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Abstract. Word embedding models typically learn dense and fixed-length vec-
tors based on local word collocation patterns in a text corpus. Recent studies
have discovered that these models often underestimate similarities between simi-
lar words and overestimate similarities between distant words. This leads to word
similarity results obtained fromword embedding models inconsistent with human
judgment. A number of manifold learning-based word re-embedding methods are
proposed to address this problem by re-embedding word vectors from the original
embedding space to a new embedding space. However, these methods perform a
weighted locally linear combination of embeddings of words and their neighbors
twice. Besides, the reconstruction weights are easily influenced by the selection
of word neighbors and the whole combination process is very time-consuming.
In this paper, we introduce a novel word re-embedding method based on local
tangent information to re-embed word vectors into a refined new space. Unlike
previous approaches, our method re-embeds word vectors by aligning original
and new embedding spaces based on the tangent information instead of perform-
ing weighted locally linear combination twice. To validate the proposed method,
experiments were conducted on two standard evaluation tasks. The experimental
results show that our method achieves better performance than state-of-the-art
methods for word re-embedding.

Keywords: Word re-embedding · Local tangent information · Manifold learning

1 Introduction

Word embedding models represent words as dense and fixed-length vectors by mapping
them from high-dimensional space to low-dimensional space. As the common knowl-
edge, the distance between these dense vectors reflects the semantic relatedness of their
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corresponding words. Furthermore, vectors generated by these models contain seman-
tic and syntactic features, which are beneficial to mine the semantic relationships of
words. Due to the ability of vector-space representations, word embedding models play
an important role in a lot of Information Retrieval (IR) and Natural Language Processing
(NLP) tasks, such as question answering [1], ad-hoc retrieval [2] and machine transla-
tion [3], part-of-speech tagging [4], named entity recognition [5], text classification [6].
Obviously, the discovery of semantic information is closely linked to the quality of word
vectors. The representation quality of word vectors can directly affect the performance
of a large amount of IR and NLP tasks as well.

Recently, a variety of word embedding models has been proposed to generate word
embeddings, such asBERT [7], C&W[8], ContinuousBag-of-Words (CBOW) [9], Skip-
Gram [9], GloVe [10] and other variants [11, 12]. BERT [7] and its variants [13, 14]
can effectively produce contextual word embeddings with better support for different IR
and NLP tasks. However, the computational cost is very high due to the huge amount of
parameters. The refinement of contextual word embeddings will be studied in the future.
In comparison with contextual models, static word embedding models are generally
simple and efficient with a much lower computational cost. Although these static word
embedding models can easily learn word vectors with linear structure data distribution,
they fail to estimate similarities between words when the data distribution of words
shows strong non-linear characteristics. They may underestimate similarities between
nearby words and overestimate similarities between distant words, causing the problem
about word similarity results obtained by word embedding models inconsistent with
human judgment [15, 16].

As an example given in previous studies [15, 16], an example of the ground truth
similarities between words obtained by human experience in a typical semantic simi-
larity task is shown in Fig. 1. Another example of cosine similarity results of the same
word pairs obtained by GloVe is shown in Fig. 2. As shown in these two Figures, the
similarity result between “physics” and “proton” is more similar than that of “shore”
and “woodland” based on human experience in Fig. 1. However, it achieves the opposite
result in Fig. 2. The phenomenon fully reflects that similarity results between word pairs
obtained by word embedding models may be inconsistent with human judgment.

Fig. 1. Standard word similarity results judged by human beings

Fig. 2. Word similarity results obtained by GloVe word embedding models

To address the similarity inconsistency problem, the existing studies show that re-
embedding can rectify this problem by using manifold learning-based methods [15, 16].
Several approaches were proposed to re-embed word vectors into a new embedding
space by using manifold learning-based methods for this purpose. For example, Locally
Linear Embedding (LLE) [15] and Modified Locally Linear Embedding (MLLE) algo-
rithms [16] were proposed to re-embed pre-trained GloVe word vectors into a new
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embedding space. The above two methods both consider the local geometric informa-
tion between words and their local neighboring words. They re-embed word vectors
based on the weighted locally linear combination of words and their neighbors in both
original and refined semantic spaces. Although they achieve good performance on word
re-embedding, there exist certain demerits in both methods. On the one hand, the recon-
struction weights can be easily affected by various options of word neighbors because
these weights are generated by a linear combination of nearby words. On the other hand,
these two methods need to perform the weighted locally linear combination twice in
both two embedding spaces, which is time-consuming with high computation cost.

