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Datasets used to train neural network models are subject to a range of biases,
which might constitute unwanted artefacts that should not be incorporated in
the trained model [20]. Multiple studies showed that in the ad-hoc retrieval of
full documents the text location is of relevant importance, such as the beginning
in news articles [7,50] or general web search [23]. In contrast, in this study we
specifically probe positional bias in passage collections that are not linked to
the previously studied full document relevance distributions. We operate on the
assumption, based on the findings of the annotation study of TREC’19 Deep
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Abstract. Supervised machine learning models and their evaluation
strongly depends on the quality of the underlying dataset. When we
search for a relevant piece of information it may appear anywhere in a
given passage. However, we observe a bias in the position of the cor-
rect answer in the text in two popular Question Answering datasets
used for passage re-ranking. The excessive favoring of earlier positions
inside passages is an unwanted artefact. This leads to three common
Transformer-based re-ranking models to ignore relevant parts in unseen
passages. More concerningly, as the evaluation set is taken from the same
biased distribution, the models overfitting to that bias overestimate their
true effectiveness. In this work we analyze position bias on datasets, the
contextualized representations, and their effect on retrieval results. We
propose a debiasing method for retrieval datasets. Our results show that a
model trained on a position-biased dataset exhibits a significant decrease
in re-ranking effectiveness when evaluated on a debiased dataset. We
demonstrate that by mitigating the position bias, Transformer-based re-
ranking models are equally effective on a biased and debiased dataset,
as well as more effective in a transfer-learning setting between two dif-
ferently biased datasets.
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Learning data [10] by Hofstétter et al. [23], that inside a passage (made up of
a few sentences) no word position is supposed to be explicitly favored when
matching query and passage sequences.

Transformer-based neural re-ranking models, especially models based on the
large-scale pre-trained BERT model [11], have shown a significant improvement
in ad-hoc retrieval, where a natural language question is asked by the user and a
set of passages is retrieved [35,38]. In this study we evaluate three state-of-the-
art Transformer ranking models with varying characteristics: 1) BERT caT [38]
using BERT with query and passage concatenation, 2) BERTpoT [52] using
a dot-product between query and passage BERT classification (CLS) vectors
and 3) TK [22], a lightweight Transformer-Kernel model that does not require
pre-training. Each of the three architectures exhibits different strengths and
weaknesses, which we describe in Sect. 2.

In the Transformer-architecture, positional information is induced through
absolute position information provided by a positional encoding [48]. This posi-
tional encoding is added to each non-contextualized representation in a sequence
before applying the self-attention. If a bias favoring certain positions in a text
exists the Transformer may implicitly incorporate this bias in its word rep-
resentation as Transformers tend to learn positional information [53]. To our
knowledge, the connection between the explicit positional information of the
Transformer and positional artefacts in common retrieval collections has not
been studied before.

Traditional IR datasets contain relevance judgements for query-document
pairs, where a single judgement covers the full document. In contrast to that,
QA datasets contain exact location spans of the answer or an answer text that
can be partly matched to a position in the document. In our work, we utilize two
widely used QA datasets: MS MARCO [3] and SQuAD 2.0 [42]. Both datasets
are converted to retrieval collections, by setting paragraphs that were selected to
contain the answer as a relevant paragraph for a question. We observe that for the
MS MARCO dataset the positions of the mapped answers strongly favor earlier
positions in the paragraphs, while the SQuAD 2.0 dataset is more balanced
although not completely bias free. The evaluation set is taken from the same
distribution, therefore the evaluation is also biased and models overfitting to that
bias overestimate their true effectiveness. In the case of MS MARCO this bias
is especially concerning as it — because of its size — became the defacto standard
collection in the neural re-ranking community, including as base retrieval training
for transfer learning [27,55].

We propose to create unbiased versions of the datasets by switching the
first and second parts of a passage around a randomly selected position. This
approach does not affect the relevance judgements, since they are on a passage
level, and allows us to train unbiased re-ranking models as well as to measure
the true effectiveness of re-ranking approaches, since relevant matches might now
occur in every part of the passage.

