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Abstract. We investigate the self-attention mechanism of BERT in a
fine-tuning scenario for the classification of scientific articles over a tax-
onomy of research disciplines. We observe how self-attention focuses on
words that are highly related to the domain of the article. Particularly, a
small subset of vocabulary words tends to receive most of the attention.
We compare and evaluate the subset of the most attended words with
feature selection methods normally used for text classification in order to
characterize self-attention as a possible feature selection approach. Using
ConceptNet as ground truth, we also find that attended words are more
related to the research fields of the articles. However, conventional fea-
ture selection methods are still a better option to learn classifiers from
scratch. This result suggests that, while self-attention identifies domain-
relevant terms, the discriminatory information in BERT is encoded in
the contextualized outputs and the classification layer. It also raises the
question whether injecting feature selection methods in the self-attention
mechanism could further optimize single sequence classification using
transformers.

Keywords: Neural language models · Text classification · Scholarly
communications

1 Introduction

The annotation and classification of scientific literature is a crucial task to make
scientific knowledge easily discoverable, accessible, and reusable, accelerating
scientific breakthroughs by helping scholars locate and understand the right
research, making connections, and overcoming information overload. Some exam-
ples of efforts to structure scientific literature include scientific search engines
like Semantic Scholar [1] and Microsoft Academic [23]. Both rely on knowl-
edge graphs to enable a structured representation of scientific knowledge that
supports applications like topic-driven search and recommendation. Similarly,
scientific publishers have released knowledge graphs such as SN SciGraph [7] in
order to more effectively organize their publications and increase automation.
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Other efforts like ORKG [8] rely on knowledge graphs to structure the actual
contributions described in the publications, making research results on a specific
topic comparable across the literature.

Publications are therefore being annotated with information about their con-
tent, which includes topics [1], fields of study [23], concepts [7], and research fields
[8]. Such metadata is generally based on controlled vocabularies and arranged
according to a taxonomy [7,8], thesaurus [1,23] or ontology [21]. In some cases,
the annotation process can be fully automatic [1,23]. However, authors are often
asked to manually classify their contribution in the right categories, which is
tedious and error-prone. In other occasions, this task falls under the responsibil-
ity of a reduced number of senior expert editors, making the process expensive
and slow [21].

In this paper, we focus on the task of classifying scientific publications against
a taxonomy of scientific disciplines. A wide variety of approaches are suitable
for this task, including machine learning classifiers that rely on high-dimensional
sparse representations [10], deep learning classifiers using dense representations
[11], and rule-based or heuristic methods [21]. Encouraged by the success of
recent developments in natural language processing and understanding, where
pre-trained transformer language models dominate the state of the art [27],
herein we focus on BERT [5] and its different flavors specialized in the scientific
domain: BioBERT [16] and SciBERT [2].

Our experiments confirm that using transformers to train scientific classifiers
generally results in greater accuracies compared to linear classifiers that were
until now regarded as strong baselines [11]. We also observe that fine-tuning
pre-trained transformers on domain-specific corpora contributes to this goal.
However, despite previous research focused on interpreting and understanding
how transformers encode information [4,9,15,20,25], the actual mechanism by
which fine-tuning impacts on our classification task is still unclear. In an effort
to shed light on this matter, we focus on analyzing the self-attention mechanism
inherent of the transformer architecture [26]. Our findings show that the last layer
of BERT attends to words that are semantically relevant for the scientific fields
associated with each publication. This observation suggests that self-attention
actually performs some type of feature selection for the fine-tuned model.

We investigate the possible relation between self-attention and feature selec-
tion methods from different perspectives, including vocabulary overlap, ranking
similarity, domain relevance, feature stability, and classification performance.
Our results open a future research path to determine whether injecting fea-
ture selection methods in the self-attention mechanism could derive even better
results for single sequence classification using transformer architectures.

