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Abstract. Coreference resolution is essential for automatic text under-
standing to facilitate high-level information retrieval tasks such as text
summarisation or question answering. Previous work indicates that the
performance of state-of-the-art approaches (e.g. based on BERT) notice-
ably declines when applied to scientific papers. In this paper, we inves-
tigate the task of coreference resolution in research papers and subse-
quent knowledge graph population. We present the following contribu-
tions: (1) We annotate a corpus for coreference resolution that comprises
10 different scientific disciplines from Science, Technology, and Medicine
(STM); (2) We propose transfer learning for automatic coreference reso-
lution in research papers; (3) We analyse the impact of coreference resolu-
tion on knowledge graph (KG) population; (4) We release a research KG
that is automatically populated from 55,485 papers in 10 STM domains.
Comprehensive experiments show the usefulness of the proposed app-
roach. Our transfer learning approach considerably outperforms state-of-
the-art baselines on our corpus with an F1 score of 61.4 (+11.0), while
the evaluation against a gold standard KG shows that coreference res-
olution improves the quality of the populated KG significantly with an
F1 score of 63.5 (+21.8).

Keywords: Coreference resolution - Information extraction -
Knowledge graph population * Scholarly communication

1 Introduction

Current research papers are generally published in form of PDF files. This makes
them hard to handle for retrieval systems, since their content is hidden in human-
but not machine-interpretable text. In consequence, current academic search
engines are not able to adequately support researchers in their day-to-day tasks.
This is further aggravated by the exploding number of published articles [5].
Approaches to automatically structure research papers are thus an active area
of research. Coreference resolution is the task of identifying mentions in a text
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which refer to the same entity or concept. It is an essential step for automatic text
understanding and facilitates down-stream tasks such as text summarisation or
question answering. For instance, the text ‘Coreference resolution is... It is used
for question answering...’, has two coreferent mentions ‘Coreference resolution’
and ‘It’. This allows us to extract the fact <coreference resolution, used_for,
question answering>.

Current methods for coreference resolution based on deep learning achieve
quite impressive results (e.g. an F1 score of 79.6 for the OntoNotes 5.0
dataset [21]) in the general domain, that is data from phone conversations, news,
magazines, etc. But results of previous work indicate [11,23,34,44] that general
coreference resolution systems perform poorly on scientific text. This is pre-
sumably caused by the specific terminology and phrasing used in a scientific
domain. Some other studies state that annotating scientific text is costly since
it demands certain expertise in the article’s domain [2,6,20]. Most corpora for
research papers cover only a single domain (e.g. biomedicine [11], artificial intel-
ligence [27]) and are thus limited to these domains. As a result, the annotated
corpora are relatively small and overall only a few domains are covered. Datasets
for the general domain are usually much larger, but they have not been exploited
yet by approaches for coreference resolution in research papers.

Coreference resolution is also one of the main steps in the KG population
pipeline [28,39]. However, to date it is not clear, to which extent (a) coreference
resolution can help to reduce the number of scientific concepts in the populated
KG, and (b) how coreference resolution influences the quality of the populated
KG. Besides, a KG comprising multiple scientific domains has not been popu-
lated yet.

In this paper, we address the task of coreference resolution in research papers
and subsequent knowledge graph population. Our contributions can be sum-
marised as follows: (1) First, we annotate a corpus for coreference resolution
that consists of 110 abstracts from 10 domains from Science, Technology, and
Medicine. The systematic annotation resulted in a substantial inter-coder agree-
ment (0.68 k). We provide and compare baseline results for this dataset by eval-
uating five different state-of-the-art approaches. Our experimental results con-
firm that state-of-the-art coreference approaches do not perform well on research
papers. (2) Consequently, we propose sequential transfer learning for coreference
resolution in research papers. This approach utilises our corpus by fine-tuning a
model that is pre-trained on a large corpus from the general domain [37]. Exper-
imental results show that our approach significantly outperforms the best state-
of-the-art baseline (F1 score of 61.4, i.e. +11.0). (3) We investigate the impact of
coreference resolution on automatic KG population. To evaluate the quality of
various KG population strategies, we (i) compile a gold standard KG from our
annotated corpus that contains scientific concepts referenced by mentions from
text, and (ii) present a procedure to evaluate the clustering results of mentions.
(4) We release (i) an automatically populated KG from 55,485 abstracts of the
10 STM domains and (ii) a gold KG (Test-STM-KG) from the annotated STM-
corpus. Experimental results show that coreference resolution has only a small
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impact on the number of concepts in a populated KG, but it helps to improve the
quality of the KG significantly: the population with coreference resolution yields
an F1 score of 63.5 evaluated against the gold KG (+21.8 F1). We release the
data corpora and the source code to facilitate further research: https://github.
com/arthurbra/stm-coref.