We analyze passage term representations to study the position bias induced in
Transformer based contextualization and answer RQ1 How can we measure the
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degree of position bias in the passage representations? We propose a new metric
to measure the mean average term similarity (MATS) per positional delta of
all terms in the collection to investigate whether the term representations are
independent of the positional encoding or not.

To understand the effects of our debias augmentation in conjunction with
Transformer models we further study the following questions:

RQ2 What effect has the debiasing on the evaluation of Transformers?

We evaluate the effectiveness of our modifications on the original, as well
as the debiased collections. We find that all three models perform better on
the original (biased) evaluation, but their effectiveness drops substantially on a
debiased evaluation set.

RQ3 Does a debiased training result in better generalization?

Training on an unbiased collection shows much more robust results across the
evaluated collections and models, which we view as a more accurate indicator
for their actual effectiveness.

RQ4 Do we observe differences in transfer-learning, based on debiased pre-
training?

We demonstrate the usefulness of mitigating bias in the learned representa-
tions in the scenario of transfer learning between differently biased collections.
We use the larger MS MARCO to pre-train our model variants, before fine-
tuning the models on SQuAD 2.0. The bias-mitigated pre-training shows more
effective results in the fine-tuning, than starting with a biased pre-training.

The contributions of this work are as follows:

— We measure the positional bias of judgments in two popular Open-QA passage
retrieval collections and propose a method to debias the collections;

— We show how three different Transformer-based re-ranking models learn to
incorporate the position bias;

— We demonstrate the importance of mitigating the position bias with debi-
ased evaluation sets and the benefit of debiasing in transfer learning between
collections.

— We publish the source code of our work at:
github.com/sebastian-hofstaetter /transformer-kernel-ranking

2 Background

In this section we first describe the Transformer architecture, followed by the
three Transformer-based passage re-ranking models we employ in this study.

2.1 Transformer

The Transformer-layer [48] is a versatile building block for different architec-
tures. In our work we use an encoder structure to encode a sequence and output
contextualized representations of this sequence. The Transformer architecture
incorporates a natural algorithmic bias on the position of a term in a sequence,
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because it adds a positional encoding to its input sequence. Vaswani et al. [48]
use overlapping sinusoidal-waves per dimension, forming an equidistant relation-
ship among neighbouring terms, whereas Devlin et al. [11] employ a trainable
positional embedding for BERT. This positional encoding is important since the
Transformer otherwise would be entirely invariant to sequence ordering. How-
ever, adding the positional encoding directly to the input means that abso-
lute positional information is retained in the output sequence. Each encoding
is unique to a position of the input sequence. Based on the provided training
examples, the Transformer may tend to learn position-biased representations.

In this paper we define the Transformer as the sequential use of n
Transformer-layers (TLs) as:

in = TL(s1m)
i = TL(s{ ) (1)
TF(s1:m + €1:m) = 515
where $1.,, is the sequence of input embeddings, ej.,, is the positional encoding.
We call this sequence of recursive applications TF.

2.2 BERTcar Ranking Model

First proposed by Nogueira et al. [38] the BERT ¢t approach has become a com-
mon way of utilizing the BERT pre-trained Transformer model in a re-ranking
scenario [35,55]. It uses the capability of the BERT pre-training approach to
compute the relationship of two concatenated sequences, separated by a spe-
cial SEP token and depending on the BERT version a sequence embedding.
The BERT architecture is a simple Transformer model (TF), the effectiveness
comes from the masked language and next sentence prediction pre-training. In
the BERT¢aT ranking model the query (¢i1.,,) and passage (p1.,) sequences as
well as BERT’s special tokens are concatenated (where ; is the concatenation
operator) and after the TF computation we select only the first vector of the
output sequence (which has been initialized with the special CLS token) and
score this pooled representation with a single linear layer (W):

BERTCAT(Ql:mvplzn) = TF([Cst d1:m» SEPypln])l * Ws (2)

BERT ¢at is the current state-of-the art in terms of effectiveness, however it
requires substantial compute at query time and increases the query latency by
seconds [21]. Therefore, we also feature additional models that provide a more
balanced efficiency-effectiveness tradeoff.

