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Abstract. The task of named entitiy recognition(NER) is normally
regarded as a sequence labeling problem. However, this kind of NER
framework does not utilize any prior knowledge. In this paper, we propose
a novel framework called DSMER, which stands for Deep Semantic
Matching based Framework for Named Entity Recognition. DSMER
is a two-phase framework: 1) detect the boundary and extract candi-
date span, 2) calculate the distance between candidates and entity type.
Meanwhile, the representation of each entity type is encoded from its
corresponding annotation rules and example set. Since the combination
of various textual data, DSMER has the ability to integrate informative
prior knowledge. Additionally, we introduce the Word Mover’s Distance
to measure the similarity between sequences of different lengths. We con-
duct experiments on CoNLL 2003 and OntoNotes 5.0 dataset. Experi-
mental result shows our approach achieve state of the art performance,
and demonstrates the effectiveness of the proposed framework.

Keywords: Named entity recognition · Semantic matching · Entity
boundary detection

1 Introduction

Named entity recognition(NER) is a subtask of information extraction, which
refers to a task of detecting spans from text and classifying their types. Among
mainstream research methods, the NER task is commonly considered as a
sequence labeling problem [1,3,6,12,24]: for each token of the input sequence,
predict a class label assigned to it. The sequence labeling framework solves NER
with an end-to-end way, and has achieved effective results on various datasets.

However, this formalization of NER is quite different from the recognition
process of humans. Figure 1 shows human conventions when annotating entity
labels. The annotation rules should first be summarized according to human
experience and background knowledge. Then the annotator would try to anno-
tate a few examples according to the rules and adjust the rules based on example
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Locations: roads, trajectories, regions, structures, natural locations, ……

Miscellaneous: words of which one part is a location, organization, ……

Organizations: companies, subdivisions of companies, brands, ……

Persons: first, middle and last names of people, animals, ……

Asia, Florida, White House, ……

Americans, European Cup, ……

BBC Radio, Microsoft, ……

Hamilton, C. Ambrose, ……

Annotation Rules Example Set

EU rejects German call to boycott British lamb.

ORG O      MISC O  O   O        MISC O     O

Fig. 1. Human annotation process of named entity extraction and recognition. The
annotation rules and example set are chosen from CoNLL 2003 dataset.

set. Finally, the annotation rule and the example set are combined together as
prior knowledge to carry out the complete data annotation process.

Inspired by human convention, we propose a new framework that is capa-
ble of integrating knowledge from annotation rules and example set. Instead of
treating NER as a sequence labeling problem, we formulate it as a deep seman-
tic matching task [5,14,22]. Following the principle of two-phase framework [10],
we design three sub-modules: 1) Prior Knowledge Encoding: encode the repre-
sentation of entity types from annotation rules and example set, 2) Boundary
Detection: predict the start and end index of candidate entities and extract the
representation of them, 3) Semantic Matching: calculate the similarity between
candidate span and different types. The input sentence is first sent to the bound-
ary detection module to extract a set of candidates.

At the same time, we combine the annotation rules and example set corre-
sponding to each entity type, and encode them to obtain the representation vec-
tor of the entity type. In the second phase, we input the representation vector of
each candidate span and entity types into the semantic matching module. The
label of candidate span is determined by the similarity of semantic representation
between them. In order to measure the similarities between spans and entity types
with different lengths, we introduce Word Mover’s Distance(WMD) [7], which is
a novel distance function based on Earth Mover’s Distance(EMD) [20].

We conduct experiments on public NER datasets to show the effectiveness of
our approach. Experimental results show that our deep semantic matching based
framework outperforms both sequence labeling and machine reading comprehen-
sion based frameworks. In addition, we also conducted ablation experiments to
verify the influence of different prior knowledge on our method. Our main con-
tributions are summarized as follows:

– We propose a novel deep semantic matching based NER framework which
exploits prior knowledge and is closer to human annotation behavior.
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– Our boundary detection module overcomes the problem of excessive sample
size and imbalance between positive and negative samples in previous entity
classification methods.

– We first introduce the Word Mover’s Distance into semantic modeling to
directly measure the similarity of unequal length sequences.

