain cells from hen embryos at
day seven in ovo and maintain them for relatively long periods of time, typically
several months [19]. Figure 8.1 shows a typical hen embryo aggregate neuronal
culture, also referred to as a spheroid.

In our experiments, spheroids were grown in culture in an incubator for 21 days.
Then, they were placed into a MEA device in such a way that at least two electrodes
made connections into the neurones inside the spheroid. One electrode was des-
ignated as the input by which we applied electrical stimulation and the other as the
output from which we recorded the effects of the stimulation on the spheroid's
spiking behaviour.

Electrical stimulation at the input electrode consisted of a train of biphasic pulses
of 300 mv each, coming once every 300 ms. This induced change in the stream of
spikes at the output electrode, which was recorded and saved into a file.
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The resulting neuronal activity for each session was saved on separate files.
Figure 8.2 plots an excerpt lasting for 1 s of typical neuronal activity from one of
the sessions. Note that the neurones are constantly firing spontaneously. The
noticeable spikes of higher amplitude indicate concerted increases of firing activity
by groups of neurones in response to input stimuli.

We developed a number of methods to render the activity of the living neurones
into sound. The method introduced below combines aspects of granular synthesis
and additive synthesis [14].

An additive synthesizer was implemented with nine sinusoidal oscillators. The
synthesizer requires three input values to generate a tone: frequency (freq),
amplitude (amp) and duration (dur). It was established that the data would produce
freq and amp values for the first oscillator only. Then the values for the other

Fig. 8.1 Images of a typical
hen embryo aggregate
neuronal culture on a
scanning electron microscope
magnified 448 times
(Courtesy of Prof Larry Bull,
University of the West of
England)

Fig. 8.2 Plotting of the first
second of a data file showing
the activity of the spheroid in
terms of µV against time.
Induced spikes of higher
amplitudes took place
between 400 and 600 ms
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oscillators would be calculated relative to the values of the first oscillator; e.g.,
freqosc2 = freqosc1 � 0.7, freqosc3 = freqosc1 � 0.6 and so on.

Initially, the system synthesized a tone for every datum. However, this produced
excessively long sounds. In order to address this problem, a data compression
technique was developed, which preserved the behaviour that I was interested to
make sounds with, namely patterns of neuronal activity and induced spikes. For
clarity, I firstly introduce the method whereby a tone is produced for every datum.
Then the method using data compression is described.

Each datum yielded three values for the synthesizer: frequency (freq), amplitude
(amp) and duration (dur). The frequency value is calculated in Hz as follows: freq =
(datum � 20) + a. We set a = 440 as an arbitrary reference to 440 Hz; changes to
this value produce sounds at different registers.

The synthesizer’s amplitude parameter is a number between 0 and 10. The
amplitude is calculated as follows: amp = 2 � log10 (abs (datum) + 0.01) + 4.5.
This produces a value between 0.5 and 9.5. In order to avoid negative amplitudes,
the system takes the absolute value of the datum. Then, 0.01 is added in order to
avoid the case of logarithm of 0, which cannot be computed.

The duration of the sound is calculated in secs; it is proportional to the absolute
value of the datum, which is divided by a constant c, as follows:

dur ¼ abs datumð Þ
c

þ t

In the case of the present example, c was set equal to 100. The higher the value
of c, the grainy the results. In order to account for excessively short or possibly null
durations, t is added to the result; e.g., t = 0.05.

The compression algorithm was implemented as follows: it begins by creating a
set with the value of a datum. To start with, this will be the first sample of the data.
Then it feeds in the second sample, the third and so on. The value of each incoming
sample is compared with the value of the first sample in order to check if they are
close to each other according to a given distance threshold D. If the difference
between them is lower than D, then the incoming datum is stored in the set.
Otherwise, the values of all data stored in the set are averaged and used to generate
a tone. Then, a new set is created, whose first value is the value of the datum that
prompted the creation of the last tone, and so forth. In this case, the frequency of a
tone is calculated as follows, where n is the minimum value found in the data set
and x is the maximum value:

freq
set average� nð Þ � 900

x� n

� �
þ 100

In the equation above, the values of n and x do not necessarily need to be the
minimum and maximum values in the data file; they can be set arbitrarily, with the
condition that n < x. The result is scaled in order to fall in the range between 100
and 1 kHz. The amplitude is calculated as for the case of one tone per datum, as
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described above, with the only difference that the datum is replaced by the set
average. The duration is also calculated as described above with the difference that
a bandwidth defined by minimum and maximum duration thresholds is introduced.
If the calculated duration of a tone falls outside the bandwidth, then the system
assigns a predetermined duration value; e.g., the tone is assigned a duration of 0.1 s
if its calculated duration is below the minimum threshold.

Figure 8.3 shows the cochleagram of an excerpt of a sound produced with the
system, where one can clearly observe sonic activity corresponding to induced
spiking activity.

It turns out that experiments with in vitro neurones are very difficult to conduct.
And they require specialist resources that are not readily available for musicians to
fiddle with. While research in this area develops, what musicians can do is to work
with computer simulations of spiking neurones.

The next section introduces a composition technique that I had envisaged for
using in vitro neuronal tissue to generate a piece of orchestral music. For practical
reasons, I use simulation instead.

8.3 Raster Plot: Making Music with Spiking Neurones

Raster Plot is a piece for orchestra, choir and a solo mezzo-soprano, which was
generated with computer simulations of spiking neurons. The choir and the soloist
sing extracts from the diary of British explorer, Robert Falcon Scott, on the final
moments of his expedition to the South Pole, before he died in March of 1912.
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Fig. 8.3 Cochleagram of an excerpt of a sonification where spikes of higher amplitude can be
visually seen just after the middle of the diagram
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The piece was generated by a computer simulation of a network of intercon-
nected neurones. The simulation was implemented in collaboration with Etienne
Roesch, a cognitive scientist at the University of Reading, UK. It is based on a
model that simulates the spiking behaviour of biological neurones, developed by
computational neuroscientist Izhikevich [5].

When the network is stimulated, each neurone of the network produces
sequences of bursts of activity, referred to as spikes, forming streams of patterns.
A raster plot is a graph plotting the spikes; hence the title of the composition.

In a nutshell, I orchestrated raster plots by allocating each instrument of the
orchestra to a different neurone of the network. Each time a neurone produced a
spike, its respective instrument was prompted to play a certain note. The notes were
assigned based upon a series of chords, which served as frames to make simulta-
neous spikes sound in harmony.

A biological neurone aggregates the electrical activity of its surroundings over
time, until it reaches a threshold, at which point it generates a sudden burst of
electricity, referred to as an action potential. Izhikevich’s model is interesting
because it produces spiking behaviours that are identical to the spiking behaviour of
neurones in real brains. Also, its equations are relatively easier to understand and
program on a computer, compared to other, more complex models. The equations
of this model represent the electrical activity at the level of the membrane of
neurones over time and are able to reproduce several properties of biological
spiking neurones commonly observed in real neuronal tissue.

The simulation contains two types of neurones, excitatory and inhibitory, that
interact and influence the network as a whole. Each action potential produced by a
neurone is registered, and transmitted to the whole network, therefore, producing
waves of activation as the electrical activity of one neurone yields a cascade of
action potentials, which then spread. A raster plot showing an example of such
collective firing behaviour taken from a simulation of a network of 1000 neurones,
is shown in Fig. 8.4. This is a simulation of the activity of this group of 1000
artificial neurones over a period of one second: the neurones are numbered on the
y-axis (with neurone number 1 at the bottom, and neurone number 1000 at the top)
and time, which runs from zero to 1000 ms is on the x-axis. Every time one such
neurone fires, a dot is placed on the graph at the appropriate time on a line hori-
zontally drawn from that particular neurone.

In Fig. 8.4, one can observe periods of intense collective spiking activity sep-
arated by quieter moments. These moments of relative quietness in the network are
due to both the action of the inhibitory neurones, and the refractory period during
which a neurone that has spiked remains silent whilst its electrical potential decays
back to baseline. In addition to this intrinsic activity, the network receives external
stimulation in the form of a sinusoidal signal that is input to all neurones of the
network. Generally speaking, the amplitude of this signal controls the overall
intensity of firing. For instance, the bottom of Fig. 8.5 shows a raster plot generated
by a network of 50 spiking neurones stimulated by the sinusoid shown at the top of
the figure. As the undulating line rises, the spiking activity is intensified. Con-
versely, as the undulating line falls, the spiking activity becomes quieter.
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Fig. 8.4 A raster plot illustrating collective firing behaviour of a simulated network of spiking
neurones. Neurone numbers are plotted (y-axis) against time (x-axis) for a simulation of 1000
neurones over a period of one second. Each dot represents a firing event

Fig. 8.5 At the top is a sinusoid signal that stimulated the network that produced the spiking
activity represented by the raster plot at the bottom
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Compositionally, to me, the top of Fig. 8.5 suggests musical form, whereas the
bottom suggests musical content.

In order to compose Raster Plot, I set up a network with 50 neurones and ran the
simulation 12 times, lasting 10 s each. For all runs of the simulation, I set the
stimulating sinusoid to a frequency of 0.0005 Hz, which means that each cycle of
the wave lasted for 2 s. Therefore, each simulation took five cycles of the wave,
which can be seen at the top of Figs. 8.5 and 8.6.

For each run, I varied the amplitude of the sinusoid, that is, the power of the
stimulating signal, and the sensitivity of the neurones to fire. The power of the
stimulating signal could be varied from 0.0 (no power at all) to 5.0 (maximum
power) and the sensitivity of the neurones could be varied from 0.0 (no sensitivity
at all; would never fire) to 5.0 (extremely sensitive). For instance, for the first run of
the simulation, I set the power of the signal to 1.10 and sensitivity of the neurones
to 2.0, whereas in the tenth run I set these to 2.0 and 4.4, respectively. One can see
that the higher the power of the stimuli and the higher the sensitivity, the more
likely the neurones are to fire, and therefore, more and more spikes the network
produces overall. In Fig. 8.6, there are only a few spikes. In Fig. 8.5, one can
observe an increase in spiking activity. Table 8.1 shows the values for the 12 runs.
I envisaged a composition where the music would become increasingly complex
and tense, towards a climax.

I established that each cycle of the stimulating sinusoid would produce spiking
data for three measures of music, with the following time signatures: 4/4, 3/4 and
4/4, respectively. Therefore, each run of the simulation would produce spiking data
for fifteen measures of music. Twelve runs resulted in a total of 180 measures.

Fig. 8.6 The density of spikes is proportional to the amplitude of the stimulating sinewave
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I noticed that with the settings shown in Table 8.1, none of the neurones pro-
duced more than 44 spikes in one cycle of the stimulating sinusoid. This meant that
if I turned each spike into a musical note, then each cycle of the sinusoid could
produce up to 44 notes.

In order to transcribe the spikes as musical notes, I quantized them to fit a metric
of semiquavers, where the first and the last of the three measures could hold up to
16 spikes each, and the second measure could hold up to 12 (Fig. 8.8). Next, I
associated each instrument of the orchestra, excepting the voices, to a neurone or
group of neurones, as shown in Table 8.2. From the 50 neurones of the network, I
ended up using only the first 40, counting from the bottom of the raster plots
upwards. Instruments that are associated with a group of neurones (e.g., Organ) can
play more than one note simultaneously.

The compositional process continued in three major steps: the establishment of a
rhythmic template, the assignment of pitches to the template and the articulation of
the musical material.

Table 8.1 The parameters for the 12 runs of the spiking neurones network

Run 1 2 3 4 5 6 7 8 9 10 11 12

Stimulating power 1.10 1.11 1.12 1.13 1.14 1.2 1.21 1.22 1.3 2.0 2.2 3.0

Network sensitivity 2.0 2.3 2.6 2.9 3.2 3.5 3.8 4.0 4.2 4.4 4.8 5.0

Table 8.2 Instruments are associated with neurones. Each instrument plays the spikes produced
by its respective neurone or group of neurones

Neurones Instruments Neurones Instruments

1 Contrabass 2 17 1st Violin 1

2 Contrabass 2 18, 19, 20, 21 Organ

3 Cello 3 22, 23, 24, 25, 26 Celesta

4 Cello 2 27, 28, 29 Vibraphone, Timpani

5 Cello 1 30 Snare drum, Cymbal, Tam-tam

6 Viola 3 31 Tuba

7 Viola 2 32 Trombone 3

8 Viola 1 33 Trombone 2

9 2nd Violin 4 34 Trombone 1

10 2nd Violin 3 35 Trumpet 2

11 2nd Violin 2 36 Trumpet 1

12 2nd Violin 1 37 Horn 3

13 1st Violin 5 38 Horn 2

14 1st Violin 4 39 Horn 1

15 1st Violin 3 40 Clarinet
Bass clarinet

16 1st Violin 2
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In order to establish the rhythmic template, firstly I transcribed the spikes as
semiquavers on the score (Fig. 8.7). Figure 8.8 shows an excerpt of the result of
this transcription for a group of eight instruments. In order to forge more musically
plausible rhythmic figures, I altered the duration of the notes and rests, whilst
preserving the original spiking pattern as much as I could. Fig. 8.9 shows the new
version of Fig. 8.8 after this process. Figure 8.10 shows the final result of the
compositional process, with pitches and articulation.

In order to assign pitches to the rhythmic template, I defined a series of 36
chords of 12 notes each, as shown in Fig. 8.11. Each chord provided pitch materials
for 3 measures, that is, corresponding to one cycle of the stimulating sinusoid.
Those figures to be played by instruments of lower tessitura were assigned the
lower pitches of the chords and those to be played by instruments of higher tessitura

Fig. 8.7 Transcribing the raster plot spikes into musical notes

Fig. 8.8 Transcribing spikes from a raster plot as semiquavers on a score
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were assigned the higher pitches, and so on. An example is shown in Fig. 8.12,
illustrating the assignment of pitches from the G clef portion of chord number 22 to
certain rhythmic figures for the violins. There were occasions where I decided to
transpose pitches one octave upwards or downwards in order to best fit specific

Fig. 8.9 Resulting rhythmic figure

Fig. 8.10 The resulting music
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contexts or technical constraints. Other adjustments also occurred during the pro-
cess of articulating the musical materials.

A detailed explanation of the process of articulating the musical material is
beyond the intended scope of this chapter. Essentially, a number of non-standard
playing techniques were employed.

The vocal part was composed at the same time as I worked on the articulations.
It was not constrained by the rhythmic template or by the chords. The
mezzo-soprano sings in sprechgesang mode in measures corresponding to periods
of rarefactive spiking activity. A sample of the full score is provided in the
Appendix.

As a gross generalization, if one thinks of the spiking neuronal network model
above as the brain of some sort of organism, the stimulating sinusoid would rep-
resent perceived sensory information. Albeit simplistic, I find this idea rather

Fig. 8.11 Series of chords
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inspiring in the sense that it captures the essence of how our brain represents
sensorial information; in this case a sinusoidal signal. And this signal could well be
a sound. Metaphorically, Raster Plot is a representation (a rather convoluted one, I
must admit) of how the ‘organism’s brain’ listened to the sinusoid. Would it be
possible to develop a similar paradigm to musically represent how our brain listens
to music? This question inspired the composition Symphony of Minds Listening,
introduced below.

8.4 Symphony of Minds Listening: Listening
to the Listening Mind

Similar to the fact that we have unique fingerprints, which differ from one person to
another, our brains are also unique. Even though all human brains share a common
basic biological blueprint, the detailed neurological circuitry of the mechanisms
whereby we make sense of music differ from person to person. And they are
continually changing, making scientific research into unveiling how the brain lis-
tens to music to very difficult. Paradoxically, it seems that the more we study the
brain, the more difficult it becomes to draw firm conclusions.

Symphony of Minds Listening is an artistic expression of how different brains
construct their own unique reality. It is an experimental symphonic piece in three
movements based on the fMRI brain scans taken from three different persons whilst
they listened to the 2nd movement of Ludwig van Beethoven’s Seventh Symphony:
a ballerina, a philosopher and I.

Fig. 8.12 An excerpt from Raster Plot illustrating the assignment of pitches to rhythmic figures
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In simple terms, I deconstructed the Beethoven movement to its essential ele-
ments and stored them with information representing their structural features. Then,
I reassembled these elements into a new composition, using the same instrumen-
tation as for Beethoven’s 7th symphony, but with a twist: the fMRI information of
each listener influenced the process of reassembling the music.

The fMRI brain scanning method measures brain activity by detecting changes
in blood flow. The measurements can be presented graphically by colour-coding the
strength of activation across the brain. Figure 8.13 shows a representation of an
fMRI scan of my brain listening to Beethoven’s music at a specific window of time,
lasting for 2 s.

Figure 8.13 shows planar surfaces, or slices, from the top to the bottom of my
brain, my face is facing upwards. Figure 8.14 shows an example of a 3D rendition
of such a two-second fMRI snapshot, using a bespoke piece of software developed
by Dan Lloyd, at Trinity College in Hartford, USA: it displays different areas of the
brain, represented by different colours, responding in a coordinate manner to the
music.

Each scanning session generated sets of fMRI data, each of which is associated
with a measure of the 2nd movement of Beethoven’s piece. This is shown
schematically in Fig. 8.15.

Fig. 8.13 A typical representation of an fMRI snapshot, showing 8 transversal slices of the brain
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The score of Beethoven’s movement was deconstructed with a custom-made
piece of software, which extracted statistical information about the structure of the
music. Then, I used this information to reconstruct the Beethoven movement, also
aided by AI, but the process of reconstruction was influenced by the fMRI data. In a
nutshell, during the reconstruction process, the fMRI data altered the original music

Fig. 8.14 An artistic 3D rendering of an fMRI scan by Dan Lloyd

Fig. 8.15 The result of a scanning section is a set of fMRI data for each measure of Beethoven’s
piece (Note this is only a schematic representation; the brain imaging does not correspond to the
actual music shown)
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(Fig. 8.16). Not surprisingly, the fMRI scans differed amongst the three listeners.
Therefore, brain activity from three different minds yielded three different move-
ments for the resulting composition, each of which displaying varying degrees of
resemblance to the original symphony. Each movement is named after the pro-
fession of the respective persons that were scanned: Ballerina, Philosopher and
Composer. The instrumentation is the same as for Beethoven’s original
instrumentation.

8.4.1 Brain Scanning and Analysis

The brain images were collected using a Siemens Allegra 3T head-only scanner at
the University of New York (“T” stands for Tesla, a measure of magnetic field
strength.) Each full-brain image took two seconds to collect, to yield 36 image
slices of the brain. Each slice comprised 64 � 64 picture elements, known as voxels
or volume pixels. Thus, each image comprised approximately 150,000 continuously
varying voxels.

Fig. 8.16 The fMRI data inform the re-assemblage of the piece
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Subjects heard the second movement of Beethoven's Seventh Symphony twice.
The subjects were instructed to attend to the music with their eyes closed. The fMRI
recording began with 30 s without music, then 460 s of Beethoven, then 18 s
without music, and finally the same 460 s of Beethoven previously heard. Thus,
each run generated 484 images.

The raw fMRI images were first pre-processed following usual procedures for
functional neuroimaging. These included correcting for head motion, morphing the
individual brains to conform to a standard anatomical atlas and spatial smoothing,
which is a procedure that reduces random fluctuations by calculating a moving
average of each voxel in the context of its spatial neighbours. These pre-processing
steps were implemented using Statistical Parametric Mapping software [1].

Each of the 484 images produced 150,000 voxels, which are very complex for
direct analysis. Instead, the image series were further processed with Independent
Component Analysis [18]. Informally, ICA separates ensembles of voxels that
oscillate in unison. These are unified as supervoxels that represent temporally
coherent networks of brain activity. The coloured patches in Fig. 8.14 are examples
of independent components. A total of 25 components were calculated for the three
subjects in the experiment.

In order to select which of these components might be musically significant, the
activity of each component during the first pass through the Beethoven listening
was compared to that same component during the second pass. If these two seg-
ments of a component time series were correlated, it was hypothesized that the
activity was at least partly musically driven, since the stimulus, that is, the music
would be identical at the corresponding time points in the two passes through the
music. Although 25 independent component time series were identified, only the
strongest 15 were selected to influence the compositional process. The order of
strength of the selected 15 ICA components is as follows: 25, 15, 14, 8, 5, 10, 11,
18, 6, 2, 4, 1, 17, 16 and 13.

The time series were normalized to range from 1 to 9. As the last step, the
varying components were resampled to match the timing of the Beethoven score
measure by measure. Thus, each time point was indexed to a measure of the
Beethoven score. The movement comprises 278 measures, therefore, each ICA
component comprises a time series of 278 values, ranging from 0 (meaning lowest
fMRI intensity) to 9 (highest fMRI intensity). As an example, Table 8.3 shows the
values of the first 5 strongest ICA components (that is, 25, 15, 14, 8 and 5) for the
first 10 measures of Beethoven’s music, yielded by the fMRI of my own brain
during the first listening pass in the scanner.

8.4.2 The Compositional Process

The compositional process involved manual and computer-automated procedures.
The composition of the piece evolved in tandem with the development of a piece of
software called MusEng. MusEng was programmed to learn musical information
from given examples and use this information to generate new music.
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The first step of the compositional process was to deconstruct the score of
Beethoven’s music into a set of basic materials for processing. These materials were
subsequently given to MusEng as input for a Machine Learning algorithm, which
will be explained in more detail below.

First of all, Beethoven’s piece was divided into 13 sections, manually:

• Section 1: from measure 1 to measure 26
• Section 2: from measure 26 to measure 50
• Section 3: from measure 51 to measure 74
• Section 4: from measure 75 to measure 100
• Section 5: from measure 101 to measure 116
• Section 6: from measure 117 to measure 138
• Section 7: from measure 139 to measure 148
• Section 8: from measure 149 to measure 183
• Section 9: from measure 184 to measure 212
• Section 10: from measure 213 to measure 224
• Section 11: from measure 225 to measure 247
• Section 12: from measure 248 to measure 253
• Section 13: from measure 254 to measure 278.

The 13 sections informed the overarching form of each movement of my new
symphony. This provided a scaffold for the new piece, which preserved the overall
form of the original Beethoven movement.

MusEng did not learn the whole Beethoven piece at once. Rather, it was trained
on a section by section basis. And the musical sequences for the respective new
sections of the new movements were generated independently from each other. For
instance, Section 1 of the movement Ballerina has 26 measures and was composed
based on materials from the first 26 measures of Beethoven’s music. Next, Sec-
tion 2 has 24 measures and was composed based on materials from the next 24
measures (26–50) of Beethoven’s music, and so on.

Table 8.3 The values of the strongest 5 ICA components for the first 10 measures of Beethoven’s
music

Beethoven measure ICA 25 ICA 15 ICA 14 ICA 8 ICA 5

1 7 5 5 5 2

2 5 5 8 5 8

3 7 3 5 5 6

4 5 8 3 5 2

5 5 7 4 4 4

6 6 6 4 5 3

7 7 8 5 6 3

8 4 6 3 4 3

9 6 6 4 5 4

10 5 7 5 5 3
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A discussion of manual handling is beyond the scope of this chapter. As an
example, the transformation of Section 1 of Beethoven’s original music into the
opening section of Ballerina is shown in Fig. 8.18. Figure 8.17 shows the first 10
measures of Beethoven’s music focusing on the parts of the violas, violoncellos and
double basses. And Fig. 8.18 shows how those measures were ‘recomposed’ to
form 10 measures for the opening of the first movement of my new symphony.
Note the rhythmic transformation of measures 4, 6, 8 and 10.

Fig. 8.17 The first 10 measures of Section 1 of Beethoven’s music, showing the viola,
violoncello and double bass parts

Fig. 8.18 Ten measures from the opening of Ballerina, the first movement of Symphony of Minds
Listening, showing the viola, violoncello and double bass parts
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Once a new segment is generated, it is orchestrated and appended to the
respective score of the new movement accordingly. The fMRI also influenced
instrumentation, playing techniques and other musical parameters (Fig. 8.17).

8.4.3 The Musical Engine: MusEng

MusEng has three distinct phases of operation: a learning phase, a generative phase
and a transformative phase.

The learning phase extracts a number of musical features from a given musical
score. A dataset comprising these features and rules representing the likelihood of
given features appearing in the music are then stored.

At the generative phase, the system uses the extracted to inform the generation of
new sequences. These sequences will bear close resemblance to the sequences that
were used to train the system in the first phase.

Finally, at the transformative phase, the outcome from the generative phase is
modified by transformation algorithms. It is in this phase that the fMRI information
is used to influence the resulting music.

The transformative phase was added to further modify the results from the
generative phase. The role of fMRI information is to control the extent of the
transformations. Essentially, stronger activity in a given ICA component of the
fMRI data results in larger amounts of transformation in the resulting music.

MusEng reads and outputs musical scores coded in the MIDI format. This is
useful because outputs can be loaded into any suitable music notation software for
inspection and put together the composition.

MusEng only processes monophonic musical sequences, that is, sequences of
one note at a time. Obviously, Beethoven’s piece is a polyphonic orchestral sym-
phony. In order to circumvent MusEng’s monophonic limitation, I developed two
approaches to process the music. The first approach is to train the system with the
part of one instrumental voice of the orchestra at a time (violins, violoncellos, etc.)
and then generate sequences for those respective parts individually. The second
approach is to reduce the orchestral music to one monophonic voice and then
generate various monophonic sequences, which are subsequently orchestrated.
I generated materials for Symphony of Minds Listening using both approaches.

8.4.3.1 Learning Phase
MusEng implements an abridged version of a system called iMe, developed at
ICCMR by Miranda and Gimenes [10]. MusEng takes a MIDI file as an input and
extracts the following 5 features from the encoded music:

• Pitches of the notes
• Melody directions between successive notes in a sequence
• Melody intervals; i.e., the amount of change between the pitches of successive

notes in a sequence
• Note durations
• Tonality implied by groups of notes in the sequence.
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These features are stored as event-based vectors, referred to as musicodes.
Table 8.4 shows the musicodes for the first two measures (initial nine notes) of the
musical excerpt shown in Fig. 8.19.

Melody direction can value −1, 0, or +1, referring to descending, motionless, or
ascending movement, respectively. The current note in a sequence is compared with
the previous note; in this example, the first note in a measure returns a value equal
to 0.

Melody intervals are represented in terms of half steps, which are also calculated
with reference to the current note’s distance from the previous note. Again, the first
note in the measure returns a value equal to 0.

As for note durations, the value 240 is assigned to quarter notes, and other
durations are calculated with reference to this value; e.g., half notes are equal to 480
and eighth notes are equal to 120.

In general, the number −2 is used to represent the absence of data in a musicode
vector. That is, the note pitch musicode for a musical rest would be equal to −2.
With respect to the implied tonality of segments, the system creates a label spec-
ifying a tonal pattern and indicates when the estimation is ambiguous. For example,
in the first measure of the music shown in Fig. 8.19, the system sees E, G#, and B,
as an ‘E Major’ chord, but the note G# implies it could be an ‘A harmonic minor’
chord.

As we shall see below, MusEng builds a musical memory in terms of small
segments of music. Ideally, the system would segment the music based on per-
ceptual criteria. The original iMe system sported such a method, inspired by Gestalt
psychology [4]. However, for this composition, MusEng was programmed to
segment the music according to a given number of measures, e.g., every measure,
or every two measures, or every three and so on. The rationale for this decision is
that I wanted to be able to synchronize the fMRI analysis to the input score by

Table 8.4 Musicodes for the first two measures of the musical sequence in Fig. 8.19. The rows
correspond to the event number, or in this case, number of notes in the sequence: the first two
measures comprise a total of 9 notes

1 2 3 4 5 6 7 8 9

Melody direction 0 −1 +1 −1 0 +1 +1 −1 −1

Melody interval 0 8 3 7 0 1 2 2 1

Event duration 120 120 120 120 60 60 120 60 60

Note pitch E5 G#4 B4 E4 B4 C5 D5 C5 B5

Modality E Maj, A harm min A min, C Maj

Fig. 8.19 An example of a musical sequence
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handling the fMRI data on a measure-by-measure basis, as it was shown
schematically in Fig. 8.15.

MusEng’s memory consists of a series of Feature Tables (FTs), which comprise
vectors of musicodes. As the musicodes are extracted from the measures, one after
another, the system may or may not create new FTs. This depends on whether the
respective musicodes have already been seen by the system or not. If a certain
vector of musicodes is identical to one that has been previously seen by the system,
then it updates the relevant FT by increasing a weighting factor, represented by the
variable x in the equation

x xð Þ ¼ RxFT

RnFT

This variable x is generated by summing the total number of FTs, and then
dividing the number of instances of each individual FT by the total. In essence, this
becomes a simple moving average. The variable x represents the number of
instances of a given FT in the series, and n the total number of all FT in the series so
far. This moving average has the effect of lowering the value of x for vectors of
musicodes that do not appear as often as more frequent ones, in the same way, that
it raises the value of x for more commonly used vectors, to a maximum value of
1.0.

The value of x informs the probability of a given musical segment being gen-
erated later on by the system. Typically, a decrease in the value of x causes the
system to avoid using the corresponding FT entry in the subsequent generative
phase.

In order to illustrate how MusEng’s memory is built, let us examine a hypo-
thetical run through the sequence previously shown in Fig. 8.19, commencing with
an empty memory. The first measure (Fig. 8.20) is analyzed and the respective
musicodes are generated. For the sake of clarity, this example will focus on only
three of the five features: melody direction (dir), melody interval (int) and event
duration (dur).

MusEng creates in its memory the first feature table, FT1, with musicodes
derived from the first measure (Fig. 8.20) of the training sequence as follows:

Fig. 8.20 The first measure for the example analysis
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dir ¼ 0; �1; þ 1; �1f g
int ¼ 0; 8; 3; 7f g
dur ¼ 120; 120; 120; 120f g
x ¼ 1=1 or 1:0

Then, the system creates FT2 with musicodes extracted from the second measure
of the training sequence (Fig. 8.21) as follows:

dir ¼ 0; þ 1; þ 1; �1; �1f g
int ¼ 0; 1; 2; 2; 1f g
dur ¼ 60; 60; 120; 60; 60f g
x ¼ 1=2 or 0:5

Next, MusEng creates FT3, with musicodes from the third measure of the
training sequence (Fig. 8.22) as follows:

dir ¼ 0; þ 1; 0f g
int ¼ 0; 1; 0f g
dur ¼ 120; 120; 240f g
x ¼ 1=3 or 0:33

The fourth and fifth measures are processed next. However, MusEng does not
create new FTs in these cases because they are repetitions of previous measures;
that is, their respective musicodes have already been seen by the system. In this
case, only the values of x for the respective FTs are adjusted accordingly. Thus, at
this point of the training phase, the x values for each FT are as shown in Table 8.5.

MusEng’s memory after the training phase, complete with 3 FTs is shown in
Table 8.6. It is important to stress that particular FTs gain or lose perceptual

Fig. 8.21 The second measure for the example analysis

Fig. 8.22 The third measure for the example analysis
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importance depending on how often the system is exposed to them. Notice,
therefore, that FT2 and FT3 have higher x values than that of FT1 because they
appeared twice.

8.4.3.2 Generative Phase
At the generative phase, MusEng generates new FTs by mutating the musicodes: an
existing FT (source) is mutated towards another FT (target). Mutations are influ-
enced by the values of x: FTs with larger x values are selected more often than FTs
with smaller x values.

The very first measure of a newly generated structure is typically informed by
the first FT in memory (FT1). Let us consider this as the source FT for the mutation.
A second FT, the target FT, is selected from memory according to the values held in
memory for the variable x. FTs with higher x values tend to be selected as targets
more often than those with lower x values.

The generative process is illustrated below by means of an example using the
learned memory shown in Table 8.6. For clarity, the example considers only one of
the musicodes: melodic direction (dir). Therefore, assume the memory scenario
shown in Table 8.7.

To generate a new measure, the dir musicode of the source FT1 will be mutated
towards the respective musicode values of a target FT. In this case, both FT2 and
FT3 have the same x. Thus, there is an equal chance of FT2 or FT3 being selected
as the target. Let us assume that FT2 is selected. In this case, FT2’s dir musicode is
applied to FT1’s dir musicode to produce a mutation (the mutated element is
written in bold) as follows:

Table 8.7 A memory scenario with three FTs

FT1 FT2 FT3

dir 0, −1, +1, −1 0, +1, +1, −1, −1 0, +1, 0

x 0.2 0.4 0.4

Table 8.5 Values of x after three FTs have been created and stored in memory, calculated by
dividing the number of instances of a given FT by the total number of FTs analyzed

FT1 FT2 FT3

x 1/5 = 0.2 2/5 = 0.4 2/5 = 0.4

Table 8.6 MusEng’s memory after being trained with the musical sequence shown in Fig. 8.19

dir int dur x

FT1 0, −1, +1, −1 0, 8, 3, 7 120, 120, 120, 120 0.2

FT2 0, +1, +1, −1, −1 0, 1, 2, 2, 1 60, 60, 120, 60, 60 0.4

FT3 0, +1, 0 0, 1, 0 120, 120, 240 0.4
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0; þ 1; þ 1; �1; �1f g þ 0; �1; þ 1; �1f g ¼ 0; 0; þ 1; �1; �1f g

Note that the dir musicode has outlying maximum and minimum values of + 1
and −1, hence only the second value is actually mutated (+1) + (−1) = 0. Therefore,
the newly generated FT contains a dir musicode equal to {0, 0, +1, −1, −1}.

Obviously, mutating other musicodes would yield more variation. Mutations are
possible across all musicodes in the FTs in a similar manner, with the only
exception being mutations in modality. These are accomplished by a process of
transformation whereby the intervals between successive absolute pitches in the
given FTs are forced to conform to pre-set intervals for major, minor, or diminished
modes.

Finally, the new FT is rendered into a musical measure (Fig. 8.23) and saved
into a MIDI file.

8.4.3.3 Transformative Phase
The transformative phase comprises a dozen of transformation algorithms that
modify a given musical sequence, two of which will be explained in this section.

Although there are some differences in the specific processing undertaken by
each algorithm, the basic signal flow is fairly identical for all of them. The gen-
erated input signal is modified towards values given by a transformation algorithm.
The amount of modification is scaled according to the fMRI data. The fMRI data, or
more specifically the data extrapolated from the fMRI scans by ICA analysis, is
referred to as the fMRI_index.

The fMRI_index is given on a ten-point scale with values between 0 and 9. In
order to use the fMRI index as a Control Signal (CS) for the transformation
algorithms, MusEng first scales the data to a range between 0.1 and 1.0. In order to
do this, the system applies the following simple scaling process to the value of the
fMRI_index:

CS ¼ fMRI indexþ 1ð Þ � 0:1f g

A difference value (d) between the input and the transformed musicodes is also
calculated. This difference is then multiplied by the CS to give a final Scaled
Modifier Value: SMV.

The SMV is summed with the input signal to transform the output. This gives a
degree of fMRI-controlled variability in each transformation: a high fMRI_index

Fig. 8.23 The musical rendering of the new FT that was generated by mutating the dir musicode
from FT1 towards FT2
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value will result in larger transformations, whereas a low fMRI_index value will
result in smaller transformations.

Below are examples of two of the transformation algorithms available, showing
the effect of varying the fMRI_index: pitch inversion and pitch scrambling.

Pitch Inversion Algorithm
Given an input musical sequence, the pitch inversion algorithm creates a new
sequence, which is effectively the input sequence turned upside-down. For instance,
a sequence rising in pitch would descend in pitch after this transformation. In order
to illustrate this, let us consider the measure shown in Fig. 8.23.

The melody interval musicode for this measure is {0, 0, 3, 2, 1} and the note
pitch musicode is {B4, B4, D5, C5, B4}. Bear in mind that the pitch values need to
be converted into MIDI representations in order to be processed by the system. In
this case, the MIDI values are 71, 71, 74, 72 and 71, respectively.

There are a variety of ways to accomplish a pitch inversion, including diatonic
and chromatic options, or inversions around a specific sounding pitch. MusEng
processes pitch inversion simply by subtracting the current MIDI pitch value from
128 (MIDI uses a range of 128 pitch values). For instance, the transformed pitch
values for our example created using this technique would be as follows: (128 − 71
= 57), (128 − 71 = 57), (128 − 74 = 54), (128 − 72 = 56) and (128 − 71 = 57).

The resulting MIDI values are 57, 57, 54, 56 and 57, yielding the following pitch
sequence {A4, A4, F#4, G#4, A4}. Note that the inverted sequence maintains the
original melody interval musicode of {0, 0, 3, 2, 1}, whilst giving an upside-down
melody, as shown in Fig. 8.24.

The example above assumed a maximal fMRI index value of 9, which once
scaled to create a CS gives 1.0. However, as mentioned earlier, varied degrees of
transformations are also possible by scaling the amount of transformation according
to the value of the fMRI_index. The difference between the input and the trans-
formed pitches is multiplied by CS, before being summed with the input to create
the final transformed output value.

New pitch ¼ Input pitchþ Input pitch� transf pitchð Þ � fMRI indexþ 1ð Þ � 0:1½ �ð Þf g

Let us examine what happens if we assume an fMRI_index equal to 5, which
yields a CS equal to 0.6. In this case, we would expect an output approximately
halfway between the original pitch and the inversion; in other words, an almost

Fig. 8.24 Newly inverted sequence, after transformation of measure in Fig. 8.23
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neutral set of intervals. First, the difference d between the maximal inversion and
the input signal for each of the musicode values needs to be calculated as follows:

d ¼ 57�71ð Þ; 57�71ð Þ; 54�74ð Þ; 56�72ð Þ; 57�71ð Þf g
d ¼ �14; �14; �20; �16; �14f g

Then, the scaled modifier values are calculated by multiplying the difference
values by the value of CS

SMV ¼ �14 � 0:6ð Þ; �14 � 0:6ð Þ; �20 � 0:6ð Þ; �16 � 0:6ð Þ; �14 � 0:6ð Þf g
SMV ¼ �8:4; �8:4; �12; �9:6; �8:4f g

Finally, the SMV values are summed with the original input to give a trans-
formed set of output values

New pitches ¼ 71� 8:4ð Þ; 71� 8:4ð Þ; 74�12ð Þ; 72� 9:6ð Þ; 71� 8:4ð Þf g
New pitches ¼ 62:6; 62:6; 62; 62; 62:6f g

Pitch values are rounded up to the nearest whole number as per the MIDI
standard, giving a transformed set of pitch values equal to {63, 63, 62, 62, 63},
which is rendered as {D#4, D#4, D4, D4, D#4}, as shown in Fig. 8.25.

Pitch Scrambling Algorithm
In simple terms, the pitch scrambling algorithm orders the pitch values of the input
signal into a numerical list, which is then re-ordered randomly. Using the same
input as for the previous example (Fig. 8.23), let us examine the result of applying
this transformation. The process is as follows:

• Input pitches: {71, 71, 74, 72, 71}
• Order pitches in ascending order: {71, 71, 71, 72, 74}
• Scramble the order of pitches randomly: {74, 72, 71, 71, 71}
• Output pitches: {74, 72, 71, 71, 71}.

In this case, the output would be rendered as {D5, C5, B4, B4, B4}. Re-running
the transformation, a further three times would give further variants, for example:
{72, 74, 71, 71, 71}, {71, 74, 72, 71, 71} and {71, 74, 71, 72, 71}, rendered as {C5,

Fig. 8.25 Sequence after inversion with fMRI_index = 5, giving a nearly neutral set of pitch
intervals
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D5, B4, B4, B4}, {B4, D5, C5, B4, B4} and {B4, D5, B4, C5, B4}, respectively, as
illustrated in Fig. 8.26.

As with the pitch inversion algorithm, the value of fMRI_index can be used to
create a control signal with which the amount of transformation can be varied. In
order to illustrate this, let us assume an fMRI_index equal to 3. This gives a CS
value of 0.4.

Again, considering the same input as before and the transformed values from the
first pitch scramble shown in Fig. 8.26, the value of d, between the first scramble
transformation (first measure) and the input signal is calculated as follows:

d ¼ 74�71ð Þ; 72�71ð Þ; 71�74ð Þ; 71�72ð Þ; 71� 71ð Þf g
d ¼ 3; 1; �3; �1; 0f g

The scaled modifier values are then calculated by multiplying the difference
values by CS = 0.4

SMV ¼ 3 � 0:4ð Þ; 1 � 0:4ð Þ; �3 � 0:4ð Þ; �1 � 0:4ð Þ; 0 � 0:4ð Þf g
SMV ¼ 1:2; 0:4; �1:2; �0:4; 0f g

Finally, the SMV values are summed with the values of the original input to give
a transformed set of output values

New pitches ¼ 71þ 1:2ð Þ; 71þ 0:4ð Þ; 74� 1:2ð Þ; 72� 0:4ð Þ; 71� 0ð Þf g
New pitches ¼ 72:2; 71:4; 72:8; 71:6; 71f g

As before, pitch values are rounded up to the nearest whole number as per the
MIDI standard, giving a transformed set of pitch values of {72, 71, 73, 72, 71},
which is rendered as {C5, B4, C#5, C5, B4}, as shown in Fig. 8.27. Note that the
output is significantly closer in the overall structure to the unscrambled input than
the first scrambled transformation in Fig. 8.26.

Fig. 8.26 The result from applying the pitch scrambling algorithm four times on the same input

Fig. 8.27 Transformed output created by pitch scrambling algorithm assuming fMRI_index = 3
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The transformation examples above give a glimpse of how the addition of
control by means of fMRI enhances the potential of MusEng. As I mentioned
earlier, the composition of Symphony of Minds Listening involved automatic and
manual processes. Whereas I deployed MusEng heavily to remix Beethoven’s
Symphony, there was a great deal of manual work to reject and/or amend the
outputs from the system. However, I consistently remained faithful to the fMRI of
the respective subjects in order to yield the differentiated movements accordingly.
I worked on the assumption that a great proportion of my manual interventions, if
not all, could in principle be automated in MusEng.

Symphony of Minds Listening insinuates the possibility of coupling musical
systems with our brain. A better understanding of the brain combined with the
emergence of increasingly sophisticated devices for scanning the brain is enabling
the development of musical interfaces with our neuronal systems, which would
have been unthinkable until very recently. These interfaces have tremendous
potential to enable access to active music making to people with severe motor
impairments, such as severe paralysis after a severe stroke or accident damaging the
spinal cord, in addition, to open the doors to completely new ways to harness
creative practices.

8.5 Brain-Computer Music Interfacing

A Brain-Computer Interface (BCI) is a device that enables users to control systems
with signals from their brains. I coined the term Brain-Computer Music Interfacing
(BCMI) to refer to BCI systems to control music (Fig. 8.28). BCMI systems have
the potential to be used as recreational devices for people with severe motor
impairment and music therapy, in addition, to innovative applications in compo-
sition and music performance [12].

Fig. 8.28 A BCMI system
extracts information from the
user’s EEG to control musical
systems. In this photo, a
person is playing a
Disklavier MIDI piano
through a BCMI
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The most commonly used brain signal in BCMI is the EEG, which stands for
electroencephalogram. The fMRI scanning method used for Symphony of Minds
Listening is not practical, and its timing resolution is not suitable for real-time
systems.

In a nutshell, brain cells communicate with each other through electrical
impulses. The EEG is a recording of this electrical activity with electrodes placed
on the scalp. The EEG expresses the overall activity of millions of neurones in the
brain in terms of charge movement. However, the electrodes can detect this only in
the most superficial regions of the cerebral cortex.

The EEG is a difficult signal to handle because it is filtered by the meninges (the
membranes that separate the cortex from the skull), the skull and the scalp before it
reaches the electrodes. Furthermore, the signals arriving at the electrodes are sums
of signals arising from many possible sources, including artefacts like the heartbeat
and eye blinks. This signal needs to be scrutinized with signal processing and
analysis techniques in order to be of any use for a BCI system.

In general, power spectrum analysis is the most commonly used method to
analyze the EEG. In simple terms, power spectrum analysis breaks the EEG signal
into different frequency bands and reveals the distribution of power between them.
This is useful because it is believed that specific distributions of power in the
spectrum of the EEG can encode different cognitive behaviours.

In BCI research, it is often assumed that:

• There is information in the EEG that corresponds to different cognitive tasks, or
at least a function of some sort

• This information can be detected
• Users can be trained to produce such EEG information voluntarily.

Typically, users must learn ways to voluntarily produce specific patterns of EEG
signals to be able to control something. This informs the hard approach to BCMI: a
system whereby the user actively controls music.

It is arguable that voluntary control may not be always necessary for creating
music. For instance, a system may simply react to the mental states of the user,
producing music that is not necessarily explicitly controlled. We shall refer to such
systems as soft BCMI, as opposed to hard BCMI. In this chapter, however, I shall
focus on hard BCMI because I am interested in active, voluntary control of music
with the brain.

There basically are two approaches to control the EEG for a hard BCMI: con-
scious effort and operant conditioning [11]. Conscious effort induces changes in the
EEG by engaging in specific cognitive tasks designed to produce specific EEG
activity [2, 8]. The cognitive task that is most often used in this case is motor
imagery because it is relatively straightforward to detect changes in the EEG of a
subject imagining the movement of a limb such as, for instance, the left hand. Other
forms of imagery, such as auditory, visual and navigation imagery, have also been
used.
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Operant conditioning involves the presentation of a task in conjunction with
some form of feedback, which allows the user to develop unconscious control of the
EEG. Once the brain is conditioned, the user is able to accomplish the task without
being conscious of the EEG activity that needs to be generated [6].

On both aforementioned approaches, the system often has some form of AI to
recognize patterns in the EEG signal and activate the system to perform the required
tasks accordingly.

Somewhere in between the conscious effort and operant conditioning, there is a
method referred to as evoked potentials.

Evoked Potentials (EPs) are spikes that appear in the EEG in response to
external stimuli. EPs can be evoked from auditory, visual or tactile stimuli pro-
ducing auditory (AEP), visual (VEP) and somatosensory (SSEP) evoked potentials,
respectively. It is not trivial to detect the electrophysiological response to a single
event in an ongoing EEG stream. However, if the person is subjected to repeated
stimulation at short intervals (e.g., nine repetitions per second, or 9 Hz) then the
brain’s response to each subsequent stimulus is evoked before the response to the
prior stimulus has decayed. This prevents the signal to return to a baseline state.
Rather, it produces a steady-state response, which can be detected in the EEG with
no major difficulties [17].

Steady-State Visual Evoked Potential (SSVEP) is a robust paradigm for a BCI,
provided the user is not severely visually impaired. Typically, visual targets are
presented to a user on a computer monitor representing tasks to be performed.
These could be spelling words from an alphabet, or selecting directions for a
wheelchair to move and so on. Each target is encoded by a flashing visual pattern
reversing at a unique frequency; usually lower than 30 Hz.

In order to select a target, the user must simply direct their gaze at the flashing
pattern corresponding to the action they would like to perform. As the user’s
spotlight of attention falls over a particular target, the frequency of the unique
pattern reversal rate can be accurately detected in their EEG through spectral
analysis. It is possible to classify not only a user’s choice of target, but also the
extent to which they are attending it. Effectively, each target of a SSVEP system
can be implemented as a switch with a potentiometer.

8.5.1 ICCMR’s First SSVEP-Based BCMI System

In 2011, the ICCMR team completed the implementation of its first SSVEP-based
BCMI system, which was trialled with a person with locked-in syndrome at the
Royal Hospital for Neuro-disability, in London.

The system comprised four flashing images, or targets, as shown on the com-
puter screen in front of the users in Fig. 8.29. Each target image represents a
different musical instrument and a sequence of notes (Fig. 8.30). Each image fla-
shes reversing its colour (in this case the colour is red) at different frequencies:
7 Hz, 9 Hz, 11 Hz and 15 Hz, respectively.
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Thus, for instance, if the user gazes at the image flashing at 15 Hz, then the
system will activate the xylophone instrument and will produce a melody using the
sequence of six notes that was associated with this target. These notes are modi-
fiable: they are set beforehand and the number of notes can be other than six. The
more the person attends to this icon, the more prominent is the magnitude of their
brain’s SSVEP response to this stimulus, and vice-versa. This produces a varying
control signal, which is used to produce the melody. Also, it provides a visual
feedback to the user; the size of the icon increases or decreases as a function of this
control signal.

The melody is generated as follows: the sequence of six notes is stored in an
array, whose index varies from one to six. The amplitude of the SSVEP signal is
normalized so that it can be used as an index that slides up and down through the
array. As the signal varies, the corresponding index triggers the respective musical
notes stored in the array (Fig. 8.31).

Fig. 8.29 A person with
locked-in syndrome testing
the BCMI

Fig. 8.30 Each target image
is associated with a musical
instrument and a sequence of
notes

226 E. R. Miranda



The system requires just three electrodes on the scalp of the user: a pair placed
on the region of the visual cortex and a ground electrode placed on the front head.
Filters are used to reduce interference of AC mains noise and undesired spurious
signals, such as those generated by blinking eyes or moving facial muscles. SSVEP
data is then analyzed in order to extract band power across the frequencies corre-
lating to the flashing stimuli.

The person at the hospital trialled the system during a two-hour session. Being
familiar with eye gaze technology for her alternative communication system, she
grasped the concept quickly and rapidly demonstrated her skills at playing the
system with minimal practice. It took approximately 15 min to learn how to use the
system and she was able to quickly learn how to make melodies by increasing and
decreasing the level of her SSVEP signal.

Suggestions and criticism from the staff of the hospital, carers and the user, with
respect to improvements and potential further developments were collected. Two
important challenges emerged from this exercise:

• The system produced synthesized sounds, which were not enjoyed. And the
music sounded mechanical; it lacked expressivity. It was suggested that it would
be much more desirable if the music could be played on real acoustic musical
instruments.

• The system enabled a one-to-one interaction with a machine. However, it was
immediately apparent that it would be desirable to design a system that would
promote interaction amongst people. Similar resident patients of the hospital
wished for something that would enable them to do something socially, as a
group. Making music is the ideal activity for this. Therefore, a BCMI should
enable a group of patients to make music together.

The possibilities for applying the system within group settings were immediately
apparent and an exciting prospect for people with limited opportunities for par-
ticipating as an equal partner in a group.

Fig. 8.31 Notes are selected
according to the level of the
SSVEP signal
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8.5.2 Activating Memory and The Paramusical Ensemble

In order to address the abovementioned challenges, I adopted a slightly different
research methodology. I started by dreaming a musical composition and a perfor-
mance scenario first and then I considered how that would work in practice with the
BCMI technology.

In order to address the problem of lack of expressivity, I came up with the idea
that the patient would generate a score on the fly for a human musician to
sight-read, instead of relaying it to a synthesizer. Another idea would be to build a
robotic contraption to play a musical instrument. However, this would require
developments that were beyond the remits of the research that ICCMR was
developing at that time. There is much potential to be explored, however, com-
bining BCMI technology with musical robotics.

In order to promote group interaction, I established that the composition would
have to be generated collectively by a group of participants. Moreover, the gen-
erative process would have to be simple and clearly understood by the participants.
Also, the controlling-brain participants would need to clearly feel that they have
control of what is happening with the music. The concept of a musical ensemble
emerged, where severely motor-impaired participants and motor-able professional
musicians make music together: The Paramusical Ensemble (Fig. 8.32).

The end result is a new version of the SSVEP-based BCMI system and a
bespoke composition entitled Activating Memory: piece for a string quartet and a
BCMI quartet. Each member of the BCMI quartet is furnished with the new
SSVEP-based BCMI system, which enables them to generate a musical score in
real-time. Each member of the BCMI quartet generates a part for the string quartet,

Fig. 8.32 A rehearsal of The Paramusical Ensemble, with a quartet of locked-in syndrome
patients performing Activating Memory
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which is displayed on a computer screen for the respective performer to sight-read
during a performance (Fig. 8.34).

The new BCMI system works similarly to the one described above, with the
fundamental difference that the visual targets are associated with short musical
phrases. Moreover, instead of flashing images on a computer monitor, the ICCMR
team designed a device with flashing LEDs and LCD screens displaying what the
LEDs represent (Figs. 8.33 and 8.34). The LCD provides an efficient way to change
the set of options available for selection. Also, this device increases the SSVEP
response to the stimuli because it produces flashing rates with greater precision than
the rates that were produced using standard computer monitors. Subliminally, it
promotes the notion that one is using a bespoke musical device to interact with
others, rather than interacting via a computer.

I composed Activating Memory as a musical game involving four players, but it
is a cooperative game. There are no winners. The composition method is inspired
by Arca Musurgica, an extraordinary musical device built in 1650, in Rome, by
Jesuit Father Athanasius Kircher, and described in his book Musurgia Universalis
[7]. Kircher’s device consisted of a box holding a number of wooden slats. Each of
them contained a set of numbers, corresponding to sets of notes and rhythmic
patterns. These materials could be combined in a number of ways to form com-
positions. In the eighteenth century, a number of musical dice games inspired by

Fig. 8.33 Photo of our new
SSVEP stimuli device. In this
photograph, the LCD screens
are showing numbers, but in
Activating Memory they
display short musical phrases,
such as the ones shown in
Fig. 8.34
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Arca Musurgica, appeared in Europe, the most famous of which is Wolfgang
Amadeus Mozart’s Musikalisches Würfelspiel, or musical dice games.

Activating Memory is generated on the fly by sequencing four voices of pre-
determined musical sections simultaneously. For each section, the system provides
four choices of musical phrases, or riffs, for each part of the string quartet, which
are selected by the BCMI quartet (Fig. 8.35). The selected riffs for each instrument
are relayed to the computer monitors facing the string quartet for sight-reading.
While the string quartet is playing the riffs for a section, the system provides the
BCMI quartet with another set of choices for the next section. Once the current

Fig. 8.34 Detail from the SSVEP stimuli device, showing a short musical phrase displayed on the
LDC screen

Fig. 8.35 An example of two sets of four musical riffs on offer for two subsequent sections the
violoncello part
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section has been played, the chosen new riffs for each instrument are subsequently
relayed to the musicians, and so on. In order to give enough time for the BCMI
quartet to make choices, the musicians repeat the respective riffs until the next set of
options are available for selection. The system follows an internal metronome,
which guarantees synchronization.

Activating Memory has been publicly performed on a number of occasions
before we performed with The Paramusical Ensemble. This allowed us to make
final adjustments to the system and music. The Paramusical Ensemble’s first public
performance of Activating Memory took place on 17 July 2015, at the Royal
Hospital for Neuro-disability in Putney, London.

A new system is currently being designed to cater for a larger number of par-
ticipants and an increased number of choices for the ‘musical game’. In addition to
the increased sophistication of the signal processing and pattern matching methods,
AI is being deployed to increase the sophistication of the generative music method.
Instead of working with pre-composed musical phrases, I am developing a system
that generates those musical phrases from scratch. Machine learning methods are
being tested in order to endow the system with the ability to learn generative music
rules from examples and build the sequencing options automatically.

8.6 Concluding Discussion and Acknowledgements

In a paper which I co-authored for Computer Music Journal [9], I coined the term
Music Neurotechnology to refer to a new area of research at the crossroads of
Neurobiology, Engineering Sciences and Music. This chapter introduced the work I
have been developing to champion this field. I deliberately focused on my own
work here. However, this is not to say that there is nothing else being developed by
others. On the contrary. Research into BCMI is burgeoning [12]. And indeed, the
chapter by Vahri McKenzie, Nathan Thompson, Darren Moore and Guy Ben-Ary
in this volume presented an awesome approach to harnessing living neurones to
build a music system.

I consider the four pieces of work introduced above as different paths converging
to two intertwined long-term objectives. One is the development of programmable
processors based on cultured neuronal tissue. And the other is the development of
increasingly more sophisticated coupling between our natural brain and artificial
ones. Of course, I am interested in how these will impact music. However, the
impact of such developments traverses a much wider range of applications.

The first development is bound to lead to new kinds of computers, combining
silicon-based chips and biological tissue. What advantages these may bring about
that current computing technology does not offer are unclear. Nevertheless,
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attributes commonly found in biological systems, such as energy efficiency,
reproduction, self-repairing, holism and massive parallelism, to cite but a few can
be desirable for certain AI applications, although they are problematical to endow
digital computers with.

The SSVEP method used in the BCMI system introduced above is the best
currently available. A number of other methods have been proposed, but they are
not as reliable for deployment in the real world as SSVEP is. The great majority of
BCI systems developed to date exist in the realm of research laboratories only. Such
systems will become useful when they become controllable with signals produced
voluntarily and reliably from within the brain, rather than in response to external
sensorial stimuli. Research continues.

In the future we may be able to tightly couple hybrid biological computers with
our brains, as some sort of brain prostheses; e.g., to mitigate the consequences of
brain impairment or perhaps for human enhancement. Musical brain prosthesis?
That is a far-fetched thought. But it is not an implausible one.
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Appendix: Two Pages of Raster Plot

The full score is available in [13].
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9OnMakingMusicwithHeartbeats

Elaine Chew

9.1 Introduction

Representation and analysis of musical structures in heart signals can benefit under-
standing of cardiac electrophysiology aberrations such as arrhythmias, which can in
turn aid in the diagnosis and treatment of cardiac arrhythmias.

The typical time–frequency analysis of electrocardiographic recordings of car-
diac arrhythmias yields descriptive statistics that provide useful features for clas-
sification, but fails to capture the actual rhythms of the physiological phenomena.
Here, I propose to use music notation to represent beat-to-beat and morphological
feature-to-feature durations of abnormal cardiac rhythms, using articulation mark-
ings when emphasis is warranted. The rhythms and articulations captured in these
representations may provide cues to differentiate between individual experiences of
cardiac arrhythmia, with potential impact on personalising diagnostics and treatment
decisions.

Music generation is presented as an application of these rhythm transcriptions.
The physiological origins ensure that the music based on heart rhythms, even abnor-
mal ones, sound natural. The two-part music creation process draws inspiration from
music collage practices and comprises of a retrieval component followed by transfor-
mation processes, which can be applied at the melody or block levels, and complex
combinations thereof.

Themusic thus created can not only be used to identify distinct heart signatures and
what theymean for different cardiac conditions but can also provide a visceral record
of the experience of an arrhythmic episode. The pounding andfluttering of arrhythmia
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can often be physically uncomfortable. The music created from arrhythmic traces is
not easy listening; it is often provocative, but potentially instructive.

Music generated from arrhythmic hearts can have interesting implications for the
development of intelligent heart–brain–computer interfaces. Music has been shown
to have direct impact on cardiac response [1, 2]. This heart–brain response offers a
window into the listener’s true state of emotion, with potential for integration into
emotive interfaces for music performance. Like respiration, and with the appropri-
ate sensors, heart rhythms can also provide a feedback mechanism during music
performance, driven by, and influencing autonomic response [3].

An understanding of how abnormal heart rhythms can be precisely and organically
rendered into music thus opens up new opportunities and challenges for music and
Artificial Intelligence (AI). The goal here is to propose some ideas and examples of
these opportunities and challenges and to offer some possible solution approaches.

9.1.1 Why Cardiac Arrhythmias

The worldwide prevalence of cardiovascular disease (CVD) is high and is expected
to increase substantially in the future. In the United States, nearly half (48%, 121.5
million in 2016) of all adults have some formof cardiovascular disease [4].According
to the World Health Organization, of the 56.9 million global deaths in 2016, 40.5
million (71%)were due toNCD, and the leading cause of NCD is CVD (17.9million,
or 44% of NCD deaths) [5]. CVD is the cause of more than half of all deaths in the
European Region [6]. Hence, there is great interest in characterizing heart disease so
as to benefit CVD diagnostics and therapeutics.

Like other conditions that affect the heart, abnormalities in heart rhythms (arrhyth-
mias) are associated with morbidity and substantial economic costs. A study using
over half a million records in the UK Biobank ascertained that abnormalities of car-
diac rhythm affect >2% of adults, and the incidence rate of 0.5% per year is similar
to that of stroke, myocardial infarction and heart failure [7]. Another study based on
the Swedish National Study on Aging and Care (SNAC) data of adults aged 60 and
older, shows that the prevalence and incidence of arrhythmias rapidly increase with
age [8]. Baseline prevalence of atrial fibrillation (AF) was 4.9%, other arrhythmias
including premature ventricular complexes or ventricular ectopics (VEs), supraven-
tricular tachycardia (SVT) and supraventricular extrasystoles or ectopics (SVEs)
were 8.4%, first- or second-degree atrioventricular (AV) block was 7.1%. AF is the
most common arrhythmia, with a global prevalence of 33.5 million in 2010 [9].

There have been significant advances in the diagnosis and management of car-
diac arrhythmias over the past two decades [10], but the classification and descrip-
tion of arrhythmias remain crude and often bear little relation to the symptoms and
treatment outcomes. Arrhythmias are classified according to the source (atrial/supra-
ventricular, ventricular, junctional), rate (bradycardia is slow and tachycardia is fast)
and regularity (fibrillations are fast and irregular, and tachycardias are fast and reg-
ular).

Consider the case of AF. AF is irregular and often rapid, and is subdivided accord-
ing to duration: paroxysmal AF is sporadic, lasting more than 30s but less than a
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week; early persistent AF is continuous for more than a week but less than a year;
longstanding persistent AF is continuous for more than a year; and, permanent AF
is chronic and ongoing. These coarse descriptions fail to capture the actual rhythms
and feature variations in individual occurrences of AF. The classifications also have
little bearing on patients’ symptoms or the likelihood of success of ablations or other
treatments.

With the move towards precision medicine and the customisation of health care,
it will become increasingly important to be able to distinguish between individual
experiences of different arrhythmias.

9.1.2 WhyMusic Representation

Arrhythmias and other heart conditions are highlymusical, with their innate periodic-
ity and time-varying musical structures. The rhythms of arrhythmia closely resemble
those of music rhythms, both the natural ones encountered in performance and more
stylised ones found inmusical scores. The episodic nature of many arrhythmias, their
time evolution and the local patterns, have direct musical equivalents. The musical
language we use to describe these structures, therefore, offers tools to describe car-
diac anomalies in far greater detail than currently practiced.

Musicians have over the centuries developed a rich vocabulary for describing fre-
quency (pitch) and time (rhythm), and how these attributes change over time, notating
them so that they can be reproduced with high fidelity [11]. Over time, music nota-
tion has gained in sophistication to represent almost any imaginable rhythmic pattern,
pushing the limits of rhythm notation, rendering, and perception. Virtuosic uses of
notation include Haydn’s incongruousmetric and harmonic groupings [12], Brahms’
creative use of hemiolas and metrical shifts [13], Stravinsky’s playing with metrical
changes while the rhythm remained untouched [14](p.61), Elliott Carter’s inven-
tion of metric modulation [15] and Brian Ferneyhough’s breathtakingly complex
notations [16], just to name a few.

This rich vocabulary has been used to describe birdsong. In the nineteenth cen-
tury, Lunn showed brief notated examples of cuckoo and blackbird calls in a short
piece about the history of musical notation [17]. Composer Messiaen incorporated
many birdsongs into his compositions like [18]. For bird enthusiasts, Saunders sys-
tematically transcribed the songs of 201 birds from the Eastern United States [19],
representing pitch on the y-axis, duration on the x-axis, intensity with thick and thin
lines, pronunciation with loops for consonant sounds and wavy lines to indicate trills
and quality, but ignoring rhythm and repetitions of accented syllables [20]. These
are features that can be captured using music notation.

Music has also been used to capture linguistic prosody. Joseph Steele was one of
the earliest protagonists of this idea. He notated accent (pitch inflection), duration,
pause, cadence and force (loudness) using symbols on a five-line staff inspired by
that used in music [21]. In the early 1900s, Scripture notated the general melody
and length of sounds using the height placement and lengths of symbols and by the
number and heaviness of marks [22]. In opera, Arnold Schoenberg and Leoš Janáček
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used speech melody, not has an accurate representation of natural speech, but as an
approximate guide to singers to follow the pitch inflexions of speech. Research
developments in representing speech rarely used music notation. Noting that work
in speech rhythm is predominantly driven by a desire to classify languages than to
elucidate actual rhythms of spoken language, recentwork byBrown, Pfordresher, and
Chow builds on that of Steele to represent spoken meter using music notation [23].
Independently, Simões and Meireles have been using music notation to transcribe
speech prosody in Spanish, Portuguese and English, but with only a 4/4meter [24].

Given its flexibility and power to render strange and varied rhythms, using music
to represent the fine variations in arrhythmia is not a far-fetched idea. Scholars and
physicians have long noted the close connections betweenmusic and the heart. In the
Middle Ages, academic physicians wrote about the music of the human pulse [25].
The first use of music notation to describe cardiovascular anomalies was applied to
heart murmurs, first by the inventor of the stethoscope Réne Laennec [26] and more
recently by nephrologist Michael Field [27], reflecting the close listening necessary
for cardiac auscultation. These first instances of representing cardiac disorders using
music notation will be described in greater detail in later sections. As far as we know,
music representation of heart rhythm disorders like that in cardiac auscultation has
been shown only recently by Chew in [28]. The focus on details of actual rhythms
could potentially provide cues to the physiological phenomena of arrhythmias, and
make a difference in how arrhythmia is viewed, described and discussed, beyond
simple categories.

Music representation of heart rhythm disorders can give a detailed description
of the actual rhythms, and can potentially provide tools for characterising individ-
ual cases of the arrhythmias and the forms they take within a person. For example,
music notation can provide quick, visual information about differences between dif-
ferent kinds of ventricular premature beats or specific kinds of rhythmic irregularities
encountered in experiences of atrial fibrillation that could potentially be linked to
the severity of symptoms or treatment outcomes.

To make music representation scalable, transcriptions will need to be automated.
While many rhythm quantisation techniques exist, the specifics of the methods will
need to be tailored and fine-tuned for the new applications. Themusic representations
can also form the basis for further comparisons such as similarity assessment and
classification. These problems present new opportunities and challenges for music
and AI.

9.1.3 Hearts DrivingMusic

Taking the parallels between music and heart signals one step further, the strong
similarities between the human pulse and music means that heart data can be readily
mapped to music.

Using heart rate time series data calculated over 300-beat heartbeat windows and
mapping the numbers to 18 notes on a diatonic scale, Goldberger (alias Davids)
generated a set of melodies that, augmented with improvised accompaniment, were
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recorded in the Heartsongs CD [29]. More complex mapping techniques have fol-
lowed in the sonification of cardiac data. An example is Yokohama [30]’s work,
which maps cardiac data to melodic pitches: each heartbeat interval corresponds to
a Musical Instrument Digital Interface (MIDI) note, with intervallic changes such
as premature beats triggering more significant pitch changes. In [31], Orzessek and
Falkner passed heartbeat intervals through a bandpass filter and mapped them to
MIDI note onsets, pitch, and/or loudness to sonify heart rate variability (HRV). Bal-
lora et al. [32] further maps HRV data to pitch, timbre and pulses over a course of
hours for medical diagnosis.

Heart rate variability parameters have beenused to guidemusic generation. In [33],
Fukumoto et al. used the high-frequency component of HRV, linked to autonomic
nervous activity—as a fitness value in their Interactive Evolutionary Computation
system to generate music chord progressions. Heart data has also been used to shape
interactive performances in real time. In Votava and Berger [34]’s Heart Chamber
Orchestra, interpretations of its 12 musicians’ heartbeats, detected through ECG
monitors, and relationships between them influence a real-time score that is then
read and performed by the musicians from a computer screen. Related to this, physi-
ological measures like respiration, blood pressure and heart rate have been shown to
increase with music tempo [1], and decrease with lower tempo [3]. Prior work has
mainly focused on non-arrhythmic hearts.

Arrhythmia rhythms arise naturally in music; it is but a small step from rhythm
notation of cardiac pathologies to turning them into collage music. Since arrhythmia
rhythms arise naturally inmusic, findingmusic thatmatches the rhythms of a segment
of recorded arrhythmia then becomes a matter of retrieval. And the task of creating a
musical piece then becomes one of re-combining these retrieved segments in elegant
and interesting ways to form a collage composition.

Collage is a common compositional technique, one that is commonly used in AI
systems for music generation. David Cope’s EMI (Experiments in Musical Intelli-
gence) [35] is a classic example using the idea of recombinancy [36]. EMI takes
fragments of existing music and recombines them into new logical sequences to
produce music in the style of composers ranging from Bach to Scott Joplin. In [35],
Cope argues that recombinancy transcends music, citing that great books in English
comprise of recombinations of the 26 alphabet letters, andWestern art music consists
of recombinations of 12 equal-tempered scale pitch classes. The quality of the work
then depends on the ‘subtlety and elegance of their recombination’.

TheOMax family of human-machine co-improvisors byGérardAssayag et al. [37]
provides another example of recombinant music. The OMax systems generate music
sequences stylistically similar to that produced by the human co-improvisor. The
systems use factor oracles and create new music by recombining subsequences
from the original material. Pachet’s Continuator similarly generates stylistically
consistent music from a human improvisor but using variable Markov models [38].
Mimi [39] is another factor oracle-based system,with the addition of visual feedback.
In Mimi4x [40], the user can structurally engineer four recombination processes by
simultaneously controlling four Mimi instances. This was inspired, in part, by John
Zorn’s Cobra, where a composition consists of a set of cue cards with rules instruct-
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ing players what to do; a prompter decides on the combination sequence for the
performance.

In the same vein of musical material re-use, the RhythmCAT system [41] creates
new loops that mimick the rhythmic pattern and timbral qualities of a target loop
using a corpus of existing sound material. Audio inpainting is a specific instance of
collaging. Long audio signal gaps are patched using segments from other parts of
a recording that can be smoothly inserted using similarity graphs [42]; deep neural
networks are used to restore missing audio content at a smaller scale [43]. At the
extreme end, small grains of sonic elements are joined together to form larger acoustic
events in granular synthesis [44].

Collagemusic created based on heart rhythmswill adhere to the extracted rhythms.
Music generation to fit a rhythm template has been practiced in Herremans and
Chew’s Morpheus music generation system [45], which randomly assigns notes to
the rhythms of an existing piece, then alters them iteratively to more closely fit
the tension profile. Dabby’s chaos theory-driven music generation technique also
systematically transforms an existing composition by degrees [46]. Transcriptions
of sight-reading consist of faithfully notating flawed performances of pitches and
rhythms [28, 47], not unlike the accurate transcription of abnormal heart rhythms.

Music based on arrhythmias provides a visceral way to communicate the experi-
ence of an arrhythmia. The interrupted rhythms, the skipped beats, the sharp tran-
sitions, can all be captured and rendered through music. For some listeners, this
might be pleasurable. For others, it might be discomforting and disorienting. But it
will hopefully provide a lasting impression of what an arrhythmia feels like. The
upcoming sections will present historic notations of heart murmurs, followed by an
introduction to music notation of cardiac arrhythmias, then music created from the
rhythm transcriptions, and a short conclusion.

9.2 Music Notation in Cardiac Auscultation

Heart sounds form important cues for diagnosing valvular disorders. The opening
and closing of heart valves and the flow of blood through the valves produce the
rhythmic lubdub and periodic swooshing sounds of the beating heart. Here,we review
and discuss some of the earliest examples of applying music notation to representing
heart murmurs heard in the process of auscultation, before introducing notation for
cardiac arrhythmias in the next section.

9.2.1 Venous Hum

The inventor of the stethescope, Réne Laennec, who was both a physician and a flute
player, provided one of the earliest examples for using music notation to describe a
cardiac disorder, in this case, a benign heart murmur called the venous hum [26].
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Fig. 9.1 The first music representation of a heart murmur, the venous hum, a as proposed by
physician-musician Laennec; and, b following Laennec’s text description accompanying the initial
notation

Laennec integrated music notation into the description of the venous hum. His
original notation is shown in Fig. 9.1a, whichwill be adapted to Fig. 9.1b based on his
remarks. In his text, Laennec describes the undulating sequence of tones as passing
through three notes over a range of a major third: the highest note was a little too low
for a major third, but not quite low enough to warrant a flat. Duration-wise, the notes
were of roughly the same length, with the tonic being a little longer, but of variable
duration. The relative durations were denoted by dots atop the empty noteheads. The
revised transcription in Fig. 9.1b is at a lower register, ascribes a quarter flat to the
third and assigns actual note values to the longer tonic. It further approximates the
note values from Laennec’s notation, taking into account the fact that he mentioned
that the notes were of roughly equal but variable durations.

9.2.2 Heart Murmurs

More recently, another physician-musician Michael Field, a nephrologist and flutist,
also used music notation to describe heart murmurs, as well as regular heart
sounds [27]. Figure9.2 re-creates Field’s transcriptions of four left-sided heart mur-
murs. In contrast to Laennec’s notation, Field’s transcriptions are unpitched but
include fine details such as grace notes, articulations and dynamic markings to more
precisely indicate the shaping and evolution of the sounds. Acciacaturas mark the
initial snap in mitral stenosis; trills capture the rumbling quality of aortic and mitral
stenosis; decrescendo signs indicate the diminishing sound of aortic regurgitation.

Field observes that the close listening tomusical rhythms, articulation and dynam-
ics essential to deep enjoyment of musical performance are the same skills needed
to identify the characteristic patterns of heart sounds and valvular murmurs. The
music notation designed to represent performance variations such as articulations
and dynamics conveys the variations audible in common heart murmurs. Motivated
by a desire to teach student doctors how to identify these heart murmurs, Field uses
the music transcriptions in his teaching of cardiac auscultation. He further proposes
that the exercise be extended to other murmurs and cardiac conditions.
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Fig. 9.2 Representation of heart murmurs by Field [27] using music notation

9.3 Music Notation of Cardiac Arrhythmias

Pathologic heart rhythmsmap to recognisable musical rhythms that serve as defining
characteristics of different arrhythmias. This section demonstrates the feasibility of
using music notation to represent different cardiac arrhythmias. In [28], I presented
a few such examples. Here, these examples are further expanded and the notation of
other cardiac rhythm disorders is introduced.

9.3.1 PrematureVentricular and Atrial Contractions

Premature contractions, a.k.a. ectopics, are some of the most basic and common
arrhythmias that produce a distinctive abnormal heart rhythm.

Figure9.3 shows examples of rhythms produced by premature contractions.
Figure9.3a presents a transcription of sinus rhythm, normal beatsmarkedN,with pre-
mature ventricular contractions, also called ventricular ectopicsmarkedVE. Ectopics

Fig. 9.3 Ectopics, marked VE or SVE and indicated by upbow (V) marks, with a compensatory
and b non-compensatory post-extrasystolic pauses
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can be atrial, ventricular or junctional, but the musical rhythm representation, apart
from the labels, does not distinguish between the three.

In the figure, each ectopic is followed by a characteristic prolonged post-
extrasystolic pause, the time between the VE and the next N. The pause is fully
compensatory as the time between the preceding N to the subsequent N after the
ectopic is double the length of the preceding NN interval—the crotchet plus minim
equals three beats, which is two times the dotted crotchet.

In these examples, the onsets have also been marked as upbow (a V above the
notehead) or downbow (a square bracket above a notehead). A premature contraction
is shown with an upbow because its onset is often imperceptible, whereas the normal
beats aremarked downbow to indicate that they are strong onsets. The ones following
an ectopic have an even stronger emphasis, marked by the sforzandos because the
post-extrasystolic pause allows the heart to fill up with more blood than normal and
the next beat is especially strong.

Figure9.3b shows a transcription of premature atrial contractions. The ectopics
are marked SVE (supraventricular ectopic) and the normal contractions are marked
N. Because the time between the N onset just before and after each SVE is less than
double the length of the preceding NN (normal) interval, the pause is not compen-
satory. Note that post-extrasystolic pauses following VEs can be non-compensatory
and those following SVEs can be compensatory.

Premature contractions can recur in periodic patterns: every other beat (bigeminy),
every third beat (trigeminy), every fourth beat (quadrigeminy), etc.; they can also
occur in quick succession, in couplets or triplets. Figure9.3b shows a bigeminy
rhythm. Figure9.4 shows the electrocardiographic trace of a trigeminy with com-
pensatory pauses and two possible ways to transcribe the rhythm: one in simple triple
time, and the other in compound triple time.1

9.3.2 ATheory of Beethoven and Arrhythmia

The characteristic syncopated rhythms of premature contractions can be found in
composed music, such as that of Beethoven. Because of this striking similarity,
cardiologists Lüderitz [48, 49], Cheng [50] and more recently Goldberger et al. [51]
amongst others, have speculated that Beethoven may have suffered from arrhythmia,
and that distinctive rhythms in his compositions represent musical electrograms of
his abnormal heart rhythms. The commonly cited example is the dotted rhythm that
features prominently in the opening to his piano Sonata in E� (“Les Adieux”), Op.
81a, shown in Fig. 9.5. An interpretation of this dotted rhythm as that of premature
beats would suggest that the main beats are the ectopic beats, marked ‘E’ in the
figure, followed by (non-compensatory) pauses; normal beats are marked ‘N’. If the
normal beat is three 16 notes’ duration, then the extra-systolic pause, at five 16 notes,
is not quite twice the normal beat, and so is not fully compensatory.

1ECG of trigeminal premature ventricular contractions [Online image]. (2013). Retrieved April 16,
2017, from http://floatnurse-mike.blogspot.com/2013/05/ekg-rhythm-strip-quiz-123.html.

http://floatnurse-mike.blogspot.com/2013/05/ekg-rhythm-strip-quiz-123.html
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Fig. 9.4 Electrocardiographic trace and transcriptions of a trigeminy rhythm

Fig. 9.5 Dotted rhythm in Beethoven’s “Les Adieux” Sonata, Op. 81a

Fig. 9.6 Dotted rhythm in Beethoven’s Sonata No. 18 in E�, Op. 31 No. 3
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Another example of such a dotted rhythm can be seen in an earlier sonata, Op.
31 No. 3 shown in Fig. 9.6. Again, the normal and ectopic beats are marked ‘N’ and
‘E’ in the score. It is worth noting that many rhythms of arrhythmia can be found
in music, so ascribing such rhythms to a composer’s possible cardiac condition may
lead to false positive conclusions.

9.3.3 Ventricular and Supraventricular Tachycardias

Tachycardia is an abnormal heart rhythm where the heart beats regularly but faster
than normal, even when the body is at rest. Tachycardias are labelled according to
their source: ventricular or supraventricular.

Tachycardias can be triggered by ectopics or induced with short bursts of fast
pacing, as was the case for the recording shown in Fig. 9.7. Figure9.7b shows only
the electrocardiographic (ECG) signal from Lead II; Fig. 9.7a displays the same
ECG segment with an added layer showing the short burst of fast pacing (the three
vertical lines) that triggered the ventricular tachycardia. The steady crotchet rhythm
at about 71 bpm breaks into a fast trot with quavers at about 85 bpm, i.e. a pulse

Fig. 9.7 Onset of ventricular tachycardia (anonymised research data from Barts Heart Centre)
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rate of nearly 170 bpm, as shown in Fig. 9.7c. The tachycardia, the fast rhythm,
continues for over 30 s before it is terminated with anti-tachycardia pacing (not
shown). Supraventricular tachycardia produces a similar kind of rhythm, but the
ECG trace has a different morphology.

9.3.4 Atrial Fibrillation

Atrial fibrillation (AF) is a common condition characterised by fast and irregular
rhythms. On the ECG, an additional clue is the lack of P waves. Figures9.8 through
9.10 show excerpts of ECG recordings of AF sequences extracted from a single
Holter monitor recording, with timestamps 16:52:59, 17:38:26 and 20:07:45. These
examples were first introduced in [28]. Each shows some irregular rhythms typical
of AF.

Music transcriptions of AF rhythms require manymoremetric and tempo changes
as a result of this irregularity. Figure9.8 contains a metric modulation, a proportional
change in tempo, between bars one and two, like that used by Elliot Carter. To capture
the rhythmic variation, the tempo went from 94 bpm to 126 bpm, a 3:4 tempo ratio;
as notated, a dotted quaver in the previous tempo (94 bpm) is equivalent to a crotchet
in the new tempo (126 bpm). All three examples contain frequent meter changes, like
in the music of Stravinsky. The first transcription, Fig. 9.8, goes from 3

4 to
4
4 to

2
4 to

3
8 .

The second transcription, Fig. 9.9, alternates between 4
4 and

7
8 . And, finally, Fig. 9.10,

goes from 7
8 to 3

4 back to 7
8 to 5

8 to 6
4 to 5

8 to 6
8 . There are high degrees of variability

in the duration contrast but also in the underlying tempo of the transcriptions. The
notated tempi shown range from 94 bpm in Fig. 9.8 to 125 bpm and 188 bpm in
Fig. 9.9 to 214 bpm in Fig. 9.10.

Because these are subsequences retrieved from a long recording for human inspec-
tion, they also embed anomalous behaviours, such as strings of broad complex beats
labeled ‘V’ (ventricular) in the ECG strip. A series of broad complex beats is usually
labelled VT (ventricular tachycardia) but they can also arise in AF.

Fig. 9.8 ECG and transcription of AF excerpt Thu 16-52-59 Couplet 563ms (Summary of event)
1min HR 83 BPM
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Fig. 9.9 ECG and transcription of AF excerpt Thu 17-38-26 VT 4 beats 200 bpm (summary of
event) 1min HR 105 BPM

Fig. 9.10 ECG and transcription of AF excerpt Thu 20-07-45 VT 5 beats 210 bpm (summary of
event) 1min HR 109 BPM

Fig. 9.11 Atrial flutter with 3:1 block and 4:1 block

9.3.5 Atrial Flutter

Atrial flutter is an arrhythmia caused by a re-entry circuit in the right atrium that
causes the atria to pulse at a rapid rate. The atrial rate is determined by the size
of the atrium. As a result, it settles reliably around 300 bpm. Only some of these
impulses are conducted to the lower chambers of the heart, the ventricles, due to
the heart’s own gating mechanism, the atrioventricular (AV) node. The ventricular
rate is determined by the AV conduction ratio—whether every other atrial beat is
conducted to the ventricles, every third beat or every fourth beat, etc. For example, a
2:1 AV conduction ratio leads to a ventricular rate of 150 bpm, and a 4:1 ratio leads
to a rate of 75 bpm.

Figure9.11 gives an example of atrial flutter; notes depicting the atrial contrac-
tions have stems pointing up, and notes marking ventricular contractions have stems
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pointing down. The first bar demonstrates a 3:1 block; the second bar a 4:1 block
and so on. The underlying atrial rate of 300 bpm is indicated in the tempo marking.

This concludes the discussion on notating heart rhythms. The next section
describes the collage and transformation processes involved in generating music
from abnormal heartbeats.

9.4 Music Generation from Abnormal Heartbeats

Drawing from a growing collection of collage music based on cardiac electrophysi-
ology aberrations, this section will introduce two main ideas underlying the creation
of these pieces. The examples are selected from a collection of seven Little Etudes for
beginner-to-intermediate piano players released forWorldHeart RhythmWeek 2020,
the Arrhythmia Suite (2017–2018), and the Holter Highlights introduced in [28].

The following sections discuss the retrieval task involved in finding appropriate
source material for the arrhythmia pieces, and the matter of musical transformation
to make the retrieved segments fit smoothly.

Table 9.1 Collage music based on cardiac electrophysiology aberrations

Title Source

Little etudes (2020) [52]

1. Atrial fibrillation [53] Chopin: Nocturne Op.62, No.1 in B

2. Atrial flutter [54] N/A

3. Bigeminy Sea-snatch [55] Barber: Hermit Songs: Sea-Snatch

4. The Girl with the Labile T Waves [56] N/A

5. Per Torsade [57] N/A

6. A La Bru Rondo Turk [58] Brubeck: Blue Rondo A La Turk

(Ventricular Ectopics)

7. Wenckebach Lullaby [59] Brahms-Godowsky: Wiegenlied

Arrhythmia suite (2017–2018)

I. 161122 VT before during after
ECG [60]

Holst: The Planets: Mars

II. 161102 VT4 before after UNI [61] Chopin: Ballade No. 2 in F

Holter highlights (2017)

I. Mixed meters [62, 63] Larsen: Penta Metrics: III

II. Siciliane [64, 65] Bach: Flute Son No.2 in E�: Siciliane

III. Tango [66, 67] Piazzolla: Le Grand Tango
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9.4.1 A Retrieval Task

Selected pieces created from ECG recordings of cardiac arrhythmias are catalogued
in Table9.1. Alongside the name of each arrhythmia piece is the music source for the
piecewhen one exists. The pieceswere collaged byChew; rhythm for theArrhythmia
Suitewere transcribed using a combination of automated tools and manual revisions
by Krishna, Soberanes and Ybarra, and Orini and Lambiase provided the source
sequences. Included in the table are links to audio and video recordings of these
pieces. The YouTube videos show performances of the pieces. For the Little Etudes,
the blogpost and their individual YouTube video descriptions also contain links to
the full scores. The Vimeo videos for theHolter Highlights show the correspondence
between the ECG and the rhythm transcription, and between the modified source and
the ECG.

The very first task in the process of creating the pieces is the identification of an
appropriate source piece from which to draw music material for recombination and
transformation. The choice of pieces not only relied on matching the most salient
rhythmic patterns, the pitch patterns in the chosen pieces must also fit the kinds of
duration prolongations and reductions found in the particular ECG sequence. Only
one piece is used in order to ensure stylistic coherence through consistency ofmusical
language use. Thus, it is important that the source piece can encompass the variations
in the rhythms of the arrhythmia ECG.

While transcribing the rhythm sequence for the first piece in the Arrhythmia
Suite, Ashwin Krishna noted that the short bursts of fast pacing used to induce
the ventricular tachycardia in ECG sequence 161122 produced the same rhythm
as that in Mars in The Planets, Op.32, by Holst–see Fig. 9.12. Thus, Mars became
the source piece for Arrhythmia Suite: I. 161122 VT before during after ECG. The
militant regularity and ratcheting intensity of Mars provided good material suitable
for adapting to the ventricular tachycardia episode in the piece.

In the Little Etudes, beginning with the ectopics, the 2:3 pattern of the ventricular
bigeminy in No. 3 is captured by the 5

8 rhythm of Samuel Barber’s Sea-snatch from
his Hermit Songs, Op.29, see Fig. 9.13a. Extra emphasis, a sforzando (sf), is put on
the forceful regular beat following the early ventricular beat and pause. Recall that
during the pause, the heart fills up with more blood than usual, causing the next
heartbeat to be particularly forceful. The 2 + 2 + 2 + 3 rhythm of Dave Brubeck’s
BlueRondoALaTurk renders perfectly the rhythmic sequence of ventricular ectopics
with compensatory post-extra-systolic pauses in Little Etude No. 6. This rhythmic
ostinato corresponds exactly to the middle portion of Fig. 9.3a.

It is not common that a pre-existing musical rhythm fits the arrhythmia rhythm
exactly, as in the above examples. Often, rhythmic adjustments or re-arrangements
have to be made. The next section presents some of the transformations required and
how this impacts the choice of the source music.
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9.4.2 AMatter of Transformation

Here, we explore a few of the techniques that were used to adapt existing musical
rhythms to those extracted from the ECGs.

Melodic Transformations The Siciliane in theHolter Highlights, Fig. 9.15, is based
onBach’s Siciliane from theFlute SonataBWV1031.Theflutemelody is particularly
adept at fitting to the rhythm of the ECG sequence of Fig. 9.8. This is because the
note at the top of the upward leap of a fourth lends itself to flexible elongation in
order to fit the couplet (two wider ventricular beats) in the ECG, which is followed
by a pause (Fig. 9.14).

The Wenckebach Lullaby, Little Etude No. 7, presents another example of a
warped melody. The Wenckebach block is a second-degree atrioventricular heart
block where there is some obstruction of the conduction from the atria to ventricles.
It is characterised by progressively elongating PR intervals that reset when a com-
plete beat is dropped. The Brahms Lullaby is chosen because the melody not only
fits rhythmically but also lends itself to the intervallic prolongation characteristic of
the Wenckebach block, leading to a dramatic dropped beat at the end of the phrase,
as shown in Fig. 9.16.

In the unmetered Little EtudeNo. 1, the irregular rhythms of slow atrial fibrillation
fits the elastic rhythms of romantic playing styles, which tend to flexibly bend time
through musical rubato. To depict the fibrillatory waves of AF, Chopin’s Nocturne
Op.62 No.1, which has many trills, is used as source material. Figure9.17 shows (a)

Fig. 9.12 Sources for Arrhythmia Suite: I. 161122 VT before during after ECG—ECG showing
fast pacing bursts to trigger ventricular tachycardia (signal from Lead II and RV3-4) and beginning
of Holst’s Mars for two pianos (condensed to two staffs)
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Fig.9.13 Excerpts fromLittle EtudeNo. 3: BigeminySea-snatch andLittle EtudeNo.6:Ventricular
Ectopics incorporating different ventricular ectopic rhythms

Fig. 9.14 Excerpt from Bach’s “Siciliane” and its modification to fit the AF rhythm

Fig. 9.15 Siciliane: Thu 16-52-59 Couplet 563ms (Summary of event) 1min HR 83 BPM and J.
S. Bach’s “Siciliane” from his Flute Sonata No. 2 in E� major, BWV 1031

the original Chopin nocturne excerpt and (b) its transformed version. Although the
two sound very similar, they are visually quite different. To simplify the physical
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Fig. 9.16 Excerpts from a Little Etude No.7: Wenckebach Lullaby, showing the lengthening PR
intervals leading up to the dropped beat; and, (b) the corresponding Brahms-GodowskyWiegenlied
segment

movements, the right-handmelody with the trills has been split between the right and
left hands in the little etude. The original nocturne has regular notated rhythms. The
written melodic notes of the little etude are explicitly of irregular lengths. When ren-
dered as written, the little etude actually closely resembles how the original nocturne
might be performed.

Block Recombination Holter Highlights: I. Mixed Meters, Fig. 9.18, is based on
the third of Libby Larsen’s Penta Metrics. The frequent 7

8 and 5
8 meters in the ECG

sequence shown in Fig. 9.10 fit naturally into Larsen’s pedagogical piece, which is
written in 7

8 time. The Holter Highlights piece is based on a re-combination of the

elements of Larsen’s original music shown in Fig. 9.19: (a) the 7
8 motif (truncated in

the 5
8 bar); (b) the descending octaves; and, (c) right hand repeated chord pairs with

step-wise moving left hand octaves.

Composite Methods The transition to ventricular tachycardia in the Arrhythmia
Suite: I (161122 VT before during after ECG) occurs in bars 19–25, shown in
Fig. 9.20. These bars employ a combination of melodic transformation and multi-
block recombination. This transition corresponds to the ECG shown in Fig. 9.7. The
note material in the initial bar with the triplet figure is derived from bar 70 in Holst’s
Mars, shown in Fig. 9.21a. The chords preceding the onset of tachycardia quote
from the Piano I part in bars 118–124 in the original Mars. To join the first bar of
the Arrhythmia Suite excerpt with the ensuing chord sequence, the pitch class of the
first chord is altered from G to G� to fit with the preceding harmonic context while
acting as A� to fit with the subsequent chords. The left-hand quaver G’s mark the
start of the tachycardia, and the right hand joins in by re-iterating the chord pattern.
The repeated quaver octaves are a simplification of the original rhythmic ostinato in
the Piano II part.
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Fig.9.17 Excerpts fromLittle EtudeNo. 1: Atrial Fibrillation showing flexible, unmetered rhythms
embellished with trills representing fibrillatory waves

Fig. 9.18 Mixed meters: based on Thu 20-07-45 VT 5 beats 210 bpm (Summary of event) 1min
HR 109 BPM and Libby Larsen’s Penta Metrics, movement III
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Fig. 9.19 Excerpts from Libby Larsen’s Penta Metrics, movement III, source material for Mixed
Meters

Fig. 9.20 Excerpt from Arrhythmia Suite: I. 161122 VT before during after ECG (bars 19–25),
corresponding to ECG sequence shown in Fig. 9.7
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Fig. 9.21 Excerpts from Mars from The Planets, Op. 32, by Gustav Holst

9.5 Conclusions and Discussion

The preceding sections have given an introduction to the representation of car-
diac rhythms using music notation, beginning by motivating the study of abnormal
heart rhythms, and proposing that music representation of actual heart rhythms may
offer insights into arrhythmia variations and subtypes. After a short introduction to
uses of music notation to represent heart murmurs, examples of musical represen-
tations of arrhythmias followed, covering ectopics, tachycardias, atrial fibrillation,
and atrial flutter. These transcriptions, deployed at scale, could potentially yield cues
for arrhythmia symptoms and treatment.
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Music generation from abnormal heartbeats was then described as a two-part
process of music retrieval followed by musical transformation, which can be applied
at the melodic or block levels, and complex combinations thereof. The generation
process draws inspiration fromAI techniques for music generation by sampling from
and transforming existing compositions. It also presents interesting new problems
not yet a staple of music information research.

Together, the challenges of representing arrhythmias with music and those in
turning rhythm transcriptions to music include accurate, reproducible, yet flexi-
ble and comparable representations of ECG features of abnormal heartbeats using
music; stratification of transcriptions into subclasses; elegant solutions to combining
and transforming music to fit arrhythmia rhythms; creative matching of arrhythmia
sequences to music sources. The success of these tasks relies on understanding the
nuances of these new problems in a new domain and finding appropriate and efficient
solutions to them.

Being able to render abnormal heart rhythms precisely and accurately into music
has far-reaching consequences not only for gaining insights into cardiac conditions
but also for expanding the scope of biologically sourced music. The physiology of
the heart constrains music generated from heartbeats to natural-sounding rhythms,
even in states of arrhythmia, thus ensuring satisfactory and often provocativemusical
results. Furthermore, the importance of heart–brain interactions in cardiac arrhyth-
mias [68] suggests future possibilities for integrating affective considerations into
the making of music with heartbeats.

Acknowledgements These results are part of a project that has received funding from the Euro-
pean Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (Grant agreement No. 788960).
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10Cognitive Musicology and Artificial
Intelligence: Harmonic Analysis,
Learning, and Generation

Emilios Cambouropoulos and Maximos Kaliakatsos-Papakostas

10.1 Introduction

A listener is able to discern diverse aspects of music when exposed to musical
stimuli: from elementary features of the musical surface (e.g., a discrete note or a
chord or a certain timbre), to salient musical patterns (e.g., motives, themes,
cadences), and even, high-level composer or stylistic features. A listener may find,
for instance, a particular harmonic progression intriguing, inducing new exciting
responses, even though the listener is not able to identify constituent chords and
scale degrees, or a melody might sound emotionally moving to a listener, even if (s)
he is not able to name the individual notes or intervals. Harmony, melody, rhythm,
texture, and timbre (among others) are aspects of music that a listener is able to
appreciate, encode, and remember, despite not having explicit access to underlying
components.

Through the centuries, music theorists, analysts, philosophers have attempted to
describe (via introspection) and to formalize, core musical concepts and processes,
such as scales, chord types, harmonic functions, tonality, rhythmic structures, types
of texture, form, and so on. In more recent years, computational methodology, and
more specifically Artificial Intelligence (AI) has offered new means of precision and
formalization, enabling the development of models that emulate musical intelligent
behaviors. This way, musical theories and hypotheses drawing not only on tradi-
tional music knowledge, but also on research in music cognition, linguistics,
semiotics, logic reasoning, neuroscience, and so on, have given rise to actual
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musical analytic/compositional/performance computer programs that may be tested
in a more systematic manner and may give rise to useful computational
applications.

Nowadays, Artificial Neural Network (ANN) architectures, and more specifi-
cally Deep Learning methods, appear in the minds of many researchers to have
superseded the Good Old-Fashioned Artificial Intelligence (GOFAI) paradigm; for
many younger AI researchers, Artificial Intelligence is Deep Learning. The
hypothesis is that given sufficient amounts of data represented appropriately, and
adequate deep learning algorithms, any musical intelligent behavior can be emu-
lated successfully. So, what is the point of developing sophisticated AI programs
that employ ad hoc knowledge-engineering approaches (drawing on music theory
or music cognition) when a generic ANN approach may be at least equally effective
(not to mention that it is more flexible and adaptive)?

In this chapter, we discuss aspects of Cognitive Musicology with a view to
presenting reasons why it is relevant in the context of current developments in the
field of AI. Laske [31] states that “cognitive musicology has as its goal the mod-
eling of musical intelligence in its many forms.” (p. 44). According to Laske,
“computer programs serve to substantiate hypotheses regarding musical knowledge,
and second, they are the medium for designing structured task environments (such
as programs for interactive composition). While it is not a prerequisite for building
intelligent systems to have a fully-fledged theory of the activity one wants to
support, it is certainly more effective to design such systems on as much theory as
one can harness.” (p. 45). We assert that the insights drawn from cognitive psy-
chology, and also music theory, play an important role in building musical models
(combining symbolic AI with statistical learning) that can serve both as a means to
broaden our understanding of music per se, and also to create robust sophisticated
systems for music analysis, composition, and performance. Computational mod-
eling, as a means to test musical hypotheses, has enriched musical knowledge in the
domain of musical analysis [34] and music cognition [42], enabling, at the same
time, the development of useful musical systems and applications.

In the next section, we discuss briefly general issues regarding the advantages
and disadvantages of symbolic versus deep learning methodologies. Then, we
present two case studies that show the effectiveness of classical symbolic AI in
music modeling (coupled with simple statistical learning techniques): firstly, we
examine the modeling of melodic harmonization showing strengths and weaknesses
of both the standard AI and deep learning methodologies, and secondly, we present
a creative melodic harmonization system based on Conceptual Blending Theory
[11] that operates on a high reasoning level allowing sophisticated combination of
abstract chord features with a view to generating novel harmonic spaces. In both of
these cases, we argue that the classical symbolic approach to musical intelligence
drawing on music cognition research, coupled with simple statistical learning
techniques, provides a reasonable way to address complex phenomena of musical
listening, performance, and creativity effectively.
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10.2 Classical Artificial Intelligence Versus Deep Learning

Before attempting to give reasons for pursuing cognitive musicology research
following the more traditional symbolic AI approach (or at least a hybrid AI and
statistical learning approach), a brief discussion on core cognitive processes of
acquiring knowledge is due. Such processes involve, among other things,
abstraction, categorization, inference, use of prior knowledge, encoding, and
transmission of knowledge at a high-level symbolic level.

Information abstraction or compression appears to be a universal innate mech-
anism of cognition and consciousness. It is essential not only for humans in their
everyday interaction with the surrounding environment and with other humans, but
for other non-human animals as well. Feinberg and Mallatt [12] maintain that the
reduction of information received from the visual sensory system to a more abstract
representation of the visible world facilitates the involvement of memory in deci-
sion making, this applies to the auditory and other sensory systems as well. For
example, a predator with the ability to form abstractions of the perceived world
requires significantly less memory capacity to remember the existence of prey at a
specific location while having no visual contact with it. This allows the predator to
develop stealth hunting techniques that do not require constant visual contact with
the prey, giving the predator an advantage in species evolution. While hunting
techniques are irrelevant to music cognition, the aforementioned example shows
that abstraction in representing elements in the perceived world, and the advantages
in memory requirements that this abstraction yields, is part of a fundamental
mechanism in the evolution of species.

Information abstraction, or more formally put, information compression, is a
cognitive mechanism constantly at play at all levels of music understanding. Not
only the extraction of the musical surface per se (i.e., the actual note
pitches/durations/beats) from the actual audio signal involves a very sophisticated
information abstraction process, but also the extraction of higher-level meaningful
structures from the musical surface. This abstraction mechanism allows listeners to
move beyond the information layer that the musical surface offers and focus on
holistic aspects of the musical stimulus, identifying or appreciating elements that
form on higher levels of information organization, such as a harmonic style, or
thematic material or a cadential pattern.

Compressed data and information (learned from data or taken as prior knowl-
edge) may be represented by symbols. Symbols point to (signify) something quite
complicated in all its fine detail such as a physical object, an event, an idea. Humans
use symbols to communicate between them, transferring rich information in a
succinct manner (just a few words may convey rich meanings that would otherwise
require extremely large and complex data structures to pass on the same meanings).

The so-called “deep neural networks” present the important ability to build
knowledge on higher-levels of representation. Deep learning is essentially a sta-
tistical technique for classifying patterns, based on sample data. It maps a set of
inputs to any set of outputs; for instance, in speech recognition, an Artificial Neural
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Network (ANN) learns a mapping between a set of speech sounds and a set of
phonemes. Deep learning systems work particularly well for parsing and classifying
raw sensory input data in the visual and/or auditory domain.

The success of ANNs learning from data is restricted by the specific training
dataset context. The efficiency of such methods deteriorates when insufficient
amounts of training data are available, when the domain of application is shifted,
and when intelligent reasoning is required for rapid adaptation to new environments
[48]. But how can humans, who also learn from stimuli in their environment, so
easily perform domain shift and zero-shot learning (i.e., identification of an element
based on specifications that do not appear in the training data)? For instance, how is
a child able to identify that an animal is a zebra at first sight, having available only
the description that “zebra is a horse with black and white stripes”?

In a study presented by Dubey et al. [8], a similar question was asked: Why do
humans perform well in games they play for the first time—or at least better than
machine learning systems trained to perform well at other games? In this study,
human participants were asked to play different versions of a platformer retro-style
computer game (with similar goals and level design as Atari’s “Montezuma’s
Revenge”), in each version, alternative visual textures were devised for masking the
functionality of different components of the game. The aim of this study was to
explore the importance of “human priors”, e.g., prior knowledge on the function-
ality of stage components, in game performance. The alternative textures were used
as a means to “camouflage” different visual components, gradually disabling visual
identification of the function these components imply; e.g., ladders for climbing,
enemies to avoid, keys to open doors, etc. Some versions also included altered
physical qualities (e.g., effect of gravity) and interactions between game agents, but
with preservation of the underlying structure, goals, and rewards.

Dubey et al. [8] showed that as the visual interface of the game was altered, the
performance of the human players degraded. This fact indicates that prior knowl-
edge is a crucial factor that allows humans to achieve good performances in
first-time encountered games. Reinforcement learning systems need to build a
model for identifying the functionality of all components of the environment from
scratch, after numerous “blind” trial and error simulations; and this hard-earned
knowledge is strictly domain-dependent, rendered worthless for new games. There
are promising signs that task-agnostic priors can be acquired from data in
dynamical systems [9]. However, ad hoc modeling remains to this day an effective
way of tackling various problems, since it offers the possibility to model elements in
an environment through a “hand-crafted” definition of what the priors are.

Human perception of music relies on prior knowledge organized in complex
networks of concepts on many levels. The human brain groups together the
numerous harmonics of a plucked string into an single integrated tone. Multiple
notes occurring simultaneously are grouped into a chord, which is an entity in its
own right, carrying functions, meaning, even emotions, that extend beyond the
isolated role of each constituent note. The notion of the root of a chord, for instance,
is attributed to a note (often missing from the simultaneity that constitutes the
chord) depending on complex psychoacoustic phenomena. Such concepts can be
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modeled as priors in a computational system; for instance, the General Chord Type
(GCT) representation enables automatic encoding of note simultaneities in a form
that is close to traditional chord types based on consonance/dissonance optimiza-
tion, root, and scale degree identification [4]. Of course, such priors can be learned
implicitly from data, at the cost of having to collect and annotate enough data.
Having such priors, however, explicitly available in symbolic models, makes it
possible to develop creative systems that can tackle complex tasks with access to
relatively small datasets—or even with toy-example models of musical spaces.

Symbolic AI’s strengths lie in the fact that symbolic representations are abstract
and can, therefore, be generalized and transferred in different tasks, and addition-
ally, due to their affinity to language, they can be easily interpreted and understood
by humans. Symbols enable transferring knowledge to other occasions/problems,
since knowledge embodied in a symbol is abstract and can be applied to other
actual instances; for instance, characterizing a newly heard piece as Jazz transfers
our broader knowledge of Jazz to that specific piece.

Reasoning involves combining and manipulating symbols allowing arguments
and inferences to be made. Symbolic AI implements symbolic reasoning in
rule-based or knowledge engineering systems. In such systems, humans must first
study, learn, and model how certain input relates to a specific output, and then
hand-craft the rules into a program. Such rules may rely on distilled knowledge
acquired through experience and/or on general cognitive principles. Symbolic AI
has a number of drawbacks the most important of which is that, as it requires
manual coding, it does not allow dynamic change and it cannot capture the com-
plexity of the real world (see [36] on pros and cons of symbol systems). This
problem can be partly addressed by introducing statistical learning that allows some
amount of adaption of rules to specific contexts.

Deep learning models, on the contrary, are flexible, adaptive, easy to build as
they do not require fully fleshed-out models, and they are resilient to noise or
incomplete information. They have, however, limitations particularly in high-level
cognitive tasks where generalization is required; ANNs tend to fail disastrously
when exposed to data outside the pool of data they are trained on. As they are
black-boxes, it is not clear how they work, what is learned and how intermediate
activation patterns may be interpreted. Additionally, they are data-hungry requiring
huge amounts of data to capture even simple concepts and need enormous com-
puting power and storage space (see [33] for a critical appraisal).

Recently, attempts are made to reconcile symbolic systems, that are strong in
abstraction and inference, with deep learning that excels in perceptual classification
[13]. Combining symbolic AI with deep learning may assist in addressing the
fundamental challenges of reasoning, hierarchical representations, transfer learning,
robustness in the face of adversarial examples, and interpretability (or explanatory
power).

The different approaches of Symbolic AI and ANNs in music research are
discussed in [44, 50] and in the volume on Music and Artificial Intelligence [35].

10 Cognitive Musicology and Artificial Intelligence … 267



In this chapter, emphasis is given to the advantages of traditional symbolic
computational modeling of musical tasks. Building computational systems that rely
on cognitive-based and/or music-theoretic-based systematic descriptions of pro-
cesses involved in mapping certain input to certain output, enables the development
of sophisticated models that may have both theoretical and practical merits. In terms
of theory, our understanding of music per se is enriched, traditional assumptions are
tested, empirically-derived cognitive principles are evaluated, and new musical
knowledge is acquired. As knowledge is explicit in such AI models, sophisticated
practical systems can be created that allow intelligent interaction with
musicians/users through the manipulation of meaningful symbolic representations
(e.g., educational systems, compositional assistants, interactive performers,
content-based music search engines, and so on). Such systems make use of prior
sophisticated knowledge acquired through years (or even centuries) of experience
and introspection, and also capitalize on findings resulting from empirical work in
music cognition. This way, sophisticated models can be built relatively quickly
combining diverse components on different hierarchical levels of organization.
Additionally, symbolic systems reinforced with simple statistical learning capacities
can adapt to different contexts based on relatively small training datasets allowing
this way a certain degree of flexibility. Furthermore, such models can bridge dif-
ferent conceptual spaces enabling the invention of novel concepts not present in the
initial input spaces. All these qualities will be discussed in more detail in the
following sections, focusing on computation models in the domain of musical
harmony (analysis and generation).

10.3 Melodic Harmonization: Symbolic and Subsymbolic
Models

Various methods for music analysis and generation—and specifically harmoniza-
tion—following the classical AI approach have been presented during the past
decades. The first score generated by a computer, the Illiac Suite string quartet
composition in 1957 [19], included a mix of rule-based approaches and Markov
transition matrices for composing cantus firmus music, rhythmic sequences, and
four voice segments. The first attempts in building cognitively-inspired computa-
tional models should probably be attributed to the pioneering work of Christopher
Longuet-Higgins, a cognitive scientist that proposed among others, a key-finding
[28] and a meter-finding [29] model that processes notes in a left-to-right fashion
based on fundamental music theoretic and cognitive concepts (collected essays can
be found in [30]).

Among the most complete approaches to modeling four-part chorales in the style
of Johann Sebastian Bach was presented by Ebcioglu [10] in the CHORAL expert
system, which comprised of 270 rules to represent the knowledge for harmonizing a
melody. A review of such purely hand-crafted rule-based approaches can be found
in Pachet and Roy [37], while a more recent study of such systems was presented
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by Phon-Anmuaisuk et al. [39]. Rule-based methods are useful for examining the
nuts and bolts of a musical style and for studying how several components or
musical concepts are interrelated towards forming what listeners identify as a
coherent musical style.

A more generic approach to rule-based modeling of harmony, is to model a
wider range of harmonic genres through generative grammars. Rohrmeier [47] and
Koops et al. [27] have presented grammars that model tonal harmony and
Granroth-Wilding and Steedman [14] develop grammars that describe Jazz style
harmony. Grammars offer a clear and powerful interpretation of how high-level
harmonic concepts are hierarchically organized and what their relations and func-
tions are. Harmonic grammars so far enable primarily describing musical surfaces
in terms of chord symbols, generated symbols, however, cannot be rendered to
actual musical surfaces. It is, also, still difficult to adapt such grammars to diverse
styles, since their formulation is based on specific alphabets of chord labels and
(manually-constructed) hierarchical relations between them.

The methods discussed so far are not adaptive, in the sense that specific rule-sets
represent specific musical styles; representing new styles would require to come up
with new sets of rules. Probabilistic generative models can capture probabilities of
occurrence of specific elements in a dataset, therefore, offering a way of adaptation
to specific styles. Among the most popular probabilistic AI approaches are Hidden
Markov Models (HMM). Regarding harmonization, and specifically melodic har-
monization, HMM model conditional relations between chords, melodic notes or
other information of interest (e.g., chord functions). After learning from data, new
harmonies that reflect learned characteristics can be generated by sampling from the
distribution of such learned conditional probabilities, or traversing paths of optimal
probabilities over a given set of conditions (e.g., composing the optimal harmonic
path over a given melody).

Among many examples of employing HMMs for melodic harmonization, the
approaches of Allan and Williams [2] and Raphael and Stoddard [40] incorporated
a dual HMM for four-part harmonization: role of the first HMM was to define a
coarse functional layout over a given melody, while the second HMM assigned
specific chord symbols given the functional labeling and the melody. The idea of
layering additional information in HMM-based models was also discussed by
Raczynski et al. [45], where information about local tonality was incorporated as
conditions for defining chord symbols over a given melody. In the original
“MySong” application [41], users could sing a melody and then select a mixing rate
between classical and jazz harmonies, two HMM models trained on classical and
jazz music data, respectively, were then be combined into a single model for
generating the desired harmonic mix.

Music composed by humans incorporates meaning on many structural levels.
For instance, tonal music includes sections, periods, phrases with sub-phrases,
conveying the essence of closure on different levels. An important weakness of the
Markov-based models is that they cannot capture long-term structure since their
conditional context includes information on fixed-size window frames in time. Even
though the context can be increased (Markov models of higher order; i.e.,
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conditioning their prediction based on information further back in the past), this
increase quickly leads to highly specialized models that actually model specific
segments in the training data, rather than stylistic properties in the data.

One way to overcome the “locality” effect in the prediction of Markov-based
models is to employ a hierarchical stratification of Markov models, where layers on
top capture information about what model parts should be used in lower layers.
Thereby, dependencies further away in time are captured in the top layers, while the
generalization capabilities of low order Markov are preserved in the bottom. For
example, Thornton [43] presented a Hierarchical Markov model for harmonic
generation, where the top model would define the succession or repetition of
chord-generating hidden states. Hierarchical relations in combination with proba-
bilistic modeling are also achieved with Probabilistic grammars, which offer a way
to learn and model alternate hierarchical properties of strings of musical sequences
[1]. Additionally, more complex, probabilistic models have been proposed that
incorporate information about the metric position in the chord [7] or voice [49]
decision process—for melodic and four-part harmonization, respectively.

Another approach to overcome the locality problem of Markov-based models is
to “tie” the generative process on structure-inducing landmarks that indicate har-
monic structural closings or phrase endings, i.e., cadences. To this end, methods
have been proposed that focus on generating chord sequences that end with proper
cadences. An approach that has been examined by Yi and Goldsmith [51] and
Borrel-Jensen and Hjortgaard Danielsen [3] is to incorporate a special cadence
evaluation scheme for rating/discarding entire melodic harmonizations generated by
a Markov-based system. Other approaches examined learning chord sequences
from start to end [2, 17], making sure that the conditional probability for “starting”
the chord sequence would allow only valid endings with proper cadences. If
positions of intermediate cadences that determine lower-level phrases are known,
then Markov models with constraints can be employed [38].

A simple approach for composing melodic harmonizations under this scheme
was presented by Kaliakatsos-Papakostas and Cambouropoulos [23], where con-
straints are added at phrase boundaries ensuring appropriate cadential schemata at
structurally important positions, intermediate chord progressions are filled in
according to the learned chord transition matrices. This method is incorporated in
the CHAMELEON melodic harmonization assistant [24, 25] that is adaptive (learns
from data), general (can cope with any tonal or non-tonal harmonic idiom), and
modular (learns and encodes explicitly different components of harmonic structure:
chord types, chord transitions, cadences, bass line voice-leading). This system
preserves the merits of rule-based systems in its overall hierarchical modular out-
look and at the same time, it is enhanced with statistical learning mechanisms that
extract context-sensitive harmonic information enabling adaptation to different
harmonic idioms. Two examples of melodic harmonization of a traditional Greek
diatonic melody in the Bach chorale and jazz idioms is presented in Fig. 10.1.
In CHAMELEON, cadence locations are given by the user (or assumed by default
only at the end of the harmonization), automatic methods, however, for identifying
potential intermediate phrase boundaries and cadence positions can be employed.
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Symbolic AI modeling requires manual encoding of information in the form of
explicit rules about note/chord relations. These rules can be probabilistic, and
therefore, adaptive to peculiarities of specific datasets; nonetheless, these rules still
capture specific aspects of the richly diverse and hierarchically structured infor-
mation that is incorporated in musical surfaces. In relation to the harmonization
methods discussed above, in most cases, the composition process ends at the point
where chord symbols are generated. Converting chord symbols to actual notes, or
implementing voice leading [22] with the generated chord symbols, requires further
complicated models that take into account auditory stream and voice separation
principles, segmentation and phrase structure, metric structure and harmonic
rhythm, dissonance and consonance, and so on. Probabilistic approaches have been
examined for determining the bass voice in a generated chord sequence [32], but the
problem of proper and complete voice leading is still very complicated even in the
extensively studied case of the Bach chorales (see problems with voice-leading in
Fig. 10.1a). Therefore, symbolic models do not offer a “holistic” description of the
music they model, since they are only able to model and generate specific aspects of
information that are described by explicit representation. A holistic musical model
that is general enough to describe diverse musical styles and sophisticated enough
to generate high quality musical surfaces in different idioms is still an elusive goal.
Deep learning techniques seem to promise a faster way to accomplish such holistic
behavior or at least give the illusion that this goal is easier to achieve with ANNs.

Fig. 10.1 Harmonization of the traditional Greek melody Milo Mou Kokkino (repetition of
phrases omitted) by CHAMELEON in: a Bach chorale idiom, and b Jazz idiom. Voice-leading is
incomplete and erroneous as only the bass line movement is modeled
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Deep learning and ANNs have also been used for generating harmonizations.
DeepBach [16] is an example of combining LSTM (looking both forward and
backward in time) and feedforward components for capturing different modes of
musical information from the score. This system learns from Bach chorales that are
encoded using information about each voice separately, including also information
about the metric structure (time signature and beat position), key signature, and
locations of the fermata symbol (indicating phrase endings). After DeepBach is
trained with multiple Bach chorales that include annotations for all the aforemen-
tioned information modes, it can generate new Bach chorales either from scratch or
by completing certain parts of a given score (e.g., harmonize a melody or fill
specific parts on a given score). To generate from scratch, DeepBach needs an input
that contains information about the metric structure, key signature, and locations of
fermatas. With this input, the system follows a process similar to Gibbs sampling: it
initially generates random notes for each voice and during many iterations (on a
magnitude of tens of thousands), single random notes from random voices are
selected and readjusted with a sampling process, based on the joint distribution
reflected by the system according to each current setup of notes. As iterations
evolve, the initially random setup of notes slowly converges to a new setup that
follows the style of Bach chorales. Score-filling is performed in a similar manner,
but the notes given in the input are not subject to change by the sampling process.

Even though there are errors in the end results, DeepBach is able to learn
important elements of high-level information including chords and cadences. An
impressive aspect of how ANNs learn is the ability of this system to learn high-level
features implicitly, meaning that such information is not encoded explicitly in the
data, but it emerges inside the latent variables of the network. Any time DeepBach
composes a new piece, either from scratch or by filling a given excerpt, it effec-
tively explores the space of all possible Bach chorales, with a (considerably high)
degree of accuracy on many diverse levels (chords, chord progressions, cadences,
etc.). This is achieved by starting from different random note setups (in the part it is
expected to fill) and then converging with random sampling to a new piece that
reflects the overall characteristics of a Bach chorale.

Another approach for exploring harmonizations has been presented by Google in
the “Bach doodle” application [21] that appeared on the interface of the popular
search engine in 2019 (on J. S. Bach’s birthday). This approach is based on
two-dimensional convolutional neural networks that have been very effective in
image recognition tasks, since they can capture two-dimensional spatial patterns.
Bach doodle is based on a musical adaptation of the Coconet [20], that is able to
find patterns in the two-dimensional time-pitch space. Even though this approach
does not process temporal information in the way that DeepBach does, that is, time
is considered only in the context of two-dimensional pattern rather than accumu-
lated dynamics within in a sequence, the principles of music generation are similar:
new compositions are explored by sampling on probability spaces that are formed
by combining learned convolutional filters. DeepBach and the Bach doodle are two
among numerous examples of deep learning systems that exhibit the impressive
ability to infer high-level features from musical surfaces and generate new music by
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effectively exploring new possible materializations of musical surfaces based on the
learned latent spaces.

A trained ANN involves symbol manipulation in the sense that the input data are
encoded as strings of symbols and labels. Musical knowledge is manually incor-
porated in the training data; for instance, in DeepBach, notes are encoded explicitly
in separate voices, metrical structure and tonality are given, and phrase structure is
explicitly annotated. The more information is annotated explicitly in the training
data, the better the resulting learning and performance of the system. This, however,
comes at the expense of making the initial representation and symbolic prepro-
cessing more complex, compromising thus the simplicity of the Deep Learning
approach. Deep learning is not miraculous. It requires meaningful data to learn
from. Humans may learn Bach chorale harmony simply by being exposed to Bach
chorales. Human listeners, however, have prior knowledge regarding beat, meter,
and rhythm, have the ability to separate auditory stimuli into separate streams,
knowledge regarding tuning and scale systems, can parse sequences of notes to
smaller phrases, have a latent understanding of consonance and dissonance, and a
whole system of chord hierarchies; all this knowledge plays a role in learning Bach
chorale structure through mere exposure. A computational system (either symbolic
AI or deep learning) needs one way or another such information. Bringing closer
together symbolic reasoning and connectionist approaches may be a good way to
deal more effectively with highly complex data such as musical data (abstract,
multi-parametric, hierarchical, multi-layered).

10.4 Inventing New Concepts: Conceptual Blending
in Harmony

Conceptual blending is a cognitive theory developed by Fauconnier and Turner [11]
whereby elements from diverse, but structurally-related, mental spaces are blended
giving rise to new conceptual spaces that often possess new powerful interpretative
properties allowing better understanding of known concepts or the emergence of
novel concepts altogether. In the context of the COINVENT project [6], a formal
model has been developed inspired by category theory, wherein two input spaces
(I1 and I2) that share a number of common properties (Generic space) are combined
into a new blended concept (Blend) after incompatibilities, inconsistencies, and
contradictions have been eliminated [6]. As an illustration of the model’s potential,
the proof-of-concept computational creative assistant CHAMELEON that performs
melodic harmonization and blending has been developed [5, 25].

What concepts are there to be blended in music? Focusing on harmonic struc-
tural blending (rather than cross-domain blends between; e.g., text and music,
image and music, or physical motion and music), musical concepts are taken to be
generalizations of harmonic entities and relations, derived from a corpus of har-
monic annotated data via statistical learning. This data-driven approach ensures that
learned concepts reflect adequately the characteristics of diverse harmonic idioms.
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From each independent harmonic space (e.g., modal, common-practice tonal, jazz,
atonal, organum, etc.), represented by a set of characteristic annotated music pieces,
the following structural characteristics are learned and explicitly encoded: chord
types, chord transitions (probabilistic distributions), cadences (i.e., chord transitions
on designated phrase endings at different hierarchic levels), and voice-leading (i.e.,
bass line motion in relation to melody, bass-melody distance, chord inversion). This
structural information sometimes corresponds to standard musicological linguistic
terms (e.g., “cadence”, “perfect cadence”, “dominant”, “leading-note”, etc.),
bringing the learned musical concepts closer to the standard notion of “concept” in
the domain of cognitive linguistics. Such features drawn from diverse idioms may
be combined so as to create new harmonic blended styles; for instance, tonal
cadences may be assigned to phrase endings and modal chord transitions may be
employed for filling in the rest of the phrase chords Fig. 10.2.

Take, for instance, the concept of perfect cadence in common-practice harmony
and the phrygian cadence of renaissance music. The former has some salient fea-
tures appearing in all instances found in, for instance, the Bach chorale dataset:
leading note resolved upwards to tonic, seventh (in dominant chord) resolved
downward by step, leap from the root of dominant chord to tonic chord in the bass
line. The latter contains always a downward leading tone moving by semitone to the
tonic, and an upward movement of the seventh degree by tone to the tonic. If these
two cadential concepts are imported in the formal blending model (as I1 and I2), the
highest rating blend in terms of preserving salient features from both input cadences
and also ensuring that the resulting chord types are acceptable in these idioms (e.g.,
major triad, minor triad, major seventh chord, etc.), is the tritone substitution
progression which is commonly found in jazz music (it contains both upward and
downward leading notes). In this case, by blending two established harmonic
concepts, a new concept is invented that has not been seen in the training data [52].

The above cadence blending process is generalized to any two input chord
transitions, allowing the creative blending of entire chord transition matrices from
different idioms. Let us assume a “toy” harmonic space, where, within a major
tonality, only three chords exist, namely, the tonic, subdominant, and dominant
seventh chords. It is clear that such “toy” chord transition spaces of, for instance, C
major and F# major tonalities have no common chords and do not communicate, so
it is not possible to move from one space to the other. Can the proposed chord

Fig. 10.2 Bach Chorale melody harmonized in medieval Fauxbourdon style with inserted tonal
cadences
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transition methodology “invent” new transitions and possibly new chords that may
connect the two spaces in a meaningful way? The chord transition blending
methodology is applied to all the chord transitions in the C major and F# major
tables, i.e., each chord transition in the first matrix is blended with each chord
transition in the second matrix producing a list of resulting blends. The resulting
blends are ranked according to criteria that take into account the number of salient
features from each input space preserved in the blend and the balance of the
contribution of each input chord transition in the blend. The highest ranking chord
transition blends include a sort of tritone substitution or German sixth chord tran-
sition (i.e., G7 ! F# or Db7 ! C), and the diminished seventh chord (i.e., Bo7
C or E#o7 ! F# where E#o7 is enharmonically identical to Bo7). The first blended
transition establishes a connection between existing chords of the two input spaces,
whereas the second proposes a new chord, a diminished seventh chord, that con-
stitutes a bridge between the two tonal spaces—see detailed description in [25]. If
more transition blends are allowed, the resulting transition table is augmented and
populated with more connections between the two spaces.

The special purpose-made melody in Fig. 10.3 contains a remote modulation
from C major to F# major and back again to C major. This rather awkward melody
cannot be harmonized correctly by the learned Bach Chorale harmonic style as
chord transitions in C major cannot cope with the transitions to/in the F# major
region (and vice versa). Even if a key-finding algorithm indicates the exact posi-
tions of the modulations so that the relevant keys may be employed in the appro-
priate regions, the transitions between the regions would remain undefined (random
chord transitions). Chord transition matrix blending of the sort previously dis-
cussed, creates meaningful connections between the two tonal regions and the
melody can be harmonized correctly by the blended transition table Fig. 10.3.

Blending different tonal spaces (different keys) in the same harmonic style can
be used creatively for introducing chromaticism and more advanced harmonies that
go beyond the initial tonal spaces. The traditional Greek melody Milo Mou Kokkino
in D major can be harmonized in many different ways, with blended variations of
the Bach Chorale major harmonic idiom in various shifted tonalities. In Fig. 10.4a,
b, D major is blended with G# major (tritone distance between keys) and D major is
blended with A major (7 semitone distance). In these examples, harmony deviates
from common practice functional progressions towards free chromaticism. The

Fig. 10.3 Melody with distant modulation between C major and F# major is successfully
harmonized by CHAMELEON after applying blending between the two tonal spaces (from [25],
Fig. 8b)
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produced chords cannot always be explicitly identified as belonging to one of the
blended spaces. It is also interesting that the blended tonal spaces can produce such
a diverse range of forced harmonic chromaticism, with elements of tonal mixture
and chords of ambiguous functionality, even though the melody is purely diatonic
(without any chromatic elements). In this case, blending produces novel harmonic
spaces that go well beyond the initial diatonic input spaces.

An example of blending different harmonic spaces, namely Bach chorale tonal
with Jazz is shown in Fig. 10.4c. This example illustrates a harmonization that is
neither plain tonal (as in Fig. 10.1a) nor Jazz (as in Fig. 10.1b), this harmonization
has a distinct character with a mixture of simple and extended triads and shows a
high degree of originality in relation to the more well established contributing
idioms.

Deep learning techniques can be used for generating morphs between different
spaces. Why employ symbolic AI techniques if this is possible? “Interpolated”
music generation has been explored by leveraging the spatially interpretational

Fig. 10.4 Harmonization of the traditional Greek melody Milo Mou Kokkino (repetition of
phrases omitted) by CHAMELEON in: a blend between two major tonalities 6 semitones apart,
b blend between two major tonalities 7 semitones apart, and c blend between Bach chorale and
Jazz idioms
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capabilities of the latent space in the Variational Autoencoder (VAE) [26].
Examples in image generation [15] have shown that a continuum of new images
can be generated that include intermediate-morphed characteristics between two
input images. This continuum is constructed by a specialized training process that
includes two phases steps, divided by an intermediate sampling step. Similar to the
“vanilla” Autoencoder, one goal of the training process is to perform accurate
reconstruction of the input, while a parallel goal is to construct latent representa-
tions that follow a Gaussian distribution. Given enough data, the latent space
obtains continuous characteristics, and thereby, sampling between any two points is
made possible. Images generated by points on the line that connects any two points
in the latent space, exhibit the effect of morphing between the characteristics of the
images that correspond to the two extremes.

In music, both interpolation and extrapolation from two given excerpts has been
examined by [46]. For instance, if the melodies corresponding to two extreme
points in the latent space were a major and a minor melody, sampling from
interpolated points between the latent representations of the inputs would generate
new melodies with intermediate levels of major and minor characteristics. Sampling
from latent points that are closer to, for instance, the major excerpt would generate a
melody that is closer to a major melody than sampling closer to the minor end. Even
though this system learns from data that represent musical surfaces, the “morphing
continuum” that is being formed between any two points in the latent space
includes high-level information as, for example, tonality.

Exploring spaces in-between two learned spaces is possible, as with the Vari-
ational Autoencoder; in case the two learned spaces are two musical styles, mor-
phing between the two styles is made possible. There are, however, some
shortcomings with this morphing approach. Firstly, extensive amounts of data are
required for learning two styles, with a view to creating the continuous latent space.
Secondly, high-level features in the latent spaces are not transparent, in the sense
that it is not clear which features are represented by which latent space variables.
For instance, it is not possible to force such a system to generate a major melody
without providing an example of how a major melody looks like. The beta-VAE
variation [18] potentially allows disentanglement of prominent features, but again,
concrete features are not necessarily clearly divisible.

Except for the above shortcomings, there is also an inherent limitation: musical
materialization of latent space points only happens by rehashing material in the
musical surface of the (numerous) examples that were encountered during training.
Therefore, such systems are able to interpolate (and even, to some extent, extrap-
olate) between musical styles, but they are able to do so only by reproducing
elements of what already exists in the training data. This approach does not enable
the creation of new concepts that allow creative connections between two seem-
ingly disjoint spaces. The creation of such concepts is possible using Conceptual
Blending, which allows the creation of combinational components that connect
disjoint spaces, with very few (if any) training and with transparent access to what
concepts are combined (however, at a cost in hand-crafting the relations between
low-to-high-level features).
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10.5 Conclusions

In this chapter, recent research in the domain of melodic harmonization and
computational creativity has been presented with a view to highlighting strengths
and weaknesses of the classical cognitively-inspired symbolic AI approach (often in
juxtaposition to contemporary deep learning methodologies). A modular melodic
harmonization system that learns chord types, chord transitions, cadences, and bass
line voice-leading from diverse harmonic datasets is presented. Then, it is shown
that the harmonic knowledge acquired by this system, can be used creatively in a
cognitively-inspired conceptual blending model that creates novel harmonic spaces
combining in meaningful ways the various harmonic components of different styles.
This system is essentially a proof-of-concept creative model that demonstrates that
new concepts can be invented which transcend the initial harmonic input spaces. It
is argued that such original creativity is more naturally accommodated in the world
of symbolic reasoning that allows links and inferences between diverse concepts at
highly abstract levels. Moreover, symbolic representations and processing facilitate
interpretability and explanation that are key components of musical knowledge
advancement. Finally, reconciling symbolic AI with deep learning may be the way
forward to combine the strengths of both approaches towards building more
sophisticated robust musical systems that connect sensory auditory data to abstract
musical concepts.

References

1. Abdallah, S., Gold, N., & Marsden, A. (2016). Analysing symbolic music with probabilistic
grammars. In Computational music analysis (pp. 157–189). Cham: Springer.

2. Allan, M., & Williams, C. K. I. (2004). Harmonising chorales by probabilistic inference. In
Advances in neural information processing systems (Vol. 17, pp. 25–32). MIT Press.

3. Borrel-Jensen, N., & Hjortgaard Danielsen, A. (2010). Computer-assisted music composition
—A database-backed algorithmic composition system. B.S. Thesis, Department of Computer
Science, University of Copenhagen, Copenhagen, Denmark. B.S. Thesis.

4. Cambouropoulos, E., Kaliakatsos-Papakostas, M., & Tsougras, C. (2014). An
idiom-independent representation of chords for computational music analysis and generation.
In Proceedings of the Joint ICMC-SMC, Athens, Greece.

5. CHAMELEON. (2020). Retrieved April 22, 2020, from https://ccm.web.auth.gr/
chameleonmain.html.

6. Confalonieri, R., Pease, A., Schorlemmer, M., Besold, T. R., Kutz, O., Maclean, E., &
Kaliakatsos-Papakostas, M. (Eds.). (2018). Concept invention: Foundations, implementation,
social aspects and applications. Springer.

7. Dixon, S., Mauch, M., & Anglade, A. (2010). Probabilistic and logic-based modelling of
harmony. In International Symposium on Computer Music Modeling and Retrieval (pp. 1–
19). Berlin, Heidelberg: Springer.

8. Dubey, R., Agrawal, P., Pathak, D., Griffiths, T. L., & Efros, A. A. (2018). Investigating
human priors for playing video games. arXiv preprint. arXiv:1802.10217.

278 E. Cambouropoulos and M. Kaliakatsos-Papakostas

https://ccm.web.auth.gr/chameleonmain.html
https://ccm.web.auth.gr/chameleonmain.html


9. Du, Y., & Narasimhan, K. (2019). Task-agnostic dynamics priors for deep reinforcement
learning. arXiv preprint. arXiv:1905.04819.

10. Ebcioglu, K. (1988). An expert system for harmonizing four-part chorales. Computer Music
Journal, 12(3), 43–51. ISSN 01489267.

11. Fauconnier, G., & Turner, M. (2003). The way we think: Conceptual blending and the mind’s
hidden complexities. (reprint). New York, NY: Basic Books.

12. Feinberg, T. E., & Mallatt, J. (2013). The evolutionary and genetic origins of consciousness in
the Cambrian Period over 500 million years ago. Frontiers in Psychology, 4, 667.

13. Garnelo, M., & Shanahan, M. (2019). Reconciling deep learning with symbolic artificial
intelligence: Representing objects and relations. Current Opinion in Behavioral Sciences, 29,
17–23.

14. Granroth-Wilding, M., & Steedman, M. (2014). A robust parser-interpreter for jazz chord
sequences. Journal of New Music Research, 43(4), 355–374.

15. Gulrajani, I., Kumar, K., Ahmed, F., Taiga, A. A., Visin, F., Vazquez, D., & Courville, A.
(2016). Pixelvae: A latent variable model for natural images. arXiv preprint.
arXiv:1611.05013.

16. Hadjeres, G., Pachet, F., & Nielsen, F. (2017). Deepbach: A steerable model for Bach
chorales generation. In Proceedings of the 34th International Conference on Machine
Learning (Vol. 70, pp. 1362–1371).

17. Hanlon, M., & Ledlie, T. (2002). Cpubach: An automatic chorale harmonization system.
https://www.timledlie.org/cs/CPUBach.pdf.

18. Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., &
Lerchner, A. (2017). beta-VAE: Learning basic visual concepts with a constrained variational
framework. In International Conference on Learning Representations (Vol. 2, No. 5, p. 6).

19. Hiller, L. A., & Isaacson, L. M. (1979). Experimental music; composition with an electronic
computer. Greenwood Publishing Group Inc.

20. Huang, C. Z. A., Cooijmans, T., Roberts, A., Courville, A., & Eck, D. (2019a). Counterpoint
by convolution. arXiv preprint. arXiv:1903.07227.

21. Huang, C.Z.A., Hawthorne, C., Roberts, A., Dinculescu, M., Wexler, J., Hong, L., &
Howcroft, J. (2019b). The bach doodle: Approachable music composition with machine
learning at scale. arXiv preprint. arXiv:1907.06637.

22. Huron, D. (2016). Voice leading: The science behind a musical art. MIT Press.
23. Kaliakatsos-Papakostas, M., & Cambouropoulos, E. (2014). Probabilistic harmonisation with

fixed intermediate chord constraints. In Proceedings of the Joint ICMC–SMC 2014, Athens,
Greece.

24. Kaliakatsos-Papakostas, M., Makris, D., Tsougras, C., & Cambouropoulos, E. (2016).
Learning and creating novel harmonies in diverse musical idioms: An adaptive modular
melodic harmonisation system. Journal of Creative Music Systems, 1(1).

25. Kaliakatsos-Papakostas, M., Queiroz, M., Tsougras, C., & Cambouropoulos, E. (2017).
Conceptual blending of harmonic spaces for creative melodic harmonisation. Journal of New
Music Research, 46(4), 305–328.

26. Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint.
arXiv:1312.6114.

27. Koops, H. V., Magalhaes, J. P., & De Haas, W. B. (2013). A functional approach to automatic
melody harmonisation. In Proceedings of the First ACM SIGPLAN Workshop on Functional
Art, Music, Modeling & Design (pp. 47–58). ACM.

28. Longuet-Higgins, H. C., & Steedman, M. J. (1971). On interpreting Bach. Machine
Intelligence, 6, 221–241.

29. Longuet-Higgins, H. C., & Lee, C. S. (1984). The rhythmic interpretation of monophonic
music. Music Perception, 1(4), 424–441.

30. Longuet-Higgins, H. C. (1987). Mental processes: Studies in cognitive science. . Cambridge,
MA: MIT Press.

10 Cognitive Musicology and Artificial Intelligence … 279

https://www.timledlie.org/cs/CPUBach.pdf


31. Laske, O. E. (1988). Introduction to cognitive musicology. Computer Music Journal, 12(1),
43–57.

32. Makris, D., Kaliakatsos-Papakostas, M. A., & Cambouropoulos, E. (2015). Probabilistic
modular bass voice leading in melodic harmonisation. In Proceedings of ISMIR 2015
(pp. 323–329).

33. Marcus, G. (2018). Deep learning: A critical appraisal. arXiv preprint. arXiv:1801.00631.
34. Meredith, D. (Ed.). (2016). Computational music analysis (Vol. 62). Berlin: Springer.
35. Miranda, E. R. (Ed.). (2013). Readings in music and artificial intelligence. Routledge.
36. Nilsson, N. J. (2017). The physical symbol system hypothesis: Status and prospects.

SpringerLink, 2007, 9–17. https://doi.org/10.1007/978-3-540-77296-5_2.
37. Pachet, F., & Roy, P. (2001). Musical harmonization with constraints: A survey. Constraints,

6(1), 7–19.
38. Pachet, F., Roy, P., & Barbieri, G. (2011). Finite-length markov processes with constraints. In

Twenty-Second International Joint Conference on Artificial Intelligence.
39. Phon-Amnuaisuk, S., Smaill, A., & Wiggins, G. (2006). Chorale harmonization: A view from

a search control perspective. Journal of New Music Research, 35(4), 279–305.
40. Raphael, C., & Stoddard, J. (2004). Functional harmonic analysis using probabilistic models.

Computer Music Journal, 28(3), 45–52.
41. Simon, I., Morris, D., & Basu, S. (2008). MySong: Automatic accompaniment generation for

vocal melodies. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (pp. 725–734). ACM.

42. Temperley, D. (2012). Computational models of music cognition. The psychology of music
(pp. 327–368).

43. Thornton, C. (2009). Hierarchical markov modeling for generative music. In Proceedings of
the International Computer Music Conference (ICMC2009).

44. Toiviainen, P. (2013). Symbolic AI versus connectionism in music research. In Readings in
music and artificial intelligence (pp. 57–78). Routledge.

45. Raczynski, S. A., Fukayama, S., & Vincent, E. (2013). Melody harmonization with
interpolated probabilistic models. Journal of New Music Research, 42(3), 223–235.

46. Roberts, A., Engel, J., Raffel, C., Hawthorne, C., & Eck, D. (2018). A hierarchical latent
vector model for learning long-term structure in music. arXiv preprint. arXiv:1803.05428.

47. Rohrmeier, M. (2011). Towards a generative syntax of tonal harmony. Journal of
Mathematics and Music, 5(1), 35–53.

48. Rosenfeld, A., & Tsotsos, J. K. (2018). Bridging cognitive programs and machine learning.
arXiv preprint. arXiv:1802.06091.

49. Whorley, R. P., Wiggins, G. A., Rhodes, C., & Pearce, M. T. (2013). Multiple viewpoint
systems: Time complexity and the construction of domains for complex musical viewpoints in
the harmonization problem. Journal of New Music Research, 42(3), 237–266.

50. Wiggins, G., & Smaill, A. (2013). Musical knowledge: What can artificial intelligence bring
to the musician? In Readings in music and artificial intelligence (pp. 39–56). Routledge.

51. Yi, L., & Goldsmith, J. (2007). Automatic generation of four-part harmony. In K. B. Laskey,
S. M. Mahoney, & J. Goldsmith (Eds.), CEUR Workshop Proceedings (p. 268). BMA.

52. Zacharakis, A., Kaliakatsos-Papakostas, M., Tsougras, C., & Cambouropoulos, E. (2017).
Creating musical cadences via conceptual blending: Empirical evaluation and enhancement of
a formal model. Music Perception, 35(2), 211–234.

Emilios Cambouropoulos is Professor of Musical Informatics at the School of Music Studies,
Aristotle University of Thessaloniki, Greece. He studied Physics, Music and Music Technology,
and obtained his Ph.D. in 1998 on Artificial Intelligence and Music at the University of Edinburgh.

280 E. Cambouropoulos and M. Kaliakatsos-Papakostas

http://dx.doi.org/10.1007/978-3-540-77296-5_2


His research interests focus on cognitive musicology, artificial intelligence and music,
computational models of musical structure, expression and creativity. He is director of the
Cognitive and Computational Musicology Group at the School of Music Studies at Aristotle
University of Thessaloniki. E-mail: emilios@mus.auth.gr.

Maximos Kaliakatsos-Papakostas works as a researcher and a lecturer in the field of music
informatics at Aristotle University of Thessaloniki, Greece. His research focuses on the
combination of mathematical and cognitive models for computational analysis and generation of
musical signals. He has a background in mathematics (B.Sc.), Artificial Intelligence (M.Sc. and
Ph.D.), music and software development. He has been teaching courses on a wide range of fields,
ranging from pure mathematics to interactive music systems. E-mail: maxk@mus.auth.gr.

10 Cognitive Musicology and Artificial Intelligence … 281



11OnModellingHarmonywith
Constraint Programming for
Algorithmic Composition Including
aModel of Schoenberg’sTheory
ofHarmony

Torsten Anders

11.1 Introduction

This chapter introduces the use of Constraint Programming for modelling the algo-
rithmic generation of harmonic progressions for composition. Constraint Program-
ming (CP) is a paradigm based on explicitly encoded compositional rules. The
paradigm allows to directly implement traditional rules, such as rules found in music
theory textbooks, as well as non-standard rules, e.g., rules formulated by composers
to model their own composition techniques when using this paradigm. CP has been
highly attractive for researchers and composers since decades because of its high
degree of abstraction and not least because constraint solvers can efficiently find
solutions that fulfil all the stated constraints.

In a comprehensive survey, Fernández and Vico [28] present a hierarchical tax-
onomy of Artificial Intelligence (AI) methods for algorithmic composition. They
categorise these methods into symbolic AI, optimisation techniques based on Evo-
lutionary Algorithms and related methods, and Machine Learning. CP is one of the
symbolic AI methods alongside, e.g., Case-Based Reasoning and grammars such as
Lindenmayer systems.

The survey by Herremans et al. [33] suggest a functional taxonomy of algorithmic
composition systems. The authors organise their discussion of systems according to
compositional “dimensions”: rhythm, melody, harmony and timbre/orchestration.
While their survey subsumes under harmony any combination of multiple simulta-
neous pitches (e.g., also counterpoint), the preset chapter focuses on modelling what
traditional textbooks on harmony usually mean by this term: a progression of chords.
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Besides providing an introduction into its field, this chapter offers two contri-
butions to knowledge. Firstly, it implements large parts of Arnold Schoenberg’s
textbook on tonal harmony. The chapter presents formal details on how to model
harmonic concepts such as diatonic chords, chord inversions, root progressions,
cadences, dissonance treatment and modulation with constrain programming. To the
knowledge of the author, Schoenberg’s theory of harmony has not been computa-
tionally modelled before, neither with constraints programming nor in any other
way.

Secondly, the Schoenberg model is implemented with a more general and style-
neutral harmonic framework that was designed with the capabilities of modern con-
straint solvers in mind. This research proposes a harmony framework that supports
various analytical information to allow for modelling complex theories of harmony
at a high level of abstraction, and whose design is at the same time suitable for
propagation-based constraint solvers. Using constraint propagation allows for effi-
ciently solving constraint problems with a large search space.

11.2 Application Examples

We will start our introduction into modelling harmony with CP by looking at three
concrete examples. These examples are all realised with a harmony framework intro-
duced formally later (Sect. 11.4). The first example automatically finds a fitting har-
mony for a given melody. The second example introduces a larger-scale constraint
model: it implements large parts of Schoenberg’s comprehensive tonal theory of har-
mony [57]. Formal details of this model are discussed towards the end of this chapter
in Sect. 11.5. The last example uses CP for realising a composition by the author.

11.2.1 Automatic Melody Harmonisation

The first example creates a harmonisation for a given melody. The example is com-
paratively simple and is therefore discussed in some detail.

CP controls relations between variables, which are here the parameters of notes
and chords (e.g., their pitches). There is no principle distinction between the input
and the output in this approach. The variables whose values are known initially
are the input and the variables whose values are found by the constraint solver are
the output. Therefore, a framework originally developed for music composition, but
explicitly modelling the underlying harmony can also be used for analysis by setting
the parameters of the actual music before the search starts but leaving the parameters
of the underlying harmony unset.

This example actually combines analysis and composition. It performs an auto-
matic harmonic analysis of a given folk tune, but additional compositional rules are
applied to the resulting harmonies. Voicing is irrelevant in this example; only the
chord symbols are searched for.
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The harmonic rhythm is slower than the melody, as common in classical, folk and
popular music. By contrast, most automatic harmonisation examples in the literature
are choral-like with one chord per note.

For simplicity, this example defines relatively rigid basic conditions. Only major,
minor and dominant seventh chords are permitted, and all chords must be diatonic
in C major. The harmonic rhythm is fixed, and all chords share the same duration
(e.g., a whole bar), but chord repetitions are permitted.

The example distinguishes between harmonic and nonharmonic tones, but for sim-
plicity only a few cases of nonharmonic tones are permitted (passing and neighbour
tones). All other melody notes must be chord pitches.

The example further borrows a few harmonic rules from Schoenberg [57] in
order to ensure musically reasonable solutions. The example assumes that the given
melody starts and ends with the tonic—these chords are constrained to be equal. A
seventh chord must be resolved by a “fourth upwards the fundament” (e.g., V7 →
I), the simplest resolution form for seventh chords. Also, all chords share at least
one common pitch class with their predecessor (harmonic band, a simpler form of
Schoenberg’s directions for producing favourable chord progressions).

Figure 11.1 shows all solutions for the first phrase of the German folksong “Horch
was kommt von draussen rein” that fulfil the given rules. All these solutions work
well musically. An x on top of a note denotes a nonharmonic pitch.

Because of the relative simplicity of this example, it works only well for some
melodies and less good for others. The harmonic rhythm of the melody must fit
the harmonic rhythm specified for the example (at least chords can last longer, as
repetitions are permitted). This is easily addressed by turning the currently fixed
chord durations into variables, but doing so increases the size of the search space.
Further, the nonharmonic pitches of the melody must fit the cases defined (passing
and neighbour tones). An extension could define further cases, like suspensions and

Fig. 11.1 For the given
melody this simple
harmonisation model has
four solutions (the chords
shown above the melody)
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anticipations. Also, the melody currently cannot modulate. This can be solved by
additionally modelling scales, and applying modulation constraints between chords
and scales (as shown in the next example).

11.2.2 Modelling Schoenberg’s Theory of Harmony

The next example implements large parts of Schoenberg’s textbook on tonal harmony
originally published in 1911 [57]—a particular comprehensive harmony textbook.
This example demonstrates that the underlying framework is capable of modelling
complex conventional theories. A brief summary ofmain ideas of Schoenberg’s 1911
harmony textbook can be found in the introduction of his later text on harmony [56,
pp. 4–14]. The present section introduces this example from a musical point of view,
while below Sect. 11.5 presents formal details.

To the knowledge of the author, Schoenberg’s theory of harmony has not been
computationally modelled before, neither with constraints programming nor in any
other way. Also, this example implements modulation, which has rarely been done
with CP before. Among constraint-based harmony models, Ebcioğlu’s CHORAL
[25] is the only system the author is aware of that supports modulation.

The example modulates from C major to G major, but features an extended pitch
set that allows for non-diatonic tones. Figure 11.2 shows a solution.

The example applies Schoenberg’s directions on chord root progressions designed
to help obtaining better progressions. Schoenberg distinguishes between three kinds
of root progressions. In strong or ascending progressions the chord root progresses
by a fourth up (harmonically the same as a fifth down) or a third down. For example,
in Fig. 11.2 chord 1 progresses to chord 2 by a third down (I → vi), while chord
2 progresses to chord 3 by a fourth up or fifth down (vi → ii). Descending root
progressions form the second type. They are the inversion of ascending progressions:
a fourth down (fifth up) or a third up. These are not allowed in this example. Finally,
in superstrong progressions the root moves a second up or down, as the chords in
the penultimate bar do (IV → V).

The chords are related to underlying scales, which change during the modulation.
The first five chords relate to the C major scale, and the rest to G major. However,

Fig. 11.2 A solution of the Schoenberg harmony model modulating from C to G major featuring
some non-diatonic tones; Roman numerals added manually here for clarity (altered chords are
crossed out)
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the example also allows for non-diatonic tones. Schoenberg introduces these as acci-
dentals from church modes, namely the raised 1st, 2nd, 4th, 5th and the flattened 7th
degree. These are always resolved stepwise in the direction of their alteration (e.g.,
raised degrees go up). In order to support the intended direction of the modulation
(C to G), only raised degrees are allowed in this example. In the solution above, e.g.,
chord 4 contains a raised 4th degree of C major (F�) that is chromatically introduced
and resolves upwards by a step. Chord 7 contains a raised 5th degree of G major
(D�).

A modulation constraint requires that chord 5 is a neutral chord, i.e., a chord
shared by both keys. In the solution above this chord is iii in C and vi in G major.
The modulation constraint further requires that the neutral chord is followed by the
modulatory chord, which is only part of the target key (vii∅7 in the solution). For
clarity, the modulatory chord progresses by an ascending root progression a fourth
upwards (into iii above).

The example also applies part writing rules. Open and hidden parallel fifths and
octaves are not permitted. Also, the upper three voices are restricted to small melodic
intervals and small harmonic intervals between voices (larger harmonic intervals are
allowed between tenor and bass).

Root positions and first inversions can occur freely. For example, in Fig. 11.2
chord 4 is in first inversion. The number of first inversions has not been constrained
and it is rather high in the shown solution (6 out of 11 chords). More generally,
statistical properties such as the likelihood of certain chords are difficult to control
by CP (e.g., their overall number can be restricted, but they then may be bunched
early or late in the search process).

11.2.3 A Compositional Application in ExtendedTonality

The last example discusses the 7min composition Pfeifenspiel by the author, which
was composed for the two organs of the Kunst-Station St. Peter in Cologne and
premiered at the Computing Music VIII series in 2012. Figure 11.3 shows a passage
from the piece at the boundary between two sections.

The music is tonal in the extended sense of Tymoczko [62]: melodic intervals
tend to be small; the dissonance degree of the harmony is rather consistent; relatively
consonant chords are used in moments of musical stability; sections of the piece are
limited to certain scales; and for specific sections one tone is particularly important
(root).

However, the piece is clearly non-diatonic. Suitable scales where found by first
searching with an ad hoc constraint program through about 200 scales and 50 chord
types for scales that contain many chords with a similar dissonance degree (mea-
sured with an experimental algorithm). Solution scales were further evaluated man-
ually by considering all chords that can be built on each scale degree, and by judg-
ing the melodic quality of scales. In the end, three scales that are all somewhat
similar to the whole tone scale where selected: Takemitsu’s Tree Line mode 2,
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Fig. 11.3 Passage from the composition Pfeifenspiel composed by the author. The upper three
staves show the actual composition, and the lower two an analysis of the underlying harmony.
Chord and scale tones are shown like an appoggiatura and roots as normal notes. Nonharmonic
tones are marked by an x

Messiaen’s mode 3, and Messiaen’s mode 6. Two of these scales are shown in
Fig. 11.3 in the analysis in the lowest stave (e.g., Takemitsu’s Tree Line mode 2
on D in measures 6–7).

Based on these scales, a global harmonic and formal plan was composed by hand,
but concrete harmonic progressions were generated algorithmically with custom
harmony models for different sections. Also, contrapuntal sections rendering the
harmonywere algorithmically generated (and slightlymanually revised), while some
other sections were composed manually (e.g., in Fig. 11.3 the septuplets in the Great
division, and the triplets in the pedal were composed manually).

Some example constraints are outlined. Chords have at least four tones, which all
belong to the simultaneous scale. The first and last chord root of a section is often
the tonic of its scale. To ensure smooth transitions between chords, the voice-leading
distance between consecutive chords is low (at most 3 semitones in the excerpt). The
voice-leading distance is the minimal sum of absolute intervals between the tones
of two chords. For example, the voice-leading distance between the C and A� major
triads is 2 (C → C = 0, E → E� = 1, G → A� = 1). Also, any three consecutive
chords must be distinct.
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The actual notes (in staves 1–3) must express the underlying harmony (stave 4).
Nonharmonic tones (marked with an x in Fig. 11.3) are prepared and resolved by
small intervals. Across the section starting in measure 8, the contrapuntal lines in
the swell division rise gradually (pitch domain boundaries are rising), and melodic
intervals are getting smaller (this section lasts over 10 bars, so this is not obvious
from the few bars shown). The contrapuntal voices are never more than an octave
apart; they don’t cross; they avoid open and hidden parallels; they avoid perfect
consonances between simultaneous notes (one is there in Fig. 11.3 after manual
revisions); and voice notes sound all tones of the underlying harmony. Also, the
lines are composed of motifs; and durational accents are constrained [5].

11.3 Overview: Constraint Programming for Modelling Harmony

After a few application examples in the previous section, this section motivates
and introduces Music Constraint Programming (MCP) in general. Several surveys
already study this field. Pachet and Roy [45] focus on harmonic constraint problems.
Fernández and Vico [28] provide a detailed list of music constraint problems and
systems and situate this field in the wider context of AI-based methods. Anders
and Miranda [12] present a comprehensive overview of the field in general and in
particular carefully compare MCP systems designed to implement custom models
of music theory and composition with CP. Finally, Anders [7] complements these
more technical reviews by a more artistic point of view and examines how several
composers employed CP systems and techniques when realising specific pieces.

11.3.1 Why Constraint Programming for Music Composition?

For centuries, compositional rules have been one of the central devices in music the-
ory and education for explaining compositional knowledge. For example, already in
the ninth century the anonymous treatiseMusica enchiriadis explained the composi-
tion of an important polyphonic form of its time—the organum—by compositional
rules [37]. Even though the music notation and musical style of that time was very
different to later centuries, this early music textbook already presents a fundamen-
tal compositional concern that is shared by later developments of tonal music: the
distinction between consonance and dissonance which leads to compositional rules
controlling their treatment (though consonances are restricted to the fourth, fifth and
octave in this early music). Since then and through the centuries until today, com-
positional rules have been a central method in music theory when describing how to
compose in a certain musical style—complemented by musical examples.

Rules are such a central device, because rules allow to describe aspects of compo-
sition in both a declarative and modular way. Instead of procedurally specifying how
to create a certain result, rules are declarative in the sense that they only describe
certain features or aspects of the intended result. Rules are modular in the sense that
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they allow to focus on only one compositional aspect at the time. The description
of a musical style is simplified when it can be broken down into separate rules on
aspects of rhythm, melody, harmony and so forth.

CP carries the advantages of compositional rules into the world of algorithmic
composition: it helps to realise music theory models that are also declarative and
modular. A computer program using a declarative programming paradigm describes
what the program does—its logic and results (e.g., what a composition system does
in a musical sense), without the need to state how this is done—the procedural
details are covered by its search algorithm. Further, CP canmodel music theories and
composition in amodularway.A singlemusical parameter canbe affectedbymultiple
rules defined separately. For example, a single pitch can be affected simultaneously
by multiple melodic and harmonic rules. No rule necessarily determines the pitch,
but a search algorithm finds a pitch that meets all the rules.

Due to the importance of rules in music theory and education, programming
paradigms supporting rules have also been highly attractive for composers and schol-
ars since the earliest days of algorithmic composition. Already the Illiac Suite (1956)
for string quartet—widely considered the first computer-composed score—used a
rule-based approach [36]. Different movements of this piece are considered separate
experiments and are composed in different styles: the composition process for the
second movement (in strict counterpoint) and the third movement (chromatic music)
used a generate-and-test algorithm for filtering randomly generated notes that meet
stated rules. The algorithms implementing rules becamemore refined over time.Most
likely, Ebcioglu [23] was the first proposing a composition system (creating florid
counterpoint for a given cantus firmus) that employed a systematic search algorithm.

11.3.2 What Is Constraint Programming?

Constraint Programming [14] is a programming paradigm—a particular way to
approach programming in general—that has been especially successful for imple-
menting ruled-based composition systems. The attraction of CP is easily explained.
It allows users to implement rule-based music theories rather easily by directly for-
malising sets of modular compositional rules.

CP is a descendant of the Logic Programming paradigm. Virtually all program-
ming paradigms support variables, usually in the sense of an identifier given to a cer-
tain storage location. Variables in Logic Programming [19] are more like variables
in mathematics. Logic variables can name unknown or partially known quantities; a
logic program expresses relations between logic variables. As all the variables can
be unknown, they can also all act as either input or output (in contrast to functions in
other paradigms, where the function result cannot be used as an input to deduce one
of the function arguments). However, Logic Programming is best suited for symbolic
computations, it does not work well with numeric relations.

CP is a kinsman of Logic Programming that supports numeric relations in addi-
tion to logic relations. It introduces techniques to solve combinatorial problems. A
constraint satisfaction problem (CSP) is defined by a set of decision variables (in the
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following variables for brevity) and mathematical relations between these variables,
called constraints. The value of variables is initially only partially known: they have
a domain of their possible values. A constraint solver then searches for one or more
solutions that reduces the domain of each variable to one value that is consistent with
all its constraints. A CP system allows user to define and solve constraint problems.

11.3.3 Music Constraint Systems for Algorithmic Composition

Due to the great interest of composers in CP, a number of CP systems have been
developed, which are designed for composing music that meets compositional rules
expressed as constraints. These systems help composers programming their custom
CSPs, which then assist them in their compositional work. The pioneering system
of this kind was Carla [20]. Anders and Miranda[12] compare five MCP systems
in detail. PWConstraints [39,53] offer two constraint solvers. A more generic one
searches for sequences of values (e.g., pitch or chord sequences), and the other one
finds pitches for polyphonic scores. Situation [15,53] was originally designed for
solving harmonic CSPs in a French compositional tradition. The music representa-
tion MusES [43,44] and the constraint solver BackTalk [52] have been combined
for solving various compositional tasks including automatic melody harmonisation.
OMClouds [60] implements a heuristic solver that finds approximate solutions even
for over-constrained CSPs. Strasheela [1] is a library that offers building blocks for a
particularly wide range of musical CSPs, though this flexibility makes it a bit harder
to use than some other systems, which effectively offer CSP templates. More recent
solvers are PWMC [55] and its successor Cluster Engine with the extension Cluster
Rules [6]. They support polyphonic CSPs where both the rhythm and the pitches
are searched for. Chapter 12 by Örjan Sandred in this volume discusses the solver
Cluster Engine further.

Various algorithms exist for CP solvers [21], and various algorithms have been
used in music constraint systems [12]. The classical search algorithm for CP is
chronological backtracking, which systematically visits one variable after another.
It assigns a variable a value from its domain and then checks whether this partial
solution complies with all the constraints on this variable. If it does, the search
progresses to the next variable, and otherwise it tries a different domain value. If
all domain values of a variable fail a constraint then the search backtracks to the
previously visited variable and tries different domain values of that previous variable.

Chronological backtrackingworkswell for relatively simplemusic constrain prob-
lems, but music constraint systems usually support refinements of this principal algo-
rithm for solving more complex problems with reasonable efficiency. Anders and
Miranda [12] discuss in detail different search algorithms used by music constraint
systems; here we only provide a brief summary.

The order in which variables are visited during the search process can have a
great impact on the efficiency (as does the order in which we make decisions in
daily live), and music constraint systems therefore commonly offer custom or even
user-definable variable orderings. Some systems support dynamic variable orderings,

http://dx.doi.org/10.1007/978-3-030-72116-9_12
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where the solver decides which variable to visit next only at the moment when that
decision is due—taking the current stage of the partial solution into account [2].

Back jumping is an optimisation of chronological backtracking. In case the solver
needs to backtrack, back jumping tries to skip intermediate unrelated variables when
going back and instead continues with a variable that actually conflicts with a failed
constraint; the solver avoids unnecessary work this way.

Constraint propagation [59] reduces the size of the search tree by shrinking
domains without search to exclude domain values that contradict some constraints
and cannot be part of any solution. Constraint propagation is triggered during the
search process whenever a new variable is visited and may affect all variables that
have not been visited so far. To speed up the propagation process itself, it commonly
only affects variable domain boundaries (i.e., reduces the domain range of an inte-
ger domain without cutting “holes” into the domain). Constraint propagation can
greatly speed up the search and is therefore widely used in academia and industry in
general. However, it is rarely used for MCP, likely because it somewhat restricts the
constraints that can be expressed. The highly specialised propagation algorithms that
reduce variable domains without search are designed for specific decision variable
“types” (kinds of variable domains, e.g., Booleans, integers and sets of integers),
and therefore all variables in a constraint system using propagation must be “typed”
accordingly. Nevertheless, the harmony framework proposed later in this chapter is
designed in such a way that it can be implemented with a constraint system using
propagation, because this framework is designedwith such “typed” variables inmind.

11.3.4 HarmonyModelling

In the field of algorithmic composition, harmony is a challenging area to address.
Theories of harmony can be rather complex, as the mere size of standard harmony
textbooks indicates. Also, different theories vary considerably depending on the
musical style they address such as classical music [49,57], Jazz [40], contemporary
classical music in extended tonality [46] or microtonal music [22].

Due to this complexity, techniques of Machine Learning are a suitable way for
modelling harmony. For example, Hild et al. [35] present a neural net that—given a
melody—generates a four-part choral, imitating the style of Johann Sebastian Bach.
The system breaks this task down into multiple steps, starting with a harmonic skele-
ton (the bass plus harmonic functions), progressing to a chord skeleton (four-part
voicings) and finally adding ornamenting quavers. Boulanger-Lewandowski et al.
[18] propose an often-cited recursive neural network (with different network architec-
tures) that learns to compose polyphonic music from corpora of varying complexity
(folk tunes, chorals, pianomusic and orchestralmusic). Themodel composesmusical
sequences that demonstrate learnt knowledge of harmony and how to shape melodic
lines, though long-term structure is missing. Eigenfeldt and Pasquier [27] describe a
method for generating harmonic progressions in real time that uses Markov chains.
The system learns from Jazz standards from the Real Book.
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WhileMachine Learningworkswell for generating chord progressions of existing
styles, composers are interested in developing their own musical language and com-
monly prefer avoiding pastiche. A rule-based approach allows composers to define
their own harmonic language (e.g., using non-conventional or microtonal scales),
even if this language is rather complex. Besides, a rule-based model is compre-
hensible for humans, which is rarely the case for models resulting from Machine
Learning.

11.3.5 Constraint-Based Harmony Systems

AsCP iswell suited formodelling rule-based compositional knowledge, and asmuch
compositional knowledge is available on harmony in standard textbooks, harmony
is a music theory area that has particularly often been addressed when modelling
composition with CP. Only counterpoint, which is also codified in detail by rules in
the literature, attracted similar attention, while other areas of music theory (rhythm,
melody, musical form, orchestration) have been addressed comparatively less often.
Some of the above-mentioned surveys on MCP also cover specifically how harmony
has been modelled [12,45]. Below, we look at a few particularly relevant examples.

Tsang and Aitken [61] presented an often-cited harmonisation system with only
20 rules for creating four-part harmonisations of a choral melody.

By contrast, the harmonisation system CHORAL [25,26] received great attention
due to the musical quality of its results, which were realised by over 300 constraints.
CHORAL generates four-part choral harmonisations for given melodies in the style
of Johann Sebastian Bach.While Ebcioglu also extracted rules from a number of tra-
ditional harmony treatises, he derived much compositional knowledge by a detailed
analysis of Bach’s music, and then formalised this knowledge by a large number of
rules.

The system applies rules to what Ebcioglu calls multiple viewpoints of the score,
i.e., different variable combinations (elsewhere, this chapter uses the term score
context for a very similar notion). Rules on the chord skeleton view constrain the
rhythmless sequence of chord symbols of the underlying harmony. These include,
e.g., rules controlling chord progressions. The fill in view provides access to the four
voices including the duration andmetric weight of notes, and it is used for controlling
nonharmonic tones like passing tones. Rules on the Schenkerian analysis view and
melodic string view control melodic developments, in particular of the bass. Due
to the large amount of modelled compositional knowledge in CHORAL, its results
can be harmonically more complex than most other constraint-based harmonisation
systems. For example, CHORAL features modulations, as mentioned earlier.

To meet his purpose in an efficient way, Ebcioglu first designed and implemented
the CP language BSL, which is short for Backtracking Specification Language [24].
BSL allows for strict constraints but also heuristics. It implements a search algorithm
that features backjumping as an optimisation.

Phon-Amnuaisuk also proposed a system for Bach choral harmonisations [47,48].
Phon-Amnuaisuk criticises the design of CHORAL, pointing out that this system is
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hard to modify. To realise a more adaptable constraint system design, he proposes
a design that separates the logic of the compositional knowledge and the search,
so that the temporal order in which variables are visited during the search process
(variable ordering) can be changed independently of the problem definition. For
example, for the four-voice Bach choral example, the search process may first create
the harmonic skeleton for the given melody, then outline the bass skeleton, create
a draft of the other voices and eventually create the final version of each voice by
adding ornamentations such as passing notes.

While most constraint-based harmony systems harmonise a given melody—often
creating a new chord for each melody note—[9] present a system for creating a har-
monic progression from scratch. The work models Schoenberg’s directions for con-
vincing chord progressions, which is a subset of the model presented below in Sect.
11.5. However, this research models Schoenberg’s explanation of his recommenda-
tions instead of the actual rules, and that way generalises these recommendations
beyond diatonic progressions and even for microtonal music.

11.4 Case Study: A Constraint-Based Harmony Framework

The next two sections present a case study in some detail. The present section
describes formal details of a proposed framework for defining harmonic constraint
applications. The applications in Sect. 11.2 above are all definedwith this framework.
The following section then returns to one of these application examples. Based on
the framework presented in the present section, the following section models core
parts of Schoenberg’s comprehensive tonal theory of harmony.

There is no agreement on a single theory of harmony; there exist various harmonic
styles. Therefore, a flexible algorithmic composition environment should allow users
to create their own style by modelling their own theory of harmony. This section
proposes a framework with which users can model their own theory of harmony, and
then let the system generate harmonic progressions that follow it. If the harmonic
rules are complemented by rules controlling the melody, counterpoint and so forth,
then they can also be used more generally to generate music that follows given or
generated progressions.

The framework provides building blocks common to many theories of harmony
and that way simplifies the definition of custom theories from scratch. The proposed
framework provides flexible representations of harmonic concepts (e.g., chords,
scales, notes, as well as their parameters like a note’s pitch or a chord root), which
allow users to define their own harmony models declaratively at a high level of
abstraction with modular rules implemented by constraints that restrict the relations
between these parameters.

Users can freely declare chord and scale types (e.g., major and minor triads and
scales) by specifying pitch class intervals among chord or scale tones and their
root/tonic. A number of different pitch representations are supported including pitch
numbers (e.g., MIDI key numbers), pitch classes, enharmonic note representations,
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scale degrees of notes and chords, and specific chord tones such as the fifth or the
third of a triad. All these representations are freely constrainable. The framework
supports the common 12-tone temperament and arbitrary other equal divisions of the
octave.

Much of the information represented by the framework is analytical information.
Notes are concrete musical objects that produce sound when the score is played, but
chord and scale objects represent analytical information—the underlying harmony.

Notes, chords and scales are represented by tuples of decision variables. Vari-
ables represent score parameters (like a note’s start time, pitch, etc.) or analytical
information (e.g., the pitch class set of a chord, or its root). When users define har-
mony models with this framework, they employ these objects and apply constraints
between their variables. However, some well-formedness constraints must always
hold between these variables and are automatically applied for convenience. This
section discusses the variables of these objects, as well as the well-formedness con-
straints.

For clarity and portability, this section shows core definitions of the framework
in mathematical notation instead of using any programming language. For simplic-
ity, we leave out some auxiliary variables (intermediate results in larger constraint
expressions represented by extra variables).

11.4.1 Declaration of Chord and Scale Types

In the proposed framework, the chord and scale types supported globally by a con-
straint model (e.g., major and minor triads and scales) can be declared independently
of the rest of the model. The ordered sequence CT consists of tuples, where each
tuple specifies one chord type with a set of features as shown in the example below
(11.1). The first tuple declares the major triad type: it specifies the pitch class integer
0 representing the untransposed chord root (C), and the pitch classes of the untrans-
posed chord—in this case the C major triad, {C,E,G}—as the set of pitch class
integers {0, 4, 7}. Implicitly, such declarations state the intervals between the chord
tones. The given name is a useful annotation, but not directly used by the framework.

Most values of the proposed framework are variables, e.g., the temporal or
pitch parameters of notes and chords can be initially unknown, constrained and
are searched for. By contrast, all values in chord type declarations (i.e., the different
chord types involved in a harmonic constraint application) are usually constants that
are known from the outset.

[〈name: major, root: 0, PCs: {0, 4, 7}〉,
CT =〈name: minor, root: 0, PCs: {0, 3, 7}〉, (11.1)

. . . ].
Scale types are declared in the same way in an extra sequence of tuples ST . For

example, the pitch class set of the major scale type is {0, 2, 4, 5, 7, 9, 11}, while its
tonic (also represented under variable name root for consistency) is 0.
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Users can declare the global number of pitches per octave (psPerOct), and that
way specify the meaning of all integers representing pitches and pitch classes in
the constraint model. A useful default value for psPerOct is 12, which results in the
common 12 equal division of the octave (12-EDO), and which was used for the chord
and scale type examples above. Only equal temperaments that evenly subdivide the
octave are supported. However, just intonation or irregular temperaments can be
closely approximated by setting psPerOct to a high value (e.g., psPerOct = 1200
results in cent resolution).

Instead of specifying pitch classes by integers as shown, it can bemore convenient
to specify note names, which are then automatically mapped (�→) to the correspond-
ing pitch class integers, depending on psPerOct. In 12-EDO, C �→ 0, C� �→ 1 and
so on. Alternatively, pitch classes can be specified by frequency ratios as a useful
approximation of just intonation intervals for different temperaments. Again in 12-
EDO, the prime 1

1 �→ 0, the fifth 3
2 �→ 7, etc. Remember that for the frequency ratio

r , the corresponding pitch class is round((log2 r) · psPerOct).
The format of chord and scale declarations is extendable. Users can add further

chord or scale type features (e.g., a measure of the dissonance degree of each chord
type), which would then result in further variables in the chord and scale repre-
sentation. Some additional features are already predefined for convenience and are
discussed in the Sect. 11.4.3 below.

11.4.2 Temporal Music Representation

The underlying harmony can change over time. Temporal relations are a suitable way
to express dependencies: all notes simultaneous to a certain chord or scale depend
on that object (i.e., those notes fall into their harmony).

The framework shows its full potential when combined with a music representa-
tion where multiple events can happen simultaneously. A chord sequence (or scale
sequence or both) can run in parallel to the actual score, as shown in the score example
discussed above (Fig. 11.3).

Score objects are organised in time by hierarchic nesting. A sequential container
implicitly constrains its contained objects (e.g., notes, chords, or other containers)
to follow each other in time. The objects in a simultaneous container start at the
same time (by default). All temporal score objects represent temporal parameters
like their start time, end time and duration by integer variables. A rest before a score
object is represented by its temporal parameter offset time (another integer variable),
which allows for arbitrary rests between objects in a sequential container, and before
objects in a simultaneous container.