Our main contributions in this paper are the following:

– We leverage the vertical pattern present in the transformer self-attention
mechanism of BERT, SciBERT and BioBERT, where some words receive
more attention on average than the rest of the words, and compare it against
conventional feature selection methods used in text classification.
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– We find that self-attention has interesting properties as a feature selection
method. The most attended words are in general more relevant to the pub-
lication domain than those found using conventional approaches to feature
selection. The stability of the features resulting from self-attention is in line
with the results obtained through conventional approaches. However, when
used to learn classifiers from scratch, methods like chi-square and information
gain contribute to train better classifiers.

– We analyze from a semantic point of view the self-attention mechanism and
quantify the amount of domain knowledge it encodes in the hidden states of
the last layer. To this purpose, we rely on ConceptNet [24], a commonsense
knowledge graph where attended words are mapped to concepts from which
we derive their corresponding domains.

The remainder of the paper is structured as follows. Section 2 describes
related work in the annotation of scientific publications, classification, trans-
former language models, and other work focused on the analysis of transformer
self-attention. In Sect. 3, we present experimental results classifying research
papers into a scientific taxonomy. In Sect. 4, we motivate the analysis of self-
attention as feature selection with examples of attended words and scientific
categories. In Sect. 5, we quantify the relation between self-attention and feature
selection methods. Finally, Sect. 6 concludes the paper1.

2 Related Work

Annotating research articles with entities such as research fields or topics is
addressed in the literature using entity recognition and similarity measures
between entity labels and their mentions [3]. In Microsoft Academic Graph
[23] the candidate entities (field of study) are identified using string matching
between the entity keywords and their paper mentions, then rules are applied to
gather more candidates and to filter out the less relevant entities. Similarly, the
CSO classifier [21], which assigns articles to concepts in the Computer Science
Ontology2, first identifies concepts explicitly mentioned in the text and then,
in an effort to find entities not explicitly mentioned, it uses a similarity mea-
sure based on word embeddings. In the Semantic Scholar literature graph [1],
an ensemble of tools is used to annotate entities: statistical models for entity
span prediction and disambiguation, rules for string-based entity spotting, and
off-the-shelf tools3.

In addition, different models can be used for this task, including SVM [10] or
softmax classifiers [14]. Mai et al. [17] proposed classifiers based on convolutional
[13] and recurrent neural networks [30] to annotate research articles. However,

1 Tables, datasets and notebooks to reproduce our experiments are avail-
able in https://github.com/expertailab/Is-BERT-self-attention-a-feature-selection-
method.

2 See http://cso.kmi.open.ac.uk/.
3 https://sobigdata.d4science.org/web/tagme/tagme-help.

https://github.com/expertailab/Is-BERT-self-attention-a-feature-selection-method
https://github.com/expertailab/Is-BERT-self-attention-a-feature-selection-method
http://cso.kmi.open.ac.uk/
https://sobigdata.d4science.org/web/tagme/tagme-help
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such deep learning classifiers need to be trained from scratch and depend on the
network architecture. On the contrary, neural language models and particularly
transformers like GPT-2 [19] or BERT [5] are pre-trained on a large corpus and
then fine-tuned for classification by just adding a linear classifier to the model
output. This approach has proven to successfully tackle several NLP tasks [27],
including text classification. In the scientific domain, SciBERT [2] and BioBERT
[16] have also reported state of the art results. Researchers are investigating the
mechanics underlying BERT [20], analyzing its hidden states and outputs [9,25],
as well as the self-attention mechanism [4,15]. Unlike previous approaches [4,15],
we semantically analyze the words that are attended above average in the last
hidden state, leveraging the commonsense knowledge represented in ConceptNet,
and quantify the relation between attention and feature selection methods often
used in text classification.

3 Fine-Tuning Language Models for Text Classification

We evaluate the use of language models on a text classification task where
research articles are labeled with one or more knowledge fields. To this pur-
pose, we choose: i) BERT and GPT-2, pre-trained on a general-purpose corpus,
ii) SciBERT, pre-trained solely on scientific documents, and iii) BioBERT, pre-
trained on a combination of general and scientific text. Table 1, provides rele-
vant information about each language model, its pre-training and vocabulary.
BioBERT uses the same tokenization method and vocabulary as BERT, while
SciBERT adopts SentencePiece, based on WordPiece tokenization. The overlap
between the vocabularies of BERT and SciBERT is 42%, which shows a sub-
stantial difference in the most frequently used words in the scientific domain
and general-purpose documents. We choose the base version of BERT models

Table 1. Language models pre-training information.

