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Abstract. Open-domain conversational search assistants aim at
answering user questions about open topics in a conversational manner.
In this paper we show how the Transformer architecture [30] achieves
state-of-the-art results in key IR tasks, leveraging the creation of con-
versational assistants that engage in open-domain conversational search
with single, yet informative, answers. In particular, we propose an open-
domain abstractive conversational search agent pipeline to address two
major challenges: first, conversation context-aware search and second,
abstractive search-answers generation. To address the first challenge,
the conversation context is modeled with a query rewriting method that
unfolds the context of the conversation up to a specific moment to search
for the correct answers. These answers are then passed to a Transformer-
based re-ranker to further improve retrieval performance. The second
challenge, is tackled with recent Abstractive Transformer architectures
to generate a digest of the top most relevant passages. Experiments show
that Transformers deliver a solid performance across all tasks in conver-
sational search, outperforming the best TREC CAsT 2019 baseline.

Keywords: Conversational search · Transformers · Query rewriting ·
Re-ranking · Answer generation

1 Introduction

Conversational search systems are an emerging research topic, and the natural
evolution of the traditional search paradigm, allowing for a more natural inter-
action between users and search systems. Building intelligent systems able to
establish and develop meaningful conversations is one of the key goals of AI and
the ultimate goal of natural language research [9]. The interactions between a
user and conversational systems have been studied in [32], which showed that
users are willing to utilise conversational assistants as long as their needs are met
with success. However, conversational search assistants still put a considerable
burden on users that have to go through a list of documents, or passages, to find
the information they need.
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We depart from this document-based approach to conversational search, and
propose an open-domain abstractive conversational assistant that is aware of the
context of the conversation to generate a single and informative search-answer.
We argue that by doing so, we can capture in one single and short answer the
information contained on several relevant documents. Moreover, we show that
Transformer architectures [30] outperform the state-of-the-art results across all
the steps of the conversational system pipeline. Hence, the core contributions
of this paper are twofold: first, we show that one can tightly integrate different
Transformers to deliver an end-to-end conversational search pipeline with state-
of-the-art results; second, abstractive answer generation can effectively compress
the information of several retrieved passages into a short answer. These contribu-
tions are rooted in the groundbreaking architecture of the Transformer [30] that
leverages attention mechanisms to model complex interactions between sequence
data. In particular, we explore Transformer’s advantages to: (a) capture com-
plex relations between conversation turns to rewrite a query in the middle of a
conversation; (b) to look into the interactions between words in a conversation
query and a candidate passage; and (c) to compress multiple retrieved passages
into one single, yet informative, search-answer. The final result, is a complete
conversational search assistant leveraged by the Transformer architecture.

In the following section, we discuss the related work. In Sect. 3 we detail
the Transformer-based conversational search pipeline: the conversational query
rewriting, the re-ranker, and abstractive answer generation. Evaluation is per-
formed in Sect. 4 and Sect. 5 presents the key takeaway messages.

2 Related Work

Open-domain conversational search systems must account for the dialog con-
text to provide a relevant passage. While research on interactive search systems
has started long ago [1,4,23], the recent interest in having intelligent conversa-
tion assistants (e.g. Alexa, SIRI), has re-ignited this research field. Recent mod-
els [9,17,25,31] leverage large open-domain collections (e.g. Wikipedia) to learn
rich language-models using self-supervised neural networks. The applicability of
these models in conversational search is twofold: grasping the dialog context
and passage re-ranking. Recently, the TREC CAsT (Conversational Assistant
Track) [6] task introduced a multi-turn passage retrieval dataset, enabling the
development and evaluation of such models.

Conversational context-aware search models need to (a) keep track of the
dialog context, and (b) select the most relevant passage. To address (a), one app-
roach is to perform query rewriting to obtain context-independent queries. [10]
observed that manually rewritten queries from QuAC [2] had enough context
to be independently understandable. To automate the process, a sequence-to-
sequence (seq2seq) model with attention and a copy mechanism was proposed.
The model is given as input a sequence with the full conversation history and the
query to be rewritten. In [31], a BERT model [7] is given as input a sequence of
all terms of the current and previous queries, and is then fine-tuned on a binary
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term classification task. Also using both the query and conversation history,
in [17], a pre-trained T5 model [26] is fine-tuned on CANARD [10] to construct
the context-independent query, and achieved state-of-the-art performance on
the query-rewriting task. Task (b) is commonly addressed through re-ranking.
Large pre-trained Transformer models, such as BERT [7], RoBERTa [18], and
XLNet [36], have been widely adopted for re-ranking due to their generalisation
capabilities. Examples of this are present in [12,21,22], where a Transformer-
based model is fine-tuned on the question-answering relevance classification task.