Equation (11.2) shows the constraints between the temporal variables of a simul-
taneous container sim and its contained objects object1 … objectn . Any contained
object—objecti—starts at the start time of the container sim plus the offset time of
the contained object. The end time of sim is the maximum end time of any contained
object.
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startobjecti = startsim + offsetobjecti

endsim = max(endobject1 , . . . , endobjectn ).
(11.2)

The relations between temporal variables of a sequential container and its con-
tained objects are constrained correspondingly, and every temporal object is con-
strained by the obvious relation that the sum of its start time and duration is its end
time. The interested reader is referred to [1, Chap.5] for further details.

Temporal relations can be defined with these temporal parameters. For example,
we can constrain that (or whether, by further constraining the resulting truth value)
two objects o1 and o2 are simultaneous by constraining their start and (∧) end times
(11.3). For clarity, this constraint is simplified here by leaving out the offset times
of these objects.

starto1 < endo2 ∧ starto2 < endo1 . (11.3)

Remember that all these relations are constraints—relations that work either way.
The temporal structure of a score can be unknown in the definition of a harmonic
CSP. Users can apply constraints, e.g., to control the harmonic rhythm in their model,
or the rhythm of the notes in a harmonic counterpoint.

If other constraints depend on which objects are simultaneous to each other (e.g.,
harmonic relations between notes and chords), then the search should find temporal
parameters relatively early during the search process [2].

11.4.3 Chords and Scales

The proposed model represents the underlying harmony of music with chord and
scale objects. This section introduces the representation of these objects, their vari-
ables, and the implicit constraints on these variables. The representation of chords
and scales is identical, except that chords depend on the declaration of chord types
CT , and scales on scale types ST (see Sect. 11.4.1). Therefore, the rest of this
subsection only discusses the definition of chords.

A chord c is represented by a tuple of four variables (11.4)—in addition to the tem-
poral variables mentioned above (Sect. 11.4.2), which are indicated with the ellipsis
“…”. Internally, some additional auxiliary variables are used in the implementation:
untransposedRoot and untransposedPitchClasses. The integer variable type denotes
the chord type. Formally, it is the position of the respective chord in the sequence
of chord type declarations CT , see Eq. (11.1) above. The integer variable transp
specifies by how much the chord is transposed with respect to its declaration in CT .
The set of integer variables PCs represents the set of (transposed) pitch classes of the
chord, and the integer variable root is the (transposed) root pitch class of the chord.

c = 〈type, transp, PCs, root, . . . 〉. (11.4)

For chords where the root is 0 (C) in the declaration, transp and root are equal.
In a simplified framework, the variable transp could therefore be left out. However,
sometimes it is more convenient to declare a chord where the root is not C (e.g.,
leaving a complex chord from the literature untransposed, or stating the pitch classes
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of a chord by fractions where the root is not 1
1 ). Therefore this flexibility is retained

here with the separate variables transp and root.
Implicitly applied constraints restrict the relation between the variables of any

chord object c, and the collection of chord type declarations CT . Note that CT (and
ST ) are internally rearranged for these constraints. rootCT is the sequence of all
chord roots (in the order of the chord declarations) and PCsCT is the sequence of
the pitch class sets of all chord declarations.

Equations (11.5) and (11.6) show the implicit constraints. The element constraint
is a key here. It accesses in an ordered sequence of variables a variable at a specific
index, but the index is also a variable. The element constraint is notated here like
accessing an element in a sequence. x = xs[i] constrains x to the element at position
i in xs, where i is an integer variable, x is either an integer or a set variable, and xs
is a sequence of integer or set variables. In (11.5), rootCT [typec] is the untransposed
root of the chord type typec. The (transposed) chord rootc is this untransposed root—
pitch class transposed with the constraint transp-pc by the transposition interval of
the chord. A corresponding constraint for pitch class sets is expressed in (11.6).

When chords are extended by further variables (e.g., a chord type specific disso-
nance degree), the chord declarations and chord object variables are simply linked
by further element constraints (e.g., featc = featCT [typec]).

rootc = transp-pc(rootCT [typec], transpc) (11.5)

PCsc = transp-PCs(PCsCT [typec], transpc). (11.6)

The pitch class transposition constraint used here is defined in (11.7). Pitch class
transposition in 12-EDO with mod12 is well known in the literature [31]. The defi-
nition here slightly deviates to support arbitrary equal temperaments (psPerOct was
introduced in Sect. 11.4.1 above). The function transp-pc expects a pitch class pc
and a transposition interval t and returns a transposed pitch class. transpPCs does
the equivalent for a set of pitch classes, transposing them all by the same interval.

transp-pc(pc, t) := (pc + t) mod psPerOct. (11.7)

Note that functions in this chapter—like transp-pc and transpPCs—must be read
as relations; they apply constraints between the decision variables involved. For
example, their “results” can also be used as inputs. We can effectively ask transp-pc
by which interval t we need to transpose the pitch class 2 (D in 12-EDO) to reach 9
(A), and the constraint solver deduces that t = 7 (a perfect fifth).

Side note: constraint propagation of the framework is improvedwith the redundant
constraint (11.8): the root of a chord is always an element (∈) of its pitch class set.
Remember that the root of a chord is always a chord tone—which is not necessarily
true for its fundamental. For example, the root of the diminished triad {C, E�,G�}
is C, which is a chord tone, while its fundamental is A�, which is not a chord tone.

rootc ∈ PCsc. (11.8)
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11.4.4 Notes with Analytical Information

Note objects represent the actual notes in the score. A note n is represented by a
tuple of variables as shown in (11.9). As with chords, temporal variables are left out
for simplicity and are only indicated with an ellipsis.

n = 〈pitch, pc, oct, inChord?, inScale?, . . . 〉. (11.9)

The note’s pitch (integer variable) is essential for melodic constraints. It is aMIDI
note number [50] in case of 12-EDO. The pc (integer variable) represents the pitch
class (chroma) independent of the oct (octave, integer variable) component, which
is useful for harmonic constraints. The relation between a note’s pitch, pc and oct is
described by (11.10). The octave above middle C is 4, as in scientific pitch notation
[63].

pitch = psPerOct · (oct + 1) + pc. (11.10)

The Boolean variable inChord? distinguishes between a harmonic and nonhar-
monic tone, i.e., expresses whether the pc of a note n is an element of the PCs of
its simultaneous chord c. This relation is implemented with a reified constraint (a
meta-constraint, which constrains whether or not other constraints hold), namely, a
reified set membership constraint (11.11). In the harmonic analysis discussed in Sect.
11.2.1 above and in the composition example of Sect. 11.2.3, the variable inChord?
is used for constraining that nonharmonic tones are treated adequately (e.g., as pass-
ing tones). The Boolean variable inScale? denotes equivalently whether the note is
inside or outside its simultaneous scale.

inChord?n = pcn ∈ PCsc. (11.11)

11.4.5 Degrees,Accidentals and Enharmonic Spelling

So far, we used two common pitch representations: the single variable pitch and
the pair 〈pc, oct〉. Further pitch-related representations can be useful to denote scale
degrees (including deviations from the scale), tones in a chord (and their deviations),
and to express enharmonic spelling.

Enharmonic spelling is represented with a pair of integer variables 〈nominal,
accidental〉, where nominal represents one of the seven-pitch nominals (C, D, E, …,
B) as integers: 1 means C, 2 means D, … and 7 means B. The choice to start with
C and not A (or any other tone) as 1 is arbitrary, and it is very easy to change that
when desired. C is represented by 1 and not 0 for consistency with the common use
of Roman numerals for scale degrees, where the lowest degree is notated with the
Roman numeral I. The variable accidental is an integer where 0means �, and 1means
raising by the smallest step of the current equal temperament. In 12-EDO, 1 means
�, −1 means �, −2 is �� and so on. This representation can also be implemented in a
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constraint system that only supports positive integer variables by adding a constant
offset to all accidental variables.

The representation of the enharmonic spelling depends on the pitch classes of
the C major scale: the nominal 1 is a reference to the pitch class at the first scale
degree of C major, 2 refers to the second degree and so on. The same scheme can
be used with any other scale to express scale degrees with a pair of integer variables
〈scaleDegree, scaleAccidental〉. The variable scaleDegree denotes the position of
a pitch class in the declaration of the pitch classes of a given scale in ST . If the
variable scaleAccidental is 0 (�), then the expressed pitch class is part of that scale.
Otherwise, scaleAccidental denotes how far the expressed pitch class deviates from
the pitch class at scaleDegree. This representation is used in the Schoenberg example
described in Sect. 11.2.2 to constrain the raised scale degrees I, II, IV and V.

This scheme can further be used for chords with a pair of integer variables
〈chordDegree, chordAccidental〉. The integer variable chordDegree denotes a spe-
cific tone of a chord, e.g., its root, third, fifth, etc.; it is the position of a chord tone in
its chord type declaration in CT (11.1), while chordAccidental indicates whether and
howmuch the note deviates from a chord tone. This representation is also used in the
model of Schoenberg’s theory of harmony discussed above to recognise dissonances
that should be resolved (e.g., any seventh in a seventh chord).

These representations are closely related. They all “split” the pitch class compo-
nent pc into a tuple 〈degree, accidental〉. They only differ in the pitch class set they
relate to (i.e., the seven-pitch nominals, a certain scale or a chord). The constraint
between this pitch class set, the tuple 〈degree, accidental〉 and the pitch class of the
degree is implemented in a uniform way by the constraint degreeToPC.

For example, let us consider the Dmajor scalePCsD-major , which in 12-EDO is the
pitch class set {2, 4, 6, 7, 9, 11, 1}. The scale degreeV� isA� inDmajor,which corre-
sponds to the pitch class 8. This scale degree is represented by the degree-accidental-
tuple 〈5, −1〉 (scale degree V flattened by a semitone). The relation between the
underlying scale, the scale degree (including its accidental) and the corresponding
pitch class is expressed by the constraint degreeToPC: degreeToPC(PCsD-major, 〈5,
−1〉) = 8.

The constraint between the pitch classes of a chord, a “chord degree” (with its
“chord accidental”) and the corresponding pitch class is formally the same. It is also
defined with the constraint degreeToPC, only that it depends on another pitch class
set, the pitch classes of a given chord.

The definition of degreeToPC is shown in (11.12). It simply constrains the result-
ing pitch class to the pitch class in PCs at position degree—plus the corresponding
accidental, but the modulus constraint with psPerOct ensures that the pitch class
range is not exceeded. For example, in C major and 12-EDO, the degree I� results
in the pitch class 11 and not −1, thanks to the modulus constraint. In (11.12), the
element constraint actually requires a sequence of integers. Instead, the set PCs is
notated here directly for simplicity. In the implementation of this constraint, the set
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PCs is complemented by a matching sequence containing the elements of the set.
Note that the order of elements is important.

degreeToPC(PCs, 〈degree, accidental〉) :=
(PCs[degree] + accidental) mod psPerOct.

(11.12)

Similar to the transposition of pitches and pitch classes, we need to complement
our degree representation by a constraint that defines how degrees are transposed.
For example, in the Schoenberg harmony model intervals between chord root scale
degrees are controlled by constraints (e.g., remember that a descending progression
is either a third down or fourth up between chord roots expressed by scale degrees).

It is sufficient that a degree transposition constraint restricts only the relation
betweenpitch classes and their corresponding scale degrees. The accidentals are auto-
matically constrained as well, as the constraint degreeToPC must still hold between
every combination of degree, accidental and corresponding pitch class.

Consider again the D major scale PCsD-major : transposing the degree V (A, pitch
class 9) down by two scale degrees leads to the degree III (F�, pitch class 6). We can
express this relation with the constraint transposeDegree, where both tones and the
transposition interval are represented by tuples of the form 〈degree, pc〉. Assum-
ing that the accidentals of both tones are 0 (�) and the transposition interval is
diatonic (i.e., its accidental is also 0), we can state the transposition of degree V
by two scale degrees downwards as follows: transposeDegree(PCsD-major, 〈5, pc1〉,
〈−2, pct 〉) = 〈degree2, pc2〉. The solver can then automatically deduce that pc1 = 9,
the transposition interval pct = 3, the resulting scale degree degree2 = 3 and its
pitch class pc2 = 6.

The definition of transposeDegree (11.13) binds the number of elements in the
pitch class set (its cardinality, |PCs|) to l (e.g., 7 for a diatonic scale). It then computes
from the untransposed degree degree1, the degree transposition interval degreet and l
withmod1 the transposed degree degree2. The constraintmod1 (11.14) is a variation
of the modulus constraint that returns numbers in [1, l]. That way, the lowest degree
(the prime) is 1 and not 0. The transposed pitch class is computed with the constraint
transp-pc discussed earlier (11.7).

transposeDegree(PCs, 〈degree1, pc1〉, 〈degreet , pct 〉) :=
let l = |PCs|

degree2 = mod1(degree1 + degreet − 1, l)
pc2 = transp-pc(pc, pct)

in 〈degree2, pc2〉

(11.13)

mod1(x, l) := (x − 1 mod l) + 1. (11.14)

The degree transposition for enharmonic notation, scale degrees and “chord
degrees” are all done this way. As said before, they differ only in their relevant pitch
class set, but of course they need separate variables for their degrees, accidentals and
pitch classes that are then related to each other with degreeToPC.
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11.4.6 Efficient Search with Constraint Propagation

The proposed framework has been designed with modern constraint solvers in mind,
which employ constraint propagation for efficiency. Some music constraint systems
already use as search algorithms a limited form of constraint propagation, which
reduce variable domains before visiting these variables. Situation’s constraint solver
implements a variation of forward-checking [54]. The combination of BackTalk and
MusES supports several classic arc-consistency enforcing algorithms (AC-3, AC-4,
…, AC-7), but only at the first stage of the search [52].

However, the author is not aware of a prior system for harmonic CSPs whose
design is suitable for propagation-based constraint solvers. The efficient propagation
algorithms of these solvers require that decision variables are restricted to a few types
like Booleans, integers and sets of integers. By contrast, the music representation
MusES has originally not been designed with CP in mind; and the variable domains
of CSPs defined with MusES consist of complex SmallTalk objects.

Further, the explicit representation of analytic harmonic information by the pro-
posed framework can speed up the search process by supporting propagation. Con-
straints on these explicit variables allow to interchange information that can help
reducing domains. For example, if a certain harmonic CSP only allows for specific
chord types, then this limits the possible pitch and pitch class interval combinations.
Similarly, once the search determines a certain pitch class and related octave, then
constraint propagation can automatically and without any further search determine
the related pitch, scale degree and so forth.

An efficient search with the proposed framework is further helped by a suitable
dynamic variable ordering. For example, for efficiency the implementation of the
Schoenberg model visits variables in the following order. It completes all parts of
the score parallel in score time, i.e., the undetermined variables of the score object
with smallest start time are visited first. In case of ties (multiple variables belonging
to objects with the same start time), first temporal variables are determined, then
variables that belong to the underlying harmony (chords and scales), then note pitch
classes and finally octaves (pitches are then automatically deduced by propagation as
discussed above). In case there is still a tie (e.g., multiple note pitch classes belonging
to objects with the same start time), then the variable with the smallest domain is
visited first according to the first fail principle, a standard advice for designing
variable orderings (for a variable with smaller domain it is more difficult to find a
fitting value, and difficult cases are best handled first).

11.4.7 Implementation

The presented framework is implemented in the music constraint system Strasheela
[4] on top of the Oz programming language [51]. Unfortunately, the development of
the Oz programming language [42] slowed down over the years, which also affects
Strasheela (e.g., CP is only supported by the old version 1 of Mozart, the Oz imple-
mentation).
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Anyway, the presented framework can be implemented with any other constraint
system that supports the following features found in various propagation-based
constraint systems (e.g., Gecode, Choco, JaCoP, MiniZinc): the variable domains
Boolean, integer and set of integers; constraints including reified constraints on inte-
gers and sets; and the element constraint. For details on the element constraint see
[16] and also Sect. 11.4.3. Of course, the framework could also be implemented with
a constraint system that does not support propagation, but then the search will be
less efficient.

11.5 An Example:Modelling Schoenberg’s Theory of Harmony

The proposed framework consists primarily of the constrainable harmony represen-
tation presented in the previous section. Developing concrete harmony models with
this foundation is relatively straightforward: the variables in the representation are
further constrained.

To show the framework in action with a real-live example, this section explains
important details of the model of Schoenberg’s tonal theory of harmony introduced
above (Sect. 11.2.2). While we cannot discuss such an extensive model in full detail
in the limited space of this chapter, we will cover the main ideas and how they are
expressed formally within the proposed framework. The full source code is available
online at [3].

11.5.1 Score Topology

The music representation of this example provides the score contexts necessary for
applying all relevant rules. Figure 11.4 shows a schematic overview of this represen-
tation.

Four voices, each implemented as a sequential container (seeSect. 11.4.2) of notes,
present the melodic contexts (for clarity called soprano, alto, tenor and bass in Fig.
11.4). These voices run simultaneously in time by being wrapped in a simultaneous
container (again, see Sect. 11.4.2) called score in the figure alongside two further
sequential containers.One sequence contains asmany chords (underlying harmonies)
as there are notes in each voice. Another sequence contains scales for expressing
modulations. There are less scales necessary than notes or chords, as the underlying
scale changes less often. The representation of the individual chords, scales and notes
was introduced above in the Sects. 11.4.3 and 11.4.4.

The harmonic context of a note is represented by its simultaneous objects: the notes
of the other voices, one simultaneous chord and one simultaneous scale. For example,
note1 of each voice as well as chord1 and scale1 are simultaneous in Fig. 11.4. The
formalisation of the notion of simultaneous objects was define above (Sect. 11.4.2).
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Fig. 11.4 Topology of the
music representation for
modelling Schoenberg’s
theory of harmony

11.5.2 Pitch Resolution

This example is implemented in 31-tone equal temperament (31-EDO) instead of the
standard 12-EDO, which Schoenberg so stunningly exhausted in his compositions.
31-EDO [30] is virtually the same as quarter-comma meantone, a common tuning in
the sixteenth and seventeenth centuries. It can be notatedwith standard accidentals (�,
�, ��…). 31-EDOhas been chosen, because it distinguishes enharmonic variants, e.g.,
C� and D� are different numeric pitch classes. At the same time, this representation
allows for convenient pitch class calculations with consistent interval sizes much like
12-EDO, but with 31 different pitch class integers. More generally, the use of this
temperament demonstrates that the presented framework supports microtonal music
[10], though the intervals of this example are limited to the intervals of common
practice music.

Other representations using a single number for pitch classes that distinguish
enharmonically equivalent tones andwhere distances between tones consistentlymap
to notated interval names could have been used as well, e.g., 41-EDO or the base-40
system [34]. Anyway, the meantone temperament of 31-EDOworks better for tertian
harmony.By contrast,while the enharmonic spelling representation introduced above
(Sect. 11.4.5) would represent the same information, it would have been somewhat
less economical, because two further variables (the nominal and accidental) would
have been added to every note (and certain transposition intervals).

11.5.3 Chord Types

In his harmony book, Schoenberg starts with the purely consonant triads major and
minor, and by and by introduces the diminished triad, various seventh chords, the
augmented triad (when discussing minor keys), ninth chords and so on up to chords
with six or more tones. Arbitrary collections of chord types can be declared with
the proposed framework as discussed above (see Sect. 11.4.2), and chord types can
be easily added to or removed from a constraint model. For example, for relatively
conventional results the four triad types (major, minor, diminished and augmented)
and several seventh chords (dominant 7th, major 7th, minor 7th, diminished 7th and
halve-diminished 7th) can be declared in this model.
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11.5.4 PartWriting Rules

Several score contexts involving only notes and not chords and scales are controlled
by part writing rules in this model. Such rules constrain the pitches of consecutive
notes in a single voice (e.g., restricting melodic intervals), simultaneous notes across
voices (e.g., restricting the intervals between voices), and a combination of these
cases (e.g., for prohibiting parallels, and voice crossing). Such rules are typically
inherited fromcounterpoint and are often discussed in themusic constraints literature,
e.g., by Ebcioglu [23], Schottstaedt [58] and Laurson [39, p. 229ff], while Sandred
[55] and Anders and Miranda [11] present how arbitrary rules can be applied to
various score contexts.

The proposed framework explicitly represents all relevant note information as
variables, i.e., their temporal parameters and pitches, and the music representation
provides access to score contexts such as consecutive and simultaneous notes. Arbi-
trary partwriting rules can therefore also bedefinedwith this frameworkby restricting
these note variables.

As such rules are discussed elsewhere in the literature, we only present formal
details for one simple example rule here. Voice crossing is prohibited by constraining
the notes of an upper voice to be higher than the notes of a lower voice. For clarity,
Eq.11.15 defines this rule only between two specific parts, the tenor and the bass. The
rule simply restricts the pitch of the bass note to never be higher than the simultaneous
tenor note (the note with the same index i).

getPitch(bassi ) ≤ getPitch(tenori ). (11.15)

We are slightly changing the notation here from the former subscript notation (e.g.,
pitchn) to a function-call notation (e.g., getPitch(n)). While the former notation is
convenient for shorter formulas, this latter notation is better suited as a pseudo-code
notation for a more complex model, e.g., to avoid nesting indices like pitchni . Nev-
ertheless, we are not switching to a strict functional notation, e.g., still conveniently
notate the index with a subscript (e.g., bassi ).

11.5.5 Simplified Root Progression Directions: Harmonic Band

A particular instructive aspect of Schoenberg’s harmony textbook for composers
when compared with most other such textbooks are his directions on composing
chord root progressions (Piston [49] provides somewhat similar guidance, though
less systematic). In his typical educational approach, Schoenberg introduces his
guidance gradually in steps, starting with a more restricted rule set and later refining
the rule set to allow for a wider range of solutions.

The initial harmonic progression rule is straightforward. For a smooth connection,
consecutive chords should share at least one common tone. Schoenberg talks about
their “harmonic band”. For example, in D major, the degrees I (D major triad) and
V (A major triad) share the common tone A.
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Fig.11.5 Harmonic solution
of the Schoenberg model
introduced so far: harmonic
phrase of diatonic major and
minor triads connected by a
“harmonic band”; see text
for details

VI II

Chords
(Anal.)

IIV

This rule can be formalised by a constraint between the pitch class sets of chords.
The two consecutive chords c1 and c2 share common pitch classes if the intersection
(∩) between their pitch class sets is not empty (∅) (11.16).

PCsc1 ∩ PCsc2 
= ∅. (11.16)

Figure 11.5 shows a possible result of our CSP so far. The score topology is shown
with the four homorhythmic voices in the two upper staves, but also the chords of
the underlying harmony are notated on a third stave, again with chord tones like an
appoggiatura and roots as normal notes. The scale is constant C major, which is not
notated for simplicity, but it is explicitly represented in theCSP. The solution of a later
version of the CSP showing a modulation and involving two scales also notates the
underlying scales (see Fig. 11.11). The internal music representation stores various
further analytical information as discussed before, at least the scale degrees are also
translated into notation by the model.

In terms of chord types, this first example only uses major (primary) and minor
(secondary) triads that are part of the underlying scale. You can also see the effect of
the part writing rules. For example, all voices except for the bass onlymove stepwise,
if at all; parallel fifths and octaves are avoided; the voices sound all tones of each
triad; and voices don’t cross.

To express the underlying key, this result starts and ends with the tonic: the roots
of the first and last chords are constrained to the tonic of the underlying scale. Also,
all chords are in root position here: all bass notes are set to the root of their underlying
harmony. Finally, all consecutive chords are connected by a “harmonic band”: the
rule of Eq. (11.16) above is applied to all pairs of consecutive chords. For example,
the first two chords in Fig. 11.5 both feature the tones C (in the bass, and held in the
alto) and E (held in the tenor).

Note that this result could be one of the first harmonic phrases a student of Schoen-
berg’s textbook writes—after having studied diatonic primary and secondary triads
in the major scale, how they can be arranged for four sung voices, and how they can
be connected pairwise when preserving a harmonic band between them. The result
corresponds to Schoenberg’s recommendations at the stage of chapter IV section
“Connection of the Diatonic Primary and Secondary Triads in Short Phrases” of
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his textbook [57]. However, the following subsections progress in a different order
than Schoenberg’s textbook to simplify the pseudo-code by some code reuse and to
reduce the length of the discussion overall.

11.5.6 Chord Inversions

Schoenberg initially asks his harmony students to write only chords in root position,
which can be simply modelled by constraining the pitch classes of all notes in the
bass to equal the root of their simultaneous chord. In later sections of his textbook,
Schoenberg allows students to freely use chords in root position and first inversion
for more flexibility of an expressive bass voice and more harmonic diversity.

With the means introduced in the discussion of the framework above, this is easily
modelledwith chords that also represent their chordDegree (Sect. 11.4.5). In a choral-
like texture, the pitch class of the i-th bass note bassi is restricted to only certain
tones of the chord ci (the simultaneous chord), see Eq. (11.17). We restrict the pitch
class of the bass note to one of the pitch class corresponding to either the first or the
second chord degree (the root or the third) by a decision variable chordDegree with
a domain restricted to the set {1, 2}. The previously defined constraint degreeToPC
(11.12) controls the relation between the pitch classes of the chord ci , its chordDegree
(with the accidental set to 0, i.e., �) and the pitch class of the bass note bassi .

let chordDegree ∈ {1, 2}
in getPC(bassi ) = degreeToPC(getPCs(ci ), 〈chordDegree, 0〉).

(11.17)

You can see a possible solution in Fig. 11.6. It is a result of the sameCSP discussed
in the previous subsection, only that bass notes are no longer simply set to the root
of their underlying harmony. Instead, the pitch classes of most bass tones are now
constrained as defined in Eq. (11.17); only the first and last bass tones are still
restricted to root position. In the shown solution, several chords happen to be in
second inversion, namely, the second, third and fourth chord (the corresponding
annotations of the Roman numerals in the score were done manually for clarity).
Either inversion can occur freely here.

Fig. 11.6 A solution where
now first and second
inversions are permitted

IV 6 VI6 II 6I IIV
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In a more complex texture, only certain bass notes might be constrained this way
(e.g., only the lowest note of a phrase above a longer chord), and the conditionwhether
a bass note is constrained this way or not can be implementedwith a reified constraint
(e.g., implication, where the constrained is only applied when the condition is true).

11.5.7 Refined Root Progression Rules

In his refined directions on chord root progressions, Schoenberg distinguishes
between ascending, descending and superstrong progressions, as outlined in
Sect. 11.2.2. In short, Schoenberg advices to primarily use ascending progressions, to
save superstrong progressions for situations when strong means are desired (e.g., in
cadences including deceptive cadences, see below) and to generally avoid descend-
ing progressions (except two consecutive descending progressions form together a
strong progression).

The three different root progression cases can be formalised by constraints on
the scale degree intervals between chord roots. In an ascending root progression,
the interval between chord roots is either a fourth upwards or a third downwards.
The constraint fourthUpProgression (11.18) restricts the interval between the scale
degrees of the roots of the chords c1 and c2 to a fourth upwards. By restricting the
scale degrees and not the pitch classes of the roots this definition covers also the
augmented fourth (e.g., between the scale degrees IV and VII in major). The con-
straint fourthUpProgression constrains this interval by simply calling the previously
defined constraint transposeDegree (11.13) with the pitch classes of the underlying
scale PCss (again a sequence represented by a pitch class set for brevity), tuples
with the scale degrees and roots of the two chords and the scale degree transposition
interval 4 (a fourth upwards). The variable name_ stands for an ignored variable
whose value is irrelevant (it is deduced automatically depending on the accidentals
of the degrees involved, and these are all �, i.e., 0, here).

fourthUpProgression(c1, c2) :=
〈scaleDegree(c2), root(c2)〉 = transposeDegree(PCss,

〈scaleDegree(c1), root(c1)〉,
〈4, _〉).

(11.18)
The constraint thirdDownProgression (11.19) is a copy of fourthUpProgression

except for a different scale degree transposition interval. The constraintascending can
then be defined simply as a disjunction (logical or,∨) between fourthUpProgression
and thirdDownProgression (11.20). The other root progression cases can be defined
in the same way, only with different intervals: fourth down or third up for descending
and second up or down for superstrong.
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Fig. 11.7 A solution with
only ascending progressions

VI II VI IIII

thirdDownProgression(c1, c2) :=
〈scaleDegree(c2), root(c2)〉 = transposeDegree(PCss,

〈scaleDegree(c1), root(c1)〉,
〈−3, _〉).

(11.19)

ascending1(c1, c2) := fourthUpProgression(c1, c2)

∨ thirdDownProgression(c1, c2).

(11.20)

Schoenberg discusses his directions on root progressions in detail (and colourful
images) reasoning, e.g., why an ascending V–I progressions feels like a resolution:
the first chord yields to the power of the second chord with a root a fifth below as
it is absorbed in the second chord. Schoenberg talks of a prince who yields to the
stronger power of his king.

Only ascending progressions where allowed in the next solution (Fig. 11.7) to
first clearly demonstrate the effect of this progression constraint. This solution first
progresses a third down (from degree I to VI), then a fourth up (or fifth down, VI to
II), another fourth up (II to V) and so on.

Instead of modelling the directions on root progressions by constraints on scale
degree intervals, we can also formally model Schoenberg’s reasoning by constrains
between chord pitch class sets and their roots. In an ascending progression, the root
of the first chord c1 is an element of the pitch class set of the second chord c2, but
not the other way round (expressed by a logical and, ∧)—the root of c2 is a new
tone (11.21). For triads, this second rule formalisation leads to the same results as
the rule implemented with scale degree intervals, but for other chords (e.g., seventh
chords) this is not necessarily the case. However, this second formalisation is more
generic and can also be used for non-diatonic scales and microtonal music. Anders
and Miranda [9] presents a formalisation of all of Schoenberg’s root progressions
directions using this second approach.

ascending2(c1, c2) := root(c2) /∈ PCs(c1)

∧ root(c1) ∈ PCs(c2).

(11.21)
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Fig. 11.8 A solution
featuring ascending,
superstrong and descending
progressions, but the
treatment of descending
progressions follows
Schoenberg’s directions (see
text)

IVV VII IIII IVI

Ascending progressions are rather smoothly connected and Schoenberg recom-
mends using themprimarily. An occasional superstrong progression—where consec-
utive chords do not share common tones—creates some contrast. Schoenberg advises
his harmony students to avoid descending progressions except for cases where in a
quasi “passing chord” a descending progression and a neighbour progression together
form an ascending or superstrong progression.

These directions are implemented in the next CSP; Fig. 11.8 displays a solution.
The chord sequence starts with descending progressions a fifth up (I–V) and proceeds
with a superstrong progression (V–IV). However, if the second chord is considered
a “passing chord”, the progression from the first chord I to the third chord IV is
ascending (a fourth up).

You might note that some chords occur more than once (the second and fifth
chords are both V), but these chords happen to be in different inversions thanks to
the randomised search process, which leads to more variety. You might also note that
by and by the solutions become longer. With increased harmonic means we are now
able to generated somewhat longer chord progressions that retain interest.

11.5.8 Cadences

Schoenberg’s textbook explicates that a key is expressed by the exclusive use of all
its tones. To clearly express a key (tonality in Schoenberg’s words), it must be clearly
distinguished from other keys, in particular those that are closest to it. For example,
the C major scale is distinguished from F major by the tone B (instead of the B� of
F major) and from G major by the tone F (instead of the F� of G major). Further, to
conclude a piece the cadence leads to I, the chord over the scale’s tonic,

These two restrictions alone allow for a wide range of chord progressions, includ-
ing solutions beyond Schoenberg’s recommendations for a cadence, but they are a
useful foundation for later refinements. Equation (11.22) formalises these restric-
tions. The constraint cadenceFoundation expects a chord sequence cs (besides a
scale s), so that this constraint can be applied to an arbitrarily long chord progression
to ensure that it ends in a cadence. The root (tonic) of the scale s equals the root
of the last chord (bound to the local variable clast). In addition, the union (∪) of all
pitch classes of the last n chords (cslastN ) equals the pitch class set of the scale s; n
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defaults to three. This last expression enforces that the cadence chords express all
tones of the scale s (the tonality) and no other tone.

cadenceFoundation(s, cs, n = 3) :=
let clast = last element in cs

cslastN = last nelement in cs
in getRoot(s) = getRoot(clast)

∧ getPCs(s) =
⋃

getPCs(cslastN ).

(11.22)

The above definition can be expanded to describe an authentic cadence, the most
commonly used cadence. The definition authenticCadence (11.23) constrains again
the end of an arbitrarily long chord progression cs. The constraint allows for an ending
with the chords II–V–I or IV–V–I. For convenience, the last three chords are bound
to local variables, cante, cpen and clast . The progression from the antepenultimate
to the penultimate chord must be either ascending or superstrong (see Sect. 11.5.7).
Togetherwith the other constraints of this definition, this restricts the antepenultimate
chord to either II or IV. We could directly set the chords to these scale degrees, but
the constraints applied here better clarify the harmonic relations. Also, changes of
the overall definition, e.g., removing the restriction that all scale pitch classes must
be expressed, allow for further variants.

The last harmonic progression should be decisive, and the most decisive progres-
sion is the interval of a fourth upwards between chord roots, an ascending harmonic
progression. Together with the other constraints, the constraint fourthUpProgression
(11.18) enforces the last two chords to V–I. Finally, the scale and chords are restricted
by the above-discussed constraint cadenceFoundation. For harmonic clarity, we
could additionally restrict the dominant (the penultimate chord) and/or tonic (last
chord) to root position by constraining their bass note chord degrees to 1 in a variant
of the constraint in Eq. (11.17).

authenticCadence(s, cs) :=
let cante = antepenultimate chord of cs

cpen = penultimate chord of cs
clast = last chord of cs

in (ascending(cante, cpen)
∨ superstrong(cante, cpen))

∧ fourthUpProgression(cpen, clast)
∧ cadenceFoundation(s, cs).

(11.23)

A solution with an authentic cadence is depicted in Fig. 11.9: the harmonic pro-
gression ends with the chords II–V–I (D minor, G major, C major). It is by chance
a perfect authentic cadence (the cadence chords are in root position and the last
soprano note is also the tonic, C), but this is not enforced by our CSP.

The constraint cadenceFoundation (11.22) restricts the cadence chords to con-
tain together all pitch classes of the scale and no others, which can be con-
firmed in Fig. 11.9. The union of the pitch classes of the last three chords is
C, D, E, F,G, A, B, which are the pitch classes of the C major scale. The present
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Fig. 11.9 A solution where
an authentic cadence is now
enforced

VII VIIII III IV

CSP version also somewhat loosened the restriction on melodic intervals and allows
for slightly larger intervals.

The deceptive cadence can be defined similarly to authenticCadence, but the
progression between the last two chords is controlled by the constraint superstrong
instead—and the root of the last chord is not constrained to the root (tonic) of the
scale. To limit the deceptive cadence to the standard cases V–VI and V–IV, the scale
degree of the root of the penultimate chord must also be set to 5.

An extension of the definition authenticCadence inserts a 4
6-chord before the

dominant. A 4
6-chord is enforced by restricting the bass note to the pitch class that

corresponds to the chordDegree of this chord set to 3—like we previously restricted
the result to either root positions or inversions (see Sect. 11.5.6). The 4

6-chord is then
also constrained to the scale degree I (the tonic of the scale), as we already did with
the last chord in the definition cadenceFoundation (11.22).

11.5.9 Dissonance Treatment

Schoenberg’s textbook teaches asmusically “safest” formof dissonance treatment the
preparation and resolution of a dissonance.A dissonance is, e.g., the diminished fifths
of a diminished triad or the seventh of a seventh chord. The dissonance is prepared
by including it as a consonance in the previous chord. It is resolved commonly by
a downward step into the next chord. For a strong feeling of a resolution, the chord
root may progress from the dissonant chord by a fourth upwards into the next chord
(e.g., from the dominant into the tonic).

To prepare or resolve a dissonant note in an individual voice, we need to detect
whether the pitch class of a note is a dissonance in the underlying chord. This
information depends on the chordDegree of the note’s pitch class with respect to the
underlying chord, but also on the type of the underlying chord. When we represent
chord degrees in the order root, third, fifth, seventh, . . ., then any chord degree that is
larger than 3 is a dissonance. However, if we also allow for chords like the diminished
triad or diminished seventh chords, then already the chord degree 3 is a dissonance.
We therefore need to take both the chordDegree and the type of the chord into account.

The dissonance resolution of a note ni is formalised in Eq. (11.24), where i is
the position of the note in its voice. This rule is expressed by an implication (⇒, a
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reified constraint). The left-hand side of the implication expresses the condition; it
tests whether ni is a dissonance. The right-hand side expresses the consequence how
ni has to be resolved if it is indeed a dissonance.

The dissonance test (left-hand side of the implication) takes both the chordDegree
and the chord type into account as just discussed. The chord ci is the underlying
harmony of the potentially dissonant note ni (they share the same position and
are simultaneous). The function call getMinDissChordDegree(ci ) returns the lowest
chord degree that is dissonant for this chord type: if the type of this chord is a
diminished (or augmented) chord it returns 3, and 4 for a seventh chord, etc. (this
information is stored in an extendedversionofCT , and is also accessedby the element
constraint). The function getChordDegree applied to a note returns the chord degree
of the simultaneous chord object that corresponds with the note’s pitch class. If the
note’s chord degree is equal or greater than the lowest chord degree that is dissonant
for this chord, then this note is a dissonance.

The implication’s consequence (right-hand side) constrains the pitch intervals
into and out of the dissonance. For better legibility it first introduces three auxiliary
variables for the pitches of the three consecutive notes, where pi−1 is the pitch of the
predecessor note in the same voice, pi is the pitch of the potentially dissonant note
and pi+1 the successor’s pitch. If ni is a dissonance, then it must share the pitch of
the previous note. Also, the pitch interval (absolute difference) to the successor note
must be a step, i.e., less than or equal maxStep (e.g., 2 semitones for 12-EDO, or 6
for 31-EDO), and it must be a downward interval, i.e., pi is greater than pi+1.

getChordDegree(ni ) ≥ getMinDissChordDegree(ci ) ⇒
let pi−1 = getPitch(ni−1)

pi = getPitch(ni )
pi+1 = getPitch(ni+1)

in pi−1 = pi (same pitch as predecessor note)
∧ |pi+1 − pi | ≤ maxStep (step to successor)
∧ pi > pi+1 (downward interval to successor)

(11.24)

We can enforce a strong harmonic progression by an additional constraint between
a dissonant chord and its successor as expressed in Eq. (11.25). The constraint
isConsonant checks whether the type of a given chord is a consonant triad (again,
this information is stored in an extended version of CT and accessed by the element
constraint). If it is not (¬), then fourthUpProgression (11.18) is applied between
the chords. We could have used here the more general constraint ascending defined
above (Sect. 11.5.7), but fourthUpProgression is a particularly convincing harmonic
resolution in this context, which Schoenberg initially recommends when introducing
dissonance treatment.

¬isConsonant(typeci ) ⇒ fourthUpProgression(ci , ci+1). (11.25)

At a later stage in his textbook, Schoenberg relaxes these constraints to allow
for more harmonic flexibility. The dissonance is then not necessarily prepared
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Fig. 11.10 A solution with
diminished triads and
seventh chords with resolved
dissonances

VIIIV VI IV IIII III V

anymore and the harmony can progress into other chords more freely, but the reso-
lution of the dissonance by a downward step is still recommended, until later also
that recommendation is loosened.

The solution in Fig. 11.10 featuresmultiple dissonant chords, three seventh chords
(easily recognisable by four instead of three appoggiatura tones in the chords stave:
the second chord, IV, and at the end II andV) and a diminished triad (VII). In this CSP
version, the dissonance treatment is already relaxed and only a stepwise dissonance
resolution is enforced, but the other recommendations (dissonance preparation and
progression by a fourth upwards) happen to also still be fulfilled in most cases.

For each dissonant chord, the dissonance is resolved by a downward step. For
example, in the second chord (IV, F major) the dissonant seventh is E (in the alto),
which is resolved by a step downwards intoD in the following chord. This dissonance
also happens to be prepared: the E is already present in the previous chord. The root
progression from this second chord into the following chord also happens by a fourth
up into the chord VII. This root progression interval is actually a tritone, but in his
textbook Schoenberg treats such a root progression like a progression a fourth up,
which is consistent with the treatment of this progression, e.g., in a descending fifths
sequence. In the VII chord now in turn the dissonance is the diminished fifth (F),
which again is resolved by a downward step into E in the following chord. This
dissonant F is coincidentally also prepared in the previous chord. However, this VII
chord is not resolved by a fourth up root progression here (which would lead into III),
but instead by a superstrong progression a second down. Further on, the dissonance
of the chord II (the C of the D minor chord) is also resolved by a downward step.
Yet, this dissonance is not prepared by the strict condition of being already present
in the previous chord, but instead in the more relaxed way of a semitone step from
the B of the previous chord into the dissonant C.

There are rather many superstrong chord progressions in this particular solution:
the chord roots of VII, IV and III all progress by a downward step. As mentioned
above, such progressions lack common pitches between consecutive chords, which
make them less connected, and Schoenberg recommends to use them sparingly. We
could (and actually do in other CSP versions in this chapter) reduce their occurrence
by simply limiting their number with a constraint applied across multiple chords. It
is worth noting, however, that in general probabilities are difficult to control with CP.
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11.5.10 Modulation

For modulations between close keys, Schoenberg presents a scheme that consists of
three parts. After establishing the original key, the modulation starts by one or more
neutral chords, i.e., chords that are part of both keys. For example, when modulating
from C major to G major, all diatonic chords without the tones F or F� could serve
as neutral chords. Next, the actual modulation follows with the modulation chord,
which is part of the new key only. An ascending root progression can helpmaking the
movement from the modulatory chord on to its successor more convincing. Finally,
the new key is confirmed with a cadence.

Our definition below (11.26) assumes for brevity that the original key has been
established before (as Schoenberg does when teaching modulation). It defines a
modulation over a sequence of chords cs from the initial scale s1 to the target scale
s2. The variable neutralLength sets the (minimum) number of neutral chords that
belong to both scales and occur before the modulation chord. The last three chords
that will form the cadence are cscadence.

Most constraints of this definition have been introduced earlier. After the actual
modulation (discussed in a minute), Eq. (11.26) requires that the modulatory chord
is left by a strong root progression, specifically, by a fourth upwards (11.18). The
modulation chord is the chord just after the neutral chords, i.e., the chord in cs at
position neutralLength+ 1. The last three chords are constrained to form a cadence,
e.g., an authentic cadence (11.23).

let cs = sequence of chords
s1 = original scale
s2 = target scale
neutralLength = 1
cscadence = last 3 elements of cs

in modulation(cs, s1, s2, neutralLength)

fourthUpProgression(cneutralLength+1, cneutralLength+2)

authenticCadence(s, cscadence).

(11.26)

The actual modulation is defined by the constraint modulation (11.27), which
restricts the relation between the sequence of chords cs, the original scale s1, the
target scale s2 and the number of neutral chords neutralLength. The constraint defines
several auxiliary variables. The variable neutralPCs is bound to the pitch classes
that belong to both scales (s1 and s2), namely, the intersection between the pitch
classes of these scales, while neutralChords are the chords from cs that will be
constrained to form the neutral chords. The constraint restricting neutral chords
follows after the keyword in in Eq. (11.27): the pitch classes of every (∀) chord c
from the neutralChords is a subset (⊂) of the set of neutral pitch classes neutralPCs.
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modulation(cs, s1, s2, neutralLength) :=
let neutralPCs = getPCs(s1) ∩ getPCs(s2)

neutralChords = the first neutralLengthelements of cs
modulationPCs = getPCs(s2) \ getPCs(s1)
modulationPC

in ∀c ∈ neutralChords : getPCs(c) ⊂ neutralPCs
modulationPC ∈ modulationPCs
modulationPC ∈ getPCs(csneutralLength+1)

.

(11.27)

The auxiliary variable modulationPCs are the pitch classes of the target scale s2
that are not part of the original scale s1, which is implemented by the set difference
(\) between the pitch class sets of these scales. The auxiliary variablemodulationPC
is just one arbitrary element of the set modulationPCs. This modulation pitch class
modulationPC must be an element of the modulation chord (the chord just after the
neutral chords).

We previously in Fig. 11.2 saw a solution modulating a fifth upwards from C
major to G major, but that example used already richer harmonic means with non-
diatonic tones originating from church modes, which we do not have the room to
formallymodel here.We also do not have the space to introduceminor and the special
treatment Schoenberg recommends for its raised sixth and seventh degrees. The only
modulation to a very close key that is outstanding is therefore the modulation a fifth
downwards, e.g., from C major to F major.

Figure 11.11 shows a solution to such a modulation. This score example now
shows the topology of the music representation more fully: it displays not only the
chords of the underlying harmony on a third stave, but also the scales on a fourth
stave. Similar to the chords, the scale tones are notated like an appoggiatura and the
tonics as normal notes.

III IIC: VII
II

II IV
IF: I VI

Chords
(Anal.)

Scales
(Anal.)

V III V

Fig. 11.11 A solution for modulating a fifth down from C major to F major



11 On Modelling Harmony with Constraint Programming … 317

Schoenberg notes that the modulation a fifth down may feel “too easy”, as the
I of the initial key is already the dominant of the target key (e.g., C major is V of
F major). He recommends to use richer means, e.g., at least the dominant seventh
chord as modulation chord. The solution in Fig. 11.11 uses that chord in the final
cadence in the target key (penultimate chord in Fig. 11.11).

This CSP enforces at least one neutral chord directly before the modulation chord.
In the present solution coincidentally there are three neutral chords, as chords before
the enforced neutral chord are free to be neutral chords as well: I, II and IV. These
chords only use the six tones that are shared by both initial and target key, i.e., avoid
both B and B�. The modulation chord in this example is II7 of the new key, which is
followed by the new V (the former I, C major) and the new I, but this tonic happens
to be a seventh chord I7. These three chords clearly express the new key, but the I7

is not conclusive and the chord progression continues until a final cadence.

11.6 Discussion

This section compares the presented framework with previous systems and dis-
cusses the limitations of the framework. The section then details which concepts of
Schoenberg’s harmony textbook are omitted by the example presented in the previous
section.

11.6.1 Comparison with Previous Systems

Quite a number of constraint-based harmony models have been proposed. However,
only some of these systems allow users to define their own harmonic rules so that
they are relevant for the algorithmic composer.

In contrast tomost previousmusic constraint systems for algorithmic composition,
the framework proposed in Sect. 11.4 explicitly represents analytical information
like chord and scale types, their root/tonic and so forth. The representation of such
harmonic pieces of information by explicit variables allows to directly constrain such
information, which simplifies complex harmony models.

Constraint-based systems that represent polyphonic music such as Score-PMC
(part of PWConstraints) and Cluster Engine do in principle allow for defining har-
monicCSPs,where the underlying harmony is simply represented by concrete chords
consisting of actual notes with pitches. Certain analytical information like the chord
type can be deduced in such case (e.g., by extracting the pitch classes of chords with
the modulus operator and then deducing the normal form of these pitch class sets).
However, other information, like the root of a chord, or scale and chord degrees
and their corresponding accidentals are more difficult to deduced from a represen-
tation that explicitly only represents pitches. As a consequence, complex harmonic
CSPs are more difficult to define in these systems—due to their lack of explicitly
represented analytical information.
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The combination of MusES and BackTalk is the only music constraint system
(besides Stasheela, see Sect. 11.4.7) with an explicit representation of analytic har-
monic information of which the author is aware. The framework proposed here is
largely comparable in terms of its flexibility with the combination of MusES and
BackTalk, although it has a different stylistic focus. MusES was designed for Jazz,
while this research focuses on classical tonal music and contemporary music in an
extended tonality and also supports microtonal music.

11.6.2 Limitations of the Framework

The proposed design of the framework is best suited for tonal music. For example,
any atonal pitch class set can be declared as well, but then information like the chord
root is redundant (it can simply be ignored in a model, though).

While the framework supports tonal music in an extended sense (see Sect. 11.2.3)
and also microtonal music, it is less suitable for spectral music composition. Spectral
music [29] is based on absolute frequencies (and their intervals) translated into
pitches. This approach preserves the octave of each pitch and that way the order
of pitches in a chord. By contrast, in the proposed model chord and scale types are
expressed by pitch classes. Individual chord or scale pitches can thus be freely octave
transposed while retaining the chord or scale identity. Such an approach allows to
control melodic and harmonic aspects independently with constraints.

The proposedmodel could be changed to better support spectral music by express-
ing chordswith absolute pitches instead of pitch classes, and by disregarding all infor-
mation based on pitch classes (chord roots, scale degrees, etc.), but then tonal music
theories depending on such analytical information that is independent of an octave
component cannot be modelled anymore. The music constraint system PWMC [55]
and its successor Cluster Engine implement such an approach.

A compromise could be special rules that constrain specific chord tones—e.g.,
tones at or above a certain chordDegree—into or above certain octaves, or above
other chord tones, like some popular music voicing recommendations do (e.g., in a
V�9 chord, the augmented ninth is preferred above the major third).

The framework supports microtonal music, but only equal divisions of the octave.
Specifically, just intonation intervals are best represented by ratios, and unequal
temperaments with floats, but the proposed framework only uses integers, because
constraint propagation works very efficiently for those. Nevertheless, just intonation
intervals can be approximated by equal temperaments (e.g., with cent precision using
1200-EDO).

11.6.3 Completeness of SchoenbergModel

The presented example models core ideas of Schoenberg’s harmony textbook (see
Sect. 11.5), but it does not implement it fully. Even though much of Schoenberg’s
textbook is spend reflecting and reasoning about ideas and directions given (and also
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on polemic remarks), its 500 pages are far beyond the scope of this chapter. More
specifically, the code used for generating results like the one shown in Fig. 11.2
models the main ideas of about the first half of Schoenberg’s textbook.

For completeness, here we briefly summarise details that have been left out. We
ignored guidelines on the spacing and voicing of chords (e.g., details on the pitch
range of voices or which tones can be doubled in certain situations). Also, the treat-
ment of second inversions is slighty simplified (its more liberal treatment as a “pass-
ing chord” is left out). We skipped modelling minor keys. The minor keys introduce
optionally raised VI� and VII� degrees, which leads to 9 scale tones and 13 tri-
ads in the minor scale. However, Schoenberg recommends that the natural and the
raised degrees should not be mixed to preserve the character of the minor scale. This
requires careful treatment of the raised and non-raised tones. This treatment can be
modelled rather easily in the presented framework with constraints on scale degrees
and their corresponding accidentals. Support for minor keys is already included in
the implementation source.

The result shown in Sect. 11.2.2 already allowed for secondary dominants and
other non-diatonic tones derived from church modes (implemented with constraints
on scale degrees and the corresponding accidentals), butwe did not discuss the formal
details of such non-diatonic tones.

Further, the model presented here ignores the second half of the textbooks, start-
ing with a chapter on rhythm (metre) and harmony. These skipped details include
modulation into more remote keys, further alterations (e.g., derived from the minor
subdominant with a flat VI� degree), ninth chords, etc. For example, for modulations
into three or four degrees alongside the circle of fifth (e.g., from C to A or E major)
Schoenberg recommends using the relation of parallel keys; modulations two “cir-
cles” upwards or downwards (e.g., from C to D major) or five to six “circles” are
performed via intermediate keys (somewhat simplified).

11.7 Future Research

This section offers two suggestions for future research directions in the field of
modelling harmony with CP.

11.7.1 SupportingMusical Formwith Harmony

Existing constraint-based models of harmony tend to treat harmony in a way that is
either independent of considerations ofmusical form, or which is limited to relatively
short pieces such as songs or chorals. However, suitable harmonic means in music
composition depend on compositional purposes. For example, in classical sonata
form, the harmonyof the development is typically farmore complex than the harmony
of the exposition or recapitulation.
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Existing systems already offer some means for shaping harmonic developments
over time. Situation [12,53] offers a mini-language expressing index patterns that
control which objects (e.g., which chords) in a sequence are affected by a given
combination of a constraint and its arguments. These constraints can affect various
aspects of the chords at the specified indices including required tones or intervals,
the development of the overall ambitus of chords, patterns of melodic intervals and
so on. Also other constraint systems (e.g., PWConstraints, Strasheela and Cluster
Engine) allow for applying constraints only to individual objects at certain positions
in a sequence, but Situation supports doing this for index combinations (e.g., index
ranges) in a particularly concise way, which turns this idea into a compositional tool
for shaping the harmonic development.

The system COPPELIA [64] composes music intended to support the structure
and contents of givenmultimedia presentations. To this end, one subsystem generates
harmonic plans for a sequence of very short sections with different purposes (e.g.,
opening, announcement or transition) that translate musical parameters (e.g., the
harmony can be calm, cadencing, express tension or an increasing tension) into Rie-
mannian chord symbols, which a second subsystem then translates into a homorhyth-
mic chord progression. The constraints in this system are hard-coded, though some
settings can be changed by a user interface.

Beyond constraint-based systems, with the real-time chord sequence generation
system described by Eigenfeldt and Pasquier [27] users can control the development
of musical features such as the bass line, harmonic complexity (dissonance degree)
and voice-leading tension (related to common tones between consecutive chords),
e.g., using envelopes.

However, what is missing are computer-assisted ways that support the structuring
of harmonic developments for larger musical forms in a way that is stylistically
flexible and takes the specific harmonic needs for different form sections into account.
Of course, in the final composition such harmonic developments for formal sections
only serve their purpose if also other musical means support it (e.g., the motivic or
gestural content of a transition tends to be rather repetitive and leads into a certain
direction).

For conventional tonal harmony, a good starting point for modelling structural
considerations could be Schoenberg’s second harmony book [56]. In chapter XI of
that book, Schoenberg discusses progressions for various compositional purposes
and formal segments such as different theme constructions (sentence and period),
contrasting middle sections, sequences, transitions and so on.

Fundamental principles of form for conventional tonal harmony can also be rele-
vant for other styles where harmony plays a role. For example, a contrasting section
may present new pitch materials (a generalisation of the notion of a modulating mid-
dle section), or for a transition it can be helpful if the harmonic progression is rather
predictable.
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11.7.2 Combining Rule-Based Composition withMachine Learning

Both learning-based and rule-based approaches have been very successful for algo-
rithmically modelling music composition. These two general approaches mimic
aspects of how humans (learn to) compose. Rules have been used for centuries
for teaching specific details of composition that are less obvious at the surface level
(e.g., certain harmonic relations), while composers learn from examples of existing
music aspects that are more easily to grasp intuitively for humans and that are also
more difficult to control by rules (e.g., aspects of how to compose a melody; or how
to mimic typical accompaniments and accompaniment textures of a certain style).

As combining rules and learning from examples helps humans when compos-
ing, it would be very interesting to combine these two general approaches also for
algorithmic composition. This could be done by either using some hybrid approach
where the output generated with one method is refined with another, or by finding a
unifying formalism that allows for implementing both rules and Machine Learning.
For example, the composer Jacopo Baboni-Schilingi uses CP to refine parameter
sequences that have been generated with other algorithmic techniques [7]. Perhaps a
similar hybrid approach could be used for refining with a rule-based approach results
generated with some method based on Machine Learning.

One approach of a unifying formalism could be learning rules with Machine
Learning. First steps have already been taken in that direction. For example, Morales
and Morales [41] used Inductive Logic Programming, a Machine Learning tech-
nique for learning first-order logic formulas, to learn counterpoint rules (how to
avoid open parallels). Anglade and Dixon [13] also used Inductive Logic Program-
ming for extracting harmonic rules from two music corpora, Beatles songs (Pop
Music) and the Real Book (Jazz), which express differences between these corpora.
Genetic Programming is aMachine Learning technique capable of learning formulas
consisting of both logic and numeric relations. Anders and Inden [8] used Genetic
Programming for learning rules on dissonance treatment from a corpus of music by
Palestrina.

Another approach might be using Machine Learning as a unifying formalism,
where a Machine Learning technique learns explicitly given rules. At the core of
Deep Learning [32] lies the computation of an error (cost, loss) during training
between the intended output for a given input and a neural network’s actual output—
coupled with the ability to gradually adapt the network (typically the weights of
neurons) to reduce that error. The direction into which the weights must be adapted
for reducing the error is computed with the derivative (gradient) of the cost/loss
function.

It would be interesting to customise the computation of the error by additionally
taking into account how far a neural network’s actual output violates explicitly given
rules. Such rules could perhaps have a format similar to heuristic rules of music
constraint systems like PWConstraints or Cluster Engine, which return a number
expressing how far they are violated. However, adding explicitly given rules to the
computation of a neural network’s error would require that this expanded error func-
tion is still differentiable so that the learning process still “knows” in which way
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to improve the weights of the neural net. Differentiable programming allows for
computing the gradient of complex programmes, which may use, e.g., control flow,
functions, higher order functions and nested data structures. For example, a promis-
ing development in this direction is the recent Julia [17] library Zygote [38], which
aims for computing gradients for arbitrary Julia programmes.

11.8 Summary

The Constraint Programming paradigm offers a powerful means for modelling har-
mony. While approaches based on Machine Learning work well for emulating the
harmonic language of existing styles, CP is a compelling tool for composers inter-
ested in creating their own harmonic language with the help of algorithms.

This chapter presents a framework that simplifies the development of user-defined
harmony models by providing suitable building blocks such as chords, scales and a
variety of pitch representations. The supported pitch representations include pitch
numbers, pitch classes, an enharmonic note representation, scale degrees of notes
and chord roots, as well as chord “degrees” such as the fifth or the third of a triad.
Accidentals allow for alterations of these degrees. Importantly, all these representa-
tions are freely constrainable. This rich representation leads to harmony constraint
satisfaction problems with a high level of abstraction.

This framework is suitable for efficient propagation-based constraint solvers. The
“types” (domains) of its decision variables are limited to the domains supported by
various such solvers.

Application examples in this chapter demonstrate that the proposed framework
is rather flexible. Multiple pieces of harmonic information can serve as input and
output. For example, the paradigm allows for deriving a harmonic analysis of a
given melody; to generate chord progressions that follow a set of rules; to constrain
some score to express a given underlying harmony (including a suitable treatment
of nonharmonic tones); and combinations of these scenarios.

The chapter also demonstrates that with CP even complex theories of harmony can
be formalised with a manageable amount of code (when one considers the equations
of this chapter as pseudo-code). The chapter formalises core ideas of Schoenberg’s
tonal theory of harmony including chord inversions, root progressions, cadences,
dissonance treatment and modulation. What is important, though, are suitable levels
of abstractions. For example, introducing variables for scale (and chord) degrees
together with the corresponding accidentals greatly simplified the formalisation of
many Schoenbergian rules.
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12Constraint-Solving Systems in Music
Creation

Örjan Sandred

12.1 Introduction

Rule-based approaches to music creation put the focus on the relationship between
logic and music. Can meaningful music be created from rational reasoning? This
chapter will discuss some developments of constraint solving systems for computer
music from the 1950s until the early 2010s. Without covering the full historic
development, we will begin by looking at some pioneering research. We will
discuss two aspects of the work: the algorithms that were used to build music
structures from rule definitions, and the relationship between the chosen techniques
and musical concepts. We will continue by looking at some systems dedicated to
music composition. Finally, we will be investigating in more detail the ideas and
techniques behind the Cluster Engine, a constraints satisfaction problem solver
dedicated to music composition.

It is often said that music speaks directly to the human mind. There are many
examples of this idea. Arthur Schopenhauer wrote about the direct nature of musical
expression, and stated that music “never expresses the phenomenon, but only the
inner nature, the in-itself of all phenomena, the Will itself” [20, p. 339]. Any
communication outside abstract emotions is according to Schopenhauer a result of
the mind’s imagination, and thus not part of what music communicates. From the
perspective of neuroscience and music psychology, 100 years after Schopenhauer,
Flaig and Large [9, p. 268] at the University of Connecticut wrote in a comment to
an article on emotional responses to music that “We would counter that music
speaks to the brain in its own neurodynamic language, leading directly to the kinds
of feelings that we associate with emotional experiences.”
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If music speaks directly to the mind, musical structures should tell us something
about the structure of the human brain. Maybe music compositions can be seen as
fingerprints of the brain’s organization, and by understanding how music functions,
we can get a clue into how the brain works? The brain’s memory functions decipher
musical formal structures, and its ability to find patterns and symmetries makes
rhythms and frequency structures meaningful. When music makes sense, its
acoustical structure probably matches the brain’s neurodynamic language.

If music communicates through its structure, it needs to carefully be planned and
built to have full impact. Music theorists have studied the nature of successful
musical structures and based treatises on their findings. While these treatises rarely
speak about the exact match between a certain structural characteristic and the
emotion it triggers, they often go into details about pitch organization and rhythmic
considerations—we might think of it as the grammar of a musical style. The
emotional content seems to be up to the intuition of the composer (or in some cases,
the improviser) to create. The music treatises typically observe what is acceptable or
not within a specific musical style and formalize these observations as sets of rules.
Exercises can then be created based on these rules. These exercises help music
students to absorb and learn the craft that is associated with a historical music style.
Probably the most well-known work in this field is Johann Joseph Fux’s treatise
Gradus ad Parnassum, written in 1725 and describing sixteenth-century
counterpoint.

12.2 Early Rule Formalizations for Computer-Generated
Music

When Lejaren Hiller and Leonard M. Isaacson did their pioneering work on their
computer-generated Illiac suite for string quartet in the 1950s [10], their starting
point was the above-mentioned treatise by Fux. Hiller noted that it is the existence
of the musical score that makes it possible to compute musical structures. He
referred to it as the objective side of music.

The information encoded [in the score] relates to such quantitative entities as pitch and
time, and is therefore accessible to rational and ultimately mathematical analysis [11,
p. 110].

It is of course also true that music theory studies (before the existence of
computers) for the same reason also depended on music notation. Fux would not
have been able to easily discuss the structure of Renaissance counterpoint without
the abstract representation notation provide.

In the first and second movements of Hiller and Isaacson’s Illiac Suite, they
treated the ILLIAC mainframe computer they used as a beginner counterpoint
student. They began by implementing some of Fux’s rules for 1st species coun-
terpoint, creating a number of simple melodies and basic 2-voice counterpoint.
Then they focused on 4-voice counterpoint, creating a movement that went from
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harmonic and melodic chaos to order by adding Fux’s rules one-by-one. The very
pedagogic approach tells us about their intention with their work to demonstrate
their experiments rather than create a full-blown composition. The computer was of
course an excellent student in terms of following instructions, the experiment rather
displayed the quality of the given rules. Can we consider the output music? Does it
have a musical value? Students of 1st species counterpoint become well aware of
the fact that, while the exercises can create a pleasing result, the musical expression
is very limited. We should not expect anything more than that just because a
computer is doing the exercise. We are still quite far from the type of communi-
cation Schopenhauer discussed in his text.

There are some limitations to Hiller and Isaacson’s approach. In the second
movement, they implemented up to 14 simultaneous rules, which is not a high
number when it comes to creating a musically interesting result. The algorithm they
used was based on a try-and-error principle, which put a limitation on how complex
a problem that is possible to solve could be. The algorithm built the solution
pitch-by-pitch, randomly suggesting one out of 15 pitches that the rules either kept
or rejected. If only one of the pitches was acceptable, there was a 1/15 chance to
find it at the first try. The system was set to retry 50 times before giving up, which
gave it a fair chance to find the correct pitch (nothing stopped the system from
retrying the same pitch again). If every pitch only depends on its immediate pre-
decessor, this works fairly well. However, musical dependencies are more complex
than this. Hiller and Isaacson indicated that their system from time to time run into a
dead end: most likely the mixture of horizontal melodic rules and vertical harmonic
rules created dependencies that put constraints on groups of pitches, lowering the
chance to find the acceptable combination.

12.3 Improving Your Chances

Creating music excerpts with the use of computers must have seemed like an
obvious research area already in the early days of computer science. Through the
hard work of music theorists, the formalization of music structures was already
done, neatly summarized as rule collections in music treatises. Since the music
theoretical rules were available, it should be possible to make a machine to follow
them.

We encountered the first obstacle already in the Illiac Suite: the complexity of a
music score can be very high, and finding an efficient strategy for how to build a
score that fulfils music rules is a very challenging assignment. So why are humans
so much better at the task than the machine—what is the secret? Luc Steels
developed a knowledge representation system for music and used rules and
machine learning algorithms to tackle the problem [22]. He differentiated between
deep knowledge, which is based on stylistic and physical properties of musical
material, and heuristics, which only guides someone when solving a problem.
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Our hypothesis is that there are two forms of problem solving going on during composition.
The first one is based on deep reasoning. This means that the composer starts from fun-
damental principles and explores a search space using weak methods. The second one is
based on heuristics. The composer has a large number of ready-made fragments and out-
lines of solutions and applies these to arrive at a solution [22, p. 29].

Steels generated 4-voice chord progressions based on classical tonal harmonies
in his experiments described in the quoted article. The algorithm he used differed
from Hiller and Isaacson’s try-and-error principle by systematically going through
as many combinations of pitches as necessary until an acceptable solution was
found; often referred to as a generate-and-test strategy, or brute-force search. If a
solution existed, it was guaranteed to be found—but it might take time, potentially
as long as it takes to go through every existing combination of the pitches. To speed
up the process, heuristics were added. When possible, the heuristic rules guided the
process into partial solutions that would be considered having higher chances to end
up as a valid full solution. If the advice from a heuristic rule did not give an
acceptable next step (i.e., if fundamental rules would be broken if the heuristic rule
was followed), it was simply ignored and replaced by another heuristic rule (or if no
heuristic remained, the system would solve the sub-problem without a heuristic
direction). To this Steels developed a system that observed similarities between
successful solutions, and automatically added heuristics based on these observa-
tions in future searches.

It is my belief that computers cannot be programmed to compose music, simply because
humans do not know themselves consciously the many heuristics involved, and even if they
did the programming task would be too complex for hand coding. Therefore, if we ever
want computers to compose music, we will have to find ways so that they can learn
themselves to do it [22, p. 31].

12.4 Making Room for Exceptions

Rule formalizations of musical styles come with a complication: the fact that
composers occasionally break even very fundamental rules. Music theorists are well
aware of this. The composer’s intention when breaking a rule is typically to
improve the result musically. We have to remember that the existing rule formal-
izations are based on observations on how composers structure music. These
observations are not 100% accurate. With the intuition of an experienced composer,
exceptions from rules occasionally happen without jeopardizing the characteristics
of a certain music style. Trying to sharpen the formalization by making rules for
how a specific exception can occur will either result in a very complex rule for-
malization or be practically impossible.

Bill Schottstaedt’s system for automatic species counterpoint opened up for rules
to be broken [21]. Instead of insisting on every rule to be followed, he attached a
penalty to each rule for breaking it. Rules that were considered fundamental and
more important had higher penalties. The task for the system was to find the
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solution with the least penalty. The system could then consider one solution better
than another. In this case, better does not necessary mean better musically, only
closer to Fux’s textbook. Schottstaedt used Fux treatise Gradus ad Parnassum
as-is, but found it necessary to add a few “common sense” rules.

However, this entire program ignores issues of phrasing or larger melodic and rhythmic
structures. If we decide to carry this effort further in that direction, a much more complex
decision and search mechanism will be required [21, p. 34].

Rhythm in the fifth species (i.e., when the rhythm is “free”) is simply built by
randomly picking from a set of pre-made rhythmic patterns. Schottdteadt suggested
(but did not implement) to treat a melody as a waveform and look for its
low-frequency components as a tool to guide the search to find a good overall
shape.

There are two challenges with Schottstaedt’s penalty approach:

• Judging the importance of individual rules and balancing their penalties in a
large set of rules is not trivial. Some cases are obvious, some are not.

• Decisions that give low penalties at the beginning of the sequence might force
high penalties towards the end. It is very hard to predict this before it is too late
to correct.

Schottstaedt tried a few different variations of his algorithm, and while the use of
penalties speeded up the computation, he noted himself that there were problems
finding good solutions to complex tasks (i.e., to fifth species counterpoint).

Many experiments by various researchers followed, several of them were
occupied by choral harmonization or renaissance counterpoint. Most work in the
field was focused on improving the efficiency of the algorithm, only reflecting
superficially on the musical aspect or the creative process behind composition. It is
outside the scope of this chapter to give a complete overview of all this work, there
are already several surveys on rule-based systems for music. Jose Fernández and
Francisco Vico have done a detailed survey of AI methods in general, and included
a section on knowledge-based (i.e., rule-based) systems [8]. Torsten Anders and
Eduardo Miranda have written an overview of constraint programming systems in
music, with a focus on application for music composition [2].

12.5 The Musical Challenge

Kemal Ebcioğlu’s work on choral harmonization in Bach-style is interesting for
several reasons, the most important being that it was considered giving a musically
high quality output compared to other attempts of the time. His system CHORAL
[7] was based on a backtracking algorithm. In backtracking, the system searches for
a solution step-by-step and checks at each step if there is a value that satisfies the
rules. In this way, the algorithm builds a sequence of values that all comply with the
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constraints. If the system runs into a dead end and discovers that, at a certain step no
value will satisfy all rules, it will turn back and try another value at the previous
step—and continue from that point. In this way, backtracking can eliminate a large
number of combinations of values in one test and will thus speed up the compu-
tation time significantly compared to a search based on brute force. Backtracking
only works if a problem has a sequential order, and if it is possible to validate
partial solutions—two conditions that are typically fulfilled for music problems.
There are some well-known issues with backtracking, one being that if one value
depends on another that is not immediately preceding it, it will discover the
problem late, take some time to work its way back to the value that created the
conflict, and potentially do some redundant work on the way back. The further apart
the dependent values are, the slower this process will be. The CHORAL approa-
ched part of this problem by identifying what step was responsible for a failure, and
return directly to this point (i.e., “back jumping”).

The CHORAL system used a language called BSL (Backtracking Specification
Language). Beside hard rules, Ebcioğlu’s had implemented heuristic rules into his
system. The purpose is similar to Steels’ system discussed above: to guide the
process when searching for a solution. Heuristic rules in the CHORAL system
work, however, quite differently from Steels heuristics. In CHORAL, heuristic rules
are used to evaluate valid temporary solutions at each step during the calculation.
The heuristic rules give a temporary solution a weight, where a high weight indi-
cates a better choice. In this way, the system will at each step add the element to the
temporary solution that not only satisfy all rules but also gives the highest weight;
but if it later through backtracking is failing, the element that gives the second
highest weight will be picked, and so on. Similar to a hard rule, a heuristic rule uses
general logic to specify its heuristic criteria.

While heuristic rules can speed up the computation time by guiding the way to a
valid solution, Ebcioğlu also observes the musical impact heuristic rules can have.

The purpose of heuristics is to estimate, at each step, which among the possible ways of
extending the partial chorale will lead to its best completion. Heuristics are very important,
since programs without heuristics, which are based solely on absolute rules and random
selection, tend to quickly get trapped in a very unmusical path, and generate gibberish
instead of music [7, p. 170].

However, heuristics have a different and more human-composer-like flavor of describing
what constitutes a good solution, because heuristics, in contrast to constraints, are rules that
are to be followed whenever it is possible to follow them [7, p. 170].

Ebcioğlu did not rely on a single musical treatise when designing his system.
Instead he approached the problem from multiple viewpoints: one that considers a
choral as a sequence of rhythmless chords (the “chord-skeleton” view), one that
considers the individual notes with all voice leading implications such as passing
notes and suspensions (the “fill-in” view), two that consider the melodic line of
each individual voice (the “melodic-string” and the “merged melodic-string”
views), one that considered harmonic constraints related to duration/time (the
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“time-slice” view) and one that was based on Schenkerian analysis (the
“Schenkerian-analysis” view); see further [7, pp. 161–166].

According to its author, about 350 rules were implemented in the system. The
relation between the number of rules and the complexity of a rule formalization is,
however, not obvious. An identical problem can be formalized by many simple
rules, or by a few complex, composite rules that combine several simple rules in
one. Ebcioğlu notes that in his experience, it is better to break down a long rule into
several shorter rules [7, p. 157].

Modelling music from rules implies the idea that music can be understood as
abstract formal principles, and that the musical mind depends on the same princi-
ples. But how close is this to how we understand music? Does the way the com-
puter makes decisions relate to how a composer composes? Ian Cross commented
on the CHORAL system from the perspective of Cognitive Science.

However, [the CHORAL system] performs in a way that is unlikely to reflect processes
involved in ‘real world’ composition; it can 'only' harmonise Bach chorales, and does so by
methods such as generate-and-test that do not seem to be intuitively plausible or to relate to
known psychological processes [6, p. 10].

According to Cross, the creative process in a human mind works very differently
from Ebcioğlu’s algorithms. Bach’s starting point might also not only have been
about the structure. He would, for example, probably have taken the words of the
choral into consideration for his harmonization. Many possible sources of inspi-
ration that affected the way Bach worked exist.

In effect, what Ebcioğlu was proposing was not a model of the workings of the mind in
musical composition. It was a powerful demonstration that mechanisms other than human
minds can do some of the same things as human minds [6, p. 11].

What seems to have inspired some work to come in the field is not that a system
like CHORAL could compose music (even though the result is impressive, from a
musical point of view, it is rather about mimicking already defined stylistic ele-
ments than composing new music), but that it altered the way we could think of
music composition. The fact that the technique does not reflect how the human
mind works does not mean that it cannot be used. The musical potential lies in the
possibility to develop new compositional methods. In this perspective, its strength
may lie in that rather than replacing the human mind, it complements it.

12.6 Opening up for Creativity

Contemporary music composition has objectives that are quite different from the
objectives when we model existing musical styles. Composers are expected to
create original music that is not only expressive and musically communicative (and
that sometimes also communicates extra-musical ideas), but also clearly differs
from earlier music. From this perspective, if the rules that define the musical
structure for one piece are known, they could not be reused as-is to create another
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original piece. A rule-based computer system for music composition will for this
reason have to be flexible to adapt to various musical structures and ideas.

The algorithm behind the CHORAL system—the concept is borrowed from
research in Artificial Intelligence (A) outside of music—became the base for many
systems for solving music constraint satisfaction problems following it: the task is
to determine values for a sequence of variables. The values have to be picked from
a domain of possible values. The user defines relations between the variables, i.e.,
constraints (or rules). The system searches for a solution by using a strategy such
as backtracking.

While the CHORAL system is specialized on Bach-style chorales, other systems
were developed with a user interface intended to be more style independent. A good
example is the PWConstraints system inside the PatchWork and PWGL visual
programming languages for computer-aided composition, both developed by
Laurson [12]. The fact that PWConstraints [12, pp. 145–186], was implemented
inside an environment for computer-aided composition that was available to many
composers probably contributed to its relative popularity. Even though PatchWork
was developed as part of a Ph.D. thesis at the Sibelius Academy, it was distributed
by IRCAM in Paris (Paavo Heininen and Magnus Lindberg are the examples of two
composers who were early PWConstraints users.). The general description of the
algorithm to solve music constraint satisfaction problems in the previous paragraph
is equally accurate for how PWConstraints worked. Just as the CHORAL system, it
also had the same type of heuristic rules implemented. What differed was the user
interface. PWConstraints used a pattern matching syntax that made it very flexible
to define constraints within a single sequence of variables (for example, a sequence
of pitches that together make up a melody). The syntax for defining rules was based
on standard Lisp and was relatively easy to learn for someone who was not a
computer programming expert.

An even more developed user interface can be found in the Score-PMC [12,
pp. 212–250, 13]. This system was based on the same algorithm as PWConstraints,
but used a music score as the centre for both input and output to the system.
Score-PMC could only search for pitches. Before the search, the score needed to
contain the complete rhythmic structure of the final music. The interface enabled
the user to create pitch-based constraints that related to the rhythmical context of the
score. The solution was the rhythmic score given as input, now completed with
pitches. The interface had some additional features to assist the user, such as if you
were only partially happy with the solution the computer found, you could mark
sections and/or individual notes in the score you wanted to keep and then search for
an alternative solution for everything else.

The Open Music Rhythm Constraints system (OMRC) was developed by this
author [17, 18] to make it possible to work on constraint satisfaction problems that
built rhythm scores. It provides a data structure and a user interface on top of
Laurson’s PWConstraints system and uses the possibility to define both strict and
heuristic rules, i.e., the type of heuristic rules that both Ebcioğlu and Laurson used
in their systems. While many music treatises have researched and discussed how
pitches are structured in various styles, less is written about rhythm. A constraint
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satisfaction system for rhythm needs to be based on clear musical concepts in order
to provide a framework for how to define rhythm rules. In OMRC, three obser-
vations regarding rhythmic expressivity are fundamental for the system:

• Rhythms tend to be perceived in groups, i.e., as rhythmic motifs or gestures.
• The relation between a rhythmic gesture and metric pulse affects how we

understand rhythm. If a complex rhythm is shifted inside a metric structure,
events will be perceived with different metric weights and have a different
meaning. For example, every musician knows that syncopations have a different
expression than rhythms that are lined up with the pulse. It should be recognized
that this does not apply to every music style. (For example, in many composi-
tions by the composer György Ligeti, the composer wants to erase the notion of
perceived pulse.)

• There is often a hierarchic relationship between rhythmic events, where some
events are more structural important and others have a more ornamental role.

The domain in OMRC contains rhythm values (expressed as ratios) and/or
groups of rhythm values (which can be understood as motifs or fragments of
motifs), as well as empty metric units (i.e., measures with different time signatures).
The rules constrain how these elements can be combined into a score, for example,
how gestures can be lined up with the pulse, and how events relate hierarchically.
A score in OMRC can have several voices.

There is also a special version of the Score-PMC, called Texture-PMC, that can
generate a rhythm score. The system tweaks the data structure of the Score-PMC
and lets the pitch information indicate note onsets. Metric structure and a basic
rhythmic “grid” have to be predetermined before the search, which is one reason
why it is less flexible than the OMRC.

PWConstraints is not the only generic constraint engine that was developed for
music composition. Some composers have experimented with SCREAMER, an
extension of Common Lisp that supports constraint programming in general (not
specifically music constraints). Others prefer a generic system that already has
support for music parameters implemented. A few more examples will be discussed
below.

12.7 The Need for Higher Efficiency

A general concern with backtracking algorithms as those discussed above is that
they can be very inefficient when a rule describes a constraint between variables that
are not immediate neighbours in the sequence. The further apart the constrained
variables are, the slower it is to correct a conflict. Variable ordering is thus an
important design consideration for a system. Typically, a chronologic order (i.e.,
searching for the pitches and durations in the order they will appear in the score) is
proven to be most efficient for generic music problems. When there are
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simultaneous events in a score, the order becomes more complex. The bottleneck in
the systems discussed above is that the search algorithms have to solve the prob-
lems as a single sequence, disregarding that a score often consists of several
superimposed sequences. Conflicting values have to be resolved by backtracking
the sequence in the reversed order of how the variables are ordered.

The basic idea is to collapse any given polyphonic score to a flat list of search-variables.
Each note of the input score is represented in the search- engine by a search-variable. The
critical point is to determine the exact position of each note in the final flat queue structure
[12, p. 213].

It is especially difficult to find a good order when searching for superimposed
sequences of durations. The reason is that different durations take up different times
in the score, and different voices might end up having different numbers of vari-
ables. In a flexible system for rhythm, we would not necessarily know the number
of durations that will be needed in each voice before searching for a solution, and
the system might reconsider the number of durations during backtracking.
In OMRC, a number of “strategy rules” where implemented to help the system
finding an efficient variable order during the search. These rules guided the system
to decide what voice/variable the system should visit next. While the strategy rules
made it possible to find solutions, they pushed the maximum complexity problems
could have when solved with pure backtracking to the limit.

Some systems use preprocessing techniques to reduce the size of the domain,
often referred to as constraint propagation. While the objective of preprocessing is
to speed up the system by removing values that can be ruled out before performing
the search for a solution, preprocessing in-itself adds computational time, which
could out-weight the saving that is done during the search that still has to follow. If
a user is running the identical constraint satisfaction problem many times (the
purpose can for example be to find more than one solution), the argument for
preprocessing becomes stronger. An alternative to preprocessing is to use forward
checking, which similarly aims to reduce the size of the domain for a future
variable. A difference is that forward checking is done during the search. Two
examples of systems that apply this type of techniques will follow.

The Situation system by Rueda [14] was developed around the same time as
PWConstraints. The data structure in Situation was optimized for solving harmonic
problems. Situation used a first-found forward checking algorithm that is called
Minimal Forward Checking [15]. With the domain optimized for harmonic con-
straint satisfaction problems, this algorithm was proven more efficient than pure
backtracking. A side effect of the algorithm was that the system could not support
heuristic rules in the way Ebcioğlu implemented them in his CHORAL system.
There was, however, a support for weak constraints, which were based on a concept
that resembles Schottstaedt’s use of rules that can be broken if necessary.

The Strasheela system by Anders [1] was implemented in the Oz programming
language that has extensive support for constraint programming. Strasheela can thus
handle both constraint propagation and backtracking.
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The improved efficiency of constraint propagation allows for a different approach where
propagation and the actual search take turns: before every single decision made by the
search, constraint propagation runs and reduces variable domains [2, p. 31].

Strasheela differs from the systems discussed above by being able to solve
constraint satisfaction problems where rhythm, pitch, and metre are all unknown
before the search. The music representation in the system can also contain theo-
retical information such as intervals, scales, chords, metre, and more. The repre-
sentation can be expanded by the user, and in that way support searches for other
parameters than those listed here. Thanks to its search strategies and data structure,
Strasheela can solve problems of higher complexity than the systems discussed
earlier are able to.

While Strasheela uses powerful algorithms, it is relatively hard to use. Its purely
textual interface can also slow down the workflow for a composer.

However, these systems [i.e. Strasheela and more] have been designed for experienced
programmers [2, p. 38].

12.8 OMRC -> PWMC -> ClusterEngine

From this point in this text, this chapter discusses my own work with the Cluster
Engine. This is a constraint satisfaction problem solver that similarly to Strasheela
can solve constraint satisfaction problems that combine rhythm, pitch, and metre in
one search. The Cluster Engine is based on the musical concepts from its prede-
cessor PatchWork Music Constraints (PWMC) [19], which in its turn is a devel-
opment of the OMRC system discussed above. The objective of developing these
three systems has been to explore the possibilities of rule-based computer-assisted
composition.

Rules in PWMC and the Cluster Engine are formalized in a very similar way.
PWMC inherited the concepts for constraining rhythm from OMRC, but extended
this further with the possibility to search for pitches as well. The user interface was
also improved to make it easier for a user to formalize rules. Pitches/pitch motifs
and durations/rhythm motifs were kept separate in the domain. A motif was thus
first conceived as consisting of only pitches or durations, and then combined with
the missing parameter during the search (how this could be done was restricted by
rules). Just as in OMRC, the domain in PWMC also included empty metric units.

Similar to PWConstraints, a rule in PWMC (and in the Cluster Engine) con-
tained two parts. The first part was the rule applicator that accessed music elements
in the score, such as the duration or pitch of a note, or of a group of notes in one or
more voices. This was similar to the pattern matching part of a rule in PWCon-
straints, and the accessors that restored the score context in Score-PMC. In PWMC,
the rule applicator was a box in the graphical user interface.
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The second part was the logic statement that defined the relation between the
score elements the rule applicator accessed. In PWConstraints this was called the
Lisp-code part. In PWMC, the logic statement was defined inside a sub-patch using
PatchWorkGL’s graphical user interface.

12.8.1 Musical Potential

When working on PWMC, it was soon clear that by combining rhythm and pitch in
one search, musical concepts that could not be formalized with a system that was
specialized on only pitch or rhythm were now possible. Contexts where the har-
mony would restrict the rhythmic language, or where the beat structure would
influence melodic movements could be solved through a dynamic search process.
For example, if a rule constrained how harmony related to rhythm, the system did
not necessarily impose a predefined rhythm to restrict the harmonic progression, but
allowed the system to change the rhythm if it preferred. A rhythm structure could
thus be symbiotically built together with the pitch structure that would articulate the
rhythmic gesture. The system also invited a user to expand the concept of what a
musical rule could be. The rules from traditional treatises were combined with, for
example, rules restricting statistical properties in the score, or rules using graphs to
describe higher level parameters such as the energy profile of a certain passage [4].

Of great musical interest were the heuristic rules. Already Ebcioğlu observed
their musical value in the CHORAL system. By only insisting on a certain char-
acteristic when it is possible, tendencies and directions rather than fixed musical
situations could be created with heuristic rules. There are numerous examples of
how this has been done using the PWMC system [16, p. 160]. One example is the
use of heuristic rules to set up musical goals combined with strict rules that partially
contradict the stated goal. This type of contradiction had the potential to create
interesting musical tensions.

PWMC was still relying on the PWConstraints engine to perform the search, and
the variable order was controlled by the same type of strategy rules that were used
in OMRC. This approach had some clear limitations. When solving more complex
problems, the search could at times be so slow that the whole system seemed stuck.
To develop the method further, and to make it possible to work with more complex
scores, the search algorithm needed to be reconceived. This became the starting
point for developing the Cluster Engine.

12.8.2 Challenging Order

To better understand how the PWMC carried out a search, I spent some time
analyzing the search process step-by-step for some actual problems. It typically
resulted in a realization such as “It is a real detour to solve the actual conflicting
values this way, it is spending too much time on unrelated variables.” Since my
background is not in Computer Science neither Mathematics, rather than applying a
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sophisticated generic algorithm for constraint satisfaction problems that potentially
could be more efficient than what I already used, I wanted to try to make the system
adopt the strategy I would use myself if I was to solve the problem by hand. It is my
conviction that a deep understanding of the actual problem (i.e., how to create a
music score) can get you far.

The fundamental issue with PWMC was that the search engine (borrowed from
PWConstraints) was only able to solve a problem for a flat sequence of variables.
A music score on the other hand consists of several superimposed voices. A com-
poser working on a score is using its layered structure to his/her advantage: It gives
an overview of the problem that helps identifying elements that need to be adjusted.
The starting point for the Cluster Engine is thus to keep the layered data structure
intact, even during the search. To make this possible, each layer is considered a
sub-problem and will be solved using its own search engine. The inspiration for this
design comes from the notion of computer clusters, where connected computers
work together and can be considered a single system. It should clearly be stated that
the Cluster Engine does not search for the voices in the score in parallel. Instead the
computation is still done in sequence, solving one variable after the other, jumping
between the layers.

In the Cluster Engine, each voice is represented by two sequences of variables:
one for durations, and one for pitches. A score with 4 voices will thus be repre-
sented as 8 sequences + one extra sequence for the metric units all voices share and
would need 9 engines to be solved. The advantage of splitting the problem over
several search engines becomes clear when the system discovers conflicts and needs
to backtrack: Even though backtracking will have to respect the order the variables
were visited, it can now be done in one sub-sequence without disturbing the other
sub-sequences. This will not only increase the speed with which the failing variable
is corrected, it will also dramatically reduce the amount of redundant work the
system will have to do. Added to this method, the Cluster Engine is also able to
identify which variable caused the conflict and backjump directly to this position;
that is, it can jump to the failing variable without spending time at intermediate
steps.

Figure 12.1 illustrates the difference between how PWMC and the Cluster
Engine backtracks. Both PWMC and the Cluster Engine might build the sequence
in the order shown in the left illustration. In PWMC, the order will depend on the
specific strategy rules that are used. When the system reaches the 11th variable, it
discovers a conflict between the 3rd and 11th variables that can only be resolved by
adjusting the 3rd variable. The figure in the middle illustrates how PWMC would
solve this through pure backtracking. Note that PWMC, due to the variable order,
has to backtrack and erase variables in sequence 1, 2, and 4, even though these are
unrelated to the conflict. After the 3rd variable is changed, the system will have to
rebuild all variables it unnecessary erased. The figure to the right illustrates how the
Cluster Engine will backjump directly to the failing variable without affecting the
unrelated sequences. As stated above, backtracking only works if the problem has a
sequential order, which each sub-problem has. To make sure that all rules still are
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respected, after the 3rd variable has been assigned a new value, it is necessary to
search for the 7th variable again.

The technique of avoiding erasing unrelated variables should not be confused
with backmarking, where the system remembers the values before erasing them in
order to make it fast to recreate them. The Cluster Engine does not erase the values
why backmarking is not needed.

While each voice builds its sequence of variables independent from the others,
rules that restrict values between different sequences can look into the other
sequences to access their data. When the system discovers a conflict caused by this
type of rule, it will trigger backtracking in the engine belonging to the sequence
where the conflicting variable is located. One search engine will thus have the
power to backtrack another (Fig. 12.2).

Fig. 12.1 The figure illustrates a simple 2-voice problem discussed in the text

Fig. 12.2 In this example, a
conflict was discovered
between variables 6 and 12,
which triggered backtracking
in the 2nd sequence. To
ensure that all rules are
respected, variable 10 has to
be searched for again after
variable 6 has been assigned a
new value
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Rules that constrain relations between values in three or more sequences are
quite common, for example, a rule that restricts the harmonic interval between two
voices will have to constrain not only the two pitches, but also check their positions
in the score. In this case, four sequences will be constrained by the rule. If the rule
fails, the conflict can be resolved by either (1) changing the pitch in the other voice
or (2) changing the rhythm for either of the two voices to make the notes not appear
simultaneously; that is, if they are not simultaneous, the harmonic restriction would
not apply. Each rule-type has a default preference for how to resolve a conflict. For
example, harmonic rules would by default prefer to change the pitch in the voice
that caused the conflict before changing any rhythm. It can happen that more than
one rule fails at a step during the search. In this scenario, all failing rules “cast a
vote” for what sequence they consider a problem. The system will backjump
according to the votes. Whether this is the best way to solve a conflict is very hard
to determine since there are often more than one valid option, and it is only a
“qualified guess” that the chosen way is the best.

The variable order of each sub-sequence is always intact in the Cluster Engine;
however, the variable order of the system as a whole has now become very flexible.
The system does not backtrack in the reverse overall variable order. Instead it can
backjump into the middle of the overall sequence and change some values without
creating any inconsistencies. Any found solution will always be guaranteed to
respect all rules. The challenge is now to make sure that the system does not revisit
states it already checked. When the system is shifting from backtracking one engine
to another and then back again, it is a risk that it could end up in a loop. In these
situations, it is essential to not recreate and build back the identical state the system
had before backtracking. While backtracking was the bottleneck in PWMC, in the
Cluster Engine it is the forward stepping algorithm that needs to be taken care of.
To minimize the risk of endless loops, the system will be forced to step forward in
the reverse overall order backtracking was done. This technique was concluded the
safest after testing several options. Loops can still occur, but typically only for very
complex problems, or (occasionally) when there is no solution. Even though
backtracking loops are a concern for the Cluster Engine, they typically only occur
for problems that are too complex to handle for the PWMC system, why the risk
was considered acceptable.

A simple speed comparison was performed on a fairly complex problem, where
three voices were harmonically restricted two-and-two, and the melodic lines were
restricted by not allowing notes to exist more than once within groups of six notes.
The domain was a major scale and note values where all quarter notes. The systems
were instructed to search for a score with two full 4//4 measures. The example was
not chosen to emphasize the differences in speed, but rather to create a problem that
PWMC could handle with reasonable performance speed. PWMC and the Cluster
Engine used the identical rule set. Both systems run the problem 10 times:

(1) It took PWMC between 0.90 s and 6 min 15 s to find a solution. The difference
in computation time reflects that when the initial random state of the system
was favourable, the system would find a solution without much backtracking.
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Typically, this was, however, not the case. If removing the slowest and fastest
runs, the average computation time was 31.7 s.

(2) The time it took the Cluster Engine to find a solution was much more con-
sistent; it varied between 0.046 and 0.083 s. The average computation time was
0.053 s. Compared to the PWMC, the Cluster Engine performs much more
efficiently. In this example, the Cluster Engine was on average ca 600 times
faster than PWMC. This corresponds quite well with my experiences of the two
systems.

Neither PWMC nor the Cluster Engine uses preprocessing. While preprocessing
can give an advantage to systems that are intended to run the identical problem
many times, it is unclear how much the overall calculation speed of the search
strategy the Cluster Engine is using would benefit.

12.8.3 An Efficient User Interface

When designing the Cluster Engine, priority was given to make it easy to define and
adjust rules. The system is intended to be a “test bench” for a composer to try out
structural concepts. A user spends probably more time on defining and coding rules
than on running the actual computation, why ease of use can be a crucial factor for
the time it takes for a user to try out a certain compositional idea.

There have been efforts to create collections of the type of rules that users
commonly use. The idea is that a user should not have to spend time on recreating
standard rules, only tweak their settings. Jacopo Baboni Schilingi’s JBS-Constraints
library [5] contains a large number of rules that systematically explore different rule
types. The rules are formatted for the PWConstraints and the Score-PMC systems.
The library provides a fast way of creating rules, as well as makes it possible for
users with close to no knowledge of Lisp to work with a rule-based composition
system. Torsten Anders developed the Cluster-rules library [3] that provides a set of
rules for the Cluster engine. While these rule collections have a clear purpose and
can be very useful, there is a risk of steering users into preconceived ways of
thinking. It is therefore important to always make it possible for a user to invent
new rules that explore alternative ways of structuring music, which would not be
the case if only relying on a standardized set of rules.

12.9 Future Developments and Final Remarks

The field of rule-based composition is still exploring new possibilities. An example
is the combination of constraints solvers and real-time environments. Julien Vin-
cenot has developed a system that can evaluate Lisp-code inside the Max software
[23]. Through his work, functions for computer-assisted composition that previ-
ously only were available inside a Lisp-based software, including the
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PWConstraints and the Cluster Engine systems, can now be used in real-time
applications. For example, close to real-time generation of fairly complex scores
based on rule-based computing is possible. Also, projects that take advantage of the
sound processing possibilities in Max have been developed. An example is my
sound installation Sonic Trails, where parameters for sound synthesis are controlled
as constraint satisfaction problems. Here, the music structure is performed by the
system, without the intermediate step of a score [24].

There are many objectives for exploring constraint-based computing in music.
The latter part of this chapter has been written from the perspective of systems that
can assist composers. While music structures can be a good test bench for con-
straints satisfaction computing, the main challenge remains being the music itself.
Music might be built on structures based on logic, but there is still a step to make
these structures communicate with us. How do we avoid ending up with a result
where musical expressions exist more or less at random? A helping hand from a
human seems often to be necessary. Rule-based computing provides tools for
exploration that can be of great help and give inspiration, but the role of the
composer is still intact.
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13AIMusicMixing Systems

David Moffat

13.1 Introduction

Mixing music, or music production, is the process of combining a series of different
musical tracks together,while applying a range of audio processing toblend the tracks
together in a pleasant and aesthetically pleasing way. Music mixing practices require
the pleasant combination of all aspects of a musical piece, using a set of engineering
tools to do so. Owsinski [106] identified five key components to consider while
making a mix, and they are

• Balance,
• Spectrum,
• Space,
• Depth, and
• Dynamics.

Balance is related to ensuring that all instruments can be heard within a mix
and that none are monopolising the mix, in terms of volume. Spectrum is related
to the frequency content on the mix, to ensure that this is balanced, and there is
not too much weight on a particular frequency component, and that the frequency
components of each sound source are distinct and clear. Space represents a good
image of the sound between two ears, allowing for better differentiation between all
the different sources, without one side sounding louder than the other. Depth is to
ensure that each sonic element has enough interest and complexity on its own, and
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that the richness of each sound can be clearly heard, whilst all sonic elements can
be blended together to produce a pleasant rich timbral sound. Dynamics are related
to the sudden transient nature of the sound, to ensure there is ample and adequate
change in the overall, and individual, volumes of the tracks, by creating quieter parts
of the music, where the sounder parts can stand out more, creating interest and an
evolving sonic signature over time.

These five dimensions of amix are typically controlled through a range of different
audio effects. The way in which a piece of music is mixed can heavily influence the
way in which it is perceived, in terms of preference [28], perceived quality [172], and
evoked emotion [135,140]. Music mixing is a highly complex, multi-dimensional
problem,where a number of different complex sounds are combined in amultitude of
different ways. The processing and modification of each and every track depend on
all other tracks within themusical mixture, and often require different processing and
effects in different sections of the song. Some equaliser setting applied in the chorus
may be very different from the equaliser setting required in the verse. This results
in a highly complex non-linear search space, relying heavily on human perception
and preference of music, along with the limitations of human hearing and emotional
responses to music.

The integration of an artificially intelligent music mixing system, or intelligent
mixing system (IMS), has the capacity to change music production workflows and
approaches [170]. The use of an IMS can change the way in which a mix engineer
can explore through the vast array of mixing options available to them; they could
use this as an opportunity to reduce the dimensionality of the music mixing problem,
controlling their path through the mixing environment, and could even use an IMS as
a tool for collaboration, where they are both enacting control over the musical mix as
a whole. The use of an IMSwill even inform and influence professional practice [11].

Historically, music mixing has grown and developed over time, constantly using
new technology and practice to create new and interesting music [16], and some
musical trends and music styles are, as a result of technology, rather just cultural
evolutions [81]. Some genres of music, such as techno and acid-house, were created
as a result of technological innovations [15]. A large proportion of these techno-
logical innovations are, as a result of borrowing, using, or misappropriating, tech-
nology from other fields, and applying them to music mixing processes [170]. The
culture of misusing and misappropriating technology, within music, has been preva-
lent throughout the history of music [124], as a way to be creative, explore new
approaches, and uncover the opportunities within different musical spaces. The use
of IMS, in music mixing, brings a number of opportunities, not just for the new
technology to be used as intended but also for practitioners to take this new tech-
nology, use and misuse it and explore the expressive opportunities it affords. New
technologies have the advantages and opportunity to lead to new approaches for
music production [67]. This could either be intentional through the understanding
of how a tool works in one domain, and applying it to music mixing context, or this
could be accidental. It is well reported in music production that often trying new
things and exploring, even making mistakes, can result in happy accidents which
has resulted in many of the mixing practices that are commonplace today [20]. This
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Fig. 13.1 The typical structure of an IMS

was best summed up by Bromham, who said “Some of the most creative moments in
recording have come from accidents where devices have been plugged up incorrectly
and technology misappropriated” [11].

There are numerous approaches for developing an IMS. In principal, there are a
few key aspects of an IMS that are necessary to consider. Figure 13.1 shows a typical
IMS structure. There must be some system for parsing audio tracks, with or without
additional human input. There must also be an interpretation of the audio tracks
input and a response, which should either directly modify and manipulate the audio
or present some representation of the audio, which can benefit the mix engineer. In
the field of theoretical artificial intelligence, an intelligent agent is one which has
three key components, the ability to observe or perceive the environment, the ability
to act upon the environment, and decision-making capacity to achieve the desired
goal [136]. Following a theoretical artificial intelligence approach three key aspects
of an IMS, which will be discussed within this chapter. The three aspects of an IMS
are

Decision-Making Process The process of the IMS analysing the inputs, and using
this to make some mixing decision. This process includes representing all the
musical knowledge and concepts, creative and technical decisions, along with
understanding why the decision is made.

Audio Manipulation The way in which an IMS will act upon the world, how it
can interact with the world, and the tools it is provided with to have an impact.

Human-Computer Interaction The observations made of the wider environ-
ment, the way in which an IMS will have utility to any user, and how the tools
can be used.

13.2 Decision-Making Process

The decision-making process is arguably one of the most challenging components of
an IMS. The ability to capture the concept of a creative decision that a mix engineer
may make, or to understand the reasoning behind a single decision being made, is
a challenging approach, and to embed this concept into an IMS can be even more
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challenging. The idea of modelling some knowledge of musical mixing, and using
that to perform actions later on, is one of the key aspects of any intelligent system. In
the case of music mixing, this could be through some domain knowledge, learning or
defining a rule, such as “We want the vocals in this track to be really clear”, or these
rules could be implicitly learned, through the analysis of data collections.DeMan and
Reiss [33] identified three different approaches for modelling the decision-making
process in IMS: knowledge encoding, expert systems, and data-driven approaches.

13.2.1 Knowledge Encoding

In most IMS literature, this approach is referred to as Grounded Theory [32]. The
grounded theory approach is a formalised approach taken within social sciences,
where theories are created through systematic methodological collection and analy-
sis [50]. Many IMS approaches take an informal grounded theory-inspired approach,
without following the systematic practices of a formal grounded theory approach.

The knowledge encoding approach is to formalise the understanding of themixing
process. There are a number of different approaches taken to gather knowledge of
mixing practices. Ethnographic studies can be conducted, as a formal framework to
analyse and understand the practice of mixing engineers [25,84]. Interviews and sur-
veys can be conducted [116,132], which can provide insight into how mix engineers
state that they approach mixing problems. Often, this can be verified through the
analysis of mixing practices [29,119]. Published literature by respected practition-
ers [60,106,146] can often be a useful way to gain a better understanding of mixing
processes.

Often, practitioners’ experience, coupled with rules derived from literature, can
be used to automate specific audio effects independently. There are a large number
of studies looking into perceptual attributes of mixing production practice. Hermes
[56] performed an overview of mixing approaches, and focused on understanding
spectral clarity for automatic mixing. Bromham et al. [13] conducted a study to
understand which compressor settings would be deemed appropriate for a given
piece of programmematerial. Bromhamet al. [12] looked to understand howdifferent
audio effects would influence the perception of timbral attributes of a piece of music,
including brightness and warmth. Weaver et al. [166,167] investigated the impact of
reverberation on howmusicians perform together, which was further analysed by De
Man et al. [30]. Fenton and Lee [42] investigated the perceptual attribute punch,
within a music mixing context, whereas Moore [101] investigated how aggressive a
distortion effect can be. Both Wilson and Fazenda [171] and Colonel and Reiss [26]
performed statistical analyses of a large number of musical mixes.

These inferred rules can then be applied to IMS. Perez Gonzalez and Reiss [113]
proposed setting the gains of all audio tracks to the same perceptual loudness within a
mix, and Moffat and Sandler [98] proposed including a source separation evaluation
metric to compensate for crosstalk between different microphones in a live situation.
Perez Gonzalez and Reiss [115] sets the pan of some audio tracks to reduce spectral
interference of different tracks, whilemaintaining the low-frequency content as close
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to the centre as possible, and Ward et al. [165] extend this to use a perceptual model
of masking to place each track within the stereo field. Perez Gonzalez and Reiss
[112] equalised tracks to reduce the spectral overlap of audio tracks, where Hafezi
and Reiss [52] used a perceptual masking model to define the equalisation values.
Maddams et al. [73] automated the parameters of a dynamic range compressor, based
on signal analysis, to consistently set the dynamic range of audio tracks. Moffat and
Sandler [95] identified that mix engineers will often use dynamic range compressors
for a number of different uses, and developed a parameter setting for emphasising
transients of drums. Moffat and Sandler [97] automated reverberation parameters,
where the reverb time is controlled by the tempo of the audio track [166].

It is clear here that most approaches undertaken will only automate one type of
audio effect, and will typically restrict themselves to a simple set of rules. Any more
complex rule structures require more complex management of multiple conflicting
rules, such as that described in Sect. 13.2.2. Throughout this approach, there is a
necessity to consistently update the collection of mixing approaches, and to evaluate
the approaches taken to implement them, especially as it has been demonstrated
that professional mix engineers may identify one approach while actually using an
alternative approach [119]. This could easily lead to cases where an IMS approach
is well intentioned but never able to produce effective results.

The knowledge encoding approach is critical to understand the human approach to
mixing. This could be ideal as a training system, where simplified use cases could be
given to an individual, to demonstrate isolated concepts or approaches. However, the
ability to combine all these approaches together creates amuch larger set of problems,
where approaches will contradict each other, and there will be differences of opinion
in themixing approach. There are also numerous examples of happy accidents, where
something is done accidentally, which results in producing a preferablemixing result,
typically through breaking the rules, rather than confirming to existing rules [20].
This is both acknowledged and embraced by many practitioners, and some mix
engineers embrace this approach [38].

13.2.2 Expert Systems

Expert system is the approach where a human expert decision-making process is
modelled by a computer system. The computer model is often more generally called
a knowledge-based system. Expert systems are designed to approach problems by
understanding the problem, and then representing a typical expert approach using a
series of if-then-else rules. Expert systems are broken up into two different compo-
nents sections: the knowledge base, and the inference engine. The knowledge base
is where a series of facts and rules can be stored, and the inference engine will then
utilise these rules to make deductions and suggestions.

In the context of IMS, an expert system can either be considered as an inference
problem, or a constraint optimisation problem. The mixing system could be set up to
explicitly state a set of rules, anduse these to thenperformsome inference, or optimise
towards a given result define rules and perform inference [6,100]. Alternatively
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mixing can be set up as a constraint optimisation problem, where a series of goals
are defined, in a mathematical form, and the system must perform a search for the
mathematically optimal solution [155,156].

The rule/inference approach can be used as an effective way to build on the
grounded theory approaches outlined in Sect. 13.2.1. Specific rules are developed
and coded, such as discussed by De Man and Reiss [32], which can then be applied
to a given problem. Pachet and Delerue were the first to identify that musical mixing
could be defined as an inference or optimisation problems. Pachet and Delerue [107]
constructed a full mixing system, based on sound source spatialisation and mixing,
by placing individual musical sources in a sonic space, defining a series of rules, and
allowing the inference engine to perform the mixing task. Deruty [34] developed a
range of high-levelmixing goalswhich should be achievedduring themixing process.
Benito and Reiss [6] constructed a probabilistic soft logic engine to apply reverb to
a musical mix. Rules were collected from grounded theory approaches, coded into a
logical inference engine, and applied to different musical tracks. The author notes the
challenges in translating grounded theory rules into probability weighting. Moffat et
al. [100] created a generalised framework for constructing musical mixing rules to
be applied to an inference engine, and suggests that there is potential to learn mixing
rules from data, utilising the semantic web [7].

Mathematical optimisation approaches have also been effectively demonstrated
in the music production field. Barchiesi and Reiss [4] proposed setting the gain
and equalisation parameters to mix towards a given reference track. Kolasinski [68]
performed an optimisation approach to mixing a series of tracks to match a given
same timbre of some selected reference track. The timbre is defined using a spectral
histogram, and only gains of different tracks could be adjusted to match the reference
track. Gang et al. [45] used timbre and a range of musical score-based features to
optimise a number of audio effect parameters towards a given reference track.A range
of mixing targets have been used, such as mixing to a specific targets loudness [41,
168], using a perceptual model of masking, to minimise the inter-track masking [64,
133], as this is often considered a negative effect of track interference, or optimising
to reduce a number of different objective measures [154]. Terrell and Sandler [155]
and Terrell et al. [156] investigated music mixing in a live music context, optimising
the layout of different sources and speaker to counteract for room effects. Pestana et
al. [118] optimised the phase offset of each instrument track, to minimise the comb
filtering effects of phase cancellation. Wilson and Fazenda [173] proposed a human-
in-the-loop mixing approach, where a human is able to state a preference over a set
of mixes, which is used, in turn, to generate more mixes, in the hope that a “personal
global optima” [173] is found.

There is also a variety of different optimisation approaches that have been taken,
linear approaches, such as least squares [4,156] or genetic inspired approaches such
as genetic algorithms [64,68], or particle swarm algorithms [133].Wilson et al. [174]
discuss the use of genetic algorithms, compared to other expert system approaches,
in creating intelligent music systems.
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Expert systems benefit from their ability to model highly complex rule structures
that are ever-growing, with multiple target objectives, and aims to always find a
solution that has the ability to fulfil as many of the targets as possible. These systems
are able to consider each and every rule, in turn, and identify when certain rules
need to be broken or ignored, in order to produce the best overall system. The ability
to create hard constraints and soft constraints, such that an IMS can navigate any
complexmix-space is vital, and enables it to both anticipate and follow an individuals
mixing intention.

The rule-based mixing approaches present considerable power, as the ability to
produce a formalised approach to construct, compare, and evaluate formal mixing
rules, in a simple structure that could prove to be very powerful. As there are many
cases where a mix engineer may give a rule that they follow, there are examples
where mix engineers will say one thing but do another [129]. This could be because
an engineer does not objectively understand exactly what their mixing process is or
that they feel a need to justify their approach. The formal and consistent evaluation
of a range of mixing rules, through a quantitive approach, would be highly insightful
into both a better understanding of mixing practice and assist greatly in developing
state-of-the-art intelligent mixing systems.

The key encapsulating factor of an optimisation approach-derived IMS is con-
tained within the fitness function. This is the component of the optimisation that
defineswhat to prioritise, and how it should be evaluated. These fitness functions have
been used, in optimisation approaches, to reveal greater understanding of the audi-
tory system [82], perceptual similarity measures [91], adjusting synthesiser param-
eters [46], and for musical composition [89]. The fitness function is required to
encapsulate all the understanding and knowledge that the experts have and how it
can be applied to the mixing problem at hand.

A review of expert systems, and how they were applied to IMS, was performed
by DeMan and Reiss [33], where the challenges in defining rules for IMS are identi-
fied. The inherent complexity of music mixing means that there is no certain optimal
solution, but a number of different appropriate mixes given a set of contexts [64].
There are a number of different mixes that are preferred by different individuals, in
different moods, at different times. Mixing has the ability to change and transform a
piece ofmusic [135], and so any set of constraints definedwould need to acknowledge
this and take this into consideration while defining the rules to be applied [69].

Inherent to how optimisation approaches work, it is not possible for most of them
to operate in real time, and as such, they need to be seen as tasks where an entire
track is given to an IMS, and the mix is produced at a later date. This can severally
limit the ability of an individual to interact with the music mixing system, as this
would not integrate well with traditional music production studio workflows. Expert-
based system relies on the assumption that experts will make consistent, agreeable
decisions. This implies that experts should be considered to be time invariant—that an
engineer who applies a given equaliser setting today would apply the same equaliser
setting tomorrow, or next year. There have been a number of cases where expert
systems have been demonstrated to be highly effective AI approaches [104,125],
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however, there are few cases where these approaches have been demonstrated to
creative approaches with great effect.

13.2.3 Data Driven

Data-driven IMS approaches have been developing in recent years, particularly with
the growth in machine learning and neural network techniques. These approaches
rely on analysis on datasets or lots of example mixes and use this to extrapolate some
set of mixing parameters. This is commonly done by selecting a set of relevant audio
features, or audio descriptors [93], typically designed to represent some semantic or
perceptual attributes [149], and discover how these can be related to a specificmixing
decision [74,77]. Reed [126] first proposed a data-driven mixing approach, where
data was analysed as to how the frequency band energy can influence the timbral
attributes of brightness, darkness, and smoothness, and this was used to automati-
cally equalise a given audio track to an identified semantic term, using the nearest
neighbour algorithm. Since then, machine learning approaches have grown consid-
erably, and there many approaches for using a data-driven approach to construct an
IMS.

Deep learning approaches have become very relevant recently, since it was demon-
strated that a neural network has the ability to parse and apply a large amount of non-
linear processing [78], or even to simply perform an entire mix in a single black box
system [76]. Moffat and Sandler [99] extract gain parameters from a series of audio
mixes, using a reverse engineering mix approach, developed by Barchiesi and Reiss
[5], and then use this to predict gain parameters and extrapolate to larger datasets,
using a random forest approach. Pestana et al. [117] analysed 60 years of the UK and
USA pop chart music, and then Ma et al. [72] used this to predict an ideal equalisa-
tion curve, which can be applied to different tracks. Martínez Ramírez et al. [75] and
Sheng and Fazekas [147] both generated a set of audio samples modified with the use
of a dynamic range compressor, and then learned the transformations applied by that
compressor. Hestermann and Deffner [57] took on the task of manually annotating a
large dataset of audio tracks, to develop an intelligent de-esser. Chourdakis and Reiss
[22,23] developed an approach for learning reverberation parameters from a specific
user input, which then extrapolates the selected reverb parameters to other tracks,
though they comment on the challenges of finding appropriate quantities of data.
Mimilakis et al. [87] constructed a neural network to learn the mastering process
of jazz music, taken from the Jazzomat dataset [62]. Martínez Ramírez et al. [79]
recently demonstrated a full end-to-end IMS, using drums. This system learns the
full music production process of drummixing and demonstrates that the intelligently
produced mix is indistinguishable from the professional engineer-generated mix.

Clearly, one of the largest restricting factors within a data-driven approach for
intelligent mixing is data gathering. Other than taking on large-scale manual anno-
tation approaches, there are numerous approaches that have been taken, such as
using a mix parameter reverse engineer approach [5], as used by Moffat and San-
dler [99]. There are also a number of curated multitrack datasets, including the
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Cambridge MT Multitrack Dataset [145], the Open Multitrack Dataset [31], and
MedleyDB [9]. There are instrument-specific multitrack dataset, such as the ENST-
Drum dataset [49]. Despite limitations, data-driven approaches are highly effective
results, once suitable datasets are curated [1].

The considerable growth in data science and machine learning approaches over
the past decade [175] has resulted in there being ample directions for further work
in data-driven IMS. It has been demonstrated that data-driven approaches are highly
effective, and extendable, leaving considerable opportunities for future work in this
space. The input track ordering is a present challenge, where any machine learning
approach should be able to mix tracks together in a way that is invariant to the
input track order. As the number of musical tracks grows, the problem search space
becomes exponentially more and more complex, which can lead to real challenges.
And networks need to be able to deal with missing instruments, e.g. some tracks will
have a brass section, or a violin track, but many will not, as Bittner et al. [9] identify
that within their dataset only two of the 16 instruments exist in more than 50% of
the multitracks.

13.2.4 Decision-Making Summary

The decision-making processes used by an IMS are of critical importance to both the
inputs needed to perceive the system and to how an IMS will operate. The decision-
making process encodes all the knowledge of a given system and will enact some
decision to the action component of the IMS. The input system is greatly influenced,
as some approaches require a single audio track input, whereas some require a full
multitrack mixing context. Furthermore, if any additional metadata is required, or
human interaction is required, this will also greatly impact the decision-making pro-
cess. Knowledge encoding approaches rely heavily on professional mix engineer
knowledge and understanding, and attempt and represent this domain knowledge
in a simple direct way, however these knowledge encoding approaches are highly
restricted to often controlling single audio effect directly, and so do not model the
interaction between different audio effects or processing chains. Expert systems
attempt to quantify the uses more formally, performing some inference or opti-
misation based on these rules, which allow for considerably more complex rules.
Conversely, data-driven systems have recently shown that they are able to mix as
effectively as a professional engineer [79]. Though this is in a simplified mixing
task, mixing only drums, these results are highly promising for future research.
The future of IMS can also lie heavily in expert systems. By combining knowledge
approaches, and learning defined rules from data, this approach could both be used
to not only gain insight into music mixing practices and approaches taken but also
develop state-of-the-art IMS. This will only be possible once data collection chal-
lenges within the data-driven approaches have been addressed. The decision-making
process will then provide a decision, and an action will be taken to some change to
the audio, as discussed in the following section.
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13.3 AudioManipulation

The manner in which an IMS will perform an action upon a piece of audio will
greatly influence the limitations and restrictions of the IMS, and will also emphasise
the opportunities of the IMS. How a piece of audio is modified will greatly define
and limit the IMS. There are two approaches to modify audio with an IMS, and they
are either to use adaptive audio effects or to perform a direct transformation on the
audio.

13.3.1 Adaptive Audio Effects

The use of audio effects to construct an IMS is the most common approach taken.
Audio effects are the processes used to manipulate and change a sound in an inten-
tionalmanner.Audio effects have been around for as long aswe have had documented
music [170]. In principal, an audio effect can be any sound modification, from as
simple as a loudness control to a dereverberation algorithm [103] or noise removal
algorithm [80]. These audio effects are used as part of the music making, mixing,
and production, to shape and control the musical sounds. The principal aspect of this
is to ensure that control can be harnessed over a pre-existing sound. An audio effect
is an approach of taking a sound and modifying it, in some consistent, predictable,
and usually controllable manner. An adaptive audio effect (AFx) is one in which
control parameters are changed over time, based on either analysis of audio, or an
external sensor input, such as a gestural control.

Figure 13.2 shows the general structure of an AFx. Verfaille et al. [161] developed
a classification for AFx, which identifies the following AFx categories:

Auto-adaptive An effect where the audio analysis is performed on the input signal
that is also beingmodified, as shown in Fig. 13.3a. AFx adapts directly to the audio
signal being used. An example of this could be a dynamic range compressor.

Fig. 13.2 A flow diagram of a typical adaptive audio effect
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(a) Auto-adaptive audio effect (b) External adaptive audio effect

(c) Cross-adaptive audio effect

Fig. 13.3 Flow diagrams of the three primary different types of adaptive audio effects

External adaptive An effect where the control analysis input is presented from
something external, such as an alternative audio stream, or gestural input, as
shown in Fig. 13.3b, for example, a side-chain compressor.

Cross-adaptive Cross-adaptive AFx is where two different audio tracks are used
to modify each other directly, where both the audio samples and the AFx interact,
potentially conflict with each other, and typically reach some equilibrium state,
which changes as the audio channels progress, as shown in Fig. 13.3c.

The use of adaptive audio effect for IMS was formalised by Reiss [128]. The
audio effect is some signal processing block which modifies audio and is adaptive
in some way. The feature mapping or parameter automation is performed, so that
the IMS can directly control a parameter, much in the same way a human engineer
would. Adaptive effect implementation is performed in a number of different ways,
depending on the type of audio effect being used [160]. Adaptive effects can be
used either to directly modify perceptual attributes of a piece of music [58], or for
individual performers to be able to interact with each other in more complex musical
ways [138].

AFx is used within IMS to automate pre-existing audio effect parameters [127].
This has been a common approach for some time, and intuitively it makes sense to
maintain as much of the processing chain as constant when developing IMS. There
are many auto-adaptive audio effects, such as dynamic range compressors, that are
not considered to be intelligent but do rely on some analysis of an audio signal to
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automate some internal parameters. Even cross-adaptive effects, such as a side-chain
compressor, are considered advanced mixing techniques but not intelligent. The AFx
approach to IMS allows for an easy and intuitive transition from traditional music
production paradigms to IMS. There are clear opportunities for how to interact with,
or expose the effect parameters being automated to a user. This could be done through
effect parameter recommendation, such as creating an adaptive preset [110], whether
automating some or all of the effect parameters, or by creating a fully automatic plug-
in, which fits within the traditional mixing workflows.

The use of adaptive audio effectswithin an IMS introduces a number of challenges.
Primarily, there are a large number of audio effects that can be applied in any order,
to achieve a number of different goals. To this end, there are a number of approaches
to analyse and propose an audio effect chain. McGarry et al. [83] performed an
ethnographic study into the music mixing processes that are undertaken in studios.
Sauer et al. [139] used natural language parsing and a range of semantic terms
to define a target, which is analysed to propose a suggestion as to the types of
audio processing that should be applied to a given audio track. Stasis et al. [150]
conducted a study, evaluating the use and ordering of audio effects on a range of
different audio tracks, in an attempt to understand the types of audio processing
chains that are commonly used. This work was developed further, and related to
semantic descriptors [151].

There are a large number of restrictions on using AFx in IMS. The limitations
on how the audio can be manipulated and changed are highly limiting; there may
be a number of cases where a specific target is wanted, but the IMS is not able to
understand how to achieve the desired outcome. This is often a problem with student
engineers, who may knowwhat they want to achieve but do not know how to achieve
it [66]. Furthermore, constructing an independent IMS for a single audio effect will
greatly limit the opportunity for that IMS to understand the complexity of the impact
it may have on the signal, and a later IMS in the same chainmay then be attempting to
undo whatever that IMS is performing. As such, constructing a global IMS, with an
understanding of the overall musical context, will have considerably greater power.

13.3.2 Direct Transformation

Alternative to using AFx, there have recently been a number of approaches which
have demonstrated some sort of direct audio transformation. Instead of using some
mid-level audio interaction algorithm, which is typically based on some electronic
circuit or mechanical system [170], the audio can be modified directly. This can be
performed either through direct audio sample modification, as performed in end-
to-end learning [79], or modifying the audio in some reversible domain, such as
the short-time Fourier transform [76,87]. The ability to directly transform audio
is common in the field of neural networks, which have demonstrated the ability to
directly modify audio for a range of different tasks, including intelligent mixing [79],
audio style transfer [51,162], audio effect modelling [55,75], signal denoising [105],
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and even sound synthesis [47]. Fundamentally, all of these approaches,whether called
denoising, style transfer, or timbre modification, are each audio effects, in one way
or another.

An IMS developed with a direct transformation capacity would not be limited to
traditional human approaches of modifying audio, instead is able to learn to pro-
duce the desired effect, regardless of how possible or easy that would have been
through modelling in electronic circuitry [170]. There is no reliance on some com-
plex non-linear mapping between audio attributes, perceptual attributes, and audio
effect parameters, and instead the important transformation and ordering are implic-
itly understood.

There are clear opportunities for a neural network approach to learning some
signal processing transform, based on a given dataset, which could be used to create
or realise new audio effect approaches or ways for interacting with audio, both
from a creative and an engineering approach. This has the potential to allow for
some new, interesting, and highly meaningful audio effects to be created. Instead
of an engineer having trouble with masking, and thus selectively using a panner, an
equaliser, and a compressor, they could instead load up their demasker, which could
provide some composite tool consisting of aspects of all the individual audio effects
that are relevant, and allow dynamic effect ordering where appropriate with a simple
high-level user interface to control it. This system would not necessarily have any
intelligent controls, but would still be an IMS, as the use of the AI to develop the
audio effect would be the intelligence within the system.

The impact to both the traditional studio paradigm and the opportunities present
in constructing an IMS are considerable, both easing the ability not only to shape
audio as intended but also for the creation of new audio effects, from both a technical
and a creative perspective. The direct transformation paradigm has yet to be fully
explored, and new opportunities are being regularly coming to light, but nonetheless,
the opportunities for the creation of new audio effects, and the recent outcomes,
suggest that the direct transformmethod has considerable opportunity for exploration
and innovation.

13.3.3 AudioManipulation Summary

The audio modification approach selected, while constructing an IMS, will influence
a number of factors of the ISM. An AFx approach will modify existing known
audio effect parameters in an intuitive human-like manner. This fits directly into
the understanding of music mixing, and it can be believed that this approach would
swiftly be taken up by practitioners. There are, however, a number of limitations
of this approach. Music is a complex system, and the large multichannel signal
modification required, with several different mapping layers and understanding the
inter-correlation between different audio effect parameters, audio effect ordering in
the signal chain, and processing approaches, makes this a highly complex and non-
linear search space. It takes a human mixer years of experience to gain an intuition
as to the best audio effect ordering, understanding which parameters settings will
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provide the intended change to the audio, both on a single audio track and relative
to the overall musical mix.

Conversely, when a direct transformation IMS is implemented, the system would
be able to learn the exact transform required to the audio and directly implemented.
It would even be possible for this direct transformation to be developed and framed
in the more traditional audio effect domain, thus allowing for easy integration into
pre-existing music mixing workflows. The ability for a direct transform IMS to
create novel, interesting, and creative audio effect processors can produce insights
into existing mixing practices, and is highly advantageous to expert and amateur mix
engineers alike.

13.4 Human-Computer Interaction

There are a number of reasons for constructing an IMS. It could be that one is looking
to completely automate the music mixing process, either due to budget constraints,
or there is no way that a human can possibly be in the position to mix the piece of
music, such as in a video game [141]. Alternatively, the aim could be to use an IMS to
develop some formof technology that can help amix engineer in live conditions, such
as microphone bleed removal [24,90]. The aim could be to provide a mix engineer
with more insight into the mix, through some form of visualisation [43], or to be
used as an educational tool [70]. Based on the aim of developing a given IMS, it is
vital to design and build an IMS, in acknowledgement of how it can interact with a
human mix engineer.

In fields outside of music production, the introduction of IMS to provide task
automation has been prevalent for decades [71,148], however, the vast majority of
these approaches relate to automating heavy industry, where working conditions are
slow and dangerous, or on production lines, where repetitive tasks are performed
in a highly repetitive manner, under the supervision of a human operator [10,44].
In these cases, there are clear advantages to using an AI system, either to speed up
the process, reduce the risk to workers, or maintain a 24-hour production cycle and
vastly increasing the production outputs.

However, in music mixing, the purpose of an IMS would only ever be to act as
a tool, for a practitioner to use, to allow them to produce their music. Whether they
are amateur or professional, they will all require different types of tools [137], but
IMS can be used to construct useful tools that can provide some advantages to them
each. The purpose of the tool and the manner in which the tool is used will define
the interaction between the human and the computer, where it is acknowledged what
capacities are given to the AI system, rather than kept within the human mixing
domain. Palladini [108] proposed a number of different levels of AI approaches, and
how these can be used to construct an IMS. This approach is derived from the field
of self-driving cars [130], where there is a constant interaction between a human and
an AI, in order to build trust of the AI system. The analogy of a self-driving car and
an IMS is a very effective one, as in both cases, there is a strict human-computer
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interaction, in multiple different ways, from the addition of an automatic breaking
system to automatic gear selection to fully automatic driving systems. In both cases,
the AI system is being used as a tool for a human to use, in a way they see fit: one
in a very practical deliberate way, and the other in a very creative way.

Palladini [108] identified that there are different levels to which a human can
interact with an IMS. These levels of interaction that can be described are Automatic,
Independent, Recommendation, and Discovery.

13.4.1 Automatic

An automatic IMS is where a series of audio tracks are provided to the IMS and a full
mix of the audio tracks is expected in return. This approach will automate all aspects
of the mix, with no human interaction, other than perhaps a few high-level control
parameters, where an individual may wish to select a style or genre to be mixed. This
approach could take the form of defining a set of requirements or constraints [155],
by identifying a target track to mix in the same way as [4], by the definition of some
predefined mixing goal [133], or even by mixing examples to learn the style of a
specific mix engineer [79]. In the self-driving car analogy, this approach would be
the fully autonomous driving car.

A fully automated mixing system does not require any external interventions,
other than the input of some audio tracks, and thus could be advantageous for an
amateur, who is not experienced with music mixing, but instead requires the highest
quality produced audio content, with minimal effort [69]. These systems could also
be used as benchmark mixes, which could be analysed and compared to one’s own
mix, to reflect on what issues or challenges are being faced within a mix. There are
cases where it is not possible for a mix engineer to produce a mix, such as in a video
game, where objects and components of the mix are constantly changing and need to
be dynamically mixed [144,152]. There are a number of bespoke approaches for this
challenge, which include implementing some level of audio detail [36,142,158],
where sonic elements are only included when there is suitable space in the mix,
for each sonic element. Other approaches include the dynamic generation of sonic
elements within a video game [40,85], or generativemusic approaches, only creating
and mixing voices as and when required [27].

13.4.2 Independent

An independent IMS is one where a series of tasks can be allocated to the IMS, which
it can manage and perform, while a mix engineer acts as a supervisor to the system.
Overall, the mix engineer has control over the system, with the ability to change or
overrule a decision made by an IMS. The ISM would have to react to the dynamic
changes of a mix engineer, who will be modifying and manipulating other aspects
of the audio. This could be achieved through the automation of a single type of
audio effect, such as gain across all tracks [114], through the automation of an entire
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music mixing process, such as automating the final mastering process [88,157], by
enhancing the audio signal quality for the mix engineer, in an adaptive manner, by
reducing microphone bleed [90,159], reducing the comb filtering effects of phase
interference between sound sources [24], or by mixing a set audio effect to a given
task, such as providing an equaliser to an IMS, and asking for it tomaintain the relative
masking below a given threshold [52]. One of the best examples of an independent
IMS is the “automatic microphonemixing” system, developed by Dugan [35], where
the gain control for a series of microphone channels is presented to the IMS for
automating, but all other components of the mix are controlled by the mix engineer.
This approach has been integrated into the Yamaha CL series sound desks.

Another approach that is taken in building an independent IMS is to allow the
IMS to create a rough mix, where a set of initial parameters are set up for a mix
engineer [19]. This rough mix could be based on direct microphone analysis [98],
through an understanding of the physical geometry of the room [153], or through
some initialisation process—more commonly known as a sound-check [39]. This
is analogous to a car which is able to provide some basic self-driving capabilities,
such as automatic parking [59], or monitoring to ensure that the steering is staying
within a specific lane on a motorway. The small segmented tasks are highly useful,
individually, but do not remove the overall system control from the end user.

An independent IMS provides the mix engineer with knowledge as to what the
system is automating, and how, with an active acknowledgement as to when the IMS
will relinquish control to the mix engineer. One of the most important aspects of
an independent IMS is that the mix engineer is able to trust the system [102]. The
requirement for a consistent, predictable outcome, that the mix engineer can rely
upon, without being betrayed [3], will greatly influence the utility of the IMS. If a
mix engineer is in a position where they need to battle with the IMS to achieve the
desired outcome, if the IMS contradicts the mix engineer, or if the IMS introduces
some challenges that frustrate or interfere with the mixing process, then the IMS has
no purpose in that mixing context, and the mix engineer will quickly use their super-
visory role to remove the IMS from the music mixing process. However, developing
an independent IMS that can mix audio content within the constraints provided, and
understand the greater context of the changes it makes, provides considerable benefit
to pro-am [137], and amateur mix engineers, who could be in a position to focus
down on smaller simpler tasks, or not have to worry about the negative impacts of
their mixing exploration, ensuring that a good quality mix is presented at all points
during the mixing process, rather than necessitating a destructive process before a
new and improved mix can be found.

13.4.3 Recommendation

A recommendation IMS, sometimes called a suggestive mixing system [96], is one
where the IMS has the capacity to analyse and interpret the current mixing process,
gaining an understanding of the current mixing context [69], and use this to provide
the mix engineer with some recommendations or suggestions. These recommenda-
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tions could be the automatic labelling of instrument tracks [111,137] and adaptive
audio effect parameter settings [110]. Recommendations could take the format of
suggesting an audio processing workflow or chain, either through the suggestion
of the audio effect chain directly [150] or through the hierarchical sub-grouping or
sub-mixing of stems [134].

Pestana et al. [117] developed an IMSwhich is able to analyse a set of audio tracks
and recommend changes to spectral characteristics of the tracks. Stables et al. [149]
developed an approach where audio effect parameters can be suggested, based on
semantic descriptors, and amix engineer can search through lists of descriptors to find
the most appropriate for their use case. Zheng et al. [176] crowdsourced a range of
semantic terms associated with different mixing audio effects, which Seetharaman
and Pardo [143] developed into an IMS. Jillings and Stables [64] suggested gain
mixing parameter settings to reduce perceived masking of a set of audio tracks.
Cartwright and Pardo [18] developed an advisory approach to synthesis voicing,
where given a midi score, it could make recommendations as to what instrument
voice would be most appropriate for that track. Vickers [163] identified occasions
when a single effect, namely dynamic range compression, has been overused, and
negatively impacts the musical mix. IMS can also utilise mix statistical analysis
approaches [26,171], querying attributes of a mix to identify any potential issues,
and maybe the cause of those issues. Suggestions can then be made to correct these
problems [65], where a mix engineer would have the opportunity to engage with if
they so choose. Extending the autonomous car analogy, a recommendation system
would be comparable to a system to suggestwhichgear the car should be in, ormaking
suggestions to slow down as the speed limit changes, as performed by modern-day
sat-nav systems.

The real benefit of a recommendation system is the ability for the IMS to become
interpretable and adaptable. It will make suggestions to users, who can accept or
reject them, and this in turn can be used to search for more appropriate answers
to the problem, similar to the approach proposed by Wilson and Fazenda [173].
The engineer maintains control over the mix, and the IMS at all times, and has the
opportunity to actively engagewith the IMS, or to pursue their ownmixing approach.

A recommendation IMS could be beneficial to amateur mix engineers, while
learning or attempting to hone their mixing skills, or used by professional mix engi-
neers when in a situation that they are unsure as to what to do, or what approach to
take. This approach could even be considered the intelligent, adaptive, and context-
dependent equivalent to Oblique strategies, developed by Eno and Schmidt [38].
Oblique strategies is a set of cards, which all have different, general comments to
consider while mixing, such as “Honour thy error as a hidden intention” or “Only
one element of each kind”. The cards were developed to assist with challenging
creative decisions, or situations where the engineer is not sure what to do. The
key aspect is the control lies with the mix engineer at all stages, which gives them
the power to make any decision during the mixing process, with the possibility of
querying the IMS if deemed relevant. Furthermore, the development of interpretable
AI systems [2], which would provide insight into the mixing decisions taken, and
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justification for recommendations made, could be a highly insightful one, both from
understanding the benefits and applicability of the IMS to better understand existing
music production workflows.

13.4.4 Discovery

An IMS constructed for the purposes of discovery is designed to provide the mix
engineer with some additional insight into the mixing process being undertaken. At
this stage, the IMS will have no ability to enact control over the audio signal, instead
produce representations which a mix engineer can use to inform themselves and
aid in their own decision-making process. The IMS is designed to support the mix
engineer with their current goals and targets in some way. This could be through
some mix visualisations, comparisons to existing target mix approaches, or a textual
or numerical response to the current mix.

Hargreaves et al. [54] developed an approach for structural analysis of multi-
track audio, and used this to automatically identify the chorus and verse components
of the musical track being mixed. Virtanen et al. [164] present a review of different
approaches for structural sound analysis.Wichern et al. [168] developed an approach
for analysing and visualising the level of inter-track masking within a mix, which
Izotope developed into an audio plugin, which is presented as part of Neutron [61].
Ford et al. [43] took a similar approach, to visualise the perceptual masking between
sets of audio tracks in a mix. De Man et al. [30] analysed and identified the reverber-
ation level and the impact it had on every track within a mix. Sauer et al. [139] made
a number of mix processing recommendations based on intended target semantic
descriptors. Cannam et al. [17] developed an approach for advanced visualisation
of an audio track, and allowed for multiple versions, or mixes, of the same piece of
music to be compared to one another, allowing for effective comparison and analysis
between multiple mixes of the same raw audio input, whereas Gelineck and Over-
holt [48] and Merchel et al. [86] both developed approaches for providing haptic
feedback of music mixing. Bruford et al. [14] developed an approach for searching
for appropriate drum loops, given the rest of the audio content. Moffat et al. [94]
created a hierarchical structure to sound, based on unsupervised learning and per-
ceptual attributes, which is designed to assist with searching for audio samples and
loops.

The principal value of this approach is to provide a greater level of understanding
as to the current audio mixture. Following the autonomous car analogy, this would
be the development of parking sensors or a sat-nav technology that can give a view
of the traffic around the next corner. This approach is beneficial to amateur mix
engineers, as it can bring insight to parts of the musical mix, where their hearing
ability or experience may not allow them to be aware of otherwise. It is often the
case that an amateur will know they have a particular issue, such as a muddy mix,
but not know how they can fix it. This approach can provide simple, easy-to-interpret
information which can lead to a faster and more effective decision-making process.
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13.4.5 Control-Level Summary

The development of an IMS is heavily constrained by theway inwhichmix engineers
are intended to interact with it. Engineers can remain in complete control, but allow
an IMS to provide some insight or discovery of themusic they aremixing, or they can
hand off the entire mixing process, allowing the IMS complete autonomous control,
with little but the most high-level controls over the result. The way in which this
interaction takes place will completely change the dynamic of the situation and will
directly impact the usability and attitude of the engineer. It is vital that, at all stages,
there is an agreement between the IMS and the engineer as to what the expectation
is, and the IMS should never step outside of this boundary, without clear signposting.
There is current research demonstrating all four approaches to developing an IMS,
however, the challenges of an automatic IMS are only just being overcome. There is
a significant need for further investigation into how individuals can interact with an
IMS, and how the IMS can learn from this approach to refine the mixing protocol
implemented. Due to the critical importance of the interaction between the IMS and
the mix engineer, it is also necessary to understand the approach the IMS will take
to create rules, how they will be represented, and what feedback can be presented
back to the user, at all stages.

13.5 Further Design Considerations

A number of decisions that need to be made while creating an IMS have been
outlined. However, there are a number of music-specific considerations that can
highly influence the effectiveness and capacity of an IMS. In this section, we will
discuss and outline these approaches.

13.5.1 Mixing by Sub-grouping

Within mixing the process of sub-grouping or using buses is one where groups of
similar tracks are allmixed together, independent of the rest of themix, and processed
as a smaller group, or stem, which is then integrated into the main mix. This is most
commonly done with vocals and drums [131], but there are many types of mix buses
used in professional mixing approaches.

McGarry et al. [83] performed an ethnographic study, where they discuss the
importance of subgrouping in music production. Ronan et al. [132] surveyed a num-
ber of professional mix engineers to ask about their subgrouping practices, and
concluded that almost all mix engineers will perform some form of subgrouping and
apply audio effect processing to the group. Ronan et al. [131] identified that the use of
subgrouping will have a positive impact on the final mix produced. Ronan et al. [134]
developed an unsupervised approach for automatic subgrouping of sets of musical
stems, which was shown to improve the result of a mix when used in combination
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with an IMS [133]. Wilmering et al. [169] describe a formal structure of the mixing
process and audio effect processing workflow, which Jillings and Stables [63] use to
make proposals for channel routing of audio tracks.

It is clear that the approach of grouping together audio tracks, and reducing the
complexity of the music mixing problem, is highly advantageous, though the subject
still demands further research. As such, there is an opportunity to develop a bespoke
IMS for a given sub-group. It can be considered that where a given IMS would be
useful and effective at mixing a drum stem, it may be less effective at mixing the
vocal stem, and then there would be a stem-mixing IMS, which only needs to process
a smaller number of preprocessed music stems. Current results demonstrate that this
approach has the potential to be highly effective in the field of IMS.

13.5.2 Intelligent Mixing Systems in Context

Music production is consistently driven by context. The shape of the music industry
now versus 50 years ago means that the types of musical performances, the expec-
tation on how the music will be consumed, and the expectation of a piece of music
have all changed. The music industry and social contexts of a piece of music shape
the way that professional engineers mix [121], and the way that that music is con-
sumed. It only makes sense that the expectation of an IMS is that this context can,
and should, be considered when constructing an IMS. Pras et al. [120] identified that
cultural and geographic differences between groups of individuals will influence how
different mixes of the same track are perceived, making it clear that cultural context,
along with educational and semantic contexts will heavily influence how a piece of
music is perceived, and thus this will influence the types of IMS required for these
given contexts. Lefford et al. [69] present an in-depth discussion as to how mixing
in context can be performed, and the necessity of this approach, while Pardo et al.
[109] discuss the use of Music Information Retrieval (MIR) tools, such as source
separation and noise removal within musical contexts.

For example,Ma et al. [72] developed an IMS, which analysed 60 years of UK and
US pop music, and it follows that there an IMS that could be constructed, following
this approach, which continually updates the given IMS parameters, identifying
suitable genre and cultural contexts to select data from, and use this to apply an
equalisation curve most appropriate to a chosen piece of music, based on cultural,
genre, and current societal contexts and trends.

This concept could surely be extended further, to draw inspiration and concepts
from the latest releases, or larger sets of audio tracks that fall into a similar cluster,
based on the relevant contexts in a given situation.
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13.6 Discussion

IMS can have a multitude of different aims and purposes. They can be designed to
suggest parameters for a pre-existing digital audio effect, as an educational tool for
training students, or be designed as black-box systems which will take a number of
pre-recorded audio tracks and produce a mix, as high quality as possible, subject
to the quality of the input material. Regardless of the manner in which an IMS is
used, it is designed as a tool to be used by an audio engineer or operator, and as
such, the way the tool is interacted with and used is of critical importance. We can
never forget about the human in the mixing process, as there will always be some
creative intention or decision to be realised, and the form that this interaction takes
will heavily influence the usefulness of the tool for mixing music, whether that be
to remove some noise, as a tool to produce a full mix, or as creative inspiration.

Sandler et al. [137] identified that there are three different levels of experience of
individuals who work in studio production: amateur, pro-am, and professional. The
use of IMS will be considerably different, depending on the individual experience
and knowledge of the music production field, and their experience of using the tools
of the trade. A professional may use an IMS as an exploratory tool, to allow them to
quickly prototype a number of ideas that they have, which gives them a wide range
of rough mixes. This will then allow them to decide which creative direction to take
the mix in, which they can then pursue in a more traditional manner. An amateur,
on the other hand, may allow the IMS to direct a specific creative vision, and they
can gently direct the IMS within a small range on some specific details that they
are focused on. A pro-am may well use the IMS as a collaboration, where the IMS
and the individual will work together at different points, bouncing ideas off each
other, moving forward, and constantly changing different elements of the mix until
an agreement is met between the pro-am and the IMS.

Music mixing and production is inherently an interconnected and multidimen-
sional process, where processing applied to each and every individual track is highly
dependent on both the content of the individual track, but on the content of every
other audio track in the mix. This means that there are often highly iterative pro-
cesses, where changes aremade to several different tracks, in turn, constantlymaking
small changes to each track, until the desired effect is reached. Alternatively, a mix
engineer may speculate as to how they can make a particular track sound, and then
adjust a number of other tracks to fit with their imagined track. Regardless of which
process is taken, it is clear that there are a high level of inter-dependencies between
all the audio tracks within a mix. This is highly relevant to IMS, as firstly, there is
a requirement to model the interdependencies between audio tracks. In a machine
learning context, this is not entirely trivial. This concept of modelling interdepen-
dence between variables is often called data fusion, and this concept has been applied
to music mixing [53], however, there is no consensus as to which approach is most
appropriate for an IMS.A reviewof data fusion approaches is presented byCastanedo
[21].

In considering the music mixing process, it could be viewed as a specific type
of sound design, where different sonic elements are gathered together, and crafted
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into an aesthetically pleasing format. Similarly in the wider context of sound design,
the purpose is to take a number of relevant sonic elements, select which sounds are
most appropriate to include and exclude, and blend them together in a pleasant and
believable manner. The creative design nature of music mixing is one which lends
itself to a combination of both highly technical and highly creative approaches.
Similarly, design approaches may include both design and technical approaches.
Lefford et al. [70] proposed learning from computer-assisted design approaches,
when designing an IMS. The growth of AI technology in both these fields draws
some strong parallels, and there are certainly intersections between the concepts of
these works.

The development of a fully automatic IMS is a contentious subject, as many
aspects of music mixing are considered a dark art, and a highly creative practice, and
AI systems will never be able to produce a mix in the same way as a professional mix
engineer [8], however, there are counter arguments that suggest that the integration
of AI tools into the music mixing workflow can provide powerful new insights into
music mixing practices, facilitate new ways to explore musical content, and even
influence the creative capacity of practitioners [11]. Furthermore, the facility for a
mix engineer to misappropriate these intelligent tools, to use them to create new
types of sounds, interesting mixes, and to guide and influence the creative music
production space have considerable impact on the entire field of music production.
The potential for this new technology to drive potential creative outcomes is well
known [37], and there are many changes to the future of music production, with the
inclusion of AI mixing technologies [122,123].

13.7 The Future of Intelligent Mixing Systems

It is clear that there are significant opportunities for new and interesting developments
withinmusic production, through the development and use of IMS. The opportunities
to include some signal processing approaches, and computational musicology into
the system, can provide the system with a better understanding of the fundamentals
of music. Fields such as audio source separation and music information retrieval
afford considerably better musical and sonic understanding of the music medium,
and often of the psychoacoustic and perceptual attributes, as music is perceived by
people in general.

In the process to developing a highly effective IMS system, the opportunity to
develop simplified stem mixing approaches, which group together a small number
of tracks and produce an effective submit, has been shown to be a highly promising
approach, though clearly further exploration is needed within this space.

The development of assistive technologies, for the creation and production of
music, also presents a realm of exciting opportunities. Using audio analysis tools to
provide recommendations of music samples and stems that will work well together,
building the structure of a piece of music, may help reduce laborious tasks of find-
ing the appropriate sounds in libraries of millions of different sounds, whereas a
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recommendation for voicing or re-voicing different melodies allows much greater
control over the shape of the timbre. A method to analyse a melody, either midi or
musical, and recommend alternative instruments to play that piece that would work
well within the content of the current musical composition, could greatly aid the
creation and mixing of any musical piece.

Video games, virtual reality, and augmented reality, all lend themselves highly
to dynamic intelligent mixing systems. In these cases, it would never be possible to
predict the exact detail of how an individual will interact with the environment, and
there are clear opportunities for developing approaches that can mix both diegetic
and non-diegetic audio content seamlessly, within these environments.

It is clear that there are considerable challenges to overcome within the field of
IMS. A combination of fundamental research, coupled with creative development
and integration of technologies, has the potential to have a considerable impact on
the music industry and field of music production.
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14Machine Improvisation inMusic:
Information-Theoretical Approach

Shlomo Dubnov

14.1 What Is Machine Improvisation

This chapter introduces the methods and techniques of machine improvisation based
on information-theoretical modeling of music, starting from the first 1998 universal
classification modeling of music as an information source, style mixing using joint
information source, variable-length motif dictionary improvisation based on univer-
sal prediction, and use of information dynamics for symbolic approximation in the
factor oracle machine improvisation algorithm. Later developments include query-
guided machine improvisation, free-energy modeling of music cognition, and refor-
mulating of variational generative neural music models in terms of rate-distortion
theory. This information-theoretical framework offers a novel view of man–machine
creative music interaction as a communication problem between an artificial agent
and a musician, seeking optimal trade-off between novelty and stylistic imitation
under scarcity constraints.

Machine improvisation differs from other uses of AI in music as it operates with
little or no prior constraints on the style of music it generates. Through the use of
AI, the interactive improvisation agent tries to learn the style of the musician it inter-
acts with, live or pre-recorded, without relying on human music expert analysis and
manual encoding of musical rules, rendering any use of pre-programmed algorithms
thatmodel a particular style impractical. AI-basedmachine improvisation also differs
from computer music experimental improvisation practices that rely on computers to
process, transform or generate musical materials, often in sophisticated and surpris-
ingways, butwithoutmodeling of the style of itsmusical input.Accordingly,machine
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improvisation can be defined as the use of computer algorithms to create improvi-
sation on existing music materials by using machine learning and pattern matching
algorithms to analyze existing musical examples and create new music in the style
of the musical data it analyzed. Here, one can distinguish between two types of
machine learning models—those creating dictionary of musical phrases or indexing
into a database of recordings using string-matching algorithms (sequence learning)
in order to create re-combinations of musical phrases extracted from existing music,
a method that we shall term “shallow,” versus those transforming a random input
into a musical sequence by sophisticated mapping functions that are often learned
by neural networks or by other “deep” statistical learningmethods. Deepmodels thus
require learning of latent or hidden musical representations (representation learning)
that are then used to approximate the probability distribution of the musical data by
inverse mapping from randomly triggered events in the “deep” latent space back to
the musical surface. Shallow methods, in contrast, often rely on existing features,
such as human-engineered representations, with the critical step being a step of
approximate string-matching for finding repeated phrases, which is often achieved
by quantization of features into a finite set of clusters, a process known as symboliza-
tion. As will be shown in this chapter, both methods are essential formulations of the
same underlying rate-distortion principle, where the string-based methods are trying
to deal with reducing uncertainty in time under complexity penalty of the resulting
symbolic alphabet, while the mapping function approach tries to best approximate
an instantaneous chunk of musical data, such as few bars of music or audio frames,
under a complexity penalty for the underlying random process in latent space. A
particularly interesting compromise between sequence and representation learning
methods is recurrent neural models with attention, or attention only models using
neural transformers. Since these methods are not well understood yet in terms of
their statistical properties, we will discuss them only briefly, without setting them
into a rate-distortion framework. Although many researchers have proposed compu-
tational approaches to encodingmusical style, someofwhich are highly sophisticated
and implemented by large software systems, the information-theoretical approach
is mathematically elegant and scientifically testable, which partially explains the
interest it has attracted among computer music researchers.

14.2 How It All Started:Motivation andTheoretical Setting

The information-theoretical research for machine improvisation started with the
application of universal sequence models, and specifically, the well-known Lempel–
Ziv (LZ) compression technique [29], to midi files [7]. The universality of LZ com-
pression is understood in terms of not assuming any a-priory knowledge on the statis-
tics of the probability source that generated that sequence, and having its asymptotic
compression performance as good as any Markov or finite-state model. Universal
modeling is especially relevant for machine improvisation since it takes an empir-
ical learning approach where a statistical model is induced automatically through
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the application of compression algorithms to existing compositions. The utility of
universal information-theoretical methods for characterization and classification of
sequences is especially interesting for music, as it captures statistics of musical
sequences of different lengths, a situation that is typical to music improvisation that
creates new musical materials at different time levels, from short motifs or even
instantaneous sonority to melodies and complete thematic phrases. Specifically, the
universal modeling allows to apply the notion of entropy to compare sequences in
terms of similarity between their statistical sources, as well as the generation of novel
musical sequences without explicit knowledge of their statistical model. One should
note that “universality” in the universal modeling approach still operates under the
assumption that musical sequences are realizations of some high-order Markovian
sources. The universal modeling method allowed the following musical operation to
be applied to any musical sequence:

• stochastic generation of new sequences that have similar phrase structure as the
training sequence, which musically results in between improvisation and the orig-
inal on the motivic or melodic level

• stochastic morphing or interpolation between musical styles where generation of
new sequences is done in a manner where new statistics are obtained by a mixing
procedure that creates a “mutual source” between two or more training styles. The
extent to which the new improvisation is close to one of the original sources can
be controlled by the mixture parameters, providing a gradual transition between
two styles which is correct in the statistical sense.

Early experiments with style morphing were the “NTrope Suite” [8] using a joint
source algorithm, and later “Memex” and “Composer Duets” [11], using more effi-
cient dictionary and string matching methods as explained below. In addition to gen-
erative applications, universal models could be used for music information retrieval,
such as performing hierarchical classification by repeatedly agglomerating closest
sequences or selecting the most significant phrases from the dictionary of parsed
phrases in a MIDI sequence, selected according to the probability of their appear-
ance.

14.2.1 Part 1: Stochastic Modeling,Prediction,Compression,
and Entropy

The underlying assumption in the information-theoretical approach to machine
improvisation is that a givenmusical piece can be produced by an unknown stochastic
source and that all musical pieces in that style are generated by the same stochastic
sources. Despite the finite Markov-order assumptions that do not allow capturing
arbitrarily complex music structures, such as very long structure dependency due to
musical form, nevertheless, by allowing for sufficiently long training sequences that
capture dependence on the past, the universal model capture much of the melodic
structure of variable length in a musical piece.
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This connection between compression and prediction is a consequence of the
asymptotic equipartition property (AEP) [6], which is the information-theoretical
analog to the law of large numbers in probability theory. The AEP tells us that if
x1, x2, ... are i.i.d random variables distributed with probability P(x), then

−1

n
log2 P(x1, x2, ...) → H(P) (14.1)

where H(x) is the Shannon Entropy of the x ∼ P(x), H(x) = −�x P(x) log2 P(x),
where the averaging is over all possible occurrences of the sequences x .

The AEP property is graphically represented in Fig. 14.1. The outer circle rep-
resents all possible sequences of length n, which are combinatorial number of pos-
sibilities depending on the size of the alphabets. Shannon’s theory proves that in
view of the different probabilities of occurrence of each symbol (in the simplest case
these are unbalanced heads or tails or Bernoulli distribution with binary choice),
the entropy of the probability can be used to define an effectively much smaller set
of outcomes whose probability will tend to one. This set of outcomes is called the
“Typical Set” and is denoted here as An , where n is the number of elements in a
sequence that needs to be sufficiently large. Moreover, all sequences of the typical
set are equiprobable, or in other words, one can index them in a way that no fur-
ther structure or compression can be done. In our case, for generative purposes, this
means that we can access these strings using a uniform random number generator.

For stationary ergodic processes, and in particular, finite order Markov processes,
the generalization of AEP is called the Shannon–McMillan–Breiman theorem [6].
The connectionwith compression is that for long x the lower limit on compressibility
is H(x) bits per symbol. Thus, if we can find a good algorithm that reaches the

Fig. 14.1 Asymptotic Equipartition Property of long sequences
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entropy, then the dictionary of phrases it creates can be used for generating new
instances from that source. Since the dictionary has to be very efficient, or in other
words, it has to eliminate any other structure present in the sequence, or otherwise
it could be compressed more, then we can now sample from the source by random
selection from that dictionary. More specific aspects of how the dictionary is created
and how continuity is being maintained between the random draws will be discussed
next.

14.3 Generation of Music Sequences Using Lempel-Ziv (LZ)

LZ takes a series of symbols from a finite alphabet as input and builds a tree of
observed continuations of combinations of the input symbols. This tree growsdynam-
ically as the input is parsed using what is called the incremental parsing (IP) method.
If the input is a sample of a stationary stochastic process, LZ asymptotically achieves
an optimal description of the input in the sense that the resulting tree can be used
to encode the input at the lowest possible bit rate (the entropy of the process). This
implies that the coding tree somehow encodes the law of the process; for instance, if
one uses the same tree (as it stands after a sufficiently large input) to encode another
string, obeying a different law, the resulting bit rate is higher than the entropy.

14.3.1 Incremental Parsing

We chose to use an incremental parsing (IP) algorithm [7] suggested by Lempel and
Ziv [30]. IP builds a dictionary of distinct motifs by sequentially adding every new
phrase that differs by a single next character from the longest match that already
exists in the dictionary. LZ allows assigning conditional probability p(xn+1|xn1 )

of a symbol xn + 1 given xn1 as context according to the code lengths of the LZ
compression scheme [14]. Let c(n) be the number of motifs in the parsing of an
input n-sequence. Then, log(c(n)) bits are needed to describe each prefix (a motif
without its last character), and 1 bit to describe the last character (in case of a binary
alphabet).

For instance, given a text ababaa . . ., IP parses it into a, b, ab, aa, . . ., where
motifs are separated by commas. The dictionary may be represented as a tree.

LZ code for the above sequence is (00, a), (00, b), (01, b), (01, a) where the first
entry of each pair gives the index of the prefix and the second entry gives the next
character. Ziv and Lempel have shown that the average code length c(n) log(c(n))/n
converges asymptotically to the entropy of the sequence with increasing n. This
proves that the coding is optimal. Since for optimal coding the code length is 1/prob-
ability, and since all code lengths are equal, wemay say that, at least in the long limit,
the IP motifs have equal probability. Thus, taking the equal weight for nodes in the
tree representation, p(xn+1|xn1 ) will be deduced as a ratio between the cardinality
of the sub-trees (number of sub-nodes) following the node xn1 . As the number of
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sub-nodes is also the node’s share of the probability space (because one code-word
is allocated to each node), we see that the amount of code space allocated to a node
is proportional to the number of times it occurred.

14.3.2 Generative Model Based on LZ

In order to produce new sequences from LZ tree, we create a generative model in
two steps [7]: first, the motif dictionary is transformed into a continuation dictionary,
where each keywill be amotifM from the previous dictionary, and the corresponding
value will be a list of couples (..(k, P(k|W ))..) for each possible continuation k in
the sequence alphabet, and second, a generation function the samples a new symbol
from a continuation dictionary. The two steps can be demonstrated as follows:

T ext =(ababcabccbabdabcedabcddadc)

I P =(a, b, ab, c, abc, cb, abd, abce, d, abcd, da, dc)

Moti f dictionary =((a)6)((b)1)((c)3)((d)3)((ab)5)((abc)3)((abd)1)((abcd)1)...

((abce)1)((cb)2)((cbd)1)((da)1)((dc)1)

Continuation dictionary =((a)((b1.0)))((ab)((c0.75)(d0.25)))((abc)((d0.5)(e0.5)))...

((c)((b1.0)))((cb)((d1.0)))((d)((a0.5)(c0.5))

Suppose we have already generated a text a0a1 . . . an−1. Setting a parameter L
which is an upper limit on the size of the past we want to consider in order to choose
the next object, and initialize current context length to this maximal length l = L
(Fig. 14.2).

Fig. 14.2 LZ-based tree
representation of a sequence
abba derived from
incremental parsing
algorithm
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1. Current text is a0a1 . . . an−1, context = an−l . . . an−1.
2. Check if context is a motif in the continuation dictionary.

• if context is empty (this happens when l = 0), sample from the root according
to symbol probabilities and go back to step 1.

• If non-empty context is found, look up its associated dictionary value for the
probability distribution of the continuation symbols. Sample this distribution
and append the chosen object k to right of text. Increment n = n + 1, set l to
max value l = L and go back to step 2.

• If context is non-empty but its entry is not found in the dictionary key, shorten
it by popping its leftmost object l = l − 1 and go back to step 1.

This procedure requires repeated search from the root of the tree, iteratively short-
ening the context each time the context is not found in the dictionary key entry,
which is very inefficient. By inverting the sequences and accordingly changing the
tree representation, the repeated search can be avoided and the algorithm becomes
amenable to real-time implementation, as described in [7]. The LZ and has been
implemented in OpenMusic [3] and Flow Machine [22] systems, and in view of its
similarity to Markov generation, it has been often termed variable memory Markov
(VMM), although, from a strict mathematical point, the probability assignments are
not estimated by ngram approximations but rather rely on Feder’s universal predic-
tion weighting scheme [14].

14.4 Improved Suffix Search Using Factor Oracle Algorithm

As IP builds tree structures in the learning stage, finding the best suffix involves
walking the tree from the root to the node bearing that suffix. In order to make the
suffix search more efficient, and also take into account partial repetitions that may
occur between the parsing points of IP, We explored the use of Factor Oracle (FO)
[2]. In order to use the automation for generation, the auxiliary set of links S(i) = j
called Suffix Links running backward are used. These links point to node j at the
end of the longest repeating suffix (also called repeating factor) appearing before
node i (i.e., longest suffix of prefix of i that appears at least twice in prefix of i).
FO automation provides the desired tool for efficiently generating new sequences of
symbols based on the repetition structure of the reference example. Compared to IP
and PST, FO is structurally closer to the reference suffix tree. Its efficiency is close
to IP (linear, incremental). Moreover, it is an automaton, rather than a tree, which
makes it easier to handle maximum suffixes in the generation process. This method
also differs from Markov chain-based style machines mentioned above in the extent
of the signal history or context that it is able to capture. An oracle structure carries
two kinds of links, forward link and suffix link. Suffix link is a backward pointer that
links state t to k with t > k, without a label and is denoted by sfx[t] = k.
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sfx[t] = k ⇐⇒ the longest repeated suffix of

{x1, x2, . . . , xt } is recognized in k.

Suffix links are used to find the longest repeated suffix in X . In order to track the
longest repeated suffix at each time index t , the length of the longest repeated suffix
at each state t is computed by the algorithm described in [20] and is denoted by
lrs[t]. lrs is essential to the on-line construction algorithm of an oracle structure
[20] and its generalization for approximate matching by threshold search for model
selection [12] for VMO.

Forward links are links with labels and are used to retrieve any of the factors
from X . An oracle structure has two types of forward links; the first is an internal
forward link which is a pointer from state t−1 to t labeled by the symbol xt , denoted
as δ(t − 1, xt ) = t . The other forward link is an external forward link which is a
pointer from state t to t + k labeled by xt+k with k > 1. An external forward link
δ(t, xt+k) = t + k is created when

xt+1 �= xt+k

xt = xt+k−1

δ(t, xt+k) = ∅.

In other words, an external forward link is created between xt and xt+k when the
sequence of symbols {xt+k−1, xt+k} is first seen in X with xt and xt+k−1 share
the same label. The function of the forward links is to provide an efficient way to
retrieve any of the factors of X , starting from the beginning of X and following the
path formed by forward links. We exploited forward link‘s functionality by treating
forward links as indications of possible transitions from state to state for our time
series query-by-content tasks (Fig. 14.3).

The use of FO for generation can be conceptualized as a memory recombination
scheme is shown in Fig. 14.4.

0 1 2 3 4 5 6 7 8 9 10 11
a b b c a b c d a b c

0 0 1 0 1 2 2 0 1 2 3

b c
c d

d

Fig. 14.3 A VMO structure with symbolized signal {a, b, b, c, a, b, c, d, a, b, c}, upper (normal)
arrows represent forward links with labels for each frame and lower (dashed) are suffix links. Values
outside of each circle are the lrs value for each state
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Fig. 14.4 Representation of the improvisation process as memory recall by following suffixes of
repeated sub-sequences (factors) in the musical past

14.5 Lossless Versus Lossy CompressionMethods for Machine
Improvisation

Introducing the concept of lossy compression is important for machine improvisa-
tions for several reasons:

• it allows better generalization and more novelty during the generation process by
ignoring partial or insignificant differences in the data.

• allows finding repetitions in time series and continuously valued data, such as a
sequence of audio features, by reducing the fidelity of the representation through
quantization or clustering of nearby data points into classes. This process is also
known as symbolization.

• reducing the amount of symbols or size of the alphabet is also essential when
dealingwith complex symbolic data, such asmultiple voices inmidi representation.
For example, to capture harmonic or chordal structure it is essential to ignore
differences in voicing and possibly some passing or embellishing notes.

• allows control of improvisation algorithm from partial specification, such as
abstract scenario.

• creating a low-dimensional representation allowsmapping between different types
of musical data that is needed for guiding improvisation from another musical
input.

• lossy compression can be used to extract features from music and can be used for
representation learning.

The theory of lossy compression was formulated by Shannon in terms of Rate-
Distortion. We will discuss this approach in detail in the second part of the chapter.
An early example of applying lossy representation to sequence modeling is a VMM
structure called Prediction Suffix Tree (PST) that was suggested by [21]. Much like
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the IP structure, PST represents a dictionary of distinct motifs, but instead of relying
on LZ lossless coding scheme, the PST algorithm builds a restricted dictionary of
only those motifs that both appear a significant number of times throughout the
complete source sequence, and are meaningful for predicting the immediate future.
The information-theoretical framework underlying the approach is that of efficient
lossy compression, a topic which we will return to in the section on rate-distortion
theory.

It should be noted that both IP and PST build tree structures in the learning stage,
where finding the best suffix consists of walking the tree from the root to the node
labeled by that suffix. PST,whichwas originally designed for classification purposes,
has the advantage of the better gathering of statistical information from shorter
strings,with a trade-off of deliberately throwing away someof the original sub-strings
during the analysis process tomaintain a compact representation. Another significant
advantage of PST is an aggregation of suffix statistics as a sliding window, thus
obtaining more statistics for short sequences compared to the incremental parsing
approach that skips shorter sub-sequences in a previously recognized suffix.

A possible disadvantage of PST is that partial retention of original data through
lossy representation introduces more false notes into the generation procedure. We
have carried experiments on using IP for music classification and music generation,
as described in [Dub03]. The pros and cons of these two approaches led to the
adoption of a different string matching approach, based on the Factor Oracle (FO)
string searching algorithm, that will be described in the next section. FO effectively
provided an indexing structure built on top of the originalmusic sequence, pointing to
its repetition points as a graph of suffix links. This allowed an efficient recombination
of existing patterns for improvisation. From information-theoretical perspective, this
type of model belongs to a family of lossless compression algorithms. The lossy
version of the suffix links construction called Variable Markov Oracle (VMO) will
be described in the section after FO.

14.6 Variable Markov Oracle

Variable Markov Oracle (VMO) is a generative machine learning method that com-
bines lossy compression with the Factor Oracle (FO) string matching algorithm.
VMOwas developed in order to allowmachine improvisation on real-valued scalar or
vector data, such as sequences of audio feature vectors, or data vectors extracted from
human poses during dance movements. Moreover, the VMO suffix tree data struc-
ture allows for query-guided audio content generation [24] and multimedia query-
matching [25].VMO is capable of finding embedded linkages between samples along
with the multivariate time series and enables tracking and comparison between time
series using a Viterbi-like dynamic programming algorithm. In order to operate on
such multivariate time series data, VMO symbolizes a signal X sampled at time t ,
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X = x1, x2, . . . , xt , . . . , xT , into a symbolic sequence S = s1, s2, . . . , st , . . . , sT ,
with T states and with observation frame xt labeled by st whose value is one of the
symbols in a finite-sized alphabet �. The labels are formed by following suffix links
along with the states in an oracle structure.

The essential step for the construction of VMO is finding a threshold value, θ that
partitions the space of features into categories. The threshold θ is used to determine
if the incoming xt is similar to one of the frames following the suffix link started
at t − 1. VMO assigns two frames, xi and x j , the same label si = s j ∈ � if
||xi − x j || ≤ θ . In extreme cases, setting θ too low leads to VMO assigning different
labels to every frame in X and setting θ too high leads to VMO assigning the same
label to every frame in X . As a result, both extreme cases are incapable of capturing
any informative structures (repeated suffixes) of the time series. Elsewhere in this
chapter we describe the use of Information Rate (IR hereafter) to select the optimal
θ in the context of music information dynamics. We show an example of the oracle
structure with extreme θ values in Fig. 14.5. It should be noted that the alphabet of
the symbolization is constructed dynamically, as new symbols can be added when
an input sample cannot be assigned to one of the existing clusters of samples already
labeled by the existing label. We will denote the resulting alphabet for a given θ as
�θ .

In the process of IR analysis, the system is performing a search over different θ

values, where for each value VMO constructs different suffix structures for different
symbolized sequences derived from the time series (as shown in Fig. 14.5). To select
the sequence with themost informative structures, IR is used as the criterion inmodel
selection between the different structures generated by different θ values [12, 24].
IR measures the relative reduction of uncertainty of the current sample in a time
series when past samples are known. Let the past samples of a time series denoted by
xpast = {x1, x2, . . . , xn−1}, the current sample xn and H(x) = − ∑

P(x) log2 P(x)
the entropy of x with P(x) the distribution of x , the statistical definition of IR is the
mutual information between xpast and xn ,

Fig. 14.5 Two oracle structures with extreme values of θ . The characters near each forward link
represent the assigned labels. (Top) The oracle structure with θ = 0 or extremely low. (Bottom)
The oracle structure with a very high θ value. It is obvious that in both cases the oracles are not
able to capture any structures of the time series
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I (xpast, xn) = H(xn) − H(xn|xpast). (14.2)

In [12], the above statistical definition of IR is replaced by a deterministic notion
of a compression algorithm C(·) that is used as a computational measure of time
series complexity. This allows estimation of the mutual information by replacing the
entropy term H(·) with compression gain for the best symbolization, searching over
possible values of the quantization threshold θ (14.2).

I R(xpast, xn) = max
θ,st∈�θ

[C(sn) − C(sn|spast)]. (14.3)

The IR measure has been used, independently of generative applications in
machine improvisation, as a method for analysis of music structure, tracking the
changes in information contents through prediction of the next frame based on the
musical past, called Music Information Dynamics [9, 27].

The value of the deterministic IR defined in (14.3) can then be robustly calculated
by complexity measures associated with a compression algorithm with C(sn) the
number of bits used to compress sn independently and C(sn|spast) the number of bits
used to compress sn using spast. In [19], a lossless compression algorithm, Compror,
based on FO is provided and is proven to have similar performance to gzip and bzip2.
The detail formulations of howCompror,AO and IR are combined is provided in [12].
In the context of time series pattern and structure discoverywithVMO, theVMOwith
higher IR value indicates more of the repeating subsequences (ex. patterns, motifs,
themes, gestures, etc.) are captured than the ones with lower I R value.

14.7 Query-Based Improvisation Algorithm

Let R be the query observation indexed by n, denoted as R = r1, r2, . . . , rN . The
matching algorithm provided in Algorithm 1 takes R as input and matches it to
the target VMO, Oracle(S = s1, s2, . . . , sT , X = x1, x2, . . . , xT ), constructed by a
target time series, X . The algorithm returns a cost and a corresponding recombination
path. The cost is the reconstruction error between the query and the best match from
X given a metric on a frame-by-frame basis. The recombination path corresponds
to the sequence of indices that will reconstruct a new sequence from X that best
resembles the query (Fig. 14.6).

14.7.1 Query-Matching Algorithm

The query-matching algorithm tracks the progress of traversing the oracle using
forward and backward links, finding the optimal path via a dynamic programming
algorithm. We separate the algorithm into two steps, initialization and decoding. In
Algorithm 1, the initialization is in line 1 to line 6. During initialization, the size of
the alphabet,M , is obtained from the cardinality of�. Then for themth list, the frame
within themth list that is closest to the first query frame, R1, is found and stored. After
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Fig. 14.6 IR values are shown on vertical axis while θ are on horizontal axis. The solid curve
in blue color shows the relations between the two quantities and the dashed black line indicates
the chosen θ by locating the maximal IR value. Empirically the IR curves possess quasi-concave
function shapes thus global maximum could be located

the initialization step, the decoding step (line 7−13 in Algorithm 1) iterates over the
rest of the query frames from 2 to N to find M paths, with each path beginning
with the state found corresponding to the respective label in the initialization step.
It could be observed that the proposed query-matching algorithm is similar to the
Viterbi decoding algorithm forHMM andmax-sum inference algorithm for graphical
models [23] in the sense that each update in the decoding step depends only on its
neighboring findings, thus making it efficient to compute and of no need to search
over the whole state space. A visualization of Algorithm 1 from initialization to
decoding for one path among the M paths is shown in Fig. 14.7.

Algorithm 1 Query-Matching
Require: Target signal in VMO, Oracle(S = s1, s2, . . . , sT , X = x1, x2, . . . , xT ) and query time

series R = r1, r2, . . . , rN
1: Get the number of clusters, M ← |�|
2: Initialize cost vector C ∈ R

M and path matrix P ∈ R
M×N .

3: for m = 1 : M do
4: Pm,1 ← Find the state, t , in the mth list from �

with the least distance, dm,1, to r1
5: Cm ← dm,1

6: end for
7: for n = 2 : N do
8: for m = 1 : M do
9: Pm,n ← Find the state, t , in lists with labels

corresponding to forward links from state
Pm,n−1 with the least distance, dm,n to R[n]

10: Cm += dm,n

11: end for
12: end for
13: return P[argmin(C)], min(C)
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Fig. 14.7 Decoding steps: Consider the target time series represented as the VMO shown above,
the same from Fig. 14.3. The light gray parts of each subplot are the same from Fig. 14.3. In each
subplot, parts marked by black with thick arrows indicate the path for the chosen state, dark gray
ones with thick arrows represent possible paths, and filled circle represents the candidate states.
Numbers on the thick black arrows are step numbers. In this example, the query R, is assumed to
have 3 frames and the subplots demonstrate hypothetic steps for the path started with frames in X
in cluster labeled by a (among 4 possible paths started via a, b, c or d). Here the visualization of
the query time series is omitted and the path is chosen generically to demonstrate Algorithm 1
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14.8 Part 2:Variational Encoding, Free Energy, and Rate
Distortion

We have encountered implicitly the concept of rate-distortion when we introduced
VMO in the previous section as a method that utilizes lossy compression to find
structure in musical data. In this section, we expand on the notion of partial or
approximate and incomplete representation of the data through combining the con-
cepts of lossy compression with Variational Auto-Encoder (VAE), which is one of
the fundamental deep learning generative methods for learning representations. In
this section, we will show how VAE can be used to learn a representation of musical
short-term structure, such as frames in midi files, without considering its temporal
structure. This will solve the basic problem of feature engineering, hopefully reliev-
ing the need for human-based expertise in finding the adequate representation of
musical data for the subsequent step of sequential model. In later sections, we will
extend the VAE representation learning with sequential models and define a unified
deep information dynamics model, but before doing that, we want to motivate the
use of variational methods starting from some basic principles of modeling complex
system, also pointing out to some possible intriguing relations between statistical
modeling of music and current approaches to the understanding of human cognition.

