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Abstract. We study the utility of the lexical translation model (IBM
Model 1) for English text retrieval, in particular, its neural variants that
are trained end-to-end. We use the neural Model1 as an aggregator layer
applied to context-free or contextualized query/document embeddings.
This new approach to design a neural ranking system has benefits for
effectiveness, efficiency, and interpretability. Specifically, we show that
adding an interpretable neural Model 1 layer on top of BERT-based con-
textualized embeddings (1) does not decrease accuracy and/or efficiency;
and (2) may overcome the limitation on the maximum sequence length of
existing BERT models. The context-free neural Model 1 is less effective
than a BERT-based ranking model, but it can run efficiently on a CPU
(without expensive index-time precomputation or query-time operations
on large tensors). Using Model 1 we produced best neural and non-neural
runs on the MS MARCO document ranking leaderboard in late 2020.

1 Introduction

A typical text retrieval system relies on simple term-matching techniques to
generate an initial list of candidates, which can be further re-ranked using a
learned model [10,13]. Thus, retrieval performance is adversely affected by a
mismatch between query and document terms, which is known as a vocabulary
gap problem [18,74]. Two decades ago Berger and Lafferty [4] proposed to reduce
the vocabulary gap and, thus, to improve retrieval effectiveness with a help of
a lexical translation model called IBM Model 1 (henceforth, simply Model 1).
Model 1 has strong performance when applied to finding answers in English
question-answer (QA) archives using questions as queries [35,57,65,71] as well
as to cross-lingual retrieval [38,73]. Yet, little is known about its effectiveness on
realistic monolingual English queries, partly, because training Model 1 requires
large query sets, which previously were not publicly available.

Research Question 1. In the past, Model 1 was trained on question-document
pairs of similar lengths which simplifies the task of finding useful associations
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between query terms and terms in relevant documents. It is not clear if Model 1
can be successfully trained if queries are substantially, e.g., two orders of mag-
nitude, shorter than corresponding relevant documents.

Research Question 2. Furthermore, Model 1 was trained in a translation task
using an expectation-maximization (EM) algorithm [9,16] that produces a sparse
matrix of conditional translation probabilities, i.e., a non-parametric model. Can
we do better by parameterizing conditional translation probabilities with a neu-
ral network and learning the model end-to-end in a ranking—rather than a
translation—task?

To answer these research questions we experiment with lexical translation
models on two recent MS MARCO collections, which have hundreds of thousands
of real user queries [12,49]. Specifically, we consider a novel class of ranking
models where an interpretable neural Model 1 layer aggregates an output of a
token-embedding neural network. The resulting composite network (including
token embeddings) is learned end-to-end using a ranking objective. We consider
two scenarios: context-independent token embeddings [11,22] and contextualized
token embeddings generated by BERT [17]. Note that our approach is generic
and can be applied to other embedding networks as well.

The neural Model 1 layer produces all pairwise similarities T (q|d) for all query
and documents BERT word pieces, which are combined via a straightforward
product-of-sum formula without any learned weights:

P (Q|D) =
∏

q∈Q

∑

d∈D

T (q|d)P (d|D), (1)

where P (d|D) is a maximum-likelihood estimate of the occurrence of d in D.
Indeed, a query-document score is a product of scores for individual query word
pieces, which makes it easy to pinpoint word pieces with largest contributions.
Likewise, for every query word piece we can easily identify document word pieces
with highest contributions to its score. This makes our model more interpretable
compared to prior work.

Our contributions can be summarized as follows:

1. Adding an interpretable neural Model 1 layer on top of BERT entails virtually
no loss in accuracy and efficiency compared to the vanilla BERT ranker, which
is not readily interpretable.

2. In fact, for long documents the BERT-based Model 1 may outperform baseline
models applied to truncated documents, thus, overcoming the limitation on
the maximum sequence length of existing pretrained Transformer [67] models.
However, evidence was somewhat inconclusive and we found it was also not
conclusive for previously proposed CEDR [44] models that too incorporate
an aggregator layer (though a non-interpretable one);

3. A fusion of the non-parametric Model 1 with BM25 scores can outperform the
baseline models, though the gain is modest (≈3%). In contrast, the fusion with
the context-free neural Model 1 can be substantially (≈10%) more effective
than the fusion with its non-parametric variant. We show that the neural



Exploring Classic and Neural Lexical Translation Models 65

Model 1 can be sparsified and executed on a CPU more than 103 times faster
than a BERT-based ranker on a GPU. We can, thus, improve the first retrieval
stage without expensive index-time precomputation approaches.