Model Tokenizer Vocabulary Corpus Domains steps/epochs

BERT WordPIece 30K BookCorpus (2.5B

tokens) + Wikipedia

(0.8B tokens)

General 1M steps

BioBERT 1.1 WordPiece BERT BERT corpus +

PubMed abstracts

(4.5B tokens)

General +

Biomedic

1M steps

BioBERT 1.0 WordPiece BERT BERT Corpus +

PubMed abstracts

(4.5B tokens) + PMC

full-text articles

(13.5M tokens)

General +

Biomedic

470K steps

SciBERT SentencePiece 30K Semantic Scholar

(3.17B tokens) (1.14M

full text papers)

18% Computer

Science and 82%

Biomedical

Not reported

GPT-2 Byte Pair

Encoding

(BPE)

50k 8 million web pages,

except Wikipedia

(40GB of text)

General Not reported
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(12 layers, 768 hidden size, 12 attention heads per layer) and a comparable model
for GPT-2.

To fine-tune BERT, BioBERT and SciBERT on our multilabel classification
task, we follow the guidelines provided by Devlin et al. [5] for single-sentence
classification. We take the last layer encoding of the classification token <CLS>
and add an N-dimensional linear layer, with N the number of classification labels.
We use a binary cross-entropy loss function to allow the model to assign inde-
pendent probabilities to each label. For GPT-2 we also add a linear layer on top
of the last hidden state for the classification token. We train the models for 4
epochs, with batch size 8 and 2e–5 learning rate.

As a baseline, we use an SVM with a linear kernel [6]. We follow a one-vs-all
strategy to train a binary SVM classifier per category, with grid search for the
regularization parameter. We use WordNet to lemmatize the words, whenever
they exist in the WordNet lexicon, and remove stop words. In addition, we use
fastText [11] to learn a hierarchical softmax classifier using n-gram embeddings.
We learn binary classifiers for each category, with automatic hyperparameter
optimization to fix learning rate, number of epochs, and n-gram length.

We gather our dataset of scientific articles from a broad range of knowledge
fields in SciGraph [7], where articles are labelled following the ANZSRC4 taxon-
omy. This taxonomy comprises 22 first level categories, such as Economics, Law,
and Computer Science, each of them with their own subcategory tree. From Sci-
Graph, we extract the titles and abstracts of articles published in 2011 and 2012,
as well as their categories. In total, we gather 405K papers, 187K from 2011 and
the rest from 2012. In average, each first level category has 20,164 articles with
a standard deviation of 31,791, which shows how unevenly the different cate-
gories are covered. Some of them are well represented, like Medical And Health
Sciences, with 138,728 articles, while others, like Studies In Creative Arts And
Writing, have little over a hundred articles.

We fine-tune the language models to learn to classify papers on any of the
22 first level categories. We train on papers only from 2011 and evaluate using
5-fold cross validation. Table 2 shows that the transformers pre-trained on a
scientific corpus generally achieve greater f-measure in this task. The exception
is BioBERT-1.0, which scores under BERT. BioBERT-1.0 was pre-trained on
a lower number of steps than the other transformers, which could be affecting
its performance. GPT-2 is the model producing the lowest f-measure, which
shows evidence of a potential mismatch between the vocabulary and quality of
the scientific corpus and the Web corpus where it was pre-trained, which may
be undermining its performance. Overall, transformers produce more accurate
classifiers than the linear methods used as baselines.

To further explore the relation between the pre-training and fine-tuning cor-
pora, we learn classifiers to label articles with second level categories in ANZSRC
for some of the first level categories. For this experiment, we enlarge our dataset
with articles published in 2012 and evaluate only the best language models, dis-
carding BioBERT 1.0 and GPT-2. The results in Table 2 show that, in general,

4 Australian and New Zealand Standard Research Classification.
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Table 2. Evaluation results of the multilabel classifiers (f-measure) on first level cat-
egories (a), and on second level categories (b).