The basic notion of variational modeling in statistics is that given a set of mea-
surements, which in our case consists of musical data in the shape of midi or audio
recording, and assuming there exist some hidden parameters that determine that data
distribution, which in our case may refer to hidden factors governing the musical
structure,1 in case when the problem of estimating this probability is too complex to
be written explicitly or to be tractable computationally, variational methods allow a
simplification that can be more easily solved. An important point here is that both
the hidden parameters and the data (z, x respectively) are assumed to be random
variables, so the complete knowledge of the system requires knowing the joint dis-
tribution p(x, z), or alternatively learning the generative or decoding probability
(likelihood of the data) going from latent states to data, averaged over all possible
latent state p(x |z)p(z), or in the opposite direction, learning the encoding (posterior
probability) of the latent states given the data p(z|x)p(x). When learning the com-
plete model might be too hard, the variational solution approach is to approximate
the posterior p(z|x) with a simpler distribution q(z) that is part of some family of
distributions functions Q. Typically, choosing Q is done by making some additional
assumptions to simplify the model, such as independence between latent states, a
tractable form of a probability distribution, such as Gaussian, and so on. The big
advantage of variational methods is that it allows to re-write a statistical inference
problem as an optimization problem, searching for an optimal function q over some
family of functions Q. The term “statistical inference” refers to learning about what
we do not observe (latent states) based on what we observe (musical surface). In

1The latent states do not correspond specifically to anymusic-theoretical notions such as harmony or
rhythm, but are a rather generic formulation for any underlying cause that governsmusical structure.
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other words, inference is the process of drawing conclusions about the world (under-
standing of musical structure) based on some observed variables (notes or sounds).
The terms used in statistical literature referring to conclusions (the “posterior”), the
prior knowledge (the “prior”) and the knowledge coming from the observation (the
“likelihood”) are taken from Bayes theorem that establishes the relations between
joint, conditional and marginal distributions p(x, z) = p(x |z)p(z) = p(z|x)p(x).
The term “variational” comes from the “calculus of variations,” which deals with
optimization problems that pick the best function in a family of functions. Also,
it should be noted that finding the posterior can be handled using non-variational
methods, such as Monte Carlo or Gibbs sampling. Since our theme is information-
theoretical models of music, wewill show the connection between notions of entropy
and distortion in information, and entropy and energy in physics using variational
methods. The general concept of free energy is discussed next.

14.8.1 Variational Free Energy

In thermodynamics, free energy is whatever remains of the energy after heat or
temperature caused the system to move toward a state of highest entropy, or in
other words, the free energy principle assumes that a learning system (including
biological system) tries to balance its survival abilities in the world, accounted by
two competing factors: it being able to tell what is likely or probable and what is
not by learning the probability distribution of the underlying causes of phenomena
seen in the environment, which is accounted as minimizing a cost function related
to energy; and its own system complexity, accounted by an entropy function that
measures its internal order, trying to reach a configuration that is most compact in
terms of the number of states it needs to understand the world. For a system having an
energy level E and Entropy H , the free energy F at temperature T is F = E − T H .
It can be understood as a constrained optimization problem where minimization of
energy is subject to an entropy constraint, with temperature serving as (an inverse of)
a Lagrange multiplier. Rewriting this expression in probabilistic terms, we denote
the approximate encoding done by our system as q(z|x), while the observations and
true latent variable are distributed according to p(x, z). The entropy of the encoding
done by our system for a given observation x is H = −Eq(z|x) log(q(z|x)), and if
We refer to Eq(z|x) log(p(z, x) as energy, we get an expression of free energy as

F = −Eq(z|x)[log(p(z, x) − log(q(z|x))] = Energy − Entropy (14.4)

where the Lagrange multiplier (temperature) equals 1. Later, we will discuss cases
where temperature is not equal 1. Why this formulation is special? One way to
answer this is to postulate free energy minimization as a principle that learning
systems operate by. As such, it can not be proved or disproved. A more principled
approach is to show that negative free energy is a lower bound to the likelihood of
observations,

log p(x) = −F + DKL(q(z|x)||p(z|x)) (14.5)
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Wewill not prove this derivation here, but it is a standard derivation shown in texts on
variational Bayes, includingKingma andWelling’sVAEpaper [18]. Accordingly, the
variational approximation gives us both a tractable approximation for the posterior
p(z|x), and a lower bound for the evidence log p(x) since the KL-divergence is
always strictly non-negative). As the log evidence log p(x) is fixed with respect
to q(Z), finding q(z) that maximizes the negative free energy will thus minimize
DKL(q(z|x)||p(z|x)), bringing the approximate posterior to the true conditional
distribution of the latent variables. In variational inference terminology, negative free
energy is commonly called Evidence Lower Bound (ELBO). In the next section, we
will look at the alternative formulation of this principle in terms of rate-distortion
theory.

14.8.2 Rate Distortion and Human Cognition

Rate distortion is a term originating in Shannon’s work on lossy communication,
measured in terms of mutual information I (x, z) between a signal X and its com-
pressed version Z , where a loss or distortion d(x, z) occurs during the encoding
process. This distortion allows transmission at rates that are lower than the lossless
compression limit H(x) of the signal entropy. It is intuitive that the two factors,
information I (x, z) and distortion d(x, z) are at odds with each other. For example,
a low-resolution image or low sampling rate audio requires less bits to encode than
their full-resolution version. What is interesting about the rate-distortion theory is
that it provides theoretical lower bounds for the rate of information transmission,
given by I (x, z), under the constraint that the distortion between the two signals
d(x, z) does not exceed a certain threshold.

In psychology, rate-distortion theory was suggested as a principled mathemati-
cal framework for incorporating limits on the capabilities of the cognitive system.
This entails reformulating the goal of perception from tasks related to storage, or
reproduction of afferent signals, to the task of minimizing some survival-related cost
function. The distinction of the rate-distortion approach from other neural informa-
tion processing theories, such as an efficient coding hypothesis [4] is that the costs and
constraints are imposed not just by the constraints on the internal neural architecture
but also by the goals of the organism and the structure of the external environment.
For organisms, it may be more important to be “good” than “efficient,” where good
means solving an important problem that exists in the environment. For example,
rate distortion is used to explain the results of an absolute identification experiment
where subjects are asked to respond with his or her best guess regarding the identity
of the stimulus from a previously shown set of lines of varying length, or tones of
varying frequency or loudness. The rate-distortion method showed that participants’
implicit goals in the experiment were not to identify each example precisely, but
rather to select a broader response category that is as close as possible to the correct
response. What is relevant in this approach for our purposes is that it shows that acts
of exact memorization of musical materials (themes, phrases, or chords), without
being able to group them into common categories, will not serve well the purposes
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of having a good music “behavior.” For the purpose of music generation, lossy or
partial representation of musical signal might be actually a desirable property, as
it encourages creativity and allows producing different levels of music anticipation
and surprise. By discarding irrelevant details of the musical surface, the intermediate
latent encoding z becomes more susceptible to generating novel materials, while still
maintaining some level of agreement with deeper or hidden aspects of the musical
structure or style. Since music is in constant flux and variation, the development of
music composition requires balancing between the sense of coherence or structural
unity and the sense of novelty and variety. Accordingly, viewing creativity as “useful
novelty,” the rate-distortion framework offers a possible principled approach to such
problems.

It should be noted that in the latent space representation, the distortion is measured
only after the signal is decoded back into the same domain as the original observa-
tion. Moreover, the distortion or error resulting from encoding–bottleneck–decoding
process does not have to be measured necessarily in terms of actual data errors, but
rather as a statistical error of producing or decoding signals that are low probability
compared to the true statistics of the source distribution. Thus, deciding on the nature
of the distortion measure is important for finding a compressed representation that is
right for the problem, thus shifting the burden of the problem from general modeling
to one of formulating the trade-off between representation complexity (encoding)
and reconstruction task. In later sections, we will generalize the concept of distortion
measure and use quality of prediction for the reconstruction task. This way, we will
be looking for the most compact representation of past musical data that results in the
best prediction of its future. This generalization is motivated by the Bayesian brain
theory that includes predictive coding as one of the goals of an organism trying to
optimize its behavior. Moreover, in this context, prediction error can be regarded as
free energy, such that minimizing free energy is effectively the same as minimizing
prediction error [15]. We will turn to these points in the later sections, but first, we
need to define the relation between variational encoding and rate distortion.

14.9 VAE Latent Information Bounds

The idea behind Variational models, as we mentioned before, is using an approx-
imation to the unknown true distribution, while at the same time also treating the
hidden parameters of the model as random variables. We denote the input as x and
the latent representation as z. The mapping of x to z is done by a stochastic encoder
q(z|x) that induces a joint “encoder” distribution pe(x, z) = p(x)q(z|x). A power-
ful method of estimating the model parameters is so called Evidence Lower Bound
or ELBO. The use of ELBO for variational inference comes from the inequality
log p(x) ≥ ELBO ,

log p(x) = log
∫

p(x, z)dz = log
∫

q(z|x) p(x, z)
q(z|x) dz ≥ Eq(z|x) log

p(z, x)

q(z|x)
(14.6)
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The ELBO expression can be shown to have two equivalent forms

ELBO :=Eq(z|x)(log p(x |z)) − DKL(q(z|x)||p(z))
= Eq(z|x)(log p(x, z)) − Eq(z|x)(log(q(z|x)) (14.7)

The right-side version of ELBO is the free energy formulation winc Eq(z|x)
(log p(x, z)) can be interpreted as the negative energy in a Boltzmann distribution
and Eq(z|x)(log(q(z|x)) is interpreted as entropy of the encoded state, with their sum
becoming the thermodynamic free energy expression with temperature one.

Using the definition of mutual information,

Ie(x, z) = DKL(pe(x, z)||p(x)q(z)) (14.8)

= Ep(x)(DKL(q(z|x)||q(z))

it becomes evident that when the latent states are independent of the input, the
mutual information between x and z is zero. In other words, for the encoding to
be informative, the distribution of latent states has to substantively deviate from it
marginal distribution when input signal is provided.

In order to examine the relation between VAE method of representation learning
and information-theoretical bounds on the data x and representation variable S, we
average the ELBO over all possible inputs xp(x).

Ep(x)(ELBO) = Epe(x,z)(log p(x |z)) − Ep(x)DKL (q(z|x)||p(z)) (14.9)
= Epe(x,z)(log p(x |z)) − (Ep(x)DKL (q(z, x)||q(z)) + DKL (q(z)||p(z)))
= Epe(x,z)(log p(x |z)) − Ie(x, z) − DKL (q(z)||p(z))
≤ Epe(x,z)(log p(x |z)) − Ie(x, z)

where last inequality is due to non-negativity of DKL . Changing signs, we have the
following information-theoretical bound:

Ie(x, z) − Epe(x,z)(log p(x |z)) ≤ Ep(x)(−ELBO) (14.10)

Minimizing −ELBO, or equivalently minimizing free energy, will lower the upper
bound on mutual information between data x and representation z created by the
VAE encoder, combined with an extra penalty factor given by the negative log-
likelihood of the data reconstructed or generated by the decoder from latent states
z. Equality will occur only when the marginal distribution of the encoding equals
the “true” distribution of the latent variables that produced the data x . This can be
viewed as a rate-distortion pair, where the rate Ie(x, z) is paired with a distortion
constraint D = −Epe(x,z)(log p(x |z)) with Lagrange multiplier of one. Repeating
the same process with an alternative definition of ELBO that has a weighting factor
β (temperature 1/β)

ELBO(β) := Eq(z|x)(log p(x |z)) − βDKL(q(z|x)||p(z)) (14.11)

Ie(x, z) − βEpe(x,z)(log p(x |z)) ≤ Ep(x)(−ELBO(β))
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This formulationmakes the complexity accuracy, or rate-distortion aspect of learning
more explicit, with β controlling the trade-off between the amount of information
passing from input to the latent states (rate), and the quality of reconstruction (dis-
tortion). This trade-off is normally determined during learning phase by fixing the
value of β in the loss function [17].

14.10 DeepMusic Information Dynamics

Music Information Dynamics broadly quantifies the study of information passing
over time between past and future in musical signal [1]. The study of musical infor-
mation dynamics was shown to be important for understanding human perception
of music in terms of anticipation and predictability. The ability to find repetitions in
music depends on the ability to perceive similarity between different variations of
musical materials—two similar chords often have different voicing or added notes,
melodies modulate, rhythms change, but the overall musical form is still perceiv-
able by capturing unity in this variety. One of the promises in neural modeling of
music is the ability to automatically find feature representations that capture essen-
tial musical structure without a need for expert human engineering. Moreover, the
creative hope is that these structures would be idiomatic to a specific style of the
training corpus and would allow generating new instances of music in that style in
ways that are controllable as desired by the user. In earlier sections, we introduced
the Information Rate (IR) measure for studying music information dynamics of a
signal x(n) by considering the relation between a present data point x = x(n) and
it’s past xpast = x(1), x(2), .., x(n−1). Maximal IR is obtained for signal that looks
uncertain and thus has high entropy Hx), but is predictable or has little uncertainty
when the past is taken into account H(x)|xpast ).

In [28], VMOwas proposed as an efficient method for estimating IR. This method
generalizes a string matching FO algorithm to operate over metric space. In order to
take into account the past to compress or predict the present, the algorithm tries to
find approximate repetitions in the time series. The difficulty arises when the data
points assume real values (such as in the case of audio feature vectors) or have a
very large set of discrete values (such as a possible note combinations in polyphonic
music), making exact repetitions meaningless. Thus, in order to find approximate
repetitions, a reduction of the set of values that the data can assume into a much
smaller set of values or limited alphabet is required. IR performs this task by search-
ing over different similarity thresholds while searching for repeating suffixes and
retaining a suffix structure (factor oracle graph) for threshold level that obtained the
best compression ratio and thus best information rate. This process can be considered
as performing a quantization or symbolization of the time series. The quantization is
implicitly performed by finding approximate repetitions between time series values
up to a threshold. The entropy differences are estimated by considering the com-
pression rate obtained by encoding repeated blocks versus encoding of individual
frames. Since a different amount of repetitions is captured at different thresholds,
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the algorithm finds the highest IR by exhaustive search over all possible thresholds.
In addition to finding the numerical IR values, VMO analysis also allows visual-
ization of the salient motifs by enumerating the salient repetitions and identifying
their position and duration in the signal. The motifs are detected by enumerating
the repetitions found at the optimal threshold and selecting instances that are longer
than certain minimal length and have more than minimal number of repetitions. The
details of pattern-finding are provided in [26] According to this interpretation, we can
generalize the concept of IR by defining it as maximum of mutual information over
possible encodings of the signal z. In the following, we will generalize information
dynamics to stochastic encoding z ∼ q(z|x) : q ∈ Q. This will lead us to using IR
over latent variables,

I R(x) = max
q∈Q:z∼q(z|x) I (z, z past ) (14.12)

= H(z) − H(z|z past ) (14.13)

This still leaves us with the problem of finding approximate repetitions in the
latent space, which could be accomplished by using autoregressive models, RNN, or
applying VMOwith symbolization/threshold search step. Finding maximummutual
information from past to the present in the latent space needs now to be balanced
against the desire to have the least structured, simplest, or most compact latent repre-
sentation for a given distortion level. In the next section, we will present a principled
approach that combines all three factors (high predictability, low distortion, and high
latent entropy).

14.10.1 Representation–Prediction Rate Distortion

In order to combine the temporal information with representation learning, we gen-
eralize the idea of information dynamics by using rate distortion as follows: Instead
of finding the most efficient or the lowest rate latent states (minimum I (x, z))
for a given distortion constraint, we are considering the lowest rate latent state
representation I (xpast , z) that gives as good predictability into the future as true
past. Accordingly, we rewrite the rate-distortion objective using statistical similar-
ity DKL(p(x |xpast )||p(x |z)) as our predictive distortion measure. This measure
favors latent states z that carry significant information, or share the same belief
about the future x as does the past xpast . Since z is an encoding derived from
xpast , knowledge of xpast supersedes that of z resulting in the following relations
p(x |xpast , z) = p(x |xpast ), which establishes z − xpast − x Markov chain relation
between these three variables. Averaging over all possible xpast , z pairs, we get
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〈DKL(p(x |xpast )||p(x |z))〉p(xpast ,z) (14.14)

=
∫

p(xpast , z)p(x |xpast ) log p(x |xpast )
p(x |z) dxdxpast dz (14.15)

=
∫

p(xpast , z, x) log
p(x |xpast )p(xpast )

p(xpast )p(x)

p(x)p(z)

p(x |z)p(z)dxdxpast dz (14.16)

= I [xpast , x] − I [z, x] = I [xpast , x |z] (14.17)

So what we have here is a probabilistic version of rate-distortion in time-latent space
written as minimization problems of

L = I (xpast , z) + γ I (xpast , x |z) = I (xpast , z) − γ I (z, x), (14.18)

where I (xpast , x) is neglected as it is independent of p(z|xpast ). This derivation
suggests a new training criteria for musical neural models that combines both latent
and temporal information as

L = I (xpast , z) + β〈d(xpast , z)〉 − γ I (z, x) (14.19)

The optimization of L promises finding a solution that simultaneously minimizes
the rate between musical surface and latent state and maximizes the mutual infor-
mation between the latent states and future of the musical surface while balancing
the distortion between the latent states and the reconstructed surface. The modeling
of the statistical relations between xpast , z and x could be done by means of a Vari-
ational Recurrent Neural network, such as [13]. The adaptation of such a model to
the deep music information dynamics framework is currently being explored. In the
next section, we will discuss a simplified method based on separate steps of learning
representation and information rate modeling.

14.11 Relation toVMOAnalysis

A simplified version of deep information dynamics approach can be done by sep-
arating the representation learning and information rate steps. Moreover, the errors
encountered in each step have to be manually evaluated, depending on the musi-
cal judgments and preference of the improviser/composer. In the next section, we
will describe a solution that would allow controlling the rate of information passed
between the musical input and the latent state, and the effect it has on the information
rate. The proposed process of iterative representation and prediction learning is as
follows:

1. learn representation using an information controllable model, such as β − V AE ,
on short segments of music such as a bar or subdivision of a bar. This achieves
the minimization (finds a stochastic mapping q(z|x)):

min
q∈Q:z∼q(z|x)(Ie(x, z) − βEpe(x,z)(log p(x |z))) (14.20)
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2. having trained the representation, process complete musical piece X = x1,
x2, ..., xT to obtain a sequence of latent states Z = z1, z2, ..., zT

3. apply information rate analysis to the sequence of latent state and observe the
music information dynamics structure in latent space by quantization of the latent
states Z into symbolic sequence S = s1, s2, ..., sT

I R(Z) = max
θ,st∈�theta

I (s, spast ) (14.21)

This process can be repeated by changing the β parameter to obtain higher or lower
IR by the user, while monitoring the reconstruction error until a satisfactory musical
solution is obtained. This effectively combines steps of dimension reduction from
X to Z and a step of quantization from Z to S. In musical terms, the process of
encoding and decoding a musical piece through a VAE results in a variety of musical
outputs, from exact replication in the case of over-fitting during the training stage,
to a novel musical output that keeps some aspects of the input but also varying it
according to the decoder statistics. Accordingly, it is desirable to be able to control or
reduce the rate of information passing from input to output in order to create novelty
or variations. It should be noted that in step one, the training assumes independence
between the short-term musical segments, and only in step three, time structure is
taken into account. As shown in the experimental section below, the VMO analysis
package allows plotting IR as a function of time, and detection and visualization of
motifs, which provides additional insight into the deep musical structure. Moreover,
since the reconstruction of the observations x at the decoder is done in a determin-
istic manner, the maximization of I R(Z) can be considered as an approximation
to I (x, z), where z past is considered as the latent variable z in Eq. 14.19, and the
current z is deterministically decoded into x .

Maximal value of IR is obtained for signals that look instantaneously complex,
thus having a high entropy, but that is predictable or have little uncertainty when the
signal past is taken into account. Applying this to a latent sequence z(1), z(2), ....,
we search of a representation z(n) ∼ q(z|x(n)) that has low H(z|z past ). It is the
first time, to the best of our knowledge, that IR is being applied to the analysis of
dynamic of latent states.

14.11.1 Controlling Information Rate Between Encoder and
Decoder

Learning z representation at β different from one requires repeating the learning
process. A different approach that saves on the need to retrain a model at different β
was proposed in [10]. In this work, the training was performed using standard ELBO
(which amounts to rate-distortion training atβ = 1). Then the rate of information that
passes between the observations x and the latent states z was modified by limiting
the bit-rate of the information passing from the encoder to the decoder. Performing
optimal bit-allocation at a bit-limited regime effectively modifies the decoding rate,
which can be viewed as a process of limiting the capacity in the encoder–decoder
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Fig. 14.8 Information rate of the latent states at full rate (top) and at 256 bits/frame (bottom)

channel. Finally, the information rate over latent state is computed using the VMO
with cosine distance between the latent vectors. Figure 14.8 shows IR values over
time, with high IR corresponding to points in time having longer repetitions. These
results illustrate that change in bit-rate indeed affects the information dynamics
structure of the query, but it is hard to know exactly what musical aspects remained
salient after bit-reduction.

The above result makes the link between VAE encoding–decoding and rate-
distortion theory of noisy communication more evident. During the process of learn-
ing, maximization of ELBO effectively reduces the mutual information between
the input signal X and the latent state Z , while being constrained by the quality of
reconstruction as measured by D. Using this noisy channel model, we consider the
connection between musical query and the resulting improvisation through VAE as
source encoder and target decoder model. Accordingly, we suggest to add a noisy
channel between the source and target, which enables us to introduce information
rate control through the use of bit allocation. It is assumed in VAE that the latent
states are distributed as multi-variate uncorrelated Gaussians. The rate distortion of
such signal is

R(D) =
{

1
2 log2

σ 2

D , if 0 ≤ D ≤ σ 2

0, if D > σ 2.
(14.22)

This rate distortion can be converted to distortion-rate function D(R) = σ 22−2R ,
which can be efficiently achieved for amultivariateGaussian channel by the so-called
reverse water filling algorithm that starts with a predefined bit-regime and succes-
sively allocates one bit at a time to the strongest component, every time reducing
the component variance by a factor of four and repeating the process until all bits
in the bit-pool are exhausted. One should note that channels with variance less than
allowed distortion, or channels that run out of bits for a given rate, are given zero
bits and thus are eliminated from the transmission. We use such channel to reduce
the rate of the decoder by adding noise or eliminating some of the weaker latent
components. Schematic representation of the channel inclusion in the auto-encoder
architecture is given by Fig. 14.9.

Performing finite bit-size encoding and transmission of the binary quantized latent
values from encoder Ze to decoder Zd is not required sincewe are interested in gating
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Fig. 14.9 Noisy channel
between encoder and
decoder

and biasing the original signal towards the prior distribution by encoding it at a limited
bitrate, which is given by the following optimal channel [5]

Q(zd |ze) = Normal(μd , σ
2
d ) (14.23)

μd = ze + 2−2R(μe − ze) (14.24)

σ 2
d = 2−4R(22R − 1)σ 2

e (14.25)

The practical way of using this channel in our bit-rate controlled model is by
plugging each latent encoder value, mean, and variance into the above equation,
giving us the mean and variance of the decoder’s conditional probability and then
picking at random the decoder value according to this distribution. One can see that
channels with zero rate will transmit in a deterministic manner the mean value of that
element, while channels with infinite rate will transmit the encoder values unaltered.

14.12 Experimental Results

The experiments conducted using our model comprise querying a pre-trained model
with a midi input and reducing the information available to the decoder in a con-
trolled way by passing the encoding through a bit-rate limited channel. Then the
decoded music is evaluated both qualitatively for apparent musical structure, and
quantitatively in terms of its predictability by analyzing the temporal information
rate of the latent states across different time frames. The different experiments that
we conducted included training a VAE and then generating new compositions by
random sampling of latent states, creating an output sequence by querying the model
with another midi file, and finally reconstruction of a midi input query at differ-
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Fig. 14.10 Output of VAE that was trained on Pop Music database, using Naruto Shippuden midi
file as an input query. Note that the figure begins with measure four

ent channel rates by passing the latent states through a noisy channel between the
encoder and decoder.

The VAE was trained on a Pop Music database that contained 126 music clips,
mostly comprising of chords andmelody, divided into chorus and verse sections. The
VAE architecture used here had an input layer comprising of a concatenation of 16
musical units, each containing notes played at a resolution of 16th notes, representing
a total of four quarter notes or one bar in 4/4 m. The hidden layer had 500 units,
passed respectively to VAEmean and variance networks for variational encoding. As
an input query, we used midi file from Naruto Shippuden anime. This song is longer
and has a different style from the music in the Pop Music corpus that was used for
training. Figure 14.10 shows measures four through eight of the improvised output
printed together with the query input. This allows us to analyze their relations.We see
that the texture of the improvisation is significantly different from the chord-melody
texture of the query, but the harmonic relations are preserved and the improvisation
reproduces music that matches the chords or the overall harmony of the query.

The correspondence between query and improvisation starts deteriorating when
passing through the noise channel. Figure 14.11 shows the results of reducing the
bit-rate of the encoder to 256 bits per frame. Musical analysis of the resulting music
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Fig.14.11 Generation by VAE from a bit-reduced query starting at same measure number four as
in the previous figure

shows that the improvisation breaks away in some cases from the harmony of the
query. For example, in measures four through nine shown in Fig. 14.11, the impro-
visation showed on top plays a quick chord progression G-A-D, while the query on
bottom plays D in the left hand andmelody closer to G. Harmonic collisions continue
in third and fourth bars, merging together to meet on Amin chord in bar five.

14.12.1 Experimental Results

In order to assess the effect of noisy channel on VAE encoding, we performed an
analysis of the original query and the outputs at different bit rates. Figure 14.12
shows the motifs detected at optimal quantization level based on VMO analysis of
the midi signal. We also plot the values of information rate as a function of similarity
threshold in Fig. 14.13. These graphs provide an interesting insight into the level of
signal detail versus repetition structure, with a lower threshold corresponds to finer
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Fig.14.12 Generation by VAEwith bit-rate controlled query: Motifs found in the query (Top), full
rate (Middle) and bit-rate limited resynthesis (Bottom). See text for more detail

Fig.14.13 Information rate as a function of similarity threshold found in the query (Top), full rate
(Middle), and bit rate-limited resynthesis (Bottom). See text for more detail
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musical detail, usually resulting in shorter motifs. Only the motif found at optimal
threshold are shown in Fig. 14.12.

One should also note that computation of similarity requires specification of a
distance function. In the results shownhere,we used a variant of Tonnetz distance that
defines a distance on chromagram vectors (12 bin pitch-class arrays). This distance
is computed by first projecting pitch vectors into a 6-dimensional space replicating
the circle of pure fifth and both circles of minor and major thirds, then computing
the Euclidian distance between those two (normalized) vectors [16].

14.13 Summary and Discussion

In this chapter, we explored the role information theory plays in mathematical and
computational approaches to machine improvisation. Starting with Shannon’s first
theorem that allows compression of sequences to the lower limit of their entropy,
we have shown how compression algorithms are used to construct dictionaries of
phrases of variable length, and how continuations could be formed in order to create
smooth musical improvisations. We considered several string matching and com-
pression methods that made the recombination of repeated phrases more efficient,
both in terms of capturing early and overlapping repeated factors, and as a way to
efficiently index the original musical data (midi file or audio recording) for recombi-
nation from only partial feature representations. We introduced the Variable Markov
Oracle (VMO) that addressed the important problem of finding such optimal partial
or lossy representation by searching over different quantizations or symbolizations
of features and selecting the best model in terms of its information dynamic proper-
ties, estimated by information rate algorithm which in the VMO system. The need to
quantize or use lossy or partial representation of musical data in order to be able to
capture its structure and generalize it to novel examples lead us to the third Shennon
theorem of lossy compression so-called rate-distortion theory. In the second part, we
combine questions of representation learning with questions of predictive informa-
tion by formulating a novelDeep Information Dynamicsmodel. The unique property
of this model is that they unite the questions of representation and prediction into
one information-theoretical framework. In order to do so, we first have shown how
representation learning problems, namely variational encoding, could be viewed as
a special case of information minimization between the musical surface (observable
music data) and its latent codes. On the other hand, information rate as a function
of time assumes maximization of mutual information between past and present of
musical data. Using notions of Rate-Distortion we combined both of these factors
into one unifying principle, we the choice of the latent states has to satisfy both
incentives—be the most compact representation of the musical surface while being
able to reconstruct it up to a certain error, and be able to predict musical present
from the latent states derived from the musical past in the best possible way (in other
words, predict the musical present from latent states as well as it would predict the
present from its actual past). This approach provides an additional aspect of flexibil-



406 S. Dubnov

ity in representation learning since the penalty related to prediction quality in time is
considered relative to information dynamics of themusic itself rather than as an inde-
pendent criterion. Somusic that is less structured in time also has less demands on the
predictability of latent representation, this increasing the importance of reconstruc-
tion error and paying attention to instantaneous sound or music detail. According
to same logic, music that has very dominant temporal structure might compromise
the details of instantaneous reconstruction in order to gain the predictability of the
musical future. This trade-off of representation-prediction led us to developing an
experimental framework for controlling the level of information passing between
the musical surface and latent representation by using the encoder–decoder structure
of VAE. We conducted several experiments where the information content of the
decoder output was reduced by adding a noisy channel between the encoder and
the decoder. By changing the bit-rate of the encoder–decoder we were able to move
between more and less meaningful latent space representations. The synthesis-by-
query process was done by encoding an input signal using a pre-trained encoder and
degrading it in a controlled manner by application of bit-rate reduction before pass-
ing it to the decoder. One should note that unlike β-VAE and InfoVAE that control
information rate during the phase ofmodel training, our study focused on rate control
between encoder and decoder in a pre-trained VAE. This rate control could not of
course improve the representation learning itself, but allowed us to alter the extent of
query influence on the output contents and its predictability in time. As mentioned
in the introduction, the main motivation for investigating information-theoretical
models of music is to develop a principled approach and allow novel algorithms
for machine improvisation and composition. The deep music information dynamics
suggest the one can develop novel tools and high-level criteria for controlling the
improvisation process in terms of controlling the information rate between input,
representation, and output data. In the final section of the paper we demonstrate
some musical examples of our initial experiments with this framework, In order to
get more musical insight into the effect of rate control in VAE encoding–decoding,
we used VMO analysis to examine the resulting musical structures, showing the
trade-offs between reconstruction and prediction as a function of the encoding rate.
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15Structure,Abstraction andReference
inArtificialMusical Intelligence

Geraint A.Wiggins

15.1 Introduction

An apocryphal account of a composition seminar given by the lateHarrisonBirtwhis-
tle at King’s College, London has a student asking, ‘How did you choose the notes
for this piece?’ The story goes that he answered, ‘First, it’s none of your business.
Second, I could have written the same piece with different notes’. The implication
is that the detail of the notes in the score is not what defines the music. What, then,
does define it?

Holmes [20, pp. 317–8] quotes a letter, claimed to be written by Wolfgang
Amadeus Mozart, though previously identified [21] as a fake made by Rochlitz [42].
Henahan [18] attributes the strength of this myth to a Romantic ideal: he argues that
the ‘gist of it was that his scores came to Mozart fully formed, ready to be scribbled
onto paper whenever he could find the time.’ Evidently, Henahan did not read the
fake letter very carefully, for if he had, he would have seen something rather more
detailed and interesting, fake or not. The key portion runs thus:

When I am, as it were, completely myself, entirely alone, and of good cheer – say traveling
in a carriage, or walking after a good meal, or during the night when I cannot sleep; it is on
such occasions that my ideas flow best and most abundantly. Whence and how they come,
I know not; nor can I force them. Those ideas that please me I retain in memory, and am
accustomed, as I have been told, to hum them to myself.

All this fires my soul, and provided I am not disturbed, my subject enlarges itself, becomes
methodized and defined, and the whole, though it be long, stands almost completed and
finished in my mind, so that I can survey it, like a fine picture or a beautiful statue, at a
glance. Nor do I hear in my imagination the parts successively, but I hear them, as it were,
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all at once. What a delight this is I cannot tell! All this inventing, this producing takes place
in a pleasing lively dream. …What has been thus produced I do not easily forget, and this is
perhaps the best gift I have my Divine Maker to thank for. ([20, pp. 317–8], after [42])

Many composers (and certainly the one writing this chapter) have had this expe-
rience or similar, though not all of us are lucky enough to have Mozart’s extraordi-
nary musical memory, which is more securely attested elsewhere. The author of the
letter—no matter who he really was—was insightful in pointing out that memory
was a crucial aspect of the process described therein.

From the perspective of the current chapter, memory is important too, but still
more so is the idea that a composition can, in a sense, ‘grow out of’ pre-existing,
smaller ideas.Mozart’s music inhabits a very clear andwell-defined formal tradition;
while being intensely creative, his compositions also conform rigorously to cultural
norms, while sometimes bending those norms inways that change them permanently.
It follows that there must be some generic (or schematic) representation of those
cultural norms, that can be instantiated by particular pieces of detail, with the effect
of making the representation less generic: ruling out possibilities. The experience
described in the fake letter then describes the process of satisfying these constraints:
not in one flash of inspiration, but as a sequence of steps, andworking from themiddle
out. It is not difficult, then, for an AI specialist to imagine one of many techniques
that could be used to simulate such a process: unification, constraint satisfaction,
spreading activation, heuristic search and so on. These and others have indeed been
brought to bear on the musical composition problem in the past 35 years or so. The
interesting question, then, is not so much which technique to use, but over what, if
any, representations it should work.

Necessarily, at this point, Imust disclaim:my opening statementmakes no distinc-
tion between symbolic and non-symbolic representations. This is entirely intentional.
For the purposes of the current argument, the symbolic versus non-symbolic distinc-
tion (and the sometimes bitter debate that follows it) is irrelevant. What matters is
a particular set of properties and affordances of representations, not the syntactic
means by which they are implemented. In terms of Marr’s [29] levels of description,
therefore, I am discussing the computational level, and neither the algorithmic nor
the implementational.

This chapter explores the problem of music representation in AI from the per-
spective of evidence from cognitive science. Music representation is not just about
representing data, but about doing so in away appropriate to the cognitive affordances
of human music perception and musical memory, and to the perceptual structuring
that results from those affordances. This claim needs some support, and I supply it in
the next section. The rest of the paper discusses three key aspects of music represen-
tation and processing, focusing on cognitive-scientific clues that can perhaps guide
Artificial Musical Intelligence (AMI) to better simulations of musical behaviour.
Those aspects are, in turn, hierarchy, abstraction and reference.

Having introduced the term Artificial Musical Intelligence (AMI), I should say
what I mean by it. I do not mean rule-based systems that harmonise Bach chorales
(e.g. [11]) or deep neural networks that will generate a convincing musical style at
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the push of a button (e.g. [45]), though these are both enlightening and interesting
things. I believe that now is the time to look beyond artefacts produced by programs,
and, most importantly, for creative systems to leave behind the constraints of the
problem-solving approach to AI, as exemplified above. When I write AMI, I do not
mean a system that solves musical problems like those we ask our students to solve
in exams, even though that is a very good way to make progress in the right direction.
Rather, I mean a system that behaves like a musician, composing or improvising or
performing alongside humans or machines or solo, or maybe just listening to and
discussing music with humans, as humans do.

The late Marvin Minsky suggested such an AMI might be available around 2022
[24, Introduction]. Unfortunately, futurology is not an exact science, and there is still
a long way to go.

15.2 The Nature of Music

I claim in the previous section that cognitive science of music is relevant to the AI
study of music. The reason for this relates to the nature of music itself, and how it
is perceived. For the avoidance of doubt: this is not about an attempt to restrict what
composers (natural or artificial) may do, as supposed by, for example, Blackwell,1

but a philosophical argument about what is intrinsically necessary for sound to be
understood as music by humans.

Wiggins [60, §3.1] suggests that five specific features make music uniquely inter-
esting in context of cognitive science:

1. ‘It is ephemeral: music does not exist as an object in the world,2 and is therefore
entirely dependent on the mechanisms of memory for its cognitive effect [55, 64];

2. ‘It is anepistemic: except in very unusual circumstances, essentially equatingwith
onomatopoeia in language, and notwithstanding evidence of association [23],
music is without denotational meaning, being incapable of making statements
that are truth-functional [53, 55];

3. ‘It is autoanaphoric: music can refer, but in a different way from language,
because, except in the same unusual circumstances as above, it always refers
to itself, and usually only within a single piece [35, 37, 43, 54, 56];

4. ‘It is cultural:music (like language) is a cultural artefact and requires enculturation
to be understood [57–59]: in consequence (like language), it is heavily dependent
on learning;

1Unpublished panel session, International Conference on Creative Music Systems, 2018: https://
csmc2018.wordpress.com/programme/.
2Note that music is not the same as music notation: the latter evidently exists as an object, but it
constitutes only instructions on how to producemusic, and not the music itself. The same is true of
recordings.

https://csmc2018.wordpress.com/programme/
https://csmc2018.wordpress.com/programme/


412 G. A. Wiggins

5. ‘It is enchanting: music engages humans in strong, non-conscious and conscious
motor and/or affective responses, often to the extent that they react both physically,
and often involuntarily [e.g., 2, 13, 51], and also by spending their hard-earned
cash on recordings.’

Wiggins [60] gives a detailed argument as to the value of music to cognitive science.
To see why human perception and memory are important in AMI, we reverse that
argument: it follows from the above that music is, and its features are, defined by
human perception and memory. That does not mean they are fixed, because humans
are good at learning to perceive and memorise new things. But it does mean that, for
an AI system to produce artefacts that a human will recognise as music, the system
needs to have some encoding, implicit or explicit, rule-based or emergent, of the
human perceptual capabilities that define music perception and musical memory.
Boden [1] points out the important distinction between recognising the form of a
created artefact and assessing its quality. Without some human-like notion of music,
an AMI system has no means of deciding either whether its output is or is not music,
in a human-like sense, or whether it is good.

On the other hand, both science and musical experience suggest that, once new
perceptual capacities are learned, they are difficult to unlearn or even to leave unused.
For example, absolute pitch usually gives way to relative pitch around three months
after birth, and is usually not available thereafter [44]; and, once one has learned to
hear music tonally, (i.e. in terms of tonal function of notes and chords), it is very
difficult to hear past that interpretation, entailing that 12-note music, which explicitly
eschews tonality, requires a consciously different kind of listening from tonal music
[30]. So even when listeners actively desire music that is different from what we
(in any given culture) have learned to hear, our implicitly learned perceptual pro-
gramming still mediates (and thus defines, or at least constrains) its comprehension.
Therefore, if an AMI is intended to create music for humans,3 it must be able to
compose and/or perform its artefacts in terms of a human standard (albeit perhaps
being able to bend it like Mozart, in interesting ways).

Of course, it does not follow that anAI systemmustmodel humanmusicalmemory
directly as its central function, nor that it must always explicitly reason about human
perception. For instance, music theory forms an excellent proxy for some aspects of
these things [58] in Western, Indian, Chinese and other cultures. But music theory
generally lacks theories of similarity, for example, that would allow an AI system
to decide to what degree, for example, one theme is a reference to another. For
this, we must turn to the music cognition literature (e.g. [3, 4, 9, 50]). Similarly,
music theory tells us next to nothing about affective response to music, while music
cognition research on musical effect abounds (e.g. [22]).

Therefore, I posit that an AMI must use knowledge (implicit or explicit) about
human music perception, if it is to exhibit non-trivial musical creativity, in composi-
tion and/or performance, regardless of how that knowledge is acquired or represented.

3It is unclear what music for non-humans would be, so I do not discuss that here.
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If it did not, then any musical success it achieved with a human audience would be
by chance, and not by creative design. Of course, John Cage and other composers
have shown how chance can be a valuable part of music [41], but that is in the context
either of meta-level conceptual art, where the art is about the music and not in the
music, or of carefully constructed musical contexts in which randomness is made to
be interesting by a talented composer such as Lutosławski [28].

Three overarching properties that human perception and memory afford and that
underpin musical understanding, are hierarchical structure, abstraction and refer-
ence. Many specific capabilities of musicians are specialisations of these three gen-
eral capabilities. They interact in important ways, which are also relevant in language
processing, though that is beyond the scope of the current chapter. I discuss them, in
the musical context, in the next sections.

15.3 Hierarchy in Music Representation

Everything in music is hierarchical, from the sinusoidal components of a musical
note up to the structure of the grandest symphony. Minds use hierarchies such as this
to manage structure in the world in general: the concept of a chair entails seat,
legs, back, for example. The word ‘chair’ is enough to evoke all this structural
information, as well as to activate a network of associations, such as the word ‘sit’.
These ideas arewell-rehearsed inAI and underpinned some of the earliest approaches
to its science. Music theory matches and describes many of the same phenomena
in the specifically musical context [58]. Music analysis, usually implicitly, aims to
explicate the relationships thus entailed [25, 43, 46, 58].

From a music-cognitive perspective, there is a spectrum of representations, from
very detailed and small-scale (timed in milliseconds), to very large scale (timed
in hours), which have varying phenomenological properties. For example, harmonic
spectra underpin perceivedmusical tone events,whichmaybeperceived as individual
pitches, or as chords, or as unpitched sounds (e.g. white noise, or the sound of a
maraca). The process by which a set of harmonically related sine waves, as detected
by the Organ of Corti [33] is assembled into a note percept is called fusion. It
is, for most people, irreversible, in the sense that only highly skilled listeners can
consciously perform analysis of the comparative amplitude of the harmonics by
hearing alone. A very similar process seems to lead to perception of chords (i.e.
multiple notes played simultaneously): most listeners do not hear the individual notes
of the chord, but a combined effect, and we explicitly train our musical children
to be able to open up the combined percept at will. This task, which requires the
identification of individual harmonic series from a superposed set, is much easier
than the task of undoing fusion, mentioned above, but still hard enough to require
training and practice. Ways to make note separation in chords easier include using a
different instrument for each note or separating the notes across a stereo field. Both
of these devices give the auditory system extra information to help it discriminate
the component harmonic series.
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From this level upwards, a practiced listener finds it easier to separate structures,
especially when they are placed in a sequential musical context. It is much easier
to separate simultaneous notes when they are part of moving instrumental lines, for
example. The interplay between those lines can then become an object of aesthetic
value in its own right, as in the complex fugue forms of the Baroque and Classical
periods. This demonstrates that multiple hierarchies are simultaneously present in
non-trivial music: the commonest example of this is the fact that a vocal line, in a
classicWestern setting of four-part harmony, canbeheardboth as a line, proceeding in
time, andalso as a chord in context of the other simultaneousvoices, and, furthermore,
both percepts are perceptible at subjectively the same time. For an AMI to produce
outputs that are recognisable asmusic by a human, these propertiesmust be present in
our programs (e.g. a neural network) and/or in our representations (e.g. a logic-based
representation), or both [49], whether implicitly or explicitly; otherwise, anything
recognisable as music that is produced, is recognisable as music only by chance.

Cognitively, hierarchies arise in the construction of melodies. Evidence suggests
that small groups of notes, which musicians would call phrases, by analogy with
language, are remembered as groups when assembled into melodies [6]. Somelodies
of non-trivial length are not simple sequences, but hierarchically structured objects,
not unlike the trees of Chomskian grammar. This is blindingly obvious when one
thinks of repetition-based songs like Happy Birthday or Frère Jacques. We need to
make our AMIs reason in a way appropriate to such hierarchical structuring, even
if the structure is not explicit in the output: human listeners need it if they are to
undergo a musical experience.

Finally, hierarchical representations naturally entail the ability to represent rela-
tions that look like long-term dependencies, if one considers only the surface. This
is obvious from a top-down perspective, such as that of Chomskian grammar: what
makes a grammar context-free or context-sensitive is precisely the property of recur-
sion that allows unbounded sequences between two prescribed syntactic categories.
However, from the bottom up, this is less obvious. Widmer [52] posits that, ‘Music
is fundamentally non-Markovian’, rightly pointing out that AI music systems often
uncritically use Markov models without considering long-term dependencies. How-
ever, he goes on to say that, with sufficient hierarchy, Markovian techniques are suf-
ficient, citing Hierarchical Temporal Memory [17] as a possible solution. Another
(similar) possible solution is the IDyOT architecture [60, 65]. Wiggins [60] shows
how long-term dependency can be learned with a combination of hierarchy and
abstraction (see next section). So I would suggest since statistical learning does seem
to explain local musical learning rather well, that a better claim might be ‘Music is
only hierarchically Markovian’.

15.4 Abstraction in Music Representation

‘Abstraction’ means different things in different contexts. Here, I deliberately use it
as a broad umbrella term, unifying processes which identify, use and sometimes for-
malise, specific information in data that is particularly important in a given context.
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The aim of using such a broad definition is to allow us to see regularities that need
to be accounted for when considering music representation, explicit or implicit. The
definition accords with the notion of Abstract Data Type in computer science, which
mathematically specifies the meaning of something, independent of its syntax but
also with the idea that a complex data itemmay have separable features with different
mathematical properties, and which sometimes are best considered separately from
each other. Respective examples of these are to be found in AMI: the former, for
example, in work by Lewin [27] andWiggins et al. [62, completed and implemented
by Harley, 16] and the latter, for example, in work by Conklin and Witten [7, 8].
Given this definition, we proceed in parallel with the previous section.

The cognitive operation of fusion, introduced above, is a form of abstraction: it
converts a complex set of dynamic spectral information into a single, summarising
percept, which has fewer and more accessible properties: pitch, amplitude, timbre.
Even in making this statement, I have committed abstraction, because most musical
tones havemore complex sub-features, such as vibrato (low-frequency periodic pitch
modulation). In general, too, we abstract away information about precise tuning, so
that a little tuning variation in a sung line remains tolerable, and so that we can
use equal temperament tuning instead of physically exact just intonation [60, §3].
Thus, here, categorisation of pitch is a kind of abstraction. Note, however, that the
abstracted representation (agreed musical pitch categories, A, B, C, do, re, mi, etc.)
coexists with the continuous pitch space, making utterances such as, ‘Your C is too
sharp’, meaningful; the fact that we recognise a bassoon does not prevent us from
hearing the very prominent third harmonic in its timbre (this is one inverse fusion
operation that many people can apply because the harmonic is so strong). Another
abstraction, cutting the cake at a different angle, is that produced by embedding the
simple pitch line (representing pitch height) as a spiral in a 3-dimensional space
[48]. In this space, (continuously represented) octave and pitch class are abstracted
separately from the continuous pitch.

McAdams and Saariaho [31] discuss musical timbre, but also make important
general points concerning comprehensibility of perceptual dimensions. They argue
that perceptual dimensions divided into relatively few (for example, seven) cate-
gories are easier to process than those divided into many (for example, the full pitch
range of a piano). It turns out that experienced listeners tend to learn representations
(for example, based on tonal scale-degree) that conform to these constraints [60].
Embedding the continuous pitch line in Shepard’s 3D space is the first step on the
way to this simpler-to-process representation, which has the effect of transforming
a one-dimensional representation with many categories into a two-dimensional one,
each of whose dimensions has few categories.

The pitch dimension of melody can be abstracted out as a time-variant signal in
its own right, and when we do so, we arrive at a representation that humans find
particularly useful in recognition [10, 12, 32, 34, 47].

The pitches represented as points in the Shepard pitch space can be combined to
make further levels in the hierarchy of representations, taking us to four-dimensional
representations of harmony that afford yet more abstract representations of harmonic
tension [5, 26], and also as harmonic tension contour. Interestingly, at this level of
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abstraction, it becomes less easy to identify direct phenomenological correlates of
the dimensions of the space, perhaps because they are relatively difficult to learn.

Therefore, these successive abstractions also form a hierarchy, with the raw sound
at the bottom, and themost advanced percept at the top. Sometimes nodes in this hier-
archy will coincide with nodes in the more obvious music-theoretic partonomy, but
not always, because some percepts do not have a partonomic counterpart—consider
a crescendo, for example, which is a combined property of each of a sequence of
notes or chords. The converse is also true: self-evidently, some collections of musical
events, that become meaningful in a given context, are simply collections of musical
events and do not have their own specific, differentiated percept.

A key feature of musical intelligence is the ability of musicians to zoom effort-
lessly in and out of musical detail, skipping lightly up and down these hierarchies of
abstraction as they rehearse, discuss and performmusic together. Often, the skipping
is around the abstraction hierarchy, communicated using the structure of the parton-
omy. A composer must be able to do the same, unless she can hold all the detail in
her mind’s eye at once, like Rochlitz’s imaginary Mozart. Therefore, an AMI must
also be able to do the same.

For an AMI to perform these cognitive gymnastics, it must use representations
which are structurally general in the sense proposed by Wiggins et al. [63], that is:
a wide ‘range of high-level structures…can be represented and manipulated’ [63,
p. 31].

15.5 Reference in Music Representation

While hierarchy and abstraction allow us to describe many of the observable features
of music perception and cognition, a key feature that requires further mechanism is
reference. I use this word by deliberate analogy with reference in language, which
seems to use comparable, perhaps the same, mechanisms [39].

By reference in music, I mean the possibility of one musical component (phrase,
piece, melody, etc.) being related to another in the perception of individual listeners.
This can and does happen in a very literal way, by strict repetition. But in general,
musical components may be related in much more complex ways, and a theory of
similarity is required for this. This theory of similarity is again determined, or at
least constrained, by perception and by memory. To see this, consider the process
involved in a human determining whether two musical components are similar, as
follows.

Because of music’s ephemerality (see Sect. 15.2), it is impossible to compare two
pieces of music by hearing them simultaneously, or even in an interleaved way. Thus,
one can never actually compare two pieces of music by hearing them: one can at best
compare the memory of an earlier hearing with a current one. Of course, we might
also compare two pieces of music when they are written down, but that comparison
is different in kind: either it is done by imagining the sound, in which case, again
one is comparing something based on memory, or it is done in a music-theoretic,
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Fig. 15.1 a The folk melody Frère Jacques, with partonomy (above) and a small selection of the
similarity relations that hold within the piece (below). Note that these similarity relations in fact
hold between each occurrence of each group, making a dense constraint network even in this simple
melody. bAdifferentmelody that conforms to the same constraints, produced bymanipulating pitch
only

knowledge-based way, which does not engage perceptual memory. The consequence
of this is that musical similarity is, in a very strong sense, determined by memory
and the workings thereof. Ruwet [43] used this in his paradigmatic analysis, one of
the bases of semiology in music [36–38]: similarity partly defines structure, while
structure partly defines similarity. One of the benefits of this approach is that it need
not be culture-specific, and therefore it offers access to music as a generic human
phenomenon, rather than as a specific cultural one. One of the drawbacks is that such
cyclic systems are notoriously difficult to understand and engineer.

Without musical similarity detection, an AMI cannot identify the global structure
in a piece, and therefore cannot, for example, respond in a human-like way when,
for example, the main theme returns triumphantly at the end of a symphony, or
when the middle eight of a pop song shocks the world, by appearing also at the
start, as in Abba’s Dancing Queen. Even the most simple music has this structural
property: again, Happy Birthday and Frère Jacques are examples, and show nicely
how grouping relates with phrasal reference. Figure15.1 gives an example, showing
(1) how dense these similarity constraints are, and that they reach, long-term, across
the hierarchical structure, and (2) how a piece can thus be recomposed. To be clear: I
do not claim that each of these relations is consciously recognised by every listener;
rather, they affect the listener on a non-conscious level, in such a way that the overall
effect is indeed consciously noticeable [13–15, 40]. This is a very subtle, but very
important, part of the experience of musical listening. Herremans and Chew [19]
presentMorpheuS, a computer system convincingly capable of such manipulations,
with musical sophistication far higher than the current trivial example.

Here, then, we begin to see what Harrison Birtwhistle meant. It need not be the
notes that are the significant part of a composer’s intent: they can be (and often are)
merely the surface form that expresses it.
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15.6 Synthesis

Hierarchy, similarity and reference all work together in tight coupling, to determine
the perceived structure in music, but few candidate mechanisms exist to model this
complex feedback (cf. [60]). Complex though the system is, the current discussion
has focused almost entirely on listening, which, as suggested elsewhere [61], is the
primary musical activity, that precedes all else. How, then, do we get from repre-
sentations produced by listening to music to the more advanced musical capacities,
such as composition?

In my opinion, the answer lies in the fact that pieces of music are not stored
separately in memory, isolated from each other, as evidenced by our capacity to hear
similarities between separate pieces as well as within them. Indeed, when hearing a
piece in one’s mind’s ear, it is easy to segue from one to another via the worm-holes
induced by such similarities; the same applies within a piece.

Thus, human musical memory is a hierarchically structured, representationally
rich, sequential, web of connections. While many (though not all) AMIs tend to
work in the bottom few layers of hierarchy, looking at notes and chords, I contend
that human compositional intelligence generally works at a higher level, focusing on
structure in an abstract way, and then filling in details. As details are made concrete
in one part of the structure, so they are filled in elsewhere, because of the constraints.
The constraints themselves are also open to variation, and thus can new structural
ideas be produced.

Now, suppose that we can activate multiple parts of this network at middle levels,
and use the links between the parts to constrain the relationships between them. We
could spread that activation to find ways to join fragments together, extending the
hierarchy upwards to the complete structure of a piece, and downwards to the notes
that express that structure, satisfying themultifarious constraints in eachdimension as
we go. This closely describes my personally introspected experience of composition,
and it seems tome to accordwith that described byRochlitz [42] on behalf ofMozart.

Note that this view, of a defining cognitive structure that is filled in, rather than
a sequence which is constructed more or less left to right, does not contradict the
experience of the songwriter who starts by working out a chord sequence on her
guitar. In the same way, that language parsing may be top-down or bottom-up, and
parallel or serial, so may the elaboration of an abstract musical structure. In other
words, the fact that the hierarchical, abstract representation is used bottom-up in
some clear cases does not imply that it does not exist.

My position, therefore, is that musical creativity is the constrained exploration and
transformation [1] of musical memory, represented in the rich, multidimensional,
hierarchical ways that I have described. I suggest that human-like musical behaviour
will not be achievable in an AMI until we grasp this nettle [and there are other nettles
to grasp too: see 52]. It may well be possible for non-symbolic systems to achieve
the levels of human-like performance sought here. However, I contend that such
performance is unlikely to be achieved reliably from a scientific perspective, until
fully explainable non-symbolic systems are developed. At the time of writing, such
systems seem to be some way off.
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Therefore, for the short andmedium terms, it seems that conventional, explicit rep-
resentations that allow annotation of cognitively valid relations of structure, abstrac-
tion and reference, as a result of listening, would be a minimal basis for a human-like
artificial musician, affording all the information needed for performance and com-
position, and even human-like discussion in rehearsal.

This, it seems to me, is the future of artificial musical intelligence.
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sition. In M. Balaban, K. Ebcioǧlu, O. Laske, C. Lischka, & L. Soriso (Eds.), Proceedings of
the Second Workshop on AI and Music (pp. 63–71), Menlo Park, CA. AAAI.

63. Wiggins, G. A., Miranda, E., Smaill, A., & Harris, M. (1993). A framework for the evaluation
of music representation systems. Computer Music Journal, 17(3), 31–42.

64. Wiggins, G. A., Müllensiefen, D., & Pearce, M. T. (2010). On the non-existence of music:
Why music theory is a figment of the imagination. Musicae Scientiae, Discussion Forum, 5,
231–255.

65. Wiggins, G. A., & Sanjekdar, A. (2019). Learning and consolidation as re-representation:
revising the meaning of memory. Frontiers in Psychology: Cognitive Science, 10(802).

https://www.sciencedirect.com/science/article/pii/S1571064518300599
https://www.sciencedirect.com/science/article/pii/S1571064518300599


422 G. A. Wiggins

Geraint A. Wiggins studied Mathematics and Computer Science at Corpus Christi College, Uni-
versity of Cambridge (UK) and holds Ph.D. degrees from the University of Edinburgh’s Artificial
Intelligence and Music Departments, respectively, in the UK. His main research area is computa-
tional creativity, which he views as an intersection of artificial intelligence and cognitive science.
He is interested in understanding how humans can be creative by building computational models
of mental behaviour and comparing them with the behaviour of humans. He has worked at the
University of Edinburgh and three colleges of the University of London, UK: City, Goldsmiths,
and Queen Mary. He recently moved his Computational Creativity Lab to the Vrije Universiteit
Brussel, in Belgium. He is a former chair of Society for the Study of Artificial Intelligence and
Simulation of Behaviour (SSAISB), the UK learned society for AI and Cognitive Science, and
of the international Association for Computational Creativity, of whose new journal he is editor-
in-chief. He is associated editor (English) of the Musicae Scientiae (the journal of the European
Society for the Cognitive Sciences of Music), a consulting editor of Music Perception (the journal
of the Society for Music Perception) and an editorial board member of the Journal of New Music
Research. E-mail: geraint@ai.vub.ac.be.



16Folk theAlgorithms: (Mis)Applying
Artificial Intelligence to FolkMusic

Bob L.T. Sturm and Oded Ben-Tal

16.1 Introduction

This chapter motivates the application of Artificial Intelligence (AI) to modeling
styles of folk music. In this context, we focus particularly on questions about the
meaningful evaluation of such AI, and argue that music practitioners should be inte-
gral to the research pursuit. We ground our discussion in specific music AI that
model symbolic transcriptions of traditional dance music of Ireland and Scandi-
navia. Finally, we discuss several ethical dimensions of such work. After reading
this chapter, the reader should have a grasp of approaches to modeling music data,
evaluating those approaches, and critically considering wider aspects of the applica-
tion of AI to music.

Our foray into modeling and generating folk-like music began modestly as a
humorous exercise one weekend in 2015 after reading Andrej Karpathy’s entertain-
ing blogpost, “The unreasonable effectiveness of recurrent neural networks” [46].
Karpathy shows how Long Short-Term Memory networks (LSTM)—a particular
kind of Recurrent Neural Network (RNN)—can be trained to generate novel text
one character at a time resembling Shakespeare, Wikipedia articles, and even for-
matted computer code.Howwellwould suchmodelswork formusic? SinceKarpathy
included computer code with his blogpost to reproduce his experiments, it would be
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a simple matter to just replace the Shakespeare data with music—all we needed was
a dataset of music expressed as text.

We downloaded an online collection of transcriptions of Irish traditional dance
music from the website thesession.org [48] expressed in ABCnotation [1]—a text-
based shorthand representation invented to help memorize folk music. We extracted
each transcription to create a text file of 423,249 lines and 13,519,069 characters.
Below is an extract from that file showing three settings of an Irish polka titled “The
Ballydesmond”:

T: Ballydesmond, The
M: 2/4
L: 1/8
K: Ador
|:E>A AB|cd e2|G>F GA|GF ED|
|E>A AB|cd ef|ge dB|A2 A2:|
|:a2 ab|ag ef|g2 ga|ge de|
|e<a ab|ag ef|ge dB|A2 A2:|

T: Ballydesmond, The
M: 2/4
L: 1/8
K: Ador
|:"Am"EA AB|cd e2|"G"G>F GA|GE ED||"Am"EA AB|B1/2c1/2d ef|"G"g1/2

f1/2e"Em" dB|"Am"A2 A2:||:"Am"a>g ab|ag ef|"G"g>f ga|ge d2||"
Am"ea ab|ag ef|"G"ge "E7"dB|"Am"A2 A2:||:"Am"c2"Em"Bc1/2B1
/2|"Am"AB1/2A1/2G>A|"G"Bded|g2gd||"Am"e1/2g1/2a"Em"ge|"G"
dBGA1/2B1/2|"Am"ce"Em"dB|"Am"A2 A2:||:"Am"eaag1/2e1/2|"G"
dgge1/2d1/2|"Am"eaab|"Em"g2ed||"Am"ea"Em"g1/2a1/2g1/2e1/2|"G"
dBGA1/2B1/2|"Am"ce"Em"dB|"Am"A2 A2:|

T: Ballydesmond, The
M: 2/4
L: 1/8
K: Ador
|: A/G/ |EA A>B | cd e2 | G/A/G/F/ G>A | GE ED |
EA- A>B | cd e>f | g/f/e dB | A2 A :|
|: B/d/ |ea a>b | a/b/a/g/ ef | g>f ga | ge ed |
ea- a>b | ag ef | ge dG | A2- A :|

ABCnotation is described more thoroughly in Sect. 16.3.2, but for now all one needs
to understand is that training an LSTM network on this text file means adjusting its
parameters such that it is likely to output a correct character given all the characters
it has seen up to that point. Taking the first setting of “The Ballydesmond” as an
example, this means making the LSTM network likely output ‘:’ given the input
‘T’; and then output a space given ‘T:’; and then output a ‘B’ given ‘T: ’; and then
outputting ‘a’ given ‘T: B’; and so on.

Using Karpathy’s code [46], we trained an LSTM network on batches of 50-
character excerpts of this text file. We then had the trained model—which we call
folk-rnn (v1)—generate tens of thousands of new transcription and published some
of these online [28]. Here is one example generated by folk-rnn (v1):
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Fig.16.1 Notation of “The Mal’s Copporim” generated by folk-rnn (v1), which exemplifies many
of the local and global conventions of the transcriptions in its training data

T: The Mal’s Copporim
M: 4/4
K: Dmaj
|: a>g | f2 f>e d2 d>B | A>BA<F A2 d>e | f2 d>f e<ac>d | e>dc>B

Agfe |
f2 f>e d2 d>B | A2 A>G F2 F2 | G2 B>A d2 c>d |[1 e>dc>A d2:|[2 e2

d2 d2 ||
|: f<g | a>Ag>A f>Ae>A| d>gd>B d2 g>A| f>Af>e d>ed>c| e>ed>c (3

Bcd (3efg |
a2 a>g f2 e2 | d2 A>d f2 f>g | a2 g>f e2 f>g | a2 A2 D2 :|

Figure16.1 shows the notation of this transcription. While the melody does not
sound particularly Irish, it is convincing and original, has a typical AABB structure,
shows rhythmic consistency and novelty, repetition and variation, and uses cadences
appropriately. The first part also has been given two endings. The model has even
created a unique title: neither “Mal” nor “Copporim” appear in the training data.

We synthesized over 35,000 of these generated tunes using a variety of instru-
ments common to Irish traditional music, and created The Endless Traditional Music
Session website to stream these results. Figure16.2 shows a screenshot. Every five
minutes a new random set of seven tunes would appear in rotation. We posted a
message about this on the discussion forum of the website from which we got
the data (https://thesession.org/discussions/37800). Most replies were critical: user
hnorbeck writes, “Interesting, but the results sound rather dull.” Ergo writes: “I
listened to a couple and they sound – weird. I mean the melodies themselves, not
the production. Nothing going on. I think you’d have to get a good musician or two
to actually play a few of these for them to make sense, if they can make any sense.”
AB writes, “Basically it’s crude turntabling without the sense of a musician familiar
with the significance of various motifs & phrases.” ceolachan notes a disconnec-

https://thesession.org/discussions/37800
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Fig.16.2 Screenshot ofTheEndless TraditionalMusic Sessionwebpage,which served up a random
set of seven tunes generated by themusicAI folk-rnn (v1). The titles and group nameswere generated
by the model as well

tion between the music and its function: “Teach it to dance first?!” A few comments
describe trying to play some of the generated tunes, e.g., Mark Harmer writes,

I’ve had a romp round the archive of mp3s. It’s a slightly surreal experience, like you are
listening to the output of someone locked in a cell and forced to write tunes! …Interesting
to listen to a few - normally you know pretty much immediately whether a tune’s going to
be good or not, but there is quite a lot of variation during the tune - not “totally unexpected
variation” but not simple repetition either. In [The Mal’s Copporim], the first two phrases are
quite fun as a generative idea to "human-compose" the rest of it! I know that’s not quite the
point of course. Still had fun trying the opening of this one on the harp …

Regardless of the fact that many of the generated melodies did not sound like
authentic Irish traditional tunes, we did not have difficulties finding examples that



16 Folk the Algorithms: (Mis)Applying Artificial Intelligence to Folk Music 427

were plausible and interesting enough for composition. One of the first examples is
Sturm’s 2015 electroacoustic composition, “Eight short outputs generated by a long
short-term memory network with three fully connected hidden layers of 512 units
each trained on over 23,000 ABC transcriptions of session music (Irish, English,
etc.), and arranged by my own ‘personal’ neural network trained on who knows
what for who knows how long (I can’t remember any of the settings)” [68]. Our
exploration eventually led to many interesting research questions that motivated
more serious and deliberate work in a variety of directions, and which resulted in
many conference papers [35,69,70,73], journal articles [43,71,74,75], workshops
and concerts, a professionally recorded music album, “Let’s Have Another Gan
Ainm” [72], media attention, and significant research funding including AHRC No.
AH/R004706/1 (Engaging three user communities with applications and outcomes
of computational music creativity) and ERC-2019-COG No. 864189 (MUSAiC:
Music at the Frontiers of Artificial Creativity and Criticism).

In this chapter, we survey several directions of our research in music AI. In the
next section, we discuss how folk music provides exciting avenues for research
in machine learning and AI, and survey past work in emulating folk music with
computers. Section16.3 describes several versions of folk-rnn that we have created,
motivated by questions of music and engineering. Section16.4 evaluates some of
these systems to gauge how successful they are, and, more broadly, how useful they
can be formusic creation. Finally, Sect. 16.5 discusses some of the ethical dimensions
of our research.We hope that this chapter provides an intriguing look at how research
in music AI can be accomplished in ways that are productive and respectful of the
practices from which it draws.

16.2 Music Artificial Intelligence and Its Application to Folk
Music

Music AI involves engineering machines that can perform tasks that would nor-
mally require human music intelligence or ability. Examples include: recognizing
musical instruments, segmenting music, recommending music, identifying musical
characteristics like melody, harmony, and structure, expressively performing music,
transcribing music, composing, accompanying, and improvising. The commercial
and cultural applicability of such systems translates to considerable impacts, both
positive and negative [43,75]. Technical details of such systems can be found in sev-
eral texts; e.g., Lerch [52], Müller [57], Knees and Schedl [49], Dean and McLean
[20].

Applying computational modeling to create music has a rich history beginning
in the late 1950s [40]. Much of that work is centered on the emulation of heavily
theorizedmusical styles such as the chorales of J. S. Bach; e.g., Ebcioğlu [22], Hild et
al. [38], Hadjeres et al. [34]. Comparatively little work, however, has been devoted
to modeling and emulating folk music. This is surprising for several reasons. For
traditions that are still practiced, like Irish music, there exists a lot of data with
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which music AI can be trained. Much of this music data is free of copyright as well.
Even though folk music can lack explicit rules, it often still has implicit conventions
that can motivate decisions for modeling and evaluation. Irish traditional music is
unique in the sense that expert practitioners can be found in many places around
the world. This makes it possible to involve practitioners in an evaluation process.
Such research can provide starting points for exploring the emulation of other music
styles, and for studying the computer augmentation of human creative practices.
Sections16.3 and 16.4 give several examples of the above; but first, we survey past
research (other than our own) in the computational modeling of folk music.

16.2.1 1950s–60s

The first reference we can find applying machines to generating folk-like music
is given by Hiller [39], who mentions work performed around 1951 but not pub-
lished until a decade later: Olson and Belar [60] programmed a machine to generate
melodies in the style of those written nearly a century earlier by American composer
Stephen Foster, himself borrowing from folk songs at that time. Olson and Belar [60]
describe their machine as meant to be an “aid” to the composer, “in his search for
melody which is the essence of most music.” This work occurred only a few years
after machines started to be applied to analyzing folk melodies, as in the work of
Bronson [8].

Cohen [12] mentions work from 1955 on the generation of music by a first-
order Markov chain with note transition probabilities found by analyzing “Western
cowboy songs”. Thiswork appears to never have been published. Pinkerton [66] takes
a similar approach but with 39 nursery tunes. These works appear to be motivated
by the mathematical study of music from the perspective of information theory.

Brooks et al. [9] is perhaps the most thorough early investigation of melody
generation by computer models with parameters found from existing music. They
analyze the melodies in 37 common-meter hymns, and build Markov chains having
orders from one to eight. They also impose a variety of constraints on the generation
process, such as note durations, and starting and ending pitches, and generate 600
new melodies of eight measures. They discuss some of the results in terms of pitch
range, melodic contour, intervalic content and singability, and the reproduction of
melodies in the training material. Similar to Pinkerton [66], Brooks et al. [9] explore
the use of music synthesis to test the completeness of their statistical analysis of
music.

Hiller [39], in a section titled, “Algorithms for generating folk tunes”, observes
that much music generation synthesis work up to that time had occurred in the Soviet
Union, Hungary and Czechoslovakia, and gives several examples. For instance,
Havass [36] analyze 100 folk songs collected byHungarian composer ZoltánKodály,
and synthesize new melodies using a Markov model built from that analysis. They
present no musical examples in the text, but propose to play five generated melodies
from magnetic tape at the August 1964 conference of the “International Folk Music
Council” (where Zoltán Kodály delivered the keynote address). It is unclear if this
materialized since a report about the conference makes no mention of this in the
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schedule. The Hungarian Academy of Sciences, the institute under which Havass
worked, is also noted to be studying folk dancing from computational perspectives
[27].

16.2.2 1970s–90s

Lieberman [53] proposes testing whether a given set of statistics is sufficient for
describing a melodic style by generating melodies using those statistics and com-
paring them with real ones. They briefly discuss applying such an approach using
Markov models with parameters derived from analyses of Javanese melodies, and
motivate the search for statistics that are more descriptive of that style of music since
the results are poor. A similar argument of studying the completeness of a set of
musical rules is found in Sundberg and Lindblom [76], who study the generation
of melodies according to grammatical rules found from analyzing Swedish nursery
songs by a specific composer, as well as a small set of folk tunes.

Cope [19] applies his Experiments in Music Intelligence—an approach he devel-
oped for imitatingWestern composers such asBachorChopin by focusing onpatterns
and their variation—to gamelan gong kebyar, based on transcriptions into Western
notation. These, as he observes, abstract away the tuning system as well as the tim-
bral qualities—both rather important attributes in this music. According to Cope, the
generated outputs were considered acceptable to gamelan musicians. He acknowl-
edges that this endeavor may be biased because of the grounding in Western musical
concepts that only partially capture the gong kebyar music.

Mozer [56] proposes music modeling and generation using artificial neural net-
works and amusically-informed representation.Hepresents results based on artificial
melodies, melodies by Bach, and 25 “traditional European folk melodies” from a
17th century collection ofmelodies for recorder. He provides an example of amelody
generated in the latter style, but performs no deeper evaluation.

16.2.3 2000s–10s

Eck and Schmidhuber [24,25] investigate the success of a long short-term memory
network (LSTM) [42] in modeling and generating “twelve-bar blues”—a melodic
form following a specific harmonic progression. The training data was constructed
by concatenating together 12 common-meter measures of crotchets from a scale of
6 pitches each within a particular harmonic context. Each measure was composed
by the authors. The results are evaluated by informal listening, and by comparison
with melodies generated by random walks.

Lapalme [51] appears to be the first to train music AI on traditional music from
Ireland and England, which is extended in Eck and Lapalme [23]. They created one
dataset from56 Irish tunes downloaded from thesession.org [48], and a seconddataset
of 435 tunes from the so-called Nottingham dataset, which is a collection of about
1035 British folk music pieces [29]. All transcriptions in this dataset are notated in
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common meter. The authors quantize each melody as a sequence of quavers, and
build a representation that links notes to others in the same metric position occurring
previously. They train an LSTM network to predict the next pitch of a sequence
given the previous pitch, and the pitches occurring at the same beat position in the
three preceding measures. They test the accuracy of each model in continuing the
first eight measures from tunes in a validation partition of their datasets.

Spiliopoulou and Storkey [67] also use the Nottingham dataset and explicitly
state that their motivations are to study the success of machine learning systems in
capturing and imitating the structures in these melodies, as well as analyzing what
musical concepts the models learn and how that knowledge is represented. They
compare threemachine learningmodels trained on 117melodies. As done in Eck and
Lapalme [23], they encode a melody as a sequence of events quantized with a quaver
time step. The events are either pitch (one of 24), silence, or a continuation. The
models are built to predict events occurring several time steps ahead of conditioning
events. Their analysis of some of the components of the trained models show them to
have acquired sensitivity to meaningful musical features, e.g., triads, arpeggiation,
and scalar movement.

The Nottingham dataset appears in several other published works in machine
learning; e.g., Paiement [61], Boulanger-Lewandowski et al. [7], Bengio et al. [5],
Pascanu et al. [62], Goel et al. [30], Chung et al. [11], Yu et al. [78], Johnson [44],
Bacciu et al. [3]. The only form of evaluation of the resulting models appearing
in these works involves computing how well-trained models predict real sequences
held out from training. These works contain no discussion of the usefulness of such
systems for music creation.

A unique project involving AI and folk music is LIVINGSTON [54]: “an artifi-
cially intelligent, digital organism capable of accessing the totality of the history of
Canadian folkmusic (among other corpuses) and generating new yet hyper-authentic
Canadian folk objects via her/his algorithmic agents and compression formats.” This
system seems to only generate lyrics and chord progressions, and the two volumes
of recorded music produced with it—titled “Artificially Intelligent Folk Songs Of
Canada”—is performed by humans. Not much more can be surmised from existing
resources at this time.

Herremans et al. [37] train Markov models of different orders on transcriptions
of 37 melodies performed on the traditional Ethiopian lyre (called a bagana). This
instrument has 10 strings, only 6 of which are sounded. Each played string is asso-
ciated with a different finger: five on the left hand, and the index finger of the right
hand. A melody can then be represented by the finger that plucks the string. The
authors explore a variety of metrics to gauge the fitness of the resulting models. This
work is the first we can find in which melodies generated by models are qualitatively
assessed by a practitioner of the music style used for training.

Colombo et al. [14] train music AI on 2,158 Irish traditional melodies transcribed
by Norbeck [58]. They represent a melody as a sequence of elements: paired pitch
and duration values, as well as “ending” and “silence”. They normalize the melodies
by transposing them to be in C major or A minor, and scaling all durations based on
the frequency of the most common duration. They propose to model a melody by two
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recurrent neural networks, one modeling a conditional distribution on the durations,
and another modeling a conditional distribution on the pitches and duration—that is,
one network predicts the next duration based on the previous durations generated,
and the other network predicts the next pitch based on the previous pitches generated
and the duration of the pitch to be generated. They evaluate the resulting model
by observing how it continues a given seed, either 2 notes or 8 full measures. The
melodies shown in the paper are aimless andbear little resemblance to Irish traditional
music.

Colombo et al. [15] extend the approach taken in Colombo et al. [14]. They
again propose using two recurrent neural networks, but this time one models the
conditional distribution of durations given all previous durations and the current
pitch; and the other models the conditional distribution of pitches given all previous
pitches and the next duration. They create a dataset combining 2,160 Irish melodies
from Norbeck [58], and 600 Klezmer melodies from Chambers [10]. In this case,
they do not transpose all melodies to a common key. They propose a measure of tune
novelty with respect to a collection based on the co-occurrence of subsequences in
each. The article is accompanied by synthesized examples, using harp sound for the
Irish ones and clarinet for the Klezmer, thus accentuating the differences. Several
examples have aimless melodies that do not sound Irish, and some of the Klezmer
examples veer off course.

Colombo et al. [16] propose a different music representation from their past work.
Each note in a sequence is given by a tuple: pitch, duration, and time offset relative
to last note. They propose modeling the joint probability of a sequence of notes as
a product of three conditional distributions. Each of these distributions is modeled
as a layer in a recurrent neural network (RNN), with conditioning supplied after
sampling from the output of each of the three hidden layers. In the first step, their
model samples a time offset; then themodel samples a duration; andfinally, themodel
samples a pitch. They train models on a variety of datasets, including Nottingham.
For their trainedmodel, theymeasure themean likelihood of melodies of a validation
dataset. They also link to a website where one can listen to dozens of sound files
created from synthesizing the generated music.

Goienetxea andConklin [31] aremotivated by the challenging problemof creating
a music AI that can compose melodies with “coherence”, or sensible long term
structure coming from the creative development of basic material. They focus on
modeling the structures found in a set of 2,379Basque folkmelodies [21]. Theirmusic
representation uses what is called “multiple viewpoints” perspectives, a description
of music at several levels of detail [18]. They use the resulting model to generate
melodies in the same style, and describe a concert in which the audience was tasked
with trying to identify which of three melodies was not computer generated.

Pati et al. [64] propose amusicAI that generatesmaterial linking a given beginning
and ending. They approach this by building a probabilistic model that interpolates
between representations of these contexts in a latent space. They write of using
a subset of size about 21,000 melodies notated with a common meter from the
collection of Irish traditional music transcriptions used in Sturm et al. [73]. Since
that dataset only has at most 12,593 melodies that fit this description, it is possible
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the authors split up melodies into eight-measure sections. The resulting models are
evaluated quantitatively in terms of model fit, and qualitatively, using a subjective
listening test involving rank which of two completed melodies is preferred.

16.3 Modeling Folk Music Transcriptions with Long Short-Term
Memory Networks

Building folk-rnn (v1) and experimenting with it motivated several interesting
research questions. What would happen if we trained the same kind of model but
using transcriptions expressedwith amore efficient andmusicallymeaningful vocab-
ulary? How can we meaningfully evaluate these systems with music practitioners,
both inside and outside the traditions from which the data comes? How can we mea-
sure the “musical intelligence” of these systems? How can we adapt their knowledge
to other music traditions? How could such models contribute to and detract from
music creation? What does the training, evaluation, existence, and use of such mod-
els mean for traditional music? How might they impact traditional music in positive
and negative ways?

We have so far built several versions of folk-rnn. While each version is a standard
LSTM network, they differ in terms of training data and music representation. In
this section, we discuss the technical details of LSTM networks. We then describe
several different versions of folk-rnn, and present some of their outputs. Section16.4
discusses in more depth methods we have used to evaluate these models.

16.3.1 Long Short-TermMemory Networks

LSTM networks are a type of recurrent neural network (RNN) with special mech-
anisms to control the flow of information through it as it models a sequence [42].
It is essentially a dynamic model of a probability distribution describing what is
likely to come next in a sequence it is observing. To be more explicit, say the LSTM
network has observed the sequence of vectors (x1, x2, . . . , xt ). It computes the pos-
terior probability distribution of the next vector, P(xt+1|xt , . . . , x1)—that is, the
probability of observing xt+1 given the t observations up to that step.

Figure16.3 diagrams anLSTMnetwork having a single hidden layer. There can be
any number of hidden layers, however. The hidden layer we use for folk-rnnmodels
processes the input at time step t according to the following algorithm [32]:

it ← σ (Wxixt + Whiht−1 + bi ) (16.1)

ft ← σ
(
Wx f xt + Wh f ht−1 + b f

)
(16.2)

ot ← σ (Wxoxt + Whoht−1 + bo) (16.3)

c′
t ← tanh (Wxcxt + Whcht−1 + bc) (16.4)
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Fig.16.3 An LSTM network with one hidden layer. An input vector xt at step t is processed by the
hidden layer, to form the hidden state vector ht in a possibly higher dimension. This is then projected
by a softmax layer to a vectorpt ,which defines the probability distribution P(xt+1|xt , xt−1, . . . , x1).
Sampling from this distribution produces the output for the next time step, xt+1, which becomes
the next input to the model when the LSTM network is generating a sequence

where σ denotes the sigmoid function

σ(x) := 1

1 + e−x

which is applied to each element of the vector. The hyperbolic tangent is similarly
applied to each element of the vector. The vectors it , ft and ot are called the “in gate,”
“forget gate,” and “out gate”, respectively. These encode the new information passed
into the LSTM by xt with the context of past information represented by ht−1. The
matricesWx∗ andWh∗, and bias vectors b∗, define how this information is encoded
in the hidden layer. These vectors are then combined to update the “cell state” and
“hidden state” of the hidden layer, respectively:

ct ← ft � ct−1 + it � c′
t (16.5)

ht ← ot � tanh(ct ) (16.6)

where � denotes element-wise multiplication. This shows how updating the cell
state involves modulating the cell state of the prior step with the forget gate while
adding new information from the in gate. The new hidden state is a product of the
out gate with a compression of the updated cell state.

The softmax layer transforms ht as follows:

pt ← softmax
(
T−1
s [Wsht + bs]

)
(16.7)

where Ts is a user-specified parameter called temperature, and the softmax function
is defined

softmax(y) := exp(y)
∑

exp(y)
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which scales the vector y such that its elements sum to one. The vector pt specifies
the posterior probability distribution P(xt+1|xt , . . . , x1). Sampling from this distri-
bution produces a prediction of xt+1. If the LSTM network is generating a sequence,
one need only make xt+1 the input for updating the posterior distribution, and then
predict the next element of the sequence. This procedure cycles indefinitely until a
stopping criterion is reached. If the LSTM network has several hidden layers, then
each hidden layer after the first transforms the hidden state vector of the preceding
layer according to the equations above (but with different parameters). Other archi-
tectures are possible too; e.g., where each hidden layer has access to the states of all
other hidden layers [32].

The parameters of an LSTM network—the initial conditions h0 and c0 of each
layer, the matrices and biases transforming the input of each layer, and the matrix
and bias of the softmax layer—come from training the LSTM network to minimize
a specified loss function. The loss used for folk-rnnmodels is called the mean cross-
entropy loss. Consider a sequence s of M indices into a discrete vocabulary; e.g.,
256 alpha numeric characters. Let us encode this sequence as a series of vectors,
(x1, x2, . . . , xM ), each dimension being zero except for the one that corresponds
to the vocabulary element, which is called one-hot encoding. Each dimension of
xm , and likewise the LSTM network output pm , refers to a particular element of
the vocabulary. The goal of the network in step m of modeling sequence s using
cross-entropy loss is to predict which dimension of pm should be set to one. This
means that at step m we want to make the network produce a vector pm that looks
like xm+1. In order to do that, we want the output of the network to minimize the
mean cross-entropy loss over a sequence:

L(s) := − 1

M

M−1∑

m=1

log[pm]s(m+1) (16.8)

where s(m) is the mth element of the sequence, and [pm]i is the i th element of the
vector. Each individual term in the sum above is the cross-entropy loss at that step
in the sequence. If the LSTM network produces pm = xm+1 for all elements of the
sequence, then L(s) = 0, the smallest it can be. However, if the network produces a
pm which is close to zero in dimension s(m + 1), then L(s) will become very large.
Training the network with this loss entails making it move as much probability mass
into the correct dimensions of the posterior distribution so as to make L(s) small for
most training sequences. This is accomplished by using back-propagation through
time with stochastic gradient descent, and other computational techniques intended
to avoid overfitting. More details are provided in Sturm et al. [73].

16.3.2 folk-rnn (v2)

The second version of folk-rnn [50], applies the same LSTM network architecture to
the same training data as the first version [48], but uses a modified music representa-
tion. Since folk-rnn (v1) is trained to model blocks of text one character after another,
it has to learn that some characters can have different functions. For instance, ‘E’
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can refer to a letter in a title, a pitch, part of a pitch (e.g., ‘_E’), or part of a key (e.g.,
‘K:Emin’). This ambiguity means folk-rnn (v1) has to learn the different contexts in
which each character can appear. Furthermore,modeling blocks of text in a document
is not necessarily modeling music transcriptions. For instance, some training blocks
could begin in the middle of a transcription. folk-rnn (v1) also had to learn about the
many keys in which the training tunes are transcribed. Most Irish traditional music
uses four modes: ionian (major), aeolian (natural minor), dorian, and mixolydian;
but these can involve many keys; e.g., G, D, and A major, E and B minor, D and
A mixolydian, A and E dorian. To create folk-rnn (v2), we thus set out to train an
LSTM on music transcriptions expressed by a vocabulary where each of its symbols
has only one meaning.

Before we discuss the vocabulary we designed, we review the representation
used in the data collected from thesession.org [48]. ABCnotation [1] was designed
to compactly describe the “bones” of a folk tune. It is important to know that in
Irish traditional music, a transcription of a tune only provides a basic structure.
Rarely is a melody played as notated; performers elaborate upon the “bones” using
ornamentation, variation, harmony, and rhythmic push and pull to give “lift” [26].
In ABCnotation [1], information fields are marked with a capital letter followed by
a colon; e.g., ‘T:’ provides the title; ‘M:’ specifies the meter; ‘L:’ specifies the
base duration of a note without an explicit duration marker; ‘K:’ specifies the key.
Following these fields is the tune body, which notates the melody. Pitches within the
given key are specified by a letter, which may be sharped or flatted by preceding it
by ‘ˆ’ or ‘_’, respectively. In the key of C major, ‘C’ is middle C, while ‘C,’ is an
octave below, ‘c’ is an octave above, and ‘c’’ is two octaves above. More commas
and single quotes can be added to lower or raise the pitch. Harmonic accompaniment
is specified in double quotes, such as “Am”. Multiple pitches sounding at the same
time are grouped between square brackets, such as ‘[Gd]’. When note durations are
specified explicitly, they are either numbers after the pitch (e.g., ‘2’), or symbols:
‘/’ is shorthand for ‘1/2’, while ‘A > B’ steals time from the second pitch and
gives it to the first, conversely ‘A < B’ does the opposite, and ‘(3 EFG’ indicates
a triplet. Otherwise, note durations take on the value specified by the ‘L:’ field.
Finally, the symbol ‘|’ shows a measure line, ‘|:’ and ‘:|’ are beginning and
ending repeat signs, and ‘|1’ and ‘|2’ are first or second endings, respectively.
Many other symbols are possible.

To address the issue of ambiguity in ABC representations, we designed a vocab-
ulary of musical tokens, where each token represents only one thing. The vocabu-
lary we designed consists of 137 tokens grouped into seven types (examples given
in parentheses): meter (‘M:6/8’), key (‘K:Cmaj’), measure (‘:|’ and ‘|1’), pitch
(‘C’ and ‘^c’’), grouping (‘(3’), duration (‘2’ and ‘/2’), and transcription (‘<s>’
and ‘<\s>’). We transposed all transcriptions to have a root note of C as well, so
that a model would only need to learn about the four typical modes.We also removed
titles, harmonic specifications, grace notes, ties and slurs, and other markings. As an
example, The Ballydesmond Polka given in the Introduction becomes the following
sequence of 90 tokens in the new representation:
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8
6

Fig.16.4 Notation of transcription #18727 generated by folk-rnn (v2), which can be found in “The
folk-rnn (v2) Session Book Volume 7 of 10” [28]. We transpose it here to E dorian from C dorian

<s> M:2/4 K:Cdor |: G > c c d | e f g 2 | B > A B c | B A G F | G
> c c d | e f g a | b g f d | c 2 c 2 :| |: c’ 2 c’ d’ | c’
b g a | b 2 b c’ | b g f g | g < c’ c’ d’ | c’ b g a | b g f
d | c 2 c 2 :| </s>

Each token is demarcated by a space. The tokens ‘<s>’ and ‘</s>’ signify the
beginning and ending of a transcription, respectively.

In addition to transposing and tokenizing the collection of transcriptions we
retrieved from thesession.org [48], we performed a significant amount of cleaning:
removing comments masquerading as tunes, removing jokes (e.g., Cage’s “4m33s”),
removing chord progressions, and fixing as many human counting errors as possible.
We removed all transcriptions that had explicit changes in meter or key so that all
transcriptions followed the same pattern: meter, mode, and tune. The encoded and
cleaned dataset consists of a total of 23,635 transcriptions, with a total of 4,056,459
tokens, of which 2,816,498 are of the type pitch, 602,673 are of the type duration,
and 520,290 are of the type measure [50].

The network architecture of folk-rnn (v2) is essentially the same as for the first
version (having three hidden layers of 512 units each), but with input and output
dimension 137. The total number of parameters in v2 is 5,599,881. Training proceeds
in nearly the same way as for the first version, but uses minibatches of 64 entire
transcription sequences rather than continuous chunks of text. The v2 model results
from 100 epochs of training, one epoch being exposure to all transcriptions in a
training partition. More details are provided in Sturm et al. [73].

As for the first version, we had folk-rnn (v2) generate tens of thousands of tran-
scriptions and published 10 volumes of these [28]. The model is initialized with
the one-hot vector representing the token ‘<s>’, and terminates token generation
when it produces ‘</s>’. One example output of this model is shown notated in
Fig. 16.4. This transcription shows the conventional structure, rhythmic consistency,
repetition and variation, and appropriate cadences. The second part goes higher in
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Fig.16.5 Notation of transcription #5712 generated by folk-rnn (v3), which can be found in “The
folk-rnn (v3) Session Book Volume 3 of 4” [28]. We transpose it here to G major from C major

pitch than the first, which is a typical characteristic of this kind of music. The two
sections of the tune are also linked together well: the fourth measure of each part is
similar, and the endings of both parts are the same. It also sounds like Irish traditional
dance music, and is very playable on traditional instruments—providing opportu-
nities for ornamentation and variation. Several more examples generated by v2 are
discussed in Sturm et al. [73], Sturm and Ben-Tal [71], including using the model to
“autocomplete” melodic ideas.

16.3.3 folk-rnn (v3)

Although the vocabulary we designed for v2 addresses ambiguity in ABCnotation
[1], it still has redundancy. For instance, for a transcription in themode ofCmajor, the
token ‘ˆB,’ refers to the same pitch as ‘C’ and ‘=C’. In the C minor mode, the token
‘E’ refers to the pitch E flat above middle C, which is the same as the token ‘_E’. We
thus decided to train an LSTM network on the same collection of transcriptions but
with all pitches made explicit, and using only naturals and sharps. Furthermore, so
that the model could learn about all possible pitches in the vocabulary, we added all
transcriptions transposed up a half step (having a root of C-sharp). We keep the four
mode tokens, but do not specify the root. This resulted in a vocabulary of size 104
tokens in the same seven types as for v2. In this representation The Ballydesmond
Polka given in the Introduction becomes (with a root of C):

As for v1 and v2, we had the trained folk-rnn (v3) generate 10,000 transcriptions,
available in four volumes [28]. Figure16.5 shows a particularly good output of this
model displaying many of the conventions of the style.
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Fig. 16.6 Notation of a transcription generated by folk-rnn (v2) using beam search with n = 4
tokens selected in each step. We transpose it here to D major from C major

16.3.4 folk-rnn (vBeamSearch)

One step of an LSTM network results in an estimation of P(xt+1|xt , . . . , x1). How-
ever, this can be generalized to estimating a joint probability distribution of several
tokens at once; e.g., P(xt+1, xt+2|xt , . . . , x1) = P(xt+1|xt , . . . , x1)P(xt+2|xt+1,

xt , . . . , x1). This means that the model can be used to predict several tokens at
each step by first computing the probability distribution of each token conditioned
on all others, then multiplying these to form the joint conditional distribution, and
finally sampling from this. As the number of tokens to be predicted simultaneously
becomes large the computational complexity grows, but a strategic approach called
“beam search” canmake it efficient. Figure16.6 shows a transcription generated four
tokens at a time using beam search with folk-rnn (v2). Henrik Norbeck, an expert in
Irish traditional music and creator of a large dataset of transcriptions [58], says of
this output:

This tune sounds like it could have been composed by Paddy Fahy or Sean Ryan. There are
already two tunes by them that are similar to each other — so much that in my mind they
are connected — and this generated one becomes a third tune in the same class, but still a
distinct tune.

16.3.5 folk-rnn (vScandinavian)

While the collection of thesession.org [48] is focused on Irish traditional music, the
website folkwiki.se focuses on Scandinavian traditional music, and contains many
thousand transcriptions in ABCnotation [1]. Hallström et al. [35] describes train-
ing LSTM networks using this collection of data. In this case, the amount of data
acquired from folkwiki.se is an order of magnitude smaller than that used to train the



16 Folk the Algorithms: (Mis)Applying Artificial Intelligence to Folk Music 439

4
3

Fig.16.7 Notation of a tune generated by folk-rnn (vScandinavian), which can be found at https://
themachinefolksession.org/tune/551

“Irish” versions of folk-rnn (4,083 transcriptions vs. 23,635). Even after designing
an efficient vocabulary, models trained on only the Scandinavian transcriptions did
not produce plausible melodies. To overcome this, the model was first trained on
a dataset combining all transcriptions of the Scandinavian and Irish datasets. Then
the pre-trained model was “fine-tuned” on just the Scandinavian transcriptions. The
purpose of pretraining is to help a model learn about the vocabulary, and the syntax
of the dataset. Fine-tuning then aims to adjust the model parameters to specifics of
a subset. To accommodate the different ABC notation conventions in the Scandina-
vian transcriptions, other tokens had to be included in the vocabulary. Furthermore,
the Irish transcriptions were not transposed to a common root before they were tok-
enized because the use of keys in the Scandinavian data follows slightly different
conventions, like key changes between sections. The resulting vocabulary size of the
model is 226. Figure16.7 shows a particularly good transcription generated by the
trained model.

16.4 Evaluation

One of the major questions underlying our research with folk-rnn is how to mean-
ingfully analyze and evaluate such models, as well as their involvement and impact
in music practice [74]. A common approach to evaluating music AI is what is often
termed a “musical Turing test”: listeners are presented with some music and are
asked whether it came from a human or a machine. One example of this approach is
by Cope [19], who asked an audience to decide whether a human-performed piece of
music is by Mozart or generated by his system in the style of Mozart. More recently,
Collins and Laney [13] ask listeners to compare two pieces and to identify which
was written by a real composer (in this case, Bach or Chopin). Ariza [2] argues

https://themachinefolksession.org/tune/551
https://themachinefolksession.org/tune/551
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how this terminology—“musical Turing test”—is inaccurate since the Turing test is
focused on having an interactive dialogue in natural language. In contrast, the music
discrimination task is very different from howwe normally engage withmusic. Ariza
[2] instead uses the terminology, “Musical Output Toy Test.” We should note that
in addition to the methodological problems with this approach, it also inspires the
narrative pitting machines against humans, portraying AI as a threat.

Pease and Colton [65] provide an in-depth discussion of the problems with these
discrimination tests in the context of computational creativity, and review alternative
approaches. They first distinguish between judging the value of a generated output
and evaluating the creativity of the system. They advocate focusing more on the
latter in order to provide measures that can drive research forward and that are also
theoretically sound. They summarise two earlier approaches, called the FACE and
the IDEA models [17]. The first aims to capture aspects of the creative process:
Framing information about the work, Aesthetic measures, developing Concepts, and
Expressing such a concept. The IDEA model brings the viewer/listener into the
equation. They propose to evaluate the effect of the experience on audience well-
being (positive or negative), and the cognitive effort required to engage with the
work.

Another common approach is to ask listeners to rank music generated by an AI,
such as how pleasant a melody is. Problems with this include the lack of definition,
and subjectivity andbias in listening.A stark example of the latter is exemplified by an
unintentional experiment. An article appearing inTheDailyMail [33] about ourwork
included a 30-s music excerpt from a set performed by traditional musicians at one of
our workshops. Readers of the article were able to comment for a few weeks: “[The
excerpt] sounds very neat. It’s missing the ‘human’ element.” “Total Crap! A foot
tapping tune in 6/8 does not make it Irish. Also it feels pretty bland.” “Totally lifeless
without warmth.” “Sounds like a robotic Irish jig….” The music excerpt posted by
the Daily Mail, however, was not of a computer-generated tune, but a real traditional
tune. This unintentional experiment nicely illustrates how a listener’s experience
of music is not just about the acoustic waves hitting their ears. Music happens at
the intersection of incoming (or sometimes imagined) sounds, perception, memory,
preconceptions, past experiences, social and physical environment, and myriad other
factors.

Within the domain of computational creativity, Jordanous [45] proposes to capture
themeaning of creativity through an analysis of existing discussion about it. She iden-
tifies fourteen components of creativity including familiar ones such as competence,
originality, and value, but also aspects that are not often included in proposed defi-
nitions, such as social interactions, perseverance, and spontaneity. She suggests that
evaluations should start from identifying what aspect of creativity will be assessed.
The suggestion is that this would not only enable more meaningful comparisons
but will also guide the choice of evaluation that matches specific components under
investigation.

Yang and Lerch [77] propose the use of note-based statistical measures as a basic
formof evaluation. For collections ofmusicalworks, they calculate pitch andduration
ranges, note transitions histograms, and other fairly general statistics. They note that
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these only apply to monophonic data, though some of the properties can be extended.
The internal variability of these statistics can provide an informative profile of a
dataset, either real or generated. Comparing datasets in this way can, at least, identify
problems with modeling procedures, which can assist engineering. If, for example,
generated melodies display markedly different statistical properties from those in the
training data, this can point to specific problems with the model. Using these general
measures to compare outputs of two different models can suggest the dimensions
that each is successful in modeling.

Sturm and Ben-Tal [71] demonstrate five different approaches to evaluate the
folk-rnn (v2) model: (1) comparing the statistics of real and generated transcription
data (“first-order sanity check”); (2) performing basic music analysis of generated
transcriptions; (3) probing a model’s musical knowledge with “nefarious” initial-
izations; (4) involving a model in music composition; and (5) performing expert
elicitation with real-world music practitioners. Sturm [69,70] take another approach
by attempting to reverse engineer the parameters of folk-rnn (v2) to understand their
musical significance. Sturm et al. [74] analyze different music AI from several per-
spectives to determine how such models can impact music creation, and how the
use of such models for music creation can inform the engineering pursuit. In the
following, we look at several of these evaluation approaches.

16.4.1 Evaluation by Parameter Analysis

Sturm [70] analyzes the parameters of the input layer of folk-rnn (v2), and Sturm
[69] analyzes those of its softmax layer, in terms of the model vocabulary. Much
more work has yet to be done to fully understand the model, but it is clear from these
analyses that the model has learned some musically meaningful characteristics from
looking only at data; e.g., placement of measure lines, enharmonic relationships,
cadences. In a similar direction, Karpathy et al. [47] analyze the internal dynamics
of recurrent models of characters in English texts, and find some parts of the models
are activated near the conclusion of a sentence, quotation, or paragraph. In the case of
a character model, it is difficult to draw concrete conclusions about how it is treating
the elements of the vocabulary because of the ambiguity of the representation. The
vocabulary of folk-rnn (v2), however, is much less ambiguous by design, and so the
analysis of the model becomes easier.

A unique way to analyze folk-rnn (v2) is by looking at how it stores and processes
information in vector spaces. Figure16.8 diagrams the procedure bywhich thismodel
transforms its input into an output. Since the size of its vocabulary is 137, its input
and output are vectors in R

137. However, they are more restricted than that. First,
since the LSTM has been trained on one-hot encoded input vectors, then the input is
just one of the 137 standard basis vectors of R137. (The input can of course by any
point inR137, but the model has only “seen” the 137 standard basis vectors ofR137.)
Second, since the output is computed by a softmax (16.7), then all elements of the
output vector will be positive, and the sum of the magnitudes of the vector will be
one. Hence, the output vector is a point on the positive face of the �1 unit-ball in
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Fig. 16.8 Diagram of how folk-rnn (v2) is transforming information between different vector
spaces. Elements of the standard basis of R137 are transformed by the first LSTM hidden layer to
points in a hypercube (−1, 1)512. The second and third LSTM hidden layers transform points in
(−1, 1)512 to points in hypercubes of the same dimension. The softmax layer then transforms points
in (−1, 1)512 to the points on the positive face of the �1 unit-ball in R

137. A sampling operation
then projects that point to an element of the standard basis of R137

R
137. Furthermore, the ordering of the dimensions at the input and the output relative

to the vocabulary is the same; i.e., the token represented by the mth dimension of
the input is also represented by the mth dimension of the output.

Now let us look at the steps involved in this transformation. The first hidden layer
transforms a vector of dimension 137 to a 512-dimensional vector. This is performed
by the algorithm in Eqs. (16.1)–(16.6), producing ht—the hidden state of the first
layer. From Eq. (16.6) we see that each element of ht is bounded in (−1, 1). Hence,
this first layer is mapping the standard basis of R137 to the hypercube (−1, 1)512.
Likewise, the second layer takes as input the first-layer hidden states in (−1, 1)512

and maps it to (−1, 1)512. The third layer does the same, but using the second-layer
hidden states. We finally reach the softmax layer, which maps (−1, 1)512 onto the
positive face of the �1 unit-ball in R

137. Finally, a sampling operation projects that
point to an element of the standard basis of R137.

Each one of these vector spaces has significance with respect to the concepts
learned by the model. The significance of the dimensions of the input and out-
put spaces are clear since they are closely connected with the vocabulary we have
designed: each orthogonal direction corresponds to one of the tokens. This fact helps
us interpret those layers closest to the input and output, which are the first hidden
layer and the softmax layer. Sturm [70] analyzes the parameters of the input layer
of folk-rnn (v2) in terms of the vocabulary. It appears that the first hidden layer
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has carved out subspaces of (−1, 1)512 in which to represent the seven types of
tokens. For instance, we see overlap in the representation of enharmonic pitches,
such that their representation in the model is similar. Figure16.9 shows the relation-
ships between all pairs of pitch-token-related columns of Wxc in the first hidden
layer. If two columns point in very similar directions, the color of the correspond-
ing element of this matrix will be white. If they are orthogonal, the color will be
gray. This comparison shows clear relationships between different tokens; e.g., pitch
tokens ‘A’ and ‘=A’ are encoded by this gate in nearly the same way, as are ‘B’ and
‘=B’, as well as ‘C’ and ‘=C’. We also see a similarity between ‘B’, ‘_B’ and ‘ˆA’,
which are the same in C mixolyidan, C dorian, and C minor. This shows folk-rnn
(v2) has learned something about enharmonic relationships from the data alone, and
that the cell gate of the first layer is treating these enharmonic pitch tokens in similar
ways.

Sturm [69] analyzes the parameters of the softmax layer, which is transforming
the hidden state of the third hidden layer into a probability distribution. This work
shows how some principal directions are important for representing tokens of the
measure type. This analysis also provides ways to adjust the behavior of the model,
for instance, to make it less likely to output particular pitches. Much more analytical
work has yet to be done to fully understand what is occurring in folk-rnn (v2), but
this kind of approach to analyzing an RNN is unique. The fact that the vocabulary of
the system is not ambiguous helps to reveal the significance of particular subspaces.

16.4.2 Evaluation by Co-creation

One way of evaluating folk-rnnmodels is by looking at how composers can use them
in the process of composition. Sturm, Ben-Tal and others have composed several
pieces using folk-rnn [50]. One approach for a composer is to sift through generated
outputs and locate ones that are interesting or inspire. A different approach involves
searching the creative space [6] of folk-rnn transcriptions by iteratively generating
transcriptions and changing parameters. In Boden’s formulation [6], generative rules
constrain the novel artifacts (poems, paintings, or music pieces, but also an idea or
scientific discovery) that are possible to discover within a conceptual space. In that
sense, folk-rnn is a manifestation of generative rules, which define the rather large
conceptual space of all possible folk-rnn transcriptions. Iteratively generating outputs
and tweaking the initialization parameters of the model is a search for valuable
artifacts in that space. But, as we explain in more detail in Ben-Tal et al. [4], sifting
for “gold” in this manner is not a straightforward process. The model is highly
nonlinear, which could contribute to it producing interesting results, but also makes
steering the generation process towards useful outputs somewhat unpredictable.

There are essentially three ways to interact with folk-rnn models. Changing the
random seed of the sampling procedure just results in a different sampling from
each posterior distribution. It has no musical significance. Changing the temperature
parameter, which is the multiplicative factor Ts in (16.7), affects how “conservative”
the sampling will be in each iteration. Figure16.10 shows one example transcription
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Fig. 16.9 Angles between columns cell matrix Wxc related to the pitch tokens in the first hidden-
layer.White means the columns point in the same direction. The axes are labeled with the associated
tokens. The diagonal structures show that columns ofWxc are related inways that reflect enharmonic
relationships; e.g., ‘A’ and ‘=A’ point in very similar directions; as do ‘B’ and ‘=B’

generated by folk-rnn (v2) at a low temperature; and Fig. 16.11 shows an example
generated at a high temperature. Setting the temperature to be very low will result in
the network choosing the most likely event at each step. This can produce transcrip-
tions having repeated notes and simple rhythms, but not always. High temperatures
will result in transcriptions that adhere less to the conventions in the training data.

The third way a user can interact with folk-rnn is by giving it a sequence to
continue. This provides perhaps the most immediate way to influence the content
of the model output. Figure16.12 shows how folk-rnn (v2) completes the given first
measure ‘M:4/4 K:Cmaj |: G C D E F G B A’ that is within the style of
its training material. If a given sequence is a little outside the scope of what folk-
rnn has seen it can produce unpredictable results. Figure16.13 shows how folk-rnn
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Fig. 16.10 Notation of a transcription generated by folk-rnn (v2) at a low sampling temperature
(Ts = 0.1) The first part of the transcription is very close to a traditional Irish polka, “Babes in the
Woods.”
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Fig. 16.11 Notation of a transcription generated by folk-rnn (v2) at a high sampling temperature
(Ts = 3)
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Fig.16.12 Notation of a transcription generated by folk-rnn (v2) initialized with ‘M:4/4 K:Cmaj
|: G C D E F G B A’

(v2) continues nearly the same measure, changed in only one token to make it less
conventional.

The design of the interaction with systems like folk-rnn needs considerable atten-
tion for them to serve as useful co-creative tools. To engage wider audiences in
the potential for machine learning to stimulate music making, we created a pair
of websites [4]: folkrnn.org and themachinefolksession.org. The first provides a
web interface to use folk-rnn models for generating transcriptions. The second is
a growing archive of transcriptions created by people using folk-rnn. At this time,
folkrnn.org has been more successful than the archive. The interface for generat-
ing transcriptions continues to be used with several hundred individual users each
month (with spikes following mention of the website in media or large events).
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Fig.16.13 Notation of a transcription generated by folk-rnn (v2) initialized with ‘M:4/4 K:Cmaj
|: G C ˆD E F G B A’. Compare to Fig. 16.12

https://themachinefolksession.org was intended to be a community portal for shar-
ing interesting machine-generated but human-edited/performed tunes, but this has
not gained much attention.

Finally, as noted above, the search for interesting or useful material from the
generated outputs can be tedious. An “artificial critic” that sifts through generated
material and identifies that having musical potential could greatly help—though
a composer would like to be able to personalize “musical potential”. More direct
control over the features that a model learns, as well as the generation process,
would also be useful. With increased knowledge about how the system learns and
how it encodes its knowledge (see Sect. 16.4.1), it should be possible to provide
additional methods of shaping the generated material.

16.4.3 Evaluation by Cherry Picking:“Let’s Have Another Gan Ainm”

A different approach to gauging the creative potential of folk-rnn is to ask perform-
ers to make music out of the generated material. We collaborated with a range of
musicians—both those familiar with the music traditions upon which folk-rnn was
trained and musicians coming from other backgrounds. Many of these show a fair
variety of results [71,72,74]. Significantly, most of the musicians did not have dif-
ficulties locating generated melodies they can perform, including performances on
the soprano trombone, trumpet, and the double bass (instruments that are atypical in
traditional music). At the same time, most of the musicians changed the generated
melodies in performance. They frequently changed notes here and there, especially
at the cadence points of phrases.

The relative ease of finding playable material in the generated outputs led us to
record and release an album [72]. The aim was to investigate the potential of folk-
rnn in creating material that sits comfortably within the domain of Irish traditional

https://themachinefolksession.org
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music. We worked with Daren Banarsë, a London-based composer and performer
who is well-versed in this kind ofmusic. By his account, he looked at several hundred
generated transcription and selected 20 to be recorded in the studio. Selecting the
tunes involved judgments about what makes a tune ‘good’: does it work as a session
tune? Is it playable by traditional instruments? Is it interesting and well-shaped?
How well will it work with other tunes combined in a set? How well do the tracks
add up to create a good album displaying both range and balance of the different
dance types that constitute this musical world. Sturm and Ben-Tal [72] describes the
process, and shows the changes Banarsë made to the generated material, and how he
combined them with real traditional tunes to form the eleven tracks of the album.

We purposely kept secret the background of the album until a number of experts
reviewed it.We did that to avoid bias in the reaction of the listener [55,63] rather than
to discover if people would be fooled by the machine composed ones. The music
was well-received by experts in this (fairly small) field—which is probably due in
large part to the musical proficiency of the performers, and with Banarsë’s careful
curation of material. While cherry picking is an unacceptable way to evaluate many
applications ofmachine learning,when applied to art it is not so different to howmany
artists work. Painters, writers, and composers constantly reject ideas in the creative
process. In fact, a lack of ability to be self-critical can be a major hindrance. The
creative process requires identifying weaknesses and fixing them, and persistence in
doing that even when this can be slow and frustrating work. When it comes to music
AI, the question to answer with cherry picking is not, “Which outputs best show the
success of my model?” but, “How easy is it to find material generated by this model
that I would like to work with?”

16.5 Ethical Considerations

Aparticularly original and illuminating outcome of this research has been the critical
assessment of its motivations and impacts.We started a number of discussion threads
on the forum of thesession.org requesting feedback on transcriptions generated by
folk-rnn (v2). The user Ergo agreed with another commenter about seeing no point
to the research, but also mentioned some concern about its impact: “My concern
is that some people, somewhere and sometime, may consider one or more of these
tunes – maybe all of them? – to be actual traditional tunes…I think it’s reckless to
send 3,000 machine-created fiddle tunes into the world.” Another user commented:
“I would suggest confining your computerised efforts to the archives of whichever
University you are at, I don’t think this helps trad music in any way.” In another
thread, Ergo asks: “explain how this is going to contribute to [Irish traditional
music].”

Someone later posted an article about our work to a Facebook group focused on
Swedish folk music. Some comments among the 163 show real displeasure at the
idea of involving computers in traditional music. One person writes, “Where is the
heart and feeling in the computer?” Another writes
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Talk about soul-less tunes…MUSIC .. Especially folk music .. Must come from experiences,
tradition’s deep imprint.…Where the people are the focus, there the folk music characterizes
the traditional cultural life. …When I see something like this, I get either pissed off or very
critical.

Some express fears: “This takes away possibilities for real musicians to compose
Music and earn a living!” Another writes

You have stolen from existing music to offer a library based on goods made by [musicians]
who have got their material from older musicians or composed their own now for tecknocrats
within music to continue to steal patterns from the existing traditional music. …Within [pop
music] there are rules for howmuch in seconds you are allowed to use from an existing piece
of music for a mix or other use. One should pay the same respect to traditional music.

We experienced similar frictions when making the album, “Let’s Have Another
Gan Ainm” (Sect. 16.4.3) [72]. For instance, the professional musicians involved did
not want to be too closely associated with the project. Though they were not a part
of the research, and were only hired to perform on the album, they wanted to make
sure that their professional careers were clearly separated.

Working together with Irish traditional harper Úna Monaghan also uncovered
interesting aspects [74]. The music of this tradition is aural, and so modeling tran-
scriptions is not reallymodeling themusic. Irish traditionalmusic is not a collection of
transcriptions of music, but is bound together with functional notions, from dancing
to making music together to expressing national pride [26,41,59]. Hence, anything
produced by a music AI will be several steps away from the music that occurs in
practice. Second, these AI-generated transcriptions, which necessarily come from
a statistical mishmash of regional and historical styles, have only tenuous and con-
fusing relation to the wider context that players use to perform this music. Because
the data used for training folk-rnn is crowd-sourced, the choice of what to transcribe
and how is not consistent in any manner across the corpus. What, therefore, should
musicians do with these transcriptions? Should they try to correct or improve a gen-
erated transcription, to bring it “in line” with the tradition? Should they play them
“straight”, in tension to their own instinct and training?

These experiences show how our research can be seen in negative ways, and how
our use of data could be an overstep. Our initial humorous application of machine
learning could be regarded as trivializing a living tradition. While there is bound
to be fear of human redundancy, or appeals to the narrative of machines taking
control, many of the objections raised are more subtle and deserve careful attention.
This motivated us to critically examine our assumptions, methodology, and research
questions [43,75]. For example, since the data that we used to train music AI can
be freely downloaded, does that give us the right to use it in the way we have?
Considering that this data is essentially crowd-sourced over 18 years, contributed by
people aiming to share, preserve,and advocate a particular form of traditional music,
our use of the data for such a different outcome was likely unanticipated. That the
dataset includes transcriptions of original works that are copyright protected can
mean that our use of the data could be an infringement on those rights [75].
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Our critical reflection has motivated us to learn much more about the living tradi-
tions from which we as researchers are benefiting, and to examine how our research
could be detrimental and beneficial to Irish traditional music. While some of the
musicians we worked with enjoyed learning the music, and some of the material has
ended up in their regular repertoire [4], it is not completely clear how our research
contributes to Irish traditional music. It did enable us to pay traditional musicians
to perform and participate in various experiments. It also deepened Sturm’s involve-
ment with this music by attending traditional music summer schools in Ireland, and
organizing regular learners’ sessions in Stockholm. What is clear, however, is that
this living tradition is not so weak that any music AI we or others might create can
likely do any harm. One cannot confuse the tradition with symbols in a sequence,
dots on a page, or tunes in an online database. Nonetheless, the variety of questions
about the ethics of such research deserve to be discussed and assessed openly and
regularly with practitioners.

16.6 Conclusion

Applying artificial intelligence to model and generate folk music offers many oppor-
tunities to study the capabilities and limitations of such methods, especially so in
traditions that are living. It also motivates the critical examination of the use and
misuse of artificial intelligence for music. In this chapter, we have surveyed the
application of artificial intelligence to folk music. We have presented in depth our
work in modeling transcriptions of traditional music from Ireland and Scandinavia
using recurrent neural networks. We have also surveyed a variety of approaches we
use to evaluate our models, from analyses of model parameters, to the use of the
models in music creation. We finally discussed several contentious issues of our
work, which motivates a careful study of its ethical dimensions.

Since ourworkwithmusicians and domain experts show that ourmachine learning
models can generate transcriptions that are plausiblewithin folkmusic traditions, it is
clear that they have learned something relevant about identifiable and distinguishing
characteristics from the training data. Special care needs to be taken, however. It
is easy to fall into a trap of thinking human-like outputs from the machine reflect
human-like learning or ability. Deeper examinations of our folk-rnn models reveal
their knowledge about music to be very brittle. Nonetheless, we have found that these
models can still be used as co-creative tools formusic. In some cases, the brittleness of
the knowledge of a model provides creative opportunities, which makes it a feature
and not a bug. Indeed, our aims for building models of traditional music do not
include generating a limitless number of cheap imitations. Instead, modeling folk
music provides starting points to explore more interesting research questions.

One of these questions is the meaningful and effective evaluation of music AI
and its involvement in music creation. While the field has progressed beyond simply
listening to a few examples and confirming they sound reasonable, the evaluation
of music-generating AI must include many dimensions, from the comparison of
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statistical summaries of populations, to relating the models to music as a practice.
Good evaluation methods identify ways for making improvements. We believe an
essential component of the success of our project has been deep and meaningful
partnerships between the engineering and musical sides, eventually engaging musi-
cians in the research process and not just with the final outcome. The expertise of
musicians, working in the specific domains from which we collect data for training
AI—however superficially—is invaluable in that regard.

As to the future of folk-rnn, there are several directions we are exploring. We
continue to analyze the parameters of ourmodels to understandhow they are encoding
information, and how we might adjust them in musically meaningful ways; e.g.,
adjusting the parameters such that the model constructs jigs of nine-measures length
instead of the conventional eight. Another direction is building an “artificial critic”
that can streamline the search for interesting material a model has or could generate.
This can be seen as a problemof information retrieval, for either an existing collection
of material, or a collection that could be created by a given model. In line with this
are methods for comparing collections of materials, including detecting plagiarism.
All of these can potentially be incorporated into training models in more musically
meaningful ways than just reproducing sequences of tokens.

Another avenue for future research can develop the system to accommodate poly-
phonic practices, or non-Western music. Polyphony means concurrent but also semi-
independent voices, where the musical-logic has both a horizontal component (that
governs the construction of each line) and a vertical one (that governs the interde-
pendence of those lines). These different dimensions do not need to have the same
or even similar rules. A challenge in applying machine learning to non-Western folk
music entails finding a representation that is meaningful within the context of that
tradition. Any representation necessarily abstracts away some aspects of the music,
just as ABC notation does for Irish and Scandinavian folk music. The music AI
researcher needs to produce a representation that can encode important and relevant
aspects of music they want to model, and at the same time be aware of the aspects
they discard.
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17AutomaticMusic Compositionwith
EvolutionaryAlgorithms:Digging into
theRoots of Biological Creativity

Francisco Vico,David Albarracin-Molina,Gustavo Diaz-Jerez
and Luca Manzoni

17.1 Introduction

Music composition is considered an expression of human creativity, even if com-
posers (like artists, in general) take inspiration fromother sources (likeNature sounds,
and—mostly—other authors). Similarly, the algorithmic composition of music usu-
ally follows an imitative approach, by feeding a computer systemwith a large corpus
of existing (human-made) scores. Here we investigate the composition ofmusic from
a different perspective: as a discovery process of aesthetically pleasing musical pat-
terns. This is achieved by using mathematical systems which are able to represent
self-similarity (formal grammars), and can evolve as to produce valid and aesthetic
music scores. The result of this endeavor isMelomics, a tool which is able to produce
musical scores without any knowledge of pre-existing music. Apart from the useful-
ness of Melomics in the arts, this project has also opened a philosophical discussion
on the nature of music itself: is music created or is it just discovered?

In this chapter, we introduce the reader to two distinct but interweaved ideas.
From the technical side, we present the approach of encoding music by means of
L-systems and context-free grammars, and how to compose music by grammatical
evolution. From a more abstract and motivational point of view, we want to explore
the reasons for the automatic composition of music and the nature of automatically
composed music. As the premier specimen of this kind of composition software, we
useMelomics. This software is actually multiple programs, developed from the same
principles, but adapted with time for the composition of both atonal music, with the
cluster computer Iamus, and tonal music, with the cluster computer Melomics109.
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Melomics has been in the spotlight multiple times [5,22] since it started as the
target of two research projects [1,2]. Here we introduce and discuss Melomics, for a
comprehensive overview on the interesting general topic of algorithmic composition,
we suggest the book by Nierhaus [18] and the survey by Fernández and Vico [8].

The first idea that computers could be able to compose music can be traced back
to before the actual realization of a physical computer. In 1842, Luigi Menabrea
reported the following quote from Ada Lovelace [17]:

[The Analytical Engine] might act upon other things besides number, were objects found
whose mutual fundamental relations could be expressed by those of the abstract science of
operations, and which should be also susceptible of adaptations to the action of the operat-
ing notation and mechanism of the engine…Supposing, for instance, that the fundamental
relations of pitched sounds in the science of harmony and of musical composition were
susceptible of such expression and adaptations, the engine might compose elaborate and
scientific pieces of music of any degree of complexity or extent.

Clearly, the ideas of Ada Lovelace were not put into practice for more than a cen-
tury and half. However, this seed of algorithmic music was planted in the nineteenth
century and can be used as a starting point for our discussion. With today’s knowl-
edge, we can see that this short text contains at least the spark of some interesting
ideas: the necessity to encode the structure of the music, and to encode not only
the single pitches, but the relation between them. Furthermore, there is a distinction
between the composition and the actual performing of the music, with the analytical
engine being tasked with composing music. Finally, there is no mention of imitating
existing composers, but the production of “scientific pieces of music of any degree
of complexity or extent.” While we do not know if those ideas were already present
in the mind of Ada Lovelace, we can read them in the text, and recognize them as
important aspects in algorithmic composition:

• Encoding. It is necessary to find a way of encoding not only the single pitches and
durations, but also the relations between them. That is, there should be a higher-
level structure than a simple list of pitches and durations. This structure will be
more compact than the entire composition. In some sense, it is a compressed
version of the composition. The presence of a more compact representation hints
to the presence of some kind of repetitions and structured behavior, since truly
random data would not be susceptible to compression.

• Composition. While computers are capable of sound synthesis and procedural
generation of sound, we are interested in the actual composition. That is, the
production of a music score in the traditional staff notation.

• (Non-)Imitation. Some systems have the aim of reproducing a particular style of
a specific artist, period, or genre by using a corpus of compositions from which
recurring structures can be extracted. Melomics is instead focused on producing a
particular style without any access to an existing corpus.

To incorporate all three points, Melomics employs L-systems and context-free gram-
mars, where the structure of an entire piece of music is encoded, and deploys from
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a series of derivations. This allows the encoding to have one interesting aspect: L-
systems and context-free grammars provide away to encode repetitions in the product
of their derivation from a simple axiom, without being themselves repetitive. That
is, a set of rules for an L-system can appear not to provide any repeated structure,
but its product might contain a high amount of repetitions and self-similar structures.
This is, indeed, an essential aspect in both biology and music [19].

The final interpretation of the derivations produced is then an actual composition.
Melomics can synthesizemusic inmultiple formats, but starting froma single internal
representation that is equivalent to the usual staff notation. In this sense, Melomics
is mainly a composer of music.

The final point, i.e., the ability to generate music without performing imitation,
is given by the fact that no corpus is provided to Melomics. How can then music in
a specific style be composed? This can be enforced by a combination of constraints:

• Constraints in the encoding. Each encoding generates different biases in the search
space. That is, by changing the way we represent music we also change what is
easy to write and what is difficult—or even impossible—to express. By forcing the
music to be expressed as an L-system or as a context-free grammar, regular struc-
tures are easier to represent and will appear more often than completely unrelated
fragments of music.

• Constraints in the fitness function. Forcing the encoding to restrict and “guide” the
search for music is not, by itself, completely sufficient. As an additional filter, a
fitness function, is used to associate to each composition a measure of quality, that
is usually determined by looking at some high-level features of the composition.

The dual effect of having an encoding that restricts the search into a space of already
reasonable compositions, combined with the filtering of a fitness function helps the
generation process of Melomics to “converge” to music respecting a particular style
or set of conditions, thus allowing Melomics to generate music in a particular style
without any imitation. Notice that the music composed by Melomics seems more
“discovered” than generated is an important aspect that is discussed in this chapter,
since it is the source of many different questions on the nature of algorithmic music
and, more in general, of all music.

This chapter is organized as follows: in Sect. 17.2 the L-systems and their appli-
cations are introduced. The second main component of Melomics, the evolutionary
algorithm, is described in Sect. 17.3, while Melomics proper is described in detail
in Sect. 17.4. A discussion on the applications of Melomics and the motivations for
producing artificial music are presented in Sect. 17.5, while some further directions
of investigation in Sect. 17.6 conclude the chapter.
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17.2 Lindenmayer Systems

Lindenmayer systems, or L-systems, were introduced in the late 60s by Aristid
Lindenmayer [13] as a mathematical model of some biological growth processes.
L-systems have been widely studied both as mathematical objects (see, for exam-
ple, [25]) and as a generative model in the arts [21]. In what follows, by L-system
we will refer to 0L-system, which is the simplest and most used type of L-system.

An L-system is formally defined as a triple (�, S, P), where � is the alphabet (a
non-empty, finite set of symbols), S ∈ � is the axiom symbol, and P ⊆ � × �∗
is a set of production rules of the form a → α, a ∈ �, α ∈ �∗ (where �∗ is the
set of all words over �). By convention, if P in a given L-System does not include
any rule of the form a → w ∈ P for a given symbol a ∈ �, then the rule a → a
is assumed to be included in the L-system. Given a production rule a → w ∈ P ,
one application of the rule to a word v ∈ �∗ containing at least one instance of the
symbol a, rewrites one instance of a as w in v.

Differently from the conventional derivation process of the generative grammar, in
L-systems the derivation rules are applied in a maximally parallel way. That is, each
symbol vi ∈ � of a given word v ∈ �∗ is rewritten by a rule of the form vi → w. In
the case that more than one rule can be applied, one is selected non-deterministically.
When only one rule a → w exists for each symbol a ∈ �, the system is said to be
deterministic, or a D0L-system. Given a word w = w1 · · ·wn ∈ �∗, we say that it is
generated by v = v1 · · · vn ∈ �∗ when vi → wi ∈ P for 1 ≤ i ≤ n; this is written
as v ⇒ w. We say that a word w is generated in a derivation of length n by a word
v if there exists a sequence of words u1, u2, . . . , un−1 such that v ⇒ u1, u1 ⇒ u2,
. . ., un−1 ⇒ w.

Starting from the axiom S, the iterative application of the rules in a maximally
parallel way gives raise to new words, as shown in the following example.

Example 1 Let ({a, b}, a, {a → ab, b → b}) be an L-system. Starting from the
axiom a, at the first iteration we obtain the word ab by application of the rule
a → ab. At the second step, the obtained word is abb, by simultaneous application
of both production rules.

While L-systems appear as an interesting theoretical device, they have been suc-
cessfully applied in the generation of self-similar structures, especially with appli-
cation to the generation of images. This can be performed by interpreting the string
obtained after n steps as a set of drawing instructions—to be executed sequentially—
possibly with access to a stack data structure.

Let us consider the following simple example, where the following drawing com-
mands are available:

By using the symbol X as the axiom symbol (with no graphical interpretation)
we can define the following two rules:

X →F[+F[X ]] − [F[X ]] − −F[X ]
F →FF
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F : draw a forward line of unitary length
+ : rotate the current heading left by 30◦
− : rotate the current heading right by 30◦
[ : push the current position and heading on a stack
] : pop position and heading from the stack to replace the current heading and position

(a) (b) (c) (d) (e)

Fig. 17.1 The figures generated by the example L-system with a different number of iterations,
starting from one iteration to the left (a), and ending with five iterations on the right (e)

These two rules, produce strings of symbols that, when interpreted as drawing com-
mands, produce figures like the one shown in Fig. 17.1.

As this example shows, complex self-similar structures can be encoded in a very
compact way bymeans of L-systems. This suggests that they can be applied tomusic,
where self-similarity and repetition are common resources for gaining aesthetically
pleasing sound. However, the initial application of L-system to the generation of
music was not as successful as it was in graphics [reference needed]. Even if now
other systems have applied L-systems for the generation of music [12,15], Melomics
has established high standards in automatic music composition, by generating scores
and music tracks that could hardly be differentiated from human-made music.

17.3 Evolutionary Algorithms

Evolutionary Algorithms (EA) are a series of techniques, usually employed for opti-
mization purposes, that all take inspiration from Darwin’s theory of evolution. Most
EA start from a collection (usually called a population) of possible solutions to a
problem, that are then selected according to some principle, mimicking the process
of natural selection. The selected solutions are then modified, usually with operators
inspired by either the natural occurrence of DNA mutations or the biological repro-
duction. In this section, we will formally define what is an optimization problem
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and how it can be solved using EA. For a more in-depth introduction to evolutionary
algorithms, we refer the reader to [16].

17.3.1 Optimization Problems

Suppose thatwewant to find the optimal solution for a given problem.As an example,
consider the classical knapsack problem, where we are given a set of items each with
a given weight and value, and a knapsack with a limited capacity (i.e., a limit on the
sum of weight of the items contained). Therefore, solutions can be set of items to put
into the knapsack whose total weight is less than the knapsack capacity. To have an
optimization problem we need to have a way of evaluating the quality of solutions,
to determine which, among the two solutions, is “better”. This is usually performed
by defining a fitness function, i.e., a function mapping each solution to a real number
representing how “good” the solution is. For example, in the case of the knapsack
problem, a suitable fitness function would be one returning, for each solution, the
total value of the item in the knapsack. We must then decide if we want to maximize
or minimize the fitness, i.e., if better solutions have higher or lower fitness values.

Formally, let S be a set of solutions to an optimization problem, and let f : S → R

be a fitness function. An optimal solution for a maximization (resp., minimization)
problem is then defined as

argmaxx∈S f (x) (resp., argminx∈S f (x))
While finding an optimal solution might be desirable, a “good enough” solution
might be sufficient. For this task, optimization algorithms like EA are particularly
suitable.

17.3.2 Evolutionary Algorithms

While EA are an entire family ofmethods, wewill focus on one prototypical example
to introduce the basic principles governing them all. Probably the most famous
example of EA are the genetic algorithms (GA), introduced in the 1960s by John
Holland [9], where solutions (usually called individuals) to an optimization problem
are represented as sequences of symbols (a string), and a population is simply a
collection of individuals where the phases of selection, crossover, and mutation are
iterated until some termination criteria have been met.

The mains structure of a GA can be described by the following procedure:

1. (initialization) Generate a random population P of n individuals.
2. (fitness evaluation) For each individual compute its fitness.
3. Check if the termination criteria are met (e.g., we have found a solution or enough

time has passed). If so, then return the best solution found so far, otherwise
continue to the next step.

4. (selection) Select n individuals from P in a way that depend on their fitness to
generate a new population P ′.
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5. (crossover) Exchange part of the structure between pairs of individuals (called
parents) to generate new individuals (called offsprings). The offsprings replace
the parents in P ′.

6. (mutation) Slightly change the structure of an individual with a small probability.
The mutated individual replaces the original one in P ′.

7. Replace P with P ′ and go to step 2.

From this high-level description of GA, it is possible to observe the main character-
istics of an evolutionary algorithm:

• A selection phase, where solutions are extracted from the current population,
usually with some criterion that is dictated by the fitness, where a better fitness
means a higher probability of survival. The exact selection scheme can be a fitness
proportional selection (i.e., a roulette wheel selection), a tournament selection
(where at each step a limited number of individuals is extracted from the population
and the one with the best fitness is selected), or a truncated selection (where the
individuals are ranked by fitness and only the top p%, for some parameter p, is
selected).

• Mutation and recombination operators. Where solutions either exchange part of
their structure (or genetic material), as in the recombination operators, or where a
single solution has its structure mutated with a mutation operator.

To find why these two characteristics differ in a more substantial way, we need to
introduce the concepts of genotype and phenotype:

• Genotype. The genotype of an individual in the population is the actual represen-
tation of the solution. For example, for the knapsack problem with size items a
possible genotype could be 010011. In some sense, we can see the genotype as
the “raw” representation of the solution without any interpretation.

• Phenotype. The phenotype of an individual in the population is the actual solution
it represents. For example, for the individual with genotype 010011, its phenotype
could be the set of item {s2, s5, s6}, where each one in the genotype representing
the presence of a specific object in the solution.

It is then possible to notice that selection operators only operate on the phenotype of
the individuals. That is, the selection process is not concerned at all with the genotype
of an individual, but only with the quality of its phenotype, which is assessed with
the fitness function. On the contrary, mutation and recombination operators operate
only on the genotype of the individuals; they manipulate the representation of the
solutions without any consideration about the effect on the phenotype. While this
distinction might seem rather “academic”, since in the examples moving from the
genotype to phenotype is immediate, when a more complex mapping is present, the
distinction is essential.
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17.3.3 Indirect Encoding

An important distinction when talking about evolutionary algorithm is the difference
between a direct and an indirect encoding. In a direct encoding, there is a simple
mapping between the genotype and the phenotype of an individual. For example, a
representation of a set as an array of bits is a direct encoding: each element of the
genotype corresponds directly to an element of the phenotype. Other examples of
direct encoding could be the representation of the structure of a neural network by
having the neural network itself as the genotype, as in the NEAT algorithm [27].

Indirect encoding, instead, does not provide a direct mapping between genotype
and phenotype. We can think of it as providing, instead a genotype that is a blueprint
for constructing the phenotype. One prominent example of this kind of encoding is
given by grammatical evolution (GE) [26], where the individuals have, as genotype,
strings of numbers. The interpretation of those individuals, however, requires the
presence of a context-free grammar, as detailed in the following example.

Example 2 Consider the following context-free grammar, with axiom S, represent-
ing expressions in two variables with + and ∗, and expressed in BNF:

S →(S + S) | (S ∗ S) | Var | Const
Var →x | y

Const →Digit | Digit Const
Digit →1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

Consider now the individual X = 132415 and how to decode it. Starting from the
axiom S, we read the first digit of X , which is one; therefore, we apply the first
production rule S → (S + S). We now have to rewrite the two instances of S in the
obtained string (S + S). by going forward in reading X we encounter 3, which is
interpreted as using the third production rule with left hand side S to rewrite the first
instance of S, thus obtaining (Var + S) by continuing this rewriting process, guided
by the digits of X , we obtain:

S → (S + S) → (Var + S) → (y + S) → (y + Const) → (y + Digit) → (y + 5)

Therefore, the genotype 132415 corresponds to the phenotype (y + 5).

While some simplifications were necessary in this brief example, it should be clear
that the correspondence between genotype and phenotype is not direct and that the
variation on the genotype can have a different influence on the development of the
phenotype.

17.3.4 Evolving L-Systems

After having introduced both L-systems and the main concepts of evolutionary algo-
rithms, we can now combine them by showing ways to evolve L-systems. Clearly, if
our goal is to obtain a string representing a piece of music, the L-system producing
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that string is not a direct encoding, but an indirect one. The peculiar characteristics
of L-systems invite the invention of specifically crafted operators, like [6], which
was an inspiration for Melomics ad its operators [3].

In L-systems we can consider the axiom fixed and the set of symbols � also
pre-determined, but the rules can instead be evolved. Since the interpretation of the
strings produced by most L-systems makes use of a stack, it is important to employ
genetic operators that, while allowing mutations and exchange of genetic material,
also preserve the correct use of the stack (e.g., by not performing a “pop” operation
on an empty stack). A collection of operators respecting this set of restrictions is
described in [6].

17.4 Melomics

Melomics can be thought of as a combination of a language for expressing music
based on L-systems and as a way of evolving derivation rules of that language by
using evolutionary computation techniques. Melomics can be used to compose both
atonal and tonal music and, while the encoding employed and the constraints are
different, themain structure remains the same, showing theflexibility of the approach.
Melomics’s use of L-systems to encode music, where the music “grows” from an
initial seed, the axiom, resembles embryological development (or evo-devo), and can
be considered a successful application of evo-devo principles in the generation of
music [3].

The general execution workflow ofMelomics, in both its atonal and tonal version,
can be described as follows:

• Filling the desired input parameters in the designed interface. In any case, the
parameters will represent musical specifications or directions at different levels of
abstraction, with no need for creative input from the user.

• Some of the input parameters will be used to drive the stochastic processes of
producing genomes.

• A genotype, based on deterministic grammar and stored in a plain text file, is read
and developed into a resulting string of symbols.

• The string of symbols is rewritten after some processes of adjustment that can be
of different forms: cleaning of the string, by removing, for example, by removing
duplicate idempotent operators, and adjustments due to physical constraints of the
instruments, like the maximum number of consecutive notes or the suppression
(or emergence) of particular musical effects.

• Each symbol in the final string has a low-level musical meaning, which is inter-
preted by the system through a sequential reading from left to right and stored in
an internal representation.

• Once again the musical information will be adjusted and stabilized due to internal
and external factors: the first ones are to make the format of the music more
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manageable, and the others are due to the physical context, like constraints in the
tessituras, discretization of the note duration, and so on.

• Some of the input directions will be assessed and different actions might be taken
as a consequence: the current composition may be discarded, it may simply pass
the filter or it could pass the filter and some of its genetic material being saved for
future executions.

• Finally, the different modules for translating the musical information to the corre-
sponding output formats may be used.

A visual depiction of this workflow is given in Fig. 17.2.
In the rest of the section, we will focus on the encoding used for the music

more than on the fitness functions or the operators employed, since we consider the
encoding the essential part of Melomics.

Fitness versus encoding. It is well known that the fitness function guides the
search process, but it might not be immediate that the encoding used can play an
evenmore prominent role. This is the case forMelomics: the encoding employed has
the property that it is relatively easy to generate good-sounding music. In this sense,
the fitness function acts more as a filter, where certain constraints are encoded (e.g.,
by penalizing a music that is difficult to play on real instruments, or by requiring
some structural constraints to be present, or a specific style to be generated).

17.4.1 Atonal Music

Togenerateatonalmusic, the genomeemployed in the evolutionaryprocess describes
a set of rules for a deterministic L-system coupled with some additional parameters
that are employed during the decoding phase, where the L-system is translated into
music.

In particular, we can interpret an individual as a program, written as L-systems
rules, that rewrites the initial symbol, the axiom, into another program, this time
represented as a string, executed by an abstract machine that outputs the actual
music. Here, we will see how the production rules of the L-system are defined and
how the resulting program is interpreted. The L-system employed has an alphabet
� that can be divided into two main parts:

• A set of symbols of the form #i for i ∈ {0, . . . , n}, e.g., #0, #1, #2, . . .. Those
symbols can appear on the left-hand side of a production rule and each of them
represents either “higher-level” structure of the composition or, if it appears in the
final string, a note played by the i-th instrument where, usually, #1 represents a
pause.

• A set of reserved symbols that change the current state of the abstract machine, by
changing the pitch, duration, dynamics, tempo, and so on. Some of the available
operators are:

– $1 increases the pitch value one step in the scale;
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Fig. 17.2 A graphical representation of the global workflow of Melomics

– $2 decreases the pitch value one step in the scale;
– $5 saves the current values for pitch and duration into a stack (the PS stack);
– $6 pops the top value of pitch and duration from the PS stack, replacing the
current values;

– $7 saves the current time position into a stack (the TS stack);
– $8 pops the top value of time position from the TS stack, replacing the current
value;

– $96 applies the dynamic mezzo-forte;
– @60$120 applies the tempo: a quarter equal 60.
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To illustrate how music can be generated, let us consider an L-system with alphabet
containing #0, #1, #2, #3, #4 plus the eight previously defined reserved symbols, #0
as the axiom, and the following rules, one for each symbol of the form #i :

#0 →@60$120$96#2$1$1$1$1$1$1$1#2

#1 →#1

#2 →$7#3$8#4

#3 →#3$2#3$1$1#1#3

#4 →#4#1$5$1$1$1#4$6#4

Since L-systems can potentially generate new strings forever, it is necessary to decide
when to stop. To do so, each rule has associated a budget of applications computed
as follows: each rule has an associated value ri , that denotes the possibility of that
rule to be applied at the next rewriting iteration. Initially, ri = T , where T is a
global parameter equal for all rules. Each rule also has a weight Ii that is fixed and
specific for each rule. After a rule has been applied in a rewriting step, the value of
ri associated to it is updated as

ri = max (0, round(ri · Ii − 1)) .

When a rule reaches ri = 0, then it cannot be used anymore in a rewriting step. This
means that the application of the rewriting rules always ends.

In the system used as an example, let T = 1 and Ii = 1 for all rules. This means
that every rule will be applied in only one rewriting step, i.e., it has a “budget” of
applications of one.

Let us now explore what are the intermediate steps that, starting from the axiom
#0, will produce a music score.

Iteration 0

When no iteration has been performed the output sting is the axiom #0 itself. In
abstract, the string interpretation is “play a note on the instrument 0”. To givemeaning
to this, we need to set a collection of default parameters:

• Scale: C-major;
• Default duration: quarter note;
• Default tempo: 80 bpm;
• Default dynamic: mezzo-piano;
• Initial pitch: middle C;
• Instruments: piano (0), rest (1), church organ (2 and 3), cello (4).

The string #0 can now be interpreted as the musical score in Fig. 17.3.
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Fig. 17.3 Resulting score
from axiom #0

Fig. 17.4 Resulting score
from iteration 1

Iteration 1

While the zeroth iteration actually had no rewriting, the first iteration requires the
application of one rewriting rule. In this case, the only applicable rule is the one
having the axiom on the left-hand side, thus generating the string

@60$120$96#2$1$1$1$1$1$1$1#2

which can be interpreted by reading it from left to right:

• @60$120$96: change the default tempo to a quarter equal 60 and apply the
dynamic mezzo-forte;

• #2: play a note on the instrument number 2 (church organ);
• $1$1$1$1$1$1$1: raise the pitch seven times. Since the scale is C-major, this
means that the next note will be played one octave higher,

• #2: play a note on the instrument number 2 (church organ).

Following this interpretation, the resulting musical score is shown in Fig. 17.4.

Iteration 2

Starting from the string obtained after one iteration, it is now possible to apply the
only rule having #2 on the left-hand side, which has right-hand side $7#3$8#4.
This right-hand side has the effect of rewriting each copy of #2 into it. That is, #2
ceases to be a low-level command (playing a note), to be a building block of a more
complex structure. In particular, the effect will be that each time #2 was present in
the string obtained after iteration 1, now the same note will be played at the same
time on instruments 3 (church organ) and 4 (cello). This is the resulting string with
the rewritten parts highlighted:

@60$120$96 $7#3$8#4
︸ ︷︷ ︸

$1$1$1$1$1$1$1 $7#3$8#4
︸ ︷︷ ︸

The resulting score is shown in Fig. 17.5.



468 F. Vico et al.

Fig. 17.5 Resulting score
from iteration 2

As it is possible to observe, the “synchronization” between the two instruments
is an emerging property resulting from the rewriting rules of the L-system. In the
case of a direct encoding, this would not be as easy: playing the same notes on two
instruments would be highly improbable, at least without a complex fitness function
able to capture these features, which would itself be a complex task.

Iteration 3

There two rules having left-hand side #3 and #4 are the only two that can be applied,
resulting in the following string, where the rewritten parts are highlighted:

@60$120$96

$7 #3$2#3$1$1#1#3
︸ ︷︷ ︸

$8 #4#1$5$1$1$1#4$6#4
︸ ︷︷ ︸

$1$1$1$1$1$1$1

$7 #3$2#3$1$1#1#3
︸ ︷︷ ︸

$8 #4#1$5$1$1$1#4$6#4
︸ ︷︷ ︸

Notice how the music has acquired a structure. The initial rewriting, which resulted
in two notes played one after the other with an octave of difference in pitch is now
expressed in the same sequence of notes played two times with the second time one
octave higher, as shown in Fig. 17.6.

Suchmusical structure would, again, be extremely complex to obtain with a direct
encoding, since it is a high-level feature that cannot easily be expressed if, instead
of an L-system, we were only evolving a sequence of notes.

There actually is a fourth iteration, where only the rule #1 → #1 is applicable,
resulting in the same string. While rules with left-hand side #3 and #4 could poten-
tially be applied again, their “budget” of one iteration is already exhausted after the
third iteration.

17.4.2 Examples of Atonal Music

Here we will describe some of the relevant examples of atonal music produce using
Melomics, from the composition “Iamus Opus One” (from the name of the computer
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Fig. 17.6 Resulting score from iteration 2

cluster employed in the composition), to the later composition “Hello world!”, to the
use for relaxation in the music therapy setting.

Iamus Opus #1

One of the first works of Melomics was Iamus Opus One, written for flute, clarinet,
horn, violin, and violoncello. The composition was generated on October 15, 2010,
and it is the first piece of professional contemporary classical music composed by a
computer in its own style, as a result of the first directed search using the algorithm
(see Fig. 17.7).

With respect to the aforementioned system, it was necessary to introduce certain
constraints, in order to produce music that could be performed with real instruments;
someof these boundaries tried tomaximize the allowedpolyphony, tessituras, effects,
and note durations and dynamics.

For the evolutionary phase, new functions were necessary to assess the compo-
sitions after being developed; they measured the textural evolution, the amount of
dissonance, and the repetition of note-values and note-pitches. The method and the
thresholds to discriminate the validity of a compositionwere fine-tuned in an iterative
fashion with the help of the expert. The general goal pursued was to obtain pieces
of music with a limited amount of perceived dissonance and whose fundamental
musical materials (specific melodic constructions, structure, etc.) were evoked along
the time and among the different participant instruments.

HelloWorld!

One year after Iamus Opus One, four main improvements were incorporated into the
system:

1. the fitness function employed in the evolutionary system was refined;



470 F. Vico et al.

Fig. 17.7 First beats of Iamus Opus #1

2. the capability to compose for real instruments was increased, handlingmore types
of instruments, more performing techniques and the music content produced for
each track, being more suitable to the instrument in charge of performing it;

3. the functions to write the output MusicXML file were enhanced, so the produced
score was richer and able to show most of the elements of the standard music
notation;

4. the process of building genomes was divided in two phases, one controlling the
structure and another to build the low-level material (phrases and motives).

The computer cluster Iamuswas programmed to runMelomics software for about ten
hours, creating independent compositions for clarinet, violin, and piano. In the end,
one composition was arbitrarily picked among the hundreds that were produced, and
was named Hello World!, making reference to the first computer program written
by most novices (see Fig. 17.8). This piece of contemporary classical music was
composed in September 2011 and premiered on October 15, 2011, at the Keroxen
music festival in Santa Cruz de Tenerife, Spain.

17.4.3 Tonal Music

While the same system employed for the production of atonal music could also be
employed for the generation of tonal music, the amount of constraints needed would
be too large, and the system would need too much time to converge to a reasonable
solution. However, these obstacles can be mitigated or removed by changing the
symbols employed in the strings, thus changing the “abstract machine” interpreting
the strings.

In particular, the generation of tonal music is performed in a strictly hierarchical
structure, by defining five nested levels, inspired by [10], from the most abstract to
the most concrete:
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Fig. 17.8 The first few beats of Hello World!

1. Composition. This is the highest structural level that can be defined. A com-
position will be formed by a sequence of similar or different kinds of periods,
possibly with some music operators (alterations in tone, harmony, tempo, macro-
dynamics,. . .) between each of them. Some of the parameters that can be estab-
lished at this level (apart from the ones described in the previous section) are:
boundaries for the number of periods, boundaries for the number of different
periods, allowed music operators, and boundaries for the number of measures in
the whole composition.

2. Period. This is the highest structural subdivision of a composition. There can
be more than one type of period, which can be repeated along the composition.
The different types are built independently, becoming separate musical units,
recognizable in the composition. Some of the parameters that can be defined at
this level are: boundaries for the number of phrases inside one period, boundaries
for the number of different phrases, allowed music operators inside the period,
and boundaries for the number of measures in each period.

3. Phrase. This is the third structural level, the constituent material of the periods.
Some of the parameters that can be defined at this level are: boundaries for the
number of ideas, boundaries for the number of different ideas, allowed music
operators, and boundaries for the number of measures in each phrase.

4. Idea. Constitutes the lowest abstract level in the structure of a composition. Once
again, a phrase can be composed by different ideas that can be repeated in time,
with music operators in the middle. A musical idea will be a short sequence
of notes generated independently for each role, using many different criteria
(harmony, rhythm, pitch intervals, relationship with other roles, . . .). Several of
the described global parameters affect the process of creating an idea, and other
applicable parameters at this level are: boundaries for the number of chords,
boundaries for the size of chords and boundaries for the number of measures.
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5. Texture. This subsection allows the possibility to define rules for the inclusion
of roles; different types of dependencies between them, the compositional units
where they are forced, allowed, or prohibited to appear in, and, finally, the general
evolution of the presence of instruments.

As with atonal music, a set of parameters must be defined for the composition:

• Duration. Lower and upper bounds for the duration of the composition.
• Tempo. Lower and upper bounds to choose the tempos used in the composition.
• Dynamics. Lower and upper bounds for the macro-dynamics to be applied in the
composition.

• Role Types. A list of roles or behaviors that may appear in the composition. There
are 89 available roles divided into multiple groups: melody, accompaniments,
homophony (harmonized melody), and counterpoint. There are different forms in
which the harmonic and rhythmic accompaniments can appear: chords, bass, pads,
arpeggios, ostinati, drums, and percussion.

• ArpeggioConfiguration. This parameter is significant only if the arpeggio role has
been selected as possible. In that case, additional parameters must be given: mode
or contour type (Chord, Up, Down,Up-Down,Down-Up,Up-Down+,Down-Up+,
Random); durations or time segments into which the note-values of the primary
rhythmic cell must be divided; scope or number of octaves where the contour
should be fitted into; and tie notes, indicating whether consecutive similar notes
shall be tied or not.

• Instruments. For each of the roles, a set of specific instruments, each with its
additional parameters, must be specified.

• Rhythmic Incompatibilities. Defines the incompatibilities of instruments to play
notes at the same exact moment.

• Scales. A set of modes and notes of reference that can be employed in the com-
position, defining one of the following scales: C-major, C-minor, D-Dorian, and
C-Mixolydian.

• Harmony. This set of parameters describes how to build the harmony in the dif-
ferent compositional levels. Examples include the allowed chords and roots, a
measure of the allowed dissonance between melodies or the form of chord pro-
gressions.

• Rhythmic Modes. Includes the allowed types of measures, the types of accents
to perform the notes, and so on.

• Rhythmic Patterns. Each role has a set of note-values or patterns, establishing
the desired frequency of occurrence in a composition.

• Melodic Pitch Intervals. This set of parameters is available only for the “melody”
role and consists, for each one of them, of a weighted list of pitch intervals that is
used to define how the melodic contour has to be built.

Due to the different set of parameters and the strictly hierarchical structure of
the composition, the way a composition is encoded had to be changed with respect
to the encoding used for atonal music. It is now useful to distinguish the symbols
in the alphabet � into terminals (i.e., that cannot be further expanded) and non-
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terminal (i.e., that have rewriting rules associated with them). Therefore, instead of
employing and L-system, we use a context-free grammar (�N , �T , S, P) where,
�N (resp., �T ) is the set of non-terminal (resp., terminal) symbols. In some sense,
the symbols in �N represent the high-level structure of the composition, while the
symbols in �T represent operations directly linked to playing notes, the modulation
of the pitch, duration, current harmonic root, and current harmonic chord.

This is an enumeration of the operators appearing in �T :

• N: increase the current pitch and harmonic root of one unit;
• n: decrease the current pitch and harmonic root of one unit;
• [: saves in the stack the current value of the pitch, harmonic root, and duration;
• ]: pops from the top of the stack the values to use for the pitch, harmonic root, and
duration;

• <: saves in the stack the current time position, value of pitch, harmonic root, and
duration;

• >: pops from the top of the stack the values to use for time position, value of pitch,
harmonic root, and duration;

• W4.0: applies the macro-dynamic “mezzo-forte”;
• M0.0.0.0: the next symbol linked to an instrument will play the root note of the
current chord, instead of the current pitch.

We can explore how the hierarchical structure unfolds with a simple example. Let
�N = {Z , A, B,C, D, E, F} with Z the axiom, and let �T be composed to all
the previously defined operators plus the three symbols a, b, and s, representing the
first instrument (the violin), the second instrument (the double bass), and the rest,
respectively. The production rules are defined as follows:

Z →W4.0 ANNNNNNN AB

A →CC

B →D

C →ENEnE

D →FFNF

E → < anaNNsa > M0.0.0.0 b M0.0.0.0 bs M0.0.0.0 b

F →as[NNNa]a
Even without starting the application of the production rules to the axiom, a structure
is already visible. The axiom Z is the top-level structural unit, i.e., the composition.
From Z the only non-terminal symbols generated are A and B, which represents the
second level of structure, i.e., the periods. A and B generate C and D, respectively,
going down one level in the hierarchy to the phrases. The symbols E and F are
generated by C and D, and represents the ideas. Finally, E and F generate only
terminal symbols.
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We can now observe the first steps of the expansion of Z , where each rewritten
part is highlighted by braces:

Z Composition

W4.0ANNNNNNN AB
︸ ︷︷ ︸

Periods

W4.0 CC
︸︷︷︸

NNNNNNN CC
︸︷︷︸

D
︸︷︷︸

Phrases

W4.0 ENEnE
︸ ︷︷ ︸

ENEnE
︸ ︷︷ ︸

NNNNNNN ENEnE
︸ ︷︷ ︸

ENEnE
︸ ︷︷ ︸

FFNF
︸ ︷︷ ︸

Ideas

As it is possible to observe after the first iterations, the composition will contain the
same period A two times, but the second time it will be played seven steps higher
in the pitch dimension, and then the composition will end with the period B. Each
periodwill then be expanded independently, with A containing the phraseC repeated
two times, and C consisting of the single phrase D.

To exhaust all possible rewriting, we need an additional rewriting phase, moving
from ideas to the actual notes. To interpret it, we need to fix the scale (C-major),
the default duration (a quarter note), a default dynamic (mezzo-piano), the roles (the
violin plays a single melody and the bass is an accompaniment). The violin’s starting
pitch will be middle C, while it will be one octave lower for the double bass. The
resulting composition is:
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It is possible to observe that the structure of the composition contains some rep-
etitions in the structure, if not in the notes. Inside an idea, the difference in pitches
is minimal for the violin, while the double bass always plays the same root note.
The first two periods share the same structure but with a bit of pitch jump between
them, while the third period is distinctly different and is only played by the violin.
Notice again that the use of an indirect encoding—an evo-devo system—is essential
to obtain this kind of structural similarity that can encompass the entire composition.

17.4.4 Example of Tonal Music: 0Music and theWeb Repository

One of the achievements of the tonal version of Melomics was the population of
a web repository with more than fifty thousand themes. The styles were pieces of
music of the most popular genres, ranging from disco to pop, and from symphonic to
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Fig. 17.9 The web interface of Melomics’ repository

synth music. The music is available at http://melomics.uma.es/, with an easy-to-use
interface, as shown in Fig. 17.9. All themes are distributed under a CC0 license and
can be downloaded in different formats.

Apart frommaking a large amount of themes available to the public, the generation
of such a large amount of themes was, in some sense, a “stress test” for Melomics,
testing the ability to produce music with enough diversity in each style, even with
a large amount of imposed constraints, and the ability to produce music of many
different styles, controlling harmony in compositions with many interrelated roles.

A small sample of themes in different styleswas selected bymusicians to showcase
the current state of Melomics: this is the 0Music album, presented in a one-day
symposium in 2014 (see http://www.geb.uma.es/0music).

17.4.5 Example of Application:Music Therapy

In addition to focusing only on the more contemporary music style, Melomics was
also employed for helping people via music therapy. Differently from compositions
with mainly aesthetic purposes, the main goal of music therapy is different [23]. An
example of this effect can be observed in lullabies, which are similar across a wide
spectrum of cultures while not having a mainly aesthetic goal. With the help of an
expert in music therapy, Melomics can be configured to produce simpler samples,
with a more reduced set of possible structures [24,28].

http://melomics.uma.es/
http://www.geb.uma.es/0music


17 Automatic Music Composition with Evolutionary Algorithms … 477

17.4.6 Output Formats and Interoperability

A system likeMelomics also has to tackle more concrete concerns, like how to make
the music available in a way that is distinct from its internal representation. We can
distinguish multiple levels of exchange formats:

• The internal representation of the composition can be represented using a standard
JSON format;

• The score can be exported using the MusicXML format, which is an open for-
mat licensed under the W3C Community Final Specification Agreement (FSA)
specifically designed for music score representation. It can be imported in multiple
software, including Finale, NOtation, MuseScore, etc.

• The music can be exported in the MIDI format. It still contains the information on
the notes to be played and is commonly used with a real-time virtual synthesizer,
thus providing a middle ground between the MusicXML format and synthesized
music;

• Melomics is able from its internal representation to produce directly synthesized
music in the WAV format that can be further converted into other formats like
FLAC, MP3, or OGG.

We can then conclude thatMelomics, from a practical point of view, is well equipped
to interoperate with other systems and be integrated into other applications or work-
flows.

17.5 A Soundtrack for Life

Until now, we have avoided the question of the motivation for composing music
and on the nature of artificial music. The composition of music is regarded as a
creative process where humans can express and evoke sensations.Wewant to discuss
three questions related to the nature of artificial music. The first one is on whether
artificially composed music can be considered actual music. The second question is
about the nature of the artificial composition of music: is this music discovered or
created? Finally, we want to answer the question of why artificial music exists.

17.5.1 Is Artificial Music Actually Music?

One first question to be asked before considering whether artificial music is created
or discovered, it whether artificial music can be considered music. As discussed
in [11], the question on the nature of music is neither easy nor settled. Even when
limited to the “absolute” or “pure” music, i.e., instrumental music devoid of non-
musical aspects, the definition of music is a tricky question. The definition of music
as organized sound is too broad since it includes a collection of sounds that, while
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organized, are not music. Even this definition, while broad, is at risk of excluding
the composition generated by Melomics, since they alone are the only score, they
need to be performed to actually obtain music. This is, however, only a small hurdle
and we can consider the question of whether Melomics’s scores when performed are
actual music.

Two additional properties that are usually required in the definition of music
are either tonality—or the presence of certain musical features—and an appeal to
aesthetic properties. One or both properties can be considered necessary to obtain
music. The first of them can be respected byMelomics, since it requires the presence
of certain features that can be a force in either the encoding or the fitness function.
The second property is certainly more complex to be respected. We cannot ascribe
any intention of aesthetics to software, but we can suspect that the person setting the
parameters of Melomics as having as a goal the generation of aesthetically pleasant
sound. Also, if we move the focus from the composer to the listener, the fact that the
composer is a machine is not as relevant as initially envisioned.

We remark that these properties are not the only way to define music, and, indeed,
they have problems in capturing all and only what humans usually consider music.
There are multiple possible definitions, each one with strengths and weaknesses, and
their discussion is more the domain of discussion of the philosophy of music [11].

Wecan also take amorepractical approach,where insteadof looking atMelomics’s
compositions from a purely philosophical perspective, we consider the opinion of
critics and of the general public. If they consider the end result as music, then it can
be considered music.

In the case of experts, Peter Russell’s critics of a piece composed by Melomics is
illuminating:

Quite opposite to my usual comment when my ears are assaulted by serial music written in
the 12 tone scale, on listening to this delightful piece of chamber music I could not bring
myself to say that it would probably be more satisfying to read the score than listen to it. In
fact after repeated hearings, I came to like it.

Notice the absence of doubts onwhether the piece ismusic. There is a judgment on the
quality of the piece, and a positive one at it, but the piece is undoubtedly considered
music. Russell had no knowledge that the piece of music was the creation of an
algorithm, and was wondering himself of the origin of the piece:

I did not recognise either the piece or the composer. [...] It will be interesting to finally know
the name of the composer.

The fact thatMelomics’s composition are considered the product of human creativity
shows that, at least, in this case, artificial music can be considered music. It can also
be considered asmusic having a particular style, since Russell also suggest a possible
time period and geographical location for the composition:

However, if I were forced to hazzard a guess, I would say that it was written during the early
years of the twentieth century -1920’s, 1930’s. There was a feeling of France about it [...]
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To discuss an additional point of view, Philip Ball in [4] comments on Peter
Russell’s critics, and also discuss the generation process of Melomics, noticing that:

In a sense, these algorithms are not doing anything so very different from the way composers
have always composed.

also highlights the similarity between Melomics’s composition process and the
human one.

Also, in 2013, Matt Peckham titled its article “Finally, a Computer that Writes
Contemporary Music Without Human Help” [20], showing that what Melomics
produces is music. He also reiterates this by writing:

Music is elementally mathematical, so it makes sense that with exponential increases in
computer processing power, a computer could be designed that creates recognizable and
even interesting music.

Thus stating that computers can create music.
Not all people were positive in defining the work of Melomics as music. For

example, David Ecker [7] wrote that:

Without humanity, music is nothing but sonic manipulation

This would exclude any artificial composition, and skepticism is to be expected when
computers enter a domain that was previously only accessible to humans. However,
we want to point out that the situation is not a zero-sum game. For example, the
existence of chess-playing computers above the human level has not removed the
ability and pleasure to play chess with another human. As a second point, we might
want to consider the humanity of the listener. If an artificially composed piece evokes
certain sensations in the listener, are those sensations somehow diminished by the
absence of a human composer? Finally, if a piece is of unknown origin, at least to
the listener, is its status as music unknown? Do we really need to know the origin of
a piece to decide if it is music or not?

17.5.2 Creation or Discovery?

The nature of music and the dichotomy between creation—or invention—and dis-
covery has long been a topic of discussion especially in the area of the philosophy of
music [11]. We will now consider the Platonism approach, in which musical works
exist as abstract objects; other theories, like the nominalist theory, are not considered
in this discussion.

Even inside Platonism, we can distinguish two possible views: the simple Pla-
tonism, where musical objects exist as immutable outside of both space and time,
and the complex Platonism, where the musical objects exist in time as a result of
human action. This second view in particular is based on the observation that humans
compose music, that musical objects can be created, and that they possess individual
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tracts that derive from the human that composed them. The first view, however, has
musical objects as immutable and the role of the human is to discover them, not to
create them.

The nature algorithms and their outputs are more in the area of philosophy of
Mathematics [14], where the Platonistic view is also present. In particular, if we
ascribe to the view that mathematical entities exist in an immutable way, then the
Melomics algorithm is simply discovering points into the space of compositions that
can be represented via L-systems or context-free grammars. The idea that solutions
are discovered and not created is also present in the evolutionary algorithm commu-
nity. For example, if we consider a genetic algorithm and a fitness function f , we
say that want to find the optimum (either a global minimum or maximum) of f , not
to construct it. In some sense, we are saying that the existence of f itself is sufficient
to say that the optimum of f exists and we only need to discover it.

If we adopt this view also in our case, the combination of the encoding given by
Melomics and a collection of constraints given by the fitness function are enough to
ensure the existence of the compositions even before Melomics find them. This view
is consistent with assuming simple Platonism in music: in both cases, the music
is “only” discovered since it was always there. However, if we adopt a complex
Platonism view of music, we would have the inconsistency that algorithms discover
music, while humans create it. The same piece of music can be found by an algorithm
and created by a human; a difficult position since the first situation implies the
existence of musical objects as immutable outside of time, while the second implies
musical objects existing in time.

While this discussion is by no means exhaustive, it is interesting to consider how
the existence of algorithmic music might be a new lens to use in the analysis of the
nature of music and of mathematical objects.

17.5.3 Why Artificial Music?

The last question that remains to answer is the motivation for having artificially
composed music. An answer that might be not very satisfactory could be “Pour
l’honneur de l’esprit humain” (for the honor of the human spirit), as the title of the
book of the famous mathematician Jean Dieudonné. While discovering new music
can be done without any other goal in mind, there are real and tangible benefits to
artificial composition.

The first benefit is to create new and original music that would have remained
undiscovered without the help of an artificial composer. These ideas can then be
used in the composition of new music. As Philip Ball wrote [4]:

Iamus’s ultimate value, however, might not be so much as a composer in its own right but as
a factory of musical ideas, which human composers can mine for inspiration.
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In this sense, artificial composition can be considered not as a replacement of human
composition and creativity, but as an instrument for augmentation of human capa-
bilities.

Another, possibly less explored, aspect of artificial music is that there might be a
discrepancy between what a human composer wants to express with his/her music
in terms of sensations, images, and feelings, and what a person listening might want.
There are a lot of daily situations that might benefit from music, but those are not
the focus of composers. Consider, for example, a music to favor sleeping: not many
composers might want to write music to “put people to sleep”. Artificial music can
cover this discrepancy by composing music that, while useful to people, is not of
interest to the composers. In some sense, artificial music can provide a soundtrack
for all daily human activity, a soundtrack for life.

17.6 Conclusions

In this chapter, we have provided an introduction to the basic idea of combining
L-system and evolutionary algorithms to compose music. We have described how
the most prominent system of this kind, Melomics, works internally for composing
both atonal and tonal music, with also a brief historical excursus on the impact of
Melomics in the arts. We have remarked how, differently from many other existing
systems for the generation of music, Melomics does not require an existing corpus
of music to perform its compositions. In fact, it is only in the constraints imposed by
the L-systems construction and the evolutionary process that the distinction between
music and non-music is encoded into Melomics.

We tackled the discussion of the goal of producing artificial music, for example,
by pointing out the usefulness of music that, while being useful for humans, is not
pleasing for humans to compose.More “philosophical” is the discussion on the nature
of music, if music is constructed/generated or if it is discovered.While no conclusion
can be reached on this discussion, we consider extremely interesting the perspective
that can be gained by investigating computer programs.

Melomics’s applications are not limited to the ones presented here. Its principles
can be applied and adapted to producemoremusic; its rules and evolutionary process
can be refined with time: in some sense, as composer, Melomics is still growing.
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18AssistedMusic Creationwith Flow
Machines:TowardsNewCategories of
New

François Pachet, Pierre Roy and Benoit Carré

18.1 Background andMotivations

This chapter reflects on about 10 years of research in AI-assisted music composition,
in particular during the FlowMachines project.We reflect on themotivations for such
a project, its background, itsmain results and impact, both technological andmusical,
several years after its completion. We conclude with a proposal for new categories
of “new”, created by the many uses of AI techniques to generate novel material.

The dream of using machines to compose music automatically has long been a
subject of investigation, by musicians and scientists.

Since the 60s, many researchers have used virtually all existing artificial intelli-
gence techniques at hand to solve music generation problems. However, little con-
vincing music was produced with these technologies.

A landmark result in machine music generation is the Illiac Suite, released to
the public in 1956 [37]. This piece showed that Markov chains of a rudimentary
species (first order, augmented with basic generate-and-test methods) could be used
to produce interesting music. We invite the reader to listen to the piece, composed
more than 70 years ago, to appreciate its enduring innovative character [36].

However, the technology developed for that occasion lacked many fundamen-
tal features, to make it actually useable for concrete, professional musical projects.
Notably, the experiment involved generate-and-test methods to satisfy various con-
straints imposed by the authors. Also, the low order of the Markov chain did not
produce convincing style imitation. In spite of these many weaknesses, the Illiac
Suite remains today a remarkable music piece that can still be listened to with inter-
est.
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The Flow Machines project (2012–2017), funded by an ERC advanced grant
and conducted at Sony CSL and Sorbonne Université, aimed at addressing the core
technical issues at stake when generating sequences in a given style. In some sense,
it addressed the two main weaknesses of the Markov chains used in the Illiac Suite:
the low order (and the poor style imitation quality) and the controllability, i.e. the
capacity to force generated sequences to satisfy various criteria, not captured by
Markov models.

18.1.1 The Continuator

More precisely, the main motivation for Flow Machines stemmed from the Con-
tinuator project. The Continuator [71] was the first interactive system to enable
real-time music dialogues with a Markov model. The project was quite successful
in the research community and led to two main threads of investigation: jazz and
music education. Jazz experiments were conducted notably with György Kurtag Jr.
and Bernard Lubat, leading to various concerts at the Uzeste festival (2000–2004)
and many insights concerning the issues related to control [64].

The education experiments consisted in studying how these free-form interac-
tions with a machine learning component could be exploited for early-age music
education. Promising initial experiments [1,73] led to an ambitious project [111]
about so-called “reflexive interactions”. During this project, the Continuator sys-
tem was substantially improved and extended, to handle various types of simple
constraints. An interesting variant of the Continuator for music composition, called
MIROR-Impro, was designed, deployed and tested, with which children could gen-
erate fully fledged music compositions, built from music generated from their own
doodling [95]. It was shown also that children could clearly recognize their own style
in the material generated by the system [40], a property considered as fundamental
for achieving reflexive interaction.

18.2 Markov Constraints:Main Scientific Results

These promising results in the investigation of Markov sequence control led to the
Flow Machines project. Technically, most of the work consisted in exploring many
types of interesting constraints to be enforced on finite-length sequences generated
from variousmachine learningmodels, such as variable-orderMarkovmodels. Other
tools were developed to offermusicians a comprehensive tool palette withwhich they
could freely explore various creative use cases of style imitation techniques.
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Table 18.1 The chord progression of the Boulez Blues

C7/Fmin Bb7/Ebmin Ab7/Db7 Dbmin/Cmin

F7/Bbmin Eb7/Abmin Gmin/Gbmin B7/Gb7

Bmin/E7 Amin/D7 Emin/A7 Dmin/G7

18.2.1 The“Markov + X”Roadmap

Markovmodels are used everywhere, from economics to Google ranking algorithms,
and are good at capturing local properties of temporal sequences and abstract them
intowell-knownmathematical concepts (e.g. transitionmatrice or graphs). AMarkov
model can easily be estimated from a corpus of sequences in a given style to represent
information about how musical notes follow each other. This model can then be
used to produce new sequences that will sound more or less similar to the initial
sequences. Generation, or sampling, is extremely simple and consists in so-called
random walks (also called drunken walks): starting from a random state, transitions
are drawn randomly from the model to build a sequence step by step. However,
the remarkable simplicity of random walks in Markov models meets its limitations
as soon as one tries to impose specific constraints on the generated sequences. The
difficulty arises when onewants to impose simple properties that cannot be expressed
as local transition probabilities: for instance, imposing that the last note equals the
first one, or that the notes follow some pattern, or that the total duration be fixed
in advance. Even more difficult, how to impose that the generated melody is nicely
“balanced”, for instance exhibiting a well-known 1/ f property, characteristic of
natural phenomena?

The initial idea was to use the powerful techniques of combinatorial optimization,
constraint satisfaction in particular (CP), precisely to represent Markovianity, so that
other, additional properties could also be stated as constraints. Indeed, the main
advantage of constraint programming is that constraints can be added at will to the
problem definition, without changing the solver, at least in principle.

The idea of representing Markovianity as a global constraint was first detailed
in [67]. We reformulated Markov generation as a constrained sequence generation
problem, an ideawhich enabled us to produce remarkable examples. For instance, the
AllDifferent constraint [93], added to aMarkov constraint, could produce our Boulez
Blues: a Blues chord sequence in the style of Charlie Parker so that all chords are
different! Table 18.1 shows the chord progression of the Boulez Blues. A rendering
with jazz musicians can be heard at [59].

However, this approach was costly, and we did not propose any boundaries on
the worst-case complexity. So we started to look for efficient solutions for specific
cases.
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18.2.2 Positional Constraints

The first substantial result we obtained was to generate efficientlyMarkov sequences
with positional constraints (called unary constraints at the time). Enforcing specific
values at specific positions in a finite-length sequence generated from a Markov
model turned out to be solvable in polynomial time. The result described in [75]
consists in first propagating all the zero probability events (filtering) and then back-
propagating probabilities to ensure unbiased sampling. This result enabled us to
implement an enhanced version of Continuator and triggered the development of the
Flow Machines project.