The remainder of the paper is organised as follows: Sect. 2 summarises related
work on coreference resolution. Section 3 describes the annotation procedure and
the characteristics of the corpus, and our proposed approaches for coreference
resolution, KG population, and KG evaluation. The experimental setup and
results are reported in Sect.4 and 5, while Sect. 6 concludes the paper and out-
lines areas of future work.

2 Related Work

2.1 Approaches for Coreference Resolution

For a given document, the task of coreference resolution is (a) to extract men-
tions of scientific concepts, and (b) to cluster those mentions that refer to the
same concept. Recent approaches mostly rely on supervised learning and can be
categorised into three groups [32]: (1) Mention-pair models [33,45] are binary
classifiers that determine whether two mentions are coreferent or not. (2) Entity-
mention models [9,41] determine whether a mention is coreferent to a preced-
ing cluster. A cluster has more expressive features compared to a mention in
mention-pair models. (3) Ranking-based models [12,25,31] simultaneously rank
all candidate antecedents (i.e. preceding mention candidates). This enables the
model to identify the most probable antecedent.

Lee et al. [25,26] propose an end-to-end neural coreference resolution model.
It is a ranking-based model that jointly recognises mentions and clusters. There-
fore, the model considers all spans in the text as possible mentions and learns
distributions over possible antecedents for each mention. For computational effi-
ciency, candidate spans and antecedents are pruned during training and infer-
ence. Joshi et al. [22] enhance Lee et al.’s model with BERT-based word embed-
dings [14], while Ma et al. [30] improve the model with better attention mecha-
nisms and loss functions.

Furthermore, several approaches propose multi-task learning, such that
related tasks may benefit from knowledge in other tasks to achieve better pre-
diction accuracy: Luan et al. [27,49] train a model on three tasks (coreference
resolution, entity and relation extraction) using one dataset of research papers.
Sanh et al. [43] introduce a multi-task model that is trained on four tasks (men-
tion detection, coreference resolution, entity and relation extraction) using two
different datasets in the general domain.

Results of some previous studies [11,23,34,44] revealed that general corefer-
ence systems do not work well in the biomedical domain due to the lack of domain
knowledge. For instance, on Colorado Richly Annotated Full Text (CRAFT) cor-
pus [11] a coreference resolution system for the news domain achieves only 14.0
F1 (—32.0).
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To the best of our knowledge, a transfer learning approach from the general
to the scientific domain has not been proposed for coreference resolution yet.

2.2 Corpora for Coreference Resolution in Research Papers

For the general domain, multiple datasets exist for coreference resolution, e.g.
Message Understanding Conference (MUC-7) [1], Automatic Content Extraction
(ACEO05) [15], or OntoNotes 5.0 [37]. The OntoNotes 5.0 dataset [37] is the
largest one and is used in many benchmark experiments for coreference resolution
systems [22,25,30].

Various annotated datasets for coreference resolution exist also for research
papers: CRAFT corpus [11] covers 97 papers from biomedicine. The corpus of
Schéfer et al. [44] contains 266 papers from computational linguistics and lan-
guage technology. Chaimongkol et al. [7] annotated a corpus of 284 papers from
four subdisciplines in computer science. The SciERC corpus [27] comprises 500
abstracts from the artificial intelligence domain and features annotations for sci-
entific concepts and relations. It was used to generate an artificial intelligence
(AI) knowledge graph [13]. Furthermore, several datasets exist for scientific con-
cept extraction [2,6,27,40] and relation extraction [2,20,27] that cover various
scientific domains.

To the best of our knowledge, a corpus for coreference resolution that com-
prises a broad range of scientific domains is not available yet.

3 Coreference Resolution in Research Papers

As the discussion of related work reveals, existing corpora for coreference reso-
lution in scientific papers normally cover only a single domain, and coreference
resolution approaches do not perform well on scholarly texts. To address these
issues, we systematically annotate a corpus with coreferences in abstracts from
10 different science domains. Current approaches for coreference resolution in
research papers do not exploit existing annotated datasets from the general
domain, which are usually much larger than in the scientific domain. We pro-
pose a sequential transfer learning approach that takes advantage from large,
annotated datasets. Finally, to the best of our knowledge, the impact of (a)
coreference resolution and (b) cross-domain collapsing of mentions to scientific
concepts on KG population with multiple science domains has not been investi-
gated yet. Consequently, we present an evaluation procedure for the clustering
aspect in the KG population pipeline.