2 Related Work

Translation Models for Text Retrieval. This line of work begins with an influ-
ential paper by Berger and Lafferty [4] who first applied Model 1 to text
retrieval [4]. It was later proved to be useful for finding answers in monolin-
gual QA archives [35,57,65,71] as well as for cross-lingual document retrieval
[38,73]. Model 1 is a non-parametric and lexical translation model that learns
context-independent translation probabilities of lexemes (or tokens) from a set
of paired documents called a parallel corpus or bitext. The learning method is a
variant of the expectation-maximization (EM) algorithm [9,16].

A generic approach to improve performance of non-parametric statistical
learning models consists in parameterizing respective probabilities using neural
networks. An early successful implementation of this idea in language processing
were the hybrid HMM-DNN/RNN systems for speech recognition [5,26]. More
concretely, our proposal to use the neural Model 1 as a last network layer was
inspired by the LSTM-CRF [32] and CEDR [44] architectures.

There is prior history of applying the neural Model 1 to retrieval, however,
without training the model on a ranking task. Zuccon et al. [75] computed trans-
lation probabilities using the cosine similarity between word embeddings (nor-
malized over the sum of similarities for top-k closest words). They achieved
modest 3–7% gains on four small-scale TREC collections. Ganguly et al. [19]
used a nearly identical approach (on similar TREC collections) and reported
slightly better (6–12%) gains. Neither Zuccon et al. [75] nor Ganguly et al. [19]
attempted to learn translation probabilities from a large set of real user queries.

Zbib et al. [73] employed a context-dependent lexical neural translation model
for cross-lingual retrieval. They first learn context-dependent translation prob-
abilities from a bilingual parallel corpus in a lexical translation task. Given
a document, highest translation probabilities together with respective tokens
are precomputed in advance and stored in the index. Zbib et al. [73] trained
their model on aligned sentences of similar lengths. In the case of monolingual
retrieval, however, we do not have such fine-grained training data as queries are
paired only with much longer relevant documents. To our knowledge, there is no
reliable way to obtain sentence-level relevance labels from this data.

Neural Ranking models have been a popular topic in recent years [24], but
the success of early approaches—which predate BERT—was controversial [40].
This changed with adoption of large pretrained models [55], especially after the
introduction of the Transformer models [17] and release of BERT [17]. Nogueira
and Cho were first to apply BERT to ranking of text documents [50]. In the
TREC 2019 deep learning track [12] as well as on the MS MARCO leaderboard
[1], BERT-based models outperformed all other approaches by a large margin.

The Transformer model [67] uses an attention mechanism [3] where each
sequence position can attend to all the positions in the previous layer.
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Because self-attention complexity is quadratic with respect to a sequence length,
Transformer models (BERT including) support only limited-length inputs. A
number of proposals—see Tay et al. [66] for a survey—aim to mitigate this con-
straint, which is complementary to our work.

To process longer documents with existing pretrained models, one has to split
documents into several chunks, process each chunk separately, and aggregate
results, e.g., by computing a maximum or a weighted prediction score [15,72].
Such models cannot be trained end-to-end on full documents. Furthermore, a
training procedure has to assume that each chunk in a relevant document is
relevant as well, which is not quite accurate. To improve upon simple aggrega-
tion approaches, MacAvaney et al. [44] combined output of several document
chunks using three simpler models: KNRM [70], PACRR [33], and DRMM [23].
A more recent PARADE architectures use even simpler aggregation approaches
[39]. However, none of the mentioned aggregator models is interpretable and we
propose to replace them with our neural Model 1 layer.