An interesting and unexpected application of this result (possibility to add posi-
tional constraints to Continuator) enabled us to introduce several types of continua-
tions, depending on positional constraints posted on the beginning and endings of a
musical phrase. Unary constraints could be used to represent various musical inten-
tions, when producing amelody from aMarkovmodel and an input melody provided
in real time. For instance, we defined the following types of melodic outputs:

1. Continuation: input is continued to produce a sequence of the same size. A con-
straint is posted on the last note to ensure that it is “terminal”, i.e. occurred at the
end of an input melody, to produce a coherent ending.

2. Variation: it is generated by adding two unary constraints that the first and last
notes should be the same, respectively, as the first and last notes of the input.

3. Answer: it is like a Continuation, but the last note should be the same as the first
input note. This creates a phrase that resolves to the beginning, producing a sense
of closure.

Additionally, for all types of responses, unary constraints were posted on each
intermediary note stating that they should not be initial nor final, to avoid false
starts/ends within the melody. This use of positional constraints to bias the nature
of a continuation nicely echoes the notion of conversation advocated by composer
Hans Zimmer in [24]. These constraints substantially improved the musical quality
of the responses generated by Continuator.

Figure18.1 shows a melody fromwhich we build aMarkov model M . Figure18.2
shows examples of continuations, variations and answers, built from M and the
constraints corresponding to each melody type, from an input (I). It is clear that these
melodies belong to their respective musical categories: Continuations end naturally,
with the same 3 notes as the input (a consequence of the constraint on the last note);
variations sound similar to the input; and answers sound as responses to the input.
This shows how simple unary constraints can produce a global effect on the structure
of generated melodies.

An application of positional constraints to the generation of jazz virtuosomelodies
[65] was also designed, controlled by a gesture controller. Sessions were recorded
with various musicians [63,66,91].
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Fig. 18.1 A training sequence

Fig. 18.2 Different continuation types generated from the same training sequence: continuations
(C), variations (V) and answers (A), generated from the input melody (I)

An interesting application of positional constraints was lyric generation, satisfy-
ing rhymes and prosody constraints [6,7], leading to the generation of lyrics from
arbitrary prosody and rhyme templates.

In all cases, the imposition of these positional constraints, and their “backpropa-
gation” consequence on the generated sequence, produces pleasing musical effects,
probably due to the implicit generation of meaningful “preparations” for specific,
imposed events. Note that this work was extended to handle positional constraints
for recurrent neural networks in [33], leading to similar effects.

18.2.2.1 Harmonization
An interesting application of positional constraints was the harmonization system
described in [69]. In the system, positional constraints were used to enforce specific
constraints on chords to be played during the onset of melody notes. Passing chords
were generated in between those notes to create interesting harmonic movements
(called fioritures) that would fit with the imposed melody, but not necessarily in
conformant ways. Some remarkable results were obtained, such as a version of
Coltrane’s Giant Steps in the style of Wagner [60] (see Fig. 18.3).

An interesting harmonization of the title Começar de Nuovo composed by Ivan
Lins, in the style of Take 6, was produced and shown to Ivan Lins himself, who
reacted enthusiastically [46].

These results obtained with positional constraints and Markov chains and their
application paved the way for an extensive research roadmap, aimed at finding meth-
ods for controlling Markov chains with constraints of increasing complexity.



490 F. Pachet et al.

B maj7 D 7 G maj7 Bb 7 Eb maj7 A min7 D 7

G maj7 Bb 7
Eb maj7 F# 7 B maj7 F min7 Bb 7 Eb maj7

A min7 D 7 C# min7 F# 7

B maj7

G maj7

F min7 Bb 7 Eb maj7 C# min7 F# 7

Fig. 18.3 A harmonization of Coltrane’s Giant Steps in the style of Wagner. The melody is the
soprano line, chord symbols are displayed and the rest is generated in the style of Wagner

18.2.3 Meter and All that Jazz

The next problem to solve was meter: notes have durations, and there are many rea-
sons to constrain the sum of these durations in music. Meter cannot be expressed
easily by index positions in a sequence. As a consequence, one cannot easily gen-
erate Markov sequences of events having variable durations, while imposing a fixed
total duration, for instance, which is problematic for music composition. Thanks
to a theorem by Khovanskii in additive number theory [41], we found a pseudo-
polynomial solution for meter and Markov sequences. TheMeter constraint enables
the generation of Markov sequences satisfying arbitrary constraints on partial sums
of durations. This important result [100] was heavily used in our subsequent systems,
notably for lead sheet generation “in the style of” with arbitrary constraints [68].

Another big stepwas to address the recurring problems ofMarkov chains: increas-
ing the order leads to solutions which contain large copies of the corpus: how to limit
this effect? MaxOrder was introduced in [84] precisely to solve this problem. The
solution consists in reformulating the problem as an automaton, using the framework
of regular constraints [90].We proposed a polynomial algorithm to build this automa-
ton (max order imposes a set of forbidden substrings to the Markov sequences).

Now that we had a way to enforce basic constraints on meter and order, we inves-
tigated ways of making sequences more “human”. A beautiful result, in our opinion,
was to revisit the classical result of Voss and Clarke concerning 1/ f distribution
in music [113,114]. We looked for a constraint that biases a sequence so that its
spectrum is in 1/ f . We showed that the stochastic, dice-based algorithm proposed
by Voss can be expressed as a tree of ternary sum constraints, leading to an efficient
implementation [78]. For the first time, one could generate meter sequences in 1/ f .
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Fig. 18.4 A 10-bar cancrizan canon generated by our palindrome Markov generator

The examples in the original Voss paper did not have bars, understandably: now we
could add them!

Paradoxically, the only negative result we obtained was to show that enforcing
binary equalities within Markov chains was #P-complete in the general case (as well
as grammar constraints more generally) [94]. This is a counter-intuitive result as this
constraint seemed a priori the simplest to enforce.

18.2.4 SamplingMethods

The next class of problems we addressed was sampling: how to get not only all the
solutions of a constraint problem, but also a distribution of typical sequences, and for
more powerful graphical models than linear Markov chains, to handle polyphonic
sequences. Works on sampling led to a remarkable result: that all regular constraints
(as introduced by Pesant in [90]) added to Markov constraints can be sampled in
polynomial time [83]. We later realized that our positional constraint algorithm was
equivalent to belief propagation [87], and that meter, as well asMaxOrder [82] were
regular. This led to a novel, faster and clearer implementation of metrical Markov
sequences [83].

Some interesting extensions to more sophisticated constraints were studied, such
as AllenMeter [104]. AllenMeter allows users to express contraints using temporal
locations (instead of events) involving all the Allen relations [3]. This constraint was
used to generate polyphonic music enforcing complex synchronization properties
(see Sect. 18.5). Palindromes were also studied (i.e. sequences that can read both
forward and backward), and a beautiful graph-based solution was found to generate
all palindromic sequences for first-order Markov chains [86]. A fascinating appli-
cation to the generation of cancrizan canons was experimented with by Pierre Roy
with promising results (see Fig. 18.4).

Another interesting development addressed the issue of generating meaningful
variations of musical sequences. This was performed by representing musical dis-
tance as biases of the local fields in the belief propagation algorithm [74,103]. This
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type of issue is now addressed typically with variational auto-encoders [11] with
similar results.

These results somehow closed the chapter Markov + X global constraints, since
most interesting constraints in music and text can be expressed as regular constraints.
This line of works generated a substantial amount of theoretical and algorithmic
results [80], as well as fruitful collaborationswith other CP researchers. Jean-Charles
Régin and Guillaume Perez, in particular, reformulated a number of our algorithms
in the framework of Multi-valued Decision Diagrams (MDD), yielding substantial
gains in efficiency [88,89].

18.3 BeyondMarkovModels

Markov models (and their variable-order species) having been thoroughly investi-
gated; we turned to more powerful models with the same goal in mind: finding effi-
cient ways of controlling them. We explored the use of themaximum entropy princi-
ple [39] formusicmodelling. Thismodel is based on the representation of binary rela-
tionships between possibly not contiguous events, thereby preventing issues related
to parameter explosion inherent to higher order Markov models. Departing from
a pure filtering approach, parameter estimation is performed using high-dimension
gradient search, and generation using aMetropolis algorithm. This model gave inter-
esting results for monophonic sequences [107] and some extensions were studied to
polyphonic ones as well [35]. An application to modelling expressiveness in mono-
phonic melodies was conducted in [56] with promising results.

Other aspects of style capture and generation were considered in FlowMachines,
such as the generation of audio accompaniments “in the style of”. A dynamic pro-
gramming approach was developed in conjunction with a smart “audio glueing”
mechanism to preserve groove, i.e. small deviations in the onset of events that char-
acterize the style [92]. A convincing example can be heard in the Bossa nova orches-
tration ofOde to Joy [72]. This result triggered a fruitful collaboration with Brazilian
colleagues to capture Brazilian guitar styles (the Brazyle project [61]).

18.4 Flow Composer:The First AI-Assisted Lead Sheet
Composition Tool

These techniques were used to develop a lead sheet generator called Flow Composer
(see [79] for a retrospective analysis of the development of this project). The lead
sheet generator was trained using a unique database of lead sheets developed for this
occasion, LSDB [70]. In order to use these generators, we designed the interface
Flow Composer [85]. The basic idea was to let users enter arbitrary chunks of songs
(melody or chords) and let the generator fill in the blanks, a process referred to now as
inpainting [12]. This process took several iterations, ranging from the development
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of a javascript library for music web editing [50] to studies about the impact of
feedback on composition with these tools [51].

Thanks to this interface, Flow Composer was intensively used by musicians, in
particular by SKYGGE (SKYGGE is the artist nameBenoit Carré uses for allmusical
productions done with AI [15]) to compose and produce what turned out to be the
first mainstream music album composed with AI: Hello World [31].

18.5 Significant Music Productions

In this section, we review some of the most significant music produced with the tools
developed in the Flow Machines project. Departing from most research in computer
music, we stressed from the beginning the importance of working with musicians, in
order to avoid the “demo effect”, whereby a feature is demonstrated in a spectacular
but artificial way, regardless of the actual possibility by a real musician to use it to
make real music to a real audience. It is the opinion of the authors that some of the
music described above stands out, but we invite the reader to listen to these examples
to form his/her judgement.

1. The Boulez Blues
The Boulez Blues (see Sect. 18.2.1) is a Blues chord sequence in the style of
Charlie Parker (generated from a first-order Markov model). The sequence con-
tains onlymajor andminor chords, in all 12 keys (i.e. 24 chords in total, 2 per bar)
and additionally satisfies an AllDifferent constraint, i.e. all chords are different.
The sequence was generated with a preliminary version of Markov constraints
that enabled the computation of the most probable sequence (using branch &
bound). In that sense, we can say that the Boulez Blues is the most Parker-like
Blues for which all 24 chords are different. A rendering with jazz musicians can
be found at [59]. This remarkable Blues chord progression can be considered as
an original stylistic singularity (of the style of Charlie Parker, using a specific
constraint which clearly goes in the way of the style).

2. Two harmonizations with Flow Composer
Some harmonizations produced with Flow Composer (see Sect. 18.2.2.1) stand
out. We stress here the musical qualities of the Wagner harmonization of Giant
Steps [60], and the harmonization of Começar de Nuovo (Ivan Lins) in the style
of Take 6 [46]. These pieces can be seen as particular instances of style transfer
(here the style of orchestration is transferred from one piece to another).

3. Orchestrations of Ode to Joy
During the project, at the request of the ERC for the celebration of the 5000th
grantee,weproduced seven orchestrations ofBeethoven’sOde to Joy (the anthem
of the European Union). These orchestrations were produced with various tech-
niques and in different styles [26,72].
The most notable orchestrations are as follows:
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Fig.18.5 A multi-track audio piece generated with Allen Meter: A graphical representation of the
guitar (top), bass (centre) and drum (bottom) tracks of Prayer in C. Each track contains 32 bars and
each triangle represents a chunk. Vertical lines indicate bar separations

(a) Multi-track audio generation A particularly interesting application of the
work on AllenMeter by Marco Marchini (see Sect. 18.2.3) is the generation
ofmulti-track audio, involving temporal synchronization constraints between
the different tracks (bass, drum, chords). Figure18.5 shows an excerpt of Ode
to Joy in the style of Prayer in C (Lilly Wood and the Prick).

(b) Bossa Nova Orchestration with concatenative synthesis
A Bossa nova orchestration was generated for which the guitar accompa-
niment was produced using concatenative synthesis, applied to a corpus of
guitar recordings (see Sect. 18.3). The techniques used are described in [92],
and this Bossa nova example nicely emphasizes how the groove of the original
guitar recording (by the first author of this paper) was preserved.

(c) Bach-like chorale using Max Entropy
Orchestration in the style of Bach was generated using the maximum entropy
principle (seeSect. 18.3),whichhad showngreat theoretical aswell asmusical
results on monophonic music modelling [107]. This anachronic yet convinc-
ing orchestration paved the way for the DeepBach system, a more complete
orchestration system in the style of Bach based on an LSTMarchitecture [34].

4. Beyond The Fence
Beyond The Fence is a uniquemusical, commissioned byWingspan Productions.
The idea was to produce a full musical show using various computational cre-
ativity techniques, from the pitch of the musical to the songs, including music
and lyrics. The musical was produced in 2015 and was eventually staged in the
Arts Theatre in London’s West End during February and March of 2016. The
complex making of of the musical gave birth to two 1-hour documentary films,
which were aired on Sky Arts under the title Computer Says Show.
Some of the songswere composedwith a preliminary version of FlowComposer,
under the control of composers Benjamin Till and Nathan Taylor. In particular,
the song Scratch That Itch (see Fig. 18.6) received good criticism. The song was
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Fig. 18.6 An excerpt of Scratch That Itch, a song composed with Flow Composer for the musical
Beyond The Fence

produced by training Flow Composer on a corpus of musicals, mostly broadway
shows, in an attempt to replicate that style.
An analysis of the production and reception of themusical was published in [21].
The overall reception was good, though difficult to evaluate, because of the large
scope of the project. Concerning the songs made with Flow Composer, a critic
wrote:

I particularly enjoyed Scratch That Itch, …, which reminded me of a Gilbert & Sullivan
number whilst other songs have elements of Les Miserables. Caroline Hanks-Farmer,
carns, TheatrePassion.com

This critic embodies the essence of the reception in our view: songs created did
bear some analogy with the corpus, and created a feeling of reminiscence, at
least to some listeners.

5. Catchy tune snippets with Flow Composer
Before Flow Composer was used on a large scale for theHello World album (see
below), the system was used to compose fragments of songs in various styles.
Some of these fragments are today still worth listening to, bearing a catchiness
that is absent from most of the generated music produced 4 years later. These
three examples can be seen as stylistic explorations of various composers.

(a) in the style of Miles Davis
This song snippet was generated by training Flow Composer on a set of about
10 songs composed by Miles Davis (see Fig. 18.7) [98]. These 8 bars, played
in loop, produce an engaging groove though with a rather unconventional yet
consistent melody.

(b) From Solar to Lunar
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Fig. 18.7 A song snippet composed with Flow Composer in the style of Miles Davis [98]

Fig. 18.8 Lunar, a song composed with Flow Composer in the style of Miles Davis, with the
structure of Solar [96,97]

This short song was also generated by training Flow Composer on a set of
10 songs composed by Miles Davis (see Figs. 18.7, 18.8). Additionally, the
structure of the song Solar was reused, an instance of templagiarism, hence
its title. A rendering is available at [96]. This song was deemed sufficiently
interesting to be performed live in London (Mark d’Inverno quartet [97]; see
Fig. 18.9) during an “AI concert”. Listening to the tune performed by Mark
d’Inverno quartet, journalist James Vincent wrote [112]:

The AI’s contribution was just a lead sheet—a single piece of paper with a melody
line and accompanying chords—but in the hands of d’Inverno and his bandmates,
it swung. They started off running through the jaunty main theme, before devolving
into a series of solos that d’Inverno later informed me were all human (meaning, all
improvised).

(c) in the style of Bill Evans
This short song (listen to a rendering at [99]) was generated by training Flow
Composer on a set of 10 songs composed by Bill Evans (see Fig. 18.10).
The melody nicely navigates through the chord progression, sometimes in
an unconventional but clever manner (bar 3). Thanks to unary constraints,
the tune nicely transitions from the end to the beginning. Other songs in the
style of Bill Evans were generated on the fly and performed live at the Gaité
Lyrique concert (see below).

6. Daddy’s car
The song Daddy’s car was generated with Flow Composer, using a corpus of
45 Beatles songs (from the latest period, considered usually as the richest and
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Fig.18.9 The concert of the Mark d’Inverno quartet playing Lunar at the Vortex Club in London,
October 2016

Fig. 18.10 A song snippet composed with Flow Composer in the style of Bill Evans. Available
at [99]

most singular in the recording history of The Beatles). Flow Composer was used
to generate the lead sheet, while the lyrics and most of the orchestration were
done manually, by SKYGGE. The song was released in September 2016 on
YouTube [17] and received a lot of media attention (about 2.5 million views as
of April 2020).
An interesting aspect of this song is how the system identified and reproduced a
typical harmonic pattern found in many Beatles songs. This pattern consists in
a chromatic descending bass and can be found, for instance, in the introduction
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Fig.18.11 The introduction ofMichelle uses a typical harmonic pattern of The Beatles (here in D
minor). Note that we show here the Real Book spelling, with a C#+ chord, which is equivalent to a
DmM7

Fig. 18.12 The song Daddy’s car reuses the harmonic pattern of Michelle in a different context
(here in A minor)

and in the middle of the song Michelle (which was part of the training set)
(see Fig. 18.11). This pattern was reused and instantiated in a novel context in
the middle of Daddy’s car (see Fig. 18.12). For that reason, the song can be
considered a pastiche: it reuses explicitly typical patterns of the style, without
any attempt at introducing novelty.

7. Busy P remix
Artist Busy P (real name Fred Winter, French DJ, producer and ex-manager of
Daft Punk) launched title Genie in 2016 [115]. Several remixes of the title were
produced, including onemadewith FlowMachines [10]. In this remix, a variation
of the chord sequencewas generatedwith FlowComposer bySKYGGE, and then
rendered using concatenative synthesis [92]. The remix features an interesting
and surprising slowdown, due to an artefact in the generation algorithm that was
considered creative and kept by the remixer.

8. Move on
The UNESCO commissioned a song to be composed with FlowMachines, using
material representative of 19 so-called “creative cities”. This song, calledMove
On, was composed in 2017 and distributed as a physical 45 RPM vinyl [16]. 20
scores of songs were gathered and used as a training set. The composition and
realization were performed by SKYGGE, Arthur Philippot and Pierre Jouan,
with the band “Catastrophe” [20]. The song integrates a large number of musical
elements, sounds and voices but manages to produce a coherent and addictive
picture, thanks to the repeated use of smart transformations of the sources to fit
the same chord progression throughout.

9. Concert at Gaité Lyrique
A unique concert involving several artists who composed songs with Flow
Machines was performed at Gaité Lyrique in Paris, in October 2016. This con-
cert was probably the first ever concert showcasing pop tunes (as well as jazz)
composed (in real time for some of them) with AI.
The concert [14] involved the following artists and songs:

https://en.wikipedia.org/wiki/Pedro_Winter
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Fig. 18.13 A haunting 4-bar melody/harmony combination at the heart of the song Azerty

(a) SKYGGE (Daddy’s Car)
SKYGGEperformedDaddy’s car aswell as several titles [13]which appeared
later in the Hello World album (see below for descriptions).

(b) Camille Bertault
Jazz singer Camille Bertault (who has, since then, become a successful jazz
interpret) sung various songs composed in real time by Flow Composer, in
the style of Bill Evans [9]. The voice of Bertault fits particularly well with
the Evanssian harmonies and the simple but efficient voicings played by the
pianist (Fady Farah).

(c) O (Azerty)
Artist OlivierMarguerit (aka “O”) composed a beautifully original song titled
Azerty [48]. Verses were generated by Flow Composer trained on a mix of
God Only Knows by The Beach Boys, Sea Song by Robert Wyatt and The
Sicilian Clan by Ennio Morricone. This song features interesting, and in
some sense typical, melodic patterns created with Flow Composer that sound
momentarily unconventional but eventually seem to resolve and make sense,
pushing the listener to keep his attention on the generously varied melodic
line. The song also features a 4-bar melody woven onto an unconventional
harmony that deserves attention (see Fig. 18.13).

(d) François Pachet (Jazz improvisation with Reflexive Looper)
Pachet performed a guitar improvisation on the jazz standard All the things
you are using Reflexive Looper [62], a system that learns in real time how to
generate bass and chord accompaniments [47,77] (see Sect. 18.6).

(e) Kumisolo (Kageru San)
Japanese artist Kumisolo interpreted the song Kageru San, composed in the
JPop style by SKYGGE with Flow Composer [42]. Flow Composer was
trained with songs from the album Rubber Soul by The Beatles. The audio
renderings were generated from excerpts of Everybody’s Talking at Me by
HarryWilson andWhite Eagle byTangerine. The song, while firmly anchored
in the JPop style, has a memorizable, catchy chorus.

(f) Lescop (A mon sujet)
The song A mon sujet [45] was composed by Lescop with Flow Composer
trained on songs Yaton by Beak, Vitamin C by Can, Tresor by Flavien Berger,
Supernature by Cerrone and Rain by Tim Paris. Although the resulting
melodic and harmonic lines are monotonous compared to other songs, the
voice of Lescop mixed with the piano and bass ostinato create a hauntingly
obsessive and attaching musical atmosphere.

https://www.camillebertault.fr/
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Fig. 18.14 An enigmatic 8-bar theme at the heart of Ballad of the Shadow

(g) ALB (Deedadooda)
The song Deedadooda [2] by emerging artist ALB was composed with a
training set of 16 songs by ALB himself. It features a dialogue between ALB
and a virtual composer, cleverly integrated into the song itself.

(h) Housse de Racket (Futura)
Futura was composed from a training set of 6 songs by “Housse de Racket”
themselves [38]. The rendering is generated from the introduction of Love’s
in Need of Love Today by Steve Wonder, which creates an enigmatic and
original Pop atmosphere on an unusually slow tempo.

10. Hello World
The most sophisticated music production of the project was the album Hello
World [31]. Hello World was the first mainstream music album featuring only
AI-assisted compositions and orchestrations. This album features 15 songs com-
posed by various artists who used FlowMachines at its latest stage. Composition
sessions were held at Sony CSL, conducted by SKYGGE, and involved artists in
several genres (Pop, Jazz, Electronic Music).Hello World received considerable
media attention [30] and reached remarkable audience stream counts (about 12
million streams). The song list is the following and each song has its story:

(a) Ballad of the Shadow
Ballad of the Shadow is the first song written for this album. It was composed
by SKYGGE with Flow Machines, inspired by jazz standards, with the goal
of making a vaporwave cowboy song. The idea of shadows singing was
developed into a melody with a happy mood. It resembles a cartoon-like tune
when it is played at 120 bpm, but becomes melancholic when played slower,
especially with ambient textures. Ash Workman and Michael Lovett detuned
the drums and added some drive effects. The main theme (see Fig. 18.14) is,
again, enigmatic, unconventional yet beautifully making its way through an
unusual chord progression.

(b) Sensitive
Sensitivewas composed bySKYGGEwith FlowMachines, inspired byBossa
novas. The lyrics and voice are from C Duncan. The song was composed



18 Assisted Music Creation with Flow Machines: Towards New Categories of New 501

Fig. 18.15 The first bars of Sensitive, a song composed in the style of Bossa novas, but rendered
in a slow pop ballad

from a corpus of Bossa novas of the 60s. There are some patterns in the
song such as major-minor progressions that Bossa nova fans will recognize
and like (see Fig. 18.15). Harmonic changes are sometimes very audacious,
but the melody always stays on track. SKYGGE generated a voice for the
melodic line with random lyrics, like a mosaic of syllables extracted from the
a cappella recording of a vocalist. However, once played with a piano, the
music sounded like a powerful 70s ballad. SKYGGE liked the combination
of the two styles, and recorded a string arrangement written by Marie-Jeanne
Serrero and live drums. C Duncan was very enthusiastic when he listened to
the song; he wrote lyrics from random material inspired by key words like
wind, deep and feel.

(c) One Note Samba
François Pachet and SKYGGE share an endless admiration for Antonio Car-
los Jobim, the great Brazilian composer, and they wanted to do a cover of his
famous song One Note Samba with Flow Machines.
SKYGGE put together generated stems with drums, bass and pads and right
away got awesome results: a singular and catchy tune with great harmonies
and timbre. The resulting harmonies slightly differ from the original but do
not betray the logic of the song. The chord progression brings a Jobimian
touch to the melody through unexpected harmonic modulations.
A few days before, the French band “The Pirouettes” had come to the studio
and had uploaded two songs from their first album Carrément, Carrément.
Vocals were generated from these recordings forOne Note Samba, so fans of
The Pirouettes may recognize words from their original songs.

(d) Magic Man
SKYGGE fed Flow Machines with French pop songs from the 80s. The
machine generated a simple melody, which sounded groovy when rendered
with a generated choir. The title comes from a phrase that comes back fre-
quently in the choir:Magic Man. It was a nice surprise that the machine came
up with a shiny pop song title with such an electro-disco feel. FlowMachines
generated guitars from an American folk stem, as well as other vocals on the
verse, and SKYGGE sung over those voices to get a more complex vocal
blend. He also asked the singer Mariama to sing along with the generated
choir to reinforce the groove. The lyrics are a mashup from all the generated
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Fig. 18.16 The catchy and singular verse of In the house of poetry

Fig.18.17 The chorus of In the house of poetry features an unconventional and audacious ascending
melody

syllables. French electro band Napkey worked on the arrangement at the end
of the production, and Michael Lovett added synthesizer arpeggios.

(e) In the House of Poetry
SKYGGE wanted to compose a song with the enchanting charm of ancient
folk melodies. He fed Flow Machines with folk ballads and jazz tunes. As a
result, the machine generated melodies with chord progressions right in that
mood, and a catchy and singular melodic movement (see Fig. 18.16). Once
the verse was done, he fed Flow Machines with a jazzier style for the chorus
part, in order to bring in rich harmonic modulations.
Flow Machines then proposed an unconventional and audacious harmonic
modulation in the first bar of the chorus, with an ascending melody illumi-
nating the song (see Fig. 18.17). SKYGGE followed up with a small variation
by exploiting a 2-bar pattern generated by FlowMachines and asked the sys-
tem again to generate a harmonic progression that would resolve nicely with
the tonality of the verse.
He subsequently asked Kyrie Kristmanson to join, hoping she would like
the song and would not be afraid of its technically challenging nature. She
was indeed enthusiastic and wrote lyrics inspired by the tale The Shadow by
Andersen. She focused on the part of the story where the Shadow tells the
learned man what he saw in the house of Poetry.
The song is divided into two parts. In the first part Kyrie sings; in the second
part, Kyrie’s vocals are generated by Flow Machines from the recordings of
Kyrie’s voice.
Flow Machines generated pianos, strings and vocals from SKYGGE’s mate-
rial as well as fromKyrie’s voice. SKYGGE played all additional instruments
(drums, piano and electric guitars).

(f) Cryyyy
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This simple melody in the style of pop tunes from the 60s was generated
almost exactly in its final form. When SKYGGE was working in the studio
of Ash Workman with Michael Lovett, Ash had just received an old cabinet
organ from the 70s bought on the Internet. They plugged it in and began
to play the chords of Cryyyy. It sounded great, and they recorded all those
sounds for the song. SKYGGE wanted a melancholic but modern sound and
the timbre of Mariama’s voice matched perfectly. Flutes and detuned and
distorted guitars were generated by Flow Machines, and SKYGGE added
some beats and deep bass.

(g) Hello Shadow
Stromae was fascinated by the possibilities of the software, and he fed the
machineswith his own influences: scores and audio stems in theCapeVerdian
style. He selected his favourite melodies and stems fromwhat FlowMachines
had generated. Those fragments were put together and the song was built step
by step. Stromae sung a vocal line that followed the generated melody, and
he improvised on the pre-chorus. The choir in the chorus was also generated.
When the songwas ready for final production, it was sent to singerKieszawho
loved it. She wrote lyrics inspired by the tale The Shadow. Kiesza envisioned
a happy, shiny shadow. Amost unusual and characteristic feature of this song
is its first four notes of the verse, which evoke the image of a ball bouncing
and rolling.

(h) Mafia Love (Oyestershell)
This song was composed by SKYGGE with FlowMachines, inspired by pop
of the 60s. It is almost a direct composition by Flow Machines, with very
little human edits to the melody. The song has its internal logic, like all good
songs. It tells a story, though unconventionally due to its rich structure, with
almost no repetition. This absence of repetition sounds seem strange at first,
but the song becomes an earworm after hearing it a couple of times. The song
was rendered with a generated voice from an a cappella recording of Curtis
Clarke Jr., and a generated piano track from a stem by SKYGGE.

(i) Paper Skin
Paper Skin is an interesting, indirect use of AI. This song was built from the
song Mafia Love (see above). JATA picked up fragments of Mafia Love for
the verse and the pre-chorus. He then composed a new chorus fitting those
fragments. Ash Workman added some sounds from Mafia Love in the intro
and in the bridge. Paper Skin is an offshoot of Mafia Love, illustrating how
a melodic line can travel ears and be transformed according to unpredictable
inspirations of musicians.

(j) Multi Mega Fortune
Michael Lovett from NZCA Lines fed Flow Machines with his own audio
stems, vocals, drums loops, bass and keyboards, as well as lead sheets in
the style of Brit pop. A lot of material was generated, both songs and stems.
Michael Lovett and SKYGGE curated the results, and Lovett wrote lyrics
inspired by the tale The Shadow. The result is a synth-pop catchy tune with
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a distinctive gimmick generated by Flow Machines that runs throughout the
song.

(k) Valise
When Stromae came to the studio, we tried several ideas based on six lead
sheets generated with FlowMachines. Between sessions, SKYGGE explored
one of those directions and generated a vocal line from the song Tous les
mêmes, a former song of Stromae, uploaded on Flow Machines. The lyrics
produced from the generated vocals meant something different from the orig-
inal song by Stromae, but they were relevant, since they addressed the theme
of “luggage” (Valise, in French). Stromae liked the song, but at the time we
focused on the songHello Shadow and leftValise aside for a while. SKYGGE
asked the French band “The Pirouettes” to sing the melody instead of using
the generated voice. The Pirouettes sung in sync with the generated voice by
Stromae. This song bears an uncommon yet catchy chord progression and
structure. Like other songs from the album, first hearings may sound strange,
but after a couple of listenings, the song becomes an earworm. One can hear
the generated choir laughing on top of this unusual chord progression.

(l) Cake Woman
Médéric Collignon, an amazing jazz trumpet player, came to the lab full
of energy, with his own audio tracks, mostly jazz progressions played on a
Rhodes piano, and some bass synths. SKYGGE also brought some hip-hop
grooves, and the two musicians worked on a funk pop in the style of the
80s. The generated lead sheet was simple but contained harmonic twists that
Médéric digs as a jazz composer. He selected chromatic modulations that he
often uses in his own scores.
When they generated audio stems for the song from all the audio material,
the output was messy but sounded very exciting. In particular, the groovy
Rhodes generated from Médéric’s own recordings reinforced the funkiness
of the song. Pachet and SKYGGE wrote lyrics inspired by the nonsensical
words of the generated voice, in the style of surrealist poetry. They asked the
young and talented jazz singer Camille Bertault to sing the song. She also
performed a scat-like improvisation, echoing the trumpet solo. In Andersen’s
tale, the Shadow is hiding in the coat of a “cake woman”, hence the title.

(m) Whistle Theme
Themes from older soundtracks are often more melodic than recent ones.
Today, film scores aremore often based on textures thanmelodies. Inspired by
those old soundtracks, FlowMachines generated a catchy theme for this song
(see Fig. 18.18). The whistling was backed up by airport sounds generated to
match the song. Pierre Jouan from the pop band “Catastrophe” sung another
song, from which the machine generated the voice heard in the song.

(n) Je Vais Te Manger
Laurent Bardainne came to the studio with his audio stems, marimba, synth
bass patterns and compositions in the style of 80’s pop. FlowMachines gener-
ated a few songs, and Laurent selected the good parts. Laurent and SKYGGE
built the song in a few hours. They left each other without knowing what to do
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Fig. 18.18 The catchy line of Whistle song

Fig. 18.19 The catchy line of Je Vais Te Manger

with their song. For over a week, SKYGGEwoke up every morning with this
melody stuck in his head. Looking in depth at the generated lead sheet, one
can see a harmonic twist that no one would have thought of. This twist pushes
the melody up and down over an audacious modulation (see Figure18.19).
SKYGGE and Laurent asked Sarah Yu to sing. The song is about a woman
who says she will eat our souls and that we are lost.

(o) Cold Song
The Cold Song is a well-known part of the opera King Arthur by Purcell. It
has been sung by many singers in many styles (Sting, Klaus Nomi). For this
cover, SKYGGE was inspired by artists such as Andre Bratten, Anne Clarke
and Johann Johannsson, who have used machines to produce melancholic
moods. The voice is generated from an a cappella recording of singer Kyte.
It turns out that the generation produced many “A I A I”, by coincidence. In
this song cover, everything was produced by Flow Machines, and there was
no manual production.

11. Hello World Remix
A few months after the release ofHello World, a remix album was released [19],
with remixes of 10 songs, produced by various producers. This album did not
involve the use of AI, but is an important sign that the original songs of Hello
World were deemed sufficiently richmusically by several top remixers to deserve
a remix.

18.6 Unfinished but Promising Projects

The FlowMachines project generated a rich flow of ideas and experiments. Some of
these ideas did not contribute directly to music making, but are worth mentioning, to
illustrate how an ambitious goal supported by a generous grant (the ERC) can lead
to very high levels of creativity and productivity.
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Fig.18.20 Acomposition software for children that allows building pieces by reusing their previous
doodlings

(a) Continuator II
TheContinuator system,whichwas at the root of the FlowMachines project, was
substantially extended, improved and tested, notably during theMIROR project.
Extensions consisted mostly to add constraining features, notably positional,
as described in Sect. 18.2.2, thereby improving substantially the musicality of
the responses. Many experiments involving children and the question of music
education based on reflexive interactions were conducted and described in [95].
A composition software (Miror-Compo) was implemented, allowing users to
build fully fledged musical compositions that would reuse their doodlings (see
Fig. 18.20).

(b) Film Music
Experiments in Film Music by Pierre Roy consisted in implementing the theory
proposed in [57,58]. The basic idea of Murphy is to consider all pairs of consec-
utive chords, and assign them an emotional category. It turns out that enforcing
such typical pairs of chords can be approximated by biases of binary factors of
the belief propagation algorithm. For instance, sadness is related to the pattern
M4m, i.e. a major chord, followed by a minor chord 4 semitones (2 tones) above.
Figure18.21 shows the lead sheet generated in the style of Bill Evans (for the
melody) and The Beatles (for the chords) biased to favour chord pairs related to
“sadness” [105].
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Fig. 18.21 A lead sheet in the style of The Beatles, with a bias towards “sadness” related chord
pairs: C to Em (3 times), Bb to Dm

(c) Reflexive Looper
Reflexive Looper is the latest instantiation of a project consisting in building an
interactive, real system dedicated to solo performance. The initial fantasy was
that of a guitarist playing in solo, but in need of a bass and harmony backing
that would be tightly coupled to his real-time performance. The core ideas of the
system are described in [25,77] and many experiments and refactors were done
during several years [55], culminating by a version implemented byMarcoMar-
chini [47]. This systemwas nominated for the Guthman Instrument Competition
and was demonstrated to a jury including guitarist Pat Metheny.

(d) Interaction studies in jazz improvisation
Aquestion that arose regularly in ourwork about real-time assisted improvisation
was how to model actual humans interacting together when they improvise. It
turns out that little is known about the nature of such interactions. In particular,
a key question is to which extent this interaction involves the content of the
music (rhythm, harmony, melody, expressiveness)? Such a question was crucial
for designing our music interaction systems. We proposed in [76] an analytical
framework to identify correlates of content-based interaction. We illustrated the
approach with the analysis of interaction in a typical jazz quintet (the Mark
d’Inverno quintet). We extracted audio features from the signals of the soloist
and the rhythm section. We measured the dependency between those time series
with correlation, cross-correlation, mutual information and Granger causality,
both whenmusicians played concomitantly and when they did not.We identified
a significant amount of dependency, but we showed that this dependency was
mostly due to the use of a common musical context, which we called the score
effect. We finally argued that either content-based interaction in jazz is a myth
or that interactions do take place but at unknown musical dimensions. In short,
we did not see any real interaction!

(e) Feedback in lead sheet composition
We studied the impact of giving and receiving feedback during the process of lead
sheet composition in [51]. To what extent can peer feedback affect the quality
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of a music composition? How does musical experience influence the quality
of feedback during the song composition process? Participants composed short
songs using an online lead sheet editor, and are given the possibility to provide
feedback on other participants’ songs. Feedback could either be accepted or
rejected in a later step. Quantitative data were collected from this experiment
to estimate the relation between the intrinsic quality of songs (estimated by
peer evaluation) and the nature of feedback. Results show that peer feedback
could indeed improve both the quality of a song composition and the composer’s
satisfaction with it. Also, it showed that composers tend to prefer compositions
from other musicians with similar musical experience levels.

(f) Experiments in collective creativity (aka the rabbits experiment)
In order to better understand the impact of feedback and collective creation, we
designed an experiment to highlight different types of creator “profiles” [27]. In
this experiment, users could write captions to short comic strips, andwere shown
what other users in a group would do, and given the possibility “switch” to their
productions. One of the conclusions is that the potential impact of implicit feed-
back from other participants and objectivity in self-evaluation, even if encour-
aged, are lessened by a bias “against change”. Such a bias probably stems from
a combination of self-enhancing bias and of a commitment effect.

(g) A Comic book on style creation
A comic book, titled Max Order, was designed and produced, telling a story
about a character (Max) who struggles to invent her own style [28]. The name of
the character stemmed from theMax Order result, which concerns the limitation
of plagiarism in Markov sequence generation [82,84]. The comic is available on
the Web [32]. This comic gave rise to the ERCcOMICS [29] project, which was
about disseminating ERC project through comics.

(h) Song composition project
In this project, the author participated actively in the composition and release
of 2 albums: one in Pop music (Marie-Claire [81]) and one in jazz (Count on
it [22]). Most composition sessions were recorded on video for later analysis.
The jazz album was premiered in a sold-out concert at Pizza club express, one
of the main jazz venues in London (Fig. 18.22).

(i) Automatic Accompaniment generation
Following the FlowComposer project (see above),we addressed the issue of real-
time accompaniments using similar techniques, i.e. based on belief propagation.
We recorded jazz pianist Ray d’Inverno (see Fig. 18.23) as well as saxophon-
ist Gilad Atzmon, and produced various accompaniment algorithms (see, for
instance, [106]).

(j) Interview series
Several interviews with composers were conducted during the project: Ennio
Morricone, Ivan Lins, Benoit Carré, Hubert Mounier (L’affaire Louis Trio),
Michel Cywie (composer of beautiful French pop songs in the 70s) and Franco
Fabbri. The initial ideawas to track downwhat composers of famous hits thought
of the songwriting process, to form a book about how songwriters make hits.

(k) Flow-Machines radio
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Fig. 18.22 The character named Max Order, who tries to create her own style

Fig. 18.23 Jazz pianist Ray d’Inverno recording an accompaniment on Girl from Ipanema

A prototype of an online web radio was developed. This web generated on-the-
fly pieces composed by Flow Composer, rendered them with our concatenative
synthesis system and streamed them on a dedicated website. Users could rate
the songs they listened to. The goal was to obtain enough feedback on songs to
use reinforcement learning to tune automatically the generators (see Fig. 18.24).
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Fig. 18.24 A snapshot of a web radio broadcasting automatically generated music, with user
feedback

18.7 Impact and Followup

Three years after the completion of the project, what remains the most important for
us in these developments is not the technologies we built per se, though many strong
results were obtained in theMarkov + X roadmap, but the music that was produced
with these technologies. In that respect, the utmost validation of this work lies in the
following:

1. The overwhelming media reception of the album composed with it [30], includ-
ing some outstanding reviews, such as “AI and humans collaborated to produce
this hauntingly catchy pop music” [4], or “Is this the world’s first good robot
album?” [49];

2. The enthusiasm of all the musicians who participated in this project. 15 songs
were composed and signed by various artists (including Stromae), and this is in
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itself a validation, as dedicated musicians would not sign songs they are not proud
of;

3. The overall success of the album on streaming platforms (a total of 12 million
streams as of April 2020), with Magic Man (5.9 million streams) and Hello
Shadow (2.8 million) as main hits;

4. The positive reception by music critics. For instance, Avdeef writes [5]:

SKYGGE’s Hello World is a product of these new forms of production and consump-
tion, and functions as a pivot moment in the understanding and value of human-computer
collaborations. The album is aptly named, as it alludes to the first words any new program-
mer uses when learning to code, as well as serving as an introduction to new AI-human
collaborative practices. Hello, World, welcome to the new era of popular music.

Similarly, emphasizing the difference between interactive AI-assisted song com-
position, which Flow Composer pioneered, and fully automatic composition,
Miller writes [52]:

On the one hand, we have François Pachet’s Flow Machines, loaded with software to
produce sumptuous original melodies, including a well-reviewed album. On the other,
researchers at Google use artificial neural networks to produce music unaided. But at the
moment their music tends to lose momentum after only a minute or so.

5. Sony Flow Machines
The Flow Machines project is continuing at Sony CSL [109,110], and research
around the ideas developed in the project has been extended, for instance, with
new interactive editors in the same vein as FlowComposer [8]. Promisingmusical
projects have also been set up, notably involving Jean-Michel Jarre [108].

6. Beyond Flow Machines
Since Hello World, SKYGGE has launched another album made with Artifi-
cial Intelligence, American Folk Songs [18]. In this album, original a cappellas
of traditional songs (notably by Pete Seegher, with his right owner’s approval)
were reorchestrated with automatic orchestration tools developed at Spotify.
The techniques used are based on a belief propagation scheme [102] combined
with advanced edition features [101]. All the orchestrations were generated by
orchestration transfer, i.e. transfering the orchestration style of existing music
pieces to these traditional folk melodies. Ongoing work to use large-scale listen-
ing data (skip profiles) to tune the model are ongoing with promising results [53].

18.8 Lessons Learned

18.8.1 Better Model Does Not Imply Better Music

We experimented with various generative models: variable-order Markov models,
max entropy and deep learning techniques. Paradoxically, the most interesting music
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generation was not obtained with the most sophisticated techniques. In spite of many
attempts to use deep learning methods upfront for generation, we did not succeed
in using these techniques for professional use (at the time of the project). The Bach
chorales are of undisputed high quality, but they are not very interesting musically:
they produce either “correct” material, or mistakes, but not much in between. How-
ever, we observed that the combination of various tools (e.g., the lead sheet genera-
tion tool and our audio synthesis tool) produced flow states more easily than the use
of single algorithms. This may have to do with the appropriation effect mentioned
below.

18.8.2 New Creative Acts

The use of generative algorithms introduces new tasks for the user, and these tasks
are actually creative acts, in the sense that they require some musical expertise or,
at least intuition and intention: 1) the selection of training sets and 2) the curation
of the results. Of course, training set selection and curation can be performed using
random algorithms, but so far we did not succeed in automating these processes.

18.8.3 The Appropriation Effect

More importantly, there seems to be a trade-off to find between the sophistication of
the algorithmand the sense of appropriation of the results by the user. The IKEAeffect
is a cognitive bias which has been confirmed by many experiments, in which con-
sumers place a disproportionately high value on products they partially created [43].
Many consumer studies have shown, for instance, that instant cake mixes were more
popular when the consumer had something to do (such as adding an egg) than when
the instant mix was self-sufficient. It is likely that in the case of AI-assisted creation,
the same type of effect applies, and that users do not get a sense of appropriation if the
algorithm, whatever its sophistication, does all the creative job. This is a fascinating
area of study that will surely produce counter-intuitive results in the future.

18.9 Towards New Categories of New

The traditional conceptual landscape used to describe novelty in music is based
essentially on three notions: (1) original songs (new material, possibly inspired by
preexisting work, but to an acceptable degree), (2) covers (new orchestrations of
existing songs) and (3) plagiaristic work, i.e. works containing segments of existing
songs with no or little transformations. Another category is parasiting, the action
of imitating an orchestration style without plagiarizing it, in order to avoid paying
royalties [44], but this category is apparently less used by music professionals. A
lot of arguments used in the debate about the role of AI in music creation touch on
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the notion of creativity or novelty, i.e. can AI produce really novel music material?
However, we don’t think the question “is AI creative” is relevant, since we see AI as
a tool for creators, an opinion shared by most researchers in the field (e.g. [23]). Yet,
we argue the idea that all the generations we described here, and the ones to come,
are instances of new categories of “new”. In this text, we have described several
pieces generated with various techniques, and used intentionally the following terms
(underlined):

1. stylistic explorations: Song snippets “in the style of”, the song Sensitive
2. stylistic singularities: the Boulez Blues
3. reminiscences: Scratch my itch
4. pastiches and exercises: Daddy’s car and Bach chorales
5. orchestration transfers: the orchestrations in the album American Folk Songs,

which were all produced by transferring existing orchestration styles to existing
songs

6. timbre transfers: most of the renderings of the examples described here
7. templagiarism: the song Lunar

It is our view that these new categoriesmay help us conceptualize the contributions
of these generative technologies to music creation. Interestingly, images created with
Deep Dream [54] and referred to as hallucinations do not have their equivalent yet
in music: what would be, indeed, a musical hallucination?

18.10 Conclusion

We have described a number of research results in the domain of assisted music
creation, together with what we consider are remarkable music productions. We
attempted to describe why these generations are interesting, as technological arte-
facts, and also from a musical viewpoint. Since the Flow Machines project ended
(2017), research in computer music generation has exploded, mostly due to the
progress in deep learning [11]. After the launch of Daddy’s car and Hello World,
several music titles were produced with AI (notably by artists Taryn Southern and
Holly Herndon), contributing to the exploration of these technologies for music cre-
ation.

These explorations are still only scratching the surface of what is possible with AI.
However, they already challenge the status and value of what is considered “new”
in our digital cultures. We have sketched a draft of a vocabulary to describe and
distinguish different types of “newness” in music. These categories start to have
well-defined meaning technically but much more is needed to give them precise
definitions. Surely, more categories will arise, some will vanish. In the end, only
music and words will remain, not technologies.
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19Performance Creativity in Computer
Systems for Expressive Performance
of Music

Alexis Kirke and Eduardo Reck Miranda

19.1 Introduction

This chapter presents a detailed example of expressive music performance that
focuses on performance creativity, preceded by a survey of research into automated
and semi-automated computer systems for expressive performance of music. There
are a number of surveys available, a more recent one [18]. However, the focus of
this chapter is a survey with an emphasis on performance creativity. One definition
of Artificial Intelligence (AI) is an AI is a program which in an arbitrary world will
cope no worse than a human [34]. When humans deal with an arbitrary world, they
use creative problem-solving—they require creativity. AI without creativity is not
AI, or is a very limited form of AI. In musical AIs it could be argued that creativity
plays an even more central role (as it clearly does for humans in musical activities).
Hence, the focus in this chapter on the creativity of the generated performances. In
the early 1980s, the seeds of a problem were sown as a result of synthesisers being
developed and sold with built-in sequencers. The introduction of MIDI into this
equation led to an explosion in the use of sequencers and computers, thanks to the
new potential for connection and synchronisation. These computers and sequencers
performed their stored tunes in perfect metronomic time, a performance which
sounded robotic. They sounded robotic because human performers normally per-
form expressively—for example, speeding up and slowing down while playing, and
changing how loudly they play. The performer’s changes in tempo and dynamics
allow them to express a fixed score—hence the term expressive performance [114].
However, rather than looking for ways to give the music performances more
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human-like expression, pop performers developed new types of music, such as
synth-pop and dance music, that actually utilised this metronomic perfection to
generate robotic performances.

Outside of pop, the uptake of sequencers for performance (as opposed to for
composition) was less enthusiastic, except for occasional novelties like Snowflakes
are Dancing by Tomita [59], computer performance of classical music was a rarity.
Computer composition of classical music had been around since 1957 when The
Illiac Suite for String Quartet—the first published composition by a computer—was
published by Hiller [54]. Since then there has been a large body of such music and
research published, with many successful systems produced for automated and
semi-automated computer composition [12, 77, 95]. But publications on computer
expressive performance of music lagged behind composition by almost quarter of a
century. During the period when MIDI and computer use exploded amongst pop
performers, and up to 1987—when Yamaha had released their first Disklavier MIDI
piano—there were only 2 or 3 researchers publishing on algorithms for expressive
performance of music [101, 109]. However, from the end of the 1980s onwards,
there was an increasing interest in automated and semi-automated Computer Sys-
tems for Expressive Music Performance (CSEMP). A CSEMP is a computer system
able to generate expressive performances of music. For example, software for music
typesetting will often be used to write a piece of music, but some packages play
back the music in a relatively robotic way—the addition of a CSEMP enables a
more realistic playback. Or a digital audio player could include a CSEMP which
would allow performances of music to be adjusted to different performance styles.

19.1.1 Human Expressive Performance

How do humansmake their performances sound so different to the so-called “perfect”
performance a computer would give? In this chapter, the strategies and changes which
are notmarked in a score but which performers apply to themusic will be referred to as
expressive Performance Actions. Two of the most common performance actions are
changing the Tempo and the Loudness of the piece as it is played. These should not be
confused with the tempo or loudness changes marked in the score, like accelerando or
mezzo-forte, but to additional tempo and loudness changes not marked in the score.
For example, a common expressive performance strategy is for the performer to slow
down as they approach the end of the piece [39]. Another performance action is the use
of expressive articulation—when a performer chooses to play notes in amore staccato
(short and pronounced) or legato (smooth) way. Those playing instruments with
continuous tuning, for example, string players, may also use expressive intonation,
making notes slightly sharper orflatter; and such instruments also allow for expressive
vibrato. Many instruments provide the ability to expressively change timbre as well.

Why do humans add these expressive performance actions when playing music?
We will set the context for answering this question using a historical perspective.
Pianist and musicologist Ian Pace offers up the following as a familiar historical
model for the development of notation (though suggests that overall it constitutes an
oversimplification) [83]:
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In the Middle Ages and to a lesser extent to the Renaissance, musical scores provided only a
bare outline of the music, with much to be filled in by the performer or performers, freely
improvising within conventions which were essentially communicated verbally within a
region or locality. By the Baroque Era, composers began to be more specific in terms of
requirements for pitch, rhythm and articulation, though it was still common for performers to
apply embellishments and diminutions to the notated scores, and during the Classical Period a
greater range of specificity was introduced for dynamics and accentuation. All of this reflected
a gradual increase in the internationalism of music, with composers and performers travelling
more widely and thus rendering the necessity for greater notational clarity as knowledge of
local performance conventions could no longer be taken for granted. From Beethoven
onwards, the composer took on a new role, less a servant composing to occasion at the behest
of his or her feudal masters, more a freelance entrepreneur who followed his own desires,
wishes and convictions, and wrote for posterity, hence bequeathing the notion of the
master-work which had a more palpable autonomous existence over and above its various
manifestations in performance. This required an even greater degree of notational exactitude;
for example, in the realms of tempo, where generic Italianate conventions were both rendered
in the composer’s native language and finely nuanced by qualifying clauses and adjectives.
Through the course of the nineteenth century, tempo modifications were also entered more
frequently into scores, and with the advent of a greater emphasis on timbre, scores gradually
becamemore specific in terms of the indication of instrumentation. Performers phased out the
processes of embellishment and ornamentation as the score came to attainmore of the status of
a sacred object. In the twentieth century, this process was extended much further, with the
finest nuances of inflection, rubato, rhythmicmodification coming to be indicated in the score.
By the time of themusic of Brian Ferneyhough, to take themost extreme example, all minutest
details of every parameter are etched into the score, and the performer’s task is simply to try
and execute these as precisely as he or she can.

Thus, in pre-twentieth century music, there has been a tradition of performers
making additions to a performance which were not marked in the score (though the
reason Pace calls this history an oversimplification is that modern music does have
the capacity for expressive performance, as we will discuss later).

A number of studies have been done into this pre-twentieth century (specifically
Baroque, Classical, and Romantic) music performance. The earliest studies began
with Seashore [96], and good overviews include [43, 84]. One element of these
studies has been to discover what aspects of a piece of music—what Musical
Features—are related to a performer’s use of expressive performance actions. One
of these musical features expressed is the performer’s structural interpretation of
the piece [84]. A piece of music has a number of levels of meaning—a hierarchy.
Notes make up motifs, motifs make up phrases, phrases make up sections, sections
make up a piece (in more continuous instruments there are intranote elements as
well). Each element—note, motif, etc—plays a role in other higher elements.
Human performers have been shown to express this hierarchical structure in their
performances. Performers tend to slow down at boundaries in the hierarchy—with
the amount of slowing being correlated to the importance of the boundary [24].
Thus, a performer would tend to slow more at a boundary between sections than
between phrases. There are also regularities relating to other musical features in
performers’ expressive strategies. For example, in some cases, the musical feature
of higher pitched notes causes a performance action of the notes being played more
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loudly; also notes which introduce melodic tension relative to the key may be
played more loudly. However, for every rule, there will always be exceptions.

Another factor influencing expressive performance actions is Performance
Context. Performers may wish to express a certain mood or emotion (e.g. sadness,
happiness) through a piece of music. Performers have been shown to change the
tempo and dynamics of a piece when asked to express an emotion as they play it
[42]. For a discussion of other factors involved in human expressive performance,
we refer the reader to [58].

19.1.2 Computer Expressive Performance

Having examined human expressive performance, the question now becomes why
should we want computers to perform music expressively? There are at least five
answers to this question:

1. Investigating human expressive performance by developing computational
models—Expressive performance is a fertile area for investigating musicology
and human psychology [43, 84, 96]. As an alternative to experimentation with
human performers, models can be built which attempt to simulate elements of
human expressive performance. As in all mathematical and computational
modelling, the model itself can give the researcher greater insight into the
mechanisms inherent in that which is being modelled.

2. Realistic playback on a music typesetting or composing tool—There are many
computer tools available now for music typesetting and for composing. If these
tools play back the compositions with expression on the computer, the composer
will have a better idea of what their final piece will sound like. For example,
Sibelius, Notion and Finale have some ability for expressive playback.

3. Playing computer-generated music expressively—There are a number of algo-
rithmic composition systems that output music without expressive performance
but which audiences would normally expect to hear played expressively. These
compositions in their raw form will play on a computer in a robotic way.
A CSEMP would allow the output of an algorithmic composition system to be
played directly on the computer which composed it (for example, in a computer
game which generates mood music based on what is happening in the game).

4. Playing data files—a large number of non-expressive data files in formats like
MIDI and MusicXML [46] are available on the internet, and they are used by
many musicians as a standard communication tool for ideas and pieces. Without
CSEMPs most of these files will playback on a computer in an unattractive way,
whereas the use of a CSEMP would make such files much more useful.

5. Computer accompaniment tasks—it can be costly for a musician to play in
ensemble. Musicians can practice by playing along to recordings with their solo
part stripped out. But some may find it too restrictive since such recordings cannot
dynamically follow the expressiveness in the soloist’s performance. These
soloists may prefer to play along with an interactive accompaniment system that
not only tracks their expression but also generates its own expression.
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19.1.3 Performance Creativity

Performance Creativity refers to the ability of the system to generate novel and
original performances, as opposed to simulating previous human strategies. For
example, the Artificial Neural Network Piano system [11] is designed to simulate
human performances (an important research goal), but not to create novel perfor-
mances; whereas a system like Director Musices [38], although also designed to
capture human performance strategies, has a parameterisation ability which can be
creatively manipulated to generate entirely novel performances. There is an
important proviso here—a system which is totally manual would seem at first
glance to have a high creativity potential, since the user could entirely shape every
element of the performance. However, this potential may never be realised due to
the manual effort required to implement the performance. Not all systems are able to
act in a novel and practically controllable way. Many of the systems generate a
model of performance which is basically a vector or matrix of coefficients.
Changing this matrix by hand (“hacking it”) would allow the technically knowl-
edgeable to creatively generate novel performances. However, the changes could
require too much effort, or the results of such changes could be too unpredictable
(thus requiring too many iterations or “try outs”). This is to say that performance
creativity includes the ability of a system to produce novel performances with a
reasonable amount of effort. Having said that, simple controllability is not the
whole of Performance Creativity, for example, there could be a CSEMP which has
only three basic performance rules which can be switched on and off with a mouse
click and the new performance played immediately. However, the results of
switching off and on the rules would in all likelihood generate a very uninteresting
performance.

Thus, for performance creativity, a balance needs to exist between automation
and creative flexibility, since in this review we are only concerned with automated
and semi-automated CSEMPs. By automated, we refer to the ability of the system
—once set up or trained—to generate a performance of a new piece, not seen before
by the system, without manual intervention. Some automated systems may require
manual setup, but then can be presented with multiple pieces which will be played
autonomously. A semi-automated system is one which requires some manual input
from the user (for example a musicological analysis) to deal with a new piece.

An example of such a balance between automation and creative flexibility would
be an almost totally automated CSEMP, but with a manageable number of
parameters that can be user-adjusted before activating the CSEMP for performance.
After activating the CSEMP, a performance is autonomously generated but is only
partially constrained by attempting to match past human performances. Such cre-
ative and novel performance is often applauded in human performers. For example,
Glenn Gould has created highly novel expressive performances of pieces of music
and has been described as having a vivid musical imagination [21]. Expressive
computer performance provides possibilities for even more imaginative experi-
mentation with performance strategies.
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19.2 A Generic Framework for Previous Research
in Computer Expressive Performance

Figure 19.1 shows a generic model for the framework that most (but not all)
previous research into automated and semi-automated CSEMPs tends to have
followed. The modules of this diagram are described beneath Fig. 19.1.

1. Performance Knowledge—This is the core of any performance system. It is the
set of rules or associations that controls the performance action. It is the “ex-
pertise” of the system which contains the ability, implicit or explicit, to generate
an expressive performance. This may be in the form of an Artificial Neural
Network, a set of cases in a Case-based Reasoning system, or a set of linear
equation with coefficients. To produce performance actions, this module uses its
programmed knowledge together with any inputs concerning the particular
performance. Its main input is the Music/Analysis module. Its output is a rep-
resentation of the performance of the musical input, including expressive per-
formance actions.

2. Music/Analysis—The Music/Analysis module has two functions. First of all, in
all systems, it has the function of inputting the music to be played expressively
(whether in paper score, MIDI, MusicXML, audio or other form) into the
system. The input process can be quite complex, for example, paper score or
audio input will require some form of analytical recognition of musical events.
This module is the only input to the Performance Knowledge module that
defines the particular piece of music to be played. In some systems, it also has a
second function—to provide an analysis of the musical structure. This analysis
provides information about the Music Features of the music—for example,
metrical, melodic or harmonic structure (It was mentioned earlier how it has
been shown that such structures have a large influence on expressive

Fig. 19.1 Generic model for most current CSEMPs

526 A. Kirke and E. R. Miranda



performance in humans). This analysis can then be used by the Performance
Knowledge system to decide how the piece should be performed. Analysis
methods used in some of the systems include Lerdahl and Jackendoff’s Gen-
erative Theory of Tonal Music [68], Narmour’s Implication Realisation [81],
and various bespoke musical measurements. The analysis may be automated,
manual or a combination of the two.

3. Performance Context—Another element which will effect how a piece of music
is played is the performance context. This includes such things as how the
performer decides to play a piece, for example, happy, perky, sad or lovelorn. It
can also include whether the piece is played in a particular style, e.g. baroque or
romantic.

4. Adaptation Process—The adaptation process is the method used to develop the
Performance Knowledge. Like the Analysis module this can be automated,
manual or a combination of the two. In some systems, a human expert listens to
actual musical output of the performance system and decides if it is appropriate.
If not then the Performance Knowledge can be adjusted to try to improve the
musical output performance. This is the reason that in Fig. 19.1 there is a line
going from the Sound module back to the Adaptation Procedure module. The
Adaptation Procedure also has inputs from Performance Context,
Music/Analysis, Instrument Model and Performance Examples. All four of these
elements can influence the way that a human performs a piece of music, though
the most commonly used is Music/Analysis and Performance Examples.

5. Performance Examples—One important element that can be incorporated in the
Performance Knowledge building is the experience of past human perfor-
mances. These examples can be used by the Adaptation procedure to analyse
when and how performance actions are added to a piece of music by human
performers. The examples may be a database of marked-up audio recordings,
MIDI files together with their source scores or (in the manual case) a person’s
experience of music performance.

6. Instrument Model—By far the most common instrument used in
computer-generated performance research is the piano. This is because it allows
experiments with many aspects of expression, but requires only a very simple
instrument model. In fact the instrument model used for piano is often just the
MIDI/media player and soundcard in a PC. Alternatively, it may be something
more complex but still not part of the simulation system, for example, a Yamaha
Disklavier. However, a few simulation systems use non-keyboard instruments,
for example, Saxophone and Trumpet. In these cases, the issue of a performance
is more than just expressiveness. Just simulating a human-like performance,
even if it is non-expressive, on these instruments is non-trivial. So systems
simulating expressive performance on such instruments may require a relatively
complex instrument model in addition to expressive performance elements.
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19.2.1 Modules of Systems Reviewed

Table 19.1 lists the systems reviewed and the section they are reviewed in, together
with information about their modules. This information will be explained in the
detailed part of the review. Note that the column for Instrument Model is also used
for CSEMPS without an explicit instrument model, so as to show their applicability
to various instruments. A number of abbreviations are used in Table 19.1 and
throughout the paper. Table 19.2 lists these abbreviations and their meaning.

Note that the final row of Table 19.1 will be used as an in-depth example. Due to
lack of space, not all systems can be examined in great detail. Only one of them will
be examined at this depth, to give the reader an opportunity to gain a deeper
understanding in the theory and practicalities of creativity and CSEMPs.

Before discussing the primary term of reference for this review, it should be
observed that the issue of evaluation of CSEMPs is an open problem. How does one
evaluate what is essentially a subjective process? If the CSEMP is trying to simulate
a particular performance, then correlation tests can be done. However, even if the
correlations are low for a generated performance, it is logically possible for the
generated performance to be more preferable to some people than the original
performance. Papadopoulos and Wiggins [85] discuss the evaluation issue in a
different but closely related area—computer algorithmic composition systems. They
list four points that they see as problematic in relation to such composition systems:

1. The lack of evaluation by experts, for example, professional musicians.
2. Evaluation is a relatively small part of the research with respect to the length of

the research paper.
3. Many systems only generate melodies. How do we evaluate the music without a

harmonic context? Most melodies will sound acceptable in some context or
other.

4. Most of the systems deal with computer composition as a problem-solving task
rather as a creative and meaningful process.

This chapter will be focusing on point 4—performance creativity. At some point
in the description of each system, this point will be implicitly or explicitly
addressed, and summarised at the end of the paper (see Table 19.8). It is worth
noting that this is not an attempt to measure how successful the system is overall,
but an attempt to highlight some key issues which will help to show potential
directions for future research. What now follows is the actual descriptions of the
CSEMPs, divided into a number of groups.
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Table 19.2 Abbreviations

A Articulation

ANN Artificial Neural Network

BBN Bayesian Belief Network

CBR Case-based Reasoning

CSEMP Computer System for Expressive Music Performance

D Dynamics

DM Director Musices (KTH System)

EC Evolutionary Computing

GA Genetic Algorithm

GP Genetic Programming

GPR Gaussian Process Regression

GTTM Lerdahl and Jackendoff’s Generative Theory of Tonal Music

GUI Graphical User Interface

HMM Hidden Markov Model

IBL Instance-based Learning

IR Narmour’s Implication/Realisation Theory of Melody

K Attack

KCCA Kernel Canonical Correlation Analysis

kNN k-Nearest Neighbour

KRR Kernel Ridge Regression

LBDM Local Boundary Detection Model of Cambouropoulos

MAS Multi-agent System

CMERS Computational Music Emotion Rule System by Livingstone et al.

MIDI Musical Intrument Digital Interface

MIMACS Mimetics-inspired Multi-agent Composition System

MusicXML Music Extensible Markup Language

MIS Music Intepretation System by Katayose et al.

N Note addition/consolidation

O Ornamentation

P Pitch

PCA Principal Component Analysis

T Tempo

TSR Time Span Reduction Technique (from GTTM)

V Vibrato
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19.3 A Survey of Computer Systems for Expressive Music
Performance

The review presented here is meant to be representative rather than exhaustive but
will cover a significant sample of published automated and semi-automated
CSEMP systems to date. Each CSEMP is grouped according to how their perfor-
mance knowledge is built—i.e. by learning method. This provides a manageable
division of the field, shows which learning methods are most popular and shows
where there is room for development in the building of performance knowledge
models. The grouping will be

1. Non-learning (10 systems)
2. Linear regression (2 systems)
3. Artificial Neural Networks (3 systems)
4. Rule/Case-based learning (6 systems)
5. Statistical Graphical Models (2 systems)
6. Other Regression methods (2 systems)
7. Evolutionary computation (6 systems).

The ordering of this grouping is by average year of CSEMP references within
the grouping, so as to help highlight trends in approaches to generating performance
knowledge. For example, most early CSEMPs were non-learning, and most evo-
lutionary computation CSEMPs have only been developed in the last few years.
The 4th grouping—Rule/Case-based learning—is in the middle because it has been
used throughout the history of CSEMP research.

19.3.1 Non-Learning Systems

19.3.1.1 Director Musices
Director Musices (DM) [38, 101] has been an ongoing project since 1982.
Researchers including violinist Lars Fryden developed and tested performance rules
using an analysis-by-synthesis method (later using analysis-by-measurement and
studying actual performances). Currently, there are around 30 rules which are
written as relatively simple equations that take as input Music Features such as
height of the current note pitch, the pitch of the current note relative to the key of
the piece, or whether the current note is the first or last note of the phrase. The
output of the equations defines the Performance Actions. For instance, the higher
the pitch the louder the note is played, or during an upward run of notes, play the
piece faster. Another DM rule is the Phrase Arch which defines a “rainbow” shape
of tempo and dynamics over a phrase. The performance speeds up and gets louder
towards the centre of a phrase and then tails off again in tempo and dynamics
towards the end of the phrase. Some manual score analysis is required—for
example, harmonic analysis and marking up of phrase start and ends. DM’s ability
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for expressive representation is at the note and phrase level—it does not use
information at higher levels of the musical structure hierarchy.

Each equation has a numeric “k-value”—the higher the k-value the more effect
the rule will have and a k-value of 0 switches the rule off. The results of the
equations are added together linearly to get the final performance. Thanks to the
adjustable k-value system, DM has much potential for performance creativity. Little
work has been reported on an active search for novel performances, though it is
reported that negative k-values reverse rule effects and cause unusual performances.
DM’s ability as a semi-automated system comes from the fact it has a “default” set
of k-values, allowing the same rule settings to be applied automatically to different
pieces of music (though not necessarily with the same success).

Rules are also included for dealing with non-monophonic music [38]. The
“Melodic-sync” rule generates a new voice consisting of all timings in all other
voices (if two voices have simultaneous notes, then the note with the greatest
melodic tension is selected.) Then all rules are applied to this synchronisation voice,
and resulting durations are mapped back onto the original voices. The “Bar-sync”
rule can also be applied to make all voices re-synchronise at each bar end.

DM is also able to deal with some Performance Contexts, specifically emotional
expression [10], drawing on work by Gabrielsson and Juslin [42]. Listening
experiments were used to define the k-value settings on the DM rules for expressing
emotions. The music used was a Swedish nursery rhyme and a computer-generated
piece in a minor mode written in the musical style of Chopin. Six rules were used
from DM to generate multiple performances of each piece. Subjects were asked to
identify a performance emotion from the list: fear, anger, happiness, sadness,
solemnity, tenderness or no-expression. As a result, parameters were found for each
of the six rules which mould the emotional expression of a piece. For example, for
“tenderness”: inter-onset interval is lengthened by 30%, sound level reduced by
6 dB, and two other rules are used: the Final Ritardando rule (slowing down at the
end of a piece) and the Duration Contrast rule (if two adjacent notes have con-
trasting durations, increase this contrast).

A more recent development in Director Musices has been the real-time gener-
ation of performances using a version of the system called pDM [41]. pDM
essentially acts as an expressive sequencer, allowing the adjustment of rule
parameters during playback and the live incorporation of the changes as the
playback continues. Unlike pDM, many CSEMPs in this survey receive the inputs
and parameters and the whole piece of music, process the data and when this
processing is complete, a generated performance is available to the user. They are
not designed for real-time usage.

Director Musices has a good test status, having been evaluated in a number of
experiments. In [40] k-values were adjusted by a search algorithm, based on 28
human performances of 9 bars of Schumann’s Träumerei. A good correlation was
found between the human performances and the resulting DM performance.
Another experiment involved manually fitting to one human performance the first
20 bars of the Adagio in Mozart’s sonata K.332 [102]. The correlations were found
to be low, unless the k-values were allowed to change dynamically when the piece
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was performed. An attempt was made to fit k-values using a larger corpus of piano
music using Genetic algorithms in [65], and the results were found to give a low
correlation as well. In an attempt to overcome this [139, 139] allowed k-values to
vary in a controlled way over a piece of music. This was tested on Beethoven’s
Sonatine in G Major and Mozart’s K.332 piano sonata (the slow movement)—but
the results were found to be poor for the Beethoven. In the first RenCon in 2002, the
second prize went to a DM-generated performance, however, the first placed system
(a manually generated performance) was voted for by 80% of the jury. In RenCon
2005, a Director Musices default-settings (i.e. automated) performance of Mozart’s
Minuette KV 1(1e) came a very close 2nd in the competition, behind Pop-E
(Sect. 19.3.1.7). However, three of the other four systems competing were versions
of the DM-system.

The DM model has been influential, and as will be seen in the later systems,
DM-type rules appear repeatedly.

19.3.1.2 Hierarchical Parabola Model
One of the first CSEMPs with a hierarchical expressive representation was Todd’s
Hierarchical Parabola Model [109–112]. Todd argues it was consistent with a
kinematic model of expressive performance, where tempo changes are viewed as
being due to accelerations and decelerations in some internal process in the human
mind/body, for example, the auditory system. For tempo, the hierarchical parabola
model uses a rainbow shape like DM’s phrase arch, which is consistent with
Newtonian kinematics. For loudness the model uses a “the faster the louder” rule,
creating a dynamics rainbow as well.

The key difference between DM and this hierarchical model is that the hierar-
chical model has greater expressive representation and wider performance action.
Multiple levels of the hierarchy are analysed using Lerdahl and Jackendoff’s
Generative Theory of Tonal Music (GTTM). GTTM Time Span Reduction
(TSR) examines each note’s musicological place in all hierarchical levels. The
rainbows/parabolas are generated at each level, from the note-group level upwards
Fig. 19.2 and added to get the performance. This generation is done by a para-
metrized parabolic equation which takes as input the result of the GTTM TSR
analysis.

The performance was shown to correlate well by eye with a short human per-
formance but no correlation figures were reported. Clarke and Windsor [23] tested
the first four bars of Mozart’s K.331, comparing two human performers with two
performances by the Hierarchical Parabola model. Human listeners found the
Parabola version unsatisfactory compared to the human ones. In the same experi-
ment, however, the Parabola model was found to work well on another short
melody. The testing also showed that the idea of “the louder the faster” did not
always hold. Desain and Honing [31] claim through informal listening tests that in
general the performances do not sound convincing.

The constraint of utilising the hierarchy and the GTTM TSR approach limits the
Performance Creativity. Note groupings will be limited to those generated by a
GTTM TSR analysis, and the parabolas generated will be constrained by the

19 Performance Creativity in Computer Systems … 535



model’s equation. Any adjustments to a performance will be constrained to working
within this framework.

19.3.1.3 Composer Pulse and Predictive Amplitude Shaping
Manfred Clynes’ Composer Pulse [26] also acts on multiple levels of the hierarchy.
Clynes hypothesises that each composer has a unique pattern of amplitude and
tempo variations running through performances—a pulse. This is captured as a set
of numbers multiplying tempo and dynamics values in the score. It is hierarchical
with separate values for within the beat, the phrase and at multiple bar level.
Table 19.3 shows the values of pulses for phrase level for some composers. The
pulses were measured using a sentograph to generate pressure curves from musi-
cians tapping their finger whilst thinking of or listening to a specific composer.
Figure 19.3 shows the structure of a pulse set in three-time (each composer has a
three-time and a four-time pulse set defined). This pulse set is repeatedly applied to

Fig. 19.2 Todd’s parabola model

Table 19.3 Level 2 composers’ pulses

Level 2 composers’ pulses—4 pulse

Beethoven Duration
Amplitude

106
1.00

89
0.39

96
0.83

111
0.81

Mozart Duration
Amplitude

105
1.00

95
0.21

105
0.53

95
0.23

Schubert Duration
Amplitude

97
1.00

114
0.65

98
0.40

90
0.75

Haydn Duration
Amplitude

108
1.00

94
0.42

97
0.68

102
1.02

Schumann Duration
Amplitude

96
0.60

116
0.95

86
0.50

102
1.17

Mendelssohn Duration
Amplitude

118
1.00

81
0.63

95
0.79

104
1.12
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a score end on end. Thus, if the pulse is 12 beats long and the score is 528 beats, the
pulse will repeat 528/12 = 44 times end on end.

Another key element of Clyne’s approach is Predictive Amplitude Shaping. This
adjusts a note’s dynamic based on the next note simulating “a musician's uncon-
scious ability to sculpt notes in this way” that “makes his performance flow
beautifully through time, and gives it meaningful coherence even as the shape and
duration of each individual note is unique”. A fixed envelope shape model is used
(some constants are manually defined by the user), the main inputs being distant to
the next note and duration of the current note. So, the Pulse/Amplitude system has
only note level expressive representation.

Clynes’ test of his own model showed that a number of expert and non-expert
listeners preferred music with a composer’s pulse than with a different pulse.
However, not all tests on Clynes’ approach have supported a universal pulse for
each composer [94, 106], suggest instead that the pulse may be effective for a subset
of a composer’s work. Clynes’ pulses and amplitude shaping have been combined
with other performance tools (e.g. vibrato generation) as part of his commercial
software SuperConductor. Two SuperConductor generated performances were
submitted to RenCon 2006 open section: Beethoven’s Eroica Symphony, Op.55,
Mvt.4 and Brahms’ Violin Concerto, Op.77, Mvt.1. The Beethoven piece scored
low, but the Brahms piece came 1st in the open section (beating two pieces sub-
mitted by Pop-E—Sect. 19.3.1.7). The generation of this piece could have involved
significant amounts of manual work. Moreover, because it was the open section, the
pieces submitted by Pop-E were not the same as submitted by SuperConductor—
hence like was not compared to like. SuperConductor also won the open section in
RenCon 2004 with J. S. Bach, Brandenburg Concerto No. 5, D Major, 3rd
Movement. The only competitor included from this review was Rubato
(Sect. 19.3.1.6) performing a Bach piece. It should be re-emphasised that these
results were for SuperConductor and not solely for the Pulse and Amplitude tools.

In the context of SuperConductor, Clynes approach allows for significant Per-
formance Creativity. The software is designed to allow a user to control the
expressive shaping of a MIDI performance, giving significant amounts of control.

Fig. 19.3 Structure of a pulse set in three-time
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However, outside of the context of SuperConductor, the pulse has little scope for
performance creativity—though the amplitude shaping does. The pulse and
amplitude shaping do not explicitly address non-monophonic music, though
SuperConductor can be used to generate polyphonic performances.

19.3.1.4 Bach Fugue System
In the Bach Fugue System [57], Expert System methods are used to generate
performance actions. Johnson generated the knowledge base through interviews
with two musical expert performers, and through a performance practice manual
and an annotated edition of the Well-Tempered Clavier; so this system is not
designed for performance creativity. Twenty-eight conditions for tempo and artic-
ulation are so-generated for the knowledge base. For example, “If there is any group
of 16th notes following a tied note, then slur the group of 16th notes following the
long note”. Expressive representation is focused on the note to phrase level.
The CSEMP does not perform itself but generates instructions for 4/4 fugues.
Testing was limited to examining the instructions. It gave the same instructions as
human experts 85–90% of the time, though it is not said how many tests were run.
The system is working in the context of polyphony.

19.3.1.5 Trumpet Synthesis
The testing of three out of the last four CSEMPs reviewed has focused on keyboard.
This pattern will continue through the paper—most CSEMPs focus on the piano
because it is easier to collect and analyse data for the piano than for other instru-
ments. One of the first non-piano systems was Dannenberg and Derenyi’s Trumpet
Synthesis [30, 28]. The authors’ primary interest here was to generate realistic
trumpet synthesis, and adding performance factors improves this synthesis. It is not
designed for performance creativity but for simulation. This trumpet system syn-
thesises the whole trumpet performance, without needing any MIDI or audio
building blocks as the basis of its audio output. The performance actions are
amplitude and frequency, and these are controlled by envelope models which were
developed using a semi-manual statistical analysis-by-synthesis method.
A 10-parameter model was built for amplitude, based on elements such as articu-
lation, direction and magnitude of pitch intervals, and duration of notes. This
system works by expressively transforming one note at a time, based on the pattern
of the surrounding two notes. In terms of expressive representation, the system
works on a 3 note width. The pitch expression is based on envelopes which were
derived and stored during the analysis-by-synthesis.

No test results are reported. Dannenberg and Derenyi placed two accompanied
examples online: parts of a Haydn Trumpet Concerto and of a Handel Minuet. The
start of the trumpet on the Concerto without accompaniment is also online, together
with a human playing the same phrase. The non-accompanied synthesis sounds
quite impressive, only being let down by a synthetic feel towards the end of the
phrase—though the note-to-note expression (as opposed to the synthesis) consis-
tently avoids sounding machine-like. In both accompanied examples it became
clear as the performances went on that a machine was playing, particularly in faster
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passages. But once again note-to-note expression did not sound too mechanical.
Despite the reasonably positive nature of these examples, there is no attempt to
objectively qualify how good the Trumpet Synthesis system is.

19.3.1.6 Rubato
Mazzola, a mathematician and recognised Jazz pianist, developed a mathematical
theory of music [72, 73], where music is represented in an abstract geometrical
space whose co-ordinates include onset time, pitch, and duration. A score will exist
in this space, and expressive performances are generated by performing transfor-
mations on the space. The basis of these transformations is series of “Operators”
which can be viewed as a very generalised version of the rule-based approach taken
in Director Musices. For example, the Tempo operator and the Split operator allow
the generation of tempo hierarchies. These give Rubato a good expressive repre-
sentation. However, the definition of the hierarchy here differs somewhat from that
found in the Hierarchical Parabola Model (Sect. 19.3.1.2) or DISTALL
(Sect. 19.3.4.6). A tempo hierarchy, for a piano performance, may mean that the
tempo of the left hand is the dominant tempo, at the top of a hierarchy, and the
right-hand tempo is always relative to the left-hand tempo—and so is viewed as
being lower in the hierarchy. Mazzola also discusses the use of tempo hierarchies to
generate tempo for grace notes and arpeggios—the tempo of these is relative to
some global tempo higher in the hierarchy. Ideas from this theory have been
implemented in a piece of software called Rubato, which is available online. The
expressive performance module in Rubato is the “Performance Rubette”. A MIDI
file can be loaded in Rubato and pre-defined operators used to generate expressive
performances. The user can also manually manipulate tempo curves using a mouse
and GUI, giving Rubato good scope for performance creativity.

Test reports are limited. In RenCon 2004, a performance of Bach’s Contra-
punctus III modelled using Rubato was submitted, and came 4th in the open section
(SuperConductor came 1st in the section with a different piece). It is not clear how
automated the generation of the performance was. Listening to the submission it can
be heard that although the individual voices are quite expressive and pleasant
(except for the fastest parts), the combination sounds relatively unrealistic. An
online MIDI example is available of Schumann’s Kindersezenen op. 15 Nr. 2,
“Kuriose Geschichte” which evidences both tempo and dynamics expression and is
quite impressive, though once again it is not clear how automated the production of
the music was.

19.3.1.7 Pop-E
Pop-E [49], a Polyphrase Ensemble system, was developed by some of the team
involved in MIS (Sect. 19.3.2.1). It applies expression features separately to each
voice in a MIDI file, through a synchronisation algorithm. The music analysis uses
GTTM local level rules, and utilises beams and slurs in the score to generate note
groupings. So, the expressive representation is to up to phrase level. Expressive
actions are applied to these groupings through rules reminiscent of Director
Musices. The five performance rules have a total of nine manual parameters

19 Performance Creativity in Computer Systems … 539



between them. These parameters can be adjusted, providing scope for performance
creativity. In particular jPop-E [50], a Java implementation of the system, provides
such tools for shaping new performances.

To deal with polyphony, Synchronisation Points are defined at the note grouping
start and end points in the attentive part. The attentive part is that voice which is
most perceptually prominent to a listener. The positions of notes in all other
non-attentive parts are linearly interpolated relative to the synchronisation points
(defined manually). This means that all parts will start and end at the same time at
the start and end of groupings of the main attentive part.

Pop-E was evaluated in the laboratory to see how well it could reconstruct
specific human performances. After setting parameters manually, performances by
three pianists were reconstructed. The average correlation values between Pop-E
and a performer were 0.59 for tempo and 0.76 for dynamics. This has to be viewed
in the context that the average correlations between the human performers were 0.4
and 0.55, respectively. Also, the upper piano part was more accurate on average. It
is interesting to note that for piano pieces whose attentive part is the right hand, the
Pop-E synchronisation system is similar to the methods in the DISTALL system for
dealing with polyphony—see Sect. 19.3.4.6.

Pop-E won the RenCon 2005 compulsory section, beating Director Musices
(Sect. 19.3.1.1). In RenCon 2006 Pop-E won the compulsory section beating
Kagurame (Sect. 19.3.4.2) and Ha-Hi-Hun (Sect. 19.3.4.3). In the open section in
2006 SuperConductor (Sect. 19.3.1.3) beat Pop-E with one performance, and lost to
Pop-E with another.

19.3.1.8 Hermode Tuning
The next two sub-sections describe successful commercial CSEMPs. Despite the
lack of details available on these proprietary systems they should be included here,
since they are practical CSEMPs that people are paying money for, and illustrate
some of the commercial potential of CSEMPs for the music business. However,
because of the lack of some details, the four review terms of reference will not be
applied. The first system is Hermode Tuning [97]. Most systems in this review
focus on dynamics and timing. Nonetheless, intonation is another significant area of
expression for many instruments—for example, many string instruments. (In fact,
three intonation rules were added to Director Musices in its later incarnations; for
example, the higher the pitch, the sharper the note.) Hermode Tuning is a dedicated
expressive intonation system which can work in real time, its purpose being to
“imitate the living intonation of well-educated instrumentalists in orchestras and
chamber music ensembles”. Instrumentalists do not perform in perfect intonation—
in fact, if an orchestra performed music in perfect tuning all the time, the sound
would be less pleasant than one that optimised its tuning through performance
experience. A series of algorithms are used in Hermode tuning not just to avoid
perfect intonation but to attempt to achieve optimal intonation. The algorithms have
settings for different types of music, for example, Baroque and Jazz/Pop.

540 A. Kirke and E. R. Miranda



19.3.1.9 Sibelius
As mentioned in the introduction of this paper, the music typesetting software
package Sibelius has built-in algorithms for expressive performance. These use a
rule-based approach. Precise details are not available for these commercial algorithms
but some information is available [37]. For dynamics, beat groups such as bar lines,
sub-bar groups and beams are used to add varying degrees of stress. Also, the higher
the note is the louder it is played, though volume resets at rests and dynamic
expression is constrained to not be excessive. Some random fluctuation is added to
dynamics to make it more human sounding as well. Tempo expression is achieved
using a simple phrase-based system; but this does not include reliable phrase analysis.
The manufacturer reports that “phrasing need only be appropriate perhaps 70% of the
time—the ear overlooks the rest” and that “the ear is largely fooled into thinking it’s a
human performance”. Notion and Finale also have expressive performance systems
built into them, which are reportedly more advanced than Sibelius’, but even fewer
details are available for the proprietary methodologies in these systems.

19.3.1.10 Computational Music Emotion Rule System
In relation to the philosophy behind the Computational Music Emotion Rule
System (CMERS) [70], Livingstone observes that “the separation of musical rules
into structural and performative is largely an ontological one, and cedes nothing to
the final audio experienced by the listener”. The Computational Music Emotion
Rule System has a rule set of 19 rules developed through analysis-by-synthesis. The
rules have an expressive representation up to the phrase level, some requiring
manual mark-up of the score. These rules are designed not only to inject micro-
feature deviations into the score to generate human-like performances, but also to
use microfeature and macro-feature deviations to express emotions to the listener.
To this end CMERS is able to change the score itself, recomposing it.

CMERS has a 2-D model of human emotion space with four quadrants going
from very active and negative to very active and positive, to very passive and
positive through to very passive and negative. These four elements combine to give
such emotions as angry, bright, contented and despairing. The quadrants were
constructed from a review of 20 studies of music and emotion. The rules for
expressing emotions include moving between major and minor modes, changing
note pitch classes, and DM-type rules for small changes in dynamics and tempo. It
was found that the addition of the microfeature humanisation rules improved the
accuracy of the emotional expression (as opposed to solely using macro-feature
“re-composition” rules). The rules for humanising the performance include some
rules which are similar to Director Musices, such as Phrase Arch and emphasising
metrically important beats. Creative Performance is possible in CMERS by
adjusting the parameters of the rule set, and the emotional specification would allow
a user to specify different emotions for different parts of a performance.

A significant number of formal listening tests have been done by Livingstone
and they support the hypothesis that CMERS is more successful than DM at
expressing emotions. CMERS is one of the better tested systems in this review—
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one reason being that its aim is more measurable than a purely aesthetic goal.
Examples of CMERS are available on the author’s webpage.

19.3.2 Linear Regression

Learning CSEMPs can incorporate more knowledge more quickly than
non-learning systems. Nonetheless, such methods do not always provide tools for
creative performance because they are strongly rooted in past performances. Before
continuing it should be explained that any CSEMP that learns expressive deviations
needs to have a non-expressive reference point, some sort of representation of the
music played robotically/neutrally. The CSEMP can then compare this to the score
played expressively by a human, and learn the deviations. Linear Regression is the
first learning method which will be addressed. Linear Regression models assume a
basically linear relationship between the Music Features and the Expressive
Actions. The advantage of such models is their simplicity. The disadvantage is that
assuming music expressive performance a linear process is almost certainly an
oversimplification.

19.3.2.1 Music Interpretation System
The Music Interpretation Systems (MISs) [56, 60] generates expressive perfor-
mances in MIDI format, but learns expressive rules from audio recordings. This is
done using a spectral analysis system with dynamic programming for note detec-
tion. The system is a simulatory CSEMP and uses a set of linear equations which
map score features on to performance deviation actions. Its expressive represen-
tation is on the note and phrase level. MIS has methods to include some
non-linearities using logical ANDs between music features in the score, and a way
of reducing redundant music features from its equations. This redundancy reduction
improves “Generalisation” ability (the ability for the system to perform music or
composers that weren’t explicitly included in its learning). MIS learns links
between music features and performance actions of tempo, dynamics, and articu-
lation. The music features used include score expression marks, and aspects of
GTTM and two other forms of musicological analysis: Leonard Meyer’s Theory of
Musical Meaning [74] and Narmour’s IR Theory. IR considers features of the
previous two notes in the melody, and postulates that a human will expect the
melody to move in a certain direction and distance; thus, it can classify each note as
being part of a certain expectation structure. Meyer’s Theory is also an
expectation-based approach, but coming from the perspective of Game Theory.

For testing, MIS was trained on the first half of a Chopin Waltz and then used to
synthesise the second half. Correlations (accuracies when compared to a human
performance of the second half) were for velocity 0.87, for tempo 0.75, and for
duration 0.92. A polyphonic MIS interpretation of Chopin, Op. 64, No. 2 was
submitted to RenCon 2002. It came 3rd behind DISTALL (Sect. 19.3.4.6) beating 3
of the other 4 automated systems—DM, Kagurame (Sect. 19.3.4.2), and Ha-Hi-Hun
(Sect. 19.3.4.3).
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19.3.2.2 CaRo
CaRo [15, 17, 16] is a monophonic CSEMP designed to generate audio files which
—like CMERS (Sect. 19.3.1.1)—express certain moods/emotions. It does not
require a score to work from, but works on audio files which are mood-neutral. The
files are, however, assumed to include the performer’s expression of the music’s
hierarchical structure. Its expressive representation is at the local note level. CaRo’s
performance actions at the note and intranote level include changes to inter-onset
interval, brightness, and loudness-envelope centroid. A linear model is used to learn
actions—every action has an equation characterised by parameters called Shift and
Range Expansion. Each piece of music in a particular mood has its own set of Shift
and Range Expansion values. This limits the generalisation potential.

CaRo also learns “how musical performances are organised in the listener’s
mind” in terms of moods: hard, heavy, dark, bright, light and soft. To do this, a set
of listening experiments analysed by Principal Component Analysis (PCA) gener-
ates a two-dimensional space that captures 75% of the variability present in the
listening results; this space is used to represent listeners’ experience of the moods.
A further linear model is learned for each piece of music which maps the mood
space onto Shift and Range Expansion values. The user can select any point in the
mood space, and CaRo generates an expressive version of the piece. A line can be
drawn through mood space, and following that line in time CaRo can generate a
performance morphing through different moods. Apart from the ability to adjust
Shift and Range expansion parameters manually, CaRo’s potential for creative
performance is extended by its ability to have a line drawn through the mood space.
Users can draw trajectories through this space which create entirely novel perfor-
mances, and this can be done in real time.

For testing, 20 s clips each from 3 piano pieces by different composers were
used. A panel of 30 listeners evaluated CaRo’s ability to generate pieces with
different expressive moods. Results showed that the system gave a good modelling
of expressive mood performances as realised by human performers.

19.3.3 Artificial Neural Networks

19.3.3.1 Artificial Neural Network Piano System
The earliest ANN approach is the Artificial Neural Network Piano System [11]. It
has two incarnations. The first did not learn from human performers: a set of 7
monophonic Director Musice rules were selected, and two (loudness and timing)
feedforward ANNs learned these rules through being trained on them. By learning a
fixed model of Director Musices, the ANN loses the performance creativity of the
k-values. When monophonic listening tests were done with 20 subjects, using
Mozart’s Piano Sonatas K331 and K281, the Director Musices performance was
rated above the non-expressive computer performance, but the Neural Network
performance rated highest of all. One explanation for the dominance of the ANN
over the original DM rules was that the ANN generalised in a more pleasant way
than the rules. The other ANN system by Bresin was a simulation CSEMP which
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also used a separate loudness and timing feedback ANN. The ANNs were trained
using actual pianist performances from MIDI, rather than on DM rules; but some of
the independently learned rules turned out to be similar to some DM rules. Informal
listening tests judged the ANNs as musically acceptable. The network looked at a
context of four notes (loudness) and five notes (timing), and so had a note to
phrase-level expressive representation, though it required the notes to be manually
grouped into phrases before being input.

19.3.3.2 Emotional Flute
The Camurri et al. [14] Emotional Flute system uses explicit Music Features and
Artificial Neural Networks, thus allowing greater generalisation than the related
CaRo system (Sect. 19.3.2.2). The music features are similar to those used in
Director Musices. This CSEMP is strongly related to Bresin’s second ANN,
extending it into the non-piano realm and adding mood space modelling. Expres-
sive actions include inter-onset interval, loudness and vibrato. Pieces need to be
segmented into phrases before being input—this segmentation is performed auto-
matically by another ANN. There are separate nets for timing and for loudness—net
designs are similar to Bresin’s, and have similar levels of expressive representation.
There is also a third net for the duration of crescendo and decrescendo at the single
note level. However, the nets could not be successfully trained on vibrato, so a pair
of rules were generated to handle it. A flautist performed the first part of Tele-
mann’s Fantasia no.2 in nine different moods: cold, natural, gentle, bright, witty,
serious, restless, passionate and dark. Like CaRo a 2-D mood space was generated
and mapped on to the performances by the ANNs, and this mood space can be
utilised to give greater Performance Creativity.

To generate new performances the network drives a physical model of a flute.
Listening tests gave an accuracy of approximately 77% when subjects attempted to
assign emotions to synthetic performances. To put this in perspective, even when
listening to the original human performances, human recognition levels were not
always higher than 77%; the description of emotional moods in music is a fairly
subjective process.

19.3.3.3 User-Curated Piano
Basis function modelling is used by this system [98], one very much focused on
performance creativity, for generating expressive piano performances. It creates
individualised performances by allowing the user to weight the contribution of
individual aspects of the musical score to the overall performance. Expressive
parameters such as tempo and dynamics are modelled as function of score basis
functions. Parameters include notated features such as pitch and timing. Each
expressive parameter is written as yi = f(ui), where ui is a vector of basis functions
evaluated on score element xi (e.g. a note in the score) and f() is a neural network.
The basis functions are trained using two expressive performance datasets: Chopin
and Beethoven [18]. During expressive playback (audio or MIDI) the user can
adjust sliders to change how much different expressive features (e.g. tempo and
articulation) are affected by expressive deviations. Thus, the system is not designed
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to perfectly simulate previous expressive performances, but to use previous
expressive performances as a starting point to allow the user to creatively shape
new ones.

19.3.4 Case and Instance-Based Systems

19.3.4.1 SaxEx
Arcos and Lopez de Mantaras’ SaxEx [2–5, 71] was one of the first systems to learn
performances based on the performance context of mood. Like the trumpet system
described earlier (Sect. 19.3.1.5), SaxEx includes algorithms for extracting notes
from audio files, and generating expressive audio files from note data. SaxEx also
looks at intranote features like vibrato and attack. Unlike the trumpet system, SaxEx
needs a non-expressive audio file to perform transformations upon. Narmour’s IR
theory is used to analyse the music. Other elements used to analyse the music are
ideas from Jazz theory, as well as GTTM TSR. This system’s expressive repre-
sentation is up to phrase level and is automated.

SaxEx was trained on cases from monophonic recordings of a tenor sax playing
four Jazz standards with different moods (as well as a non-expressive performance).
The moods were designed around three dimensions: tender-aggressive, sad-joyful
and calm-restless. The mood and local IR, GTTM and Jazz structures around a note
are linked to the expressive deviations in the performance of that note. These links
are stored as performance cases. SaxEx can then be given a non-expressive audio
file and told to play it with a certain mood. A further AI method is used then to
combine cases: Fuzzy Logic. For example—if two cases are returned for a par-
ticular note in the score and one says play with low vibrato, and the other says play
with medium vibrato, then fuzzy logic combines them into a low-medium vibrato.
The learning of new CBR solutions can be done automatically or manually through
a GUI, which affords some performance creativity giving the user a stronger input
to the generation of performances. However, this is limited by SaxEx’s focus on
being a simulation system. There is—like the Computational Music Emotion Rule
System (Sect. 19.3.1.10)—the potential for the user to generate a performance with
certain moods at different points in the music.

There is no formal testing reported, but SaxEx examples are available online.
The authors report “dozens” of positive comments about the realism of the music
from informal listening tests, but no formal testing is reported or details given. The
two short examples online (Sad and Joyful) sound realistic to us, more so than—for
example—the trumpet system examples. But the accuracy of the emotional
expression was difficult for us to gauge.

19.3.4.2 Kagurame
Kagurame [103, 104] is another case-based reasoning system which—in theory—
also allows expressiveness to be generated from moods, this time for piano.
However, it is designed to incorporate a wider degree of performance conditions
than solely mood, for example, playing in a Baroque or Romantic style. Rather than
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GTTM and IR, Kagurame uses its own custom hierarchical note structures to
develop and retrieve cases for expressive performance. This hierarchical approach
gives good expressive representation. Score analysis automatically divides the score
into segments recursively with the restriction that the divided segment must be
shorter than one measure. Hence, manual input is required for boundary informa-
tion for segments longer than one measure. The score patterns are derived auto-
matically after this, as is the learning of expressive actions associated with each
pattern. Kagurame acts on timing, articulation, and dynamics. There is also a
polyphony action called Chord Time Lag—notes in the same chord can be played at
slightly different times. It is very much a simulation system with little scope for
creative performance.

Results are reported for monophonic Classical and Romantic styles. Tests were
based on learning 20 short Czerny etudes played in each style. Then, a 21st piece
was performed by Kagurame. Listeners said it “sounded almost human like, and
expression was acceptable” and that the “generated performance tended to be
similar to human, particularly at characteristic points”. A high percentage of lis-
teners guessed correctly whether the computer piece was Romantic or Classical
style. In RenCon 2004 Kagurame came 4th in one half of the compulsory section,
one ahead of Director Musices, but was beaten by DM in the second half, coming
5th. At RenCon 2006 a polyphonic performance of Chopin's piano Etude in E
major came 2nd—with Pop-E (Sect. 19.3.1.7) taking 1st place.

19.3.4.3 Ha-Hi-Hun
Ha-Hi-Hun [55] utilises data structures designed to allow natural language state-
ments to shape performance conditions (these include data structures to deal with
non-monophonic music). The paper focuses on instructions of the form “generate
performance of piece X in the style of an expressive performance of piece Y”. As a
result, there are significant opportunities for performance creativity through gen-
erating a performance of a piece in the style of a very different second piece; or
perhaps performing the Y piece bearing in mind that it will be used to generate
creative performances of the X piece. The music analysis of Ha-Hi-Hun uses
GTTM TSR to highlight the main notes that shape the melody. TSR gives
Ha-Hi-Hun an expressive representation above note level. The deviations of the
main notes in the piece Y relative to the score of Y are calculated, and can then be
applied to the main notes in the piece X to be performed by Ha-Hi-Hun. After this,
the new deviations in X’s main notes are propagated linearly to surrounding notes
like “expressive ripples” moving outwards. The ability of Ha-Hi-Hun to automat-
ically generate expressive performances comes from its ability to generate a new
performance X based on a previous human performance Y.

In terms of testing, performances of two pieces were generated, each in the style
of performances of another piece. Formal listening results were reported as positive,
but few experimental details are given. In RenCon 2002, Ha-Hi-Hun learned to play
Chopin Etude Op. 10, No. 3 through learning the style of a human performance of
Chopin’s Nocturne Op. 32, No. 2. The performance came 9th out of 10 submitted
performances by other CSEMPs (many of which were manually produced). In
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RenCon 2004, Ha-Hi-Hun came last in the compulsory section, beaten by both
Director Musices and Kagurame (Sect. 19.3.4.2). In RenCon 2006, a performance
by Ha-Hi-Hun also came third out of six in the compulsory section, beaten by
Pop-E (Sect. 19.3.1.7) and Kagurame (Sect. 19.3.4.2).

19.3.4.4 PLCG System
Gerhard Widmer has applied various versions of a rule-based learning approach,
attempting to utilise a larger database of music than previous CSEMPs. The PLCG
system [116–118] uses data mining to find large numbers of possible performance
rules and cluster each set of similar rules into an average rule. This is a system for
musicology and simulation rather than one for creative performance.

PLCG is Widmer’s own meta-learning algorithm—the underlying algorithm
being Sequential Covering [80]. PLCG runs a series of sequential covering algo-
rithms in parallel on the same monophonic musical data, and gathers the resulting
rules into clusters, generating a single rule from each cluster. The data set was
thirteen Mozart Piano sonatas performed by Roland Batik in MIDI form (only
melodies were used—giving 41,116 notes). A note-level structure analysis learns to
generate tempo, dynamics and articulation deviations based on the local context—
e.g. size and direction of intervals, durations of surrounding notes, and scale degree.
Hence this CSEMP has a note level expressive representation. As a result of the
PLCG algorithm, 383 performance rules were turned into just 18 rules. Interest-
ingly, some of the generated rules had similarities to some of the Director Musices
rule set.

Detailed testing has been done on the PLCG, including its generalisation ability.
The testing methods were based on correlation approaches. Seven pieces selected
from the scores used in learning were regenerated using the rule set, and their
tempo/dynamics profiles compared to the original performances very favourably.
Regenerations were compared to performances by a different human performer
Phillipe Entremont and showed no degradation relative to the original performer
comparison. The rules were also applied to some music in a romantic style (two
Chopin pieces), giving encouraging results. There are no reports of formal listening
tests.

19.3.4.5 Combined Phrase-Decomposition/PLCG
The above approach was extended by Widmer and Tobudic into a monophonic
system whose expressive representation extends into higher levels of the score
hierarchy. This was the combined Phrase-decomposition/PLCG system [115]. Once
again this is a simulation system rather than one for creative performance. When
learning, this CSEMP takes as input scores that have had their hierarchical phrase
structure defined to three levels by a musicologist (who also provides some har-
monic analysis), together with an expressive MIDI performance by a professional
pianist. Tempo and Dynamics curves are calculated from the MIDI performance,
and then the system does a multi-level decomposition of these expression curves.
This is done by fitting quadratic polynomials to the tempo and dynamics curves
(similar to the curves found in Todd’s Parabola Model—Sect. 19.3.1.2).
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Once the curve-fitting has been done, there is still a “residual” expression in the
MIDI performance. This is hypothesised as being due to note-level expression, and
the PLCG algorithm is run on the residuals to learn the note-level rules which
generate this residual expression. The learning of the non-PLCG tempo and
dynamics is done using a case-based learning type method—by a mapping from
multiple-level features to the parabola/quadratic curves. An extensive set of music
features are used including length of the note group, melodic intervals between start
and end notes, where the pitch apex of the note group is, whether the note group
ends with a cadence, and the progression of harmony between start, apex and end.
This CSEMP has the most sophisticated expressive representation of all the systems
described in our review.

To generate an expressive performance of a new score, the system moves
through the score and in each part runs through all its stored musical features
vectors learned from the training; it finds the closest one using a simple distance
measure. It then applies the curve stored in this case to the current section of the
score. Data for curves at different levels, and results of the PLCG, are added
together to give the expression performance actions.

A battery of correlation tests was performed. Sixteen Mozart sonatas were used
to test the system—training on 15 of them and then testing against the remaining
one. This process was repeated independently selecting a new 1 of the 16 and then
re-training on the other 15. This gave a set of 16 results which the authors described
as “mixed”. Dynamics generated by the system correlated better with the human
performance than a non-expressive performance curve (i.e. straight line) did, in 11
out of 16 cases. For the timing curves, this was true for only 6 out of 16 cases.
There are no reports of formal listening tests.

19.3.4.6 DISTALL System
Widmer and Tobudic did further work to improve the results of the Combined
Phrase-decomposition/PLCG, developing the DISTALL system [107, 108] for
simulation. The learned performance cases in the DISTALL system are hierarchi-
cally linked, in the same way as the note groupings they represent. Hence when the
system is learning sets of expressive cases, it links together the feature sets for a
level 3 grouping with all the level 2 and level 1 note groupings it contains. When a
new piece is presented for performance, and the system is looking at a particular
level 3 grouping of the new piece, say X—and X contains a number of level 2 and
level 1 subgroupings—then not only are the score features of X compared to all
level 3 cases in the memory, but the subgroupings of X are compared to the
subgroupings of the compared level 3 cases as well. There have been measures
available which can do such a comparison in case-based learning before DISTALL
(e.g. RIBL [36]). However, DISTALL does it in a way more appropriate to
expressive performance—giving a more equal weighting to subgroupings within a
grouping, and giving this system a high expressive representation.

Once again correlation testing was done with a similar set of experiments to
Sect. 19.3.4.5. All 16 generated performances had smaller dynamics errors relative
to the originals than a robotic/neutral performance had. For tempo, 11 of the 16
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generated performances were better than a robotic/neutral performance. Correla-
tions varied from 0.89 for dynamics in Mozart K283 to 0.23 for tempo in Mozart
K332. The mean correlation for dynamics was 0.7 and for tempo was 0.52.
A performance generated by this DISTALL system was entered into RenCon 2002.
The competition CSEMP included a simple accompaniment system where
dynamics and timing changes calculated for the melody notes were interpolated to
allow their application to the accompaniment notes as well. Another addition was a
simple heuristic for performing grace notes: the sum of durations of all grace notes
for a main note is set equal to 5% of the main note’s duration, and the 5% of
duration is divided equally amongst the grace notes. The performance was the
top-scored automated performance at RenCon 2002—ahead of Kagurame
(Sect. 19.3.4.2), MIS (Sect. 19.3.2.1) and Ha-Hi-Hun (Sect. 19.3.4.3)—and it beat
one non-automated system.

19.3.5 Statistical Graphical Models

19.3.5.1 Music Plus One
The Music Plus One system [90–92] is able to deal with multiple instrument
polyphonic performances. It has the ability to adjust performances of polyphonic
sound files (e.g. orchestral works) to fit as accompaniment for solo performers.
This CSEMP contains two modules: Listen and Play modules. Listen uses a Hidden
Markov Model (HMM) to track live audio and find the soloist’s place in the score in
real time. Play uses a Bayesian Belief Network (BBN) which, at any point in a
soloist performance and based on the performance so far, tries to predict the timing
of the next note the soloist will play. Music Plus One’s BBN is trained by listening
to the soloist. As well as timing, the system learns the loudness for each phrase of
notes. However, loudness learning is deterministic—it performs the same for each
accompaniment of the piece once trained, not changing based on the soloist
changing their own loudness. Expressive representation is at the note level for
timing and phrase level for loudness.

The BBN assumes a smooth changing in tempo, so any large changes in tempo
(e.g. a new section of a piece) need to be manually marked up. For playing MIDI
files for accompaniment, the score needs to be divided up manually into phrases for
dynamics; for using audio files for accompaniment such a division is not needed.
When the system plays back the accompaniment it can play it back in multiple
expressive interpretations dependent on how the soloist plays. Hence, it has learned
a flexible (almost tempo-independent) concept of the soloist’s expressive intentions
for the piece.

There is no test reported for this system—the author states their impression that
the level of musicality obtained by the system is surprisingly good, and asks readers
to evaluate the performance themselves by going to the website and listening.
Music Plus One is actually being used by composers, and for teaching music
students. It came first at RenCon 2003 in the compulsory section with a perfor-
mance of Chopin's Prelude No. 15 “Raindrop”, beating Ha-Hi-Hun (Sect. 19.3.4.3),
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Kagurame (Sect. 19.3.4.2) and Widmer’s system (Sect. 19.3.4.6). To train Music
Plus One for this, several performances were recorded played by a human, using a
MIDI keyboard. These were used to train the BBN. The model was extended to
include velocities for each note, as well as times, with the assumption that the
velocity varies smoothly (like a random walk) except at hand-identified phrase
boundaries. Then, a mean performance was generated from the trained model.

As far as performance creativity goes, the focus on this system is not so much to
generate expressive performances, as to learn the soloist’s expressive behaviour and
react accordingly in real time. However, the system has an “implicit” method of
creating new performances of the accompaniment—the soloist can change their
performance during playback. There is another creative application of this system:
multiple pieces have been composed for use specifically with the Music Plus One
system—pieces which could not be properly performed without the system. One
example contains multiple sections where a musician plays 7 notes while the other
plays 11. Humans would find it difficult to do this accurately, whereas a soloist and
the system can work together properly on this complicated set of polyrhythms.

19.3.5.2 ESP Piano System
Grindlay’s [48] ESP Piano system is a polyphonic CSEMP designed to simulate
expressive playing of pieces of piano music which consist of a largely monophonic
melody, with a set of accompanying chords, known as homophony. A Hidden
Markov Model learns expressive performance using music features such as whether
the note is the first or last of the piece, the position of the note in its phrase, and the
notes duration relative to its start and the next note’s start (called its “articulation”
here). The expressive representation is up to the phrase level. Phrase division is
done manually, though automated methods are discussed. The accompaniment is
analysed for a separate set of music features, some of which are like the melody
music features. Some are unique to chords—for example the level of
consonance/dissonance of the code (based on a method called Euler’s Solence).
Music features are then mapped on to a number of expressive actions such as (for
melody) the duration deviation, and the velocity of the note compared to the
average velocity. For the accompaniment similar actions are used as well as some
chord-only actions, like the relative onset of chord notes (similar to the Kagurame
Chord Time Lag, in Sect. 19.3.4.2). These chordal values are based on the average
of the values for the individual notes in the chord.

Despite the focus of this system on homophony, tests were only reported for
monophonic melodies, training the HMM on 10 graduate performances of Schu-
mann’s Träumerei. 10 out of 14 listeners ranked the expressive ESP output over the
inexpressive version. 10 out of 14 ranked the ESP output above that of an under-
graduate performance. 4 out of 7 preferred the ESP output to a graduate student
performance.
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19.3.6 Other Regression Methods

19.3.6.1 Drumming System
Thus far in this review only pitched instrument systems have been surveyed—
mainly piano, saxophone and trumpet. A system for non-pitched (drumming)
expression will now be examined. In the introduction about it was mentioned that
pop music enthusiastically utilised the “robotic” aspects of MIDI sequencers.
However, eventually pop musicians wanted a more realistic sound to their elec-
tronic music, and “humanization” systems were developed for drum machines that
added random tempo deviations to beats. Later systems also incorporated what are
known as Grooves—a fixed pattern of tempo deviations which are applied to a
drum beat or any part of a MIDI sequence (comparable to a one-level Clynes pulse
set, see Sect. 19.3.1.3). Such groove systems have been applied commercially in
mass-market systems like Propellorhead Reason, where it is possible to generate
Groove Templates from a drum track and apply it to any other MIDI track [19].
However, just as some research has suggested limitations in the application of
Clynes’ composer pulses, so [122] research shows the limits of groove templates.
Their analysis of multi-voiced Brazillian drumming recordings found that groove
templates could only account for 30% of expressive timing.

Wright and Berdahl investigated other methods to capture the expressive
timing using a system that learns from audio files. The audio features examined
were a note’s timbre, metric position and rhythmic context. The rhythmic context
being the timbres and relative temporal position of notes within 1 beat of the input
notes—thus giving the system a narrow expressive representation. The system
learns to map these audio features onto the timing deviations of each non-pitched
note; it is not designed to generate creative performances but to simulate them.
The mapping model is based on regression between audio features and timing
deviation (versus a quantized version of the beat). Three different methods of
learning the mapping model were tried: Kernel Ridge Regression [51], Gaussian
Process Regression [93] and kNN [53] methods. This learning approach was
found to track the expressive timing of the drums much better than the groove
templates, clearly demonstrated in their graphs showing the error over the drum
patterns. All three learning methods were found to give approximately equal
accuracy, though it is believed that Gaussian Process Regression has the greatest
room for improvement. Examples are provided online. Note that the system is not
only limited to Brazilian drumming, Wright and Berdahl also tested it on Reggae
rhythms with similar success.

19.3.6.2 KCCA Piano System
An interesting application of kernel regression methods to expressive performance
is the system by Dorard et al. [35]. Their main aim is simulatory, to imitate the style
of a particular performer and allow new pieces to be automatically performed using
the learned characteristics of the performer. A performer is defined based on the
“Worm” representation of expressive performance [33]. The worm is a visualisation
tool for the dynamics and tempo aspects of expressive performance. It uses a 2D

19 Performance Creativity in Computer Systems … 551



representation with tempo on the x-axis and loudness on the y-axis. Then, as the
piece plays, at fixed periods in the score (e.g. once per bar) an average is calculated
for each period and a filled circle plotted on the graph at the average. Past circles
remain on the graph, but their colour fades and size decreases, as time passes—thus
creating the illusion of a wriggling worm whose tail fades off into the distance in
time. If the computer played an expressionless MIDI file then its worm would stand
still, not wriggling at all.

The basis of Dorard’s approach is to assume that the score and the human
performances of the score are two views of the musical semantic content, thus
enabling a correlation to be drawn between the worm and the score. The system
focuses on homophonic piano music—a continuous upper melody part and an
accompaniment—and divides the score into a series of chord and melody pairs.
Kernel Canonical Correlation Analysis (KCCA) [99] is then used, a method which
looks for a common semantic representation between two views. Its expressive
representation is based on the note-group level, since KCCA is looking to find
correlations between short groups of notes and the performance worm position. An
addition needed to be made to the learning algorithm to prevent extreme expressive
changes in tempo and dynamics. This issue is a recurring problem in a number of
CSEMPs (see the Artificial Neural Network Models in Sect. 19.3.3, Sibelius in
Sect. 19.3.1.9, and also Sect. 19.3.7.3).

Testing was performed on Frédéric Chopin’s Etude 3, Opus 10—the system was
trained on the worm of the first 8 bars, and then tried to complete the worm for bars
9 to 12. The correlation between the original human performance worm for 9 to 12
and the reconstructed worm was measured to be 0.95, whereas the correlation with
a random worm was 0.51. However, the resulting performances were reported
(presumably through informal listening tests) to not be very realistic.

19.3.7 Evolutionary Computation

A number of more recent CSEMPs have used evolutionary computation methods,
such as Genetic Algorithms [79] or Multi-Agent Systems [62]. In general (but not
always) such systems have opportunities for performance creativity. They often
have a parameterization that is simple to change—for example, a fitness function.
They also have an emergent [20] output which can sometimes produce unexpected
but coherent results.

19.3.7.1 Genetic Programming Jazz Sax
Some of the first researchers to use EC in computer systems for expressive per-
formance were Ramirez and Hazan. They did not start out using EC, beginning with
a Regression Tree system for Jazz Saxophone [88]. This system will be described
before moving on to the Genetic Programming (GP) approach, as it is the basis of
their later GP work. A performance Decision Tree was first built using C4.5 [86].
This was built for musicological purposes—to see what kinds of rules were gen-
erated—not to generate any performances. The Decision Tree system had a
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3-note-level expressive representation, and music features used to characterise a
note included metrical position and some Narmour IR analysis. These features were
mapped on to a number of performance actions from the training performances,
such as lengthen/shorten note, play note early/late and play note louder/softer.
Monophonic audio was used to build this decision tree using the authors’ own
spectral analysis techniques and five Jazz standards at 11 different tempos. The
actual performing system was built as a Regression rather than Decision Tree, thus
allowing continuous expressive actions. The continuous performance features
simulated were duration, onset and energy variation (i.e. loudness). The learning
algorithm used to build the tree was M5Rules [120] and performances could be
generated via MIDI and via audio using the synthesis algorithms. In tests, the
resulting correlations with the original performances were 0.72, 0.44 and 0.67 for
duration, onset and loudness, respectively. Other modelling methods were tried
(linear regression and 4 different forms of Support Vector Machines) but didn’t fare
as well correlation-wise.

Ramirez and Hazan’s next system [52] was also based on Regression Trees, but
these trees were generated using Genetic Programming (GP), which is ideal for
building a population of “if–then” Regression Trees. GP was used to search for
Regression Trees that best emulated a set of human audio performance actions. The
Regression Tree models were basically the same as in their previous paper, but in
this case a whole series of trees was generated, they were tested for fitness and then
the fittest were used to produce the next generation of trees/programs (with some
random mutations added). Fitness was judged based on a distance calculated from a
human performance. Creativity and expressive representation are enhanced
because, in addition to modelling timing and dynamics, the trees modelled the
expressive combining of multiple score notes into a single performance note
(consolidation), and the expressive insertion of one or several short notes to
anticipate another performance note (ornamentation). These elements are fairly
common in jazz saxophone. It was possible to examine these deviations because the
fitness function was implemented using an Edit Distance [69] to measure score
edits.

This evolution was continued until average fitness across the population of trees
ceased to increase. The use of GP techniques was deliberately applied to give a
range of options for the final performance since, as the authors say—“performance
is an inexact phenomenon”. Also because of the mutation element in Genetic
Programming, there is the possibility of unusual performances being generated. So
this CSEMP has quite a good potential for performance creativity. No evaluation
was reported of the resulting trees’ performances—but average fitness stopped
increasing after 20 generations.

19.3.7.2 Sequential Covering Algorithm GAs
The Sequential Covering Algorithm genetic algorithm (GA) [89] uses Sequential
Covering to learn performance. Each covering rule is learned using a GA, and a
series of such rules are built up covering the whole problem space. In this paper, the
authors return to their first (non-EC) paper’s level of expressive representation—
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looking at note level deviations without ornamentation or consolidation. However,
they make significant improvements over their original non-EC paper. The corre-
lation coefficients for onset, duration, and energy/loudness in the original system
were 0.72, 0.44 and 0.67—but in this new system they were 0.75, 0.84 and 0.86—
significantly higher. And this system also has the advantage of slightly greater
creativity due to its GA approach.

19.3.7.3 Jazz Guitar
Another use of GAs in CSEMPS is for optimising the model for feature extraction
from the melody to be performed [44]. This method can be viewed as a hybrid of
GAs and the rule-based approach. The GA is used to optimise the model for
detecting the guitar melody in jazz guitar recordings and a propositional rule learner
algorithm is applied to create a model for expressive performance based on the
melody and other musical features, including Narmour-type features. The record-
ings (16 polyphonic recordings of American jazz guitarist Grant Green) are
cross-referenced with a MusicXML versions of the scores. The resulting accuracies
were 70%, 56%, 63% and 52%, respectively, the ornamentation, duration, onset
and energy features. Considering these are done using actual polyphonic audio, the
results are very encouraging—though the system is focused on performance sim-
ulation rather than creativity.

19.3.7.4 Ossia
Like the Computational Music Emotion Rule System (Sect. 19.3.1.10), Dahlstedt’s
[27] Ossia is a CSEMP which incorporates both compositional and performance
aspects. However, whereas CMERS was designed to operate on a composition,
Ossia is able to generate entirely new and expressively performed compositions.
Although it is grouped here as an EC learning system, technically Ossia is not a
learning system. It is not using EC to learn how to perform like a human, but to
generate novel compositions and performances. However, it is included in this
section because its issues relate more closely to EC and learning systems than to
any of the non-learning systems (the same reason applies for the system described
in the Sect. 19.3.7.5). Ossia generates music through a novel representational
structure that encompasses both composition and performance—Recursive Trees
(generated by GAs). These are “upside down trees” containing both performance
and composition information. The bottom leaves of the tree going from left to right
represent actual notes (each with their own pitch, duration and loudness value) in
the order they are played. The branches above the notes represent transformations
on those notes. To generate music the tree is flattened—the “leaves” higher up act
upon the leaves lower down when being flattened to produce a
performance/composition. So, going from left to right in the tree represents music in
time. The trees are generated recursively—this means that the lower branches of the
tree are transformed copies of higher parts of the tree. Here, we have an element we
argue is the key to combined performance and composition systems—a common
representation—in this case transformations.
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This issue of music representation is not something this survey has addressed
explicitly, being in itself an issue worthy of its own review, for example, see [1, 29].
However, a moment will be taken to briefly discuss it now. The representation
chosen for a musical system has a significant impact on the functionality—Ossia’s
representation is what leads to its combined composition and performance gener-
ation abilities. The most common music representation mentioned in this review has
been MIDI, which is not able to encode musical structure directly. As a result, some
MIDI-based CSEMPs have to supply multiple files to the CSEMP, a MIDI file
together with files describing musical structure. More flexible representations than
MIDI include MusicXML, ENP-score-notation [67], WEDELMUSIC XML [7],
MusicXML4R [47], and the proprietary representations used by commercial soft-
ware such as Sibelius, Finale, Notion, and Zenph High-Resolution MIDI [6] (which
was recently used on a released CD of automated Disklavier re-performances of
Glenn Gould).

Many of the performance systems described in this review so far transform an
expressionless MIDI or audio file into an expressive version. Composition is often
done in a similar way—motifs are transformed into new motifs, and themes are
transformed into new expositions. Ossia uses a novel transformation-based music
representation. In Ossia, transformations of note, loudness and duration are possible
—the inclusion of note transformations here emphasising the composition aspect of
the Ossia. The embedding of these transformations into recursive trees leads to the
generation of gradual crescendos, decrescendos and duration curves—which sound
like performance strategies to a listener. Because of this Ossia has a good level of
performance creativity. The trees also create a structure of themes and expositions.
Ossia uses a GA to generate a population of trees, and judges for fitness using such
rules as number of notes per second, repetivity, amount of silence, pitch variation,
and level of recursion. These fitness rules were developed heuristically by Dahlstedt
through analysis-by-synthesis methods.

Ossia’s level of expressive representation is equal to its level of compositional
representation. Dahlstedt observes “The general concept of recapitulation is not
possible, as in the common ABA form. This does not matter so much in short
compositions, but may be limiting”. So Ossia’s expressive representation would
seem to be within the A’s and B’s, giving it a note to section-level expressive
representation. In terms of testing, the system has not been formally evaluated
though it was exhibited as an installation at Gaudeamus Music Week in Amster-
dam. Examples are also available on Dahlstedt’s website, including a composed
suite. The author claims that the sound examples “show that the Ossia system has
the potential to generate and perform piano pieces that could be taken for human
contemporary compositions”. The examples on the website are impressive in their
natural quality. The question of how to test a combined performance and compo-
sition, when that system is not designed to simulate but to create, is a sophisticated
problem which will not be addressed here. Certainly, listening tests are a possibility
but these may be biased by the preferences of the listener (e.g. preferring pre-1940s
classical music, or pop music). Another approach is musicological analysis but the
problem then becomes that musicological tools are not available for all genres and
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all periods—for example, musicology is more developed for pre-1940 than
post-1940 art music.

An example score from Ossia is described which contains detailed dynamics and
articulations, and subtle tempo fluctuations and rubato. This subtlety raises another
issue—scores generated by Ossia in common music notation had to be simplified to
be simply readable by humans. The specification of exact microfeatures in a score
can lead to it being unplayable except by computer or the most skilled concert
performer. This has a parallel in a compositional movement which emerged in the
1970s “The New Complexity”, involving composers such as Brian Ferneyhough
and Richard Barret [113] In “The New Complexity” elements of the score are often
specified down to the microfeature level, and some scores are described as almost
unplayable. Compositions such as this, whether by human or computer, bring into
question the whole composition/performance dichotomy (These issues also recall
the end of Ian Pace’s quote in the first section of this review.). However, technical
skill limitations and common music notation scores are not necessary for perfor-
mance if the piece is being written on and performed by a computer. Microfeatures
can be generated as part of the computer (or computer-aided) composition process if
desired. In systems such as Ossia and CMERS (Sect. 19.3.1.10), as in The New
Complexity, the composition/performance dichotomy starts to break down—the
dichotomy is really between macro-features and microfeatures of the music.

19.3.7.5 MASC
Before discussing the MASC system, another motivation for bringing composition
and performance closer in CSEMPs should be highlighted. A significant amount of
CSEMP effort is in analysing the musical structure of the score/audio. However,
many computer composition systems generate a piece based on some structure
which can often be made explicitly available. So in computer music it is often
inefficient to have separate composition and expressive performance systems—i.e.
where a score is generated and the CSEMP sees the score as a black box and
performs a structure analysis. Greater efficiency and accuracy would require a
protocol allowing the computer composition system to communicate structure
information directly to the CSEMP, or—like Ossia—simply combine the systems
using, for example, a common representation (where micro-timing and
micro-dynamics are seen as an actual part of the composition process). A system
which was designed to utilise this combination of performance and composition is
the Multi-agent Affective Social Composition System MASC [64].

MASC is a multi-agent system that generates melody pitch sequences with a
hierarchical structure. The agents have no explicit melodic intelligence and generate
the pitches as a result of artificial emotional influence and communication between
agents, and the melody's hierarchical structure is a result of the emerging agent
social structure. The system is not a mapping from multi-agent interaction onto
musical features, but actually utilises music for the agents to communicate artificial
emotions. Each agent in the society learns its own growing tune during the inter-
action process, represented in Fig. 19.4.
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The following are some of the key features of the system. MASC usually
consists of a small-medium size—2 to 16—collection of agents, but can be more.
Each agent can perform monophonic MIDI tunes and learn monophonic tunes from
other agents. An agent has an affective state, an artificial emotional state which
affects how it performs the music to other agents; for example, a “happy” agent will
perform their music more “happily`̀ . An agent's affective state is in turn affected by
the affective content of the music performed to it; for example, if “sad” music is
performed to a happy agent, the agent will become a little “more sad”. Agents can
be made to only learn tunes performed to them if the affective content of the tune is
similar enough to their current affective state. Learned tunes are added to the end of
their current tune. Agents develop opinions/trust of other agents that perform to
them, depending on how much the other agents can help their tunes grow. These
opinions affect who they interact with in the future. A final contribution of MASC is
the linear music-emotion analysing model which takes as input a monophonic MIDI
file and estimates its affective content. MASC has not been as rigorously tested as
some, and is focused on monophonic tunes.

In terms of testing, the research demonstrates diagrammatically how the inter-
action structure relates to the music’s hierarchical structure. An example is given
showing the musical structure building up and how it related to the agents’ social
structure. It is also demonstrated how different combinations of initial emotions lead
to different social dynamics. MASC’s potential for creative performance is high, as
agent's behaviour is driven by the metaphor of emotion—which the user can adjust
—rather than simulating specific performance styles.

Fig. 19.4 Representation of the MASC interaction process. Agents communicate tunes with
affectively transformed features—based on their current affective state. Other agents’ affective
states are transformed during their listening process

19 Performance Creativity in Computer Systems … 557



19.4 A Detailed Example: IMAP

As already discussed, the final reviewed example will be done in depth to give the
reader more insight into the details of CSEMP design, testing and creativity. This
example will be IMAP, the description of which will require some background
introduction to Evolutionary Computation. IMPA was presented for the first time in
2010, in [76].

19.4.1 Evolutionary Computation

Evolutionary Computation (EC) methods have been successfully applied to algo-
rithmic composition (please refer to [75] for an introduction to a number of such
systems). The great majority of these systems use genetic algorithms [45], or GA, to
produce melodies and rhythms. In these systems, music parameters are represented
as “genes” of software agents, and GA operators are applied to “evolve” music
according to given fitness criteria.

Progress in applying EC to CSEMP has been reported [87, 88, 126, 127]. EC-based
CSEMPs have all applied the neo-Darwinian approach of selecting the musically fittest
genes to be carried into the next generation. IMAP is focused, however, on investigating
the application of an alternative EC approach to expressive performance—one that is
based on cultural transmission rather than genetic transmission.

Musical behaviour in human beings is based both in our genetic heritage and
also on cultural heritage [32]. One way of achieving a cultural, as opposed to
genetic, transmission is through imitation of behaviour [9, 125]. Work on the
application of this imitative cultural approach to algorithmic composition was
initiated by [78]. In this chapter, the cultural transmission methodology is followed
up with an application of an imitative multi-agent systems approach to expressive
music performance: the Imitative Multi-Agent Performer, or IMAP.

In the GA model of behaviour transmission, a population of agents is generated
having its own behaviour defined by their “genetic” code. The desirability of the
behaviour is evaluated by a global fitness function, and agents with low fitness are
often discarded, depending on which version of the algorithm is adopted [45]. Then,
a new population of agents is generated by combination and deterministic or
non-deterministic transformation of the genes of the highest-scoring agents.

Conversely, in the imitationmodel of behaviour transmission, an agent interactswith
one ormore other agents using a protocol that communicates the first agent’s behaviour
to the other agents. The other agents evaluate the first agent’s behaviour based on some
evaluation function, and if the evaluation scores highly enough, one ormore of the other
agents will change their own behaviours based on the first agent’s behaviour. The
evaluation function in the imitation model plays a similar role to the fitness function in
the GA model. However, in imitative multi-agent systems, the evaluation function is
particularly suited for the design of EC systems using a non-global fitness function, for
example, by giving each agent their own evaluation function.
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The potential for diversity is a desirable trait for a system for generating creative
and novel expressive music performances—as opposed to replicating existing ones
—because there is no objectively defined optimal performance for a musical score
[10, 87]. Performance is a subjective, creative act. Previous work, described earlier
in this chapter, on genetic transmission in generating expressive music performance
has been significantly motivated by the desire to generate a variety of performances.
As will be demonstrated herein, there is even more scope for such variety in IMAP
because a multiplicity of evaluation functions is used. Furthermore, there is scope
for easily controlling the level of diversity in IMAP.

It is not the intention to compare the imitative approach with the GA approach,
because both approaches have their own merits and should be considered as
complementary approaches. [87] demonstrated the validity of a GA model in their
SaxEx model discussed earlier. The IMAP experiments later in this chapter
demonstrate the validity of our imitative approach.

One obvious measure of validity is whether the system generates performances
that are expressive. The other two measures of validity relate to those elements of
the imitative approach, which differentiate it from the standard GA approach—in
particular, the ability to easily provide the system with a number of parallel
interacting fitness functions. Hence, IMAP will be evaluated in terms of

• The expressiveness of IMAP-generated performances (note, however, that this is
not assessed by means of experiments with human subjects; we assess how well
the agents can generate performances that embody their preference weights)

• Performance-diversity generation and control of the level of diversity
• The ability to control diversity when it is being affected by multiple musical

elements simultaneously.

Imitative learning has been frequently used in other multi-agent systems research
[82]. However, to the best of our knowledge, IMAP is the first application of such
methods to the generation of expressive musical performances.

19.4.2 IMAP Overview

Each agent has two communication functions: it can listen to the performance of
another agent, and it can perform to another agent. All agents are provided with the
same monophonic melody—the melody from which expressive performances will
be generated. In all interactions, all agents perform the same melody, usually with
different expressive actions. Agents in IMAP have two types of expressive actions:
changes in tempo and changes in note loudness. Each agent also has a musical
evaluation function based on a collection of rules, where different agents give
different weightings to the rules and use the combination to evaluate the perfor-
mances they hear. Initially, agents will perform with random expressive actions. If
they evaluate another agent’s expressive performance highly enough through their
evaluation function, then they will adjust their own future performances towards the
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other agent’s expressive actions. As this process continues, a repertoire of different
expressive performances evolves across the population.

19.4.2.1 Agent Evaluation Functions
The agents’ evaluation functions could be generated in a number of ways. As
discussed earlier, one of the most common methods used in CSEMPs is providing
agents with rules describing what features an expressive performance should have.
For example, see Sects. 19.3.1.1, 19.3.1.2 and 19.3.1.7. This approach was chosen
for IMAP because it was desired to provide the means to explicitly change the
influence of various musical factors on the final expressive performance.
Machine-learning approaches, such as those based on artificial neural networks,
tend to develop a more implicit reasoning system [8]. An explicitly described rule
set allows for simpler controllability of a multi-agent system. However, unlike
many rule-based CSEMPs, the agents in IMAP do not use their rules to generate
their performances. Rather, they use them to evaluate performances (their own and
those of other agents) and therefore choose which other agents to imitate.

This will become clearer as the system is introduced. In short, the more highly
another agent’s performance is scored by the parameterized evaluation function of a
listening agent, the more highly the listening agent will regard the performing
agent.

An agent’s evaluation function is defined at two stages: the Rule Level and the
Analytics Level. The first stage—the Rule Level—involves a series of five rules
derived from previous work on generative performance. The second stage—the
Analytics Level—involves a group of musical analysis functions that the agent uses
to represent the structure of the musical score. The Rule Level and the Analytics
Level are both parameterized to allow the user to control which elements have most
influence on the resulting performances.

For the Rule Level, a large number of rules available from previous research into
CSEMP could have been used. To keep the rule list of IMAP manageable, only five
rules were selected, bearing in mind the application and controllability of the
imitative approach. One should note, however, that these rules are not absolute; as
will be demonstrated later, the agents often create performances that do not fully
conform to all rules. For this reason, we refer to these rules as preference rules.

The five preferences rules of the Rule Level relate to Performance Curves, Note
Punctuation, Loudness Emphasis, Accentuation and Boundary Notes. Each pref-
erence rules is based on previous research into music performance, as follows.
Many of these ideas have been discussed previously in this chapter.

Rule 1: Performance Curves

Performance deviations for tempo between note group boundaries (e.g. motif and
phrase boundaries) should increase for the beginning part of the group and decrease
for the second part of the group; how these “parts” are defined is explained later.
This is consistent with the expressive shapes, which are well established in the field
of CSEMP (e.g. Sects. 19.3.1.1 and 19.3.1.2). This shape should also occur for the
loudness deviations (see Sect. 19.3.1.2).
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Rule 2: Note Punctuation

According to this rule, the ending note of a group of notes should be lengthened
[38].

Rule 3: Loudness Emphasis

Performance deviations for loudness should emphasise the metrical, melodic and
harmonic structure [25, Sundberg 1983].

Rule 4: Boundary Notes

The last note in a note grouping should have an expressive tempo, which is either a
local minimum or local maximum [25].

Rule 5: Accentuation

Any note at a significantly accentuated position (as defined later) must either have a
lengthened duration value or a local loudness maximum [13, 25].

19.4.2.2 Evaluation Equations
These five preference rules of the Rule Level were implemented as a set of eval-
uation equations, which are detailed in the following sections. The user can change
the influence of a preference rule in the final evaluation through the setting of
weights. The rules take as input the result of a musical score analysis done by four
analysis functions in the Analytics Level, namely Local Boundary Detection Model
(LBDM), Metric Hierarchy, Melodic Accent and Key Change. A detailed expla-
nation of these analysis functions is beyond the scope of this chapter; the reader is
invited to consult the given references.

• Local Boundary Detection Model (LBDM): The first of these, LBDM, takes a
monophonic melody as input and returns a curve that estimates the grouping
structure of the music; that is, where the note–group boundaries are and how
important each boundary is [13]. Each adjacent note pair is given an LBDM
value. The higher the value, the more likely that the interval is at a grouping
boundary; and the higher the value at a boundary, the more important the
boundary is. This function allows an agent to express aspects of the grouping
structure of the music.

• Metric Hierarchy The second function is the Metric Hierarchy function, which
uses the Lerdahl and Jackendoff [68] method of assigning notes a position in a
metric hierarchy. As discussed earlier, in most Western European classical
music, each note has a position in a metric hierarchy. For example, a piece in 4/4
time might have a note with a strong beat at the start of every bar and a weaker
beat half-way through each bar. The Metric Hierarchy function is implemented
in IMAP as a function that takes as input a melody and returns the strength of
each beat (A detailed explanation of the implementation is beyond the scope of
this chapter; it suffices to say that the representation does not explicitly include
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information about bar lines and time signatures.). Thus, it allows an agent to
express aspects of the metric structure in its performance.

• Melodic Accent: Another form of accent analysis used in the Analysis Level is
the Melodic Accent. Thomassen [105] proposes a methodology for analysing the
importance of each note in a melody; each note is assigned an importance value.
This allows an agent to express aspects of the melodic structure in its
performance.

• Key Change: The fourth function in the Analysis Level is the Key Change
analysis. Krumhansl [66] introduces an algorithm, based on perceptual experi-
ments, for analysing changes of key in a melody. This algorithm allows an agent
to express aspects of the harmonic structure in its performance.

Therefore, an agent will represent the score by its note groupings, metric hier-
archy, melodic accents and key changes, although different agents may see the
music score differently depending on how they parameterize the functions in the
Analytics Level. Then, based on the five preference rules, the agents will prefer
certain expression deviations for different parts of the musical score, where the
types of expressive deviations preferred depend on an agent’s parameterization of
the preference rules in the Rules Level.

19.4.2.3 Agent Function Definitions
The evaluation function E(P) of an agent evaluating a performance P is defined as

EðPÞ ¼ wTem � ETemðPÞþwLou � ELouðPÞ ð19:1Þ

ETem and ELou are the agent’s evaluation of how well a performance fits with its
preference for expressive deviations in tempo and loudness, respectively. The
preference weights wTem and wLou define how much an agent focuses on timing
elements of expression in relation to loudness elements of expression. The evalu-
ation functions for tempo and loudness are defined using evaluation sub-functions
EiTem and EiLou, which evaluate all five preference rules discussed earlier. Indices 1–
5 relate to preference rules 1–5, respectively,

ETem ¼ w1Tem � E1Tem þw2Tem � E2 þw4Tem

� E4Tem þw5Tem � E5
ð19:2Þ

ELou ¼ w1Lou � E1Lou þw1Lou � E1

þw4Lou � E4Lou
ð19:3Þ

The E1Tem and E1Lou functions refer to preference rule 1 and affect both tempo
and loudness, respectively. Function E2 refers to preference rule 2 and affects only
tempo. Similarly, function E3 refers to preference rule 3 and only affects loudness.
Functions E4Tem and E4Lou refer to preference rule 4 and affects both loudness and
tempo, and unction E5 refers to rule 5 and only affects tempo.
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The weights wiTem, and wiLou allow the setting of agent preferences for each of
the five rules, though not all rules need to be part of both functions because some
apply only to tempo or only to loudness. The sub-functions are defined in terms of
the deviations of tempo and loudness from the nominal score values found in a
performance. The sub-functions are given in Eqs. (19.4)–(19.10).

Equations (19.4) and (19.5) implement the preference rule 1.

E1Tem ¼
Xn
1

Xsturn�1

i¼sstart

1 devTemðiþ 1Þ[ devTemðiÞð Þ
0 devTemðiþ 1Þ� devTemðiÞð Þ

� 

þ
Xsend�1

i¼sturn

1 devTemðiþ 1Þ\devTemðiÞð Þ
0 devTemðiþ 1Þ� devTemðiÞð Þ

� ! ð19:4Þ

E1Lou ¼
Xn
1

Xsturn�1

i¼sstart

1 devLouðiþ 1Þ[ devLouðiÞð Þ
0 devLouðiþ 1Þ� devLouðiÞð Þ

� 

þ
Xsend�1

i¼sturn

1 devLouðiþ 1Þ\devLouðiÞð Þ
0 devLouðiþ 1Þ� devLouðiÞð Þ

� ! ð19:5Þ

The i-th note’s tempo and loudness expressive deviations are written as devTem(i)
and devLou(i) in the sub-functions. By virtue of the first (outer) summation in each
equation, the calculations are applied to each note grouping separately and the
scores summed across the whole performance. The index values sstart and send are
the note indices at which a note grouping starts and ends, and sturn is its turning
point. There is no fixed threshold for defining boundaries using the LBDM method.
One was chosen, which was found sufficient for the purposes of IMAP: for a note to
be a boundary note, its LBDM value must be greater than the average LBDM value
of the whole melody. The turning point of a grouping is the point at which the
expressive tempo defined by the preference rule 1 peaks before dropping; it is not
defined explicitly by LBDM either. In IMAP the “third most important note” in the
group is selected as representing a boundary between the first part of the group and
the last part. So the turning point is defined as the note having the third highest
LBDM in the group: the start and end notes will be the two highest LBDM values.
This definition of turning point was found to be more musically meaningful than
simply taking the mid-point between the start and end notes. In order to ensure that
every note grouping has at least one potential turning point, another constraint is
placed on note groupings: they must contain at least four notes, i.e. three intervals.

Equation (19.6) is summed over all note groups in the melody. This
sub-function implements the preference rule 2. A tempo deviation value equal to 1
means the performance is the same as the nominal value in the score, a value greater
than one means louder or faster than the score. This is applied to each note group in
the melody.
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E2 ¼
Xn
1

1 devTemðsendÞ\1ð Þ
0 devTem sendð Þ� 1ð Þ

�
ð19:6Þ

Equation (19.7) implements the preference rule 3. The curve sA(i) used in this
equation is the accentuation curve, which is generated by a weighted sum of three
other curves: melodic accent, metrical hierarchy and the key change, thus repre-
senting multiple musical elements (Note: the notion of “curve” here is broadly
metaphorical, it is not a mathematical curve in the strict sense of the term).

E3 ¼
Pq�1

i¼1

1 Dd � DdevLou [ 0ð Þ
0 Dd � DdevLou � 0ð Þ

�
where

Dd ¼ sAði�1Þ � sAðiÞ
DdevLou ¼ devLouðiþ 1Þ � devLouðiÞ

ð19:7Þ

The melodic accent curve moves higher for more important melodic notes [105],
whereas the metrical hierarchy curves moves higher for notes that are more
important in the metrical hierarchy [68]. The key change curve moves higher the
further away the melody moves from the estimated key [66] of the previous N bars,
the default being two bars. These three curves are normalised, and then weighted
based on an agent’s preferences, and added to generate the accentuation curve sA(i).
Equation (19.7) will evaluate more highly if the loudness deviation curve of a
performance follows the same direction as this accentuation curve, encouraging the
emphasis of the parts of the performance based on elements of their melodic,
metrical and harmonic properties.

Figure 19.5 shows examples of accentuation and loudness curves (as well as the
LBDM and tempo deviation curves) for a single agent, given a sequence of ten
notes. This sort of analysis is done once per agent.

Fig. 19.5 Example characteristics of a single agent
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In Fig. 19.5, both x-axes refer to note index, where 1 is the first note in the score,
2 the second note, etc. The left side of Fig. 19.5, shows part of an example LBDM
curve (circled points) used to define grouping boundaries, and an accentuation
curve (crossed points) used for expressive loudness. The y-axis is the normalised
strengths of the curves. It is not the absolute strength that is important but the
relative values. The right side of Fig. 19.5 shows the resulting deviation curves for
tempo (circles) and loudness (crosses) after a number of iterations. A deviation
greater than 1 implies an increase in tempo, or an increase in loudness, a deviation
less than 1 implies tempo decrease or loudness decrease.

Equations (19.8) and (19.9) implement the preference rule 4. The rule is only
applied to accentuated notes {a1, …, am}, which are defined as those notes i whose
value on the accentuation curve sA(i) is a local maximum on the sA curve. This
definition chooses notes whose metric, melodic or harmonic properties make them
more significant than the notes surrounding them. The values of Eqs. (19.8) and
(19.9) are higher if an accentuated note is, respectively: (i) reduced in tempo more
than its neighbour notes, or (ii) played with a higher loudness.

E4Tem ¼
Xam
j¼a1

1 devTemðjÞ\devTemðj� 1Þð and
devTemðjÞ\devTemðjþ 1ÞÞ

0 ðotherwiseÞ

8<
: ð19:8Þ

E4Lou ¼
Xam
j¼a1

1 devLouðjÞ\devLouðj� 1Þð and
devLouðjÞ\devLouðjþ 1ÞÞ

0 ðotherwiseÞ

8<
: ð19:9Þ

Equation (19.10) implements the preference rule 5, checking that notes at the
end of a group have a higher or lower tempo deviation, compared to the notes on
either side.

E5 ¼
Xn
1

1 devTemðsendÞ � devTemðsend � 1Þð Þ
� devTemðsendÞ � devTemðsend þ 1Þð Þ[ 0

0 ðotherwiseÞ

0
@ : ð19:10Þ

With the above Eqs. (19.1)–(19.10), a user can set weights to control how an
agent represents or, speaking metaphorically, “sees” the score, and also, how the
agent prefers such a “seen” score to be performed.

19.4.2.4 Agent Cycle
Agents are initialised with evaluation weights for their evaluation functions, and
with a common monophonic score in MIDI form, which they will perform. Agents
are also initialised with an initial performance. This will be a set of expressive
deviations from the score in loudness and tempo, which are implemented when the
agent plays to another agent. These initial deviations are usually set randomly but
they can be set by the user should one wish to do so. Default minimum and
maximum values used are for tempo 55 and 130% of nominal, and for loudness 75
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and 125%. These values were established intuitively after experimenting with
different ranges. Agents have a learning rate between 0 and 100%. If an agent with a
learning rate L% hears a performance P, which it prefers to its own, then it will
move its own performance deviations linearly towards P by L%. An agent with a
learning rate of 100% will allow another agent’s performance to influence 100% of
its own performance. That is, the agent will replace its performance entirely with
any it hears, which it prefers to its own. An agent with a learning rate of 0% will
ignore all other performances it hears.

The core algorithm of the agents’ interaction cycle is given below. Note that the
algorithm shown here is sequential, but in reality, the agents are asynchronous, in
the sense that all agents are operating simultaneously in separate threads.

Start of Cycle 1

An agent is selected to perform, say agent A1

Agent A1 performs

All agents Aj apart from A1 evaluate A1 Ej1

If an agent Aj Ej1 is greater than its evaluation of its own performance,

then Aj moves its own expressive performance deviations closer to 

A1 an amount defined by the learning rate.

An agent is selected to perform, say agent A2

Agent A2 performs

All agents Aj apart from A2 evaluate A2 Ej2

If an agent Aj Ej2 is greater than its evaluation of its own performance,

then Aj moves its own expressive performance deviations closer to 

A2

Continue this process until all agents have performed, then Cycle 1 is complete

End of Cycle 1

Repeat cycles until some user-defined stopping condition is met.

19.4.3 User-Generated Performances of IMAP

As was discussed earlier, for performance creativity, a balance needs to exist
between automation and creative flexibility. In IMAP there are a number of
weights, which need to be defined for an agent’s evaluation function. Table 19.4
lists all the weights that need to be set in IMAP. Although a set of nine weights may
seem too large for practical performance creativity, in reality many of these weights
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can be fitted to default values and the remaining weights would still provide a wide
scope for creativity. For example, users could simply adjust the top two weights of
the equation hierarchy (wTem and wLou) for Eq. (19.1), fixing all other weights to
their default values. This two weight set could be simply extended by also allowing
the user to adjust the weights w4Tem and w4Lou—in Eqs. (19.2) and (19.3)—to
change the amount of tempo and loudness emphasis, respectively, of accentuated
notes. It is worth noting that the parameters in the Analytics Level can also be made
available to users, for example, the user could set weights that would indirectly
change the shape of the accentuation curve shown in Fig. 19.5.

Another key element of IMAP is how agents can have different “views” on what
makes a good expressive performance. This provides an ability, which will be
demonstrated later in the paper, for generating and controlling diversity in the
results of the population learning. For example, a population whose initial prefer-
ence weights are all very close will tend to learn a group of far more similar
performances than a population whose initial weight values differ widely.

The method for generating expressive performances with IMAP will now be
described. Before the first cycle of IMAP, a population size is defined; for example,
3, 10 or 50 agents. Larger populations may have the advantage of greater statistical
stability and a larger choice of performances. Then, a learning rate needs to be set.
In this paper, a global learning rate is used: all agents have the same learning rate, a
default of 10%. A low learning rate was desired so as to allow agents to build up a
good combination of performances through imitation. A learning rate closer to
100% would turn the system into more of a performance-swapping population
rather than one for performance combining. However, too low a rate would slow
convergence.

Concerning the question of how many cycles to run the system, one approach
would be to define a fixed number of cycles. Another approach would be to define a
more sophisticated stopping condition. A common form of stopping condition is a
convergence criterion; for example, stopping when agents are no longer updating

Table 19.4 List of evaluation weights for IMAP. These are the weights that can be set in
Eqs. (19.1), (19.2) and (19.3) by the user to influence the final expressive performance. The nine
weights define the effects of the five rules in the Rules Level

Weight name (“Preference for…”) Weight label Applied to

All rules tempo-based effects wTem Evaluation function (1)

All rules loudness-based effects wTem Evaluation function (1)

Rule (I) tempo effects w1Tem Tempo evaluation function (2)

Rule (II) tempo effects w2Tem Tempo evaluation function (2)

Rule (IV) tempo effects w4Tem Tempo evaluation function (2)

Rule (V) tempo effects w5Tem Tempo evaluation function (3)

Rule (I) loudness effects w1Lou Loudness evaluation function (3)

Rule (III) loudness effects w3Lou Loudness evaluation function (3)

Rule (IV) loudness effects w4Lou Loudness evaluation function (3)
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their performance deviations during the interactions. This normally occurs when no
agent is hearing a performance better than its own performance. Another option is
to base convergence on the average performance; that is, the average deviations
across the whole of the population. Once this ceases to change by a significant
amount per cycle—that amount defined by the user—convergence may be con-
sidered to have been achieved.

Three experiments with IMAP will be detailed below, which test the system in
terms of capability of expression generation, generation of diversity and controlling
the direction of the diversity.

19.4.4 Experiments and Evaluation

The melody of the piece Étude No. 3, Op. 10 by Frédéric Chopin (see bottom of
Fig. 19.6 was used in the experiments that follow. Although IMAP is able to
process whole pieces of (monophonic) music, for the sake of clarity only the first
five bars of Chopin’s piece were considered below.

19.4.4.1 Experiment 1: Can Agents Generate Performances
Expressing Their “preference” Weights?

The purpose of this experiment is to demonstrate that the agents generate perfor-
mances that express their “preference” weights. In order to show this clearly, two
weight sets were used: set (A) wTem = 1, w1Tem = 1, all other weights = 0; and set
(B) wLou = 1, w3Lou = 1, all other weights = 0. The first set of weights will only
lead to preference rule 1 being applied, and only apply it to tempo, The second set
of weights will lead to preference rule 3 being applied, and only apply it to
loudness. If agents express the music structure through their weights, then a
multi-agent system where agents have only the weight set A should generate

Fig. 19.6 Example of a transferred LBDM curve. The horizontal axis is time. In the lower graph,
the LBDM values are plotted for each note pair/interval. The group boundaries and turning points
are shown on the horizontal axis
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performances whose tempo deviations clearly express the grouping structure
(LBDM) of the music as defined by the preference rule 1. Similarly, if the agents
are given the weight set B, then the generated loudness deviations should express
the accentuation curve as implemented by the preference rule 3.

Two groups of experiments were run: 5 with weight set A and 5 with weight set
B. A system of 15 agents was used, and 20 iterations were used for each run. For
each run in the experiment with weight set A, the initial agent performances were
randomised. For comparison purposes, exactly the same set of initial performances
was used for the parallel run with weight set B; hence the 10 runs only use 5 sets of
15 random initial performances. In order to enable meaningful results for the sce-
nario with the weight set A, a new curve is defined: the transferred LBDM curve.
The transferred LBDM curve is our own adaptation of the LBDM curve into a form
more easily comparable with the grouping expression. The transferred curve will
have maxima at the boundary points on the LBDM curve, and minima at the turning
points within each note group. The transferred LBDM is concave between
boundary points. An example is shown in Fig. 19.6. The preference rule 1 can then
be interpreted as saying that tempo curves should move in the opposite direction to
the transferred LBDM curve, or equivalently that the reciprocal of the tempo curve
should move in the same direction as the transferred LBDM curve.

In this experiment, the average performance was used to represent the perfor-
mances evolved by the system: the tempo and loudness values are expressed as
deviations from the average performance across all agents. The results of scenarios
with weight sets A and B can be seen in Table 19.5, which shows the average
correlations Corr(x, y) across the five runs for

(a) x = the transferred LBDM curve tLBDM
(b) x = the accentuation curve Acc
(c) y = the reciprocal of performance tempo rTem

Table 19.5 Results from Experiment 1 showing correlations for average performance across a
population of agents. An increase in correlation between tempo deviations and the Trans-
ferred LDBM shows that the tempo deviations are expressing the grouping structure of the music.
An increase in correlation between loudness and the accentuation curve shows that the loudness is
expressing elements of the metric, melodic and harmonic structure of the music, as defined in the
Accentuation Curve

Before iterations After iterations Increase

Weight Set A (Tem)

Corr(tLBDM, rTem) 0.49 0.61 0.11

Corr(tLBDM, Lou) 0.52 0.52 0

Corr(Acc, Lou) 0.5 0.52 0.02

Weight Set B (Lou)

Corr(tLBDM, rTem) 0.49 0.49 0

Corr(tLBDM, Lou) 0.52 0.48 −0.04

Corr(Acc, Loud) 0.5 0.7 0.2
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(d) y = the performance loudness Lou.

It can be seen that for the weight set A (a weight set that should cause grouping
structure to be expressed, and use tempo deviations to express it) there is an
increase in correlation between the transferred LBDM and the reciprocal perfor-
mance tempo: Corr(tLBDM, rTem) = 0.11. For the weight set B (a weight set that
should cause the accentuation curve to be expressed by loudness deviations), the
only increase in correlation is between the accentuation curve and the loudness:
Corr(Acc, Lou) = 0.2. These results show that the average agent performances are
expressing the preference weights in the system. Figure 19.7 shows expressive
deviations evolved by two agents for Chopin’s melody.

Fig. 19.7 Expressive deviations of two agents from Experiment 1 after 20 iterations. These are
plotted above the first 5 bars of the melody of Chopin’s Étude No. 3, Op. 10. The agent in the top
graph (circles) has weight set A (tempo expression only), hence only tempo expression is plotted.
The agent in the bottom graph (crosses) has weight set B (loudness evaluation only), hence only
loudness expression is plotted
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19.4.4.2 Experiment 2: Can One Control the Extent
of the Performances’ Diversity?

The purpose of this experiment was to demonstrate that IMAP can generate a
diversity of performances, and that the user can control that diversity. In the
experiment a group of 15 agents was used, each with randomly initialised perfor-
mance deviations. A set of default weights W for Table 19.4 was defined. The
experiment was set with two conditions. In Condition (i), agents’ weights were
assigned that could vary by no more than 10% from the corresponding default
weight in set W. In Condition (ii) this variation was raised to 60%. So in Condition
(ii) the preference weights varied much more widely across agents than in Con-
dition (i). In each condition, 30 iterations were done and the coefficient of variation
was calculated for deviations across the population, i.e. the ratio of standard
deviation to mean for both tempo and loudness deviations. This experiment was
repeated 10 times, each time with different initial random performance deviations.
After 30 iterations in Condition (i) the resulting average coefficient of variation for
Tempo and for Loudness deviations were 0.2%. In Condition (ii), with the more
diverse preference weights, the value was 1.9%. This supports the ability of IMAP
to generate a diversity of performances, and to control that diversity using the
spread of preference weights.

19.4.4.3 Experiment 3: Controlling the Direction
of the Performances’ Diversity

The purpose of this experiment was to demonstrate that if agent preferences are
biased a certain way in a subset of the population then the resulting performances
will become affected by that preference. This demonstrated that although a diversity
of performances can be produced as shown by Experiment 2, changing the distri-
bution of weights enables one to change the distribution of outcomes in a coherent
way. In order to show this, the same two weight sets as in Experiment 1 were used:
(A) wTem = 1, w1Tem = 1, all other weights = 0; and (B) wLou = 1, w3Lou = 1, all
other weights = 0. Thus, the weight set A only affects timing and the weight set B
only affects loudness. The two weight sets do not overlap in their effect. In this
experiment the population of 15 agents from Experiment 1 had another 5 agents
added to it. The 15 agents (labelled group G2) are assigned weight set B and the 5
additional agents (labelled group G1) are assigned weight set A. The objective is to
demonstrate that the addition of G1 to G2 leads to G1 influencing the performances
of G2, in spite of the fact that G1 and G2 have mutually exclusive weight sets.

Before running the experiment, it is necessary to benchmark the level of random
relative increase in evaluation that can be generated in the system. Specifically,
given an agent system of 15 agents with preference weights that only affect
loudness, how much would we expect their expressive tempo evaluation to increase
relative to the increase relative to the increase in their expressive loudness evalu-
ation, solely due to random fluctuations in tempo during iterations? These random
fluctuations come from the randomised initial performances influencing each other.
This was measured by taking a system of 15 agents with loudness-only weights (i.e.
weight set B) and doing 5 runs of 25 cycles (The authors ran a number of versions
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of these experiments and it was clear that as little as 5 runs of 25 cycles were
sufficient to generate meaningful random fluctuations in this context.). The results
are shown in Table 19.6. The column and row headings in this table are defined as
follows: “Lou” refers to the expressive loudness evaluation by Eq. (19.3), “Tem”
refers to the expressive tempo evaluation by Eq. (19.2), “Before” is the average
evaluation before iterations, “After” is the average evaluation after 25 iterations,
“Change” is the change in evaluation before and after 20 iterations, and “Tem-
poRatio” is the change in tempo evaluation divided by the change in loudness
evaluation. Essentially, this ratio is a measure of the increase of tempo expres-
siveness relative to the increase of loudness expressiveness, as shown in
Eq. (19.11).

Terpo Ratio ðPÞ ¼ Increase in ETemðPÞ
Increase in ELouðPÞ ð19:11Þ

The average value of TempoRatio across the five runs is equal to −0.013. This
will be used as a measure of relative tempo evaluation increase due to random
fluctuations in performance, since during these five runs there was no evaluation
function pressure to increase tempo expressiveness. This particular TempoRatio =
−0.013 is referred to as the baseline value of TempoRatio.
Next, another set of runs were done with 5 agents added to the system of 15

agents described above. As has been mentioned, the 5 agents (group G1) were
assigned tempo-only weight set A, as opposed to the 15 agents (group G2) who had
loudness-only weight set B. The results after 25 iterations are shown in Table 19.4.
The column heading “AP2” is the average performance deviation of agents in G2.
For instance, G1(AP2) = 0.255 is G1’s average evaluation of G2’s performances in
Run 2 after 25 iterations.

The key measurements in Table 19.7 are G1’s evaluations of G2’s performances
AP2, this will be written as G1(AP2). Note that all values in “Increase G1(AP2)”

Table 19.6 Agents are given weight set B, the loudness-only weight set from Experiment 1.
After 25 iterations, the increase in loudness evaluation (Eq. 19.3) and tempo evaluation (Eq. 19.2)
were measured. The ratio of tempo evaluation increase to loudness evaluation increase was
calculated

Weight set B Run1 Run2 Run3 Run4 Run5

Lou Tem Lou Tem Lou Tem Lou Tem Lou Tem

b 0.19 0.19 0.213 0.213 0.223 0.223 0.21 0.213 0.301 0.301

a 0.315 0.19 0.325 0.19 0.306 0.248 0.35 0.208 0.374 0.292

Change 0.125 0 0.112 −0.023 0.083 0.025 0.137 −0.005 0.073 −0.009

Ratio of Tem to
Lou change

0 −0.205 0.301 −0.037 −0.123
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row are smaller than all the values in the “Increase G2(AP2)” row. These values are
shown before and after iterations in rows 1 and 2 of Table 19.7, respectively. G1
(AP2) is calculated using Eq. (19.12), but this equation can be simplified into
Eq. (19.13) because wLouG1 is equal to 0 and wTemG1 is equal to 1 (weight set A).

G1ðAP2Þ ¼ EG1ðAP2Þ ¼ wTemG1 � ETemGlðAP2Þ
þwLouG1 � ELouG1ðAP2Þ

ð19:12Þ

G1ðAP2Þ ¼ ETemGlðAP2Þ ð19:13Þ

Thus, because G1’s evaluation functions measure only tempo expressivity, G1
(AP2) provides a measure of the expressive tempo evaluation of G2’s performance.
Thus, the difference between G1(AP2) before and after the iterations is a measure of
how much G2’s expressive tempo evaluation has increased, as evaluated by G1.
Similarly, the measure of G2’s expressive loudness evaluation is found by calcu-
lating G2’s evaluation of its own performance, G2(AP2), as shown in Eq. (19.14),
which can be simplified into Eq. (19.15) because wTemG2 is equal to 0 and wLouG1 is
equal to 1 (weight set B).

G2ðAP2Þ ¼ E2G2ðAP2Þ ¼ wTemG2 � ETemG2ðAP2Þ
þwLouG2 � ELouG2ðAP2Þ

ð19:14Þ

G2ðAP2Þ ¼ ELouG2ðAP2Þ ð19:15Þ

The increase in G2(AP2) before and after iterations gives the increase in G2’s
loudness expressivity as a result of iterations. The ratio of these two values is shown
in Eq. (19.16) and is the increase of expressiveness of G2’s tempo deviations

Table 19.7 Results for a 20 agents system made up of 15 agents with weight set B, and 5 agents
with weight set A. After 25 iterations, the increase in loudness evaluation (Eq. 19.3) and tempo
evaluation (Eq. 19.2) for the average performance of G2 was measured for both groups. The ratio
of tempo evaluation increase to loudness evaluation increase was then calculated

Run1 Run2 Run3 Run4 Run5

AP2 AP2 AP2 AP2 AP2

G1 b 0.245 0.273 0.239 0.269 0.255

a 0.252 0.255 0.274 0.276 0.291

G2 b 0.21 0.236 0.284 0.24 0.234

a 0.335 0.307 0.349 0.322 0.305

Increase G1 0.007 −0.018 0.035 0.007 0.036

Increase G2 0.125 0.071 0.065 0.082 0.071

Increase G1/
Increase G2

0.056 −0.253 0.538 0.085 0.507
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relative to the increase in expressiveness of G2’s loudness deviations. This could be
interpreted as a form of “cross-group” TempoRatio (CGTR) of G2’s performance
AP2. However, Eq. (19.16) is not G1’s actual TempoRatio as defined in
Eq. (19.11), otherwise the numerator in Eq. (19.16) would have to be Increase in
ETemG2(AP2). A TempoRatio based on this numerator would always be equal to 0,
since G2’s evaluation function ETemG2 is defined by weight set B, which has all
weights in ETemG2 set equal to 0. Therefore, the only meaningful tempo ratio has
G1’s ETemG1 in the numerator. This is not just meaningful, but also relevant: the
purpose of this experiment was to investigate how G1’s view of expressive per-
formance has influenced G2. Thus, when looking at the influence of G1’s

Table 19.8 Summary of the
primary term of reference

CSEMP Performance creativity

Director Musices 8

Hierarchical Parabola Model 3

Composer Pulse 5

Bach Fugue 3

Rubato 8

Trumpet Synthesis 3

MIS 3

ANN Piano 3

Music Plus One 4

SaxEx 8

CARO 7

Emotional Flute 6

Kagurame 3

Jazz Guitar 3

Ha-Hi-Hun 8

PLCG 3

Phrase-decomposition/PLCG 3

DISTALL 3

Pop-E 8

ESP Piano 3

KCCA Piano 3

Drumming 3

Genetic Programming 6

Sequential Covering GAs 6

Generative Performance GAs 8

Ossia 10

Music Emotionality 10

MASC 10

IMAP 10

User-curated Piano 10
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evaluation function on G2, the function to use is G1’s evaluation function. Hence
the use of the cross-group TempoRatio, or CGTR. This is calculated in the last row
of Table 19.4. The average value of CGTR for G2’s performance is equal to 0.219.

Increase in G1ðAP2Þ
Increase in G2ðAP2Þ

¼ Increase in ETemG1ðAP2Þ
Increase in ELouG2ðAP2Þ ¼ CGTRðAP2Þ

ð19:16Þ

It would be tempting to say that the average CGTR = 0.219 supports the
hypothesis that G1’s tempo weights have influenced G2’s tempo expression, just
because it is a positive value. However, on its own, this positive average CGTR
may just represent the result of random fluctuations in G2’s tempo deviations
caused during the iterations. But recall that it has been shown in a previous set of 5
runs that the baseline value TempoRatio due to random fluctuations in a
dynamics-only agent set was of the order of −0.013. By comparing G2’s CGTR of
0.219 to the baseline value TempoRatio of −0.013, and considering that G1 and G2
have mutually exclusive weight sets, one can see that the expressiveness of G2’s
tempo deviations relative to the expressiveness of G2’s loudness deviations is
significantly larger than could likely be explained by random fluctuations. This
supports the hypothesis that G1 has significantly influenced the increase in G2’s
tempo expressivity relative to its loudness expressivity. This in turn supports the
idea that if agent preferences are biased a certain way in a subset of the population,
then the whole system’s performances will become affected by that preference.

19.4.5 IMAP Summary

IMAP demonstrates the approach of an imitative multi-agent system approach to
generate expressive performances of music, based on agents’ individual parame-
terized musical rules. Aside from investigating the usefulness of such an application
of the imitative multi-agent paradigm, there was also a desire to investigate the
inherent feature of diversity and control of diversity in this methodology: a desir-
able feature for a creative application, such as synthesised musical performance. In
order to aid this control of diversity, parameterized rules were utilised based on
previous expressive performance research. These were implemented in the agents
using previously developed musical analysis algorithms. When experiments were
run, it was found that agents were expressing their preferences through their music
performances, and that diversity could be generated and controlled.

In addition to the possibility of using IMAP in practical applications, there are
also potential applications of IMAP in an area that multi-agent systems are fre-
quently used: modelling for sociological study, specifically in the sociological study
of music performance [22]. However, the focus of this system is on the practical
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application of imitative multi-agent systems to generate expressive performance,
rather than to investigate social modelling.

A priority piece of future work for IMAP would be to conduct formal listening
tests to measure human judgments of automatically generated performances. Only
then would it be possible to evaluate whether or not IMAP would indeed be more
practical and more beneficial for music-making than simply allowing the user to
control parameters directly. Another area of work would be listening experiments
on how adjusting parameters such as the pitch and inter-onset intervals weights in
the LBDM would affect performances, and how other variables such as the
number-of-bars horizon in the key change part of the accentuation curve impacts
performances.

The effectiveness of IMAP is to a significant degree decided by the effectiveness
of the Analysis Level. It is acknowledged that the algorithms used are not abso-
lutely perfect; for example, LBDM is known to only be a partial solution to the
detection of local boundaries. Different analysis algorithms should be tested. The
same could be said of the Rule Level: other sets of rules could be experimented
with. In both the case of the Rule Level and the Analysis Level such work could
include the investigation of explicitly polyphonic analysis functions and rules.
Furthermore, despite the initial experience and thoughts regarding convergence
criteria for the system, such criteria are by no means obvious in a creative appli-
cation; so further work should be done at this front.

This advanced learning rate functionality would be a fruitful area for further
investigation. For example, agents with learning rates of 0% have the power to
influence but not be influenced by the system. Another area of investigation is
interaction control. The system currently assumes that all agents can always interact
with all agents. In multi-agent systems, there are often “popularity” or “connection”
measures [61, 62, 121] that define which agents interact with which. The addition of
a social network, which could change conditionally over time, would be worth
investigating.

IMAP has the potential to be influenced by human performances, and this is
certainly an area worth investigating further. Suppose the system is set up with 50%
of agents supplied with performance deviations from a single performance M by a
human Performer A. The other 50% would have random performances. Depending
on preference weightings, the resulting performances would be influenced to a
degree by Performer A’s performance. Another approach would be to reverse
engineer evaluation function weights from Performer A’s performance, using a
parameter search optimization technique [119]. Performer A’s preference weights
would affect the performances more strongly than just using Performer A’s initial
performances. The preference function would not necessarily contain Performer A’s
real preference, and there would not be a one-to-one relationship between function
weights and a single performance. Nevertheless, such an approach would be worth
investigating as a tool for generating new expressive performances. In fact, one
could envision a “recipe book” of different agent preferences generated by devia-
tions from different professional performers. These agents could then be added to
IMAP in the proportions desired by the user. For example, “I would like a

576 A. Kirke and E. R. Miranda



performance repertoire of Bach’s Piano Partita No. 2 based 30% on Daniel
Barenboim’s performance, 50% on Glen Gould’s performance and 20% based on
the preference weights I explicitly specify”.

Another suggested future work for IMAP would be to study the effect of agent
communication noise on the convergence of the system. For instance, Kirke and
Miranda [63] have introduced a multi-agent system in which agents communicate
musical ideas and generate new ideas partially through errors in the communication.
Similarly, allowing agents in IMAP to make small errors in their performances
could be viewed as an imitative equivalent of a GA mutation operator. This would
potentially lead to agents generating performances that more closely match their
preferences.

Also, one should consider extending IMAP to expressive performance indicators
other than tempo and loudness. However, the limitations of MIDI make this difficult
with our current framework. Ideally, this extension can be addressed once it is
possible to deal directly with audio rather than MIDI.

This CSEMP has significant performance creativity, one reason being that the
pulse sets generated may have no similarity to the hierarchical constraints of human
pulse sets. They are generated mathematically and abstractly from agent imitation
performances. So entirely novel pulse set types can be produced by agents that a
human would never generate. Another element that contributes to creativity is that
although a global evaluation function approach was used, a diversity of perfor-
mances was found to be produced in the population of agents.

19.5 Concluding Remarks

Having completed the in-depth introduction to the CSEMP IMAP, the whole
chapter will now be summarised. Before reading this summary, another viewing of
Table 19.1 at the start of the chapter may be helpful to the reader. Expressive
Performance is a complex behaviour with many causative conditions—so it is no
surprise that in this chapter that almost two-thirds of the systems produced have
been learning CSEMPS, usually learning to map music features on to expressive
actions. Expressive performance actions most commonly included timing and
loudness adjustments, with some articulation, and the most common non-custom
method for analysis of music features was GTTM, followed by IR. Due to its
simplicity in modelling performance, the most common instrument simulated was
piano—but interestingly this was followed closely by saxophone—possibly
because of the popularity of the instrument in the Jazz genre. Despite, and probably
because, of its simplicity—MIDI is still the most popular representation.

It can be seen that only a subset of the systems has had any formal testing, and
for some of them designing formal tests is a challenge in itself. This is not that
unexpected—since testing a creative computer system is an unsolved problem.
Also, about half of the systems have only been tested on monophonic tunes.
Polyphony and Homophony introduce problems both in terms of synchronisation
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and in terms of music feature analysis. Further to music feature analysis, most of the
CSEMPs had an expressive representation up to one bar/phrase, and over half did
not look at the musical hierarchy. However, avoiding musical hierarchy analysis
can have the advantage of increasing automation.

The focus of the chapter has been performance creativity. We have seen that
most CSEMPs are designed for simulation of human expressive performances,
general or specific—a valuable research goal, and one which has possibly been
influenced by the philosophy of human simulation in machine intelligence research.
The results for the primary term of reference—performance creativity—are sum-
marised in Table 19.8. The numerical measure is an attempt to quantify observa-
tions, scaled from 1 to 10. The greater the perceived potential of a system to enable
the creative generation of novel performances, the higher the number in column 2.
Obviously, such measures contain some degree of subjectivity but should be a
useful indicator for anyone wanting an overview of the field, based on creativity.

Although there have been significant achievements in the field of simulating
human musical performance in the last 40 years, there are many opportunities
ahead for future improvements. One aim of the RenCon competitions is for a
computer to win the Chopin competition by 2050. Such an aim begs some philo-
sophical and historical questions, but nonetheless captures the level of progress
being made in CSEMP work. It also raises the issue that famous winners of the
competition such as Martha Argerich [100] have been renowned for their creative
interpretations of Chopin, interpretations that push the boundaries. So, for a
CSEMP to win the Chopin competition, performance creativity will need to be at its
heart. Perhaps investigations in performance creativity could benefit from a wider
understanding of the relationship between performance and composition elements
in computer music. Creativity research is more advanced in computer composition
work.