Given the dialogue context, the agent must generate a natural language
response. In chit-chat dialogue generation, most approaches use an encoder-
decoder neural architecture that first encodes utterances and then the decoder
generates a response [15,16,28,29,39]. In [15] and [16], reinforcement learning
is used to overcome uninformative and general responses of standard seq2seq
models. Another alternative is retrieval-based dialogue generation, in which the
generator takes as input retrieved candidate documents to improve the compre-
hensiveness of the generated answer [28,39]. These approaches require a large
dataset with annotated dialogues, which is not feasible in our scenario. Alterna-
tively, Transformer models have shown to be highly effective generative language
models [14,26,38]. While both T5 [26] and BART [14] are general language mod-
els, PEGAGUS [38] focuses on abstractive summarisation, and obtained state-
of-the-art results on 12 summarisation tasks.

3 Transformers-Based Conversational Search Assistant

In this section we formulate the open-domain conversational search task and
describe the conversational assistant retrieval and answer generation compo-
nents. The conversational search task is formally defined by a sequence of natural
language conversational turns for a topic T , with queries q. For each conversa-
tion turn T = {q1, ...qi, ...qn}, the conversational search task is to find relevant
passages pk for each query qi, satisfying the user’s information need for that
turn according to the conversational context. The proposed approach uses a
four-stage architecture: (a) context tracking, (b) retrieval, (c) re-ranking, and
(d) answer generation. An overview of the system’s architecture can be seen in
Fig. 1 which we will detail in the following sections.

3.1 Conversational Query Rewriting Transformer

Due to the evolving nature of a conversational session, the current query may not
include all the information needed to retrieve the answer that the user is looking
for. This challenge is illustrated in the conversation presented in Table 1: in con-
versation turn 2, the system needs to understand that “its” refers to “Lucca’s”
(explicit coreference) and in turn 3, where the important monuments should be
focused in Lucca, although there is no direct evidence (implicit coreference),
which makes the task even more challenging. We tackle this challenge by rewrit-
ing queries, using previous turns, making the current query context-independent.
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Fig. 1. The proposed Transformer-based conversational search assistant.

Table 1. Conversation example about a specific topic, in this case the city of Lucca.

Turn Conversational query Context-independent query

1 How is the climate in Lucca? How is the climate in Lucca?

2 Tell me about its origins Tell me about Lucca’s origins

3 What monuments should I visit? What monuments should I visit in Lucca?

To perform the query rewriting task, we need a model capable of performing
coreference resolution and include context from previous turns. The Text-to-text
Transfer Transformer (T5) [26] can be fine-tuned to reformulate conversational
queries [17] by providing as input the sequence of conversational queries and
passages, and as target, the rewritten query. The training input sequence is
constructed as:

“qi [CTX] q1 p1 [TURN ] q2 p2 [TURN ] . . . [TURN ] qi−1 pi−1”, (1)

where i is the current turn, q is a query, pk is a passage retrieved from the index
by the retrieval model, and [CTX] and [TURN ] are special tokens. [CTX] is used
to separate the current query from the context (previous queries and passages)
and [TURN ] is used to separate the historical turns (query-passage pair).

3.2 Passage Re-Ranking Transformer

With the new pre-trained neural language models, such as BERT [7] and oth-
ers [18,36], it is possible to generate contextual embeddings for a sentence and
each of its tokens. These embeddings can be used as input to a model to per-
form passage re-ranking [21,22]. This re-ranking step allows going beyond term
matching, as the model has some understanding of both individual terms seman-
tics as well as their interactions between queries and passages. As such, it is able
to judge more thoroughly if a passage is relevant to a query.

Following this rationale, we tackle the passage re-ranking task with a BERT
model [7], fine-tuned on the passage ranking task [21], through a binary relevance
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classification task, where positive examples are relevant passages, and negative
examples are non-relevant passages. To obtain the embedding of the query q,
and passage p, a sequence with N tokens is given as input to BERT:

emb = BERT (“[CLS] q [SEP ] p”), (2)

where emb ∈ R
N×H (H is BERT embedding’s size) is the embeddings matrix

of all tokens, and [CLS] and [SEP] are special tokens in BERT’s vocabulary,
representing the classification and separation tokens, respectively. From emb we
extract the embedding of the first token, which corresponds to the embedding
of the [CLS] token, emb[CLS] ∈ R

H . This embedding is then used as input to
a single layer feed-forward neural network (FFNN), followed by a softmax, to
obtain the probability of the passage being relevant to the query:

P (p|q) = softmax(FFNN(emb[CLS])). (3)

With P (p|q) calculated for each passage p given a query q, the final rank is
obtained by re-ranking according to the probability of being relevant.