Unlike LLE and MLLE methods, in this paper, we introduce a novel word re-
embedding method based on Local Tangent Information (denoted as LTI) to re-embed
word vectors into a refined new space. Our method firstly applies Principal Components
Analysis (PCA) on word neighbors to construct a locally linear plane, which can be
regarded as an approximation of the tangent information of these local words [17, 18].
Our LTI method then re-embeds word vectors by aligning original and refined new
embedding space based on the local tangent information (containing different local geo-
metric information). The proposedmethod can bemore effective and efficient by directly
aligning two embedding spaces based on local tangent information in comparison with
LLE and MLLE methods, which perform combination operation twice. To verify the
proposedLTImethod, we conduct several experiments on standard semantic relatedness
and semantic similarity tasks. The experimental results show that our method achieves
better performance than the state-of-the-art baseline methods for word re-embedding.

The contributions of our work are summarized as follows:

• We introduce a novel word re-embedding method based on local tangent information.
Our method re-embeds word vectors by aligning original and refined semantic spaces
based on the tangent information of words, which contains more geometric informa-
tion and directly captures the relationships between original and refined embedding
spaces.

• We are the first to demonstrate that local tangent information can be used to improve
the performance of word re-embedding.

• We conduct several experiments to validate our proposed method in this paper. Com-
pared with the state-of-the-art baseline methods of word re-embedding, the results
show that our proposed method can achieve better performance by utilizing local
tangent information of words and their neighbors.

The rest of our paper is organized as follows: Sect. 2 describes the related work. Our
method is presented in Sect. 3. Section 4 shows the details of experimental settings. In
Sect. 5, we provide and analyze the experimental results. Finally, Sect. 6 concludes the
paper and discusses future research.

2 Related Work

2.1 Count-Based Word Embedding Methods

Count-based word embedding methods only focus on word co-occurrence probability or
word counts. Vector space model is the early idea to use vectors to express words [19].
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This method constructed a word-document co-occurrence matrix and used it to represent
words and documents as vectors by using TF-IDF. However, this method does not con-
sider the true semantic information of words. Latent Semantic Analysis (LSA) [20] can
also generate word embeddings by applying Singular Value Decomposition (SVD) to a
word-document matrix. Subsequently, Lund and Burgess [21] proposed a Hyperspace
Analogue to Language (HAL) model that constructed a word-context word matrix based
on a corpus to form vector representations. Dhillon et al. [22] introduced an alternative
method leveraging Canonical Correlation Analysis (CCA) between left and right con-
texts to generate word embeddings. Lebret and Collobert [23] used Hellinger PCA to
the word-context matrix to obtain word embeddings. In summary, these methods glob-
ally utilize word-context co-occurrence or counts to produce word embeddings based
on word-context matrices in a corpus. Though the aforementioned methods are simple
and effective, these count-based methods only consider the co-occurrence probability
or word counts between words and their context words rather than the real semantic
relationships between them.