Interpretability and Explainability of statistical models has become a busy
area of research. However, a vast majority of approaches rely on training a sep-
arate explanation model or exploiting saliency/attention maps [41,59]. This is
problematic, because explanations provided by extraneous models cannot be ver-
ified and, thus, trusted [59]. Moreover, saliency/attention maps reveal which data
parts are being processed by a model, but not how the model processes them
[34,59,62]. Instead of producing unreliable post hoc explanations, Rudin [59]
advocates for networks whose computation is transparent by design. If full trans-
parency is not feasible, there is still a benefit of last-layer interpretability.

In text retrieval we know only two implementations of this idea. Hofstätter
et al. [29] use a kernel-based formula by Xiong et al. [70] to compute soft-match
counts over contextualized embeddings. Because each pair of query-document
tokens produces several soft-match values corresponding to different thresholds,
it is problematic to aggregate these values in an explainable way. Though this
approach does offer insights into model decisions, the aggregation formula is a
relatively complicated two-layer neural network with a non-linear (logarithm)
activation function after the first layer [29]. ColBERT in the re-ranking mode
can be seen as an interpretable interaction layer, however, unlike the neural
Model 1 its use entails a 3% degradation in accuracy [37].

Efficiency. It is possible to speed-up ranking by deferring some computation
to index time. They can be divided into two groups. First, it is possible to
precompute separate query and document representations, which can be quickly
combined at query-time in a non-linear fashion [20,37]. This method entails little
to no performance degradation. Second, one can generate (or enhance) indepen-
dent query and document representations to compare them via the inner-product
computation. Representations—either dense or sparse—were shown to improve
the first-stage retrieval albeit at the cost of expensive indexing processing and
some loss in effectiveness. In particular, Khattab et al. [36] show that dense
representations are inferior to the vanilla BERT ranker [52] in a QA task.
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In the case of sparse representations, one can rely on Transformer [67] models
to generate importance weights for document or query terms [14], augment doc-
uments with most likely query terms [51,52], or use a combination of these meth-
ods [43]. Due to sparsity of data generated by term expansion and re-weighting
models, it can be stored in a traditional inverted file to improve performance of
the first retrieval stage. However, these models are less effective than the vanilla
BERT ranker [52] and they require costly index-time processing.

3 Methods

Token Embeddings and Transformers. We assume that an input text is split into
small chunks of texts called tokens. A token can be a complete English word, a
word piece, or a lexeme (a lemma). The length of a document d—denoted as |d|—
is measured in the number of tokens. Because neural networks cannot operate
directly on text, a sequence of tokens t1t2 . . . tn is first converted to a sequences
of d-dimensional embedding vectors w1w2 . . . wn by an embedding network. Ini-
tially, embedding networks were context independent, i.e., each token was always
mapped to the same vector [11,22,46]. Peters et al. [55] demonstrated superior-
ity of contextualized, i.e., context-dependent, embeddings produced a multi-layer
bi-directional LSTM [21,27,61] pretrained on a large corpus in a self-supervised
manner. These were later outstripped by large pretrained Transformers [17,56].

In our work we use two types of embeddings: vanilla context-free embeddings
(see [22] for an excellent introduction) and BERT-based contextualized embed-
dings [17]. Due to space constraints, we do not discuss BERT architecture in
detail (see [17,60] instead). It is crucial, however, to know the following:

– Contextualized token embeddings are vectors of the last-layer hidden state;
– BERT operates on word pieces [69] rather than complete words;
– The vocabulary has close to 30K tokens and includes two special tokens:
[CLS] (an aggregator) and [SEP](a separator);

– [CLS] is always prepended to every token sequence and its embedding is used
as a sequence representation for classification and ranking tasks.

The “vanilla” BERT ranker uses a single fully-connected layer as a predic-
tion head, which converts the [CLS] vector into a scalar. It makes a prediction
based on the following sequence of tokens: [CLS] q [SEP] d [SEP], where q is
a query and d = t1t2 . . . tn is a document. Long documents and queries need
to be truncated so that the overall number of tokens does not exceed 512. To
overcome this limitation, MacAvaney et al. [44] proposed an approach that:

– splits longer documents d into m chunks: d = d1d2 . . . dm;
– generates m token sequences [CLS] q [SEP] di [SEP];
– processes each sequence with BERT to generate contextualized embeddings

for regular tokens as well as for [CLS].