In the sequel, we describe our annotated corpus, our transfer learning app-
roach for coreference resolution, and an evaluation procedure for clustering in
KG population.

3.1 Corpus for Coreference Resolution in 10 STM Domains

In this section, we describe the STM corpus [6], which we used as the basis for
the annotation, our annotation process, and the characteristics of the resulting
corpus.
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STM Corpus: The STM corpus [6] comprises 110 articles from 10 domains in
Science, Technology and Medicine, namely Agriculture (Agr), Astronomy (Ast),
Biology (Bio), Chemistry (Che), Computer Science (CS), Earth Science (ES),
Engineering (Eng), Materials Science (MS), Mathematics (Mat), and Medicine
(Med). It contains annotated mentions of scientific concepts in abstracts with
four domain-independent concept types, namely Process, Method, Material, and
Data. These concept mentions were later linked to entities in Wikipedia and
Wikidata [16]. The 110 articles (11 per domain) were taken from the OA-STM
corpus [17] of Elsevier Labs.

We build upon related work and extend the STM corpus with coreference
annotations. In particular, we (1) annotate coreference links between existing
scientific concept mentions in abstracts using the BRAT annotation tool [46],
and (2) annotate further mentions, i.e. pronouns and noun phrases consisting of
multiple consecutive mentions.

Annotation Process: Other studies have shown that non-expert annotations are
viable for the scientific domain [6,8,19,44,47], and they are less costly than
domain-expert annotations. Therefore, we also annotate the corpus with non-
domain experts, i.e. by two students in computer science. Furthermore, we follow
mostly the annotation procedure of the STM corpus [6], which consists of the
following three phases:

Table 1. Per-domain and overall inter-annotator agreement (Cohen’s x and MUC) for
coreference resolution annotation in our STM corpus.

Mat | Med | Ast | CS | Bio | Agr | ES | Eng | Che | MS | Overall
K 0.84 1 0.80 | 0.78|0.72|0.70 | 0.66 | 0.61 | 0.58 | 0.56 | 0.52 | 0.68
MUC|0.830.69 | 0.78/0.73/0.70 | 0.72 | 0.61 | 0.66 | 0.56 | 0.63 | 0.69

Table 2. Characteristics of the annotated STM corpus with 110 abstracts per concept
type in terms of number of scientific concept mentions, number of coreferent mentions,
number of coreference clusters and singleton clusters, and the number of overall clusters.
MIXED denotes clusters consisting of mentions with different concept types, NONE
denotes coreference mentions and clusters without a scientific concept mention.

Data | Material | Method | Process | MIXED | NONE | Total

# mentions 1,658 | 2,099 258 2,112 0 0 6,127
# coreferent mentions| 351| 910 101 510 0 705 2,577
# coreference clusters | 153 | 339 30 198 50 138 908
# singleton clusters 1,307 | 1,189 157 1,602 0 0 4,255

# overall clusters 1,460 | 1,528 187 1,800 50 138 5,163




84 A. Brack et al.

Table 3. Characteristics of the STM corpus per domain (11 abstracts per domain).

Agr | Ast | Bio | Che | CS | ES | Eng | MS | Mat | Med | Total
# mentions 741 | 791|649 | 553 | 483 | 698 | 741 | 574297 | 600 |6,127
# coreferent mentions | 276 | 365 | 275 | 282 | 181 | 241 | 318 | 256 | 124 | 259 | 2,577
# coreference clusters | 106 | 120 | 98| 90 | 67| 93117 | 87| 48 | 82 908
# singleton clusters | 520 | 549 | 443 | 384 | 339 | 525|503 | 371210 |411 |4,255
# clusters 626 | 669 | 541|474 | 406|618 620 | 458 | 258 | 493 | 5,163

1. Pre-annotation: This phase aims at developing annotation guidelines through
trial annotations. We adapted the comprehensive annotation guidelines of the
OntoNotes 5.0 dataset [38], which were developed for the general domain, to
research papers. In particular, we provide briefer and simpler descriptions
with examples from the scientific domain. Within three iterations both anno-
tators labelled independently 10, 9 and 7 abstracts (i.e. 26 abstracts), respec-
tively. After each iteration the annotators discussed the outcome and refined
the annotation guidelines.

2. Independent Annotation: After the annotation guidelines were finalised, both
annotators independently re-annotated the previously annotated abstracts
and 24 additional abstracts. The final inter-coder agreement was measured
on the 50 abstracts (5 per domain) using Cohen’s x [10,24] and MUC [48].
As shown in Table 1, we achieve a substantial agreement with 0.68 x and 0.69
MUC.