2.2 Prediction-Based Word Embedding Methods

Prediction-based word embedding methods generate word embeddings by using the
contexts of words. In the early time, Hinton proposed a word distributed representation
hypothesis [24]. Most of the subsequent methods are inspired by this hypothesis. They
represent words as distributional dense, fixed-length and low-dimensional word vectors.
Bengio et al. [25] proposed an N-Gram neural network language model and used it
to generate word embeddings. In this method, embeddings are a by-product during
training a neural network language model (NNLM). Bengio and Senecal [26] improved
NNLMby using aMenote Carlomethod and hierarchical softmax layer to speed upword
embedding generation. Similarly, Mnih and Hinton [27] proposed a slightly modified
log-bilinearmodel to produceword embeddings.Asword embeddings are by-products of
previousmodels, Collobert andWeston [28] designed amodel solely aimed at generating
word embeddings by using unlabeled data. Following these mentioned works, Collobert
et al. proposed a unified neural network architecture C&W and a learning algorithm to
discover internal representations ofwords [8].Mikolov et al. presented two famousmodel
architectures for learning high-quality continuous vector representations for words [9].
One model (CBOW) predicts the current word by utilizing the context of this word.
Another model (Skip-gram) predicts the surrounding words based on the current word.
Inspired by Skip-gram and CBOW, Qiu et al. proposed two variants of the CBOW
model and the Skip-gram model to produce high-quality distributed representations for
words by considering both word proximity and ambiguity [11]. Similar to these studies,
Pennington et al. [10] proposed a GloVe model that combines the global features of a
corpus and the local contextual features of words for generating word representations.

Apart from the static word embedding models described above, several contextual
embedding models have been proven to be effective for word embedding generation
these days, such as BERT [7] and its variants [13, 14]. Though word embeddings gen-
erated from such models can provide good support for different IR and NLP tasks, the
computational cost is very high due to the huge amount of parameters. On the contrary,
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static word embedding models are simpler and more efficient with a much lower com-
putational cost. In this paper, we mainly focus on static word embeddings and leave the
study of refining contextual word embeddings as the future work.

2.3 Word Vector Re-embedding Methods

Many studies are focusing on re-embedding word vectors for improving the quality of
word vectors. For example, Chaudhary et al. adapted continuousword representations by
using morphological and phonological subword representations for low-resourced lan-
guages [29]. Kolyvakis et al. utilized a novel entity alignment method called DeepAlign-
ment to refine pre-trained word vectors for generating ontological entity descriptions in
the ontology matching task [30]. Seyeditabari et al. incorporated emotional information
of words into pre-trained word vectors for generating emotional embeddings, which
can capture the emotional contents of words [31]. Utsumi proposed a simple method
to re-embed pre-trained word embeddings by using layer-wise relevance propagation
[32]. Yu et al. presented an improved word vector model to refine existing pre-trained
word vectors by leveraging real-valued sentiment intensity scores provided by sentiment
lexicons [33].

However, this paper mainly focuses on studies about word vector re-embedding by
re-mapping word vectors from the original embedding space to a new refined embedding
space. Mu et al. projected word embeddings by removing the common mean vectors of
pre-trained word vectors [34]. Somemethods focus on exploring the geometric structure
of word embeddings by using manifold-learning based algorithms and they show that
reconstruction of word embeddings can capture the underlying manifold of the data [15,
16, 35]. Hasan and Curry utilized word neighbors in the original embedding space to
re-embed pre-trainedGloVe vectors into a new embedding space based on LLE [15]. The
re-embedded word vectors could learn rich semantic information of word embeddings
from a new embedding space for addressing the word similarity inconsistency issue.
Furthermore, Chu et al. used a Modified Locally Linear Embedding (MLLE) algorithm
to refine word representations in the aspect of geometric information of words and their
neighbors [16].

Although the aforementioned manifold learning algorithms for word re-embedding
have been proven to be effective, these methods need to perform the weighted locally
linear combinations twice in both original and refined embedding spaces. Unlike these
methods, we approach the problem of word re-embedding by utilizing local tangent
information of words. This information can directly capture the relationships between
the original and new embedding space instead of relying on local weights. Our method
also avoids performing a locally linear combination of nearby words twice.

3 A Novel Word Re-embedding Method

3.1 Overall Framework

The overall framework of our proposed method based on Local Tangent Information
(LTI) is shown in Fig. 3. There are four main steps in our method. In step (a), we choose
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Fig. 3. The framework of our proposed method