2 Related Work

Named Entity Recognition(NER). Traditional entity recognition methods
treat NER task as a sequence labeling problem and use CRFs as the backbone
[8,25]. More recently, neural models was introduced for NER under the sequence
labeling framework. Collobert et al. [2] presented a CNN-CRF structure, Huang
et al. [6] first applied BiLSTM-CRF model to NER, Lample et al. [9] proposed a
BiLSTM-CRF model with character-based word representations, Ma and Hovy
[12] and Chiu and Nchols [1] extend the BiLSTM-CRF structure with a character
CNN to extract features, Sturbell et al. [24] proposed a iterated dilated convo-
lutions NER model to accelerate the parallel computing on GPU. With the rise
of large-scale pre-trained language models [3,16,18,19], sequence labeling style
NER models achieved state of the art performance.

In addition to the recognition of flat entities, there are also some studies
on nested entities. Previous work was mainly based on the two-phase frame-
work, which first enumerated all possible spans, and then predicted entity type.
According to this idea, Sohrab et al. [23] proposed a deep exhaustive model
which limited all the regions within a specified maximum length. Zheng et al.
[28] leveraged the entity boundaries to improve the performance of identifying
entities.

Moreover, Li et al. [11] migrate the NER task to machine reading compre-
hension framework and make the model compatible with recognizing both flat
and nested entities.

Semantic Textual Matching. Huang et al. [5] first proposed the deep struc-
tured semantic model(DSSM) in web search area to map a query to its relevant
documents at semantic level. The principle is that the query and documents
are embedded to semantic vectors, and the distance between them is calculated
by cosine distance, and finally the semantic matching model is trained. Aiming
at the shortcoming of the bag-of-words model used by DSSM, Shen et al. [22]
replaced the DNN with CNN, so that the model can make up for the loss of
context. Since the CNN based model can not capture the feature from long term
context, Palang et al. [14] introduced the LSTM to overcome the problem.

Word Mover’s Distance. Kusner et al. [7] proposed the document distance
matrix called Word Mover’s Distance(WMD), which can be cast as an instance
of the Earth Mover’s Distance(EMD). In statistics, the EMD is a measure of
the distance between two probability distributions over a region D. If the dis-
tributions are interpreted as two different ways of piling up a certain amount
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of dirt over the region D, the EMD is the minimum cost of turning one pile
into the other, where the cost is assumed to be the amount of dirt moved times
the distance by which it is moved. The concept of EMD was first introduced
by Gaspard Monge [13] in the context of transportation theory. The use of the
EMD as a distance measure for monochromatic images was described by Peleg
et al. [15]. Stolfi et al. [20] first proposed the name “Earth Mover’s Distance”.
Rubner et al. [20] first used it on image retrieval task to measure the distance
between images.
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Fig. 2. Overview of deep semantic matching entity recognition framework(DSMER).

3 NER as Semantic Matching

Figure 2 shows the architecture of DSMER. Given an input sequence X =
{x1, x2, ..., xl}, where l denotes the length of the sequence, we need to extract
every candidate entity span from X, and then assign a label t ∈ T to it through
semantic matching model, where T is the set of all entity types. The framework
is a two-phase model composed of three modules. In the first phase, the represen-
tations of candidate spans are extracted, and entity types are encoded through
prior knowledge like annotation rules, example set, etc. In the second phase, we
separately measure the similarity of each candidate span and all entity types
through the semantic matching module. BERT [3] is used as the encoder in each
module of the first phase. The following subsections will describe the detail of
different modules in DSMER.

3.1 Prior Knowledge Encoding

The prior knowledge encoding procedure is important for DSMER since the
external text like annotation rules contains informative semantics and has a
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significant impact on the final result. Seyler et al. [21] discussed the importance
of different categories of external knowledge for performing NER task, including
Name-based, Knowledge-Base-based and Entity-based. Besides, Li et al. [11]
encoded annotation guideline notes as reference queries and achieved a vast
amount of performance boost over current SOTA models. In this paper, we take
both annotation rules and example set of entity mentions as prior knowledge.
Annotation rules are not only the guidelines provided to the annotators of the
dataset but the Wikipedia definition and synonyms of entity type.