The outcome of this procedure is m [CLS]-vectors clsi and n contex-
tualized vectors w1w2 . . . wn: one for each document token ti. MacAvaney
et al. [44] explore several approaches to combine these contextualized vectors.



68 L. Boytsov and Z. Kolter

First, they extend the vanilla BERT ranker by making prediction on the aver-
age [CLS] token: 1

m

∑m
i=1 clsi. Second, they use contextualized embeddings as

a direct replacement of context-free embeddings in the following neural archi-
tectures: KNRM [70], PACRR [33], and DRMM [23]. Third, they introduced
a CEDR architecture where the [CLS] embedding is additionally incorporated
into KNRM, PACCR, and DRMM in a model-specific way, which further boosts
performance.

Non-parametric Model 1. Let P (D|Q) denote a probability that a document D is
relevant to the query Q. Using the Bayes rule, P (D|Q) is convenient to re-write as
P (D|Q) ∝ P (Q|D)P (D). Assuming a uniform prior for the document occurrence
probability p(D), one concludes that the relevance probability is proportional to
P (Q|D). Berger and Lafferty proposed to estimate this probability with a term-
independent and context-free model known as Model 1 [4].

Let T (q|d) be a probability that a query token q is a translation of a document
token d and P (d|D) is a probability that a token d is “generated” by a document
D. Then, a probability that query Q is a translation of document D can be
computed as a product of individual query term likelihoods as follows:

P (Q|D) =
∏
q∈Q

P (q|D)

P (q|D) =
∑
d∈D

T (q|d)P (d|D)
(2)

The summation in Eq. 3 is over unique document tokens. The in-document
term probability P (d|D) is a maximum-likelihood estimate. Making the non-
parametric Model 1 effective requires quite a few tricks. First, P (q|D)—a like-
lihood of a query term q—is linearly combined with the collection probability
P (q|C) using a parameter λ [65,71].1

P (q|D) = (1 − λ)

[
∑

d∈D

T (q|d)P (d|D)

]
+ λP (q|C). (3)

We take several additional measures to improve Model 1 effectiveness:

– We propose to create a parallel corpus by splitting documents and passages
into small contiguous chunks whose length is comparable to query lengths;

– T (q|d) are learned from a symmetrized corpus as proposed by Jeon et al. [35];
– We discard all translation probabilities T (q|d) below an empirically found

threshold of about 10−3 and keep at most 106 most frequent tokens;
– We make self-translation probabilities T (t|t) to be equal to an empirically

found positive value and rescale T (t′|t) so that
∑

t′ T (t′|t) = 1 as in [35,65];

Our Neural Model 1. Let us rewrite Eq. 2 so that the inner summation is carried
out over all document tokens rather than over the set of unique ones. This is par-
ticularly relevant for contextualized embeddings where embeddings of identical
1 P (q|C) is a maximum-likelihood estimate. For an out-of-vocabulary term q, P (q|C)

is set to a small number (e.g., 10−9).
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tokens are not guaranteed to be the same (and typically they are not):

P (Q|D) =
∏

q∈Q

|D|∑

i=1

T (q|di)
|D| . (4)

We further propose to compute T (q|d) in Eq. 4 by a simple and efficient neu-
ral network. Networks “consumes” context-free or contextualized embeddings
of tokens q and d and produces a value in the range [0, 1]. To incorporate a
self translation probability—crucial for good convergence of the context-free
model—we set T (t|t) = pself and multiply all other probabilities by 1 − pself .
However, it was not practical to scale conditional probabilities to ensure that
∀t2

∑
t1

T (t1|t2) = 1. Thus, T (t1|t2) is a similarity function, but not a true prob-
ability distribution. Note that—unlike CEDR [43]—we do not use the embedding
of the [CLS] token.

We explored several approaches to neural parametrization of T (t1|t2). Let
embedq(t1) and embedd(t2) denote embeddings of query and document tokens,
respectively. One of the simplest approaches is to learn separate embedding
networks for queries and documents and use the scaled cosine similarity:

T (t1|t2) = 0.5{cos(embedq(t1), embedd(t2)) + 1}.