a subset of word vector samples from the original embedding space by using a sample
window. Word vectors are ordered according to their correspondent word frequencies
(frequent word co-occurrences) in this corpus. Note that as in previous studies [15, 16],
ordering word vectors and selecting samples instead of using all vectors can avoid a high
computational cost. In our work, the original embedding space we used is trained by
GloVe, because the pre-trained word vectors from this model can effectively represent
words by considering contextual features of words and global features of a corpus in
comparison with other static word embedding generation models. In step (b), we train
a Local Tangent Information algorithm (LTI) on these selected samples in step (a) and
this fitted manifold learning algorithm will be used to transform word vectors from
original embedding space to a new refined embedding space. In this process, we just
transform between two equally-dimensional coordinate systems and keep the dimension
of word vectors unchanged. In step (c), we obtain word vectors of test word pairs (test
word pairs from specific tasks to validate the effect of word re-embedding) from the
original embedding space. In step (d), we re-embed these test word vectors into a new
re-embedding space to obtain new vectors by using the fitted LTI obtained in step (b).

3.2 Word Re-embedding Based on Local Tangent Information

LLE [15] and MLLE [16] methods aim at addressing the problem that word similar-
ity results of word pairs obtained by word embedding models are inconsistent with
that determined by human beings through word re-embedding. These two methods re-
embedword vectors by preserving local geometric information of words and their neigh-
bors. However, their research has certain limitations that the reconstruction weights are
easily influenced and these two methods need to perform the weighted locally linear
combination twice in both two embedding spaces.
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Algorithm 1. Word Re-embedding Algorithm based on LTI
Input: original word embedding space , test words 

Output: refined word representations set of test words
1: choose word vector samples from 
2: for each do 

3: according to Eq. (1), (5) and (6), fit to obtain new word 
embedding space 

4: end for 
5: for all do
6: obtain word vectors of from 
7: re-embed vector of to obtain refined vector set based on 
8: end for 
9: return refined word representations set of test words

Unlike LLE and MLLE methods, our proposed method uses local geometric infor-
mation different from those of the above twomethods. To address the limitations brought
by their methods, in this paper, we introduce a novel word re-embedding method based
on Local Tangent Information (denoted as LTI) to re-embed word vectors into a refined
new space. To be specific, a locally linear plane is constructed by leveragingPCAonword
neighbors. It is considered as an approximation of the tangent information at each word
point [17, 18]. Since both the original and new embedding spaces exist a linear mapping
of each word from their spaces to the local tangent information, our method aligns these
linear mappings based on local tangent information to re-embed word representations.

As we mentioned in the last subsection, word vector samples are firstly chosen from
pre-trained GloVe word vector corpus (original embedding space S) through a simple
window and Local Tangent Information (LTI) is trained on these samples. The set of
selected samples is defined as aword vector setX = [x1, x2, · · · , xN], whereX ∈ Rd×N ,
N is the number ofwords andd represents the dimension ofword vectors. In our proposed
method, for each word vector xi, (i = 1, 2, · · ·N ), we find its k nearest neighborhoods
(including xi itself) and denote the adjacent neighborhood set asXi = [xi1, xi2, · · · , xik].
Subsequently, for each word vector xi, we apply PCA to each neighborhood set Xi to
approximate the local tangent information of the word corresponding to a word vector xi
for preserving the local structure of the neighborhood setXi of xi. The objective function
is

arg min
Qi,θi

k∑

j=1

∣∣∣∣(xij − x
) − Qθij

∣∣∣∣2 = arg min
Qi,Ω i

||XiHk − QΩ i||2 (1)

where Hk = I − eeT
k is centralization matrix, I is an identity matrix, e means the

vector of all 1’s, Q is an orthonormal basis matrix of the tangent information, �i =
[θi1, θi2, · · · , θik ] represents a local linear approximation of Xi, i.e. θij is the tangent
coordinate corresponding to the orthonormal basis matrix Qi. Apparently, the optimal x
is the mean value of all neighborhood words vectors xij, (j = 1, 2, · · · k) of the sample
point xi, (i = 1, 2, · · ·N ). The optimal Q is given by Qi and it is made up of t left
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singular vectors of XiHk corresponding to its t largest singular values (t is equal to d ,
as the embedding dimension is the same in both two embedding spaces.) The tangent
coordinates �i can be computed as

�i = QT
i XiHk (2)