3. Consolidation: Finally, the remaining 60 abstracts were annotated by one
annotator and the annotation results of this author were used as the gold
standard corpus.

Corpus Characterstics: Table 2 shows the characteristics of the resulting cor-
pus broken down per concept type, while they are listed per domain in Table 3.
The original corpus has in total 6,127 mentions. 2,577 mentions were annotated
as coreferent resulting in 908 coreference clusters. Thus, each coreference clus-
ter contains on average 2.84 mentions, while Method clusters contain the most
(3.4 mentions) and Data clusters the least (2.3 mentions). Furthermore, 705
mentions were annotated additionally (referred to as NONE) since they repre-
sent pronouns (422 mentions) or noun phrases consisting of multiple consecutive
original mentions (283 mentions) such as ‘.. [fA], [B], and [C] [treatments]]...
[These treatments]...". Fifty clusters (5%) contain mentions with different con-
cept types (referred to as MIXED) due to disagreements between the annota-
tors of the original concept mentions, and the annotators of coreferences. For
instance, non-coreferent mentions were annotated as coreferent, or coreferent
mentions have different concept types. Finally, 138 clusters (15%) do not have
a concept type (NONE) since they form clusters which are not coreferent with
the original concept mentions.
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3.2 Transfer Learning for Coreference Resolution

We suggest sequential transfer learning [42] for coreference resolution in research
papers. Therefore, we fine-tune a model pre-trained on a large (source) dataset
to our (target) dataset. As the source dataset, we use the English portion of
the OntoNotes 5.0 dataset [37], since it is a broad corpus that consists of 3,493
documents with telephone conversations, magazine and news articles, web data,
broadcast conversations, and the New Testament. Besides, our annotation guide-
lines were adapted from OntoNotes 5.0.

For the model, we utilise BERT for Coreference Resolution (BFCR) [22] with
SpanBERT [21] word embeddings. This model achieves state-of-the-art results
on the OntoNotes dataset [21]. Another advantage is the availability of the pre-
trained model and the source code. The BFCR model improves Lee et al.’s
approach [26] by replacing the LSTM encoder with the SpanBERT transformer-
encoder. SpanBERT [21] has different training objectives than BERT [14] to
better represent spans of text.

3.3 Cross-Domain Research Knowledge Graph Population

Let d € D be an abstract, M (d) = {mq,...,mp} the mentions of scientific con-
cepts in d, and cq(m;) € M(d) the corresponding coreference cluster for men-
tion m; in d. If mention mg is not coreferent with other mentions in d, then
ca(ms) = {ms} is a singleton cluster. The set of all clusters is denoted by C. An
equivalence relation collapsable C C x C' defines if two clusters can be collapsed,
i.e. if the clusters refer to the same scientific concept. To create the set of all
concepts E, we build the quotient set for the set of clusters C' with respect to
the relation collapsable:

C :={c4(m)|d € D,m € M(d)} (1)
[c] := {z € C|collapsable(c,z)} (2)
E:={ldlce C} 3)

Now, we can construct the KG: for each paper d € D and for each scientific
concept e € E we create a node in the KG. The scientific concept type of e
is the most frequent concept type of all mentions in e. Then, for each mention
m € M(d) we create a ‘mentions’ link between the paper and the corresponding
scientific concept [m] € E.

Cross-Domain vs. In-Domain Collapsing: One commonly used approach to
define the collapsable relation is to treat two clusters as equivalent, if and only
if the ‘label’ of the clusters is the same. The label of a cluster is the longest
mention in the cluster normalised by (a) lower-casing, (b) removing articles,
possessives and demonstratives, (c¢) resolving acronyms, and (d) lemmatisation
using WordNet [18] to transform plural forms to singular. Other studies [13,27]
used a similar label function for KG population.
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However, a research KG that comprises multiple scientific disciplines has not
been populated yet. Thus, it is not clear whether it is feasible to collapse clus-
ters across domains. Usually, terms within a scientific domain are unambiguous,
but some terms can have different meanings across scientific disciplines (e.g.
“neural network” in C'S and Med). Thus, we investigate both cross-domain and
in-domain collapsing strategies.

Knowledge Graph Population Approach: We populate a research KG with
research papers from multiple scientific domains, i.e. 55,485 abstracts of Else-
vier with CC-BY licence from the 10 investigated domains. First, we extract (a)
concept mentions from the abstracts using the scientific concept extractor of the
STM-corpus [6], and (b) clusters within the abstracts with our transfer learning
coreference model. Then, those mention clusters, which contain solely mentions
recognised by the coreference resolution model and not by the scientific concept
extraction model, are dropped, since the coreference resolution model does not
recognise the concept type of the mentions. Finally, the remaining clusters serve
for the population of the KG as described above.