It could be that whole new vistas of creativity will open up in CSEMP research
as a result of this focus. The question is open as to what forms of non-human
expression can be developed, with machines providing whole new vistas of the
meaning of the phrase “expressive performance” for human players.
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20Imitative Computer-AidedMusical
OrchestrationwithBiologically
InspiredAlgorithms

Marcelo Caetano and Carmine E.Cella

20.1 Introduction

Musical orchestration is an empirical art form based on tradition and heritage
whose lack of formalism hinders the development of assisstive computational tools.
Computer-aided musical orchestration (CAMO) systems aim to assist the composer
in several steps of the orchestration procedure. Particularly, imitativeCAMO focuses
on instrumentation by aiding the composer in creating timbral mixtures as instru-
ment combinations. Imitative CAMO allows composers to specify a reference sound
and replicate it with a predetermined orchestra [51]. Therefore, the aim of imita-
tive CAMO is to find a combination of musical instrument sounds that perceptually
approximates a reference sound when played together. However, the complexity of
timbre perception and the combinatorial explosion of all possible musical instrument
sound combinations make imitative CAMO a very challenging problem.

M. Caetano (B)
Schulich School of Music & CIRMMT, McGill University, Montreal, Canada
e-mail: marcelo.caetano@mcgill.ca

C. E. Cella
University of California, Berkeley, Berkeley, CA, USA

© Springer Nature Switzerland AG 2021
E. R. Miranda (ed.), Handbook of Artificial Intelligence for Music,
https://doi.org/10.1007/978-3-030-72116-9_20

585

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72116-9_20&domain=pdf
mailto:marcelo.caetano@mcgill.ca
https://doi.org/10.1007/978-3-030-72116-9_20


586 M. Caetano and C. E. Cella

This chapter covers the theoretical background, the basic concepts, and algorithms
involved in imitative CAMO. Specifically, this chapter describes the computational
formalization of imitative CAMO and the motivation to use algorithms inspired by
biological systems to tackle the complexity of timbral mixtures and the subjective
nature of music composition. First, we present a brief review of timbre perception to
motivate the use of the computer in musical orchestration. Then, we review several
approaches to CAMO found in the literature. Next, we review CAMO systems that
rely on the biologically inspired algorithms designated as genetic algorithms (GA)
and artificial immune systems (AIS), which are used to search for orchestrations via
single-objective optimization (SOO) or multi-objective optimization (MOO). We
discuss several aspects related to the different biologically inspired algorithms and
optimization strategies focusing on the compositional perspective of orchestration.
Finally, we conclude with future perspectives of CAMO.

20.1.1 Musical Orchestration

Traditionally, orchestration manuals regard musical orchestration as the process of
writing music for the orchestra [65]. Orchestration has always been one of the most
difficult disciplines to explain and convey [51]. The gap between the symbols in the
score and their acoustic realization involves many steps that are difficult to quantify
and some of these steps are oftentimes unpredictable. More than any other compo-
nent of music composition, orchestration is an empirical activity essentially based
on tradition and heritage. Even contemporary manuals of orchestration approach
orchestration as an art form rather than a systematic procedure that can be captured
by an algorithm. The lack of formalism in orchestration practice has been a major
hindrance to the development of assisstive computational tools.

Broadly speaking, orchestration is understood as “the art of blending instrument
timbres together” [63]. Initially, orchestration was simply the assignment of instru-
ments to pre-composed parts of the score, which was dictated largely by the avail-
ability of resources, such as what instruments and how many of each are available
in the orchestra [42, 47]. Later on, composers started regarding orchestration as an
integral part of the compositional process whereby the musical ideas themselves are
expressed [47, 69]. Compositional experimentation in orchestration arises from the
increasing tendency to specify instrument combinations to achieve desired effects,
resulting in the contemporary use of timbralmixtures [55, 69]. Orchestration remains
an empirical activity largely due to the difficulty to formalize the required knowl-
edge [47, 51, 63].

In the past 20 years or so, composers felt the need for a more systematic approach
to orchestration to gainmore control over timbralmixtures.Research inmusicwriting
pushed composers very far in imagining possible timbres resulting from extended
instrumental techniques. Timbral mixtures have become more and more complex,
and predicting their sound quality while writing the score requires a great deal of
experience and experimentation. In such a context, a tool to help simulate the result of
timbral mixtures became a necessity.While other parameters of musical writing such
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as harmony and rhythm have been supported by computer-assisted techniques since
the beginning of computer music [8], only recently did orchestration benefit from
such tools because of its high complexity, requiring knowledge and understanding
of both mathematical formalization and musical writing.

The concept of timbre lies at the core ofmusical orchestration [6, 7, 47, 51, 63, 65]
because music and, consequently, musical instruments are strongly associated with
timbre [53, 65, 73]. Musical orchestration uses the principle of instrumental com-
binations to obtain the desired effect. The orchestrator must have thorough knowl-
edge of the individual instruments allied with a mental conception of their timbres.
Additionally, the effects resulting from different instrumental combinations must be
learned, such as balance of tone, mixed tone colors, and clarity in texture [65]. In
this chapter, we will consider the specific example of imitative orchestration, where
the aim is to find a combination of musical instrument sounds that, when played
together, blends into a new timbre that perceptually approximates a given reference
timbre. Imitative orchestration requires a great deal of knowledge about timbre, from
the timbre of isolated musical instruments to timbral mixtures. Unfortunately, tim-
bre is a complex perceptual phenomenon that is not well understood enough to this
day. In fact, nowadays timbre is considered the last frontier of auditory science [71].
Therefore, this chapter will provide a brief overview of timbre research to illustrate
the complexity of (imitative) musical orchestration.

20.1.2 Musical Timbre

Historically, timbre was viewed as the perceptual quality of sounds that allows listen-
ers to tell the difference between different musical instruments and ultimately recog-
nize the instrument (or, more generally, the sound source). However, the term timbre
can be misleading [55] because it has different meanings when it is used in psycho-
acoustics, music, audio processing, and other disciplines. Siedenburg et al. [73]
recently wrote that “Roughly defined, timbre is thought of as any property other than
pitch, duration, and loudness that allows two sounds to be distinguished.” Indeed,
the complexity that the term timbre encompasses is mainly because [55] “[timbre]
covers many parameters of perception that are not accounted for by pitch, loudness,
spatial position, duration, and various environmental characteristics such as room
reverberation.” Similar to pitch and loudness, timbre is a perceptual attribute [72],
so timbre research commonly attempts to characterize quantitatively the ways in
which sounds are perceived to differ [55].

20.1.2.1 The Helmholtz Theory of Timbre
In the nineteenth century, Hermann von Helmholtz published his seminal work in
hearing science andmusical acoustics [43] in which he used Fourier analysis to study
musical instrument sounds. Helmholtz concluded that Fourier’s theorem closely
described both the acoustics of sound production and the physiological underpin-
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nings of sound perception [73]. Regarding timbre, Helmholtz stated that [43] “the
quality of the musical portion of a compound tone depends solely on the number
and relative strength of its partial simple tones, and in no respect on their difference
of phase.” Thus, Helmholtz posited that the spectral shape is the acoustic feature
that captures the timbre of the sound. However, his conclusions apply mainly to
the steady state portion of musical instrument sounds because he assumed that the
“musical tones” are completely stationary, neglecting the attack and decay portions
ofmusical instrument sounds, as well as any temporal variations occurring during the
course of the sound such as those found in glissando, sforzando, and vibrato playing
techniques. Later studies [52, 67] revealed the importance of temporal variations
such as the attack time and spectral fluctuations in the recognition of these musical
instruments. The sound quality captured by the spectral shape alone became known
as sound color [74].

20.1.2.2 Timbre Spaces
Some of the most successful attempts to study timbre perception quantitatively
have resulted frommultidimensional scaling (MDS) of dissimilarity ratings between
pairs of musical instrument sounds [40, 56]. MDS generates a spatial configuration
with points representing the musical instruments where the distances between the
points reflect the dissimilarity ratings. This representation, called a timbre space (see
Fig. 20.1), places similar timbres closer together and dissimilar timbres farther apart.
Themusical instrument sounds used inMDS studies are equalized in pitch, loudness,
and duration to ensure that the listeners focus on differences due to other perceptual
attributes. Similarly, the sounds are presented over loudspeakers or headphones to
remove differences due to spatial position. MDS timbre spaces [11, 40, 50, 55, 56]
assume that the dimensions of timbre perception arising from the model are contin-
uous and common to all the sounds presented. Additionally, there is the underlying
assumption that all the listeners use the same perceptual dimensions to compare the
timbres [55].

20.1.2.3 Acoustic Correlates of Timbre Spaces
In MDS timbre studies, listeners typically use more than one dimension to rate the
dissimilarity between pairs of sounds. This means that the sounds cannot be arranged
along a single scale that reflects their pairwise dissimilarity (contrary to pitch, for
example, where the sounds can be ordered from low to high). The resulting MDS
timbre space commonly has two or three dimensions. Ultimately, the goal of MDS
timbre studies is to unveil the psychological dimensions of timbre perception and
associate them with the dimensions of the timbre space. Consequently, MDS timbre
studies usually propose explanations for the dimensions of the timbre space found.
Grey [40] qualitatively interpreted the three dimensions of his timbre space (see
Fig. 20.1) as (I) the distribution of spectral energy, (II) attack synchronicity of the
partials, and (III) spectral balance during the attack. Later, researchers started to
calculate acoustic descriptors from the sounds used in the MDS study and corre-



20 Imitative Computer-Aided Musical Orchestration … 589

Fig. 20.1 Grey’s [40] MDS timbre space. Each point represents a musical instrument sound, such
that similar timbres are close together and dissimilar timbres are farther apart. Reprinted with
permission from [40]. Copyright 1977, Acoustic Society of America

late these with the dimensions of the timbre space found [41, 49, 56], giving rise
to acoustic correlates of timbre spaces [55, 56] also known as descriptors of tim-
bre [14, 64]. From the plethora of descriptors proposed [64], the most ubiquitous
correlates derived from musical instrument sounds include spectral centroid, the
logarithm of the attack time, spectral flux, and spectral irregularity [55]. Nowadays,
these descriptors of timbre are widely used in many computational tasks involv-
ing timbre [14], notably CAMO. Figure20.2 illustrates the temporal variation of
two descriptors of timbre for a relatively stable trumpet note. See [14] for details
on the extraction of descriptors of timbre from audio and [64] for details on audio
content descriptors in general. The role descriptors of timbre play in contemporary
CAMO systems will be explored in more detail throughout this chapter. But first,
Sect. 20.1.2.4 summarizes conceptually the contemporary view of timbre.

20.1.2.4 The ContemporaryView of Timbre
Today, we understand timbre from two distinct viewpoints, namely a sensory quality
and a categorical contributor to sound source identification. Timbre as a multidi-
mensional sensory quality is associated with timbre spaces, illustrated in Fig. 20.1,
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Fig. 20.2 Temporal
variation of descriptors of
timbre. The figure shows the
temporal variation of the
spectral centroid and of the
spectral spread on top of the
waveform of a trumpet note
from which the descriptors
were extracted
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whose dimensions can be either continuous (e.g., brightness) or categorical (e.g., the
pinched offset of the harpsichord). From this viewpoint, two sounds can be declared
qualitatively dissimilar independently from any association with their sources. In
turn, timbre is also the primary perceptual vehicle for the recognition and tracking
over time of the identity of a sound source, and thus involves the absolute categoriza-
tion of a sound (into musical instruments, for example). This viewpoint sees timbre
as a collection of auditory sensory descriptors that contributes to the inference of
sound sources and events [72]. Further adding to its complex nature, timbre func-
tions on different scales of detail [72] such that timbral differences do not always
correspond to differences in sound sources [9] and timbres from sound-producing
objects of the same type but different make may differ substantially enough to affect
quality judgments [70]. The complexity of timbre perception plays a major role in
the difficulty to formalize musical orchestration and alsomotivates the use of CAMO
systems.

20.1.3 Musical Orchestration with the Aid of the Computer

The development of computational tools that aid the composer in exploring the vir-
tually infinite possibilities resulting from the combinations of musical instruments
gave rise to CAMO [18, 20–22, 44, 66, 69]. Imitative CAMO tools typically auto-
mate the search for instrument combinations that perceptually approximate a ref-
erence timbre commonly represented by a reference sound [51]. The combinations
found can be subsequently included in the score and later played by orchestras in
live performances [63]. However, most CAMO tools allow the composer to preview
the result of the combinations found using musical instrument sounds from pre-
recorded databases, which has been deemed an appropriate rendition of the timbre
of the instrument combinations [48].

Descriptors of timbre play a key role in several steps of recent CAMO sys-
tems [15, 26, 57], namely timbre description of isolated sounds, timbre descrip-
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tion of combinations of musical instrument sounds, and timbre similarity between
instrument combinations and the reference sound. The timbre of both the reference
sound and of the isolated musical instrument sounds is represented with a descriptor
vector comprising a subset of the traditional descriptors of timbre [14]. Each instru-
ment combination corresponds to a vector of descriptors that captures the timbral
result of playing the instruments together [47]. So, the descriptor vector of an instru-
ment combination is estimated from the descriptor vectors of the isolated sounds
used in the combination [22, 36]. Timbre similarity between the reference sound
and the instrument combination can be estimated as distances in timbre spaces [55],
which are calculated as weighted distances between the corresponding descriptor
vectors [18]. Smaller distances indicate a higher degree of timbral similarity [18]
with the reference, so the instrument combinations with the smallest distances are
returned as proposed orchestrations for a given reference sound.

The resulting instrument combinations found to orchestrate a given reference
sound will depend on which descriptors are included in the descriptor vector. For
example, spectral shape descriptors focus on approximating the distribution of spec-
tral energy of the reference sound. However, early CAMO systems did not use
descriptors of timbre at all, commonly resorting to the use of spectral informa-
tion. In Sect. 20.2, we will delve deeper into the historical development of CAMO
focusing mainly on the conceptual approach adopted to solve the problem of musical
orchestration.

20.2 State of the Art

This section presents the state of the art of CAMO grouped into “early approaches”,
“generative approaches”, and “machine learning”. Section20.2.1 presents the first
CAMO systems proposed in the literature that commonly used subtractive spectral
matching to find orchestrations. Next, Sect. 20.2.2 focuses on CAMO systems that
search for orchestrations with the aid of biologically inspired algorithms. Finally,
Sect. 20.2.3 covers CAMO systems based on machine learning.

20.2.1 Early Approaches

Early CAMO systems adopted a top-down approach [44, 66, 69] that consists of
spectral analysis and subtractive spectral matching. These works commonly keep a
database of spectral peaks from musical instruments that will be used to match the
reference spectrum. The algorithm iteratively subtracts the spectral peaks of the best
match from the reference spectrum aiming tominimize the residual spectral energy in
the least squares sense. The iterative procedure requires little computational power,
but the greedy algorithm restricts the exploration of the solution space, often resulting
in suboptimal solutions because it only fits the best match per iteration [19].
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Psenicka [66] describes SPORCH (SPectral ORCHestration) as “a program
designed to analyze a recorded sound and output a list of instruments, pitches, and
dynamic levels that, when played together, create a sonority whose timbre and qual-
ity approximate that of the analyzed sound.” SPORCH keeps a database of spectral
peaks of musical instrument sounds and uses subtractive spectral matching and least
squares to return one orchestration per run. Hummel [44] approximates the spectral
envelope of phonemes as a combination of the spectral envelopes of musical instru-
ment sounds. The method also uses a greedy iterative spectral subtraction procedure.
The spectral peaks are not considered when computing the similarity between ref-
erence and candidate sounds, disregarding pitch among other perceptual qualities.
Rose and Hetrik [69] use singular value decomposition (SVD) to perform spectral
decomposition and spectral matching. SVD decomposes the reference spectrum as a
weighted sumof the instruments present in the database, where theweights reflect the
match. Besides the drawbacks from the previous approaches, SVD can be computa-
tionally intensive even for relatively small databases. Additionally, SVD sometimes
returns combinations that are unplayable such as multiple simultaneous notes on the
same violin, requiring an additional procedure to specify constraints on the database
that reflect the physical constraints of musical instruments and of the orchestra.

20.2.2 Generative Approaches

The top-down approach neglects the exploration of timbral mixtures by relying on
spectral matching, which does not capture the multidimensional nature of timbre.
Carpentier et al. [18, 20–22, 76] adopted a bottom-up approach that relies on tim-
bre similarity and evolutionary computation to search for instrument combinations
that approximate the reference. The bottom-up approach represents a paradigm shift
toward generative CAMO [1, 15, 18, 21, 33], where the timbre of instrument com-
binations is compared with the timbre of the reference sound via descriptors of
timbre. Currently, there are two generative CAMO frameworks, the Orch* family of
CAMO systems based on GA [18, 22, 26, 33], and CAMO-AIS [1, 15], which uses
an artificial immune system (AIS). Orch* comprises three CAMO systems, namely
Orchidée [18, 20–22, 76], Orchids [32, 33], and Orchidea [26]. Both Orch* and
CAMO-AIS rely on algorithms inspired by biological systems that use a popula-
tion of individuals to search for a solution in the vast pool of possible instrument
combinations followingOrchidée, the first generative CAMO system to be proposed.

20.2.2.1 Orch*
Orchidée searches for combinations of musical instrument sounds as a constrained
combinatorial optimization problem. Carpentier et al. [18, 20–22, 76] formulate
CAMO as a binary allocation knapsack problem where the aim is to find a combina-
tion of musical instruments that maximizes the timbral similarity with the reference
constrained by the capacity of the orchestra (i.e., the database). Orchidée explores
the vast space of possible instrument combinations with a GA that optimizes a fitness
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function which encodes timbral similarity between the candidate instrument combi-
nations and the reference sound. Specifically, Orchidée uses the well-known multi-
objective genetic local search (MOGLS) optimization algorithm [45] to return multi-
ple instrument combinations in parallel that are nearly Pareto optimal. Section20.4.2
explains multi-objective optimization (MOO) in more detail, whereas Sect. 20.4
explores the use of biologically inspired algorithms.

Orchids was born out of a compositional drawback of Orchidée, namely static
orchestrations. The problem is that static orchestrations do not take into account
temporal variations in the reference sound. Static orchestrations can be understood
with the aid of Fig. 20.2, which shows the temporal variation of two descriptors of
timbre calculated at equal steps. Orchidée uses descriptor vectors with the average
value of the descriptors across time. A timbre-similarity measure based on temporal
averages is appropriate when orchestrating reference sounds that do not present
much temporal variation, such as stable musical notes sung or played on musical
instruments [15, 18]. However, reference sounds such as an elephant trumpeting
require taking the temporal variation of descriptors into consideration. Esling et
al. [32, 33] developed Orchids with the ability to perform dynamic orchestrations by
representing the temporal variation of descriptors of timbre. Orchids uses a multi-
objective time series matching algorithm [31] capable of coping with the temporal
and multidimensional nature of timbre. Orchids also uses MOO to return a set of
efficient solutions rather than a single best solution.

Orchidea [26], the third generation of the Orch* family, expands Orchidée and
Orchids toward macro-scale dynamic orchestration. Orchidea was conceived to be
a full-fledged framework that helps composers in all the steps of the compositional
process. Most of its design focuses on usability and on the integrability of the pro-
posed solutions into a compositional workflow. In particular, Orchidea handles the
temporal dimension of the reference sound differently from Orchids. While Orchids
focuses on the micro-temporal scale of low-level descriptors, Orchidea shifts atten-
tion to the macro-scale of musical onsets, providing a more accessible approach for
the users. Section20.5.4 provides further information about dynamic orchestrations
with Orchidea.

20.2.2.2 CAMO-AIS
CAMO-AIS addresses a different drawback of the Orch* family, namely diversity
of orchestrations. Diversity has been identified as an important property that can
provide the composer with multiple alternatives given the highly subjective nature
of musical orchestration combined with the complexity of timbre perception [19].
Theoretically, the use of MOO allows finding many orchestrations (see Sect. 20.4.2
for more details). However, in practice, the orchestrations returned by Orchidée,
for example, were all very similar to one another, commonly differing by only one
musical instrument sound [15]. Caetano et al. [1, 15] proposed to use an AIS called
opt-aiNet to search for combinations of musical instrument sounds that minimize
the distance to a reference sound encoded in a fitness function. CAMO-AIS relies on
single-objective optimization (SOO) and the multi-modal ability of opt-aiNet to find
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multiple solutions in parallel. Opt-aiNet was developed to maximize diversity in the
solution set, which results in alternative orchestrations for the same reference sounds
that are different among themselves. The companion webpage for CAMO-AIS [12]
has several sound examples that compare orchestrations returned by Orchidée and
CAMO-AIS for their diversity and perceptual similarity with the reference.

20.2.3 Machine Learning

Recently, Antoine et al. [4–6, 57] proposed the interactive CAMO system i-Berlioz
to address what is considered to be a hindrance to the compositional workflow of
Orchidée and Orchids, namely the multiple orchestrations returned by these CAMO
systems [51]. They argue that the process of listening to multiple orchestrations to
select one can be tedious, ineffective, and time-consuming, especially when the user
has a particular sound quality in mind [57]. Instead, they propose to narrow down the
orchestrations returned by i-Berlioz with constraints, making i-Berlioz conceptually
opposed to the principle of maximum diversity in CAMO-AIS. i-Berlioz [57] sug-
gests combinations of musical instruments to produce timbres specified by the user
bymeans of verbal descriptors. Currently, five semantic descriptors of timbre are sup-
ported, namely “breathiness”, “brightness”, “dullness”, “roughness”, and “warmth”.
A support vector machine classifier is trained to match instrument combinations
to the semantic descriptions. Additionally, i-Berlioz is also capable of performing
dynamic orchestrations [57].

20.3 Imitative Computer-AidedMusical Orchestration

The purpose of this section is to lay the groundwork for a formalization of imitative
CAMO focusing on generative systems that use biologically inspired algorithms to
search for orchestrations. The end of this section points out the technical difficulties
involved in finding orchestrations that perceptually approximate a given reference
sound. Then, Sect. 20.4 presents the solutions adopted to circumvent the difficulties
in this formalization of imitative CAMO from a conceptual standpoint.

There are several bio-inspired generative CAMO algorithms (Orchidée, Orchids,
Orchidea, and CAMO-AIS), each of which frames CAMO differently. Therefore, it
would be impractical and rather confusing to try to exhaustively describe all of them.
Instead, this section will focus on CAMO-AIS [1, 15], which closely follows the
framework proposed by Carpentier et al. [17–22]. Section20.4 will explore the main
differences between CAMO-AIS and Orchidée, especially the differences between
the optimizationmethod adopted by each and the consequence in terms of diversity of
orchestrations. It is out of the scope of this chapter to provide a detailed explanation
of either the bio-inspired algorithms (GA and AIS) or the optimization methods
(SOO and MOO). See the references in the respective sections for further details.
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Fig. 20.3 Overview of CAMO-AIS. The figure illustrates the different components of the frame-
work. Reprinted from [15] with permission from Elsevier

20.3.1 Overview

Figure20.3 shows an overview of CAMO-AIS. The sound database is used to build
a feature database, which consists of descriptors of pitch, loudness, and timbre cal-
culated for all sounds prior to the search for orchestrations. The same descriptors are
calculated for the reference sound being orchestrated. The combination functions
estimate the descriptors of a sound combination from the descriptors of the individ-
ual sounds. The evaluation function uses these descriptors to estimate the similarity
between combinations of descriptors from sounds in the database and those of the
reference sound. The search algorithm opt-aiNet is used to search for combinations
that approximate the reference sound, called orchestrations.

20.3.2 Representation

Figure20.4a illustrates an orchestration as a combination of sounds from the sound
database that approximates the reference sound when played together. Figure20.4b
shows the representation used by CAMO-AIS, in which an orchestration has M
players p (m), and each player is allocated a sound s (n) ∈ S, where n = [1, . . . , N ]
is the index in the database S, which has N sounds in total. Thus an orchestration is a
combination of sounds c (m, n) = {s1 (n) , . . . , sM (n)}, ∀ sm (n) ∈ S. Figure20.4b
shows c (m, n) represented as a list, but the order of players p (m) does not matter
for the orchestration. Each sound sm (n) corresponds to a specific note of a given
instrument played with a dynamic level, and sm (n) = 0 indicates that player p (m)

was allocated no instrument.
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Fig.20.4 Representation of orchestrations. Part a illustrates the orchestration as a combination of
sounds that approximates the reference. Part b shows the internal representationof eachorchestration
in CAMO-AIS. Reprinted from [15] with permission from Elsevier

20.3.3 Audio Descriptor Extraction

Timbre perception excludes pitch, loudness, and duration (see Sect. 20.1.2). There-
fore, we consider pitch, loudness, and duration separately from timbre dimensions.
The descriptors used are fundamental frequency f0 (pitch), frequency f , and ampli-
tude a of the contribution spectral peaks A, loudness λ, spectral centroidμ, and spec-
tral spread σ . The fundamental frequency f0 of all sounds s (n) in the database is esti-
matedwith Swipe [16]. The spectral centroidμ captures brightnesswhile the spectral
spread σ correlates with the third dimension of MDS timbre spaces [11, 40, 50, 56].
All the descriptors are calculated over short-term frames and averaged across all
frames.

20.3.3.1 Contribution Spectral Peaks
The spectral energy that sound s (m) contributes to an orchestration is determined
by the contribution spectral peaks vectorAm (k). In what follows, only peaks whose
spectral energy (amplitude squared) is at most 35dB below the maximum level
(i.e., 0 dB) are used and all other peaks are discarded. These peaks are stored as a
vector with the pairs {a (k) , f (k)} for each sound s (m), where k is the index of
the peak. The contribution spectral peaks Am (k) are the spectral peaks from the
candidate sound s (m) that are common to the spectral peaks of the reference sound
r . Equation (20.1) shows the calculation of Am (k) as

Am (k) =
{
as (k) if (1 + δ)−1 ≤ fs (k) / fr (k) ≤ 1 + δ

0 otherwise
(20.1)

where as (k) is the amplitude and fs (k) is the frequency of the spectral peak of the
candidate sound, and fr (k) is the frequency of the reference sound.
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Fig. 20.5 Contribution
spectral peaks Am (k). The
figure shows the
representation of the
contribution spectral peaks
of a candidate sound.
Reprinted from [15] with
permission from Elsevier

Figure20.5 illustrates the computation of spectral peak similarity between the
reference sound and a candidate sound. Spectral peaks are represented as spikes
with amplitude a (k) at frequency f (k). The frequencies fr (k) of the peaks of the
reference sound are used as reference. Whenever the candidate sound contains a
peak in a region δ around fr (k), the amplitude a (k) of the peak at frequency fs (k)
of the candidate sound is kept at position k of the contribution spectral peaks vector
Am (k).

20.3.3.2 Loudness
Loudness λ is calculated as

λ = 20 log10

(∑
k

a (k)

)
, (20.2)

where a (k) are the amplitudes at frequencies f (k).

20.3.3.3 Spectral Centroid
The spectral centroid μ is calculated as

μ =
∑
k

f (k)
|a (k) |2∑
k |a (k) |2 . (20.3)
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20.3.3.4 Spectral Spread
The spectral spread σ is calculated as

σ =
∑
k

( f (k) − μ)2
|a (k) |2∑
k |a (k) |2 . (20.4)

20.3.4 Pre-processing

Prior to the search for orchestrations of a given reference sound r , the entire sound
database S is reduced to a subset Sr of sounds that will be effectively used to orches-
trate r . All the sounds whose contribution spectral peaks vector Am (k) is all zeros
are eliminated because these do not contribute spectral energy to the orchestration.
Similarly, all the sounds whose f0 is lower than f r0 are eliminated because these add
spectral energy outside of the region of interest and have a negative impact on the
final result. Partials with frequencies higher than all frequencies in r are not con-
sidered because these are in the high-frequency range and typically have negligible
spectral energy.

20.3.5 Combination Functions

The sounds s (n) in an orchestration c (m, n) should approximate the reference r
when played together. Therefore, the combination functions estimate the values of
the spectral descriptors of c (m, n) from the descriptors of the isolated sounds s (n)

normalized by theRMSenergy e (m) [22]. The combination functions for the spectral
centroid μ, spectral spread σ , and loudness λ are given, respectively, by

μc =
∑M

m e (m) μ (m)∑M
m e (m)

, (20.5)

σc =
√√√√∑M

m e (m)
(
σ 2 (m) + μ2 (m)

)
∑M

m e (m)
− μ2

c, (20.6)

λc = 20 log10

(
M∑
m

1

K

∑K

k
a (m, k)

)
. (20.7)

The estimation of the contribution spectral peaks of the combination Ac uses the
contribution vectors As of the sounds s (n) in c (m, n) as

Ar =
{
max
k∈K [A (m, 1)] ,max

k∈K [A (m, 2)] , · · · ,max
k∈K [A (m, N )]

}
. (20.8)
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20.3.6 Distance Functions

Equation (20.13) shows the calculation of the fitness value F of an orchestration
as the weighted sum of distances Dj . Each distance Dj in Eq. (20.13) measures
the difference between the descriptors from the reference sound r and the candidate
orchestration cq (m, n), where q is the index of the orchestration among all the
candidates for r , as follows:

Dμ = |μ (
cq

) − μ (r) |
μ (r)

, (20.9)

Dσ = |σ (
cq

) − σ (r) |
σ (r)

, (20.10)

Dλ = |λ (
cq

) − λ (r) |
λ (r)

. (20.11)

The distance between the contribution vector of the reference sound Ar and the
contribution vector of the orchestration Ac is calculated as

DA = 1 − cos (Ar ,Ac) . (20.12)

20.3.7 Calculating the Fitness of Orchestrations

The fitness of orchestration is an objective measure of the timbral distance between
the orchestration and the reference. Since each descriptor used has an independent
distance function Dj associated, the total fitness F is defined as the weighted com-
bination of Dj expressed as

F
(
α j

) =
∑
j

α j D j with
∑
j

α j = 1 and 0 ≤ α j ≤ 1, (20.13)

where j is the index of each feature, α j are the weights, and Dj are the distance
functions. The fitness value F

(
α j

)
of a candidate orchestration calculated with

Eq. (20.13) depends on the values of the weights α j . Choosing numerical values for
α j subject to

∑
j α j = 1, 0 ≤ α j ≤ 1 allows comparing numerically the fitness F

of different orchestrations. Optimization of F following the numerical choice ofα j is
known as SOO, which constrains the solutions found to that particular combination
of weights. CAMO-AIS [1, 15] uses SOO to minimize F , whereas Orchidée [22]
uses MOO. Section 20.4 will discuss the difference between SOO and MOO from
the perspective of CAMO.
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20.4 Computer-AidedMusical Orchestration with Bio-inspired
Algorithms

The goal of imitative CAMO is to find a combination c of M musical instrument
sounds s from a database S that perceptually approximates a given reference sound r .
Section20.3 formalized imitative CAMO as a function optimization problem, where
the goal is tominimize the fitness F in Eq. (20.13). However,minimization of F is not
a trivial task because it is an inverse problem and because F is a combination ofmul-
tiple objectives. The formulation of CAMO as an inverse problem requires searching
for orchestrations, so Sect. 20.4.1 discusses the need for bio-inspired algorithms to
perform the search. Finding an orchestration requires minimizing the multiple dis-
tances encoded in the fitness function, and Sect. 20.4.2 discusses the use of SOO and
MOO to do it.

20.4.1 Searching for Orchestrations for a Reference Sound

Calculating the fitness F of an orchestration with Eq. (20.13) requires multiple steps
as shown in Fig. 20.3. Mathematically, the fitness function F measures the distance
between a reference sound r and a combination c (m, n) of M sounds from the
database S as F = F (c, r). Thus, minimizing F can be expressed as

min
c(m,n)

F (c, r), c (m, n) = {s1 (n) , . . . , sM (n)} ∈ Sr ⊆ N
M , (20.14)

which is read as “find the combination c (m, n) of M sounds s (n) from the database
Sr that minimizes the distance F to r”. This mathematical formulation of CAMO is
known as an inverse problem in the optimization literature because F only allows
to calculate the distance F given the combination c and the reference r . There is no
inverseF−1 to retrievewhich c corresponds to a specific F . Sowe cannot simply set a
desired value for F and retrieve the orchestration(s) that correspond to it. In practice,
we must search for the combination c that results in the minimum distance F .

At first, it might seem trivial to search for the orchestration that minimizesF . For
example, an exhaustive search will simply try all possible combinations and return
the one with minimum distance F . However, the combinatorial nature of CAMO
means that this brute-force approach will suffer from the growth in complexity as
the size of the database S increases known as combinatorial explosion. Depending
on the size of the database, an exhaustive search can take from a few minutes to
longer than the age of the universe! In computational complexity, combinatorial
optimization problems are said to be in NP. It is easy to check if a candidate is indeed
an answer to a problem in NP, but it is really difficult to find any answer [38]. See
the Clay Mathematics Institute webpage about the P versus NP problem [27] for
further information. Carpentier et al. [18, 20–22, 76] formalized imitative CAMO
as a binary allocation knapsack problem, which was proved to be NP-complete [46].
Thus, heuristic search strategies are typically used to find approximate solutions to
imitative CAMO. Biologically inspired algorithms such as GA and AIS are popular
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choices because they use clever search heuristics to check promising instrument
combinations.

20.4.1.1 Genetic Algorithms
GA uses an abstraction of biological evolution to provide computer systems with
the mechanisms of adaptation and learning [30]. Evolution can also be seen as a
method for designing innovative solutions to complex problems.Thus theGAevolves
a population of candidate solutions represented as chromosomes by means of the
genetic operators of mutation, crossover, and selection [37, 59]. A fitness function
evaluates the quality of each individual of the population. The fittest individuals are
selected to generate offspring by exchanging genetic material (crossover). Then the
offspring undergo mutation and only the fittest offspring are selected for the next
generation.

The search space comprises the collection of all potential solutions resulting
from the representation adopted. A measure of “distance” between candidate solu-
tions allows defining the neighborhood of regions in the search space as well as the
fitness landscape, which is a representation of the fitness of all the individuals in
the search space. A smooth fitness landscape is akin to a continuous function where
“neighboring” candidate solutions have similar fitness values. Combinatorial opti-
mization problems typically do not feature continuous fitness landscapes, adding to
their difficulty. Themutation operator is responsible for the exploitation of the search
space by introducing small random perturbations that search the neighborhood of
promising regions. The crossover operator performs exploration of the search space
under the assumption that high-quality “parents” from different regions in the search
space will produce high-quality “offspring” candidate solutions. Finally, the selec-
tion operator is responsible for implementing the principle of survival of the fittest
by only allowing the fittest individuals to generate offspring and be passed on to
the next generation. So, GA work by discovering, emphasizing, and recombining
good building blocks of solutions in a highly parallel fashion. Adaptation in a GA
results from the trade-off between the exploration of new regions of the search space
and the exploitation of the current promising regions (e.g., local optima). In fact,
the parallel nature of the search can be interpreted as the GA allocating resources
(i.e., candidate solutions) to regions of the search space based on an estimate of the
relative performance of competing regions.

GAhave become popular to solve hard combinatorial optimization problems, such
as imitative CAMO. In fact, GA are particularly suited to find solutions in complex
domains, such as music [10, 58, 60] and the arts [68, 78]. See also the online
proceedings of the EvoMUSART conference [75] and the EvoStar web page [34]. In
CAMO, the timbre arising from instrument combinations is unknown a priori and the
orchestrations proposed by theGAmight contain surprising combinations ofmusical
instruments not contained in traditional orchestration manuals. However, GA also
present several drawbacks, such as slow convergence and loss of diversity [59]. The
next section will introduce AIS and focus on how the characteristic of maintenance
of diversity can be used in CAMO.
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20.4.1.2 Artificial Immune Systems
AIS are inspired by theoretical immunology and immune functions applied to solve
real-world problems [28, 29]. The biological immune system features many proper-
ties that can be useful in several branches of science [29, 39], engineering [28, 77],
and the arts [13, 61, 62], including robustness, pattern recognition, fault and noise
tolerance, learning, self-organization, feature extraction, and diversity. Additionally,
the immune system is self-organizing, highly distributed, adaptable to dynamic and
complex environments, and displays cognitive properties such as decentralized con-
trol and memory [77], akin to neural networks. The (vertebrate) immune system is
incredibly complex and not yet fully understood [39]. However, several mechanisms
of the adaptive immune system have served as inspiration for AIS [29, 39], such
as negative selection, immune network theory, and clonal selection, among others.
Thus, it can be said that AIS use abstractions of immunological processes to endue
algorithms with some of their properties. Consequently, AIS is an umbrella term that
encompasses several different algorithms [29, 39, 77].

CAMO-AIS uses opt-aiNet [24], an AIS for multi-modal optimization that draws
inspiration from the immunological principles of clonal selection, affinity matu-
ration, and the immune network theory [29, 39, 77]. Clonal selection commonly
serves as inspiration for search and optimization, whereas the immune network the-
ory is commonly associated with learning [39]. Clonal selection algorithms [23]
present a strong resemblance to GA without crossover, but their notion of affinity
and their significantly higher mutation rate (i.e., hypermutation) distinguish them
from similar adaptive algorithms [29, 39]. In opt-aiNet, hypermutation contributes
to diversity [29, 77] and affinity maturation adds learning and adaptation. Addition-
ally, the affinity measure is used in a suppression stage that is instrumental to the
characteristic maintenance of diversity of opt-aiNet [24].

20.4.1.3 Maintenance of Diversity in Opt-aiNet
Opt-aiNet was developed to solve multi-modal optimization problems [29, 39, 77],
which exhibit local optima in addition to a global optimum. A local optimum is
better than its neighbors but worse than the global optimum. Figure20.6 shows
a (continuous) multi-modal function with global and local optima represented by
the peaks. Standard optimization methods such as GA commonly only return one
solution (i.e., one black dot) corresponding to one local optimum of the fitness
function. The property of maintenance of diversity allows opt-aiNet to find and
return multiple local optima in parallel.

Local optima can be very interesting for CAMO given the subjective nature of
orchestration.Composers are seldom interested in the “best” solution toEq. (20.14) in
a mathematical sense. A set of multiple orchestrations to choose from is potentially
more interesting from a compositional point of view. A CAMO algorithm that is
capable of proposing multiple orchestrations in parallel that resemble the reference
sound differently can be valuable. However, finding local optima of a multi-modal
fitness function with SOO is not the only method to propose multiple orchestrations
for a reference sound. MOO also allows finding multiple orchestrations in parallel.
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Fig.20.6 Illustration of multi-modal function optimization in CAMO. The figure shows an objec-
tive function with multiple optima. The black dots represent multiple orchestrations returned by
CAMO-AIS. Two example orchestrations for the reference sound air horn are given following the
convention instrument/playing technique/note. Access the CAMO-AIS webpage [12] to listen to
these orchestrations among several other examples. Reprinted from [15] with permission from
Elsevier

Section20.4.2 illustrates the difference between the SOO and the MOO approaches
in CAMO. Then, Sect. 20.5 discusses the differences between these approaches,
emphasizing the advantages and disadvantages of each.

20.4.2 Finding Orchestrations for a Reference Sound

Equation (20.13) defined the fitness F
(
α j

)
of an orchestration as the weighted

sum of the individual distances Dj calculated for each descriptor. It is important
to note that the value of F

(
α j

)
depends on the weights α j . The SOO approach

consists in choosing numerical values for α j and finding one or more orchestrations
corresponding to that particular combination of weights, whereas the MOO [79]
approach returns multiple solutions corresponding to different values of the weights
α j . CAMO-AIS uses SOO and the multi-modal ability of opt-aiNet to find multiple
local optima that maximize diversity in the feature space. Orchidée uses the well-
known multi-objective genetic local search (MOGLS) optimization algorithm [45]
to generate a pool of orchestrations by approximating the Pareto frontier [79].

Figure20.7 shows the search space, the feature space, and the objective space
to illustrate the difference between SOO and MOO conceptually. Each point in the
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Fig.20.7 Illustration of the different spaces in CAMO. The left-hand panel shows the search space,
the middle panel shows the feature space, and the right-hand panel shows the objective space. Each
point in the search space is an instrument combination (orchestration) that has a corresponding
position in the feature space. The reference sound can also be seen in the feature space. The distances
D between points in the feature space and the reference sound are calculated in the feature space.
The weights α j map points in the feature space to the objective space. Reprinted from [15] with
permission from Elsevier

search space is an orchestration represented as an instrument combination that has a
corresponding position in the feature space. The middle panel in Fig. 20.7 shows the
reference sound (black dot) in the feature space among the orchestrations (gray dots)
to illustrate the calculation of the distances Dj between the orchestrations and the
reference sound. Finally, the objective space is obtained by associating a dimension
to each distance Dj . The weights α j map the distances Dj from the feature space
to the objective space, where each point corresponds to a fitness value F of an
orchestration.

The main difference between SOO and MOO lies in the objective space. In SOO,
the weights α j are fixed, so the objective space is one-dimensional (i.e., a line) and
the fitness values F depend exclusively on the distances Dj . Therefore, minimizing
F requires finding an orchestration whose distances Dj are as small as possible
(i.e., as close as possible to the origin). In MOO, the weights α j are not defined
beforehand, so each point in the objective space (corresponding to a specific value
F) depends on the values of both Dj and α j . Each orchestration occupies a fixed
point in the feature space, and so does the reference. Therefore, the distances Dj

are also fixed for each orchestration. However, different weights α j will map the
same orchestration in the feature space to different points in the objective space, as
illustrated in Fig. 20.7. Consequently, in MOO, each orchestration corresponds to
multiple points in the objective space with varying values of F . Thus, minimizing
the fitness functionF

(
α j

)
requires finding both the orchestration with distances Dj

and the combination of weights α j for that specific orchestration that are as close
to the origin as possible. So, there is more than one possible direction from which
to minimize F

(
α j

)
. In fact, there are multiple minima of F

(
α j

)
corresponding to

different combinations of weights α j . The set of all minima of F
(
α j

)
is calledPareto

front, illustrated in Fig. 20.7 as the thick border in the objective space.
Figure20.7 illustrates the objective space with non-dominated solutions (ND)

represented as “X” and dominated solutions (D) represented as “+”. Solutions along
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the Pareto front are called non-dominated (ND) because there is no other solution
whose value ofF

(
α j

)
is closer to the origin. TheSOOfitness function in the objective

space can also be seen as a straight line containing the global optimum (G) illustrated
as the filled “O” and the local optima (L) illustrated as the empty “O”. Note that
dominated solutions D can coincide with local optima L and, in turn, non-dominated
solutions ND can coincide with the global optimum G. Thus CAMO-AIS returns
solutions L that were discarded by Orchidée because there is a solution G closer to
the reference in the same direction in the objective space (i.e., specified by the same
α j ). Section20.5 will explore further the consequence of the different approaches
by CAMO-AIS and Orchidée.

20.5 Discussion

This section discusses aspects of the Orch* family and of CAMO-AIS. Firstly, the
differences between the SOO and MOO approaches are examined more closely.
Then, the attention shifts to the difference between dynamic orchestrations with
Orchids and with Orchidea.

20.5.1 Perceptual Considerations

Conceptually, two values have important perceptual and aesthetic consequences in
CAMO, namely the fitness value F and the weights α j in Eq. (20.13). F is the
objective measure of distance between the orchestrations and the reference. There-
fore, minimizing F is conceptually similar to maximizing the timbral similarity, so
F is inversely proportional to the perceptual similarity with the reference. In theory,
a smaller F indicates a higher degree of similarity.

Theweightsα j allow emphasizing the relative importance of each descriptor in the
orchestrations returned. For example, a relatively high value of αμ for the spectral
centroid distance Dμ would penalize more severely orchestrations whose Dμ is
higher. Consequently, the focus would be on matching brightness because it is the
perceptual counterpart of the spectral centroid [56]. Therefore, α j can be interpreted
as specifying the perceptual direction from which an orchestration approaches the
reference. In other words, the weights α j control the perceptual dimension(s) of the
similarity between the orchestration and the reference.

The main differences between the orchestrations by CAMO-AIS and byOrchidée
result from the use of SOO andMOO, respectively. TheMOO approach byOrchidée
returns orchestrations that approximate the Pareto front, which is where the orches-
trations with the lowest F are in the objective space. However, each point on the
Pareto front corresponds to a different combination of α j . Consequently, the orches-
trations along the Pareto front approach the reference sound fromdifferent perceptual
directions. Therefore, each orchestration returned by Orchidée is the most similar
to the reference sound according to different criteria emphasized by the different
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α j . Orchidée prioritizes the objective similarity of Pareto optimal orchestrations
over the perceptual similarity controlled by α j . Consequently, the composer using
Orchidée implicitly chooses a different perceptual direction by selecting an orches-
tration among the pool of solutions returned.

On the other hand, CAMO-AIS returns solutions that always approach the refer-
ence in the same direction, emphasizing the same perceptual similarities. Ultimately,
α j inCAMO-AIS are an aesthetic choice by the composer to determine the perceptual
direction to search for orchestrations, allowing the composer to interactively explore
the vast space of compositional possibilities. The trade-off is that, in theory, the
timbral similarity between the orchestrations returned and the reference decreases.
CAMO-AIS returns orchestrations that correspond to the local optima of the SOO
fitness function, so the objective distance is not the smallest possible. Caetano et
al. [15] compared the orchestrations returned by CAMO-AIS and Orchidée in terms
of diversity and perceptual similarity with the reference. They showed that CAMO-
AIS returns orchestrations withmore diversity thanOrchidée, yet the systems did not
differ in perceptual similarity with the reference. Therefore, CAMO-AIS provides
more options to the composer without loss of perceptual similarity. Section 20.5.2
delves deeper into the diversity of orchestrations.

20.5.2 Diversity of Orchestrations in CAMO-AIS

Some authors [51, 57] argue that CAMO systems that return multiple orchestrations
present the composer with the challenge of choosing which one(s) to use. Instead,
they suggest that there is a “best” solution to the imitative CAMO problem when it is
posed correctly [51]. However, the CAMO framework described in this chapter does
not narrow down the search space enough to admit only one solution. The descriptors
of timbre used do not result in an exhaustive description such that multiple sounds
would potentially match these descriptor values. In CAMO, this redundancy in the
description of timbre translates as multiple instrument combinations approximating
the reference timbral description.

Caetano et al. [15] argue that having multiple orchestrations provides aesthetic
alternatives for the composer. The composer is rarely interested in a single combina-
tion (i.e., an orchestration) that optimizes some objectivemeasure(s) with a reference
sound [19]. Often, the composer uses CAMO tools to explore the problem space and
find instrument combinations that would be missed by the empirical methods found
in traditional orchestration manuals [51, 63]. The reference sound guides the search
toward interesting regions of the search space, and α j fine-tune the relative impor-
tance of perceptual dimensions of timbre similarity encoded in the fitness function.

CAMO systems that return only one orchestration seldom meet the requirements
of the highly subjective and creative nature of music composition [19]. Very often,
the composer will use subjective criteria not encoded in the objective measure(s)
guiding the search to choose one or more orchestrations of interest. In that case,
diversity provides the composerwithmultiple choiceswhen orchestrating a reference
sound, expanding the creative possibilities of CAMO beyond what the composer
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initially imagined. From that perspective, a CAMO algorithm should be capable
of returning several orchestrations that are all similar to the reference sound yet
dissimilar among themselves, representing different alternative orchestrations for
that reference sound. Thus, diversity of orchestrations allows the exploration of
different musical ideas [15].

20.5.3 Dynamic Orchestrations with Orchids

Orchids was the first CAMO algorithm to allow dynamic orchestrations. However,
the approach proposed by Esling et al. [31–33] has both technical and usability issues
resulting from the time series matching algorithm used for dynamic orchestration.
Since both issues are related, we will discuss the technical aspect first and then the
usability problem related to it. The time series matching algorithm at the heart of
Orchids [32] matches the shape of the temporal variation of the descriptors used. The
algorithm includes two pre-processing steps prior to matching, namely descriptor
range normalization and dynamic time warping (DTW). Normalization works along
the axis of the descriptor (e.g., Hz for the spectral centroid), whereas DTW equalizes
the sound duration along the temporal axis. Thus, both the range of descriptor values
and the absolute duration associated with the original sounds are lost. These pre-
processing steps have the undesired side effect of matching shapes in the normalized
descriptor space that would not be considered similar in the original descriptor space.
In practice, perceptually different sounds may be matched by Orchids.

Two radically different sounds were used in the example as shown in Fig. 20.8 to
illustrate the issue. The first sound is a two-second pure sine wave whose frequency
varies from 440Hz down to 400Hz (in total, a 40Hz frequency range variation). The
second sound is a 14-second long orchestral recording in which strings perform a
downward glissando whose range is about 200Hz. The top panel of Fig. 20.8 shows
the temporal variation of the spectral centroid of the original sounds, the sine wave is
shownwith a solid line, and the strings with a dashed line. Note how the shapes differ
radically because of the absolute values of both frequency and time. Themiddle panel
shows the result of normalizing the range of descriptors, where the sine wave and the
orchestral glissando now occupy the same normalized frequency range. Finally, the
bottom panel of Fig. 20.8 shows the result of applying DTW to both curves. Now, the
shape of the two time series of descriptors is very similar, and the algorithms behind
Orchids would match them even if the two sounds are perceptually very different.
Additionally, matching fast decays in energy, long downward glissandos, slowly
amplitude modulated sounds, or fast vibratos requires instrument sounds played
with these techniques in the musical instrument sound database. This could result in
an exponentially increasing size of the database with problems in scalability.

Finally, from the perspective of the composer, using time series of descriptors
places the focus on the micro-temporal scale and on the low-level aesthetic, percep-
tual, and musical aspects that this scale implies. Instead of thinking about musical
elements such as chords, notes, and musical scales, the user has to deal with the time
series of spectral descriptors that are difficult to relate to orchestration problems.
Users who had musical training but no technical background reported having dif-
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Fig.20.8 The figure represents the spectral centroid of two radically different sounds. The top panel
shows the original spectral centroids in kHz, the middle panel shows the spectral centroids after
frequency range normalization, and the bottom panel shows the time-warped normalized spectral
centroids. This kind of processing alters considerably the shape of the two spectral centroid curves,
creating a mathematical match that is not representative of the perceptual similarity

ficulty interpreting orchestration results and this difficulty naturally led to usability
issues. While several composers showed interest in micro-temporal dynamic orches-
tration, a large share of the community did not manage to use this idea efficiently.

20.5.4 Dynamic Orchestrations with Orchidea

In Orchidea, dynamic orchestrations focus on a different temporal scale when com-
pared with Orchids. Orchidea shifts the focus from the micro-temporal scale of
milliseconds typical of time series of descriptors to the more musically meaning-
ful temporal scale of musical notes. Orchidea breaks up the reference sound into
a sequence of events that are orchestrated separately. First, Orchidea uses a two-
stage optimization process in a high-dimensional descriptor space. Finally, Orchidea
ensures the continuation of the final orchestrations.

The main steps in Orchidea can be summarized as segmentation, embedding,
optimization, and continuation. Segmentation determines the most important musi-
cal events in the reference sound with a novelty-based segmentation algorithm [35]
that generates sub-references that are subsequently optimized separately.Embedding
represents both the set of sub-references and the database of musical instrument
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sounds in a high-dimensional descriptor space. Optimization comprises a prelimi-
nary step followed by refinement. Stochastic matching pursuit performs the prelimi-
nary estimation of the orchestrations, followed by refinement with a GA performing
SOO. Finally, a continuation model is applied on the selected solution for each sub-
reference to minimize the number of changes for each instrument. Continuation is
intended to improve the voicing of each player in the orchestra and to implement
the orchestration principle of dovetailing: different instruments change notes at dif-
ferent times in order to maximize the blending of the orchestral colors (see pages
467–472 in [3]).

An interesting aspect of Orchidea is how it estimates the descriptors of instru-
ment combinations. Given the high number of instrumental combinations generated
during the optimization, it is impractical to synthesize a new audio file and then
compute descriptors for every combination of sounds. Previous members of the
Orch* family and CAMO-AIS estimate the descriptors of each candidate instrument
combination using a simple energy-weighted linear combination (see Sect. 20.3.5),
even if these descriptors are not themselves linear [22]. Orchidea takes a different
approach and estimates the new descriptors using a non-linear long short-termmem-
ory (LSTM) deep neural network (DNN).While the training phase of the predictor is
time-consuming, the estimation is very fast since it has a low complexity [36]. Refer
to the Orchidea companion webpage [25] to listen to sound examples, download the
system, and watch tutorial videos.

20.6 Conclusions

Musical orchestration remains one themost elusive aspects ofmusical composition to
develop computer-assisted techniques due to its highly empirical approach combined
with the complexity of timbre perception. A major consequence of this lack or for-
malization is that computer-aidedmusical orchestration (CAMO) is still in its infancy
relative to other aspects of musical composition, such as harmony and rhythm. This
chapter focused on imitativeCAMOmethods aimed at helping composers find instru-
ment combinations that replicate a given reference sound. ImitativeCAMO is formal-
ized as the search for a combination of instrument sounds from a database that min-
imizes the timbral distance captured by descriptors of timbre. Biologically inspired
algorithms such as genetic algorithms (GA) and artificial immune systems (AIS) are
commonly used tominimize a single-objective ormulti-objective fitness function that
encodes timbral similarity between the candidate orchestrations and the reference.

Several aspects of imitative CAMO deserve further investigation, such as orches-
trating time-varying reference sounds with dynamic orchestrations [26] and propos-
ing orchestrations that feature diversity [15]. Similarly, future research effort should
be devoted to improving specific steps such as timbre similarity measures or the tim-
bre of instrument combinations [36]. However, this formulation of imitative CAMO,
albeit powerful, stems from a conceptual framework first laid out over a decade
ago [17, 20, 21]. In particular, the current framework of imitative CAMO addresses
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musical orchestration from the narrow scope of instrumentation via timbrematch-
ing [51]. Recent developments in machine learning and computational intelligence
have the potential to lead to a paradigm shift in CAMO that breaks free from the
constraints of imitative CAMO into the next generation of CAMO systems that will
address orchestration as a whole. For example, Piston [65] mentions background
and accompaniment as well as voice leading and counterpoint, whereasMaresz [51]
argues that “high-level orchestration is the art of combining simultaneous yet dif-
ferent sound layers.” Each layer relies on specific musical parameters to provide an
identity depending on the musical context. This high-level approach to orchestration
would require a formalization that includes descriptors of orchestral qualities rather
than descriptors of timbre. Currently, little is known about the timbre of instrumental
music [54] to propel CAMO into full-fledged orchestration systems. Initiatives such
as the ACTOR project [2] are currently investigating musical orchestration from
multiple perspectives to take the first steps in the exciting yet relatively unexplored
world of computer-aided musical orchestration.
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21Human-Centred Artificial Intelligence
in Concatenative Sound Synthesis

Noris Mohd Norowi

21.1 Introduction

Concatenative Sound Synthesis (CSS) is a data-driven method to synthesize new
sounds from a large corpus of small sound snippets. It unlocks endless possibilities
of re-creating sounds, which is exciting, particularly as the technique also neces-
sitates very little musical knowledge for anyone to utilize. However, synthesizing a
specific sound does require more than just matching segments of sound at random.
Very few synthesis results are the result of the first raw output. Sometimes, sound
manipulation and transformation need to be applied to the synthesized sound. At
other times, the desired results can only be achieved by adding or removing certain
sound segments in the corpus collection. This trial-and-error run is indeed a tedious
and frustrating process, and this uninspiring method of producing music making
may hinder creative composition from happening. The inclusion of Artificial
Intelligence (AI) can potentially facilitate this process by making the machines
which synthesizes the new sounds to understand exactly the composer’s vision,
through the seed sound provided. Thus, an ideal machine that implements any AI
technique that can dissect and decipher accurately what the composer wants based
on the seed sounds, also referred to as the query, is provided.
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21.2 Sound Synthesis: A Brief Overview

A very broad definition of sound synthesis is given as designing sound through the
combination of certain base waveforms and processes. Loosely, the general usage
of the term referring to the process of synthesizing sounds is taken as designing a
sound ‘from scratch’. There can be many motivations behind synthesizing sounds,
but one of the most common reasons is to enable the emulation of existing sounds.
For instance, sound synthesis allows the replication of sounds that are difficult to
capture, e.g. in the case of a human performance, replacing the need of a human
performer. In addition to producing usual, everyday sounds, it is also useful in
producing ‘new’, unheard of sounds such as creating sound effects for the pro-
duction of films depicting various sci-fi or fantasy characters. Moreover, sound
synthesis can also mix life-like sounds and physically impossible sounds together,
providing composers with endless possibility of creating different range of sounds.

There are many ways in which sounds can be synthesized: from combining basic
waveforms together, to formulating complex mathematical algorithms to recon-
struct a sound’s physical attributes. These include syntheses that are derived
through spectral or Fourier-based techniques (e.g. subtractive synthesis, additive
synthesis and wavetable synthesis), modulation techniques (i.e. amplitude, fre-
quency or based modulations), waveshaping synthesis (e.g. distorting an input
waveform using a transfer function), time modelling (e.g. granular synthesis,
re-synthesis by fragmentation) and physical modelling (e.g. modal synthesis).
A more thorough dissection of the strengths, weaknesses and suitability of each of
these techniques can be found covered by several experts in the area [7, 8, 18, 20,
24, 29].

Despite the many different sound synthesis techniques available, the techniques
above are mostly considered to be in low-level terms. This is because sound syn-
theses using these techniques are carried out by attempting direct emulation of the
intended sound, which typically involves basic analysis of the sound, followed by
addition or elimination of different parameters until the replication of desired sound
is reached. The configuring and re-configuring numerical input into the sound
synthesis system until the anticipated sound is synthesized is both a laborious
process and is difficult to achieve. In addition, low-level sound synthesis techniques
do not take into account any qualitative input from composers. Miranda [18]
proposed that the situation can be improved by combining these sound synthesis
techniques with Artificial Intelligence (AI) techniques.

AI research has discovered how to embed mechanisms in computers so that they
can be made to act in an intelligent manner and perform the very same task as
humans can. In the context of this sound synthesis, AI is desirable for several main
reasons: (1) to automate the process making it more efficient as it requires fewer
resources; (2) to help reduce errors in exhaustive judgement-related tasks and
(3) adept at deciphering the needs and visions of composers. A system that can
generate new sounds that are in line with the composers’ interpretation is highly
sought after. This can be achieved by enhancing the AI elements in current sound
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synthesis systems, but also at the same time extending the user control on these
system, so as to form a fluent, symbiotic relationship between man and machine.

Typically, there are two approaches to sound synthesis with AI: rule based and
data driven. Synthesis using rule-based model includes the use of a set of assertion,
or ‘rules’ that are constructed from the collective knowledge of composers, which
specify the actions or solutions when certain conditions are met. Data-driven model,
on the other hand, does not involve rules to create sound, but instead utilizes sound
corpus to re-create sounds. Its intelligence lies in the selection algorithm that it
employs to select the string of sound units that most closely match the input
specifications. The data-driven approach is the more common approach employed
in Concatenative Sound Synthesis (CSS). This means that new sounds are created
by re-synthesizing a seed sound to sounds available in the corpus. The obvious
advantage of using the data-driven model in the synthesis of music is that it pre-
serves the fine details of the sound as it uses actual recordings, as opposed to
modelling sounds from scratch which is rule based is applied. Using actual sounds
also means that it is easier to materialize sounds that have been envisaged in the
minds of composers, a feat that is extremely difficult otherwise to perform with the
rule-based approach. However, this approach requires a larger storage space
compared to rule-based synthesis. Nevertheless, it is an ideal solution when natu-
ralness is a priority and space is not an issue—generally, the larger the size of the
database, the more likely an exact matching sound is to be found, hence greatly
reducing the need to apply transformation on the sounds from a data-driven CSS
system.

21.3 How Can Concatenative Sound Synthesis Synthesize
Sounds?

CSS involves taking in a stream of sound as a target or seed sound and decom-
posing it into smaller sound segments or target units. Each target units are then
analysed on its spectral and other auditory content. From the analysis, each target
unit has a digital ‘genetic makeup’, which is used as the basis of finding a similar
unit in the database containing a large collection of sound segments or source units.
Once a matching source unit in the database is found for a particular target unit, that
particular source unit is selected and the same step is repeated with the next target
unit. These selected segments are then concatenated together in string of sound unit
sequence, and are then re-synthesized to produce new sounds (Fig. 21.1).

Essentially, CSS is synthesizing new sounds by matching small segments of a
seed sound with segments of sounds from an existing corpus collection. Although
many factors can affect the outcome of this synthesis, in general, resulting synthesis
should somewhat resemble the original seed sound. This technique can produce
really interesting synthesis sometimes. For example, the outcome of matching a
seed sound of a popular country song to a sound corpus of screaming primates
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results in what sounds like a group of monkeys ‘singing’ the unmistakable melody
of the country song!

This method of sound creation had been inspired by the art of mosaicing.
Mosaics are designs and pictures formed from a process of putting bits and pieces
(called tesserae or tiles) made of cubes of marbles, stones, terracotta or glass of
different range of colours to create larger, whole images. Mosaics are typically seen
in many decorative paraphernalia and are also applied to the design of many sig-
nificant cultural and spiritual erections of the past. Through the same concept of
rearranging small tiles together to produce a larger, more meaningful artwork,
mosaicing has been applied to digital image synthesis and digital audio synthesis
and is referred to as ‘photomosaicing’ and ‘musaicing’ (musical mosaicing),
respectively. In photomosaicing, small tiles of images are assembled together to
compose a bigger, overall picture [30], as illustrated in Fig. 21.2. Likewise, musical

Fig. 21.1 The basic mechanism of a CSS system

Fig. 21.2 Example of photomosaic
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mosaicing assembles a large number of unrelated sound segments together
according to specifications from the target sounds.

In photomosaic, images are synthesized by matching the target units with the
source units in the database based on information such as size, shape, colour
orientation and pixels. In the same respect, there are many properties or parameters
which can be used as a basis for similarity matching between the target units and the
source units in the musaicing process in CSS. To comprehend the impact that
different audio properties may have on the synthesis result, it is important to
understand the stages involved in a typical CSS system. There are two major
phases: analysis and synthesis. During the analysis phase, both the original sounds
(seed) and the sounds in the corpus (source) are segmented into smaller sound
snippets. Following segmentation, relevant information from these sound snippets
are then extracted. The extracted information defines each segment of what they are,
and become the source of comparison when matches are made.

In some CSS systems, a ‘Query’ stage is sometimes added between the target
input, database and unit selection process. Granted, this stage had always been
implicitly present; however, it needs to be acknowledged that the query stage is
essential and in fact, the core of the system, as all means of command from the user
gets communicated through. By adding the query stage, it is made apparent that
different parameters can be added, selected or enabled, e.g. audio feature options,
weight assignments for each feature, clarifying the perceptual attribute that defines
the basis of sound similarity, creating a taboo list and threshold of match, etc. Many
of the research work on improving synthesis results from CSS systems are more
commonly focused on the transformation part, i.e. smoothing the seams between
two sound segments when they are joined. While this is a valid move, this suggests
that the process of deciphering and fine-tuning to match the composer’s vision only
happens after the synthesis process has already taken place. Perhaps it makes more
sense for any CSS system to seek clarification to further understand the composer’s
synthesis requirements, long before the matching process even commences.

This then continues with the synthesis phase, sound snippets in the database that
match closely with the targets are selected and concatenated together forming a long
string of sound, which are then synthesized. Figure 21.3 presents the flow model of
a basic CSS system.

The common components of any CSS system include a database, a sound
segmenter, seed (target units), source units (units in the corpus collection), audio
features or descriptors, matching units and intelligence. Short descriptions for each
of the components are as follows:

• Database
In general, the database is a collection of files, but instead of only storing the
actual audio files or the corpus, it can also save the source files, references, units,
unit descriptors and the relationships between all of the entities in it. The actual
synthesis of sound is also generated from the database.

• Sound Segmenter

21 Human-Centred Artificial Intelligence … 621



In order to synthesize concatenatively, audio files in the database need to be
segmented into smaller units, that is, 500 milliseconds or less. Typically, this is
done based on the spectral changes which occur in the stream of audio, but can
also be done through time based or even arbitrarily.

• Seed Units (Target Sounds)
Seed units or the target sound are the seeds or pieces of audio that are supplied to
a CSS system as an input so that matching units can be searched from the
database and be played back concatenatively as the output. The seed units can be
supplied to the system in several ways, such as providing a short piece of music
to the system, through a microphone, or using a MIDI keyboard or instruments.

• Source Units (Sounds in Corpus Collection)

Fig. 21.3 The flow model of
a basic CSS system
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Source units are the units which are available to be concatenated in the database.
Similar to seed units, the source units usually have already been extracted to
obtain certain descriptor characteristics.

• Audio Features or Descriptors
Feature extraction is the process of computing a compact numerical representa-
tion that can be used to characterize a segment of audio. An audio signal has
many different quantities or features that can be extracted, which may be related
to physiological auditory models or to spectral models of the sound. Examples of
audio features are such as pitch, loudness, energy, Zero Crossing Rate (ZCR),
Root Mean Square (RMS), Centroid, Flux, Mel-Frequency Cepstral Coefficients
(MFCCs), etc.

• Matching Units
The matching unit is the unit or sequence of unit that is returned for playback
based on the seed that is originally provided. The way in which a matching unit is
selected is normally based on its distance from the target, where the lowest
distance value is selected. Euclidean distance is commonly used in many CSS
systems as it corresponds to the perceptual similarity between the seed and the
source unit [12]. Based on the Pythagoras theorem, the Euclidean distance
measures the straight line distance between two points. When multidimensional
features are used, the Euclidean distance calculates the distance between two
vector points, x and y, and is given in the equation below, where xj (or yj) is the
coordinate of x (or y) in dimension j.

dx;y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PJ

j¼1
xj � yj
� �2

s

• Intelligence
The selection process contains the algorithm where the seed is actually matched
with a sound unit from the database. Hence, this stage is also known as the
backbone of a data-driven concatenative synthesis as it is reflects its
‘intelligence’.

CSS systems which are used to aid musical creation in the early years are such as
CataRT [26], Skeleton [15], Musical Mosaic [33] and MATConcat [28]. The more
recent work on CSS systems includes RhythmCAT [23], SuperSampler [32],
EarGram [3], Audio Guide [14], Audio Garden [10] and Database System for
Organizing Musique Concrète [2]. Although the core of these systems functions in
a similar manner from another, different systems brought about different strengths
and advancement over the previous systems. Earlier systems notably focused more
in areas concerning the input mechanism, feature analysis, use of transformation,
real-time capability and graphical user interfaces, while the more recent works gave
more highlights on interaction, visualization and rhythm and tempo capacity.
A more detailed review of the CSS systems is discussed by Nuanáin et al. [23], and
Bernardes [4].
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21.4 What Affects CSS Result?

The phrase ‘rubbish in, rubbish out’ holds true for any CSS system. Being data
driven, it goes without saying that the output of any CSS system is directly
dependent on the nature and content of the source sounds made available in the
database. Expecting to produce graceful classical music of high elegance from a
corpus containing only of industrial sound effects such as the aggressive grinding of
metals is stretching it a bit too far (though probably not impossible). The further
away the nature of the source sounds are from the seed sounds, the broader and
more divergent the concatenation output can be expected. It is common sense to
include only the sounds which are as close as possible to the desired synthesis
sounds. Nevertheless, adding uncharacteristic source files in the database can
potentially create interesting surprises to the synthesis results too. Often times, only
by experimenting with a wide range of source files will these interesting syntheses
be discovered. Similarly, changing the seed sounds will also result in a different
synthesis, even if the source sounds in the database remains the same. This is
because the seed units and their extracted information act as a blueprint for any new
musical creation in CSS.

Another key factor that affects synthesis result is the database size. A database
with very few source units to be selected from can be insufficient to produce a
quality synthesis, regardless of how thoroughly the source sounds have been
curated to suit the intended synthesis. This is because there are few source units to
choose from and selected for concatenation. Depending on the rules set, if a CSS
system allows for the same source units to be selected and concatenated repeatedly,
the resulting synthesis from a limited corpus may literally sound like a ‘broken
record’—playing the same units again and again as if the vinyls on the record are
severely scratched. Regardless, it must be acknowledged the bigger the database,
the longer the time it takes for the CSS system to search for the matching files to
concatenate and synthesize. Like other cases with search and retrieval, there is also
a ceiling point where no matter how large the content of the database is added, the
accuracy is no longer improved. Therefore, it is wise to set the database to be large
and relevant, but not excessive.

In order to be synthesized concatenatively, audio files in the database need to be
segmented into smaller units. The most primitive way to do this is to do it manually,
but it can be laborious and time-consuming. Automatic or semi-automatic seg-
mentation helps to facilitate the task. Segmentation can either be event based, time
based or even arbitrarily. Event-based segmentation produces heterogeneous units
of various lengths, as the segmentation is only initiated when a characteristic
change in the audio stream is detected, e.g. the entrance of a guitar solo or a change
from spoken words to music. One of the ways to perform event-based segmentation
is by separating the musical signals at the boundaries of audio objects, i.e. where the
note starts (onset) or where it finishes (offset). Onset and offset segmentation is
particularly useful for the modelling of attacks, as it helps localizing the beginning
of an event and has been employed in segmentation for many different applications

624 N. M. Norowi



such as music classification, characterization of rhythmic pattern and tempo
tracking [5]. Time-based segmentation results in homogeneous units
(uniform-sized), as the sound stream is segmented at every specific millisecond.
Time-based concatenation can sometimes produce atypical synthesis, as the source
units can end up being cut at an unfortunate place in time. This abrupt chopping
approach has made it lighter and demands less computational power, compared to
event-based segmentation which heavy computational power to compute the
algorithms for different events and conditions. Hence, for a live performance which
requires real-time concatenation, perhaps homogeneous segmentation is preferred.
One solution to solve the mid-stream cut-off challenge that happens with time-based
segmentation is by adding a transformation algorithm to make the joints between
the concatenating units smoother. Thus, different segmentation modes will result in
different concatenation results as there will be different number of units, different
information extracted for each unit sequence, etc. Different segmentation modes are
best suited for different kinds of audio and given the variety of options available,
users should be provided with options when selecting which modes are more
applicable [6]. Intelligently automating the segmentation mode to suit the purpose
of composition is also worth exploring.

Each of the segmented sound unit has unique characteristics that can be
extracted from the segment itself. These descriptors are sometimes interchangeably
referred as features, and can be generated from either the audio signal, their spectral,
acoustical, perceptual, instrumental or harmonic properties, or symbolic score.
There are many different features that can be extracted, and they may be extracted
based on their acoustical properties such as pitch, loudness, energy and formants.
Features are normally extracted automatically in a process known as audio feature
extraction—a process of computing a compact numerical representation that can be
used to characterize a segment of audio. Usually, the use of one feature is not
enough for any unique deductions to be made about a sound; therefore, it is
common that several features are combined into feature vectors. Feature vectors list
all features for a single point in time. Figure 21.4 depicts a feature vector from the
combination of d features. The d-dimensional space defined by the feature vector is
also known as the ‘feature space’ and the floating points in the feature space are
sound characteristics.

Fig. 21.4 Feature vector and
feature space
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In most cases, when several features are extracted together, a step called nor-
malization of the feature vector is required. Normalizing a vector is done by
dividing a norm of the vector, for example, to make Euclidean length of the vector
equal to one. It is often referred as scaling by a minimum and range of the vector, to
make all elements lie between 0 and 1. In a CSS system, both the source units and
seed units will have to undergo feature extraction. The values obtained from the
feature extraction of both of these source units and seed units are what is compared
when calculating the similarity distance between them. As explained earlier, there
are many different levels in which the audio files can be extracted—time domain,
frequency domain, time–frequency domain, etc. Each of these levels have the
potentials of extracted hundreds of different audio features. For example, the Root
Mean Square Amplitude (RMS) and the Zero Crossing Rate (ZCR) are
time-domain audio features, while fundamental frequency and harmonicity are
examples of frequency-domain audio features. One of the more important audio
characteristics that researchers have been trying to extract is ‘timbre’. Timbre refers
to the colour of sound and is typically divorced conceptually from pitch and
loudness [31]. Perceptual research on timbre has demonstrated that the spectral
energy distribution and temporal variation in this distribution provide the acoustical
determinants of human’s perception of sound quality [13]. Many researchers
believe that the timbral quality of brightness correlated with increased power at high
frequencies. For example, a note played at a high pitch generally has a higher
spectral centroid than when it is played at a lower pitch, even when the note is
played on the same instrument. Thus, spectral-based features such as spectral
centroid, spectral roll off, spectral flux, mel-frequency cepstral coefficients and
combinations therewith may be able to help timbre-related audio tasks.

In general, the more audio features extracted, the higher chance that a closer
match can be found between the seed unit and the source units in the database.
However, a multitude random audio features are not necessary, as they demand
higher computational power to compute and take longer time to process (Fig. 21.5).
Furthermore, in many cases, not all features may be relevant for comparison in unit
selection. CSS system will benefit from a mechanism that is able to not only

Fig. 21.5 Result of different
audio features on synthesis
(runtime). Note that as the
number or features added
increases, so does the runtime
duration

626 N. M. Norowi



intelligently suggest which relevant audio features to extract for a particular com-
position task, but one that can also allow users to have control in deciding and
ranking which audio features have more importance over other features by
assigning different weights on these features.

The algorithm that matches the seed unit to the source unit in the database during
the unit selection stage is another factor that determines the outcome of the syn-
thesis. Most CSS systems are programmed to perform search using the Viterbi
algorithm, but some utilizes a fixed search algorithm such as KNN, or some
descendent form of local search algorithm. There are many more search methods
available that might be just as useful for finding the match between the seed unit
and the source unit. Each of the search algorithms is designed to carry out search in
a slightly different manner, so applying the most fitting search method is essential.
Trade-offs such as accuracy, speed and computational load are some of the criteria
that must be taken into consideration. For instance, when fast results are more
important than high accuracy (e.g. in a live performance), the simplest search
algorithm may be the best option. However, when composing a piece of music that
requires high fidelity to the original target sound, a search algorithm that can deliver
a more accurate match takes precedence.

21.5 At All Costs

An ideal CSS system should offer the flexibility of fine-tuning the factors that affect
synthesis result. For instance, although it is possible to extract all the possible audio
features, the most practical option would be to extract only the features that are
most relevant or features that can distinctly improve the target distance between the
seed units and the source units, as mentioned earlier. This distance is also referred
to as ‘target cost’.

Another ‘cost’ that is sometimes measured in the unit selection stage in con-
catenative sound synthesis is the concatenation cost. The concatenation cost mea-
sures the quality of the join between two consecutive units. This is why the
concatenation distance is interchangeably referred as the join cost. The relationship
between the target distance and the concatenation distance is illustrated in Fig. 21.6.
This suggests that for any synthesis, the distance between the seed unit, ti, needs to
be compared first with the source unit, ui. Once the source unit with the shortest
distance is determined, its concatenation cost is calculated by comparing its value
with the value of the previous source unit concatenate in the string of audio [26].

Hence, for any synthesis, the distance between the seed unit, t, needs to be
compared with the source unit, u. Once the source unit with the shortest distance is
determined, its concatenation cost is calculated by comparing its value with the
value of the previous source unit concatenate in the string of audio.
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Concatenation cost is useful because sometimes, the ‘best’ unit does not nec-
essarily lie within the unit which returns the lowest target distance, but could come
from another candidate unit with a slightly larger target distance but with smaller
distortion. This situation appears more apparent in concatenative speech synthesis
than it is in music, as the degradation in the naturalness of speech utterance can be
very noticeable to human. Music, being a more subjective domain, is less affected
by this. As expected, including concatenation cost into the calculation can demand
more computational resources from a CSS system. To compromise on this, the
concatenation cost can be omitted when segment continuity is less important. An
intelligent CSS system should be able to differentiate when it is necessary to include
concatenation cost and when it can do without it. Additionally, a smart CSS system
would also be able to weigh lighter option between calculating both target and
concatenation costs together, or relying solely on target cost and remedying con-
tinuity later through linear smoothing or other transformation such as amplitude and
pitch corrections.

Alternatively, a hierarchical model can be applied where the target cost is cal-
culated first, and the concatenation cost is only calculated if there is any dispute
over the matching units, for instance, in the case of homosonic units or equidistant
units. Homosonic units are units that have the same sonic properties with each
other, but do not sound the same when played. This can happen when the use of
only one (or very few audio) features is/are compared, and the extracted values for
the limited features of the two units appear identical. Only when additional features
are further extracted does it reveal that the two units have different audio signal
make up. For example, two homosonic sounds may carry the same values when the
intensity level is compared, but when played, both sounds are very different tim-
brally. This happens because the timbral information has not been included in the
initial extraction and thus not compared (Fig. 21.7).

Fig. 21.6 The relationship between target cost (Ct) and concatenation cost (Cc)
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In such situations, two most common solutions are practised in existing CSS
systems: (1) to select the source segment that appears on the top of the list and (2) to
randomly select any of the segments that have the same sonic information. The
former solution presents noticeable weaknesses, the most obvious being the ten-
dency to select only the first matching source segment that appears in the list of
possible solutions, disregarding other equally qualified segments. Since the list is
typically arranged alphabetically, source segments represented with the filename
that begins with letters that are further down the alphabetical order are almost never
selected, unless a ‘taboo list’ function or selection without replacement is enabled.
The flaw is even more intensified when there are several segments in the target
segment that occur more than once, which can give way to a very tediously
repetitive sound. The latter solution reduces the chances of re-selecting the first line
of segments in the list of matching units, but the randomness of this process
suggests that there is very little intelligence or reasoning behind the selection.

Another challenge that stems from a similar situation is the occurrence of
‘equidistant’ segments in the returned list of matching segments. In contrast to
homosonic segments, equidistant segments occur when there is no exact match
found in the database, but several source segments with same distance from the
target segment are present (Fig. 21.8). Again, there is the issue of which segments
should be selected from the list resurfaces. Selecting the first segment on the list or
random selection will both result in the previously described flaws. Thus, a more
intelligent solution to overcome unit selection issues involving homosonic and
equidistant segments in existing CSS systems is needed.

Fig. 21.7 Unit selection involving homosonic segments

Fig. 21.8 Unit selection involving equidistant segments
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As homosonic units and equidistant units can potentially be solved through the
use of concatenation cost, albeit more costly in terms of processing power and time.
However, performing the costs calculation in a hierarchical fashion can reduce the
computational demands as the concatenation cost is only calculated when there are
homosonic or equidistant segments present. The structural difference between the
two models is shown in Figs. 21.9 and 21.10. Not only does a hierarchical model
slices the problem into smaller, manageable tasks, but it also cuts down the effort
over an otherwise complex and time-consuming process.

21.6 Human-Centred Artificial Intelligence: That’s
not What I Ordered

Issues that have been discussed thus far have all been concerning on improving the
synthesis results by reducing the target and concatenation distances of the source
units to the seed units—the technical aspects of existing CSS systems. However, the
fundamental issue lies in the question—‘what makes humans perceive two sounds

Fig. 21.9 Non-hierarchical model in CSS systems

Fig. 21.10 Hierarchical model in CSS systems
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as similar?’ The technical issues may have undergone many improvements, but
unless the above question is answered, CSS systems may be generating sounds that
are numerically identical to the original seed, but one that is actually far from the
expectation of its users.

A more visual example can be seen in determining image similarity. Fig-
ure 21.11 consists of a target image which is a picture of a centrally located black
circle. Of the three images: (a) a centrally located grey circle, (b) a centrally located
black square and (c) a black circle situated on the bottom left corner. The question
is, which of the three images between (a) and (c) would be considered the image
that has the closest match to the target image? Image (a) has the right shape and is
spatially correct, but of a different colour. Image is also spatially correct and has the
right colour, but of a different shape. Image (c) is off spatially, but is otherwise the
correct colour and shape from the target image.

Similarly, if a target sound is of an A4 note played on a piano, which is a closer
match, an A4 note played on a wind instrument or a C4 note played on a piano?
There are different attributes that can become the basis of sound similarity, the
basics being elements such as pitch, rhythm, tempo, timbre and loudness. More-
over, combinations of these elements then give rise to higher order concepts such as
meter, key, melody and harmony [16, 19]. Identifying the perceptual audio attri-
butes that influence sound similarity in humans may reveal the audio feature sets
that are more likely to extract relevant information from sounds, which can possibly
return perceptually closer matching segments from the database. Determining
which audio attributes are more dominant maybe the key to improving similarity in
sounds generated by CSS systems. Which attributes do humans find to be more
dominant than others (if any)? There is only so much that an intelligent CSS system
can do, but unless it figures out what exactly is it ‘this’ means when a human
composer submits a request to the CSS system to ‘generate something that sounds
close to this, please’, then all effort is rather useless.

Therefore, the only way forward is to focus on Human-Centred Artificial
Intelligence (HCAI). HCAI is the study and design of algorithms that perform tasks
or behaviours that a person could reasonably deem to require intelligence if a
human were to do it [25]. Examples of the use of HCAI in our daily lives are such
as in the use of many speech assistant systems, for instance, Siri, Google Assistant,

Fig. 21.11 Issue with basis of similarity in visual data—which image in the database has the
closest similarity to the target?
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Cortana and Alexa. Its use can also be seen in products recommender that sneaks
onto our screen when we are online, making gutsy assumptions that we need a
certain product based on our online activity and search history. It is trying to
understand exactly what we mean based on our questions and behaviour.

Thus, deciphering what a human composer means by ‘this’ in the
‘compose-me-a-sound-that-sounds-like-this’ query, extends more than just match-
ing two sounds which has similar frequency, amplitude and phase. Sounds very
rarely exist in this simple form and usually the Fourier analysis is used to break
down complex sounds into a series of simple sounds to achieve this. The psy-
chology of sound, on the other hand, is based on the human perception of these
criteria, and also the time factor, giving rise to other sound elements such as pitch,
intensity, timbre and rhythm. Usually, human listeners have a well-developed
feeling whether two songs sound similar or whether they do not [1].

A study has been conducted to further understand how humans perceive sound
similarity by identifying the dominant acoustic information on which judgements
are based by humans when performing a sound similarity task [21]. The study
presented participants with a task to choose between the two source tracks which
they felt were more similar to the seed track. The test was designed so that each
source tracks in the comparison would correspond to a different attribute from one
another. For example, in a melody versus timbre pair, one source track would be
melodically similar to the target, while the other would be closer in terms of timbral
similarities, while other perceptual attributes that were not being compared were
kept constant. A total of four attributes were included—melody, timbre, loudness
and tempo.

It was found that when asked in a forced choice manner to select one (source)
sound that they felt were the closest match to the seed sound, the result was not
always agreeable among the human subjects, particularly between the musician
group and the non-musician group. While it was consistently agreed that tempo and
loudness played very little impact on sound similarity match in both groups, i.e.
very few people refer to the same tempo or the same loudness when they query for a
source sound to be generated from a given seed sound, no dominant sound attribute
could be established. The scores for both melody and timbre tied—the scores were
almost equal! Interestingly, non-musicians based their similarity on the melody,
while the musicians referred to timbre during the similarity test. This means that
non-musicians tended to select source sounds which had the same melody as the
seed sounds, whereas when the same test was conducted on musicians, they had
mostly based their selection on the timbral similarity of the source sounds to the
seed sounds.

Melody seems to be the most dominant perceptual attribute for audio. This could
be because melody is perceptually grouped as part of the same event unfolding over
time, based on Gestalt’s principles of perceptual organization such as similarity,
proximity and good continuation. As humans conform to these principles, melody
tends to be preferred over attributes such as tempo or loudness [11]. This phe-
nomenon could also be the direct result of how the human brain is designed. The
human brain is divided into two hemispheres, the left lies the more logical and
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calculative thinking and the right handles the more intuitive feelings. Musicians
tend to use the left hemisphere of the brain to a larger extent when listening to
music because they possess an analytical knowledge of it and thus approach music
more intellectually. In comparison, those with no musical background mostly
perceive music in the right hemisphere because they are not analysing, but are
simply experiencing the music [27].

This also suggests that human’s musical background strongly affects the simi-
larity judgement as musical training alters the way music is perceived by humans.
This test shows that musicians generally are more tuned to selecting sounds that are
similar timbrally than they are melodically, whereas the reverse is true for
non-musicians. Again, this is possibly owing to their analytical behaviour in lis-
tening to music, where experienced musicians can be very sensitive in assessing
similarities based on the quality of musical expressions rather than the actual
melody. Therefore, sounds that are deemed similar melodically to the
non-musicians may not be ‘similar’ enough for musicians. For example, two same
melodies played at varying speed and intensity may still be perceived as two similar
sounds by a layperson, but musicians may not agree so strongly, having scrutinized
the discrepancies in the technical details such as the tempo and loudness. In
addition, timbre is fuzzy in nature to begin with. There is no clear-cut classes or
range for timbres which are normally found with other perceptual attributes (e.g.
tempo and loudness can be described quantitatively such as slow, fast, low, med-
ium, high or even in a given range such as 110–120 bpm). With timbre, two very
different sound sources can be perceived to have very similar sounding timbre, e.g.
sound of the rain hitting the roof and sound of food frying in a pan of hot oil.
Unable to approach timbral similarity in the same technical sense as it is for
melody, musicians may deduce that two sounds are less dissimilar timbrally than
melodically, hence explaining their sound similarity perception.

At this stage, it is still difficult to conclude whether sound similarity perception
in humans is influenced by their musical training alone. Age, experience and even
sex might have also affected the result. However, it is clear that sound similarity is
still a very wide and complex area that is yet to be fully understood. To develop a
working CSS system with human-centred artificial intelligence that can understand
and suggest similar sounds to what humans actually perceive at the time when they
perform the sound similarity query is a really difficult challenge. Unfortunately, due
to the extreme complexity (too many features to compute, extract, and map to the
correct sound attributes, data too large to make analysis from, subjective nature of
the topic, etc.), this level of perfection is yet to be accommodated.

21.7 Is Similar, Interesting?

Supposing that a flawless technique has been developed to locate source units that
has a 100% similarity rate with the original seed units on every single sound
features extracted, at every single time that it is run. This flawless technique will
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have appeared utterly useless for generating new sounds, as theoretically, it will be
composing its identical self. This brings out the next fundamental question in
synthesis new sounds via a CSS system—how similar is desirable? Furthermore,
does high similarity always equate to high creativity and interestingness? In the
field of sound retrieval, the highest possible similarity score is always sought, but in
a more creative and artistic purposes such as sound composition, higher is not
always better.

Likewise, if the sounds are too similar, is it not of little use for the composers as
it lacks originality? It may even tread into the serious issue of plagiarism. This
opens up another thought-provoking question: how similar is acceptable? A definite
answer to this question cannot be easily derived, and certainly beyond the scope of
this chapter, but it is nonetheless interesting to note that the performance of a CSS
system cannot simply be measured solely on the use of precision and recall as is the
case in many sound similarity systems or speech synthesis systems.

A study to understand the correlation between similarity and interesting has been
done in [22], where participants were presented with a target sound, followed by
another sound which was explained to them as a source sounds synthesized using
CSS (not all were). A total of ten sounds were presented, and they appeared in an
ascending order based on their similarity scores. Participants were asked to listen to
a list of target sounds and then make a subjective judgement on their perceived
similarity between both sounds. They were also asked to rate the ‘interestingness’
level of the synthesized sounds, i.e. is how pleasant or amusing they found the
sound that was synthesized from the target sound to be using a Likert scale. For
measuring perceived similarity, the scale was between (1) entirely different and
(5) exactly the same. For measuring perceived interestingness, the scale was
between (1) extremely uninteresting and (5) extremely interesting. The list of songs
is seen in Table 21.1, where the first five sounds were assortment of synthesis
results based on loudness, spectral and timbral content, and sounded granular like.
The last three sounds in the test were not actually synthesized sounds, but main-
stream songs which had been chosen because the analysis on their melodic contour
showed that they were melodically similar to their target sounds.

The study found that with respect to similarity, both musician and non-musician
groups agreed that as the listening test progressed, the sounds appeared to possess
more similar qualities to their targets (Fig. 21.12). This suggests that general
agreement on sound similarity is very much possible.

The same could not be said, however, for the humans’ perception of sound
interestingness. The non-musician group had exhibited a general disinterest in the
earlier sounds presented, but thought the sounds towards the end of the test, where
the similarity scores were higher, were more interesting. On the other hand, the
musician group seemed have a neutral liking of all sounds initially, but exhibited a
drop in the interestingness score for the last few sounds with higher similarity score
(Fig. 21.13).

Thus, humans possessed the same ability and managed to achieve an agreement
with regard to judging sound similarity which tallies with the similarity score
calculated, irrespective of their musical training background or knowledge of
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music. This occurrence suggests that perhaps similarity is an innate skill for
humans. Judgement on sound interestingness, however, was not as straightforward
as musicians do not always perceive sounds with higher similarity sounds score to

Table 21.1 List of songs for similarity versus interestingness

Target Source Matching criteria CSS system

1 Mahler, Ritenuto (2nd
Symphony)

Monkeys Loudness,
spectral rolloff

Matconcat

2 Mozard, Sonata K 457
(3rd Mvmt)

Whales Spectral centroid ConQuer

3 Meat Purveyors, Circus
Clown

Indris Spectral centroid ConQuer

4 George W. Bush,
Military Speech

Monkeys Unlisted MATConcat

5 Schoenberg, String Qrt 4,
(lst Mvmt)

Anthony Braxton Spectral centroid,
spectral rolloff

MATConcat

6 Cornershop, Brimful of
Asha

Cornershop, Brimful
of Asha (remix)

Melody N/A

7 Natasha Beddingfield,
Pocketful of Sunshine

Lady Gaga, So
Happy 1 Could Die

Melody N/A

8 Green Day, Warning The Kinks,
Picture Book

Melody N/A

Fig. 21.12 Perceived
similarity judgement between
musician and non-musician
group

Fig. 21.13 Perceived
interestingness judgement
between musician and
non-musician group
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be more aesthetically pleasing. This difference is perhaps due to the different ways
in which the brain is programmed between the two groups upon hearing an audio
event. Rigorous training and experience over the years has left musicians to per-
ceive the musical experience primarily in the left hemisphere of their brains. This
made them more analytical and approach music more intellectually. On the other
hand, non-musicians dominantly occupy the right hemisphere of the brain during a
listening task, and hence they do not analyse music, but are simply experiencing it
[27].

Also with respect to interestingness, many educated musicians may not appre-
ciate music unless it is ‘profound’, whereas non-musicians, who are the majority,
may prefer music that makes them feel good. So it is possible that a musician writes
a piece of music that is extremely complex and is heralded by the academic music
world as a masterpiece, but the same piece may only be perceived as boring or too
cerebral by the general [9]. Non-musicians are also likely to be influenced by the
‘exposure effect’, where familiarity with, or exposure to, repeated songs bred
partiality on the sounds that they favoured [17]. This means that unfamiliar sounds
are perceived as peculiar and unpopular.

As sound similarity and sound interestingness do not always occur simultane-
ously, for any sound creation tool like the CSS system, the key to synthesizing the
‘right’ materials lies in finding the balance between similarity and interestingness.
The synthesized sounds must not be too similar to the target to be perceived as
boring or unoriginal, yet at the same time not too dissimilar as to render the
involvement of the target segment useless or falsely accused as plagiary. Again, the
incorporation of not just AI, but human-centred AI, is imperative in order to obtain
an insight over complex thinking process that a human composer goes through.
This will undoubtedly avoid synthesis results in a CSS system that mismatch user’s
expectations.

21.8 Where Are We Now?

This chapter has highlighted that in order to overcome the challenges in synthe-
sizing new sounds through a CSS system, the human cognitive domain must first be
well explored and understood. The information obtained from the users must then
be converted into some form of AI solutions. In order to improve sound similarity,
the elements that are used by humans as a common ground as the basis of sound
similarity (and many other elements too!) in performing tasks that involve sound
similarity perception must be determined. It is apparent that HCAI is essential to
crack the code of each composers who wishes to synthesize new sounds using a
CSS system. Without a common ground declared, it is very likely that a CSS
system will never be able to generate sounds that match the expectation of its users,
despite having a large repository of source sounds. This mismatch can leave the
user feeling puzzled by the output, and perhaps brandishing the system as a failure,
even when it is fully functional. Likewise, it is important that the mindless tweaking
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of the parameters that leaves users feeling overwhelmed and frustrated is fixed. The
soul-less representation of numerical data to communicate results to users often
means distancing any valuable qualitative input from users such as similarity
judgement and feature priority judgement. Existing CSS systems may still rely on
some form of human input in order to synthesize sounds, but CSS has come a long
way since the days Pierre Schaffer had to cut and paste magnetic tapes manually by
his own bare hands. Although complete automation is not yet achieved and the
level of intelligence integrated within the CSS system is no match to that of humans
(yet), exciting possibilities of more intelligent solutions are emerging in the near
future. Soon, a CSS system will be able to not only read and materialize the sounds
which are inside the minds of composers, but it will be taking it a step further by
actually generating sounds which the composers have not thought of yet, but would
have come up themselves had they have more resources (time, money, inspiration,
and so on and so forth).

But for the time being, CSS can do exactly as its name suggests—concatena-
tively synthesizing sounds.
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22DeepGenerativeModels forMusical
Audio Synthesis

Muhammad Huzaifah and LonceWyse

22.1 Introduction

Sound modelling is the process of developing algorithms that generate sound under
parametric control. There are a few distinct approaches that have been developed
historically including modelling the physics of sound production and propaga-
tion, assembling signal generating and processing elements to capture acoustic fea-
tures, and manipulating collections of recorded audio samples. While each of these
approaches has been able to achieve high-quality synthesis and interaction for specific
applications, they are all labour intensive and each comes with its own challenges
for designing arbitrary control strategies. Recent generative deep learning systems
for audio synthesis are able to learn models that can traverse arbitrary spaces of
sound defined by the data they train on. Furthermore, machine learning systems are
providing new techniques for designing control and navigation strategies for these
models. This paper is a review of developments in deep learning that are changing
the practice of sound modelling.

The development of capable “guided” parametric synthesis systems, that is, the
generation of sound given some user-determined parametric inputs, remains as one
of the foremost challenges in digital audio production. A central challenge is that it is
not enough for a model to generate a particular sound whether it be a drop of water or
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a whole symphony. A sound model includes an interface that can be used to traverse
a space of sounds along different paths. A musical wind instrument, for example,
affords access to a constrained class of sounds, and allows fingering patterns for
the control of pitch, embouchure for timbre, or breath pressure for loudness. There
is no a priori limit on the range of sounds a designer might want from a model,
nor the trajectories through the space they might desire to navigate via the interface.
Deep learning-based generative models can be seen as spanning ground between two
types of control principles—one in which the user directly controls all aspects of the
synthesis at each step akin to playing an instrument, and another whereby almost
all decisions are left to the system, allowing sound to be generated unconditionally.
There exists a broad spread in research focus along these lines, from finding novel
control strategies for pre-existing models to designing algorithms comprising the
sound synthesis.

Although each extreme has its merit and use cases, there is an increasing need in
media production for more adaptable systems that marry extensive modelled knowl-
edge to the flexibility of shaping the audio output in real time. For instance, a live
performer may wish to blend the timbres of several distinct acoustic instruments
with natural sounds to create unique soundscapes on the fly. On the other hand, a
developer may want to procedurally generate background music in a computer game
based on certain in-game cues. A new approach to modelling audio utilizing deep
learning paradigms may offer an avenue to build such systems.

Deep learning has seen a surge of interest in the recent past, not least because of
its huge potential in actualizing many practical applications, including many areas of
signal processing. It is already in widespread use in the music information retrieval
community [6], while many have declared automatic speech recognition as a largely
“solved” problem with the advent of deep learning technology [57]. The remarkable
ability of deep learning models to extract semantically useful features and utilize
them for such downstream tasks has directed researchers to not only purpose these
models to analyse and process existing data, but to actually generate new data.

Deep generative models are a powerful subset of deep learning networks that
discover latent structure in data in order to generate new samples with the same dis-
tribution as the training data. Unlikemore common learning objectives that try to dis-
criminate labelled inputs (i.e. classification) or estimate a mapping (i.e. regression),
generative models instead learn to replicate the hidden statistics behind observed
data. This “understanding” of the structure of data space allows them to display
impressive expression capabilities on a variety of audio and non-audio-related tasks.
For image media, state-of-the-art generative adversarial networks are now able to
synthesize extremely life-like human faces, even retaining some control over both
broad and fine-grained stylistic features in the process [44]. Audio data has unique
characteristics that make it a challenge to synthesize with reasonable fidelity using
existing techniques derived primarily for visual applications. Despite this, current
deep learning models have often shown to outperform previous widely used para-
metric models such as the hidden Markov model, especially in applications where
adequate data is available.
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In the following sections, we will analyse several key deep generative models
developed for musical audio synthesis. This is prefaced by a discussion on the audio
synthesis task and as well as a broader introduction tomore generic generative neural
networks that form the basis of the systems used for audio. Although the focus of
this chapter will be on the musical domain, some discussion on speech models
will also be included to provide a better general picture of the capabilities of deep
generative audio models, and because there are many overlapping issues concerning
audio synthesis and issues of designing real-time control. We will also give little
attention to musical modelling in the symbolic domain of notes except where it is
directly relevant to audio modelling such as when notes are used as parameters to
conditionally synthesize audio.

22.1.1 Overview

22.1.1.1 Problem Background
Synthetically generated media is ubiquitous today. This holds true in the musical
domain, where digital synthesizers have been widely and increasingly used in both
production andperformance.Artists and engineersworkwith synthesizers in a variety
of roles that typically fall within one of the following scenarios:

• generate interesting or novel sounds or timbres that are infeasible/impossible to
be produced acoustically;

• simulate the sounds of real-world acoustic instruments or of other sources such as
environmental sounds;

• facilitate the automation of systems and processes (e.g. text-to-speech, virtual
assistants, etc.)

In terms of a computational task, the process driven by a digital synthesizer is that
of guided audio synthesis. Succinctly, the aim is to produce a sound with particular
characteristics defined by the user. As illustrated in Fig. 22.1, we can further distil this
overall objective into two associated aspects: that of generation and that of control.
The former concerns the algorithm behind the actual sound production, while the
latter relates to how this sound can be shaped (hence “guided”). A considerable body
of literature on sound modelling has been devoted to mapping musical gestures and
sensors through an interface to the parameters a signal-processing algorithm makes
available [40,82].

In the natural physical world, a sound is generated as a result of a physical interac-
tion between two or more objects called “sources” or “excitors”, that is, transmitted
in the form of pressure waves through a medium. In the digital realm, a synthesis
algorithm tries to replicate the target sounds without having or requiring physical
sources. There are many approaches to sound modelling, and each has advantages
and disadvantages for different classes of sounds, as well as in terms of expres-
siveness, control and computational efficiency. A “physical modelling” approach
mathematically models the physics that generate a target waveform (see, for exam-
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ple, [72]). An example is using equations that model travelling waves along strings
attached to resonating bodies and excited by a bow being drawn across the string.
One advantage of physical modelling is that the equations expose parameters that are
intuitive for control such as bow pressure, string length and stiffness, and resonating
body size. An “acoustic modelling” approach uses signal generators and processors
for manipulating waveforms such as oscillators, modulators, filters and waveshapers
designed to generate acoustic features regardless of physical processes. Commer-
cial synthesizers are comprised of such units that can be configured to generate a
vast variety of sounds, but expose algorithm-specific parameters that may not be as
manageable or intuitive as physical model parameters for control. Prerecorded sound
samples are also used in several techniques and can obtain a natural quality difficult
for purely synthetic approaches. Techniques in this category include wavetable syn-
thesis for musical instruments which uses looping to extend note durations and layers
for timbral variation. Concatenative synthesis, more common for speech, draws on
a large database of very short snippets of sound to assemble the target audio. Pre-
recorded samples have the naturalness of the recorded audio, but present their own
control challenges for achieving arbitrary sequences of sound samples. Manually
constructing synthesis algorithms that cover a specific range of sounds under desired
parametric trajectories and that capture the complexity of natural audio is a difficult
and labour-intensive task.

22.1.1.2 Data-Driven Parametric Synthesis
Statistical models first came to prominence in the 1980s with the hidden Markov
model (HMM) that eventually dominated the fields of automatic speech recognition
and generation. HMMs use a series of hidden states to represent non-stationary
acoustic features and are often combinedwith aGaussianmixturemodel (GMM) that
admits frame-wise mappings beneficial for several speech generation tasks such as
voice conversion and speech enhancement [50]. Statistical models learn their model
parameters from data as opposed to expert design in the case of physical and acoustic
models. The data-driven nature of statistical parametric models would make them
similar in that aspect to sample-based techniques. Indeed, data-driven parametric
synthesis systems posses many of the positive qualities of the prior approaches.

Control
parameters

Synthesis
algorithm

Output audio

Fig.22.1 Ahigh-level system view of the audio generative task. A user interacts with the system via
control parameters to change various qualities of the waveform. A synthesis algorithm determines
what kind of parameters are available and their relation to the overall waveform, which would
indirectly instruct how the user goes about conceiving a particular sound
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The more modern successor to HMMs are deep generative models, also known as
generative neural networks, that are more powerful and scale much better with data.
They are also capable of “end-to-end” learning (without separate components for
feature extraction, processing and feature-to-audio synthesis) whereas HMM-based
models operate on and produce engineered features not learned by the model.

The idea behind generative neural networkmodels is to synthesize sounds accord-
ing to the learned characteristics of an audio database. The generated sound would
therefore be perceptually similar to, but not merely be reproductions of, the data
the model was trained on. The underlying assumption here is that the training data
(audio plus metadata) contains all the necessary information required to recreate the
different dimensions of the desired sound(s) without the model requiring a priori
knowledge of those properties. During training, the network is tasked to find pat-
terns, dependencies and variations in the data. This process can be framed as an
instance of the inverse problem, where we try to determine the causal factors to a set
of observations. Whereas physical modelling synthesis finds an analytical solution
that corresponds to a set of equations governing the sound production and propaga-
tion, generative neural networks provide a numerical solution withmodel parameters
(i.e. the network weights) that may or may not correspond to real-world physical or
perceptual parameters.

22.1.1.3 Control Affordances
One drawback of using the physical, acoustic and sample-based approaches to inter-
active sound model design is that the interface to the model is either the set of
parameters inherent in the equations or algorithms used for synthesis, or else it is
designed separately by mapping desired control gestures to the parameters exposed
by a synthesis algorithm. However, the affordances [73] for interaction are a criti-
cal part of the expressive potential of a sound model designed for music. Machine
learning approaches have been used for mapping gestures to the space of algorithm
parameters. Fels and Hinton [19] described a neural network for mapping hand ges-
tures to parameters of a speech synthesizer. Fiebrink [20] developed the Wekinator
formapping arbitrary gestures to parameters of sound synthesis algorithms. Fried and
Fiebrink [23] use stacked autoencoders for reducing the dimensionality of physical
gestures, images and audio clips. Francoise et al. [22] developed various strategies
formapping complete gestures to parameters of synthesizers. Fasciani andWyse [18]
used machine learning to map vocal gestures to sound, and separately to map from
sound to synthesizer parameters for generating sound. Gabrielli et al. [24] used a con-
volutional neural network to learn upwards of 50 “micro-parameters” of a physical
model of a pipe organ. These techniques show the value of various machine learning
techniques for gesture mapping, but they all use predefined synthesis systems for
the generation of sound or images, and are thus limited by the capabilities of the
synthesis algorithms they learn to control. They do not support learning mappings
“end to end” between gestures and arbitrary sound sequences.

How can we design networks that not only generate data from distributions on
which they have been trained, but do so under the type of intimate control that we
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require of musical instruments? Deep learning networks do not facilitate reworking
their internal structure during the generative phase as a viable means of controlling
the output. Several studies from both audio and vision fields therefore focus on the
training phase instead to determine the characteristics of the post-training generative
phase. This has seen the use of specialized architectures (e.g. Siamese networks
that learn two different genres of music from a common input of sheet music [52]),
specific loss functions (e.g. first- versus second-order activation losses to abstract
“style” and “content” from images [27] or spectrograms [76]) or curated training sets
(e.g. adding or removing representative data to bias the model output a certain way
[21]). However, there are several limitations with these approaches, especially in the
context of an audio synthesizer in a production setting. Firstly, they are fundamentally
not dynamic in real time, requiring time-consuming re-training to alter the synthesis.
They furthermore conflate many perceptual dimensions without allowing more fine-
tuned control over each independently. Also they do not offer easy ways to add new
control dimensions to existing ones.

An alternative strategy available for controllable generative models is condition-
ing, whereby auxiliary information is given to the model in addition to the audio
samples themselves during training. If the generative phase is run without such infor-
mation, samples are drawn from the model distribution based on the whole training
set. For instance, for a network trained on sample vectors of speech without being
augmented with phonemic information, the generation produces “babble”. How-
ever, when conditioned with the augmented input information during training, the
phonemic part of the input can be externally specified so that the audio samples are
generated conditionally based on the phonemes presented in the input sequence. This
technique has been used successfully in networks used for sequence generation such
as WaveNet [77] and Char2Wav [74], a conditional extension of SampleRNN [54].
Conditional models provide a means to directly influence the synthesis with more
intuitive labels since the dimensions are chosen by the model developer. Choosing a
set of conditional parameter values is comparable to restricting the output generation
to a restricted region of the complete data space. It is also possible to use learning
mechanisms to discover low-dimensional representations that “code” for different
regions of the whole data space and that can then be used during generation. Models
that incorporate conditioning now form a huge part of generative deep learning lit-
erature and the concept has played an important role in their success. Conditioning
strategies are addressed in more detail below.

22.1.1.4 Data Representation and Hierarchy
At the heart of the deep generative model is the data used to train them. Audio as data
is representationally challenging since it is a hierarchically structured medium that
can be encoded in different forms. Moreover, the various levels of structure coexist
and interact and support different descriptive levels of abstraction and experience
(see Fig. 22.2). What is representationally appropriate then is dependent upon the
task objective, which would in turn be greatly influence the model design.
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Fig.22.2 Audio representation in the musical domain exists as a hierarchy of timescales and levels
of abstraction, starting from smallest digital audio quantum of a sample, up to the entire musical
passage, often represented symbolically in the form of a score. A generative model of audio that can
capture structure of all the different timescales may not be entirely feasible without compromising
quality at some scale, usually manifesting as a loss in fidelity or a lack of long-term structure. The
task can be made easier by focusing on a specific timescale and using the appropriate representation

Many generative models of music are built around the use of high-level symbolic
(e.g. note) representations such asMIDI, sheetmusic or piano rolls that abstract away
the peculiarities of a particular musical performance. Although relatively simpler to
model compared to other forms of audio, they lose themore fine-grained nuances that
are present in performed music which may negatively impact the overall enjoyment
of the listener.

Another class of audio representations are transformed signals that represent
“frames” or “windows” of audio samples in vectors that are sequenced in time at a
much lower rate than sampled audio. Spectrograms are an example of a time ver-
sus frequency representation. A two-dimensional representation suggests the use of
techniques developed for images for discriminative and generative tasks. However,
audio data in the time and frequency dimensions behave very differently than typical
image data, and do not necessarily suit the assumptions built in to image processing
networks [41,88]. Furthermore, while a complex spectrogram can be lossless, a typ-
ical representation in practice is the magnitude-based spectrogram which requires
an audio signal to be reconstructed. The most common technique for “inverting”
a spectrogram comes from Griffin and Lim [33] but it requires information from
across the duration of the entire signal, so is not directly applicable to real-time
interactive generative systems, though more recent techniques have addressed this
issue [92] and dramatically increased the quality [63] achievable. Other spectra-
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based representations such as mel-scaled spectrograms or mel-frequency cepstral
coefficients (MFCCs) are common but even more lossy. Neural network “vocoders”
have been developed that learn to generate plausible audio signals from such repre-
sentations [75].

Themost straightforward audio representation is the raw sampled audiowaveform
which is lossless and trivially convertible to actual sound. Unlike symbolic represen-
tations that may be instrument-specific, models that operate on raw audio samples
can be applied to any set of instruments and even non-musical audio like speech
and environmental sounds. All the musically relevant nuances and idiosyncrasies
are also embedded in an audio waveform. On the other hand, modelling such wave-
forms is extremely challenging, particularly in the handling of the inherent long-term
dependencies in sound over time. This is exacerbated by the fact that audio signals
are sampled at high temporal resolutions, from between 16000 and 48000 samples
per second. This makes capturing typical musical time dependencies that span many
seconds or minutes difficult for some network architectures.

As shown in Fig. 22.2, the shift from shorter to longer timescales broadly coincides
with the use of more symbolic representations to capture and transmit information
at increasingly higher levels. The guided synthesis task of interest is, on the whole,
more focused on local musical structures such as timbre and pitch. Accordingly, the
systems that will be discussed here tend to directly model raw audio signals in the
form of digital samples in a PCM stream or processed with other standard quanti-
zation encodings such as μ-law. We do not address “automatic music composition”,
which concerns much longer timescales and attempts to model concepts that are
relevant at the level of a song or musical piece like continuity, repetition, contrast
and harmony. The majority of automatic composition models also use symbolic rep-
resentations as input data to abstract away low-level information, making the capture
of longer time dependencies more feasible. Performance RNN [58] is an example of
an automatic music composition network that jointly predicts MIDI notes and also
their expressive timing and dynamics.

In summary, the paradigm for guided audio synthesis put forth in this chapter
focuses on modelling local structure and leaves the longer term evolution of the
sound to user control. This entails working mainly in the raw audio domain which
contains the greatest detail at short timescales.

22.1.1.5 Audio Domains
The types of audio from the literature can essentially be divided into three spheres of
speech, music and environmental sounds. The primary concern here is with models
for musical sound with a focus on pitch, timbre and articulation characteristics.
Nevertheless, a portion of the synthesis systems analysed were not developed for any
particular domain, and like many deep learning models, are agnostic to the dataset
used to train them. Since they are trained on raw audio, many of these generative
models can be extended to music even though they were not specifically built for
that purpose. A large number of generative models for audio were developed first
and foremost for speech applications. Some speech models will also be included
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for a more comprehensive discussion on audio-based deep generative models as the
development in that field runs parallel to the development of synthesis models for
music.

22.1.1.6 RelatedWorks
We end this section by providing a brief outline of other reviews of deep generative
models for audio that may be of relevance.

Briot et al. [3] provide a comprehensive survey of systems that generate musical
content through amulti-pronged analysis in terms of objective, representation, archi-
tecture and strategy. Another work on music generation by deep learning [4] instead
orient their analysis in terms of domain challenges. They look at concepts such as
originality, control and interactivity, among others, and determine how current mod-
els can fill these gaps (or fall short of fully addressing the issues). For speech, Ling et
al. [50] evaluate various statistical parametric models, noting the shift from the well-
established hidden Markov model (HMM) and Gaussian mixture model (GMM) to
deep learning architectures, though the systems highlighted mostly belong to older
classes of deep learningmodels such as deep believe networks (DBNs) and restricted
Boltzmannmachines (RBMs). These nonetheless share similar theoretical underpin-
nings with the more modern autoencoders that are widely used for current generative
tasks. Henter et al. [36] discuss unsupervised learning methods for expressive text-
to-speech, especially in the context of variational autoencoders. Purwins et al. [64]
go against the trend of domain-specific surveys. They instead give a broad overview
of the advances in deep learning as applied to audio processing. A wide range of
methods, models and applications including both analysis and synthesis aspects are
covered albeit without going into detail. Perhaps the closest in terms of content to the
review here is an overview of generative music models dealing with raw waveforms
by Dieleman [11], which, for the reader wanting to gain a more complete picture of
the field, would serve as a good follow-up text to this work.

The next section will introduce some of the key deep learning architectures that
form the basis for generative musical audio models, important for the understanding
of how these models work and the motivation behind them. Specific generative
systems from the literature will be discussed afterwards as part of a narrative on the
conceptual development of a functional synthesizer.

22.1.2 Generative Neural Networks

Statistical generative or predictive models based on artificial neural networks have
gained prominence since the development of the generative adversarial network
(GAN) in 2014. To better understand how they work, it is best to study generative
models through the lens of probability theory. The core goal of a generative model is
to approximate an underlying probability distribution pdata , given access to a finite
set of samples drawn from this distribution. Training a generative model entails
choosing the most plausible model parameters that minimize some notion of dis-
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tance between the model distribution and the true data distribution. More formally,
given training data points X as samples from an empirical distribution pdata(X), we
want to learn a model pθ (X), belonging to a model family M that closely matches
pdata(X), by iteratively changing model parameters θ . In short, we specify the fol-
lowing optimization problem.

min
θ∈M d(pdata, pθ )

A commonly used objective function d to evaluate the quality of the model and
drive learning is the Kullback–Leibler (KL) divergence, a measurement of how dif-
ferent two distributions are, which satisfies the required notion of a quantifiable
“distance” between the data distribution and model distribution. Equivalently, min-
imizing the KL divergence can be thought of as maximizing the log-likelihood of
data points X with respect to the model distribution pθ .

To understand just how difficult the problem of generating audio data is, we can
have a look at the size of its state space, or the number of possible configurations a
segment of audio can take. With a conservative assumption of 1 s of audio, sampled
at 16kHz with 8 bits per sample (i.e. 256 possible values), there exists 25616000 ≈
1038500 possible sequences, a number that will only get larger for longer sequences
or with higher quality and therefore impossible to capture by just memorizing all
possible configurations. Fortunately, real-world audio is highly structured, and it is
this underlying structure that the generative neural network aims to learn.

When trained in a supervised setting with inputs X and targets Y , a generative
model estimates the full joint probability p(Y, X), which can not only predict Y but
also say something about the generative process of X . In contrast, a discriminative
model would learn to output the most likely Y for a given X more directly with
a conditional distribution p(Y |X). Although learning a conditional probability is
oftentimes much easier, with the joint probability, a generative model can be used
in a number of interesting ways. For our main objective of synthesizing audio, we
can sample from the model distribution to generate novel data points (in which case
Y is also a complex high-dimensional object like an audio waveform as opposed
to a label). Since the model distribution is close to the dataset distribution, we get
something perceptually similar to the training data. Generative models can also be
used for density estimation, that is, assigning a likelihood value to a given X . This
can provide an indication of how good the model actually is in approximating pdata .
Finally, generativemodels are often used for unsupervised representation learning as
an intermediate objective. Internally, the deeper neural network layers making up the
model have a significantly smaller number of parameters compared to the input data,
thereby forcing them to discover and capture the essential dependencies mapping
the low-level input to a higher level abstracted representation known as the feature
space/latent space. The latent variables extracted by the model are often essential
for further downstream inference tasks such as classification and conditional gener-
ation. With such flexible and powerful properties, researchers have used generative
models for many objectives aside from synthesis, including data compression and
data completion.
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Fig.22.3 One way of organizing different generative models is by looking at how the model treats
maximum likelihood and whether the density distribution is explicitly or implicitly expressed.
This chapter covers some of the important generative model families in current use for audio
synthesis. Autoregressive models (Sect. 22.1.2.1), variational autoencoders (VAEs) (Sect. 22.1.2.2)
and normalizing flowmodels (Sect. 22.1.2.3) constitute explicit densitymodels, while the generative
adversarial network (GAN) (Sect. 22.1.2.4) is an implicit density model. Included under each
heading is a non-exhaustive list of essential audio-related works that utilize that model type

One caveat to take note of when using generative networks is that not all model
families can perform equally well on every inference task. Indeed, the various trade-
offs in their inference capabilities plus the particular assumptions made on a given
dataset have led to the development of a wide array of generative networks which we
break down in Fig. 22.3. Since many generative models are trained using maximum
likelihood estimation as mentioned, a natural way to taxonomize generative models
is in how they represent the likelihood. Some types of networks allow for the explicit
formulation of themarginal likelihood p(X) of the data. These include autoregressive
networks and variational autoencoders. In other cases, a training regime specifies a
stochastic process that instead requires the network to have implicit knowledge of
the underlying probability distribution to sample from, an example of which is the
GAN. In practice, being able to calculate the likelihood provides an unambiguous
way of measuring how close the model is in approximating the real data distribution;
with GANs, we can only evaluate the model by looking at the generated examples
and comparing them to the real data.

The rest of this sectionwill elaborate several of thesemodel families that have been
used for audio synthesis with varying success. Researchers have taken advantage of
their different properties to fulfil a range of audio generative tasks and challenges.
Generally from the most to least widespread in current use for audio they are

• Autoregressive models—make sample predictions sequentially in time;
• Variational autoencoders (VAEs)—used to discover low-dimensional parametric
representations of the data;
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• Normalizing flowmodels—for speeding up generation andmodelling complicated
distributions without “bounding” approximations;

• Generative adversarial networks (GANs)—for speed and parallelization, develop-
ing representations that apply globally across the temporal extent of a sound, and
producing large chunks of audio at a time.

22.1.2.1 Autoregressive Models
The first type of generative network in focus is designed specifically with sequential
data in mind, and hence lends itself naturally to audio data viewed as a temporal
sequence. Autoregressive networks define an explicit and computationally tractable
density model by decomposing the probability distribution over an n-dimensional
data space X into a product of one-dimensional probability distributions via the chain
rule of probability.

p(X) =
n∏

i=1

p(xi |x1, ..., xi−1)

We see that data is assumed to have a canonical sequential direction—the current
term in the sequence (xi ) is only conditioned on a recency window of previous terms
and not on “future” terms relative to the current. These models learn to predict the
next sample in time given what has come just prior. It is in part this “causality” that
permits real-time manipulation of the generated audio using techniques described
below. Autoregressive models are also known to be easier to train in comparison to
the other model families discussed after.

The process of basing the subsequent prediction on previous terms may seem
similar to the perhaps more familiar recurrent neural network (RNN). Indeed an
RNN can be cast as a type of autoregressive model that compresses the prior terms
into a hidden state instead of providing them explicitly as input to the model. RNNs
have been used as building blocks for more complex autoregressive models of audio
such as SampleRNN [54]. Each layer in SampleRNN is comprised of RNNs that
work to capture dependencies at a particular timescale.

Autoregressive models, however, are not exclusive to the RNN. At the time of
writing, the most prevalent generative model for audio was proposed by van den
Oord et al. at DeepMind, known as WaveNet [77]. Where an RNN sees only one
input sample at each time step and retains the influence of past samples in its state,
WaveNet has explicit access to a past window of input samples. The constituents
of WaveNet are convolutional neural networks (CNNs) where each neural network
layer learns multiple filters for which to process the input to that layer. To make
CNNs abide by the autoregressive principle, the filters are partly masked to avoid
a computation with non-causal inputs of the data. A big advantage of CNNs over
RNNs is their capacity for parallelism, where a long input sequence can be processed
quickly as a whole. This can greatly speed up training since the entire output can
be processed in one forward pass. At generation time, however, there is no training
data to base previous time steps, so the model has to wait for each sample to be
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generated in turn in order to use it to predict the next sample. Slow generation is
one inherent weakness of autoregressive networks that has been addressed by other
model families, namely, normalizing flows and GANs.

Another drawback of autoregressive models is that they do not learn unsupervised
representations of data directly by themselves, and so we do not have access to a
feature space intrinsically. Aworkaround is combining an autoregressive model with
a separate encoder to allow the autoregressive network to condition itself on latent
variables provided by the encoder to augment the input data. van den Oord et al.
[79] demonstrate other types of conditioning as well, including one-hot encodings
of class labels and features taken from the top layers of a pre-trained CNN. The
combination of an autoregressive model with an additional encoder network has
been used extensively in the literature to impose some conditioning influence over
the synthesis procedure, including for extensions to WaveNet as in Engel et al. [16],
discussed in more detail in Sect. 22.1.7.

22.1.2.2 Variational Autoencoders
Thevariational autoencoder (VAE) [47] belongs to a family of explicit densitymodels
known as a directed latent variable model. Whereas a standard autoencoder will
learn a compressed representation of the dataset, the VAE extends this by learning
parameters of a probability distribution in the latent space fromwhich samples can be
drawn.One important use for latent variablemodels in doing domain transformations
or feature interpolations, sometimes casually referred to as “morphs”. Various works
have demonstrated this effect by blending two distinct timbres or extending the pitch
range of a particular instrument [16,51], where the associated timbres and pitches
were learnt by the model from data in an unsupervised or semi-supervised fashion.
For completion, other partially relevant systems that were not tested on raw musical
audio but may be of interest include DeepMind’s VQ-VAE [81] that deals mostly
with speech and Magenta’s MusicVAE [66]) which uses MIDI.

The high-level architecture of VAEs, shown in Fig. 22.4, is similar to the standard
autoencoder—an encoder network takes inputs andmaps them to a latent space space
comprised of latent variables z, then a decoder network uses the latent variables
to produce an output. The VAE places additional constraints on the form of the
latent space and introduces a loss function based on KL divergence for probability
distributions jointly trained with the standard autoencoder reconstruction loss.

To motivate the VAE framework, we start with an inference model from Bayes’
rule.

p(z|X) = p(X |z)p(z)
p(X)

Unfortunately, in many cases, computing p(X) directly is intractable. To approxi-
mate the posterior p(z|X), either aMonte Carlo (sampling) approach would be used,
or as in the case of VAE, variational inference. The variational approach circumvents
the intractability problem by defining a new distribution q(z|X) and tries to make it
as similar to p(z|X) as possible by minimizing their KL divergence. By substituting
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Fig.22.4 Architecture of a VAE. The encoder processes the input data X = (x1, x2, . . .) and maps
them to a Gaussian distributed latent space q(z|X) parameterized by mean μ and variance σ . The
decoder samples from this latent space using p(X |z) to produce a synthetic output X̂

the inference model above into the formula for KL divergence and rearranging, we
can derive the objective function that we maximize, known in this context as the
variational lower bound L (see Doersch [13] for full details on the derivation).

L = Ez∼q(z|X)[log p(X |z)] − DK L [q(z|X)||p(z)]
The first term on the right-hand side can be interpreted as the reconstruction loss.

This naturally lends itself to an autoencoder design, trained to reconstruct its own
input. Regularization is provided by the KL divergence term where the form chosen
for p(z) is typically a unit Gaussian distribution. The intuition behind this is to
encourage the encoder to distribute all encodings evenly around the centre of the
latent space instead of clustering them apart. The resultant continuous latent space
then allows smooth interpolation between variables during generation by sampling
from p(X |z). Musically, a smooth interpolation of the latent space can create smooth
audiomorphs [71] bymanipulating these parameters that define the distributions from
which different types of audio are drawn during generation.

22.1.2.3 Normalizing FlowModels
As we have seen, autoregressive models provide tractable likelihoods but no direct
mechanism for learning features. On the other hand, VAEs can learn feature rep-
resentations but come with intractable marginal likelihoods. Normalizing flows is
another family of models that combines the best of both worlds, allowing for both
representation learning and tractable likelihood estimation. This means that normal-
izing flow models have access to latent data features that can be used to condition
the generation like the VAE, while possibly learning a more accurate representation
of the data distribution.
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Fig. 22.5 A normalizing flow model transforms a simple distribution shown here as p0(z0) to a
more complex one pk(zk), after k such forward mappings. The resulting output distribution can be
taken as the learned distribution of the data. Figure reproduced from Weng [86]

Perhaps themost prominent utilization of normalizing flows from the audio gener-
ation literature is Parallel WaveNet [80]. It takes advantage of the parallel generation
possible with an inverse autoregressive flow (IAF) [46] that was not previously possi-
ble with the purely autoregressive nature of the original. This advancement improved
the efficiency over the vanilla WaveNet by a factor of 300, essentially making faster
than real-time generation achievable. Aside from Parallel WaveNet, other significant
flow models developed specifically for audio generation include ClariNet [61] and
the non-autoregressive WaveGlow [62] primarily used for speech.

The key concept behind normalizing flows is to map simple distributions to more
complex distributions using the change of variables technique. We start off with
a simple distribution such as a Gaussian for the latent variables z that we aim to
transform into a complex distribution to represent the audio output X . A single
transformation is given by a smooth and invertible function f that can map between
X and z, such that X = f (z) and z = f −1(X). Since a single transformation
may not yield a complex enough distribution, multiple invertible transformations are
composed one after another, constructing a “flow”. Each mapping function in the
flow can be parameterized by neural network layers (Fig. 22.5)

All the advantages of normalizing flows do come with certain compromises.
Unlike the other model families discussed here, normalizing flow models have a
much more restrictive set of requirements when it comes to its architecture, namely,
an invertible mapping function, an easily computable determinant of the Jacobian
matrix needed to calculate the likelihood, and an X and z with the same dimension-
ality.

22.1.2.4 Generative Adversarial Networks
The final family of models to be considered is the generative adversarial network
or GAN, a deep learning framework introduced by Goodfellow et al. [30]. GANs
learn to map random input vectors (typically of much smaller dimension than the
data) to data examples in the target domain. They tend to cluster similar output data
to neighbourhoods of input values which provides a natural means of navigating
among output data with different characteristics. However, in the vanilla GAN, there
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Fig.22.6 A summary of the adversarial training process of discriminator network D and generator
network G

is no control during training over which regions of input map to which regions of
the output space. The user of the model must search and discover the structure after
training.

The development of the GAN architecture was partly motivated to overcome the
difficulties inherent in the training of other implicit models such as the generative
stochastic network [2], which have issues scaling to high-dimensional spaces and
come with increased computational cost [29]. Instead it utilizes the backpropagation
and dropout algorithms that have been so successful with discriminative networks,
while introducing a novel training regime based on a minimax game.

In a vanillaGAN, the adversarial training pits two separate networks, a discrimina-
tor network D and a generator networkG, against each other (illustrated in Fig. 22.6).
We can think of G as a mapping from some input representation space, made up of
a prior of latent variables z (traditionally initialized as noise), to some data space
X̂ (e.g. spectrograms). D maps the input data, be it X or X̂ , to a categorical label
according to whether it thinks the input came from the true data distribution p(X)

or the model distribution p(z). While D is trained to maximize the probability of
distinguishing the real from the synthesized data,G is trained in parallel for the antag-
onistic objective, that is, to fool D by minimizing log(1− D(G(z))). The combined
value function V is presented below.

G : G(z) → X̂

D : D(X, X̂) → (0, 1)

min
G

max
D

V (G, D) = EX∼p(X)[log D(X)] + Ez∼ p̂(z)[log(1 − D(G(z)))]
At equilibrium, in an ideal setting (that is, difficult to achieve in practice), the

generator (re)produces perfectly the true data distribution, which ultimately leads to
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the discriminator merely randomly guessing the input label, unable to tell the real
from the fake. It is important to note that while the discriminator is exposed to both
real and modelled data, the generator has no direct access to the training samples,
and so has to develop an understanding of the data distribution solely via the error
signal provided by the discriminator.

Researchers have pointed out that since the GAN framework does not impose any
restriction on the structure of z, the generator may use it in a highly entangled way,
where individual dimensions do not correspond to semantic features of the data [5].
If various musical instruments are being trained over a range of pitch, for example,
it may well be that the input dimensions make it difficult to, say, manipulate timbre
holding pitch steady, or to play a scale holding the instrument timbre steady. Oneway
to induce additional structure is to use a conditioning strategy. Mirza and Osindero
[55] present a version that feeds both G and D some extra information, which could
be, for instance, class labels (e.g. pitch and instrument), at input. This setup allows
control over the modes of the generated data based on a conditional label. Another
extension, InfoGAN [5], decomposes z into two parts: a noise vector like before
and a latent code that is trained to have high mutual information with the generator
distribution. This latent code can be used to discover features in an unsupervised
fashion.

While GANs have seen great success in producing high-resolution images, the
same level of fidelity has not yet translated to the audio domain, leading to few
attempts at using GANs for audio generation. Initial experiments that directly
replaced images with spectrograms resulted in low-quality samples that can partly
be attributed to phase misalignments during the upsampling of the latent variables to
achieve the final spectrogram output. GANs do have certain notable advantages over
the sample-level generation in autoregressive and some VAE architectures, namely,
a significant speed-up and a more refined control over global conditioning via its
latent variables. Lately, there have been more sophisticated efforts for audio such as
WaveGAN [14], VoiceGAN [26] and GANSynth [15]. The newer works collectively
introduce methods that make GAN-based audio generation much more viable than
before.

22.1.3 The Gift of Music: DNN-based Synthesizers

The model families introduced in the preceding section have been used in isolation
and sometimes in combination for various audio synthesis tasks. One of the funda-
mental challenges of generating audio, especially as a raw waveform, is to capture
dependencies across long sequences while still maintaining rich timbral information.
For perceptually coherent sound this might mean modelling temporal scales across
four orders of magnitude, from the sub-milliseconds to tens of seconds. The pio-
neering models that try to accomplish this objective were autoregressive in nature
and led by two competing models, one from Google DeepMind called WaveNet
and the other from MILA called SampleRNN. Both focus on modelling at the finest
scale possible, that of a single sample, but each use a different network architecture to
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Fig. 22.7 High-level view of the WaveNet architecture showing the dilated causal convolutional
layers. Figure reproduced from van den Oord et al. [77]

capture long-term temporal dependencies, namely, dilated convolutions forWaveNet
versus stacked recurrent units for SampleRNN. At the time of writing, WaveNet is
by far the more popular DNN-based audio synthesis model of the two, and has been
incorporated into many other systems as the terminal processing block to map output
features to audio.

22.1.3.1 WaveNet
WaveNet’s design [77] is rooted in the PixelCNN architecture [79] where each step
models a joint probability p(X) = p(xt |x1, . . . , xt−1) to predict the next audio
sample conditioned on a context of t past samples. The architecture consists of a stack
of convolutional layers; no pooling layers are present so as to keep the dimensionality
between the input and output consistent.

Two main features of WaveNet’s convolution operation is that it is dilated and
causal. Dilated convolutional layers expand the extent of the receptive field by skip-
ping time steps, enabling the output to be conditioned on samples that are further in
the past than is possible with standard convolutions. As illustrated in Fig. 22.7, each
filter takes every nth element from the previous layer as input instead of a contiguous
section, where n is determined by a hyperparameter called the dilation factor. As the
receptive field grows exponentially with depth, fewer layers need to be implemented.
In addition, the causal component means that “future” samples relative to the current
time step do not factor into the next sample prediction.

Alongside the convolutional layers, the same gated activation units as PixelCNN
were used as non-linear activation functions,while residual and skip connections [35]
were utilized to improve convergence. van den Oord previously demonstrated that
modelling the output as a categorical softmax distribution over quantized possible
pixel values worked better than real-valued distributions such as a Gaussian mixture
model [78]. For WaveNet, μ-law encoding was first applied to the audio before
quantizing to 1 of 256 possible values. For each time step, each of the 256 possible
values for the next sample is assigned a probability representing a distribution from
which the next sample is drawn. ExperimentswithWaveNetmodelled bothmusic and
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Fig.22.8 Overview of the SampleRNN architecture. Higher tiers capture increasingly longer time
frames which are used to condition the tiers below. Figure reproduced from Mehri et al. [54]

speech but it is also capable of multi-speaker speech generation when conditioned
on speaker identity and text-to-speech when conditioned on text-derived features.

22.1.3.2 SampleRNN
Instead of convolutional layers, the SampleRNN architecture [54] relies on long
short-term memory (LSTM) units/gated recurrent units (GRUs), which are variants
of the RNN, operating in a hierarchy of layers over increasingly longer temporal
scales. The recurrent modules in each layer summarize the history of its inputs into
a conditioning vector that is then passed to the subsequent layer all the way to the
lowest level modules made up of multilayer perceptrons, which then combines this
information with preceding samples to output a distribution over a sample as seen in
Fig. 22.8. As with WaveNet, the output is discretized with a softmax.

Qualitatively, the subjective performances of WaveNet and SampleRNN are very
similar. Quantitatively, the SampleRNN authors claim slightly better negative log-
likelihood scores for SampleRNN compared to WaveNet on several datasets for
speech, non-linguistic human sounds and music. Nevertheless, the authors concede
that their re-implementation of WaveNet may not have been optimal due to a lack of
published information regarding hyperparameters.

22.1.4 Only aMatter of Time: Real-Time Generation

WaveNet and SampleRNN significantly improved the quality of audio synthesis
over previous parametric and concatenative methods, particularly in terms of the
naturalness of its speech synthesis. In the initial experiments, both were trained on
not only speech but music databases as well, in particular, MagnaTagATune [49] and
various solo piano datasets, showing that the models can generalize, to a degree, to
different audio domains. These early audio generative models had a huge impact on
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the deep learning community, and moreover brought attention to the possibilities of
audio generation with deep generative networks. With gains in quality, the next step
required to actually utilize these models in a production or performance environment
was to boost the generative speed. Although the architecture of these autoregressive
models is causal, and could thus in theory operate under real-time control, they
were dependent on inefficient ancestral sampling resulting in an inherently slow
synthesis speed, making the original WaveNet and SampleRNN far from being able
to generate audio in real time. Subsequent years of development have focused on
improving efficiency for speed and for the ability to run with restricted resources on
embedded systems or mobile devices while preserving audio quality.

22.1.4.1 (Faster Than) Real-Time Synthesizers
A direct approach to mitigate the problem was to improve the computational effi-
ciency in these models. Fast WaveNet [59] was one of the earlier improvements over
the original, which implemented specialized lower level kernels to store intermediate
calculations through caching. This reduced the need for recomputingWaveNet nodes
from scratch for each sample generated. Furthermore, the temporal gains acquired
by the method scales with the number of layers and could generalize to other autore-
gressive networks.

Other implementations try to push efficiency further by redesigning the compo-
nents that significantly contribute to computational time themselves. For WaveRNN
[43], this was done by reducing the number of parameters and operations, imple-
menting custom graphics processing unit (GPU) operations, and generating samples
in a more parallel manner. The core of WaveRNN is a single-layer RNN followed by
two fully connected layers ending with a softmax output that predicts 16-bit audio
samples (in comparison the original WaveNet and many other papers output 8-bit
μ-law encoded samples). The state-based operation of an RNN is advantageous in
this context as it can perform highly non-linear transformations without requiring
the multiple stacked layers present in convolutional architectures likeWaveNet, thus
reducing the overall number of operations. The bigger contributor to the speed-up
nevertheless is the heavy use of low-level code optimization to overcome memory
bandwidth and calculation execution bottlenecks. The resulting WaveRNN imple-
mentation can produce 24kHz 16-bit audio at 4×real time.

A significantly simpler model in comparison to the original WaveNet is FFTNet
[42] which contains layers that operate like a fast Fourier transform (FFT). Here
the input into each layer is split, transformed separately using 1× 1 convolutions,
and then summed. Each step corresponds to a process in the Cooley–Tukey FFT
algorithm [7]: separating even andodddiscrete Fourier transform (DFT) components,
calculating the complex exponential part of the DFT, and then combining the two
DFT halves into the full DFT. It is much faster than the vanilla WaveNet given the
simpler architecture, and real-time generation is possible.

Several studies have sought to reformulate autoregressive models as normalizing
flows to skirt around the inherent inefficiency of sample-by-sample autoregressive
synthesis networks. Thesemodels preserve the general structure of aWaveNetmodel
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but redesign the network layers or training procedure to adhere to the restrictions
of a flow-based setup. Compared to the purely autoregressive models, their flow-
based counterparts can take better advantage of the massively parallel computation
capabilities of a GPU, particularly during the generative phase. In particular, Parallel
WaveNet [80] combines two types of flow models, a flow-based WaveNet student
model that generates samples and another pre-trained WaveNet teacher model to
score the generated samples. Together they are trained by comparing their KL diver-
gence. This teacher–student training scheme is known as probability density distil-
lation and has shown to achieve 20×real-time synthesis for 24kHz speech samples
albeit at the expense of longer training times. ParallelWaveNet has been successfully
deployed in Google’s Google Assistant systems.

Notably, Parallel WaveNet had to apply aMonte Carlo method to approximate the
KL divergence between the distributions given by the teacher and student models.
This may lead to large variances in the gradient calculation during backpropagation
due to the sampling procedure which are not ideal for training. ClariNet [61] intro-
duced a distillation algorithm that instead estimates the KL divergence in closed
form, largely stabilizing the training procedure.

22.1.5 The Answer LiesWithin: Interfacing via Conditional Models

Notwithstanding their high quality, there are several issues to consider for the DNN-
based synthesizers in the preceding section to reliably function as a synthesizer.
Despite the special architectures designed to capture long-termdependencies, there is
a limit to howmuch the receptive field of the network can be stretched, andwe quickly
encounter memory bottlenecks with increasing numbers of layers. Moreover, being
autoregressive in nature, each generated sample is only directly conditioned on the
immediate previous samples, and hence the influence from samples further back in its
output history quickly diminishes. Effectively, the synthesized audio is only coherent
up to a length of 10–100 samples. Indeed this is most obvious in unconditional
versions of WaveNet that, while getting the characteristic timbre of human speech
correct, produces incoherent babble akin to splicing random phonemes. Otherwise,
when trained on music data made up of multiple instruments, it produces extremely
unstructured music that jumps around between different timbres—hardly a viable
model to be used as a synthesizer.

In the generative task, we aim to learn a function that approximates the true data
distribution of the training set via our model, then sample from this approximate
distribution to produce new examples. Since the model presumably learns the entire
data distribution, sampling from it unbiasedly would consequently yield random
pieces of generated data originating from anywhere in the distribution. Instead of
generating data from the entire distribution, what we often want in practice is to
produce something only from certain subsections of the distribution. One might
therefore introduce a sampling algorithm as a means of guiding the output.

Graves, in his influential paper on generating sequences with RNNs [31], outlined
a fewmethods to constrain the sampling of the network. Oneway is to bias the model
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towards churning out more probable elements of the data distribution, which in
Graves’ example corresponded to more readable handwriting. The sampler is biased
at each generative step independently by tuning a parameter called the probability
bias bwhich influences the standard deviation of the probability density of the output.
When b = 0, unbiased sampling is recovered, and as b → ∞, the variance vanishes
so the model outputs an approximation of the mode of the posterior distribution.
Similar control parameters that affect the randomness of output samples appear in
other works. For Performance RNN [69], a network designed to model polyphonic
music with MIDI, a “temperature” parameter reduces the randomness of events as it
is decreased, making for a more repetitive performance.

While biased sampling introduces one aspect of control, not much can be done
by way of choosing the kinds of examples we want to generate. For RNNs in
sequence generation, the network can be primed by presenting the network with
a user-specified sequence that determines the state of the recurrent units before the
generation begins (when predicted output samples are used as input to predict fol-
lowing samples). Any characteristics embodied by the priming sequence will tend
to continue into the generative phase assuming they extended through time in the
training data. This is true not just for easily describable characteristics such as pitch,
but also for characteristics harder to describe but statistically present (over limited
durations) such as “style” characteristics. Priming allows a higher degree of con-
trol over desired aspects of the dataset than bias manipulation. Again referencing
Graves’ handwriting study, primed sampling allows generation in the style of a par-
ticular writer rather than a randomly selected one. As illustrated using handwriting in
Fig. 22.9, the generated output following the priming sequence can retain the stylistic
aspects of the primer.

The priming technique does have several weaknesses. As the RNN’s memory
capacity has shown to be limited in practice, for longer sequences, the generated
samples tend to “drift” away from possessing the characteristics of the priming
sequence. Glover [28] has a sound example of an RNN trained to generate a tone
which slowly drifts around the frequency of the priming tone. Also, priming conflates
many perceptual dimensions without allowing more fine-tuned control over them
independently. In the case of the handwriting example above, the entire style of
writing is preserved. However, one cannot individually alter lower level stylistic
aspects like the roundness of letters or the spacing between letters and so forth. This
lack of specific control as well as the lack of real-time interaction throughout the
generative phase limits the potential use of priming for real-time sound models.

Fortunately, given that a generative model learns the entire joint distribution over
a dataset, it is possible not just to alter the sampling procedure but to change the
distribution itself by modelling a distribution depending on externally imposed con-
ditions. Mathematically, this means that instead of sampling directly from the model
distribution pθ (X), we sample from a conditional probability pθ (X | C) given the
set of conditions C = {c1, c2, c3, ...}. As such, the model output is constrained only
to certain subsections of the posterior distribution that are congruent to the condi-
tions imposed. It is often useful to condition on rich side information that correspond
to certain high-level features of the dataset. If the model has learned the data well,
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Fig. 22.9 Handwriting
examples generated by a
LSTM-based network. The
top line of each block
(underlined) shows the
priming sequences drawn
from the training set. The
following generated text,
while never having existed in
the training set, retains the
handwriting style of the
priming sequence.
Analogously, generated
audio samples would retain
the sound characteristics of
the priming sequence over a
finite number of time steps.
Figure reproduced from
Graves [31]

by specifying certain factors of variation, such as pitch or timbre in the case of
music data, one can then contextualize the type of output desired. Overall, the idea
of conditioning makes for an extremely appealing approach to constructing control
parameters required to guide a synthesis model.

Conditioning can be induced at either a global level (effecting the entire output
signal) or a local level (dynamic at every time step) and can come from labels
external to the network or from the network’s own feature space. Utilizing the feature
space of the network is especially compelling since on top of reducing the need for
laborious labelled data, the network has the ability to discover for itself conditioning
parameters during training (see Fig. 22.10 and Sect. 22.1.7). Furthermore, regular or
continuous provision of conditioning information presents the network with a strong
signal to maintain structure over a longer time span that might otherwise be lost
due to limitations on long time dependencies. Wyse [89] showed that the pitch drift
described earlier in an unconditional RNN is non-existent with a similar network
trained conditionally with pitch information. Conditioning frees the network from
having to model dependencies across long timescales so that more capacity can be
devoted to local structure.

In essence, conditioning is a way to restrict the probabilistic model only to cer-
tain configurations that we care about. In practice, leveraging data to drive both the
synthesis and control affordances goes a long way towards addressing some of the
issues introduced earlier; conditioning information simultaneously provides an inter-
face for control and restricts the output to the correct set of parameter combinations.
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Fig. 22.10 Sampling from the latent space in the InfoGAN model shows how it captures rotation
and widths of a chair while preserving its shape. Notably, the learned “semantic” concepts are
abstracted from the type of chair, meaning it is generalizable across different examples. In the same
way, a generative model for audio can potentially learn prosodic or stylistic elements of sounds in
an unsupervised fashion which can then be further utilized as conditioning information. For music,
this could mean having access to latent codes for timbre, pitch and other useful audio properties,
potentially to be used for many creative applications. Figure reproduced from Chen et al. [5]

From an engineering point of view, transitioning to a conditional model requires two
major ingredients: a way to inject supplementary information into themodel pipeline
during training, followed by a way to expose the same labels again for user control
in the generative phase. These developments will be the main focus of the following
sections.

22.1.6 Along for the Ride: External Conditioning

A basic music synthesizer interface would typically give the user an option to choose
the instrument desired, along with a way to change common musical parameters like
pitch and volume. One way to adapt this control structure for a deep generative
model is to introduce additional labels which can come in many different forms,
including categorical class labels, text, one-hot encoding and real-valued numbers
representing pitch, loudness or duration, depending on the control dimension desired;
each corresponding to a musical parameter. The desired combination of labels can be
concatenated and fed to the model as a conditioning vector together with the audio
samples themselves.

The actual implementation for conditioning may be further broken down into two
different methodologies according to whether the labels originate externally with
respect to the generative model or are discovered internally as part of the unsu-
pervised representation learning process. External labels may be derived directly
from raw inputs that are prepared beforehand and annotated by the developer (Sect.
22.1.6.1) or otherwise pre-processed by other models or algorithms to produce the
final conditional vector (Sects. 22.1.6.2–22.1.6.3). Several studies have investigated
the viability of these approaches.
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22.1.6.1 External Conditioning via Observed Labels
The extent towhich external conditional parameters can influence synthesiswas stud-
ied byWyse [89] via a simplemultilayerRNNmodel. The networkwas jointly trained
on real-valued parameters indicating pitch, volume and instrumentation, together
with raw audio from the NSynth database [16]. During the generative phase, com-
binations of these parameters were fed as input to the network at every time step,
augmenting input from audio predicted from previous steps. The work further high-
lighted the network’s ability to interpolate between conditioning parameter values
unseen during training. This was demonstrated through a pitch sweep that interpo-
lated between two trained data points at pitches asmuch as an octave apart. This work
was extended by Wyse and Huzaifah [90] focusing on the learning and synthesis of
acoustic transients (the “attack” and “decay” segments at the beginning and end of
tones). In the experimental setup, transients were modelled as a non-instantaneous
response to a change in the volume parameter that resulted in the gradual increase or
decrease in the amplitude of the waveform towards the desired loudness level. This
demonstrated that conditioning can function to effect the audio generation for a sig-
nificant period of time following changes in value. This effect is shown in Fig. 22.11.

Direct conditioning using labels and values based on observed hand-picked char-
acteristics have been shown to allow relatively fine-grained control of the output
signal since the conditioning labels are time-aligned and present for every sample of
the audio signal. Still, this method requires accurately capturing and aligning labels
thatmay not be readily available or expensive to assemble in terms of time and labour.
Labels do not have to be measurable from data but can be perceptually derived as
well. However, they must of course be consistent with the data and with each other
to be learnable.

22.1.6.2 External Conditioning via Intermediate Representations
Instead of directly providing conditioning information as raw inputs into the genera-
tivemodel, for certain tasks itmaybemore effective to further process the information
beforehand. Take for example text-to-speech (TTS), a task that can be considered
under-constrained given the innumerable ways the same text can be vocalized. On
account of text being such a compressed representation compared to audio wave-
forms, it may be difficult to model audio directly on text. It is usually more prudent to
model lower level components such as phonemes, intonation and duration separately
and then provide this information as conditioning parameters for the waveform gen-
eration model. In brief, sometimes one or more models separate from the generative
network are employed to firstmap raw inputs to an intermediate representation before
feeding this to a generative network. This in effect breaks a complex problem into
smaller more manageable tasks, leading to easier convergence during optimization.

It is not uncommon for these “pre-processing” modules to also themselves be
deep neural networks. Functionally, these networks play several roles in this context.
They convert and integrate various sources of information that may be very differ-
ent representationally (one-hot encoding, real numbers, text, etc.) into a common
and probably more unified feature space. They can serve as embeddings which are
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Fig.22.11 In the top figure, the amplitude of the generated signal tracks a smooth volume change
in the conditioning parameter (orange line). However, sudden changes in the value of the volume
conditioning parameter trigger transient attacks and decays in the output audio waveform that
form over a finite time as they did during the training phase. The middle and bottom figures with
their different waveforms and transient characteristics are produced by different settings for the
“instrument ID” conditioning parameter. Figure reproduced from Wyse and Huzaifah [90]

low-dimensional spaces that high-dimensional information such as audio and text
can be mapped onto. Embeddings usually contain meaningful distance relationships
between values (i.e. features semantically close together are also close in the embed-
ding space. For example, a human male voice would be closer to a human female
voice compared to a bird chirping) and so serve as a more compact and useful rep-
resentation to train the model on. Finally, they are feature extractors that can tease
out any helpful latent variables present in the data to aid in the learning of their task.

A music model that does this multi-step feature extraction to obtain conditioning
information for a generative model is SING (symbol-to-instrument neural generator)
[9]. SING aims to synthesize audio a frame at a time (consisting of 1024 samples),
making it arguably more efficient than the sample-level autoregressive models. The
main architecture consists of two parts: an LSTM-based sequence generator and
a convolutional decoder (see Fig. 22.12). Unlike the autoregressive networks that
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Fig. 22.12 Overview of the SING architecture. The LSTM generator at the bottom produces an
intermediate sequential representation from velocity, instrument, pitch and time embeddings (uV ,
vI , wP and z1−256, respectively). The sequence is then fed through a convolutional decoder to
synthesize a waveform. Figure reproduced from Défossez et al. [9]

require prior audio samples to generate what follows, SING’s sequence generator
takes in embedded values corresponding to audio parameters of velocity, pitch and
instrument plus a component to quantify time dependency, without actual audio
samples as input. The generated sequence, which can be regarded as an intermediate
feature representation, is then processed and upsampled through several convolu-
tional layers to obtain the final real-valued waveform.

Training such amulti-component network is usually not a trivial undertaking. Each
module in SING must be separately trained before fine-tuning the entire model. For
instance, the convolutional decoder is initially pre-trained together with an encoder
as an autoencoder. The encoder was subsequently dropped since it was no longer
required for the generative task.

A compelling contribution of the paper is the adoption of spectral loss, which was
shown to be superior to mean square error (MSE) commonly used when comparing
real-valued objects. The authors surmised that this could be due to errors in phase
reconstructions when training with the latter. During generation a model chooses
implicitly a phase value that could take any number between [0, 2π ], altering the
output in a somewhat random fashion unless it has learnt all possible phase and
frequency combinations. This unpredictability makes a MSE comparison with the
ground truth in the time domain uninformative and unlikely to train the model well.



666 M. Huzaifah and L. Wyse

In comparison, the spectral loss is calculated using the magnitude spectra of the
signal, discarding phase information for both the generated waveform and the target
waveform. Hence, the model is free to choose a canonical phase by which to base the
generation on instead of devoting capacity to learn all possible phase combinations.

Various extensions toWaveNet and SampleRNNalso employ one ormore external
models to convert raw inputs to an intermediate representation [1,74]. Many of these
were purposed for TTS tasks andwere pre-trained on existing TTS systems to extract
vocoder features. In a similar spirit to SING, Tacotron [83] also implements RNN-
based networks to sequentially predict mel spectrograms for speech, contingent upon
embeddings for speaker, text and reference spectrograms. The original version of
Tacotron uses the Griffin–Lim algorithm [33] to invert the output spectrograms but
thiswas later replacedwith aWaveNet in follow-upwork [68]. TheTacotron team in a
series of papers [70,84,85] displayed someways for conditioning to be utilized more
creatively that may be more in line with how music synthesis systems would later be
designed. “Style tokens”were introduced to extract independent prosodic styles from
training datawithin aTacotronmodel. Style tokens comprise of a bank of embeddings
shared across training samples. The embeddings were trained without any explicit
labels (i.e. unsupervised) but are able to generate interpretable parameters that can
control synthesis in interesting ways. Ten style tokens were used for experiments,
enough to adequately present a small but rich variety of prosodies. They were found
to be able to generalize beyond learned inputs, generating audio in the corresponding
embedded style even on unseen text. The group’s research in style tokens culminates
in an enhanced Tacotron with explicit prosody controls allowing changing prosodic
style while preserving speaker identity.

22.1.6.3 Capturing Long-Term Structure in Music
As highlighted byDieleman et al. [12], autoregressivemodels excel at generating raw
waveforms of speech, whereas when applied to music, they tend to be biased towards
capturing local structure at the expense of modelling long-range correlations. One
way to alleviate this problem is to divest the modelling of long-term correlations to
a conditioning signal. This relieves the network from having to model signal struc-
ture beyond a few hundred milliseconds and dedicate more modelling capacity to
localized patterns. Analogous to how text is used to condition a neural synthesizer
for TTS, several papers have sought the use of MIDI notes or piano rolls as a way of
directing a musical signal. This takes advantage of the fact that symbolic represen-
tations are easier to model over the long term, while still preserving the expressivity
and richness of raw audio models.

To that end, Manzelli et al. [53] provided MIDI pitch and timing as conditioning
for a WaveNet model. Rather than feeding these values by hand, a second generative
network was used to compose MIDI sequences. This second network essentially
takes over the modelling of long-range correlations, with the final synthesized audio
output shown to follow the timing and pitch of the MIDI notes fairly closely. This
ideawas further expanded byHawthorne et al. [34] in theirWave2Midi2Wave system
that adds an encoder network to transcribe raw audio to MIDI, plus a state-of-the-
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art transformer network [37] to generate MIDI sequences instead of a LSTM-based
one used by Manzelli et al. The paper reported that there was not a statistically
significant difference in ratings between real recordings and those generated by
the model conditioned on a MIDI test set of piano recordings. Ratings were given
by human assessors in a pair-wise blind test according to which clip they thought
sounded more like it came from a person playing a real piano.

Conditioning can be used for many other applications in music besides modelling
long-term structure. In the original WaveNet paper, the authors mooted conditioning
the model with a set of tags specifying musical characteristics like genre and instru-
ment identity essentially as a way to alter timbre but did not go in to detail about these
findings. This line of research has since been taken up by others primarily through a
latent variablemodel approachwhere the latents are jointly learned as part of training
the generative model instead of depending on external models or direct observable
labels. Open AI’s Jukebox [10] uses several VQ-VAEs [81] in parallel to produce
quantized embeddings at different temporal resolutions to help maintain coherence
over long time spans. Training is tuned such that each stage encodes information at
different levels of abstraction, with the topmost level capturing high-level seman-
tics like melody, while the middle level captures more local features like timbre.
Decoding is likewise carried out progressively over multi-timescale stages and uses
a combination of autoregressive transformers and WaveNet-style dilated convolu-
tions to model embeddings over time and upsample them to retrieve audio samples.
The systemwas trained on 1.2 million songs, and is able to generate musically coher-
ent samples in awide variety of styles at timescales ofminutes at a CD-quality sample
rate of 44.1kHz. Conditioning information on artists and genre allow for high-level
control over musical style. Further, conditioning on text allows coherent lyrics to be
produced accompanied by the music.

22.1.7 Beneath the Surface: Latent Variable Models of Music

There may be times when the audio training dataset is too cumbersome for hand-
labelling; metadata may be incomplete, or it may be difficult to process features
equitably across the entire dataset. In cases such as these, we can instead pass the
burden of extracting useful features to the model itself. With a latent variable model
such as the VAE, feature extraction can be carried out internally in an unsupervised
or semi-supervised manner. While many other deep learning model variants also
learn features to aid its training objective, a latent variable model goes a step further
to impose structure on the feature space and adds a generative model that samples
from this space. This process entails the discovery of underlying latent factors of
variation in the dataset as part of the training procedure (and often encouraged by
the objective function itself), in comparison to a more direct mapping from inputs
to a feature space akin to a pre-processing step for many of the conditional models
discussed in the prior section. On the other hand, compared to the previous models
discussed, particularly the autoregressive models, latent variable models are often
harder to train.
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Having these useful properties, latent variable models are often utilized for two
functions that are musically relevant. Firstly, features can be “disentangled” from
the source material. Take for example a dataset made up of audio clips of several
instruments each playing a range of notes. Each piece of data can be said to have
an intrinsic timbre and pitch. During training, the model attempts to decouple these
two features to conceptualize a characteristic timbre for each instrument as well as
separate the different pitch levels in a way that is abstracted from any particular audio
sample. If successfully modelled, one can then treat timbre and pitch as independent
features to possibly be used as conditioning for the synthesis. After disentanglement,
the assorted features can be mixed in creative ways. Timbre transfer is the process
of selecting a particular timbre and composing it with a pitch not found for that
instrument in the dataset or even outside of the instrument’s physical range in real
life, creating a novel sound. The concept has been demonstrated in principle by
Hung et al. [39] with separate VAE variants, one utilizing distinct encoders for
pitch and timbre and the other employing skip connections to process pitch on a
different pathway than that of timbre. Both were trained on constant-Q transformed
(CQT) audio to output a piano-roll-like symbolic representation. This work was later
extended by Luo et al. [51] using a more general mel-spectrogram representation.

Being able disentangle features and construct latent spaces have allowed researches
to extend seminal work on timbre spaces reliant on perceptual “dissimilarity” scores
from human subjects then analysed by multi-dimensional scaling (MDS) [32,87].
Latent variable models admit organizing a timbre space in a more objective manner
with meaningful distance relationships and so can be treated as an embedding. The
unsupervised organization of the timbre space was studied by Kim et al. [45] in
relation to their Mel2Mel architecture which predicts mel spectrograms for condi-
tioning of a WaveNet in a similar way to Tacotron. This work, in particular, used
FiLM (feature-wise linear modulation) layers [60] to learn temporal and spectral
envelope features from the instrument embeddings that drives the timbre during
synthesis. Visualizations of the learned instrument embedding space in Mel2Mel
indicated separation along the lines of spectral centroid and mean energy. Although
this model seemed to have disentangled timbre in a perceptually meaningful fash-
ion, being unsupervised, there is no guarantee that this will always be the case. In
many cases, individual latent dimensions may not actually embody or correspond
to any clear-cut audio characteristic. This is unlike the external conditioning shown
in Sect. 22.1.6.1 that, by virtue of being hand-prepared, ensures it can be used as
intended during generation. To overcome this, Esling et al. [17] incorporated the
timbre space from the traditional MDS studies by using it as the prior distribution to
train a VAE model, thus guaranteeing some perceptual correspondence. The learned
space is topologically similar to the MDS space but with added advantages by virtue
of being a VAE, including being continuous and generalizable.

The benefit of a structured feature space is having a principled way of navigating
its topology. This is especially significant for a non-ordinal parameters like tim-
bre which, by itself, has no natural arrangement. Since we now have a continuous
embedding with meaningful distances, interpolation, the second major use of latent
variable models, becomes possible. Rather than sampling from the centre of mass of



22 Deep Generative Models for Musical Audio Synthesis 669

known features in the feature space as is done when selecting a particular timbre and
a particular pitch both present in the training dataset, it is possible to instead choose
a point somewhere in between two distinct features. Smooth interpolation allows the
model to blend the characteristics of surrounding features when sampling from an
interpolated value. In this way, sounds can be synthesized that generalizes beyond
the training dataset. For instance, a point in the middle of two known pitches in the
feature space can be selected which would roughly correspond to a pitch halfway
between two pitches. Perhaps more interesting is the possibility of blending timbres
in a perceptually integrated way, quite distinct from the superficial “mixing” of audio
signals from distinct sources.

One of the first music synthesis systems to display such use was set out in Engel
et al. [16]. Here the encoder side of the VAE learns a mapping from raw instrument
tones to an embedding layer that is connected to a WaveNet decoder. Their encoder
is built as a 30-layer non-linear residual network of dilated convolutions followed
by 1× 1 convolutions and average pooling. The embedding result is sequential, with
separate temporal and channel dimensions whose resolution is dependent on the
pooling stride. While keeping the size of the embedding constant, the stride is tuned
for a trade-off between temporal resolution and embedding expressivity. Experiments
showed that the embedding space spans the range of timbre and dynamics present
in the dataset. For generation, the latent vectors are upsampled in time and provided
to the autoregressive model as conditioning parameters. Interpolation between two
timbers is thus between two targets that are each changing in time. Interpolation
between these factors does result in a perceptual melding of different instruments
creating novel sounds. On the other hand, trying to generate multiple pitches from a
single embedding preserving timbre and dynamics by conditioning on pitch during
training was less successful. The authors postulated that this may have been due to
unsatisfactory disentanglement between pitch and timbre.

22.1.8 Build Me Up,BreakMe Down:Audio Synthesis with GANs

Up to now the generative approaches discussed have been based around likeli-
hood models including autoregressive models, VAEs, normalizing flow models, or
a combination of them. Unlike these other models families, GANs are not trained
using maximum likelihood. A GAN training objective is instead set up to deter-
mine whether or not a set of samples from two distributions are in fact from the
same distribution—a procedure known as the two-sample test. Despite the difficulty
in training GANs, they have shown outstanding success in the vision domain and
remains the dominant model family for image generation. Several research groups
have attempted to apply the GAN framework to audio. The historical development of
GANmodels for audio was as much a search for representations that work well with
GANs as they are of advancements in the network architecture. The naive approach
of replacing images with an image-like representation of audio, i.e. the spectrogram
while retaining most of the vision informed architecture resulted in extremely noisy
generated samples. GAN-based audiomodels have come a longway since then. They
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operate at a much faster rate than the more prevalent autoregressive models, requir-
ing a single forward pass for generation, and so fall well within the computationally
real-time requirement of a music synthesizer.

One of the early relatively successful audio GAN models was WaveGAN [14]. It
works in the time domain and utilizes one-dimensional convolutional filters, with an
upsampling strategy based on DCGAN [65] but with new procedures such as phase
shuffling to take care of aliasing artefacts created by convolutional filters and strides.
WaveGAN was the better of two similar GAN architectures presented in the paper,
the other of which operated on spectrograms. Evaluation was measured through
the inception score [67] and human judges. The authors report that WaveGAN has
not reached the level of fidelity of the best autoregressive models, but is orders
of magnitude faster as it can take advantage of the inherent parallelism of GANs to
generate hundreds of times faster than real time. Of course, despite its computational
speed, it is still not real-time interactive because the architecture is structured to
generate large chunks of audio at a time—one second in this case. Furthermore,
the parametric input to a WaveGAN (like DCGAN) is a 100-dimensional “latent
vector” which is trained by mapping noise to sound. The input parameter space
of the network must thus be searched after training in order to find desired output
sounds. Since similar sounds tend to cluster in the parameter space, a typical search
strategy is to search coarsely for the desired “class” (e.g. drum type) and then in a
neighbourhood to fine-tune the audio output. A separate strategy would be necessary
to map a desired parametric control space consisting of say, instrument ID and
some timbral characteristics to the control parameters of the GAN. This is similar
to strategies for mapping gesture to parameters for fixed synthesizer architectures
discussed above.

GANSynth [15] is, at the time of this writing, the state of the art in several aspects
of sound modelling. Like WaveGAN, it is much faster than the autoregressive mod-
els, although it suffers the same limitations concerning real-time interaction. Several
innovations were introduced that have resulted in very high-quality audio as well
as the ability to intuitively manipulate audio the parameter space for specific audio
characteristics. The model is trained on the NSynth dataset of 4-second musical
instrument notes. Thus, like WaveGAN, global structure is encoded in the latent
parameter space because each input generates long audio sequences (4 s for GAN-
Synth).

GANSynth generates a spectral representation of audio, but one that encodes both
the magnitude and the phase of the signal. Furthermore, it is actually the derivative of
phasewhich is coded, referred to as “instantaneous frequency”. This turns out tomake
a significant difference in audio quality. A second innovation is the augmentation of
the latent vector input with a one-hot vector representation of the musical pitch of the
data.After training, latent vectors encode timbrewhich to a very rough approximation
are consistent across pitch for a given instrument, while the pitch component can be
used for playing note sequences on a fixed instrument. Interpolation between points
in the latent vector space also works effectively.
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Fig.22.13 While in the standard guided synthesis task we are interested in generating sound from a
set of parameters, for music translation we want to map the sound of one musical domain to another,
retaining some audio characteristics of the input domain (e.g. pitch, duration, rhythm) while taking
on some other characteristics of the target domain (e.g. timbre)

22.1.9 A Change of Seasons:Music Translation

There is yet another way to use generative models that opens up many possibili-
ties musically. What we have discussed so far entails sampling from the modelled
distribution to synthesize novel audio sequences. During this generative phase, the
model maps conditional parameters to output audio which is consistent with these
parameters. Instead of conditioning on relatively low-level parameters like pitch or
volume, an alternative is to provide actual audio as conditioning. During the training
phase, if the input audio and the target audio are different, what the generative model
does in effect is to find some transformation function between the two (Fig. 22.13).

The goal of music translation is a domain transfer, where the hope is to imbue
the input audio with some characteristics of the target audio while retaining its
general structure. During synthesis, this translation should be able to generalize to
new waveforms belonging to the original domain. For images, there is a vast amount
of recent literature on “style transfer” [27] where the desired property to transfer is
broadly the artistic style of the target, but preserving the “content” or global structure
and arrangement of objects in the original image. A more general formulation of this
objective can be seen in applications to CycleGAN [91]where themodelmaps sets of
images from one domain to another (e.g. photographs to paintings, horses to zebras,
etc.). We might imagine doing something similar with music and indeed several
systems have been developed for such use cases.
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Timbre is one obvious candidate for an audio property to transfer. Timbretron [38]
seeks to do this via amodel similar toCycleGAN,workingwith aCQT representation
within the GAN architecture, and then retrieving audio through a WaveNet. The
training dataset consisted of real recordings of piano, flute, violin and harpsichord
sounds, and the task was to translate one timbre to another. Moreover, to be effective,
the system must transform a given audio input so that the output is still perceptible
as the same basic musical piece, but recognizably played with the target instrument.
The response was broadly positive in those aspects with human evaluators of the
system, therefore showing definitive proof-of-concept for music translation.

The domains of interest can also be more loosely defined. Mor et al. [56] pre-
sented a “universal music translation network” that is able to translate music across
instruments, and to a degree, genres and styles. Their novel architecture consists of
a single, universal encoder shared across all inputs connected to multiple WaveNets
that each decode for a separate musical domain. In addition, a domain confusion net-
work similar to that put forward by Ganin et al. [25] was employed during training
to ensure domain-specific information was not encoded. Their method displayed an
impressive ability to execute high-level transformations such as converting a Bach
cantata sung by an opera to a solo piano in the style of Beethoven. The domain map-
ping, however, has to be decided beforehand as only the desired output decoder (out
of the multiple trained WaveNets) is to be exposed to the input during generation.
Hence, the user cannot change transformations in real time.While switching domain
transformations on the fly remains an issue, the generative speed itself have been
boosted tremendously in later work that replaces the WaveNet decoder with a GAN
model [48].

Rather than translating across whole instruments or styles which may prove to
be challenging and not completely convincing by current methods, one could pos-
sibly design for smaller transformation tasks and view the generative model as a
complex non-linear filter. Damskägg et al. [8] modelled several famous distortion
guitar pedals like the Boss DS-1 (distortion), Ibanez Tube Screamer (overdrive) and
Electro-Harmonix Big Muff Pi (fuzz) with a modified WaveNet architecture. The
final deployed model was able to process a clean guitar input signal in real time on
a standard desktop computer, effectively acting as an actual distortion circuit and
sounding very close to the actual pedals. Although the mapping from clean sound
to distortion is now fixed without the ability to tune further, future work might add
the parameters of the original guitar pedals like tone control or gain as conditioning
variables to fully emulate their capabilities.

22.1.10 Discussion and Conclusion

Machine learning approaches to audio processing, in general, and sound modelling,
in particular, are quickly gaining prominence and replacing previous techniques
based on manual feature selection and coding. Deep learning architectures offer new
approaches and new ways to think about perennial sound modelling issues such
as designing affordances for expressive manipulation during real-time performance.
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Hybrid architectures that drawon signal analysis as part of an overall soundmodelling
strategy are becoming more common. Variational autoencoders, for example, are
exploited to discover low-dimensional representations of the data space that can
then be used for external control for generation.

Great strides have been made in capturing complexity and naturalness that is hard
to code formanually.Automatic discovery of structure in data combinedwith specific
techniques for regularizing representations has led to intuitive ways of navigating
through a space of sounds even across regions where there is no training data. Using
strategies for training generative models with conditional distributions is a very
musically intuitive way to design interfaces. This methodology shifts the scope of
the control space primarily to the training data, or specifically factors of variation in
the data (latent or otherwise), from what used to be defined as a by-product of the
synthesis algorithm or a design decision for an interface. It is a new way of thinking
about how to construct such control affordances in comparison to traditional synthesis
techniques.

Perhaps flexibility is the greatest strength of the deep learning paradigm; models
can be reused or redesigned for a wide variety of sound classes. Different model
families can be combined to extend their capabilities such as using a VAE to dis-
cover latent features that can be passed to an autoregressive generator, or using a
normalizing flow model to speed up a standard autoregressive network. This opens
up the possibility of attempting more complicated tasks that were not previously
possible such as expressive TTS for speech or real-time timbre transfer for music.

Outstanding issues remain. The best-sounding systems are still very computation-
ally expensive. This makes them challenging to port to ubiquitous low-cost devices.
Training typically depends onmany hours of data. Data must capture not only sound,
but also control factors that can be difficult to obtain such as air pressure inside a
mouth for a wind instrument model. The amount of data necessary for creating
good models can take days to train even on the best GPU platforms which is both
time-consuming and expensive. Learning and synthesizing more complex sounds
including multi-track, multi-instrument audio are still largely beyond current mod-
els. Different types of models have different advantages (VAEs for structuring data
spaces, GANs for global parameterization, autoregressive models for the causality
necessary for real-time synthesis, etc.) but we have yet to see a deep learning system
make its way into general usage for musical audio synthesis the way they have in,
for example, the domain of speech synthesis. With the rate that these technologies
are being developed, it seems certain to happen in the near future, perhaps even by
the time you are reading this manuscript.
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23Transfer Learning forGeneralized
Audio Signal Processing

Stavros Ntalampiras

23.1 Introduction

Transfer learning technologies have not been well explored in the scientific domain
of audio signal processing. This chapter provides a brief introduction to transfer
learning followed by a generic tool for feature space adaptation, which comprises a
fundamental step toward the successful application of such technologies. Two use
cases are described where transfer learning provided improved performance over
traditional learning. These come from diverse application domains; i.e., affective
computing [32] and biodiversity monitoring [29], and we emphasize on the exact
way transfer learning was applied to each one. The chapter closes by outlining
potential promising research lines of such a technology within the generalized sound
processing domain [30].

Transfer learning consists in the beneficial transfer of knowledge rigorously avail-
able in a domainDi to a different oneD j , i �= j [34]. There exist domains where we
have sufficient knowledge of their characteristics regarding e.g. the data generating
process, the class dictionary, successful features, modeling techniques, and so on (see
Fig. 23.1). The idea behind transfer learning technologies is that wemay exploit such
knowledge so as to address problems in domains where such knowledge is limited,
unreliable, or even not available at all. It has been inspired by the respective human
ability of learning not only in multiple but across domains as well. The main three
motivations behind the expansion of transfer learning in the last decade are:

1. the unavailability of annotated data in the domain of interest,
2. the cost of calibration is prohibitive, and
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Fig. 23.1 Traditional machine learning versus transfer learning

3. learning amodel able to accurately explain the available data distribution requires
complex data analytics, could be computationally expensive as well as time-
consuming.

To this end, more often than not, transfer learning is realized by means of feature
space adaptation where the features characterizing domain Di are adapted to fit the
specifics of domain D j or by model sharing, where a model trained on a plethora
of reliably labeled data Di is adapted to fit the needs of D j . Furthermore, hybrid
approaches are feasible too, where both features and models are transferred across
domains and exploited interchangeably according to the needs of domain D j .

Even though such a learning paradigm is not necessarily tightly coupled with
Deep Learning, it has been found extensively useful in such type of modeling [36].
The modeling abilities of Deep Learning solutions are substantially beneficial when
large-scale datasets are available. That said, a major milestone in computer vision
was reached via the availability of a massive labeled dataset leading to the birth of
ImageNet [11]. ImageNet comprises the driving factor for the application of transfer
learning to various problems where the main data source is images or the problem
can be translated to an image-based one.More specifically, tasks, where the available
dataset is limited, are dealt with adapting the knowledge included in ImageNet to
the target domain D j . Typically only the weights of the last ImageNet layers are
“touched”; i.e. retrained or finetuned at a relatively small learning rate.

