
How Do Simple Transformations of Text
and Image Features Impact Cosine-Based

Semantic Match?

Guillem Collell(B) and Marie-Francine Moens

Department of Computer Science, KU Leuven, 3001 Heverlee, Belgium
{gcollell,sien.moens}@kuleuven.be2

Abstract. Practitioners often resort to off-the-shelf feature extractors
such as language models (e.g., BERT or Glove) for text or pre-trained
CNNs for images. These features are often used without further super-
vision in tasks such as text or image retrieval and semantic similarity
with cosine-based semantic match. Although cosine similarity is sensitive
to centering and other feature transforms, their impact on task perfor-
mance has not been systematically studied. Prior studies are limited to a
single domain (e.g., bilingual embeddings) and one data modality (text).
Here, we systematically study the effect of simple feature transforms (e.g.,
standardizing) in 25 datasets with 6 tasks covering semantic similarity
and text and image retrieval. We further back up our claims in ad-hoc
laboratory experiments. We include 15 (8 image + 7 text) embeddings,
covering the state-of-the-art models. Our second goal is to determine
whether the common practice of defaulting to the cosine similarity is
empirically supported. Our findings reveal that: (i) some feature trans-
forms provide solid improvements, suggesting their default adoption; (ii)
cosine similarity fares better than Euclidean similarity, thus backing up
standard practices. Ultimately, our takeaways provide actionable advice
for practitioners.

Keywords: Feature transform · Cosine similarity · Image retrieval ·
Text retrieval · Semantic similarity · Text embeddings · Image
embeddings

1 Introduction

Extraction of image and text features with pre-trained off-the-shelf models enjoys
widespread adoption among practitioners (e.g., BERT-as-a-service [58]). These
features are often used in tasks such as multimedia retrieval [50,55], semantic
similarity [12,13,26,40,52], word analogies [37,40] or zero-shot image recogni-
tion [46,61], to name a few. Not infrequently, features are used directly without
further supervised training, typically via cosine-based semantic match. As noted
[1,24], the cosine similarity is sensitive to centering, cross-dimension correlations
and scale variations (Fig. 1). However, the extent to which this impacts task per-
formance has not yet been systematically studied. Studies assessing the effect
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of feature transforms (e.g., normalizing or PCA) typically restrict to a single
domain and task (e.g., bilingual word embeddings [1,59]) and a single modality
(text). This prompts our first research question (RQ1): Can we improve the
features with simple transforms in a variety of text and image tasks? In particu-
lar, quantifying the (hypothesized) negative impact of vector uncenteredness on
cosine-based performance (Fig. 1) is among our foremost hypothesis to test.

α < β
α β α > β

βαcenter

Fig. 1. Illustration of uncentered vectors hin-
dering cosine similarity performance. Since
cosine similarity computes the angle (α, β)
from the origin �0, in this example where
all vectors are dimension-wise positive, the
cosine judges two points from different
classes as more similar than two points of the
same class. Centering helps obtaining more
meaningful similarity estimates.

The cosine is generally cho-
sen as default similarity measure
in retrieval [15,50] and semantic
similarity tasks [12,26,27,31,40,52,
53]. This choice may eventually be
informed in a (labelled) validation
set or even the metric itself can be
learned [14,56] if a labelled training
set exists. However, because often
none of these are available [12,26,
31,40,46,52], our study assumes a
scenario without either set. This
motivates our second research ques-
tion (RQ2): Is the default choice of
cosine similarity (versus Euclidean)
empirically supported?

To answer RQ1 and RQ2,
we perform an extensive empirical

study in real-world tasks with both image and text data. We provide further
insight and back up our claims in laboratory experiments. Our tests include 25
datasets with 6 different tasks covering text and image retrieval, word-, sentence-
and visual-similarity, and paraphrase detection. We include 15 types of image
(8) and text (7) embeddings, covering state-of-the-art models. Simple feature
transforms are also compared with manifold learning methods.

Our findings reveal that: (i) Centering and standardizing are remarkably
effective across real-world tasks (RQ1); (ii) the cosine significantly outperforms
the Euclidean similarity across 74 conditions (embedding × task), hence support-
ing the default choice (RQ2). Ultimately, our findings provide actionable advice
to practitioners and warning about the negative impact of using cosine similarity
along with uncentered features.

This paper is organized as follows. In Sect. 2, we discuss related work. We
present our methods in Sect. 3 and our tasks in Sect. 4. In Sect. 5, we describe
our embeddings and setup. In Sect. 6, we discuss our empirical results. Section 7
concludes the paper.

2 Related Work

Feature transforms: [25] study the optimality of five different whitening trans-
formations from the viewpoint of the properties of their covariance matrices.
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In contrast to this study, [25] do not include empirical evaluations in text or image
problems.

Additionally, [11] studied the effect of transforming features with an untrained
neural network (i.e., random projections), finding that the performance of trans-
formed vectors does not drop in word-similarity tasks. The impact on performance
of different feature transforms on classification problems such as of biomedical
data is also studied [4].