First level categories Second level categories

Model f-measure Categories Articles Subcat. Bert BioBERT-1.1 SciBERT SVM fastText

SciBERT 0.838 Biological 65340 9 0.883 0.884 0.887 0.880 0.871

BioBERT-1.1 0.825 Medical and Health 58068 18 0.838 0.843 0.854 0.836 0.819

BERT 0.819 Chemical 40837 8 0.858 0.862 0.865 0.854 0.847

BioBERT-1.0 0.818 Mathematical 28723 5 0.886 0.883 0.891 0.884 0.878

GPT-2 0.808 Computer Sciences 20777 6 0.861 0.862 0.864 0.861 0.849

SVM 0.807 Language 2233 6 0.911 0.900 0.903 0.900 0.906

fastText 0.790 Hist. And Archelogy 2076 4 0.955 0.950 0.941 0.946 0.946

Built Environment 140 4 0.495 0.700 0.697 0.808 0.804

Creative Arts 132 4 0.639 0.788 0.781 0.925 0.828

scientific categories are dominated by SciBERT and BioBERT-1.1. However, for
categories in humanities, e.g. Language, and History and Archaeology, BERT
produces better classifiers, providing evidence that the general-purpose knowl-
edge encoded in BERT is more relevant in those cases. Interestingly, when there
are few examples, e.g., in categories Built Environment and Creative Arts, the
general knowledge encoded in BERT is of little use for the classifiers, while the
scientific knowledge in BioBERT-1.1 and SciBERT contributes to achieve higher
f-measure. Linear classifiers outperform transformer-based models in such under-
represented categories.

4 Exploring Self-attention Heads

Above we show that BERT-based models are able to produce high performance
multilabel classifiers. However, we know little about what makes them good at
this task. In this section, we inspect the self-attention mechanism underpinning
such models as a key element to understanding this behavior.

According to Clark et al. [4], attention weights indicate how relevant a par-
ticular word is when computing the next representation for the current word.
To illustrate this statement, Fig. 1, depicts the mean weights of the 12 self-
attention heads in the last hidden state of the fine-tuned models for two papers
titled “BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding”, and “A universal long-term flu vaccine may not prevent severe
epidemics”. The plots clearly show the so-called vertical pattern [15], where a
few tokens receive most of the attention, such as training, deep, transformer,
language, and understanding in the first sentence, and flu, vaccine, prevent,
severe and epidemic in the second. Note how while the vocabulary captured by
SciBERT includes the word bidirectional, BERT uses subwords to represent it.

We do not include special tokens <SEP> and <CLS> since the amount of
attention received by these tokens makes the attention received by the other
tokens barely noticeable. Clark et al. [4] speculate that the attention on <SEP>
in one head could indicate that the attention heads function is not applicable,
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while Rogers et al. [20] interpret the attention on <CLS> as the attention on a
pooled sentence-level representation.

From these two examples, we observe that the most attended words in the last
hidden state are highly related to the research fields of the articles: Computer
science and Medical and Health Sciences. So, we look into this relation and
identify the words that receive most vertical attention in the last hidden state
for a subset of our dataset where each first level category is represented with at
most 500 papers. First, for each input sequence we calculate the mean weights
for the 12 attention heads in the last hidden state. Next, we generate a new
weight matrix grouping subwords into words by averaging the subword weights.
Finally, we gather the words with a vertical mean attention above the mean
attention in the weight matrix. This results in 8,840 attended words for BERT,
17,773 for BioBERT, and 12,265 for SciBERT, corresponding to 16%, 32%, and
22% of the vocabulary managed by each language model.

(a) BERT (b) SciBERT

(c) BioBERT-1.1 (d) SciBERT

Fig. 1. Average weights in the self-attention heads of the last hidden state.