With respect to the speechprocessing domain, there are several large-scale datasets
ready to be used similar to the way ImageNet [11] has been used by the image pro-
cessing community. For example, one is able to pretrain a model using a vast amount
of transcribed data. Such a model can subsequently be tailored to address appli-
cations related to languages characterized by low-resources [22] or even different
domains [25].

Moving to applications related to music signal processing including music infor-
mation retrieval (MIR) [31, 33, 41], the available datasets are limitedwith the notable
exception of the Million Song Dataset serving various MIR type of tasks [3, 6, 18,
35]. The status of environmental sound classification is similar with the AudioSet
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corpus [17] standingoutwhich includesmore than2million annotated sounds.Unfor-
tunately, such a large-scale dataset fitting the needs of generalized sound processing
encompassing speech, music, and environmental sounds is not yet available and thus,
transfer learning technologies are not significantly popular among the researchers
working on this field [12].

However, as mentioned above, transfer learning does not depend on deep architec-
tures nor has to take place at the model level. As a result, several transfer-learning-
based solutions exist in the generalized sound processing domain with promising
results. After describing a feature space adaptation method, this chapter briefly anal-
yses two such solutions: (a) the first one proposes a joint space to represent and
subsequently model the emotional responses to music and sound events [27], and (b)
the second one quantifies the similarity between bird vocalizations and music gen-
res toward boosting the performance of bird species identification [28]. Finally, the
chapter discusses the potential relevance of such a learning paradigmwithin the gen-
eralized audio signal processing domain and concludes with potentially promising
future directions.

23.2 Feature Space Adaptation

Following the categorization presented in [34], four different approaches to transfer
learning can de identified:

– Instance transfer, which aims at re-using available labeled data from the source
domain to the target one [9],

– Feature representation transfer, where the goal is to identify a feature representa-
tion to effectively project the joint distribution of both source and target domain
data [8],

– Parameter transfer, where commonmodel parameters among the source and target
domain are identified and subsequently used to carry out classification, regression,
etc. [15], and

– Relational knowledge transfer, where a relational base knowledge is constructed
revealing common characteristics between source and target domain [10].

The solutions focusing on affective computing and biodiversity monitoring pre-
sented in this chapter belong to the first and third class, respectively. However, they
share the need to address the mismatch between the feature distributions of source
and target domain. To this end, a specific type of neural networkwas used able to pro-
vide a Multiple Input Multiple Output (MIMO) transformation permitting the usage
of data from the source domain to the target one (and vice-versa if needed). Such
a neural network; i.e. the Echo State Network (ESN) is presented in the following
subsection. It should be mentioned that such a feature space adaptation method can
be extended to more than two domains in a straightforward way. For simplicity, the
rest of this section assumes the availability of two domains.
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23.2.1 Echo State Network

Feature space transformation is a decisive mechanism permitting a model trained
on a domain Di to be used in a different on D j , while addressing the diversities
existing in the respective feature distributions. We overcome the particular obstacle
by learning an ESN-based transformation based [21, 46]. It should be mentioned
that this process could be bidirectional.

The flowadaptation process is the following: after separating the data associated to
each domain Di , Dj , where Di , Dj denote the data of domainsDi ,D j respectively, a
MIMO transformation is learned using the training data Ti , Tj of both domains. ESN
modelling is employed at this stage as it is able to capture the non-linear relationships
existing in the data. ESNs represent a novel kind of neural networks providing good
results in several demanding applications, such as speech recognition [46], saving
energy in wireless communication [20], and so on.

AnESN, the topology ofwhich is depicted in Fig. 23.2, includes neuronswith non-
linear activation functions which are connected to the inputs (input connections) and
to each other (recurrent connections). These two types of connections have randomly
generated weights, which are kept fixed during both the training and operational
phase. Finally, a linear function is associated with each output node.

Recurrent neural networks aim at capturing the characteristics of high-level
abstractions existing in the acquired data while designing multiple processing layers
of complicated formations; i.e. non-linear functions. The area of reservoir comput-
ing, in which ESN originates, argues that since backpropagation is computationally
complex but typically does not influence the internal layers severely, it may be totally
excluded from the training process.On the contrary, the read-out layer is a generalized
linear classification/regression problem associated with low complexity. In addition,
any potential network instability is avoided by enforcing a simple constraint on the
random parameters of the internal layers.

In the following, we explain (a) how the ESN E learns the transformation from
Di to D j , and (b) how the transformation is employed.

Fig. 23.2 A generic echo state network used for feature space transformation
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ESN Learning E is used to learn the relationships existing in the features spaces of
domains Di to D j . We assume that an unknown system model is followed, which
may be described as a transfer function fE .

fE comprises an ESNwith K inputs and N outputs. Its parameters are the weights
of the output connections and are trained to achieve a specific result; i.e. a feature
vector of D j . The output weights are learned by means of linear regression and are
called read-outs since they “read” the reservoir state [23]. As a general formulation
of the ESNs, depicted in Fig. 23.2, we assume that the network has K inputs, L
neurons (usually called reservoir size), N outputs, while the matrices Win(K × L),
Wres(L × L) and Wout (L × N ) include the connection weights. The ESN system
equations are the following:

x(k) = fres(Winu(k) + Wresx(k)) (23.1)

y(k) = fout (Wout )x(k), (23.2)

where u(k), x(k) and y(k) denote the values of the inputs, reservoir outputs and the
read-out nodes at time k, respectively. fres and fout are the activation functions of
the reservoir and the output nodes, respectively. Typical choices consist in fres(x) =
tanh(x) and fout (x) = x [1, 26].

Linear regression is used to determine the weights Wout ,

Wout = argmin
W

(
1

Ntr
‖XW − D‖2 + ε‖W‖2) (23.3)

Wout = (XT X + ε I )−1(XT D), (23.4)

where XW and D are the computed vectors, I a unity matrix, Ntr the number of the
training samples while ε is a regularization term.

The recurrent weights are randomly generated by a zero-mean Gaussian dis-
tribution with variance v, which essentially controls the spectral radius sr of the
reservoir. The largest absolute eigenvalue of Wres is proportional to v and is partic-
ularly important for the dynamical behavior of the reservoir [45]. Win is randomly
drawn from a uniform distribution [−s f , +s f ], s f denoting the scaling factor, which
emphasizes/deemphasizes the inputs in the activation of the reservoir neurons. It is
interesting to note that the significance of the specific parameter is decreased as the
reservoir size increases.

In the feature space adaptation case, fE adopts the form explained in Eqs. (23.1),
(23.2) by substituting y(k)with Fj and u(k)with Fi , denoting features extracted out
of domains D j and Di , respectively.
Application of fE After the learning process, fE may be thought of as a MIMO
model of the form: ⎛

⎜⎜⎜⎜⎝

F1
j (t)

F2
j (t)
...

FN
j (t)

⎞
⎟⎟⎟⎟⎠

= fE

⎛
⎜⎜⎜⎝

F1
i (t)

F2
i (t)
...

FK
i (t)

⎞
⎟⎟⎟⎠

where features {F1
i . . . , FK

i } at time t are transformed to observations belonging to

domain D j ; i.e. {F1′
j . . . , FN

j } using fE .
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ESN Parameterization There are several parameters that need to be decided during
the design of an ESN with the one having the strongest impact on it modelling
ability are sr , L , and s f . As a standardized process identifying the optimal set of
parameters, an exhaustive search can be followed where sr values close to 1 are
preferred, while the rest of the parameters depends on the problem specifics. Each
parameter combination is evaluated in terms of reconstruction error on the validation
set and the one offering the lowest error is finally selected.

23.3 Use Cases

This section describes two caseswhere transfer-learning-based approaches have been
applied to the generalized sound processing domain with encouraging results.

23.3.1 Affective Computing

The first application resides in the domain of affective computing and more specif-
ically in predicting the emotions evoked by generalized sound events. Sounds are
of paramount importance in our everyday lives carrying a plethora of information
including the communication of emotional meanings/states. In signals containing
speech, one is able to perform such an activity by altering one’s vocal parameters
[40]. Generalized sound events may carry emotional information as well; e.g. one
may feel fearful in case a gunshot is heard [16].

The area of affective computing is receiving ever-increasing attention in the past
decades with the emphasis being placed on the analysis of emotional speech and
music [2, 24]. On the contrary, and even though the content of generalized sound
events may be critical regarding the emotion conveyed to the listener, they have not
received a similar amount of attention by the scientific community. Thus, here lies
fertile ground for transfer learning since there is a common application; i.e. emotion
prediction, for different types of data. In other words, one may able to transfer the
knowledge existing in the speech and music domains and construct a respective
framework able to carry out such a task in the field of generalized audio signals.

Importantly, the absence of respective solutions is partially caused by the lack
of available labeled data addressing such a task. Inspired by the Instance transfer
approach (see Sect. 23.2) one may attempt to transfer labeled data from the music
domain to the one of generalized sound events. Interestingly, the work presented in
[27] investigated the existence of an emotional space; i.e. a valence-arousal plane,
which is common among generalized sounds and music pieces. Such a plane is
illustrated in Fig. 23.3.

Briefly, the pipeline of such an emotion prediction framework is the following:

– signal preprocessing,
– feature extraction,
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Fig.23.4 The alteration of the MSE for both arousal and valance prediction as a function of k with
and without including transfer learning; i.e. the song feature space

– feature space adaptation for the music feature vectors, and
– k-medoids based regression.

As we see, all parts of the pipeline are common among sound and music signals
but the feature adaptation module is based on ESNs (see Sect. 23.2). Design and
implementation information is available in [27]. It should be highlighted that such
a transfer learning-based approach surpassed the state-of-the-art methods in sound
emotion prediction (see Fig. 23.4) and is currently the best performing approach
on the standardized emotionally annotated generalized sound dataset; i.e. the Inter-
national Affective Digital Sounds database [4]. Such success encourages research
focused on the development of transfer-learning-based solutions to deal with appli-
cations of the generalized sound recognition technology.
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23.3.2 Bird Species Identification

In the past decades, research in the area of biodiversity monitoring has flourished
mostly due to the availability of automated recording units [13, 39, 42, 47]. A
relatively large part of these studies is dedicated to the processing of bird vocaliza-
tions for various purposes starting from understanding population trends to detecting
endangered species. Motivated by the relevance of the application domain and the
potential similarities between bird vocalizations and music signals, one may think of
exploiting transfer learning possibilities to boost the performance of such automated
mechanisms. Indeed, there are several motivations behind following the specific
research path:

– several musicologists share the belief that the development of music was affected
by birdsong to a relatively large extent [7, 19].

– birds vocalize at traditional scales used in human music (e.g. pentatonic, diatonic,
and so on.) suggesting that birdsong may be thought of as music the way humans
perceive it [38].

– famous composers have employed birdsong as a compositional springboard in
several genres; e.g. classical (Antonio Vivaldi, Ludwig van Beethoven, Richard
Wagner, and so on.) and jazz (PaulWinter, Jeff Silverbush, and so on.) [14, 37, 43]
suggesting perceptual similarities in the respective acoustic structures.

Towards incorporating knowledge available in themusic signal processing domain
in the bird species identification one, [28] proposed to include the similarities between
bird vocalizations and music genres in the identification chain. More precisely, a
hidden Markov model (HMM) is constructed to learn the distribution of each music
genre included in the standardized dataset of [44] with ten genres; i.e. blues, classi-
cal, country, disco, hiphop, jazz, metal, pop, reggae, rock. These models represent
the knowledge available in the music domain which can be transfered to the bird
vocalization one. To this end, an ESN-based MIMO transformation is used (see
Sect. 23.2) for adapting the characteristics of the bird vocalizations’ feature space.
Subsequently, [28] matches each bird vocalization to the previously constructed
HMMs and stores the log-likelihoods which are essentially a degree of resemblance
between the vocalizations of each species and the available music genres. The corpus
included the following ten species: Acrocephalus melanopogon, Calidris canutus,
Carduelis chloris, Emberiza citrinella, Falco columbarius, Lanius collurio, Larus
melanocephalus, Parus palustris, Sylvia sarda, Turdus torquatus. These are Euro-
pean bird species covering regular breeding, wintering and migrant ones. All sounds
were obtained from http://www.xeno-canto.org/.

In other words, [28] tries to answer the question “how pop does the Sylvia sarda
species sound?”. Figure23.5 shows a quantification of the number of frames associ-
ated with a given music genre; i.e. howmany times the maximum log-likelihood of a
bird vocalization is given by the specific HMM. As an example, this is demonstrated
for four species where we see that Acrocephalus melanopogon is mostly associated

http://www.xeno-canto.org/
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Fig. 23.5 The quantity of frames associated with each music genre for four bird species; i.e.
Acrocephalus melanopogon, Carduelis chloris, Falco columbarius, Larus melanocephalus

with country music, Carduelis chloris with the classical genre, while Falco colum-
barius and Larus melanocephalus with the metal one.

The log-likelihoods produced by music genre models are appended to the feature
vector extracted out of the bird vocalizations and finally classified using a random
forest [5]. Importantly, the obtained results show an 11.2% improvement in the
classification accuracy when the similarities with music genres is used.

23.4 Conclusions and Future Directions

This chapter provided a picture of the approaches exploiting transfer learning tech-
nologies within the generalized audio signal processing domain. After providing a
brief introduction to the field, it presented a generic solution to the feature space
adaptation problem which is usually encountered when one employs transfer learn-
ing. Importantly, this chapter demonstrated that such a technology can be applied
without assuming the availability of deep models trained on vast amounts of data as
is usually the case; e.g. ImageNet. Two such applications were critically presented:
(a) one following the Instance transfer paradigm addressing affective computing
applications, while (b) the second one adopts Feature representation transfer and
exploits knowledge available in music genres to boost bird species identification.

The importance of transfer learning was highlighted in both cases as it reached
state-of-the-art performance in both tasks.
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This chapter gave only a taste of the opportunities existing in the audio signal
processing domain and we hope to encourage further research in the field. In gen-
eral, one should try to transfer knowledge available in rich domains in terms of
labeled datasets, feature design, model engineering, and so on, to less explored ones
and create automated solutions able to satisfy the requirements of a wide range
of applications. The results of this research may open the path for works of sim-
ilar logic; i.e. exploiting data, knowledge, features, distributions, and so on, from
specific domain(s) to address problems existing in different but related one(s) and
vice-versa. Such relationships could be proven particularly useful in the future by
increasing the quantity of training data, thus enhancing the recognition performance
in a cross-domain manner.
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24FromAudio toMusicNotation

Lele Liu and Emmanouil Benetos

24.1 Introduction

The field of Music Information Retrieval (MIR) focuses on creating methods and
practices for making sense of music data from various modalities, including audio,
video, images, scores and metadata [54]. Within MIR, a core problem which to the
day remains open is Automatic Music Transcription (AMT), the process of auto-
matically converting an acoustic music signal into some form of musical notation.
The creation of a method for automatically converting musical audio to notation
has several uses including but also going beyond MIR: from software for automatic
typesetting of audio into staff notation or other music representations, to the use
of automatic transcriptions as a descriptor towards the development of systems for
music recommendation, to applications for interactive music systems such as auto-
matic music accompaniment, for music education through methods for automatic
instrument tutoring, and towards enabling musicological research in sound archives,
to name but a few.

Interest in AMT has grown during recent years as part of recent advances in artifi-
cial intelligence and in particular deep learning, which have led to new applications,
systems, as well as have led to a new set of technical, methodological and ethical
challenges related to this problem. This chapter presents state-of-the-art research and
open topics in AMT, focusing on recent methods for addressing this task based on
deep learning, as well as on outlining challenges and directions for future research.

The first attempts to address this problem come back to the 1970s and the dawn of
the field of computer music (e.g. [47]), while the problem faced a resurgence in the
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mid-2000s with the development of methods for audio signal processing and pattern
recognition, and encountered a second wave of popularity in recent years following
the emergence of deep learning methods. Irrespective of the methodologies used
to investigate and develop tools and practices for AMT, researchers addressing this
task draw knowledge from several disciplines, including digital signal processing,
machine learning/artificial intelligence, music perception and cognition, musical
acoustics and music theory. There are also strong links with other problems both
within and beyond MIR, including Optical Music Recognition (OMR—which is the
counterpart ofAMTbut for printedmusic ormanuscripts instead of recorded audio—
e.g. [50]), automatic speech recognition and speaker diarisation [66], sound event
detection for everyday and nature sounds [59], and object recognition and tracking
in video [17]. AMT is also closely related to the fields of music language modelling
and symbolic music processing [15], serving as a bridge between the acoustic and
symbolic domains in music.

Given the complexity of the problem of AMT, the overarching task is often
split into subtasks, including pitch/multi-pitch detection, onset and offset detection,
instrument identification and tracking, meter estimation and rhythm quantisation,
estimation of dynamics and expression and typesetting/engraving. However, recent
advances in artificial intelligence have promoted the development of ‘end-to-end’
methods for AMT, thus often skipping intermediate tasks or steps and directly pro-
ducing a transcription in a particular notation format. Figure24.1 shows the typical
stages of an AMT system for a short excerpt from a Mozart sonata, starting with the
input waveform, the extracted time-frequency representation (in this case a short-
timeFourier transformmagnitude spectrogram), the output transcription in piano-roll
representation and the output transcription in the form of Western staff notation.

Despite active research on this problem for decades and measurable progress
over the years, AMT is still faced by several challenges, both technical and ethical.
Broadly, the performance of certain AMT systems can be deemed sufficient for audio
recordings containing solo acoustic instruments, within the context of Western tonal
music, assuming a relatively moderate tempo and a level of polyphony around 3,
4. Here, the term ‘polyphony’ refers to the maximum number of concurrent pitches
at a given time instant. The problem of automatically transcribing audio recordings
which contain sounds produced by multiple instruments, vocals and percussion with
a high polyphony level or a fast tempo is still relatively limited. Other factors that can
affect the performance of such systems include the existence of distortions either at
the instrumental production stage or at the audio production/mastering stage, or cases
where the performance or composition in question does not fall under the auspices of
Western tonalmusic.A relatively newchallengewhichhas emergedwith the adoption
of data-driven methods for addressing the task is the bias imposed by the algorithms
through the choice of datasets. Given that most datasets for AMT include Western
tonal music performed by solo piano or other solo Western orchestral instruments
have created certain limits and biases with respect to the range of instruments or to
the range of music cultures and styles that can be supported by state-of-the-art AMT
systems. Limitations of symbolic representations and encodings for music (MIDI,
MEI, MusicXML, Lilypond, etc.) also further constrain the potential of current AI-
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Fig. 24.1 Typical stages of an AMT system: a input waveform; b time-frequency representation;
c output piano-roll representation; d output music score, typeset using Musescore. The example
corresponds to the first 4 s of W.A. Mozart’s Piano Sonata no. 11, 3rd movement
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based AMT systems to support the transcription of music performances that cannot
necessarily be expressed through Western staff notation or do not assume 12-tone
equal temperament.

The aim of this chapter is to provide a review and discussion of recent methods for
AMT, focusing on methods based on AI and deep learning in particular. The focus
of the chapter is on automatic transcription of pitched sounds; see [61] for a recent
review on the related task of Automatic Drum Transcription (ADT). For a detailed
look on signal processing and statistical methods for AMT, the reader is referred to
[36]; for a discussion related to the challenges of AMT methods relying on signal
processing or statistical methods, please see [6]. A recent tutorial-like overview of
both ‘traditional’ machine learning and deep learning methodologies for AMT is
presented in [5].

The outline of this chapter is as follows. Section24.2 provides a concise definition
of various problems that have been posed underAMT; an overviewof commonly used
datasets and evaluation metrics in AMT is presented in Sect. 24.3. An overview of
the state-of-the-art in AMT is presented in Sect. 24.4, including a more detailed look
at deep learning methods for the task. Current methodological and ethical challenges
facing AMTmethods, tools, systems and practices are outlined in Sect. 24.5. Finally,
conclusions are presented in Sect. 24.6.

24.2 ProblemDefinition

As mentioned in Sect. 24.1, AMT is divided into several subtasks, and most
approaches have only been addressing a small subset of these subtasks. Perhaps
the most essential subtask (especially when referring to the transcription of pitched
sounds) is pitch detection, or in the case of multiple concurrent sounds, multi-pitch
detection. Here, we define pitch in the same way as in [27], where a sound has a
certain pitch if it can be reliably matched to a sine tone of a given frequency at a
sound pressure level of 40 dB. Typically, this task refers to estimating one or more
pitches at each time frame (e.g. at 10ms intervals), where pitch is typically expressed
in Hz. Given the close links between pitch and the fundamental frequency of periodic
signals, this task is often referred to as multiple-F0 estimation. This task is publicly
evaluated annually as part of the Music Information Retrieval Evaluation eXchange
(MIREX) task on MultiF0 estimation [1].

It is often useful for multi-pitch detection systems to produce a non-binary repre-
sentation of estimated pitches over time, which could be used for pitch visualisation
purposes, or as an intermediate feature for other MIR tasks that rely on an initial
pitch estimate (e.g. melody estimation [53], chord estimation [41]). Often this repre-
sentation is referred to as pitch salience, or a time-pitch representation. Figure24.2a
shows the pitch salience representation for the excerpt of Fig. 24.1 using the method
of [8].

Moving on to a higher level of abstraction which is closer to how humans might
transcribemusic,wewould need express notes as characterised by their start time, end
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Fig. 24.2 a The pitch salience representation for the excerpt of Fig. 24.1 using the method of [8];
b The corresponding binarised piano-roll representation

time, and pitch—in a similar way as expressed, e.g. in the MIDI format. This task is
referred to as note tracking and involves the subtasks of onset detection (i.e. detecting
the start of a note), offset detection (i.e. detecting the end of a note), and (multi-)pitch
detection. A comprehensive tutorial on signal processing-based methods for onset
detection can be found in [4]. Approaches for note tracking are publicly evaluated
annually as part of the Music Information Retrieval Evaluation eXchange (MIREX)
note tracking task [1]. Figure24.2b shows the output of the note tracking process by
performing simple thresholding on the pitch salience of Fig. 24.2a.

In addition to the detection of pitched sounds and their timings, a key element
towards a successful musical transcription is on assigning each detected note to
the musical instrument that produced it. This task is referred to in the literature as
instrument assignment, timbre tracking, or multi-pitch streaming. A closely related
task in the wider field of MIR is that of musical instrument recognition from audio,
which has received relatively little attention from the research community (see [30]
for a recent overview).

The above mentioned note tracking task estimates the start and end times of notes,
but in terms of seconds as opposed to beats or any other metrical subdivision. To that
end, the task of rhythm transcription or note value recognition aims to estimate the
metrical structure of the music recording in question and estimate the note timings
and durations in terms of metrical subdivisions (e.g. [20,44]). By having estimated
pitcheswith their respective timings in terms ofmeter, one can typeset the transcribed
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Fig.24.3 The rhythm-quantised transcription of the excerpt of Fig. 24.1, automatically transcribed
using the method of [8] and typeset using Musescore (https://musescore.org/)

audio in some form of human-readable music notation, e.g. Western staff notation.
This is a task that depending on the complexity of the music performance in question
might also require to split the detected stream of notes intomultiplemusic staves (this
is referred to as voice separation and staff estimation). The process of converting
music audio into staff notation is sometimes referred to as complete music tran-
scription (taking into account that such a ‘complete’ transcription might not contain
information related to musical instruments, phrasing, expression or dynamics).

Figure24.3 shows the rhythm-quantised transcription of the excerpt of Fig. 24.1
in Western staff notation, automatically transcribed using the method of [8]. While
from a first glance there are little similarities with the score of Fig. 24.1d, a close
inspection shows that the majority of pitches have been correctly detected, although
their respective durations are not properly estimated (which can be attributed to
sustain and pedalling of the piano performance of this piece).

24.3 Datasets and EvaluationMetrics

24.3.1 Datasets

As there are an increasing amount of exploration on deep learningmethods for AMT,
people are using larger datasets to train and evaluate the systems they developed.
There are several datasets that are commonly used for AMT problems in literature,
such as the RWC dataset [26], MIDI Aligned Piano Sounds (MAPS) dataset [24],
Bach10 [22], MedleyDB [10], and MusicNet [58]. Two recently proposed datasets
are MAESTRO [29] and Slakh [38]. Table24.1 provides an overview on commonly
used AMT datasets.

https://musescore.org/
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Table 24.1 AMT datasets and their properties. Instrument abbreviations—Vc: Vocal, Gt: Guitar,
Bs: Bass, Dr: Drums, Pn: Piano, Tp: Trumpet, Cl: Cello, Vl: Violin, Cr: Clarinet Sx: Saxophone,
Bn: Bassoon. Music style abbreviations—Cls: Classical, Plr: Popular, Jzz: Jazz, Ryf: Royalty-Free

Dataset Instruments Music style Size Comments

RWC dataset ([26],
2002)

Gt, Vc, Dr, Pn, Tp,
Cl, etc.

Cls, Ryf, Plr,
Jzz, etc.

315 pieces in 6
subsets

Real recordings, with
non-aligned MIDI
files for Popular,
Royalty-Free,
Classical and Jazz
subsets. A version of
automatically aligned
MIDI annotations for
the Classical subset
can be found in the
SyncRWC dataset [2]

MAPS dataset ([24],
2010)

Pn Cls + non musical
piece (notes and
chords)

30 pieces * 9 piano
synthesizers in the
MUS subset

synthesized and real
piano recordings.
Additional rhythm
and key annotations
can be found in
A-MAPS dataset [64]

Bach10 ([22], 2010) Vl, Cr, Sx, Bn Four-part J.S. Bach
Chorales

10 pieces Real recordings,
individual stems, F0
annotations

MedleyDB ([10],
2014)

multiple instrument
(Pn, Vc, etc.)

Ryf 196 pieces in
MedleyDB 2.0

Real recordings, With
individual stems of
each instrument
recording. 108 pieces
with melody
annotation

MusicNet ([58],
2016)

multiple instrument
(Pn, Vl, Cl, etc.)

Cls 330 pieces Real recordings
under various
conditions. Labels
aligned by dynamic
time wrapping and
verified by trained
musicians, estimated
labeling error rate 4%

GuitarSet ([62],
2018)

Gt Plr 360 pieces Real recordings

MAESTRO ([29],
2019)

Pn mostly Cls 1282 pieces From e-piano
competition, 201.2h
in total

Slakh ([38], 2019) Pn, Gt, Bs, Dr, etc. Cls, Plr, etc. 2100 tracks Synthesized from
Lakh MIDI dataset
[49]
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Although there are plenty of choices of AMT datasets, there are relatively more
datasets for piano transcription (given the ease in automatically exportingMIDI anno-
tations from acoustic pianos when using specific piano models such as Disklavier
or Bösendorfer), but much less for other instruments, especially non-Western instru-
ments. The biggest challenge of collecting AMT datasets is that annotating music
recordings requires a high degree of music expertise, and is very time-consuming.
Also, there might not be enough music pieces and recordings for some less popular
traditional instruments when a large dataset is needed. Moreover, human-annotated
transcription datasets are not guaranteed to have a high degree of temporal precision,
which makes them less suitable for model evaluation on frame and note level. Su and
Yang [57] proposed four aspects to evaluate the goodness of a dataset: generality,
efficiency, cost and quality. They suggest that a good dataset should be not limited to
a certain music form or recording conditions, should be fast-annotated, should be as
low-cost as possible and be accurate enough. Because of the difficulty in collecting
large human-transcribed datasets, researchers have used electronic instruments or
acoustic instruments with sensors that can directly produce annotations (e.g. elec-
tronic piano, MAESTRO dataset), or synthesised datasets (e.g. Slakh) instead of real
recordings. The use of synthesised recordings greatly speed up dataset collection, but
on the other hand, could introduce some bias in model training, limiting generality
of the developed AMT system.

24.3.2 EvaluationMetrics

Despite collecting datasets, model evaluation is another important process in devel-
oping methodologies for AMT problems. Evaluating a music transcription can be
difficult since there are various types of errors, from pitch errors to missing/extra
notes, and each has a different influence on the final evaluation of results. Currently,
common evaluation metrics for AMT systems focus mainly on frame/note level
transcriptions [3,9,14,28,33]. Much less work has been down on stream and nota-
tion level transcriptions [39,40,42]. In the 2019 annual Music Information Retrieval
Evaluation eXchange (MIREX), there are three subtasks [1] for music transcription
for pitched-instruments—multiple fundamental frequency estimation on frame level,
note tracking and timbre tracking (multi-pitch streaming).

Commonmultiple fundamental frequency estimationmethods [3] calculate frame-
wise precision, recall and relevant F-measure values. The three scores are defined
as:

precision = TP

TP + FP
(24.1)

recall = TP

TP + FN
(24.2)

F-measure = 2× precision× recall

precision+ recall
(24.3)



24 From Audio to Music Notation 701

The TP, FP and FN values correspond to true positives, false positives and false
negatives respectively, and are calculated from all pitch values and time frames in
the piano roll. There are also other methods for evaluating frame-wise transcription,
such as separating different types of errors (e.g. missed pitches, extra pitches, false
alarm) inmultiple F0 estimation.A type-specific error rate is calculated in [48],where
the authors defined a frame-level transcription error score combining different error
types. Separating different error types can lead to a better interpretation on music
transcription evaluation.

Note tracking problems usually define transcription results as sequences of notes,
characterised by a pitch, onset and offset. A tolerance is defined to allow small errors
in onset times since it is difficult to estimate exact time when building an AMT
dataset as well as transcribing music with an AMT system. A common tolerance
is 50 ms, which is used in the MIREX note tracking subtask. There are also some
other scenarios where offset times are included (e.g. in [7] a 20% tolerance for offset
is applied and in [19] a tolerance of the larger one in 20% of the note length or
50 ms is used for offset time). For any of the above scenarios, note-level precision,
recall and F-measure are calculated for a final evaluation. Similar to frame-level F0
estimation, researchers have attempted to include error types in evaluation metrics
(see e.g. [42]).

There are less works on multi-pitch streaming. The evaluation for multi-pitch
streaming uses similar metric like precision and recall. Gómez and Bonada [25]
proposed a simple method of calculating accuracy and false rate to evaluate voice
streaming applied to A Capella transcription. In 2014, Duan and Temperley [23]
used a similar evaluation method to calculate a more general multi-pitch streaming
accuracy. The accuracy is defined as:

accuracy = TP

TP + FP + FN
(24.4)

Another work by Molina et al. [42] proposed to include types of errors in streaming
process, and used a standard precision-recall metric.

Recent years has seen some introduction of evaluation metrics for complete music
transcription given a recent increase in methods that directly transcribes audio to
music scores. Some methods proposed include [18,39,40]. A recent approach for
evaluating score transcriptions is proposed by Mcleod and Yoshii [40], which is
based on a previous approach [39] calledMV2H (representingMulti-pitch detection,
Voice separation, Metrical alignment, note Value detection and Harmonic analysis).
According to this metric, a score is calculated for each of the five aspects, then the
scores are combined into a joint evaluation following a principle of one mistake
should not be penalised more than once.

While most of evaluation metrics are based on music theory and simple statistical
analysis, there are some metrics that contain some considerations on human per-
ception of music transcriptions. In 2008, Daniel et al. [21] explored the difference
of some error types in AMT from the aspect of human perception, and proposed a
modified evaluation metric that weights different error types.
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24.4 State of the Art

In this section, we look into state-of-the-artmethodologies forAMT,mainly focusing
onNeuralNetworkmethods. The sectionwill be structured as follows. In Sect. 24.4.1,
we provide an overview for the development and common methods for AMT, fol-
lowed by Sect. 24.4.2 where we discuss Neural Network methods used in AMT.
The following sections cover more specific topics within AMT: we give a review
on multi-task learning methods for AMT in Sect. 24.4.3; the use of music language
models and related works are covered in Sect. 24.4.4 and finally we review works on
complete transcription in Sect. 24.4.5.

24.4.1 Overview

As the field of MIR has evolved over the past 20years since the inception of the
International Symposium on Music Information Retrieval (ISMIR), so has the topic
of AMT. Roughly, proposed methods for AMT in the early 2000s made use of sig-
nal processing and statistical machine learning theory (see [36] for more details).
Following the seminal paper of [56] on the potential of non-negative matrix fac-
torisation when applied to the problem of AMT, a series of different methods were
proposed for AMT that made use of matrix decomposition approaches. In the early
2010s, following the rise of deep learning methods and the paper by Humphrey et al.
[30] advocating for the use of deep learning methods for MIR, neural network-based
methods started being widely used for AMT and are still in use to date.

In terms of AMT subtasks to be addressed, the vast majority of methods have
been and still do focus on (framewise) multi-pitch detection, with a smaller pro-
portion of methods focusing on note tracking or rhythm transcription/typesetting.
Due to the emergence of end-to-end deep learning methods for AMT, an increas-
ing trend towards systems producing higher-level representations (such as outputs
in MIDI format or in staff notation) can be observed [5]. The problem of timbre
tracking/instrument assignment is however still under-explored.

Current literature for AMT includes amixture of deep learning andmatrix decom-
position approaches, with deep learningmethods currently being used in themajority
of scenarios. Compared to other tasks in MIR, a large proportion of methods still
employ matrix decomposition approaches (see e.g. [5]), due to their ability to work
with limited data, fast learning and inference, and due to the models’ interpretability.
The remainder of this chapter will focus more on neural network-based methods for
AMT, due to their increasing popularity in the research community and also due to
certain methodological challenges when using deep learning methods for AMT that
are still to be addressed.
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24.4.2 Neural Networks for AMT

Research in AMT has increasingly been relying on deep learning models, which
use feedforward, recurrent and convolutional layers as main architectural blocks. An
early example of a deep neural model applied to AMT is the work of Nam et al. [45],
which uses a Deep Belief Network (DBN) in order to learn representations for a
polyphonic piano transcription task. Resulting learned features are then fed to a Sup-
port Vector Machine (SVM) classifier in order to produce a final decision. Another
notable earlywork thatmade use of deep neural architectureswas byBöck andSchedl
[13], where the authors used a bi-directional Recurrent Neural Network (RNN) with
Long Short-Term Memory (LSTM) units, applied to the task of polyphonic piano
transcription. Two points are particularly worth mentioning for the work of [13]: (i)
the use of two STFT magnitude spectrograms with different window sizes as inputs
to the network, in order to achieve both a ‘good temporal precision and a sufficient
frequency resolution’; (ii) The output is a piano-roll representation of note onsets and
corresponding pitches, and does not include information on note durations/offsets.

A first systematic study towards the use of various neural network architectures for
AMTwas done by Sigtia et al. in [55]. The study compared networks for polyphonic
piano transcription that used feedforward, recurrent and convolutional layers (not-
ing that layer types were not combined), all using a Constant-Q Transform (CQT)
spectrogram as input time-frequency representation. Results from [55] showed that
networks that include convolutional layers reported the best results for the task,which
is also in line with other results reported in the literature, and with current method-
ological trends related to neural networks for AMT. The ability of Convolutional
Neural Networks (CNNs) to function well for tasks related to multi-pitch detec-
tion and AMT stems from the useful property of shift-invariance in log-frequency
representations such as the CQT: a convolutional kernel that is shifted across the
log-frequency axis can capture spectro-temporal patterns that are common across
multiple pitches.

Following the work of [55], Kelz et al. [33] showed the potential of simple frame-
based approaches for polyphonic piano transcription using an architecture similar to
[55], but making use of up-to-date training techniques, regularisers and taking into
account hyper-parameter tuning. The ‘ConvNet’ architecture from the work of [33]
can be seen in Fig. 24.4.

An influential work that used CNNs for multiple fundamental frequency estima-
tion in polyphonic music was the deep salience representation proposed by Bittner et
al. [12]. Contrary to most methods in AMT that produce a binary output, the model
of [12] produces a non-binary time-pitch representation at 20 cent pitch resolution,
which can be useful for both AMT applications but also for several downstream
applications in the broader field of MIR. A particular contribution of this work was
the use of a Harmonic Constant-Q Transform (HCQT) as input representation; the
HCQT is a three-dimensional representation over frequency, time and the harmonic
index, produced by computing several versions of the CQT by scaling the minimum
frequency used by a harmonic. Figure24.5 shows the pitch salience representation
for theMozart excerpt of Fig. 24.1, computed using the deep saliencemethod of [12].
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Log-Spectrogram (5*229)

Convolution Layer (32*3*3)

Convolution Layer (32*3*3)
+ BatchNorm + MaxPool (1*2)

Convolution Layer (64*3*3)
 + MaxPool (1*2)

Dense Layer (512)

Dense Layer (88)

piano-roll

Fig. 24.4 Model architecture for the convolutional neural network used in [33] for polyphonic
piano transcription. The depicted network corresponds to the ‘ConvNet’ architecture of [33]

Fig.24.5 Pitch salience representation for the excerpt of Fig. 24.1, using the deep salience method
of [12]
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The ability of CNNs in learning features in time or time-frequency representations
keeps themstill active in theAMT literature. This includes theworkofThickstun et al.
[58] that was carried out as part of the MusicNet dataset, and compared feedforward
and convolutional networks learned on raw audio inputs, as opposed to having a time-
frequency representation as input. It is worth noting however that convolutional, and
more broadly neural networks, when trained for AMT as a multi-label classification
task, face the issue that they appear to learn combinations of notes exposed to them
during training, and are not able to generalise unseen combinations of notes—the
so-called entanglement problem as discussed in [34].

24.4.3 Multi-task LearningMethods

Recent research in machine learning has focused on multi-task learning [52], where
multiple learning tasks are addressed jointly, thus exploiting task similarities and
differences. In the context of AMT, multi-task learning has been shown to improve
transcription performance in certain cases. Tasks related to AMT such as note level
transcription, onset detection, melody estimation, bass line prediction and multi-
pitch detection (also sharing similar chroma and rhythm features) can be integrated
into one model that would exploit task interdependencies.

In the ‘Onsets and Frames’ system by Hawthorne et al. [28], which is currently
considered the benchmark in automatic piano transcription, the authors used a deep
Convolutional Recurrent Neural Network (CRNN) to jointly predict onsets and mul-
tiple pitches. The onset detection results are fed back into the model for further
improving frame-wise multi-pitch predictions. The Onsets and Frames model was
further improved in the work of Kim and Bello [35], which addresses the problem
of expressing inter-label dependencies through an adversarial learning scheme.

Bittner et al. [11] proposed a multi-task model that jointly estimates outputs for
several AMT-related tasks, including multiple fundamental frequency estimation,
melody, vocal and bass line estimation. The authors show that themore tasks included
in the model, the higher the performance and that the multi-task model outperforms
the single-task equivalents. In another recent work [32], the authors designed amulti-
task model with CNNs which enables four different transcription subtasks: multiple-
f0 estimation, melody estimation, bass estimation and vocal estimation. Results on
themethod of [32] showed an overall improvement in themulti-taskmodel compared
to single task models.

24.4.4 Music LanguageModels

Inspired bywork in thefield of speechprocessing,wheremany systems forAutomatic
Speech Recognition (ASR) benefit from languagemodels that predict the occurrence
of a word or phoneme [31], researchers inMIR have recently attempted to useMusic
Language Models (MLMs) and combine them with acoustic models in order to
improveAMTperformance.While the problemof polyphonicmusic prediction using
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statistical machine learning models (such as n-grams and hidden Markov models) is
not trivial, the emergence of neural network methods for high-dimensional sequence
prediction has enabled the use of MLMs for polyphonic music.

One of the first works to use neural network-based MLMs for polyphonic
music prediction and combine them with multi-pitch detection, was carried out by
Boulanger-Lewandowski et al. [15]. The MLM was based on a combination of a
recurrent neural networkwith aNeuralAutogressiveDistributionEstimator (NADE).
The sameRNN-NADEmusic languagemodel was also used in [55], whichwas com-
bined with a CNN as the acoustic model, showing that the inclusion of an MLM can
improve transcription performance.

It was shown however that the MLMs which operate at the level of a small time
frame (e.g. 10 msec) are only able to produce a smoothing effect in the resulting
transcription [63]. More recently, Wang et al. [60] used an LSTM-RBM language
model as part of their proposed transcription system, but each frame corresponds to
an inter-onset interval as opposed to a fixed temporal duration, resulting in improved
transcription performance when using note-based metrics. Finally, Ycart et al. [65]
combined anLSTM-basedmusic languagemodelwith a feedforward neural blending
model which combines theMLMprobabilities with the acoustic model probabilities.
In line with past observations, the blending and language models work best when
musically-relevant time steps are used (in this case, time steps corresponding to a
16th note).

24.4.5 Complete Transcription

Recent works have paid attention to complete transcription, where systems are devel-
oped to convert music audio into a music score. There are two common ways in
designing a complete transcription system. A traditional way is by using a combina-
tion of several methods and subtasks of AMT to form an system that can transcribe
music audio to a notation level, which usually involves estimating a piano-roll rep-
resentation in an intermediate process [43]. Another way which has become increas-
ingly popular is designing an end-to-end system that directly converts input audio
or a time-frequency representation into a score level representation such as textual
encoding, without having a piano-roll or similar intermediate representation in the
pipeline. In this scenario, a deep learning network is used to link the system input
and output. A challenge in designing a end-to-end system is that the input and out-
put of the system cannot be aligned directly (one is a time-based representation and
the other is a representation in terms of metres or symbolic encoding). As a result,
research has focused on encoder-decoder architectures [16,46] which do not rely on
framewise aligned annotations between the audio and music score.

Aworkworthmentioningwhich combined subtasks to build a transcription system
is by Nakamura et al. [43]. In this work, the authors divided a whole transcription
system into a stream of subtasks: multi-pitch analysis, note tracking, onset rhythm
quantisation, note value recognition, hand separation and score typesetting. The final
system reads a spectrogram calculated frommusic audio, and outputs readablemusic
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Fig. 24.6 General structure for an end-to-end AMT system using encoder-decoder architecture

scores. Offering the whole system structure, the authors did not focus on integrating
algorithms for all the subtasks, but optimised methods for multi-pitch detection and
rhythm quantisation. The improved subtask performance ends up adding to the final
performance of the system.

Encoder-decoder mechanisms have also been used for AMT in recent years, with
the advantage in creating complete transcription systems without estimating and
integrating complicated subtasks. In Fig. 24.6, we provide an encoder-decoder struc-
ture commonly used in AMT systems. Recent works have showed the potential of
encoder-decoder methods, although their performance on polyphonic music tran-
scription remains less explored in the literature. In 2017, Carvalho and Smaragdis
proposed a method for end-to-end music transcription using a sequence-to-sequence
architecture combined with CNNs and RNNs [16]. The developed system can out-
put a textual music encoding in Lilypond language from an input audio waveform.
However, the work focused mainly on monophonic music (which showed high-level
performance), but only a simple scenario of polyphonic music was tested (with two
simultaneous melodies within a pitch range of two octaves). Another exploration
on singing transcription by Nishikimi et al. [46] also used a sequence-to-sequence
model. A point worth mentioning is that they applied an attention loss function for
the decoder, which improved the performance of the singing transcription system.
The work, still, focused only on monophonic singing voice.

Using an encoder-decoder architecture is a simple way of designing end-to-end
AMT systems, but there are also other works using Connectionist Temporal Clas-
sification (CTC). A recent example is by Román et al. [51], in which the authors
combined the use of a CRNN and a CTC loss function. The CTC loss function
enables the system to be trained using pairs of the input spectrogram and output tex-
tual encoding. In that work, a simple polyphonic scenario is considered where four
voices are included in a music piece (in string quarters or four-part Bach chorales).
Still, the problem of end-to-end complete music transcription with unconstrained
polyphony is still open.

24.5 Challenges

Although AMT is still very active as a topic within MIR, the performance of current
AMT systems is still far from satisfactory, especially when it comes to polyphonic
music, multiple instruments, non-Western music and ‘complete’ transcription. There
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are plenty of challenges in this area where further exploration is required. In this
section, we summarise current challenges and provide potential further directions.

24.5.1 Datasets

The lack of annotated datasets is an aspect that limits the development of AMT
systems. Due to the difficulty in collecting and annotating music recordings, there
is still a lack of data for most music transcription tasks, especially for non-western
music and certain musical instruments. Apart from the lack of large datasets, current
datasets for AMT also have some limitations. For example, the temporal precision
of annotations for some datasets with real recordings is not always satisfactory—
which is also a reason that most AMT systems set a relatively large onset/offset
tolerance for note tracking tasks. Also, dataset annotations are typically limited to
note pitch, onset andoffset times and sometimes note velocity.Additional annotations
are needed for a more comprehensive transcription, such as rhythm, key information
and expressiveness labels.

Recently, an increasing number of datasets has been released, which are based
on synthesising MIDI files. MIDI files provide a good reference for multi-pitch
detection since they provide temporally precise note annotations, but there are also
limitations, since MIDI files do not provide annotations for score level transcription.
Another limitation for synthesised data is that they might not reflect the recording
and acoustic conditions of real-world audio recordings and can cause bias during
model training.

24.5.2 EvaluationMetrics

Current evaluation metrics mainly focus on frame-wise and note-wise evaluations,
where transcription results are provided in a piano-roll representation or note
sequences. Benchmark evaluation metrics also do not model different error types
beyond measuring precision and recall. For example, an extra note may be more
severe than a missing note in a polyphonic music, on-key notes may be less noticed
than off-key ones, and an error in a predominant voice may be more obvious com-
pared to a similar error in a middle voice. Besides, much less work can be found in
evaluating complete transcription systems.

There is also a lack of perceptual considerations in commonly used evaluation
metrics. Somework [43,48] has attempted to create different types of errors, however
these metrics still do not account for human perception. Deniel et al. provided an
early work on perceptually-based multi-pitch detection evaluation [21], but is not
widely used in the community. In addition, there is still no work on perceptually-
based evaluation metrics for score-level transcription.
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24.5.3 Non-WesternMusic

Most AMT methods aim specifically at modelling Western tonal music, but there is
much less work done on automatically transcribing music cultures beyond Western
tonal music, such as world, folk and traditional music. This results in AMT systems
not being able to accurately or adequately transcribe non-Western music.

Differences between Western and non-Western music cultures that can affect the
design of AMT systems include but are not limited to pitch space organisation and
microtonality, the presence of heterophony (vs. homophony or polyphony occur-
ring in Western tonal music), complex rhythmic and metrical structures, differences
in tuning and temperament, differences in musical instruments and differences in
methods for expressive performance and music notation amongst others. Despite the
above differences, the lack of large annotated datasets is another limitation for music
transcription research for non-Western music cultures.

24.5.4 Complete Transcription

Although research in AMT has increasingly been focusing on complete transcription
in recent years, current methods and systems are still not suitable for general-purpose
audio-to-score transcription of multi-instrument polyphonic music. Some systems
for complete transcription rely on typesetting methods as a final step, but most
typesetting methods assume a performance MIDI or similar representation as input
and are not designed to take noisy input into account. In addition,whenmany tasks are
combined into a whole system for complete transcription, the errors in each step can
accumulate and worsen the system’s performance. As for end-to-end transcription
methods, current research is still limited to monophonic music and special cases
for polyphonic music, mostly using synthetic audio. There is still a large room for
further work towards the development of systems for complete music transcription.

24.5.5 Expressive Performance

Including expressive performance annotations is another challenge in current AMT
research. Most AMT systems transcribe music into a defined framework of note
pitch, onset and offset in a metre constrained format, but cover little expressive labels
such as note velocity, speed symbols, as well as expressive playing techniques. It is
currently hard to predict such information in AMT, although MIR research has been
focusing on specific problemswithin the broader topic expressivemusic performance
modelling (e.g. vibrato detection). How to incorporate the estimation and modelling
of expressive performance into AMT systems remains an open problem.
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24.5.6 Domain Adaptation

Due to the increasing use of synthesised datasets, or due to the mainstream use of
piano-specific datasets for AMT, the ability of such models to generalise to real
recordings, different instruments, acoustic recording conditions or music styles has
become a problemworth considering. There is currently no research focusing on this
question in the context of AMT, although the broader problem of domain adapta-
tion has been attracting increasing interest in MIR and the broader area of machine
learning.

For example, tasks in MIR such as music alignment and singing voice separation
were explored in a recent paper [37] using domain adaptation methods based on
variational autoencoders. We believe that similar domain adaptation methods can be
applied to AMT tasks to solve existing problems such as the lack of data for some
less popular instruments and dealing with the differences between synthesised and
real-life recorded datasets or different recording conditions.

24.6 Conclusions

AMT is a core problem in the field of Music Information Retrieval (MIR), and has
attracted a lot of attention during the past few decades. In this chapter, we review and
discuss some of the main topics within the problem of AMT. We make a concrete
definition of the problem of AMT, and describe the main subtasks in the AMT pro-
cess (see Sect. 24.2).We also introduce the problem of complete transcription, which
refers to the process of converting music audio into a music score representation. We
review commonly used datasets and evaluationmetrics for AMT (see Sect. 24.3), and
look into the state of the art methodologies used in AMT (see Sect. 24.4). Current
research on AMT has focused on methods using neural networks with promising
results. We look into several topics in particular, including the use of commonly
used neural network architectures, the use of multi-task learning methods, the use
of music language models and methods for complete transcription. However, chal-
lenges still exist in the field of AMT, as we discussed in Sect. 24.5. A large room
for improvement is open in areas such as building better datasets and evaluation
metrics, building systems for non-Western music transcription, complete transcrip-
tion, adding expressive performance in transcription results and considering domain
adaptation. Given our review in this chapter, we believe that AMT is an open and
promising field within both MIR and the broader intersection of music and artificial
intelligence.
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25AutomaticTranscriptionof Polyphonic
VocalMusic

Rodrigo Schramm

25.1 Introduction

The practice of collective singing represents an inherent manifestation of vocal
music in the cultural development of many societies. It is often part of the com-
munal lifestyle, motivated by aesthetic enjoyment and also used as a possible way
to strengthen society’s cohesiveness [46]. These groups of singers can perform in
unison or several distinct melodic lines. Examples of such singing structures can
be recognized in varied styles of music, and in many parts of the world. Moreover,
vocal music retains a significant role in Western musical development where vocal
quartets and choirs constitute a traditional form of music. These vocal quartets and
choirs typically divide a musical piece into multiple vocal parts like Soprano, Alto,
Tenor, and Bass (SATB) [22].

Over the last years, many signal processing andmachine learning approaches have
been proposed to convert acousticmusic signal into symbolicmusic representation.A
core task in Automatic Music Transcription (AMT) [6] is multi-pitch detection. This
task is frequently addressed by a frame-based analysis procedure toward a traditional
music notation scheme (e.g., MIDI notes). Multi-pitch detection can additionally
be implemented as a functional step for many applications in music information
retrieval, including interactive music systems, tools for assisted music education and
musicology. Innovative AMT techniques have intensively adopted deep learning-
based algorithms [9,24,41]. However, these machine learning techniques have been
primarily applied to ordinary musical instruments (e.g., piano, guitar, drums, etc.),
and polyphonic vocal music has not been extensively addressed yet. Moreover, deep
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Fig.25.1 Spectrogram representations of an audio recording excerpt of a vocal quartet performance
(BQ058): amonophonic Bass voice; bmonophonic Tenor voice; dmonophonic Alto voice; emono-
phonic Soprano voice; c polyphonic vocal quartet mixture (SATB); f Multi-pitch representation for
the four voices (ground truth)

learningmethods applied to the polyphonic vocal music domain can be difficult since
lack of appropriate training data.

This chapter presents an alternative machine learning approach in the direction
of automatic transcription of vocal music. The proposed method focuses on frame-
based analysis and addresses two fundamental problems: multi-pitch detection and
voice assignment. The text will conduct the reader through a specific pipeline based
on Probabilistic Latent Component Analysis (PLCA) [29]. This pipeline requires
less data for training, and it is effective to detect multiple pitches in polyphonic
vocal music. Moreover, it can properly assign each detected pitch to the respective
SATB voice type.

Multi-pitch detection is achieved through an acousticmodel that performs iterative
spectrogram factorisation and makes use of a dictionary with spectral templates
(six-dimensional tensor). Voice assignment is carried out by integrating the acoustic
model with a music language model, resulting in the association of each detected
vocal melody (voice) to a specific SATB part. The approach described in this chapter
focuses on musical recordings of singing performances by vocal quartets without
instrumental accompaniment—a capella Choral singing.

An example of this kind of music is illustrated by Fig. 25.1. It shows spectro-
gram representations extracted from an audio excerpt of a vocal quartet recording
(BQ058, “It’s a long, longway toTipperary”, by Jack Judge andHarryWilliams [33]).
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Figures25.1a, b, d, e show the respective spectrograms for each isolatedmonophonic
voice type (Soprano, Alto, Tenor, Bass). Eachmonophonic voice presents a clear fun-
damental frequency sequence and particular set of harmonic components; Fig. 25.1f
shows the SATB Ground Truth where the pitch sequence of each vocal line is iden-
tified by distinct colors. The resulting spectrogram of the SATB mixture is shown
in Fig. 25.1e. It is possible to see many harmonic overlaps among the voices in the
mixture, illustrating the complexity of the task for automatically picking the correct
pitch sequences (multi-pitch detection) plus assigning them to the right voices (voice
assignment).

The next section of this chapter gives a panoramic overview of related works. The
overview aims to contextualize the reader to the challenging task of automatic music
transcription of audio recordings with polyphonic vocal content. Section25.3 inserts
the reader to the music and acoustic context of polyphonic vocal music. The section
highlights specific characteristics of vocal intonation that can be used by machine
learning models to achieve the desired automatic music transcription. A short intro-
duction to the PLCA framework is given in Sect. 25.3.2. The PLCA framework is the
basis for the twomodels presented in Sect. 25.4, which are specially designed to sup-
port automatic transcription of polyphonic vocal music: (1) MSINGERS, primarily
designed to multi-pitch detection of vocal quartets; (2) VOCAL4, which integrates
acoustic and music language models, being able to perform joint multi-pitch detec-
tion and voice assignment.

25.2 RelatedWorks

Singing voice analysis has sparked attention among the music information retrieval
research community. Expressive characteristics of the choir singing are studied
in [12], with a focus on singers’ interaction during unison performances. The pub-
lished study analyzed how singers blend their voices together by means of F0 dis-
persion, intonation accuracy, and vibrato. Pitch accuracy on four-part ensembles,
regarding individual singer intonation, and the influence of members interactions is
investigated in [14]. Both [12,14] do not perform multi-pitch estimation on poly-
phonic content.

Polyphonic music with vocal content is addressed in [23,26], but these researches
focused only on extracting the leading vocal contour from themusic accompaniment.
These techniques were employed to the analysis of particular vocal characteristics,
however, they did not address the multi-pitch estimation of the polyphonic vocal
signal. Detection of multiple concurrent pitches (multi-f0) is a core problem of the
automatic transcription task [8], and recent research work [24,41] has applied deep
learning approaches toward this specific task. A fully convolutional neural network is
presented in [9] for learning salience representations from an input spectrogram. The
pitch salience representation is then used to multi-f0 detection and melody tracking.
The technique addresses general polyphonic audio, not focusing only on polyphonic
vocal music. Robust deep learning-based models need massive amount of data for
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training. Regardless of the worthy achievements of deep learning approaches on
polyphonic music, the lack of specific datasets with annotated vocal recordings is
still an issue.

Alternatively, models based on spectrogram factorisation have been extensively
applied to the problem of multi-pitch detection over the last decade. In such
approaches, the input time-frequency representation is factorized into a linear combi-
nation of non-negative components, often consisting of spectral atoms and pitch acti-
vations. Common spectrogram factorisation methods are Non-Negative Matrix Fac-
torisation (NMF) [17] andProbabilisticLatentComponentAnalysis (PLCA) [17,21].
Positive results of template-based techniques encourage the exploration and exten-
sion of methods based on spectrogram factorisation. However, as the number of
audio sources increases, the complexity of the input spectral shape causes strong
effect on the performance of the decomposition. Even on approaches that use pre-
learning steps, the large variation of the spectral templates, needed to represent a
significant number of audio sources (e.g., several singers plus the high number of
phonemes), affects the generalization of the model. Constraints and regularizations
can be integrated to reduce the degree of freedom of these models, as proposed
in [5,7].

Often, the time-frequency representation used in the factorisation process is based
on the Constant-Q Transform (CQT) [10]. This representation allows AMT tech-
niques to implement shift-invariant models [3,4,30]. Additionally, these approaches
frequently design a particular sparse set of spectral envelopes to denote the timbre
of specific audio sources and a wide pitch range. A particular multi-pitch detection
model based on spectrogram factorisation for a cappella of vocal quartets was pro-
posed in [39]. The acoustic drivenmodel exploited a pre-trained dictionary of spectral
templates that aims to represent the timbre ofmultiple singers. Singer voicewasmod-
eled regarding vocal characteristics as vowel types, voice types, pitch, and tuning
deviation. The model proposed in [39] will be explained in detail in Sect. 25.4.2.
Besides the multi-pitch detection task, there is also the problem of instrument (or
voice) assignment. It was explored in [2] by integrating a hidden Markov model that
enforces continuity to the pitch contour of each instrument, avoiding abrupt changes
on pitch estimation between close audio frames.

Aiming to improve the multi-pitch detection and achieve the voice assignment of
SATB parts, [29] combined an acoustic model (PLCA based) with a music language
model (HMM based). The music language model uses heuristics based on knowl-
edge from music theory and from constraints automatically derived from symbolic
music data to separate pitches into monophonic streams of notes (voices). Common
characteristics used by the music language model in [29] are (1) large melodic inter-
vals between consecutive notes within a single voice should be avoided; (2) crossing
of two voices should be avoided; (3) the sequence of notes should be relatively
continuous without big temporal gaps within a single voice.

The successful results obtained by [29,39] have motivated the written of this
chapter. This work aims to draw an incremental pipeline to guide the reader through
a PLCA-based algorithm applied tomulti-pitch detection and voice assignment tasks.
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25.3 Polyphonic Vocal Music

Polyphony is a specific kind of musical texture that combines two or more lines of
melodies, producing dense and complex mixtures in contrast to more empties tex-
tures. In the strictmusical sense, themusical textures can be classified asMonophony,
Homophony, and Polyphony/Contrapuntal [36]. The term Monophony describes a
musical texturewith just onemelody for an instrument or human voice.Audio record-
ings of Monophony textures are monophonic audio signals. An example of a typical
MIR task applied to Monophony textures is the fundamental frequency estimation
(pitch tracking) [27]. Homophony refers to a musical texture with one dominant
melodic voice accompanied by chords.

Terms Polyphony and Contrapuntal denote more than many simultaneous sounds.
They refer to specific stylistic and historical classification of music. Within the con-
text of Western musical tradition, the term Polyphony refers to the repertoire of the
late Middle Ages and Renaissance. Besides, Polyphony describes a type of musical
texture consisting of two or more simultaneous and independents melodies (voices)
with formal musical interaction between them.

The constitution of a dense texture presents horizontals elements as melodies and
verticals elements as harmonic intervals and chords. These two kinds of compo-
nents in the musical structure are inseparable and establish laws of attractiveness or
repulsion between the sounds that form them. The term Contrapuntal (note against
one note) is practically synonymous with Polyphony, except for one difference: the
term Counterpoint refers to the art, to the composition technique, and to the set of
rules that governs the conduction of voices (movements and combinations) in the
Polyphony and Harmony.

However, in the context of music information retrieval, the polyphonic audio
expression usually generalizes the term Polyphony, considering any musical texture
that is not monophonic. On this way, Homophony and Contrapuntal are sub-types of
Polyphony. Thus, audio recordings of Polyphony (which includes Homophony and
Contrapuntal) textures are polyphonic audio signals. Many MIR tasks address this
kind of signal, such as multi-pitch detection, chord recognition, and audio source
separation. For the task of automaticmusic transcription, the definition of polyphonic
audio recordings often includes all results of multiple sound sources that we can
hear at the same time. These simultaneous sounds can be produced by human and/or
instrumental voices, with a music formal interaction with each other or not.

In the context of the vocal repertoire, Choral is a specific texture of music pieces,
written specially for a choir to perform. The term choir indicates a musical ensemble,
whose musicians sing together, with or without instrumental accompaniment. This
group of people is organized, normally, as SATB. This acronym denotes the four
principal types of human voices, respectively, Soprano, Alto, Tenor, and Bass.
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25.3.1 Particular Characteristics of Vocal Sounds

The human voice and its use applied to communication have been studied for cen-
turies, and the source-filter theory based on acoustics aspects of voice production is
supported by many researchers [11,44]. According to Vagone (1980, p. 180) [47],
“Phonetics is ancient knowledge and young science”. It arose in antiquity, especially
among the Indians, from the fourth century onwards. But only in the 18th century,
scientific research has shown that phonetics was not linked exclusively to the study
of languages. Therefore, the origin of studies on the sounds of the human singing
voice, as understood here, came about three centuries ago. The source-filter theory
states that the vocal sound starts from the air pressure variation that is controlled by
the respiratory musculature. The air flows through the vocal folds (vocal cords) and
makes them vibrate. In voiced sounds, this excitation generates a periodic complex
waveform that contains a fundamental frequency and multiple harmonics.

The fundamental frequency of human singing voices varies in range between
70Hz (the average lower pitch in male singing voices) and 1397Hz (the average in
child or high-pitched female singing voices). The vocal range is an approximation
because it depends on the physiological and cultural characteristics of each human
being [47]. Voiceless (unvoiced) sounds are not produced by vibrating the vocal
cords but by a turbulent noise produced by the airflow interaction with lips, teeth,
and constrictions of muscles in the oral cavity. Both voiced or unvoiced sounds are
subsequently modified by the resonance and filtering characteristics of the vocal
tract. The vocal tract, in the source-filter theory, constitutes a group of filters that
interacts with the primary sound source from the larynx and then shape the spectrum
of the waveform.

The fundamental frequency of voiced sounds defines the pitch. It is worth noting
that sound perception is quite complex [34]. In the presence of the harmonics of a
given frequency f (e.g., 2 f , 3 f , 4 f , etc.), humans tend to identify f as the pitch of a
sound even without the presence of f in the audio signal. This phenomenon is known
as “missing fundamental”. Each particular vocal range, spanning from the lowest to
the highest note, can be used to specify the voice type [31]. Figure25.2 presents
a typical classification based only on the vocal range regarding female and male
subjects, even though this classification is not unique [43]. It is worth mentioning
that there are alternative classifications for voice types which might consider several
other vocal characteristics [15].

Resonances in the vocal tract accentuate specific frequencies and give particular
shape to the spectrum. Prominent peaks in the spectrum generated by the vocal tract
are called formants, and identified as a sequence: first formant (F1), second format
(F2), third formant (F3), etc. [18]. These formants have straight connection to the
vowels sounds, whose quality is mostly determined by the first two formants. The
relation between vowels and the mean frequencies of extracted formants are usually
visualized by a cardinal vowel chart [1].

Besides the characteristics as pitch, vowel type, and vocal range, the singing voice
also has important expressive features as vibrato and portamento. Vibrato, in the case
of singing techniques, is a periodic low-frequency pitch modulation applied by the
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Fig. 25.2 Common voice type classification based on vocal range [47]

singer. The amount of pitch variation defines the vibrato extension and the speed of
how the pitch oscillates around the steady note gives the rate of vibrato. Usually, the
mean vibrato extent for individual tones ranges between±34 and±123 cent [35], and
Western professional opera singers can perform vibrato rates in the range of about
5–7 Hz [47]. Portamento is used by singers to connect one pitch note to another in
sequence. During the portamento, the pitch increases (or decreases) to conduct the
voice from one tone to another passing by all intermediate pitches.

Vibrato, portamento, and tuning deviation generates a continuum range of into-
nation frequencies. Small deviations in the pitch imposes the challenge of cent reso-
lution representation that must be efficiently addressed by techniques for automatic
analysis of multi-pitch content.

25.3.2 Probabilistic Latent Component Analysis

Probabilistic Latent Component Analysis is a statistical technique that has been suc-
cessfully used for acoustic modeling over the past decade [4,21,30]. A PLCA-based
model can express a multivariate distribution as a mixture where each component
is a product of many one-dimensional marginal distributions. PLCA models are
equivalent to Non-Negative Matrix Factorisation. They can typically interpret a nor-
malized input magnitude spectrogram Vω,t as a bivariate probability distribution
P(ω, t), where ω denotes frequency and t denotes the frame index (time).

This section introduces and summarizes this probabilistic framework as described
in [40]. The framework uses a particular case of the decomposition of the latent vari-
able model where each input data vector is considered independent. In this case, the
PLCAmodels T one-dimensional distributions Pt (ω) instead of the two-dimensional
distribution P(ω, t).
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Following similar notation as the used in the seminal paper, this PLCAmodel can
be defined as follows:

Pt (ω) =
∑

z

P(ω|z)Pt (z), (25.1)

where Pt (ω) gives the overall probability of observing feature ω in the t-th exper-
iment. z is the latent variable. The multinomial distributions P(ω|z) represent the
basis components, and P(z) are mixture weights that refer to the contribution of each
basis P(ω|z) to express Pt (ω). The subscript t indicates that the mixture weights
change from time frame to time frame.

If we consider applying this model to factorize an audio input spectrogram, Pt (ω)

would be the given frequency distribution at frame t from the normalized spectrogram
and z could represent audio sources. Figure25.3 illustrates this hypothetical example
for the model of Eq. (25.1). P(ω|z) are the spectral atoms, encoding the pitch and
timbre of three distinct piano notes. Pt (z) gives the activations over time for each
spectral basis, regarding the latent variable z ∈ {C3, D#3,G3}.

The estimation of the marginals P(ω|z) is performed using a variant of the Expec-
tation and Maximization (EM) algorithm [16]. In the Expectation step (E-step), the
algorithm estimates the posteriori probability for the latent variable z as

Pt (z|ω) = P(ω|z)Pt (z)∑
z P(ω|z)Pt (z) . (25.2)

Fig. 25.3 Spectrogram factorisation of piano audio recording which contains activations of three
distinct notes (z ∈ {C3, D#3,G3}). The input time/frequency distribution Pt (ω) is shown on the
top right. On the left, the marginals P(ω|z) are shown as spectral templates, and on the bottom,
Pt (z) gives the respective activations over time
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The EM algorithm uses Pt (z|ω) as a weighting coefficient in the Maximization
step (M-step) to obtain a more accurate estimate of the marginals Pt (ω|z) and of the
prior Pt (z):

P(ω|z) =
∑

t Vω,t Pt (z|ω)∑
ω,t Vω,t Pt (z|ω)

, (25.3)

Pt (z) =
∑

ω Vω,t Pt (z|ω)∑
ω,z Vω,t Pt (z|ω)

, (25.4)

where V is the two-dimensional data which we want to fit the model. In the case of
a model design for audio analysis, V matrix is usually the input magnitude spectro-
gram.

Estimates of the conditional marginal P(ω|z) and the mixture weight Pt (z) are
obtained by iterating Eqs. 25.2–25.4, until convergence to a local optimum. The
above described framework can be easily applied to audio analysis since energy and
power spectra are distributions of acoustic energy over frequency [40]. Thus, the
only demand for the PLCA technique gets working straightforwardly is a proper
normalization of V to transform the magnitude spectrogram into true distributions.

25.3.2.1 Pre-learning
Many approaches for spectrogram factorisation adopt the pre-learning of the spec-
tral atoms, represented by the marginal distribution P(ω|z) in Eq. (25.1). Usually,
after the pre-learning of P(ω|z), it is kept fixed during the EM estimation. For the
case illustrated in Fig. 25.3, applying pre-learning of the spectral atoms reduces the
factorisation problem to the trivial estimation of the prior Pt (z) (weights of a linear
combination).

Despite the naivety of the model described in this section, it serves as the founda-
tions for more complex formulations. Latent class models are powerful techniques
that allow the characterization of the underlying distribution (Pt (ω) in our previous
example), providing a theoretical basis for modeling, and statistical inference for
estimation. Moreover, the probabilistic interpretation allows the model to factorisa-
tion into several meaningful components, strongly connected to the statistical nature
of the problem. All these positive properties of PLCA have motivated the develop-
ment of various models for multi-pitch detection [4,21,30]. In the next section, we
describe two specific models designed to multi-pitch detection and voice assignment
in the context of polyphonic vocal music.

25.4 PLCA Applied to Polyphonic Vocal Music

This section presents two PLCA-based approaches for automatic multi-pitch detec-
tion in the context of polyphonic vocal audio recordings. The first technique, named
as MSINGERS [39], focuses only on the multi-pitch detection task. The second
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strategy, named as VOCAL4 [29], integrates a music language model to achieve
concomitant better multi-pitch detection and voice assignment.

In the example of Fig. 25.3, if the spectral bases P(ω|z) are pre-learned as a dictio-
nary of templates, then the spectrogram factorisation process uses a two-dimensional
tensor, and the solution is less complex. However, to explore intrinsic characteristics
of the audio source, several approaches have proposed custom dictionaries for help-
ing the spectrogram decomposition in the context of more complex models [7,21].
For example, [7] uses a five-dimensional tensor to represent log-frequency, pitch, tun-
ing deviation, sound state (e.g., attack and sustain), and the instrument type. These
techniques had shown promising results on multi-pitch detection applied to audio
recordings of several musical instruments.

Inspired by these outstanding results, we have designed a six-dimensional dictio-
nary for the factorisation of spectrograms containing polyphonic vocal content. Both
models (MSINGERS and VOCAL4) use the same fixed dictionary of log-spectral
templates. These models aim to decompose an input time-frequency representa-
tion into several components meaning the activations of pitches, voice types, tun-
ing deviations, singer subjects, and vowels. The components are bound to important
vocal characteristics mentioned in Sect. 25.3.1 and were integrated into these models
because they open new possibilities for external model interactions. This is the case
for VOCAL4 which takes advantage of this feature and integrates a hidden Markov
model to interact with specific components (voice type) in the PLCA decomposition.
Details of the VOCAL4 model integration will be described in Sect. 25.4.3.

25.4.1 Dictionary Construction

The dictionary uses spectral templates extracted from solo singing recordings avail-
able in the RWC audio dataset [20]. The recordings contain singing intonation of
sequences of notes following a chromatic scale, where the range of notes varies
accordingly to the tessitura of distinct vocal types: bass, tenor, alto, and soprano.
Each singer sings a scale in five distinct English vowels (/a/, /æ/, /i/, /6/, /u/). In total,
the dictionary used by MSINGERS [39] and VOCAL4 [29] models has featured
fifteen distinct singers (nine male and six female, consisting of three human subjects
for each voice type: bass, baritone, tenor, alto, soprano).

These vocal characteristics are arranged into a six-dimensional tensor matrix to
shape the dictionary P(ω|s, p, f, o, v), where ω denotes the log-frequency index
and p denotes pitch. Since voice intonation can deviate from the semitone scale, f
denotes the pitch deviation from 12-tone equal temperament in 20 cent resolution
( f ∈ {1, . . . , 5}, with f = 3 denoting ideal tuning). The vocal characteristics used
in both the PLCA-based models are represented by the s, o, v, p variables, with the
following meaning:

• s denotes the singer index (out of the collection of singer subjects used to construct
the input dictionary). Theoretically, s would be in a very wide range of values.
However, in practical implementation, the design of the dictionary must take into
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account the memory requirements, computational cost, as well as the availability
of training data. Aiming to alleviate this limitation, part of the timbre variability
from s is absorbed by the variables o and v.

• o ∈ { /a/, /æ/, /i/, /6/, /u/} is the common vowels used for singing inWesternmusic.
For this implementation, the model uses English pure vowels (monophthongs),
such as those used in the solfège system of learning music: Do, Re, Mi, Fa, Sol,
La, Ti, and Do. It is clear that only vowels would not give the best spectral repre-
sentation of the singing voices. Nonetheless, since most of the time vocal quartets
hold the singing notes on vowels, the configuration of this dictionary presents a
reasonable trade-off.

• v ∈ {S, A, T, B} captures the main timbre differences between voice types (e.g.,
soprano, alto, tenor, bass).

25.4.1.1 Spectral Template Extraction
The spectral templates representations are extracted from the solo singing recordings
using the Variable-Q Transform (VQT) [38] with 60 bins per octave. The pitch
from each note intonation (chromatic scale) is automatically estimated with pYin
algorithm [27] and each spectral template is arranged regarding the singer source,
vowel type and voice type. Multiple estimates from the same singer that fall inside
the same pitch bin are replaced by its metrically trimmed mean, discarding 20% of
the samples as possible outliers. The set of spectral templates are then pre-shifted
across log-frequency in order to support tuning deviations ±20 and ±40 cent.

Recording sessions from the RWC dataset cover only part of all possible pitches.
Many tune deviations and pitched notes from the chromatic scale are not present in
the original audio recordings. As a consequence, the dictionary P(ω|s, p, f, o, v)

is a sparse matrix, with many templates missing along the pitch scale. A linear
replication procedure is applied such that existing templates are copied with the
appropriated log-frequency shift to fill the gaps in the dictionary. More details about
the replication process can be found in [39]. Figure25.4 shows a slice (ω versus p)
from the six-dimensional dictionary. On the left side of this Figure, it is possible
to see many empty columns (sparse matrix). These columns were filled with the
replication process as shown on the right side.

25.4.2 Model 1:MSINGERS

In the case of polyphonic vocal music, there are many characteristics that can be
explored in the design of the PLCA-based model, such as the variability of singer
voice timbre, the type of singing voice (e.g., soprano, alto, tenor, bass), pitch intona-
tion and type of vowels. This section will present the MSINGERS model [39]. This
model uses the fixed P(ω|s, p, f, o, v) dictionary of log-spectral templates described
in the previous Sect. 25.4.1 and aims to decompose an input time-frequency repre-
sentation into several components denoting the activations of pitches, voice types,
tuning deviations, singer subjects, and vowels.
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Fig. 25.4 Example from an /a/ vowel utterance templates extracted from one singer (adopted
from [39]):a original templates from theVQTspectrogram;b reviseddictionary templates following
replication

MSINGERS factorizes the normalized input VQT spectrogram Vω,t ∈ R
�×T ,

where ω denotes frequency and t time.
The normalized log-frequency spectrogram Vω,t is approximated by a bivariate

probability distribution P(ω, t). P(ω, t) is in turn decomposed as follows:

P(ω, t) = P(t)
∑

s,p, f,o,v

P(ω|s, p, f, o, v)Pt (s|p)Pt ( f |p)Pt (o|p)Pt (v|p)Pt (p),
(25.5)

where P(t) is the spectrogram energy (known quantity). The model conveys specific
meaning for each marginal distribution: Pt (s|p) is the singer contribution per pitch
over time, Pt ( f |p) is the tuning deviation per pitch over time, Pt (o|p) is the time-
varying vowel contribution per pitch, Pt (v|p) is the voice type activation per pitch
over time, and Pt (p) is the pitch activation at frame t .

The factorisation can be achieved by the Expectation-Maximization (EM) algo-
rithm [16], where the unknown model parameters Pt (s|p), Pt ( f |p), Pt (o|p),
Pt (v|p), and Pt (p) are iteratively estimated. In the Expectation step we compute
the posterior as follows:

Pt (s, p, f, o, v|ω) = P(ω|s, p, f, o, v)Pt (s|p)Pt ( f |p)Pt (o|p)Pt (v|p)Pt (p)∑
s,p, f,o,v P(ω|s, p, f, o, v)Pt (s|p)Pt ( f |p)Pt (o|p)Pt (v|p)Pt (p) .

(25.6)

Each unknown model parameter is then updated in the Maximization step, using
the posterior from (25.6)

Pt (s|p) =
∑

f,o,v,ω Pt (s, p, f, o, v|ω)Vω,t∑
s, f,o,v,ω Pt (s, p, f, o, v|ω)Vω,t

, (25.7)
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Pt ( f |p) =
∑

s,o,v,ω Pt (s, p, f, o, v|ω)Vω,t∑
s, f,o,v,ω Pt (s, p, f, o, v|ω)Vω,t

, (25.8)

Pt (o|p) =
∑

s, f,v,ω Pt (s, p, f, o, v|ω)Vω,t∑
s, f,o,v,ω Pt (s, p, f, o, v|ω)Vω,t

, (25.9)

Pt (v|p) =
∑

s, f,o,ω Pt (s, p, f, o, v|ω)Vω,t∑
s, f,o,v,ω Pt (s, p, f, o, v|ω)Vω,t

, (25.10)

Pt (p) =
∑

s, f,o,v,ω Pt (s, p, f, o, v|ω)Vω,t∑
s,p, f,o,v,ω Pt (s, p, f, o, v|ω)Vω,t

. (25.11)

The EM algorithm iterates from Eqs. (25.6) to (25.11). The authors of
MSINGERS [39] have used 35 iterations and random initialization of unknown
parameters.

Sparsity constraints are commonly used in PLCA-based models [7,42].
MSINGERS applies sparsity constraints on Pt (o|p) (vowel type) and Pt (v|p) (voice
type). These constraints are based on the assumption that vowel utterances and voice
types for a specific pitch are very unlikely to be co-occurring at time t by distinct
singers. The rationale behind the sparsity applied to the voice type component is
that distinct voices tend to sing different pitches. As might be expected, if the vocal
quartet sings a chord with three pitches (triad), then it is possible that two voices
share a same pitch. Even so, the sparsity constraints are beneficial and help to drive
the PLCA-based model to a meaningful solution.

After the convergence of the EM algorithm, the output of the transcription model
is a semitone-scale pitch activation matrix P(p, t) = P(t)Pt (p) and a pitch shifting
tensor P( f, p, t) = P(t)Pt (p)Pt ( f |p). In order to create a 20 cent-resolution time-
pitch representation, it is possible to stack together slices of P( f, p, t) for all values
of p:

P( f ′, t) = P(( f ′mod 5) + 1,

[
f ′

5

]
+ 21, t), (25.12)

where f ′ = 0, ..., 439 denotes pitch in 20 cent resolution.
Despite the reasonable factorisation model defined by Eq. (25.5) and its promis-

ing multi-pitch detection, the marginal distributions P(s|p) (singer source), P(v|p)
(voice type), and P(o|p) (vowel type) do not achieve meaningful solutions. In
fact, with appropriated arrangement of the dictionary of spectral templates, the
MSINGERS model could be reduced, for example, to

P(ω, t) = P(t)
∑

p, f

P(ω|p, f )Pt ( f |p)Pt (p) (25.13)

holding similarmulti-pitch detection results, if not implementing sparsity constraints.
Notice that the model given by Eq. (25.13) is very close to the basic model described
in Eq. (25.1) of the introductory Sect. 25.3.2, regardless the pitch shift component f
which gives the 20 cent resolution.
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However, besides the improvement achieved by the application of sparsity con-
straints on Pt (o|p) and Pt (v|p), the findings with the design and application of the
MSINGERS acoustic model have motivated its extension. By integrating an external
language model that can interact with specific factors of the decomposition, we have
created the VOCAL4. This model can carry out joint multi-pitch detection and voice
assignment. VOCAL4 is described in the following section

25.4.3 Model 2:VOCAL4

Unlike the MSINGERS [39], the alternative model

P(ω, t) = P(t)
∑

s,p, f,o,v

Pt (ω|s, p, f, o, v)Pt (s|p)Pt ( f |p)Pt (o|p)P(v)Pt (p|v)

(25.14)
decomposes the probabilities of pitch and voice type as P(v)Pt (p|v). That is, Pt (p|v)

denotes the pitch activation for a specific voice type (e.g., SATB) over time and P(v)

can be viewed as a mixture weight that denotes the overall contribution of each voice
type to the whole input recording. The contribution of specific singer subjects from
the training dictionary is modeled by Pt (s|p), i.e., the singer contribution per pitch
over time. Pt ( f |p) is the tuning deviation per pitch over time and finally Pt (o|p)
is the time-varying vowel contribution per pitch. Although Pt (s|p) and Pt (o|p) are
not explicitly used in the output of the proposed approach, they are kept to ensure
consistency with the RWC audio dataset structure.

The factorisation is achieved by the EM algorithm. For the E-step, we obtain the
a posteriori probability for the latent variables as

Pt (s, p, f, o, v|ω) = Pt (ω|s, p, f, o, v)Pt (s|p)Pt ( f |p)Pt (o|p)P(v)Pt (p|v)∑
s,p, f,o,v Pt (ω|s, p, f, o, v)Pt (s|p)Pt ( f |p)Pt (o|p)P(v)Pt (p|v)

.

(25.15)

We obtain theM-step re-estimation equations for each unknownmodel parameter
from Eq. (25.15):

Pt (s|p) =
∑

f,o,v,ω Pt (s, p, f, o, v|ω)Vω,t∑
s, f,o,v,ω Pt (s, p, f, o, v|ω)Vω,t

, (25.16)

Pt ( f |p) =
∑

s,o,v,ω Pt (s, p, f, o, v|ω)Vω,t∑
s, f,o,v,ω Pt (s, p, f, o, v|ω)Vω,t

, (25.17)

Pt (o|p) =
∑

s, f,v,ω Pt (s, p, f, o, v|ω)Vω,t∑
s, f,o,v,ω Pt (s, p, f, o, v|ω)Vω,t

, (25.18)

Pt (p|v) =
∑

s, f,o,ω Pt (s, p, f, o, v|ω)Vω,t∑
s,p, f,o,ω Pt (s, p, f, o, v|ω)Vω,t

, (25.19)
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P(v) =
∑

s, f,o,ω,t Pt (s, p, f, o, v|ω)Vω,t∑
s,p, f,o,v,ω,t, Pt (s, p, f, o, v|ω)Vω,t

. (25.20)

Themodel parameters are randomly initialized, and theEMalgorithm iterates over
Eqs. (25.15)–(25.20). Authors of VOCAL4 [29] have used 30 iterations. The output
of the acoustic model is a semitone-scale pitch activity tensor for each voice type and
a pitch shifting tensor, given by P(p, v, t) = P(t)P(v)Pt (p|v) and P( f, p, v, t) =
P(t)P(v)Pt (p|v)Pt ( f |p), respectively. Similar to Eq. (25.12), we can also create a
20 cent-resolution time-pitch representation for each voice type v:

P( f ′, v, t) = P(( f ′mod 5) + 1,

[
f ′

5

]
+ 21, v, t), (25.21)

where f ′ = 0, ..., 439 denotes pitch in 20 cent resolution.
The overall multi-pitch detection without voice assignment is given by P(p, t) =∑
v P(p, v, t). The voice-specific pitch activation output P(p, v, t) is binarized and

post-processed through a refinement step described in [39], where each pitch is
aligned with the nearest peak to it in the input log-frequency spectrum.

The acoustic model VOCAL4 is slightly different from MSINGERS. It is worth
to mention that this alternative way to decompose the probabilities of pitch and
voice type as P(v)Pt (p|v) is still not sufficient to help the acoustic model to achieve
significant improvement on the voice assignment task. Even though the voice sepa-
ration is still difficult for the acoustic model VOCAL4, its new PLCA formulation
given by Eq. (25.14) allows us to integrate external information in order to drive the
spectrogram factorisation.

25.4.4 Voice Assignment

In VOCAL4, voice assignment is accomplished by connecting a music language
model that performs voice separation on the multi-pitch activations outputs. The
music language model is a variant of the HMM-based approach proposed in [28],
and attempts to assign each detected pitch to a single voice based on musicological
constraints. The HMM separates the input sequential sets of multi-pitch activations
into monophonic voices (of type SATB) based on three principles: (1) voices are
unlikely to cross; (2) consecutive notes within a voice have a tendency to happen
at close pitches; (3) gaps between pitch activations within a voice are expected to
be minimal. For the sake of clarity, the HMM definition and details of the language
model implementation are omitted here. We refer the reader to [29] for a complete
report.

The observed data used by the HMMare notes generated from the acoustic model,
after the binarisation of the multi-pitch activations P(p, t).

These note detections are processed by the HMM model that estimates Pa
t (p|v)

from the most probable final HMM state. Pa
t (p|v) gives the probability of each

pitch detection to belong to a specific voice (e.g., SATB). It is worth to mention that
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Fig.25.5 Acoustic and Music Language models integration: At each EM iteration, the multi-pitch
detections from the PLCA model are fed to the HMM. The HMM outputs soft masks Pa

t (p|v) to
reweigh the pitch contribution of each voice. The masking process drives the EM by updating the
model with Pnew

t (p|v) (Eq. (25.22)) at each new iteration

Pa
t (p|v) is entirely estimated through theHMMand it is based only onmusicological

constraints.
To integrate the acoustic model (PLCA based) with the music language model

(HMM based), we apply a fusion mechanism inspired by the one used in [19].
Besides the voice assignment goal, this integration alsoworks as a twowaymecha-

nism.At eachEMiteration, the voice assignments generated by theHMMare injected
back into the PLCA model, helping to drive the factorisation. The output of the lan-
guage model is reintroduced into the acoustic model as a prior to Pt (p|v). Thus, at
the end of each acoustic model’s EM iteration, Pt (p|v) is updated as follows:

Pnew
t (p|v) = αPt (p|v) + (1 − α)φt (p|v), (25.22)

where α is a weight parameter controlling the effect of the acoustic and language
model and φ is a hyperparameter defined as follows:

φt (p|v) ∝ Pa
t (p|v)Pt (p|v). (25.23)

Figure25.5 illustrates the model integration. The hyperparameter of Eq. (25.23)
acts as a soft mask, reweighing the pitch contribution of each voice regarding only
the pitch neighborhood previously detected by the model. The final output of the
integrated system is a list of the detected pitches at each time frame, along with
the voice assignment for each. Figure25.6 illustrates these parameters estimation
for a recording excerpt of BC060 (“If Thou but Suffer God to Guide Thee”, by J.
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Fig. 25.6 Soft masking used to model integration. The results shown in the figure were obtained
at the last EM iteration for an audio excerpt (BC060): a Soft masks Pa

t (p|v) generated by the
music language model (HMM). b Marginal distribution Pt (p|v) generated by the acoustic model.
c Updated marginal distribution Pnew(p|v)

S.Bach [33]). Figure25.6a shows the soft masks Pa
t (p|v), generated by the HMM

after processing the multi-pitch output (last EM iteration). Figure25.6b shows the
marginal distribution Pt (p|v) before the reweighing by the masking process and
Fig. 25.6c shows the updated marginal distribution Pnew

t (p|v). The improvement of
voice separation, after the update, is visible for all voices.

Figure25.7 shows the system output results obtained from an audio excerpt
(BC060). On the top row of this figure, there is a comparison between multi-pitch
detection using MSINGERS (Fig. 25.7a) and VOCAL4 (Fig. 25.7b). The music lan-
guagemodel cooperates with the acoustic model and assists themulti-pitch detection
process, removing false positives and providing better precision on pitch estimates.
Figure25.7c shows the ground truth and Fig. 25.7d shows the final multi-pitch detec-
tion and voice assignment obtained by the binarisation of P(p, v, t)
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Fig.25.7 Systemoutput:MSINGERS versusVOCAL4. aMulti-pitch detection usingMSINGERS
without voice assignment. bMulti-pitch detection using VOCAL4with voice assignment. cGround
truth. d Multi-pitch detection and voice assignment. Colors indicate the voice type (SATB).

25.5 Final Considerations

In this chapter, we have presented a framework to assist the process of automatic tran-
scription of polyphonic vocal music. The framework used several acoustic features
of voiced sounds to model the input audio signal through a PLCA-based technique.
Besides the acoustic model, our approach also integrated a music language model
to assist the spectrogram factorisation into meaningful components. In Sect. 25.4.2,
we introduced the MSINGERS model, which uses only acoustic features of voiced
sounds. Despite promising multi-pitch detection results, it cannot achieve a proper
SATB voice assignment. Intending to overcome this limitation, we presented the
VOCAL4model in Sect. 25.4.3. In this second approach, the acousticmodel interacts
with an HMM-based music language model. The HMMuses musical assumptions to
perform voice separation, improving the multi-pitch detection when compared with
the first approach (MSINGERS).

Extensive evaluations of MSINGERS and VOCAL4 are available in [29,39],
respectively. The evaluations were reported with experiments using audio record-
ings of 26 Bach Chorales and 22 Barbershop Quartets. In summary, f-measures for
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the task of multi-pitch detection with VOCAL4 are %71.76 on Bach Chorales and
%75.70 on Barbershop quartets. VOCAL4 achieved better results thanMSINGERS,
and it was superior than other multi-pitch detection algorithms [25,32,37,45]. A
recent study [13] has compared VOCAL4 model with DeepSalience [9] algorithm.
In this new comparison, DeepSalience achieved slightly better f-measure, however,
both algorithms were tested with a very small dataset (only three SATB record-
ings). Moreover, among all comparative methods, only VOCAL4 implements voice
assignment.

Based on the evaluation results, it is clear that the integration of themusic language
model has a positive contribution to the meaningful spectrogram factorisation. It also
encourages the exploration of additional vocal features and acoustic components for
the PLCAmodel. These components open possibilities to the interconnection to even
more advanced musical language models that could include harmony progression,
rhythmic structure, genres, and music styles.

Acknowledgements This chapter presents results of joint work with Emmanouil Benetos (Queen
Mary University of London), Andrew McLeod (University of Edinburgh), and Mark Steedman
(University of Edinburgh).
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26Graph-Based Representation, Analysis,
and Interpretation of Popular Music
Lyrics Using Semantic Embedding
Features

Mitsunori Ogihara, Brian Manolovitz, Vítor Y. Shinohara, Gang Ren
and Tiago F. Tavares

26.1 Introduction

The hearts of popular music are their lyrics. Rich in narration and emotional
expression, popular music lyrics reflect the social trends and show the introspection
and viewpoint of their performers [1, 2]. Lyrics is a more direct (or verbal) con-
versation compared to the other forms of musical expressions, together they can
speak to the subtlest soul of their audience. The analysis of popular music lyrics is an
intriguing research topic. Since the accessibility to the listener and the sing-ability by
the singer are important constraints, the word choices in popular music are subtle and
peculiar. The true meanings are hidden behind the word selection, phonetic
arrangement, form, and the art of balancing the denotations and connotations [3–6].
In this chapter, we propose a systematic lyric modeling and analysis framework for
popular music lyric analysis and interpretation using linguistic semantic embedding
[7, 8] and network structural analysis [9–12]. We implemented various algorithms on
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the characterization of the distributional and structural characteristics of the linguistic
patterns in the language semantic embedding space that imitates human cognition
and response of music lyrics [13, 14]. Using the characterizations, we performed
various empirical studies on music lyrics from different genres and time periods. The
proposed lyrics analysis tool serves as a computational experimentation platform for
proving the analytic concept and for exploratory analysis of lyrics patterns. It also
serves as a basis for future predictive analysis implementations.

Our proposed automatic analysis framework reflects the analytic concepts from
the manual lyric analysis processes but provides significant extensions on existing
methodology and analysis scope. Specifically, our proposed analysis framework
focuses on the structural characteristics of the temporal semantic patterns of the
lyrics and uses a graph-based representation and complex network-based structural
features as the modeling tool for interpreting the underlying linguistic patterns in
the semantic embedding space such as structural symmetry, word distribution
pattern, sequential trajectory shapes, and so on. The proposed analysis framework
extends the depth and the scope of the existing manual analysis processes by
providing formalized quantitative methodologies, designing and implementing new
structural and statistical descriptors for lyric word sequences, and enabling us to
study the lyric dataset of large scale using automatic processes.

Our proposed lyric analysis framework maps the words of the lyrics to a
semantic embedding space. Using the framework, we can observe the semantic
characteristics of the lyrics. The semantic space represents the geometrical rela-
tionships between the meanings of the words and uses the topological relationship
to approximate the connections and the differences between the word tokens [8].
Word tokens with similar meanings are clustered together when mapped to such a
semantic space, while word tokens with disparate meanings are separated further
apart. By mapping the words from the lyrics into a semantic embedding space, our
proposed analysis framework allows us to explore the semantic content and the
contextual information of the music lyrics using quantitative approaches. The
semantic embedding space represents each word as a constellation point, or a vector
of location coordinates of the spatial dimensions, in the semantic embedding space.
Then a sequence of words, such as lyrics in a phrase or section, is modeled as a
linear trajectory connecting the points corresponding to the word tokens in the
semantic embedding space. Our proposed analysis framework provides various
feature descriptors for depicting the spatial distribution of the word tokens and the
structural properties of the word trajectories. These feature descriptors provide a
comprehensive characterization of the semantic and syntactic properties of the
music lyrics. Furthermore, we implemented comparative studies of the music lyrics
from different genres or production time periods and observe the differences
observed from these feature descriptors.

Section 26.2 presents a review of the existing works on natural language pro-
cessing, lyrics studies, and computational/empirical musicology. Section 26.3
introduces the semantic word embedding space for lyrics processing. Section 26.4
shows the proposed graph-based representations. Section 26.5 presents our graph
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feature extraction algorithms. Section 26.6 presents the empirical study of the lyrics
from different music genres and different time periods. Section 26.7 includes the
conclusion and the possible future research directions.

26.2 Key Concepts and Related Works

26.2.1 Deep Modeling of Lexical Meanings

Compared with the existing natural language processing frameworks of word
semantic embedding analysis and interpretations [15–18], our proposed framework
is more focused on the detailed exploration of the contextual structures of the lyric
patterns. The design aim of these features is to enable meaningful linguistic pattern
analysis when only a small amount of text is available. Most existing tools for word
semantic embedding are designed for application scenarios where a large amount of
text is the analysis target, such as online comments about consumer products,
books, magazines, and newspapers. In these scenarios, the length of the texts is a
few hundred or more. Because the statistical pattern of the word distribution tends
to converge and stabilize [16] for the text corpus at this size, the existing analysis
tools based on the statistical distributions of words produce many interesting
patterns.

The analysis tasks of music lyrics aim at extracting meaningful results from short
lyric excerpts with a typical length of 30–80 words. The tools we proposed are
focused on the lyric analysis scale. In our proposed framework, we sort the
employed text analysis tools into two different analysis scales with different target
text lengths. The first analysis scale is termed the social media scale. The analysis
tools at this analysis scale are tailored at the text corpus with 200 or more words for
each analysis target. We termed this analysis scale the social media scale because
social media is one of the most representative application targets for this type of
analysis, but similar approaches can be applied to literary studies [19, 20], media
studies [21], content management system analysis [22], and web database system
analysis [23]. The analysis method for this analysis scale is mainly the
“bag-of-word” approaches [14–16], which discard the temporal order of the word
and instead calculate the distributional statistics of the words. Because the analysis
target of this analysis scale usually contains enough words that aggregate enough
statistical descriptors even without considering the temporal orders of the words.
Our implementation includes several related feature descriptors in this analysis
scale with appended methodologies from graph and complex network analysis. The
second analysis scale in our implementation is termed sparse text scale, with a
typical analysis target of less than 100 words. Our proposed tools are mainly
focused on this scale, where more analysis resolution is demanded for limited text
length.
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26.2.2 Mapping Artificial Intelligence Research for Lyrics
Studies

A computational implementation of lyrics analysis helps to bridge the research area
of lyrics studies to other areas of Artificial Intelligence (AI) [24–27] and
multimedia/multimodal data analysis [28–30]. Our current focus is to adapt highly
successful tools developed or refined in the other areas of AI and machine learning
and investigates their effectiveness for lyrics studies. Specifically, the computational
implementation in our work enables us to bridge musicology, music theory, and
lyrics studies to extremely successful “wavefront” AI research areas such as
computer vision, natural language processing, and robotics [24, 25].

In recent years, these “wavefront” research areas developed or fine-tuned many
high performance tools for exploratory data analysis, data mining, predictive anal-
ysis, and user interactions. Currently, the research and development in these three
“wavefront” areas can be roughly categorized into four arenas as illustrated in
Fig. 1.1. The first is the behavior-based research [29], where the researchers inves-
tigate the human psychological and physiological behaviors and develop models to
explain them. The second is the computational implementation, where the
researchers use computer hardware and software to implement many human work-
flows or psychological/physiological processes. The third is the human–computer
interfaces. In this arena, the researchers try to mix computational elements with
human psychological/physiological. The last is the deep learning research. In recent
years, deep learning systems in “wavefront” areas achieved many remarkable suc-
cesses in perception tasks. Figure 26.1 also includes the timeline for implementing
these research areas of consecutive research phases for these three research areas,
where the research focuses and their evolutions are clearly-drawn.

Fig. 26.1 Mapping the
research focuses of artificial
intelligence areas and
comparing “wavefront” areas
with lyrics studies. The
wavefront areas have clearly
defined research and
implementation goals
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For other research areas in AI, we observe two trends in the timing of the
research phases and in the topic areas of research in each phase. Most research and
development areas in these directions are developed behind the “wavefront” areas
with various time lags (note many exceptions, where “wavefront” areas often
integrate many emerging “fast success” topics from other areas and repackage these
topics into their scopes). The second trend is that the boundaries between behav-
ioral research, computational research, interaction research, and deep learning
research are becoming nebulous. Instead of a succession of rise-and-fall research
phases, research areas are more consistent and interweaved.

The research focus of computational musicology [31, 32] and computational
music theory [33] is very versatile and comprehensive in both depth (or com-
pleteness of investigations) and breadth (the topic area coverage). The musicology
research directions on lyrics studies have complete coverage on all spectrum of
artificial intelligence concepts and methodologies. Currently, lyrics studies show
concentration in behavior (psychology) and computational (formal modeling,
information retrieval, automatic analyses). There are many attempts on interactions
(annotation, algorithmic composition, multimodal media studies) and deep learning
(syntactic and structural analysis), but these directions have relatively much less
footprints. In-depth, we see very complete and comprehensive or even systematic
conceptual theories and empirical studies in the behavioral front. Then the coverage
of research topics gradually decreases and we see more rarely-tackled areas or
unexplored areas. These vacuum areas provide many exciting research opportuni-
ties for researchers in lyrics studies. Behavior areas also have more inter-area
fusions where multiple research communities join forces and tackle problems in
their common borders. We also see many vacuum areas between conventional
defined split lines of music theory and musicology, which present ample research
opportunities and promising growth of the overlapping research areas.

26.2.3 Believe in Data: Data-Driven Approaches for Lyrics
Studies

Data-driven approaches [24–26] focus on the accumulation of data and the inter-
pretation of data. Essentially, such methodologies allow data to speak, and ask the
researchers to “believe in” data when data counter our intuitions and research
conventions. Data-driven research methods have shown profound power in many
artificial intelligence areas such as computer vision, natural language processing,
biomedical and bioinformatics, and robotic navigation. A data-first approach usu-
ally brings in extremely rich research results and high research and development
efficiencies compared to other research methods.

Using data-driven research methodologies, research teams can easily split tasks
on data collection and data analyses. Modular approaches are easier to implement in
research and development and are the preferred research management modes of
modern research and development operations. Lyrics studies require prolonged
investigations to produce meaningful results. A large amount of studies or
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implementations are required to realize a relevant concept or a convincing theory.
When spliting research tasks using conventional research management instruments
for a large team [34, 35], each team member still needs to invest a substantial
amount of research depth in the subareas not assigned to them, in order to utilize the
work contributed by their collaborators. The research management pattern in these
research works shows large portions of overlapping trajectories for researchers in
the same team when the tasks are performed concurrently. Modern research project
management emphasizes agile workflows for enhancing the task organization and
accelerating the research pace, which is difficult to implement on the conventional
non-data-driven approaches.

The modular feature of data-driven approaches provides many natural and
efficient task separations that can significantly accelerate research and development
workflows [36]. The tasks in the data collection are naturally modular because of
the easiness to split work. For data analysis, the standardization of analysis software
enables modularization. The standardization of data analysis pipelines in recent
years provides comprehensive implementations of the common data analysis rou-
tines: simply applying readily available data analysis packages can go a long
research mileage on most data-driven research areas. Furthermore, a modular and
standardized data analysis pipeline allows the researchers to borrow or exchange
existing code, algorithms, and concepts. This feature prevents “reinventing the
wheel” and facilitates cross-disciplinary conversations.

26.2.4 Critical Re-definition from Empirical to Experimental

The topic imbalance illustrated in the previous section also provides unique
opportunities for reexamining the existing theories and practices of the more
matured areas both in theory and applications [37, 38]. The research and imple-
mentation in computational areas provide unique devices for rethinking and vali-
dating the existing theory using formal or data-driven approaches. The proposed
semantic word embedding framework for lyrics processing is useful for not only
lyrics studies, but also for other musicological studies. In recent years, Empirical
musicology has integrated more data-driven or computational elements. This trend
results in a transition from empirical musicology to experimental musicology: using
data and their tailor-made algorithms, more rigorous and quantitative methods can
be applied to musicology. The result is a comprehensive experimental study plat-
form for computational musicology. This transition from empirical musicology to
experimental musicology opens many new doors to unexplored territories in
musicology, while allowing existing theory and practice to be tested (and unam-
biguous verified or falsified), expanding the scopes and depth of existing studies
(e.g., tackling large-scale data sets or complex feature dimensions).

Integrating the methodologies of experimental studies to lyrics analyses is
essential to modernize the lyrics analyses in multiple ways. Most existing studies on
music lyrics lack the test and verification elements because of the difficulty to
conduct verification. Follow-up studies of new ideas tend to build upon the new
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ideas, by performing different interpretations, expansion, and reinforcement,
without going through experimental verifications. The recent proliferation of critical
theory reopens many research avenues for reexamination with experimentation [39–
41]. Our implementation is one step towards this direction by providing experi-
mental platforms that are very different from the conventional methodologies in art
and humanities. Our proposed framework also includes transparent data and pattern
interfaces, allowing flexible integrations of data-driven approaches with existing
methods. We promote a view that the diversification of approaches helps a research
area proliferate and take healthy growth paths.

26.3 Semantic Word Embedding

The lyrics in our proposed modeling approach are first processed using the semantic
word embedding framework of Global Vectors for Word Representation (GloVe)
[7, 8]. The concept of semantic word embedding is based on the dependencies of
the meaning of a word and the words that surround it. By explicitly modeling the
contextual semantic embedding of words in a language corpus, word embedding
can reliably show the relationship between the meaning of words as geometrical
relationships. Most semantic word embedding frameworks such as Word2Vec [42,
43] and GloVe [7, 8] can also provide satisfactory geometric modeling relationships
of a diverse range of natural language concepts such as the parallel relationship
between “cat -> tiger” and “dog -> wolf”. Words with similar meanings are allo-
cated together, while words with disparate meanings are allocated further apart.

These semantic word embedding frameworks provide quantitative methods for
exploring linguistic meanings for various text analysis tasks [7, 8]. In our imple-
mentation, each analysis target (the music lyrics of a song) is usually short in length
and thus impractical to aggregate robust frequency counts as statistical patterns
when the words are only treated as meaningless tokens. By mapping the lyric words
into the semantic embedding space, the sparse word length in the lyric dataset is
amplified by the semantic representation of words and the complex semantic
relationships of the words. This semantic word embedding step provides a boost of
information in the lyric modeling and representation stage that benefits the subse-
quent feature extraction and pattern interpretation stages.

In the processing step of semantic word embedding, the embedding space is
adapted from the word embedding models trained on the text corpus other than the
music lyrics. For example, many such word embedding models are trained from
online articles [7, 8]. These word embedding models do not necessarily reflect the
text usage patterns in the musical lyrics and thus limit the representation power of
our proposed analysis framework. On the other hand, a word embedding model
solely trained on a large text corpus of music lyrics will be severely limited in the
representation scope by the topics and the linguistic inclinations of the lyrics
selected. For example, many word relationships are better reflected in ordinary
articles than in music lyrics such as the semantic representation of emotion-related
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words [8]. Thus, a combination of lyrics induced word embedding space and
existing word embedding models will further enable the representational flexibili-
ties for lyrics analysis.

In our implementation, the musical lyrics are first mapped to a word token
sequence. The token index number is just an assigned number unique to each word
but without specific meaning. Then the token sequence is translated into the con-
stellation points in the semantic word embedding space using the GloVe frame-
work. The semantic embedding process assigns specific linguistic meanings to each
word token in the token sequences. From this modeling step, each lyric is repre-
sented as a chain of constellation points in the semantic word embedding space. An
example of the embedding process is presented in Fig. 26.2. Each node represents
the semantic coordinates of a word in the semantic word embedding space. Each
edge between two adjacent words shows the sequential relationships in the lyrics. In
this visualization, the start and the end directions are not specifically annotated but
it is retained in the sequential token representation as the “lyrics travel” directional
tags. These directional tags will be utilized in many feature descriptors in the
following processing stages.

Fig. 26.2 Example of a lyric chain in the semantic word embedding space. The word tokens in a
song are the blue dots and the trajectory show their temporal order. The projection of each word
token dot is also plotted as the gray-colored dots and projection lines. Each semantic dimension is
provided with an axis label as the interpretations obtained from key words locations in that
dimension
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26.4 Appending Relational Links

Our implementation also appends several groups of attachment edges to the graph
representation by specifying many types of relationships between the word tokens
as additional graph edges between various constellation points in the semantic
embedding space. Later these additional edges allow us to use feature descriptors
based on complex network terminologies [9–12] to summarize the relationships
between the word tokens. By transforming the additional information such as the
relationships of nodes or the properties of a graph into additional edges, the
additional information is embedded into the appended graph structure, which is
useful for both feature extraction using complex network methodology and for
visualization.

A similar approach is applied extensively in molecular biology [44] and organic
chemistry [45], where various types of forces between atoms are appended as graph
edges in the structural representation of molecules. For example, the basic edges of
these structures are the strong link between atoms, which is parallel to the “hard”
temporal edges of our proposed lyric representation. Then the weak forces between
the structural elements are responsible for the folding mechanisms of the molecules
and subsequently their biological and chemical function and properties. These weak
forces are usually modeled as the additional links upon the basic edges to
emphasize the interactions between structural elements.

In our proposed lyric analysis framework, we provided several options to append
these relational edges to the chain structure of the musical lyrics. The following
relational links can be appended separately or in combination, depending on the
settings of the feature extraction algorithm in the next section or the visualization
preference settings.

26.4.1 Appending Similarity Links

The most obvious way to append the relational links is to connect between any pairs
of word tokens that are allocated near to each other in the semantic embedding
space, i.e., words that have similar meanings according to the interpretations of the
selected semantic embedding space. In our implementation, we first calculate the
average edge number for each node and then add in the similarity links to the point
that the average number for each node doubles. Alternatively, we also set the
threshold to 2/3 of the average value of the similarity values between any two nodes
(words) in all graphs of an analysis (high value means that the two nodes are
similar). A pair of nodes with a similarity value higher than this threshold is
appended with a similarity link. The above two threshold values are designed to
ensure that enough new edges are appended to the basic lyric graph so that the
appended graph is significantly different from the basic lyric graph. At the same
time, these settings prevent the graph from turning into fully connected. For graph
or complex network-based representations, a fully connected graph carries little or
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no information because full connection and zero connection are two polar null
statuses of a graph [9]. The information in a graph builds up either as a process of
appending edges from non-connected graphs or as a process of eliminating edges
from fully connected graphs. Most feature descriptors proposed in our analysis
framework also perform the best when the connectedness of the graph is in the
middle range.

26.4.2 Appending Lyric Structural Links

The music lyrics have many types of the structural elements such as the song forms
and the narrative structures. In our implementation, we provide the options to
include two types of the song form structures that are uniform to all the lyrics
disregard the difference of song forms. The first type of the song structure links is
the parallel structural links between two lyric sentences. We assume that the
adjacent sentences are connected to each other as the composition intention [13]
and add in edges for nodes in the same relative locations of the music lyric. An
illustration of this edge appending process is shown in Fig. 26.3, where we append
the song form links starting from the lyric tokens in the shorter phrase. We first
connect the beginning and the ending words of the phrases. Then we connect the
center words if available. We then add in the connection links in the middle part of
the lyric segments in the same manner by connecting the middle words and leaving
the blanks in the longer phrase evenly. Several extreme cases of length imbalance
are also presented in Fig. 26.4. In these imbalanced cases, the edge appending
priority is the head word, the tail word, and then the middle word, which provides a
relative even lattice of connection that depicts the conceptual connections between
music phrases.

The second type of song form link is the parallel link between the blocks
(paragraphs) of the lyrics. This link is based on the structural similarity of the lyrics
at similar relative locations in the adjacent blocks of the lyrics. For each lyric block,
we attach the beginning, ending, and the middle point of each text block to the
corresponding text locations in the adjacent text block by appending the relational
link edges. Then we repeat this linking process by adding the link edges at the
middle points for the two intervals between the beginning and the middle point and
between the middle point and the ending. The depth of this link appending process
is provided as a parameter for tuning the balance between the emphasis of phrase
level connections and the block level connections. In this chapter, we maintain a
similar number of edges appended at these two levels for simplicity but this
parameter can be adjusted according to the emphasis of analysis at different time
scales or tailored to the lyric corpus.

For both types of song form links, we also provide an option to add in the
closure links between the beginning and the ending points of the structural ele-
ments. The connections of these structural units are caused by the prevalence of
arc-shaped tension-relaxation structures in the music lyrics. For example, the
beginning and the ending part of a lyric phrase are more similar and connected
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compared with the middle part. And so are the lyric blocks: the first phrase is
usually closely connected to the last phrase in a block. Although in many lyric
excerpts some parts will not always obey this structure. The prevalence of such
structure warrants its usefulness in most analysis scenarios.

26.4.3 Adjacency to the Key Analysis Concepts

This option enables the algorithm to append in the connection edges between word
tokens if they are in the adjacent region of a word token that belongs to the key

Fig. 26.3 Examples for adding in phrase structure links on top of the temporal links. The blue
colored lines are the temporal links of the lyric. Then we append the orange colored structural links
to depict the mapping locations in the adjacent music phrase. a Appends head, middle, and tail
links, then b adds in more links in the intervals

Fig. 26.4 Example for adding in structural links for imbalanced phrase length. The tokens in the
shorter phrase are mapped to more tokens while keeping the blank tokens evenly distributed
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concept of lyric analysis such as common theme (love, car, people, life, etc.) or key
emotion (happy, sad, angry, etc.) For each key concept token and a preset semantic
radius in the word semantic embedding space, a word token is assumed to belong to
the key concept token group if its constellation is within the radius. For the words in
the key concept token group, we first calculate their weight center and then select a
word token nearest to the weight center as the central words for this group. Then we
add in key analysis concept link from each other word in the group to the central
word.

26.5 Details of Feature Descriptors

The feature descriptors are designed for modeling the semantic characteristics of the
lyrics from the spatial distribution of the word tokens and the topological rela-
tionships among word tokens. The descriptors are categorized into three types. The
type I descriptors do not consider the sequential order of the word tokens. Instead,
the word tokens are treated as scattered constellation points in the word embedding
space. The feature descriptors of this type depict the “cloud shape” of the word
tokens in the text embedding space such as the maximum distance between any
two-word tokens, the symmetry of the word distribution shape, and the evenness of
word token distribution in the semantic word embedding space. The type II
descriptors emphasize the temporal order of the word token and extract the struc-
tural features from the chain structure, such as adjacent word distance, smoothed
adjacent word distance, high order word distance (semantic distance between
alternative words or every three words), the angles between adjacent vertices,
smoothed vertex angles, and high order vertex angles. The type III descriptors are
extracted from the lyric graph with appended structural edges. This type of
descriptors is mostly the network topological descriptors rooted from the complex
network literature such as the average number of edges and the symmetrical balance
of edge distribution.

26.5.1 Spatial Distribution Based Features

26.5.1.1 Centroid Location
This feature dimension calculates the center locations of all word tokens in a lyric.
Suppose the specific lyric includes tokens eiji ¼ 1; � � � ; pf g with locations in the
word semantic space as S eið Þji ¼ 1; � � � ; pf g, then the center location is calculated
as

Sc ¼
Xp
i¼1

S eið ÞW eið Þ ð26:1Þ
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where W eið Þ is a weight factor for token ei. We can assign all W eið Þ to “1” so all
tokens are treated as the same. Alternatively, we can assignW eið Þ to decay from the
start of the lyrics towards to end of the lyric to account for the narrative focus and
the audience attention pattern [34].

26.5.1.2 Span Volume and Dispersion Between Semantic Word
Embedding Dimensions

This feature depicts the width of the “lyric cloud” of a song in all directions. For
each semantic embedding dimension g, suppose the distance between the widest
separated two points is dg, then the span volume is calculated as

V ¼ 10
1
G

PG

g¼1
log10dg ð26:2Þ

where G is the number of dimensions in the semantic embedding. We apply this
average method, instead of calculating the multiplication of the span of all
dimensions, to suppress the influence of extremely large or small span values in
certain feature dimensions. To cope with the outliners of the text token distribution,
we also provide an option to calculate dg as the interquartile range (the distance
between the 25% percentile and the 75% percentile points) of the text token dis-
tribution in the semantic embedding dimension g. Because this option suppressed
the extremely large values of the lyric span, the span volume is calculated as the
summation of the dg value in all semantic embedding dimensions.

V ¼
XG
g¼1

dg ð26:3Þ

The dispersion measurement Pg calculates the standard deviation of the text
token distribution on each semantic word embedding dimension g. A high standard
deviation indicates that the word tokens span a longer semantic distance in that
dimension. Optionally, we can also calculate the interquartile range qg of the token
distributions of each dimension g. Then we calculate the statistical parameters such
as the mean and the standard deviation across the dimensions of the semantic word
embedding space for each song.

26.5.1.3 Maximum Semantic Span
This parameter is calculated as the distance between the two most distant word
tokens from the lyrics in semantic word embedding space. The distance of token ei
and ej is calculated as

D ei; ej
� � ¼ sqrt

XD
d¼1

ei;d � ej:d
� �2" #

ð26:4Þ
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where sqrt denotes the square root function, ei;d is the d-th dimension of token ei; in
the semantic word embedding space. D is the total number of dimensions of the
semantic embedding space. Then the maximum semantic span is calculated as the
maximum distance between any pairs of tokens in a lyric

Dmax ¼ Max2i;jD ei; ej
� � ð26:5Þ

26.5.1.4 Semantic Span Distribution
To mitigate the effect of outliers in the semantic span between word tokens, we also
calculate the percentiles of pairwise distances between the word token pairs.
Suppose the distances of all pairs are denoted asD ¼ D ei; ej

� �jforalli; j� �
. The

percentile point g for D as prc D; gð Þ means the number of D ei; ej
� �

values smaller
than prc D; gð Þ is smaller than the g proportion of all pair numbers

Num D ei; ej
� �

\prc D; gð Þ� �
\gNum D ei; ej

� �jforalli; j� � ð26:6Þ

where Num function counts the total number of the token pairs that satisfy the con-
dition. In our implementation, we use g values of 0.7 and 0.85 as percentile feature
descriptors.

26.5.1.5 Semantic Span Imbalance Among Semantic
Embedding Dimensions

This group of feature descriptors calculates the difference between the semantic
span in different directions of the semantic word embedding space. The distance
between token ei and ej in semantic embedding dimension d is calculated as

dist ei; ej; d
� � ¼ ei;d � ej:d

�� �� ð26:7Þ

where �j j denotes absolute value.
For each semantic embedding dimension d, we calculate the percentile points for

g ¼ 0:7 and for g ¼ 0:85 as distprc d; gð Þ. Then we calculate the range and the
standard deviation for distprc d; gð Þ; d 2 DSE

� �
;DSE as the total number of dimen-

sions in the semantic word embedding space.
The variance value of the semantic word embedding space such asWord2Vec and

GloVe is not fully normalized; instead, the higher dimensions usually have a lower
variance in coordinate value similar to the variance decay in principle component
analysis [46] or independent component analysis [47]. Thus, the distribution patterns
calculated from different feature dimensions are not at the same scale. However,
because our analysis employs the same semantic word embedding space for all
analysis tasks, the offsets caused by the scaling between feature dimensions are
consistent and will not affect the comparison between lyric graphs. Thus, for sim-
plicity, we directly apply the semantic word embedding space to the lyrics mapping
without changing the scales, although alternatively, we can also calibrate the variance
between semantic embedding dimensions using a sample lyric set.
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26.5.1.6 Token Distributional Symmetry Based Descriptors
This group of descriptor depicts the symmetry of the unordered distribution shape
of word tokens. We first choose an arbitrary word token as the center of the word
token distribution. Suppose the center token we selected is located at
C1;C2; � � � ;CDð Þ in the word semantic space, the mirror point for
ei;1; ei;2; � � � ; ei;D
� �

is 2C1 � ei;1; 2C2 � ei;2; � � � ; 2CD � ei;D
� �

. Then we calculate
the mirror points for the lyric tokens except for the token selected as the center
point.

Suppose the mirror points for the word tokens are denoted as ej;1; ej;2; � � � ; ej;D
� �

,
for each mirror point, we pair it with the nearest token in the lyric token points
ei;1; ei;2; � � � ; ei;D
� �

and calculate their distances.
In our implementation, we use a heuristic approach for pairing mirror tokens

with the source tokens by taking a point from the mirror tokens, finding the nearest
point in the source tokens, and then removing the paired source token from the
group of candidate source tokens for the following pairing steps. The mean mirror
point distance, the mean value of all distances of the paired mirror tokens and the
source tokens, is a measurement of the symmetry of the token distribution shape.
A smaller value of the mean mirror point distance indicates that the folded token
distribution “cloud” relatively overlaps with the source token distribution, thus
indicating a more symmetrical form with the reference central point. Then we
iteratively choose all token points within a preset radius of the centroid location as
the central point and use the lowest mean mirror point distance as the symmetrical
measurements. Alternatively, we provide an option to choose the centroid location
as the center point and then calculate the mean mirror point distance without
iteration.

26.5.2 Temporal Structure-Based Features

26.5.2.1 Average Step Size
The average step size is the mean value of the distance between the successive word
tokens in the lyric chain in the semantic word embedding space. This feature
descriptor depicts the semantic span in the temporal direction. Because this feature
descriptor considers the temporal order, it shows different structural characteristics
compared to the unordered spatial descriptors in the previous section. For example,
a song with the lyrics of alternating words of very different emotion concepts will
show a high value of the average step size, because the trajectory of the lyric chain
zigzags through the semantic word embedding space even when the tip points do
not move too far from each other. In the contrast, a song with gradual and small
semantic steps but the consistent movement towards one direction shows a low
value of the average step size. Without considering the temporal order of the
sequence, the constellations of word tokens in these two examples might show a
similar spatial distribution pattern.
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Our implementation also provides high order descriptors for the average step
size by only considering tokens in every alternative step as the second order average
step size or evenly sampling a single word token from every three word tokens as
the third order average step size. The high order descriptors capture the variations of
the token locations at different variation rates, similar to the filters in signal process
capturing the signal variation at different frequency bands [48].

The high order descriptors for the average step size can be combined with
various smoothing operations on the word token coordinates or on the step size
sequences. When the smoothing operation is performed on the coordinates of the
consecutive word tokens, we implement a moving template as in Fig. 26.5 for
calculating the average coordinates of the word tokens within the template. This
moving template only shifts one temporal step at one time. The average of the
coordinates in every dimension of the semantic word embedding space is calculated
as the smoothed constellation points for feature extraction. A moving template with
long length yields a smoother lyric chain because the local variations tend to cancel
each other better when more token points are summed up. The option for smoothing
the step size sequence can be based on a similar moving average smoothing or by
convolving a smooth function with the step size sequence. The smoothing operation
yields similar results with the high order descriptors by emphasizing the variations
of the temporal lyric chain at a certain time scale while suppressing the variations at
other time scales.

26.5.2.2 Variation Pattern of the Step Size
This feature dimension calculates the standard deviation of the maximum step, the
minimum step, and the range of the step sizes (difference between the maximum
and minimum step) of the step size from the lyric chain of a song or from its

Fig. 26.5 Using moving
templates for calculating
smoothed lyric chain. The red
color template 1 only moves
one step from and
overlapping four steps from
the green color template 2.
The smoothed spatial
locations are plotted as the red
dot (T1) and the green dot
(T2)
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smoothed versions. A smaller value of this feature dimension means that each step
size in the lyric chain is similar in length, i.e., the temporal step size of the lyric
chain is even.

26.5.2.3 Average Adjacent Edge Angles
The angles between the adjacent edges in the lyric chain show the change of
directions in the semantic embedding space. The average adjacent edge angles is the
mean absolute value of the angles between adjacent edges in a song

Ag ¼ 1
Q

XQ
g¼1

hg
�� �� ð26:8Þ

where �j j denotes absolute value. Q is the number of edges in the lyric chain. hg is
the transition angle at the gth node in the range of �p;ð p�.

Similar to the high order descriptors and the smoothing option for the average
step size features, we also provide options for sampling the nodes in the lyric chain
or for smoothing the lyric chain and the adjacent edge angle sequence. These high
order descriptors and smoothing options enable us to observe the time variation at
different time scales from the transient angles of the lyric chain.

26.5.2.4 Variations of Adjacent Edge Angles
This feature dimension calculates the standard deviation of the adjacent edge angles
in the lyric chain. The lyric chain with the relative uniform value of the adjacent
edge angles will have a smaller value. For this descriptor, the angle values are in the
�p;ð p� range and we calculate their absolute values before calculating the standard
deviations.

26.5.2.5 Mean of Adjacent Edge Angle Increment
The value of the adjacent edge angle increment is calculated as the difference of the
edge angles h ið Þ between two consecutive nodes in the lyric chain

Iea ið Þ ¼ h ið Þ � h i� 1ð Þj j ð26:9Þ

where i denotes the index of the edge angles, and �j j is the operation for taking the
absolute value. Then we calculate the mean value of Iea ið Þ for a song from each of
its temporal steps in the lyric chain.

26.5.2.6 Skip Length Descriptors
The skip length descriptor is calculated as the Euclidean distance between the
semantic embedding coordinates of adjacent. Hence, high values represent large
semantic skips, whereas low values represent small semantic skips.

A large mean is related to lyrics whose words quickly change meaning, indi-
cating possible metaphors, while a small mean is related to lyrics whose words are
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semantically related, indicating storytelling [6, 7]. A similar interpretation holds for
the maximum and minimum step size lengths.

Furthermore, a large standard deviation of the step sizes can indicate that the
lyrics switch between metaphors and storytelling, whereas a small standard devi-
ation suggests lyrics whose mood is more constant. The same interpretation holds
for the range of the step sizes, which is the difference between the maximum and
minimum step size of a song.

26.5.2.7 Symmetric Pattern of the Lyric Chain
A similar feature descriptor for the measurement of symmetry is also implemented
for the lyric chain. Different from the symmetry descriptor implemented earlier for
the unordered spatial word token distribution, which only counts the overlapping of
word tokens and its mirror images in the semantic word embedding space, the
symmetry descriptor for the lyric chains also considers the temporal edges between
the connecting token nodes. The measurement of the symmetric pattern for the
chain nodes is identical to the measurement method employed for spatial word
token distributions. From this, we add in a measurement of the symmetric pattern
for the connecting edges in the lyric chain. One edge in the lyric chain is modeled
as the location of its two nodes location. We first calculate the spatial locations of
the mirror nodes and then try to find the nearest two token nodes with the right edge
direction. Here the right edge direction means two mirror direction modes of either
directions similar within � p

2 ;
p
2

� �� �
to the mirror nodes or directions similar to the

reversed direction of the mirror nodes (in �p;� p
2

� �
or ½p2 ; pÞ angles of the mirror

edge). The algorithm tries both modes and calculates the distance of the
edge-attached nodes and the angles between the token edge and the mirror edge
(reversed direction in the second mode). Then the aligned edges are removed and
this heuristic process repeats for the other edges. The overall symmetric measure-
ment is the sum of the aligned node distances, aligned edge distances, and the
sinusoidal values of the angles between the token edge and the mirror edges. For the
latter two terms, we compare the value obtained from the two edge reversal modes
(using mirror edge or using reversed mirror edge) and choose the lower value.

26.5.3 Feature Descriptor for Graph Topology

26.5.3.1 Average Node Connectedness
For a lyric graph (lyric chain with appended relational links), the connectedness of
each node (word token) is calculated as the number of edges attached to the node. In
the context of complex network analysis, this number is termed as the degree of the
node but for here we opt a simpler terminology. The average connectedness is
calculated as the average number of edge numbers of all the nodes in the lyric
graph.

Nodes with dense connections will dominantly decide the value of the average
connectedness by masking off the nodes with sparse connections. To mitigate this

754 M. Ogihara et al.



masking effect, we provide an option to saturate the edge count of any node to a
top-off number. Typical such numbers are 9, 15, and 20, depending on the density
of the lyric graph edges in the densest part of the graph and the contrast of edge
numbers between the dense nodes and the sparse nodes.

26.5.3.2 Variation of Node Connectedness
This feature describes the divergence of node connectedness among all nodes in a
lyric graph and is calculated as the standard deviation of the edge numbers of the
nodes in the lyric graph. Similar to the previous feature descriptor, large values of
edge number in a few “popular” nodes will mask off the sensitivity of the dynamic
range of this feature descriptor in the low and middle range of the edge numbers.
A similar saturation mechanism is provided as an option for topping off the high
edge number nodes and reveals the patterns in the low and middle range of the edge
number distribution.

26.5.3.3 Topological Balance of Node Connectedness
This feature descriptor is similar to the symmetry descriptor for the spatial token
node distribution. We calculate the image points of the token nodes from a center
point. Then each token node is paired with the nearest image node. Then we
calculate their difference of the connected edge number as the imbalance mea-
surement for these two nodes. Then we remove these two nodes and repeat this
process. The mean value of the imbalance measurements for all nodes is selected as
the imbalance descriptor of the node connectedness.

26.5.3.4 Page Rank Descriptor
Besides the node connectedness, another descriptor for topological connectedness is
the page rank descriptor [10–12], which quantifies the significance of the node
using an iterative importance distribution algorithm that assigns more significance
to a node connected to more number of nodes and more significant nodes. This
feature descriptor can be source back to the web page ranking for online search
engines. Web pages connected to a large number of other web pages are not
necessarily the most significant web pages according to the PageRank algorithm.
Instead, this algorithm emphasizes the role of the connected significant web pages’
contribution to the significance of the page under measurement. We will not cover
the algorithm in detail because it is covered nicely in [10, 11]. In practice, page rank
descriptors and plain node connectedness descriptors are often applied together to
analysis problems because they usually show very different distribution patterns.

26.5.3.5 Distribution of Edge Angles
The edge angles are the angles of the adjoining edges at token nodes. Because
multiple edges might intersect on the same node, the edge angles of these edges can
be measured in multiple ways by pairing different edges for the angle measure-
ments. In our implementation, we employ a heuristic approach that first imposes an
artificial order to the edges according to their tip node indices. Then we pick the
first edge (edge with the smallest index number) and select one edge from the
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adjoining edges with the minimum intersection angle. Then we remove both the
edges from the graph and start the same process again from the remaining edges
with the smallest index number.

The feature descriptors are the mean and the standard deviation of the edge
angles. We also provide an option for calculating the skewness and the kurtosis of
the edge angles.

26.5.3.6 Graph Symmetry Descriptors
This feature descriptor is similar to the symmetric measurement of the lyric chain
except for two points: first, all edges here are treated as undirected and thus the two
edge reversal modes are not necessary; second, the angles between the aligned
edges are simply the smallest angle using any one edge/direction as the start point
and the other edge/direction as the end point, so the range is always within 0; p2

� �
.

26.5.3.7 Connection Topological Symmetry Based
on Betweenness Centrality

The graph's connectedness can be decoupled from the text token location in the
semantic word embedding space by analyzing only the connection topology instead
of the combined graph topology of token locations and connections. For example,
the connection center of a graph is where most other nodes can be reached easily,
which is not necessarily the geometrical center of the graph.

Our implementation provides the feature descriptors based on the graph concept
of betweenness. Betweenness is the property that one node or a subpart of a graph is
in the shortest connection path between the other two nodes in the graph [5]. In an
unweighted graph, where each node is equal in status and the distance is only
determined by the connection step disregarding the difference of step sizes, the
measurements related to betweenness provide a way to algorithmically measure the
graph connections while not considering the nodes' locations. First, we heuristically
find the shortest connection paths (the minimum number of hops in between)
between any two pairs of nodes in the graph. Then for each node, we calculate the
number of such shortest connection paths that pass it as the betweeness centrality
count. If this count is large, this means it is in the connection topological center of
the graph, similar to airline hubs with high traffic (airline hubs are more towards a
population weighted betweenness center). We then compute the mean and the
standard deviation of the betweenness centrality count of all nodes in a song as the
feature descriptors.

26.5.4 Feature Descriptors on Graph Spectra and Other
Analytical Graph Representations

26.5.4.1 Matrix Decomposition Based Descriptors
The matrix decomposition of the graph connection matrix shows the elementary
components of the graph topology. Similar to Fourier transform, which decomposes
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complex signals into simpler signal components. The matrix decomposition method
applied in this chapter is eigen-decomposition. Eigen-decomposition is a spectral
decomposition that factorizes a matrix into canonical components. The original
matrix is the combination of these canonical components. Each such component is
associated with eigenvalues and eigenvectors. The eigenvalue is the strength of that
component and the eigenvector is the topological graph matrix of that component.

The feature descriptor on eigenvector first calculates the magnitude of each
eigenvector E1 ¼ e1;1; e1;2; . . .; e1;D

� �
as the square root of each dimension

mag E1ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e21;1 þ e21;2 þ . . .þ e21;D

q
ð26:10Þ

Then we calculate the mean and the standard deviation of the magnitudes of the
eigenvectors

mean Eð Þ ¼ meanðmag E1ð Þ;mag E2ð Þ; . . .;mag ENð ÞÞ ð26:11Þ

std Eð Þ ¼ std mag E1ð Þ;mag E2ð Þ; . . .;mag ENð Þð Þ ð26:12Þ

The mean here is interpreted as the complexity of the graphical components as
simpler graph components will have less connection, thus have a smaller means
magnitude. The standard deviation shows the diversity of the constituent graphical
components.

26.5.4.2 Root Mean Square of Spectra Span Volume
This feature descriptor depicts the spectral volume for each lyric. First, we use the
GloVe word vector representation to compute a vector for each word in the lyric.
Then we calculate all the pairwise distances from the lyric vectors as the distance
matrix M1 ¼ C1;1;C1;2; . . .;C1;p

� �
. Then we select the large distances only using a

threshold g to form a span matrix M2 ¼ C2;1;C2;2; . . .;C2;p
� �

as

C2;i ¼ C1;i; if mag C1;i
� �

[ g ð26:13Þ

C2;i ¼ 0; if mag C1;i
� �� g

where mag() calculates the root mean square of all components of a vector. The
threshold g is obtained as the topological minimum spanning tree distance by
calculating the average size of the minimum spanning tree size in a lyric. We first
compute the minimum spanning tree from word vectors in a lyric. The tree size for
each lyric is calculated as the maximum distance between any two nodes in the
minimum spanning tree. After computing the tree size for each song lyric in the
dataset, the average of the tree sizes is calculated as the threshold.
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The root mean square of spectra span value is calculated as a weighted average
of the global magnitudes of M1 and M2. By averaging the magnitudes in all
topological components and the large components (large trees)

RMS M1;M1ð Þ ¼ a1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21;1 þ g21;2 þ . . .þ g21;p

q
þ a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22;1 þ g22;2 þ . . .þ g22;p

q
ð26:14Þ

where g1;i ¼ mag C1;i
� �

. As a simplification we select a1 ¼ a2 ¼ 0:5: This method
measures the span of the graph more robustly as smaller components also contribute
to a large amount of spectra energy and their presences might overwhelm the
magnitudes of the larger components.

26.6 Empirical Studies

For empirical studies, we apply our proposed feature descriptors to the lyrics of four
different music genres of country, hip-hop, pop, and rock. Our studies are based on
the MetroLyrics dataset [49], which is available on Kaggle. The dataset contains
380,000 music lyrics. Each lyric is tagged according to its music genre and the year.
We segment the music lyrics as subgroups according to their genre labels and the
year labels. Then we extract and compare the feature descriptor distributions across
these genre categories. We analyzed 2,000 songs for each subgroup. For each
analysis task, we first perform manual checks and corrections for the lyrics of the
selected songs. Then we eliminate meaningful words or phonetic tokens not pre-
sented in the GloVe framework. Then each song is modeled as a sequence of word
tokens in the semantic word embedding space for graph structure forming and
feature extraction. We presented two groups of studies. The first group of studies
explores the distributional patterns of the proposed graphical semantic features at
different genre categories. Then the second group of studies explores the distri-
butional pattern across genres with time range split on different periods during
which the music was produced.

Previous research in lyric-based genre identification has found that particular
words are more common to specific genres. Slangs and curse words, for example,
are found more frequently in Hip-Hop [50]. The nouns related to lifestyles in rural
farms are frequent in Country music [51]. Although statistically valid, these word
distributional patterns cannot be considered as definitive characteristics of genre
because of a large amount of exceptions and constant innovations of composers and
lyrics writers [52]. Our studies aim at enhancing the categorical analysis of this line
of research by applying semantic-based analysis methods to the genre categoriza-
tion tasks as alternative method for genre classification, as well as exploratory
analysis for initial conceptualization and empirical studies.
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26.6.1 Studies on Distributional Patterns Over Genre
Categories

Figure 26.6 shows the distributional patterns of lyrics according to the four genre
categories for 20 representative feature dimensions. The feature dimension indices
are:

1. Maximum semantic span
2. Dispersion between semantic word embedding dimensions: average
3. Dispersion between semantic word embedding dimensions: standard deviation
4. Average step size
5. Step size: standard deviation
6. Maximum step size
7. Maximum step size minus minimum step size’
8. Average node connectedness
9. Node connectedness: standard deviation’

10. Page rank: mean
11. Page rank: standard deviation
12. Number of connected components
13. Number of nodes in smallest connected components
14. Average edge weight
15. Percentage of nodes with zero edges
16. Eigenvector: mean
17. Eigenvector: standard deviation
18. Root mean square
19. Span volume
20. Average adjacent edge angles.

Figure 26.7 shows the Analysis of Variance (ANOVA) results and their multiple
comparisons (e.g., comparing Rock with Country, then comparing Rock with Pop,
etc.). In the box plots in Fig. 26.6, the four boxes in each group represent the

Fig. 26.6 Distributional patterns of lyrics according to the four genre categories for 20
representative feature dimensions. Each box group includes one box for each genre: Pop, Hip-hop,
Rock, and Country. The separation of genres for each feature dimension is easy to observe
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feature values from the feature dimension indicated by the feature index below. For
each group, the four boxes correspond to the genre categories of Pop, Hip-hop,
Rock, and Country. Each box’s central line indicates the median. The top edge
indicates the 75th percentile. The bottom edge indicates the 25th percentile. The
distance between the top and the bottom edges is the interquartile range. The
whiskers further extend 1.5 times the interquartile range from the top and the
bottom edges. Data points outside the whiskers are considered outliers and plotted
as gray colored dots.

The upper part of Fig. 26.7 shows the distribution of P-values for ANOVA tests
for the four genre groups for each dimension as the first entry in each 7-grid
group. Note many P-values are very small so it is not shown at the magnitude scale
but the grid below zero magnitude serves as placeholders. For ANOVA tests, a
lower P-value indicates higher statistical significance. For example, a P-value of
0.05 indicates that the pattern can only occur in average 5 times in 100 experiments
if generating from random data [53, 54]. A low P-value means the feature values of
the four genres are well-separated, the statistical proof that the corresponding
feature dimension is a strong indicator of the genre information. The grids at the
bottom of the figure show the significance indicators. An empty grid indicates not
significant, whereas red, green, and blue indicate statistically significant, as follows.
The blue color means the feature dimension is more significant than the significance
level of 0.05 after Bonferroni correction [55], which means “significant”. The green
color means more significant than 0.005 after Bonferroni correction, indicating
“very strong” proof. The red color is at 0.001 “overwhelming” significant level, the
strongest proof among these three indicators.

The middle grid shows the ranking order for the P-values from the significance
indicator grid below. These significant feature/multiple-test dimensions have small
P-values so they are not shown at the upper-half P-value plot. This ranking order grid
uses a small value to show more significant (small) values but the values here only
reflect the sequential sorting order of all significant values by linearly interpolating
the sorting order. This sorting order view compresses and normalizes the dynamic
range of small P-values so that they can be plotted together for visual comparison.

Fig. 26.7 Analysis of Variance (ANOVA) results and their multiple comparisons. Most
comparison groups show very high statistical significance both for a group and for pairwise
comparisons
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Each seven-bar group in Fig. 26.7 shows the P-values for a feature dimension.
The first bar is the P-value for testing whether the feature data from the four genres
are the same (strictly, have a common mean [53]). The following six bars test
pairwise genres. The genre categories are encoded as “1-Pop”, “2- Hip-hop”,
“3-Rock”, and “4-Country”. The following six bars correspond to genre comparison
pairs of “1–2”, “1–3”, “1–4”, “2–3”, “2–4”, and “3–4”.

Our results show that Country and Rock lyrics typically use similar semantic
structures. We observe significant distributional differences in their semantic span,
their number of connected components, and their average step sizes. However,
Country and Rock music lyrics typically focus on different themes [56], and the
songs have different instrumentation [57–59]. Such similarities and differences can
be linked to the history of Country and Rock, which were both rooted in Blues and
Bluegrass in the beginning of the twentieth Century, a time period with different
music composition practices of different functions (e.g., more narrative functions
[60–62]). These music genres commonly have lyrics that tell coherent stories,
which lead to a lower semantic span, number of connected components, and
average step sizes.

Hip-Hop lyrics show different structural characteristics from the other genres, for
example, larger semantic step sizes in Hip-Hop lyrics than the lyrics from the other
genres. This difference can be attributed to the origins of hip-hop lyrics. Of course,
the embedding space was built using standard English texts with an encyclopedia
type content. In opposition to that, the language used in Hip-Hop frequently uses
slangs, curse words, and non-standard grammar [50]. As a consequence, Hip-Hop
lyrics present a particular semantic structure that can be dramatically different from
the standard embedding space. Partially, this misalignment of semantic represen-
tations contributed to some differences in the distributional patterns. The distribu-
tion patterns show that the four genre categories are very different in all these
statistics. Hip-hop songs are most different from the other three categories.
Excluding hip-hop songs, country songs show a large distributional difference on
these statistical parameters.

Pop music lyrics commonly show large standard deviations in various semantic
features. Such behavior can be a consequence of the large diversity of mainstream
artists that identify with the tag “Pop”. Such a tag does not relate to any specific
niche or preference, that is, any artist could self-identify as a “pop” artist [63–65].
As a consequence, there is less style cohesion within the “pop” genre than within
other, more specific, genres. Pop is rather a mixture of genres in all the analyses in
this group. the elements of different genres can be picked up very differently by the
computer algorithms and the human listeners. Thus, a calibration model that counts
in the strength of computer algorithms’ “feature read” strengths is necessary to
better align the computational genre studies and the annotations provided by human
annotators.

We observe that Pop and Hip-Hop have a greater number of connected com-
ponents in their lyrics. This characteristic shows when lyrics have words that are
semantically more distant from the others. A possible reason for this is using words
that rhythmically fit the song, but that have no semantic relation to the other words
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within the lyrics. Such a technique is common in Pop and Hip-Hop, but Country
and Rock music have a greater tendency of being about stories and sacrificing the
rhythmic characteristics of a word to improve their storytelling [66–68]. The mean
and the standard deviation of the page rank measurements and the betweenness
measurements of tokens show that Hip-hop lyrics are less “compact” in the topo-
logical domain, which can be roughly interpreted as “incoherent”.

Another possible source of ambiguity and perplexity of Pop lyrics studies is the
complexity of the available genre tags themselves. Many genre tags used by
composers, producers, labels, and distributors, often from different sources, are
designed to organize and showcase their albums and tracks in the physical store-
front and digital distribution channels. In another word, they are just what the
composers, producers, and marketers want the song to be, instead of what the song
really is [63]. However, genre tags are also related to the social behavior and group
identity of music fans [62]. Moreover, artists that typically identify themselves
within one genre can produce meaningful work using elements from other genres,
as it is the case of D’yer Mak’er, a reggae-sounding song by the Heavy Metal band
Led Zeppelin [63]. These perspectives are constantly in a dialog that embeds genre
tags with a divergent meaning that must be discussed when interpreting data-driven,
genre-related systems.

A similar genre-specific pattern can also be observed in the eigenvalue features.
The eigenvalues are typically lower for hip-hop, which indicates a lower overall
connectivity in its graphs. Again, the statistical analysis indicates that Country and
Rock tend to favor semantic cohesion while Hip-Hop tends to favor other aspects.
Pop music lies between these two trends, again as a genre of stylistic fusion and
conceptual ambiguity.

26.6.2 Studies on Distributional Patterns from Different
Time Period

This group of study first separates the music lyrics according to their production
time. We implemented decade-based subgroups under each genre category and
aggregate the semantic features over each time period. Figure 26.8 shows the
distributional pattern of feature values split into five decades of 1970s, 1980s,
1990s, 2000s, and 2010s, corresponding to the five boxes in each group. The box
plot specifications are identical to those of Fig. 26.6 and detailed in Sect. 26.6.1.
Figure 26.9 shows the P-value distributions of decade separations. The separation
of decades is not as strong as the separation of genres. But the first bar in many
feature dimensions is significant, indicating these feature dimensions can separate a
subset (and their “interaction”, strictly speaking [53]) but cannot sufficiently sep-
arate each pair. The decade categories are encoded as “1-1970s”, “2-1980s”,
“3-1990s”, “4-2000s”, and “5-2010s”. The following bars after the lead bar of each
group correspond to the comparison pairs of “1–2”, “1–3”, “1–4”, “1–5”, “2–3”,
“2–4”, “2–5”, “3–4”, “3–5”, and “4–5”. Figure 26.10 shows the P-value distribu-
tions of decade separations with only Rock songs included. Figure 26.11 shows the
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P-value distributions of decade separations with only Pop songs included. The
significance level of all tests increases, due to more uniform song genres.

We observe Rock as the genre with least lyric structural characteristic changes
through different time periods. Country and Pop show a greater feature variation

Fig. 26.8 Distributional pattern of feature values split into five decades of 1970s, 1980s, 1990s,
2000s, and 2010s, corresponding to the five boxes in each group. The separations of time periods
are visible but not so obvious. Following statistical analysis will show more detailed patterns

Fig. 26.9 Analysis of Variance (ANOVA) results and their multiple comparisons for time
periods. Most comparison groups show very high statistical significance for group means. A few
pairwise comparisons also show the significance

Fig. 26.10 Analysis of Variance (ANOVA) results and their multiple comparisons for time
periods. Only Rock songs are included. Most comparison groups show the improved significance
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over the decades. This indicates that the musical trends in Country and Pop music
have been changing over the decades, whereas Rock is relatively stable [56, 66].
Interestingly, the aggregated statistics of Country music lyric features lead to a
distribution that is similar to that of Rock. This indicates that Country music’s
changes are not a linear evolution; rather, they revolve around some common
characteristics. These characteristics are rooted in blues and bluegrass [69], and
share these roots with Rock music.

The aggregated statistics of Pop lyric features lead to a distribution that is
different from that of Rock and Country. Following the same reasoning used for
Country music, this indicates that Pop changes in time without the need of returning
to any well-rooted “authentic” characteristics. The diversity in Pop music lyrics is
also highlighted by their higher number of connected components in the long tail.

Hip-Hop genre presents the most interesting distributional patterns. In our
dataset, this genre appeared after the decade of 1980. This means that Hip-Hop only
exists commercially after this decade. In the 1980s, Hip-Hop features have the
greatest standard deviation when compared to the following decades. This can
indicate that the genre was being defined in the 1980s, followed by more chaotic
trends of creation within this genre. The following 1990s sees decreasing standard
deviation of the features, which indicates that the genre started having more rigid
rules, probably becoming more niche-specific. In the 2000s and 2010s, the standard
deviations of these features slowly increased, indicating more diversification as
more Hip-Hop artists moved towards experimental.

Overall, the patterns observed in this study show strong evidence that genres
change through time. Lyrics of a particular genre in the decade of 2010 could be
very different from music from that same genre in the decade of 1970. This indi-
cates that the meaning of genre tags could be more specific with time identifiers
(e.g., 1980s Rock). Although our results only indicate this pattern in music lyrics,
we speculate that this also happens in the audio domain.

Our data show that Pop and Hip-Hop have a greater tendency to have lyrics with
a broader semantic span. This can be linked to their higher use of rhythm-related
words, in contrast to the tendency of Country and Rock of having storytelling lyrics
with meaning-related words [56]. We also note that Pop is a label that aggregates a

Fig. 26.11 Analysis of Variance (ANOVA) results and their multiple comparisons for time
periods. Only Pop songs are included. Most comparison groups show the improved significance
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myriad of artists, and because of that, it shows a higher degree of lyric variations.
Hip-Hop, on the other hand, had a more experimental phase in the 1980s, but it now
has niche-specific roots. It is important to note here that genre is both a tag used for
music marketing and as a fanbase identification reference [70]. Genres with
stronger group-related identification, such as Rock and modern Hip-Hop, tend to
have a lower variation in their characteristics over time.

In most analyses, the tails of most distributions significantly overlap and some
P-values are large. This indicates that this analysis method can fail if used for genre
prediction experiments. This type of experiment requires finding aspects in music
that can help discriminate between individual elements that belong to each one of
the genres. However, it is evident that lyrics, although important, are not necessarily
a reliable predictor of music genres. It is possible, for example, to have a
cross-genre song (e.g., a Hip-Hop version of a Country song). Nevertheless, these
analyses highlight general trends within music styles and within time periods. This
serves as an important empirical tool that can deepen the understanding of lyrics
and their cultural environments related to each music genre.

26.7 Conclusions and Future Work

We implemented a graph-based representation and analysis framework for popular
music lyric analysis, interpretation, and visualization in the natural language
semantic embedding space. The music lyrics are represented as word token
sequences in the high dimensional natural language embedding space. Then we
implemented various structural and statistical descriptors extracted from the graphic
trajectory of the word token sequences. These descriptors of the graph properties
show strong classification performance between the contrast groups of music
genres. We also implemented various interpretation and visualization tools for
exploring the graphical word trajectories and the feature descriptors. Our proposed
analysis framework combines the conventional “bag-of-words” models from nat-
ural language processing while emphasizes the temporal context of the music lyric
sequence. Furthermore, some proposed graph feature descriptors also represent the
structural properties such as graph symmetry, transition angles between vertices,
and the semantic distances between adjacent tokens. These descriptors provide the
modeling and analysis capabilities beyond the conventional statistical “counting”
approaches and reveal many lyric patterns not easily observable from manual
analysis and highly relevant for an in-depth understanding of music lyrics.

Several extensions to our proposed analysis framework are promising for
enhancing the representational capacity and interpretative relevance. First, the
semantic word embedding space is directly adapted from the word embedding
space learned from online article databases. The semantic content of these corpora
is very different from the lyric text corpus in our implementation. We plan to
explore the semantic representation induced from other corpora or induced from
online article databases and then fine-tuned using other corpora, for example,
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inducing or adjusting semantic representations using databases that contain novels,
poems, uncategorized music lyrics, or music lyrics of a specific genre and com-
posed in a different time period, etc. These alternative semantic representations will
provide alternative analytical devices for understanding music lyrics from many
complementary perspectives. Learning a semantic representation from one text
corpus and applying the representation for analyzing another text corpus is a pro-
cess of comparing the semantics of these two corpora in a systematic ways, similar
to model calibration and measurement. In this context, the semantic representations
induced or adjusted from alternative text corpora are essentially different mea-
surement instruments or linguistic investigations. Of course, the semantic repre-
sentation induced from larger online article datasets has rich and contemporary text
meanings, which is difficult to be replaced from the other text corpora. The other
semantic representations are expected to serve as an alternative or extension of the
result presented in this chapter and we will report these alternative analyses in our
subsequent works.

Second, we plan to extend our lyrics study framework towards multimodal
methodologies that can handle multiple tracks of information including lyrics,
audio, and listener perception. We hope the use of multimodal tools will further
enhance the statistical significance of the reported studies by exploring the syn-
ergies among multiple tracks of information. The music lyrics are intrinsically
connected to the music in which it is sung. A word embedding space induced
jointly from the music lyric dataset and its synchronized audio features extracted
from the audio can encompass the phonetic connections between words and other
parts of the music. The linkage between the sound and the lyrics can be modeled as
a joint semantic representation in a hybrid learning process, for example, mixing the
word token symbols from the lyrics with the tokenized sound descriptors and then
infer a joint semantic representation that combines the sound and the words. In this
work, we show that lyric characteristics change through time. We speculate that this
characteristic also holds to audio, that is, each genre and era have its own char-
acteristic sounds and ways of combining lyrical elements with sounds. This pho-
netic link between the sound and the words is an important element for music lyric
composition [6, 13]. This joint representation scheme can also be implemented for
other multimodal representational combinations such as connected lyrics tokens
with music emotion labels, human response signals (e.g., sensor generated physi-
ological signals), or musical analysis structural labels (e.g., chord sequence, short
voice-leading models, short phrase, song forms, Roman numerical analysis) as
multimodal lexicon before the learning process of the semantic representations. The
semantic models induced from these multimodal representations can further utilize
the semantic dependency between multiple modalities for enhancing the perceptual
relevance and application scope.

Third, our framework applies a manual feature extraction approach for the
structural features of semantic token distribution, lyric chain modeling, and lyric
graph modeling. Alternatively, the lyric graphs can be modeled using deep learning
systems to utilize its automatic feature selection and hierarchical structure recog-
nition capabilities [24, 25, 71]. Our proposed framework relies on manually
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designed features implemented from existing natural language processing, speech
processing, and music signal analysis literature. These features are very compre-
hensive in scope and many such features are well testified by many speech and
music analysis tasks for their robustness. Testing the analytical power of these
manually designed features is usually the first step towards an in-depth exploration
of Musicology analysis tasks. Another benefit for applying these features is that the
analytical results from applying these manually designed features are easier to
interpret and interact with other manual analysis tasks (i.e., more transparent). Deep
learning-based methods usually have higher predictive analysis performance but the
interpretation of the results is not as direct as the methods based on manually
designed features. Thus, a combination of our proposed graph features and deep
learning approaches is promising for improving the relevance transparency, and
robustness of the learned patterns and the learning mechanism.

Last but not least, our empirical studies are limited to the conventional musical
genre categories concentrated in popular music. Many more refined musical genres
and musical expressiveness concepts such as subgenres [72], performer styles
[73, 74], cross-cultural genres [75] will extend the application scope of our pro-
posed analysis framework. Specifically, our ongoing work explores the relationship
between the lexicon patterns identified from musical lyrics with the performance
nuance the artists rendered “beyond the score”. The focus is to explore the
expressiveness connections between the lyrics semantics and performance expres-
sions identified from the musical sound. Our current result shows the dynamic
characteristics of genres such as Pop and Country as they evolve over time. More
refined analysis on subgenres and genre-year data, instead of the “simple genre”
will enhance many musicological tasks. Such more refined analysis can be applied
to Rock and Hip-Hop, which shows weaker categorical differences in the analysis
tasks. We also plan to investigate audience group-based genre tag split schemes.
This group of research will also be extended towards more diversified music
contents such as modern musical theater and musicals, classical opera, film music
accompanied by dialogs, and modern/experimental music composition and
practices.
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27InteractiveMachine Learningof
Musical Gesture

Federico Ghelli Visi and Atau Tanaka

27.1 Introduction

This chapter presents an overview of InteractiveMachine Learning (IML) techniques
applied to the analysis and design of musical gestures. We go through the main
challenges and needs related to capturing, analysing, and applying IML techniques to
human bodily gestures with the purpose of performingwith sound synthesis systems.
We discuss how different algorithms may be used to accomplish different tasks,
including interacting with complex synthesis techniques and exploring interaction
possibilities by means of Reinforcement Learning (RL) in an interaction paradigm
we developed called Assisted Interactive Machine Learning (AIML). We conclude
the chapter with a description of how some of these techniques were employed by the
authors for the development of four musical pieces, thus outlining the implications
that IML have for musical practice.

Embodied engagement withmusic is a key element of musical experience, and the
gestural properties of musical sound have been studied from multiple disciplinary
perspectives, including Human-Computer Interaction (HCI), musicology, and the
cognitive sciences [1]. Likewise, designing gestural interactionswith sound synthesis
for musical expression is a complex task informed by many fields of research. The
results of laboratory studies of music-related body motion based on sound-tracing
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were indicated as a useful starting points for designing gestural interactions with
sound [2]. Informed by environmental psychology, the notion of sonic affordance
was introduced to look at how sound invites action, and how this could potentially
aid the design of gestural interfaces [3].

Designing and exploring gestural interactions with sound and digital media is at
the foundation of established artistic practices where the performer’s body is deeply
engaged in forms of corporeal interplay with the music by means of motion and
physiological sensing [4]. Gesture and embodiment become the core concepts of
extended multimedia practices, where composition and interaction design develop
side by side [5, 6], and gesture is a fundamental expressive element [7].

27.1.1 WhyMachine LearningMusical Gestures? Needs
and Challenges

Designing gestural interactions that afford dynamic, consistent, and expressive artic-
ulations of musical sound is a challenging and multifaceted task. A key step of the
design process is the definition ofmapping functions betweengesture tracking signals
(usually obtained through some motion sensing device) and sound synthesis param-
eters [8]. These parameter spaces can be very complex, depending on the motion
sensing and sound synthesis approaches adopted. An effective mapping strategy is
one of the crucial factors affecting the expressive potential of a gestural interaction,
and as the spaces defined by motion signals and synthesis parameters become more
highly-dimensional and heterogeneous, designing mappings can be an increasingly
elaborate task, with many possible solutions [9].

In this scenario, gestural interaction design is a robust nontrivial problem, and
Machine Learning (ML) techniques can be used by researchers and artists to tackle
its complexity in several ways. One of the most notable implications of using ML in
this domain is thatmappings between gesture and sound can be interactively “shown”
to a system capable of “learning” them [10] instead of being manually coded, which
in certain situations could become excessively complex and time consuming. In other
words, this delineates an interaction design paradigmwhere interactive systems shift
from executing rules to learning rules from given examples [11]. This has advantages
in collaborative and interdisciplinary creative practices, as it makes trying and work-
shopping different gestural interactions easier and quicker, and enables practitioners
that are unfamiliar with programming to prototype their own gestural interactions.
Moreover, software tools such as theWekinator [12] andML libraries for popular pro-
gramming environments in the arts [13] have madeML for gestural interaction more
accessible and easier to learn. Another advantage of interaction design approaches
based on ML is that mapping models can be trained to be more resilient to noisy
signals. This can be challenging to achieve with manually programmed mappings.
This is particularly useful with certain motion tracking technologies and physiologi-
cal sensors (see Sect. 27.2). Noise is not, however, the only challenge when tracking
and analysing bodymovement for musical interaction. Motion tracking systemsmay
return considerably different data when the user changes, different motion sensing
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Fig.27.1 Architecture of an Interactive Machine Learning system for gestural musical interaction

technologies measure and represent movement in very different ways, musical ges-
tures may convey musical ideas at different timescales [14], and therefore, it should
be possible to model both spatial and temporal features of musical gestures whilst
maintaining the possibility of dynamic and continuous expressive variations.Wewill
now describe how ML is a helpful resource in addressing these challenges.

27.1.2 Chapter Overview

The sections that follow will describe the main components of an IML system for
gesture-sound interaction—schematised in Fig. 27.1—namely motion sensing, anal-
ysis and feature extraction, ML techniques, and sound synthesis approaches. Fol-
lowing this, we will describe the typical workflow for deploying an IML system for
gesture-sound mapping and how this model can be extended further using RL to
explore mapping complexity in an AIML system prototype. We will then describe
how these models were used in some pieces composed by the authors, before clos-
ing the chapter with some remarks regarding the necessity of adopting an inter-
disciplinary approach encompassing basic research, tool development, and artistic
practice in order to make substantial advances in the field of expressive movement
interaction. We finish by showing that the research field has implications stretching
beyond themusical domain, given the increasing role ofML technologies in everyday
life and the peculiarities that make music and the arts a fertile ground for demystify-
ing ML and thereby understanding ways of claiming and negotiating human agency
with data and algorithmic systems.

27.2 Machine-Sensing Gesture

Capturing body movement for the purpose of real-time interaction with sound may
be done by various technological means. Rather than providing a list of the many
devices available for this purpose, we will describe the main approaches for tracking
body movement employed in the context of music and multimedia performance, and
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the implications that adopting an approach over another has for usingML techniques.
These include notes on how different types of motion data represent movement, and
the opportunities afforded by the use of physiological data.

27.2.1 SensingMovement

Optical Sensing
Optical motion sensing relies on the analysis of the signals coming from various
kinds of video cameras. There are many examples of multi-camera systems used in
the arts [15, 16] as well as of systems using more sophisticated optical approaches
such as depth and stereoscopic cameras.

Despite the technology being a few decades old, marker-based infra-red Motion
Capture (MoCap) is still considered as one of themost reliablemethods formeasuring
complex movement in a three-dimensional space. Tracking precision and temporal
resolution have progressively improved, allowing accurate tracking of finger move-
ments and facial expressions. Recent MoCap systems are also capable of streaming
motion data live, thus making real-time applications possible. Data obtained from
these systems is usually in the form of three-dimensional vectors referring to a global
coordinate system. Each sample in the data returns three-dimensional information
regarding the position of a point (marker) in space in relation to the origin of the
Cartesian axes. The origin is defined during the calibration procedure and is usually
set in an arbitrary place on the floor within the capture area. Most marker-based
systems also allow to track movement in six degrees of freedom (6DoF), meaning
that—in addition to position along the three spatial axes—the system also returns
information on the orientation and rotation of a point in space along three rota-
tional axes. This information is usually represented in Euler angles or quaternions.
In MoCap systems, 6DoF tracking is usually achieved by processing positional data
of singlemarkers grouped into a rigid body in a predefined spatial configuration. This
should be unique for each rigid body in order to avoid mislabelling when multiple
rigid bodies are in the capture space at the same time.

Inertial Measurement Units
Inertial Measurement Units (IMU) are small, low-cost, highly portable devices that
incorporate accelerometers and gyroscopes. When these devices are paired with
magnetometers, the resulting arrays are also known as Magnetic, Angular Rate, and
Gravity (MARG) sensors. These sensor arrays allow the tracking of acceleration,
rotational velocity, and orientation relative to the earth’s magnetic field of whatever
they are attached to. They are used extensively in aviation, robotics, and HCI. Their
increasing affordability and small size have made them a very common feature of
mobile and wearable devices and other consumer electronics. Sensors featuring 3D
accelerometers, 3Dgyroscopes, and3Dmagnetometers havebecome themostwidely
used type of IMU/MARG. They enable the estimation of various motion features
including optimised three-dimensional orientation obtained by fusing together the
data from the different types of sensors. These devices are often marketed as 9DoF
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(9 Degrees of Freedom) sensors, since they consist of three tri-axis sensors and thus
have a total of nine sensitive axes.

Whereas the rawdata obtained usingmarker-based opticalmotion capture consists
of samples of position based on a 3D Cartesian coordinate system, the data returned
by IMU/MARG sensors is usually in the form of three three-dimensional vectors,
each one expressing acceleration, rotational velocity, and orientation, respectively.
Calculating absolute position from the data of a single IMU in real time is technically
very difficult if not unfeasible, as the operation would require double integration of
acceleration data. This would result in a considerable amount of residual error since
drift would accumulate quadratically.

The lack of reliable information on absolute position when using single IMUs
is a key difference between data obtained through inertial sensing and that of opti-
cal motion capture. The data obtained from IMUs sensors is morphologically very
different from positional data returned by optical MoCap. The differences in the
way movement is tracked and represented by the two different technologies have
implications on how movement data is eventually interpreted and used, particularly
in the context of expressive movement tracking and ML of musical gestures. As an
example, single IMUs afford working with movement relative to the body of the
performer and postures, whereas having access to absolute positions may enable
interaction strategies that take into consideration the spatial relationships between
different performers and the different areas of the performance space where action
takes place.

27.2.2 Sensing the Body

It can be argued that representing human movement solely as displacement of body
parts in three-dimensional space would result in a limited interpretation. Merleau-
Ponty maintains that we act upon the environment through proprioception and “a
knowledge bred of familiarity which does not give us a position in objective space”
[17, p. 166]. Salazar Sutil [18] points out that the conceptualisation of corporeal
movement is often optically biased, where sensations that are independent of sight
are often neglected. Thus,we argue that expressive bodymovement cannot be entirely
represented, and therefore, fully understood exclusively by means of visual media.
In the context of music performance, we looked at the concepts of intention, effort,
and restraint in relation to the use of electromyogram (EMG) for digital musical
instrument application [19]. EMG is a signal representing muscle activity employed
in the biomedical and HCI fields as a highly sensitive way to capture human move-
ment and has been used as a signal with which to sense musical gesture [20, 21].
Using EMG for music presents several challenges. The raw signal itself resembles
noise and sensing such a low voltage signal is difficult to do without accumulating
noise from the environment. Individual anatomies vary and we each employ our
muscles differently, even when performing what looks like the same gesture. Basic
signal processing can only go so far when interpreting expressive, nuanced biosig-
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nals. Adopting approaches based onML can considerably helpwith these challenges,
making EMG an attractive technology for musical interaction. In particular, super-
vised learning approaches—which will be described in Sect. 27.4—constitute a way
for tackling the intersubject variability and the noisy quality of muscular signals.

27.3 Analysing Gesture

High-level descriptors are often used to extract features from raw motion data to
help describing body movement in a more meaningful way. Such descriptors are fre-
quently employed in expressive movement analysis, motion recognition, and music
performance analysis. Feature extraction is a crucial step in an IML pipeline. This is
an important task, as it will affect howML algorithms will interpret body movement,
and therefore, determine the affordances of the resulting gesture-sound interactions.

Programming environments such as Eyesweb [22] offer solutions dedicated to
real-time human movement analysis and feature extraction. Libraries for real-time
motion analysis such as theMusical Gesture Toolbox were initially dedicatedmainly
to standard RGB video analysis [23]. The library has been developed further to
process MoCap data and be compatible with several programming environments
[24]. Notably, some of the features that were initially designed for analysing video
data—such as Quantity of Motion (QoM, see Sect. 27.3.1)—have been extended for
the use with MoCap data. We developed the modosc library to make methods for
handling complexmotion data streams and compute descriptors in real time available
in music performance systems [25, 26]. At the time of writing, the library is being
extended for use with IMU and EMG in addition to MoCap data. The following
sections will give an overview of some of the descriptors most widely used for
processing motion and EMG data.

27.3.1 Motion Features

Fluidity
Inspired by the theoretical work on human motion by Flash and Hogan—which
maintains that trajectories of human limbs can be modelled by theminimum jerk law
[27], Piana et al. [28] defined Fluidity Index as the inverse of the integral of jerk.
Jerk or “Jolt”—is the third-order derivative of position, i.e. the rate of change of the
acceleration of an object with respect to time. Fluidity Index has been used with
supervised learning algorithms for the purpose of recognising expressed emotions
from full-body movement data [28].

Quantity of Motion
Fenza et al. defined Quantity of Motion (QoM) as the sum of the speeds of a set of
points multiplied by their mass [29]. Glowinski et al. [30] included a similar measure
in their feature set for the representation of affective gestures, denoted as “overall
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motion energy.” This motion feature has also been used for real-time video analysis
[23] and a version for IMU data was also proposed [5].

Contraction Index
Contraction Index is calculated by summing the Euclidean distances of each point
in a group from the group’s centroid [29]. It is an indicator of the overall contraction
or expansion of a group of points and—similarly to Fluidity Index—it has been used
for emotion recognition applications [28].

When using independent inertial sensors, the lack of positional data might make
it difficult to compute Contraction Index. We proposed an alternative measure of
contraction and expansion of body posture using IMU data in [5]. This solution uses
the Euclidean distance between projected points to estimate whether the limbs of a
person wearing IMUs are pointing in opposite directions.

Bounding Shapes
Bounding shapes have been used in the analysis of affective gestures [30] as well as
in dancemovement asnalysis [31]. Several bounding shapes can be used for real-time
movement analysis. For example, a bounding box is the rectangular parallelepiped
enclosing a given group of points in a 3D space. Assuming these points are placed
on the body of a performer, the height, width, and depth of the bounding box can be
used as an indicator of the posture of the full-body evolves over time. The minimum
polyhedron that encloses a given group of points in a 3D space is instead called
three-dimensional convex hull. The volume of the convex hull represents the size of
the space the body interacts with and can be used as a feature for various ML tasks.

Periodic Quantity of Motion
PeriodicQuantity ofMotion (PQoM)was proposed as away tomeasure periodicity in
the movement in relation to the musical rhythm [5], or—in other words—how much
body movement resonates with each rhythmic subdivision (i.e. quarter note, eighth
note, etc.). The first PQoM implementation was designed to extract periodic motion
from optical motion capture data [32]. The PQoM is estimated by decomposing the
motion capture signal into frequency components by using filter banks [33]. The
amplitude of the signal for each frequency component corresponds to an estimate of
the resonance between the corresponding rhythmic subdivision and the movement.
A script for PQoM estimation was made available as an extension to version 1.5 of
the MoCap Toolbox for Matlab [34], and a redesigned version of the script has been
made available [35].

27.3.2 EMG Features

Signal Amplitude
One of the most important features of EMG signals is the amplitude of the signal
with respect to time. This measure is related to the force exerted whilst executing
a gesture. Given the complexity and variability of the EMG signal, reliable ampli-
tude estimation may be challenging. Simply applying a low-pass filter to the signal
to reduce undesired noise may result in the loss of sharp onsets describing rapid
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movement and may also introduce latency when processing the signal in real time.
Adopting a nonlinear recursive filter based on Bayesian estimation [36] significantly
reduces the noise whilst allowing rapid changes in the signal, greatly improving the
quality of the signal for real-time gestural interaction.

Mean Absolute Value
Mean Absolute Value (MAV) is one of the most popular features used in EMG
signal analysis [37]. It has been shown that MAV is more useful than other features
for gesture recognition tasks based on supervised learning algorithms [38]. MAV
corresponds to the average of the absolute values of the EMG signal amplitudes in
a given time window. When computed in real time, a larger time window returns a
smoother signal, whilst a shorter one can be useful to track sharper onsets inmuscular
activity.

Root Mean Square
Root mean square (RMS) is a common signal processing feature, widely used for
audio analysis. With EMG signals, it has been used together with ML algorithms for
gesture classification tasks [39]. RMS is equal to the square root of the sum of the
squares of the values of the signal in a given time window.

Teager-Kaiser Energy-tracking Operator
The Teager-Kaiser Energy-tracking Operator (TKEO) was first proposed as a way
for estimating energy in speech signals [40]. It has been employed for a variety of
signal processing tasks, including noise suppression [41]. It has been shown that
TKEO considerably improves the performance of onset detection algorithms also in
situations with a high signal-to-noise ratio [42]. The feature can be easily calculated
from three adjacent samples. For each signal sample, TKEO is equal to the square
of the amplitude minus the product of the precedent and successive samples.

Zero Crossing Rate
TheZeroCrossingRate (ZCR) corresponds to the number of times the signal changes
sign within a given time window. Widely adopted in audio signal processing, ZCR
is used to recognise periodic sounds from noisy ones and is employed in speech
recognition [43]. In [44], we used ZCR as one of the features for the analysis of two
different modalities of muscle sensing to explore the notion of gesture power.

27.4 Machine LearningTechniques

ML techniques are statistical analysis methods and computational algorithms that
can be used to achieve various tasks by building analytical models (i.e. “learning”)
from example data. Many ML techniques involve a training phase and a testing
phase. During the training phase, sample data is used to model how the system
should respond and perform different tasks. During the testing phase, new input data
is fed into the model, which then responds and performs tasks following decisions
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based on structures and relationships learned during the training phase. As an exam-
ple, during the training phase a performer using motion sensors may want to record
a gesture and associate it to specific sounds being produced by a sound synthesis
engine. Then during the testing phase, the performer moves freely whilst the system
follow their movements and infer which sounds should be played according to the
examples given during the training phase. This allows for flexibility and generalisa-
tion, makingML techniques particularly useful for complex applications that involve
many variables and that may be dependent on factors that are difficult to predict or
control, such as the environments in which systems are deployed, or high variability
in how the system responds to different users. For example, in a musical context
one may want to use a gesture-sound interaction system in different performance
spaces, which may have different lighting conditions. This may result in undesirable
unexpected behaviours, such as the system responding differently in the concert hall
where a piece is to be performed compared to the space where the piece has been
rehearsed. Moreover, the system may be used by different performers, whose bodies
may differ considerably and thus be tracked differently by various types of sensors
(see Sect. 27.2). In such situations designing interactions by explicitly programming
how each sound parameter should behave in response to incoming sensor data might
be too time-consuming, impractical, or result in interactions that are too shallow and
do not afford expressive variations.

There are several standard learning strategies to train a programme to execute spe-
cific tasks [45]. Amongst the most common paradigms, we find Supervised Learning
(SL), Unsupervised Learning (UL), and Reinforcement Learning (RL). In SL, the
training data consists of input paired with the desired output. In other words, train-
ing examples are labelled. For example, in a supervised learning scenario motion
feature data is paired with the desired sound and passed to the learning algorithm
as training data. Classification and regression are some of the most common super-
vised learning tasks. In UL, training data is unlabelled. The goal is learned from the
data itself, by analysing patterns and underlying structures in the given examples.
As an example, a set of unlabelled sounds may constitute the training set and the
task of the unsupervised learning algorithm may be to group the sounds that have
similar features. Common unsupervised learning tasks include clustering and dimen-
sionality reduction. We employed dimensionality reduction approaches to observe
commonalities and individualities in the music-related movements of different peo-
ple miming instrumental performance [46]. Strategies in RL entail giving feedback
in response to the algorithm’s output. The goal of the algorithm is to maximise the
positive feedback—or rewards—they are given by a human (or by another algorithm)
that is observing the outcome of their actions. Training and testing phases here are
more intertwined than in typical supervised and unsupervised strategies, as training
occurs through testing. For example, in a RL scenario, one may task an algorithm
to propose some sound synthesis presets, and the user may give positive or negative
feedback in order to obtain a sound that is closer to their liking. Parameter space
exploration is a task associated with this learning strategy. A gesture-sound mapping
exploration method that takes advantage of RL [47] will be described in Sect. 27.6.
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The following sections will outline how these strategies are employed to perform
tasks often associated with ML of musical gesture, namely classification, regression,
and temporal modelling.