3.4 Evaluation Procedure of Clustering in KG Population

One common approach to evaluate the quality of a populated KG is to annotate
a (random) subset of statements by humans as true or false and to calculate
precision and recall [13,50]. To evaluate recall, small collections of ground-truth
capturing all knowledge is necessary, that are usually difficult to obtain [50].
To the best of our knowledge, a common approach to evaluate the clustering
aspect of the KG population pipeline does not exist yet. Thus, in the following,
we present (1) an annotated test KG, and (2) metrics to evaluate clustering of
mentions to concepts in KG population.

Test KG: To enable evaluation of KG population strategies, we compile a test
KG, referred to as Test-STM-KG. For this purpose, we reuse the STEM-ECR
corpus [16], in which 1,221 mentions of the STM corpus are linked to Wikipedia
entities. First, we extract all annotated clusters of the STM corpus in which
all mentions of the cluster uniquely refer to the same Wikipedia entity. Then,
we collapse all clusters which refer to the same Wikipedia entity to concepts.
Formally, the Test-STM-KG is a partition of mentions, where each part denotes
a concept, i.e. a disjoint set of mentions. A mention is uniquely represented by
the tuple (start offset, end offset, concept type, doc id).

Table 4 shows the characteristics of the compiled Test-STM-KG. It consists
of 920 clusters, of which 711 are singleton clusters. These clusters were collapsed
to 762 concepts, of which 31 concepts are used across multiple domains (referred
to as MIX).

Evaluation Procedure: To evaluate the clustering result of a KG population
strategy, we use the metrics of coreference resolution. The three popular metrics
for coreference resolution are MUC [48], B? [3] and CEAFe g4 [29]. Each of them
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Table 4. Characteristics of the Test-STM-KG: number of concepts per concept type
and per domain. MIX denotes the number of cross-domain concepts.

Agr | Ast | Bio | CS | Che | ES | Eng | MS | Mat | Med | MIX | Total
Data 5 |18 | 3 |20 | 4 9128 |13 |37 8 9 |154
Material | 27 |35 |30 |20 26 |52 32 |30 | 9 |40 7 308
Method | 1 1 1 /21| 6 2|4 |10 | 3 8 7 64
Process |17 |12 |21 |34 13 |33 |20 |25 |15 |38 8 236
Total 50 |66 |55 |95 49 |96 |84 |78 |64 |94 31 762

represents different evaluation aspects (see [36] for more details). To calculate
these metrics, we treat the gold concepts (i.e. a partition of mentions) of the
Test-STM-KG as the ‘key’ and the predicted concepts as the ‘response’. We
report also the CoNLL P/R/F1 scores, that is the averages of MUC’s, B%s
and CEAFeg4’s respective precision (P), recall (R) and F1 scores. The CoNLL
metrics were proposed for the conference on Computational Natural Language
Learning (CoNLL) shared tasks on coreference resolution [36].

4 Experimental Setup

Here we describe our experimental setup for coreference resolution and KG pop-
ulation.

4.1 Automatic Coreference Resolution

We evaluate three different state-of-the-art architectures on the STM dataset:
(I) BERT for Coreference Resolution (BFCR) [22] with SpanBERT [21] word
embeddings (referred to as BFCR_Span), (II) BFCR with SciBERT [4] word
embeddings (referred to as BFCR_Sci), and (III) Scientific Information Extrac-
tor (SCIIE) [27] with ELMo [35] word embeddings (referred to as SCIIE). The
three architectures are evaluated in the following six approaches (#1-#6):

— Pre-Trained Models: We evaluate already pre-trained models on the test sets
of the STM corpus, i.e. #1 BFCR_Span trained on the English portion of the
OntoNotes dataset [38], and #2 SCIIE trained on SciERC [27] from the Al
domain.

— Supervised Learning: We train a model from scratch with the three architec-
tures using the training data of the STM corpus and evaluate their perfor-
mance with the test sets of STM: #3 BFCR_Span, #4 BFCR_Sci, and #5
SCIIE.

— Transfer Learning: This is our proposed approach #6. We fine-tune all
parameters of a pre-trained model on the English portion of the OntoNotes
dataset [21] with the training data of our STM corpus. For that, we use the
BFCR_Span architecture.
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Table 5. Performance of the baseline approaches #1-#5 and our proposed transfer
learning approach #6 on the test sets of the STM corpus across five-fold cross valida-
tion.