After obtaining the local tangent coordinates, we have to construct the global coordi-
nates in a new embedding space. The purpose of the global arrangement of local tangent
information is to find a group of new space coordinates Y = [

y1, y2, · · · , yN
]
, which are

called global coordinates in a new embedding space. Therefore, we assume that there is
a projection matrix, which re-embeds tangent coordinates �i to new space coordinates
Yi = {

yi1, yi2, · · · , yiN
}
, then we have

YiHk = Li�i + Ei (3)

where Li is the projection matrix mapping �i to Yi and Ei is the local reconstruction
error term. To preserve as much of the local geometry in a new embedding space as
possible, we intend to find Yi and Li by minimizing the reconstruction error Ei

argmin
Y

N∑

i=1

||Ei||2 = argmin
Y

N∑

i=1

||YiHk − Li�i||2 (4)

Obviously, the mapping error is minimal when Li = YiHk�
+
i , where �+

i is Moore-
Penrose generalized inverse of �i. Let refined word vector set Y = [

y1, y2, · · · , yN
]
be

the d dimensional global coordinates of all words inX (Y also be refined new embedding
space) and φi be the 0-1 selection matrix such that Yφi = Yi. The optimal Y can be
achieved by minimizing the overall reconstruction error of all neighborhoods and the
Formula (4) can be rewritten as:

argmin
Y

N∑

i=1

||Ei||2 = argmin
Y

N∑

i=1

||YiφiWi||2

= mintrace
(
YφWWTφTYT

)

= mintrace
(
YBYT

)
(5)

where φ = [φ1, φ2, · · · , φN ],W = diag(W1,W2, · · · ,WN )withWi = Hk
(
I − �+

i �i
)

and B = φWWTφT . In order to uniquely obtain Y , we will impose the constraint
YYT = I. The refined new word vector set Y is composed of the t eigenvectors of the
matrix B, and these eigenvectors correspond to the 2nd to (t + 1)th smallest eigenvalues
of B. Then the eigenvector matrix picked from B is

[
u2, · · · ,ut+1

]
, where ui is an

eigenvector of B. Thus, d dimensional refined new embedding set Y should be:

Y = [
u2, · · · ,ut+1

]
(6)

In our work, we firstly use word vectors samples from the original embedding space
to train the LTI algorithm by Eq. (1), Eq. (5) and Eq. (6) to obtain a new embedding
space Y . Then we can obtain the refined new embedding set of test word vectors in
specific tasks by using the new embedding space Y . The overall procedure of our Word
Re-embedding Algorithm based on LTI is described in Algorithm 1.
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4 Experimental Setup

4.1 Data Description

As we mentioned before, we use the original word vectors trained by GloVe [10]. More-
over, we use two sets ofGloVeword vectors1. One is trained fromWikipedia 2014+Giga-
word 5 (consists of 6 Billion tokens, 400,000 vocabularies, word vectors with 50, 100,
200, and 300 dimensions, denoted as 6B50/100/200/300d). Another set is trained from
Common Crawl (consists of 42 Billion tokens, 1.9 Million vocabularies, word vectors
with 300 dimensions, denoted as 42B300d). To demonstrate the effectiveness of our
proposed method, we conduct experiments on semantic relatedness and semantic simi-
larity tasks. The semantic relatedness task focuses on the degree of semantic relatedness
between words. It contains three datasets, including MEN dataset (3000 word pairs)
[36], WordRel (WordRel) dataset (252 word pairs) [37], MTurk (MTurk) dataset (287
word pairs) [38]. The semantic similarity task pays attention to the degree of semantic
similarity between words. It includes four datasets, which are RG65 (RG) dataset (65
word pairs) [39], WordSim-353 (WS353) dataset (353 word pairs) [40], SimLex-999
(SimLex) dataset (999 word pairs) [41], and WordSim-203 (WS203) dataset (203 word
pairs) [42] respectively.

4.2 Baselines

We validate our proposed method for word re-embedding by comparing it with the
following representative baseline methods.

GloVe. It is the original GloVe method [10]. This distributed word representation
method is general and quite effective. The word vectors trained by this method consider
local features of contextual words and global features of a corpus.

LLE. Hasan and Curry utilized local word neighbors to re-embed pre-trained word
vectors (also trained by GloVe) based on the LLE manifold learning algorithm [15].