2.3 BERTpor Ranking Model

In contrast to the full-interaction BERTcaT model, that requires a full online
computation of all selected passages, the BERTpoT model only matches a single
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CLS vector of the query with a single CLS vector of a passage [34,52]. This makes
it possible to pre-compute contextualized representations for all passages in our
index, as well as to employ a vector-based nearest neighbour retrieval approach.

The BERTpoT model, with - as the dot product operator, is formalized by
two independent TF computations (and their pooled representations by selecting
the first vector output) as follows:

BERTDOT(q1:m7p1:n) = TF([CLSa QI:m])l ' TF([Cstpln])l (3)

BERTpor brings strong query time improvements (a few milliseconds
latency per query) over BERT¢aT, however it still requires the full BERT pre-
computation of all indexed passages, which can be very costly depending on the
collection size.

2.4 TK Ranking Model

The TK model [22], while also utilizing Transformers, is not based on BERT
pre-training, rather it uses shallow Transformers atop word embeddings followed
by an explicit term-by-term interaction matrix and scoring with kernel-pooling
[61]. In contrast to the BERT approaches TK offers us great control to probe
the individual term representations, as it splits the representation learning and
their interactions in two distinct parts.

The first part of TK is learning contextualized representations. TK inde-
pendently contextualizes query (qi.,) and passage (p1.,) sequences based on
pre-trained word embeddings, where the intensity of the contextualization (with
TF) is regulated by a gate («):

Gi = gi * @+ TF(q1.m)i * (1 — a) (@)
ﬁi =pi + TF(pln)z * (1 - a)

The two resulting sequences §i.,, and py., interact in a match-matrix with a
cosine similarity per term pair and each similarity is then activated by a set of

RBF-kernels [51]:
JA 2
ko (cos(di, Pj) — k)
K7 ; = exp (— . (5)

202

Kernel-pooling is conceptually a soft-histogram, which counts the number of
occurrences of certain similarities. Each kernel focuses on a fixed similarity range
with center p; and width of 0. Each kernel results in a matrix K € Rla/xIPl,

These kernel activations are then summed, first by the passage term dimen-
sion j, log-activated, and then the query dimension is summed resulting in a
single score per kernel. The final score is calculated by a weighted sum using the
linear layer Wi:

s:<§log ;Ei‘lfg’fj )WS (6)
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The kernel-pooling technique is position-independent, as every activation for
position j is summed without a weighting them, which allows us to isolate the
positional analysis in the Transformer in Sect. 5.

3 Experiment Design

For the first stage indexing and retrieval we use the Anserini toolkit [54] to
compute the initial ranking lists with BM25, which we use to generate training
and evaluation inputs for the neural models. For our neural re-ranking training
and inference we use PyTorch [39] and AllenNLP [15]. We tokenize the text
with the fast BlingFire library!'. As proposed for the MS MARCO dataset [3]
we evaluate our neural re-ranking systems using mean reciprocal rank (MRR),
normalized discounted cumulative gain (nDCG), and recall (Recall).

For the BERT-based models we use the 6-layer DistilBERT [45] pre-trained
weights and the Adam [26] optimizer with a learning rate of 71076, For TK we
use pre-trained GloVe [40] word embeddings with 300 dimensions® and Adam
with a learning rate of 10~* for word embeddings and contextualization layers,
102 for the kernel-pooling weights.

For the Transformer layers in TK we evaluate 2 layers each with 16 attention
heads with size 32 and a feed-forward dimension of 100. For kernel-pooling we
set the number of kernels to 11 with the mean values of the Gaussian kernels
varying from —1 to +1, and standard deviation of 0.1 for all kernels. We use the
same sinusoidal positional encodings as Vaswani et al. [48], for the document
encodings we shift the start position by 500 to distinguish them from the query
encodings.