Table 3 shows the top 20 most frequent attended words in three research
fields: Biology, Computer Science and History and Archaeology. As can be noted,
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most of such words are highly related to the specific research field, appearing
along a few punctuation marks and some stop words. While frequent attention
to periods and commas was already reported in [4,15], the reason why this
happens is not clear yet. Rogers et al. [20] suggest that it must be related to
model overparameterization while Clark et al. [4] point at the high frequency of
these tokens in the corpus. Stop words are also highly frequent words and the
models could be learning to attend to them as in the case of punctuation marks.

Table 3. Most attended words above average attention in the fine-tuned models.

06 - Biological sciences 08 - Computer science 21 - History and archaeology

BERT BioBERT SciBERT BERT BioBERT SciBERT BERT BioBERT SciBERT

, of . , the . , the .

Species The , . of , . of ,

Gene In Gene Data Data Data History In History

Cell . Species ) - Information ) History Century

Cells To Cell Image Time Algorithm Historical - Historical

Protein Species The network Information Network Archaeological To Modern

. And Protein Information Model Image Cultural Century The

Genetic For Expression Networks System Algorithms The . Archaeological

Plants - Genes Control Algorithm As Social and Social

Plant Gene Genetic Images In Networks Archaeology A Cultural

Expression A Cells Algorithms Systems Systems Political Historical American

Growth Cell Growth Software Based Model Culture Period Human

Genes Protein Plants Neural A Analysis Women Early Literature

) Genes Plant Optimization Network Software Literary Modern Data

Molecular Cells Dna Simulation To Time Heritage Archaeological State

Dna On Proteins Learning Algorithms Images Precipitation World Women

Stress With Molecular Search Analysis Control Education Social Life

Populations Expression Populations Web Image Simulation Identity On Period

Population Genetic Population A Models Problems Literature Years Political

Genome Plants Water Classification User Such Past American Development

5 Feature Selection

In the previous section we show that fine-tuned BERT models concentrate their
attention on a subset of the overall vocabulary that ranges between 16% to 32%
of the words. Following this observation, we hypothesize that such attention on
a selected fragment of the vocabulary is the transformer version of feature selec-
tion. However, rather than picking the most interesting features for a classifier,
self-attention selects words that heavily influence the representation of the rest
of the words in the same sequence. We investigate whether there is a relation
between feature selection algorithms commonly used for text classification and
the most attended words in the fine-tuned language models.

We center our analysis on four feature selection methods used for text classifi-
cation [14,18,22]: Chi-square (chi), Information Gain (ig), Document Frequency
(df), and Categorical Proportional Difference (pd). Chi-square measures the lack
of independence between a word and a class; its value is zero if the word and
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the class are independent. Information Gain measures the entropy reduction of
the dataset when it is split by a feature value. Thus, words with larger informa-
tion gain discriminate the data ensuring a lower entropy. Document Frequency
counts the number of documents where a term appears. Categorical Proportional
Difference measures the degree to which a word contributes to differentiating a
particular category from others.

We compare the most attended words with those selected by the above-
mentioned feature selection methods, and measure how similar the rankings
of words sorted by their average attention are to the rankings produced by
each feature selection method. In Table 4, we report the vocabulary overlap
of the most attended words and feature selection methods after filtering out
the stop words. The number of features selected was limited to the top k words,
where k is the number of words attended above average by each language model.
Indeed, the results indicate a large overlap. Fine-tuned language models for text
classification attend up to 64% of the common terms returned by dc, the most
simple of our feature selection baselines, which itself performs similarly to ig and
chi [29]. For all three models, their most attended words have the largest overlap
with document frequency, followed by information gain, chi-square and, finally,
proportional difference.

Table 4. Word overlap:
most attended vs. feature
selection.

LM FS %

BERT dc 60%

ig 54%

chi 43%

pd 12%

BioBERT-1.1 dc 64%

ig 55%

chi 44%

pd 25%

SciBERT dc 58%

ig 49%

chi 42%

pd 20%

Fig. 2. Rank-biased overlap at different p values
between most attended words and feature selection
algorithms.