However, this neural network is not sufficiently expressive and the resulting
context-free Model 1 is inferior to the non-parametric Model 1 learned via EM.
We then found that a key performance ingredient was a concatenation of embed-
dings with their Hadamard product, which we think helps the following layers
discover better interaction features. We pass this combination through one or
more fully-connected linear layer with RELUs [25] followed by a sigmoid:

T (q|d) = σ(F3(relu(F2(relu(F1([xq, xd, xq ◦ xd]))))))
xq = Pq(tanh(layer-norm(embedq(q))))
xd = Pd(tanh(layer-norm(embedd(d)))),

where Pq, Pd, and Fi are fully-connected linear layers; [x, y] is vector concatena-
tion; layer-norm is layer normalization [2]; x ◦ y is the Hadamard product.

Neural Model 1 Sparsification/Export to Non-Parametric Format. We can pre-
compute T (t1|t2) for all pairs of vocabulary tokens, discard small values (below
a threshold), and store the result as a sparse matrix. This format permits an
extremely efficient execution on CPU (see results in Sect. 4.2).

4 Experiments

4.1 Setup

Data Sets. We experiment with MS MARCO collections, which include data for
passage and document retrieval tasks [12,49]. Each MS MARCO collection has
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a large number of real user queries (see Table 1). To our knowledge, there are
no other collections comparable to MS MARCO in this respect. The large set
of queries is sampled from the log file of the search engine Bing. In that, data
set creators ensured that all queries can be answered using a short text snippet.
These queries are only sparsely judged (about one relevant passage per query).
Sparse judgments are binary: Relevant documents have grade one and all other
documents have grade zero.

Table 1. MS MARCO data set details

Documents Passages

# of documents 3.2M 8.8M
Avg. # of doc. lemmas 476.7 30.6
Avg. # of query lemmas 3.2 3.5

# of queries
Train/fusion 10K 20K
Train/modeling 357K 788.7K
Development 2500 20K
Test 2693 3000
TREC 2019 100 100
TREC 2020 100 100

In addition to large query sets
with sparse judgments, we use two
evaluation sets from TREC 2019/2020
deep learning tracks [12]. These query
sets are quite small, but they have
been thoroughly judged by NIST
assessors separately for a document
and a passage retrieval task. TREC
NIST judgements range from zero
(not-relevant) to three (perfectly rel-
evant).

We randomly split publicly available training and validation sets into
the following subsets: a small training set to train a linear fusion model
(train/fusion), a large set to train neural models and non-parametric Model 1
(train/modeling), a development set (development), and a test set (MS MARCO
test) containing at most 3K queries. Detailed data set statistics is summarized
in Table 1. Note that the training subsets were obtained from the original training
set, whereas the new development and test sets were obtained from the original
development set. The leaderboard validation set is not publicly available.

We processed collections using Spacy 2.2.3 [30] to extract tokens (text words)
and lemmas (lexemes) from text. The frequently occurring words and lemmas
were filtered out using Indri’s list of stopwords [64], which was expanded to
include a few contractions such as “n’t” and “’ll”. Lemmas were indexed using
Lucene 7.6. We also generated sub-word tokens, namely BERT word pieces [17,
69], using a HuggingFace Transformers library (version 0.6.2) [68]. We did not
apply the stopword list to BERT word pieces.

Basic Setup. We experimented on a Linux server equipped with a six-core (12
threads) i7-6800K 3.4 Ghz CPU, 125 GB of memory, and four GeForce GTX 1080
TI GPUs. We used the text retrieval framework FlexNeuART [8], which is imple-
mented in Java. It employs Lucene 7.6 with a BM25 scorer [58] to generate an
initial list of candidates, which can be further re-ranked using either traditional
or neural re-rankers. The traditional re-rankers, including the non-parametric
Model 1, are implemented in Java as well. They run in a multi-threaded mode
(12 threads) and fully utilize the CPU. The neural rankers are implemented using
PyTorch 1.4 [54] and Apache Thrift.2 A neural ranker operates as a standalone
single-threaded server. Our software is available online [8].3

2 https://thrift.apache.org/.
3 https://github.com/oaqa/FlexNeuART.

https://thrift.apache.org/
https://github.com/oaqa/FlexNeuART
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Ranking speed is measured as the overall CPU/GPU throughput—rather
than latency—per one thousand of documents/passages. Ranking accuracy is
measured using the standard utility trec eval provided by TREC organizers.4.
Statistical significance is computed using a two-sided t-test with threshold 0.05.