Table 1. Collection statistics

Collection # Docs. | # Queries

Train Val. | Test
MS MARCO | 8,841,823 | 502,939 | 6,980 | 48,598
SQuAD 2.0 20,239 | 86,821 |5,000| 5,928

We train all neural models with a pairwise hinge loss and a batch size of
32. The re-ranking depth for each model instance is tuned on the best mean
nDCG@10 of the validation set, as part of an early stopping strategy. For MS
MARCO we evaluate a re-ranking depth until 1000 and for SQuAD up to 100.

4 Dataset Analysis and Debiasing

To better understand the neural models, we first need to look at the source of
the position bias of the training and evaluation data, specifically the distribution
of answer positions in our QA-datasets.

! github.com/microsoft/BlingFire.
2 42B CommonCrawl: nlp.stanford.edu/projects/glove/.
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4.1 Dataset Analysis

The question answering task is strongly linked to ad-hoc information retrieval, as
IR provides the first stage of selecting potential candidate passages that contain
the natural language answer, that should be presented to a user. In addition
to traditional relevance judgements, that cover full documents, the QA datasets
also contain short answer strings or exact spans pointing to the answer in a
passage.

Using QA datasets to evaluate the retrieval portion of the QA pipeline offers
us the unique opportunity of inspecting the answer position, which gives us an
insight into the positional importance inside the relevant passages. For SQuAD
2.0 we follow the approach done for MS MARCO [3] and set a passage as relevant
to a query if the passage is connected to the answer. We provide an overview of
the size of our collections in Table 1, where we observe that MS MARCO is a
much larger collection than SQuAD.

50%
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Fig. 1. QA collection in-passage relative answer positions

In Fig.1 we show the distribution of the QA-answer start positions in their
respective relevant passages for the training sets of MS MARCO and SQuAD.
To determine the answer positions, we matched the available answer tokens to
the passage tokens of the selected passages for both collections and counted
all matches. For MS MARCO we omitted answers that could not directly be
matched in the passage. In this figure, it is evident that the answer positions
in the MS MARCO dataset strongly favor earlier positions in the paragraphs.
MS MARCO was created in a retrieval setting, where annotators were given a
question and a list of 10 possible paragraphs to judge, which may have favoured
passages with answers appearing early in the text. On the other hand SQuAD
2.0, for which annotators were asked to create questions based on a given passage,
is relatively unbiased, as the distribution of answer spans in the paragraphs is
more uniform.
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4.2 Debiasing the Passage Datasets

We have established that MS MARCO answers excessively favor the beginning
of a passage, while SQuAD does not. To explicitly study this phenomenon,
Hofstétter et al. [23] conducted a fine-grained relevance position study. They
found, that if annotators are shown only one query passage pair at a time, anno-
tators select answers uniformly across passages. As we simply cannot re-annotate
a collection of the size of MSMARCO with hundreds of thousands of queries, we
apply an automatic debiasing method to the existing collections.

For each passage p1., in the collection we create a debiased instance p.,, for
which we generate a random number r € {1,...,n}, slice the word sequence at
the r*" index, switch and concatenate the two sub-sequences again:

p~1:n = [pr:n 5 pl:r—l] (7)

As shown in Fig.1 this approach produces near uniformly distributed relative
answer positions for both collections. This approach is minimally invasive as
it only breaks the contextualization at a single point per passage, without the
need for additional annotations. In a pilot study we also experimented with
sentence splitting based rotation, however we found that in the MSMARCO
web-page collection too many passages do not contain punctuation and therefore
the sentence split approach does not produce uniform answer positions.

Table 2. MATS statistics for TK’s contextualized passage vectors. Lower MATS means
less position bias.

Training | MS MARCO SQuAD

MATS | Std. dev. | MATS | Std. dev.
Original |0.176 |0.046 0.056 |0.014
Debiased | 0.021 | 0.006 0.007 | 0.002

5 Transformer Bias Analysis

In this section we probe term-wise Transformer representations to determine
their bias across positions. Both BERT model variants incorporate their scoring
decision mechanism inside the Transformer layers and only use the CLS vector
representation, hiding individual term interactions inside the model. The TK
model on the other hand utilizes every passage term representation in the cosine
match matrix, which allows us to decouple the Transformer layers from the rel-
evance scoring and analyze the passage term representations of a trained model
on their own.