The closest works to ours are [32], [59] and [1], all of whom study the effect of
feature transforms in the context of text problems. [32] study the effect of hyper-
parameters and normalization of word embeddings, revealing that the impact of
design decisions and hyperparameters on performance is more important than
the choice of the embedding algorithms themselves. [59] finds that constrain-
ing word embeddings to the unit hyper-sphere (i.e., normalizing them) improves
performance in mono-lingual word similarity and bi-lingual word translation. [1]
investigate several transformations including PCA, mean centering, normaliza-
tion and whitening in the context of multi-lingual word embeddings. In contrast
with ours, these studies restrict to a single domain and to text data (no images),
and do not discuss standardizing – which we find to be a top performer.

Similarity measures: [24] analytically study the behavior and properties of
similarity measures such as cosine similarity and the inner product from a geo-
metric viewpoint, focusing on iso-similarity contours. Also analytically, [41] stud-
ies similarity measures in the retrieval context. In contrast to them, we carry out
extensive empirical tests.

Metric learning: algorithms such as the ITML [14] or LMNN [56] learn a metric
distance which can be seen as a form of learning a suitable transformation to the
input vectors. However, this metric is learned in a supervised fashion, typically
to be used in conjunction with a nearest-neighbor classifier, which falls out of
the unsupervised scope of our study. It is worth mentioning that unsupervised
metric learning algorithms also exist [9,23], yet they do not witness widespread
adoption among data practitioners.

Manifold learning: methods, such as Isomap [49], Locally Linear Embedding
(LLE) [42], diffusion maps [10], multi dimensional scaling (MDS) [29] or t-SNE
[34], try to discover the underlying data manifold, which enables disentangling
the vectors in a lower-dimensional space. Such methods are widely used for data
visualization, yet they are not popular as feature transforms for predictive models
– perhaps due to their limited success for such purpose. Although the inclusion
of manifold learning methods in our study obeys mainly completeness reasons –
given that our focus are simple feature transforms – an empirical comparison of
simple transforms and manifold learning methods across multiple tasks has not
been performed yet and we believe that is of practical interest.

3 Method

Let us first lay down our general framework. Let S ={si}N
i=1 be a set of N data

points (sentences, words or images). One extracts corresponding feature vectors
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V = {vi}N
i=1 with a text or image encoder E() (e.g., BERT or a CNN model),

where vi = E(si) and vi ∈ R
d. The parameters θ of a feature transform Tθ are

learned using the vectors V (e.g., in centering, θ are the dimension-wise means).
A new vector v can then be transformed with Tθ(v) (Sect. 3.1), where v may
belong or not to the set V used for learning Tθ.

3.1 Feature Transforms

In the following, we describe the feature transforms included in our experiments.

• Original (orig): denotes the original vectors V = {vi}N
i=1 without any trans-

formation.
• Centering (ctr): ctr(v)=v−V ; subtracts the centroid vector V = 1

N

∑N
i=1 vi=

1
N

∑N
i=1(v

1
i , · · · , vd

i ) to a vector v.
• Standardizing (stz): stz(v)=(v−V )/sd(V); where sd(V) are the component-

wise standard deviations sd(V)= (sd(V 1), · · · , sd(V d)) with V k
={vk

i }N
i=1; and

sd() is the standard deviation. Stz zero-means the data V and sets variances
equal to 1.

• Whitening (wht): We use the Zero Components Analysis (ZCA) whitening
as described in [28]. ZCA de-correlates the data dimensions and makes the
variances equal to 1.

• Normalizing (Nrm): nrm(v)=v/||v||; moves any vector v to the unit hyper-
sphere. Unlike the rest, this transform depends only on the same vector v,
and not on the whole set V = {vi}N

i=1. Normalizing has no effect when the
cosine similarity is used.

• Isomap (Iso): [49] and Locally Linear Embedding (LLE) [42] are used
analogously by first learning the parameters θ in the training set of vectors
V , and applying the learned transformation Tθ to a new vector v ∈ Rd, with
Tθ(v) ∈ Rm with m ≤ d1.

• Principal Component Analysis (PCA): is a classical dimensionality
reduction method that finds orthogonal directions that best fit the data in
the least-squares sense. We keep a number of components (dimensions) such
that 80% of the variance is explained.2 Our implementation of PCA [39] cen-
ters but does not scale the data (for each feature) before applying the SVD
decomposition.

Unlike simple transforms (e.g., center) the more complex PCA, Isomap and
LLE have hyperparameters (e.g., output dimensionality) that impact their per-
formance. Thus a validation set is often necessary, which is a shortcoming in our
unsupervised setting.

1 For both Isomap and LLE we set m = 100 in the real-world, and m = 2 for synthetic
tasks. The number of nearest neighbors is set to 10 in all tasks (as default in sklearn
[39]).

2 The choice of 80% of the variance is discussed and compared to other values in the
Supplement.
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3.2 Complementary Experiments

• Additive bias: As a complement to centering, we study the effect of
“uncenteredness” on the cosine similarity (as the Euclidean is shift invari-
ant) by uncentering V = {vi}N

i=1 with a dimension-wise bias b > 0, namely
(v1

i + b, · · · , vd
i + b) ∀ i = 1, · · · , N . This equates shifting all vectors to the pos-

itive quadrant (i.e., vk
i > 0 ∀ k = 1, · · · , d), if b large enough, or moving them

further up in case they already are (see Sect. 6 for a discussion).
• Multiplicative bias: to study the effect of non-homogeneity of scale and
variances across dimensions, we multiply each dimension with a bias b>0 ran-
domly drawn from a uniform b ∼ U [0.001, 10]d, i.e., vi = (b1v1

i , · · · , bdv
d
i ) ∀ i =

1, · · · , N . This study complements the standardizing method.