MUC B? CEAFeyy CoNLL
Training data | P R F1 P R F1 P R F1 P R F1
#1 | BFCR_Span | OntoNotes 57.1 |31.1 [40.2 |55.9 |25.7 |35.2 |50.2 |28.1 |36.0 |54.4 |28.3 |37.1

#2 | SCIIE SciERC 13.4 |45 |6.8 |13.1 | 43| 6.5 18.1 | 6.0 9.0 149 | 49| 7.4
#3 |BFCR_Span |STM 61.6 |45.6 |52.3 |59.8 |41.5 |48.8 |57.9 |44.4 |50.0 59.8 |43.8 |50.4
#4 | BFCR_Sci STM 61.9 |40.2 |48.6 |59.7 |36.1 |44.9 |61.7 |36.9 |46.0 |61.1 |37.7 |46.5
#5 | SCIIE STM 60.3 |45.2 |51.6 |57.6 |41.7 |48.3 |56.6 | 43.6 |49.1 58.1 |43.5 [49.7

#6 | BFCR_Span | Onto—STM | 64.5|63.5|63.9|/61.0|60.0|60.4 60.5 59.6 60.0 62.0 61.0 61.4

Table 6. Per domain and overall CoNLL F1 results of the best baseline #3 and our
transfer learning approach #6 on the STM corpus across five-fold cross validation.

Training data |Agr |Ast |Bio |Che |CS |ES |Eng |[MS |Mat |Med |Overall
#3 | BFCR-Span |STM 48.0 |50.5 |52.2 |49.0 |59.1 |39.6 |52.8 |47.6 |42.5 |51.0 |50.4
#6 | BFCR_Span |Onto—STM |62.8|61.1|57.5|56.3|74.9|/57.5|/59.8/52.1|55.7/62.1/61.4

Evaluation: We use the metrics MUC [48], B? [3], CEAFeg, [29] and CoNLL
[36] in compliance with other studies on coreference resolution [22,25,30]. To
obtain robust results, we apply five-fold cross-validation, according to the data
splits given by Brack et al. [6], and report averaged results. For each fold, the
dataset is split into train/validation/test sets with 8/1/2 abstracts per domain,
respectively, i.e. 80/10/20 abstracts. We reuse the original implementations and
default hyperparameters of the above architectures. Hyperparameter-tuning of
the best baseline approach #3 according to [22] confirmed that the default hyper-
parameters of BFCR_Span perform best on our corpus.

4.2 Evaluation of KG Population Strategies

We compare four KG population strategies: (1) cross-domain and (2) in-domain
collapsing, as well as (3) cross-domain and (4) in-domain collapsing without
coreference resolution. To evaluate cross-domain and in-domain collapsing, we
take the gold clusters (i.e. mention clusters within the abstracts) of the Test-
STM-KG and collapse them to concepts according to the respective strategy.
When leaving out the coreference resolution step, we treat all mentions in the
Test-STM-KG as singleton clusters and collapse them to concepts according to
the respective strategy. Finally, we calculate the metrics as described in Sect. 3.4.

5 Results and Discussion

In this section, we discuss the experimental results for automatic coreference
resolution and KG population.
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5.1 Automatic Coreference Resolution

Table 5 shows the overall results of the six evaluated approaches and Table 6 the
results per domain of the best baseline #3 and our approach #6. Our transfer
learning approach #6 BFCR_Span from OntoNotes (Onto) [37] to STM signifi-
cantly outperforms the best baseline approach #3 with an overall CoNLL F1 of
61.4 (+10.0) and a low standard deviation 1.5 across the five folds.

Table 7. CoNLL scores on the tests sets of the SCiIERC corpus [27] across 3 random
restarts of the approaches: current state of the art of Luan et al., the best baseline
approach (#3), and our transfer learning approach (#6). We report results using the
whole and using only %th of the training data of SCiIERC (referred to as %SciERC).

Training data P R F1
Luan et al. [27] SciERC 52.0 [44.9 |48.2
#3 | BFCR_Span |SciERC 63.3 | 55.7 |59.3
#6 | BFCR_Span | OntoNotes—SciERC 63.9|57.1/60.1
#3 | BFCR_Span | :SciERC 63.1 |39.1 |47.1
#6 | BFCR_Span | OntoNotes— %SciERC 52.8 | 56.7 | 54.2

The approaches #1 BFCR_Span pre-trained on OntoNotes [37], and #2
SCIIE pre-trained on SciERC [27] achieve a CoNLL F1 score of 37.1 and 7.4,
respectively. These scores are quite low compared to the approaches #3-#6 that
use training data of the STM corpus. This indicates that models pre-trained on
existing datasets do not generalise sufficiently well for coreference resolution in
research papers. Models trained only on the STM corpus (i.e. #3—#5) achieve
better results. However, they have quite low recall scores indicating that the size
of the training data might not be sufficient to enable the model to generalise
well. SciBERT #4, although pre-trained on scientific texts, performs worse than
SpanBERT #3. Presumably the reason is that SpanBERT has approximately
3 times more parameters than SciBERT. Our transfer learning approach #6
achieves the best results with quite balanced precision and recall scores.