We now discuss RQ1 How can we measure the degree of position bias in the
passage representations? by analyzing the implicit bias of the absolute position
of a term in a sequence. If a contextualized vector contains enough information
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about the original position, then a bias is measurable when we compare different
vectors of the same term. We propose to compare the cosine similarity of the
contextualized representations r between occurrences of the same term t across
different passages computing the average term similarity (ATS) at distance Aa
for all terms in the collection ¢ € 7. This is formalized as follows:

Z cos(rl ,rt.)
(rul,rf VECY, Aa (8)
Ot,Aa:{( 217 Tas |Aa7|a1*a2| (alvtaz)ec}

ATS(Aa) Z

e Aa\

fh is the representation of term ¢ at absolute position a;. The set

Ct,aq 1s a set of all couples of representations of term ¢, which occur in the
passages with a distance between their absolute positions of Aa = |a; — az| in
the collection C. The mean ATS difference to the first point (MATS) is computed
as:

where r

max(Aa)
1
MATS = ———MM AT — ATS(¢ 9
S @7 L TS0 ATS() (9)

MATS aggregates ATS across all available positions in the passages and
allows us to formally compare the different distributions. In Table 2 we show
TK’s MATS for both collections.

In Fig.2 we show the ATS for different (Aa) along the x-axis using TK
passage term representations on the MS MARCO collection. The shaded area
corresponds to the standard deviation. In this plot, an unbiased contextualization
would result in a horizontal line, with a uniformly distributed standard deviation
of the vectors. A set of contextualized vectors naturally has a standard deviation,
as each vector, even for the same term is influenced by different context terms.
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Fig.2. ATS and standard deviation (y-axis) of same-term occurrences in different
passages along positional Aa of each term pair (x-axis) trained and evaluated on the
MS MARCO collection with TK passage term representations.
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It is evident from observing Fig.2 and Table 2, that the TK model incurs
a strong positional bias, especially for deltas smaller than 20. This shows the
influence of the bias in the training data, which conditions the contextualized
vectors on their absolute position. Using a debiased training set improves the
representations and makes them much less dependent on their position. The
SQuAD collection, not pictured in Fig.2, exhibits a similar pattern, although
dampened as the collection is less biased.

6 Retrieval Results

In this section we discuss our effectiveness related research questions with an
emphasis on the differences in using the original vs. debiased training and eval-
uation, including the conclusion we can draw from them:

RQ2 What effect has the debiasing on the evaluation of Transformers?

We look at the two collections separately to answer this RQ. In Table 3 we
have the results for the heavily-biased MS MARCO collection. We compare
each measure by all possible training and evaluation approaches for all three
Transformer models. The delta shows the relative difference between the original
and debiased evaluation per training type. We can see that across all Transformer
models we have a substantial drop in effectiveness when trained on the original
training set and evaluated on the debiased set. This shows how the models learn
to prioritize the beginning of the passages, and cannot generalize well to the
scenario where answers are located in evenly distributed across the passage. The
SQuAD results in Table 4 on the other hand offer a different picture with only
minor differences between original and debiased evaluation sets. This is to be
expected, as we showed in Sect. 4 that the SQuAD collection is almost unbiased
in its original form.

RQ3 Does a debiased training result in better generalization?

In contrast to the poor original training to debiased test set results on
MSMARCO in Table 3, using the debiased training set we observe similar results
on the two test sets with little delta across all three models. These debiased
training results are better than those using original training to debiased test
sets, leading us to the conclusion that these results represent the true general-
ized effectiveness of the models. For the SQuAD results in Table 4 we make an
interesting observation, that some of the debiased trained models outperform
those trained on the original training sets when applied to the original test sets.

RQ4 Do we observe differences in transfer-learning, based on debiased pre-
training?