3.3 Abstractive Search-Answer Generation Transformer

Having identified a set of candidate passages according to the scores given by
the re-ranker model (Eq. 3), the goal is to generate a natural language response
that combines the information comprised in each of the passages. To address
this, we follow an abstractive summarisation approach, which unlike extractive
summarisation that just selects existing sentences, it can portray both reading
comprehension and writing abilities, thus allowing the generation of a concise
and comprehensive digest of multiple input passages.

The Transformer [30] architecture has proved to be highly effective at mod-
elling large dependency windows of textual sequences. Text-to-text approaches
[14,26,38], trained over large and comprehensive collections, become effective at
understanding different topics and retaining language regularities useful for sev-
eral language tasks. Thus, to generate the agent’s response using a transformer
model, we give as input the following sequence:

“p1 p2 . . . pN”, (4)

where each pk corresponds to one of the top-N candidate passages. With this
strategy, we implicitly bias the answer generation by asking the model to sum-
marise the passages that are deemed as more relevant according to the retrieval
component.

The implicit bias of the top passages is crucial to steer the Transformer
response generation. The sequence of passages of Eq. 4 is given as input to the
Transformer, which will then attend to the different passages. As the multi-
head attention layers look across the different passages, redundant parts will be
merged, while the remaining information will be summarised, leading to a concise
but comprehensive answer. The following Transformer models were considered
for the task of abstractive summarisation:
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– Text-to-Text Transfer Transformer (T5) [26] is a text-to-text model
based on the encoder-decoder Transformer architecture, pre-trained on the
large C4 corpus, which was derived from Common Crawl1. A masked language
modelling objective is used, where the model is trained to predict corrupted
randomly sampled tokens, of varying sizes.

– BART [14] is a denoising autoencoder, that combines Bidirectional and
Auto-Regressive Transformers. Pre-training consists of corrupting text with
an arbitrary noising function and learning an autoencoder to reconstruct the
original text. The best performing noise functions were text infilling (using
single mask tokens to mask random sampled spans of text), and sentence
shuffling (changing the order of sentences in passages).

– PEGASUS [38] specialises on the abstractive summarisation task. Multiple
important sentences are masked and used as targets, i.e., the model is trained
to generated each omitted sentence as output. As in T5, this model is not
trained to reconstruct sequences.

4 Evaluation

4.1 Datasets and Protocol

CANARD Dataset [10]. This dataset was used to train and evaluate the query
rewriting method. It was created by manually rewriting the queries in QuAC [2]
to form non-conversational queries. The training, development, and test sets
have 31.538, 3.418, and 5.571, query-rewrites respectively.

TREC CAsT Dataset [5]. This dataset was used to evaluate both the con-
versational search and answer generation components. There are 50 evaluation
topics, each with about 10 turns. Of those in total, 20 conversational topics were
labelled on average until turn depth 8 using a graded relevance that ranges from
0 (not relevant) to 4 (highly relevant). The passage collection is composed by
MS MARCO [19], TREC CAR [8], and WaPo [20] datasets, which creates a
complete pool of close to 47 million passages.

Experimental Protocols. To analyse query rewriting performance, we used
the BLEU-4 score [24] between the model’s output and the queries rewritten by
humans, on the CANARD dataset.

In the passage retrieval experiment, we used the TREC CAsT setup and the
official metrics, nDCG@3 (normalised Discounted Cumulative Gain at 3), MAP
(Mean Average Precision), and MRR (Mean Reciprocal Rank), along with Recall
and P@3 (Precision at 3).

In the answer generation experiment, we used METEOR and the ROUGE
variant ROUGE-L. For each query in TREC CAsT, we use as reference passages,
all the passages with a relevance judgement of 3 and 4. Hence, the goal is to
generate answers that cover, as much as possible, the information contained in
all relevant passages, in one concise and summarised answer.
1 https://commoncrawl.org/.

https://commoncrawl.org/
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4.2 Implementation

Query Rewriting. We fine-tuned the T5 [26] model according to [17] and
used the CANARD’s training set [10], providing as input the concatenation of
the conversational queries and passages, and as target the rewritten query. In
particular, we used the T5-BASE model and trained for 4000 steps, using a
maximum input sequence length of 512 tokens, a maximum output sequence
length of 64 tokens, a learning rate of 0.0001, and batches of 256 sequences.