Assuming Et is the representation of entity type t. Given a list of annotation
rules R = [r1, r2, ..., rn] and a set of example mentions S = s1, s2, ..., sm, where
n and m denote the number of rules and mentions. We first encode the anno-
tation rules and the example set separately, and then concatenate the hidden
representations of them as Et:

Et = tanh(Wt[ER, ES ] + bt) (1)

where ER and ES are both encoded by BERT, Wt and bt is the trainable weight
and bias:

ER =
1
n

n∑

i=1

BERT (ri)

ES =
1
m

m∑

j=1

BERT (sj)

(2)

In particular, we only take the output context representation of [CLS] posi-
tion to calculate the average representation of rules and mentions with different
lengths.

3.2 Boundary Detection

The boundary detection module is designed to recognize all possible candidate
span in the input sentence X. Previous work [23,28] simply set a maximum
length of entity, and enumerated all possible spans as a candidate set, which
caused the imbalance of positive and negative samples and the problem that the
number of samples increased exponentially with the length of the input sequence.
To tackle this problem, we use two binary classifiers: one to predict whether each
token is the start index or not, the other to predict the end index. Figure 3 shows
the architecture of boundary detection module.

Given the representation matrix EX output from BERT,

EX = BERT (X), E ∈ Rn×d (3)

where d is the dimension size of the output layer of BERT. The module adopts
two fully-connected layers to detect the start and end position indexed respec-
tively by assigning each token a binary tag (0/1).

P i
start = σ(WstartExi

+ bstart) (4)



424 Y. Lyu and J. Zhong

BERT Encoder

H
is

aides

said

A
rafat

w
ould

hold

the

w
eekly

m
eeting

of the

Palestinian

self-rule

A
uthority

‘s cabinet

in N
ablus

on Saturday

.

0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0Start

End

Candidate
Span

Ex

c1 c2 c3

Fig. 3. The workflow of boundary detection module.

P i
end = σ(WendExi

+ bend) (5)

where P start
i and P end

i represent the probability of identifying the i-th token in
the input sequence X as the start and end position of a candidate span.

After predicting the start and end positions, we combine start index and each
end index greater than it as a candidate span c, and extract the representation
Ec = {Exstart

, Exend
} for semantic matching in next phase.

3.3 Semantic Matching

The semantic matching module is a deep neural network following DSSM [5]
and CLSM [22]. Figure 4 shows the structure of this module. Considering the
ground truth type t+ ∈ T , which is closer to candidate span than other types
in semantic space. We can simply use the deep semantic model to calculate the
relevance of each pair of (c, t).

To directly measure the difference between two sequences of different lengths,
we introduce the Word Mover’s Distance. Considering the embedding of entity
span Ec and the embedding of entity type Et, the cost of WMD can be calculated
by:

min
di,j≥0

∑

i,j

di,j
∥∥ei − e′

j

∥∥

s.t.
∑

i

di,j =
1
lc

,
∑

j

di,j =
1
lt

(6)

where lc and lt are the length of candidate span and entity type vector, ei and e
′
j

are i-th and j-th embedding vector in Ec and Et. The semantic relevance score
between a candidate c and a entity type t is then measured as:

M(c, t) = WMD(Ec, Et) (7)
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Fig. 4. The structure of deep semantic matching module. Let t1 be the matched entity
type of candidate span ci, and all others are negative examples. Send their represen-
tations into the model, calculate the similarity of each pair, and finally output the
posterior probability through softmax layer.

After obtaining the semantic relevance score, we compute the posterior prob-
ability through a softmax function:

P (t|c) =
exp(M(c, t))∑

t′∈T exp(M(c, t′))
(8)

In particularly, we adopt shortcut connections every other layer parallel to
linear transformation before the activation function, as in ResNet [4]. This helps
the training of a deep neural network.

3.4 Loss Function

At the training time, X is paired with two label sequences Ystart and Yend that
represent the ground-truth label of each token xi. We use the binary cross-
entropy loss for the prediction of start and end index:

Lstart = BCE(Pstart, Ystart) (9)

Lend = BCE(Pend, Yend) (10)

The parameters of semantic matching module are estimated to maximize the
likelihood of t+. Equivalently, we need to minimize the following loss function:

Lmatch = −log
∏

(c,t+)

P (t+|c) (11)
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The overall training objective to be minimized is as follows:

L = αLstart + βLend + γLmatch (12)

where α, β, γ ∈ [0, 1] are the hyper-parameters to control the contributions of
different modules. The three losses from two phrase of DSMER are jointly trained
with parameters shared at BERT.