All ranking models are applied to the candidate list generated by a tuned
BM25 scorer [58]. BERT-based models re-rank 100 entries with highest BM25
scores: using a larger pool of candidates hurts both efficiency and accuracy. All
other models, including the neural context-free Model 1 re-rank 1000 entries:
Further increasing the number of candidates does not improve accuracy.

Training Models. Neural models are trained using a pairwise margin loss.5 Train-
ing pairs are obtained by combining known relevant documents with 20 nega-
tive examples selected from a set of top-500 candidates returned by Lucene. In
each epoch, we randomly sample one positive and one negative example per
query. BERT-based models first undergo a target-corpus pretraining [31] using
a masked language modeling and next-sentence prediction objective [17]. Then,
we train them for one epoch in a ranking task. We use batch size 16 simulated
via gradient accumulation. Context-free Model 1 is trained from scratch for 32
epochs using batch size 32. The non-parametric Model 1 is trained for five epochs
with MGIZA [53].6 Further increasing the number of epochs does not substan-
tially improve results. MGIZA computes probabilities of spurious insertions (i.e.,
a translation from an empty word), but we discard them as in prior work [65].

We use a small weight decay (10−7) and a warm-up schedule where the learn-
ing rate grows linearly from zero for 10–20% of the steps until it reaches the base
learning rate [48,63]. The optimizer is AdamW [42]. For BERT-based models we
use different base rates for the fully-connected prediction head (2 · 10−4) and for
the main Transformer layers (2 · 10−5). For the context-free Model 1 the base
rate is 3 · 10−3, which is decayed by 0.9 after each epoch. The learning rate is
the same for all parameters.

The trained neural Model 1 is “exported” to a non-parametric format by
precomputing all pairwise translation probabilities and discarding probabilities
smaller than 10−4. This sparsification/export procedure takes three minutes and
the exported model is executed using the same Java code as the non-parametric
Model 1. Each neural model and the sparsified Model 1 is trained and evaluated
for five seeds. To this end, we compute the value for each query and seed and
average query-specific values (over five seeds). All hyper-parameters are tuned
on a development set.

Because context-free Model 1 rankers are not strong on their own, we evaluate
them in a fusion mode. First, Model 1 is trained on train/modeling. Then we
linearly combine a model score with the BM25 score [58]. Optimal weights are
computed on a train/fusion subset using the coordinate ascent algorithm [45]
from RankLib.7 To improve effectiveness of this linear fusion, we use Model 1

4 https://github.com/usnistgov/trec eval.
5 We use the loss reduction type sum.
6 https://github.com/moses-smt/mgiza/.
7 https://sourceforge.net/p/lemur/wiki/RankLib/.

https://github.com/usnistgov/trec_eval
https://github.com/moses-smt/mgiza/
https://sourceforge.net/p/lemur/wiki/RankLib/
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Table 2. Evaluation results: bwps denotes BERT word pieces, lemm denotes text lem-
mas, and word denotes original words. NN-Model1 and NN-Model1-exp are the context-
free neural Model 1 models: They use only bwps. NN-Model1 runs on GPU whereas
NN-Model1-exp runs on CPU. Ranking speed is throughput and not latency! Statis-
tical significance is denoted by � and #. Hypotheses are explained in the main text.

Documents Passages

MS MARCO test TREC 2019 TREC 2020 Rank. speed MS MARCO test TREC 2019 TREC 2020 Rank. speed