4 Tasks and Data

In this section, we first describe the procedure of two grand groups of tasks
(Sect. 4.1), and then we introduce the datasets used in each individual task
(Sect. 4.2). Our dataset selection criteria included: (i) Feasibility of implementing
an unsupervised prediction approach (i.e., simply cosine-based); (ii) medium-
sized datasets; (iii) rather popular and already clean data (thus little pre-
processing required); (iv) diversity.

4.1 Task Descriptions

Grouping tasks: It is convenient to group our tasks in two functionally dif-
ferent categories, as they exhibit identical prediction-evaluation pipelines: (1)
Retrieval tasks: (i) text retrieval and (ii) image retrieval ; (2) Similarity
tasks: (iii) word similarity, (iv) sentence similarity, (v) visual similarity and
(vi) synthetic data. Furthermore, we refer throughout to real-world tasks being
all tasks except the synthetic ones.

In all tasks, we consider two similarity measures to compute the predicted
similarity sim(s1, s2) between any two inputs s1, s2 (words, sentences or images)
encoded with their respective features vi, vj ∈ R

d:

• Cosine similarity: cos(vi, vj) =
vivj

‖vi‖‖vj‖ .
• Euclidean similarity Eucl(vi, vj) = 1

1+‖vi−vj‖ .

In the interest of the practitioner, we focus on simple and widely adopted
transforms, cosine and Euclidean similarity, rather than aiming for an exhaus-
tive comparison of all existing similarity measures and feature transforms. After
having obtained the vectors V ={vi}N

i=1 and learned Tθ(v) as described in Sect. 3,
we consider the task-specific procedures below.

� Similarity tasks: All word-, sentence- and image-similarity datasets consist of
a list of word, sentence or image pairs (si, sj), e.g., (‘car’, ‘truck’) along with a
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human (ground-truth) rating of their similarity or relatedness yi,j ∈ [1, 10]. The
system needs to predict a similarity score ŷi,j ∈ [1, 10] for each pair (si, sj). Model
predictions are computed via cos(vi, vj) or Eucl(vi, vj), where (vi, vj) =E(si, sj).

– Evaluation: Following [12,26,40], we use the Spearman correlation ρ(ŷ, y)
between the predicted ŷ ∈ RN

+

and the ground-truth similarity scores y ∈ RN
+

as the standard measure to evaluate the quality of semantic similarity predic-
tions.

� Retrieval tasks: We split the given test set V ts into two disjoint sets: a query set
Q and a test collection T . Given a query si ∈Q, the goal of the task is to rank the
relevant items from T higher than the non-relevant ones. The similarity between
each item si ∈Q in the query set Q is computed against every item sj ∈ T in the
test collection T via cos(vi, vj) or Eucl(vi, vj) similarity, where (vi, vj)=E(si, sj).

– Evaluation: Performance is evaluated with the TREC standard mean aver-
age precision (mAP), as described in [35]. Following [50,54,55], a test-
collection item si ∈ T is considered relevant to a query sj ∈ Q if they both
belong to the same class.

4.2 Datasets

� Text retrieval: AG-news3 is text classification and retrieval benchmark [60]
consisting in (120,000 train; 7,600 test) sentences, each belonging to exactly one
of the 4 classes (sports, world, business, sci/tech). E.g.,“Economic growth in
Japan slows down as the country experiences a drop in domestic and corporate
spending” (class = business).
� Image retrieval:

– Caltech-256 [20] is a benchmark widely used in image retrieval [15] and
classification. The data consists of 30,607 images, each of which belongs to
exactly one of the 256 categories (e.g., sushi, swan, tripod, etc.).

– CorelDB database [51]: consists of 10,800 images, each of which belongs to
exactly one of the 80 classes (ship, waterfall, lion, etc.).

� Word similarity tasks are typically used to evaluate the quality of word embed-
ding models [2,26,31,40,52]. Following [12,52,53], we use five word similarity
benchmarks, which include three types of similarity ratings: (i) Semantic simi-
larity : SemSim [44], Simlex999 [22] and SimVerb-3500 [19]; (ii) Relatedness:
MEN [3] and WordSim-353 [18]; (iii) Visual similarity: VisSim [44] which
contains the same data as SemSim, yet word pairs are rated for visual similarity
instead of semantic similarity.

3 https://www.kaggle.com/amananandrai/ag-news-classification-dataset.

https://www.kaggle.com/amananandrai/ag-news-classification-dataset
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Fig. 2. Synthetic datasets of our laboratory experiment. Color indicates the semantic
value of each data point (either a class label or a continues value) – best seen in color.
The first five datasets are 3D while the rest are in 2D. In the first seven datasets, the
semantic value assigned to data points is continuous, while for the last five datasets
the class labels are discrete. (Color figure online)

� Sentence similarity: Our datasets are from the GLUE4 and SentEval5 collec-
tions.