27.4.1 Classification

Classification is the task of assigning a category, or class, to an item. In a super-
vised learning scenario, the training dataset is constituted by items labelled with
the category they belong to. The training dataset is then used to build a model that
will assign labels to new unlabelled items, or instances, that have not been classified
before. As an example in the context of musical gestures, the training set may be
made of discrete gestures (e.g. tracing a circle in the air, or a triangle...) where the
sensor data and motion features resulting from performing such gestures are paired
with the corresponding label (circle, triangle, etc.). These labelled gestures constitute
a vocabulary. In performance, the classifier may be used to track the movements of
the performer and recognise when one of the gestures in the vocabulary is being
performed. Successful recognition of one of the gestures in the vocabulary may be
then paired with specific musical events (e.g. play a kick drum sample when the
tracked gesture is classified as a circle, play a snare sample when the gesture is
classified as a triangle, etc.). In a typical gesture classification scenario, classifi-
cation occurs after the gesture is performed, and output of the model is discrete,
meaning that a gesture will always belong to one of the defined classes. Common
algorithms for classification includeK-Nearest Neighbours (k-NN), Adaptive Boost-
ing (AdaBoost), Support VectorMachines (SVM), andNaive Bayes. These and other
algorithms are described in detail in themanual by Hastie et al. [48]. It is important to
note that different classification algorithms afford different interaction sound param-
eter mapping approaches. For example, by using a probabilistic classifier such as
Naive Bayes, one can use the probability distribution (i.e. the set of likelihoods that
the incoming gesture belongs to each of the predefined classes) and map their values
to parameters (e.g. a set of volume levels) instead of using the class labels to trigger
discrete musical events. Finally, classifiers can be used to recognise static postures
if trained—for example—with data describing the absolute or relative position of
parts of the body of a performer. Classification of gestures based on how they unfold
over time can be done by using various temporal modelling approaches, which will
be described in Sect. 27.4.3.

27.4.2 Regression

Regression is the task of estimating the relationship between an independent variable
(or a feature) and a dependent, or outcome, variable. This is done by building a sta-
tistical model that explains how the variables are related, and thus allows to infer the
value of the dependent variable given the independent variable. The model describ-
ing this continuous function is built using a set of discrete samples of independent
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variables (the input) paired with the corresponding values of the dependent variables
(the output). Building a regressionmodel is a supervised learning problem, given that
to do so one requires labelled data (input paired with corresponding output). Regres-
sion is used in several domains for tasks such as prediction and forecasting. In the
context of musical interaction, regression is an attractive approach as it allows to
define complex, continuous mapping functions between gesture features and sound
synthesis parameters. This can be done by providing examples consisting of sample
input data (e.g. motion or EMG features, see Sect. 27.3) paired with sound synthesis
parameters.

Artificial Neural Networks (ANN) are an efficient way to build linear regression
models. A typical ANN is a network of binary classifiers—called perceptrons—
organised in a number of layers. Perceptrons are also referred to as “neurons” or
“nodes.” The first layer of the network (the input layer) has a node for each input
feature. Perceptrons in layers after the input layers produce an output based on the
activation function (the binary classifier, generally a sigmoid function, but other acti-
vation functions may be used) applied to the input they received from the previous
layer. The function includes a set of weights applied to each input and an additional
parameter, the bias. After producing the output of each node feeding layer after layer
(the feedforward process), the error is calculated and a correction is sent back in
the network in a process known as backpropagation. After a number of iterations,
or epochs, the error is progressively reduced. ANNs are an attractive ML technique
when dealing with real-time motion tracking, as they can handle errors in the incom-
ing data (which may be caused by noisy sensor signal) relatively well.

The model obtained by training a neural network may then be used to map
incoming motion features to sound synthesis continuously and in real time. Sev-
eral approaches based on regression may be used to map gestural features to sound
synthesis [20]. We have developed the GIMLeT pedagogical toolkit for Max [49] to
provide some practical examples of using linear regression for this purpose. How-
ever, ordinary ANNs do not take into account the temporal aspects of the input data.
The next section will look at some of the approaches designed to analyse and follow
the evolution of a gesture in time.

27.4.3 Temporal Modelling

Gesture unfolds over time, and gestures that may look similar in terms of displace-
ment in space may differ radically in expressivity depending on their temporal evo-
lution. For example, moving an arm outwards very slowly or very fast following the
same trajectorymay convey very different expressive intentions.Whilst certain types
of neural networks such as Echo State Networks exhibit short-term memory and can
be trained to operate on temporal aspects of their input [50], longer time spans require
different approaches. Dynamic TimeWarping (DTW) [51] is a technique that allows
to temporally align incoming time series (e.g. motion features changing over time) to
previously saved gesture templates. Templates are pre-recorded gesture examples.
The DTW algorithm will attempt to align incoming gesture features to the set of
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recorded gesture templates, also referred to as a gesture vocabulary. This way, it is
possible to perform various tasks including assessing to which gesture template the
incoming motion data is closer to. DTW has been used extensively for music appli-
cations such as musical gesture classification [52], to evaluate the timing of musical
conducting gestures [53], or as a distance measure to place musical gestures in a
feature space [46]. One major drawback of DTW for musical applications is that,
albeit giving access to how a gesture evolves over time, recognition occurs only after
the gesture has been fully performed, and thus not continuously. Bevilacqua et al.
[54] proposed a real-time gesture analysis system based on Hidden Markov Models
(HMM). This method allows to continuously recognise a gesture against stored ges-
ture templates, outputting parameters describing time progression (i.e. how much of
the gesture has already been performed, this is known as “gesture following”) and
the likelihood of the gesture belonging to one of the predefined gesture classes. This
allows musical interactions such as audio stretching/compressing in synchronisa-
tion with gesture performance. Françoise et al. [55] extended this approach further,
proposing a set of probabilistic approaches to define motion to sound relationships.
These include a hierarchical structure that allows to switch between the difference
gestures in the vocabulary and follow the temporal progression of the likeliest match-
ing template whilst performing, and amultimodal approach that models the temporal
evolution of both the motion features and the sound parameters. Caramiaux et al.
[56] proposed extensions to continuous gesture following by focusing on the online
analysis ofmeaningful variations between gesture templates and performed gestures.
Their approach uses particle filtering for tracking variations from the recorded tem-
plate in real time, allowing to estimate geometric variations such as scaling (i.e. how
much is the gesture bigger/smaller than the template?), rotation angles (i.e. howmuch
is the performed gesture tilted with respect to the template?), and temporal dynamics
(i.e. is the gesture performed faster or slower than the recoded template?). These
gesture variation parameters can then be mapped to sound synthesis parameters. For
example, the authors describe a study where an increase in scaling corresponds to
louder volume, temporal dynamics are mapped to the playback speed of samples,
and rotation angles to high-pass filtering [56, p. 19].

27.5 Sound Synthesis and Gesture Mapping

Modern sound synthesis techniques are often characterised by a high number of
parameters one canmanipulate in order to make different sounds.Whilst these afford
vast synthesis possibilities, exploring the resulting extensive parameter spacesmaybe
a challenging task, which can be particularly difficult to accomplish by manipulating
every parameter by hand.

The choice of synthesis algorithm, therefore, can be one where individual syn-
thesis parameters may be difficult to manually parametrise. Instead, we will exploit
the “mapping by demonstration” paradigm where the ML algorithm will create a
model whereby performance input is translated to synthesis output. In this regard,
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a difficult to programme synthesis method like Frequency Modulation could be a
good candidate.

Here we present two approaches from our work to demonstrate how regression
can work with different levels of complexity of sound synthesis. We show a simple
granular synthesiser, and amore sophisticated synthesis using corpus-based concate-
native synthesis [57].

27.5.1 Granular Synthesis and SoundTracing

We created a basic granular synthesis module using the in-built capabilities of a
sample buffer reader in Max [58], groove˜. The implementation is a time domain
sample-based synthesiser where an audio buffer contains the sample being played,
and pitch transposition and playback speed are decoupled. This is combined with
subtractive synthesis with a classic resonant low-pass filter. There are six control
parameters:

– playback start time
– playback duration
– playback speed
– pitch shift
– filter cutoff frequency
– filter resonance.

A version of this synthesiser is available as part of the GIMLeT example of a
synthesiser where the sound authoring parameters are human readable and where
parametrisation could be done by hand. The challenge comes in creating sounds
that dynamically respond to incoming gestures without hardwiring gestural features
to synthesis parameters in a traditional mapping exercise. Here we use sound trac-
ing [59] as a method where a sound is given as a stimulus to create evoked gestural
response. By gesticulating to a sound that evolves in time, we author gesture that then
becomes training data for the regression algorithm in a “mapping-by-demonstration”
workflow. In order to author time varying sound using this synthesiser, we create a
system of “anchor points”, salient points in the timbral evolution of the sound that
are practical for sound synthesis parametrisation, and useful in pose-based gesture
training [20]. The synthesiser is controlled by our breakpoint envelope-based play-
back system and enables the user to design sounds that transition between four fixed
anchor points (start, two intermediate points, and end) that represent fixed synthe-
sis parameters. The envelope interpolates between these fixed points. The temporal
evolution of sound is captured as different states in the breakpoint editor whose
envelopes run during playback, feeding both synthesiser and the ML algorithm. Any
of the synthesis parameters can be assigned to breakpoint envelopes to be controlled
during playback.

These sound trajectories are then reproduced during the gesture design and model
training phases of our workflow. In performance a model maps sensor data to syn-
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Table 27.1 Audio feature
vector for corpus based
concatenative synthesis

Sound Features

Duration

Frequency μ

Frequency σ

Energy μ

Energy σ

Periodicity μ

Periodicity σ

AC1 μ

AC1 σ

Loudness μ

Loudness σ

Centroid μ

Centroid σ

Spread μ

Spread σ

Skewness μ

Skewness σ

Kurtosis μ

Kurtosis σ

thesis parameters, allowing users to reproduce the designed sounds or explore the
sonic space around the existing sounds.

27.5.2 Corpus-Based Synthesis and Feature Mapping

Corpus-based concatenative synthesis (CBCS) is a compelling means to create new
sounds based on navigating a timbral feature space. In its use of atomic source units
that are analysed, we can think of CBCS as an extension of granular synthesis that
harnesses the power of music information retrieval and the timbral descriptors they
generate. The actual sound to be played is specified by a target and features associated
with that target.

A sound file is imported into the synthesiser, and it is automatically segmented
into units, determined by an onset segmentation algorithm. A vector of 19 auditory
features, shown in Table27.1, are analysed for each unit. Playback typically takes
place as navigation in the audio feature space. A set of desired features is given to the
synthesiser, and a k-nearest neighbours algorithm retrieves the closest matching unit
to a given set of auditory features. This synthesis method, therefore, is not one where
the user programmes sound by setting synthesis parameters in a deterministic way.
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Schwarz typically usesCataRT [60] controlled through a2DGUI in live performance,
which enables control of only two target audio features at a time.

Here, the full vector of all auditory features are associated with with the sensor
feature vectors to train the neural network, and roughly represent a high-dimensional
timbral similarity space. We refer to this as multidimensional feature mapping, that
is to say, that a gesture-sound mapping is created in the feature domain.

The high dimensionality of gesture and sound feature spaces raises challenges
that ML techniques have helped to tackle. However, this complexity also offers
opportunities for experimentation. This led us to develop an extension to the IML
paradigm that allows to explore the vast space of possible gesture-sound mappings
with the help of an artificial agent and RL.

27.6 Reinforcement Learning

RL is an area of ML in which algorithms in the form of artificial agents are pro-
grammed to take actions in an environment defined by a set of parameters. Their goal
is to maximise the positive feedback—or rewards—they are given by a human (or by
another algorithm) observing the outcome of their actions. Deep RL approaches—
such as the Deep TAMER algorithm—leverage the power of deep neural networks
and human-provided feedback to train agents able to perform complex tasks [61].
Scurto et al. [62] implemented the Deep TAMER algorithm to design artificial agents
that allow to interactively explore the parameter spaces of software synthesisers.

We have developed a system that makes use of Deep RL to explore different
mappings between motion tracking and a sound synthesis engine [47]. The user
can give positive or negative feedback to the agent about the proposed mapping
whilst playing with a gestural interface, and try new mappings on the fly. The design
approach adopted is inspired by the ideas established by the IML paradigm (which
we schematised in Fig. 27.1), as well as by the use of artificial agents in computer
music for exploring complex parameter spaces [63–65]. We call this interaction
design approach Assisted Interactive Machine Learning (AIML).

27.6.1 RL for Exploring Gesture-SoundMappings: Assisted
Interactive Machine Learning

An AIML system is designed to interactively explore the motion-sound mappings
proposed by an artificial agent following the feedback given by the performer. This
iterative collaboration can be summarised in four main steps:

1. Sound design: the user authors a number of sounds by editing a set of salient
synthesis parameters;
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2. Agent exploration: the agent proposes a newmapping between the signals of the
input device and the synthesis parameters based on previous feedback given by
the user;

3. Play: the user plays with the synthesiser using the input device and the mapping
proposed by the agent;

4. Human feedback: the user gives feedback to the agent.

In step 2, the agent creates a new mapping based on user feedback. If no feedback
was previously given, the agent starts with a random mapping. Steps 3 and 4 are
repeated until the user has found as many interesting motion-sound mappings as
they like. The following subsections will describe the system architecture and a
typical workflow.

It is worth noting that, differently from most IML applications for gestural inter-
action, there is not a gesture design step during which the performer records some
sample sensor data for training the system. This is perhaps one of the most obvi-
ous differences between the IML and AIML paradigms. In an AIML workflow, the
sample sensor data used for training the model is provided by the artificial agent,
whereas the user gives feedback to the agent interactively whilst playing the resulting
gesture-sound mappings.

27.6.2 AIML System Architecture

The architecture of the system is schematised in Fig. 27.2. Motion features are stored
in a vector and sent to a regression model created using a neural network. This

Human feedback

Motion 
features

Sensor 
data

Neural network 
regression model

Synthesis 
params

Synthesiser

Sound

Training 
Dataset

Human

Reinforcement learning 

Environment

Proposed 
motion 
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Sound design

Movement

Fig. 27.2 Architecture of an assisted interactive machine learning system
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Fig. 27.3 The prototypical assisted interactive machine learning workflow

was implemented in Max using the rapidmax object [66], an external built using
RapidLib [67, 68], a set of software libraries for IML applications in the style of
Wekinator [69]. These features also represent the dimensions of the environment
in which the artificial agent operates. By exploring this feature space following the
user’s feedback, the agent proposes a set of motion features to be paired with the
synthesis parameters defined by the user during the sound design step. This becomes
the dataset used to train the neural network. The resulting regression model maps
the incoming sensor data to sound synthesis parameters.

27.6.3 AIMLWorkflow

The four main steps of the interactive collaboration between the human performer
and the artificial agent are schematised in Fig. 27.3.

1. Sound design In this first step, the user defines a number of sounds bymanipulating
a set of synthesis parameters. This process may differ depending on the synthesiser
chosen andwhich synthesis parameters are exposed to the user in this step. In the first
version of the system using the sample-based synthesiser described in Sect. 27.5.1,
the sounds are defined by manipulating six parameters (playback speed, pitch shift,
start time, duration of the sample selection, filter cutoff frequency, and resonance).
Here, the user defines the parameters of four sounds that will be used to train a neural
network in step 2 and perform regression in step 3. The sounds designed in the sound
design step will thus act as timbral anchor points that define a space for interpolation
and extrapolation of new sounds.
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2. Agent exploration The dimensions of the environment explored by the agent are
defined by the motion features extracted from the raw sensor data for each of the
sounds presets. Thus, at the end of the exploration step, the agent returns a vector
with a set of input features for each of the sound synthesis parameters sets defined in
the sound design step. This means that in the case of the version of the system using a
2D accelerometer, the agent will return four 2D vectors. These will be automatically
paired with the synthesis parameters to train a neural network and create a regression
model, which will be used in the following step to map live incoming sensor data to
sound synthesis.

3. Play In this step, the user is free to playwith and explore the resulting gesture-sound
mapping for, however, long they like. Given that the regression models allow both
interpolation and extrapolation of the input sound synthesis data, this step also allows
to explore the timbral possibilities of the synthesiser whilst playing the mapping.

4. Human feedback After playing with the mapping, the user gives feedback to the
artificial agent through a purposely designed interface. We adopted the concepts of
guiding feedback and zone feedback implemented in the agent designed by Scurto
et al. [62]. Guiding feedback is a binary evaluation of the actions performed by
the agent, or the direction of its exploration of the feature space. Zone feedback is
instead an evaluation of the area of the feature space the agent is currently exploring.
For example, a negative guiding feedback would change the direction of the agent’s
trajectory in the feature space, whereas a negative zone feedback would immediately
transfer the agent to a different region of the space.

In our system, the user can give positive or negative guiding feedback to the
agent about the proposed mapping. This feedback guides the direction of the next
explorations of the feature space, and thus affects the next mappings proposed by
the agent. In addition, the user can tell the agent to move to a different area of the
feature space by means of a negative zone feedback. This will likely result in a new
mapping that is considerably different from the previous one. In practice, this could be
useful for trying something new once one is satisfied with the mappings proposed by
the agent after a few guiding feedback iterations. In fact, whereas negative guiding
feedback results in adjustments to the mappings currently being proposed by the
agent, negative zone feedback triggers the exploration of a new area of the feature
space, thereby exploring newmappingpossibilities. Finally, users can savemappings,
which can be retrieved later for performance or as material to be further refined using
other interaction design approaches.

27.7 In Practice: IMLTechniques in Musical Pieces

The sections that follow will describe how the techniques we outlined so far were
employed by the authors for the development of their own musical pieces. The four
pieces we selected showcase how these methods may be deployed to aid certain
expressive intentions. Through their use in artistic practice, some of the creative



27 Interactive Machine Learning of Musical Gesture 789

affordances of IML paradigms become clearer, showing how certain creative pro-
cessesmay be facilitated and exposing strength and limitations of specific techniques.

27.7.1 Wais (Tanaka)

Wais (2019) is an homage to Michel Waisvisz, his work at the studio STEIM in
Amsterdam, and his performances on the instrument, The Hands. On one arm a short
recording of aWaisvisz performance is articulated. On the other, an electronic music
track,Delull byTanaka. These two sources are granulated and placed in counterpoint.
Two neural networks create independent regressionmodels associating static posture
and sound grain for each source. Once in “test” mode, these models take dynamic
gestures, deconstructing the two prior works into a single improvisation.

Gesture is captured by one Myo sensor armband [70] on each forearm, providing
8 EMG channels, IMU quaternions, and combinatorial features resulting in 19 total
muscle tension andmovement features each from the left and right arms. An instance
of the synthesiser described in Sect. 27.5.1 is associated with each sensor armband,
allowing an independent sound buffer to be articulated by each arm.

The gesture input and sound synthesis output are associated by means of a neural
network regression algorithm (see Sect. 27.4.2), one for each arm. The performance
consists of three sections, first to audition the unaltered source samples, second to
train the neural network, and third to explore the trained model. At the beginning of
the performance, the regressionmodels are empty. The source sounds are played from
the beginning, going up to 5min for Tanaka’s recording and 19s looped ofWaisvisz’s
recording. The overall summedRMSmuscle tension for each arm initiallymodulates
the amplitude of each recording, allowing the two musical voices to be articulated in
a direct, gross manner. This section familiarises the listener with the original source
materials.

In section two, a series of four granular regions and filter settings for each voice
are associated with four static postures for each arm, with the gesture input recorded
to establish a training set. This is done in performance as a sequence of events to
set the synths to each precomposed sound and prompt the performer to adopt a pose
for each. The overall amplitude continues to be modulated by the summed muscle
RMS. So, whilst each posture for the training set is static, the music continues
to be articulated in a continuous manner through muscle tension. This creates a
continuation of the first section where four segments of each voice are chosen as a
way to zoom into segments of the original recordings. The eight segments are called
up in an alternating manner for each arm through rhythmic timing aided by a foot
pedal push button to advancing and promoting the performer to each subsequent pose.
After the training set of example poses and associated target sounds are recorded,
the two neural networks are trained to produce a regression model.

The regression model is put into test mode for the third section of the piece and
all three components of the work—38 total dimensions of gesture, the two neu-
ral networks, and 12 total dimensions of sound synthesis output—come to life in
dynamic interplay. The performer explores the gesture-sound space through contin-
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uous movement. He may approach or go through the poses from the training to see if
the precomposed segments are recalled. He may explore multimodal decomposition
and recombining of the source poses, perhaps striking a posture from one pose in
space to recall IMU data for that pose, combined with muscle tension from another
pose. This exploration is fluid, comprised of continuous gesture that dynamically
goes in-between and beyond the input points from the training set. The result is a
lively exchange of the twomusical voices, with the granular synthesis and filters con-
stantly shifting in ways unlikely to be possible with manual parameter manipulation
or direct mapping.

27.7.2 11 Degrees of Dependence (Visi)

11 Degrees of Dependence (2016) is a composition for saxophone, electric guitar,
wearable sensors, and live electronics that makes use of ML for continuously map-
ping the movements of the musicians to sound synthesis based on physical models
and granular synthesis. The piece explores the relationship between the performers
and their instruments, focusing on the constraints that instrumental practice imposes
on bodymovement and a topological interpretation of themusician’s kinesphere [71].
The score includes symbols to notate movements, designed to be easily interpreted
by musicians familiar with standard notation.

The piece is a duet for alto or soprano sax and electric guitar tuned in Drop C
(open strings tunedCGCFAD from low to high). The sax player and the guitarist each
wear twoMyo armbands to control the physicalmodelwhereas the guitarist wears the
same devices to control granular synthesis and an electroacoustic resonator placed
on the guitar headstock. Parameter mapping is done using a supervised learning
workflow based on SVMs. The data from the lateral (pitch) and longitudinal (roll)
axes of the magnetometer are used as input to train the ML model. Four ‘postures’
are then defined for both musicians. In the case of the sax player, these are:

– a ‘default’ performance position (named ‘Rest’) with arms comfortably by the side
of the chest,

– gently leaning back, raising the saxophone with the elbows slightly open (named
‘Open’),

– leaning to the left with the right elbow slightly pointing outwards (named ‘Left’),
– leaning to the right with the left elbow slightly pointing outwards (named ‘Right’).

During the training phase, each posture is coupled with a set of synthesis param-
eters of the flute physical model. The Rest posture is paired with a clean sound with
a clear fundamental frequency, the Open posture with a louder sound rich of breath
noise, the Left posture adds overtones, and the right posture with a flutter tongued
‘frullato’ sound. In performance (testing phase, in ML terms), the synthesis param-
eters are continuously interpolated using the output likelihoods of the classifier as
interpolation factors. This synthesised wind instrument sounds are designed to blend
with the saxophone sound to generate a timbre with both familiar and uncanny qual-
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ities. The pitch played by the flute model is a C1, which is also the tonic of the piece.
The amount of noise fed into the physical model (or breath pressure) is controlled
by the sum of the EMG MAV values of both arms. This implies that the amount
of synthesised sound is constrained by the movement of the fingers operating the
saxophone keys. Notes that require more tone holes to be closed—such as low notes
for example—cause more muscular activity and thus louder sounds from the physi-
cal model. This design choice adds a component of interdependent, semi-conscious
control to the performance creating a tighter coupling between the sounds of the
saxophone and those of the flute model.

11 Degrees of Dependence is structured in 3 parts, each of which contains scored
themes at the beginning and the end a middle improvised section. The full score of
the alto saxophone part can be found in the appendix of [72]. The score adopts con-
ventional notation along with some custom symbols (printed in red) used to notate
movement. Whilst the symbols indicate at which point in time the posture should
be reached, the red lines show how the transition between the different postures
should be articulated. These lines resemble other lines commonly found in conven-
tional music notation. A straight line between two symbols means that the performer
should start from the posture represented by the first symbol and progressively move
towards the posture represented by the second symbol. Themovement resulting from
the transition between the postures should end in correspondence with the second
symbol, thus following the rhythmic subdivision indicated in the staff. This is similar
to a glissando, also notated using straight lines between note heads. A curved line
between the posture symbols works instead analogously to a legato, meaning that
the indicated posture is quickly tied with the following one. The score is where affor-
dances and constraints of the agencies involved in the piece coalesce: each posture
is represented by a symbol and corresponds to a class of the ML classifier, body
movements occur in-between postures, causing sound synthesis to move in-between
predefined parameter sets. At the centre of these interdependent agencies, we find
the bodies of the musicians and their embodied relationships with their instruments.

27.7.3 Delearning (Tanaka)

Delearning (2019) takes as its source awork by Tanaka for chamber orchestra, DSCP,
as sound corpus for analysis and subsequent neural network regression with gestural
input. Feature extraction of arm poses is associated with audio metadata and used to
train an artificial neural network. The algorithm is then put into performance mode
allowing the performer to navigate a multidimensional timbre space with musical
gesture.

This piece puts into practice the technique we describe in Zbyszyński et al. [21],
where multimodal EMG and IMU sensing is used in conjunction with corpus-based
concatenative sound synthesis (CBCS) to map 19 dimensions of incoming gesture
features by a regression model to 19 dimensions of audio descriptors.

Thenineteengesture features are taken from the right forearmandare: IMUquater-
nions (4 dimensions), angular velocity (4 dimensions), 8 channels of Bayes filtered
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EMG, total summed EMG (1 dimension), and a separation of all EMG channels on
the perimeter of the forearm to horizontal and vertical tension (2 dimensions).

The nineteen target audio descriptors are grain duration followed by the means
and standarddeviations of frequency; energy; periodicity; autocorrelation coefficient;
loudness; spectral centroid, spread, skew and kurtosis.

The gesture input feature space is mapped to the target audio feature space by
means of a neural network that creates a regression model associating gesture as
performed and sound synthesis output.

The source audio is a recording of an 18 minute piece for chamber orchestra
of mixed forces. The work was chosen as it contains a diverse range of timbres and
dynamics all whilst being musically coherent. Before the performance, the recording
is analysed to generate the audio descriptors. The recording is read from beginning to
end and is segmented by transient onset detection into grains. This generates 21,000
grains over the course of the duration of the recording, making the average grain 50
ms in duration.

The composition consists of five points in the original piece that have been selected
to be associated with performance postures. The EMG and IMU sensors on the right
arm feed the neural network, whilst EMG amplitude from the left arm modulates the
overall synthesiser amplitude, and IMU quaternions modulate, at different points in
the composition, filtering and spatialisation.

The performance beginswith the analysed recording, butwith an empty regression
model. The first grain is heard, and the performer adopts a posture to associate with
it, and records that as training data into the neural network. This continues for the
two subsequent grains, at which point the training set consists of gesture features of
the three poses associated with the audio descriptors of the three grains. The neural
network is trained, then put into test mode. The performer then explores this gesture-
timbre space through fluid, dynamic gesture. The regression model takes gesture
feature input to report a set of audio descriptors to the synthesiser. The synthesiser
applies a k-nearest neighbour algorithm to find a grain in the corpus that has the
closest Euclidean distance to the look up features.

In the next section of the piece, the neural network is put back into training
mode, and a fourth grain is introduced and associated with a fourth posture. This
pose is recorded as an extension to the existing training set, putting in practice the
IML paradigm of providing more examples. The neural network is retrained on this
enhanced data set and put in performance mode for further free exploration by the
performer.

This is repeated with the fifth and final grain to extend the regression model one
last time to model the data representing 5 poses associated with five audio grains.
This creates a musical structure where the gesture-timbre space becomes richer and
more densely populated through the development of the piece.
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27.7.4 “You Have a NewMemory” (Visi)

“YouHave aNewMemory” (2020) [73]makes use of theAIML interaction paradigm
(see Sect. 27.6) to navigate a vast corpus of audiomaterial harvested from themessag-
ing applications, videos, and audio journals recorded on the author’s mobile phone.
This corpus of sonic memories is then organised using audio descriptors and nav-
igated with the aid of an artificial agent and RL. Feedback to the agent is given
through a remote control, whilst embodied interaction with the corpus is enabled by
a Myo armband.

Sonic interaction is implemented using CBCS (see Sect. 27.5.2). The approach is
further refined by adopting the method based on self-organising maps proposed by
Margraf [74], which helps handling the sparseness of heterogenous audio corpora.

In performance, the assisted exploration of sonic memories involves an embodied
exploration of the corpus the entails both a search of musical motives and timbres
to develop gestural musical phrases, as well as the intimate, personal exploration of
the performer’s recent past through fragments of sonic memories emerging from the
corpus following the interaction with the agent. The juxtaposition of sounds that are
associated with memories from different periods may guide the performer towards
an unexpected introspective listening that co-inhabits the performance together with
a more abstract, sonic object-oriented reduced listening [14]. The shifting between
these modalities of listening influences the feedback given to the agent, which in
return alters the way the performer interacts with the sonic memories stored in the
corpus.

The title of the piece—“YouHave aNewMemory”—refers to the notifications that
a popular photo library application occasionally send to mobile devices to prompt
their users to check an algorithmically generated photo gallery that collects images
and videos related to a particular event or series of events in their lives. These
collections are ostensibly compiled by algorithms that extract and analyse image
features, metadata (e.g. geotags), and attempt to identify the people portrayed in the
photos [75].

The piece aims at dealing with the feelings of anxiety associated with the aware-
ness that fragments of one’s life are constantly turned (consciously or not) into data
that is analysed and processed by unattended algorithms, whose inner workings and
purposes are often opaque. The piece then is also an attempt at actively employing
similar algorithms as a means of introspection and exploration. Rather than passively
receiving the output of ML algorithms dictating when and how one’s memories are
forming, here the algorithms are used actively, as an empowering tool for exploring
the complexity outlined by the overwhelming amount of data about ourselves that
we constantly produce.
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27.8 Conclusion

The purpose of this chapter was to provide an overview of the solutions, challenges,
needs, and implications of employing IML techniques for analysing and designing
musical gestures. The research field is still rapidly developing, and the topics we
touched upon in the previous sections may give an idea of the interdisciplinary effort
required for advancing research further. Advances in the field require an interdisci-
plinary perspective as well as a methodology encompassing basic research inquiry,
the development of tools, their deployment in artistic practice and an analysis of the
impact such techniques have on one’s creative process. Learning more about the use
of ML in music has manifold implications, stretching beyond the musical domain.
As ML technologies are used to manage more and more aspects of everyday life,
working along the fuzzy edges of artistic practice—where tasks are often not defined
in univocal terms and problems are, and need to be left, open to creative solutions—
becomes a laboratory in which we understand how to claim and negotiate human
agency over data systems and algorithms. UnderstandingML as a tool for navigating
complexity that can aid musicians’ creative practice may contribute to the advance-
ment of these techniques, as well as to their demystification and broader adoption by
artists, researchers as well as educators, thereby becoming sources of empowerment
and inspiration.
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28Human–Robot Musical Interaction

Sarah Cosentino and Atsuo Takanishi

28.1 Introduction

To be engaging and creatively adaptive in a joint live performance, musical robots
must be interactive, and able to communicate at various social levels.

Technical communication exchanged with other performers can support syn-
chronization and enhance the performance aesthetics, while accompanying emo-
tional communication can help conveying the performance emotional message to
the audience. Moreover, the ability to read the audience emotional state and
engagement level can give the robot real-time feedback on its overall performance.

In particular, during a musical performance direct verbal communication is not
possible, and the set of communicative gestures can be limited due to restraining
postures and allocated resources for musical instrument playing.

We start this chapter with a brief overview on the relationship between per-
formance and interaction; then introduce our musical robots, WF the flutist, and
WAS the saxophonist. We then discuss the evolution of those robots and the effects
of technical and emotional interaction on joint musical performance and on audi-
ence engagement with WF and WAS.
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28.2 Music, Interaction, and Robots

Music is a form of art, and art is communication, the expression of the self: the
interaction between artists and their surrounding is a critical part of the artistic
process. Artists perform in what we can call the performance space, an environ-
ment in which there is usually an audience and often other performers. To give
engaging and powerful performances, artists need to master artistic techniques, but
also to effectively interact with the audience and fellow performers at various level
of communication. They need to convey an emotional message to the audience,
and technical signals to synchronize with their fellow performers. At the same
time, they need to lookout for and acknowledge technical signals from the other
performers, and sense the audience emotional state as a feedback to adjust their
performance. In the scope of musical performance, most of these interactions are
in the form of silent ancillary gestures, to avoid auditory interference: both tech-
nical signaling and emotional gestures must blend in seamlessly and harmonically
within the performance. Moreover, due to physical motion constraints related to
instrument playing, these gestures are limited to posture changes, gazing, and face
expressions.

To be integrated in the musical performance space, a musical robot must be able
not only to play an instrument with a fair amount of technical skills, but also to
interact with fellow performers and the audience in the same way a human per-
former does. This imposes certain constraints on the robot design and control. In
fact, a specialized non-human-like robot could be specifically designed to bypass
the technical difficulties typically encountered by human musicians, and easily
achieve a very high level of musical virtuosism with its enhanced dexterity.
However, understanding and performing human communication signals requires
hardware and software to capture human movement, vocalizations, and physio-
logical changes linked to informational communication and emotional states, and a
humanoid body to perform human-like gestures. To study how interaction affects
the execution and perception of a musical performance, we at Waseda focused on
the development of anthropomorphic musical robots able to play instruments and
interact with both fellow performers and the audience as human musicians. In fact,
sensing and actuating functions are important, but the quality of the interaction
depends on the amount of autonomous decisional power the robot has when
reacting to perceived signals: WABOT-1, the first humanoid robot developed at
Waseda University, able to walk, carry objects, and even communicate verbally,
was estimated to have the same mental faculty as a one-and-a-half year old child.
The second humanoid, the musical robot WABOT-2, was developed with the
specific aim to explore the potentiality of robotic artificial intelligence, as an artistic
activity like playing the keyboard was though to require advanced human-like
intelligence and dexterity, due to the strict real-time computational requirements for
musical performance combined with the computational complexity of musical
improvisation [1]. For this reason, in the development of the WF (Waseda Flutist)
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and WAS (Waseda Anthropomorphic Saxophonist) robots, dexterity and interaction
systems refinement was carried out in parallel, as the two functions revealed
interdependent to improve the overall robot musical performance.

28.3 The Waseda Wind Robot Players

28.3.1 The Waseda Flutist WF

The WF (Waseda Flutist) robot took 15 years to acquire full real-time autonomous
musical performance ability (Fig. 28.1). The early versions of the robot were not
humanoid in shape, and were built on extremely simplified models, to study and
clarify the necessary human mechanisms for playing the flute. The first version of
the flutist, WF-1 (Waseda Flutist 1), was completed in 1990. Although WF-1 was
not humanoid, it featured a system simulating a human lung with a piston and
cylinder mechanism. The synthetic lung was actuated by a DC servomotor and a
ball screw to control the air flow. The robot was equipped with a MIDI-processing
unit and could perform very simple tunes following MIDI input data. The second
version of the robot, WF-2, completed in 1992, had human-like fingers mounted on
a movable frame that controlled the relative position of the flute to the mouth (i.e.,
the embouchure). A linear actuator and a ball screw controlled the opening of the
not yet human-like mouth mechanism, whilst an actuated rod and a voice-coil
motor mimicked the tongue, an important mechanism to perform tonguing, a
necessary technique for flute playing. These mechanisms were refined in the third
version of the robot [2, 3]. In 1994, the WF-3RIV robot version featured a critically
improved lip mechanism, enabling fine control of the air flow rate and angle. The
flute holding mechanism was also redesigned, allowing fine controlling of the
embouchure with 3 DoF (Degrees of Freedom) [4]. The WF-3RIX, completed in
1998, was the first robot version truly humanoid in shape. It reproduced, as real-
istically and precisely as possible, every single human organ involved in playing the
flute: two lungs, lips in a rubber-based soft material, a refined tongue mechanism
that allowed double-tonguing and vibrato, human-like arms to hold the flute and
control the embouchure, multiple DoF fingers that could perform trilling. The
human-like design and flute-playing attitude was further refined in the following
robot version, the WF-4, built in 2003. The 5-DoF lips and 4-DoF new neck
mechanisms enhanced the flute positioning accuracy; a voice-coil motor increased
the efficacy of the vibrato system; and two piston cylinders, driven by embedded
ball screws, improved the controllability of the lungs system [5]. In the 2004
WF-4R robot version fully actuated arm mechanisms were added to improve pre-
cision and accuracy of the flute positioning, and a sound pressure control system
was implemented to enhance performance expressivity [5].

The very first version of the robot featuring a basic interaction system, WF-4RII,
was initiated in 2004. This robot version had a two-coupled cameras mechanism
mimicking human-like eyes and a human face-tracking algorithm to maintain visual
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contact with the users [6]. Since 2005, the subsequent versions of the robot,
WF-4RIII, WF-4RIV, WF-4RV and the latest WF-4RVI, focused on improving the
robot performance expressivity and interactivity. Control algorithms were refined
and mechanical systems were redesigned to stabilize notes duration and vibrato,
whilst musical composition algorithmic functions and sensing systems were added
to enable the robot generating real-time expressive variations from the nominal score
in synchronization with partner performers during a joint performance. The impact
and efficacy of these systems will be analyzed in detail in the following sections.

28.3.2 The Waseda Anthropomorphic Saxophonist WAS

The first version of the WAS (Waseda Anthropomorphic Saxophonist) robot was
completed in 2009, following the first attempt to transform the specialist flute player
robot WF as a generalized wind instrument player robot (Fig. 28.2). WAS-1 was an
extremely simplified version of the WF, built to clarify the different technical
challenges required to play a saxophone, a reed instrument, instead of a flute. In
particular, the lip system was a simplified 1-DoF mechanism, the synthetic lung
system was substituted by an air rotational pump and an air flow controlling valve,
and the fingers, with only 11 DoF, were designed to play a limited range of notes,
from C3 to C#5. The modified lip mechanism enabled WAS-1 to correctly calibrate
the sound pitch, however the sound pressure range was too short. The air flow
management system was studied for maximum accuracy of intraoral air pressure, a
critical parameter for correct note emission during musical performance. However,
due to mechanical control limitations, there was a delay from the note attack
command in reaching the target air pressure, which severely affected the technical
performance of the robot. In the second version of the robot, WAS-2, which was
already completely humanoid, most of the initial technical problems were solved
[7–9]. The subsequent versions of the robot focused on improving the sound
generation and control system.

Fig. 28.1 Evolution of the Waseda Flutist (WF) robot
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28.4 Technical Musical Interaction

28.4.1 Asynchronous Verbal Technical Interaction

The first studies on interaction with the Waseda musical robots were conducted in
2004 with the WF robot. Due to the limited musical synchronization and impro-
visation abilities of the robot, interaction was carried out verbally offline. In fact,
even though verbal interaction is reduced to a minimum during a musical perfor-
mance, to minimize noise interference, before and after the performance performers
engage often in conversation with the audience and fellow performers, to foster
group empathy and discuss about performance details. This type of off-line inter-
action is extremely useful to receive and provide both technical and emotional
feedback, enhancing personal engagement and group cohesion. A musical robot
should be able to introduce and give feedback about the musical performance to the
audience and its fellow partners. For this reason, the first Waseda musical robot,
WABOT-2, the organ player robot developed by the late Professor Kato in 1984,
could verbally introduce itself and the piece to be presented. Moreover, it had basic
speech recognition and synthesis systems to understand and handle spoken requests
related to its musical repertoire [1].

The effect of verbal interaction with WF was tested in the scope of a project
aiming at using WF in a robot-based musical training protocol for beginner flutists
[10, 11]. During the training, the WF-4RII robot first demonstrated the correct
execution of a musical piece, then provided verbal feedback on the novice flutist’s
execution of the same piece. In fact, WF-4RII could analyze in an articulated
manner the details of a musical performance by means of a dedicated sound quality
evaluation system [11], and suggest practical corrections for sound improvement.
Moreover, WF-4RII could visually recognize and track the face of the users, to
maintain eye contact during the interactive session (Fig. 28.3).

Fig. 28.2 Evolution of the Waseda Anthropomorphic Saxophonist (WAS) robot
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Interestingly, even though the feedback system was proven to provide useful
advice only in 25% of the cases and partially correct advice in 55% of the cases, the
improvement in performance technique of the students using the interactive training
procedure with the robot was found significantly higher in a controlled evaluation
experiment compared to a control group training only with a human music teacher.
This is a successful example of how human–robot interaction-based educational
tools can be used effectively for reinforcement, information and motivation during
training, accelerating the learning process.

28.4.2 Synchronous Automatic Interaction

Real-time musical interaction requires advanced musical technical abilities.
WF-4RII was equipped with an automatic sound quality evaluation system, which
used a deterministic musical measurement algorithm and sound processing tech-
niques to evaluate a performance. However, personal expressivity requires the
musician to perform deviation from a nominal score according to personal tastes.
Evaluation rules determined on the basis of real performances measurements use
statistical analysis of the sound data, reflecting typical, rather than individual,
deviations from a nominal score. For this reason, such rules might prove inefficient
in the analysis of a performer’s individual expressivity, hindering the robot

Fig. 28.3 Musical training protocol with WF-4RII
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adaptability to a particular partner performer. To overcome these limitations, an
AI-based approach was proposed for the WF-4RIII, using a feed-forward neural
network to analyze a specific set of musical parameters deviation from the nominal
score in a professional flutist performance [12]. The parameters deemed significant
for expressivity were the note duration and vibrato duration and frequency. The
idea was to train the neural network with a specific data set from a recorded
expressive performance of a professional flutist, then test how well the performer
expression rules model could predict the performer’s execution of a different score.
This system had a dual impact: on one hand, it allowed the robot to build expression
rules for an individual performer, to improve adaptively its synchrony and coor-
dination with that performer, similar to playing repetitively with a partner performer
improves synchronization and coordination. On the other hand, it enabled the robot
to analyze different performers and build different sets of expression rules, even-
tually leading to the development of a personal set of expression rules for musical
performance, similar to listening to several different performers helps in building an
individual musical taste and expression. Also as a result of this work, after addi-
tional mechanical design improvement to enhance sound clarity and shape [13], the
WF-4RIV robot expressivity and ability to accompany a human flutist in a duet
significantly increased [14] (Fig. 28.4).

However, the system required further improvements in the robot mechanical and
control system to significantly improve the quality of the sound during the flute

Fig. 28.4 Performer's individual musical expression model
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performance. In particular, a closed-loop fast control of the air flow depending on
the generated sound was necessary. For this purpose, an auditory feedback control
system, consisting in a music expressive generator, a feed-forward air pressure
control system and a pitch evaluation module was implemented. Experimental
results confirmed that the implemented system greatly reduced the generated sound
errors, significantly improving the robot performance [15–17].

28.4.3 Interaction via Direct Signaling

The next step to human–robot natural musical interaction is the implementation of
strategies to exchange direct technical signaling during the performance for syn-
chronization and coordination. In general, the two principal methods used by
human musicians to interact with each other during a performance are communi-
cation through the acoustic and visual channel. Although aural exchange of
information seems predominant in a musical band setup there is also a large amount
of silent communication taking place via visual interaction.

As previously mentioned, during musical performance musicians rely heavily on
a limited set of gestures to communicate with fellow performers, given the limi-
tations imposed by instrument playing. Understanding human communication
gestures and postural changes would allow the robot to coordinate with joint per-
formers more precisely and react real-time to contextual performance deviations,
dramatically improving the overall performance. In this scope, a vision-based
hands-free controller was developed for WF-4RIV [18–21]. The two types of
commands implemented were a visual push button and a virtual fader.

The first implementation of the system required the user to stand in front of a
camera, watching the camera recorded image on a monitor located beside the robot.
Superimposed on the camera recorded image a virtual push button was graphically
displayed, in a semitransparent color, so the area covered by the button was clearly
defined and at the same time the video image beneath could still be seen. The
second controller implemented was a virtual fader, which could be used to con-
tinuously set a controller value. The user could manipulate the button and fader by
touching them virtually on the screen. Manipulation of these virtual controllers
would send real-time MIDI controller messages to the robot. The implemented
control system was robust, and experimental results showed that lighting and
background changes within certain limits did not strongly affect the control system,
even though more extreme conditions caused larger movement recognition errors,
which could likely be avoided with a preliminary contextual calibration of the
camera. The implemented control system accuracy was also high, as experimental
results showed a closely proportional relationship between input and output when
the system was used to control a MIDI synthesizer. However, the performance
accuracy was strongly affected by the type of command these virtual controllers
were used for, due to the robot mechanical limitations. Moreover, a usability test
showed that from the user viewpoint this hands-free virtual controller system did
not offer significant practical advantage over classical mechanical controllers used
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during live performance, as the system was just a direct method to control the robot
musical performance parameters, and the musician also needed some perceptual
training to get acquainted with the interface [18, 19]. The system was subsequently
improved using the cameras mounted on the robot for a 3D visual recognition of the
human musician partner postural changes, specifically the holding orientation of the
saxophone by a saxophonist. Simply changing the absolute saxophone orientation
by varying the pitch or the roll angles of the saxophone, a very natural movement
for a professional saxophonist, enabled controlling the robot vibrato tone
(Fig. 28.5). The new system was perceived much more natural and easy to use,
although it still was simply a mean of directly controlling the robot performance
without any automatic adaptation assistance [20, 21]. The two different control
systems provided different control interfaces and could be used by performers with
different musical skills to control the robot during joint performances.

28.4.4 Multimodal Dynamic Interaction

Subsequent work in human–robot natural musical interaction focused on enabling
the flutist robot to interact more naturally with musical partners in the context of a
Jazz band. This required integration of visual and aural cues from partner performers.
In fact, in the context of improvisation in a Jazz band, during solo play, in most cases,
one player at a time takes the lead and the other players provide accompaniment.
Upon finishing a solo, through movements with their instrument and specific har-
monic and rhythmic cues, a musician directs the lead to the next performer.
A Musical-Based Interaction System (MbIS) was then developed to enable the robot
to process both visual and aural cues from partner performers, complementing the
previous visual gestural recognition system with an aural cues perception system.
The proposed system enabled the robot to detect the tempo and harmony of a partner
performance, with a specific focus on improvisation, via a real-time analysis of the
rhythmical and harmonic characteristics of the recorded sound.

Fig. 28.5 Virtual fader interface
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The Musical-Based Interaction System (MbIS) was designed for people with
different musical skills, allowing two levels of interaction: beginner and advanced.
Similar to when two human musicians play together, the more advanced person
always adapts to the less advanced person, the system allowed the flutist robot to
adapt to the musical interaction skills of the partner performer. A person without
experience in performing with the robot would need more time to adjust to the
particularities of this type of human–machine interaction. For this reason the
beginner level interaction system was designed to provide direct and easy to learn
controllers similar to usual studio equipment. Moreover, the level of complexity of
acoustic interaction was reduced by only considering rhythmic data: the robot
analyzed the timing of a partner’s musical sequence and adapted its performance to
the same rhythm. In this way, the human player could focus on the rhythmic
exchange, without paying attention to the harmonic content of the melody, resulting
in a simpler interaction, suitable to a beginner player. The system would instead
offer to an advanced level player more refined ways of creative expression, allowing
free control of the performance parameters. The advanced interaction mode
required more experience in working interactively with the robot, but also allowed
for more subtle control of the musical performance. In this mode both the rhythmic
and harmonic information of the human musician’s performance was analyzed by
the system, and the robot played in response an adapted suitable rhythm and
melody.

Experimental results showed that the implemented algorithm enabled the robot
to correctly recognize a number of rhythms and harmonies, allowing it to engage in
a simple form of stimulus and response play with a human musician. However, the
overall performance quality was strongly influenced by contextual conditions and
the robot mechanical limitations could lead to very poor results [22].

Interaction experiments to provide qualitative results documenting the usability
of the system were performed with two beginner-level, two intermediate-level and
two professional level instrument players. Individual impressions on the interaction
quality was investigated with a subjective questionnaire. The questionnaire asked to
evaluate the system on a 10-points Likert scale, from 1 = insufficient to 10 = ex-
cellent, in three categories: Overall Responsiveness of the System, Adaptability to
Own Skill-Level and Musical Applicability/Creative Inspiration.

Overall Responsiveness of the system scored higher among less experienced
players and lower among experienced players. More experienced musicians have
more stringent responsiveness requirements. Adaptability to Own Skill Level
results confirmed preliminary expectations that less experienced players would feel
more comfortable with the beginner level interaction system and the more expe-
rienced players would give higher grades to the advanced level interaction system.
Musical Applicability/Creative Inspiration results show intermediate scores for all
skill levels, sign that the system needs still improvement in the direction of natural
creative interaction [23, 24] (Fig. 28.6).

Interestingly, the Musical-Based Interaction System was implemented on both
robots, the WAS-2 and the WF-4RIV, to verify the technical challenges for
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performing a duet between the saxophonist robot as main voice and the flutist robot
as second voice (Fig. 28.7).

Both robots were programmed to perform Theobald Böhm’s Trois Duos de
Mendelssohn et Lachner. As a preliminary work, information was exchanged
between the two robots by direct synchronized MIDI signal. The performance of
each robot was recorded separately via two separate microphones. Experimental
results show that performances were synchronized and the differences between the
main and second voice were clearly observable by comparing the volume and the
pitch of the performances. However, joint performance quality was lowered by the
robots technical limitations, in particular the complex air flow control of the flutist

Fig. 28.6 Usability evaluation of the MbIS

Fig. 28.7 Robot interaction protocol using the MbIS
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lung system. Future works in this direction should enable performance information
exchange between the two robots not only via the MIDI signal, but also via audio
and visual cues, like a natural human interaction [25].

More recent work shifted the point of view from passive to active interaction,
enabling the WAS robot to send, not only receive, direct interaction signals for
synchronization with a human musician. Consistently with musical interaction
specifications, signaling was limited to silent gestures, body posture and facial
expression changes. For facial expressions, a pre-existing constraint of the design
was to maintain unchanged the gaze mechanism, used to track a user’s face and
maintain eye contact. To avoid mechanism-generated noise that could influences
the musical performance, an implementation with direct drive, instead of gears,
was chosen. Based on these specifications, the motions that the mechanism should
reproduce were investigated. Focus was on the upper face expressions, especially
eyebrows and eyelid movements, because the mouth is used for playing the
saxophone and the lower face is partially hidden by the instrument. Eyebrow and
eyelid movements were modeled on human saxophonists’ video performances
analysis. Moreover, upon discussion with a professional saxophonist, it was found
that raising the eyebrows and winking during a performance might be used as
specific signals for the articulations and attacks. Therefore, it was decided that a
mechanism for the synchronized motion of eyebrows, for eyebrows raising or
frowning; and a mechanism for the independent motion of the eyelids for blinking
or winking would be sufficient to generate the most common iconic facial
expressions used by a human saxophonist during musical performances

Fig. 28.8 Communicative facial expression occurrences and specifications
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(Fig. 28.8). Experimental results showed that not only the joint performance was
perceived as more engaging and natural by a partner musician, but also by the
audience [26, 27].

28.4.5 Technical Interaction in an Orchestra: Conducting
Gestures

A long-term goal of the research on human–robot musical interaction is to enable
the dynamic interaction between robots and humans at the same level of perception,
in order for the robots to play actively together with a human ensemble. For this
purpose, the focus so far has been on perfecting the perceptual abilities of the robots
and developing a dynamic interaction system with human musicians. However, the
limit of these interaction systems is that they use a specific, ad-hoc engineered set of
interaction commands, and can only be used in small groups, because big
ensembles are controlled and synchronized by conductors. Conductors use a
standard set of signals, or better say a complex non-verbal gestural language, to
convey the musical parameters information to all the ensemble members at once
during live performance. For the communication to be effective, every member,
robot included, must know the language used to exchange information. Modelling a
language is not trivial, but, if the model is accurate, the level of uncertainty of the
communication is low and the effectiveness of communication high.

To effectively model a non-verbal language, the concepts that must be expressed
with that specific language, and with which symbol they are expressed, should be
clarified. In this specific application, this requires a deeper understanding of musical
rules and theory. Moreover, after modelling, an effective perception system to
detect and identify correctly these symbols is required. In this case, this requires a
highly accurate and precise gesture detection and analysis system. First of all,
elements of basic music theory were analyzed, and linked to the conductor’s ges-
tures. A musical piece is characterized by three fundamental parameters that can be
dynamically adjusted to represent different expressions: Tempo, Dynamics, and
Articulation. Orchestra conductors use their hands, with or without a baton, to
represent changes in these three parameters during the performance, to obtain
specific effects and shape the musical performance according to the composer
specified directives but also to their individual taste.

Tempo is the unit to measure the duration in time of the notes to be played; in
modern Western music is usually indicated in beats per minute (bpm). The beat is
the basic unit of time, the regularly occurring pattern of rhythmic stresses in music,
and it is specified on the score with a time signature. The conductor usually indi-
cates the Tempo tracing with the hand a shape in the air, indicating each beat with a
change in the motion direction. Different time signatures correspond to different
beat patterns and are represented with different shapes. The first beat of the pattern
is called downbeat, and the instant at which the downbeat occurs is called the ictus.

Dynamics is the acoustic volume of the notes to be played. Conductors represent
this parameter with the size of the traced shape, larger shapes representing louder
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sounds. Changes in Dynamics can also be signaled with the hand that is not being
used to indicate the beat: an upward motion (usually palm-up) indicates a cres-
cendo, an increase in volume; a downward motion (usually palm-down) indicates a
diminuendo, a decrease in volume.

Articulation affects the transition between multiple notes. Conductors represent
this parameter with the movement type of their hands, usually linked to the per-
formance meaning of the articulation type: from short and sharp for staccato, to
long and fluid for legato. Many conductors change also the muscular tension of
hands and arms: strained muscles and rigid movements correspond to marcato,
while relaxed hands and softer movements may correspond to legato or espressivo.

The variety of movements connected to musical expression is virtually infinite;
therefore, to develop a reasonably simple conducting gesture recognition experi-
mental system, we focused on a minimum set of motion patterns expressing Tempo,
Dynamics, and Articulation.

A visual recognition system would not be sufficiently accurate to recognize
differences the conductor gestures, also taking into consideration the contextual
conditions for large ensemble performance: very large and visually noisy spaces,
with the conductor potentially very far away from the robot. For this reason, it was
decided to use a wearable Inertial Measurement Unit (IMU) system containing a
3-axes accelerometer, gyroscope and magnetometer. The IMU was small and
lightweight and was easily embedded in a fingerless sport glove providing stable
anchorage but minimal hindrance to the conductor’s hand. The system was tested
with a professional and several beginner conductors. Results show that analysis
performed on accelerometer data provided information on both Tempo and
Dynamics with a recognition rate precision of over 95%, and could also help in
evaluating the user’s conducting skills level, via the analysis of standard deviation
from median values for each movement cycle. The results of the Articulation
discrimination algorithm, using a Principal Component Analysis (PCA), produced
instead mixed results, depending on how different were the articulation types
(Fig. 28.9). This also depends on the individual differences in gestural represen-
tation of similar, but distinct, articulation types. An audience perception evaluation
experiment showed that using the system led to significant improvement in the
perceived temporal synchronization of the overall performance, but not on the piece
emotional representation, due to low accuracy in articulation discrimination [28–
30]. In the future, an AI-based algorithm could be used to enable the robot better
adapt to individual gestural deviations of conductors and improve the articulation
discrimination accuracy.

28.5 Creative Interaction

The more the interaction focus moves up on the expressivity scale, the more
the performance requires a higher musical skill level and a deeper understanding of
artistic and social interaction rules. Musical creative interaction with a partner
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performer of another artistic discipline, for example a dancer, requires an under-
standing of expressive rules for both music and dance. Since expressivity and
expression methods are heavily influenced by individual taste, creative expressive
interaction relies less and less on expression rules and defined language; and more
and more on partner performers’ empathy and connection. In fact, humans tune in
unconscious signals to capture the interacting partner’s inner feelings. These
unconscious or involuntary signals are typical of humans as a species, and so are
generally universally recognized, independently on individual cultural and language
differences. However, unconscious signals are often subtle or invisible, and con-
scious attempts are sometimes made to suppress them altogether. On the other
hands, conscious gestures to express the same inner feelings, for example in per-
forming arts, are intuitively modeled on those unconscious signals, with which
share characteristics and similarities. In addition, these gestures are usually cari-
catured and stylized, to minimize uncertainty and maximize effectiveness. Ana-
lyzing the semantics of emotional expressive gestures is then an auxiliary
intermediate step in the process of recognition of human communication signals,
from completely conscious, direct and fixed to completely unconscious and natu-
rally unconstrained emotional communication.

A good starting point for this analysis is constituted by the study of acting or
dance emotional expressive movements, and of music emotional expression theory.
For this reason, to improve the interaction expressivity of the Waseda musical
robots, emotional expression semantics in dance and in music were explored, and a
human–robot direct creative interaction framework was implemented. In particular,
a study on how emotions are expressed in dance and in music, and how a robot can

Fig. 28.9 Orchestra directing movements musical parameters analysis
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perceive and recognize these expressions in dance and follow and reproduce them
real-time in music, during a live artistic performance, was performed.

Several previous studies looked at the correlation existing between types of
movements and emotions. One of the most complete studies in this sense is the
research of De Meijer, who studied different dimensions of body movement in
relation to emotion expression. For this human–robot musical interaction applica-
tion, a subset of dance movements and their corresponding emotional expressions
was chosen as a starting point for the emotional expression analysis:

• body extension (opening, closing)
• movement velocity (fast, slow).

Opening or closing of the limbs, especially the arms, is related to meaning like
openness or closeness to the environment, as it is related to extending the body to
the world or acquire a self-protective posture. Velocity of the movements is directly
related to arousal state: a fast movement is related to a high arousal state, to
excitement, whilst a slow movement to low arousal, might it come from a relaxed or
depressed state of mind. From these two selected dance movement parameters four
basic dance movement patterns can be built:

1. arms closed, slow movement
2. arms closed, fast movement
3. arms opened, slow movement
4. arms opened, fast movement.

According to one of the basic emotional models, developed by psychologists,
these four movement patterns can be then related to four emotional patterns:

1. grief
2. fear
3. joy
4. surprise.

In this specific application, to achieve human–robot creative expressive inter-
action, the musical robot should then be able to recognize these four emotional
patterns from the dancer’s movements, and reproduce those using musical emo-
tional expressive patterns. For this reason, a study of musical expressive patterns is
also necessary.

The way music arouses listeners’ emotions has been studied from many different
perspectives and there is a vast literature on this field. Summarizing, it can be said
that the most powerful musical cues to generate emotional impression are mode,
tempo, dynamics, articulation, timbre, and phrasing. In real music, it is challenging
to assess the exact contribution of individual cues to emotional expression because
all these cues are strictly correlated. Previous studies on emotional expression in
music using factorial design have often focused on relatively few cues as one has to
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manipulate each level of the factors separately, and the ensuing exhaustive com-
binations will quickly amount to an unfeasible total number of trials needed to
evaluate the design. Because of this complexity, the existing studies have usually
evaluated two or three separate factors using typically two or three discrete levels in
each.

From this wide musical features collection a subset was chosen, roughly cor-
related to changes in the same emotional expressive patterns chosen for the dance
movements subset. Roughly, the idea of “openness” and “closeness” to the external
environment is related, in music, with the scale of notes that are played: a wider
scale, a wider musical variation, denotes a greater openness, and vice versa. The
arousal level can instead be represented linearly with variation in tempo, which
implies different density of played notes in the same amount of time. Changes in
these two parameters can then be summarized as, respectively:

1. Narrow scale—slow tempo
2. Narrow scale—fast tempo
3. Wide scale—slow tempo
4. Wide scale—fast tempo.

To achieve human–robot creative expressive interaction, the musical robot
should then be able to express changes in these four emotional patterns according to
the dancer’s movements, and to reproduce such changes using the listed musical
emotional expressive patterns.

The dancer’s movements were captured by a 3D frontal camera and a wearable
IMU on the dancer’s hand. The 3D camera provided data on body openness, whilst
the IMU accelerometer provided data on the movement velocity. To observe the
difference in movements representing different sets of parameters, the dancers were
asked to do several repetitions of different motions with different movement
parameters. However, these movements were not following specific movement
rules, but changed according to the dancer’s inspiration and creativity.

At first, four predefined musical phrase types following fixed melodic rules and
musical patterns according to the expressions were composed.

Dance movement data were separated in four clusters, two for body openness
and two for movement velocity, using the k-means clustering method, and the
clusters centroids were calculated. The movement transition thresholds between
clusters for the two parameters were calculated as the mean between the two
movements clusters centroids (Fig. 28.10).

However, this approach proved too approximated and unsatisfactory, because in
this way the human auditory perception ability were not taken into account. Using
this method, the robot response to movement change was too slow, about 1 s. In
addition, in this way changes in the musical parameters were approximated and not
anymore directly proportional to changes in the movement parameters. These two
discrepancies between musical and movement variation were clearly perceived by
both the dancer and the external audience.
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For this reason, an automatic musical pattern generator for instantaneous
real-time musical adaptation was implemented. Professional musicians, during
improvisation, change their performance combining and tying together suitable
short musical phrases from their repertoire. So, instead of 4 different phrases to be
selected, a repository of short phrase patterns was built, with several different
combinations of rhythm and scale range. Rhythm and range were selected by the
robot according to the movement data, following the previous criteria: rhythm and
density of the notes are proportional to movement velocity, while scale range is
proportional to body extension.

Moreover, in absence of data, the selection algorithm used a Markov chain to
determine the next pattern, inside the current cluster.

Compared to the previous algorithm, the response time of the robot to movement
changes was reduced to 108 ms, or about 1/10. As the human auditory sense
reaction time is around 190 ms, this response time is acceptable because the delay
is not perceivable by the human ear.

Fig. 28.10 Dance movements and musical patterns mapping

816 S. Cosentino and A. Takanishi



Results of the perception experiment show that there is a significant difference in
the audience evaluation of the robot performances without or with the interaction
system. The performance of the robot following the dancer using the interaction
system presented a significant increase in perceived phrase diversity and naturalness
of the joint performance, which led to a significant increase of the overall enter-
tainment level of the joint performance.

28.6 Emotional Interaction

Current direction of research focuses on the interaction between the musical robot
and the audience. In particular, building on the previous studies on emotional
expression, a simple system for automatic recognition of the emotional feedback
from the audience has been implemented. Preliminary research work has explored
the feasibility of recognizing the audience emotional state to enhance the robot
emotional interaction with the audience.

The system has a dual application: on one hand, depending on the audience
emotional state, it enables the robot to select and play a suitable melody with similar
emotional expression characteristics, to improve the robot perceived empathy with
the audience. On the other, this emotional expression system can be used as an
emotional feedback system for the robot musical emotional expressivity: following
the choice of a specific musical melody, the audience emotional response can be
analyzed to measure the effectiveness of the robot expressive performance and the
audience emotional engagement with the robot.

Technical requirements for the system include ecological, unobtrusive sensing,
and the ability to recognize and process the emotional state of several subjects in
parallel. As WAS-5 is equipped with two front cameras, emotion recognition was
implemented via unobtrusive, visual analysis of facial expression, based on
Ekman’s basic emotions model and facial expression analysis works. However, the
simultaneous analysis of multiple subjects’ facial features involves a high com-
putational load, and embedded processing and memory constraints limit the system
scalability. For this reason, Microsoft Azure, a cloud computing-based system, was
selected, to easily scale computational power and facial expressions database. In
particular, Microsoft Azure comes with two already implemented APIs for face
detection and emotion detection: Microsoft Cognitive Services—Face API and
Emotion API. Face API analyzes an image and returns the number and the position
of the faces in the image. Emotion API analyzes a face image and returns coeffi-
cients in the range [0–1] for all the seven basic emotions and neutral of the Ekman’s
“Big Six + 1” model: happiness, sadness, fear, surprise, anger, disgust, and con-
tempt. The more a coefficient is near to one, the stronger is the corresponding
emotional component in the facial expression. The subject’s displayed emotion can
be estimated using these coefficients, and in the most simple of the cases, the
estimated emotion equals the emotion with the highest coefficient (Fig. 28.11).
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The performances of Face API and Emotion API were preliminarily tested with
existing facial recognition databases to check the performances of the proposed
system against preexisting standards in the field: the HeadPoseImage database for
facial recognition depending on the face orientation towards the camera, the
Cohn-Kanade (CK) and the Cohn-Kanade Extended (CK+) database, for specific
emotional face expression recognition, and the Japanese Female Facial Expression
(JAFFE) Database, to compare the system performance depending on the subject’s
facial features differences.

Fig. 28.11 Emotion recognition algorithm and emotional musical parameters mapping
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Facial expression recognition experimental results show that the success rate
does not increase linearly with the size of the training set. That reflects the presence
of a bias in the face expression training or validation data set: the Emotion API
performance is excellent in the recognition of a “happy” or “surprised” expression,
but produces mixed results with other emotions, in particular emotions with neg-
ative valence. Moreover, compared to the CK+, the performance of the Emo-
tion API is significantly worse with the JAFFE database, highlighting a bias in the
face feature recognition training or validation data set. Finally, the system perfor-
mance is severely limited by the range of suitable camera positions for a correct
detection of the face and recognition of the emotional face expression [31].

The evaluation, and addressing of the general mood of a group of people,
provided the individual emotions of most people in the group are estimated cor-
rectly, is a very complex problem that strongly depends on the interaction context:
the social implications of an erroneous reaction strategy might vary greatly and
have different lasting consequences for all the implied actors. Different automatic
strategies to define the global mood of a group of people have been implemented
and compared with human strategies. This work proved very difficult, and current
results are inconclusive, as it is difficult also for humans to decide which is the
dominant emotion when presented with several different emotions display within
members of the same group [32]. Future works in this direction will be strongly
application-dependent, and will require an extensive analysis of the interaction
contextual factors, to enable the robot to address the most compelling emotional
state in a specific interaction setting, in relation to the musical application
objectives.

28.7 Concluding Discussion

Real-time musical interaction between partner performers greatly improves the
perceived quality of the overall joint performance, even when these interactions are
very basic and strictly limited to direct signaling for performance synchronization.
On the other hand, true musical expressive interaction requires advanced interaction
experience, higher musical skills, and a deeper theoretical knowledge foundation.
For this reason, a musical robot needs to advance simultaneously in all these 3
fields, similar to what a professional musician does. Performing arts are in fact very
demanding in terms of individual acquisition of common technical knowledge, but
also in the development of a personal expression style. In the future, to enable the
musical robots to be completely integrated in the musical space, not only all the
technical challenges linked to perfect musical execution must be solved, but also
truly adaptive strategies of expressive communication with partner performers, both
human and robotic, and the audience, must be implemented. While the first require
finer mechanical and control implementations, the second must be based on the
autonomous development and refinement of the robot individual expressivity,
similarly to a human musician personal style formation. AI-based adaptive

28 Human–Robot Musical Interaction 819



expressive algorithms, relying on a broad analysis of data from many different
performances, could help in this direction, while specific analysis of data from
individual performers could help in the robot adaptation to these performers’
expression patterns during joint performance. These two types of individual
expressivity development strategies are not easy to combine: similarly, performers
with very different styles cannot easily work together in a joint performance.
Strategies to detect and use the audience the emotional state as a feedback on the
robot performance must also be implemented. This is the greatest challenge so far,
as group psychological and emotional models are not yet defined even for human
interactions.

In conclusion, this chapter presented the evolution of strategies for musical
human–robot interaction, from very basic direct synchronization signaling to
advanced emotional expression patterns. Works in this direction are far from being
completed, and could help clarify and model also human complex interaction
patterns.
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29ShimonSings-RoboticMusicianship
Finds ItsVoice

Richard Savery, Lisa Zahray and Gil Weinberg

29.1 Introduction—Robotic Musicianship at GTCMT

Robotic Musicianship research at Georgia Tech Center for Music Technology
(GTCMT) focuses on the construction of autonomous and wearable robots that
analyze, reason about, and generate music. The goal of our research is to facili-
tate meaningful and inspiring musical interactions between humans and machines.
The term Robotic Musicianship refers to the intersection of the fields of Musical
Mechatronics—the study and construction of physical systems that generate sound
throughmechanicalmeans, andMachineMusicianship,which focuses on developing
algorithms and cognitive models representative of music perception, composition,
improvisation, performance, interaction, and theory. Research in Robotic Musician-
ship at GTCMT addresses the design of autonomous and wearable music-playing
robots that have the underlying musical intelligence to support performance and
interaction with human musicians. The motivation for our research is not to imitate
human creativity or replace it, but rather to supplement it and enrich the musical
experience for humans. We aim to explore the possibilities of combining comput-
ers with physical sound generators to create systems capable of rich acoustic sound
production, intuitive physics-based visual cues from sound-producing movements,
and expressive physical behaviors through sound-accompanying body movements.
Our work is driven by the artistic potential that is embedded in non-human charac-
teristics of machines, including humanly impossible speed and precision, freedom
of physical design, and the ability to explore artificial constructs and algorithms that
could surprise and inspire human musicians.
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In this chapter, we describe our efforts to develop new singing capabilities for
Shimon, the robotic marimba player developed at GTCMT. Shimon was originally
built in 2008 to play, improvise, and compose music for marimba. In 2019, Shimon’s
head was redesigned to allow vocal social interaction and improved musical expres-
sion. As part of the redesign, Shimon was provided with a singing voice synthesizer
designed at the Music Technology Group at Universitat Pompeu Fabra. For this
synthesizer, we developed a deep learning-driven lyrics generator and a rule-based
embodied singing gesture generator. The chapter starts with a presentation of Shimon
and other robotic musicians designed at GTCMT along with the design principles
that have driven our robotic musicianship research. We then discuss the motivation
and approach behind the “Shimon Sings” project, focusing on our lyrics generation
and facial gesture modules. We describe the implementation of both modules and
two experiments that were conducted to evaluate our work. The paper ends with a
discussion and a number of possible directions for future work.

29.1.1 Platforms

Over the last 15years, we have developed multiple robotic platforms in an effort to
explore a wide variety of aspects of Robotic Musicianship. The platforms include a
robotic drummer, a robotic marimba player, a personal robotic musical companion,
and a number of wearable robotic musicianship prosthetics and exoskeletons, as
described below.

Haile
GTCMT’s first robotic musician, Haile (Fig. 29.1), was designed to play a Native
American pow-wow drum, a multi-player instrument used in ceremonial events [1].
To match the natural aesthetics of the Native American pow-wow ritual, the robot
was constructed from plywood. One of Haile’s arms uses a solenoid which can
generate fast notes—up to 10 hits per second—but is limited in terms of amplitude
and visibility. The other arm uses a linear motor that can produce louder sounds
and more visible motions but can only play 7 hits per second. Haile listens to and
interacts with two humans playing hand percussion instruments such as Darbukas—
Middle Eastern goblet-shaped hand drums. Haile listens to audio input from each
drum and detects musical aspects such as note onset, pitch, amplitude, beat, and
rhythmic density. It is also designed to analyze higher level musical percepts such
as rhythmic stability and similarity. Based on these detected features, Haile utilizes
multiple interaction modes that are designed to address the unique improvisatory
aesthetics of the Middle Eastern percussion ensemble [2]. Haile responds physically
by operating itsmechanical arms, adjusting the sound of its hits in twomanners: pitch
and timbre varieties are achieved by striking the drumhead in different locationswhile
volume variety is achieved by hitting harder or softer.

Shimon
The next robotic musician designed at GTCMT was Shimon (Fig. 29.2)—an eight-
mallet marimba playing robot, designed to expand the scope of robotic musicianship
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Fig. 29.1 Two
percussionists interact with
Haile, Georgia Tech’s first
robotic musician

by introducing two main additional functionalities, the ability to play a melodic and
harmonic instrument, and the ability to communicate with co-players using music-
making gestures and socio-musical ancillary gestures. Several musical considera-
tions informed the physical design of Shimon: we wanted to have large movements
for visibility, as well as fast movements for high note density. In addition, Shimon
was designed to play a wide range of sequential and simultaneous note combinations
utilizing fast, long-range, linear actuators, and two sets of rapid parallel solenoids
per arm. Over the last 10 years, Shimon has been programmed to use both rules and
machine learning to improvise with humans. Shimon demonstrates how visual cues
can improve musical performance both objectively and subjectively [3]. It was the
first robot to compose original music based on deep learning [4], and has performed
dozens of concerts in world-wide venues, in genres such as jazz, rock, hip-hop, and
reggae [5].

Shimi
Shimi (Fig. 29.3) is a smartphone-enabled five-Degrees-of-Freedom (DoF) robotic
musical companion that can respond to and enhance humans’ musical experiences
[6]. Shimi was originally designed to be controlled by an Android phone using the
phone’s built-in sensing and music generation capabilities. This allowed for easy
development of additional custom mobile apps for the robot. Multiple interactive
applications have been developed for Shimi such as Query by Tapping and Query by
Bobbing—where Shimi listened to and analyzed rhythms based on human tapping
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Fig. 29.2 A bass player interacts with Shimon, the robotic marimba player

and head movements. It then responded by choosing and playing songs in similar
beat and tempo and dancing to the music using a set of expressive gestures that fit the
beat and genre. Other functionalities included the ability to project emotions through
gestures [7], to analyze music in real time and respond in a choreographed manner
based on structural elements of the music, and to perform musical searches based on
natural language, interactive improvisation, and games [8].

Wearable Robotic Musicians
In recent years, we have expanded our research to explore the implementation of
robotic musicianship in wearable robots for both people with disabilities as well
as able-bodied people. Our first project in this realm was the robotic drumming
prosthesis (Fig. 29.4), which allowed amputees not only to regain their lost drumming
capabilities and expression but also to enhance their skills to new uncharted domains
[9]. The prosthetic has two sticks, each capable of playing 20 hits per second—faster
than any human. These abilities led to novel timbres and polyrhythmic structures that
are humanly impossible. Thefirst stick is controlled both physically by themusicians’
arms and electronically using electromyography (EMG) muscle sensors. The other
stick has “a mind of its own” and can improvise based on musical analysis, leading
to unique shared-control scenarios leading to new unexplored musical experiences
[10].

Our next wearable robotic musicianship project was an effort to bring novel drum-
ming capabilities not only to amputees but to able-bodied users as well. The Robotic
Drumming Third Arm (Fig. 29.5) project explored how a shared control paradigm
between a human drummer and a wearable robotic arm can influence and poten-
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Fig.29.3 Shimi analyzes humans clapping, and responds by playing a song in the right tempo and
groove

Fig. 29.4 Jason Barnes, amputee drummer, presents the robotic drumming prosthetic
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Fig. 29.5 The third
drumming arm allows
able-bodied musicians to
explore enhanced drumming
capabilities

tially enhance musical performance [11]. The project’s primary research challenges
focused on design and usability using a device that allowed for comfort and robust
functionality.

Our latest wearable robotics project is the Skywalker Piano Hand (Fig. 29.6),
which provides amputees with finger-by-finger control of their robotic hand pros-
thetics. The device uses a novel ultrasound sensor and Deep Learning algorithms
that detect and predict muscle patterns in the amputees’ residual limb. The predicted
finger movements are mapped to control detailed robotic finger movements with
dexterity and subtlety that can support expressive musical performance.

29.1.2 Design Principles

While working on the robotic musicianship platforms described above, we have
identified and followed a few design guidelines that have since informed our work.
We believe that for robotic musicians to be able to support expressive and creative
interactions with human, they should be able to:

• “Listen Like a Human”—utilize human-informed music perception modeling.
• “Play Like aMachine”—feature humanly impossible software and hardwaremusi-
cal capabilities.

• “Be Social”—support socio-musical interaction between humans and machines.



29 Shimon Sings-Robotic Musicianship Finds Its Voice 829

Fig.29.6 The Skywalker Piano Hand project—ultrasound- enabled finger-by-finger prosthetic arm
control

• “Watch and Learn”—use artificial vision applications for musical gesture analysis.
• “Wear It”—allow for novel wearable capabilities for humans with disabilities as
well as able-bodied musicians.

The first two guidelines suggest that robotic musicians would “Listen Like a
Human” and “Play Like a Machine.” These principles are aimed at allowing our
robots to both understand how humans perceive music (“listen like a human”), and to
expand on humans’musical experiences by generatingmusic like no human can, both
algorithmically andmechanically (“play like amachine”). The next two guidelines—
“Be Social” and “Watch and Learn”—focus on embodiment allowing both humans
and robots not only to listen to each other but also to communicate visually through
musical gestures. The last guideline addresses our recent efforts to bring our robotic
musicians into the human body, enabling and enhancing musical experiences for
people with disabilities and others. Below is some more information about each one
of these guidelines.

Listen Like a Human—Human-Informed Music Perception Modeling
We have been developing computational modeling of music perception to allow
robots to perceive and understand music similar to how humans do. If a robotic
musician can recognize humanly perceived musical aspects such as beat, stability,
similarity, tension, and release, it would be able to respond musically in a relatable
manner that could be understood and appreciated by its human co-players.Webelieve
that such perceptual modeling is crucial for creating meaningful interaction and
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connection with human co-players, supporting expressive and emotional musical
experiences.

Play Like a Machine—Software and Hardware Generators Designed to Play
Like No Human Can
While implementing “Listening Like a Human”modules in robotic musicians allows
robots to connect to humans in a relatable manner, “Play Like A Machine” modules
are aimed at generating novel musical outcomes that are humanly impossible in an
effort to surprise and inspire human collaborators. A well-crafted balance between
these two aspects bears the promise of leading to musical outcomes and experi-
ences that are both meaningful for humans and human aesthetic (“Listen Like a
Human”), yet novel, exciting, and inspiring for humans (“Play Like a Machine”).
We have explored two main approaches in our effort to develop robots that play like
machines. The first approach focuses on software and algorithmic modeling while
the second approach focuses on hardware actuators. In software, we developed arti-
ficial algorithms that require computation power and are based on pattern processing
that is foreign to human thinking, but bear the promise of creating compelling aes-
thetic results. These include computational techniques such as genetic algorithms,
mathematical constructs such as fractals, and statistical modeling approaches such as
Markov processes. In hardware, we developed mechanical abilities that are humanly
impossible such as robot percussionists that can control eight simultaneous arms, or
strikers that can hit in humanly impossible speeds. By combining both software and
hardware approaches, we hope that our robotic musicians could create novel musical
responses that would push musical experiences and outcome to uncharted domains.

Be Social—Embodied Socio-Musical Interaction between Humans and Machines
One of the benefits of Robotic Musicianship over computer-supported interactive
music systems is the ability to control music-related physical and social cues to
aid multi-modal joint musicianship. Such gestural interaction can enable better syn-
chronicity between players through visual anticipation or support the conveyance of
emotions through gestures, which can significantly affect the musical experiences.
Physical and social cues in non-musical Human-Robot Interaction (HRI) have been
shown to have a significant effect on social interaction, from enabling more fluent
turn-taking with humans to affecting subjects’ positive perception of the HRI expe-
rience. Similarly, a robot musician’s embodied social presence could inspire human
co-players to be more engaged in the joint activity. The robot’s physical movements
could also create visual choreography that would add to the aesthetic impression of
both players and audiences. We explored the notion of “Be Social” with all of our
robots, including the design of social interactions and turn-taking for Haile, study-
ing the effect of Shimon’s ancillary gestures on co-player anticipation and audience
engagement, and exploring the effect of Shimi’s emotional gestures on subjects’
perception of the robot and the music it generates.

Watch and Learn—Artificial Vision for Robotic Musicians
Movement and vision-based interactions have been part of the humanmusical experi-
ence since the dawn of time, with evidence of coordinated dance and music activities
from the prehistoric age. In collaborative music-making, visual connection between
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musicians can assist with anticipation, coordinating, and synchronization between
musicians. Consider, for example, a guitar player maintaining visual connection with
a drummer to anticipate and synchronize the ending chord of a song, musicians ges-
turing to each other to signify turn- taking, or reinforcing the tempo, beat, and groove
of a song by looking at the bobbing head of collaborators. We believe, therefore, that
robotic musicians should not only listen to music input but also be able to see and use
visual cues to inform their musical decisions. We have therefore developed multiple
applications that allow robots such as Shimon and Shimi to use visual information
to assist with anticipation, synchronization, learning, song selection, and even film
composition [12].

Wear It—Wearable Robotic Musicians
Recent developments in wearable technology can help people with disabilities regain
their lost capabilities, merging their biological body with technological enhance-
ments. Myoelectric prosthetic hands, for example, allow amputees to perform basic
daily-life activities by sensing and operating based on electric activity from their
residual limbs. These new developments not only bring back lost functionalities but
can also provide humanly impossible capabilities, turning those who were consid-
ered disabled to become super-abled. The current frontier of Robotic Musicianship
research at Georgia Tech focuses on the development of wearable robotic limbs that
allow not only amputees but also able-bodied people to play music like no human
can, with virtuosity and technical abilities that are humanly impossible.

29.2 “Shimon Sings”—Motivation and Approach

After exploring numerous approaches for instrumental robotic musicianship over
the last 16years, we have identified vocal robotic musicianship as our next research
challenge. Our current goal is to implement some of our robotic musicianship design
principles described above in novel musical vocal applications such as lyrics gener-
ation and embodied singing. We previously worked on non-linguistic robotic vocal
approaches [13, 14], which laid the ground for the language-based vocal approaches
described in this paper. For this purpose, we collaborated with theMusic Technology
Group at Universitat Pompeu Fabra (UPF), who provided us with their deep learning
singing voice synthesizer [15–17]. Informed by our first three design principles—
“listen like a human”, “play like a machine”, and “be social”—we developed a lyrics
generator and a singing gesture generator for the UPF synthesizer. As a platform for
these applications, we chose Shimon— our most sophisticated and versatile robotic
musician. We revised Shimon’s facial appearance to be perceived as a singing robot
by adding an new eye mask (Fig. 29.7). This allowed us to actuate Shimon’s lower
facial DoF to control lip-syncing and mouth size, while the top DoF is actuated to
control newly added emotion-conveying eyebrow movements.

When designing the lyrics generator, we studied related work in Natural Lan-
guage Generation (NLG) and deep learning narrative generators such as [18] as well
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Fig. 29.7 Shimon sings—an
attachable eye mask allows
Shimon to be perceived as a
singer. The lower facial DoF
controls mouth size, while
the upper DoF controls
expressive eyebrows

as chatbot literature. While these generators provide promising results, they do not
address some of the challenges we face in lyrics generation such as rhyming and the
ability to fit a melody. Moreover, unlike common NLG scenarios, song lyrics do not
necessarily follow a linear path so that semantic coherence may be less demanding.
When designing the synchronizedmouthmovement for Shimon,we looked at related
work in animal vocal production [19], as well as previous robotic lip- syncing robotic
efforts such as [20] to inform our approach to generate believable mouth synchro-
nization using only one degree of freedom. For eyebrow and neck gesture design, we
have studied related work such as human perception of musicians’ movements [21],
including ancillary gestures that are not directly responsible for sound generation
[22]. We aimed to integrate these larger gestures with smaller eyebrow movements
[23] to allow Shimon to convey emotions. Informed by these related works, we
implemented the lyrics and gesture generation modules as described below.

29.3 Lyrics Generation

We present a novel method to combine deep learning with semantic knowledge
of meaning and rhyme, to generate lyrics based on selected keywords. These pro-
cesses work iteratively, with the deep learning system generating new phrases based
on semantic meanings, and new meanings developed based on the neural network.
Figure29.8 shows an overview of each component within the generation system.

These underlying processes are used by Shimon in three systems. The first system
creates lyrics to a given melody through a rule-based approach that sets syllables and
words to melodic phrases. The second system presents users with a set of lyrics that
were generated based on priming words, allowing manual placement of these lyrics
in melodies. The third system generates lyrics for a complete song for which users
can write a melody. For each of these systems, the process starts with users giving
Shimon a list of keywords or topics to inform the semantics of the generated lyrics.
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Fig. 29.8 System overview of lyrics generation

To support our design principles which combine both human input and machine
generation, our work pipeline allows easy customization of datasets and training
methods and is highly flexible for creative variations per song.

29.3.1 Implementation

Dataset
For the underlying system, we decided to generate our own dataset. This was done
through a custom lyric gatherer called Verse Scraper [24], created by Rob Firstman.
Verse Scraper is designed to address twomain challenges. First, when looking at hip-
hop datasets, it is common for multiple lyricists to appear on one track and existing
tools tend to assign these lyrics to one author. Secondly, existing tools such as the
LyricGenius [25] gather all tracks from an artist at once. Verse Scraper solves both
these problems by not only filtering song verses by lyricist but also allowing for
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the creation of datasets ranging from the entire catalog of multiple artists to small
subsets such as a certain year of an artist [24].

LSTM
Our system uses a Long Short-Term Memory (LSTM) Artificial Neural Network
(ANN) to generate lyrics, much as has been done in other text generation systems
[26]. LSTMs are able to retain long-term dependencies in generation and proved
more effective than other common options such as Gated Recurrent Units, or a
vanilla RNN. We trained new word embeddings on the lyric dataset, which allows
the system to learn the relationship between different words from the data.

Semantic Knowledge
Unlike Karpathy, we incorporate a separate semantic knowledge builder that allows
the system to generate larger quantities of text with varied meaning in comparison to
standard deep learning networks. For this purpose, we use WordNet [27] to generate
synonyms and antonyms of keywords that are given by the user. We then also gather
keywords and sentiment from the generations and create further generations based
on synonyms and antonyms from the generated material. This builds a loop between
WordNet and the LSTM that allows ideas to move further away from the original
priming words creating lyrical development. This approach also enables non-neural
network, rule-based implementations of longer term structure. An additional advan-
tage is this method allows for rapid development and training on different datasets
and better customization to new songs.

Rhyming
To add rhymes to the lyrics, we use a simple Markov model tied into semantic
knowledge as a final layer. The LSTM network inherently creates rhyming phrases,
however at times, phrases do not rhyme, or additional lines are added. To address
this problem, a rhyming word or keyword is created and followed by a second-
to third-order Markov model that generates phrases backwards to create additional
lines.

Melody Mapping
The implementation allowsmultiple modes of mapping generated lyrics to a melody.
Thefirst systemadds an extra layer to the loop between semanticmeaning andLSTM.
A user-chosen melody is fed into the system, which is then processed and broken
into phrases. In the loop between LSTM and semantic meaning, an extra preference
is given to lyrics that have the same amount of syllables as notes per phrase. This
system only allows for one syllable per note in each phrase. The second system for
lyrics creates many lyric patterns, each of four lines and presents them to the user.
The final system creates a complete set of lyrics, without a relation to a presetmelody.
Figure29.9 shows completed lyrics, set to a human-composed melody.
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Fig. 29.9 Example of generated lyrics chosen for a composed melody

29.3.2 Experiment

We evaluated the generated lyrics by conducting individual 30min sessions with 48
participants. Each participant was shown 15 pairs of lyrics. This included 5 pairs of
human and computer-generated lyrics, 5 sets of human and human-generated lyrics,
and 5 pairs of robot and robot-generated lyrics. The subjects were first asked if they
recognized either set of lyrics. For each lyrics, subjects were asked to rate the orig-
inality, the expressivity, the coherence, and the overall quality. These metrics were
chosen based on Boden’s criteria for computational creativity [18]. After rating the
lyrics, subjects were asked if they believed either lyrics were written by a computer.
Computer lyrics chosen for evaluation were the first 15 generations by the system.
The human generations were 15 random samples from the dataset the system was
trained on. All lyrics were four lines long and were created without a melody.

29.3.3 Results

Our results show that participants were unable to distinguish between human and
computer-generated lyrics in all examples. Many subjects tended to incorrectly
believe that one of the musical excerpts was generated by a robot. This may indicate
that subjects are looking for specific musical features to decide whether the excerpt
was human-generated or robot created, but they did not accurately recognize these
features. Figure29.10 shows the number of responses to each category, in compar-
ing human and computer-generated responses. For each question, they could choose
from any of the categories, correctly identifying the computer-generated response
occurred only 79 times out of a possible 230.

Figure29.11 shows the combined results between robot and human-generated
excerpts for each category, where the generated lyrics had a higher mean of expres-
sivity.
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Fig. 29.10 Identification of human or computer-generated track

Figure29.12 shows the combined correlation between perceived coherence, orig-
inally and expressivity. The results show that there is a very low correlation between
originality and coherence, with users rating a low coherence as more original for
both robot and human.

Some of our qualitative results in our survey included comments such as “I would
be surprised if any of the lyricswere computer- generated.” and “Were they all written
by a computer?”

29.4 Gesture Generation

This section describes the techniques we used to generate Shimon’s gestures for
performances. This includes synchronizing his mouth with sung lyrics, as well as
head and bodymovements to add lifelike expressivity.We additionally present results
from an experiment evaluating the effects of embodiment on the perception of song
audio.
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Fig. 29.11 Scatter matrix of results

Fig. 29.12 Correlation of human and robot results
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29.4.1 Implementation

Mouth Synchronization
For synchronizing Shimon’s one-DoF mouth to sung lyrics, we used a phoneme
alignment scheme built on past work [20]. We used the song’s MIDI file to align
each syllable with a start and end time, defining a syllable as containing one vowel
as its last phoneme, with the exception of a word’s final syllable which was addition-
ally assigned the word’s remaining consonants. Each consonant was given 0.06 s of
motion, while vowels were given 0.2 s to move to the correct position. During the
remaining time, the mouth stays stationary. In the case of very fast syllables, where
this time allotment was not possible, we assigned half of the available time to the
vowel, and divided the other half among the beginning and ending consonants of the
syllable, when applicable. During rests, when Shimon is not singing, we commanded
the mouth to slowly close over a maximum time of 0.75 s.

To command the mouth’s motor to change position, a target position and velocity
must be provided. In order to make the movements seem smooth, we interpolated
the velocity commands over a movement’s duration. We have previously used this
technique to smooth the trajectory of Shimi’s gestures [28], easing in and out of
gestures by slowing down at the beginning and end of each movement. For Shimi,
the desired peak velocity vp and movement duration d were used to determine the
commanded velocity v(t) at each timestep. Equation29.1, presented in the top of
Fig. 29.13, shows this relationship. The movements for Shimon’s mouth occur more
quickly than Shimi’s movements, over small fractions of a second instead of multiple
seconds. Therefore, to overcome the mouth’s inertia in a timely manner, we alter
Eq.29.1 to begin and end the rotational velocity ω(t) at half the value of peak
rotational velocity ωp, rather than 0. This is shown in Eq.29.2 and visualized in the
bottom graph of Fig. 29.13. Shimon’s mouth movements also differ from Shimi’s
body movements in that the total angle traversed by the motor must be fixed in
order to end in the correct position. We therefore calculate the desired peak velocity
by integrating Eq.29.2 over the desired duration, setting it equal to the total desired
change in angle�θ . Substituting into Eq.29.2 gives the final result, Eq. 29.3.We add
a small offset constant c to the calculated peak velocity to account for the time it takes
for the motor to accelerate to the desired velocity. The value of c was determined
via subjective experimentation. We update the commanded velocity according to
Eq.29.3 at intervals of 0.015s.

v(t) = vp(1 − 2|t − d
2 |

d
) for 0 ≤ t ≤ d (29.1)

ω(t) = ωp(1 − |t − d
2 |

d
) for 0 ≤ t ≤ d (29.2)

∫ d

0
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3
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) for 0 ≤ t ≤ d (29.3)
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Fig. 29.13 Graphs of Eq.29.1 (top) and Eq.29.2 (bottom), showing how velocity is interpolated
over duration d

Head and Body Gestures
We designed Shimon’s gestures using his four rotational degrees of freedom: head
tilt (up-and-down rotation of just the head), neck tilt (up-and-down rotation of entire
neck), neck pan (side-to-side head rotation), and base pan (side-to-side rotation of
entire body). At any given time, Shimon may be doing any combination of singing,
playing marimba, listening to a specific performer, and/or dancing to the music.
We took into account all of these roles when choreographing Shimon’s body and
head movements for each song. Through iterative design, informed by movements
of human singers, instrumentalists, and dancers, we identified several gestures of
interest as well as guidelines to abide by when choreographing gestures.

While Shimon is playing, we generally try to keep his head close to the arms
horizontally, centering his body around the strikermotions.WhenShimon is playing a
complicated part, wemove his head and neck downwards so he appears to be focusing
intensely on his playing gestures. When Shimon is singing, we keep his head tilted
high enough so that hismouth can always be seen by the audience. In general, Shimon
uses slower gestures while singing, saving faster and more complicated dance moves
for instrumental breaks. We have noticed that simple expressive gestures, such as
nodding to the beat, can help create a personal connection to the audiencewhen timed
well. When Shimon isn’t playing or singing, we often add visually compelling arm
and striker choreography. The arms can move across the marimba, and the strikers
can move up and down without striking any notes on the marimba. For example, the
strikers can clap together on strong beats, ormake it appear that Shimon is counting in
time by flicking up and down with the music. These gestures are especially effective
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when synchronized with the head movements. When Shimon is improvising, we
find the interaction to be socially engaging for both human musicians and audience
if Shimon makes eye contact with the musician while they play. While Shimon
watches the other musicians, we often use an interpolated up-and-down gesture we
call “breathing” to project liveliness.

In addition to neck movements, we have also focused on animating Shimon’s
eyebrows. Robotic eyebrows have been found to increase recognition of emotions in
social robots [23]. Therefore, in an effort to increase Shimon’s emotional expressiv-
ity during performances, we added a one-DoF eyebrow to Shimon’s head. We can
position the eyebrow higher or lower depending on the mood we intend to convey.
To project negative emotion, for instance, we move the eyebrow lower, which can be
perceived as a frown. We also use quick raising and lowering of the eyebrow when
the lyrics pose a question, or upon completion of a difficult marimba part.

For the first few songs, we hard-coded specific gestures to fit with the music. We
have also experimented with automating gestures, allowing Shimon to choreograph
his own head and body movements based on features extracted from the song’s
audio MIDI files. Currently, these gestures are rule-based with a certain amount of
randomness to add variety and surprise to the experience. Since we found that it
looks unnatural for Shimon to stay completely still at any point during the song, we
ensure that one degree of freedom is always in motion at any given time.

Below is an example for gesture automation that was used in the experiment
discussed in Sect. 29.4.2. Based on the song’s MIDI file, we first categorized each
measure into “singing” or “non-singing”, depending on whether the measure con-
tained notes in the vocal line. During singing measures, Shimon’s base pans slowly
back and forth, changing direction on every downbeat. Each downbeat was given a
50%chance of executing a neck pan,which alternates directionwith each occurrence.
Head and neck tilts were mapped to a moving average of the pitch of the vocal line,
so that when Shimon sings higher pitches his head and neck move slowly upwards.
During non-singing measures, the neck continues to rotate side-to-side with the base
pan, to keep continuity between song sections. However, when Shimon dances to
the music, he uses faster and sharper movements, as he nods his head to the beat
using neck tilt. We also detected note onsets based on the audio file, and quantized
onsets with a strength of at least 0.75 times the average to the nearest eighth note.
For each onset, Shimon randomly chooses between changing his neck pan position
or his neck tilt position, alternating respectively between left-right and up-down.

29.4.2 Experiment Methodology

We designed an experiment to evaluate the value of a physical robot performing ges-
tures with a song, and whether the embodiment of a robot would affect the listener’s
perception of the song, similar to [29, 30]. The experiment had 46 participants, with
22 in the “software” group and 24 in the “robot” group. All participants were told the
experiment was about evaluating computer- generated music. In both groups, partic-
ipants listened to one song played from a speaker with one researcher present in the
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room, then filled out a survey about the song, repeating this procedure for a total of
four songs. The order of the songs was randomized for each participant. Participants
in the “robot” group saw Shimon performing mouth and head/body gestures along
with each of the four songs, while participants in the software group only heard each
song’s audio without Shimon performing gestures.

We were interested in learning whether there was a difference between the robot
group and software group in the following metrics:

1. Participants’ ratings of enjoyment for each song individually
2. Participants’ rankings of the songs relative to each other.

29.4.3 Results

After listening to each individual song, the participants rated their enjoyment level
of the song on a scale of 0–7. We used this data, shown in Fig. 29.14, to test our first
hypothesis. Although the means are slightly higher in the robot group, the variance
in the data is high. We found no significant differences when performing a Mann-
Whitney U test on each song using an alpha of 0.05, supporting the null hypothesis.

Fig. 29.14 Boxplot comparison of enjoyment ratings (0 low–7 high) between robot and software
groups
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Fig. 29.15 Comparison of song rankings between robot and software groups. Songs were ranked
in order of preference, where 1 corresponds to favorite and 4 corresponds to least favorite

After participants listened to all four songs, theywere asked to rank the songs from
their favorite (1) to least favorite (4). Data for the rankings are shown in Table29.1
and Fig. 29.15. To test our second hypothesis comparing the rankings between the
two participant groups, we performed a separate Mann-Whitney U test for each
song’s ranking numbers. We found a significant difference for one song, Children of
Two. The p-value is 0.0415, which is less than the alpha of 0.05.

Because this test indicated a significant difference in the rankings between the
two groups, we were interested in further exploring the nature of this difference.
We performed a paired Wilcoxon signed-rank test within each group for each of
the 6 possible song pairs to see how their rankings differed from each other. The
p-values are shown in Table29.2. In the software group, this produces a p-value less
than the alpha 0.05 for 4 of the 6 pairs. The same test for each pair of songs in the
robot group produces significant p-values for only 2 of the 6 pairs. This indicates
that the robot group tended to rank the songs more equally, while the software group
had a stronger pattern to their preferences. This trend can also be seen in the mean
rankings in Table29.1, where the robot group’s mean rankings for each song are
closer together than the software group’s.

In both of our evaluation metrics of the ranked data, we made use of multiple
statistical tests, which can result in an increased risk of type I errors. Because our
Mann-Whitney U tests on each song were a small number of planned comparisons to
test our hypothesis, it is not advised to apply a correction [31]. Our post-hoc pairwise
tests for each song pairing are also not advised to be corrected if only regarded as
a hypothesis for further investigation [31]. However, by applying the Bonferroni
correction, 3 pairs in the software group would fall under the new alpha of .0042,
compared to 0 pairs in the robot group. The observation that the robot group had less
consensus on their rankings is still supported.
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Table 29.1 Comparison of song rankings between robot and software groups. Songs were ranked
in order of preference, where 1 corresponds to favorite and 4 corresponds to least favorite

Song Mean rank robot Mean rank
software

Stdev robot Stdev software

Children of two 2.96 3.24 1.02 0.77

Gospel in space 2.17 1.67 1.07 0.80

Into your mind 2.09 2.00 1.16 1.05

Life enough 2.78 3.10 1.04 1.00

Table 29.2 p-values ofWilcoxon signed-rank test, performed on each pair of songs. Bolded values
are below the alpha .05. Shaded cells are values below the Bonferroni-corrected alpha of .0042

Our results failed to support our hypothesis that there would be a difference in the
enjoyment level of the songs. However, while the presence of the robot did not result
in higher enjoyment of the songs, it also did not lower enjoyment. Lower enjoyment
was a possibility, as the participants could have found the gestures distracting. The
high variance in the data could be due, in part, to differingmusical preferences among
participants. Performing the experiment on shorter song sections could provide more
data for analysis and potentially reduce variance. Furthermore, including questions
in the survey about the experience as a whole, rather than just the audio, may provide
further insights. Our result is consistent with the findings ofWhittaker and O’Conaill
[32]. They found that in human-human interactions, video was found to be better
than audio for tasks involving social interaction, but there was little difference for
taskswithout social aspects. Futurework could include comparing enjoyment ratings
for software versus robot when participants musically interact with Shimon, rather
than simply watch performances.

Our results did support that there was a difference in the rankings of the songs
relative to each other. Our post-hoc analysis indicates that the software group had a
stronger consensus over their rank ordering than the robot group. The reasons for this
warrant further investigation. One possibility we propose is that watching the robot’s
gestures made songs that were ranked lower by the software group seem less boring
to the robot group, making them more competitive with the other songs. Children of
Two was the song that was found to have significantly different rankings between
the two groups, where the software group ranked the song worse on average. It is
also the only song that was unfinished when played to the participants, with a long
rhythm section where an instrumental solo will later be inserted.
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29.5 Discussion and FutureWork

Our research in Robotic Musicianship aims to enhance and supplement human
creativity through interaction with robots. The scope of our work includes social,
wearable, and instrument-playing robotic musicians. This chapter focused primarily
on our adaptation of the marimba-playing robot, Shimon, to become a singer. We
designed both our lyrics and gesture generation techniques with consideration for
Shimon’s relation to and interactions with the other humans they are performing
and/or composing with.

Our lyrics generation process used human-provided keywords as a seed, support-
ing back-and-forth robot-human collaboration in songwriting. This is at the core
of our approach to robotic musicianship. Our goal is for robots to inspire humans
musically: “listening like a human”, in this case understanding the human’s keyword
inputs, and “playing like a machine” to produce interesting lyrics that the human
may not have thought of by themselves. In our lyric evaluation, participants were
unable to distinguish between human and robot-generated lyrics.

Shimon’s multiple roles as a singer, marimba-player, dancer, and improvisation
partner at various times during a song present unique challenges for gesture genera-
tion. We used interpolated, pose-based movements to synchronize lip-syncing with
the lyrics. The “be social” design principle guided our choreography decisions for
head and body gestures, so that Shimon interacts with his fellow performers. We are
beginning to automate gesture generation using audio features, and are investigating
data-driven approaches for future work.

Our gesture evaluation experiment supports the conclusion that embodiment
affected participants’ perceptions of the four songs. The participant group that only
heard the songs’ audio showed a stronger consensus on their song rankings than the
participant group that saw Shimon performing gestures with the songs. However, we
found no significant difference between the two groups’ reported enjoyment levels
for any of the songs. Therefore, more work is needed to better understand the nature
of the song ranking differences. For future work, we plan to do a thorough evaluation
of different types of generated gestures, comparing multiple forms of creation, such
as manually designed, rule-based, data-driven, and no gestures. We also intend to
investigate embodiment’s impact on interactions with Shimon, as opposed to just
performance.

We are beginning to extend the Shimon Sings project to Shimon Raps, with real-
time lyrical improvisation. This introduces many challenges, such as understanding
the words and meaning of a human’s rap, and formulating a real-time response with
coherent meaning, as well as rhyme structures and rhythmic patterns that fit the hip-
hop genre. We will also further explore real-time gesture generation, reacting to the
energy level and movements of the human rapper and instrumentalists.
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Shimon Sings is an ongoing collaboration between researchers, humanmusicians,
and robotic musicians. As Shimon continues to collaborate with composers and
perform as a singer, we will learn new ways to improve Shimon to further enhance
and inspire human creativity.
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30AI-Lectronica: Music AI in Clubs
and Studio Production

Shelly Knotts and Nick Collins

30.1 The Artificial Intelligence Sonic Boom

Though no AI super-intelligence yet rules the Internet, there has been a solid wave
of enthusiasm, hype, anxiety and deliberation about new AI technologies in society
and culture [82], and their particular manifestation within music [67, 78]. It does not
matter that the precedents for AI in popular music stretch back to Push Button
Bertha in 1956 [53] nor that the actual software available finds the synthesis of
human vocal lines and semantically coherent melody and lyric writing challenging.
It feels like only a matter of time for an automatic pop tune generator to win a
No. 1 chart slot, and less so for a mock-AI (part assisted by computer, with much
human production and promotion) to do the same. Such an outcome is anticipated
by the concept of the virtual band, familiar from 1950s voice repitching cartoon
Alvin and the Chipmunks to the comic art front of the studio band Gorillaz, from
the virtual idol Hatsune Miku to the robot cover band Compressorhead [24, 30, 83].
There is historical precedent, with eighteenth and nineteenth century audiences
happy to receive musical automata as entertainment [72], to Kraftwerk’s transhu-
manist affectation of The Man–Machine (following their eponymous 1978 album).
Current commercial efforts from such companies as JukeDeck, Amper, Mubert,
MMX and AIVA include AIs waiting in server farms ready to render music on
demand for home videos and adverts, licensed to record companies, or as inspi-
ration prompts for working composers and home hobbyists. Big tech firms have
become involved, from Amazon DeepComposer through the Google Magenta
research team to IBM Watson Beat.

Against this backdrop, human producers working in electronic dance music and
its wilder frontiers of experimental electronica have a pedigree for the fast adoption
of new software tools. The futurist leanings of electronic music, its easy association
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with a grand future narrative [81], exacerbates this willingness. Many a musician
waits ready to grab the latest free tech demoes and re-purpose them to their own
musical concerns. Whether the musical style instantiated in a given research project
accommodates their own stylistic pre-occupations is only a partial consideration,
the misuse for their own ends of technology developed under different expectations
is a well-established feature of the use of music technology [17, 59], and
hybridisation of musical styles a constant driver of musical evolution.

One danger of the fast pace of technological innovation is the fast pace dis-
carding of yesterday’s music programmes, evidenced by operating system version
creep, the associated aggressive deprecation of API functions, and a typical
three-year replacement lifecycle for computers. Social media is much faster yet, on
the order of days or hours, showing impatience with new music software releases
often treated more as gimmicks than as objects worthy of the ten years of intensive
practise more commensurate with a traditional musical instrument. Nonetheless,
viral enthusiasm can push a project to much casual use. Rob Watson’s DonkDJ was
an online remix project, now defunct, which allowed the addition of ‘donk’ techno
elements of heavy on-beat and off-beat percussion to an uploaded audio file through
its associated EchoNest beat tracking analysis. In 2009, it placed a heavy load for a
few months on the EchoNest’s servers; they were forced to introduce in response
greater restrictions on the number of available third party API requests.

A current generation of commercial AI music tools is aimed at content creators
seeking to avoid the copyright minefield around existing recordings, through the
provision of on-demand original music. The extent to which such algorithms are
rule-based or machine-learnt is often opaque, and they are judged on their outputs,
which for constrained styles such as diatonic ambient music or diatonic film piano
music, may well do the job. The more creative targets remain out of reach; there is
no automatic hit song generator that is able to engage with cutting-edge production
trends, nor any genuinely inspirational contemporary music generator. Chasing the
human zeitgeist is potentially achievable through deeper application of machine
listening and learning technology, alongside semantic analysis of online trends, but
the social significance of the general AI problem lurks in wait outside the simplistic
musical scenarios currently attempted by programmers. The current mass popularity
of deep learning [14, 20] is no magic bullet for music’s tricky sonic representation
and social embedding.

In order to obtain an overview of current attitudes to music AI and take-up
amongst tech-savvy musicians of AI music tools, we conducted an online survey,
whose results over 117 participants we briefly summarise here. The respondents
were overwhelmingly male, expert music software users (>10 years of experience),
producing a range of music formats including recordings, generative work and live
performances. 45% of respondents were live coders, reflecting the interests and
networks of the authors, and a smaller percentage (16%) were DJs. Although the
majority (53%) make some of their income from music creation, this was the main
income for very few of the respondents (7%), perhaps suggesting that Music AI is
unlikely to create the next jobs boom. Of the pre-packaged AI softwares we listed,
Wekinator [41] and Magenta had been used most often by participants, with
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Wekinator having the most frequent users (7 respondents). The most frequently
used languages for self-built music AI systems were SuperCollider [84], Max/MSP
[21], and Python with 47, 48 and 48 users, respectively, Javascript accounted for
only 22% of respondents.

The attitudes to AI section were perhaps the most revealing, with many survey
participants agreeing with statements that Music AI has made making music easier
and has influenced their musical style, but with most disagreeing that adverse
effects such as loss of musicians’ jobs, homogenisation of music, and holding back
music’s evolution will come to pass. While many agreed that AI is the future of
music (47 respondents), predictions of the exact date of an AI with human-level
ability being created ranged from 1787 to never. General comments on AI music
software ranged from the apocalyptic (‘AI cloud clusters are destroying the envi-
ronment’) to apathetic (‘When it appears as a free musical tool, I will definitely try
it. But I can’t imagine there’s much fun to be had.’). In keeping with pragmatic
applications for music AI, most saw AI as just another extension of available music
technology tools, rather than as any fundamental shift in arts and culture. Full
results of this survey are published in Knotts and Collins [56].

We proceed now to survey the state of the art in music AI for studio use and live
performance, before highlighting the phenomena of the algorave, as a central locus
for musical algorithms in electronica. Later in the chapter, we review the artistic
practice of the co-authors in the context of such currents in culture, closing with
some reflection and futurological statements.

30.2 Music Production Tools and AI

The culture of digital sampling and its faster-then-copyright pace, of mash-ups and
fan remix, is a natural site for the application of sound file manipulating computer
tools. The current generation of electronica producers are digital natives, and have
been for some time, with trackers programmes dating from the 1980s, and the rise
of the software synthesiser for Digital Audio Workstations in the mid-1990s. Studio
production tools which operate through audio analysis to allow a more substantial
repurposing than basic sampling have also been available for some decades. Pro-
pellerheads’ Recycle, released in 1994, was an early example, utilising onset
detection to segment drum breaks and allow the easy creation of sampler presets
accessing individual drum hits. The duo Coldcut, in collaboration with technolo-
gists Hexstatic, created live audiovisual sampling tools, most famously affiliated
with the joint audiovisual production of their 1997 album Let Us Play. Video
samples with corresponding audio were triggered via MIDI sequencer and the
VJamm software. Coldcut later authorised BrightonART’s Coldcutter plug-in an
automatic sample resplicing tool. Towards the end of the 1990s, the BBCut soft-
ware was created, initially in the programming language C, then as a Csound [12]
opcode and SuperCollider class library [29], the most advanced version, BBCut2,
utilised built-in beat tracking and event analysis [22], and the most popular
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manifestations were probably Remy Muller’s LiveCut VST plug-in based on some
BBCut algorithms a simplified iPhone app version able to remix any track from a
user’s iTunes Library. Many other sample splicing tools have been created for such
platforms as Pd [71], Max/MSP and SuperCollider, often without machine listening
but always with good potential for algorithmic reworking of arbitrary audio.

The versatile dance musician BT (Brian Transeau) has been involved in the
creation of software for sample manipulation at a similar rhythmic granular level,
with the BreakTweaker and Stutter Edit plug-ins now licensed to iZOTOPE. It has
been interesting to see BT himself promote classic computer music tools, such as
the command line programmes gathered in the Composers’ Desktop Project [52].
Crossover between more advanced computer music tools, commercial packing of
such functionality with friendlier interfaces, and music communities, is extensive.

In academic research, Jason Hockman’s investigation of downbeat detection and
the backwards engineering of audio segment cut-ups in jungle breakbeat manipu-
lation is worthy of note [47]. Research such as this is often couched in terms of the
Music Information Retrieval or computational creativity communities (and further
discussed in other chapters in this volume). Aside from Hockman’s work, the
former category might include Ringomatic, a corpus trained drummer [5], query by
beatboxing for DJs [50], and automatic mash-ups [37]. In an example of the latter
category, Arne Eigenfeldt led a large-scale research grant in Canada on generative
electronica, exploring genetic algorithms and statistical techniques fed from anal-
ysis of a corpus of electronic dance music [38]. A later extension is Musical Agent
based on Self-Organising Maps (MASOM), which analyses audio to create a
generative model [80], and has been deployed in concert based on both EDM and
electroacoustic art music corpora. Richard Savery’s Artiin generates autonomous
musical parts in response to a human-generated lead [75].

Aside from academic research, as an example of a tool currently available to
everyday music producers, Logic Pro contains a capacity to code MIDI event
generation and processing functions in Javascript within the Digital Audio Work-
station; a script is placed as a MIDI FX plug-in on a given channel strip; the script
can be triggered by MIDI events on a given track, or generate entirely new events
based on playback timing information. The latter capability is demonstrated by the
following code example in Fig. 30.1, which creates a 64 step sequencer triggered
from beat 9 (measure 3 of a 4/4 project), with random probability of triggering
on-beat kicks or off-beat snares.

The live performance sequencer Ableton has had the capacity for python script
control for some years, but the Max for Live module is the most obvious mani-
festation of algorithmic capability in the software [61]. Max is a well-known visual
programming platform for live electroacoustic work, as well as sound and audio-
visual installation artists. Max for Live gives the capacity to easily run Max patches
within Ableton Live, providing a much wider palette of sound and MIDI manip-
ulation than Logic’s MIDI only Scripter. An example patch is shown in Fig. 30.2.

Machine Learning technology has been introduced to audio software plug-ins in
the form of wrappers for such real-time machine learning facilities as Wekinator, as
libraries and extensions for more customisable audio programming languages such
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as SuperCollider, or internally within plug-ins whose functionality is more directly
described to users (source separation, humanisation quantise/groove, automatic
music generation). Examples of the latter category include the freely downloadable
Magenta Studio [73] which makes available five effects based on deep learning
research, automatic transcription and source separation effects such as Celemony’s
Melodyne plug-in, or Factor mini for Max for Live.

Magenta Studio contains five plug-ins for the manipulation of MIDI Files,
exemplifying the potential applications of machine learning within algorithmic
compositional studio assistants:

var NeedsTimingInfo = true; 
var beatpositions = new Array(16); 

var i; 

for(i=0; i<64; ++i) 
   beatpositions[i] = (i*0.25)+9; 

//MIDI Note values for General MIDI percussion kit 
var kick = 36; 
var snare = 38; 

function ProcessMIDI() { 

   var info = GetTimingInfo(); 

   if (info.playing) { 

       for(i=0; i<64; ++i) { 
           var beatnow = beatpositions[i]; 

           //if this callback's time extent contains the beat position intended 
for any of our events 
           if((info.blockStartBeat<=beatnow) && (beatnow<info.blockEndBeat)) { 

               var kicknow = i%4==0; 

               if(Math.random() > (kicknow?0.3:0.7))  { 

                   var note = new NoteOn; 
                   note.pitch = kicknow? kick :snare; 
                   note.velocity = kicknow? 120 : (Math.floor(Math.random()*60) + 

60);
                   note.beatPos = beatnow 
                   note.send(); 

                   //MIDI Note Off event to follow the note on for clean release 
                   var noteoff = new NoteOff(note); 
                   noteoff.beatPos = beatnow +0.24; 
                   noteoff.send(); 

               } 
           } 
       } 
   } 

}

Fig. 30.1 Logic Pro Scripter plug-in for random kick and snare event generation over 64 steps
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• Continue (extend into new material from a MIDI File starting point)
• Drumify (create drum patterns based on timing of a starting clip)
• Generate (create from scratch new MIDI melodic material)
• Groove (humanise timing based on a corpus of human drummers)
• Interpolate (find a certain number of inbetween patterns given two MIDI File

end points)

The Google Magenta team have also treated raw audio in machine learning, such
as with the audio sample prediction synthesiser NSynth [39], itself available in
various packaged applications for end-users.

The availability of algorithmic music-making tools in general culture has
extended to follow technological developments, from smartphone apps, through
web audio projects, to such recent manifestations as an Alexa skill (DeepMusic) or
Amazon Web Service (Deep Composer). Video game producers have increasingly
explored procedural audio and generative music, reactive and adaptive to game
state [23]. Precedents include the generative ambient music for Spore (2007) cre-
ated with the Pd engine [66], and beat tracking within rhythm games able to adapt
to user-provided music such as Dance Factory (2006).

Web browsers provide a cross-platform route for the distribution of new music
systems, and AI music tools for the browser built with Javascript have been
growing, from Magenta.js through to ml5js. MIMIC or ‘Musically Intelligent
Machines Interacting Creatively’ is a three-year AHRC-funded project (2018–
2021), run by teams at Goldsmiths College, Durham University and the University
of Sussex, dedicated to exploring new music AI in the web browser. Many demoes
with interactive script editing are available at the project website [43], including a
javascript version of the iPhone BBCut app. The MIMIC project aims to make
machine learning tools more accessible to artists; further examples on the website

Fig. 30.2 Max patch illustrating the live.step sequencer interface object, and a Max for Live
Device brought in via amxd*
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point towards ways in which machine learning may be incorporated in the per-
formance space, such as the Markov Sequencer, which uses Markov chains to
produce variations of drum rhythms typed by a human performer, and Audio
Triggers which is a simple classifier which triggers samples when it recognises
particular audio inputs.

In the current erAI, well-known electronica artists are exploring the potential of
AI techniques for future music, and such collaborations will only become more
frequent, and in a senseless noteworthy, with each passing year. Aphex Twin
worked with Dave Griffiths to make MIDI Mutant which evolves DX7 patches from
microphone inputs. Actress’ AI collaborator Young Paint analysed corpora of his
past work and other styles to produce new tracks and also can be used in live
performance. Holly Herndon’s Spawn is a Neural Network trained on her vocal
samples and was used in the album Proto (2019).

30.3 AIlgorAIve

The live coding community have been writing algorithms to produce music as a
performance practice since the early 2000s, producing experimental software for
improvised coding of audio and visuals in response to both the audience and the
output of algorithmic processes. In more recent years (since 2012), they have been
taking that process to clubs and parties making dance music explicitly cast as
‘Algorave’ [33, 55]. Algorave in itself is not novel, given the many precedents for
algorithmic dance music already detailed in this chapter and acknowledged in the
algorave literature, but the foregrounding of technology and performance over the
pure musical-social experience is unusual in the club context.

Algorave’s slow start was followed by a swift rise to public consciousness in
recent years, bringing with it a wave of overtly technologized music entering a
public sphere close to the mainstream. Recent performances at SXSW, Amsterdam
Dance Event and Glastonbury have positioned human interaction with algorithmic
systems next to rock bands and DJs and attracted press attention from Mixmag,
Resident Advisor, Wired and The Times amongst others. This perhaps reflects the
wider public awareness of the role of algorithms in increasingly programmed
systems of our daily lives. As Bucher [15] proclaims ‘Algorithms are seemingly
“everywhere”… [they] are not just making their mark on culture and society; to a
certain extent they have become culture’. Algorave, with its practice of screen
projection, exposes audiences to algorithms—which are otherwise often mystified
and obscured by profit-hungry tech companies—in friendly and enjoyable ways.
Events such as the algorave in Bluedot festival in 2016 introduced large audiences
to live algorithmic performance (Fig. 30.3).

Live Coders don’t hold back on incorporating the latest technologies in their
performance systems, but also see the code as a craft and an instrument, furthering
deep exploration of interaction with code in performance. Building a live coding
language is one common avenue of exploration for live coding performers, but
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other artists have explored hybrid systems, incorporating other technologies and
interfaces into the performance system. Given the technical expertise of live coders
and their curiosity around human interaction with algorithmic systems, an interest
in exploring data and AI through live coding is emerging. Press articles already
often conflate live coding, algorithmic music and AI-generated music [19], algorave
is sometimes seen as synonymous with live coding, since so many live coders are
active in the scene and live programming is such a powerful interface to deeper
musical computer science.

Aspects of live coding that have driven performers to explore AI tools and
concepts include the inefficiency of the keyboard as a musical interface; the high
cognitive load of performing with code; the automation of common performance
moves and processes; the exploration of unpredictability; the development of
well-specified collaborators; the avoidance of repetition; and the navigation of large
parameter spaces.

One highly active performer, Renick Bell, automates aspects that he finds
himself repeating across multiple performances, leaving himself free to play with
other aspects that are more malleable and less routine. Bell’s Conductive [7]
explores complex algorithmically induced rhythm on the dancefloor, exploring the
limits of human taste for pushing genre boundaries and danceability. The system
uses a set of agents which each act as an instrument with a set of rhythmic patterns
to choose from. These ‘players’ generate their own music autonomously. Higher
level agents track parameters such as ‘boredom’, keeping track of how recently the
agents in the system have changed rhythmic pattern and ensuring change over time.
The performer acting as a conductor making high-level decisions such as rhythmic
density and can turn players on and off manually. This enables Bell to ‘manage’ the

Fig. 30.3 Hundreds of audience members dancing to algorithms at Bluedot festival 2016
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performance without worrying about low-level details, instead focussing on the
flow of the music overall.

Some performers are well aware of the longer term history of algorithmic music.
Creating live music through automata can be traced back to a millennium or more;
Al-Jazari’s music robot band circa 1200CE is one of the earliest examples [51].
Dave Griffiths has paid homage to the engineer with his live coding system of the
same name [64] which uses a computer game style visualisation of programmable
robots moving in 3D space to trigger samples.

Other systems have freed the performer from the need for precision. The duo
Scorpion Mouse (vocalist May Cheung and live coder Jason Levine) have used
parameter space maps to allow the performer to explore sounds without worrying
about precise parameter values. Scorpion Mouse’s performance system [57] uses
t-SNE algorithms [58] to map a large set of samples according to musical feature
values. The visualisation of the t-SNE, as shown in performances, is depicted in
Fig. 30.4. Early versions of the system used a large set of around 3000 samples
with diverse musical characteristics. Levine uses the live coding language
Extempore to traverse the maps triggering samples in the path. Performing with the
system required memorising the geography of the t-SNE map in order to locate
types of samples. Levine describes memorising the location of ‘marimba island’, for
example, and navigating to the required position using extempore functions.

Later versions reduced the sample set to percussive samples and used t-SNE
dimension reduction to map to two dimensions with pitch on the X-axis and
variations of particular drum types on the Y-axis. This allowed an easier method of
reading and traversing the samples at performance time. Further developments to

Fig. 30.4 Scorpion Mouse Performing with samples organised by t-SNE algorithms. A visual-
isation of the t-SNE is shown in the projected graphics alongside the performers code
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the system have included mapping chords and rhythm sets with t-SNE algorithms,
to allow allows chord progressions to be created through t-SNE traversals. This
system was later converted to an interactive version in VR where the viewer could
direct the traversals in VR space. Louis Busby’s EverySongIOwn performance
system also uses t-SNE maps to organise huge sample sets and has been deployed at
a number of algoraves in the UK.

Other approaches to using machine learning for approximation and variation in
Live Coding include Ivan Paz’s cross-categorised-seeds [70] which explore the idea
of presets as a way of navigating vast parameter spaces. Paz’s RuLeR is a rule
learning algorithm used in hi music. Seeds are generated, which are parameter
presets with associated perceptual labels describing the sound. The system provides
alternative parameter sets as variations of the seeds that still conform to the per-
ceptual labels allowing the performer to use high-level controls to perform the
piece, while low-level variation is generated by the algorithm. Paz highlights the
importance of presets to provide anchors in an otherwise vast timbre space, but
acknowledges that presets sometimes prevent exploration and innovation when a
performer is overly reliant on known parameter sets. The album Visions of Space
(2017) was produced using the performer’s tools.

Machine Learning has been used in live coding as the pressures of fast typing
often conflict with the need for the music to change and move. Assistants such as
Cacharpo [68] provide a ‘collaborator’ which can generate music while you type,
relieving the pressure on the performer to make quick changes in solo sets.
Cacharpo reduces the task of automatic music making to a single tightly defined
genre of Cumbia Sondiero. The autonomous performer uses Music Information
Retrieval (MIR) algorithms [18] to listen to the human performer and generates
code to produce complimentary patterns and instruments in the style of cumbia.
Though the results have been appreciated the author admits further dance
floor-based assessment is needed.

Another challenge, tackled by Jeremy Stewart and Shawn Lawson [77], was to
create a system capable of fully generating TidalCycles [65] code. Cibo is an
autonomous performer that uses neural networks, with similar aims to Cacharpo in
that further developments of the system will allow collaboration with a human
performer. However, the system gave its first performance as a solo artist with a set
at the International Conference of Live Coding 2019. Unlike many musical
machine learning systems Cibo takes only code as an input and does not incorporate
machine listening; it trains on sequential code blocks captured from human per-
formed TidalCycles sets.

Cibo, Cacharpo and other autonomous live coders have the potential to reduce
touring pressure on artists as software can be sent to the venue without the need for
a human to attend in person. Del Angel observed that viewers were neither sur-
prised nor upset by the idea of a performing algorithm when demonstrating
Cacharpo. The RAiMONES go further, proposing AI can bring artists back from
the dead; using machine learning, new music can be produced ‘by’ an artist from
beyond the grave [24, 30]. Dadabots [85] also point towards a future of endless
AI-generated music with their Relentless Doppelganger YouTube channel, which
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has been streaming neural net-generated death metal since March 2019. The social
construction of live coding [46] might push against the fully automated resurrection
of bygone algoravers given the centrality of the performative struggle with algo-
rithmic design to the audience experience at algoraves.

Though the time constraints and server load of training a musical model can
inhibit machine learning in concert from entering the performance space, some
experimental work in this area includes Marije Baalman’s GeCoLa project which
performatively trains a neural net to recognise physical gestures and map sounds in
response to them [6]. The performance reminds us that even complex machine
learning tasks require human labour to complete and it is by no means a fault-free
task. Full scale use of Magenta-style machine learning models is still underexplored
in live coding, perhaps because the black-box nature of machine learning seems at
odds to the transparency of live coding, or because training models must largely be
completed before performance time, increasing the preparation required for a set.

The act of code-bending [9]—which shares some ethos and techniques with live
coding—has already made its way into live coding through the web browser per-
formances of Joana Chicau [8] and Charles Hutchins’ [49] Soundbeam project—a
live coding hack of the Mozilla lightbeam plug-in for tracking data-harvesting in
the browser. Given such experimentation, it is not a huge leap from using pre-built
deep learning models in a live coding performance to re-coding and retraining a
model mid-set.

The Sussex arm of the MIMIC research team have worked on the SEMA
interface [9], which aims to allow easy integration of a customisable live coding
language with Magenta’s machine learning plug-ins which can themselves be
edited during performance [10]. The system consists of two windows—one for live
coding, and another containing code to interact with machine learning algorithms.
Some simple syntax—toJS() and fromJS()—is used to pass data between the
windows, allowing the performer to freely pass sequences of pitch/rhythm and other
data from the live coding window to the input of the machine learning model and
receive new sequences back according to the model.

30.4 A PersonAl PerspectAve: Shelly Knotts

Developing a Live Coding practice over 150 performances in the last 7 years has
proved fertile ground for algorithmic exploration. Coming from an experimental
music background, I didn’t set out to make EDM, but was led there through the
practice of live coding and determination of the algorave community to construct
diverse line-ups. The task of algoraving was learnt on the job, with many early
performances spent working out how to generate beat-based music through the
same performances processes I use in experimental contexts. I found, for example,
that quantising noisy synths that could have otherwise been drones were one route
to wonky, crunchy yet danceable beats, bringing with it different timbres that might
not be expected on the dancefloor.

30 AI-Lectronica: Music AI in Clubs and Studio Production 859



I have been particularly intrigued by the unpredictable nature of performing with
and through algorithmic processes and the potential to go on vastly different paths
from those anticipated at the start of a performance. Collaborative performance also
provided many perspectives on the limits and opportunities of live coding, pushing
my practice in new directions. In 2013, I worked with Alo Allik, providing an audio
input to his gene expression synthesis engine [4]. His system produced audio with
similar characteristics to my live coded output and felt like performing with an
algorithmic version of myself, gently nudging the performance out of learned
routines and into new musical territory.

A long-term collaboration, referred to as ALGOBABEZ (2016–2019), pushed
literal and metaphorical buttons [54], providing the basis for building a feminist
algorithmic music practice and experimenting with musical roles in collaborative
Algoraving. Working with Joanne gave the space to push the envelope
on-beat-based algorithmic noise music with a collaborator who built a strong
rhythmic base to anchor the performance. In response to the ultimate downfall of
the collaboration, I wrote an auto-drumming algorithm which uses statistical
algorithms to generate drum patterns from a sample bank, filling the rhythmic space
that was largely fulfilled by my collaborator in our sets together. The rhythmic
generator provides a base on which to build timbral and melodic material to fill out
the remainder of the sound field, though did get somewhat unruly in its first outing.

Beyond live coding, experiments with algorithmic collaborators included It’ll
Have a Better Title Later…—which ironically never had a better title. The work
was written to perform with an improvising pianist and explored autonomous
improvising systems in an experimental improvisation context, which changed its
timbre output according to performer inputs. The work spawned a large number of
synth patches (made up of semi-random combinations of synth graphs) which were
triggered according to the similarity to the improvising pianist’s playing. The
patches used various synthesis methods to gradually morph the timbre towards that
of the piano over the course of the performance and according to how often each
synth is triggered. The work gives the impression of two performers converging on
a timbral space over the course of a performance.

The transparency of live coding has also fed into my work on collaborative
performance systems. Many are accompanied by visualisations that attempt to
communicate the complicated internal algorithmic processes to audiences. Two
works in particular: Flock (2015) and Union (2015), which both used MIR and
mixing algorithms to mediate collaborative performance, use data visualisation as
part of a concert. Flock visualises audio feature data of three performers and an
algorithmic voting process. The audio from the three performers is mixed according
to the output of the voting, which is based on alignment to voter audio feature
preferences. Union is an algorithmic mixer for telematic ensemble which uses MIR
as a basis to determine consensus between performers and mix the audio streams
accordingly.

In the sections that follow I discuss two works in detail which use MIR and data
visualisation to interrogate algorithmic improvisation practice and broader theme in
AI and culture. I finish with a short discussion of my current work.
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30.4.1 CYOF

CYOF (2017) explores how AI could be helpful to an improvising performer in
developing their improvisational skill over time without actively intervening in
sound production. The system uses analysis of my previous and current live coding
performances as a basis to infer improvisational novelty, and predict/suggest
potential futures of the live performance in real-time. Musical Information Retrieval
and text analysis techniques are used to analyse an archive of code and audio files
from previous performances. A large archive of past performances was used to
build a data set of likely code combinations, audio feature combinations and tra-
jectories in live coding sets. Having habitually recorded live coding sessions and
saved code files, I was fortunate to have a large data set of audio and code from live
coding performances and rehearsals to work with. The piece was developed as
exploration of originality in live coded improvisation, and aims to give performer
and audience visual feedback on the performer’s innovation in comparison to their
own previous performances.

In CYOF, a live coding performance using SuperCollider’s JITLib [74] to live
programme sound synthesis is augmented by a visualisation which shows a rep-
resentation of the past, present and potential future of the current performance.
Real-time audio feature data (e.g. chromagram, loudness and spectral features)
relating to the past, present and potential future is mapped to greyscale blocks, with
features on the Y-axis and time on the X-axis. The performer’s current code is
projected as it is being typed alongside the most likely (in orange) and least likely
(in blue) possible future code. The live performance is analysed in real time in 10 s
windows using SuperCollider’s SCMIR library [24, 30]. The live data is compared
to the archive of past performances, and the visualisation shows data relating to the
most closely related past performance alongside the data relating to the current
performance. The live performance data is colour coded on a scale of blue (most
original) to orange (least original).

In the visualisation, shown in Fig. 30.5, audio feature data is mapped to grey-
scale blocks with features shown in the Y-axis and time in the X-axis. Time is
visualised in 10 s blocks. At the beginning of a performance, a random past per-
formance is chosen as the prediction data to be represented with the visualisation.
At each 10 s interval, the prediction data for the remainder of the performance is
replaced by data relating to the performance in the archive with MIR data most
closely related to the current performance, showing the most likely future data for
the current performance. This ‘prediction’ data is replaced with data from the
current performance as the performance progresses.

Each block of the data relating to the current performance is colour coded on a
scale of blue (most ‘original’) to orange (least ‘original’), showing the performer
how close to data from past performances the previous segments were. Another
aspect of the visualisation shows the performer’s current code as it is being typed
alongside the most likely (in orange) and unlikely (in blue) possible future code
according to the database of past coding performances.
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CYOF aims to gently encourage more innovative improvisation by using archive
material to determine the novelty of the current performance in relation to the
archive, and provide suggestion for alternative paths. The visualisation acts as a
stimulus to experiment with new ideas should it suggest too high a degree of
self-similarity.

30.4.2 AlgoRIOTmic Grrrl!

AlgoRIOTmic Grrrl! (2019) uses music information retrieval to analyse a corpus of
Riot Grrrl’s music to be remixed and repurposed to create algorave worthy dance
numbers which evoke the angry revolutionary spirit of feminist Punk.

Riot Grrrl was an early 1990s musical-political movement which grew out of
Punk—which had become increasingly male dominated in the 1980s with the
emergence of, often misogynistic, Hardcore Punk. This sub-genre didn’t speak to
the experiences of women and girls and actively marginalised them. Women in the
scene wanted to carve a space for music which was relevant to their everyday lives,
was produced on their own terms, and reflected feminist values [45]. AlgoRIOTmic
Grrrl! draws on these politics to highlight the need to create space for women in

Fig. 30.5 Performance of CYOF at the International Conference of Live Coding 2017, CMMAS,
Morelia, Mexico
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electronic and computer music scenes, using explicitly feminist sound material and
foregrounding the parallels between algorave and Punk subcultures.

Algorave has a disproportionately large contingent of female performers, when
contrasted to other electronic music subcultures. This is perhaps surprising for such
an overtly, technologized practice. Technology is used as a way to exclude and
marginalise particular groups from cultural production, maintaining male mono-
cultures through exclusionary language use and high technical bars for entry. In
contrast to many sub-divisions of computer and electronic music, algorave has been
able to create some momentum to push back against the male domination of
electronic music scenes [11] with diverse line-ups being a central principle of the
movement and female-only workshops providing routes into performance. A low
technical bar for entry and the algorave code of conduct, which shares many values
with punk and DIY music [69], help to encourage diversity. Given these values and
algorave’s dedication to promoting female and feminist narratives of algorithmic
music, this context seemed more appropriate than other computer music subcultures
to explore MIR data bias and express the political values of Riot Grrrl music in the
algorithmic age.

This felt particularly pertinent to working with music AI systems, given feminist
critique of AI systems, e.g. [2, 36], for producing algorithms with a white male bias
through data bias and lack of cultural awareness among engineer teams. Examples
include Google image recognition algorithms tagging the faces of black people with
‘gorilla’ [76]. Beyond biased algorithms, corporations such as Google draw on
huge quantities of data to train machine learning algorithms and the labour of data
production goes largely unrecognised. In music, where cultural artefacts are the data
which are used to train machine learning models, this raises questions about
diversity and appropriation worthy of interrogation.

In the broader MIR, data usage is biased towards the European classical tradi-
tion, Western harmony and male composers. Relatively few MIR systems have
been produced that work with noisy signals, primarily treat music based on timbre
as the primary compositional parameter, and explicitly reference women’s music
[13, 16]. Further, reflection is required to explore the implications of using a dataset
of explicitly feminist DIY embodied music making within algorithmic structures
that have largely been built by men, as often in AI systems the labour of data
production is unacknowledged and undervalued. Holzapfel et al. [48] point to the
ethical considerations of MIR including issues with copyright, payment of royalties,
repurposing and crediting authors. AlgoRIOTmic Grrrl! is a provocation, ques-
tioning this grey area of appropriation and data diversity in machine listening and
learning.

The performance system uses a corpus of Riot Grrrl music which is analysed
before the performance using the SCMIR library to produce a data file. During the
performance, search and sorting algorithms are used in SuperCollider to select
chunks of musical material from across the corpus within particular ranges of audio
feature data values. The Patterns library in SuperCollider is then used to live code
the ‘remix’ of these selected audio chunks into rhythmic patterns. A second
interface is written in Javascript, and using MMLL [32]. This interface facilitates
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the auto-remixing of a corpus of music according to audio feature data and values
selected via a GUI. The two interfaces are used in parallel during the performance:
SuperCollider for live coding rhythmic/pattern material and JS/MMLL generating
textural material.

The first performance of the work evoked the true spirit of punk as the code was
written the same day as the performance leaving no time to rehearse with the
system. This fortuitously ensured I was as inexperienced as possible performing
with the system, in the vein of the punk guitarist who learns on the job. During the
performance the results of the search algorithms were largely unpredictable, and the
performance method involved finding coherence, shape and musical flow in the
arrangement of unexpected sound material. Further, performances were more
refined and practiced, but lacked the rawness of true algorithmic punk-rave.

30.4.3 Future Work

My current work for MIMIC includes a browser-based performance system which
uses the MMLL library to extract rhythmic, melodic and timbre data in real time
from a collaborating saxophone player. The system will have two versions, one that
autonomously generates variations of her playing, and another that provides a code
representation that can be edited during performance time, allowing multiple modes
of interaction with an AI collaborator. The work aims to expand on concepts around
collaboration, automation, live coding, AI ethics and agency explored in previous
works.

30.5 I PersonIl PerspectIve: Nick Collins

Unfortunately, no AI of sufficiently Turing-test-passing-ability was available to
write this section of the chapter for me (that’s what such an AI would say too,
perhaps). Replacing myself with a potentially more accomplished musician remains
an intriguing goal, through which I would hope to better understand what
accomplishment in human music making might itself mean. Whilst I like to think
I’ve set the bar high by years of musical training, large amounts of work in studios,
many gigs, and much computer music research, however, long I spent training up is
perhaps just an overnight training session to a future high-speed computer. I only
have that ultimate arbiter of human music making, the human body, and must trust
the continuing difficulty of creating really plausible drop-in replacement artificial
ears to hold the music AIs in check.

Any sustained engagement with musical AI for practical music-making sce-
narios convinces you that music AI is embedded in the whole problem of general
musical intelligence, given the embedding of music within sociocultural beha-
viours. Highly constrained specific musical tasks have fallen to AIs, where the key
factor is the suitability of a particular stylistic mannerism to formalisation. The
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more intuitive and esoteric non-mathematical rules may be cultivated increasingly
by future musicians hiding from the expansion of music AI! The grand challenge
for the MusAIcian is that machine listening must be increasingly built into algo-
rithmic composition systems, to bring them closer to the actual listening-led
practical design loop of studio and concert work. The artificial ear, and by exten-
sion, the brain’s immersion in culture, is the weak point of current generation AI.

With this in mind, I have conducted various projects in machine listening and
algorithmic composition, stretching from the domain of electroacoustic art music,
Autocousmatic, [25] through musical theatre ([redacted] by demand of a famous
musical composer’s lawyers [26, 27]), to automatic critic systems in dubstep 27 and
contemporary piano music (with a public competition for concert works judged by
machine, performed in the 2019 Donaueschingen festival [79]). The emulation of
musical criticism forms part of such research because a self-critical perspective is at
the heart of recognising novel compositional outcomes, and the explicit modelling
of artificial critics (‘CrAItics’, ‘CritAIcs’ or ‘CrAtIcs’) improves compositional
decision-making founded in the artificial ear.

This is on top of repeated attempts to explore algorithmic electronic dance
music, synth pop and electronica, from a 1997 experiment in algorithmic techno
coded in C controlling external MIDI gear, through the aforementioned BBCut
algorithms [35] to infno/infpop [34]. Live performance with such algorithms has
been an especial interest, made explicit in the rise of the algorave, and highly
promoted by the intense efforts of Alex McLean, my co-author Shelly Knotts and
others. In recent years, I have taken to running subsidiary AI algorithms within live
sets, such as generators of chord sequences and melody lines based on large corpora
of recordings of Adele, Ed Sheeran and Xenakis (‘AIdele’, ‘Ed SheerAI’, ‘xenA-
kIs’), or automatic rule-based techno loop generation via a system called Autom8 in
homage to such early 1990s rave era bands as Altern8.

It is worth speculating on the future development of music AI. What would a
next generation AI Electronic Dance Music generator look like? A large corpus of
EDM tracks would be gathered, chronologically ordered; see, for instance, [28] for
one corpus of historic electronic music already analysed. Tagging individual pieces
with sub-genre labels may be counter-productive, since the notion of genre is an
ill-defined mess at the lowest level in dance music, misused by artists, critics and
communities on the basis of tiny differences that aren’t necessarily evident in any
audio signal [63]. Machine listening technology allows the automatic analysis of
the beat and bar positions, and through chord analysis, of the harmonic rhythm and
the modelling of chord sequences. Melody lines can be extracted via predominant
fundamental frequency detection, or via source separation then monophonic tran-
scription. All melodic examples can be reconciled with beat positions, and trans-
posed to all 12 chromatic pitches to avoid any bias towards particular keys. This
data is then the basis for machine learning with generative models. A cycle of
generation and analysis may be possible, improving transcription via the automatic
generation of annotated examples [31].
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30.6 Conclusions

There may be a hunger amongst a certain type of electronica musician for new music
technology that can get them ahead of the game, but more generally, music AI has a
great capacity to provoke new musical experiences, from casual users, through
gamers and hobbyists, to professionals. Nonetheless, the use cases, musical affor-
dances and cultural rationale for AI music systems remain up for debate. Perhaps the
ultimate role of the AI is to help humans understand more and more of their own
musical proclivity, and analysis by synthesis should provide no threat to personal
musical spaces of adventure, even as AI tech opens up new musical avenues.

As the gender balance of responses to our survey (82% male) and the poor
diversity of this chapter demonstrates there is a large skew in the uptake of AI
technologies in music production. Partly this reflects the broader culture of electronic
music, which has consistently marginalised women and non-white people [3, 40], but
beyond this accessing, learning and using new technologies can be more challenging
for people who don’t fit the normative white male mould of computer programmers
and electronic musicians [1]. As we grapple with these new technologies, we must
take the time to reflect on how diversity of access to technology can affect culture in
unpredictable ways. TheWomen Reclaiming AI [60] project, for example, asks us to
reflect on how AI home assistants with female voices are largely written by teams of
male engineers who perhaps lack insight in the wider cultural problematics of par-
ticular characteristics and human–machine interactions with specifically gendered
voices. Microsoft’s Twitter bot Tay also provides a lesson in modelling AIs on
particular human populations [62]. Reflection on diversity of participation and data
sets is required to ensure the musical AIs of the future don’t make us wade through
knee-high layers of AI hardcore punk bands called CAIrcle Jerks [44] producing
server farms full of cock-rock-algo-punk fusion albums.

We should be cautious of the role of presets in what is to come. For synthesisers
and effects, presets tend to dominate 90% of usage [42]. In learning programming,
real code examples are essential, and there is a natural extension from preset
parameter settings for a given plug-in, to pre-built code and patches to tweak. Ease
of deployment and use are essential pragmatic considerations for the majority of
users, and relatively simple to code DSP or MIDI processing routines are often
packaged up as commercial plug-ins by companies, a professional-looking interface
goes a long way to conceal that the algorithms are freely available in harder to learn
software such as Csound. There is a danger that a selected few have the skills to
develop the music AI, and the majority are trapped into the prior upfront repre-
sentational decisions of programmers who may or may not have considered flexi-
bility in music making beyond certain Western conventions. Programmers ignorant
of ethnomusicology or contemporary art music may too readily take the 4/4 C major
120 bpm default of many a digital audio workstation as real. We hope that the
future deep learning AI composers Deepeche Mode, Deep Purple, Deepbussy and
Deeplius will not force a stranglehold on the music admissible, but be part of a
much grander ecosystem of computer musical ideas.
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31Musicking with Algorithms: Thoughts
on Artificial Intelligence, Creativity,
and Agency

Palle Dahlstedt

31.1 Introduction

In this chapter, I present a pragmatic, critical, and sometimes speculative view of
what Machine Learning (ML) and Artificial Intelligence (AI) bring to the table for
art and music. It is pragmatic in the sense of analyzing what can actually be done
today by musicians and composers working with AI, and what is missing in terms
of creative agency. How does AI relate to other technologies in the context of art?
Yet critical about the popular expectations of AI, its ascribed abilities and agency,
and how AI is written and talked about today in terms of creativity. No, computers
cannot paint like van Gogh or compose like Bach. What is really the role of
humans, as designers, programmers, users, and tweakers, behind current AI
applications? Still, I try to be visionary about the long-term future of AI in art and
music. Will we ever see autonomous AI artists, composers, and musicians? If so,
why would they even care to make art and music for humans?

I will primarily talk about two main categories of algorithms: statistical Machine
Learning (e.g., neural networks of various kinds), and Evolutionary Computation.
These two categories are both wide and diverse and encompass most of today’s
applied AI. They share the properties that they may work with data on a higher
abstraction level, find solutions to problems, and generate material of different
kinds, without the specifics of these solutions or material being described in detail.
They can be applied in many different ways in relation to artistic creative processes.
As there is no common term for these different algorithms as a group, I will in the
following use the term AI algorithms. When I refer to Machine Learning algorithms
specifically (excluding Evolutionary Computation), I will use the term ML algo-
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rithms. I will speak about these techniques from a more general viewpoint, and
some things may not be applicable to or relevant for all kinds of algorithms. I hope
the reader has an understanding of this necessary simplification.

AI algorithms can be made into powerful tools that allow for new ways of
working, but they are not miracles—they have constraints and limitations, and being
aware of what these are, and what the implications of using them are, is crucial for an
artist. Working with a tool without awareness of aesthetic implications, or maybe
without even being aware that there are aesthetic implications, may lead to reduced
independence, unconscious shift of agency from the artist toward the toolmaker, and
to artistic output that is very similar to that of other users of similar tools.

In this text, I will primarily discuss the aesthetic and philosophical implications
of using contemporary high-level AI algorithms in compositional and improvisa-
tional work. I will look at how such algorithms mediate agency through the
influence on the aesthetic results and also speculate on the idea of art by autono-
mous AI, if and when that would be possible. As my own main artistic practice and
training is as a musician and composer, I will use music-making as my main
example, but many of the observations are applicable also to other art forms, as the
reasoning deals with the artistic creative process and creative agency in general,
independent of genre. The role of technology in general, and of artificial intelli-
gence in particular, varies only in nuances between art forms, and ideas of creative
agency in music are not much different from visual art, literature, or performance.

The reasoning and observations in this chapter are a continuation of a long
personal investigation of these issues, in dialog with other researchers and artists,
which has involved the development and long-term use of various generative
systems for music-making [18–21, 30, 31] and related more philosophical and
aesthetic investigations of their implications for the creative process and aesthetic
implications. Primarily, the discussion about the role of tools and agency is a
continuation of my previously published theoretical work on artistic creative pro-
cess [22, 24, 28, 29], and my critical view of AI creativity continues the thoughts
put forward in a recent paper on big data, AI, and creativity [26]. There is only
space for brief summaries of this work here, and I would refer to the original texts
for a more detailed view.

31.1.1 AI and Art

There are many ideas about what creativity is, and also many different definitions
and variations on AI. A great variety of algorithms have been applied under this
umbrella throughout the years, but the latest AI boom has centered around
multi-layered neural networks, and another important category is evolutionary
algorithms.

AI algorithms can perform many different tasks or sub-tasks, such as classifi-
cation of arbitrary classes of objects, outlier detection within sets, and evaluation
according to trained or specified criteria, and help with decision making. They can
do different kinds of optimization, e.g., with respect to similarity (hence, imitation),

874 P. Dahlstedt



computation and speed, or cost, but also with regards to more or less formal/explicit
aesthetic criteria, with more or less open results. They can also optimize toward
meta-aesthetic criteria, such as novelty or variation. AI algorithms can be used for
predicting the likely continuation of a sequence, based on example sequences, and
hence be used to directly generate output.

Such tasks, as performed by AI algorithms, can be applied to simulation,
strategy, imitation, and game-play or to design, improvisation, and creativity.
During the last decades, there have been numerous examples of applications of AI
algorithms to tasks within the musical crafts, such as instrumentation, harmoniza-
tion, and voice-leading. But this is not where the main creativity of musical
composition lies. They are still very interesting challenges, similar to solving a
game or puzzle (see, e.g., [56]) and an important part of composing music. The idea
is supposedly that if we can solve such simpler tasks, we can go on toward the
larger tasks of composing whole musical works.

Here, I will concentrate on when AI is applied to the more fundamental creative
tasks:

• What happens when AI algorithms are applied to generate, suggest, evaluate,
continue, expand, vary, or imitate musical material?

• What are the complications of using AI to generate music, related to the
implications of training AI algorithms on existing music, and the general
problem of getting AI to generate something it has not seen or heard before?

At the heart of this is a tension between optimization and exploration. Opti-
mization can be defined as doing the best thing, the right thing, optimizing the
outcome of some actions, or finding the best solution to a problem, under given
constraints. Exploration is expanding the limits of what has been done before,
searching the space of the possibilities for new and interesting solutions or material,
or creating something different from everything seen or heard before, in a funda-
mental or conceptual way (not just tilted a little bit). It is not difficult to create a
slight variation of something, and novelty is easy—any output based on chance
operations will be novel in some trivial way. But it should be novel in an interesting
and meaningful way, or at least in a way so that the receiver can ascribe meaning to
it. Most AI algorithms were designed for optimization, but some are also applicable
to exploration.

We will look at the implications of using AI algorithms in these contexts, the
implications for aesthetic results, and for the agency.

31.1.2 Motivation

What does it solve to analyze where the agency lies? It does not make the systems
smarter, and it is not (at least not primarily) about authorship or about giving credit,
but about understanding. It helps us understand what the contributions are from
each part of a system that we perceive as creative, and to appreciate to what degree
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everything is a part of a system. It helps us talk about it in proper terms, not
ascribing intelligence and creativity to a machine in those cases when the actual
creativity comes from human researchers, engineers, programmers, and algorithm
users, while still acknowledging the (potential) contributions of the algorithms. And
it will help us realize when an algorithm really is creative.

The conclusion may very well be that it is impossible to tell where the creative
agency lies. In that case, the investigation has taught us to be more humble in
relation to such systems and to be careful with how we talk about them, and it may
make us realize that emergence is a powerful thing.

In the current debate, it is common to see popular science articles about how AI
systems are creative, how they have composed new hits in the style of The Beatles
[17, 46], or how they have created pictures in the style of van Gogh [52]. In the
press, it is often spoken of as if the software algorithm, the AI, has created these
aesthetic artifacts all by itself. This is of course not true. Usually, the generative AI
system behind such news is nothing more than a sophisticated transformation tool
or mash-up engine, and there are humans behind at all stages in the process. So
many design choices are taken along the way, and so much information is flowing
into the AI implementation from humans, that it is simply deceptional to talk about
it as “created by machines”.

There are many problems with such unrealistic descriptions. It gives artists and
listeners the wrong idea about authorship and about the abilities of AI. It neglects
the extent of the human agency, and while the end credits of a major movie may be
exaggerated in their detail, a more adequate understanding of the attribution of
agency in creative processes that involve significant generative computation may
help acknowledge the influence of toolmakers and algorithm designers, mediated
through algorithms, in terms of influential agency.

Sadly, such sensational attribution of agency to AI shape the general public’s
expectations of AI and its current capabilities. This is not only a problem of
expectations, but one of politics, ethics, and a Public Relations problem for AI—
depending on your position in relation to it. While these are wonderfully capable
algorithms that we should absolutely use and apply in artistic contexts, we should
also have realistic expectations, and talk about them in correct terms. An important
part of this is to ascribe agency to the correct parts of the system and not neglect the
human agency that is (still) such an important part of all AI systems and will most
likely continue to be so for a while.

31.1.3 Properties of an Artist

To get some leads on creative AI, we may ask the question: What properties are
needed from an AI composer or artist for us to regard it as an artist in its own right?
It is clearly not enough that the output of an AI has properties similar to the output
of human composers and musicians, so we could start to answer the question by
thinking about what are the properties of a human artist.
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Art is not instantaneous—it comes out of processes, of varying durations.
During this process, the artist interacts with her surroundings. There is continuous
input, in the form of a stream of impressions and social interactions, and there is
similarly continuous output in the form of sketches, temporary results, dialogs, and
social interactions triggered by reactions to her art. This is a feedback loop around
the creative process and the artist, with information flowing in all directions.

An artist has something to say, consciously or unconsciously. Values and views
held by the artist will be there, embedded in design decisions, whether she likes it or
not. If the artist does not intend to say anything or does not think that her music has a
message, receivers (listeners) will read something into it. The output is appreciated
(ascribed a value), and it is relatable, at least in projection. Sometimes some effort is
required. The artwork conceptually relates to the world and to previous art. It is also
in itself a part of a long-term process and discussion about what art is and can be.

A listener can also empathically relate to music and music-making, as many
have some experience of playing an instrument, or at least of singing. We can
perceive effort and intention in others’ behavior such as playing music [25] also
when we do not have sufficient domain knowledge to understand in detail what is
going on. For example, when listening to an ensemble of improvisers, we can
empathically perceive their efforts, interactions, and struggle.

So, why should we not expect these properties from an artificial artist, and from
art and music created by such agents? It is not enough that they imitate output from
human artists, as this is fundamentally non-creative (a process of optimization
instead of exploration). We must expect new material, derived from its own actions
and interactions, that is meaningful in relation to its surrounding world and its place
in it. And, for it to become meaningful to us, references should exist also to our
world, or such relations should be possible to form or construct for us when
listening.

31.1.4 Possibilities with AI in Art and Music

We can see three main ways in which AI can be used in artistic creativity:

• As a tool: It can be used as a black box system operated by a human artist, to
generate a batch of output that can be used in various ways by the composer, at
various stages of the creative process, e.g., a generated sound to include in a
song or score material to be further manually edited or arranged into a
composition.

• As a part of a system: It can be part of an interactive system consisting of both
machines and human agents, which is used to create art and music.

• As an autonomous agent: It can form an autonomous system that creates art
without any interactions with human agents.

Some AI algorithms, and this is especially true for evolutionary algorithms, can
help us explore what is possible under certain well-defined constraints, in that they
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perform a structured search of the space of the possibilities. We may search the
same space of possibilities as before, but with the help of such algorithms, we can
search it more efficiently. The word efficient may not ring well in artistic contexts,
but it can be understood as meaning two things. First, we can reach similar results
as with traditional tools, but faster. Second, and more interesting, is that we can
spend the same effort and time we would have spent with a traditional tool, but as
the algorithm helps us reach new corners, farther away in the space of possibilities,
we attain new results and new artistic expressions with similar efforts.

It is not only possible to reach new remote corners, but for time-based or linear
arts such as music, the search path is also interesting. New tools allow us to find and
follow new trajectories in the search space, and these paths shape the narrative [22].

AI algorithms allow us to work with new higher abstraction levels, in several
ways. Neural networks, and especially Deep Learning algorithms, are able to learn,
process, and reproduce patterns and stylistic properties of musical material, and
with Evolutionary Computation, the use of high-level analysis in fitness functions
can allow for control of complex properties in musical results without the need to
explicitly formulate methods for generating them.

We can work with stylistic patterns in appearance (material patterns) or
behavioral patterns in interaction. We can interact with algorithms by example, e.g.,
train an algorithm with examples that we want it to be influenced by.

Essentially, this possibility of working with non-precise and high-level input
relieves the computer music composer from the need to understand and interact
with code in a procedural way, from having to adjust detailed technical parameters,
and from having to specify things explicitly in detail. She can instead concentrate
on ideation and communicate with the algorithm through music (as done by, e.g.,
David Cope [15], and in any AI implementation that uses a musical training set).
Still, she needs to understand and form the experience of working with these tools
on this new abstraction level. It is not less complex nor less complicated. It is
different.

AI algorithms can, due to their ability to accept high-level input and generate
high-level output, be part of systems of connected interacting nodes, machines, or
humans, and many different algorithms can work together. Each node contributes
something to the overall creative process, but in such systems, it can be very
difficult to say which part contributes what property of the output. It emerges as a
systemic property of interacting parts, that each co-create the music [12, 13].
Thanks to the possibility of high-level input and output, AI algorithms can, just like
human musicians, be designed to take their own output as input, and thus become
complex feedback systems. This is a natural development, as many AI algorithms
are in themselves already set up as feedback systems (Generative Adversarial
Networks, Recurrent Neural Networks, evolutionary algorithms, etc.). Communi-
cating (in a way) through actual musical material makes it easier to think of AI
algorithms like human interactors, like a composition teacher, or a musical friend.
Still much more stupid than a human, but in other ways smarter, faster, or more
efficient (here is that word again). And, primarily, still different from a human.
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This ability to work with higher, less precise, abstraction levels may allow for
the composer and sound designer to think in potentials, using the definition of
spaces of possibilities as a compositional design strategy. She may think in terms of
what kind of textures or sonic features would be possible—and then let an algo-
rithm explore that space. Already the definition of the space contains important
aesthetic choices as input from the composer, and if the exploration is interactive,
even more input is provided, e.g., by picking desired results from a large set of
outputs or providing feedback underway. One can compare such a process with
gardening. You choose what to sow, you tender it, tweak parameters during the
development and growth (add nourishment and water, see that there is enough light,
apply pruning and selection), and then you harvest the results (this analogy was
further elaborated on in [26]). I often use this approach when composing or doing
sound design with the virtual modular synthesizer Nord Modular G2. I know what
kinds of phenomena I am interested to include in the patch, such as a certain kind of
gestures, a certain kind of potential timbres, certain potentials for cross-modulation,
a few filters, and some potential feedback paths. I make a patch containing all these
building blocks without even once listening to the patch. When it is complete, I start
exploring the parameter space of the patch using the built-in interactive evolu-
tionary tool [18, 21]. While occasionally adding some manual parameter edits or
some slight adjustments to the patch, the interactive exploration is the main driving
force. I usually find and harvest lots of sonic material in this way, for later use.

A certain generation of computer music composers (like myself) learned AI by
writing our algorithms from scratch. But the sophistication of today’s AI algorithms
has surpassed the point where this is realistic, and young people today learn to use
high-level tools directly, as available in programming libraries or end-user appli-
cations. I will get back to that, but this means embracing a certain lack of control
and transferring some agency to the toolmaker, just as a violinist relies on the
contributions of generations of luthiers, and a composer rests on the shoulders of
musical theorists through years of training, internalizing these theories.

But it has its advantages too. Such AI users have a chance of developing a new
craft, given that they invest the same time and effort with these new tools, just as
those from a developer background did, but on a higher abstraction level. As
everybody’s time is limited, they have a chance to accumulate a larger experience
database than the developer-artist was ever able to, and if used critically and with
reflection, they will develop a craft of applied AI in music. This requires developing
an understanding, practice, and skills. Deep technical understanding may not be
needed, but systemic understanding and the formation of good cognitive models of
the systems formed by artistic practice, and this takes time and effort.

31.1.5 Art in AI

Technology does not only provide tools for the creation of art, but it is also a
potential medium in itself, for artistic expression. Its complexity, and the societal
and aesthetic implications of AI in music and art, are sufficiently interesting for it to
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also be a subject for new works, where AI algorithms in themselves can be used as
a medium for expression. Artistically designed algorithms, and algorithms as art.
Not algorithms for art. Here I do not refer to “the Art of Programming” in Donald
Knuth’s sense of a complex and refined craft [42], but to how musical AI algo-
rithms could be tweaked, modified, and designed in personal ways, to express new
thoughts in music.

AI also allows us to work with more complex material, for example, to control
complex processes such as feedback networks, with complex fitness landscapes,
where the interesting or even perceptional meaningful points in the solution space
are far apart or hard to find. You can use an algorithm to adjust many parameters
simultaneously without knowing what they mean, and hence in simple interactive
processes “play” on sound engines previously hard to control, to the extent that they
were previously unthinkable as musical tools [18, 19, 22]. In the same way, AI can
make complex sound generation tools and generative algorithms more accessible to
non-technical users, by providing more intuitive interfaces and hiding the lower
computational levels.

Music is an art form that, to a large degree, builds on creating meaning through
internal (within a work) and external (between works) musical references [16, 49,
50], sometimes negotiated through expectation and surprise [39]. Music created
with similar techniques often exhibit similarities and form one further level of
references. High-level affinities emerge from algorithmic similarities. Each new tool
provides a new kind of reference, and here AI tools, operating on higher abstraction
levels such as styles and patterns, can form references similar in kind to those in
(postmodern) compositions that use style and imitation as the medium of expres-
sion. New kinds of references can also emerge within sets of material generated in a
single process, from the same training set or from a similar genetic representation.
For example, a search trajectory from a session of interactive evolution forms a
narrative of related musical material [22], related to the metamorphosis or variation
composition technique, as used by, e.g., Vagn Holmboe [53] and Jean Sibelius [65].

31.2 Agency

Agency as a concept goes back to Aristotle and Hume and was originally defined as
the capacity of an entity to act [61], to cause something. The causal chain should
not pass through the agent, but it should originate in the agent. The concept was
further developed by Anscombe [1] and Davidson [32] toward an idea of inten-
tional agency—when an action is initiated willfully by a conscious agent (normally
a human), and as a consequence, the agent can be blamed for that action—it was
intentional. In art, blame may not be the appropriate word. As art can provoke, I
often use the idea of who is the agent behind artistic provocation to sort out what an
intentional agent is in art. This acknowledges a sender, an author behind the work,
with autonomy and intention. Can we be provoked by an artwork created by an AI?
Or will we be provoked by the humans behind the implementation of AI? This
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emphasizes the importance of an author in art and music. A different kind of agency
is causal agency, which is commonly used when talking about the agency of
material things. Such agency cannot be blamed on the subject.

Agency understood as the intentional agency was originally assumed to come
from a human agent, but expanded notions of agency and agent appeared already
with the dawning cybernetics, later implemented into AI, where an agent could be
as simple as a thermostat, a reflex agent that reacts to some condition with some
action [58, 70]. The idea of a software agent emerged, first formulated by Hewitt
et al. [37] and further developed by Hewitt [36], as a simple self-contained inter-
active entity, with internal states and acting according to a script. It may be
goal-oriented, even though those goals may be very simple and the behavior pre-
dictable. It can also be arbitrarily complex.

Another approach to agency is found in Bruno Latour’s Actor-Network theory,
where actors can be also non-human agents. He asks, in relation to any kind of
agent: “Does it make a difference in the course of some other agent’s action or not?
Is there some trial that allows someone to detect this difference?” ([43], p. 71) If the
answer is yes, which is for most kinds of tools and artifacts, it can be ascribed to
some kind of agency. Latour is clear that such agency can have different magnitude
or strength, and he uses a number of words to describe this kind of agency of
non-human entities: They can “authorize, allow, afford, encourage, permit, suggest,
influence, block, render possible, forbid” (ibid., p. 72). Latour also mentions that a
non-human entity can mediate agency over time, related to how Vygotsky [69]
before him talked about tools as carriers of cultural behavior, and Gregory [35]
describes them as carriers of intelligent behavior. For a good overview of the idea of
non-human agency in Latour’s work, see Sayes [60]. Another view on the agency
of artifacts has been presented by Johnson and Verdicchio [41]. Their so-called
“triadic agency” presents a more applied perspective, analyzing the agency con-
tributions from the three agents: designer, user, and artifact, and related ethical
aspects (responsibility) connected to ascribed intention as divided between these
three agents. Another interesting attempt at redefining creative agency as distributed
among a number of contributing (and potentially interacting) agents has been
presented by Oliver Bown [12].

In the following, I will primarily focus on this widened (or simplified) concept of
agency as an influence—we may call it influential agency, as carried by artifacts
and tools.

In this text, we will assume that humans have free will and are able to take
decisions with responsibility for the consequences of their actions. This is the basis
for the judicial systems of most societies, so it is a reasonable assumption. Still, no
human is independent of external influence. Nature and nurture make us what we
are, and most of our ideas and actions are related to or derived from what we have
observed in others. My personal view of what music is and can be is certainly very
much shaped by my musical training and the music-making I have observed from
others. But it has grown into a mix unique to me, shaped by my specific bio-
graphical details. So the music I compose will be personal and unique, but it is at
the same time derivative. The sources that have influenced me, which perhaps have
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a causal agency in relation to my music, are so diverse, and have been mediated in
so many steps, that it is hard to pinpoint specific dependencies. What we do
undoubtedly depends on what others have done before us, backward in untraceable
steps.

As artifacts get gradually more complex, like AI algorithms, the border between
intentional agency and influential or causal agency becomes blurred. AI algorithms
fall somewhere in between these two categories of conscious actors with intentions
and dead material objects subject to the causal laws of physics.

Many scholars have ascribed intentional agency to AI entities [11, 40, 55, 71], at
least hypothetically, while talking about future implementations of AI. Such future
AI may be closer to humans in their cognitive abilities, but this is far from the
situation we have today. Today’s AIs are not autonomous, they do not reflect on
their own intentions, and they can’t be held responsible for their behavior and their
choices. Still, they are very powerful tools. But as we will see, there are humans
behind all design choices.

While lacking intentional agency, the AI implementations we have today are
much more complex in their behavior and in their dependencies than the kind of
tools and non-human agents people like Vygotsky and Latour were supposedly
referring to when formulating their theories. So, it is definitely worth analyzing to
what extent these algorithms have agency, and what determines the properties of
this agency.

31.2.1 Influential Agency

I introduce influential agency as an aspect of agency related to causal agency. If we
take into account that tools can be mediators (with Latour’s words) or carriers of
agency, from the toolmaker, realized during tool use, it is also related to author-
ship. If you include responsibility, causality becomes intentionality. But responsi-
bility requires awareness and certain control over the processes behind the
causality, which humans certainly are capable of having, but which non-humans
may not have. The intentions of the toolmaker were presumably around what the
tool should be capable of and how it should be designed to do this, but not exactly
how it should be applied. So, in the mediated agency, intentionality may not carry
over, as a toolmaker cannot predict what your intentions with the tools are. It makes
sense to talk about the influential agency from the tool and toolmaker, but not about
the intentional agency from the toolmaker.

It may seem far-fetched to bring in authorship to the equation, just by tool use,
but when tools are as complex and carry aesthetic implications on different levels of
detail, with stylistic implications, they significantly shape the music. A clear
example is the complex tools of today’s electronic music. You can often hear which
algorithms, instruments, and modules have been used in a certain piece of music,
and toolmakers certainly shape the aesthetic trends with their designs. In the case of
AI algorithms, which can embody patterns and behavior from existing music and
music-makers, this phenomenon may be even more significant.
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Influence is not just brought by tools, but also by many other sources during the
creative process [24]. As a thought experiment, we can recall Latour’s question:
What difference does a certain actor make? What would happen if we altered details
in the creative process, such as swapping a tool for another, swapping an algorithm
for another, or change the person who carried out some part of the process? Or
change any other constraint? What and how large differences would these changes
make to the resulting action or output? If this tool was different, how would the
results be different? Perhaps there is also another kind of agency, related to influ-
ence, but more drastic: Without this tool, this result would not even be possible—
we may call that conditional agency, and both can exist in parallel.

Influence brings meaning and references to the work, regardless of intentions.
Tools bring references to other music composed with similar tools, that exhibit
similar structure not connected to any intention from the toolmaker. Tools may give
rise to internal structure in a piece. And they imprint traces of the process of coming
into being of the work.

For example, a certain time-stretching algorithm (e.g., FFT-based stretching)
produces a certain kind of artifacts that are easily recognizable (a kind of harmonic
bubbling). As a result, when applied with extreme settings, we are listening more to
the algorithm than to the original stretched sound. Each composer who applies this
algorithm ends up with quite similar results, and even though these results are quite
complex in structure, they are similar, and the input from the composer is small: A
source sound (that is not quite audible anymore), a few parameters for the tool, and
the decision to use this particular tool. In this case, the influence of the toolmaker is
much larger than that of the composer.

In a similar way, a certain AI algorithm can—even though its output can vary
widely—bring a certain kind of characteristic structure, or a kind of sounds,
depending on what it is capable of representing or generating. The specifics of these
implications are dependent both on the design of the algorithm, the particular
implementation, and how its parameters are set.

31.2.2 Influential Agency of an Algorithm

The influential agency can exist in the form of mediated agency from humans.
What comes from the algorithm, and not from the human designers and oper-

ators behind it? It is not a simple question to answer. What influence cannot be
referenced back to a human? Does it have to exhibit true emergence for that to
happen? And how do we know when that happens?

While the human influence is certainly there, the algorithm may induce an
influence of its own. There are some situations when we could expect this to
happen.

First, when there is emergence happening in the system. Emergence is defined as
high-level behavior that is not directly traceable to the low-level parts, e.g., the
complex behavior of an ant farm, which is way more complex than each ant.
Complexity makes emergence untraceable.
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Second, when there is a layer of independent learning in the system, learning
during the process, in interactions with its environment. Just as a person is shaped
by nature and nurture, with complex untraceable influences, an AI algorithm doing
this may exhibit autonomy and perhaps agency.

Perhaps it is easier to go back to our original question: What does not come from
the algorithm itself, i.e., what comes from the humans involved? Then what is not
included in these answers will emanate from the influence of the algorithm.
Emergence is tricky, and a lot of human decisions go into it. As an experienced
designer of complex systems (co-evolutionary, cell automata, feedback systems), I
know that I can design systems that give rise to desired emergent results (sometimes
after a few design iterations, but still), and that this is a craft that can be learned,
even though it is hard to verbalize this knowledge. So human agency may go into
such systems too.

So what is the human influence? In a typical AI implementation, there are many
stages of human influence. The choice of the training set, parameter settings,
feedback from the human evaluation that goes into design choices, data represen-
tations, tweaks during implementation, changes, decisions about the workflow of
the algorithm, how it will interact with its user, and many more.

Time has a role in moderating influence. AI systems are still usually run in
computation batches over a limited time span, with human interactions before, after,
and sometimes during the process.

As systems get more complex, and the learning continues over a long time, say
many years, with continued interactions with its surrounding, including humans, it
will be harder to speak about the agency of specific humans or specific human
decisions. As the number of interactions grows, influence becomes diluted and
harder to trace, and as the system grows (due to learning), complexity increases
which makes emergent behavior harder to explain.

31.2.3 Influence as Information

Can we define agency in terms of information, in the meaning of Shannon [62]? I
will not even try to make a formalized theory for this here, but I will use this as one
way to reason about agency in artifacts resulting from human and AI creative
processes.

Agency is often defined in terms of action and causality, and the term originally
comes from action theory [1, 32]. But an action can also be thought of in terms of
information flow from cause to effect. This idea is not new and was an important
idea of cybernetics already from the start [3], emphasizing the connection between
information and control in both humans and machines. This was further formalized
by, e.g., Touchette and Lloyd [67], and Shannon-inspired approaches have also
been applied to learning [8] and decision and action [66].

In this way, the influential agency can be thought of as a transfer of information
from the influential agent to the musical result. For example, adding a note to a
composition adds a certain amount of information: timing, duration, pitch,
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dynamics, etc. Every choice in creating music with a modular synthesizer contains
an inflow of information, such as selecting which modules to include in a patch,
which patch points to connect with a cable, timing information about when con-
nections and parameter changes are done, and physical input into gestural inter-
faces, which are continuous signals at high resolution containing a large amount of
information, which can be measured in a crude way as the size of a MIDI file
containing a recording of it. Any application of a predefined generative process
with a certain number of parameters introduces a certain amount of information.