First-Stage Retrieval. To index and search, we used the well tuned Anserini
framework [35], in particular, the Python implementation Pyserini2. We applied
stop word removal, using Lucene’s default list, and stemming using Kstem3.
We experimented with: BM25 [27], language models with Dirichlet (LMD) and
Jelinek-Mercer (LMJM) smoothing [37] and from our initial analysis, LMD
showed better results. This confirms previous knowledge [37] and matches the
shorter queries that we observe in a conversational search scenario. Hence, LMD
was the model used in all experiments.

BERT Passage Re-Ranker. To perform re-ranking, we used the BERT model
implementation from Huggingface [33]. Following the state-of-the-art [21,22], we
used the LARGE version of BERT with a classification layer (feed-forward neu-
ral network) on top, that takes as input the query-passage CLS token embed-
dings vector generated by BERT, and classifies the passage as relevant or non-
relevant to that query. This model was trained following [21] on the MS MARCO
dataset [19]. In testing, we truncate the concatenation of the query, passage, and
separator tokens to a maximum of 512 tokens (the maximum number of tokens
for the BERT model).

Transformer Based Answer Generation. To generate the summarised
answers, we employed the T5-BASE, BART-LARGE and PEGASUS mod-
els [33]. The T5-BASE has about 220 million parameters with 12 layers, 768
hidden-state size, 3072 feed-forward hidden-states and 12 heads. BART-LARGE
holds about 406 million parameters, with a 12-layer, 1024 hidden state size and
16-head architecture. The PEGASUS model has the biggest number of parame-
ters, 568 million, with 16 layers, 1024 hidden state size and 16-heads.

All models were fine-tuned on the summarising task with the CNN/Daily
Mail dataset [13]. To generate the summary, we use 4 beams, restrict the n-grams
of size 3 to only occur once, and allow for beam search early stopping when at
least 4 sentences are generated. Additionally, we fix the maximum length of
the summary to be of the same length of the input given to the models (which
corresponds to 3 passages) and vary the minimum length from 20 to 120 words.

2 https://github.com/castorini/pyserini.
3 http://lexicalresearch.com/kstem-doc.txt.

https://github.com/castorini/pyserini
http://lexicalresearch.com/kstem-doc.txt
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4.3 Results and Discussion

Conversation-Aware Query Rewriting. In Table 2, we show the BLEU-4
scores obtained in CANARD’s test set and in TREC CAsT’s 2019 manually
rewritten queries. The rows “Human” and “Raw” are from [10], the row “T5-
BASE” is from [17]. The last row corresponds to our implementation. Our results
are on par with [17], being lower in the CANARD dataset but higher in TREC
CAsT. We believe the minor differences in performance between our T5-Base
model and the T5-BASE from [17] are due to the use of different input sequences,
as the exact method of constructing the input is not specified in [17].

Table 2. BLEU-4 scores for the CANARD test set and for TREC CAsT using the
manually rewritten queries of the evaluation set.

CANARD TREC CAsT

Human [10] 59.92 -

Raw [10] 47.44 -

T5-BASE [17] 58.08 75.07

Our T5-BASE 56.84 79.67

From the analysis of the BLEU-4 scores and outputs, we can conclude that
the model is performing both coreference and context resolution, approximating
the queries in a conversational format to context-independent queries. Examples
of the inputs, targets, and predicted queries, are presented in Table 3. In TREC
CAsT, the historical utterances do not depend on the responses of the system,
so the answer is not provided as input. As we can see, T5 is capable of resolving
ambiguous queries by co-reference resolution, as in example 1, but sometimes
mistakes similar co-references when multiple are involved, as evidenced in exam-
ple 2 and in [17], where the model predicts “throat cancer” instead of “lung
cancer”. We can also note that this model is more robust than just corefer-
ence resolution, as seen in example 3, where it includes the words “Bronze Age
Collapse”, even though there is no explicit mention (implicit coreference).