MRR NDCG@10 per 1K MRR NDCG@10 per 1K

Baselines

BM25 (lemm) 0.270 0.544 0.524 0.8ms 0.256 0.522 0.516 0.5ms

BM25 (lemm)+BM25 (word) 0.274 0.544 0.523 2.5ms 0.265 0.517 0.521 0.7ms

BM25 (lemm)+BM25 (bwps) 0.283 0.528 0.537 2.2ms 0.270 0.518 0.525 0.9ms

BERT-vanilla (short) 0.387 0.655 0.623 39 s 0.426 0.686 0.684 15 s

BERT-vanilla (full) 0.376# 0.667 0.631 82 s

BERT-CEDR-KRNM 0.387 0.665 0.649� 88 s 0.421� 0.682 0.675 16ms

BERT-CEDR-DRMM 0.377� 0.667 0.636 120 s 0.425 0.688 0.685 30 s

BERT-CEDR-PACRR 0.392 0.670 0.652� 81 s 0.425 0.690 0.684 16 s

Our methods

BM25 (lemm)+Model1 (word) 0.283� 0.548 0.535 13ms 0.274� 0.522 0.567� 1.2ms

BM25 (lemm)+Model1 (bwps) 0.284 0.557 0.525 33ms 0.271 0.517 0.509 2.7ms

BM25 (lemm)+NN-Model1-exp 0.307� 0.568 0.545 16ms 0.298� 0.541� 0.581� 2.4ms

BM25 (lemm)+NN-Model1 0.311� 0.566 0.541 3 s 0.300� 0.549� 0.587� 0.32 s

BERT-Model1 (short) 0.384 0.657 0.631 36 s 0.426 0.685 0.682 16 s

BERT-Model1 (full) 0.391# 0.666 0.637� 80 s

log-scores normalized by the number of query words. In turn, BM25 scores are
normalized by the sum of query-term IDF values (see [58] for the description of
BM25 and IDF). As one of the baselines, we use a fusion of BM25 scores for
different tokenization approaches (basically a multi-field BM25). Fusion weights
are obtained via RankLib on train/fusion.

4.2 Results

Model Overview. We compare several models (see Table 2). First, we use BM25
scores [58] computed for the lemmatized text, henceforth, BM25 (lemm). Second,
we evaluate several variants of the context-free Model 1. The non-parametric
Model 1 was trained for both original words and BERT word pieces: Respective
models are denoted as Model1 (word) and Model1 (bwps). The neural context-
free Model 1—denoted as NN-Model1—was used only with BERT word pieces.
This model was sparsified and exported to a non-parametric format (see Sect. 3),
which runs efficiently on a CPU. We denote it as NN-Model1-exp. Note that
context-free Model 1 rankers are not strong on their own, thus, we evaluate
them in a fusion mode by combining their scores with BM25 (lemm).

Crucially, all context-free models incorporate exact term-matching signal via
either the self-translation probability or via explicit smoothing with a word col-
lection probability (see Eq. 3). Thus, these models should be compared not only
with BM25, but also with the fusion model incorporating BM25 scores for orig-
inal words or BERT word pieces. We denote these baselines as BM25 (lemm)+
BM25 (word) and BM25 (lemm)+ BM25 (bwps), respectively.

As we describe in Sect. 3, our contextualized Model 1 applies the neural
Model 1 layer to the contextualized embeddings produced by BERT. We denote
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this model as BERT-Model1. Due to the limitation of existing pretrained Trans-
former models, long documents need to be split into chunks each of which is
processed, i.e., contextualized, separately. This is done in BERT-Model1 (full),
BERT-vanilla (full), and BERT-CEDR [44] models. These models operate on
(mostly) complete documents: For efficiency reasons we nevertheless use only the
first 1431 tokens (three BERT chunks). Another approach is to make predictions
on much shorter (one BERT chunk) fragments [15]. This is done in BERT-Model1
(short) and BERT-vanilla (short). In the passage retrieval task, all passages
are short and no truncation or chunking is needed. Note that we use a base,
i.e., a 12-layer Transformer [67] model, since it is more practical then a 24-layer
BERT-large and performs at par with BERT-large on MS MARCO data [29].

We tested several hypotheses using a two-sided t-test:

– BM25 (lemm)+ Model1 (word) is the same as BM25 (lemm)+ BM25 (word);
– BM25 (lemm)+ Model1 (bwps) is the same as BM25 (lemm)+ BM25 (bwps);
– BERT-Model1 (full) is the same as BERT-vanilla (short);
– For each BERT-CEDR model, we test if it is the same as BERT-vanilla
(short);

– BERT-vanilla (full) is the same as BERT-vanilla (short);
– BERT-Model1 (full) is the same as BERT-Model1 (short);

The main purpose of these tests is to assess if special aggregation layers (includ-
ing the neural Model 1) can be more accurate compared to models that run on
truncated documents. In Table 2 statistical significance is indicated by a special
symbol: the last two hypotheses use #; all other hypotheses use �.