RoM. Mu et al. removed the common mean vectors of the pre-trained word vectors
and the top principal components of all words for post-processing word vectors [34].

MLLE. Similar to [15], Chu et al. used the MLLE manifold learning algorithm to
re-embed word vectors trained by GloVe [16].

LTI. The method proposed in the current paper. We use a manifold learning method
that utilizing local tangent information of words and their neighbors to re-embed
word vectors by aligning the original and new embedding space based on the tangent
information of words.

4.3 Evaluation Metrics

To evaluate the performance of our proposed method and baseline methods, we adopt
Spearman’s method to compute the Spearman Rank Correlation coefficient between
word similarity scores (similarity scores of word pairs obtained fromword re-embedding

1 http://nlp.stanford.edu/projects/glove.

http://nlp.stanford.edu/projects/glove
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methods)with human judgments (original similarity scores ofword pairs in each dataset).
The Spearman Rank Correlation is defined as:

cos(u1, u2) = u1 · u2
‖u1‖ · ‖u2‖ (7)

r = px,y = cov(x, y)

σx · σy
(8)

Equation (7) is used to calculate the similarity results of each pair of words in
specific tasks, where u1 and u2 represent two word vectors. Equation (8) represents
the Spearman Rank Correlation coefficient between word similarity scores and human
ratings, cov(x, y) represents the covariance between the score ranking list x and y, which
denote the score list of word similarity scores obtained by word re-embedding methods
and the score list of human judgments respectively, σx andσy represent the corresponding
standard deviations of these two score lists. The more consistent similarities of word
pairs obtained by word re-embedding methods with human judgments, the higher the
Spearman score is.

4.4 Implementation Details

Firstly, we select word vector samples from a pre-trained word vector corpus by using a
sample window and use the LTI algorithm to train these samples. Then for each specific
task, we obtain word vectors of test word pairs and transform these word vectors into
a new embedding space by using the fitted LTI algorithm. Finally, we compute cosine
similarity scores of word pairs in each specific task and compute the Spearman scores.
In our method, the range value of number of neighbors chosen was set as [300, 1500]
and the step is 100. The range value of the training sample window size was set as [300,
2000] and the step is 50. Previous experiments show that the best sample size should be
as close as possible to the number of neighbors because a wider range has no significant
difference in results and has high time and computation cost.

5 Results and Discussion

5.1 Performance on Word Vectors with Different Embedding Dimensions

In order to evaluate the performance of our proposed method and other word re-
embedding methods on word vectors with different embedding dimensions, we conduct
experiments on WS353 and RG dataset as in previous studies [15, 16]. The experimen-
tal results are shown in Table 1. As shown in this table, LLE, MLLE and our proposed
LTI method perform better than GloVe in most cases. This demonstrates that using
a manifold-learning based algorithm is beneficial to generate word embeddings with
high quality. Furthermore, we can observe that our proposed method achieves better
performance than LLE and MLLE methods in 5 out of 10 experimental runs. In terms
of dataset, the MLLE method achieves good performance on RG dataset than that of
WS353 dataset. We can observe that our proposed method achieves the best result in 4
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out of 5 experimental runs on RG dataset. However, this proposed method only obtains
the highest scores in 2 out of 5 experimental runs on WS353 dataset. This is probably
due to some noises existing in word vectors in the due dataset. Another reason is that the
distance of words and their neighbors in RG dataset may be closer than that of words and
their neighbors in WS353 dataset, so the geometric information of RG dataset is more
beneficial to the manifold-learning based methods for word re-embedding than that of
WS353 dataset.

Table 1. Spearman correlations scores of variousmethods on two evaluation datasets. Bold values
represent that ourmethod achieves the best results than baselinemethods. Note that baseline results
are taken from [16].