Transformer-Based Passage Search. Table 4 shows the results of retrieval on
the TREC CAsT dataset. Original are the conversational queries (lower-bound),
Manual is a baseline where the queries were manually rewritten (upper-bound),
T5 is using our query rewriting method, and the other two lines are the results
of baselines retrieved from [6]. clacBase [3] is a method that uses AllenNLP
coreference resolution [11] and a fine-tuned BM25 model with pseudo-relevance
feedback, and HistoricalQE [34] is a method that uses a query expansion algo-
rithm based on session and query words together with a BERT LARGE model
for re-ranking. The latter was the best performing method in terms of nDCG@3
in TREC CAsT 2019 [6].
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Table 3. Example of query rewriting inputs, targets and predictions.

CANARD

Original query What was his agreement with McMahon?

T5 Input query What was his agreement with McMahon? [CTX] Superstar
Billy Graham. Return to WWWF (1977–1981) [TURN] Why
did he return to the WWWF? An agreement with promoter
Vincent J. McMahon Senior

T5 predicted query What was Superstar Billy Graham’s agreement with
McMahon?

Target query What was Billy Graham’s agreement with McMahon?

TREC CAsT 2019

Original query What are its symptoms?

T5 Input query What are its symptoms? [CTX] What is throat cancer?
[TURN] Is throat cancer treatable? [TURN] Tell me about
lung cancer

T5 predicted query What are throat cancer’s symptoms?

Target query What are lung cancer’s symptoms?

Original query What are some of the possible causes?

T5 Input query What are some of the possible causes? [CTX] Tell me about
the Bronze Age collapse? [TURN] What is the evidence for
the Bronze Age collapse?

T5 predicted query What are some of the possible causes for the Bronze Age
collapse?

Target query What are some of the possible causes
of the Bronze Age collapse?

The first observation that emerges from Table 4 is the clear need for a query
rewriting method to maintain the conversational context, evidenced by the low
scores on all metrics using the original conversational queries. Rewriting queries
(with the T5 model) outperforms the original conversational queries by a 5−20%
margin (nDCG@3), thus showing the effectiveness of this approach. The second
clear observation is again the considerable improvement when Transformers are
used for re-ranking. In this case, the improvement is in the 10–15% range over
standard retrieval metrics. This is due to the better understanding that the
fine-tuned BERT model has of the interactions between the query and passage
terms.

Finally, the largest gains emerge when we combine the two Transformers to
deliver state-of-the-art results. With the proposed Transformers we outperform
the best TREC CAsT 2019 baseline by 3.9% in terms of nDCG@3. We con-
sider that this improvement is mainly due to the use of a better query-rewriting
method that allows the retrieval model to retrieve passages given the conversa-
tional context, providing the re-ranker with more relevant passages.
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Table 4. Results of retrieval on the TREC CAsT evaluation set. The HistoricalQE [34]
was the best performing model in TREC CAsT 2019.

Queries Re-ranker Recall P@3 MAP MRR nDCG@3

Original – 0.454 0.262 0.141 0.336 0.167

Original BERT 0.454 0.385 0.181 0.456 0.272

T5 – 0.697 0.474 0.251 0.597 0.322

T5 BERT 0.697 0.632 0.310 0.739 0.475

TREC CAsT baselines

clacBase [3] – – – 0.246 0.640 0.360

HistoricalQE [34] BERT – – 0.267 0.715 0.436

Manual baselines

Manual - 0.820 0.590 0.327 0.694 0.406

Manual BERT 0.820 0.757 0.389 0.857 0.577

Fig. 2. Performance of the answer generation results under different metrics.

Conversational Answer Generation. Figure 2 shows the result of the answer
generation step according to the ROUGE-L and METEOR metrics. The base-
line is composed by the concatenation of the top 3 passages, cropped to the
maximum length of the passage according to the “Summary Minimum Length”
value, respecting sentence endings. In Fig. 2 all answer generation models were
better than the retrieval baseline method. According to ROUGE-L the top per-
formance is achieved around 60–90 word length answers. Since the goal is to
generate short and informative answers, we were not interested in answers longer
than 100 words. Actually, we believe that answers with fewer than 50 words are
more natural for conversational scenarios. According to these results we observe
that BART was the best answer generation method.
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In Fig. 3 we analyse the retrieval and the answer generation performance
over conversation turns. We see that peak performance is achieved on the first
turn, which was expected given that the first turn that establishes the topic. As
the conversation progresses, retrieval performance decreases, but surprisingly,
answer generation performance is stable until the 6th turn. We also observed
that the decreases in performance are linked to sub-topic shifts within the same
conversation topic.