To measure the similarity between rankings we apply the Rank-Biased Over-
lap (RBO) [28] metric. RBO ranges between 0 to 1, from less to more similar,
and was designed for non-conjoint rankings, i.e. both lists may have different
items, may be incomplete and with different length. Through the p parameter,
RBO models the probability to continue considering the overlap at the next rank,
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having examined the overlap at the previous rank. Figure 2 shows the RBO for
the attention and feature selection rankings. We set p to 0.9, 0.99, 0.999, and
0.9999, indicating the model to assign the first 10, 100, 1,000, and 10,000 ranks
respectively, approximately 85% to 86% of the weight of the evaluation.

While the BERT and SciBERT attended words rankings are more similar
to the ranking of discriminative words (ig) for p values of 0.9 to 0.999, they
finally converge with the ranking of common terms (dc), too. On the other hand,
the BioBERT-1.1 ranking is clearly most similar to the common term rankings
(dc). We think that the difference between the three models could be related
to the subword vocabulary and pre-training corpus. Subword vocabularies are
tightly related to the training corpus since they are generated to represent the
whole corpus with the minimum number of word pieces. BERT trains its own
subword vocabulary on a general corpus and during fine-tuning learns to attend
more to discriminative words in the scientific domain. SciBERT also uses its
own vocabulary trained on a limited scientific corpus, enabling the model to
attend to discriminative words (like BERT) but also to common words due to
the domain knowledge it encodes. BioBERT on the other hand reuses the BERT
subword vocabulary and therefore many scientific terms are split in a suboptimal
number of pieces. This has a negative impact on the ability of the self-attention
mechanism to focus on discriminative words, and subsequently on the attention
to common terms.

5.1 Domain Knowledge

We investigate the domain relevance of the words that are most attended by
the language models and compare it with words produced by the feature selec-
tion methods. To this end, we search the words in ConceptNet and leverage the
relation HasContext to identify the domains where they are commonly used.
We manually map the 22 first level categories in ANZSRC to the correspond-
ing concepts in ConceptNet. To deal with morphological variations like plurals
and conjugations we use the FormOf relation, and to increase the coverage we
traverse the isA type hierarchy one level up looking for the corresponding con-
cept. For example, the word networking is a FormOf of the root word network,
which in turn HasContext Computer Science and Electronics, and the concept
Electronics isA type of Physics.

For each first level category, we gather the top 100 most attended words, as
well as those with the highest scores according to each feature selection method.
Then, for each word, we look for the corresponding context according to Concept-
Net. Table 5 reports the domain relevance obtained for each category. In BERT
and SciBERT, self-attention identifies more domain-relevant words than feature
selection methods. However, this is not the case for BioBERT. Recall that in our
sample dataset, the set of most attended words produced by BioBERT is the
largest (32%) with respect to the vocabulary, which is a clear indication that the
model spreads its attention more widely. Weighing the words by their term fre-
quency (TF), attended words remain more domain-relevant than those obtained
through feature selection. In fact, the domain relevance of the frequent attended



Is Self-attention a Feature Selection Method? 171

Table 5. Words per category matching the corresponding ConceptNet context.

Mean Self-Att. Feat. Sel. Self-Att. (TF) TF TF/IDF

Category BERT BioB. SciB. dc ig chi pd BERT BioB. SciB. dc ig chi pd dc ig chi pd