– STS (Semantic Textual Similarity) [5] is a semantic relatedness benchmark
consisting of sentence pairs with a crowd-annotated similarity score. E.g., (“A
woman is eating something”, “A woman is eating meat”) has a score of 3 (out
of 5). There are 5,749 train, 1,500 val and 1,379 test pairs.

– SICK (Sentences Involving Compositional Knowledge) [36] evaluates com-
positional distributional semantics. SICK contains sentence pairs along with
their semantic relatedness score. E.g., (“Two men are boxing”, “Two men
are fighting”) have a score of 4 (out of 5). SICK has 4,501 train, 501 val and
4,928 test sentence pairs.

– MSRP (Microsoft Research Paraphrase Corpus) [17] does not strictly eval-
uate sentence similarity but paraphrase detection, yet due to functional par-
allels with the former, we include MSRP in this group. It contains (4,077
train; 1,726 test) sentence pairs along with a label {1 = paraphrase or 0 =not
paraphrase}. MSRP is always used with supervision, thus it may not be the
most adequate test-bed for our setting.

� Visual similarity: Visual-STS (vis-STS) [30] is a subset of STS where each
textual caption is associated to an image. Here, we only use the images since (a
larger super-set of) the sentences are already evaluated in STS. Vis-STS consists
of 1,089 images and a single set of 829 image-image pairs along with their ground-
truth similarity rating.

4 https://gluebenchmark.com/tasks.
5 In contrast to most papers using SICK, MSRP and STS [13,27] we do not use labels.

E.g., while [27] learn a logistic regression model to predict the similarity between
embedding pairs vi, vj , we output the similarity directly (Sect. 4.1).

https://gluebenchmark.com/tasks
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� Synthetic data: In contrast to real-world tasks, laboratory tasks offer a unique
window to study the behavior of feature transforms by having full control of: (i)
the (distribution of) feature vectors, (ii) the task itself, i.e., the assignation of
semantic value to each data point. The majority of our synthetic (laboratory)
datasets are from sklearn [39], except sphere-z, unif-rad, unif-angle and spiral
(Fig. 2), which are built by ourselves.

We randomly generate 2,000 train and 200 test data points. Then, we build
our similarity task by presenting all pairwise combinations of test points to the
system, i.e., 40,0000 pairs (= 200 × 200). In the discrete-labelled datasets (e.g.,
circles, Fig. 2) where each data point si has a class label li ∈ {t1, · · · , tC} (where
C = # classes) the ground-truth similarity yi,j ∈ {0, 1} between two points si, sj

is 1 if they belong to the same class, or 0 otherwise. In the continuous-labelled
datasets (e.g., sphere), where the assignation of semantic value to each data
point is a continuous value li ∈R+

, the ground truth similarity yi,j between si, sj

is the absolute difference: yi,j = |li − lj | ∈ R+
.

5 Experimental Setup

5.1 Feature Vectors (Embeddings)

We group below our embeddings by the unit that they represent (a word, a
sentence or an image). An overview of which embeddings apply to what task
can be seen in Table 1.
� Word-level features:

– GloVe6 [40]: We use 300-d vectors pre-trained on the Common Crawl corpus
with 840B tokens and a 2.2M-word vocabulary.

– word2vec (w2v) [37]: We use the skip-gram 300-d embeddings trained on
Wikipedia.

– In word-similarity, we adopt the publicly available7 VGG-128 [6] and
ResNet [21] visual features from [12]. Notice that unlike the image retrieval
and visual-STS tasks, word-similarity datasets do not have any images and
hence one needs to find a way to visually represent each word (e.g., ‘cat’ or
‘table’) by using external visual data. To this end, [12] used ImageNet [43],
and for each image they extracted 128-d VGG-128 and 2,048-d ResNet fea-
tures from the last layer (before the softmax) by using the forward pass of
the CNN. The final representation for any given word is the average feature
vector (centroid) of all available images for this word in ImageNet.

� Sentence-level features:

– BERT [16]: The large uncased version of BERT8 (24 layers, 1,024 units) is
used as a sentence feature extractor. We obtain a 1,024-d vector from the last

6 http://nlp.stanford.edu/projects/glove.
7 http://liir.cs.kuleuven.be/software.html.
8 Although we are aware that BERT is not meant to represent a single word as it

is designed to account for context words, we include BERT in the word-similarity
tasks for completeness.

http://nlp.stanford.edu/projects/glove
http://liir.cs.kuleuven.be/software.html
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layer (24th), before the model top, by average-pooling the output sequence
of hidden state vectors, similar to BERT-as-a-service [58]. The model is pre-
trained on masked language modeling and next sentence prediction in the
Toronto Book Corpus and Wiki.

– RoBERTa [33]: We obtain 1,024-d features in an identical manner as in
BERT above with the large-version of a case-sensitive RoBERTa model.

– Skipthoughts vectors [27] is a popular neural-based universal sentence
encoder that learns sentence representations by predicting the surrounding
sentences. We use the best-performing 4,800-d vectors (combine-skip) as rec-
ommended by the authors.

– Vector averaging (bag of words): In the sentence-level tasks (SICK,
MSRP, STS and AG-news), we include the baseline sentence representation
v = 1

m

∑m
i=1 vi of averaging word vectors in a sentence s = (s1, · · · , sm), where

vi = E(si) and m is the number of words. We add a subscript avg to the
averaged vectors (e.g., GloVeavg).