It has already been mentioned that the influence can vary in magnitude [43], and
perhaps we can understand this in terms of how information flows from various
agents into the creative process, and how some of that information is lost in the
process, and what remains. This information flow cannot always be traced back-
ward. Some information is lost, some is redundant, and some is transformed. But
there is a clear correlation, a dependency, between the information flowing in and
the information contained in the finished work.

The main idea here is that a piece of music contains a certain amount of
information. This information was introduced from somewhere during the creative
process that led to the existence of the music. If composed by a human, it comes
from years of musical training, from external impulses during the creative process,
from the tools used (such as music theory or sound processing tools), from inci-
dental actions, and from decisions taken during the process, influenced by a myriad
of factors. If the piece is generated by an AI, i.e., a computer program, the infor-
mation results from the processing of other information, either previously stored, as
contained in the program or as input during the running of the program.

If an AI were an isolated entity with no information flowing in (except at its
creation), the expressive power of the algorithm would be saturated after a certain
time. If the output is only based on the internal states of the algorithm, it does not
form an interactive relationship with its environment, and its output will not be
contextualized or have any relationship with its environment. Or, any such con-
textual relation will be diluted over time, as the environment changes, but the AI
will not change.

A lot of information is embedded in the training set used within many ML
algorithms. Some information, but probably less, is contained in the process of
selecting the training set. Other information is input during the design and imple-
mentation process in the form of numerous design decisions and parameter settings,
as borrowed code from existing libraries, and from the process of coding.

Even if the amount of influence could be estimated, it cannot be isolated as
having caused particular features in the results, since several agents interact and the
result emerges from these interactions in a way that is not possible to attribute to
each one of them, e.g., a particular artist, with her personal aesthetic preferences
and characteristic behavior and creative habits, interacting with a particular tool (in
a broad sense), results in a unique combination. This is of course also affected by
what happens in the environment during the process. This particular interaction and
its unique results could not have occurred in any other way. The same tool in the
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hands of another artist would lead to different results. And the same artist using
another tool would also result in different art or music.

31.2.4 Influential Agency in a Typical AI Music
Implementation

AI algorithms are often talked about as being able to create artistic artifacts on their
own, but in reality, there are many layers of human influential agency at play. Let us
start by looking at the various points of the development and application of such
algorithms where this happens.

As an example, let us consider a hypothetical generative Recurrent Neural
Network (RNN) network that is used to generate music in a style based on a
training set of existing music by some human composer.

• It was humans who invented the general concept of artificial neurons, inspired
by biological neurons.

• In the case of this specific type of neural networks, a large number of humans
have been involved in the development and improvement of the underlying
algorithms, over many years.

• Humans programmed a particular implementation of this algorithm, as a library
usable by others. It is still a general set of algorithms and tools, to be applied to a
wide area of possible situations and tasks, but also comes with a set of con-
straints, following from design decisions by the programmers.

• Humans chose which particular generative algorithm to use in this project, from
a large set of potential choices, and which particular implementation of this
algorithm, from available software libraries, or chose to implement their project
within an existing development environment that comes with a set of libraries.

• Humans also chose what hardware to run it on, which comes with a set of
constraints, such as computational speed, available memory, and a processor
architecture more suitable for one type of implementation than another (e.g., a
certain kind of parallelism).

• Humans chose how the material was to be represented to the algorithm, which
can have a large impact on what can be learned during the training phase, which
features are detectable in the input, and what output can be generated.

• Humans set a myriad of parameters that control how the chosen algorithm is
operating: Number of layers of neurons, number of nodes, size of the training
set, training parameters and sub-algorithms, preprocessing of the training set,
etc. All these parameters have implications for how the algorithm will perform
and usually take some experience to get right. There are usually no default
choices for such parameters that work for all kinds of projects, and often con-
siderable experimentation is needed before good settings are found.

• Humans choose the training set which has crucial aesthetic implications for the
generated output.
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• Humans tweak parameters of the algorithm, based on iterated outcomes, if the
algorithm does not work as expected, the result is not good enough, or shows
unwanted features. In this feedback process, human aesthetic evaluation is a
crucial component.

• Finally, humans select the best examples from a large set of generated outputs.
Also here, human aesthetic evaluation is at play.

In most cases, all these humans are different people, working at different points
in time, and their decisions were taken in very different contexts, at varying dis-
tances (in time and computational steps) from the final artistic result. Some of them
were working in a very general and abstract context, not even considering what
these algorithms will be applied to. Still, their decisions carry an impact on the final
results. Sometimes the humans were part of the feedback process of trial and error
or final tweaking, trying to make the final results as good, or as similar to the
intended style, as possible. The decisions, choices, and values of those early in the
chain remain embedded in the tools they develop, which are then used by others in
the later steps of the chain. All these steps have an influence on the output.

31.2.5 Influential Agency in an Actual Example: Ossia

Let us look at a similar analysis of a real case. I have chosen my own Ossia system
which is an implementation of an evolutionary algorithm that breeds complete
performed piano pieces of a duration of 30–90 s each. It started as an interactive
evolutionary composition tool in 2000 [19], and autonomous evolution (based on
random or keyboard input) was added in 2002 [23] when it was exhibited as an
installation for computer and Disklavier player piano at the Gaudeamus Festival in
Amsterdam. Later it was exhibited for several years at the Universeum Science
Center in Gothenburg, Sweden. It was chosen as an example because it is well
documented, and I know it inside out, as I designed and coded it from scratch in C+
+ in a number of versions over several years. It is still shown sporadically in
lectures, e.g., as background music to the lecture versions of this chapter. Ossia
composes a continuous stream of new piano pieces/performances and performs
them as a suite. It can be interactive, but I will here talk about the autonomous
version, as it appears to be composing by itself, and the output is quite varied.

• The choice of algorithm was influenced by my previous work on interactive
evolution for sound synthesis [18], which was in turn influenced by my reading
of introductory literature—introduced by my doctoral supervisor—on the topic
of Artificial Life, and by my previous extensive experimentation with random
search in sound synthesis parameter spaces. The idea of simulated evolution in
computers goes far back and was initially mentioned by Alan Turing and John
von Neumann, further developed by a number of researchers in the 1950s and
60s, and popularized as the genetic algorithm by John Holland [38]. My
understanding of evolution was also influenced by reading Darwin and Dawkins.
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All these sources indirectly or directly influenced my implementation, mediated
in several stages through researchers, authors, and teachers.

• The genetic representation of Ossia was designed by me, influenced by
knowledge of and previous work with tree-based data structures (from computer
science studies and other machine learning experiments) and generative gram-
mar (from various books and from knowledge of Lindenmeyer systems), and my
previous works with recursive algorithms (e.g., fractal graphics) and recursive
programming (e.g., Prolog). The idea of recursive pointers was also based on the
idea that a core property of the musical form is repetition with variation, and this
construction made this possible. The modifiers (of velocity, duration and pitch)
were one way to make possible another desired set of archetypal musical fea-
tures: exponential crescendo/diminuendo, exponential accelerando/ritardando,
and repetition with transposition. These ideas were most likely influenced by a
lot of reading of classical form and music theory and of musical aesthetics.

• The genetic operators were chosen and designed by me, influenced by various
papers on mutations and cross-over in tree-shaped genomes.

• The initial population can be either randomly generated trees, a set of arbitrary
musical sequences (stored as MIDI files, parsed into genome trees by the sys-
tem), or a set of previously evolved musical pieces (in stored genome form). In
the first case, “randomly generated trees” are not entirely random. They are
generated in a detailed process coded by me, with choices for what random
distributions there are for certain properties to appear in the tree, and what the
ranges of these values could be. So it is still much influenced by aesthetic
choices by me. In the second case, the set of musical “seeds” has varied, but the
most used set has been a collection of simple archetypal musical gestures such as
an upwards scale, an arpeggio, or a repeated note. These simple seeds were used
because I thought they would expose the kinds of variations that the system was
capable of. Even though this was the initial educational motivation, the set of
seeds have been kept for most performances with the system. Their exact form
and selection were certainly shaped by my long training as a classical musician.
In the final case, there is a procedure coded by me for selecting when a previous
musical result will end up in the seed pool.

• The workflow of the system, which is behind how it acts and interacts with the
world around it, was designed by me based on a series of circumstances. The
initial interactive evolutionary algorithm was designed for it to be used as a
composition tool, generating raw score material to be arranged into compositions
(e.g., my chamber work KARG [19]). Soon after, in 2002, I made it evolve
pieces of its own, influenced by an opportunity for a performance at the
Gaudeamus Festival in Amsterdam and by the availability of a Yamaha Dis-
klavier concert grand player piano. It was exhibited with this piano, and I
thought it would be interesting to also let visitors perform on the piano, and let
the system evolve further based on the human performances. If nobody plays, it
evolves new pieces from scratch.

• The fitness criteria were designed by me, in a design process that extended over
several design iterations. In the first version, the system was only interactive, and
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all examples were auditioned and selected by me. When I made it autonomous, I
used my observations and notes from how I tended to select musical examples
and tried to implement hand-coded formalized versions of the same selection
criteria. They were based on statistical measures such as note density, tessitura,
information content and repetition, and variations over time of these statistical
measures, as a way to indirectly enforce dynamics and variation (or process)
within a piece. Clearly, my aesthetic preferences influenced the workings of
Ossia here.

• Evolutionary parameters (population size, mutation rates, halting criteria, etc.)
were first set ad hoc by me based on previous experience of evolutionary
algorithms. They were then gradually adjusted based on results of repeated test
runs, based on personal preferences and informal performance evaluations.

• A final selection of pieces to be played has sometimes been made by me, as in
the Ossia Suite, featuring 27 piano pieces [27]. They were selected by me from a
large body of output, based on aesthetic criteria. In the real-time installation
version, no such selection takes place.

• During development, the system was tested using a simple piano sound. There
were two primary reasons: First, I am a pianist myself and feel very much at
home with this timbre. Second, the piano is regarded as some kind of “universal”
instrument, mostly because it can be played over the full pitch range by a single
musician. This undoubtedly biased the design toward producing musical mate-
rial that works well on the piano. In spite of the supposed universality of the
piano, all instruments are different, and the way piano responds to dynamic
playing, how dissonances behave perceptional in different registers, its rhythmic
pregnancy, and many other features are unique to the piano. Music composed for
it may not work well with other instruments. This simple design choice strongly
influenced the aesthetic output of the system. And indeed, the output of the
system sounds similar in aesthetics to my own piano improvisations, even
though there is no training involved, nor any musical knowledge explicitly
coded into the system.

The above is of course only a simplified analysis of the various sources of
influence on the Ossia system. There are many more design decisions involved, and
many features of the system that I cannot include here for reasons of space. Still, it
is clear from the above that even though it may appear to an observer of the player
piano continuously performing an endless series of new compositions that the
software composes these pieces, clearly there is the extensive human agency
involved. As the author of the system and a listener to maybe thousands of pieces
composed by it, I can certainly hear the patterns, even though it is (designed to be)
very varied. Although there is infinite variation within the result space, it is not
infinite in its extension. And I am starting to grow tired of it. Exploration has
mapped out the limits of the result space, if not all subspaces contained therein.
I can clearly see the bars of the fence it is caged in.
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31.2.6 Agency is Where in the Code?

There is usually nothing specially “AI” about the programming languages that are
used for implementing AI algorithms, as they can be implemented in any common
programming language. Some parts of the program implement an AI algorithm, and
other parts take care of the more mundane tasks—general infrastructure of the
program, the main loop that controls actions, asks for new input, asks for new
output, performs memory management, etc. As all AI implementations consist of
such mundane tasks and rather basic mathematics, just iterated many times, and/or
in large parallel configurations, it is hard to say where in such a program agency
would appear. It is often considered to emerge from the sheer scale and complexity
of the algorithm.

It can also be argued that many current ML algorithms, such as deep neural
networks, harbor no agency if understood as a capacity to act. As the actual AI
algorithm is not associated with actions, but with evaluations and classifications, the
only action-related agency in such systems happens in the “normal” code around
the ML algorithm: the main loop, the if..then statements acting upon the evaluations
of the AI algorithm. And these parts typically do not learn. And as long as these
parts of the code still consist of common for..next loops and if..then statements, they
will never be able to act in any intelligent way. According to this view, today’s AI
systems act stupidly and repetitively, but have an ability to develop and learn
complex evaluations and classifications. (This particular argument was developed
in dialog with Karoliina Salminen, principal AI engineer at Huawei, Finland.)

The above argument fits quite well with the Ossia system. It is programmed to
compose a new piano piece as soon as the previous one is being performed, with a
fixed number of seconds between each performance. If a human plays on the piano
while Ossia does not play, it will evolve a new piece based on the human input as
soon as the human has been quiet for a few seconds, and then perform this as soon
as it is ready. If somebody presses the Q key on the computer, the system stops. The
fitness criteria are varied according to a number of preprogrammed parameter sets,
giving quite different outputs. There is not really any potential for long-term
progression.

There is not much intentional agency in this scheme, which is basically a looping
script with some external sensors (MIDI input from the piano and the computer
keyboard) and some actuators (the player piano). Just like the simple thermostat, it
is a reflex agent, although with slightly more complex internal states.

31.3 Tools and Humans

Most art and music are made with tools. As we have discussed earlier, tools are
carriers of embedded agency and carriers of intelligent behavior. They influence the
artistic results, because they define what is possible, and they define the paths in the
space of the possibilities, along which creative process can travel [24]. Through this
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influence, they carry their agency, in several ways. They lead to characteristic
results, because only certain specific things are possible to do with a specific tool.
Certain things are easy to do, and certain things are hard.

Previously, instrument makers provided simple tools to be used by skilled artists
(e.g., a violin maker). Not simple in terms of construction or craft, but in terms of
time-complexity in their interaction. They provide constraints, but interaction is
primarily based on real-time responses to direct gestural input. No pattern comes
out that is not detectable in the input.

Today, instrument makers provide tools that contain extensive databases of
presets and algorithms for putting together this material with potential for creative
agency. Such tools have stylistic implications, as they are designed to be used
within a specific style of music. They can be used at different levels of control:

Pressing play
where the tool generates a whole song, or at least significant portions of it, for
example, by combining complete loops and ready-made drum patterns, applying
automatic accompaniment engines, and mixing algorithms. The song you create in
this way risks being very similar to the song I will create if we use the same tool and
there is little inflow of information.

Collage
where you manually put together finished pieces from a database, such as loops,
drum patterns, and sequence phrases, and select the sounds they play. Here, more
effort is put in by the user.

Detailed
where you have control over every parameter of sequences, sounds, and processing.

There is a qualitative difference between the old instruments and such new tools,
which has been analyzed in detail; e.g., by Nilsson [54]. This difference is further
amplified when you take the next step toward tools based on complex systems and
AI algorithms, which have complex internal states which develop over time. When
designing such emergent systems, the output of which we cannot predict, design
choices have to deal with low-level behavior while the consequences appear in
high-level behavior, and new skills are needed to understand and work with such
systems.

31.3.1 Effort Versus Tool Complexity

We can do a simplified analysis of the role of effort and inflow of information in
relation to tool complexity. To simplify, we only talk about small or large effort
(time and amount of interaction invested), and simple and complex tools (designed
by myself or somebody else). In this analysis, we must remember that influential
agency can be mediated in two ways: by a user, through previous learning from
others, and by a tool, through design from the toolmaker.
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There are a few obvious cases:

• A simple tool with little effort: This does not lead far, and results will stay at the
level of playing Twinkle, twinkle, little star with your index finger on an unfa-
miliar instrument.

• A simple tool with a large effort, applying skills from years of training: The
main part of the influential agency will be from me as an artist, except that a
significant part of my skills indirectly come from others, as mediated through
learning. Very little will come from the tool, except in the form of generative
tool constraints.

• A complex tool with little effort and interaction, for example, a tool con-
taining presets and generative algorithms: The main part of the influential agency
will be from the toolmaker because I will rely on ready-made material or
material generated from algorithms with default parameters.

The following cases may be less obvious.

• A complex tool of my own design, used with little effort: If I have written
every line of code, but I let the tool do the choices, the main part of the
influential agency will still be from the toolmaker—but that is me. Still, a large
part of the influential agency comes from the inventor of the class of algorithms I
used, and the teachers or authors that taught me those algorithms. But there has
been a significant inflow of information from me into the creative process,
because I designed the tool. But there is a catch. If I continue to use the same
tool to produce a large amount of musical output, without much new interaction
or effort, it will converge toward the situation in the above case 2. My initial
effort will fade in proportion with time, as the extensive but limited one-time
effort will have been used to create an ever larger amount of music, thinning out
the content in relation to the total inflow of information. In a sense, it can be
regarded as me re-instantiating the same piece over and over again. This is the
case with the autonomous version of my generative composition Ossia. It keeps
generating music but does not add anything new.

• A complex tool with large effort: If I use a complex tool designed by somebody
else, containing databases or generative algorithms of which the inner workings
are not known to me, and I put in a large effort, with a large inflow of infor-
mation, then I have time to form a cognitive model of the tool based on expe-
rience. This helps me navigate the pathways in the result space. Through the
effort spent, I have a chance to find distant corners in the result space that may
not be found by others that put in less effort. And I have a chance to find
particular pathways in the result space that are personal to me.
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31.3.2 Non-mediated Agency in Algorithms

If we, by definition, assign agency to the toolmaker, we risk ending in a paradox.
As all AI systems are man-made (it lies in the word artificial), there is a possibility
that at some point the system starts to exhibit agency of its own. We do ascribe
creative agency to ourselves. And we have to be able to tell what is the qualitative
difference, when they attain this agency and break free from us, or we end up in the
“but who created us” circle of reasoning, and will keep looking for a first mover.

So, when does a system attain agency, aside from the mediated influential
agency of the toolmaker or designer? Bown and McCormack [13] have defined
what they call creative agency as the creative contribution attributable to the actual
system, and added that “novelty and value that cannot be directly attributed to the
computational system should have no weight in supporting claims about the cre-
ativity of that system”. When analyzing creative generative systems, creative
agency is the important property of a system, not the actual creative output.

But what are the criteria from creative agency? When do we actually take our
virtual hands off a system, and it starts creating beyond the influential agency of us
as designers? It is not easy to answer this, but the following questions may help us
on the way:

• What remains of our design over time—what is fixed and what is dynamic in the
system, at different abstraction levels?

• Does the system search the same solution space each time or does it develop
over time?

• Is the solution space searched in the same way and based on the same criteria
each time or is there potential for learning?

• Are the aesthetic constraints of the underlying representation sufficiently relaxed
or even open-ended?

• Is there a sufficient inflow of information from interaction with other agents or
other parts of the environment?

Without having any definite answers, it seems to me that it comes down to
process, and the internal changes of the system as it learns, transforms, or evolves.
It needs to be able to accumulate impressions over time, and we need to allow for
time for things to develop, while we remove ourselves. Given sufficient
open-endedness, as a system gets more complex, and the learning continues over a
long time with continued interactions with its surroundings, including humans, it
will be harder to speak about the agency of specific humans or specific human
design decisions. There will be many more interactions, and with a larger number of
humans, so agency will be more distributed and harder to trace to specific events or
agents. And the system will potentially grow in complexity, and perhaps approach
the kind of emergence where underlying causes cannot be identified at all.
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31.4 Spectra of Agency

A spectrum is a range of a certain quantity, such as the spectrum of audible
frequencies. There are certain properties involved in this discussion about the
agency that have a range from simple to complex. We will look at these spectra in
this section, in an attempt to understand these parameters better.

31.4.1 Spectrum of Tool Complexity

We can think of tools as having two primary levels of complexity, even though they
are related. One is the level of abstraction of the material that a certain tool or
algorithm operates upon. Is it basic musical atoms such as individual sound samples
or individual notes? Or more complex constellations of such atoms, such as phrases,
patterns, or even operations on the stylistic level? The other is the complexity of the
operation—what kind of transformation does the tool bring? Is it a simple linear
transformation or a more complex operation? A few examples may help to illustrate
this. A simple operation may be a transposition of a score, by moving all notes up
by a major third, or changing the volume of a sound file by multiplying all sound
samples by a constant. It is a simple, straight-forward operation applied to the basic
material. An example of an intermediate operation could be to search and replace a
given interval sequence with another sequence or to generate material with the same
statistical interval and rhythm distributions as a given piece of music. A complex
operation could be to compose a fugue in the style of Bach or to initiate a new
musical style by creating a piece of music that differs in structural properties from
all previously existing music. These operations get more complex both in terms of
the amount of information that is introduced with the application of the tool—a
single parameter in case of transposition and a complete set of Bach’s fugues in the
case of fugue generation. They are also more complex in terms of the amount of
computation required.

A proposed simplified spectrum of tools could look like this, where the level of
abstraction and complexity of operation have been combined into a single, rising
scale (see also Fig. 31.1):

Simple tools
Straight-forward linear sequentially operating physical, virtual, or theoretical tools.
Examples: A pencil, a keyboard, a violin, a pair of scissors, or cut-and-paste
operations.

Template-based tools
Tools that contain predesigned databases of material or parameter sets, to be able to
quickly solve complex tasks in predefined ways. Examples: Preset-based synthe-
sizers and effects, a clip art database, or a loop library.
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Simple rule systems
A set of behavioral rules or basic procedural code that constrain the output, and help
project beyond the artist’s imagination. It is easier to invent a few rules than to
predict what the result will be, as we are lousy predictors. Examples: A line fractal
implemented as a recursive Logo script, search-and-replace, regular expressions,
isorhythmic composition techniques, a generative modular synthesizer patch, or the
rules of a game piece in the style of John Zorn.

Generative tools and algorithms
More complex computational tools that generate or process material based on
advanced algorithms. Possibly designed by, tweaked by, or interacted with by the
artist. Examples: Most current AI algorithms.

Autonomous tools
Tools that generate or process material without any interaction with a user. If a tool
becomes autonomous, it may perhaps not be called a tool anymore, as being used
by someone could be considered part of the definition of a tool. No examples of this
category exist yet.

31.4.2 Spectrum of Agency

Two properties shape the amount of influential agency an agent may have. The first
is the amount of interaction with the agent or the amount of information embedded

Fig. 31.1 A proposed spectrum of tool complexity. The complexity of operations increases from
top to bottom
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in the tool that mediates the influence. The second is the distance of this interaction
or the application of this information—in time, processing steps, computational
layers—from the actual result. Information may be diluted, transformed, or lost in
the process. An agent may be very distant from the final result, but still have had
influence through actions, e.g., the inventor of a class of tools a long time ago, or of
a new kind of algorithm, e.g., a new kind of neural network, without any intention
for it to be used to create art. Such an inventor still has an influence on me making
music with these algorithms, since it opened up for the possibility, created a
potential. It is not intentional, but somewhat casual, and definitely influential.

Tool designer
The inventor of a tool or a class of tools.

Toolmaker
The maker of a particular implementation of the tool.

The tool itself
The tool carries embedded agency from the tool designer and the toolmaker, as a
mediator. In the encounter between tool user and tool, the tool’s potential is
actuated in a process constrained by the tool’s space of possibilities and the user’s
aesthetic preferences and skill [24].

Tool user/Artist
The agent who applies the tool in a specific context, to a specific material, with
specific parameters. The artist also brings in influence from her own previous
music, from other music and musicians, and in an extended sense from all of music
history.

The artwork itself
The artwork carries accumulated embedded agency from all previous agents.

The receiver/listener
The listener, who finally receives the music (or a co-player who hears a colleague
play on stage), carries out, consciously or unconsciously, an interpretation of what
is heard, and through this applies influential agency. At this final stage, there is also
the sense of personal agency an engaged listener can sense, as if it was created by
yourself, often enhanced by dancing or other synchronous movements [25].

As shown in Fig. 31.2, there is also some influential agency going in the
opposite direction. Tool users often give important feedback or requests to tool-
makers, and this can be iterated many times. For example, as a musician, I have
worked closely with electronic instrument makers, both in testing, suggesting new
functions, and sometimes even initiating new tools. These tools contain influential
agency from me and the toolmaker and are then applied again by myself. The
receiver—and the artist herself, as mediated by the work—contributes to the aes-
thetic context, and in the long run to art history, which in turn influences the artist.
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In electronic music, the tool designer, toolmaker, and tool user are often the
same person. Still, electronic musicians build or program their musical tools (in-
struments) from other tools at lower abstraction levels. For example, a live coder
may create her own language or library of functions to use in a live setting.
These are usually implemented in another, more general programming language.
A synthesizer builder constructs her machines from circuits designed based on
decades of development by the analog synthesizer community, perhaps with added
inventions of her own, and/or in new configurations, just as most pieces of music
are created based upon patterns and forms that have been developed over centuries.
In the same way as all music is derivative, tools are derivative.

31.4.3 Spectrum of Generativity

Based on the above spectra, we can also make an attempt at a rough spectrum of
levels of generativity in music, i.e., a list of categories of music in rising order of
generative complexity, and rising order of influence from underlying tools and
algorithms (see also Fig. 31.3):

Fig. 31.2 Spectrum of agency. Influential agency flows from the tool designer and toolmaker, as
mediated by the tool itself, to the tool user (the artist), and onwards, through the act of
interpretation (which sometimes involves interpreters/musicians). There are also circular flows, as
the artistic result becomes part of the aesthetic context these agents live in, and in the long term,
becomes a part of art or music history, and hence influences both tool designers, toolmakers, and
future artists
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Material/medium constraint
The chosen medium has implications for what can be represented. For example, if
you work with Western notation, only certain kinds of rhythms and durations are
possible to write.

Tool constraint
The choice of tools has implications for what can be done in the chosen medium.
Tools define pathways (structured subspaces) in the space of possibilities defined by
the medium. If you work in the medium of electronic sounds, constrained by a
sequenced synthesizer as a tool, certain sounds are possible as defined by the
instrument/synthesizer, and certain events and kinds of parameter changes are
possible to represent and control from the sequencer. Here, both the medium and
the tools used have generative (and restrictive) properties.

Rule systems
Simple rules about how constituent parts interact during a creative process lead to
characteristic patterns.

Generative algorithms
Computation-based algorithms generate musical material, for example, from an AI
algorithm.

Fig. 31.3 Spectrum of generativity, with generative influence going from low level at the top to
very high level at the bottom. The initial choice of medium to work in affects what can be
represented. The chosen tools constrain what can be done, and successively more complex
algorithms bring higher level generative properties to the creative process, gradually shifting the
influential agency toward the tool designer and toolmaker—which may very well be the same as
the artist
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Interactive AI
The AI is a node in an interactive creative network of agents. It generates output
based on input and based on stored/learned information. Learning may happen
during the process.

Autonomous AI
The AI carries out a situated process in relation to the creation of a single work and
in relation to a series of works. It has sustained artistic output, and it has a repre-
sentation of and a relation to the outside world. In this situation, the AI may achieve
intentional agency.

As the level of generativity increases toward the end of the list, the influential
agency is shifted toward the tool designer and toolmaker, as the tools by mediation
bring complex behavior and aesthetic implications that are not under the direct
control of the artist. However, especially in electronic music, it is common that a
composer designs her own tools.

Note also the similarity to the spectrum of tool complexities shown earlier.

31.5 Problems with Creative AI

In this section, I will briefly discuss a few fundamental problems with current AI
algorithms in relation to creativity. These problems have been described and ana-
lyzed in more detail in a previous publication [26].

31.5.1 The Inherent Non-creativity of Statistical Machine
Learning

Many current AI algorithms are “mean machines” that are designed to find or
produce the most likely outcome. This includes most statistical methods (e.g.,
Markov-based models and neural networks). They will stay inside the box by
definition.

Such a system learns from the training set and is then used to generate something
that has very similar statistical properties. It will not be able to generate anything
that adds something new, at least according to an understanding of the model as the
best possible (in the given algorithm, size, etc.) representation of the complete
material in the training set. Briefly, the argument is that if it is trained on, say, the
set of 15 two-part inventions by Bach, it will be able to generate new inventions in
the style of Bach. But each of those newly generated inventions will be completely
based on what the system learned from the training set of the original inventions.
And each original invention, while sharing some properties with the others, added
something that was unique. If Bach would have written the 16th invention, it would
have added some new ideas that were not present in the previous 15. But the AI
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algorithm is not able to do that, because the impulses that led Bach to the material in
his hypothetical 16th invention would have come from outside of the existing 15
inventions. It could have come from an impulse, a paraphrase on an earlier piece in
the same key, or a musical idea from his wife.

If such a system would produce something that went outside of the training set, it
would be thanks to its characteristic inabilities, basically its flaws and limitations
that make it unable to reproduce something perfectly. This may very well result in
interesting output, but it will not be because of inherent creativity, but from design
faults or conscious limitations.

This relates to the previously mentioned complementary relation between opti-
mization and exploration. Most ML algorithms are convergent and optimize in
relation to criteria such as similarity. An interesting parallel—which highlights why
this is so important in an artistic context—is that it is very similar to the relationship
between entertainment, which aims for the middle of the circle, with known
responses, and art, which tries to extend the circle, testing new ideas.

Creativity is about creating new patterns, and new kinds of patterns, while most
machine techniques for handling large data are about detecting, classifying, or
reproducing patterns of a known form.

Machine Learning algorithms produce models that are based on correlations in
superficial observations, not on causality between interactions with the environment
and artistic output. This is a classic problem in empirical science, and it is especially
troublesome in this field because it tells us what but does not help us understand
how and why. Such algorithms are capable of generating mimetic output, which
lacks all connections to the situated process from which the originals emerged. We
generate diluted Bach music, but not a model of how Bach would interact given
certain input, or how Bach would have developed beyond the last item of the
training set.

Similar problems appear with evolutionary algorithms when fitness functions are
formulated in terms of properties of the output. This is also an optimization process
where the goal is well specified. Still, there are a number of successful attempts at
exploratory approaches with interactive evolution [9, 18, 69] and novelty search
[44].

31.5.2 Opaqueness of AI-Generated Material

Both neural-based and evolutionary algorithms suffer from the problem of
opaqueness of the results. The meaning of individual weights in Deep Learning
networks is very hard to detect, and evolution often generates complex but unde-
cipherable solutions, as pointed out already by Sims [63]. The solutions work, but
we do not know how. This problem also exists in natural evolution and artificial
breeding. Explainable AI has been part of significant research efforts lately [59] and
is often mentioned as a necessary part of ethically sustainable AI.
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This opaqueness may also lead to material that is hard to work with because we
do not understand its inner logic. Even if the composer has written the code herself,
the output may feel alien to her, and it will take a considerable effort to learn to
work with it. For an example of such a problematic result, and how to deal with it,
see [28, 29].

The flip side of this is that while solutions may be hard to understand, they may
work well. When evolving or training a co-improvising agent, this may be what we
need.

31.5.3 The Lack of a Model of the Outside World

The lack of semantic understanding and focus on patterns is a general problem with
AI. They are applied to the recognition or generation of empty patterns lacking
connection to the outside world. These generated patterns may inherit an implicit
referential connection from training sets, but it is never re-confirmed and calibrated
as humans do, constantly. We go back and check if an answer is reasonable if it is
compatible with our cognitive model of the world.

A common rule of thumb is that model complexity should match domain/data
complexity, for optimal learning without over- or under-fitting. Still, simpler
models are usually preferred in AI, because they are faster to compute, easier to
understand, tweak, and design, and will not over-fit. Simpler models make it
impossible to represent the real world in its complexity.

The lack of world models in AI implementations enhances the previously
mentioned problems with mimetic pattern generation, free from causal connections,
lacking interaction, situatedness, and semantic dimensions.

Even if hypothetical more advanced AI algorithms would be able to partly
represent the outside world, there is a logical paradox, developed around the
concept of embedded agency [34]. The learning agent is part of the world, and
hence, smaller than the world. So, a complete model of the world (including itself)
is impossible, because the world is larger than itself (itself + the rest of the world).
Artificial agents who realize this are subject to the same limitations and feedback
loops as we are. Without this realization, it will be decisive but wrong.

To summarize, most current AI creativity imitates the consequences of creativity
instead of implementing the creative process and emulating the causal chains
behind it. It lacks continuous interaction with its environment and the related inflow
of information. As long as this approach prevails, AI creativity will remain a
mimetic black box batch process.

31.6 Aesthetics

In this section, a few issues related to the aesthetics of AI-generated music will be
discussed.
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31.6.1 Autonomous Aesthetics and Agency

The idea that an artwork should be judged as independent from the artist was put
forward by Roland Barthes in his famous essay the Death of the Author [4]. After
being published, the text lives its own life, loses the connection to the author, and
should be evaluated as a separate entity, or as Barthes says: “it is language which
speaks, not the author” (ibid, p.143).

But the artwork embeds values and patterns from the artist. It is shaped by the
process of the artist and her interactions with her surroundings during that process. It
is evaluated or appreciated in a context of an artist, style, and culture, by a receiver
(critic, listener) who is part of that context or part of another related context. It is
created with tools that are part of that context, and the tools and technology behind it
are often audible or detectable for the educated listener or the fellow practitioner.

The conclusion is that the artwork does indeed relate to the world. There is an
information flow in and out between the world and the creative process, and this
shapes the result. So, in my view, it is a utopian view that the artwork could be
regarded as completely separated from the artist. The artist, the artwork, and the
receiver are all part of the world. An AI artist needs to be part of this world, too, and
relate to it. It needs to be an agent in this world to create art that is meaningful to
others in this world.

Part of Barthes’s argument is that the content of the text comes from numerous
sources and numerous authors, and how all work thus is derivative. According to
him, a text is

a multi -dimensional space in which a variety of writings, none of them original, blend and
clash. The text is a tissue of quotations drawn from the innumerable centres of culture. [4,
p. 146].

This is of course also true for music. In resonance with my argument above
about influential agency, and mediated agency from tool designers, toolmakers,
teachers, and other sources of influence, we could rephrase Barthes’s claim as: The
death of one author, and the acknowledgment of many. It is in line with the idea of
distributed influential agency, and a similar argument has been presented by Bown
[12], in the context of computational creativity.

In a sense, the idea of the autonomous work from an analysis point of view does
not take away from the fact that there has to be a creative process involving human
or artificial agents, and that the conditions and properties of this process influence
the result. A synthesist of art, i.e., a developer of creative algorithms, will still need
to understand this mechanism of influence even if the analyst does not care.

Also, empathy and empathetic experience play a major role in the appreciation
of music, in particular of live music performance, and here the human agency and
our ability to perceive intention and agency play an important role. One could go as
far as saying that in some musical contexts, for example, in free improvisation, the
sonic result is not the most important part of the experience—that may instead be
the empathetical experience of the interactions, the efforts, and the struggle of the
musicians [25].
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31.6.2 Characteristic Inability

In my previous writings on creativity (e.g., [24]), I have talked about characteristic
inability or characteristic incompetence as the personal way in which an artist or
musician cannot do what is considered “perfect” or what originally intended.
I cannot write a perfect Bach fugue, and the personal way in which I fail becomes
my personal style of fugues. These peculiarities are what makes it a Dahlstedt
fugue. The same applies to generative algorithms—the way a generative system
does not generate something perfect becomes its characteristic “personal” style.

Something related to pareidolia comes into play here. We read consistently
“clumsy” results as personal, while anything perfect is not interesting (except for
that virtuosic “awe”). But we are attracted to in what way it is not perfect, to the
relation between perceived intention and actual result. Our own aesthetic sense sees
the intended (ideal?) image behind the limited depiction and is able to abstract the
transformational layer of imperfection, and this becomes an aesthetic experience of
its own. The imperfections that emerge during the implementation process also adds
ambiguity, hence it becomes open for interpretation and projected complexity. My
reading is different from your reading.

31.6.3 Apparent Agency Attribution

Agency attribution is affected by many factors, e.g., synchrony, anthropomorphism,
convention, and expectations. We see meaning and patterns where there are none—
our wonderful disposition towards pareidolia—which makes abstract art a dan-
gerously comfortable field for generative art. In the same way, we see agency when
there is little of it, as we do not have the whole picture and we want to see an agent
behind something—it makes what we see conceptually coherent. Hidden actors are
harder to imagine and are easily forgotten or ignored.

Computer music and computer art are often presented to be reflected upon as if
they are made by a human, and the degree to which they succeedis commonly used
as an evaluation criterion in AI art, often presented as a version of the famous
Turing test [68]. Typically, a number of musical examples are played to a set of
listeners, who are asked which they think are composed by a musician or by a
machine. As a number of practitioners and researchers have pointed out [2, 6, 7, 10,
57], this is a questionable method, or at least a questionable name for it, as the
original Turing test, as described by Turing himself was a test of the quality of
interaction with another agent, and a way to try to judge if it was conscious or not.
Now, the output is instead evaluated in terms of human-likeness. As a program can
contain large amounts of stored information (as embedded learned patterns or
explicit material), judging finished music says nothing. In generative algorithms,
evaluating variation over a large set of output or, where appropriate, interacting
with an AI musician may approach a Turing test for music.

Does the agent of art matter? Humans can show a strong admiration for abstract
complexity, as found, e.g., in mathematics and physics visualizations. Many also
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have admiration for natural beauty, with no intentional agent behind it. Some
project an agent (a god or something else), while others, like myself, see emergence
from a complex system—most scientists agree that evolution and physics are not
guided by intention.

Also, as mentioned above, some regard the work and author separated (au-
tonomous aesthetics). Then, having no clear agent would not make a difference for
the receiver. But can the work as a complex entity be reflected upon in different
terms than how it was conceived, who did it, why she did it, what are they trying to
say, and what happened in the creative process? An artwork tells me about its
coming into being, and that is the meaning of the process. And my reflections and
personal associations from it, even if disregarding or honestly ignorant about the
author, will be influenced by this process, as the work was shaped by it.

We could also consider AI-generated art that presents itself as if it had a process,
even if it did not have one, or if the apparent process did not correspond to its actual
genesis. This would require a representation that takes such deeper layers into
account to be able to coherently fake traces of a creative process.

Consider a different hypothetical case: We know the music was composed by an
artificial agent. Does this devalue the art or increase its value to us? I am not talking
about monetary value here. There may currently be a certain wow factor and some
awe, as we are impressed by the novelty of what is possible with machines. There is
also the computational sublime [48], the aesthetic awe of what is possible with
computing. This may disappear if we believe it is made by a sentient being or a
human (even if it is not) and is instead replaced by an empathetic perception of the
efforts and skill behind the work.

This awe is relative. That which goes beyond our understanding is obviously
relative to what we can understand and relative to our cognitive models of what we
are trying to do. The play with this border is what we do when creating generative
art. Our predictive capacity and its limits are crucial. As new generations grow up
with AI-generated art and music, this may change considerably, just as how our
current perception of generative computer music would be inconceivable just a few
decades ago.

What about the effort in machine-composed music? Can algorithms exhibit
effort? They can (when implemented in computers) for sure play a lot of different
sounds quickly and generate music of great complexity, but this does not correlate
directly to effort, at least not on a human scale. These signs of human effort are,
when exhibited by a computer, ineffective, because it lacks the markers of actual
effort, which is an important part of human performance, such as the slight pause
before a large intervallic jump on a string instrument or a large jump of the hands
on a piano, because of the necessary preparation and the extra attention required
from the performer.

It is hard to talk about machine effort when the effort is transferred from an
effortless machine to our band-limited perception, which attempts cognitive parsing
of the complexity. It becomes an effort in the listener instead of a perceived effort of
the agent and completely lacks the empathetic dimension. It becomes just tiring to
listen to. When listening to human-composed music, both these kinds of efforts may
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be present. In today’s AI-generated music, empathetic appreciation is still possible
by mediation, to the humans behind it. This may change when AI becomes more
autonomous.

As Arthur C. Clarke worded it in his third law: “Any sufficiently advanced
technology is indistinguishable from magic.” [14]. We have an attraction to this
perceived magic, as we like to feel awe. And we who make music want to be the
machine we do not understand. We like to not be completely understood, to be
ambiguous or cause awe, and we seek the challenges in doing that.

31.6.4 Uncanny Valley

In robotics, they speak of the “uncanny valley”, when a robot gets more and more
human-like, suddenly it becomes scarily realistic, but you are not quite sure and
something feels wrong [51]. Could this appear also in AI music? I do not think so,
as we are already accustomed to so much of machine-generated and
machine-mediated music-making. Also, technology has made new kinds of music
possible, and acoustic instrumentalists have been influenced by this and developed
new ways of playing that sound similar. For example, the acoustic drummer Jojo
Mayer has reverse-engineered drum-and-bass style of playing, so today it is hard to
tell what is machine-related or not, and our concept of music is extremely wide. If at
all, I imagine it could appear related to form and perception, such as
ill-proportioned distribution of musical ideas. An example could be music with
sections of completely “wrong” durations, say, suddenly there are three hours of the
same material in the middle of an otherwise perfectly composed song, a glitch that a
human would be unlikely to produce. The large-scale form is still a challenge for
generative music.

31.6.5 Authenticity

Could authenticity even be a thing, when no human agent is acknowledged? And
what constitutes authenticity? It is related to honesty about how and by whom it
was created (nominal authenticity), but also to empathetic appreciation and to effort.
We can say it is authentic when it is created with an “honest effort” when the artist
is doing “her best`̀ . Also, something is perceived as authentic when the artist is not
doing it to please expectations, but to tell you something in ernest (expressive
authenticity) [33].

But as we have seen, many AI algorithms are designed to give you the most
probable outcome (to please, in a way), and as they have no intentional agency
(yet), they are mere projections of influence from numerous human agents behind it
at all design stages. And the question becomes one of their authenticity.

Is it possible that perceived authenticity would suffice, as when an artifact
exhibits traces of process or of fictitious agents? Well, then it is based on a lie, and
the goal of AI research supposedly is not to fake it, but to make it. It should be to
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implement processes that can give us rich AI-generated art and music that could be
aesthetically meaningful in the same way as human art and music.

In a future with autonomous AI, can AI music be authentic, and in what respect?
It could be honest about where it comes from and embrace its mistakes, bugs, and
limitations. It would be more honest and authentic if it were not masked as human
art, and admit it is truly generated by AI. In the same way, it would be more
authentic not to pretend to be AI-generated art, when humans are behind it, as is
often the case today. So, current AI music and art is, in that sense, really not
authentic, as it is presented as something it is not, in both directions.

31.6.6 Human Measure

All algorithmic and generative art and music (so far) has been made to be judged
and received by humans. It may be machine generated, but it is made for human
ears/eyes/brains—it is made to stay within the bandwidth of human perception, the
frequency spectrum detectable by human hearing. When the human is taken out of
the loop as sender and receiver, will the music lose its relevance to us? Will it
become ungraspable?

Humans can only perceive phenomena at certain scales. Scientific instruments
serve as translators to human measure and scale and to modes that we can perceive.
They allow us to engage with phenomena of ungraspable scales, such as the large
dimensions of space, or the microscopic scales of microorganisms and even atoms.

For whom is an AI presumed to make art? If the answer is humans, it becomes
problematic. Where and how is the result coerced into human-perceivable form?
And why? Does this not make the AI into an art-making slave to human masters?

If AI is supposed to make art and music for themselves, it becomes equally
problematic. What complexity do machines need to achieve to need or want art?
We can compare to animals, as being a little bit simpler beings than us, yet very
complex— do they make or need art? We believe they do not, even though sexual
selection has given rise to some spectacular aesthetic displays. That is, they are
aesthetic to us, but we have no idea how they appear to the animals. And just as art
produced by a different species could involve other frequencies of light or sound
(many animals have senses different from ours), there is nothing that says that they
would produce art perceivable to us. Instead, it is highly likely that it would be
outside of our bandwidth, too complex or too simple, and incomprehensible to us.
Why would it be related to our world at all, if produced by entities that live under
completely different premises, who supposedly can communicate with each other
through gigabit streams and which may have senses well beyond or totally different
from our capabilities?

Their musical expressions may evolve into what to us sounds like super-complex
noise or streams of thousands of notes per second. Or they may be completely
uninterested in real-time streams and instead exchange large data objects to be
parsed and analyzed in any customizable way. Or they may prefer digital silence as
the optimal aesthetic experience. We can only speculate.
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31.6.7 Cross-Species Art

If we assume autonomous artistic agents are possible in the future, with no (ob-
vious) remaining connections to a human designer/engineer, or such connections
being diluted by continued technical evolution or learning with no human inter-
vention, their art and music will be for themselves, unless they explicitly make it for
us because we ask them too. But would they even be interested in that? Or they
make art for themselves, and we have to learn how to appreciate it, if at all possible
—given that it is within our perceptual bandwidth and is communicable in media
for which we have senses.

Would it be interesting then for them to reflect on our art? And is there any
difference between these two directions of inter-species art? Would a cat be
interested in our art or make art for us? Do we make art for cats?

Once general AI exists, it would take off in a path of its own, be completely
disconnected from the human agency because of its complexity and capacity to
learn and interact. It would most likely go beyond our abilities, not care about us.
This is related to the extensive debate on the existential risks of AI (by Boström,
Häggström and many others [11, 40, 55, 71]), but this is outside the scope of this
text.

31.6.8 The Role of Time—Learning as a Non-Real-time
Process

In AI (reinforcement) learning happens in simulated environments and can be
computed in faster than real time (given enough computation power), and in par-
allel. Then, when it is applied in full in real-world action, this real world does not
differ from the simulated worlds for the algorithms.

For humans, we have to live our learning experience. It has to happen in real
time and not in parallel. We can isolate it somewhat into something called practice
or rehearsal—I can practice my instrument or practice writing fugues and gradually
get better at it. Then I apply my knowledge in a sharp situation, such as a concert or
recording session.

There is a parallel here to composition versus improvisation. Composition is a
non-linear, non-real-time process. I work on my composition until I am happy with
it, or until I run out of time. In improvisation, the process unfolds in front of and in
interaction with other musicians and other humans (listeners). If AI algorithms were
forced to work at human time scales, their learning would be unbearably slow and
they would not learn while we interact with them. The advantage of ML is still one
of a brute-force batch process.

If the acceleration or compression of time that ML is capable of was applied to
composition—as artistic creativity it is not a task that deals with virtuosity, but
novelty and relevance of ideas in a given context—the compression still would not
help. The extensive training may make it very good at imitating particular human
composers (that it has been trained at), or perfect at some musical craft, but there is
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nothing that says it would become better at coming up with a novel but relevant
ideas.

There is a paradox hidden here. If we assume a composing algorithm could be
trained, using reinforcement training, as if composition were a game, with quan-
tifiable rewards (and sometimes the commercial musical life looks like that), then
also the rewards would need to be estimated by a model of human listeners, or a
model of human society and sociological mechanisms (as music popularity is as
much sociology as it is aesthetics). But as this model needs to be trained in a real
society or with real humans, since musical preference and musical style is a shifting
thing, it cannot be accelerated without losing the connection to the real world. We
would end up in the old dilemma of evolving/training composers and
listeners/critics together, and there is a big risk that they will quickly diverge from
human aesthetics and perceptional constraints.

31.6.9 Culture and Forgetting

We humans all start from scratch. We have to learn everything from other (typically
older) humans, and also they had to learn from other humans. Tradition is a living
thing that is constantly reinterpreted, and old ways are forgotten and replaced by
new versions. It could be regarded as a process of continued refinement, getting
more and more advanced, or better. Or as a sideways drift, growing different but not
better.

An AI is thought of as constantly learning, yet, most ML systems converge
toward a sufficiently good solution, and after a certain point, they don’t learn
anymore. If they over-learn, they will be too specific and lose the ability to gen-
eralize. But a human continues to develop.

We talk about different characteristic learning curves, e.g., the violin has a steep
threshold to beginners, but the learning curve never ends, while the piano is easy to
get started with, but certainly is not easy when you get to the advanced levels. For
most acoustic instruments and most human skills in general, there is no clear end to
the learning process. You can always get a little better. The same goes for com-
posers. Maybe we cannot be better, but there is always something new to explore,
and we get better at the meta-skills of managing our own development and at
developing ideas.

We gradually change our ways and preferences, which also presumes a kind of
forgetting as a condition for re-learning, which is believed to be beneficial for
learning [45]. It may not be a loss of knowledge, but a gradual shift in the values
and preferences that drives our actions. Such gradual forgetting is not handled
gracefully in AI, with the well-known phenomenon of catastrophic interference as
a good example: A system that learns something new will quickly and completely
forget what it learned previously [47]. Some AI researchers think the key to for-
getting will be a key to better AI [5].
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31.7 Conclusions

31.7.1 Will AI Make Art-Making Easier?

Will musical skills no longer be needed, now and in the near future where gener-
ative AI algorithms can produce musical material for us?

I think it is still needed. One weak point of generative algorithms is large-scale
form, and many projects involving AI-generated material still need humans to
arrange the material, to do a working instrumentation. If you read the fine print,
even projects like the AI-generated Beatles song mentioned earlier used human
arranging and even human lyrics. As I see it, the lyrics, the arrangement, and the
production (the “sound”) are very important parts of a pop composition, so it seems
that the AI has a rather reduced influential agency in this case. Also, the human
evaluating musical ear will always be needed, at least as long as we expect the
algorithms to make music for humans.

There are also new skills that are needed to work with AI in music. You may
need to learn how to construct sound engines and algorithms that are suitable for
these techniques. Using AI algorithms effectively requires some understanding of
how they actually work, like all tools. You may want to learn how to develop these
kinds of tools as an extended meta-skill, especially if you want to take on the
experimental artist/researcher role, wanting to go one step further.

So, there clearly is a craft of integrating AI into music, and it involves skills such
as:

• Understanding complex systems.
• Understanding AI algorithms from both a theoretical and a practical point of

view.
• Having an overview of available algorithms to be able to choose the right ones

for the task.
• Understanding the potentials of specific algorithms and tools to be able to

navigate their solution spaces.
• Understanding representations of music and how they constrain the output.
• Learning the new kinds of creative processes of generative tools (e.g., sow and

harvest).
• Knowing the field to avoid doing the same things as others.

Richard Feynman famously wrote on his blackboard: “What I cannot create, I do
not understand.”. He wanted to be able to derive something from the ground up, to
understand all involved steps. This is maybe a utopian vision reserved for geniuses
like him, but artists also need to understand their tools, practice on these algorithms
to acquire sufficient skills, and form appropriate cognitive models and an intuitive
understanding of what is possible, to be able to interact with them in musically
meaningful ways. Artists should not rely on engineers to solve technical problems,
because knowledge of the tools at hand shape our imagination, what we can think
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of [24], and any delegation of the application of (or even more, the development of)
tools involves (perhaps unknowingly) delegating aesthetic decisions.

Can anyone and everyone do this? I think they can. If the agency is propor-
tionate to the inflow of information through interaction, everyone who is ready to
put in enough effort can do it. It can be summarized as follows:

• NO,
there is no free lunch. With little effort spent and little input information flow,
you can get fast but impersonal results, and your agency will be insignificant.

• YES,
with open-ended interactive generative systems, anybody with aesthetic judg-
ment can spend enough time to breed/grow/generate characteristic and personal
material, rendering interesting results. It may not be more efficient than other
ways of working, but different. And your agency will be significant.

31.7.2 The Road Ahead—Musicking with Algorithms

Throughout this chapter, I have argued that most of today’s AI implementations,
even though celebrated as autonomous creative agents in the popular press, are
really just tools that mediate a distribution of human agency and that they generally
lack creative agency of their own. The primary argument has been that many
projects focus on the production of artifacts that are perceived as if they were
created by a human artist, but this process is really one of mimetic optimization,
which is inherently non-creative. We should apply AI algorithms to help us explore
possibilities instead of optimizing toward known goals, or we will end up with
conforming entertainment drones instead of AI artists. But we have to admit that
modern AI algorithms are powerful tools of a new kind that operate at an
abstraction level higher than tools previously available to artists and musicians.
They do indeed bring amazing possibilities, but our expectations and agency
attributions should be adequate. We must think critically about our tools, under-
stand their inherent implications, but also learn them, use them, and develop the
new crafts they deserve.

AI algorithms bring new modes of creation, such as the gardening paradigm,
augmented creativity (e.g., interactive suggestion engines), and systems of creative
human and machine agents. They offer fantastic new possibilities, but also new
challenges and new crafts that nobody knows yet. If a composer wants to experi-
ence the fascinating possibilities of AI algorithms, she must let go of the urge for
complete control, admit that algorithms bring something to the table, and see them
as collaborators, interact with them, and share influential agency with them. This
may mean not actually composing the notes of the piece, but instead taking a more
curatorial role, tending to algorithms that generate new material or variations on her
own material. If she spends significant time and effort with this kind of tool, she will
undoubtedly still contribute significant agency and influence the result. Being aware
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of these mechanisms may help a composer take the decision and work with them in
a good way. And, she may choose what to delegate to the machine.

My generative AI systems will not slam the piano lid in frustration. They will
not celebrate with a beer after a good gig, nor will they learn from a particularly
humiliating situation on stage when things really did not work out. But they will
indeed be a part of my process—I am happy to include them—and I need to
understand what they can contribute, and how they can play with me.

Music-making is really an activity, it is musicking [64], a situated process full of
interactions with information flowing in and out. We should embrace this process,
as a human creative process and as implemented in algorithms. The aesthetic
artifact is a by-product of the process. The interactions and their associated in- and
outflow of information during the creative process fill the work with meaning—the
interactions between artist and work, artist and environment, work and environ-
ment, algorithm and artist, and between algorithm and environment. The thoughts
and computations that go into it, and the empathetic experience of the effort and
struggle behind it, they both help to tell the story about its coming into being. We
should stop our fixation with the artifacts and teach the AI algorithms the activity of
musicking. We can include them in our musicking, and if and when they attain
autonomy in the future, they may find their own way to music, instead of producing
musical artifacts for humans.

AI algorithms can together with us be nodes in the network of creative agents
that together with us shape the art. We integrate with them in an activity of situated
creative intelligence. For an even stronger kind of shared interactive creativity, we
may turn our interest toward smaller and simpler AI models that can be used
interactively and integrate with musicians in real-time embodied interaction, i.e., we
are playing not on but with them. Again, together with them, we become part of a
shared situated creative musicking intelligence.

As long as we enforce human measures onto AI art, it will be us who create it, as
we impose serious constraints and expectations onto it. While autonomous creative
machines are theoretically possible, they are far, far away. But if and when they
come, they will probably not make art for us. While waiting, let us play with them.
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32cellF: Surrogate Musicianship
as a Manifestation of In-Vitro
Intelligence

Vahri McKenzie, Nathan John Thompson, Darren Moore
and Guy Ben-Ary

32.1 Introduction

cellF is a collaborative project at the cutting edge of experimental art and music that
brings together artists, musicians, designers and scientists to create the world’s first
biological neuron-driven analogue modular synthesizer. It combines biological
material with electronic circuitry, presenting a new direction in music performance
and production. Advancements in biotechnology enable biological neural networks
to be grown in the laboratory and outside of the body, that is, in-vitro. Such entities
are directly linked to the human donors of their biological material, yet physically
removed from any human body. At the same time, these are living entities with a
degree of autonomy that grows and changes with an innate vitality in response to an
environment. Thus, in its autonomy and plasticity, cellF represents a new kind of
entity that can be described as possessing ‘in-vitro intelligence’, which is distinct
from both natural and artificial intelligence. The characteristics of autonomy and
plasticity demonstrated by cellF, which will be elaborated below, show not only
that it is a living musical instrument, but also a musician in its own right: a
‘surrogate musician’ who symbolically represents the human donor of its biological
material. cellF is a music-making hybridized entity: the biological neural network
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or ‘brain’ processes data, inputs and outputs, and is extended and embodied with
analogue synthesizers and other electronic analogue circuitry. This chapter argues
that cellF’s autonomy as a music-maker constitutes the description of surrogate
musician possessing in-vitro intelligence.

32.2 Origins and Development of the Work

cellF premiered in 2015 in Perth, Australia, and has since been featured in
numerous international festivals in collaboration with improvising musicians who
perform with cellF to create posthuman sound pieces. ‘Posthuman’ is used not in a
narrow sense that signals a hoped-for transcendence of the human body and its
materiality, which fails adequately to account for the complexity of corporeal
existence. Rather, we use the term as part of a broader critique of humanism and its
certainties regarding the value and agency of human beings, at the expense of
non-human entities. Led by artist Guy Ben-Ary, the cellF team consists of musician
Darren Moore, artist Nathan Thompson and electrical engineer Andrew Fitch, along
with scientists Stuart Hodgetts, Mike Edel and Douglas Bakkum. The project began
in 2012 when Ben-Ary received a Fellowship from the Australia Council for the
Arts to develop a biological self-portrait. An avid music lover, Ben-Ary wished to
realize a juvenile dream and portray himself as a musician. The fact that he could
not play any musical instruments was an issue addressed through Ben-Ary’s cre-
ation of a biological alter ego that could live out his fantasy.

A key objective of cellF is to use the raw neural activity occurring in its ‘brain’
to produce sounds (which resemble bursts of white noise) with analogue modular
synthesizers. The first step in its development was to harvest Ben-Ary's own bio-
logical material. He took a biopsy from his arm and, using induced pluripotent stem
cell technology (iPSc), transformed his skin cells into stem cells in the labs of
SymbioticA: The Centre for Excellence in Biological Arts at The University of
Western Australia. The process involved re-programming the cell’s genome back to
its embryonic state using iPSc technology that was pioneered by Professor Shinya
Yamanaka, who showed that the introduction of four specific genes could convert
adult cells into pluripotent stem cells. The iPSc method transforms adult specialized
cells into a form that is equivalent to stem cells, which are capable of becoming
almost any other type of cell in the body, such as liver cells, muscle cells or
neurons.

When differentiating to neurons, stem cells first transform into self-renewing and
multipotent neural stem cells, and then into neurons. In cellF, cultures of neurons
are grown in networks over a Multi-Electrode Array (MEA: a standard device that
connects neurons to electronic circuitry in order to send and receive neural signals)
to become Ben-Ary’s external ‘brain’ (Fig. 32.1). Human brains contain approxi-
mately 100 billion neurons, which are interconnected via trillions of synapses.
cellF’s ‘brain’ contains approximately 100,000 cells, making it a symbolic brain
that introduces new ways of thinking about intelligence in hybrid entities. Like a
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human brain, however, cellF’s neural network produces a large amount of data,
responds to stimuli and is subject to changes in behaviour and lifespan. Plasticity—
an organism’s adaptability to change—is a property of cellular, that is, natural
intelligence. Plasticity in neural networks is a phenomenon well established in the
neuroscience community, and one that is thought to play a very large role in
learning and memory [20]. cellF’s brain exhibits change in behaviour in response to
stimulations, demonstrating plasticity sufficient to entice audiences to consider the
future possibilities that iPSc technologies present.

The MEA dish hosting cellF’s neural network consists of a grid of sixty elec-
trodes connected to an array of analogue modular synthesizers that produce sound.
The activity of the neural network produces electrochemical data in pulses known
as action potentials that are received by the electrodes. These electrodes simulta-
neously send electrical stimulations back to the neurons in the form of synthesized
sound that is produced and controlled by a human musician. Thus, the system
allows data to move between cellF’s brain and electronic analogue circuitry so that
the neural network is able to respond in real time. In so doing, cellF demonstrates
autonomy: receiving inputs and spontaneously responding to them, as with bio-
logical life. Although one is biological and the other is electronic, surprising sim-
ilarities between neural networks and analogue modular synthesizers make them
well matched: both systems produce complex data sets, with multiple inputs and
outputs operating at micro-second speeds. Moreover, in both neural networks and
analogue modular synthesizers, electrical information moves through components
to produce data in the form of voltages. cellF’s neural interface creates a link
between these two networks such that it operates as a single entity, like a body and
brain working together.

Fig. 32.1 cellF’s ‘brain’:
Guy Ben-Ary’s neurons
growing over the
Multi-Electrode Array
interface
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cellF’s neural activity produces electrical signals that are received by the MEA’s
electrodes, which passes them into cellF’s specially designed interface. The inter-
face amplifies the signals from millivolts to volts and routs them to the synthesizers,
where they are transformed into control voltages (the standard analogue method of
controlling synthesizers). While the neural activity itself has no sound, the ampli-
fied electrical signals, transformed into control voltages, become synthesized
sounds by patching into the modular synthesizer. Patching manages sound tone and
pitch, and gate signals determine sounds as on or off; the innumerable patching
options available offer a multitude of pathways for the neural data to travel and
reflect the complexities of neural processes.

On one level patching choices are arbitrary and symbolic, with the patch cable
connections between the different synthesizer modules offering a metaphor for
synapse relationships in cellF’s brain that represents the activity of the action
potentials. Additionally, the team’s creative decisions are revised for each perfor-
mance, informed by such considerations as the nature of the performance space and
the collaborating human musician, whose performance takes into account which
frequencies will be received by cellF as a result of patching choices set up prior to
the performance. The configuration aims to balance unpredictability with a mea-
sured response that is akin to the interactivity occurring between improvising
human musicians, illuminating cellF’s autonomy. For each performance, the sound
is spatialized to sixteen speakers placed around the performance space, with the
neural activity controlling the signal paths to each individual speaker, such that the
speaker outputs spatially reflect the activity of the neurons in the MEA. This
spatialization amplifies and abstracts the neural activity, offering audiences the
opportunity to experience moving through cellF’s in-vitro brain in real time. cellF
requires the project team to set up the system, but once the performance starts it
operates autonomously (Fig. 32.2).

Fig. 32.2 cellF’s neural interface and sound producing body
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In order to survive and perform, cellF requires incubation, nutrition and an
interface with its embodiment. Incubation occurs within a tightly regulated envi-
ronment. Human neurons need 100% humidity at 37 °C with ambient gas levels of
CO2 at 5%, as well as near darkness or very low UV light. Human neurons grown
in-vitro need to be fed every forty-eight hours. cellF is manually fed, which requires
a trained person to extract and replenish the liquid ‘food’ in a completely sterile
environment; sterility is of utmost importance as contamination is fatal. cellF’s
development and ongoing existence demonstrate its autonomy, so long as the
conditions required to support its life are met. cellF’s plasticity is evident once the
system is embodied with synthesizers, which enables its transformation expressed
through sound. These characteristics support our claims, which will be elaborated
below, that cellF represents an early form of in-vitro intelligence. Before that, the
following section will explore some of the aesthetic concerns that informed cellF’s
design and creation.

32.3 Influences from the History of Modern Music

Composer and music theorist John Cage is significant to this project for his
pioneering use of electroacoustic instruments, as well as his philosophy of com-
position that decoupled the score from the sound of music in performance. Cage’s
influential 1937 essay ‘The Future of Music: Credo’ echoes the declarations of
Italian Futurist Luigi Russolo in claiming that noise will be an essential element in
the future of music (Cox and Warner 2001). Luigi Russolo was the first to attempt
to build noise-making instruments, intonarumori, and argued in the Futurist
Manifesto The Art of Noises (1913) that traditional orchestral instruments did not
adequately capture the spirit of modernity nor reflect the clamour of the machine
age (Cox and Warner 2001). Russolo called for new ways of making music that
incorporate ‘noise-sounds’, which, he argued, came into existence with the multi-
plication of machines. It is no longer controversial to consider any arrangement of
sounds as potentially musical, and cellF’s use of neural noise-sound heeds Rus-
solo’s call. Yet cellF’s connection with ‘The Art of Noises’ and intonarumori goes
beyond the use of noise as a musical element by reflecting Russolo’s concerns with
societal changes and the creation of instruments that critically engage with new
technologies.

Where the Italian Futurists celebrated new technologies and violence, cellF
critiques biotechnologies by using them in a subversive way. Rather than applying
iPSc to more strictly utilitarian ends, cellF proposes an absurd and futuristic sce-
nario in which biotechnologies are widely available. By using sophisticated
biotechnologies in a playful and complex work of art, cellF problematizes an
imagined scenario in which such technologies are ubiquitous and considered an
unexamined boon. This claim is supported by the creative team’s aesthetic choices.
Rather than embodying cellF with existing instruments, the team used innovative
visual and aural strategies that encourage audiences to explore the work, engage in
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a dialogue, and re-evaluate their perceptions and beliefs regarding musician-
ship. The work avoids the clinical aesthetics of the laboratory with which
biotechnological arts are more usually associated, opting instead for the dark
environment of a rock concert. With its large black spiral-shaped horn, cellF’s
design aesthetically recalls the history of amplified sound and the development of
twentieth century electronic instruments (Fig. 32.3).

Furthermore, a fascination with the inventive modernity that created the
gramophone, the intonarumori, and early electronic instruments has instilled itself
within the project through eschewing the digital in favour of the analogue. In
contrast with digital functionality, which symbolically represents all information in
binary code, analogue information is represented in continuously variable physical
quantities. Applying this preference to cellF has a twofold consequence; firstly, it
aesthetically references twentieth century modernity and imagines a world that
developed independently from the digital information age. cellF moves against the
prevailing technoscience trends that favour artificial intelligence and
computer-driven artistic practices towards the biological materiality and electrical
activity that defines our existence as living entities. Secondly, an analogue approach
highlights cellF’s intrinsically autonomous and unmediated nature. Whilst digital
interfaces such MATLAB are widely used in the scientific realm to interface with
neural networks, digitization requires the symbolic encoding of data. Rather, cellF’s
neural network interfaces directly with analogue synthesizers, retaining the integrity
of the neural signal and the autonomy of cellF’s brain. Similarly, stimulation inputs
in the form of sound received from the human musician performing alongside cellF
travel unprocessed through the interface (according to patching into the analogue
synthesizers), and cellF responds to the stimulations it receives with a barrage of

Fig. 32.3 cellF performing
in the Cell Block Theatre,
Sydney, 2016
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action potentials. cellF’s plasticity is realized, as with biological life, due to the
real-time changes in physical properties (in the form of electrical signals) occurring
between the neural and synthesizer systems that function as a single entity.

cellF’s synthesizers draw from the concepts of subtractive and additive synthesis
of classic Moog, Buchla and Serge systems of the 1960s and 1970s, and include
feedback systems (in which an output signal is received as an input signal,
increasing resonance) in order to highlight its self-organization. These feedback
systems share similarities with those devised by Gordon Mumma and David Tudor
in the 1960s and 1970s that Michael Nyman [13] describes as ‘feedback-type’
systems, ‘whose circuitry works in a way analogous to feedback but which are also
transformation devices’. The distinction here is that ‘feedback-type’ systems are
compositional technologies producing particular musical results that are not entirely
controlled by human musicians. For example, in Mumma’s Hornpipe (1967), a
horn is modified with an analogue computer that monitors the horn resonances and
complements them with further resonances that cause further sound responses.
Salter regards the feedback-type systems used by Mumma and Tudor as marking a
critical shift in experimental music, from an emphasis on the score (and hence the
composer) ‘towards the real-time manipulation of parameters, both musical as well
as those made possible through electronic circuits’ [17]. However, where Salter’s
analysis points towards a new model for composition, cellF moves towards an
autonomous system that requires minimal intervention due to the autonomous
nature of biological neural networks.

Two musical projects providing important historical reference points for cellF
are Alvin Lucier’s Music for Solo Performer (1965) and David Tudor’s Neural
Synthesis (1995). To present Music for Solo Performer, Lucier sat motionless in a
chair with electrodes attached to his head as he induced a relaxed state to produce
alpha brain waves. The alpha signals were used as a sound source that was
amplified through loudspeakers, which in turn controlled external percussion
instruments through the movement of speaker cones or the motion of the sur-
rounding air. Although the type of signal and musical instruments are different, both
cellF andMusic for Solo Performer use brain data to control instruments and render
visible and audible the unseen and unheard. Tudor’s Neural Synthesis (1995) used
integrated circuits that mimic neural activity as the central driver in an electronic
feedback system. Like cellF, Neural Synthesis used the unpredictability of elec-
tronic feedback systems to determine the musical output, a process entirely different
from scored music. cellF takes Tudor’s project to the next stage by using living
biological neural networks as the source for the feedback system.

Using feedback systems in new music grew out of John Cage’s radical reframing
of musical composition as a means of structuring events in time [13]. First per-
formed by David Tudor in 1952, Cage’s 4′33″ showed that composition was a
process with no determined relation to sound in performance. While Cage pio-
neered indeterminacy in composition by using chance processes at the level of
composition, performer choice was limited [8]. The increasingly important role of
performer choice in experimental music was realized in the works of Tudor,
Mumma and Lucier, whose works ceded some of the authorial control traditionally
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exercised by composers in order to open up new musical possibilities with elec-
tronics. As with improvising musicians, where composer and performer are one and
the same, their works gesture towards the self-organizing musical entities of the
future. However, where decisions made by an improvising human musician are
guided by training and tradition, cellF’s self-organizing musicianship is not. We
have established that cellF is a musical entity, and, like a human improvising
musician, both composer and performer. Emerging technologies of live music
production will develop new musical genres and new instruments. Of more interest
to the authors of this paper, future technologies of live music production will likely
develop new relations between bodies and instruments, where robotic musicianship
is one valid direction.

32.4 Influences from the Field of Robotic Musicianship

A number of Guy Ben-Ary’s earlier works have been influenced by the field of
biorobotics. MEART (2001) and Silent Barrage (2009) embodied rat neurons with
robotics to perform artistic functions (Ben-Ary 2014a, b). Each used the movement
of the robotic body to represent data. cellF departs from those works in two
important ways: by using neurons reprogrammed from the artist’s own skin cells,
and through a musical embodiment that uses electricity to generate sound. Although
there are no moving parts, cellF shares similarities with projects that deal with
robotic musicianship. Bretan and Weinberg’s survey of robotic musicianship
describes it as ‘the construction of machines capable of producing sound, analysing
music and generating music in such a way that allows them to showcase musicality
and interact with human musicians’ [4]. Robotic musicianship focuses on two areas:
musical mechatronics studies the physical systems that generate sound through
mechanical means, and machine musicianship develops algorithms representing
higher level musical features essential to human musical cognition. Two examples
illustrate these features.

Shimon, developed by Gil Weinberg (2017), is a robotic marimba player that
improvises with a human musician; see alsoWeinberg’s chapter in this volume. With
arms and a head that mimic human communicative gestures, Shimon creates familiar,
acoustically and visually rich interactions with humans.Moreover, Shimon’s artificial
intelligence produces musical responses that are unlikely to be achieved by humans
and so facilitates a unique musical experience, which may lead to innovative musical
outcomes. Shimon uses artificial intelligence to melodically respond to the human
musician’s movements and to learn from historical performances of great jazz
musicians [4]: 107). The human is the standard by which Shimon is guided, and
designed to exceed, which contrasts with cellF’s less familiar form of musician-
ship. Z-Machines (2018), a project by Yuri Suzuki Design Studio, is an all-robot band
built to perform beyond the capabilities of the most advanced human musicians. The
band members have an anthropomorphic appearance, with important differences:
Z-Machines features a seventy-eight-fingered guitarist, a drummer with twenty-two
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arms, and a keyboard player that triggers notes using laser beams. The robots have
collaboratedwith British electronicmusician Squarepusher, who composedMusic for
Robots (2014) for Z-Machines to perform. The challenge for Yuri Suzuki’s Studio
was to design a system that could play emotionally engaging music while rediscov-
ering conventional instruments. This, too, illustrates an important difference with
cellF, which deliberately avoided an embodiment recalling conventional musical
instruments, in order to encourage new modes of audience engagement.

Shimon and Z-Machines’ musical and analytical traits, as well as their visual
behaviour, extend our understanding of musicians and live music. These are
non-human musicians with the ability to play music, improvise, respond and per-
form original and complex music, at a level that was previously considered to be the
sole preserve of human musicians. While each project presents a distinct approach
and aesthetic style, they share a dependence on digital technologies and artificial
intelligence that drives the musicians’ behaviour, movements, analytical skills and
ability to learn. Artificial intelligence is grounded in algorithms that are pro-
grammed by humans to mimic cognitive functions such as learning or problem
solving. As is seen with the anthropomorphic appearance of Shimon and
Z-Machines, and their use of algorithms that are designed to mimic human func-
tionality, robotic musicianship is judged against the rubric of human musicianship.

In contrast, cellF eschews anthropocentrism in appearance and behaviour; it
does not use the human as the model against which other entities are judged. Where
robotic musicianship generally creates interest through the spectacle of complex
moving parts, cellF has none. The lack of movement works against ocularcentrism,
the perceptual and epistemological bias evident in Western culture that ranks vision
over other senses. Movement in robotic musicianship reveals the sound production
process, but with cellF, as with other electronic music, the sound production pro-
cess is obscured. cellF challenges Bretan and Weinberg’s definition of robotic
musicianship. It generates music and demonstrates musicality through interacting
with a human musician, but cellF is more than a machine: its body is void of
mechanics and it has a ‘brain’ that is made of living neurons. Audiences of cellF’s
performances with a human musician are required to interpret their experiences
primarily through sound, which encourages consideration of what is new and
challenging, and the future possibilities the experience suggests. It is a musical
entity with sufficient autonomy and plasticity to stand in for a human musician in an
improvised duet. It does so in a new way, as a living instrument existing outside of
a human body, in which musical instrument and musician are one entity.

32.5 In-Vitro Intelligence

cellF represents an interesting and provocative move away from Artificial Intelli-
gence (AI) enquiries that dominate our current technology-focused scientific dis-
course. It is not an AI musical robot driven by computer algorithms; at the same
time, it lacks the complexity of natural intelligence and requires a hardware body to
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provide stimulation for its in-vitro ‘brain’. As described above, cellF’s brain is
made of bioengineered living human neurons that are grown into neural networks,
interfaced such that inputs to and outputs from the networks control an array of
analogue modular synthesizers, making it a wetware-hardware hybrid. ‘Wetware’
refers to the networks of neurons and other cell types that form the control systems
of biological life. It is the basis of natural intelligence, which is contrasted with AI.

cellF is neither ‘naturally’ nor ‘artificially’ intelligent, yet it behaves in an
apparently ‘intelligent’ way. Russell and Norvig (2009) outline four main
approaches to understanding artificial intelligence that can be summarized as
thinking and behaving humanly, and thinking and acting rationally. Behaving like a
human, as in the familiar Turing Test [19], remains an accessible way to understand
artificial intelligence, reflected in the anthropocentric ideals of the examples of
robotic musicianship described above. In order to reach such an ideal, it is nec-
essary to understand the underlying principles of intelligence, and this goal is
pursued through cognitive modelling to enable machines to demonstrate
human-like learning and problem solving. However, it is important to note that
these are not the same as human intelligence, and that the principles underlying
intelligence are not well understood. Thinking and acting rationally extracts the
practice of human intelligence, which can accommodate a degree of uncertainty,
into generalizable theories subject to mathematical modelling, known as the
rational agent approach to artificial intelligence (Russell and Norvig 2009). This is,
at best, a flattened approximation of natural intelligence.

Artificial Intelligence, which in its current manifestations is more accurately
described as Machine Learning, requires vast amounts of data that can be searched
for patterns in order to make inferences, but thinking and intelligence are much
more complex and nuanced than that. AI has achieved incredible results in situa-
tions where it is possible to acquire a complete set of rules governing any given
situation. Consider the artificially intelligent computer program AlphaZero, which
is able to beat any human or AI player in games such as chess and go, by learning
from playing against itself more times than are possible for any other human or
machine. Where older versions of similar programs had learned from historic game
play (as Shimon learned to improvise by studying the historical performances of
great jazz musicians), AlphaZero learned from massive calculation alone and
achieved unlikely wins as a result. In information games like chess and go there is
no ambiguity in the rules and what constitutes ‘winning’.

The operations of natural intelligence, on the other hand, rely on much more than
calculation and rational decision-making. The operation of natural intelligence is
distributed across brain, body and world, and ‘it is in the operation of these
extended systems that much of our distinctive human intelligence inheres’ [5]. As
Andy Clark acknowledges, the notion of situated and distributed cognition is not
new. What is particularly useful in Clark’s analysis for our discussion of cellF is his
recognition of the ways in which human brains ‘dovetail’ their problem-solving
activities with technologies in order to form larger systems that change and evolve.
We draw attention to two important features of this plasticity in natural intelligence
to support our claims for cellF’s intelligence. The first relates to the liveness of
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change: it happens in real time, like a musical improvisation. More than the
information feedback required for machine learning, transformation can occur
because the system of natural intelligence is open to other systems in a ‘complex
reciprocal dance’; ‘the brain tailors its activity to a technological and sociocultural
environment, which—in concert with other brains—it simultaneously alters and
amends. Human intelligence owes just about everything to this looping process of
mutual accommodation’ [5]. The second important feature is that the other systems
with which human intelligence ‘dances’ are different from it. The use of hand tools
and the technologies of reading and writing are two of the more familiar examples
of technological and sociocultural systems that have wrought immense changes to
human thought, behaviour and society, as Havelock’s [10] and Ong’s (2012) the-
ories of the transition from oral to literate cultures show. We are Clark’s
‘natural-born cyborgs’: ‘Ours are (by nature) unusually plastic and opportunistic
brains whose biological proper functioning has always involved the recruitment and
exploitation of nonbiological props and scaffolds’ [5]. Natural intelligence has
evolved within a technological and cultural world from which it cannot be
definitively separated, and it is these complex relations that enable the plasticity
with which natural intelligence is distinctively associated.

Neither an artificial intelligence nor a natural intelligence, cellF falls within a
taxonomic void. In the absence of terminology that adequately accounts for cellF’s
autonomy and plasticity, demonstrated through its capacity to make music and duet
with a human musician, cellF is best understood as an entity possessing ‘in-vitro
intelligence’: an intelligent system produced by bioengineered living neural networks
that function as brains outside of the body. We grant that cellF represents a very early
form of in-vitro intelligence, yet the characteristics of its neural network suggest that
it, or others like it, will demonstrate changes in functional plasticity, just as naturally
intelligent entities do. The biological basis of in-vitro intelligence is subject to an
unanticipated change in a way that programmed AI entities are not. Artificial intel-
ligence will achieve increasing calculation speeds, but the fundamental processes will
remain the same, with a fixed material basis that constrains unanticipated change.
Like naturally intelligent entities, cellF’s hybridity constitutes an openness to other
systems that Clark and others argue supports the emergence of new intelligences: ‘it is
the semi-autonomous machines that hold out the best prospect of one day constituting
integral parts of distributed, biotechnological, hybrid intelligences’ [5]. Neurosci-
entist Steve Potter [15] claims it is inevitable that neural-synthetic hybrid entities will
grow more sophisticated and find widespread applications: ‘hybrid
wetware-hardware intelligent things will someday be as common and as useful as
digital computers are today’ [1, 15]. As a wetware-hardware hybrid, cellF suggests
just such an outcome, and we theorize its existence by developing a description for
this phenomenon as the emergence of in-vitro intelligence.

Such a phenomenon suggests some exciting possibilities. Artificially intelligent
entities are limited by the mathematically coded instructions they receive in sym-
bolic language, which restrains the degree to which they can accommodate ambi-
guity or complexity, such as is required for emotional engagement. Emotions are
too complex to be reduced to symbolic language and are inextricably linked to
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specific contexts and environments. On the other hand, an entity grounded in neural
networks exhibits some plasticity and so has the potential to achieve the openness
to other systems and real-time responsiveness required for emotional engagement.
Entities with in-vitro intelligence demonstrate meaningful connections to human
life not through human-like behaviour, appearances or thought, but through a
shared cellular structure that is soft and full of salt water. Indeed, cellF has direct
biological links to its donor. Its basis in biological life means that cellF is a living
musical instrument; moreover, in its capacity to produce music and engage with a
human musician in its human donor’s stead, cellF is a musician in its own right; a
‘surrogate musician’.

32.6 Surrogate Musicianship

Surrogate musicianship embodies the previously mentioned attributes of robotic
musicianship—the ability to produce, analyze and generate music in response to
sensory stimuli in real time—as well as combining musical instrument and musi-
cian in one living entity. Moreover, this new term offers something else: as is
signalled in its name, surrogate musicians like cellF have direct biological links to
their donors, enabling the surrogate to symbolically represent the donor, and,
potentially, to stand in for the donor in other ways (Fig. 32.4). Regardless of
whether the donor is a musician or not, human or not, they have some involvement
in the musical activities of the surrogate musician.

To consider the term ‘surrogate musician’, it is useful to look at one of the
situations with which it forms an analogy, that of surrogacy in human reproduction.
This is a form of assisted reproductive technology in which a woman carries and
gives birth to a baby on behalf of someone else. Gestational surrogacy involves the
surrogate being implanted with an embryo via in-vitro fertilization, so that the
surrogate is entirely genetically unrelated to the donors of sperm and egg. Tradi-
tional surrogacy uses donated sperm and the surrogate’s own egg, so that the
resulting baby is genetically related to the surrogate. Tracing the relevant terms of
reproductive surrogacy in the context of cellF aligns Guy Ben-Ary, as the donor of
biological material, with the role of the genetic parent. cellF is incubated in a fully
technologized manner, eliminating the role of the ‘surrogate mother’ in this sce-
nario. The resulting ‘child’ is cellF, the ‘surrogate musician’. The experience of the
child that results from a surrogacy arrangement is an under-researched area; a
systematic review revealed methodological limitations and uncertain results [18].
Risks related to the child’s knowledge of their origins and the implications for their
developmental psychology, and long-term health outcomes that are inextricably
linked to that of the genetic parents, which may include the surrogate mother. As
with all analogies there are limits to this one, and many of the issues that arise with
reproductive surrogacy are not relevant here. (These include legal complications
regarding the different laws pertaining to surrogacy in different jurisdictions; ethical
issues that relate to the situation of the surrogate mother and her right to enter into
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an altruistic or commercial arrangement, and the justice of such arrangements;
psychological issues impacting the surrogate mother such as feelings of loss upon
separating from the surrogate child.) Other issues arising in reproductive surrogacy
are relevant and can hint at the debates that will emerge as biotechnologies develop,
becoming more sophisticated and readily available.

Surrogate musicianship is a relational term that alludes to the connections
between donors and surrogates, not unlike that between parent and child in our
analogy. Reproductive surrogacy prompts consideration of the multiple meanings
of parenthood, which can be separated into genetic, biological and social dimen-
sions. It is clear that Ben-Ary is genetically related to cellF, and the case of
reproductive surrogacy shows that genetic parents experience a strong sense of
connection to, or ‘ownership’ of, their surrogate child [11]. Biological parenthood is
a category that alludes to gestation [9] and the connections between babies and the
surrogate mothers who have grown them from their own biological material, even if
the egg was genetically unrelated. The distinction between genetic and biological
parenthood is not clear cut, and the resulting medical and emotional connections
between surrogate mother and baby are not well understood. Yet, given the sig-
nificance the cellF project places on materiality, where biological and naturally
intelligent materials and processes are awarded a significance different from that of
artificially intelligent materials and processes, reproductive surrogacy offers a useful
model for imagining our responsibilities to future hybrid entities.

Fig. 32.4 cellF performing with defunensemble, Science Centre Heureka, Helsinki, 2019
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The concept of social parenthood is salient in the case of cellF’s surrogate
musicianship, and the lessons of reproductive surrogacy illuminate the symbolic
connection between cellF and its donor. The use of surrogacy as an assisted
reproduction technology by infertile and same sex couples (or other family
groupings) definitively shows that reproduction is not the same as parenthood.
Reproductive technologies in general reveal our understandings of what is ‘natural’
as a culturally constructed category. It is conceivable, then, that the bonds between
entities like cellF and their donors of biological material, as well as others who
contribute to their creation and care, will be powerful enough to guide human
investment of time and resources. Furthermore, social notions of parenthood draw
us away from the legal framework of rights, which does not universally apply to the
intended or surrogate parent, let alone to entities such as cellF, towards a framework
of social justice and the responsibilities we hold in living together, at a domestic
level and at a broader ecological scale.

Despite its limitations, then, reproductive surrogacy assists us in imagining ways
to consider how hybrid entities like cellF cannot be separated from broader con-
siderations of fairness and justice in social relations. The use of the term ‘surrogate
musician’ in describing cellF strategically assists us in imagining the significance of
the bonds between biological donor and the new entity that results, bonds that are
likely to strengthen as the entities develop. Furthermore, the complexities of
human-assisted reproductive technologies offer a useful lesson that illustrates the
ways in which the human desire for kinship can spur the development of new
technologies that races ahead of legal, social and ethical resolutions. To complete
this section, we will touch on some potential scenarios arising from surrogate
musicianship, and their implications for new music.

cellF plays with a human musician, but a surrogate musician may perform alone
or with other surrogate musicians; different manifestations of the same surrogate
might play simultaneously in different locations. A human musician could create an
external surrogate with their own biological material (or, for that matter, with
biological material from any other living being), as the non-musician Ben-Ary did
with cellF, and engage in musical activities with their own surrogate musician. The
future may see musicians offering their cell lines to preserve their musicality after
death. Surrogate musicianship might allow future generations of such entities not
only to generate music and demonstrate musicality by interacting with human
musicians, but also to interact with other surrogate musicians via a cultured inter-
face that includes other cell types along with neurons. For example, it is con-
ceivable that cochlear hair cells could be interfaced to stimulate a neural network
through vibrations, opening further avenues for creative inputs and outputs. The
possibilities are as diverse as the potential donors themselves.

If the surrogate musician symbolically stands in for its donor, as we have argued,
these scenarios present performance contexts that engage the imagination in new
ways. Surrogate musicians also have direct biological links to their donors,
allowing us to consider the possibility that in-vitro entities may manifest some
inherited musical traits from their donors of biological material. If a human
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musician is improvising with their own surrogate, their shared cellular material
might lead to them making similar responses to stimuli; it is conceivable that such a
scenario will produce innovations in improvised music.

32.7 Concluding Discussion

Western philosophy has long understood the world from an anthropocentric per-
spective that values human life, as entities with large brains and sophisticated
cognition, above other kinds of life, and uses the thinking brain as the primary
signifier of individual existence and sentience. Moreover, anthropocentric per-
spectives use the human as the analogic basis for rational arguments regarding
unfamiliar biological species or processes. New scientific discoveries increasingly
show the error of such thinking, where the threats posed by anthropocentric per-
spectives for ecological systems more broadly ultimately threaten human life as we
know it. Particularly relevant here are those discoveries that reveal species and
processes that fall between accepted categories. For example, Coley and Tanner’s
[6] illumination of misconceptions in biological thinking discusses programmed
cell death and disturbances in ecosystems as normal phenomena that, as a result of
anthropocentric perspectives on ‘death’ and ‘disturbance’, are thought of as
undesirable.

Biology as a field of enquiry is constantly engaged with trying to understand
what ‘life’ is; some characteristics are accepted, while others challenge our pre-
conceptions. Just as new scientific discoveries challenge accepted definitions, art-
works using neurons have the potential to shift perceptions surrounding our
understanding of ‘life’. cellF fulfils some of the accepted characteristics of life, such
as being composed of cells, growing and adapting to an environment, and
responding to stimuli. Other characteristics are harder to categorize. cellF depends
on technological support to sustain its life, but human brains too develop neat links
with technologies in order to form larger systems that change and evolve. cellF is
not a surrogate child in the common sense, but it is genetically related to a specific
human being. Cognitively and genetically, humans have much more in common
with non-humans than anthropocentric perspectives have traditionally allowed.
cellF challenges audiences to rethink categorical assumptions regarding what is
considered human and non-human, biological and technological, living and dead.

This chapter answers Eduardo Kac’s call for ‘a new critical vocabulary to meet
the intellectual challenge’ posed by living artworks like cellF [12]. We have argued
for the significance of cellF’s biological materiality as fundamental to our use of the
new terms in-vitro intelligence and surrogate musicianship. cellF’s current and
future plasticity, its adaptation to change, is founded upon the biological basis of its
neural network. We contrast this with the fixed material basis of artificial intelli-
gence, where proper functioning depends upon the stability of its constituent
metals, metalloids, alloys and plastics. Although the synthesizers and other elec-
tronic circuitry with which cellF is embodied are not cellular, both its neural
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network brain and analogue synthesizer body create and receive electrical infor-
mation. These analogue systems come together in cellF to create music that is an
expression of physical phenomena occurring in real time, in contrast with artificial
intelligence that plays out a complex set of pre-arranged instructions.

Future manifestations of in-vitro intelligence will produce surrogate musicians
that will neither be driven by chance nor determined by instruction, but be spon-
taneous and extemporaneous. The complexity and speed of information pathways
will facilitate their capacity to perform nuanced operations in real time, in response
to audible, and potentially visual, stimuli. These living entities will be both the
instrument and the musician, with a seamless flow from input to output. The
biophysical and electrochemical pathways in self-organizing biological entities
allow information flows that synchronize much faster than occurs in similar-scale
structures made of materials like silicon and metal. The constituent materials of
instruments are significant; an instrument made of metal produces a different tone to
one made of wood. Surrogate musicianship allows us to speak of the different
output of sound between a musician made of dry plastic, alloy and electricity from
the expressivity of one made of wet, organic materials. Furthermore, surrogate
musicians will offer a unique musicality that is accorded to their biological mate-
riality and the consequent relations between surrogates and donors.

As a new framework of music production, surrogate musicianship will change
the approaches of human musicians. The future evolution of new music will occur
through advances in our increased understanding of biology and the inherent
coupling of sound with the body on the hormonal and cellular level. We are able to
deconstruct, manipulate and re-assemble the microscopic building blocks of life in
completely new ways; human bodies are more malleable that ever before. The
potential and ramifications for these biotechnologies extend beyond music. As an
engaging and provocative experimental artwork that applies iPSc and neural
interfaces for aesthetic purposes, cellF opens discussions concerning the future use
of stem cells and the potential to bioengineer brains. By showing audiences beyond
the scientific community what is possible, the artists and the work ask questions
about the use and misuse of biotechnologies, and how and why they are applied. In
so doing, the technology is problematized, rather than simply celebrated. cellF
invites us to grapple with these questions, while the stakes are quite low, in an
attempt to initiate public debate and to critique a position that considers techno-
logical progress a necessary good. As our use of the terms ‘in-vitro intelligence’ and
‘surrogate musician’ show, emerging biotechnologies pose difficult questions about
what counts as a life, and what sorts of lives matter.
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33On Growing Computers from Living
Biological Cells

Eduardo Reck Miranda, Edward Braund and Satvik Venkatesh

33.1 Introduction

The technology behind the computers, and all sorts of data processing devices
pervading our daily lives, are underpinned by paradigms such as the Turing
machine, the von Neumann architecture, the Harvard architecture, and so on, which
were invented in the 1930 and 1940s [29, 33]. These paradigms are so successful
that they still prevail in the design of today’s digital computers.

This is not to say, however, that other computing paradigms have not been
invented. On the contrary, a number of less well-known approaches to computing
have been proposed; e.g. the Kolmogorov-Uspensky machine [18]. They have not
made it to mass industrialisation for a number of reasons, which we shall refrain
from discussing here. Nevertheless, it is worth pointing out that there is an
increasing number of research scientists and engineers interested in developing
alternative types of computers nowadays [34]. They are protagonists of a whole
field of research referred to as Unconventional Computing.

Research into Unconventional Computing is aimed at new algorithms and
computing architectures informed by, or physically implemented on, new types of
substrates, such as chemical, biological and subatomic substrates. Subfields include
Biocomputing, Quantum Computing, Optical Computing and Chemical Comput-
ing, to cite but four.

Whereas conventional Computer Science seeks incremental improvement of
tried-and-tested technology, Unconventional Computing strives for revolutionary
changes. Of course, the more revolutionary an idea is, the higher the chances it may
fail to produce anything useful. Detractors of Unconventional Computing often
argue that it is foolish to compete with the conventional approach. Yet the rapid rise
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of Quantum Computing technology, for example, is bound to prove the detractors
wrong [26].

We are interested in harnessing biological systems to build new kinds of pro-
cessors for Artificial Intelligence, music and creativity. Our ambition is to develop
electronic components, data processors and eventually full-fledged computers, with
living organisms, such as bacteria and slime mould.

This chapter focuses on the work that is being developed with slime mould at the
University of Plymouth’s Interdisciplinary Centre for Computer Music Research
(ICCMR). It tells the story a wild musical idea, born in 2009, and which resulted in
the development of a biological processor that is capable of improvising music and
doing Boolean logics.

33.2 Meet Physarum Polycephalum

Physarum polycephalum, referred to as P. polycephalum, is a type of slime mould
that can be found in the underlying layer of vegetation in a forest or wooded area. It
grows in damp and dark places, on substrates such as rotting tree bark Fig. 33.1.
Nowadays, it is also possible to source it from suppliers of living organisms for
research and educational purposes.

P. polycephalum is a single eukaryotic cell with many heads; hence the term
‘polycephalum’. It is typically yellow in colour and visible to the naked eye. This
organism feeds through a process called phagocytosis: it coats its food in enzymes,
which allow for specific nutrients to be ingested, leaving behind a mass of
unwanted material. In the laboratory, oat flakes are often used as nutrients to culture
the organism in Petri dishes Fig. 33.2.

P. polycephalum exhibits a complex lifecycle [15], but the point of interest here
is its plasmodium stage, which is when the organism actively forages for nutrients.
As it does so, it grows a network of protoplasmic tubules that rhythmically contract

Fig. 33.1 P. polycephalum
grows in the understory and
rotting tree bark. (Photograph
by Jiří Kameníček. Printed
with permission.)
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and expand producing the shuttle streaming (back and forth locomotion) of its
intracellular fluid Fig. 33.3.

The organism is straightforward to culture in Petri dishes and it is relatively easy
to prompt it to grow specific topologies of protoplasmic tubules by placing oat
flakes at specific locations on the dish. This ability to manipulate its growth patterns
has underpinned the early stages of our investigations into this organism’s fasci-
nating properties [23].

Fig. 33.2 The organism can
be cultured on Petri dish by
feeding it with oat flakes

Fig. 33.3 As the organism
actively forages for nutrients
it grows protoplasmic tubules
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What is interesting to note is that the rhythmic contraction of the plasmodium’s
protoplasmic tubes and the subsequent movement of intracellular components
produce electricity that can be measured with electrodes [16, 17].

33.3 Physarum Polycephalum Sonification

Adamatzky and Jones [5] studied the electrical activity of P. polycephalum and
identified patterns of intracellular electrical activity that uniquely characterise the
organism’s physiological state and spatial dynamics.

Readings of the organism’s electrical potentials signpost when it reaches specific
sites on the culture’s substrate, and when it leaves those sites. Such measurements
can also indicate whether the organism is functioning smoothly or is in a state of
‘distress’ (e.g. due to lack of nutrients), and also when it is about to enter hiber-
nation mode. This encouraged us to develop a method to render sounds from
P. polycephalum’s electrical activity. The ICCMR teamed up with Adamatzky’s
group at the University of the West of England, Bristol, to develop a method to
sonify the organism’s behaviour.

At this stage, we were curious to better understand the behaviour of the organism
and explore ways in which we might be able to build a living biological musical
instrument with it. The rationale was that if we could develop ways to induce the
organism to produce variations of its electrical activity, then we would have the
means to vary the sounds; that is, play the instrument.

The reader is invited to consult [23] for details of the technicalities behind the
implementation of the experiments discussed below. What follows is an abridged
introduction.

We cultured the organism in Petri dishes of 9 cm in diameter. In order to record
electrical activity, we furnished the dish with an array of nine electrodes, the first of
which was used as a reference electrode. In fact, the electrodes were the naked part
of coated wires, which were connected to an interface to input voltage readings into
a computer. Each electrode was covered with blobs of non-nutrient agar gel. The
agar blobs did not touch each other. They were secured on the dish with Blu Tack
on a non-conductive plastic strip placed at the bottom of the Petri dish.

To begin an experiment, an oat flake was placed on top of each agar blob. Then,
we deposited a sample of P. polycephalum on the reference electrode’s agar blob.
Fig. 33.4.

As expected, the oat flakes prompted the organism to expand and colonise the
other agar blobs. On a good run, it took three days colonise all electrodes. But it
could take a week sometimes.

The voltages from the electrodes were logged every second. In fact, we sampled
100 measurements per second and then these values were averaged. Furthermore, in
order to compress data worth of several days of activity into an amount suitable to
produce a few minutes of sound, the electric potentials from electrodes e1; . . .e8
were processed as follows: measurements et1; . . .; e

t
8 at time step t were considered
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only if at least N electrodes presented a change in their electric potential. Otherwise,
the measurement was ignored. (Recall that the first electrode, e0, was used as the
reference to measure the electric potentials).

Voltage values were capped in a range between −40 and + 40 mV, which is the
range normally expected to be produced naturally by this organism. And the
voltages were subsequently scaled by S in order to match the requirements of the
sound synthesis algorithm that we developed. For the example discussed in this
chapter, N ¼ 5 and S ¼ 20.

Figure 33.5 illustrates a typical example of an experiment. The organism pro-
liferated from its initial position on the reference electrode (on the right-hand side)
onto the other electrodes, towards the left.

In Fig. 33.6, the voltages were plotted following the order in which the
colonisation took place. Note that electrode e6 was not colonised in this example.
This sort of thing happened often, but what caused it is not fully understood. We

Fig. 33.5 The organism proliferated from its initial position on the reference electrode (first on
the right-hand side of the figure), towards the other 8 measurement electrodes

Fig. 33.4 Detail of the Petri dish prepared with electrodes to measure the behaviour of
P. polycephalum. A sample of the organism was placed on the reference electrode, located on the
right-hand side
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reckon that it is probably due to the somewhat precarious conditions of the DIY
laboratory setup where we conducted our experiments at the time.

We noticed that the colonisation of an electrode produces a characteristic pattern
of voltage dynamics. At first, the electrode being colonised registered a rise in its
voltage by up to 20 mV. Then, a drop followed this rise, which sometimes went
lower than −30 mV.

Eventually, the organism abandoned the agar blobs as they started to dry and/or
nutrients were drained. A gradual decrease in voltage was registered when it
abandoned an agar blob. When blobs dried and/or nutrients finished, the organism
entered into a state of hibernation, forming what is referred to as sclerotium.

Over a fair number of runs, we observed that the voltages between stages of
colonisation and hibernation were highly dynamic. They represent the interaction of
many travelling waves of excitation and contraction.

In order to synthesise sounds, we developed an additive granular synthesiser.
Granular synthesis works by generating a rapid succession of short sound bursts
referred to as sound granules that together form larger sound events [24].

In our system, each sound granule is produced by adding up eight sine waves,
each of which is associated with a different electrode. The sinewaves are produced
by oscillators, which need two values each to function: a frequency value in Hz and
an amplitude in dB.

We used the voltages from the electrodes to control either the frequencies of the
oscillators, or both their frequencies and amplitudes together. In the first case, the
voltages were normalised to a frequency range, which is set arbitrarily; e.g. between
20 and 4 kHz. Here the amplitudes for each of the sine waves were fixed. In the
second case, the voltages also controlled the amplitudes of the sine waves. The
voltages were also normalised to a predetermined amplitude range. In standard
granular synthesis, the duration of each granule is typically set in terms of tens of
milliseconds. Such value can change dynamically as the sound is being synthesised.
For the example below, the granules were set to a fixed duration of 30 ms each.

Figure 33.7 shows the cochleagram of an 80 s long sound rendered from the
data plotted in Fig. 33.6. In this case, the voltages steered the frequencies of the
oscillators. Despite the compression of the original raw data, there is a clear cor-
respondence between sound and the behaviour of the organism. This is demon-
strated by the darker lines of the cochleagram, which are morphologically related to
the plotting of the voltages in Fig. 33.6.

We subsequently learned that the electrical behaviour of the organism could be
manipulated with light and chemical substances [4]. This enabled us to produce
sound variations.

Afterwards, we developed a music sequencer and a Kolmogorov-Uspensky
model [18, 19] to generate music [22], which also explored spatial displacement of
the organism in response to stimuli.

However, despite various attempts to manipulate the electrical behaviour of the
organism and accelerate growth speeds, admittedly, the setup above proved
unsuitable for making a realistic musical instrument. Whereas it worked well for
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generating music with recorded data, it proved to be overly slow for real-time
synthesis.

Nevertheless, the experiments offered a glimpse at how to harness the behaviour
of the unicellular organism to build programmable living machines. Moreover, they
advanced our practical understanding of the organism and appreciation of what it
takes to culture it and control its behaviour.

In the meantime, the research community reported that the organism had been
prompted to find the shortest path to a target destination through a maze [3],
develop Voronoi diagrams [32] and solve the classic combinatorial optimization
Steiner tree problem [10].

Perhaps the most important outcome of our research at that stage was the
realisation that the tubules connecting one agar blob to another, as shown in
Fig. 33.5, exhibit very interesting conductance properties, which are explored
below.

33.4 Developing the Biomemristor

Exerting electricity through a protoplasmic tubule of P. polycephalum prompts it to
behave like an electronic component, referred to as the memristor.

The memristor is a relatively unknown electronic circuit component, proposed
by Leon Chua in the 1970s. It can be thought of as a resistor with memory, because
its resistance depends on the history of previous inputs [11]. The memristor is not
yet widely employed in the electronics industry. But enthusiasts hope this com-
ponent will bring a new wave of innovation in electronics because its behaviour is

Fig. 33.7 The cochleagram of a sound representing the behaviour of P. polycephalum
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akin to the behaviour of neurones [36]. Hence, its potential for developing Artificial
Intelligence.

The memristor is an element with two terminals. It alters its resistance as a
function of the previous input voltage and the amount of time that this voltage was
applied; this property is referred to as hysteresis. When the application of the
voltage stops the element retains its most recent resistance state. Mathematically,
we can use a state-dependent Ohm’s laws to define memristance M as the element’s
resistance R to a given charge q as follows:

M ¼ R qð Þ ¼ ddðqÞ
dq

where q is the charge, d is the magnetic flux and d is the derivative, denoting the
change in flux with respect to the change in charge.

If the value of q is constant, then, over time, the memristor would maintain a
linear relationship between voltage and current, similar to a resistor. However, if
q is variable, then this relationship becomes nonlinear.

Figure 33.8 shows the memristor’s current–voltage characteristic hysteresis
curve, where a high or a low resistance pathway is followed according to whether
the voltage is increasing or decreasing. The hysteresis curve’s lobe size is a function
of the rate at which the input voltage changes and the memristance.

The fact that P. polycephalum can be harnessed to act as a memristor provides an
exciting route for making memristors, which is to grow them out of biological
material [12, 28].

Fig. 33.8 The ideal
memristor’s current–voltage
characteristic hysteresis curve
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The ICCMR team demonstrated that P. polycephalum produces current–voltage
hysteresis curves in response to the systematic application of AC voltage, which is
comparable with the memristor’s curve shown in Fig. 33.8 [8].

Chua [11] established that if a memristor produces a consistent and symmetric
figure of eight curves with the centre intersection at zero voltage and zero current,
then it is considered as an ‘ideal memristor’. We observed that the curve’s shape
produced by P. polycephalum varied dynamically, but remained consistent with the
memristor’s characteristic curve Fig. 33.9. This anomaly could be due to external
factors that influence the organism, like humidity, temperature, light and electrical
history. However, we believe that these minor variations can be advantageous for
building computer-aided creative systems. For instance, there could be a control-
lable coefficient of dynamicity, which would regulate levels of variations produced
by a memristor-based system in response to input data.

The initial prototypes of our biomemristor were implemented on Petri dishes
retrofitted with electrodes made with circles of tinned copper wire filled with
non-nutrient agar Fig. 33.10. This enabled them to grow a protoplasmic tubule
connecting the two electrodes. In order to prompt the organism to lay down the
required protoplasmic tubule, we positioned a P. polycephalum-colonised oat flake
on one of the electrodes, and a fresh oat flake on the other. This arrangement
influences the organism to grow towards the fresh oat.

We subsequently developed a receptacle to culture the organism in a more
controlled fashion than before. The receptacle, which is fabricated using 3D
printing, encapsulates the organism into a stable environment that delineates a
well-defined propagation trajectory Fig. 33.11. This was achieved by printing the
chambers with high-impact polystyrene (HIPS). This substance is a repellent for
P. polycephalum [14]. Consequently, it discourages the organism from growing on
the walls of the chambers. Instead, it encourages propagation across the tube linking
to the other chamber, laying down the desired protoplasmic tubule between two
bio-compatible electrodes Fig. 33.12. For the linking tube, we used off-the-shelf

Fig. 33.9 Two examples of current–voltage curves obtained from experiments with
P. polycephalum
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medical-grade polyvinyl chloride (PVC) tubing, which provides protection against
environmental traits, such as infection from bacteria.

The receptacle-based biomemristor yielded current–voltage curves that were
more symmetrical than those obtained with the previous Petri dish setup, and with
more consistent lobe sizes and pinch locations Fig. 33.13. Also, the lifespan of the
component was increased considerably. Whereas the Petri dish biomemristors lost
their memristive properties after a few hours of use, the receptacle-based compo-
nent is able to retain it for over a week. For more details on the receptacle-based
component please refer to [9]. Details on how to build one can be found in [21].

Fig. 33.10 Photograph of a
biomemristor implemented in
a Petri dish

Fig. 33.11 A receptacle to
grow a biomemristor. The
space between the two
electrodes is 1 cm
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Eventually, we developed ancillary hardware and software to handle the
biomemristor using a Raspberry Pi. This is a low cost, computer board that is the
size of a credit card. Each unit can handle four biomemristors simultaneously.
A MIDI interface is embedded for music input and output. A standard USB port
facilitates communication with other devices, if required; e.g. for uploading and
downloading software or MIDI data. The whole system is self-contained and
encased in a small portable box, was baptised as the PhyBox [7].

Fig. 33.12 A receptacle with a cultured organism. Note the protoplasmic tubule linking the two
chambers

Fig. 33.13 Two examples of current–voltage curves measured with a receptacle-based
biomemristor
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33.4.1 Music Processing with Biomemristors

A sudden change of input voltage prompts the biomemristor to produce a spike in
current. The magnitude of the spike is directly related to the difference between the
voltage of the incoming signal and the voltage of the previous input. The greater
this difference, the higher the magnitude of the spike, and vice-versa. Furthermore,
the greater the voltage difference, the longer it takes to settle down from a spike,
and vice-versa. We explored these intrinsic properties of the component to develop
a living interactive music system (LIMuS) on the PhyBox.

In a nutshell, LIMuS listens to musical events that are transcribed into voltages
and generates music in terms of biomemristor current.

At the listening stage, the system splits the music input into four streams of data:
pitch, loudness, inter-onset interval and duration. And then, it generates four
streams of voltages, one for each biomemristor. For simplicity, below we will refer
only to the pitch stream; the process is identical for the other three.

As the system processes the music input, it converts the pitches into voltages. It
logs the pitches, the number of times they appeared in the sequence and their
respective voltages. A transition matrix is created to represent how often a pitch
followed another in the sequence.

At the generative phase, for each pitch to be produced at time tþ 1; it feeds the
voltage (as logged at the ‘listening’ stage) of the pitch at time t into the respective
biomemristor. This in turn produces a current peak. The measurement of the peak is
matched against the stochastic values of the transition table to establish the pitch of the
new note. The same applies to the note’s loudness, inter-onset interval and duration.

Below is an abridged explanation from a paper we published in Computer Music
Journal [20] detailing music processing. For the sake of clarity, here we focus on a
hypothetical case, whereby a monophonic MIDI file encoding a short tune is
uploaded into LIMuS. Just pitch is considered. The system generates a musical
response only after the whole excerpt has been processed. Bear in mind that the real
system produces responses on the fly, for live musical interaction. An example of a
composition is detailed in [20] and a video recording of its live performance is
available online [25].

As an input music sequence is processed, the system generates voltage impulses
/ and each pitch is stored with its respective number of occurrences up to the
current point. An interim voltage value V in the range of 0 to 10 V is calculated as
follows:

V ¼ 10� 10
N

� �
� n

� �

where N is the total number of processed events so far and n is the number of times
the present event has occurred up to this point. Then, if the present event has
occurred more frequently than the previous one, the value of the impulse /t is
calculated by increasing the positivity or negativity of the previous impulse /t�1 by
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the magnitude of voltage V , depending on the polarity of /t�1. Otherwise, /t is
calculated by decreasing the positivity or negativity of the previous impulse /t�1 by
the value of V . Note that the increase or decrease occurs here in terms of voltage
magnitude, which could be either positive or negative. As an example, let us
consider the excerpt from J. S. Bach’s Gavotte en rondeau shown in Fig. 33.14.

The first event is note B4, represented as note MIDI number 71. In this case
V ¼ 10� 10=1ð Þ � 1ð Þ = 0 V, and as this is the first event, then /1 ¼ 0.

Next, comes the second event, which is MIDI note 80. The voltage for this note
is calculated as V ¼ 10� 10=2ð Þ � 1ð Þ = 5 V. As this is only the second event and
the magnitude of the previous impulse is neither positive nor negative, the system
arbitrarily makes it as a positive impulse: /2 ¼ V Table 33.1.

Then comes the third note, which is also MIDI note 80. As this note occurred
more times than note 71, its respective impulse is calculated by increasing the
positive value of the previous impulse by the present voltage value:
/ ¼ 5:00þ 3:33 ¼ 8:33Table 33.2.

Fig. 33.14 Excerpt from J. S. Bach’s Gavotte en rondeau

Table 33.1 Voltage
impulses assigned to two
events

Event Note n V /

1 71 1 0.00 0.00

2 80 1 5.00 +5.00

Table 33.2 Voltage
impulses assigned to three
events

Event Note n V /

1 71 1 10.00 0.00

2 80 1 5.00 +5.00

3 80 2 3.33 +8.33
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Next in the sequence is MIDI note 78, which occurred less frequently than the
previous notes. In this case, the impulse is calculated by decreasing the positive
value of the previous impulse by the voltage value for note 78, that is: / ¼
8:33� 7:50 ¼ 0:83: The fifth note is 76, which occurred the same number of times
as the previous one. Therefore V ¼ 10� 10=5ð Þ � 1ð Þ ¼ 8 V and the impulse is
calculated by decreasing the positive magnitude of the previous impulse, which
brings it down to a negative value: / ¼ 0:33� 8:00 ¼ �7:17 (Table 33.3). The
resulting impulse sequence is plotted in Fig. 33.15.

While the system calculates the values of the impulses, it also builds a transition
table of inverted percentages of note occurrences Table 33.4. As the musical input
is processed, the system dynamically calculates percentages of transitions between
two events. These percentages are subsequently inverted to make smaller values
denote greater occurrence of a certain transition from one note to another, and
vice-versa. This aligns the musical transitions with the behaviour of the biomem-
ristor: it produces low memristance as the voltage increases and high memristance
as the voltage decreases. Therefore, small changes from one voltage impulse to
another encode more frequent transitions, whereas large changes encode less fre-
quent ones.

The voltage impulses are then applied one at a time to biomemristor in charge of
pitch, the corresponding current is measured, and this value is subsequently used to
generate a note for output.

In order to translate from measurements of current to MIDI note numbers, each
current reading It is compared against its predecessor’s It�1 to calculate an absolute
change rate value DI, as follows:

DI ¼ ðIt � It�1Þ
It�1

� �
� 100

����
����

Then, the system selects the option in the transition matrix whose inverted
percentage value is the closest possible to the value of DI. To start with, the system
considers the first note of the original input music, which in this case is equal to 71.
For example, the current reading for the first impulse /1 ¼ 0 (corresponding to the
first input note 71) is I1 ¼ 0:0252� 10�4. As there is no predecessor value for the
DI equation, the system establishes that DI1 ¼ 0:0 and picks note 80 from
Table 33.4 because note 71′s inverse probability value of 60.0 is the closest to

Table 33.3 Voltage
impulses assigned to four
events

Event Note n V /

1 71 1 0.00 0.00

2 80 1 5.00 +5.00

3 80 2 3.33 +8.33

4 78 1 7.50 +0.83

5 76 1 8.00 −7.17
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DI1 ¼ 0:0. Next, for the second input note 80, /2 ¼ 5:0 yields
I2 ¼ 0:1961� 10�4, therefore DI2 ¼ 678:17. In this case, the closest inverted
percentage is 88.8. From the four choices available the system picks note 69. For
the third input note, also 80, /3 ¼ 8:33 produced I3 ¼ 0:2053� 10�4 and
DI3 ¼ 4:69. Therefore, the system picked note 81, whose transition has the lowest
inverse probability value equal to 66.6. So far, the system generated notes 80, 69
and 81 as responses to notes 71, 80 and 80, respectively.

A plot of the currents yielded by the biomemristor is shown in Fig. 33.16 and the
resulting notes in standard musical notation are shown in Fig. 33.17. Obviously, the
temporal structural of the Bach input has been discarded in Fig. 33.17 because the
examples focussed only on pitch processing.

The degree of variation of the musical output in relation to the input could be
made controllable if a way to handle the hysteresis of the system is devised.
A biomemristor with a different current–voltage profile from the one used for the
above example would have produced different current readings and consequently a
variation of the from the example presented above.

33.5 Performing Boolean Logic and Arithmetic
Operations with the Biomemristor

Boolean logic, introduced by George Boole in the nineteenth century, is a form of
algebra where variables have two unique values: True or False, or 1 or 0, respec-
tively. For instance, if a given statement A is true and another statement B is also
true, then both statements are true, represented as: A AND B = True.

Table 33.4 Table of inverted percentages of transitions from notes listed on the vertical axis to
the ones listed on the horizontal axis

64 66 69 71 73 75 76 78 80 81 83

64

66 0.0

68 50.0 50.0

69 0.0

71 80.0 80.0 60.0

73 0.0

75 0.0

76 80.0 40.0 80.0

78 90.0 90.0 90.0 80.0 70.0 80.0

80 88.8 88.8 88.8 77.7 88.8 66.6

81 83.3 50.0 83.3 83.3

83 0.0
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Boolean logic is fundamental for developing computing systems. Therefore, a
natural progression in our research is to harness the biomemristor to perform
Boolean logical operations. Eventually, this will enable us to build biological
processors that can speak with digital ones at their most fundamental levels, paving
the way for hybrid machines making the most of both realms.

Fig. 33.17 Music output from the system. Note that only pitches were processed by the system,
hence the temporal structure of Bach’s input is lost

Fig. 33.16 The currents yielded by the biomemristor
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At its most fundamental level, a digital computer comprises electronic switches
that operate on binary numbers. Connected together they form logic circuits that
give outputs based on inputs supplied to it.

At its core, Boolean logic has three basic operators: OR, AND, and NOT. These
basic operators can be combined to build other operators (e.g. NAND, NOR, etc.)
and complex logic expressions.

As mentioned earlier, sudden changes in voltage cause the biomemristor to
produce a spike in current. Resistance gradually shifts over time. Gale et al. [13]
made use of this phenomenon to develop XOR (a variant of OR) and NOT logic
operators on a memristor made of Titanium dioxide. They used a single memristor
to process a sequence of two voltage values representing logic inputs. Also, there
have been a few other studies exploring ways to perform Boolean logic operations
with memristors [6, 31], Papandroulidakis et al. [27].

The ICCMR is championing technology to make use of P. polycephalum
biomemristors to carry out Boolean logic and arithmetic operations. We were able
to perform the logic operators OR, AND, and NOT on our biomemristor. And we
also implemented a comparator and an ADDER operator, which will be introduced
below.

By way of previous related work, Adamatzky et al. [2] conducted a study
exploring P. polycephalum’s chemotaxis behaviour to implement two Boolean
logic gates. Chemotaxis refers to the movement of an organism in response to
chemical stimuli. Positive chemotaxis occurs when the organism moves towards a
higher concentration of a stimulus, whereas negative chemotaxis takes place when
the movement is in the opposite direction. They prompted the organism to move in
space to perform the operations. This is pretty much in line with the approach we
had adopted earlier for the sonification work. In contrast, we are exploiting the
actual memristive properties of the organism to implement the operations.

In our model, the logic inputs True and False are assigned to specific voltages. In
order to implement our logic gates, we set up a system that works with negative and
positive voltages in the range of −2.0 to +2.0 V. A positive change in voltage
produces a positive spike, whereas a negative change produces a negative spike.
The magnitude of a spike is proportional to the amount of change. For instance, a
change from 0.0 to 1.5 V produces a spike with a notably higher magnitude than
the magnitude of a spike resulting from a change from 0.0 to 0.1 V.

As in the work of Gale et al. [12], inputs to a biomemristor are applied
sequentially. For instance, let’s assume that input A is True and input B is False,
and that True is represented by +2.0 V and false by −2.0 V. Consider the case
where +2.0 V is applied, followed by −2.0 V immediately after. The change here is
equal to −4.0 V; i.e. the interval going from +2.0 to −2.0 V. In this case, the spike
will be a negative spike current; the change is towards the negative domain.
Conversely, a change from −2.0 to +2.0 V would have yielded a positive spike
current; the change +4.0 V is towards the positive domain.

The output of a logical operator is encoded by the behaviour of the spike
prompted by the inputs. Different operators are defined in terms of specific spike
behaviours in relation to predetermined threshold values.
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33.5.1 Bio-Logic Operations

33.5.1.1 The OR Operator
The OR operator outputs True if any of the inputs are True. The corresponding
voltages for inputs True and False are +2.0 V and +0.4 V, respectively.

Let us define that b represents the magnitude of a spike and U represents a
pre-defined threshold in the positive domain. In this case, the biomemristor will
produce a spike whose magnitude b crosses the threshold U when the output is
True.

Table 33.5 shows the logic ‘truth table’ and the respective biomemristor
encodings for the OR operator. The OR symbol used in circuitry diagrams is shown
in Fig. 33.18.

As shown in Fig. 33.19, if the current reading is above the threshold, the output
is considered to be Boolean True. Otherwise, the output is Boolean False.

Let’s examine an example: A = False OR B = True. Assume that U ¼ 0:6�
10�5 A. To begin with, 0.0 V is input to the biomemristor as an initial reference.
Then, let us input +0.4 V followed by +2.0 V. This produces a positive spike
current b ¼ 0:9� 10�5 A. In this case, the peak exceeds the threshold, yielding
Boolean result X = True.

It is important to bear in mind that the current readings b are measured after the
first and second input. If any of the two measurements exceed the threshold U, the
output is True. For the other gates below, the current reading is measured only after
the second input.

Fig. 33.18 The OR symbol. A, B and X are the Boolean variables

Table 33.5 Truth table and respective biomemristor encodings for the OR operator, where b is
the magnitude of the spike and U is the threshold

Input A Input B Output X

Boolean Biomem Boolean Biomem Boolean Biomem

False +0.4 V False +0.4 V False b�U

False +0.4 V True +2.0 V True b[U

True +2.0 V False +0.4 V True b[U

True +2.0 V True +2.0 V True b[U
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An implementation of the NOR operator can be achieved with a slight modifi-
cation of the conditions in Table 33.5. Effectively, NOR is a negation of OR: if the
current reading exceeds the threshold, then X = False Otherwise, the X = True.

33.5.1.2 The AND Operator
The AND operator outputs True only if both inputs are True. The corresponding
voltages for inputs True and False are +2.0 V and −2.0 V, respectively. These will
produce positive and negative spikes in currents. Table 33.6 shows the logic table
and respective biomemristor encodings for this operator. The circuitry symbol is
portrayed in Fig. 33.20.

As shown in Fig. 33.21, the AND operator works with two thresholds: and
upper positive threshold U and a lower negative one, !,normally, ! ¼ �U.
Measurement of current spikes is classified into four ranges, as follows:

Level 1: spike current is higher than U;
Level 2: spike current is equal to or lower than U, but above or equal to 0,

Table 33.6 Truth table and respective biomemristor encodings for the AND operator, where b is
the magnitude of the spike and U and ! are the higher and the lower thresholds, respectively

Input A Input B Output X

Boolean Biomem Boolean Biomem Boolean Biomem Level

False −2.0 V False −2.0 V False !� b\0 3

False −2.0 V True +2.0 V False b[U 1

True +2.0 V False −2.0 V False b\! 4

True +2.0 V True +2.0 V True 0� b�U 2

Fig. 33.19 Output spikes for the OR operator. Sequence of input voltage pairs: (0.4, 0.4), (0.4,
2.0), (2.0, 0.4) and (2.0, 2.0)
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Level 3: spike current is lower than 0, but equal to or higher than !; and
Level 4: spike current is lower than !.
In this case, the biomemristor will output True when the spike falls within level

2.

33.5.1.3 The NOT Operator
The NOT operator inverts the value of the input A (Table 33.7). The corresponding
voltages for input A are +2.0 V for True and −2.0 V for False. Figure 33.22 shows
the NOT circuitry symbol.

Input B is fixed at +2.0 V, which is applied to induce the inversion. If the
magnitude of the resulting peak is above the threshold, then the output is True.
Otherwise, it is False Fig. 33.23.

Fig. 33.20 The AND symbol. A, B and X are the Boolean variables

Fig. 33.21 Output peaks for the OR operator. Sequence of input voltage pairs: (−2.0, −2.0),
(−2.0, 2.0), (2.0, −2.0) and (2.0, 2.0)
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33.5.2 Towards Bio-Logic Electronic Circuits: Half ADDER

An ADDER is a device that adds two binary digits. This is one of the most basic
components of a computer; it is the heart of the Arithmetic Logic Units (ALU),
which is a fundamental building block of many types of computing architectures.

There are two types of ADDERs: half ADDER and full ADDER. The half
ADDER, which is the focus of this section, adds two single binary digits and provides
the output plus a carry value. Given two inputs A and B, it produces two outputs
referred to as sum (S) and carry (C). In binary addition, 1 + 1 = 10, but as performed
by the half ADDER, the actual sum is equal to 0; the digit 1 is the carry (C).

Table 33.7 The operator
NOT and the respective
biomemristor encoding

Input A Input B Output : A

Boolean Biomem Biomem Boolean Biomem

False −2.0 V +2.0 V True b[U

True +2.0 V +2.0 V False b�U

Fig. 33.22 The NOT symbol, where ‘: A’ means ‘not A’

Fig. 33.23 The peaks for the NOT operator. Sequence of input voltage pairs: (−2.0, 2.0), (2.0, 2.0)
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Classically, a half ADDER is implemented with AND, OR and NOT operators.
However, there is a simpler form using two operators (AND and XOR), which is
the one that we have implemented here. The advantage of using the XOR is that this
operator is straightforward to implement with the biomemristor.

The XOR is a variation of the OR operator introduced above. It outputs True
only if the inputs are different from each other; i.e. only one of them is True. If both
inputs are equal to each other, then the output is False.

The corresponding voltages for inputs True and False are +2.0 V and −2.0 V,
respectively. As with the AND operator, XOR also works with two thresholds: an
upper positive threshold U and a lower negative !; normally, ! ¼ �U Fig. 33.24.
Table 33.8 shows the logic table and the respective biomemristor encodings for the
XOR operator.

The circuit for the half ADDER, comprising AND and XOR operators is given
in Fig. 33.25, the XOR operator is shown on top. The sum S is done through the
XOR operator, whereas the carry C is obtained with the AND. Now, as we are

Fig. 33.24 Output peaks for the XOR operator. Sequence of input voltage pairs: (−2.0, −2.0),
(−2.0, 2.0), (2.0, −2.0) and (2.0, 2.0)

Table 33.8 Truth table and respective biomemristor encodings for the XOR operator, where b is
the magnitude of the peak, and U and ! are the higher and the lower thresholds, respectively

Input A Input B Output X

Boolean Biomem Boolean Biomem Boolean Biomem

False −2.0 V False −2.0 V False !� b\0

False −2.0 V True 2.0 V True b[U

True 2.0 V False −2.0 V True b\!

True 2.0 V True 2.0 V False 0� b�U
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dealing with numeric operations, we will use binary digits rather than True and
False statements.

Recall that measurement of current for the AND operator is classified into four
levels. Considering the two operators together, the corresponding S and C outputs
for the half ADDER are

Level 1: {A = 0, B = 1} = > {S = 1, C = 0}.
Level 2: {A = 1, B = 1} = > {S = 0, C = 1}.
Level 3: {A = 0, B = 0} = > {S = 0, C = 0}.
Level 4: {A = 1, B = 0} = > {S = 1, C = 0}.
Table 33.8 shows the logic table and the respective biomemristor encodings for

the half ADDER. Note, the biomemristor’s measurement conditions for outputs S
and C are identical.

Our biological half ADDER was built using a single biomemristor. Conversely,
it would have required eight transistors to be implemented on standard silicon
chips. Despite the fact that we still need to overcome countless technical challenges
before we can produce operational complex circuits with biomemristors, this
reduction of logic units is an encouraging observation.

A pressing challenge that needs to be tackled before we can attempt more
complex circuits is the calibration of thresholds.

The biomemristor is a living organism. As such, its behaviour is highly dynamic
and somewhat unpredictable. Whereas such dynamic behaviour is cherished for
certain applications, it is undesirable for ascertaining the accuracy of logic opera-
tions. In order to obtain accurate results with the operators introduced above, we

Fig. 33.25 The half ADDER
circuit made with XOR (at the
top) and AND operators

Table 33.9 Truth table and the respective biomemristor encodings for the half ADDER

Input A Input B Output S Output C

Bit Biomem Bit Biomem Bit Biomem Bit Biomem

0 −2.0 V 0 −2.0 V 0 !� b\0 0 !� b\0

0 −2.0 V 1 2.0 V 1 b[U 0 b[U

1 2.0 V 0 −2.0 V 1 b\! 0 b\!

1 2.0 V 1 2.0 V 0 0� b�U 1 0� b�U
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had to calibrate the threshold values manually before performing the experiments.
This sort of thing needs to be managed by the system itself, through some sort of
‘operational systems’ self-regulation’. This is not trivial.

Moreover, after processing each input pair, the device needs time to bring itself
back to its initial state. This may take up to one second. We cannot simply input a
0 V to re-initiate the system because this would still incur a voltage change. Further
research is needed in order to optimise this.

33.6 Concluding Remarks

This chapter glanced over the Unconventional Computing for music research that
we have been developing at ICCMR for the past 12 years by the time we write this.
What started as a highly speculative ‘what if’ question, posed by a bunch of curious
computer musicians, joined a global effort to develop new types of computers. The
biomemristor introduced above is unique, and so are the PhyBox and the uses we
are making of it.

Unquestionably, there is a long road ahead before we can build something that
may be comparable to standard computing technology. All the same, we advocate
that research into Unconventional Computing should be aimed at complementary
rather than contrasting technology. We believe that future computers are likely to be
hybrids; e.g. digital-bio-quantum machines.

We believe that once we have developed the means to achieve robust perfor-
mance of Boolean logic and other numerical operations with biomemristors, then
we will be able to grow entire biological circuits, miniaturised and with the ability
to morph its components; e.g. a biomemristor may become a biotransistor, or a
bioresistor, or all three at the same time.

Acknowledgements We thank Bhavesh Shri Kumar Narayanan, a visiting student from SAS-
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34Quantum Computer: Hello, Music!

Eduardo Reck Miranda

34.1 Introduction

Quantum computing is emerging as a promising technology, which is built on the
principles of subatomic physics. By the time of writing, fully fledged practical
quantum computers are not widely available. But research and development are
advancing at exponential speeds. Various software simulators are already available
[1, 2]. And a few companies have already started to provide access to quantum
hardware via the cloud [3, 4]. These initiatives have enabled experiments with
quantum computing to tackle some realistic problems in science; e.g., in chemistry
[5] and cryptography [6].

In spite of continuing progress in developing increasingly more sophisticated
hardware and software, research in quantum computing has been focusing primarily
on developing scientific applications. Up till now there has been virtually no
research activity aimed at widening the range of applications of this technology
beyond science and engineering. In particular applications for the entertainment
industry and creative economies.

We are championing a new field of research, which we refer to as Quantum
Computer Music. The research is aimed at the development of quantum computing
tools and approaches to creating, performing, listening to and distributing music.

This chapter begins with a brief historical background. Then, it introduces the
notion of algorithmic music and presents two quantum computer music systems of
our own design: a singing voice synthesizer and a musical sequencer. A primer on
quantum computing is also given. The chapter ends with a concluding discussion
and advice for further work to develop this new exciting area of research.
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34.2 Historical Background

As early as the 1840s, mathematician and allegedly the first ever software pro-
grammer, Lady Ada Lovelace, predicted in that machines would be able to compose
music. On a note about Charles Babbage’s Analytical Engine, she wrote:

Supposing, for instance, that the fundamental relations of pitched sounds in the science of
harmony and of musical composition were susceptible of such expression and adaptations,
the Engine might compose elaborate and scientific pieces of music of any degree of
complexity or extent. ([7], p. 21).

People hardly ever realize that musicians started experimenting with computing
far before the emergence of the vast majority of scientific, industrial and com-
mercial computing applications in existence today. For instance, in the 1940s,
researchers at Australia’s Council for Scientific and Industrial Research (CSIR)
installed a loudspeaker on their Mk1 computer (Fig. 34.1) to track the progress of a
program using sound. Subsequently, Geoff Hill, a mathematician with a musical
background, programmed this machine to playback a tune in 1951 [8].

And in the 1950s composer and Professor of Chemistry, Lejaren Hiller collab-
orated with mathematician Leonard Isaacson, Lejaren Hiller and Leonard Isaacson,
at University of Illinois at Urbana-Champaign, programmed the ILLIAC computer
to compose a string quartet entitled Illiac Suite. The ILLIAC, short for Illinois
Automatic Computer, was one of the first mainframe computers built in the USA,
comprising thousands of vacuum tubes. The Illiac Suite consists of four move-
ments, each of which using different methods for generating musical sequences,

Fig. 34.1 CSIRAC computer used to playback a tune in the early 1950s. The loudspeaker can be
seen in the right-hand door of the console. (Image published with the kind permission of Prof. Paul
Doornbusch.)
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including hard-coded rules and a probabilistic Markov chain method [9]. This string
quartet is often cited as a pioneering piece of algorithmic computer music. That is,
whereas Mk1 merely played back an encoded tune, ILLIAC was programmed with
algorithms to compose music.

Universities and companies have been welcoming musicians to join their
research laboratories ever since. A notable early example is AT&T's Bell Labora-
tories, in New Jersey, where in the early 1960s composer Max Mathews developed
MUSIC III: a system for synthesizing sounds on the IBM 7094 computer.
Descendants of MUSIC III are still used today; e.g., programming languages for
audio such as Csound [10].

The great majority of computer music pioneers were composers interested in
inventing new music and/or innovative approaches to compose. They focused on
developing algorithms to generate music. Hence the term ‘algorithmic music’. In
addition to those innovators cited above, names such Iannis Xenakis, Pietro Grossi,
Jean-Claude Risset and Charles Dodge, amongst a few others, come to mind. Those
early pioneers of Computer Music unwittingly paved the way for the development
of a thriving global music industry.

Computers play a pivotal part in the music industry today. And emerging
quantum computing technology will most certainly have an impact in the way in
which we create and distribute music in time to come. Hence the dawn of Quantum
Computer Music is a natural progression for music technology.

Prior to this chapter, the ICCMR team published preliminary studies with
photonic quantum computing [11] and with Grover’s search algorithm to produce
melodies [12]. A book chapter about Zeno, a composition for bass clarinet and
music generated by a quantum computer interactively, is also available [13].

34.3 Algorithmic Computer Music

The first uses of computers in music were for running algorithms to generate music.
Essentially, the art of algorithmic music consists of (a) harnessing algorithms to
produce patterns of data and (b) developing ways to translate these patterns into
musical notes or synthesised sound. An early approach to algorithmic music, which
still remains popular to date, is to program the computer to generate notes randomly
and then reject those that do not satisfy given criteria, or rules. Musical rules based
classic treatises on musical composition (e.g., [14]) are relatively straightforward to
encode in a piece of software.

Another widely used approach employs probability distribution functions to
predispose the system towards picking specific elements from a given set of musical
parameters. For instance, consider the following ordered set of 8 notes, which
constitute a C4 major scale: {C4, D4, E4, F4, G4, A4, B4, C5} (Fig. 34.2).
A Gaussian function could be used to bias the system to pick notes from the middle
of the set. That is, it would generate sequences with higher occurrences of F4 and
G4 notes.
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A Gaussian function may well be viewed as a simple abstract musical rule.
Abstract rules for musical composition can be expressed in a number of ways,
including graphs, set algebra, Boolean expressions, finite state automata and
Markov chains, to cite but a few. An example using a Markov chain to encode rules
for generating sequences of notes is given below. A more detailed introduction to
various classic algorithmic composition methods is available in [15].

As an example, consider the ordered set shown in Fig. 34.2. Let us define the
following sequencing rules for establishing which notes are allowed to follow a
given note within the set:

Rule 1: if C4, then either C4, D4, E4, G4 or C5.
Rule 2: if D4, then either C4, E4 or G4.
Rule 3: if E4, then either D4 or F4.
Rule 4: if F4, then either C4, E4 or G4.
Rule 5: if G4, then either C5, F5, G5 or A5.
Rule 6: if A4, then B4.
Rule 7: if B4, then C5.
Rule 8: if C5, then either A4 or B4.
Each of these rules represents the transition probabilities for the next note to

occur in a sequence. For example, after C4, each of the five notes C4, D4, E4, G4
and C5 has a 20% chance each of occurring.

The rules above can be expressed in terms of probability arrays. For instance, the
probability array for note C4 is p(C4) = [0.2, 0.2, 0.2, 0.0, 0.2, 0.0, 0.0, 0.2] and
for note D4 is p(D4) = [0.33, 0.0, 0.33, 0.0, 0.33, 0.0, 0.0, 0.0], and so on. The

Fig. 34.2 A given ordered set of musical notes

C4 D4 E4 F4 G4 A4 B4 C5
C4 0.2 0.2 0.2 0.0 0.2 0.0 0.0 0.2
D4 0.33 0.0 0.33 0.0 0.33 0.0 0.0 0.0
E4 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0
F4 0.33 0.0 0.33 0.0 0.33 0.0 0.0 0.0
G4 0.25 0.0 0.0 0.25 0.25 0.25 0.0 0.0
A4 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0
B4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
C5 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0

Fig. 34.3 Sequencing rules represented as a Markov chain
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probability arrays for all rules can be arranged in a two-dimensional matrix, thus
forming a Markov chain, as shown in Fig. 34.3.

Given a starting note, the system then picks the next based on the transition
probability on the corresponding column to pick the next, and so on. An example of
a melody generated using this method is shown in Fig. 34.4.

A Markov chain whose matrix representation has non-zero entries immediately
on either side of the main diagonal, and zeros everywhere else constitutes an
example of a simple random walk process.

Imagine that a robot is programmed to play an instrument with 8 keys, to
produce the notes shown in Fig. 34.2. However, the robot is programmed in such a
way that notes can be played up and down the keyboard by stepping only one key at
a time. That is, only the next neighbouring key can be played. If the robot has a
probability p to play the key on the left side of the current key, then it will have the
probability q ¼ 1� p to go to the right. This is represented in the matrix shown in
Fig. 34.5. Random walk processes are normally represented as directed graphs, or
digraphs, as shown in Fig. 34.6.

Random walk processes are useful for generating musical sequences that require
smooth gradual changes over the material rather than large jumps. Figure 34.7
shows an example sequence generated by our imaginary robot.

As computers became increasingly portable and faster, musicians started to
program them to create music interactively, during a performance. Let us say, a
performer plays a musical note. The computer listens to the note and produces
another one as a response. Most algorithmic music methods that were developed for

Fig. 34.4 An example generated by the Markov chain shown in Fig. 34.3

C4 D4 E4 F4 G4 A4 B4 C5
C4 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

D4 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0

E4 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0

F4 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0

G4 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0

A4 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0

B4 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5
C5 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

Fig. 34.5 A Markov chain for random walk
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batch processing of music can be adapted for interactive processing. For instance,
given the Markov chain above, if a performer plays the note C5, then the system
would respond with A4 or B4, and so on.

A sensible approach to get started with Quantum Computer Music is to revisit
existing tried-and-tested algorithmic music methods with a view to running them on
quantum computers. Sooner or later new quantum-specific methods are bound to
emerge from these exercises.

34.4 Quantum Computing Primer

This section provides a preliminary introduction to quantum computing, aimed at
demonstrating how it differs from classical computing. It introduces the basics
deemed necessary to follow the systems discussed in this chapter. The reader is
referred to [16–19] for more detailed explanations.

Classical computers manipulate information represented in terms of binary
digits, each of which can value 1 or 0. They work with microprocessors made up of
billions of tiny switches that are activated by electric signals. Values 1 and 0 reflect
the on and off states of the switches.

In contrast, a quantum computer deals with information in terms of quantum
bits, or qubits. Qubits operate at the subatomic level. Therefore, they are subject to
the laws of quantum physics.

At the subatomic level, a quantum object does not exist in a determined state. Its
state is unknown until one observes it. Before it is observed, a quantum object is
said to behave like a wave. But when it is observed it becomes a particle. This
phenomenon is referred to as the wave-particle duality.

Quantum systems are described in terms of wave functions. A wave function
represents what the particle would be like when a quantum object is observed. It
expresses the state of a quantum system as the sum of the possible states that it may

Fig. 34.6 Digraph representation of the random walk scheme depicted in Fig. 34.5

Fig. 34.7 A sequence of notes generated by the random walk robot
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fall into when it is observed. Each possible component of a wave function, which is
also a wave, is scaled by a coefficient reflecting its relative weight. That is, some
states might be more likely than others. Metaphorically, think of a quantum system
as the spectrum of a musical sound, where the different amplitudes of its various
wave-components give its unique timbre. As with sound waves, quantum
wave-components interfere with one another, constructively and destructively. In
quantum physics, the interfering waves are said to be coherent. As we will see later,
the act of observing the waves decoheres them. Again metaphorically, it is as if
when listening to a musical sound one would perceive only a single spectral
component; probably the one with the highest energy, but not necessarily so.

Qubits are special because of the wave-particle duality. Qubits can be in an
indeterminate state, represented by a wave function, until they are read out. This is
known as superposition. A good part of the art of programming a quantum com-
puter involves manipulating qubits to perform operations while they are in such
indeterminate state. This makes quantum computing fundamentally different from
digital computing.

A qubit can be implemented in a number of ways. All the same, the qubits of a
quantum processor need to be isolated from the environment in order to remain
coherent to perform computations. The environment causes interferences that
destroy coherence. One of the worst enemies of coherence is heat. A Quantum
Processing Unit (QPU) has to be cooled to near absolute zero temperature to
function; that is, –273.15 °C. This is the point at which the fundamental particles of
nature would stop moving due to thermal fluctuations and retain only the so-called
zero-point energy quantum mechanical motion. But even then, it is very hard to
shield a QPU from the effects of our environment. In practice, interactions with the
environment cannot be completely avoided, only minimized.

In order to picture a qubit, imagine a transparent sphere with opposite poles.
From its centre, a vector whose length is equal to the radius of the sphere can point
to anywhere on the surface. In quantum mechanics this sphere is called Bloch
sphere and the vector is referred to as a state vector. The opposite poles of the
sphere are denoted by j0i and j1i, which is the notation used to represent quantum
states (Fig. 34.8).

A qubit’s state vector can point at anywhere on the Bloch sphere’s surface.
Mathematically, it is described in terms of polar coordinates using two angles, h and
u. The angle h is the angle between the state vector and the z-axis (latitude) and the
angle u describes vector’s position in relation to the x-axis (longitude).

It is popularly said that a qubit can value 0 and 1 at the same time, but this is not
entirely accurate. When a qubit is in superposition of j0i and j1i, the state vector
could be pointing anywhere between the two. However, we cannot really know
where exactly a state vector is pointing to until we read the qubit. In quantum
computing terminology, the act of reading a qubit is referred to as ‘observing’, or
‘measuring’ it. Measuring the qubit will make the vector point to one of the poles
and return either 0 or 1 as a result.

The state vector of a qubit in superposition state is described as a linear com-
bination of two vectors, j0i and j1i, as follows:
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Wj i ¼ a 0j i þ b 1j i; where aj j2 þ bj j2¼ 1:

The state vector jWi is a superposition of vectors j0i and j1i in a
two-dimensional complex space, referred to as Hilbert space, with amplitudes a and
b: Here the amplitudes are expressed in terms of Cartesian coordinates; but bear in
mind that these coordinates can be complex numbers.

In a nutshell, consider the squared values of a and b as probability values
representing the likelihood of the measurement return 0 or 1. For instance, let us
assume the following:

Wj i ¼ a 0j i þ b 1j i; where a ¼ 1
2
and b¼

ffiffiffi
3

p

2

In this case, jaj2 ¼ 0:25 and jbj2 = 0.75. This means that the measurement of the
qubit has a 25% chance of returning 0 and a 75% chance of returning 1 (Fig. 34.9).

Quantum computers are programmed using sequences of commands, or quan-
tum gates, that act on qubits. For instance, the ‘not gate’, performs a rotation of 180
degrees around the x-axis. Hence this gate is often referred to as the ‘X gate’
(Fig. 34.10). A more generic rotational Rx(#) gate is typically available for
quantum programming, where the angle for the rotation is specified. Therefore, Rx
(180) applied to j0i or j1i is equivalent to applying X to j0i or j1i. In essence, all
quantum gates perform rotations, which change the amplitude distribution of the
system.

Fig. 34.8 Bloch sphere
(Source Smite-Meister,
https://commons.wikimedia.
org/w/index.php?curid=
5829358)
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An important gate for quantum computing is the Hadamard gate (referred to as the
‘H gate’). It puts the qubit into a superposition state consisting of an equal-weighted
combination of two opposing states: jWi ¼ aj0iþ bj1i where jaj2 ¼ 0:5 and jbj2 ¼
0:5 (Fig. 34.11). For other gates, please consult the references given above.

Fig. 34.9 An example of superposition, where the state vector has a 25% chance of settling to j0i
and a 75% chance of settling to j1i after the measurement

Fig. 34.10 X gate rotates the state vector (pointing upwards on the figure on the left) by 180
degrees around the x-axis (pointing downwards on the figure on the right)
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A quantum program is often depicted as a circuit diagram of quantum gates,
showing sequences of gate operations on the qubits (Fig. 34.12). Qubits typically
start at j0i and then a sequence of gates are applied. Then, the qubits are read and
the results are stored in standard digital memory, which are accessible for further
handling. Normally a quantum computer works alongside a classical computer,
which in effect acts as the interface between the user and the quantum machine. The
classical machine enables the user to handle the measurements for practical
applications.

Fig. 34.11 The Hadamard gate puts the qubit into a superposition state halfway two opposing
poles

Fig. 34.12 A quantum program depicted as a circuit of quantum gates. The squares with dials
represent measurements, which are saved on classic registers at the bottom line
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Quantum computation gets really interesting with gates that operate on multiple
qubits, such as the ‘conditional X gate’, or ‘CX gate’. The CX gate puts two qubits
in entanglement.

Entanglement establishes a curious correlation between qubits. In practice, the
CX gate applies an X gate on a qubit only if the state of another qubit is j1i. Thus,
the CX gate establishes a dependency of the state of one qubit with the value of
another (Fig. 34.13). In practice, any quantum gate can be made conditional and
entanglement can take place between more than two qubits.

The Bloch sphere is useful to visualize what happens with a single qubit, but it is
not suitable for multiple qubits, in particular when they are entangled. Entangled
qubits can no longer be thought of as independent units. They become one quantum
entity described by a state vector of its own right on a hypersphere. A hypersphere
is an extension of the Bloch sphere to 2n complex dimensions, where n is the
number of qubits. Quantum gates perform rotations of a state vector to a new
position on this hypersphere. Thus, it is virtually impossible to visualize a system
with multiple qubits. There is no better way but to use mathematics to represent
quantum systems.

The notation used above to represent quantum states (jWi; j0i; j1iÞ, is referred to
as Dirac notation, which provides an abbreviated way to represent a vector. For
instance, j0i and j1i represent the following vectors, respectively:

0j i ¼ 1
0

� �
and 1j i 0

1

� �

And quantum gates are represented as matrices. For instance, the X gate is
represented as:

X ¼ 0 1
1 0

� �

Therefore, quantum gate operations are represented mathematically as matrix
operations; e.g., multiplication of a matrix (gate) by a vector (qubit state). Thus, the
application of an X gate to j0i looks like this:

Fig. 34.13 The CX gate creates a dependency of the state of one qubit with the state of another.
In this case, q1 will be flipped only if q0 is j1i
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Xðj0iÞ ¼ 0 1
1 0

� �
� 1

0

� �
¼ 0

1

� �
¼ j1i

Conversely, the application of an X gate to j1i would therefore is written as
follows:

Xðj1iÞ ¼ 0 1
1 0

� �
� 0

1

� �
¼ 1

0

� �
¼ j0i

The Hadamard gate has the matrix:

H ¼
1ffiffi
2

p 1ffiffi
2

p
1ffiffi
2

p � 1ffiffi
1

p

" #
¼ 1ffiffiffi

2
p 1 1

1 �1

� �

As we have seen earlier, the application of the H gate to a qubit pointing to j0i
puts it in superposition, right at the equator of the Bloch sphere. This is notated as
follows:

H j0ið Þ ¼ 1ffiffiffi
2

p ðj0iþ j1iÞ:

As applied to j1i, it also puts it in superposition, but pointing to the opposite
direction of the superposition shown above:

H j1ið Þ ¼ 1ffiffiffi
2

p ðj0i � j1iÞ:

In the preceding equations, the result of H j0ið Þ and H j1ið Þ could written as j þ i
and j�i, respectively. In a circuit, we could subsequently apply another gate to j þ i
or j�i, and so on; e.g. Xðj þ iÞ = j þ i.

The Hadamard gate is often used to change the so-called computational basis of
the qubit. The z-axis j0i and j1i form the standard basis. The x-axis j þ i and j�i
forms the so-called conjugate basis. The application of Xðj þ iÞ would not have

Fig. 34.14 The Toffoli gate
creates a dependency of the
state of one qubit with the
state of two others
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much effect if we measure the qubit in the standard basis: it would still proba-
bilistically return 0 or 1. However, it would be different if we were to measure it in
the conjugate basis; it would deterministically return the value on the opposite side
where the vector is aiming to. Another commonly used basis is the circular basis
(y-axis). A more detailed explanation of different bases and their significance to
computation and measurement can be found in [19]. What is important to keep in
mind is that changing the basis on which a quantum state is expressed, corresponds
to changing the kind of measurement we perform, and so, naturally, it also changes
the probabilities of measurement outcomes.

Quantum processing with multiple qubits is represented by means of tensor
vectors. A tensor vector is the result of the tensor product, represented by the
symbol �, of two or more vectors. A system of two qubits looks like this j0i � j0i,
but it is normally abbreviated to j00i. It is useful to study the expanded form of the
tensor product to follow how it works:

j00i ¼ j0i � j0i ¼ 1
0

� �
� 1

0

� �
¼

1� 1
1� 0
0� 1
0� 0

2
64

3
75 ¼

1
0
0
0

2
64

3
75

Similarly, the other 3 possible states of a 2-qubits system are as follows:

j01i ¼ j0i � j1i ¼ 1
0

� �
� 0

1

� �
¼

1� 0
1� 1
0� 0
0� 1

2
64

3
75 ¼

0
1
0
0

2
64

3
75

j10i ¼ j1i � j0i ¼ 0
1

� �
� 1

0

� �
¼

0� 1
0� 0
1� 1
1� 0

2
64

3
75 ¼

0
0
1
0

2
64

3
75

j11i ¼ j1i � j1i ¼ 0
1

� �
� 0

1

� �
¼

0� 0
0� 1
1� 0
1� 1

2
64

3
75 ¼

0
0
0
1

2
64

3
75

We are now in a position to explain how the CX gate works in more detail. This
gate is defined by the matrix:

CX ¼
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

2
664

3
775

The application of CX to j00i is represented as:
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CX 00j ið Þ ¼
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

2
664

3
775�

1
0
0
0

2
664

3
775 ¼

1
0
0
0

2
664

3
775

The resulting vector is then abbreviated to j00i as show below:

1
0
0
0

2
664

3
775 ¼ 1

0

� �
� 1

0

� �
¼ 0j i � 0j i ¼ 00j i

Note that j00i incurred no change because the conditional qubit (the one on the
left side of the pair) is not j1i. Conversely, should one apply CX to j10i, then there
is a change to j11i, as follows:

CX 10j ið Þ ¼
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

2
664

3
775�

0
0
1
0

2
664

3
775 ¼

0
0
0
1

2
664

3
775

0
0
0
1

2
664

3
775 ¼ 0

1

� �
� 0

1

� �
¼ 1j i � 1j i ¼ 11j i

Table 34.1 shows the resulting quantum states of CX gate operations, where the
first qubit flips only if the second qubit is 1. Figure 34.13 illustrates how the CX
gate is represented in a circuit diagram. Note that in quantum computing qubit
strings are often enumerated from the right end of the string to the left:
. . .jq2i � jq1i � jq0i; this is the standard adopted for the examples in this chapter
from now on.

Another useful conditional gate, which appears on a number of quantum algo-
rithms, is the CCX gate, also known as the Toffoli gate, involving three qubits
(Fig. 33.14).

Table 34.2 shows resulting quantum states of the Toffoli gate: qubit q2 flips only
if q1 and q0 are j1i.

Table 34.1 CX gate table,
where q1 changes only if q0 is
j1i

Input Result

j00i j00i
j01i j11i
j10i j10i
j11i j01i
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The equation for describing a 2-qubits system jq1i � jq0i combines two state
vectors jWi and jUi as follows. Consider:

wj i ¼ a1 0j i þ a2 1j i for q0
/j i ¼ b1 0j i þ b2 1j i for q1

Then,

jWi � jUi ¼ a0b0j00iþ a0b1j01iþ a1b0j10iþ a1b1j11i

The above represents a new quantum state with four amplitude coefficients,
which can be written as:

jAi ¼ a0j00iþ a1j01iþ a2j10iþ a3j11i

Consider this equation:

jjWi ¼ 1
4
j00iþ 1

4
j01iþ 1

4
j10iþ 1

4
j11i

The above is saying that each of the four quantum states have equal probability
of 25% each of being returned.

Now, it should be straightforward to work out how to describe quantum systems
with more qubits. For instance, a system with four qubits looks like this:

Bj i ¼b0 0000j i þ b1 0001j i þ b2 0010j i þ b3 0011j i þ
b4 0100j i þ b5 0101j i þ b6 0110j i þ b7 0111j i þ
b8 1000j i þ b9 1001j i þ b10 1010j i þ b11 1011j i þ
b12 1100j i þ b13 1101j i þ b14 0110j i þ b15 1111j i

Table 34.2 Toffoli gate table Input Result

j000i j000i
j001i j001i
j010i j010i
j011i j111i
j100i j100i
j101i j101i
j110i j110i
j111i j011i
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A linear increase of the number of qubits extends the capacity of representing
information on a quantum computer exponentially. With qubits in superposition, a
quantum computer can handle all possible values of some input data simultane-
ously. This endows the machine with massive parallelism. However, we do not
have access to the information until the qubits are measured.

Quantum algorithms require a different way of thinking than the way one nor-
mally approaches programming; for instance, it is not possible to store quantum
states on a working memory for accessing later in the algorithm. This is due to the
so-called non-cloning principle of quantum physics: it is impossible to make a copy
of a quantum system. It is possible, however, to move the state of a set of qubits to
another set of qubits, but in effect this deletes the information from the original
qubits. To program a quantum computer requires manipulations of qubits so that the
states that correspond to the desired outcome have a much higher probability of
being measured than all the other possibilities.

Decoherence is problematic because it poses limitations on the number of suc-
cessive gates we can use in a circuit (a.k.a. the circuit depth). The more gates we
use, the higher the chances that the qubits will decohere. And this inevitably causes
errors. In particular, running a circuit which is deeper than the critical depth for
which a quantum device can maintain coherence will result in measurement out-
comes sampled from an effectively classical distribution, sadly defeating the whole
purpose of using a quantum computer. At the time of writing, QPUs do not have
more than a few dozen qubits and are unable to maintain a desired quantum state for
longer than a few microseconds.

One way to mitigate errors is to run the algorithms, which are not too deep,
many times and then select the result that appeared most. Additional post pro-
cessing on the measurement outcomes that tries to undo the effect of the noise by
solving an inverse problem can also be carried out. Increasingly sophisticated error
correction methods are also being developed. And better hardware technology is
also developing fast. But as stated above fault-tolerant quantum computation is still
a long way from being realised.

34.5 Quantum Vocal Synthesizer

This section introduces an interactive vocal synthesizer with parameters determined
by a quantum hyper-die. The system listens to a tune chanted on a microphone and
counts the number of notes it can detect in the signal. Then, it synthesizes the same
amount of sounds as the number of notes that it counted in the tune. The synthe-
sized vocal sounds are not intended to imitate the listened tune. Rather, they are
‘quantum’ responses, whose make-up is defined by the quantum hyper-die.

The system comprises two components connected through the Internet using the
SSH (Secure Shell) protocol: a client and server (Fig. 34.15). The client operates on
a standard laptop computer and the server on a Rigetti’s Forest quantum computer,
located in Berkeley, California.
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The server runs the hyper-die quantum circuit depicted in Fig. 34.19 and sends
measurements to the client. The client takes care of analysing the chanted tune,
preparing data to set up the server, and synthesizing sounds based on the results of
the measurements.

The system is programmed in Python and uses pyQuil, a Python library
developed by Rigetti to write quantum programs [4]. The core of the vocal syn-
thesiser is implemented using the programming language Csound [10]. The Csound
code is called from within Python.

The audio spectrum of singing human voice has the appearance of a pattern of
‘hills and valleys’. The ‘hills’ are referred to as formants (Fig. 34.16). A vocal
sound usually has between three to five distinct formants. Each of them comprises a
set of sound partials.

Fig. 34.15 The interactive quantum vocal system architecture

Fig. 34.16 Generalized
spectrum of the human voice
with three formants
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A formant is described by a frequency, which is the frequency of its most
prominent partial, and an amplitude, which is the energy of this frequency. A third
descriptor is the formant’s bandwidth, which is the width of the ‘hill’. It is calcu-
lated as the difference between the highest and the lowest frequencies in the formant
set. Frequencies and bandwidths are quantified in Hz and amplitudes in dB.

Normally, the first three formants of a vocal sound characterise its phonetic
timbre. For instance, they define whether a vowel is open (e.g., as in /a/ in the word
‘back’) or close (e.g., as in /o/ in the word ‘too’); e.g., the frequency of the first
formant of an open vowel is higher than that of a close vowel.

Traditionally, the vocal system has been modelled as a system consisting of two
modules: a source module and a resonator module. The source module produces an
excitation signal. Then, this signal is altered by the acoustic response of the res-
onator. The excitation signal is intended to simulate the waveform produced by the
vibration of the glottis. The throat, nasal cavity and mouth function as resonating
chambers whereby particular frequencies of the excitation signal are emphasised
and others are attenuated (Fig. 34.17).

There are a number of methods to synthesise simulations of singing voice [20].
The synthesis method used here is known as FOF, which is an acronym for
Fonctions d’Onde Formantique, or Formant Wave Functions, in English [21].

Fig. 34.17 Vocal system
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The core of the synthesizer comprises five formant generators in parallel to
produce five formants (Fig. 34.18). Each FOF generator requires 15 input param-
eters to produce a formant. A detailed explanation of FOF is beyond the scope of
this chapter. For the sake of simplicity, we shall focus here on three parameters
only: formant’s frequency (fq), formant’s amplitude (amp) and formant’s band-
width (bw).

Each formant generator is controlled by three linear functions. The functions
vary the generator’s input frequency, amplitude and bandwidth, from initial to end
values. For instance, fq1s is the starting frequency value for generator Formant 1,
whereas fq1e is the ending value. These variations are continuous and last through
the entire duration of the sound.

The outputs from the oscillators are summed and a vibrato generator is applied,
which is also controlled by linear functions. Vibrato renders the result more realistic
to our ears. Then, an ADSR (short for attack, decay, sustain and release) function

Fig. 34.18 Synthesizer’s layout
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shapes the overall amplitude of the sound. Other parameters for the synthesizer are
the resulting sound’s fundamental frequency, or pitch (fnd), its loudness (ldns) and
its duration (dur).

The quantum hyper-die is a simple quantum circuit that puts 9 qubits in
superposition and measures them (Fig. 34.19). This results in a set of 9 measure-
ments, which are processed by the client to produce codes of three bits each. These
codes are used to retrieve synthesis parameter values from a database. The database
contains valid values for all synthesis parameters shown in Fig. 34.18, plus other
ones that are not shown.

For instance, consider the list of measurements [c8, c7, c6, c5, c4, c3, c2, c1, c0].
Codes are produced by combining three elements from the measurements list
according to a bespoke combinatorial formula. For example, (c8 c7 c6), (c6 c7 c8),
(c5 c4 c3), (c3 c4 c5), (c2 c1 c0), (c0 c1 c2) and so forth. Given a list of synthesis
parameter values [p0, p1, p2, p3, p4, p5, p6, p7], the decimal value of a code gives an
index to retrieve a value for the synthesizer. For instance, the code (0 1 0), which
yields the decimal number 2, would retrieve p2.

Fig. 34.19 The quantum hyper-die circuit. Hadamard gates put all 9 qubits in superposition
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Each synthesis parameter is coupled with a unique code formation for retrieval.
For instance, (c8 c7 c6) is coupled with the starting frequency for the first formant
(fq1s) and (c6 c7 c8) with the ending frequency for the first formant (fq1e). And (c5 c4
c3) is coupled with the starting frequency for the second formant (fq2s), and so on.
The database holds different lists of synthesis parameters, which can be customised.

As an illustration, let us consider a simple database with the following lists of
fundamental frequencies and durations, and frequencies, amplitudes and band-
widths for formants 1, 2 and 3:

fnd = [277.2, 185.0, 207.6, 415.3, 155.6, 311.2, 369.9, 233.1].
dur = [3.25, 2.0, 2.75, 4.0, 1.5, 3.75, 2.5, 4.5].
fq1 = [310.0, 270.0, 290.0, 350.0, 650.0, 400.0, 430.0, 470.0].
fq2 = [600.0, 1150.0, 800.0, 1870.0, 1080.0, 1620.0, 1700.0, 1040.0].
fq3 = [2250.0, 2100.0, 2800.0, 2650.0, 2500.0, 2900.0, 2600.0, 2750.0].
amp1 = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0].
amp2 = [−5, −7, −11, −6, −14, −9, −20, −30].
amp3 = [−9, −21, −12, −32, −17, −16, −10, −18].
bw1 = [35, 60, 45, 70, 80, 75, 58, 85].
bw2 = [65, 70, 90, 75, 83, 95, 60, 87].
bw3 = [128, 115, 110, 112, 98, 104, 124, 120].
For this example, the server returned the following measurements: [0, 0, 0, 0, 0,

1, 0, 0, 1].
Then, the system produces the respective codes and retrieves the parameters for

the synthesiser. For instance, the code (x0 x1 x2) is equal to 000. Therefore, it
retrieves the first element of fq1 for the starting frequency of the first formant
generator (fg1s), which is 310.0 Hz. Table 34.3 shows the retrieved values for the
aforementioned parameters.

Figure 34.21 shows a spectrogram snapshot taken at two seconds in the sound,
showing three prominent formants, whose frequencies match the input parameters
yielded by the quantum hyper-die.

Note that the synthesizer reads amplitudes in terms of attenuations from a
hard-coded reference dB value. As a convention, the first formant is always set to
this reference, hence the values in the amp1 list are all 0.0 dB. The other amplitudes
are calculated by subtracting the negative values from this reference.

Figure 34.20 shows a formant analysis graph of the synthesized sound. Each line
corresponds to a formant detected in the signal. Note the first formant is practically
constant at 310 Hz throughout the duration of the sound. The third formant,
however, raised slightly; i.e., from 1080.0 Hz to 2100.0 Hz.
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Table 34.3 Retrieved
synthesis parameters with
codes produced from
quantum measurements

Code Binary Decimal Parameter Retrieved value

(c8 c7 c6) 000 0 fq1s 310.0 Hz

(c6 c7 c8) 000 0 fq1e 310.0 Hz

(c5 c4 c3) 001 1 fq2s 1150.0 Hz

(c3 c4 c5) 100 4 fq2e 1080.0 Hz

(c2 c1 c0) 001 1 fq3s 2100.0 Hz

(c0 c1 c2) 100 4 fq3e 2500.0 Hz

(c7 c6 c5) 000 0 amp1s 0.0 dB

(c5 c6 c7) 000 0 amp1e 0.0 dB

(c4 c3 c2) 010 2 amp2s –11 dB

(c2 c3 c4) 010 2 amp2e –11 dB

(c8 c5 c2) 000 0 amp3s –9 dB

(c2 c5 c8) 000 0 amp3e –9 dB

(c7 c4 c3) 001 1 bw1s 60 Hz

(c3 c4 c7) 100 4 bw1e 80 Hz

(c6 c3 c0) 011 3 bw2s 75 Hz

(c0 c3 c6) 110 6 bw2e 60 Hz

(c8 c7 c0) 001 1 bw3s 115 Hz

(c0 c7 c8) 100 4 bw3e 98 Hz

(c8 c1 c0) 001 1 fnds 185.0 Hz

(c0 c1 c8) 100 4 fnde 155.6 Hz

(c5 c3 c1) 010 2 dur 2.75 s

Fig. 34.20 Formant analysis revealing five salient spectral components in the sound
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Table 34.4 Pitch and
duration codes generated for
each step of the random walk
example

Step Pitch Duration

1 110 100

2 010 110

3 010 110

4 110 100

5 100 101

6 100 001

7 000 001

8 000 000

9 001 100

10 000 000

11 100 100

12 100 110

13 000 010

14 010 010

15 011 011

16 111 001

17 011 001

18 111 101

19 111 101

20 101 100

21 001 000

22 000 001

23 000 101

24 000 001

Fig. 34.21 Spectrogram analysis snapshot taken at two seconds
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34.6 Quantum Walk Sequencer

This section presents a system that generates sequences of musical notes using a
quantum walk algorithm. For a detailed discussion on quantum random walks,
please refer to [22].

As with the quantum vocal synthesiser above, the system consists of two
components: a client and a server (Fig. 34.22). The server runs the quantum random
walk circuit and sends a list of measurements to the client. Then, the client trans-
lates those measurements into a sequence of musical notes, which are encoded as
MIDI information [23]. MIDI is a protocol that allows computers, musical instru-
ments and other hardware to communicate. The difference of encoding the results
with MIDI rather than synthesizing sounds is that we can connect third party music
software to visualize or play back the music.

As we have briefly seen earlier in this chapter, in a random walk algorithm, a
“walker” starts on a certain node of a graph and has an equal probability of trav-
elling through any connected edge to an adjacent node. This process is then
repeated as many times as required. The nodes can represent tasks to be performed
once the walker lands on them, or information to handle; e.g., a musical note to be
played or appended to a list.

In classical random walk, the walker inhabits a definite node at any one moment
in time. But in quantum walk, it will be in a superposition of all nodes it can
possibly visit in a given moment. Metaphorically, we could say that the walker is on
all viable nodes simultaneously, until we observe it.

Fig. 34.22 The quantum walk music system architecture
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The circuit (Fig. 34.23) was designed to walk through the edges of a cube to
visit eight vertices, each of which is represented as a three bits long binary number
(Fig. 34.24). The circuit uses five qubits: three (q0, q1, and q2) to encode the eight
vertices of the cube {000, 001, …, 111} and two (q3 and q4) to encode the possible
routes that the walker can take from a given vertex, one of which is to stay put. The
diagram shows a sequence of 10 operations before measurements, the first of which
are the two H gates applied to q3 and q4, then a CX with q4 and q0, and so on.

We refer to the first three qubits as input qubits and the last two as die qubits.
The die qubits act as controls for X gates to invert the state of input qubits.

Fig. 34.23 Quantum walk circuit

Fig. 34.24 Cube
representation of the quantum
walk routes and nodes
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For every vertex on the cube, the edges connect three neighbouring vertices
whose codes differ by changing only one bit of the origin’s code. For instance,
vertex 111 is connected to 110, 101 and 011. Therefore, upon measurement the
system returns one of four possible outputs:

• the original input with inverted q0
• the original input with inverted q1
• the original input with inverted q2
• the original input unchanged.

The quantum walk algorithm runs as follows: the input qubits are armed with the
state representing a node of departure and two die qubits are armed in superposition
(H gate). Then, the input qubits are measured and the results are stored in a classical
memory. This causes the whole system to decohere. Depending on the values
yielded by the die qubits, the conditional gates will invert the input qubits
accordingly. Note that we measure and store only input qubits; the value of the die
can be lost. The result of the measurement is then used to arm the input qubits for
the next step of the walk, and the cycle continues for a number of steps. The number
of steps is established at the initial data preparation stage. (In fact, each step is run
for thousands of times, or thousands of shots in quantum computing terminology.)

As a trace table example, let us assume the following input: 001; where q0 is
armed to j0i; q1 to j0i and q2 to j1i: Upon measurement, let us suppose that the die
yielded q3 = 0 and q4 = 1. The second operation on the circuit diagram is a CX
gate where q4 acts a conditional to invert q0. Right at the second operation the state
vector of q0 is inverted because q4 = 1. As the rest of the circuit does not incur any
further action on the input qubits, the system returns 101. Should the dice have
yielded q3 = 0 and q4 = 0 instead, then the fourth operation would have inverted
q1. The X gate (third operation) would have inverted q4, which would subsequently
act as a conditional to invert q1. The result in this case would have been 011.

The cube in Fig. 34.24 functions as an underlying common abstract represen-
tation of simple musical grammars, whose isomorphic digraphs are shown in
Figs. 34.25 and 34.26. One of the grammars encodes rules for sequencing pitches
(Fig. 34.25) and the other rules for sequencing durations of musical notes
(Fig. 34.26), respectively. The system holds musical dictionaries associating ver-
tices with pitches and note durations.

In order to generate a music sequence, the system starts with a given note; for
instance, a half note C4, whose codes for pitch and duration are 000 and 100,
respectively. This initial note is given to the system at the data preparation stage.
Then, for every new note the server runs the quantum walk circuit twice, once with
input qubits armed with the code for pitch and then armed with the code for
duration. The results from the measurements are then used to establish the next
note. For instance, if the first run goes to 001 and the second to 000, then the
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resulting note is quarter note G4 sharp. The measurements are used to re-arm the
circuit for the next note and so on.

An important component of music is silence. Note in Fig. 34.26 that the
grammar for durations includes 4 pauses: 001, 010, 101 and 111. When the walker
lands on a pause, the pitch of the note is discarded and a silence takes place for the
duration of the respective pause. The dictionaries of notes and durations are
modifiable and there are tools to change the dictionary during the generation of a
sequence. The length of the sequence and the dictionaries are set up at the data
preparation stage.

Due to the statistical nature of quantum computation, it is often necessary to
execute a quantum algorithm multiple times in order to obtain results that are
statistically sound. This enables one to inspect if the outcomes reflect the envisaged
amplitude distribution of the quantum states. And running a circuit multiple times
mitigates the effect of errors caused by undesired decoherence.

Fig. 34.25 Digraph representation of a grammar for pitches
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In quantum computing, the times an algorithm is run is referred to as shots. For
each shot, the measurements are stored in standard digital memory, and in the case
of our quantum walk algorithm, the result that occurred more frequently is selected.
Figure 34.27 shows histograms from running three steps of the quantum walk
algorithms for 50 shots for generating pitches. Starting on 000, then the walker
moves to 010, goes back to 000 and then it goes to 100. In this case the generated
pitched were: D#3, C3 and C#3.

An example of a music sequence generated by the system is shown in
Fig. 34.28. In this case the system ran for 24 steps, 500 shots each. The initial pitch
was 110 and the initial duration was 100. Table 34.4 shows the codes generated at
each step of the walk.

Fig. 34.26 Digraph representation of a grammar of durations
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Fig. 34.27 Histograms from
3 steps of the quantum walk
algorithms for 50 shots each.
For each step, the system
selects the result that occurred
more frequently: 010, 000 and
100, respectively

34 Quantum Computer: Hello, Music! 991



34.7 Concluding Remarks

Admittedly, the two quantum systems introduced above could as well be imple-
mented on standard digital computers. At this stage, we are not advocating any
quantum advantage for musical applications. What we advocate, however, is that
the music technology community should be quantum-ready for when quantum
computing hardware becomes more sophisticated, widely available, and possibly
advantageous for creativity and business. In the process of learning and experi-
menting with this new technology, novel approaches, creative ideas, and innovative
applications are bound to emerge.

The method introduced above to control the vocal synthesiser certainly begs
further development. The codes to retrieve synthesis parameter values were
assembled with three bits taken from a string of nine measurements. The algorithm
to assemble the codes is as arbitrary as the association of codes to specific
parameters; e.g., what is the rationale of allocating (c8 c7 c6) to retrieve fq1s? Or
why (c8 c7 c6) instead of (c0 c1 c2) or perhaps (c2 c2 c2)?

Research is needed in order to forge stronger couplings between quantum
computational processes and the synthesis parameters. Quantum computing should
be used here to generate codes that are meaningful; it should be harnessed to yield
values for producing targeted vocalizations; e.g., to sing syllables or words.

The complete vocal synthesiser shown above requires 52 parameter values to
produce a sound. Moreover, the linear functions in fact need to be piecewise linear
functions with various breakpoints in order to simulate transitions of vocal artic-
ulations. Therefore, the synthesis parameters’ search space to produce a desired

Fig. 34.28 A music sequence generated by the quantum walk system
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sung utterance is vast. It is here that quantum search algorithms may provide an
advantageous solution [24] in the near future.

The quantum walk sequencer is an example of a first attempt at designing
quantum versions of classic algorithmic music composition techniques. The
shortcoming is that the sequencer has a limited number of musical parameters to
work with; e.g., only eight notes. A larger number of parameters would require a
much larger quantum circuit. But this increases the problem of decoherence, as
mentioned earlier. Improved quantum hardware and better error correction methods
will enable circuits with greater number qubits and gates in the future. In the
meantime, simulators are available for research [1, 2].

It has been argued that quantum walk (on real quantum hardware) is faster than
classical random walk to navigate vast mathematical spaces [25]. Quantum walk is
an area of much interest for computer music. In addition to its generative uses,
quantum walk is applicable as a search algorithm and in machine learning [26].

Musicians started experimenting with computers very early on in the history of
computing, and paved the way for today’s thriving music industry. CSIR’s Mk1
was one of only a handful of electronic computers in existence at the time. And the
mainframe used to compose the Illiac Suite string quartet was one of the first
computers built in a university in the USA, comprising thousands of vacuum tubes.

It is often said that today’s quantum computers are in a development stage
comparable to those clunky mainframes built in the mid of the last century. Time is
ripe for musicians to embrace this emerging technology.

Acknowledgements I am thankful to Dr. Konstantinos Meichanetzidis at the Department of
Computer Science of the University of Oxford for inspiring discussions and advice.
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