Finally, we look at a common transfer learning scenario: We utilize the large-
scale MSMARCO as first retrieval pre-training and then transfer the trained
model to a smaller collection (SQuAD) and train it again. This is especially
helpful in production scenarios that require efficient models and do not provide
ample training data.
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Table 3. MSMARCO re-ranking results of original and debiased training sets (rows)
on the original and debiased test sets (columns). Each measure uses a cutoff of 10 and
the smallest absolute margin per block is marked in bold.

Model MSMARCO - test
nDCG MRR Recall
Training | Orig. | Deb. | A Orig. | Deb. | A Orig. | Deb. | A

BERTcAT | Original |0.432(0.395|—9.4% |0.372[0.336| —10.7% | 0.630|0.594 | —6.1%
Debiased | 0.416 | 0.415 | —0.2% | 0.357 | 0.355 | —0.6% |0.617 | 0.617 | 0.0%

BERTpoT | Original |0.373[0.329| —13.4% | 0.316 | 0.276 | —14.5% | 0.567 | 0.509 | —11.4%
Debiased | 0.362|0.364 | 40.6% | 0.305 | 0.307 | 4+0.7% | 0.555 | 0.554 | —0.2%
TK Original |0.371|0.307 | —20.8% | 0.312|0.254 | —22.8% | 0.567 | 0.484 | —17.1%
Debiased | 0.356 | 0.355 | —0.3% | 0.298 | 0.296 | —0.7% |0.551 | 0.552 | +0.2%

Table 4. Retrieval effectiveness results of original and debiased SQuAD training sets
(rows) on the original and debiased SQuUAD test sets (columns). Each measure uses a
cutoff of 10 and the smallest absolute margin per block is marked in bold.

Model SQuAD - Test
nDCG MRR Recall
Training | Orig. | Deb. | A Orig. | Deb. | A Orig. | Deb. | A

BERTcar |Original [0.9080.902|—0.7% |0.892|0.884| —0.9% | 0.957|0.956 | —0.1%
Debiased | 0.910|0.905| —0.6% | 0.894 | 0.885 | —1.0% |0.9590.956 | —0.3%
BERTport | Original |0.7800.783|+0.4% |0.734|0.738|40.5% |0.924|0.919 | —0.5%
Debiased | 0.784 0.783| —0.1%{0.740|0.739| —0.1%  0.919|0.919| 0.0%

TK Original |0.846|0.840|—0.7% |0.818|0.811|—0.9% |0.933/0.930| —0.3%
Debiased | 0.848 |0.844 | —0.5% | 0.820|0.816 | —0.5% |[0.932|0.931| —0.1%

In Table 5 we show our transfer learning results. We recall that the original
MS MARCO is heavily biased and SQuAD is not. The debiased MS MARCO
is closer to the SQuAD answer distribution. In general, using the MS MARCO

Table 5. MS MARCO to SQuAD transfer learning results. Each measure uses a cutoff
of 10. Significance is tested between training variants per model with Wilcoxon (p <
0.05).

Model SQuAD original test
Train Sig nDCG |MRR Recall

BERTcaT | SQuAD (Original) a [0.908 0.892 0.957
MS (Original) — SQuAD (Original) |b |0.913 |0.898 |0.957

[

MS (Debiased) — SQuAD (Original) 0.911 0.896 0.958
BERTpot | SQuUAD (Original) a |0.780 0.734 |0.924
MS (Original) — SQuAD (Original) |b |0.788% |0.744% [0.922
MS (Debiased) — SQuAD (Original) 0.792°%|0.748" | 0.927°
TK SQuAD (Original) 0.846 [0.818 |0.933
MS (Original) — SQuAD (Original) 0.854% |0.827% |0.936
MS (Debiased) — SQuAD (Original) 0.857%" | 0.832°% | 0.937

o

o o Q2
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pre-training improves the SQuAD results. For the production scenario models,
that enable query independent passage representation caching - BERTpor and
TK — we observe another significant increase in effectiveness on SQuAD using
the debiased MS MARCO training. Only BERTcaT does not benefit from the
debiased pre-training.