� Image-level features. Vector dimensionality is in parenthesis: NASNet [62]
(d = 4,032), ResNet-50 [21] (d = 2,048), ResNet-inception-v2 [47] (d = 1,536),
Inception-v3 [48] (d = 2,048), VGG19 [45] (d = 512), Xception [8] (d = 2,048).
In all these CNN networks, the feature vector vi = E(si) for a given image si is
obtained as the forward pass average-pooled activations from the last layer before
the output layer.

5.2 Training Setup and Implementation

• Given training data: In all datasets except word-similarity (Sect. 4.2),
we obtain the training data V tr

= E(Str) given in the dataset (yet without
using class labels). In the case of AG-news, STS, SICK and MSRP we use
the provided train-test split (Sect. 4.2). Although CorelDB, Visual-STS and
Caltech-256 do not have publicly available train-test set splits, we create the
train-test splits ourselves via 3-fold cross-validation. I.e., we split the full data
S = {vi}N

i=1 into 3 disjoint parts and we employ 2 parts for training (Str) and
1 part for testing (Sts), repeating this 3 times and reporting the average.
However, our setting does not require having an available training set. There
are two main alternatives to using the given train split: (1) learning Tθ() in
the test set; (2) generating Str ourselves. Although (1) is a legit option (as
one does not use labels), it falls within a transductive learning setup and
assumes a test set of a certain size to enable learning Tθ(). Hence, this is not
an option in the case of a singe-instance test set. We also evaluated learning
Tθ() in the test set, and results are discussed in Sect. 6.1.

• Built training data: For word-similarity, where no training data are avail-
able, we use external data to generate V tr (option (2) above). Following [12],
we build V tr in word-similarity by using features obtained from all words
in ImageNet, i.e., visual features for CNNs (ResNet & VGG128) and word
embeddings for text (GloVe & word2vec).
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Implementation: We use diverse Python libraries, including: Keras [7] for
the CNNs, Theano for skipthoughts, sklearn [39], Pytorch and Huggingface [57]
for BERT & RoBERTa. We make our code publicly available9 as well as a Sup-
plement with further specific implementation and hyperparameter details and
additional results.

6 Results

Unless otherwise specified, results below are discussed for the cosine similarity
(Table 1). Performance measures in the tables are according to Sect. 4.1, and
scaled × 100, for readability. Table 2 reports statistical significance of com-
paring a given method with the original vectors under cosine (i.e., the top left
corner entry). Each comparison is a two-sided Wilcoxon signed-rank test across
the 74 combinations of a real-world dataset with an embedding type (i.e., rows
in Table 1). We report significance at p < 0.01 after a Bonferroni correction for
10 comparisons (7 methods in the first row + Eucl + add. bias + mult. bias)10.
Win-tie-loss results (W, T, L) indicate the number of wins (W), ties (T) and
losses (L) of the first method against the second one, across the 74 combinations.

6.1 Real-World Tasks
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Fig. 3. Averaged results across datasets
and features for different values of biases
(Sect. 3.2) on original vectors. The b=0
point means no bias.

Centeredness: Performance of origi-
nal with an additive bias (Sect. 3.2)
drastically drops (Fig. 3 and Table 2).
This confirms the inadequacy of using
uncentered vectors along with the
cosine similarity. Results of PCA, ctr
and stz are unaffected.
• Centering: Consistently with the
results above, centering significantly
improved (p < 10−4) the original fea-
tures by an absolute 2.5% on aver-
age (Table 2), with a win-tie-loss of
(W = 52, T = 1, L = 21) (Table 1),
hence proving the effectiveness of this
method (RQ 1).

• Centeredness of original vectors: All our CNN vectors (ResNet, etc.) are
positive (thus uncentered), and simple statistical inspection reveals that our text
vectors are also uncentered. This implies that centering has an effect on all our
features.
(Non-)homogeneity of variances and scale: In contrast with the large
hindering effect of the additive bias, performance with the multiplicative bias
9 https://github.com/gcollell/transforms-cosine.

10 We did not test all pair-wise conditions as our interest is on a specific set of hypothe-
ses.

https://github.com/gcollell/transforms-cosine
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(Sect. 3.2) barely drops (Fig. 3 and Table 2). This suggests that centeredness may
have a larger impact on the cosine similarity than scale and variance differences
across dimensions.
• Standardizing is the overall winner in real-world tasks (RQ 1). It improved
significantly (p<10−6) the orig features by an absolute 3.3% on average (Table 2)
and their win-tie-loss is (W = 60, T = 0, L = 14) (Table 1). Notice that stz also
centers the vectors.

Cosine versus Euclidean: Cosine similarity significantly outperformed (p <
10−6) the Euclidean similarity (RQ 2) by an average absolute 5.1% (Table 2)
and (W = 54, T = 7, L = 13), for the original vectors – yet the trend is similar
for all transforms. This supports the common practice of defaulting to cosine
similarity, yet we strongly recommend considering the remarks about centering
above, to avoid sub-optimal performance. Further, if a labeled validation set is
available (e.g., in SICK, STS, or AG-news), one may use it in order to make a
more educated choice between cosine and Euclidean similarity.