Furthermore, to evaluate the effectiveness of our transfer learning approach,
we compare the best baseline #3 and our transfer learning approach #6 also
with the SciERC corpus [27]. The SciERC corpus comprises 500 abstracts from
the AI domain. Since SciERC has around 5 times more training data than STM,
we compare the approaches #3 and #6 also using only %th of the training data
in SCiERC while keeping the original validation and test sets. It can be seen in
Table 7 that our transfer learning approach #6 improves slightly the baseline
result using the whole training data with 60.1 F1 (40.8). When using only %th
of the training data, our transfer learning approach noticeably outperforms the
baseline with 54.2 F1 (+7.1). Thus, our transfer learning approach can help
significantly to improve the performance of coreference resolution in research
papers with few labelled data.
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5.2 Cross-Domain Research KG

In this subsection, we describe the characteristics of our populated KG and
discuss the evaluation results of various KG population strategies.

Characteristics of the Research KG: Table 8 shows the characteristics of the
populated KGs per domain. The resulting KGs with cross-domain and in-domain
collapsing have more than 994,000 and 1.1 Mio. scientific concepts, respectively,
obtained from 55,485 abstracts with more than 2,1 Mio. concept mentions and
726,000 coreferent mentions. Ast and Bio are the most represented domains,
while CS and Mat are the most underrepresented.

Table 8. Characteristics of the populated research KGs per domain: (1) number of
abstracts, number of extracted scientific concept mentions and coreferent mentions,
(2) the number of scientific concepts for the KG with cross-domain collapsing, (3)
in-domain collapsing, (4) cross-domain collapsing but without coreference resolution,
and (5) in-domain collapsing but without coreference resolution. Reduction denotes
the percentual reduction of mentions to scientific concepts and MIX the cross-domain
concepts.

Agr Ast Bio Cs Che ES Eng MS Mat Med MIX Total
7 abstracts 7,731| 15,053 | 11,109| 1,216| 1,234 2,352 3,049| 2,258 665| 10,818 - 55,485
# mentions |332,983|370,311 423,315 |45,388 46,203 | 129,288 | 127,985 | 86,490 | 20,466 | 586,019 — 12,168,448
# coref. men. | 108,579 120,942 143,292 |17,674 | 14,059 | 40,974 | 42,654|25,820| 8,510 203,884 —| 726,388

Cross-domain collapsing
KG concepts |138,342|173,027 | 177,043 20,474 |21,298 | 62,674 | 55,494 39,211 9,275|227,690 | 70,044 994,572

- Data 27,132 | 64,537 | 32,946| 5,380 | 5,124 | 19,542 17,053 |10,629 | 2,982| 66,473 19,715| 271,513
- Material 69,534 | 45,296 | 83,627 | 6,242|10,154| 24,322 19,689 |17,276| 2,406 | 68,141 20,812| 367,499
- Method 2,992 8,819 6,135| 2,001 1,055 1,776 2,953| 1,605 685 9,363 | 1,627 39,011
- Process 38,684 | 54,375| 54,335| 6,851 | 4,965| 17,034 15,799| 9,701 3,202| 83,713 |27,890| 316,549
Reduction 58% 53% 58% 55% 54% 52% 57% 55% 55% 61% - 54%
In-domain collapsing

KG concepts |180,135|197,605 | 229,201 | 30,736 | 32,191 | 81,584 | 78,417 55,358 | 14,567 | 278,686 — 1,178,480
Reduction 46% 47% 46% 32% 30% 37% 39% 36% 29% 52% - 46%

Cross-domain collapsing without coreference resolution
KG concepts | 146,894 | 182,479 | 187,557 | 21,950 | 22,555 | 66,600 59,689 | 41,776 9,939 |242,797 | 77,493 | 1,059,729
Reduction 56% 51% 56% 52% 51% 48% 53% 52% 51% 59% - 51%
In-domain collapsing without coreference resolution
KG concepts |184,218 199,894 | 234,399 | 31,525 32,937 | 83,445 80,476 |56,690 | 14,911 |284,547 1,203,042
Reduction 45% 46% 45% 31% 29% 35% 37% 34% 27% 51% - 45%

Evaluation of KG Population Strategies: Next, we discuss the different KG
population strategies. For each strategy, Table 8 reports the number of concepts
in the populated KG and the percentage reduction of mentions to concepts, and
in Table9 the evaluation results of KGs against the Test-STM-KG.