Space Task GloVe LLE MLLE LTI

6B50d WS353 61.2 56.6 63.2 61.2

6B100d WS353 64.5 64.3 64.6 66.4

6B200d WS353 68.5 69.7 67.0 68.2

6B300d WS353 65.8 70.3 67.9 69.3

42B300d WS353 75.2 78.4 78.6 78.6

Space Task GloVe LLE MLLE LTI

6B50d RG 60.2 53.0 64.4 62.6

6B100d RG 65.3 67.3 68.8 73.3

6B200d RG 75.5 76.0 79.4 81.5

6B300d RG 75.5 80.5 81.1 83.1

42B300d RG 80.0 83.4 83.5 86.5

In addition, with regard to embedding dimensions, our proposedmethod outperforms
theMLLEmethod on both datasets with embedding dimensions more than 50. However,
when RG and WS353 datasets containing 6B tokens and the embedding dimension is
50, the MLLE shows better performance than our method. The reason may be that
multiple weights are more suitable to describe the relationships between words and their
neighbors than the tangent information when the embedding dimension is very low.
However, when RG dataset contains 6B tokens and the embedding dimension increases,
our proposed method shows better performance than all baseline methods. It is obvious
that the higher dimension of word vectors is, the better performance of our proposed
method can get because word vectors with high dimensions can capture more semantic
information.

Moreover, we can observe that when the size of datasets increases (from 6B to 42B)
and the embedding dimension reaches 300, our proposed method can greatly improve
word similarity performance on both datasets. This indicates that the larger training
size and larger dimension are beneficial for word re-embedding. Then, we conduct
experiments on seven datasets with a size of 42B and use the embedding dimension of
300 to further validate the effectiveness of our proposed LTI method.
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5.2 Performance on Two Evaluation Tasks

In addition to these experiments, more experiments are conducted on seven datasets
to further validate the performance of our proposed LTI method. Table 2 displays the
results of all methods in two evaluation tasks. From this table, an observation is that
almost all word re-embedding methods (LTI, MLLE, LLE and RoM) perform better
than Glove. These results are in-line with previous findings so that these two tasks are
quite suitable to evaluate the word re-embedding methods. This further suggests that
word re-embedding can improve the performance of word representations.

Table 2. Spearman correlations between scores predicted by our method and scores obtained
from human judgment on two evaluation tasks. Bold values represent that our method achieves
the best results than baseline methods. Note that baseline results are taken from [16].

Semantic similarity task Semantic relatedness
task

Method RG WS353 SimLex WS203 MTurk WordRel MEN

GloVe 76.90 71.25 40.83 80.15 69.29 64.43 80.49

LLE 74.71 77.14 48.14 81.40 71.92 72.90 83.37

RoM 74.36 76.79 44.97 – 70.85 – 81.78

MLLE 77.19 78.40 49.40 82.32 72.78 73.69 84.19

LTI 86.48 78.58 50.46 81.92 73.15 74.65 83.50

We notice that our proposed LTI method is the best performing method on 5 out of
7 datasets in comparison with the MLLE method. This is because the MLLE method
may be strongly influenced by the local weights. Our method aligns the original and
refined semantic space based on the local tangent information rather than the multiple
local weights. Furthermore, our method does not calculate the weighted combination
of embedding of words and their neighbors twice, which is more efficient. Our LTI
method performs slightly worse than the MLLE method on WS203 and MEN datasets.
This is likely caused by the better effect of the local weights in the MLLE method.
However, the differences are quite small (0.49%and0.83%). In summary, ourmethod can
achievebetter performance than all other baselinemethods and it ismore computationally
efficient than all previously proposed word re-embedding methods that are included in
the comparison.

6 Conclusion

Word re-embedding can address the problem that the similarity scores of word pairs
obtained by word embedding models are inconsistent with human ratings. In this paper,
we introduce a novel word re-embedding method based on Local Tangent Informa-
tion (LTI) to re-embed word vectors. Our LTI method tries to re-embed vectors by
aligning the original and new embedding spaces based on local tangent information.
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We conduct several experiments on semantic relatedness and semantic similarity tasks.
The results demonstrate that our proposed method achieves better performance than the
existing word re-embedding methods. In future work, our method can be advanced in
two directions. On the one hand, we will try to discover the key factors that influence
the effectiveness of the word re-embedding process. On the other hand, we will explore
the contextual word embedding refinement by using manifold learning methods.
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