Learning times: Remarkably, manifold learning methods are over ×1,000 times
slower than standardizing (Table 2), and perform markedly worse.

Learning in test set: Notably, center and standardize can be further improved
by learning them in test data (Table 2) – provided the test set is large enough.

Manifold learning methods generally underperform the simple transforms
in real-world tasks. We emphasize that we do not claim that we fairly portray
the full potential of manifold learning methods (and PCA), as we did not tune
their hyperparameters (e.g., dimensionality) with a validation set for the sake
of comparability with the simple transforms – as our setting does not assume a
validation set.

PCA improved orig features by 1.8% on average (Table 2) and (W = 53,
T = 0, L = 21).

Failure cases: Notably, VGG19 was not improved by any method in any dataset
(Table 1), and all methods fared poorly in MSRP. However, the performance loss
by standardizing or centering is small in MSRP, which suggests that, in the
absence of a validation set for making more informed decisions, the large upside
of defaulting to standardizing may offset its eventual and rather small potential
performance downside.

Consistency: Some methods that perform poorly on average such as Iso or wht
(Table 2) eventually hit the most spectacular gains (and losses) (Table 2). This
contrasts with stz and ctr which tend to have less “volatility” and exhibit more
consistent gains.
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Table 1. Results with cosine similarity on real-world tasks. Since performance trends
are similar, the word-similarity table (left) includes only the visual subsets, i.e., word-
pairs for which images are available for both words – number of instances is in paren-
thesis. Results in all sets are in the Supplement. Best-performing method per row is
boldfaced.

orig ctr stz wth iso LLE PCA

w
o
rd

si
m

(6
3
)

GloVe 63.2 61.3 67.6 69.6 43.9 50.1 59.4

w2v 66.9 64.9 65.5 62 58.8 25.3 63

BERT 20.8 30.1 28 47.4 16.7 26.3 29.9

RoBERTa 23.9 23.5 26.7 44.9 23.1 11.2 22.4

ResNet 42.3 48.9 48.1 28.7 51.7 43.7 48.6

VGG128 44.8 49.2 49.1 50 55.4 54 46.7

m
e
n

(7
9
5
)

GloVe 80.1 80 82.7 79.9 76.6 67 80.2

w2v 78.7 81 81.1 74.3 70.8 53.5 80.9

BERT 32.7 31.9 35.9 49.5 25.3 24.1 31.3

RoBERTa 20.9 29.5 32.2 48 25.1 20.7 27.6

ResNet 56.7 59 60.7 36.8 60.9 42.3 59.2

VGG128 59.3 58.9 59.8 54 60 42.9 58.8

se
m

S
im

(5
,2
3
8
) GloVe 76.8 74.6 78 62 77.3 61.2 75.1

w2v 74.2 77.3 77.3 54.1 71.2 50 77.6

BERT 23.4 22.6 25.2 28.3 17.3 22.7 22.8

RoBERTa 20 28.5 30.3 26.1 26.2 22.8 28.2

ResNet 53.4 67.6 67.6 11.7 70.3 39.1 67.8

VGG128 53.4 65.8 65.1 37.9 69 36 66.1

v
is
S
im

(5
,2
3
8
)

GloVe 60.6 60.6 62.9 53.7 61.5 47.7 61

w2v 57.6 60.8 60.8 47.7 54.8 37.9 61

BERT 16.2 16.7 18.4 23.7 12 14.8 16.7

RoBERTa 15.7 21.1 22.4 22.2 18.6 15.4 20.7

ResNet 54.3 60.6 61.7 14.5 57.9 37 60.8

VGG128 56 60.7 61.2 42.9 60 35.2 60.7

si
m

le
x

(2
6
1
)

GloVe 37.1 36.1 42 45.1 35.6 45.3 35.7

w2v 43.5 44.3 44.9 41.7 41.9 35.2 43.8

BERT 24.3 21.6 23.7 36.6 18.5 16 20.9

RoBERTa −7.6 −6.6 −4.5 19.3 −11 −3.8 −7.7

ResNet 40.9 45 45.6 36 47.3 38.8 45.5

VGG128 40.6 42.6 42.2 40.3 43 34 43.3

S
im

V
e
rb

(4
1
)