At the test time, candidate spans are first extracted based on boundary
detection module. Then the semantic matching model is used to measure the
similarity of candidate span and entity types, leading to the final answers.

4 Experiments and Discussions

In this section, we conduct experiments on several public datasets and compare
DSMER with models of different NER framework. The following subsections will
describe the implementation details and ablation analysis in detail.

4.1 Datasets and Preprocessing

Datasets. We use corpora provided by CoNLL 2003 Shared Task [26] and
OntoNotes 5.0 [17] to evaluate the model presented in this paper. CoNLL2003
is an English dataset with four types of named entities: Location, Organization,
Person and Miscellaneous. And Ontonotes 5.0 includes 18 types of named entity,
consisting of 11 types (Person, Organization, etc.) and 7 values (Date, Percent,
etc.).

Data Reconstruction. Most NER corpora provide the labeled data for
sequence labeling framework. Different from other NER frameworks, the DSMER
needs to extract the rules from annotation document and random sampling part
of entities for each type from raw dataset.

For each train set, we random choose 10% annotated entities as example
set, and remain 90% as train set as usual. The statistical details are listed in
Table 1. To further experiment, we also test the ratio of 5%, 15%, 20% and 40%
in following experiments.

Table 1. The entity statistics of preprocessed datasets.

Corpus Example set Train set Dev set Test set

CoNLL 2003 [26] 2,350 21,149 5,942 5,648

OntoNotes 5.0 [17] 8,183 73,645 11,066 11,257

As for the boundary detection module, training data requires binary label
for start and end indexes. The ground truth label of entities is converted into
two lists for start and end, which are set to 1 only when the token belongs to
the boundary of the entity.
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4.2 Implementation Details

We use fastNLP1 to implement the model and evaluate all experiments on
datasets. The DSMER model uses BERT as the skeleton. In order to ensure
the effectiveness of the semantic matching method, we only use BERT-base as
a semantic encoder in all the comparison experiments below. All experiments
are run on Nvidia Tesla V100 GPU, which has 32 GB memory to accommodate
larger batch size.

Table 2. Hyper-parameter settings.

Parameters Values

Optimizer AdamW

Initial learning rate 2e–5

Gradient clipping value 1.0

Global dropout rate 0.5

Warmup rate 0.1

Batch size 64

Training epoch 20

Layer of DSM 5

Hidden dim of DSM input 300

We train the model using AdamW optimizer with an initial learning rate of
2e–5, and use warm-up mechanism with linear schedule to adjust the learning
rate. To avoid gradient explosion problem, the gradient clip method is used
as a callback in training. The semantic matching module of DSM follows the
deep structured nerual network in [5], We use 5 fully connected layers, and the
input dimension of candidate span and entity types is 300. All other details of
hyperparameters are listed in Table 2.

4.3 Experimental Results

In order to verify the effectiveness of DSMER, we choose the classic and SOTA
models under different NER frameworks for comparison. For sequence label-
ing framework, we change the encoder module connected to CRF in range
of Bi-LSTM, IDCNN and Transformer. And BERT is also introduced for
the pretrain+finetune framwork. Finally we use the MRC-BERT model to
stand the machine reading comprehension framework. All comparison results
on CoNLL2003 and Ontonotes 5.0 are listed in Table 3 and 4.

Because we use BERT-base as the model skeleton, we respectively give the
experimental results without using the annotation rule and example set to verify
the effectiveness of the semantic matching framework.
1 https://github.com/fastnlp/fastNLP.

https://github.com/fastnlp/fastNLP
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Table 3. Comparison with other NER models on Conll2003.