Discussion of Results. The results are summarized in Table 2. First note that
there is less consistency in results on TREC 2019/2020 sets compared to MS
MARCO test sets. In that, some statistically significant differences (on MS MARCO
test) “disappear” on TREC 2019/2020. TREC 2019/2020 query sets are quite
small and its more likely (compared to MS MARCO test) to obtain spurious
results. Furthermore, the fusion model BM25 (lemm)+ Model1 (bwps) is either
worse than the baseline model BM25 (lemm)+ BM25 (bwps) or the difference is
not significant. BM25 (lemm)+ Model1 (word) is mostly better than the respec-
tive baseline, but the gain is quite small. In contrast, the fusion of the neural
Model 1 with BM25 scores for BERT word pieces is more accurate on all the
query sets. On the MS MARCO test sets it is 15–17% better than BM25 (lemm).
These differences are significant on both MS MARCO test sets as well as on TREC
2019/2020 tests sets for the passage retrieval task. Sparsification of the neural
Model 1 leads only to a small (0.6–1.3%) loss in accuracy. In that, the sparsified
model—executed on a CPU—is more than 103 times faster than BERT-based
rankers, which run on a GPU. It is 5×103× faster in the case of passage retrieval.
In contrast, on a GPU, the fastest neural model KNRM is only 500 times faster
than vanilla BERT [28] (also for passage retrieval). For large candidate sets com-
putation of Model 1 scores can be further sped up (Sect. 3.1.2.1 [6]). Thus, BM25
(lemm)+NN-Model1-exp can be useful at the candidate generation stage.

We also compared BERT-based neural Model 1 with BERT-CEDR and
BERT-vanilla models on the MS MARCO test set for the document retrieval
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task. By comparing BERT-vanilla (short), BERT-Model1 (short), and
BERT-Model1 (full) we can see that the neural Model 1 layer entails virtu-
ally no efficiency or accuracy loss. In fact, BERT-Model1 (full) is 1.8% and 1%
better than BERT-Model1 (short) and BERT-vanilla (short), respectively.
Yet, only the former difference is statistically significant.

Furthermore, the same holds for BERT-CEDR-PACRR, which was shown to out-
perform BERT-vanilla by MacAvaney et al. [44]. In our experiments it is 1% bet-
ter than BERT-vanilla (short), but the difference is neither substantial nor sta-
tistical significant. This does not invalidate results of MacAvaney et al. [44]: They
compared BERT-CEDR-PACRR only with BERT-vanilla (full), which makes pre-
dictions on the averaged [CLS] embeddings. However, in our experiments, this
model is noticeably worse (by 4.2%) than BERT-vanilla (short) and the differ-
ence is statistically significant. We think that obtaining more conclusive evidence
about the effectiveness of aggregation layers requires a different data set where
relevance is harder to predict from a truncated document.

Leaderboard Submissions. We combined BERT-Model1 with the strong first-stage
pipeline, which uses Lucene to index documents expanded with doc2query [51,
52] and re-ranks them using a mix of traditional and NN-Model1-exp scores (our
exported neural Model 1). This first-stage pipeline is about as effective as the
Conformer-Kernel model [47]. The combination model achieved the top place on
a well-known leaderboard in November and December 2020. Furthermore, using
the non-parametric Model 1, we produced the best traditional run in December
2020, which outperformed several neural baselines [7].

5 Conclusion

We study a neural Model 1 combined with a context-free or contextualized
embedding network and show that such a combination has benefits to effi-
ciency, effectiveness, and interpretability. To our knowledge, the context-free
neural Model 1 is the only neural model that can be sparsified to run efficiently
on a CPU (up to 5 × 103× faster than BERT on a GPU) without expensive
index-time precomputation or query-time operations on large tensors. We hope
that effectiveness of this approach can be further improved, e.g., by designing a
better parametrization of conditional translation probabilities.
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