GloVe 32 29.8 34.3 22.8 10.5 −6.6 34.1

w2v 30.8 19.7 21.3 31.3 −4.9 −3.1 12.7

BERT −7.2 −8.2 −6.6 13.6 −11.6 21.5 −7.1

RoBERTa 4.7 1.5 2 −6.1 −9.8 1.5 5.7

ResNet 21.1 21.2 27.7 22 23.7 4.5 19.1

VGG128 23.5 23.4 20.6 52 20.8 14.6 22

orig ctr stz wht iso LLE PCA

S
T
S

GloVeavg 50 57.6 58.9 68.1 37.7 42.5 51.2

w2vavg 55.1 59.6 60.1 66 38.2 42.8 56.6

skipthoug 34.5 38.8 44.9 59.3 17.2 30.9 35.3

BERT 47.7 53.5 55.1 64.5 34.4 42.3 51.1

RoBERTa 44.9 58.6 62.7 69.1 38.6 42.8 55.1

S
IC

K

GloVeavg 56 58.5 59.3 58 51.9 45.6 55.2

w2vavg 58.5 60 60.3 56.3 51.6 46.1 57.9

skipthoug 56.5 58.5 56.1 43.3 48.4 44 57.1

BERT 53.8 57.8 58.2 58.4 50.7 44.5 55.8

RoBERTa 58.1 61.9 63.8 61.5 54.4 46.4 59.9

M
S
R
P

GloVeavg 39.9 37.2 38 39.5 16.3 16.1 34.4

w2vavg 38.8 35.6 36.2 37.8 14 21.6 33.7

skipthoug 15.3 19.6 21.1 32.9 7.6 8.8 16.4

BERT 31.5 30 30.8 38.2 11.6 15.3 26.3

RoBERTa 43.7 39.5 39.5 42.3 10.9 15.8 36.6

A
G
-n

e
w
s

GloVeavg 48.5 55.6 52.6 30.6 62.9 59.4 55.7

w2vavg 54.9 60.9 60 31.3 66.5 56.7 61.2

skipthoug 36.6 39.3 38.5 27.1 39.3 37.8 39.3

BERT 49.9 57.6 56.9 29.6 66.2 50.5 57.6

RoBERTa 47.3 55 54.8 29.6 67.8 54.1 55.1

v
is
-S

T
S

Incptn-v3 44.9 55.3 54.6 10.3 53.4 37.8 54.2

ResNet-in 45.2 56.1 55.5 9.5 57.9 37.2 54.7

ResNet 61.7 64.6 60.9 10.8 59.2 43.2 63.5

xception 56.2 59.2 59.1 14.3 47.9 38 58.2

VGG19 63.4 56.5 53.2 5.8 53.2 32.4 54.2

NASNet 49.9 58.7 57.4 15.5 53.7 34.7 57.2

C
a
lt
e
c
h

Incptn-v3 45.8 47.9 48.5 27.4 42 45.5 48.3

ResNet-in 54.9 55 55 38.7 55.2 52.8 55.4

ResNet 40.6 41.1 42.7 22.5 36.2 38.9 41.3

xception 46.8 50 49.9 27.8 41.7 46.5 51

VGG19 35.1 34.3 35.2 25.8 26.6 26.7 33.8

NASNet 60.4 60.6 60.2 29.9 58.3 57.2 61.6

C
o
re

lD
B

Incptn-v3 43.8 46.9 47.3 11.6 42.6 50.2 47.9

ResNet-in 52.3 53.5 53.2 18.6 55.4 54.5 55.1

ResNet 45.7 47.2 46.1 12 48.5 52.4 48.1

xception 47.4 50.4 49.7 13.6 47 52.8 51.9

VGG19 36.9 38.2 37.7 18 34.8 38.8 38.5

NASNet 57.9 59.2 57.4 2.2 56.6 57.7 60.9

6.2 Synthetic Data

Unlike real-world data (Sect. 6.1) where vectors and semantic value assignment
(i.e., the task) cannot be visualized, synthetic data enable intuitively grasping
and visualizing the effect that transforming vectors (RQ 1) have on the similarity
measures (RQ 2).
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Table 2. Averaged results across real-world datasets and features. Rows include (in
order) results of: (i) cosine similarity (i.e., averaged results of Tab. 1); (ii) Euclidean
similarity; (iii) additive and (iv) multiplicative bias (Sect. 3.2) (b = 10); (v) learning Tθ

in the test set, and (vi) training times (in seconds). Despite omitting datasets, this table
portrays a representative summary of the performance landscape. SDs are omitted for
being uninformative, as they reflect inter-dataset variance. For individual results, see
Table 1, the Supplement and win-tie-loss mentions in the text. Asterisks (∗) indicate
statistically different performance (p < 0.01) from orig × cos (two-sided).

orig ctr stz wht nrm iso LLE PCA

cos 43.9 46.4∗ 47.2∗ 36.2∗ 43.9 40.9 35.7∗ 45.7∗

Eucl 38.8∗ 38.8 38.1 21.6 43.9 35.7 23.1 39.8

add. bias 38.7∗ 46.4 47.2 35.1 38.7 40.9 35.5 45.7

mult. bias 43.5 45.8 47.2 36.1 43.5 40.6 35.8 44.9

learn in test 43.9 47.3 47.9 35.8 43.9 44.5 38.1 46.8

train time 0 0.01 0.3 7.9 2.1e-05 1174.5 965.7 2.4

Centeredness: Crucially, original vectors in synthetic tasks are generally cen-
tered while in real-world tasks features are uncentered (Sect. 6.1). It is reason-
able to not expect that features will be natively centered at �0, unless explicitly
imposed. Thus, using uncentered vectors orig (add) as a reference point in Table 3
may be more “realistic” than orig.

• Applying an additive bias (orig (add)) generally hinders the original vectors
(with cosine) (Table 3), yet one can find a pathological case in circles, where
having centered vectors (e.g., orig or ctr) is detrimental. The reason being
that, with centered vectors, the �0 point falls inside the circles (Fig. 2), hence
the angle (or cosine similarity) which stems from �0, is utterly unhelpful to tell
apart the inner from the outer circle. Although it is important to gain insight
on these cases with synthetic data, real-world feature vectors (and tasks)
are unlikely to exhibit this onion-like structure unless explicitly imposed [38,
59]. Thus, there is no substitute for a systematic study in real world tasks
(Table 1).