Mathematics 36 18 28 29 18 16 25 60 54 53 51 52 53 33 53 53 55 35

Physics 21 4 22 18 11 13 20 41 42 38 33 33 38 18 41 41 42 18

Chemistry 20 7 18 7 15 16 20 29 30 27 24 24 25 36 27 27 29 37

Biology 18 6 18 11 15 14 11 44 43 38 25 24 28 14 34 33 35 16

Agriculture 1 1 0 0 0 0 1 4 4 4 1 1 1 0 3 3 3 0

Comp. Science 6 4 7 11 5 5 4 20 17 18 14 14 16 11 15 15 16 12

Technology 5 0 3 1 1 1 0 3 2 2 1 1 1 1 1 1 2 0

Medicine 16 13 22 11 12 15 11 30 28 32 19 19 20 17 21 21 22 20

Education 2 1 1 1 1 1 3 4 8 6 4 4 4 1 5 5 5 4

Economics 2 4 1 1 2 2 0 8 10 9 8 8 7 0 9 9 9 0

Commerce 7 4 2 0 1 1 0 6 6 7 3 3 4 2 6 6 6 2

Psychology 2 2 0 4 1 0 2 8 7 5 6 6 7 7 9 9 9 7

Law 5 6 2 6 3 4 7 9 7 8 9 9 8 7 8 8 9 8

Literature 1 0 0 1 1 0 2 0 0 1 1 1 1 1 0 0 0 1

Language 1 0 0 0 2 2 0 2 1 1 2 2 2 0 1 1 1 0

History 10 9 12 23 11 9 11 11 21 21 26 25 26 16 26 25 26 15

Philosophy 16 0 7 15 6 6 10 17 15 18 19 19 18 10 20 20 22 10

Total 169 79 143 139 105 105 127 296 295 288 246 245 259 174 279 277 291 185

words is greater or on pair with those selected when TF/IDF is used to weigh
the output of feature selection methods: self-attention takes into account not
only the importance of words in the document (TF) but also their importance
in the document collection (IDF).

5.2 Feature Evaluation

To evaluate the quality of the resulting features we measure their stability and
their classification performance. Stability is the robustness of a feature subset
generated from different training sets from the same distribution [12]. To measure
stability we compute the mean Jaccard coefficient between the different subsets
of words generated by each method. We apply 5-fold cross-validation and process
each fold with the fine-tuned language models and the feature selection methods.
Stability is reported on Table 6, where we can see that language models attend
to the same words with stability values in line with those reported by document
count. Attended words are more stable than the rest of the feature selection
methods, including chi-square and information gain, which seems to be more
volatile across folds.

Table 6. Stability of the features measured using Jackard similarity coefficient

SciBERT BioBERT BERT dc pd ig chi

0.87 0.84 0.83 0.86 0.77 0.65 0.58
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In addition, we use the set of features to learn classifiers for the 22 first
level categories using Logistic Regression (LR), Naive Bayes (NB), Random For-
est (RF), Neural Networks (NN), and SVM. The neural network comprises an
embedding matrix of 100 dimensions and a fully connected layer using sigmoid
as activation function. For the SVM the regularization parameter is tuned and
for the remaining algorithms we use the recommended settings. We evaluate the
classifiers using 5-fold cross validation on the subset of documents where each
category was represented with up to 500 papers. The f-measure of the classifiers
is shown in Fig. 3. In general, we observe that traditional feature selection meth-
ods like chi-square and information gain mainly help to learn more accurate
classifiers than the set of most attended words by the language models. This
observation clearly indicates that the success of BERT models in this task is
not only driven by the self-attention mechanism but also by the contextualized
outputs of the transformer, which are the input of the added classification layer.

Fig. 3. Classifiers performance using distinct feature sets and number of features.

6 Conclusions

In this paper, we investigate the self-attention mechanism of BERT in a fine-
tuning scenario for the classification of scientific articles over a taxonomy of
research fields. We observe that attention in the fine-tuned model is focused on
words that are highly relevant to the research field of each article. Furthermore,
we notice that the most attended words represent just a fraction of the whole
vocabulary: a hint that self-attention performs a sort of feature selection.

We systematically compare the most attended words against those resulting
from feature selection methods normally used in text classification. We show
that language models and feature selection methods like information gain and
chi-square share between 42% to 55% of the selected words. We also observe
that the attention-based word rankings produced by the transformers are more
similar to those obtained using document frequency and information gain.
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From our experiments we conclude that self-attention focuses more on words
that are relevant to each research domain than the words produced through
conventional feature selection. However, self-attention is not as good to learn
classifiers from scratch, especially compared to chi-square and information gain.
While self-attention identifies domain-relevant terms the discriminatory informa-
tion in the fine-tuned model is encoded on the output representations and the
additional classification layer. As future work, we plan to investigate the impact
of integrating, perhaps as part of the loss function, optimal feature selection
methods during fine-tuning of transformer for single sequence classification.
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