Framework Model Precision Recall F1

Sequence labeling BiLSTM + CRF [6] – – 90.43

IDCNN + CRF [24] – — 90.54

TENER w/CNN-char [27] – — 91.45

BERT-Tagger [3] – – 92.80

Reading comprehension MRC-BERT [11] 92.33 94.61 93.04

Semantic matching Ours w/o example set 91.75 90.13 90.93

Ours w/o annotation rule 92.75 94.81 93.76

Ours 92.74 95.07 93.89

Experimental results on CoNLL 2003 show a slight improvement by DSMER
without example sets. However, significant improvement has been achieved under
the conditions of only using the example set. At the same time, we observe that
using example set and annotation rule can not improve all factors. This is because
the example set can better represent the scope of the entity type in the semantic
space, but the description text of the annotation rule may cause a certain offset,
which makes the calculation of the semantic similarity also be affected.

Table 4. Comparison with other NER models on OntoNotes 5.0.

Model Precision Recall F1

Sequence labeling LSTM + CRF [6] – – 86.99

IDCNN + CRF [24] – – 86.84

TENER w/CNN-char [27] – – 88.43

BERT-Tagger [3] – – 89.16

Reading comprehension MRC-BERT [11] 92.98 89.95 91.11

Semantic matching Ours w/o example set 90.56 88.79 89.67

Ours w/o annotation rule 92.90 90.27 91.57

Ours 92.95 90.47 91.69

Similar results are also observed in the experiment on the OnteNotes 5.0
dataset. However, the use of annotation rule can still improve F1 score, so
we think it is effective prior knowledge. Comparative experiments show that
DSMER can handle NER problems. We continue to conduct more ablation
experiments in Subsect. 4.4 to analyze the impact of different model designs
on performance.
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4.4 Ablation Studies

The Impact of Example Set. As shown in Table 3 and 4, whether to use
example set has a great influence on model performance. In order to observe the
impact of the size of the example set on the model, we split the data set according
to the split ratio of Subsect. 4.1, and test it on the CoNLL 2003 dataset. The
results are shown in Table 5:

Table 5. The impact of the percentage of example set, experiments on CoNLL 2003.

Percentage Precision Recall F1

5% 91.67 94.23 92.93

10% 92.75 94.81 93.76

15% 92.60 94.95 93.76

20% 91.83 93.79 92.80

40% 91.43 91.88 91.65

It can be seen that the 10% and 15% split ratios have the best effect. And as
the proportion of the example set increases, the overall effect decreases since the
lack of training data. Since all entities in the example set are phrases that can
express their entity type, a large number of entity examples can better express
the position of the entity type in the high-dimensional semantic space. In this
way, the calculation of the distance between candidate span and entity type is
more accurate. But with the increase of the example set, the decrease of training
data makes the model easy overfitting on the training data. This is a trade-off
process for dataset segmentation. Comparing with other models, we choose 10%
as the segmentation ratio.

The Impact of Annotation Rules. How to construct the annotation rule
sentence also has a significant influence on the final results. In this subsection,
we explore difference sources to construct annotation rules and their influence,
including:

– Annotation guideline: the annotation rule from documents, like “find orga-
nizations including companies, agencies and institutions”.

– Wikipedia: the wikipedia definition of entity type, like “an organization is
an entity comprising multiple people, such as an institution or an associa-
tion.”

– Synonyms: word or phrases that mean nearly the same as the entity type
word from Dictionary, like “association”

– All above: encode above three concepts and use the average representation.

Table 6 shows the experimental results on CoNLL 2003. DSMER outper-
forms BERT-tagger by using different types of annotation rules. Among them,
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Table 6. Results of different types of annotation rules on CoNLL 2003.

Model F1

BERT-Tagger 89.16

Annotation guideline 90.21(+1.05)

Wikipedia 89.65(+0.49)

Synonyms 89.90(+0.74)

All above 90.93(+1.77)

the effect of using annotation guideline is the best among the three categories,
because it is the closest text description to the entity annotation. At the same
time, it can be seen that the combined usage of three different kind of rules can
achieve better performance improvement.

5 Conclusion

In this paper, we introduce a novel framework for named entity recognition task
which reflect the natural entity annotation process of human being. The proposed
model obtain state of the art results on public datasets, which indicates the
effectiveness of DSMER. The deep semantic matching based framework shows a
possible new paradigm to tackle such problem. We would like to explore more
variant of the framework in the future.
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