Task versus vectors: A key question that this paper answers is whether it
suffices to look at (the statistics of) the vectors alone in order to tell when
a transform will perform well. Unif-radius and unif-angle illustrate a negative
answer. All methods fail at unif-radius (radius matters) while they all do rea-
sonably well in unif-angle (angle matters). The only difference is the assignment
of a semantic value to data points, i.e., the task itself. Thus, vectors alone do
not suffice to determine effectiveness of a transform but they must be considered
along with the task. Many real-world instances support this conclusion, e.g., stz
improving NASNet in vis-STS, yet not in Caltech nor in CorelDB.

Failure cases: Circles illustrates a task where cosine similarity is entirely
unhelpful to tell both classes apart (and the Euclidean only barely useful) for the
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Table 3. Results on synthetic datasets. The (add) and (mult) indicate that an addi-
tive or multiplicative bias, respectively, is added to the method (Sect. 3.2). SDs are left
to the Supplement.

orig orig (add) orig (mult) ctr stz wth nrm iso LLE PCA

Cos Eucl Cos Eucl Cos Eucl Cos Eucl Cos Eucl Cos Eucl Cos Eucl Cos Eucl Cos Eucl Cos Eucl

sphere 65.1 65.1 44 65.1 58.5 54.9 62.1 65.1 62.5 65.8 65.4 65.3 65.1 65.1 59.7 76.7 58.2 71.3 50.7 50.2

sphere-z 53.1 53.1 40.6 53.1 46.5 45.4 53.5 53.1 51.6 49.7 51.4 50.1 53.1 53.1 52.7 49.7 51.1 44 59.6 64.2

s 82.7 88.3 74.2 88.3 70.3 72.8 76.3 88.3 53.3 58.9 66.2 74.3 82.7 82.7 76.3 98.7 70.5 77.5 75.3 91.3

roll 20.2 23.9 19.6 23.9 17.9 21.7 22.1 23.9 21.2 22.1 24.5 28.9 20.2 20.2 75.3 96 60.8 71.1 23.8 31.8

spiral 40.3 100 89.4 100 36.9 94.3 83.2 100 41.5 55.5 13.7 21.4 40.3 40.3 82.8 97.2 71.5 76.1 79.1 100

unif-ang 62.1 50.8 28.2 50.8 55.7 44.2 62 50.8 62 50.8 62.1 50.8 62.1 62.1 62 50.9 61.8 49.8 62 50.8

unif-rad 0 5.2 3.5 5.2 −0.1 7.7 0 5.2 0 5.2 0 5.2 0 0 0 5.1 0 6 0 5.2

moons 43 41.2 49.7 41.2 43.3 42.6 38.4 41.2 47.6 52.4 47 51.6 43 43 0 16.9 32.4 53.7 38.4 41.2

Aniso 54.3 62.1 54.3 62.1 52.8 61.1 62.1 62.1 61.5 61.1 58.2 62 54.3 54.3 39.9 40.3 53.7 63.1 62.1 62.1

blobs 57.9 66.3 53.4 66.3 56 64.3 64.2 66.3 64.8 66.4 58.2 62 57.9 57.9 39 42.6 55.8 66.1 64.2 66.3

blobs-un 54.8 61.2 48.1 61.2 52.4 59.1 63.8 61.2 64 60.4 55 55.1 54.8 54.8 58.9 42.3 55.9 60.2 63.8 61.2

circles −0.1 13.4 11.8 13.4 0 13.1 −0.1 13.4 −0.1 13.4 −0.1 13.4 −0.1 −0.1 40.4 28.4 35.2 53.6 −0.1 13.4

regular methods, yet manifold learning methods fare better (Table 3). Further
notice the detrimental effect of normalizing with the Euclidean similarity in the
same dataset, as normalizing collapses both circles into one. We also highlight
the general failure of all methods in our own “stress test” task, unif-rad. Likely,
polar coordinates would have done a better job.

7 Conclusions and Future Work

Limitations. The answer to whether any of our top-performing transforms is a
universal recipe to improve (text or image) features, is a negative one. As usual,
there is no free lunch. However, this study strives to include a representative and
reasonable number of datasets and varied tasks to gain insight on the success
rate and effect size of each transform. Performance trends showcase promising
potential on defaulting to center, PCA or standardize the features in applications,
as well as using cosine-based (instead of Euclidean) semantic match. That said,
our task selection is not exhaustive and hence we encourage researchers to report
results on new tasks and datasets.

A word of caution. In line with [33] and [32], an important contribution of
this work is rising awareness about the potential source of improvements in
some word and sentence embedding models, which are often tested in semantic-
similarity tasks and default to cosine similarity. As shown, feature re-scaling
can have a much greater impact on the overall performance than the embedding
model itself. Hence, it is crucial to control for any possible feature re-scalings
occurring in any step of the pipeline.

Acknowledgment. This research was supported by the ERC Advanced Grant CAL-
CULUS (H2020-ERC-2017-ADG 788506).
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