7 Related Work

Biases in Datasets. Recent studies have observed a variety of artefacts (biases)
in datasets of several NLP tasks. Gururangan et al. [20] demonstrate that for
Natural Language Inference (NLI) datasets it is possible to identify the correct
label by only looking at the hypothesis, without observing the premise based on
superficial patterns generated while constructing the dataset. This is also con-
firmed by Poliak et al. [41] and Tsuchiya et al. [47]. McCoy et al. [36] shows that
state-of-the-art models follow simple heuristics to identify the correct answer.
Glockner et al. [18] show the deficiency of state-of-the-art NLI architecture by
testing them in an unbiased dataset. Also QA and Visual QA (VQA) suffer from
dataset artefacts. In fact, Jia and Liang [24] show that human-level performance
on SQuAD can be achieved by only relying on superficial cues, and Chen et al.
[8] show that in NewsQA, 73% of the answers can be predicted by simply iden-
tifying the single most relevant sentence. Formal et al. [14] studied the reliance
of the ColBERT [25] model on exact term matches in IR.

Another form of bias affecting IR test collections is the pool bias [30,32]. This
bias is a side effect of the sampling method used to build these test collections
called, the pooling method [29]. This is caused by the presence of non-annotated
relevant documents in the collection which makes the evaluation of newly devel-
oped retrieval systems less reliable [31,33].

Social biases are another form of bias manifesting in NLP and IR datasets
[12,17,44]. In this case these biases are not generated by the way the datasets
were constructed but by historical and cultural discriminations manifesting as a
prejudice or unfair characterization of the members of a particular group.

Bias Mitigation Methods. The research on the mitigation of these biases has
branched out into two directions. One defining methods to mitigate biases when
constructing the datasets. The other devising mechanism to make models robust
against the presence of bias in datasets. Agrawal et al. [1], Anand et al. [2], and
Min et al. [37] develop methods to build unbiased datasets without a variety of
biases. Other forms of bias removal consist in learning unbiased representations.
Bolukbasi et al. [6] learned unbiased word embeddings to mitigate gender bias.
Belinkov et al. [5] propose two probabilistic methods to build models that are
more robust to biases and better transfer across datasets. Other methods to
develop more robust NLP methods have been developed using adversarial meth-
ods [4,9,13,19,28,43]. In the IR setting Gerritse et al. [16] studied and proposed
methods to mitigate echo-chamber biases in personalised search.
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Modeling Relative Position in Transformers. To overcome this limitation in
machine translation tasks, Shaw et al. [46] developed a Transformer with a
relation-aware self-attention, which induces the model to learn a relative posi-
tional encoding in a translation task. However, we have tested this Transformer-
version and observed no improvement over the original version used in this paper.
Also in translation tasks, Wang et al. [49] extend the transformer developed by
Shaw et al. [46] to model hierarchies based on a dependency tree. We believe
that these transformer-versions would benefit from our work, however we leave
this to future work.

8 Conclusion

We observed a judgment bias towards the beginning of passages of selected
answers in two popular QA datasets used for retrieval. Furthermore, the biased
evaluation data hides the existence of this bias in the data. To overcome this
problem, we proposed a dataset debiasing method, by switching two parts of a
passage split at a random point, as the relevance of word matches in passage
retrieval should be position independent.

We showed how the excessive focus on earlier positions in the data prop-
agates through Transformer-based contextualization to form position-biased
representations. Our results show that three different Transformer ranking
models (BERTpoT, BERTcaT, and TK) trained on the original (biased) MS
MARCO collection, substantially lose effectiveness on the debiased version. On
the SQuAD collection, acting as an unbiased control dataset, the models do not
show this behavior.

We demonstrate that by using a debiased training data transformation,
the Transformer models achieve the same performance on biased and debiased
datasets, showing the increased generalizability of the models. Finally, we also
show that for production-scenario transfer-learning, the debiased pre-training is
the most effective strategy. This leads us to the conclusion that going forward,
the community should adopt the simple data-transformation for debiasing the
MSMARCO pre-training in these transfer-learning scenarios.
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