An interesting observation from Fig. 3 is that PEGASUS is the method that
exhibits a stronger correlation with retrieval performance. We believe this is
related to its generation process that has a behaviour closer to extractive sum-
marisation, while BART and T5 demonstrate a more abstractive behaviour.

Finally, in Table 5 we illustrate the answer generation with all three Trans-
formers. This table further confirms the abstractive versus extractive summarisa-
tion behaviours of the different Transformer-based architectures. In this example
we see that T5 tries to generate new sentences by combining different sentences.

Fig. 3. Answer generation versus retrieval performance per conversation turn. The
minimum length is 80 and 20 in the top and bottom graphs respectively.
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Table 5. Answer generation example for the turn “What was the first artificial satel-
lite?”. Summary minimum length is set to 90. Blue sentences illustrate abstractive,
green sentences illustrate extractive, and red sentences illustrate wrong summaries.

Method Answer

Retrieval passage 1 The first artificial satellite was Sputnik 1, launched by the
Soviet Union on October 4, 1957, and initiating the Soviet
Sputnik program, with Sergei Korolev as chief designer
(there is a crater on the lunar far side which bears his
name). This in turn triggered the Space Race between the
Soviet Union and the United States

Retrieval passage 2 The first artificial Earth satellite was Sputnik 1. Put into
orbit by the Soviet Union on October 4, 1957, it was
equipped with an on-board radio-transmitter that worked
on two frequencies: 20.005 and 40.002 MHz. Sputnik 1 was
launched as a step in the exploration of space and rocket
development. While incredibly important it was not placed
in orbit for the purpose of sending data from one point on
earth to another. And it was the first artificial satellite in
the steps leading to today’s satellite communications

Retrieval passage 3 The first artificial satellite was Sputnik 1. It was the size of
a basketball and was made by the USSR (Union of Soviet
Socialist Republics) or Russia. It was launched on October
4, 1957.

T5 the first artificial satellite was Sputnik 1, launched by the
u.s. or Russia. it was the size of a basketball and launched
on October 4, 1957. the satellite was equipped with a
radio-transmitter that worked on two frequencies.
incredibly important it was not placed in orbit for sending
data from one point on earth to another. in turn, it
triggered the space race between the united states and the
soviet union.

BART The first artificial satellite was Sputnik 1, launched by the
Soviet Union on October 4, 1957. It was equipped with an
on-board radio-transmitter that worked on two frequencies:
20.005 and 40.002 MHz. This in turn triggered the Space
Race between the Soviet Union and the United States. The
size of a basketball, it was not placed in orbit for the
purpose of sending data from one point on earth to
another. And it was the first Artificial satellite in the steps
leading to today’s satellite communications.

PEGASUS The first artificial satellite was Sputnik 1, launched by the
Soviet Union on October 4, 1957. Sputnik 1 was launched
as a step in the exploration of space and rocket
development. It was not placed in orbit for the purpose of
sending data from one point on earth to another. This in
turn triggered the Space Race between the USSR and the
U.S. There is a crater on the lunar far side which bears his
name.
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5 Conclusions

In this paper we investigated how Transformer architectures can address different
tasks in open-domain conversational search, with particular emphasis on the
search-answer generation task. The key findings are:

– Transformers-based Conversational Search. Transformers can solve a
number of tasks in conversational search, leading to new state-of-the-art
results by outperforming the best TREC-CAsT 2019 baseline by 3.9% in
terms of nDCG@3. This result is rooted on a fine-tuned bi-directional Trans-
former model [26] for conversational query re-writing, which attained an
improvement of 5–20% (nDCG@3) over raw conversational queries. Similarly,
the re-ranking task using a fine-tuned BERT LARGE model [21] improved
results by 10–15% (nDCG@3) over an LMD model.

– Search-Answer Generation. Experiments showed that search systems can
be improved with agents that abstract the information contained in multiple
documents to provide a single and informative search answer. In terms of
ROUGE-L we concluded that all answer generation models [14,26,38] per-
formed better than the retrieval baseline.

– Abstractive vs Extractive Answer Generation. The examined answer
generation Transformers revealed different behaviours. BART was the most
effective in generating answers that were rewritten with information from
different passages. This approach turned out to be better than extractive
methods that copy and paste sentences from different passages.

As future research, we plan to improve conversational query rewriting meth-
ods, re-rankers with a notion of the context of the conversation, and mine pos-
sible conversation paths to steer the answer generation process towards further
helping the user in exploring alternative aspects of the searched topic.
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