Cross-Domain vs. In-Domain Collapsing: Cross-domain collapsing achieves a
higher CoNLL F1 score of 64.8 than in-domain collapsing with a score of 63.5
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(see Table 9). However, in-domain collapsing yields (as expected) a higher preci-
sion (CoNLL P 85.5), since some terms have different meanings across domains
(e.g. Measure_(mathematics) vs. Measurement in https://en.wikipedia.org). Fur-
thermore, the Test-STM-KG has only 31 cross-domain concepts due to its small
size. Thus, we expect that cross-domain collapsing would yield worse results on
a larger test set.

Furthermore, as shown in Table8, cross-domain collapsing yields less con-
cepts than in-domain collapsing (more than 994,000 versus 1.1 Mio. concepts).
We can also observe that only 70,044 (7%) of the concepts are used across mul-
tiple domains. This indicates that every scientific domain mostly uses its own
terminology. However, the concepts used across domains can have different mean-
ings. Thus, when precision is more important than recall in downstream tasks,
in-domain collapsing should be the preferred choice.

Effect of Coreference Resolution: Coreference resolution has only a small impact
on the number of resulting concepts in a populated KG (see Table 8). However,
as shown in Table 9, leaving out the coreference resolution step during KG pop-
ulation yields only low CoNLL F1 scores, i.e. 41.7 (—21.8) F1 and 43.5 (—21.3)
F1. Thus, coreference resolution significantly improves the quality of a populated
KG .

Table 9. Performance of the collapsing strategies evaluated against the Test-STM-KG:
in-domain and cross-domain collapsing with and without coreference resolution.

#concepts| MUC B3 CEAFegyy CoNLL

in KG P R F1 P R F P R F1 P R F1
In-domain collapsing 859 86.3|70.6 |77.7 |186.0(69.0 |[76.6 84.1 |23.1 |36.2 |85.5|54.2 |63.5
- Without coreferences |900 75.5 |38.8 |51.2 |75.2 |37.9 |50.4 |71.1 |14.0 |23.4 |73.9 |30.2 |41.7
Cross-domain collapsing|837 85.0 |73.0|78.5/84.5 |72.1|77.8/84.7/24.6|38.1|84.7 | 56.6|64.8
- Without coreferences |876 73.5 |41.0 |[52.6 |72.2 |15.5 |25.5 |72.2 |15.5 |25.5 |73.0 |32.4 |43.5

Qualitative Analysis: We also inspected the top-five frequent domain-specific
concepts in the populated KG (a list of these concepts can be found in our pub-
lic repository). As far as we can judge with our computer science background,
we consider the extracted top frequent concepts to be reasonable and useful for
the domains. For instance, in Ast, the method ‘standard model’ is frequently
mentioned, while in CS the process ‘cyber attack’ appears most often. The fre-
quency of the top concepts differs significantly between the domains: In Med,
Ast, Eng, ES and Agr, a top frequent concept is referenced 10.8, 10.2, 4.9, 3.8,
and 3.1 times per 1000 abstracts, respectively. In Che, MS, Mat, Bio, and CS, a
top frequent concept is referenced only by few abstracts (0.3, 0.4, 1.0, 1.4, and
2.3, respectively, per 1000 abstracts).

6 Conclusions

In this paper, we have investigated the task of coreference resolution in research
papers across 10 different scientific disciplines. We have annotated a corpus that
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comprises 110 abstracts with coreferences with a substantial inter-coder agree-
ment. Our baseline results with current state-of-the-art approaches for corefer-
ence resolution demonstrate that current approaches perform poorly on our cor-
pus. The proposed approach, which uses sequential transfer learning and exploits
annotated datasets from the general domain, outperforms noticeably the state-
of-the-art baselines. Thus, our transfer learning approach can help to reduce
annotation costs for scientific papers, while obtaining high-quality results at the
same time.

Furthermore, we have investigated the impact of coreference resolution on KG
population. For this purpose, we have compiled a gold KG from our annotated
corpus and propose an evaluation procedure for KG population strategies. We
have demonstrated that coreference resolution has a small impact on the number
of resulting concepts in the KG, but improved significantly its quality. Finally,
we have generated a research KG from 55,485 abstracts of the 10 investigated
domains. We show that every domain mostly uses its own terminology and that
the populated KG contains useful concepts.

In future work, we plan to evaluate multi-task learning approaches, and to
populate and evaluate a much larger research KG to get more insights in scientific
language use.
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